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Abstract: Ecto-nucleotidase triphosphate diphosphohydrolase-2 (NTPDase2) is an ecto-enzyme that
is expressed on portal fibroblasts in the liver that modulates P2 receptor signaling by regulating
local concentrations of extracellular ATP and ADP. NTPDase2 has protective properties in liver
fibrosis and may impact bile duct epithelial turnover. Here, we study the role of NTPDase2 in acute
liver injury using an experimental model of acetaminophen (APAP) intoxication in mice with global
deletion of NTPDase2. Acute liver toxicity was caused by administration of acetaminophen in wild
type (WT) and NTPDase2-deficient (Entpd2 null) mice. The extent of liver injury was compared
by histology and serum alanine transaminase (ALT). Markers of inflammation, regeneration and
fibrosis were determined by qPCR). We found that Entpd2 expression is significantly upregulated
after acetaminophen-induced hepatotoxicity. Entpd2 null mice showed significantly more necrosis
and higher serum ALT compared to WT. Hepatic expression of IL-6 and PDGF-B are higher in Entpd2
null mice. Our data suggest inducible and protective roles of portal fibroblast-expressed NTPDase2
in acute necrotizing liver injury. Further studies should investigate the relevance of these purinergic
pathways in hepatic periportal and sinusoidal biology as such advances in understanding might
provide possible therapeutic targets.
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1. Introduction

Acute liver failure afflicts patients with no pre-existing liver disease, and leads to death in up to
50% of cases [1]. The causes for acute liver failure vary between countries and regions, with acute viral
infections (most frequently hepatitis B virus) and drug intoxication being most common.

N-acetyl-para-aminophenol (APAP), also known as acetaminophen or paracetamol, is a
prescription-free analgesic that is one of the most widely used drugs in the world [2]. In several
developed countries, intentional and non-intentional overdoses with this drug are the most common
causes of acute liver failure [3]. APAP is metabolized in the liver, resulting in the production of several
intermediary metabolites, one of which, N-Acetyl-p-benzochinonimin (NAPQI) is hepatotoxic and at
high levels results in hepatic necrosis [4].

The murine model of APAP intoxication is one of the most widely used in vivo systems to evaluate
etiology, predisposition, and treatments of acute liver injury. This experimental model has some
mechanistic similarity to acute liver failure induced by APAP in the clinic [5] and was therefore chosen
for this study.

Purinergic signaling has been implicated in many, if not all, pathophysiologic processes [6].
Purinergic signaling responses are mediated by extracellular nucleosides and nucleotides, e.g., adenine
triphosphate (ATP), adenine diphosphate (ADP), or the nucleoside derivative adenosine, which are the
specific receptors together with membrane-bound ecto-enzymes that regulate the concentrations of
the messenger molecules and thereby modulate the downstream effects [7]. This pathway has been
shown to play a role in liver inflammation, immune regulation, regeneration, and development of
fibrosis [8–10].

The family members of the CD39 ecto-nucleotidases were shown to be pivotal in regulating
purinergic responses in inflammatory states. The prototype member of this family CD39/Entpd1
has been the focus of study over the past decade. Deletion of Entpd1 has also been studied in a
model of APAP-induced acute liver injury [11,12]. Here, we observed increased mortality in Cd39 null
mice intoxicated with APAP with evidence for activation of P2X7 and the inflammasome in driving
liver damage.

Another key ecto-enzyme that regulates extracellular nucleotide concentrations is ecto-nucleotide
triphosphate diphosphohydrolase-2 (ENTPD2 or NTPDase2), the second member of the CD39 family of
ecto-nucleotidases. This ecto-enzyme NTPDase2 is a preferential ecto-ATPase with different biological
activity to CD39, which exerts both ecto-ATPase and -ADPase activities. CD39 is expressed by the
vasculature and immune cells of the liver sinusoid unlike NTPDase2, which is expressed by portal
fibroblasts in the liver and regulates the proliferation of bile duct cells [13].

