
3 Continental collision
zones

The following chapter provides a summary of con-
cepts and models thought to describe bivergent
wedges. Thereby, special emphasis is devoted to
the ability of these models to predict the spatio-
temporal distribution of deformation and surface
uplift.

3.1 Kinematic concepts of bivergent
orogens

Lithosphere-scaled profiles across natural biver-
gent orogens such as the European Alps, the Pyre-
nees or Taiwan (Fig. 3.1) have several phenom-
ena in common, which result from the asymme-
try associated with the convergence geometry, i. e.,
the presence of a downgoing and an overriding
plate. This asymmetry forms the basis for the
key kinematic assumption that collisional orogens
result from the partial subduction of continental
lithosphere and accretion of crustal material (Wil-
lett et al., 1993; Ellis et al., 1995; Ellis, 1996).
According to Willett et al. (1993) a velocity dis-
continuity (singularity) separates the subducting
(lower) plate from the overriding (upper) plate and
forms thus the lower limit of accretion (Fig. 1.2).
The asymmetry of the subduction process evokes a
polarity in the resulting crustal mass transfer, i. e.,
all crustal mass moving into an orogen is derived
from the subducting plate and moves towards the
overriding plate. This in turn leads to the forma-
tion of two crustal sub-wedges. The pro-wedge lo-
cated upstream of the singularity grows by frontal
and basal accretion of lower plate material. In con-
trast, the retro-wedge located downstream of the
singularity develops by translation of pro-wedge
material towards the upper plate. The axial-zone
is defined as the topographic culmination of the

bivergent wedge and changes its position with re-
spect to the singularity through time. Furthermore,
both the pro- and the retro-wedge differ also with
respect to their topographic gradients. Thereby,
the former has a lower and the latter a higher topo-
graphic gradient (Willett et al., 1993; Beaumont
et al., 1996).

The asymmetry of the convergence geometry
evokes also a distinct temporal distribution of de-
formation. During early stages of collision, de-
formation is dominantly located within the pro-
wedge, but migrates towards the upper plate dur-
ing a late collisional-stage (Willett et al., 1993;
Beaumont et al., 1996). A further key obser-
vation, which emerges from the above cross-
sections, is the flexural downbending of the in-
volved lithospheres during continental collision.
Thus, a successful simulation of bivergent wedges
should provide the key characteristics indicated
above.

3.2 Kinematic models of fold and
thrust belts

One of the critical issues in the analysis of fold and
thrust belts, is the timing of thrusting and several
models have been put forward to explain the vari-
ability found in nature (Storti et al., 2000; Butler,
2004). These are:

i. Forward breaking piggy-back thrusting
(Boyer and Elliott, 1982), where displace-
ment is transferred onto a new thrust initiated
in the footwall of the previously active
thrust (Fig. 3.2a). The latter is abandoned
and passively carried in the hangingwall
of the former (Butler, 1987). Thus, defor-
mation propagates systematically from the
hinterland towards the foreland.

ii. Break-back thrusting (Butler, 1987), where
a sole thrust propagates into the foreland,
followed by the formation of major thrusts

13
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3.2. Kinematic models of fold and thrust belts 15

above it (Fig. 3.2b). Thereby, successively
younger thrusts are formed towards the hin-
terland (Morley, 1988).

iii. In-sequence thrusting, where a thrust se-
quence has formed progressively in one di-
rection, which can either be a forward- or a
break-back sequence (McClay, 1992).

iv. Out-of-sequence thrusting (Morley, 1988;
McClay, 1992), where the sequence of thrust-
ing does not conform with either a progres-
sive forward- or break-back sequence. Mor-
ley (1988) distinguished three modes of out-
of-sequence thrusting: the re-activation of an
older thrust (Fig. 3.2c), synchronous thrust-
ing (Boyer, 1992; Storti et al., 2000), where
two or more thrust accumulate displacement
at the same time (Fig. 3.2d) and the forma-
tion of a new thrust which cuts through and
displaces pre-existing thrusts (Fig. 3.2e).

Whether forward breaking, break-back, in se-
quence or out-of-sequence thrusting occurs is
commonly attributed to local factors such as me-
chanic stratigraphy, syntectonic erosion, sedimen-
tation or basement fabrics (Storti et al., 2000).
Storti et al. (2000) showed also that several of the
above “thrust-modes” can act at the same time.
This is thought to result from the complex me-
chanical balance, which varies through time.

