Anhang

A Die Hochvakuum-Beschichtungsanlage

Im Folgenden soll kurz die Hochvakuum-Beschichtungsanlage erläutert werden, mit der in der vorliegenden Arbeit die Beschichtung mit den organischen Materialien sowie der Aluminium-Elektrode vorgenommen wurden.

Die Anlage besteht aus der Hauptkammer, in der die Substrate beschichtet werden, und einer Schleuse (Abbildung A.1), die einen schnellen Transfer von Proben an Luft oder in die Stickstoffatmosphäre eines Inertgasarbeitsplatzes ermöglicht. Der Probentransport erfolgt mit Hilfe eines Zangenmanipulators, der die runden Substrathalter von einem Magazin in der Schleuse in die Hauptkammer bringt und dort auf dem Rotator ablegt. Die Rotation des Substrathalters während der Bedampfung gewährleistet eine homogene Beschichtung.

Abbildung A.1: Querschnitt der Hochvakuum-Beschichtungsanlage. Dargestellt sind die Effusoren (1), der Rotator mit Substratheizung (2), ein Substrathalter (3), der Substratdeckel (4), der Zangenmanipulator zum Transfer von der Schleuse in die Hauptkammer (5), ein Schwingquarz zur Schichtdickenkontrolle (6), das Ventil zur Schleuse (7), die Anschlüsse an die Turbopumpen (8), der Motor mit Drehdurchführung als Rotatorantrieb, die pressluftbetriebenen Effusorendeckel (10), und der Manipulator für den Maskenwechsel (11).

Als Effusoren werden Tiegel mit einer Widerstandsheizung eingesetzt. Für die Phthalocyanine, C₆₀ und Bathocuproin bestehen die Tiegel aus Graphit. Sie sind mit einer Wasserkühlung die benachbarten Effusoren abgeschirmt. Lediglich das Aluminium wurde in einem Tiegel aus einer speziellen Keramik verdampft, der wiederum von einer Graphithülle gehalten wird. Insgesamt sind *12* Effusoren in der Anlage eingebaut, *3* für niedrige Temperaturen bis *400* °C zur Verdampfung von Materialien wie Bathocuproin, *6* für mittlere Temperaturen von 400-700°C für die Verdampfung der Phthalocyanine und von C₆₀ sowie *3* Effusoren für höhere Temperaturen, darunter der Aluminium-Effusor für Temperaturen bis zu *1200* °C. Die Temperatur jedes Effusors wurde einzeln mit Hilfe eines hierfür entwickelten Computerprogramms angesteuert, das den gleichzeitigen Betrieb mehrerer Effusoren z.B. für die Herstellung von Mischschichten durch Koverdampfung ermöglichte. Die Schichtdickenkontrolle erfolgte mit Hilfe von *4* verschiedenen Schwingquarzen, die durch ergänzende Messungen, insbesondere mit einem Profilometer [Vogel02] kalibriert wurden.

Die Schattenmaske, die einen Teil des Probenhalters bildet, ist in Abbildung A.2 (a) dargestellt. Die rechteckigen Öffnungen dienen der Bedampfung mit organischen Materialien, die runden Öffnungen der Bedampfung mit der Aluminium-Elektrode. Die Substratscheibe in Abbildung A.2 (b) fixiert mit ihren *13·24 mm²* großen Öffnungen die Proben. Eine Führungsschiene, in die eine Schraube in der Schattenmaske greift, definiert zwei Positionen der Substrate relativ zu den Öffnungen der Schattenmaske. Der Schattenmaskenwechsel zwischen Beschichtung des Substrats mit den organischen Schichten und der Bedampfung mit Aluminium wurde wie folgt vorgenommen: Die Schattenmaske wurde mit Hilfe eines Manipulators (Abbildung A.1) festgehalten. Währenddessen wurde der Probenhalter mit Hilfe des Rotators gedreht. Dadurch wurde die Schattenmaske so weit verschoben, dass die Gruppe von runden Öffnungen vor das Substrat gelangte.

Abbildung A.2: Schattenmaske (a) und Substratscheibe (b), die Teil des Probenhalters für die Hochvakuum-Beschichtungsanlage sind. Die dunklere Einfärbung von Teilen der Schattenmaske deutet an, dass die Oberfläche dort um 1/10 mm erhaben ist.

