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Abstract
Over the past few years, many public transport companies have launched pilot projects
testing the operation of electric buses. The basic objective of these projects is to sub-
stitute diesel buses with electric buses within the companies’ daily operations. Despite
an extensive media coverage, the share of electric buses deployed still remains very
small in practice. In this context, new challenges arise for a company’s planning pro-
cess due to the considerably shorter ranges of electric buses compared to traditional
combustion engine buses and to the necessity to recharge their batteries at charging
stations. Vehicle scheduling, an essential planning task within the planning process, is
especially affected by these additional challenges. In this paper, we define the mixed
fleet vehicle scheduling problem with electric vehicles. We extend the traditional vehi-
cle scheduling problem by considering a mixed fleet consisting of electric buses with
limited driving ranges and rechargeable batteries as well as traditional diesel buses
without such range limitations. To solve the problem, we introduce a three-phase
solution approach based on an aggregated time–space network consisting of an exact
solution method for the vehicle scheduling problem without range limitations, inno-
vative flow decomposition methods, and a novel algorithm for the consideration of
charging procedures. Through a computational study using real-world bus timetables,
we show that our solution approach meets the requirements of a first application of
electric buses in practice. Since the employment of electric buses is mainly influenced
by the availability of charging infrastructure, which is determined by the distribution
of charging stations within the route network, we particularly focus on the influence
of the charging infrastructure.
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1 Introduction

Scheduling a fleet of vehicles is an essential task within the planning process of public
transport companies. The mathematical optimization problem that arises from this
task is widely known as the Vehicle Scheduling Problem (VSP). The objective is to
determine the assignment of a company’s vehicles to a set of timetabled service trips
at minimum cost. In general, the costs consist of fixed costs for the acquisition of the
buses used and costs for the buses’ operation. Service trips denote trips for transporting
passengers from a departure stop to an arrival stop at specific times. A vehicle can
also perform deadhead trips without passengers in order to change its location. The
set of all trips executed by a vehicle is denoted as its rotation. Vehicle rotations need
to satisfy some basic constraints. (1) The trips of a vehicle rotation must be mutually
compatible, that is, the trips have to be executable without time overlaps. (2) Every trip
is covered exactly once, and (3) a vehicle begins and ends its rotation at one specific
depot. Depending on the number of depots, the resulting problem is denoted as the
Single or Multi Depot Vehicle Scheduling Problem. Moreover, multiple vehicle types
may be considered (cf. Ferland and Michelon 1988). The VSP and its extensions are
well studied problems in the research community and have been widely analyzed (cf.
Bertossi et al. 1987; Daduna et al. 1995 or Bunte and Kliewer 2009).

Driven by the social and political trend towards sustainable management of
resources and the subsequent rejection of fossil energy sources in favor of renewable
energies, the importance of alternative engines in urban traffic and public transporta-
tion has increased strongly. Electric vehicles (EVs) occupy a special position within
the range of vehicles with alternative engines, since they have numerous important
advantages. First, electric engines have amuch higher degree of efficiency compared to
combustion engines. Second, EVs are locally emission-free, which means that almost
no greenhouse gases, fine particles, and nitrogen oxides are being emitted during their
operation. Nowadays, where thresholds for these emissions are largely exceeded, espe-
cially in urban areas, the use of EVs represents a key factor in order to reduce the nega-
tive effects on public health. Furthermore, electric buses enable a significant reduction
of noise, which is especially important for urban areas (cf. Schallaböck 2012).

Currently, three main different types of EVs exist: (I) fuel cell electric vehicles
containing an electric engine as well as a fuel cell, which generates electric energy
directly from hydrogen or methanol, (II) hybrid electric vehicles containing an electric
engine and a traditional combustion engine, which can be switched on when required,
and (III) battery electric vehicles (BEV), which merely contain an electric engine.
The latter type of vehicle has the shortest range of the aforementioned vehicle types,
because no additional engines can be switched on. The last two vehicle types contain a
battery to store the electric energy needed for powering their engines. In this paper we
consider BEVs, since this type of vehicle implies the strongest restrictions for vehicle
scheduling.

To compensate for their range limitations, BEVs perform detours to charging sta-
tions during their operations in order to recharge their batteries. There are three main
different options for this. First, a vehicle battery can be recharged overnight during
longer idle times at the depot. Second, a battery can be recharged during smaller breaks
within a vehicle’s operation, which is called opportunity charging. Lastly, a vehicle
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battery can be swapped for a fully charged battery. Depending on the charging option
and the waiting time at a charging station, a battery can be fully or partially charged.
In this context, the current of a charging system is particularly important because it
determines the charging time. Different charging technologies are available for trans-
ferring energy into the batteries. Nowadays, this transfer is mainly performed either
by a wire (conductively) or inductively.

Many companies have launched pilot projects testing the operation of electric buses
during the provision of their services. For example, the German cities of Munich,
Leipzig, and Dresden started in 2009 with deploying hybrid electric buses.1 In 2011,
the first BEVs started operations in Germany within the public transport system of
Osnabrück. Since 2015, the Berliner Verkehrsbetriebe (BVG) is carrying out the pilot
project E-Bus Berlin2 whereby BEVs operate on a single line in the city center of
Berlin. An extension to include other bus lines is being considered. The buses used are
partially charged by inductive charging systems at intermediate stops on service trips.
To oppose battery aging effects, the vehicle batteries are charged conductively up to
70% of their capacities at terminal stations (cf. Millner 2020; Pelletier et al. 2017).

As things stand, companies in public transportation face considerable challenges
when deploying electric buses for their daily services. Electric buses havemuch shorter
ranges compared to traditional diesel buses due to their restricted battery capacities,
and they need to make detours to charging stations to recharge their batteries in order
to overcome this disadvantage (cf. Wang et al. 2016). Within the pilot project E-Bus
Berlin, electric buses (Solaris Urbino 12 electric), equipped with a lithium-ion-battery
capable of storing 90 kWh, are deployed. Assuming consumptions of about 1.5–1.8
kWh (dependingon several influencing factors), this results in a rangeof approximately
54 km.3 The same bus typewith a traditional diesel engine (SolarisUrbino 12) is able to
cover a distance of about 450 km. Another challenge of electric buses is the significant
increase in costs for their deployment. The reasons for this are the additional need for
vehicles due to their lower ranges, high acquisition costs due to high battery costs, and
necessary charging stations within the route network (cf. Pihlatie et al. 2014). Accord-
ing to a study by Transport&Environment4 from 2018, the acquisition costs for a BEV
are approximately 60% higher than the traditional combustion engine alternative. For
that reason, the electrification of public transport systems still remains a very slow,
gradual process. It is presumed that the proportion of BEVs will increase in the future.
Accordingly, companies in public transport must nowadays deploy a fleet of vehicles
consisting of both combustion engine vehicles and BEVs for their daily operations.

