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Abstract

Quantum spin liquids are novel phases of matter whose physical properties cannot be

captured within the conventional framework of phase transitions. These quantum

states are characterized by excitations, called spinons, carrying a fractional value

of the integer spin. A description based on a mean-field approximation leads to

effective gauge theory. Due to this gauge freedom symmetry group operations act

via projective symmetry group (PSG) representations, which can be used to classify

quantum states beyond the conventional method. This introducing discussion is

found in Chapters 2-6.

A preceding PSG classification on the square lattice, which took spin rotational

symmetry breaking terms into account, showed that the resulting mean-field states

could exhibit topologically non-trivial spinon bands. In Chapter 7, only those el-

ements of this Classification are studied, which lead to short-ranged mean-field

models. The mutual effect of spinons and visons is scrutinized by adding static

configurations of a background gauge field. Spinons and visons form composite ob-

jects, which in the case of topological spinon bands, are described by Majorana

zero modes. An exact mapping corroborates the relation to topological supercon-

ductors and vortices. The effect of multiple visons is investigated, and a possible

experimental signature is exposed.

Chapter 8 explains how spinon mean-field theory can be used to derive a phe-

nomenological effective model for the compound Ca10Cr7O28. A material that was

recently proposed as a quantum spin liquid. This low-energy theory consists of

spinon hopping processes. The underlying bilayer kagome structure can be simpli-

fied to an effective honeycomb lattice. The dynamical spin structure factor is calcu-

lated and compared to neutron scattering data. It is discussed how f -wave pairing of

spinons can explain small deviations from a linear temperature dependency observed

in heat capacity measurements at the low temperatures. This pairing mechanism

breaks the U(1) invariance group of the pure hopping model and renders a coherent

picture of Ca10Cr7O28 being a Z2 quantum spin liquid.

Chapter 9 carries out a PSG classification for the simple-, body centered-, and

face centered cubic lattices. Despite a large number of possible PSG representations,

only very few describe short-ranged mean-field states. These mean-field models

are constructed up to third neighbor couplings and calculated in a self-consistent

manner. It is found that the energy is lower for non-trivial sign patterns induced by

non-trivial representations of the symmetry generators. Higher neighbor extensions,

including pairing terms, yield lower mean-field ground state energies compared to

extensions with only hopping terms. For the fcc lattice, a first neighbor state could

be identified, which exhibits symmetry protected zero-energy modes.





Kurzfassung

Quantenspinflüssigkeiten (QSF) sind neuartige Materiephasen, deren Eigenschaften

nicht im herkömmlichen Sinne als Phasenübergängen beschrieben werden können.

Diese Quantenzustände sind durch Anregungen gekennzeichnet, die Spinonen

genannt werden, und nur einen Teil des ganzzahligen Spins tragen. Eine Beschrei-

bung, die auf einer Mittelfeldnäherung (MF) basiert, führt zu einer effektiven

Eichentheorie. Aufgrund dieser Eichfreiheit wirken Symmetriegruppen durch pro-

jektive Darstellungen (PSG), welche zur Klassifizierung von Quantenzuständen ver-

wendet werden können, was über die herkömmliche Methode hinausgeht. Diese

einleitende Diskussion finden Sie in Kapitel 2-6.

Eine vorherige PSG-Klassifizierung auf dem Quadratgitter unter Berücksichtigung

von Termen, die Spinrotationssymmetrie brechen, zeigte, dass Zustände topologisch

nicht triviale Spinonbänder aufweisen können. In Kapitel 7 dieser Arbeit werden

nur die PSG-Elemente untersucht, die zu kurzreichweitiger Nachbarwechselwirkung

führen. Die gegenseitige Wirkung von Spinonen und Visonen wird durch Hinzufügen

statischer Konfigurationen eines Hintergrundfeldes untersucht. Spinonen und Viso-

nen bilden Objekte, die im Fall von topologischen Spinonbändern durch Majorana-

Nullmoden beschrieben werden. Die Beziehung zu topologischen Supraleitern wird

durch eine genaue Abbildung bekräftigt. Die Wirkung mehrerer Visonen wird un-

tersucht und eine mögliche experimentelle Signatur vorgeschlagen.

In Kapitel 8 wird ein phänomenologisches Modell der Spinon für den Kristall

Ca10Cr7O28 erzeugt. Dieses Material wurde kürzlich als mögliches QSF vorgeschla-

gen. Die Niedrigenergietheorie besteht aus Spinon-Hüpfprozessen und vereinfacht

die doppelschichtige Kagome Gitterstruktur zu einem Wabengitter. Der dynamis-

che Spinstrukturfaktor wird berechnet und mit Neutronenstreudaten verglichen.