We have previously shown that NTPDase2 has a protective role in limiting chronic liver injury
and ameliorating fibrogenesis [14]. Here, we investigated the role of NTPDase2 in acute liver injury
using the described model of APAP intoxication and using globally NTPDase2-deficient (Entpd2 null)
mice that we designed and generated. We show that there is accentuation of APAP-induced liver injury
in NTPDase2 (Entpd2 null mice), comparable to that seen in the Entpd1 null studies. These studies
have implications both for the understanding of the pathogenesis of APAP-induced hepatotoxicity as
well as in translational therapeutics for acute liver injury.

2. Results

2.1. Hepatic Entpd2 Is Upregulated in Wild-Type (WT) Mice after APAP-Induced Acute Liver Injury

Real-time qPCR of whole liver tissue after induction of acute liver failure by APAP injection
revealed that WT mice showed significant increases in Entpd2 expression at six hours when compared
to animals treated with vehicle control (Figure 1a). After 12 h, mRNA levels were similar to controls.
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Figure 1. Ecto-nucleotidase triphosphate diphosphohydrolase-2 (NTPDase2) expression in wild type 
(WT) mice after acetaminophen (APAP) intoxication. (a) Entpd2 expression by qPCR in WT whole 
liver tissue relative to vehicle treated controls, (b) immunohistochemistry for NTPDase2 in WT liver 
tissue of NTPDase2 (brown) at different time points after APAP intoxication (200×) *** p < 0.001. (n = 
8 per time point). 

2.2. Liver Necrosis after APAP Treatment is Exacerbated in Entpd2 Null Mice 

Two Entpd2 null mice out of the group of eight animals, scheduled to be sacrificed at 48 h, were 
found dead in their cage on the morning of the day of euthanasia. All WT mice survived. This 
difference in survival was not statistically significant. At all other time points (6, 12, and 24 h after 
APAP), both WT and Entpd2 null mice survived until the scheduled euthanasia and tissue harvest. 

After induction of acute liver injury by injection of APAP, Entpd2 null mice showed significantly 
more pronounced liver injury, as assessed by areas of necrosis on histological sections (Figure 2a). 
The increase in necrosis began to appear at 12 h after injection of APAP (WT 33% ± 13% vs. Entpd2 
null 48% ± 19%), which was statistically significant 24 h after APAP challenge (WT 19% ± 14% vs. 
Entpd2 null 50% ± 11%, p = 0.003, Figure 2b). At 48 h after induction of acute liver injury, the area of 
necrosis did not increase further. At this time point, Entpd2 null mice only displayed trends toward 
heightened levels of liver damage (WT 28% ± 11% vs. Entpd2 null 44% ± 21%). 

Concomitantly, elevation of serum alanine aminotransaminase (ALT) was significantly more 
pronounced in Entpd2 null mice compared to WT mice (Figure 2c). This difference was statistically 
significant at 24 h after APAP intoxication; at 48 h, both WT and Entpd2 null mice had similar and 
normalizing ALT levels, near those recorded in control animals. The same trend was observed in the 
measurements of the alkaline phosphatase (ALP) levels, even though no significance was found 
(Figure 2d). 

Figure 1. Ecto-nucleotidase triphosphate diphosphohydrolase-2 (NTPDase2) expression in wild type
(WT) mice after acetaminophen (APAP) intoxication. (a) Entpd2 expression by qPCR in WT whole liver
tissue relative to vehicle treated controls, (b) immunohistochemistry for NTPDase2 in WT liver tissue
of NTPDase2 (brown) at different time points after APAP intoxication (200×) *** p < 0.001. (n = 8 per
time point).

The expression patterns of NTPDase2 in injured liver did not show any major changes in
distribution after APAP induced acute liver injury when examined by immunohistochemistry. As in
vehicle-treated control animals, expression of NTPDase2 in all cases was limited to periportal fibroblasts
(Figure 1b).