Although, not clearly stated, the above concep-
tual models involve some predictions of how dis-
placement is partitioned in space and time. Henry
Cadell (1888) was probably the first to note that
the slip along the deformation front depends on
the phase within the accretion cycle, a term not
known in his days. Cadell (1888) showed that at
one point, the brittle strata snapped, i. e., a thrust
was formed, and all the movement was concen-
trated along the line of weakness thus produced.
The whole mass above this thrust-plane moved
obliquely upwards and forwards, and all intersti-
tial movement ceased. Similarly, Mulugeta and
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Figure 3.3: Displacement versus bulk shortening of four
thrusts taken from Koyi (1995). Evolution of displacement of
all imbricates follows a similar pattern; starting with a sharp
increase as the imbricate begins to form, followed by little
or no additional displacement before the formation of a new
imbricate in front of the former. This in turn is followed by a
gentler increase in displacement that decreases significantly
with progressive deformation.

Koyi (1992) found that lateral growth of an accre-
tionary wedge is episodic and Koyi (1995) sug-
gested that each accretion episode is predated by a
stepwise increase of the height of the wedge. Fur-
thermore, Koyi (1995) demonstrated that displace-
ment rate along thrusts is not constant through
time and that three phases can be distinguished.
During the first phase, i. e., the initiation of an im-
bricate, displacement rate is high, followed by a
period of quiescence, during which a new thrust
is formed in the foreland. In the third phase a
slight increase of the displacement rate, which is
lower than the one in the first phase can be ob-
served. Finally, displacement rate approaches zero
with continued convergence (Fig. 3.3). This result
suggests thus that displacement is partitioned in
space and time. Experimental observations and
minimum work calculations by Gutscher et al.
(1998) provided additional support for the cyclic
nature of accretion. Similar to Koyi (1995) they
found that (i) the maximum uplift migrates sys-
tematically backwards during an accretion cycle
and that (ii) the main backthrust accommodates
most of its slip at the end of each accretion cy-
cle, which lead Gutscher et al. (1998) to con-
clude that each accretion cycle consists of two
phases: the thrust initiation and the underthrust-



16 3. Continental collision zones
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Figure 3.2: End-member modes of thrust sequences, modified after Morley (1988). (a) Forward or piggy-back breaking se-
quence, where deformation propagates toward the foreland with time. (b) Break-back sequence, where deformation propagates
toward the hinterland with time, numbers indicate sequence of activity. Modes of out-of-sequence thrusting: (c) Re-activation
of an older thrust located within the wedge. (d) Synchronous thrusting of two or more thrusts. (e) Creation of a new thrust,
which cuts across and displaces older ones.
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Figure 3.4: Bipartite evolution of an accretion cycle, taken
from Gutscher et al. (1998). (a) Frontal accretion with
shearing of imbricate slices at a mid-level detachment.
(b) Underthrusting with frontal uplift. (c) Underplating of
entrained duplexes associated with backthrusting and uplift
at the rear of the wedge (vertical arrows indicate maximum
uplift). Gutscher et al. (1998) used a high basal friction,
i. e., µb = 0.5, which is similar to the one used in this study
µbdynamic = 0.54.

ing phase respectively (Fig. 3.4). Such a bipartite
evolution has also been documented from sandbox
experiments, which simulate oblique convergence
(Hoffmann-Rothe et al., 2004). Therefore, both
terms, i. e., the thrust initiation phase and the un-
derthrusting phase are adopted in this study.

3.3 The Critical Coulomb Wedge
concept

The fundamental dynamic assumption is that a
subduction-accretion process leads to the forma-
tion of an orogenic wedge with a geometry gov-
erned by the relative magnitude of the frictional
resistance along the base and the compressive
strength of the wedge material (Dahlen, 1990).