Eine f -Paarung der Spinonen kann eine kleine Abweichung der linearen Temper-

aturabhängigkeit erklären, die bei Wärmekapazitätsmessungen beobachtet wurde.

Dieser Mechanismus bricht die U(1) Invarianz und liefert ein kohärentes Bild von

Ca10Cr7O28 als Z2 QSF.

Kapitel 9 führt eine PSG-Klassifizierung für das einfache, körperzentrierte und

flächenzentrierte kubische Gitter durch. Trotz der großen Anzahl möglicher Darstel-

lungen beschreiben nur sehr wenige kurzreichweitige Zustände. Diese Modelle wer-

den bis zu Drittnachbarkopplungen konstruiert und auf selbstkonsistente Weise

berechnet. Die Energie für nicht triviale Vorzeichen der Amplituden ist geringer,

als es für uniforme Vorzeichen der Fall ist. Höhere Nachbarerwechselwirkungen,

die Paarungsterme einschließen, ergeben niedrigere Grundzustandsenergien, als Er-

weiterungen, die nur Hüpfterme enthalten. Ein interessanter Zustand konnte für er-

ster Nachbarn auf dem flächenzentriert kubischen Gitter identifiziert werden. Dieser

Zustand weist symmetriegeschützte Nullenergiemoden auf.
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1. Introduction

It has been almost an entire century since Lev Landau formulated his famous the-

ory of phase transitions [1]. The beauty of this theory is its simplicity, which leads,

nevertheless, to a very rich and diverse realm of applicability. The power lies in

its unifying character, enabling the classification of many different physical phases

regardless of any microscopic details. In its heart, it explains that conceptually

the melting of ice is the same as the transition from a ferromagnet to a paramag-

net. In both examples, it is possible to define an order parameter which discerns

the two phases. In the magnetic example, this order parameter can be defined as

the thermodynamic average of the magnetization per spin [2]. In the paramagnetic

phase, the local spins can point in any direction, and each individual spin does

not notice in which direction its neighbor is pointing; the order parameter becomes

zero after performing the average. However, in the ferromagnetic phase, the local

magnetic moments are all correlated and point in the same direction yielding a fi-

nite order parameter. The corresponding energy function remains invariant under

the symmetry operation, which rotates all spins. Any state vector describing the

system in the paramagnetic phase also obeys this symmetry. This is not true for

the ferromagnetic case where the presence of the finite order parameter breaks the

symmetry. The relation between an order parameter and the breaking of symmetry

is the main idea behind Landau’s theory. Yet there are physical states of matter

which are not tractable by this classification scheme. In this regard, the discovery of

a fractional quantum Hall state in the early eighties [3, 4] marked the beginning of

a new era. Since then, more and more phases of matter have been identified, which

evade a conventional description by the principle of symmetry breaking. Another

prominent unconventional phase is the quantum spin liquid state [5, 6, 7, 8, 9].

This state escapes magnetic order down to absolute zero temperature and poses

an insuperable challenge to Landau’s theory. These discoveries did not daunt the

community of condensed matter scientists but quickened their spirit, and shortly

after, the development of a modern framework started. Some topological invariants

replaced the obsolete order parameter, and the concept of topological order or quan-

tum order was introduced [5, 10, 11]. Some of these aspects will be further discussed

throughout this thesis with special regards to the quantum spin liquid phase and its

classification using projective symmetry group representations (PSG) [5].

1



1. Introduction

Many of these unusual states are found in materials called Mott insulators [12].

Applying conventional Bloch theory to these materials shows that the Fermi level

intersects their half-filled energy bands. Usually, this would lead to the conclusion

that the material conducts electric currents. Yet these odd insulators are char-

acterized by a very strong interaction between their electrons such that, besides

some possible modes which exist at the surface, the mutual Coulomb repulsion pre-

vents the movement of electrons and damps the transport of electric charge. In the

extreme limit of very large coupling strength U → ∞, the commonly used Hub-

bard model can be replaced by the antiferromagnetic Heisenberg model at exactly

half-filling [13, 14]. Thus these insulators are described on a microscopic scale by

their magnetic features. In a seminal work, Phil Anderson recognized that some of

these unconventional insulators show, in fact, fascinating magnetic properties [15].

Guided by the observation that for one-dimensional spin chains, a gain in energy

can be achieved by pairing neighboring spins into singlet bonds, instead of forming

a Néel ordered state, he proposed that such a singlet bond state could also be rel-

evant in higher-dimensional systems. He named this state the resonating valance

bond state (RVB). RVB states were thought to be most relevant for geometrically

frustrated lattice, e.g., an equilateral triangle, where quantum fluctuations prevent

the forming of magnetically ordered states. Unfortunately, experimental evidence

at that time purported Néel ordering, and the RVB idea was put aside for a while.