In this paper, we introduce a three-phase solution approach based on an aggregated
time–space network (TSN) for scheduling amixed fleet of vehicles consisting of BEVs

1 https://www.xn--starterset-elektromobilitt-4hc.de/content/1-Bausteine/5-OEPNV/2016-
projektuebersicht-20152016-hybrid-und-elektrobusprojekte-in-deutschland.pdf [Online accessed on
19-March-2020, in German].
2 https://www.mpm.tu-berlin.de/menue/forschung/projekte/e_bus_berlin [Online accessed on 16-March-
2020, in German].
3 https://www.bsvg.net/fileadmin/user_upload/downloads/Emil/Datenblatt_E12.pdf [Online accessed on
22-March-2020, in German].
4 https://www.euractiv.com/wp-content/uploads/sites/2/2018/11/2018_11_electric_bus_paper_final.pdf
[Online accessed on 24-March-2020].
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with limited driving ranges and traditional combustion engine vehicles without range
restrictions. To do so,we define themixed fleet vehicle scheduling problemwith electric
vehicles (MF-(E)VSP) as an extension of the traditional VSP. The solution approach
consists of an exact solution method for the VSP without range limitations, based on
a TSN in the form of a mixed-integer linear program, followed by a second phase,
in which limited driving ranges will be taken into account by applying innovative
flow decomposition methods, and a third phase in which charging procedures are
inserted into the vehicle rotations. The approach aims at maximizing the proportion
of feasible vehicle rotations for BEVs within the full set of vehicle rotations while
retaining optimal numbers of vehicles used and deadhead trips required. The numbers
of vehicles used and deadhead trips are obtained by solving the standard VSP without
range limitations. Vehicle rotations that are infeasible for BEVs continue to be served
by traditional combustion engine vehicles. The TSN based solution method has been
proven as highly efficient and has already been used for real-world applications. Since
the charging infrastructure has a significant influence on the deployment of BEVs,
we also analyse the impact of different settings on generated solutions. With this in
mind, the experiments conducted and their results may help to speed up the switch
from combustion engine to BEVs in public transport.

The paper is organized as follows: in Sect. 2 we present related literature before
defining the MF-(E)VSP (Sect. 3). Then, we introduce the three-phase solution
approach based on an aggregated time–space network in Sect. 4. In Sect. 5 we perform
a computational study and evaluate the solution approach with regard to proportions
of applicable BEVs and changes in the charging infrastructure. Concluding this paper,
Sect. 6 provides a summary and a prospect for further research.

2 E-VSP and related problems in the literature

In the following, we provide an overview of related literature. There is a wide range
of literature dealing with vehicle scheduling for public transport. For an overview,
we refer to Bunte and Kliewer (2009). With regard to the contribution of this paper,
solution approaches addressing the deployment of EVs are especially relevant. In
recent years, a variety of optimization problems have been introduced that incorporate
limited driving ranges of the vehicles used and the possibility to restore their ranges.
The literature presented belowmainly differ in theirwayof incorporating the additional
restrictions caused by the deployment of EVs as well as the level of reality they reflect
regarding electric issues.

First, Desrosiers et al. (1995) and Haghani and Banihashemi (2002) introduced the
Time Window Constraint Scheduling Problem as an extension of the traditional VSP
by restricting the lengths and durations of vehicle rotations. The authors use a defi-
nition of the VSP from Bodin et al. (1978). For this purpose, they added constraints
to the problem formulation that restrict fuel consumption of the vehicles deployed.
However, the authors neglected the possibility to recharge a vehicle’s battery at some
charging stations within its rotation. The authors present exact and heuristic solution
methods. In order to solve even larger-scale instances, they propose techniques for
decreasing the problem size. Wang and Shen (2007) defined the Vehicle Scheduling
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Problem with Route and Fueling Time Constraints as a first approach to incorporate
both vehicles’ limited ranges and the option to recharge a battery. They develop a
heuristic solution method that incorporates route time constraints and finds vehicle
rotations starting and ending at the depot. Subsequently, they use a bipartite graph
model to connect these rotations in relation to fuel time restrictions. In general, the
term Electric Vehicle Scheduling Problem (E-VSP) has been established when con-
sidering both limited driving ranges of vehicles and the opportunity to recharge their
batteries at specific charging stations. Li (2013) proposed the VSP with limited energy
using time-expanded station nodes, thus considering the possibility to recharge and the
capacities of charging stations. The author presents a construction heuristic produc-
ing vehicle rotations which serve as initial solutions for different column generation
based solution approaches. Chao and Xiaohong (2013) proposed a heuristic method
based on a Non-dominated Sorting Genetic Algorithm (NSGA-II) which they tested
on a real-world instance with 119 service trips. They aim at minimizing vehicle costs
as well as total charging demand. Besides a limited range, the authors consider the
possibility of swapping a vehicle’s battery. After the removal, a fully charged battery
is inserted. Adler and Mirchandani (2016) presented a column-generation approach
for the E-VSP. In order to obtain initial solutions for the solution method the concur-
rent scheduler algorithm by Bodin et al. (1978) is extended to take into account the
additional restrictions caused by BEVs. The solution method is tested on real-world
instances with up to 4000 service trips.