2.2. Liver Necrosis after APAP Treatment Is Exacerbated in Entpd2 Null Mice

Two Entpd2 null mice out of the group of eight animals, scheduled to be sacrificed at 48 h, were
found dead in their cage on the morning of the day of euthanasia. All WT mice survived. This
difference in survival was not statistically significant. At all other time points (6, 12, and 24 h after
APAP), both WT and Entpd2 null mice survived until the scheduled euthanasia and tissue harvest.

After induction of acute liver injury by injection of APAP, Entpd2 null mice showed significantly
more pronounced liver injury, as assessed by areas of necrosis on histological sections (Figure 2a).
The increase in necrosis began to appear at 12 h after injection of APAP (WT 33% ± 13% vs. Entpd2 null
48% ± 19%), which was statistically significant 24 h after APAP challenge (WT 19% ± 14% vs. Entpd2
null 50% ± 11%, p = 0.003, Figure 2b). At 48 h after induction of acute liver injury, the area of necrosis
did not increase further. At this time point, Entpd2 null mice only displayed trends toward heightened
levels of liver damage (WT 28% ± 11% vs. Entpd2 null 44% ± 21%).

Concomitantly, elevation of serum alanine aminotransaminase (ALT) was significantly more
pronounced in Entpd2 null mice compared to WT mice (Figure 2c). This difference was statistically
significant at 24 h after APAP intoxication; at 48 h, both WT and Entpd2 null mice had similar and
normalizing ALT levels, near those recorded in control animals. The same trend was observed in
the measurements of the alkaline phosphatase (ALP) levels, even though no significance was found
(Figure 2d).
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Figure 2. Liver injury after APAP intoxication in WT and Entpd2 null mice. (a) Representative 
histopathological images of liver histology for controls and after 12 and 24 h post APAP intoxication 
by hematoxylin and eosin (H&E) staining in WT vs. Entpd2 null livers (100×) (b). Percentage of 
necrotic areas per high-powered field (HPF), time course of (c) plasma ALT levels and (d) plasma 
ALP levels (n = 6–8 per time point). * p < 0.05, ** p < 0.01. 

2.3. Liver regeneration and proliferation of liver cells are not enhanced in Entpd2 null mice 

We assessed the overall cellular proliferation rates in liver tissues by immunohistochemistry 
with tissues stained for the nuclear proliferation marker Ki-67. In healthy livers (controls) and at early 
time points after induction of acute liver injury (up to 24 h), hepatocytes appeared quiescent as 
regeneration became visible after this time. Forty-eight hours after injection of APAP, substantial 
proliferation of liver cells was visible (19% and 23% in WT and Entpd2 null mice, respectively, Figure 
3a). However, there were no significant differences between WT and Entpd2 null mice after APAP. 

The proliferating cells were chiefly hepatocytes. Cells of the periportal areas did not show 
substantial proliferation after APAP-induced acute liver injury, and the distribution of proliferating 
cells appeared similar in both WT and Entpd2 null livers (Figure 3b). 

 

 

Figure 2. Liver injury after APAP intoxication in WT and Entpd2 null mice. (a) Representative
histopathological images of liver histology for controls and after 12 and 24 h post APAP intoxication by
hematoxylin and eosin (H&E) staining in WT vs. Entpd2 null livers (100×) (b). Percentage of necrotic
areas per high-powered field (HPF), time course of (c) plasma ALT levels and (d) plasma ALP levels
(n = 6–8 per time point). * p < 0.05, ** p < 0.01.

2.3. Liver Regeneration and Proliferation of Liver Cells Are Not Enhanced in Entpd2 Null Mice

We assessed the overall cellular proliferation rates in liver tissues by immunohistochemistry with
tissues stained for the nuclear proliferation marker Ki-67. In healthy livers (controls) and at early time
points after induction of acute liver injury (up to 24 h), hepatocytes appeared quiescent as regeneration
became visible after this time. Forty-eight hours after injection of APAP, substantial proliferation of
liver cells was visible (19% and 23% in WT and Entpd2 null mice, respectively, Figure 3a). However,
there were no significant differences between WT and Entpd2 null mice after APAP.