In the late eighties, copper oxide compounds, a certain type of unconventional

insulators, received a great deal of attention after the discovery of high critical tem-

perature (Tc) superconductors [16, 17]. Shortly before their experimental discovery,

some numerical work based on perturbative calculations on the Hubbard and Ander-

son model suggested that for substantial electron repulsion, antiferromagnetically

coupled spins develop an attractive potential, which can lead to their condensation

[18]. This sparked a renaissance of the RVB idea. It was hoped that by starting

from a description of a Mott insulator at exactly half-filling, the superconducting

phase could be accessed by hole doping [19, 20, 21]. The parent state of the Mott

insulator is governed by the antiferromagnetic Heisenberg model. Until today, this

attempt could not unveil the mechanism leading to high-Tc superconductors, but

it resulted, at least, in the formulation of mean-field theory for antiferromagnetic

Heisenberg systems which lie in the core of this thesis [22, 23, 24, 25, 26, 27]. These

theories use a fermionic representation of the spin operators [28], allowing for a

decoupling suited to describe non-magnetic states. However, fermions are not the

only ingredients as bosonic gauge fields are emerging. The resulting interplay be-

tween these fermionic and bosonic degrees of freedom pave the way for a plethora

of exotic phenomena [29, 30, 5, 31]. One of these curiosities, which will become

an essential motive in this thesis, is the aspect of fractionalization. This effect was

initially observed for fractional quantum Hall states in which, due to a coupling

2



between electrons to magnetic flux, quasi-particles arise, which can carry a frac-

tionalized value of the electric charge. This immediately leads to unusual exchange

statistics [32, 33, 34]. Every excitation carries an integer spin quantum number for

the pristine Heisenberg model in its usual spin representation. Yet in the alternative

formulation, it turns out that there is a possible way in which such an excitation

decays into two quasi-particles, each carrying only a fraction of the initial integer

spin. These spin-1/2 quasi-particles are called spinons. The mechanism which leads

to this decomposition is similar1 to the one behind the confinement of quarks [35].

The gauge field acts effectively as a potential in which the fermions feel a binding

force. Depending on the strength of this force, they are either confined to a certain

region or can be arbitrarily far separated by only investing a finite amount of en-

ergy. In modern terms, these fractionalized spinon particles’ very existence can be

seen as the defining property of a quantum spin liquid [36]. Objects with uncon-

ventional exchange statistics [37, 38, 39], sometimes called anyons because they are

neither bosons nor fermions, are actively studied, as they may provide a platform

for protected quantum computation [40, 31, 41].

From a pragmatic perspective, the moment to investigate the intriguing behavior

of quantum spin liquid phases could not be better. Many aspects have been theoret-

ically formulated in a rather general and abstract way and could until very recently

not escape the realm of platonic shadows due to the lack of existing materials. This

is about to change. In the last years, experimental techniques improved, and physi-

cists became able to artificially engineer materials from the drawing board. This

advancement results in the discovery of more and more compounds hosting proper-

ties, which are in accordance with the theoretical description of spin liquids. One of

the most prominent specimens is the mineral ZnCu3(OH)6Cl2, also called Herbert-

smithe, named after the mineralogist Herbert Smith. The magnetically active ions

of this crystal are arranged in single layer kagome lattices whose geometrical struc-

ture consists of equilateral triangles and for which the antiferromagnetic Heisenberg

model suggested the existence of a quantum spin liquid phase [42]. Using inelastic

neutron scattering, a commonly used method in the study of frustrated magnetism,

which will be further explained in Chapter 6, experimenters found comportment,

which indicates the existence of fractionalized spinons [43, 44]. Even though the

material α-RuCl3, whose ions form a honeycomb lattice structure, develops a mag-

netic order at low temperatures [45] it is actively studied thanks to its proximity to

the Kitaev spin liquid model [31, 46, 47, 48, 49]. In Chapter 8, another important

material will be introduced in more detail. The material has the chemical struc-

ture Ca10Cr7O28 and shows striking features as it produces a frustrating mechanism

through the interplay of ferro- and antiferromagnetic couplings [50, 51, 52]. The

1Similar, but reversely acting since quarks are confined, and spinons are deconfined
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1. Introduction

serendipitous coincident of its discovery permitted the author to test the theoretical

formulation against new experimental data.

The following treaties are organized into nine chapters. Chapter 2 to 6 will build

and explain the fundamental framework which is used in the main part (Chapter 7 to

9). These core chapter will present the principle work which was performed during

the doctoral studies of the author. Chapter 10 summarizes the relevant findings and

concludes this thesis.

The first chapter introduces an enhanced mean-field theory for antiferromagnetic

Heisenberg spin systems based on a fermionic representation of the spin operators.