Although, considerable natural variations exist
among crustal wedges, they exhibit several com-
mon properties in cross section. Chapple (1978)
pointed out that accretionary wedges as well as
fold-and-thrust belts show: (i) a basal detach-
ment or décollement, which dips towards the in-
terior of the mountain belt; (ii) large horizontal
compression in the material above and little de-
formation within the material below the detach-
ment and (iii) a characteristic wedge shape of
the deformed material, tapering towards the fore-
land of the mountain belt. These observations in
conjunction with sandbox experiments formed the
basis for the critical taper theory (Davis et al.,
1983), which was later adopted by various phys-
ical and numerical simulation studies for accre-
tionary wedges (Byrne et al., 1993; Kukowski
et al., 1994; Lallemand et al., 1994; Gutscher et al.,
1996, 1998; Lohrmann et al., 2003), for fold-and-
thrust belts (Storti and McClay, 1995; Nieuwland
et al., 2000; Cobbold et al., 2001), as well as for
doubly vergent wedges (Malavieille, 1984; Wang
and Davis, 1996; Willett, 1999; Storti et al., 2000,
2001; Persson et al., 2004; Hoth et al., 2006). In
principle, provided crustal deformation is driven
by convergence and basal shear stresses are signif-
icant, the deforming crust attains a ‘critical’ bal-
ance between gravitational stresses, basal shear
stresses and the strength of the crust at the scale
of the entire crust, thus resulting in the formation
of an ‘orogenic wedge’ (Platt, 1986).

The overall mechanics of critical Coulomb
wedges are commonly considered to be analogous
to the mechanics of wedges that form in front of
a moving bulldozer or snow plow (Davis et al.,
1983) and both models are often cited for intu-
itive understanding. Accordingly, if a snow plow
starts to move through a fresh layer of snow two
scenarios can be envisaged. Given that the inter-
nal strength of the snow is higher than the fric-
tion with the road, e. g., if the snow is icy and
the road is warm, then the snow will be moved
as an undeformed slab in front of the plow. If
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however, the internal strength is smaller than the
friction with the road, which is usually the case,
then the snow deforms internally and its surface
will become inclined. According to the Mohr-
Coulomb failure criterion, the strength of the snow
will increase as the thickness of the snow wedge
increases until a critical taper between the surface
slope and the basal detachment (i. e., the road) is
reached. At this stage, the strength of the snow is
exactly as large as the basal traction and the snow
wedge can now move along its base without inter-
nal deformation. It follows that a critically tapered
snow wedge is the thinnest body that can be thrust
over its detachment without internal deformation.
While sliding over its base, accretion of new ma-
terial to a critically tapered snow wedge promotes
internal deformation to accommodate the respec-
tive influx and to restore the critical taper.

From the above analogy it is evident that the pa-
rameters, which determine the failure criterion of
the wedge material and its base, control the shape
of the wedge. Thus, a failure law must be spec-
ified both within the wedge and along its base in
order to solve for the state of stress within and for
the critical taper of the respective wedge (Dahlen
and Suppe, 1988). Generally, stress within the
lithosphere is thought to be limited by frictional
sliding (Byerlee, 1978) at low confining pressures
and by thermally activated processes, especially
dislocation creep (Brace and Kohlstedt, 1980) at
high temperatures. Therefore, brittle behaviour is
thought to be satisfactorily described by the Mohr-
Coulomb failure criterion and is considered as the
stress-limiting factor (Davis et al., 1983; Dahlen
and Suppe, 1988). It can be written as:

τ = µ(σN − p f )+C0 (3.1)

where τ is the shear strength, C0 the cohesive
strength, µ is the coefficient of internal friction,
which relates to the angle of internal friction (φ )
by µ = tanφ , σN is the normal stress and p f

the fluid pressure. The form (σN − p f ) describes
the effective normal stress (Hubbert and Rubey,

1959). It follows from equation (3.1) that the
Mohr-Coulomb failure criterion is strongly (fluid)
pressure-dependent but is largely independent of
temperature or strain rate (Byerlee, 1978).

The effect of cohesion on the magnitude of the
resulting shear strength and finally on the geome-
try of the wedge depends on the vertical and hor-
izontal position within the wedge under consider-
ation. At depths on the order of a few kilometers,
the effect of cohesion, which is in the order of
1 to 150MPa (Dahlen and Suppe, 1988), is neg-
ligible in comparison with the pressure-dependent
term in the failure equation (3.1). According to
Davis et al. (1983) the main effects of cohesion on
wedge geometry will be observed near the toe of
the wedge, where cohesion can add significantly
to the total strength and produce a critical taper
smaller than the corresponding cohesionless taper.
Farther from the toe where the wedge is thicker,
the pressure-dependent term dominates, and the
critical taper will asymptotically approach the co-
hesionless value (Davis et al., 1983).

Furthermore, Byerlee (1978) demonstrated that
µ is largely independent of lithology but depends
on the magnitude of normal stresses. For normal
stresses below 200MPa, the shear stress required
to induce sliding is given by τ = 0.85σN ; above
200MPa, τ = 0.6σN (Byerlee, 1978).