The proliferating cells were chiefly hepatocytes. Cells of the periportal areas did not show
substantial proliferation after APAP-induced acute liver injury, and the distribution of proliferating
cells appeared similar in both WT and Entpd2 null livers (Figure 3b).
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Figure 3. NTPDase2 deficiency does not impair liver cell proliferation after APAP intoxication.
(a) Proliferation rate as percentage of Ki-67 positive cells out of all nucleated cells. (b) Representative
images of Ki-67 staining in WT vs Entpd2 null livers (200×), n ≥ 6 per genotype and time point.
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2.4. Hepatic Expression of IL-6 and PDGF-B Is Upregulated in Entpd2 Null Mice after APAP Intoxication

To explore potential mechanisms of heightened APAP induced liver injury in Entpd2 null mice,
we examined the expression of different markers that are linked to sterile liver inflammation, acute
liver injury and liver regeneration: tumor-necrosis-factor-α (TNF-α), transforming growth factor-β
(TGF-β), platelet derived growth factor-B (PDGF-B), and interleukin-6 (IL-6), in mouse liver tissue after
APAP treatment. None of these analyzed markers exhibited significant differences in control WT and
Entpd2 null mice (data not shown). Six hours after APAP injection, TNF-α expression was upregulated
in liver tissue, with no significant differences observed between WT and Entpd2 null mice (Figure 4a).
TNF-α mRNA expression then quickly decreased to around baseline levels after 12 h. IL-6 expression
markedly increased in Entpd2 null mice six hours after APAP treatment (31-fold (9–104) of control
vs. 10-fold (3–36), p = 0.023), but is only significantly upregulated in WT mice after 12 h (Figure 4b).
The increase in IL-6 mRNA remained detectable in Entpd2 null mice for 24 h after the liver injury
(12-fold increase (range of 7–22) at 24 h in Entpd2 null), but this quickly decreased to baseline levels in
WT mice. Similarly, the expression of PDGF-B was significantly higher in Entpd2 null mice than in
WT at 12 h after liver injury induction (2-fold (1.9–2.5) vs. 5-fold (2.5–10), p = 0.035). This parameter
trended toward higher levels than in WT after 24 and 48 h, but without statistical significance at these
later time points (Figure 4c). There was only a slight but significant increase in hepatic TGF-β mRNA
starting 12 h after APAP injection, which remained elevated for at least 48 h. However, there were no
difference between WT and Entpd2 null mice (Figure 4d).
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Figure 4. Hepatic expression of pro-inflammatory and pro-regenerative cytokines after APAP
intoxication. qRT-PCR analysis of total mRNA isolated from mice livers after APAP intoxication. Data
are shown as fold-changes of mRNA expression relative to vehicle-treated WT controls of (a) tumor
necrosis factor (TNF-α), (b) interleukin-6 (IL-6), (c) platelet-derived growth factor-B (PDGF-B), and (d)
transforming growth factor (TGF-β). * p < 0.05.
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2.5. Hepatic Expression of Fibrosis-Associated Markers Is Triggered by APAP-Induced Liver Injury, Irrespective
of Entpd2 Deletion

Repeated episodes of acute liver injury can provoke development of fibrosis, and we previously
observed a protective role of NTPDase2 in fibrogenesis. To exclude the development of this in the acute
setting in these mutant mice post-APAP, we also analyzed the established markers of fibrogenesis:
vimentin, desmin, α-smooth muscle actin (α-SMA), and collagen.

We observed an increased expression of all these markers after APAP injection compared to
vehicle-treated controls at varying time points. However, no differences between WT and Entpd2 null
mice was observed (Figure 5).
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Figure 5. Hepatic expression of fibrosis-associated proteins after APAP intoxication. qRT-PCR analysis
of total mRNA isolated from mice livers after APAP intoxication. Data are shown as fold-changes
of mRNA expression relative to vehicle treated WT controls of (a) vimentin, (b) desmin, (c) smooth
muscle actin (SMA), and (d) collagen.