This enhanced theory valid as an effective low-energy description includes phase

fluctuations to the bare mean-field solution, resulting in the emergence of gauge

fields. The origin of these gauge fields, as well as their analytic structure, will

be discussed. The low-energy theory consisting of fermionic and gauge fields can

be further reduced if fermionic modes are massive. This reduction will lead to a

pure gauge theory, which will be discussed in the second chapter. These gauge

theories come in different flavors depending on local invariance transformations. In

the most simple theory, called the Z2 gauge theory, this invariance group consists of

only two elements. The corresponding Hamiltonian contains two parameters that,

depending on their mutual relations, determine the model’s phase. Two possible

phases exist, which will be explained. The question of how these phases relate to

the phenomenon of fractionalization and the physics of quantum spin liquids will be

answered. Chapter 4 introduces the concept of projective symmetry groups (PSG).

The necessity to use a projective representation for symmetry groups, which is a

ramification of redundancy introduced by the mapping from the spin representation

to the fermionic one, is further elucidated. It will also be shown how the invariance

group, a normal subgroup in the entire PSG, can be used to derive arguments about

the stability of particular mean-field models. The next chapter further elaborates on

the PSG concept and gives step-by-step instruction to construct gauge inequivalent

representations. These representations can be used for a classification of quantum

phases, which goes beyond the classical Landau formalism. The consequence which

arises for a mean-field theory in the case that spin rotational symmetry is broken will

be commented on. This case becomes vital for materials that contain strong spin-

orbit interactions. The last chapter of these preliminaries discusses the experimental

set up of inelastic neutron scattering experiments. It furthers clarifies how the

measurable quantities can be related to the dynamical spin structure factor. This

structure factor is then calculated within the framework of the initially introduced

mean-field theory.

The first research project published in Ref. [53] is outlined in Chapter 7. It starts

explaining an existing PSG classification of spin-orbit coupled mean-field models

4



that preceded this project. This classification [54] calculated 1488 possible represen-

tations for which the resulting spinon models may contain topologically non-trivial

bands. The aim of the follow-up work presented in this thesis is to reduce the num-

ber of relevant representation by taking some physically motivated arguments into

account. It will be shown that for models that include only first neighbor couplings,

the band topology is always trivial. Taking second neighbors into considerations

almost inevitably yields mean-field models whose band dispersion shows exotic fea-

tures. Two of these models, which show resemblance to the Bernevig-Hughes-Zhang

model [55], are scrutinized. In the second part, these two models and one which

represents a first neighbor model are employed to study the interplay of spinons

and visons. Visons are the second type of excitations which govern the low-energy

physics of quantum spin liquids. These excitations can be understood as discrete

versions of magnetic fluxes. In order to disentangle an interacting theory of spinons

and visons, a static approximation of the underlying gauge fields will be explained.

Within this approximation, different configurations of visons are considered, and

by diagonalization of a simple lattice problem, one obtains information about the

spinon-vison model. The confining behavior of these models will be studied. It is

found that spinons and visons form bound states. The resulting quasi-particles can

be identified as Majorana zero modes, which will be rigorously related to the binding

of fermionic modes by vortices observed in field-theoretic models and in the context

of p+ip superconductors [56, 57, 58]. Finally, an experimental signature is proposed.

The presence of multiple visons induces this signature expressed by the formation of

characteristic peaks in the low-energy spectrum. It is suggested that the number of

visons can be linked to the temperature, and hence varying the temperature might

be sufficient to gather information on the spinon band properties.

The second doctoral research project culminating in Ref. [59] dealt with the al-

ready mentioned spin liquid candidate Ca10Cr7O28 and is the content of Chapter 8.

This compound was recently discovered. Inelastic neutron scattering experiments

and heat capacity measurements provided experimental data that are discussed in

this work. After introducing the material and its magnetic structure, an effective

mean-field model that uses a particular basis will be explained. This basis is moti-

vated by the different magnetic couplings observed in Ca10Cr7O28. These couplings

do not only differ in type (ferro, or antiferromagnetic), but also in strength. The

mean-field model allows evaluating the dynamical structure factor, which can be

related to measured neutron scattering data. The model is capable to physically

explain some of the key features found in the neutron measurement. Based on heat

capacity data, it is further discussed that a weak pairing mechanism modifies the oth-

erwise linear temperature dependency of the heat capacity in the low-temperature

limit. It will be explained why the pairing is of an f -wave type. The importance of

such a pairing term and the relation to a Z2 quantum spin liquid will be elucidated.

5



1. Introduction

The third and final work, published in Ref. [60], is explained in Chapter 9. In this

work, a PSG classification is executed for several three-dimensional space groups.