As indicated above, fluid pressures play a cru-
cial role in controlling the mechanics of thrust
faulting. Fluids cannot support shear stresses and
their respective pressure has the same magnitude
in all directions. Therefore, fluid pressure reduces
the magnitude of the principal stresses, but the de-
viatoric stress remains constant. It follows that the
Mohr circle is shifted towards the origin – brittle
failure sets in at lower shear stresses. The corre-
sponding angle between σ1 (highest normal stress)
and the failure plane is reduced with respect to the
case, where no fluid pressure was present.

From the above description of the controlling
failure law it is evident that the lower limit of the
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Critical Coulomb wedge (CCW) theory is the mid-
dle to lower crust, where pressure and temperature
become sufficiently high that common rocks begin
to display a temperature-dependent plastic behav-
iour (Davis et al., 1983). Although the CCW con-
cept was originally formulated for a non-cohesive
Mohr-Coulomb type rheology (Davis et al., 1983;
Dahlen et al., 1984) presented a solution involving
cohesion and Platt (1993) extended this theory to
involve perfectly plastic materials.

In the following a short derivation of the critical
taper equation is provided. A Cartesian coordinate
system is employed, where x is parallel to the base
of the wedge and z increases upward (Fig. 3.5).
The local thickness of the wedge is given by Hw,
measured along the z-axis. Neglecting along-
strike variations and assuming plane strain, Davis
et al. (1983) proposed that the critical taper of a
compressive wedge is controlled by the balance of
four forces in the x direction:

The gravitational body force which is given by:

Fg =−ρgHwdxsinβ (3.2)

where ρ , assumed constant, is the density of rocks,
g is the acceleration due to gravity, Hw is the height
of the wedge and β is the dip of the base with re-
spect to the horizontal. Fg is negative, since it re-
sists movement of the material uphill.

The x-component of the pressure of the water
overburden, which resists sliding:

Fw =−ρwgDdxsin(α +β ) (3.3)

where ρw is the density of water, D is the height of
the water column at x and α is the local angle of
topographic relief of the wedge.

The basal shear traction τb is negative as well,
since it resists sliding and is given by:

τb =−µb(1−λb)ρgDHw (3.4)

where µb is the basal coefficient of friction and
λb is the Hubbert and Rubey pore fluid ratio for

the basal detachment. While introducing µb and
λb one allows explicitly for the fact that the basal
detachment is a zone of weakness either because
of a lower intrinsic strength with respect to the in-
ternal strength (µ0), or because of elevated fluid
pressures. For a through-going basal detachment
to operate the condition

(1−λb)µb = (1−λ0)µ0 (3.5)

must be satisfied. Thereby, λ0 is the internal pore
fluid ratio (Davis et al., 1983).

Let σx (x,z) be the normal traction, which acts
across any face perpendicular to the x-axis. Inte-
gration of this term with respect to dz at position x
delivers the work needed to push the face at po-
sition x. However, this is counteracted (actio =
re-actio) by a force at x + dx which is somewhat
smaller, since z is lower and the respective work
resulting from integration is smaller as well. Thus,
the difference in work between the position x and
x + dx, which can be considered as the gradient
or the first derivation, is the resultant compressive
push in positive x direction. In case dx > 0 the
above gradient belongs to a secant. Therefore, the
limit of dx → 0 is needed to calculate the gradi-
ent of the tangent at position x, which is thus the
resultant compressive force at position x (Fig. 3.6).

Fs =
d
dx

∫ H

0
σx dz (3.6)

Balancing the above four forces to find the con-
dition at which the wedge can be pushed over its
base without internal deformation, results in:

0 = Fg +Fw + τb +Fs. (3.7)