All of the solution approaches discussed have in common that charging processes
are performed within constant time windows. The assumption of constant time win-
dows for charging implies that vehicles remain idle at a charging station for a fixed
time period, whether or not the vehicle batteries have already been fully charged. This
assumption leads to a substantial simplification because the actual charging process
of modern batteries is very complex (Montoya et al. 2017). As a first solution towards
a more realistic reflection of battery charging processes, van Kooten Niekerk et al.
(2017) developed a column-generation approach, which considers partial chargings
in linear time in order to adapt this aspect. Linear time windows for charging refer to
a linear increase in energy depending on the waiting time of a vehicle at a charging
station. In technical terms, this means that vehicle batteries are charged with a constant
current during the entire charging process (Olsen and Kliewer 2020). Janoveca and
Kohnia (2019) presented an exact solution model for the E-VSP based on a mixed-
integer linear program. For solving, they use standard optimization software libraries.
Regarding technical aspects, they also consider linear charging times of the vehicle
batteries. Yao et al. (2020) proposed a heuristic solution method based on a genetic
algorithm for the E-VSPwithmultiple vehicle types. They analyse the impact of differ-
ent driving ranges, recharging durations, and energy consumptions of vehicles on the
solution quality. Even though the authors consider a significant higher level of techni-
cal characteristics in comparison to previous work, they also assume that chargings are
performed in linear time. Regarding further literature, there is no work at all dealing
with the impact of different scenarios of the charging infrastructure on resulting vehi-
cle rotations. Furthermore, homogeneous vehicle fleets basically consisting of only
one major type of propulsion are assumed. Within the solution approach presented in
this paper, we consider a heterogeneous fleet of vehicles, apply linear time windows
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for battery charging, and evaluate different settings of the charging infrastructure to
point out interrelations.

3 Problem description

In this section, we introduce the MF-(E)VSP as the essential problem of this paper
and present the TSN based solution approach together with methods for flow decom-
position.

The objective of the traditional VSP is to assign a given set of timetabled service
trips to a set of vehicles at minimum costs while satisfying the following constraints:

• each service trip is assigned exactly once,
• each vehicle starts and ends its rotation at the same depot,
• each vehicle rotation contains a feasible sequence of trips.

A vehicle rotation represents a sequence of trips that a vehicle executes consecutively.
The trips may be pull-out or pull-in trips from or to the depot, deadhead trips, and
service trips. The public transportation network is assumed to be given by a set of
stop points including the vehicle depots. Each service trip is defined precisely by its
departure time, arrival time, departure stop, and arrival stop. Distances and travel times
between any two stop points in the network are each given by a matrix. The distances
and travel times may differ between service and deadhead trips. Although travel times
may vary, depending on the time of the day, we will assume fixed durations between
any two stop points.

Any solution of the VSP generated is assessed by the total costs caused, consisting
of operational and fixed costs. Each vehicle in use causes fixed costs, independently of
the rotation to be performed. The fixed costs represent the vehicle’s acquisition costs.
Operational costs comprise costs per hour in order to reflect the drivers’ wages and
costs per kilometer to take into account buses’ maintenance and wear.

The use of BEVs leads to additional restrictions that have to be satisfied in order to
enable regular operations:

• a BEV’s residual energy cannot fall below zero and cannot exceed its battery
capacity,

• a BEV can only be recharged at specified charging stations.

The residual energy of a battery is often denoted as its State of Charge (SoC) respec-
tively Depth of Discharge (DoD). In order to incorporate BEVs, the network is
extended by introducing a set of charging stations representing stop points equipped
with charging technology. The charging technology determines the time which is
needed for the intake of energy, the charging time. This is due to the current, which
may differ between different charging technologies. We assume that charging proce-
dures start immediately on arrival at a stop point without buffer times. Possible turning
times at final stops and changeover times at charging stations are assumed to be part of
previous trips. In order to take charging procedures into account, we assume specific
costs for charging arising from energy prices andmaintenance. Each vehicle contains a
battery, which is mainly characterized by its capacity, denoting the maximum amount
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of energy that can be stored. Furthermore, a vehicle consumes a specific amount of
energy per kilometer driven, which differs on service and deadhead trips due to the
greater weight when passengers are being carried. A vehicle rotation is termed feasible
for BEVs if the restrictions introduced are satisfied. If every vehicle used satisfies the
restrictions, the problem is denoted as the E-VSP.

As indicated by the real-world project in Berlin,many companies in public transport
deploy a mixed fleet consisting of both BEVs with range limitations and traditional
combustion engine vehicles without range restrictions. Consequently, neither a pure
form of the VSP nor the E-VSP can be used for operational planning. This challenge
leads to theMF-(E)VSP as the essential problemof this paper, which considers amixed
form of these two problems. Formally, the set of vehicles now consists of two major
subsets: The first subset contains combustion engine vehicles and the second subset
BEVs. Range restrictions must be satisfied for each vehicle of the second subset.

4 Three-phase solution approach based on an aggregated
time–space network

We now discuss our three-phase solution approach for solving the MF-(E)VSP based
on an aggregated TSN. Kliewer et al. (2006) introduced a modeling approach for the
multi depot VSP with multiple vehicle types using a TSN. This solution method gen-
erally comprises three consecutive steps: First, the TSN is constructed, based on the
underlying public transportation network and the timetable. Second, optimal flow val-
ues through the TSN are computed by solving a multi-commodity flow problem. Last,
decomposition strategies are applied in order to obtain executable vehicle rotations
from the flow values.

As previously described, the aimof theMF-(E)VSP is tomaximize the proportion of
feasible vehicle rotations for BEVs within the entire set while retaining optimal num-
bers of vehicles used and deadhead trips required obtained by solving the standardVSP.
Consequently, the first two steps of the solution procedure remain unchanged. How-
ever, the step of flowdecomposition needs to bemodified to consider challenges arising
from the use of BEVs. In addition, charging procedures have to be inserted into the
vehicle rotations. This results in the following three phases of our solution approach:

Phase I: Construction of the TSN and determination of optimal flow values without
consideration of range limitations,
Phase II: Decomposition of the flow into executable vehicle rotations,
Phase III: Insertion of charging procedures.

The following sections describe the specific phases of the solution approach.

4.1 Phase I: Aggregated time–space network and exact solutionmethod for the
VSP without range limitations

A TSN generally shows activities in time and space. A TSN for multi-depot vehicle
scheduling consists of multiple layers, whereby each layer corresponds to a combina-
tion of depot and vehicle type. A layer basically consists of time lines, arcs, and nodes.
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For each stop point of the route network, a time line is created representing all possible
arrival and departure events at the specific stop. Arcs represent service trips, deadhead
trips, and idle times of the vehicles. Deadhead trips starting at the depot are denoted
as pull-out trips and deadhead trips ending at the depot as pull-in trips. Thereby, the
vertical axis of the network describes the spatial and the horizontal axis the temporal
component. A node of the TSN connects a group of possible arrivals to a subsequent
group of possible departures. The arcs of both groups are sorted in ascending order
by the arrival/departure times. Hence, all stop points are represented as ordered sets
of nodes that are connected by waiting arcs. To set up a TSN model, an arc is added
between the corresponding time lines for each service trip that can be served by a
layer’s vehicle type. Then, a node is inserted for every group of consecutive arrival
and departure events on a time line. For each arc, the horizontal distance between the
arrival and departure node of a trip represents its duration. The nodes of each time
line are linked by waiting-arcs to represent the vehicles’ idle times. Series of compat-
ible trips from different time lines are linked by aggregated deadhead-arcs between
the corresponding nodes, representing possible deadhead trips. Possible pull-out and
pull-in-arcs from/to the depot are inserted for every service trip. As it must be ensured
that each vehicle returns to its original depot at the end of a day, a circulation-arc from
the last node to the first node of the time line, belonging to the depot, is added to each
layer.