Die erhabenen Bereiche auf der Schattenmaske sorgten dafür, dass die aufgebrachten Schichten während des Maskenwechsels nicht in Kontakt mit der Maske waren und deshalb nicht verkratzt werden konnten.

B Technische Neuentwicklungen – Vakuumtransfersystem

Um Proben im Hochvakuum von der Beschichtungsanlage zum Kammersystem der Photoelektronenspektroskopieanlage mit Hilfe einer bestehenden Vakuumtransportkammer zu transferieren, waren umfangreiche Anpassungen an der Beschichtungsanlage notwendig. Diese Anpassungen waren:

- Entwurf und Bau eines Probenträgerhalters, der die Manipulation von Probenträgern, die mit der Vakuumtransportkammer und der Photoelektronenspektroskopieanlage kompatibel sind, in der Beschichtungsanlage ermöglichte.
- 2. Entwurf und Bau einer zusätzlichen Transferkammer mit eigenem Manipulator. Dies war notwendig, da mit dem Manipulator der bestehenden Vakuumtransportkammer nicht der benötigte Hub von über 60 cm aufgebracht werden konnte, um Proben aus der Beschichtungsanlage zu entnehmen.

Abbildung B.1 zeigt die Einzelteile des neuen Probenträgerhalters. Das runde Stahlblech mit Aussparungen (Abbildung B.1 (a)) sowie ein Federblech und ein Führungsblech (Abbildung B.1 (b)), die oberhalb und unterhalb mit Schrauben daran befestigt werden, dienen dazu, die Molybdänprobenträger (grau ausgefüllt in Abbildung B.1 (a)) zu fixieren. Der Aluminiumring (Abbildung B.1 (c) und (d)) wird mit dem Stahlblech verschraubt und erlaubt die Manipulation mit dem Zangenmanipulator der Schleuse der Beschichtungsanlage. Die vier Aussparungen erlauben es, die Probenträger einzeln mit dem Manipulator der Transferkammer zu entnehmen.

Abbildung B.1: Konstruktionszeichnungen der Einzelteile des Probenträgerhalters, der die Manipulation von Probenträgern der Photoelektronenspektroskopieanlage in der Beschichtungsanlage erlaubt. (a) und (b): Stahlbleche zur Fixierung von 4 Probenträgern. Diese werden mit einem Aluminiumring ((c) und (d)) verschraubt:, der durch den Zangenmanipulator der Beschichtungsanlage gegriffen werden kann und gleichzeitig die Entnahme einzelner Probenträger mit einem weiteren Manipulator ermöglicht.

Abbildung B.2 (a) zeigt schematisch das Kammersystem der Hochvakuum-Beschichtungsanlage (vgl. Anhang A) mit Präparationskammer (1), Schleuse (2) und neu angebauter Transferkammer (3). Die Proben können mit Hilfe der Schleuse und des Zangenmanipulators (4) innerhalb von ca. *15 Min.* in die Präparationskammer gebracht werden. Die Beschichtung erfolgt durch die Effusoren (5). Während der Beschichtung befindet sich der Probenträgerhalter auf einem Rotator (6).

Abbildung B.2: (a) Kammersystem mit Präparationskammer (1), Schleuse (2) und neu angebauter Transferkammer (3). In der Schleuse ist der Zangenmanipulator (4) zu erkennen, in der Beschichtungskammer sind die Effusoren (5) und der Rotator (6) angedeutet. (b) Transferkammer mit Probenrad (7), Manipulator (8) und Justiervorrichtung aus einem Balg und Gewindestangen (9).

Die Entnahme der einzelnen Probenträger erfolgt mit Hilfe des Manipulators der Transferkammer, die in Abbildung B.2 (b) vergrößert dargestellt ist. Das Probenrad (7) in der Transferkammer ist auf einer Dreh- und Hubdurchführung befestigt, so dass der Manipulator (8) darüber hinweg bis in die Präparationskammer gefahren werden kann. Das Rad ist hier mit vier Probenhaltern in den vier Positionen dargestellt. Zur präzisen Aufnahme der Probenträger in der Präparationskammer war eine Justierung des Manipulators unerlässlich. Diese konnte mit Hilfe von vier Gewindestangen und eines Balges (9) vorgenommen werden.