These space groups, defining the simple cubic lattice, the body centered cubic lattice

and the face centered cubic lattice, share a common Oh point group. The symmetry

conditions and the respective projective representations of the Oh group are dis-

cussed. It will be explained how, based on the simple cubic classification, one can

achieve the classifications for the body- and face centered cubic lattice. Using the

body centered cubic case as an example it will be illustrated how the PSG repre-

sentations and their implied symmetry conditions can be used to build symmetric

short-ranged mean-field models. Such models are further discussed for the body and

face centered lattice where up to third neighbor couplings are taken into account.

The resulting spinon states are calculated based on a Hartree-Fock self-consistent

procedure. Finally, the resulting states are discussed with regard to their energy

dispersions, and the dynamical spin structure factor is evaluated in perspective to

yield some guidance for future experiments.

6



2. Parton approach

This chapter introduces the framework which will be used throughout the rest of

this thesis. Instead of using the fundamental spin representation, spin operators will

be represented by second quantized operators. A priori not known which dispersion

behavior one wishes to describe, it turns out that a fermionic representation is more

convenient than a bosonic one. The advantage over a bosonic description is that

fermions do not condense at low temperatures and hence can be used to capture the

physics of gapless excitations. This fermionic description allows for the development

of a mean-field theory.

2.1. First order mean-field theory

One of the main goals of this entire work is to get a better understanding of spin

systems, which can often be described by the Heisenberg Hamiltonian

H =
∑
(rr′)

Jrr′SrSr′ , (2.1)

defined on a lattice whose sites are denoted by r, and with spin operators Sr defined

on each lattice site. The coupling constant shall be positive Jrr′ > 0 such that the

spins favor antiferromagnetic alignment. The bracket indicates that the sum runs

over possible neighbor pairings. Instead of using the common spin representation,

it turns out to be convenient to choose a fermionic representation[28]

Sµr =
∑
αβ

1

2
f †αrσ

µ
αβfβr, (2.2)

whereas f †αr (fαr) creates (annihilates) a fermion on lattice site r of spin projection

α = {↑, ↓} and σµαβ denotes in the case of spin−1
2

one of the Pauli matrices for

µ = {x, y, z}. The fermionic operators fulfill the usual anti-commutation relations{
f †αr, f

†
βr′

}
= {fαr, fβr′} = 0 and

{
f †αr, fβr′

}
= δαβδrr′ . One may later identify these

fermions as quasi-particles called spinons. This mapping provokes a severe issue

since it enlarges the local Hilbert space. In the original problem, every lattice site is

singly occupied by either a particle with spin-up or one with spin-down, but in the

fermionic representation, one includes unphysical states that are empty or doubly

7



2. Parton approach

occupied by one spin-up and one spin-down fermion. If one hopes for an adequate

description of the initial spin problem, it is evident that these unphysical states have

to be excluded. The relevant states can be identified as they obey the one particle

per site constraint ∑
α

f †αrfαr = 1∑
αβ

εαβfαrfβr = 0, (2.3)

where εαβ denotes the Levi-Civita-Symbol. The second condition is a direct conse-

quence of the first one and the fermionic anti-commutation relations. At this point,

it might seem odd to use this representation. Why bothering with a representation

in which one has to deal with this unhandy constraint after all? To understand this

better it is helpful to consider how the Heisenberg Hamiltonian (2.1) transforms

under this mapping (2.2).

H =
∑
(rr′)

∑
αβ

∑
α′β′

Jrr′
1

4

(
f †rασαβfrβ

) (
f †r′ασα′β′fr′β′

)

=
∑
(rr′)

Jrr′

4

(∑
αβ

2f †rαfrβf
†
r′βfr′α −

∑
αα′

f †rαfrαf
†
r′α′fr′α′

)

=
∑
(rr′)

∑
αβ

−Jrr′
2

(
−f †rαfrβδαβ − f †rαfr′αδrr′ + f †rαfr′αf

†
r′βfrβ +

1

2
f †rαfrαf

†
r′βfr′β

)

∼
∑
(rr′)

∑
αβ

−Jrr′
2

(
f †rαfr′αf

†
r′βfrβ +

1

2
f †rαfrαf

†
r′βfr′β

)
. (2.4)

In the second line the identity σαβσα′β′ = 2δαβ′δα′β − δαβδα′β′ was used. The con-

stant terms f †rαfrβδαβ and f †rαfr′αδrr′ merely shift the chemical potential, and can be

neglected for the moment. The resulting Hamiltonian is unfortunately quartic in

the fermionic operators and cannot be solved. Nevertheless, it enables one to do a

mean-field decoupling. At this point, the use of the fermionic representation becomes

clearer. Surely, one could have done the mean-field decoupling already in the spin

representation. Yet this is only possible for magnetically ordered states 〈Sz〉 6= 0