The concept of time lines enables a significant reduction of the problem’s complex-
ity by aggregating the deadhead-arcs into groups of compatible connections, which
represents the main advantage of the TSN formulation. The concept of transitivity in
the compatibility of trips is used to do this. A deadhead-arc can be omitted if the same
connection can be reached using a combination of other deadhead- and waiting-arcs.
For further details of the procedure for reducing deadhead-arcs, we refer to Kliewer
et al. (2006). Figure 1 illustrates an example of a TSN after applying the reduction
procedure. The figure shows one time line that represents the depot and two time lines
that represent stop points. There are three service trips that operate between the two
stops. However, the directions of travel are different. As this figure illustrates by way
of example, a deadhead-arc to connect service trip 1 with service trip 3 is not necessary
because this connection is provided by a sequence of waiting-arcs within the time line
of stop point 1. Likewise, it does not need a deadhead-arc from the depot to the depar-
ture of service trip 3 as this node can be reached by the deadhead-arc from the depot
to service trip 2 and a waiting-arc on the time line of stop point 1. The application of
this procedure to the entire set of service trips enables a major reduction in the number
of deadhead-arcs. Following Kliewer et al. (2006), a reduction of up to 97% can be
achieved for real-world timetables.

The resulting TSNmodel corresponds to amulti-commodity flow problem (accord-
ing to Kliewer et al. 2008). Let N = {1, 2, . . . , n} be the set of trips and D the set of
depots. For each depot d ∈ D, a network Gd = (V d , Ad) is defined which consists
of nodes V d and arcs Ad . Let Nd(n) ∈ Ad be the arc that corresponds to trip n of
the network Gd . Let ud ∈ N be the maximum number of available vehicles within
a depot d and M ∈ N the total number of available vehicles over all depots. Let the
parameters cdi j ≥ 0 be vehicle costs of arcs (i, j) ∈ Ad reflecting travel and idle times.
The costs of waiting arcs in the depot is set to 0. On the circulation arc of the network
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Fig. 1 Example of a time–space network with three time lines and three service trips (according to Kliewer
et al. 2006)

a fixed cost for using a vehicle is set. Decision variables xdi j ∈ N indicate whether an
arc (i, j) is used and assigned to the depot d or not. Therefore, the following upper
bound is defined for each decision variable:

udi j =

⎧
⎪⎪⎨

⎪⎪⎩

1, if xdi j corresponds to a service trip

ud , if xdi j corresponds to a circulation arc

M, otherwise

With this we can formulate the multi-commodity flow problem as the following
mixed-integer linear program (MIP) (1)–(5). Due to the significant reduction of con-
nections within the TSN, even real-world instances with very large networks and
timetables can be solved to optimality using standard optimization software libraries.

min
∑

d∈D

∑

(i, j)∈Ad

cdi j x
d
i j (1)

∑

{ j :(i, j)∈Ad }
xdi j −

∑

{ j :( j,i)∈Ad }
xdji = 0 ∀ i ∈ V d ,∀ d ∈ D (2)

∑

d∈D,(i, j)∈Nd (n)

xdi j = 1 ∀ n ∈ N (3)

0 ≤ xdi j ≤ udi j ∀ (i, j) ∈ Ad ,∀ d ∈ D (4)

xdi j ∈ N ∀ (i, j) ∈ Ad ,∀ d ∈ D (5)

The objective (1) is tominimize the sumof total vehicle costs. Constraint (2) ensures
the flow conservation, indicating that the flow into each node equals the flow out of
each node. Constraint (3) secures that each trip is covered by exactly one vehicle.
Constraint (4) ensures that the upper bound of each decision variable is not exceeded.
According to constraint (5), all decision variables are non-negative integers.
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Due to the formulation of the VSP as a multi-commodity flow problem, solutions
provide optimal flow values for each arc of the network. Consequently, no path-related
constraints can be considered because the problem formulation does not contain an
optimization of the paths. The flow values allow many different paths through the
network. All of them represent optimal solutions with regard to the number of vehicles
needed and deadhead trips required, but differ in the distribution of waiting times. In
order to obtain executable vehicle rotations, flow decomposition methods are used to
break down the optimal flow.

4.2 Phase II: Flow decompositionmethods for the deployment of BEVs

To divide the optimal flow values into executable paths through the TSN, we propose
eight decomposition methods. All of the methods are local procedures since they solve
a decision-making problem at each node of the TSNwithout considering the entire net-
work. For all methods, incoming arcs are connected to outgoing arcs within each node
of the TSN. The first two decomposition methods presented in Sects. 4.2.1 and 4.2.2
are taken from Kliewer et al. (2006) whereas the other strategies are novel procedures
explicitly designed for the consideration of electric vehicles’ characteristics.

4.2.1 FIFO

The widely known, simple procedure FirstIn-FirstOut (FIFO), which is often used
within database applications, can also be used for flowdecomposition.FIFO combines
the first incoming arc within each node of a time line with the first outgoing arc, the
second incoming with the second outgoing, etc. (all of themwith positive flow values).
Figure 2 shows an example of a node within a time line of a TSN. On the left side of
the figure, the procedure FIFO is illustrated by an example with three incoming resp.
outgoing arcs.

4.2.2 LIFO

The procedure LastIn-FirstOut (LIFO) proceeds contrarily: The last incoming arc is
linked to the first outgoing one. On the right side of Fig. 2, the procedure LIFO is
illustrated. Although the decomposition strategies FIFO and LIFO are not directly
related to the use of BEVs, we use them in our computational study in order to compare
standard to more complex decomposition methods.