Die Übernahme der Probenträger aus der Transferkammer erfolgte durch den Manipulator der Transportkammer. Einige kleinere Anpassungen am Probenrad der Transferkammer, auf die hier nicht näher eingegangen werden soll, stellten Kompatibilität mit diesem Manipulator her. Der Probentransfer von der Transportkammer in die Photoelektronenspektroskopieanlage konnte ohne größere apparative Anpassungen vorgenommen werden.

C Ergänzende Literaturübersicht zur Bestimmung chemischer Komponenten der Indium-Zinnoxid-Oberfläche

Zur Interpretation der Bindungsenergiewerte der XPS-Spektren in Abschnitt II.2 wurden umfangreiche Literaturdaten gesammelt. Oft gründet die Interpretation der Spektren in Abschnitt II.2 auf eine Vielzahl von Quellen. Diese werden hier ergänzend aufgeführt. Dabei wird jeweils zu einer Bindungsenergie eine Kurzbeschreibung der Probe und die Interpretation der Autoren angegeben.

Es werden Daten für die Elemente Sauerstoff (O1s, Tabelle C.1), Indium (In $3d_{5/2}$, Tabelle C.2) und Zinn (Sn $3d_{5/2}$, Tabelle C.3) als Bestandteile von Indium-Zinnoxid (ITO) angegeben. Zur Interpretation der Bindungsenergiewerte von phosphorsäureund periodsäurebehandelten ITO-Proben dienen die Literaturdaten zu den Rumpfniveaus von Phosphor (P2p, Tabelle C.4) und Iod (I $3d_{5/2}$, Tabelle C.5).

O1s			
Bindungsenergie	Probe	Interpretation	Ref.
(eV)			
530,3	Lösemittelgereinigtes ITO	In ₂ O ₃	Song01
530,5	Lösemittelgereinigtes ITO	In ₂ O ₃	Nguyen02
530,6	In ₂ O ₃	In ₂ O ₃	Hewitt80
530,7	Lösemittelgereinigtes ITO	In ₂ O ₃	Papaef04
530,8	SnO ₂	SnO ₂	Moses78
531,0	SnO ₂	SnO ₂	Kato97
531,2	InOOH	InOOH	Donley02
531,3	In(OH)₃	In(OH)₃	Donley02
531,5	Lösemittelgereinigtes ITO	C-O-Verbindungen	Song01
531,6	In(OH) ₃	In(OH)₃	Wagner80
531,9	In ₂ O ₃	$In(OH)_3$ oder ads. O_2	Hewitt80
532,0	Oxidiertes InP	InH _x PO ₄ oder In(OH) _x	Thurga90
532,4	Lösemittelgereinigtes ITO	In-OH-Gruppen	Papaef04
532,5	Lösemittelgereinigtes ITO	In-O-H-Verbindungen	Nguyen02
532,9	H ₂ O	H ₂ O	Wagner80
533,0	Lösemittelgereinigtes ITO	H ₂ O	Kim99
533.2	H-O	H-O	Nefedo75, zit. n.
555,Z	1120	1120	NIST03
533,3	Oxidiertes Fe	H ₂ O	Grosve04
534,0	V_2O_3	H ₂ O	Toleda01

In3d _{5/2}			
Bindungsenergie	Probe	Interpretation	Ref.
(eV)			
443,9	Lösemittelgereinigtes ITO	In ₂ O ₃	Donley02
444,3	InOOH	InOOH	Donley02
444,9	Lösemittelgereinigtes ITO	In(OH)₃	Donley02
444,7	Lösemittelgereinigtes ITO	In ₂ O ₃	Song01
444,7	Oxidierte In-Folie	In ₂ O ₃	Lin77
444,8	Ar+-gesputtertes ITO	In ₂ O ₃	Yoshio00
444,9	In ₂ O ₃	In ₂ O ₃	Hewitt00
445,0	Lösemittelgereinigtes ITO	In ₂ O ₃	Papaef04
445,1	Oxidiertes InP	In(OH) ₃ H ₂ O	Faur90
445,2	Oxidiertes InP	In(OH)₃	Faur90
445,6	Oxidiertes InP	InPO ₄ oder In(OH) ₃	Wager81
445,6	Oxidiertes InP	(In) _x H _y PO ₄	Thurga90
445,6	InP + H ₃ PO ₄	InPO ₄ oder In(OH) _x	Mouton90
445,2-446,0	InI ₃	InI ₃	Wagner78
446,0	Lösemittelgereinigtes ITO	In(OH) _x	Nguyen02
446,3	Lösemittelgereinigtes ITO	In _x (OH) _y	Papaef04