3. Discussion

In this current study, we have shown that Entpd2 is upregulated in mice after APAP injury.
More importantly, global deletion of NTPDase2 in mice worsens APAP-induced acute liver injury
and increases liver necrosis. Our data suggest inducible and protective roles of this ecto-enzyme
expressed on portal fibroblasts in acute necrotizing liver injury, which has not been previously described.
This observation may be of importance in the understanding of APAP-induced liver injury.

We previously reported that NTPDase2 has hepatoprotective effects in that the gene deletion
exacerbates CCl4 induced liver fibrosis [14]. The pathophysiology of this model of fibrosis, which takes
several weeks to develop, is inherently different from the more rapid consequences of acute liver injury
by APAP intoxication, which is visible within hours. The effect of NTPDase2 deletion on acute liver
injury might therefore provide novel insights into NTPDase2 and other portal fibroblasts dependent
regulatory and protective mechanisms in liver injury.
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We previously showed that NTPDase1 (CD39) also displays protective effects in models
of sclerosing cholangitis and biliary fibrosis [10,15]. CD39 plays a well-established role in
thromboregulation and immune modulation, and is known to suppress T cells and macrophages by
generation of immunosuppressive adenosine [16,17]. The protective effects of CD39 in liver fibrosis
have therefore largely been ascribed to its role in immune regulation, supported by the observation of
increased fibrosis after targeted deletion of CD39 in macrophages [10].

CD39 deletion has also been studied in a model of APAP-induced acute liver injury [11,12]. Here,
we observed significantly increased mortality in Cd39 null mice and elevated liver necrosis, as also
shown here for Entpd2 null mice. Unlike CD39, NTPDase2 is not expressed by endothelium or immune
cells, making protective immune-regulatory mechanisms comparable to CD39 improbable [18].

NTPDase2 is expressed on periductal and periportal fibroblasts in the liver, where it was suggested
to regulate the proliferation of bile duct cells by scavenging extracellular ATP and thus modulating
P2Y signaling in ductular epithelial cells [13]. We observed a higher degree of liver injury in Entpd2
null mice compared to WT mice, measured by histological necrosis and correlated by serum ALT levels.
We also found a non-significant trend in increased requirement for euthanasia/mortality in Entpd2 null
mice when compared to WT. The heightened liver injury in knockout mice commenced as a trend
at 12 h with important peaks at 24 h following APAP intoxication. In other models of inflammatory
disease, NTPDase2 was suggested to indirectly modulate sterile inflammation by decreased local
extracellular ATP hydrolysis, even though not directly expressed by immune cells [19–21].

We showed here that liver cells begin proliferating between 24 and 48 h after APAP administration,
which is in line with other reports describing peak proliferation rates at 48–72 h [22,23]. At 48 h,
however, we did not observe significant differences in either rate or pattern of proliferation of liver
cells between WT and Entpd2 null mice.

We therefore propose that the protective effects of NTPDase2, which is expressed in periportal areas
and upregulated after APAP-induced liver injury, are mediated through scavenging local hepatotoxic
ATP, released from necrotic liver cells and the preferential conversion to extracellular ADP. This is in
agreement with our prior work in APAP [11,12] and the study by Amaral et al., who demonstrated
both significant ATP release from necrotic cells after APAP treatment and direct ATP toxicity through
increased intracellular Ca2+ signaling [24]. We agree with these authors that extracellular ATP toxicity
is mediated through P2 receptor signaling and could be, at least in part, abrogated by apyrase
(soluble NTPDase).

The complexity of the pathophysiology of APAP-induced acute liver injury is underlined by
the controversy with which some of these pathways were discussed in the literature: Jaeschke et al.
examined and reviewed mechanisms of APAP-induced acute liver injury, and focused on intracellular
processes caused by APAP metabolites. These include the formation of free radicals that directly cause
hepatocyte necrosis [25]. The protective effects of a purinergic receptor antagonist A438079, which
results in inhibition of P2X7 receptors and dampens the inflammasome activation in APAP injury [11],
were also attributed to direct inhibition of hepatic P450 enzyme activity [26]. However, there are also
direct toxic effects on hepatocytes by extracellular ATP [24], which substantiate the findings in earlier
studies that focused on mechanistic roles for CD39 and P2X7 in the mediation of immune cells and
inflammation in APAP-induced liver injury.