4.2.3 MaxMinChargingTime

The proceduresFIFO and LIFO have in common that they are fairly simple and do not
consider any characteristics of BEVs, such as charging times or energy consumption.
In contrast, we propose the novel strategy MaxMinChargingTime, which aims at
maximizing the minimum waiting times at charging stations within vehicle rotations
in order to enable vehicles to recharge. Since overlong time windows for charging for
some vehicles would result in too short charging times for other vehicles, we solve
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Fig. 2 FIFO (left) and LIFO (right) illustrated by one node of a time line within a time–space network

an assignment problem that maximizes the minimum waiting time for each possible
connection.

Let n ∈ N be the number of incoming arcs for a node and m ∈ N the number of
outgoing arcs. Let bi j ≥ 0 ∀i = 1, . . . , n, j = 1, . . . ,m be parameters that reflect
waiting times at the stop point of the node between each incoming arc i and each
outgoing arc j . Decision variables xi, j ∈ {0, 1} indicate whether an incoming arc i
is connected with an outgoing arc j (xi, j = 1) or not (xi, j = 0). The assignment
problem can be represented by the following mathematical optimization problem:

maxmin
i, j

bi j · xi j (6)

s.t.
m∑

j=1

xi j = 1, i = 1, . . . , n (7)

n∑

i=1

xi j = 1, j = 1, . . . ,m (8)

xi j ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . ,m. (9)

The objective (6) is to maximizing the minimum waiting times. Constraint (7) of
the problem formulation ensures that each incoming arc is connected with precisely
one outgoing arc. Constraint (8) ensures the same for each outgoing and incoming
arc. According to constraint (9), all decision variables are binary. The optimization
problem is solved using standard optimization software libraries, since the number of
choices is small even for large real-world instances.

4.2.4 BalanceConsumption

An alternative view enables the decomposition method BalanceConsumption.
The main idea of this procedure is to consider the energy consumption of the vehicle
rotations with regard to potential connections of incoming and outgoing arcs. The
objective is to balance the consumption of the different vehicle rotations. To this
purpose, a bottleneck problem is solved. In thisway, themaximumsumof consumption
over every possible connection between incoming and outgoing arcs is minimized.
The mathematical optimization problem is identical to the proposed with regard to
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MaxMinChargingTime but now the parameters bi j reflect the sum of consumption
of any connection between an incoming arc i and an outgoing arc j .

4.2.5 MaxMinChargingTime-BalanceConsumption

As an extension of the previous strategies, MaxMinChargingTime-Balance
Consumption combines the methods MaxMinChargingTime and Balance
Consumption, so that the first strategy is applied at every charging station and the
second at every non-charging station. This should maximize waiting times of vehi-
cles at charging stations and balance the vehicles’ consumption at every non-charging
station. This way, the benefits of the two decomposition methods can be combined.

4.2.6 Extended-MaxMinChargingTime-BalanceConsumption

For some instances it might be advantageous to consider the consumption even at
charging stations. Therefore, theExtended-MaxMinChargingTime-Balance
Consumption strategy solves a bottleneck problem at every node but includes both
possible waiting times for charging and consumption of the different vehicle rotations.
Thus, aweighted sumof both components is considered. Besides the adjusted objective
function, the mathematical optimization problem is identical to the model used within
MaxMinChargingTime and again solved by standard software libraries.

4.2.7 Extended-BalanceConsumption

Within the strategy of BalanceConsumption it might be useful to consider only
the consumption between two charging stations within a vehicle rotation instead of the
entire vehicle rotation. Furthermore, it is likely beneficial to link two already infeasible
parts of vehicle rotations to avoid additional infeasibilities. These two components are
considered within Extended-BalanceConsumption. For this purpose, the sum
of consumption for all pairs of incoming and outgoing arcs is computed but now
considering the consumption between any two directly consecutive charging stations.
If both the incoming and outgoing part of the corresponding vehicle rotations are
infeasible for BEVs, the consumption of the specific connection is set to a sufficiently
high value in order to rule out this connection for BEVs. In that way, the procedure
aims at connecting infeasible parts of vehicle rotations.

4.2.8 MaxMinChargingTime-Extended-BalanceConsumption

As a last strategy, we use MaxMinChargingTime-Extended-BalanceConsumption
which is a combination of the previously introduced strategies. At this point, the
assignment of arcs at charging stations is done by MaxMinChargingTime and
at non-charging stations by Extended-BalanceConsumption. Analogous to
MaxMinChargingTime-BalanceConsumption, the benefits of the two strate-
gies should be exploited.

Table 1 illustrates themain characteristics of themethods presented for flow decom-
position.
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4.3 Phase III: Charging insertion procedure

After dividing the optimal flowvalues into executable paths considering charging times
and energy consumption, charging procedures have to be inserted into the vehicle
rotations in order to enable operation by BEVs. Therefore, we now introduce an
algorithm that adds charging procedures to vehicle rotations. Since waiting times
at intermediate stops of service trips are determined by the timetable, we focus on
waiting times between consecutive service trips. The basic procedure is illustrated by
Algorithm 1.

Algorithm 1 Charging Insertion Procedure
Input: vehicle rotations V , charging stations S, lower bound E and upper bound E for the SoC
Output: vehicle rotations V with feasibility for all v ∈ V

1: for each v ∈ V do
2: Set v as f easible;
3: for each t ∈ v do
4: Update SoC after executing t w.r.t. energy consumption and opportunity charging;
5: if Departure stop of t is in S and updated SoC < E then
6: if previous(t) is a deadhead trip then
7: if Waiting time before previous(t) plus after previous(t) is positive then
8: Shift previous(t) backwards;
9: Add charging procedure before t ;
10: Update SoC;

11: else if Waiting time before t is positive then
12: Add charging procedure before t ;
13: Update SoC;

14: if SoC < E then
15: Set v as in f easible;
16: Delete all charging procedures within v;
17: break;
18: return V ;

The set of vehicle rotations V obtained by flow decomposition, the set of charging
stations S, and a specific lower and upper bound for the SoC serve as the input data.
The bounds for the SoC will be used within our computational study to incorporate
battery aging effects. Therefore, we assume that the SoC of a vehicle battery cannot
fall below the lower bound and cannot exceed the upper bound after leaving the depot.