[11]. The new representation obviates this limitation and thus becomes convenient

in the study of non-magnetic phases. In the fermionic basis, there are many ways to

decouple the interacting Hamiltonian (2.4). As usually done in mean-field theory,

one replaces a given operator by its mean value plus a small fluctuating term - for

concreteness take the bilinear f †rαfr′β and replace it by
〈
f †rαfr′β

〉
+ δf †rαfr′β. The first

8



2.1. First order mean-field theory

term in the last line of Eq. (2.4) can then be factorized

f †rαfr′αf
†
r′βfrβ =

(〈
f †rαfr′α

〉
+ δf †rαfr′α

) (〈
f †r′βfrβ

〉
+ δf †r′βfrβ

)
=
〈
f †rαfr′α

〉 〈
f †r′βfrβ

〉
+
〈
f †rαfr′α

〉
δf †r′βfrβ + δf †rαfr′α

〈
f †r′βfrβ

〉
+ δf †rαfr′αδf

†
r′βfrβ

≈− |χrr′ |2 +
(
δf †rαfr′αχr′r + h.c.

)
. (2.5)

The approximation consists of neglecting the term quadratic in the fluctuations.

Further, the mean value, as well as the constraint (2.3), are replaced by their ground

state expectation values χrr′ =
〈
f †rαfr′α

〉
and

〈∑
α f
†
αrfαr

〉
= 1. Thus the constraint

becomes scleronomous, and it can be enforced in the Hamiltonian formalism by

adding a site-dependent Lagrange multiplier ar term. The second term of the last

line in Eq. (2.4) corresponds to a non-local density-density interaction, which in the

one-particle per site limit merely yields a constant term which will be omitted. Note

that this decoupling neglects magnetic ordered terms, which could be traced back

to 〈Sr〉Sr′ . Hence, as already mentioned, the resulting model may be used to study

non-magnetic phases. The mean-field Hamiltonian to zeroth order1 is then given by

[11]

Hmf =
∑
(rr′)

∑
α

Jrr′

2

(
|χrr′ |2 −

(
f †rαfr′αχr′r + h.c.

))
+
∑
r

∑
α

ar
(
f †rαfrα − 1

)
. (2.6)

Being quadratic in the field operators, this Hamiltonian is readily diagonalized by

a Fourier transformation given that it is translationally invariant. The ground

state energy is given by the minimum of the energy functional Egs(χ, a) =

〈Ψ0(χ, a)|Hmf(χ, a) |Ψ0(χ, a)〉, where the superscript 0 denotes the ground state

wave function. The extremal condition δE
δχrr′

= 0 can be used to find the self-

consistent amplitudes χrr′ . The constraint may also be formulated as an extremal

condition δE
δar

= 0.

Mean-field theory may serve as a good starting point for analyzing the system in

question, but the approximation made in Eq. (2.5) is entirely uncontrolled. Thus

the solution of the mean-field Hamiltonian (2.6) might not be stable as soon as

fluctuations are taken into account. To study the dynamics of fluctuations it is

helpful to use a path integral representation [11, 2]. The partition function can be

written as

Z =

∫
D[f †]D[f ]D[χ∗]D[χ]e−S[f†,f,χ∗,χ]. (2.7)

Note that the fermionic fields now correspond to Grassmann variables. The con-

straint can be implemented by imposing single occupancy via a multiplier field. This

1It will become clear later what zeroth-order means.

9



2. Parton approach

is achieved by inserting a delta distribution that enforces single occupancy. Using

the Fourier representation of the delta distribution then inserts the multiplier field

ar

δ

(∑
α

(f †rαfrα − 1)

)
=

∫
dare

i
∑
α(f†r fr−1)ar . (2.8)

This gives the same term, as it was argued for the derivation of Eq. (2.6)2. The

euclidean action is given by

S = L0 +H

=

∫
dτ
∑
r,α

f †rα

(
∂

∂τ
− µ+ iar

)
frα +

∑
(rr′),α

Jrr′

2

(
|χrr′ |2 −

(
f †rαfr′αχr′r + h.c.

))
.

(2.9)

In this representation, the fields χrr′ correspond to auxiliary fields that have been

included by a Hubbard-Stratonovitch transformation decoupling the interaction of

the full Hamiltonian (2.4). One can obtain the same result, as it was derived using

the mean-field decoupling Eq. (2.5), by assuming the Hubbard-Stratonovitch fields

to be static. Note that including full dynamical decoupling fields yields an exact

representation of the interacting problem.