Equation (3.7) implies that a critically tapered
wedge is at the verge of shear failure everywhere,
which is the key physical assumption made in the
CCW concept. In order to solve for the state
of stress within and for the critical taper of the
respective wedge, the only remaining unknown
quantity is σx, which can be determined by using
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Figure 3.5: Schematic diagram of a subaerial wedge subject to horizontal compression. Terminology used to describe the
critical taper equation is provided: α surface slope; β basal dip; µ0 coefficient of internal friction; µb coefficient of basal
friction; p0 internal fluid pressure; pb basal fluid pressure; ρ density of rocks; σ1 maximum, σ3 minimum principal stress;
Ψ0 angle between σ1 and surface slope; Ψb angle between σ3 and wedge base. The three forces, acting upon an arbitrary
wedge-column of width dx are: the gravitational body force and the basal traction resist movement of the material up hill and
the push from the rear. For stable sliding of the whole wedge to occur, the force balance has to equate to zero, i. e., a critically
tapered wedge is the thinnest body of material, which can slide over its base without internal deformation. Additionally,
external processes thought to influence the shape and growth of wedge are indicated. Figure in cap (Dan Davis) not shown to
scale. Modified after Davis et al. (1983), Dahlen (1990) and Lohrmann et al. (2003).

a Mohr circle (Davis et al., 1983). After several
rearrangements of equation (3.7), small angle ap-
proximations as well as the simplifying assump-
tion that λ0 = λb, one finally arrives at the follow-
ing equation for a submarine wedge:

α +β =
(1−λb)µb +(1−ρw/ρ)β
(1−ρw/ρ)+(1−λ )K

. (3.8)

In case of a subaerial wedge ρw is set to 0 in equa-
tion (3.8). It follows:

α +β =
(1−λb)µb +β
1+(1−λ )K

. (3.9)

In case of sandbox experiments where the sand is
dry, i. e., λ = 0 and assuming that λb = 0 as well,
one obtains:

α +β =
µb +β
1+K

(3.10)

where K describes the push from the rear.

Implications and predictions of the CCW con-
cept. The CCW concept predicts that a high ra-
tio between basal and internal friction increases,

whereas a low ratio decreases the critical taper.
Similarly, a high fluid pressure inside the wedge
decreases its strength and increases thus the crit-
ical taper, while a high fluid pressure along the
basal detachment decreases the basal strength and
thus decreases the critical taper.

A taper stability field (α − β space) is defined
by the basal and internal coefficients of friction
(Dahlen, 1984), whereby cohesion and fluid pres-
sure are neglected. Wedges in region I and III fail
by thrusting or by a combination of thrusting and
normal faulting because the frictional traction on
their base is too great (Fig. 3.7). The resulting de-
formation acts to increase the taper of wedges in
region I and to decrease it in region III. Wedges
in regions II and IV are unstable as well, since the
friction on their bases is too weak. They both fail
by normal faulting, decreasing their taper in re-
gion II by gravity spreading and increasing it in
region IV. Any wedge in the stability field is stable
as long as the basal friction remains constant. An
increase of the magnitude of basal friction causes
regions I and III to grow and regions II and IV to
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shrink in size. It follows that the stable regions
decreases in size and ultimately disappears as the
limit µb = µ0 is approached (Dahlen, 1984).
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Figure 3.6: Relation between x position and a hypothetical
solution of f (σx(x)) =

∫ H
0 σx dz, which is the work needed

to push a plane perpendicular to x-axis at position x. This
work is counteracted by forces acting on the plane at posi-
tion x+dx. However, the latter is somewhat smaller than the
former, since the push is coming from the thick end and the
x-face is larger in area at x than at x+dx. The resultant force
pushing the wedge towards the thin end, can be thus con-
sidered as the gradient of the secant (between A and B). If
dx → 0 is given, one obtains the gradient of the tangent at A
and thus the push from the thick end at position x.

Surface processes tend to perturb the critical
topographic form and may thus control the prop-
agation and distribution of deformation within an
orogenic wedge (Fig. 3.7). Outward propagation
of deformation towards the foreland is more likely
to occur in regions where erosion cannot maintain
the surface gradient at or below a critical taper,
or where enhanced sedimentation within intra-
montane basins adds to the thickness of the oro-
genic wedge (Schlunegger, 1999; Hovius, 2000).
In contrast, erosion decreases the thickness of
the wedge, which is equivalent to a decrease in
the strength of crustal faults and thus drives con-
tinued internal deformation until the critical ta-
per is restored (Davis et al., 1983; Dahlen and

Suppe, 1988; Willett, 1999). Correction of the per-
turbed topographic shape back to its critical state
may also lead to changes in the pre-existing mor-
phology, the pre-existing drainage pattern and the
erosion rates which may finally trigger different
modes of deformation.