The set V of vehicle rotations is processed consecutively and the current rotation
v is considered (l. 1). Initially, each vehicle rotation is assumed to be feasible for
BEVs (l. 2). Then, after each trip t of v the SoC is computed by subtracting the energy
consumption of t . If trip t is a service trip, the amount of energy being charged by
opportunity charging at intermediate stops is added (l. 4). If the current vehicle rotation
remains feasible after executing t waiting times before and after the trip can be used
for charging if corresponding time windows are positive and the current departure stop
point is a charging station (l. 5). Since service trips are fixed by their departure and
arrival times and deadhead trips can be shifted, we use a case differentiation to insert
charging procedures. To do this, we consider the previous trip previous(t) of t as the
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first case. If previous(t) is a deadhead trip, we check whether the waiting time before
trip previous(t) plus the waiting time before trip t is positive (l. 6 and l. 7). If this is
the case, trip previous(t) is shifted backwards in order to increase possible charging
times, a charging procedure is added before executing trip t , and the SoC is updated (l.
8–l. 10).Within this step, we take into account charging procedures already inserted by
the algorithm in order to prevent that earlier charging procedures are shortened or even
removed. If previous(t) is a service trip, we perform this procedure by considering
the waiting time before trip t , add a possible charging procedure, and update the SoC
(l. 12 and l.13). In all cases where charging is possible the specific upper bounds for the
SoC of the batteries are considered. If the updated SoC falls below the lower bound,
the current vehicle rotation is infeasible and, thus, cannot be executed by BEVs (l.
15). In this case, charging procedures already inserted into the rotation are removed
and the next vehicle rotation is processed (l. 16). After each vehicle rotation has been
processed the algorithm returns the modified vehicle rotations and their feasibility
resp. infeasibility (l. 18).

5 Computational study

In this section, we present the results of our computational study.We start by introduc-
ing the instances to be solved and the experimental parameters. Then, we look at the
results of solving the MF-(E)VSP according to the procedure introduced in Section 4.
In this context, we analyze the percentages of feasible vehicle rotations for BEVs as
the crucial aspect of this paper. In particular, we investigate the impact of the proposed
decomposition methods on resulting vehicle rotations considering different settings
of the charging infrastructure.

5.1 Problem instances and parameters

Our computational experiments are performed on six real-world instances, with up to
10,000 service trips, which differ in their number of service trips, their distributions
over the day, and numbers of stop points. The instances are based on real-world
data from German public transport companies. The names of the instances contain
the total number of service trips. The instances are characterized by different kinds of
distribution of the numbers of simultaneously performed timetabled trips over the day,
see Fig. 3, and differ in the number of stop points. The different profiles of service
trips cover the most popular patterns in public transport, since the instances t867,
t1135, and t3067 can be associated with urban areas comprising peak times in the
morning and afternoon, whereas t1296, t2633, and t10710 represent rather rural areas
characterized by constant services throughout the day. For our study, the instances’
original data have been adapted in order to address the requirements of BEVs.

Within this study, we assume two major engine types of the vehicles deployed:
BEVswith range limitations and traditional combustion engine vehicles without range
limitations. For reasons of simplification, we consider a single vehicle depot. Conse-
quently, every vehicle starts and ends its rotation at the depot regardless of the vehicle
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Fig. 3 Temporal distribution of timetabled service trips over the day for each instance

type. Furthermore, we assume that both types of vehicles are able to cover every
timetabled service trip.

Inspired by the real-world project in Berlin, we assume a battery capacity of 90 kWh
for all BEVs. A BEV always leaves the depot with a fully charged battery. Therefore,
we assume a sufficiently large number of charging systems in the depot and a sufficient
period of time between arrivals and departures of the vehicles. To take battery aging
effects into account, we assume a lower and upper bound within a battery’s SoC
ranges during its operations after leaving the depot (cf. Jossen 2005). We will use
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20% of the battery capacity for the lower and 80% for the upper bound. Although
the consumption of BEVs is influenced by several factors such as line topologies,
road gradients, and traffic conditions, we assume constant consumption by a BEV
per kilometer driven. However, we assume that consumption per kilometer differ on
service (1.8 kWh/km) and deadhead trips (1.5 kWh/km). This leads to a maximum
range of 60 km on deadhead trips and 50 km on service trips for each BEV.

An important part of this study will be the analysis of different settings of the
charging infrastructure. Therefore, we consider different scenarios that differ with
regard to the proportion of charging stations at highly frequented stops in the full set
of stop points. We use proportions of charging stations of 10%, 20%, and 50% within
the following study. To achieve this, stop points are ordered by the number of service
trips departing or arriving at the respective stop points and the corresponding subset
of stop points is equipped with charging systems. We assume unbounded capacities
of charging stations, which means the number of simultaneous charging procedures
and amounts of energy that can be charged at a charging station are unbounded. As
this assumption represents a broad generalization, especially with regard to highly
frequented traffic hubs, we investigate this issue in greater detail within our study.

A battery can be charged either between two successive service trips or at inter-
mediate stop points during the execution of a service trip if corresponding stop points
are equipped with charging technology. As described earlier, different charging sys-
tems exist at the present time, mainly differing in terms of the energy transfer and
the current provided during a charging process. To incorporate this crucial aspect, we
consider different currents provided at the charging stations. We use currents of 1.8,
3, and 9 kWh/min. Since we consider only one type of BEV at the same time, we
conduct our study for each current. Despite having explained the need for complex
models to incorporate the nonlinear charging process of modern lithium-ion batteries,
we assume a constant current during the entire charging process of BEVs for each
charging system, and thus linear charging times. Following the real-world project in
Berlin, we first assume 50 min for charging a battery to full capacity if it is completely
empty, which leads to a current of 90 kWh/50 min = 1.8 kWh/min. Building on this,
we assume 30 and 10 min for a complete charging of the battery leading to 3 kWh/min
and 9 kWh/min to represent more efficient fast-charging systems. Since we focus on
the feasibility of vehicle rotations for BEVs computed atminimum costs for traditional
diesel busses, we do not consider any additional cost parameters arising from the use
of BEVs, like energy costs or fixed costs for charging stations. Finally, as we consider
a single type of BEVs, we assume that each BEV can be charged at every available
charging station.