We showed upregulation of TNF-α, TGF-β, IL-6, and PDGF-B in liver tissues within 48 h following
APAP administration. IL-6 and PDGF-B were significantly higher in Entdp2 null mice compared to WT.
Whereas TNF-α is most commonly viewed as a pro-inflammatory agent in acute liver failure [27,28],
IL-6 can directly protect hepatocytes from oxidative stress after APAP toxicity, and both have long
been known to stimulate liver regeneration [29,30]. PDGF-B and TGF-β are secreted by damaged
hepatocytes after toxic insults and can stimulate regeneration, but can also trigger induction of
fibrosis [31]. The elevation of IL-6 and PDGF-B in Entpd2 null mice early in APAP-induced liver acute
injury can be seen as another indicator of the mitigating effects of NTPDase2 in the initial necrotizing
phase of liver injury.
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These data might already indicate a higher susceptibility to liver fibrosis, which we observed
after CCl4 treatment, which also induces substantial tissue necrosis initially [14]. Other markers
of fibrogenesis, such as collagen, vimentin, desmin, and α-SMA, are up-regulated after APAP
administration, but with more delay than the mentioned cytokines and without significant difference
between the genotypes. We considered, at these early time points, at the relatively low dose of
300 mg/kg, and in the absence of repetitive dosing, that no relevant fibrosis was observed [23].

Taken together, our findings demonstrate a protective role of NTPDase2 and portal fibroblasts in
the context of acute APAP injury. Further studies should investigate the relevance of these purinergic
pathways and portal fibroblast functionality to human liver disease as these might provide future
therapeutic targets.

4. Materials and Methods

4.1. Animals

The generation of global NTPDase2 deficient (Entpd2 null) mice on a C57BL/6 background has been
described previously [32,33]. For all experiments, we used 7- to 9-week-old male mice weighing 20–27 g
with weight-, age-, sex-, and strain-matched WT mice as controls (Charles River, Sulzfeld, Germany).
The animal experiment protocol was reviewed and approved (4 March 2013) by the respective regional
government agency of the state of Saxony, Germany (TVV 49/12) and was performed according to
international guidelines on the use of laboratory animals.

4.2. Induction of Acute Liver Injury by APAP

Animals were injected intraperitoneally with 300 mg/kg of acetaminophen (APAP, Sigma-Aldrich,
Taufkirchen, Germany) after 16 h of starvation. APAP solution was made freshly for each experiment
in warm phosphate-buffered saline (PBS) (50 ◦C) at 15 mg/mL and injected after cooling to mouse body
temperature. Control animals were injected with the same volume of phosphate-buffered saline (PBS).
Mice were euthanized using a mixture of atropine (0.1 mg/kg), ketamine (100 mg/kg), and xylazine
(5 mg/kg) at 6, 12, 24, or 48 h after APAP or vehicle injection for the collection of blood and liver tissue.
At each time point, eight animals were treated with APAP and two animals were treated with vehicle
as controls. For statistical analysis, control animals of all time points were combined into one group
per genotype.

4.3. Measurement of Serum ALT and ALP

Blood was drawn into syringes containing citrate phosphate dextrose (CPD) solution as
anticoagulant. Plasma was obtained by centrifugation at 1000× g for 10 min, snap frozen in liquid
nitrogen and stored at –80 ◦C until further use. Alanine aminotransferase (ALT) and alkaline
phosphatase (ALP) activities were measured in plasma using Reflotron® sticks with the Reflotron®

Plus system (Roche Diagnostics, Mannheim, Germany).