 Tabelle C.2: In3d_{5/2}-Bindungsenergiewerte aus der Literatur.

 Tabelle C.3: Sn3d_{5/2}-Bindungsenergiewerte aus der Literatur.

	Sn3d _{5/2}		
Bindungsenergie	Probe	Interpretation	Ref.
(eV)			
485,6	SnO ₂	Sn ²⁺	Themli92
485,8	Lösemittelgereinigtes ITO	SnO ₂	Donley02
486,5	Lösemittelgereinigtes ITO	Sn ^{2⁺}	01
486,7	Lösemittelgereinigtes ITO	Sn²⁺	Lee02
486,8	Lösemittelgereinigtes ITO	Sn-OH-Verbindungen	Donley02
487,0	SnO ₂	Sn ⁴⁺	Themli92
487,0	SnO ₂	SnO ₂	Kato97
487,4	SnO auf SiO ₂	SnO	Jiméne96
487,5	Lösemittelgereinigtes ITO	Sn ⁴⁺	Yu01
487,7	Lösemittelgereinigtes ITO	Sn⁴⁺	Lee02
487,9	Sn auf NiTi	SnO ₂	Silvain04
488,3	SnO ₂ auf SiO ₂	SnO ₂	Jiméne96

 Tabelle C.4: P2p-Bindungsenergiewerte aus der Literatur.

P2p			
Bindungsenergie	Probe	Interpretation	Ref.
(eV)			
133,9	KH ₂ PO ₄	$K^+ H_2 PO_4^-$	Pelavi69
134,15	InPO ₄	InPO ₄	Franke91
134,2	Oxidiertes InP	InPO₄	Faur90
134,2	V behandelt mit H ₃ PO ₄	$VO^+ H_2PO_4^-$	Asunsk03
134,3	Oxidiertes InP	In _x H _y PO ₄	Thurga90

		3d _{5/2}	
Bindungsenergie (eV)	Probe	Interpretation	Ref.
619,1	lnl₃	lnl₃	Freela77
619,8	I_2	l ₂	Sherwood76
623,1	HIO ₃	HIO₃	Sherwood76
623,3	I_2O_3	I_2O_3	Sherwood76
624,0	NalO ₄	NalO ₄	Sherwood76

 Tabelle C.5: I3d_{5/2}-Bindungsenergiewerte aus der Literatur.

D Abkürzungsverzeichnis

AFM	Atomic Force Microscope - Rasterkraftmirkroskop
BE	Bindungsenergie
CuPc	Kupter-Phthalocyanin
EQE	Externe Quantenausbeute
FWHM	Full width half maximum - Halbwertsbreite
НОМО	Highest occupied molecular orbital – höchstes besetztes molekulares Orbital
i.d.R.	in der Regel
IQE	Interne Quantenausbeute
ITO	Indium-Zinnoxid
KPFM	Kelvin Probe Force Microscopy – Kelvin-Kraftsondenmikroskopie
LUMO	Lowest unoccupied molecular orbital – niedrigstes unbesetztes mo- lekulares Orbital
OLED	Organische Leuchtdiode
Pc	Phthalocyanin
PES	Photoelektronen-Spektroskopie
SEEK	Sekundärelektronenemissionskante
SEM	Scanning electron microscope - Rasterelektronenmikroskop
UHV	Ultra-Hochvakuum
unbeh.	unbehandelt
UPS	UV-Photoelektronen-Spektroskopie
vgl.	vergleiche
w. E.	willkürliche Einheiten
XPS	Röntgen-Photoelektronen-Spektroskopie
ZnPc	Zink-Phthalocyanin