5.2 Results of solving theMF-(E)VSP using the three-phase solution approach

We now discuss the results of solving theMF-(E)VSP.With regard to the implementa-
tion of BEVs in public transport, not only the percentages of feasible vehicle rotations
for BEVs are important but also related aspects such as percentages of service trips
covered by BEVs, kilometers driven by BEVs, and characteristics of the charging
procedures. In the following, we discuss each of the specified aspects. The solution
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approach provided is implemented in C# under .Net using the optimization library of
IBM ILOG CPLEX 12.5. All of the results have been obtained by using a CPU with a
2.7 GHz processor. We receive acceptable run times for all instances with the standard
optimizer of CPLEX. The maximum runtime over all instances was approximately
30 s.

5.2.1 Percentages of feasible vehicle rotations for BEVs

We first analyse the percentages of feasible vehicle rotations for BEVs within solu-
tions of the MF-(E)VSP. Table 2 provides an overview of the results, according to
the assumed distribution of charging stations, the current provided by the charging
systems, and the method used for flow decomposition. Additionally, the number of
vehicles needed in the optimal solution of the standard VSP is given for each instance.

Looking at the detailed results, we can observe that the entire set of vehicle rotations
cannot be served by BEVs in any of the cases examined. Furthermore, the percentage
of feasible vehicle rotations for BEVs differs significantly according to the assumed
distribution of charging stations, the current provided, and the instances. In all cases,
an increasing distribution of charging stations as well as increasing currents both lead
to an increase in feasible vehicle rotations for BEVs. However, the impacts of these
two factors differ significantly. It can be stated that, in general, the charging stations’
influence on the feasibility of rotations for BEVs depends strongly on the instances
themselves. If an instance’s distribution of timetabled trips over the day contains peak
times (see Fig. 3), the influence of an increasing distribution of charging stations is
significantly higher than in the case of an almost unvarying offer of service trips. With
regard to the specific data of this study, an increase in charging stations leads to more
feasible vehicle rotations when solving instances t867, t1135, and t3067 that can be
associated with urban areas but has very little impact on the solutions for instances
t1296, t2633, and t10710 that correspond to rural areas. Similar observations can
be made regarding the currents provided at charging stations. Again, an increase in
the current leads to higher percentages of feasible rotations when the corresponding
instances contain peak times in service trips over the day than in the case without
peak times. Independently of the respective instance, we can observe that the higher
the current provided at charging stations, the higher is the impact of an increasing
distribution of charging stations on the solutions. This is reasonable because longer
charging times caused by lower currents almost entirely cancel out the higher degrees
of freedom caused by a greater number of charging stations. However, in the case of
9 kWh/min as the current, these advantages can be used to obtain better solutions.

With regard to the different flow decomposition methods, we identify that the use
of more complex methods especially designed for the deployment of BEVs generally
leads to a higher percentage of feasible vehicle rotations by comparison tomethods not
considering the special features of BEVs. The traditional methods FIFO and LIFO
achieve worse results than any other method in all of the cases examined. It is worth
noting that the lower the number of charging stations is, the better results are obtained
when using more specific methods for flow decomposition. This is reasonable because
more charging stations distributed within the network enable more degrees of free-
dom and thus compensate for the unspecific procedures of traditional methods such
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as FIFO or LIFO. The application of more complex methods leads to particularly
good results when solving the instances t867, t1135, and t3067. This is because these
instances contain peak times of timetabled trips over the day, which allow the vehicles
to recharge their batteries during times with reduced offers. At this point, methods
that consider charging times and energy consumptions take better advantage of these
conditions. Regarding the instances t1296, t2633, and t10710, more specific methods
still provide better solutions but have less impact. In all the cases examined, themethod
MaxMinChargingTime-Extended-BalanceConsumptionprovides thebest
results. This is because this method covers most aspects of BEVs.

5.2.2 Percentage of service trips covered by BEVs

Another interesting aspect is the percentage of service trips covered by BEVs because
service trips represent a core service of public transport companies. Table 3 contains the
percentage of service trips covered by BEVs, again divided according to the assumed
distribution of charging stations, the current provided by the charging systems, and
the method used for flow decomposition.

Basically, we can observe that the proportion of service trips covered by BEVs is
very similar to the proportion of feasible vehicle rotations. The statements previously
made can also be justified with regard to Table 3. However, we can observe that in all
cases, the percentage of service trips covered is smaller than the corresponding percent-
age of feasible vehicle rotations. This may be explained by the lengths of the vehicle
rotations. Feasible rotations tend to be shorter than infeasible ones and, thus, contain
less service trips. In contrast to the data of Table 2,we nowobserve significant improve-
ments in the distribution of charging stations. Now, increasing numbers of charging
stations cause a steady increase in service trips covered by BEVs, even with the same
current provided. In concrete terms, this means that longer vehicle rotations become
feasible when the number of charging stations is increased. Regarding the methods
used for flow decomposition, we observe that more specific methods lead to higher
percentages of service trips covered by BEVs. As in the previous case, the method
MaxMinChargingTime-Extended-BalanceConsumption achieves thebest
results. Again, the use of traditional methods without considering the vehicles’ limited
ranges and the possibility to recharge batteries leads to the worst results.

5.2.3 Percentage of kilometers covered by BEVs

Especially interesting for companies in public transport, particularly in urban areas, is
the share of kilometers that can be covered by BEVs. This is because every kilometer
that is served by an BEV leads to a reduction of noise, gases, and fine particles and
may contribute to public health. Table 4 shows percentages of driven kilometers by
BEVs.

The observations with regard to the share of kilometers driven by BEVs essentially
correspond to the previously obtained statements. The use of decomposition methods
taking into account the special features of BEVs is still preferable by comparison
to traditional methods. The more complex methods achieve higher percentages of
kilometers driven by BEVs in all cases. However, throughout the results, we can
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identify a further reduction in the percentages compared to our previous results. The
vehicle rotations that are feasible for BEVs tend to contain shorter service trips than
the rotations that cannot be executed by BEVs. Consequently, the total numbers of
kilometers driven by BEVs are reduced.

5.2.4 Charging characteristics

So far, the implementation of resulting vehicle rotations in practice was not of major
importance. Thereby, it is especially important that the charging procedures performed
by BEVs are reasonably distributed over the day for all charging stations. Uneven
distribution may lead to significant problems concerning the practical operation of
BEVs because building sites for charging systems are usually restricted, especially in
urban areas. Therefore, we analyse the charging data of the vehicle rotations at this
point. Table 5 provides the maximum, minimum, and average maximum numbers of
simultaneous charging procedures at the same charging station over all decomposition
methods, for all instances, distributions of charging stations, and currents. Further-
more, the average numbers of charging stations actually used over all BEVs deployed
are specified. Here, we do not address each flow decomposition method separately,
since we are analyzing the general usability of our solution approach. Moreover, the
following data does not consider opportunity charging during the execution of service
trips. This is because corresponding charging times are usually very short and there-
fore do not have a significant impact on practical operations. In order to be able to
better assess the findings, we additionally indicated the number of stop points for each
instance.