In the static limit, one can obtain the equations of motion of the fermions in the

usual way. Their dispersion will depend on the static value of χ0
rr′ . Small variations

from a saddle-point can be parametrized by introducing amplitude δχrr′ and phase

θrr′ fluctuations around χ0
rr′ = |χ0

rr′ | such that in the vicinity the dispersion is

governed by χrr′ = (χ0
rr′ + δχrr′)e

iθrr′ . It is found that the amplitude fluctuations

will lead to an energy gap in the dispersion [24, 27, 14], and can be neglected if one

seeks to study the behavior close to the saddle-point. The action (2.9) including

these fluctuations becomes

S =

∫
dτ
∑
r,α

f †rα

(
∂

∂τ
− µ+ iar

)
frα

+
∑

(rr′),α

Jrr′

2

(
|χrr′ |2 −

(
χ0
r′rf

†
rαfr′αe

iθr′r + h.c.
))
, (2.10)

where the fermionic fields, which are free in the pure mean-field theory, now couple

to the phase fluctuations. This action is invariant under a local transformation of

frα → frαe
iφr , if the phase fluctuations transform according to θr′r → θr′r +φr−φr′ ,

and the multiplier field ar → ar + ∂
∂τ
φr. These transformation properties define a

2Note the factor i appears in the euclidean action.
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2.2. Local gauge invariance

U(1) gauge theory with an emergent gauge field φr whose spatial components are

connected to the phase fluctuations θr′r, and the temporal component is connected

to the multiplier field ar [20, 22, 23]. It is important to keep in mind that the

action (2.10) describes a low-energy effective theory valid only in the vicinity of

a specific saddle-point, which is determined by the means of mean-field theory.

The advantage is that in its realm of validity, fluctuations are correctly taken into

account. Therefore, this approach is sometimes called first-order mean-field theory,

whereas the pure self-consistent calculation of the saddle-point is entitled zeroth-

order [11].

2.2. Local gauge invariance

This is quite a remarkable result. The initial theory of spins can be described by a

low-energy effective fermionic theory coupled to emerging gauge fields. The reason

for this lies in the mapping (2.2). One immediately realizes that this mapping is

invariant under a local U(1) transformation of the fermions. Yet it turns out that

the invariance group of Eq. (2.2) is, as a matter of fact, lager than U(1) [23, 25].

This can be best seen by using a matrix notation for the fermions [23]

Ψr =

(
fr↑ fr↓
f †r↓ −f †r↑

)
. (2.11)

The spin operator written as

Sµr =
1

2
Tr
[
Ψ†rΨr(σ

µ)T
]
, (2.12)

reveals the invariance under a local transformation Ψr → WrΨr, with Wr ∈ SU(2).

This transformation is not equal to a general spin rotation, which is given by right

multiplication Ψr → ΨrV with V ∈ SU(2), which becomes apparent by recalling

the cyclic permutation invariance of the trace, and the transformation rules of the

SU(2) representation of spin-1/2. Written in this matrix form, one can conveniently

expresses the interacting term of the Heisenberg Hamiltonian as

SrSr′ = −1

8
Tr
[
ΨrΨ

†
r′Ψr′Ψ

†
r

]
. (2.13)

As anticipated, this term is invariant under the global spin rotation V as a rem-

iniscent of the fundamental spin representation in which the Heisenberg model is

invariant under a global rotation of all spins. However, in this fermionic picture, one

additionally has a local freedom Wr, which was not present in the spin picture. The

origin of this SU(2) invariance roots in the fact that besides the usual U(1) sym-

metry, which means that the total number of fermions is conserved, an additional

11



2. Parton approach

particle-hole symmetry is present. This particle-hole symmetry is specified by

fr↑ = fr↑ cosϕ+ f †r↓ sinϕ

fr↓ = fr↓ cosϕ− f †r↑ sinϕ, (2.14)

which leaves the spin operator under the mapping (2.2) invariant. If one defines

a doublet of the form ψr = (fr↑, f
†
r↓)

T , the U(1) transformation becomes ψr →
eiφσ

3
ψr, and the particle-hole transformation ψr → eiϕσ

2
ψr. However, these two

transformations do not commute and by applying a second U(1) transformation one

finds

ψr → eiθσ
3

eiϕσ
2

eiφσ
3

ψr, (2.15)

where the different angles θ, ϕ, φ are the Euler-angle that define a rotation in SU(2)

[61].