4.4. RNA Isolation and Quantitative Real Time Polymerase Chain Reaction (qPCR)

Liver tissue was snap frozen in liquid nitrogen after harvest and stored at –80 ◦C until further
processing. The tissue was homogenized with QIAzol® Lysis Reagent (QIAGEN, Hilden Germany)
to isolate RNA according to the manufacturer’s protocol and 1 µg of RNA was transcribed to cDNA
using the RevertAid First Strand cDNA Synthesis Kit, (Life Technologies, Karlsruhe, Germany), which
contains both oligo (dT)18 and random hexamer primers.

qPCR was performed on a 7500 Real-Time PCR System (Applied Biosystems by Life Technologies,
Carlsbad, CA, USA) using standard protocols and the GoTaq qPCR Master Mix (Promega,
Mannheim, Germany). The following Entpd2 primers were used as published previously [8]: Fw:
5′-TGACTGCCAACTACCTGCTG-3′, Rev: 5′-CCGCAAATGGACCTCATTAT-3′. Other primers were:
desmin: Fw: 5′-CAGAGGCTCAAGGCCAAACTA-3′, Rev: 5′-GAACGCGATCTCCTCGTTGA-3′,
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vimentin: Fw: 5′-GCAGTATGAAAGCGTGGCTG-3′, Rev: 5′-CAGGGACTCGTTAGTGCCTTT-3′,
collagen: Fw: 5′-GAGAGGTGAACAAGGTCCCG-3′, Rev: 5′-AAACCTCTCTCGCCTCTTGC-3′,
PDGF-B: Fw: 5′-GGAGTCGGCATGAATCGCTG-3′, Rev: 5′-AATGGGATCCCCCTCGGC-3′, TGF-β:
Fw: 5′-CTGCTGACCCCCACTGATAC-3′, Rev: 5′-AGCCCTGTATTCCGTCTCCT-3′, TNF-α: Fw:
5′-GGCCTCCCTCTCATCAGTTC-3′, Rev: 5′-CTCCACTTGGTGGTTTGCTAC-3′, α-SMA: Fw:
5′-TCCAGCTATGTGTGAAGAGG-3′, Rev: 5′-GCCAGATCTTTTCCATGTCG-3′, GAPDH: Fw:
5′-AGCTCATTTCCTGGTATGACA-3′; Rev: 5′-CTCTCTTGCTCAGTGTCCTT-3′. IL-6 and GAPDH:
gene expression assays Mm00446190_m1, Mm99999915_g1 (Applied Biosystems).

4.5. Immunohistochemistry

Livers were excised, and small sections were fixed in 10% formalin or snap frozen for histological
analysis. Formalin-fixed, paraffin-embedded, or frozen murine liver tissues were cut into 6 µm sections.
One slide from each block was stained by hematoxylin and eosin for morphological analysis. For
immunohistochemistry, sections were fixed in acetone and blocked with 7% horse serum (Vector Labs,
Burlingame, CA, USA) for half an hour. The tissues were first incubated with primary antibodies
overnight at 4 ◦C (NTPDase2) or for 2 h at 37 ◦C (Ki-67). Primary antibodies were rabbit polyclonal
anti-mouse NTPDase2 (http://ectonucleotidases-ab.com, as characterized previously [34] and Ki-67
(Dako, Santa Clara, CA, USA); both antibodies were used in 1:500 dilutions. After peroxidase and
biotin activity blocking, sections were incubated with the biotinylated secondary antibody for one
hour (goat polyclonal anti-rabbit IgG, Vector Labs), continued with Avidin-Biotin complex horseradish
peroxidase (HRP) and visualized with ImmPACT DAB (Vector Labs). All slides were mounted on
cytoseal, and examined and recorded on a Nikon microscope.

4.6. Statistical Analysis

All results are reported as mean ± standard deviation (SD), box-and-whisker plots show the
median. The statistical analyses were performed with GraphPad Prism v8.4.3 (GraphPad Software,
San Diego, CA, USA). Two-tailed Student’s t test or Mann–Whitney rank sum test as well as ANOVA or
Kruskal–Wallis test were used to test for significant differences between two or more groups. Normal
distribution was tested via Shapiro–Wilk test. A p value of <0.05 was considered significant.
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