With regard to the average numbers of charging stations that are actually used over
all BEVs deployed, we can see from the data in Table 5 that the more stop points are
equipped with charging systems, the more are actually used; however, in a dispropor-
tionately limited way considering corresponding percentages. Furthermore, the higher
the assumed current at a charging station, the more charging stations are used. Both
observations can be explained by the increased number of feasible vehicle rotations
for BEVs. If this proportion rises, the more longer rotations can be executed by BEVs
and, thus, more charging stations are used. However, this behaviour depends on the
instances’ distributions of timetabled service trips. If instances contain peak times,
both the increasing proportion of charging stations available as well as increasing cur-
rents lead to higher percentages of charging stations used. If this is not the case, the
number of charging stations used is mainly increased by a rise of charging stations
available but not significantly by increasing currents.

Regarding the maximum number of simultaneous charging procedures at the same
charging station, we can make similar observations when considering instances with
peak times of service trips. Both increasing proportions of available charging stations
and increasing currents lead to higher numbers of simultaneous chargings. When
solving instance t867, the average maximum number of chargings varies between 2.1
and 5.0, regarding instance t1135 between 2.3 and 5.3, and with regard to instance
t3067 between 4.1 and 8.9. When we look at the results of instance t10710 without
peak times of timetabled service trips, we obtain rather contrary observations. The
lower the current at a charging station, the higher is the average maximum number
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of chargings. In addition, a rise in the distribution of charging stations reduces the
resulting maximum numbers independently of the assumed current. In the worst case,
with a current of 1.8 kWh/min and 10% charging stations, we obtain 14.8 and in the
best case 6.4 simultaneous chargings on average. Looking at the instances t1296 and
t2633, we observe only slight changes without any apparent relation. In contrast to
previous instances, the corresponding numbers are much lower and vary between 1.2
and 1.9 and between 1.4 and 2.3 simultaneous chargings respectively.

The results may give the impression that some solutions generated cannot be
realized in practice due to the particularly high numbers of simultaneous charging
procedures. The exact maximum number of simultaneous chargings that can be car-
ried out at a charging station depends on several factors. For example, space limitations,
numbers of charging points, or restrictions imposed by the electricity grid are of impor-
tance. However, the absolute numbers of simultaneous chargings can be reduced by
subsequently optimizing buffer times entailed in the vehicle rotations. Each vehicle
rotation contains service trips, deadhead trips, and charging procedures, of which the
last two can be shifted, whereas service trips are fully fixed. By shifting deadheads
and chargings, the maximum number of simultaneous chargings may be balanced and,
thus, may be reduced, which generally enables a better realization in practice.

6 Summary and further research

In this paper we introduced the MF-(E)VSP as an extension of the traditional VSP
to consider a heterogeneous fleet of vehicles consisting of BEVs with limited driving
ranges and traditional combustion engine vehicles without range limitations. To solve
the problem, we proposed a three-phase solution approach based on an aggregated
time–space network. The approach consists of an exact solution method for the VSP
without range limitations in the form of a mixed-integer linear program, followed
by a second phase, in which limited driving ranges are considered by applying flow
decomposition methods and a third phase, in which charging procedures are inserted
into the vehicle rotations. The aim is to maximize the proportion of feasible vehicle
rotations for BEVswithin the entire set of vehicle rotations while retaining the optimal
number of vehicles used and deadhead trips required obtained by solving a standard
VSP. Our approach was evaluated by solving real-world instances with up to 10,000
service trips.

Essentially, it can be stated that the percentage of feasible vehicle rotations for
BEVs within solutions generated, together with corresponding characteristics, meet
the requirements of a first application of BEVs in practice, especially when consider-
ing the slow shift towards their use in public transport. However, there are remarkable
differences between the solutions generated. The results show that the performance
of the solution approach presented depends strongly on the instances’ distributions
of service trips and the methods used for flow decomposition. If an instance’s dis-
tribution contains peak times we generate significantly better results than in the case
of an almost unvarying distribution. Similarly, the impact on resulting percentages of
increasing numbers of charging stations and increasing currents provided by the charg-
ing systems is much greater when timetabled trips have peak times. Furthermore, flow
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decompositionmethods especially developed for the use of BEVs achieve significantly
better results than traditional methods not considering the special features of BEVs.
With regard to the percentages, we are able to cover up to 72.1% of vehicle rotations
with BEVs when peak times exist, and merely up to 28.9% when this is not the case.
This is mainly because instances that contain peak times of timetabled trips over the
day allow the vehicles to recharge their batteries during times with reduced offers.
Nevertheless, we cover a minimum of 37% in the first and 8.0% in the second case.
Compared to this, traditional methods for flow decomposition without considering the
limited driving ranges of BEVs have significantly poorer outcomes. Furthermore, the
shares of service trips covered and kilometers driven by BEVs have a strong positive
correlation to the previous aspect. Particularly, with regard to environmental issues
such as noise, dust, and air pollution, this coherence plays a significant role, since
public transport companies are aiming to reduce negative effects on public health by
deploying BEVs.

In summary, this study remains only a first step towards more realistic concepts,
models, and solution approaches for the application of BEVs in public transport com-
panies’ practice. Subsequent research should conduct further analysis with regard to
the input parameters as well as the underlying assumptions about the vehicle and
charging technology in order to evaluate our findings and gain further insights into
the problem. The determination of the underlying charging infrastructure in particular
represents an essential research topic, which may likely lead to further optimization
potentials. This aspect of electro-mobility may be considered as a stand-alone problem
or may be integrated into vehicle scheduling. In addition, it would be interesting to see
how the consideration of multiple vehicle types with different driving ranges affect
the solutions to be generated. Finally, one could extend the solution methods used for
solving the E-VSP. In addition to the development of exact solution methods, heuris-
tic solution methods capable of solving extremely large real-world problem instances
with many depots and vehicle types are particularly interesting. This has already been
developed for the traditional VSP without range-limited vehicles by Gintner et al.
(2005).
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