E Symbolverzeichnis

Symbol	Einheit	Bezeichnung
A	Vs/m	Vektorpotential
A_A	eV	Elektronenaffinität des Akzeptormoleküls
A_{as}	-	opt. Absorption in der aktiven Schicht einer Solarzelle
A_{sub}		opt. Absorption im Substrat einer Solarzelle
С	m/s	Lichtgeschwindigkeit im Vakuum (2,998·10 ⁸)
d	nm	Schichtdicke
е	С	Elementarladung (1,602·10 ⁻¹⁹)
E _{B cutoff}	eV	Bindungsenergie der Kante des höchsten bestetzen molekularen Orbitals (HOMO) auf Seite niedriger Bin- dungsenergien
$E_{B \ Kante}$	eV	Bindungsenergie der Kante des höchsten bestetzen molekularen Orbitals (HOMO) auf Seite niedriger Bin- dungsenergien
E _{B Max}		Bindungsenergie des Maximums des höchsten bestet- zen molekularen Orbitals (HOMO)
ΔE_D	eV	Detektorverbreiterung
E_F	eV	Fermi-Niveau
Ēø	eV	Bandlücke
$\tilde{E_{HOLU}}$	eV	Differenz der Bindungsenergien des LUMOs des Ak- zeptors und des HOMOs des Donators
E_{kin}	eV	kinetische Energie
E_{Vak}	eV	lokales Vakuumniveau einer Oberfläche
$E_{Vak}(\infty)$	eV	absolutes Vakuumniveau
eD	eV	Grenzflächendipol
η	%	Wirkungsgrad einer Solarzelle
η_{CC}	%	Anteil der Ladungsträger, die von den Elektroden ge- sammelt werden
η_{ED}	%	Anteil der Exzitonen, die die Donator-Akzeptor- Grenzfläche einer Solarzelle erreichen
η_{ET}	%	Anteil der Exzitonen an der Donator-Akzeptor- Grenzfläche, die dort getrennt werden
Nort	%	externe Quantenausbeute einer Solarzelle
η_{int}	%	interne Quantenausbeute einer Solarzelle
Φ	eV	Austrittsarbeit
FF	-	Füllfaktor einer Solarzelle
ħ	J∙s	Plancksches Wirkungsquantum (6,626*10 ⁻³⁴) geteilt durch 2π
H_w	J	Störoperator
I_{D^*}	eV	Ionisierungsenergie des angeregten Donatormoleküls
I_D	А	Diodenstrom
ĪĒ	eV	Ionisierungsenergie
I_m	А	Stromkoordinate des Arbeitspunktes einer Solarzelle
J_{sc}	mA/cm ²	Kurzschlussstromdichte einer Solarzelle
k_B	J/K	Boltzmannkonstante (1,381·10 ⁻²³)
L_{D}^{Ex}	nm	Exzitonendiffusionslänge
$L_D^{n,p}$	nm	Ladungsträgerdiffusionslänge

μ	cm²/Vs	Ladungsträgermobilität
m	kg	Masse
n	-	Diodequalitätsfaktor
р	kg·m/s	Impuls
р	mbar	Druck
P_{Licht}	W	einstrahlende Lichtleistung
P_{max}	W	Leistung einer Solarzelle am Arbeitspunkt
R_{sz}		opt. Reflexion einer Solarzelle mit Al-Rückelektrode
R	%	relative Reflexion
Т	%	relative Transmission
τ	S	Ladungsträgerlebensdauer
U_C	eV	Coulomb-Energie von ionisiertem Donator- und Ak- zeptormolekül
V_b	eV	Bandverbiegung
V_m	V	Spannungskoordinate des Arbeitspunktes einer Solar- zelle
V_{oc}	V	Leerlaufspannung einer Solarzelle
W_{fi}	s⁻¹	Übergangsrate nach Fermis Goldener Regel
$ \Psi_i angle$		Anfangszustand
$ \Psi_{f} angle$		Endzustand
ω	s⁻¹	Kreisfrequenz elektromagnetischer Strahlung