The CCW concept has also been employed to
predict the distribution and magnitude of fluid
pressures, the velocity field and the distribution of
metamorphic facies within accretionary wedges as
well as their thermal structure (Dahlen and Barr,
1989; Barr and Dahlen, 1989; Barr et al., 1991).
Furthermore, Hilley et al. (2004) and Hilley and
Strecker (2004) used the CCW concept in con-
junction with fluvial incision laws to show how
a critically tapered orogenic wedge, which is in
an erosional equilibrium, evolves through time.
Probably the most important implication of the
CCW concept is based on the fact that it does
not depend on the across-strike position x, which
means that critical wedges are scale invariant, i. e.,
α +β = constant (Davis et al., 1983; Dahlen and
Suppe, 1988). The mechanics of orogenic wedges
can thus be explained with the same concept used
for snow or sand wedges. The above relation also
indicates that critical wedges remain constant in
shape but grow in size. A direct link between
wedge shape and the orientation of the principle
stresses is provided by:

α +β = Ψb−Ψ0 (3.11)

where the angle between the maximum principle
stress σ1 and the rigid base or the surface slope is
denoted by Ψb for the former and by Ψ0 for the
latter (Davis et al., 1983).

A self-similar evolution of a crustal wedge im-
plies also that the depth to the basal detachment
increases with time. Such a scenario has been pro-
posed for Taiwan by Davis et al. (1983). Based
on the above result Dahlen and Suppe (1988)
showed that the width and the height of critically
tapered wedges grow proportional to convergence
or time t by t0.5 (Dahlen, 1990).
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Although the predictive power and generality
of the CCW concept is evident, it “only” pro-
vides quasi-static solutions for the geometry and
stress states of wedges, but does not make any
predictions about the deformation or the kinemat-
ics within deforming wedges (Willett and Pope,
2004). Thus, the often cited modes of inter-
nal thickening such as synchronous and out-of-
sequence thrusting as well as basal accretion or
back rotation may or may not be a consequence
of the CCW concept (Boyer, 1995). As out-
lined above, the CCW concept assumes a linear
Mohr-Coulomb failure criterion, which seems to
be an oversimplification since rocks exhibit pre-
failure strain-hardening and post-failure strain-
softening (e. g., Mandl et al., 1977; Lohrmann
et al., 2003), which promotes the re-activation of
thrusts. It might follow, that the CCW concept
should only be applied to the frontal part of a
wedge (Lohrmann et al., 2003).

3.4 The minimum work concept of
mountain building

The minimum work concept provides an alter-
native view on mountain building. Its concep-
tual simplicity in combination with its potential
to predict the spatial and temporal distribution of
deformation, an issue, which cannot be resolved
with the CCW concept, has attracted many work-
ers (Masek and Duncan, 1998). This concept as-
sumes that the combined gravitational and fric-
tional work associated with each slip increment
along a set of faults is minimised. Thus, the
fault which consumes the least work to accom-
modate slip is “chosen” (Fig. 3.8). Prolonged slip
along a fault induces a negative feedback, since
the gravitational load increases with every new
slip increment. At a certain stage, the initiation
of a thrust within the foreland would consume
less gravitational and frictional work to accom-
modate further convergence. Thereby, the magni-
tude of work needed to initiate a fault depends on

the depth to its detachment, the internal and basal
properties of the material and finally on the fluid-
pressure (Davis et al., 1983; Hardy et al., 1998).
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Deformation

Future thrust
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Figure 3.8: Schematic diagram of the minimum work con-
cept and the parameters used to calculate the gravitational and
frictional work. Modified after Hardy et al. (1998). C, exter-
nal displacement rate; θ , local dip of the fault; ∆x, fault par-
allel displacement; Ah, area of the fault plane projected onto
the horizontal plane; σ1, maximum; σ3, minimum principal
stress; τ , critical shear stress across the fault surface and σN ,
normal stress acting on this fault.

Although it is not appropriate to invoke a pri-
ori a minimisation principle to justify geologi-
cal modelling, several studies have successfully
demonstrated that the minimum work concept pro-
vides good approximations for specific aspects of
mountain building; among them: the evolution of
foreland duplexes (Mitra and Boyer, 1986), the
lateral expansion of plateaus (Molnar and Lyon,
1988), the formation of triangle zones in fold and
thrust belts (Jamison, 1993), the evolution of fold
and thrust belts subject to erosion/sedimentation
(Hardy et al., 1998), the initiation of thrusts within
an accretionary wedge (Gutscher et al., 1998) and
the interaction between erosion and plateau forma-
tion (Gerbault and Garcia-Castellanos, 2005).
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