Now that the reason for the local invariance has been clarified, it is time to un-

derstand its ramifications a bit better. There are many different fermionic config-

urations, namely all that can be connected via local SU(2) transformations, that

represent the same spin configuration. This is directly related to the fact that the

spin-to-fermion mapping enlarges the local Hilbert space. As it was explained above,

any physical solution needs to be projected to the sub-space of single occupancy

Eq. (2.3), which in the matrix representation can be formulated as

Tr
[
Ψ†rσ

µΨr

]
= 0. (2.16)

Note that contrary to the spin operator (2.12), the constraint does not transform

trivially under the local transformation Wr, but it transforms trivially under the

global spin rotation that was defined by the right multiplication V [61]. Ultimately,

many fermionic states describe the same physical spin state. These fermionic states

form a sub-space, and transformations that act within this sub-space are called gauge

transformations. Theories of this type appear in many different physics domains and

can be summarized by the two following statements: (1) Many apparently different

states describe the same physical state due to a redundancy in the description. (2)

This redundancy comes along with a constraint [62, 63, 11]. Due to these many

states that describe the same physical situation, one has to be careful by performing

averages. Usually, one can prevent overcounting by fixing a gauge. Yet this is not

possible in the case of non-abelian gauge theories. These theories have to be treated

by more involved methods as for example, the Fadeev-Popov method [64].

2.3. SU(2) mean-field theory

A theory that respects the full SU(2) invariance group can be formulated. This

theory provides a generalization of the previously explained U(1) theory. In order

12



2.3. SU(2) mean-field theory

to derive the first-order mean-field theory, including the full SU(2) gauge group, one

starts from the matrix representation of the Heisenberg Hamiltonian (2.13). Similar

to the previously studied U(1) scenario this term is quartic in the field operators Ψr,

and it needs to be decoupled by a suitable Hubbard-Stratonovitch transformation,

which now introduces matrix-valued auxiliary fields on the bonds defined as

8

J
urr′ = ΨrΨ

†
r′ =

(
fr↑f

†
r′↑ + fr↓f

†
r′↓ fr↑fr′↓ − fr↓fr′↑

−f †r↑f †r′↓ + f †r↓f
†
r′↑ f †r↑fr′↑ + f †r↓fr′↓

)
=

(
−χ†rr′ −∆†rr′
−∆rr′ χrr′

)
.

(2.17)

The decoupled Hamiltonian can then be written as

H =
8

J

∑
〈rr′〉

Tr
[
u†rr′urr′ + Ψ†rurr′Ψr′ + h.c.

]
+
∑
r

Tr
[
Ψ†r (aµrσµ) Ψr

]
. (2.18)

Using the time-independent mean value for the fields u0
rr′ yields the zero-order mean-

field theory. The entries of the vector aµr are the Lagrange multipliers that enforce

the constraint (2.16). As before, by including phase fluctuations over the saddle-

point values urr′ = |u0
rr′|eia

µ

rr′σµ , one can formulate an effective low-energy theory in

which the vector fields, represented by aµrr′σµ transforming according to an emerging

SU(2) gauge theory, and couple to the matter fields Ψr. Depending on the explicit

decoupling scheme and the resulting saddle-point, the SU(2) group can be broken

such that the effective low-energy theory has a different invariance group, which will

be further explained in Chapter 4. The most important specimens in the context of

quantum spin liquids are effective theories that include either a U(1) or Z2 invariance

group.

This entire procedure yields an exact representation of the low-energy behavior

of the full interacting theory close to a given saddle-point. Unfortunately, like the

quartic theory from the beginning, it cannot be solved analytically. However, if

one could argue that the excitations of the emergent fields have a finite gap in

energy (Chapter 4 will further elaborate this point), which implies that the phase

fluctuations require a certain amount of energy, then sufficiently below this energy,

one could go back to the zeroth-order mean-field theory, i.e., replacing urr′ by its

mean value u0
rr′ . As described above, in this limit, one can find the spinon dispersion

governed by the free fermionic fields. In the following step, one can integrate over

these fermionic fields yielding a theory that only includes the remaining gauge fields.

In Chapter 3, the simplest of such a theory, namely the Z2 gauge theory, will be

explained in more depth. Solving this final problem would provide the ultimate

solution to the full interacting problem3. Generally, these theories can be very

complicated. Even though the auxiliary fields urr′ do not have an explicit dynamical

3Yet still only in a low-energy limit
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2. Parton approach

term in the action4 a gradual integration over the fermions, in an RG sense, can

introduce the dynamics of the gauge fields as explained by the Gross-Neveu model

[25, 65]. Another way that can incorporate dynamics to the auxiliary fields comes

from a rigorous treatment of the one-particle per site constraint. This will be further

discussed in Chapter 7.

4Compare to Eq. (2.9)
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3. Lattice gauge theory

In this chapter, the concept of lattice gauge theories is explained in a nutshell. This

will mainly be done using the most simple specimen, the Z2 lattice gauge theory

[66, 35, 30]. This theory plays a major role in the description of quantum spin

liquids [6, 9, 31] as it leads directly to a deconfinement of spinons, which will be

shown below. It is a relatively simple model to explain the concept of topological

order [67, 26] and appears in the theory of quantum information [40]. Sometimes

it turns out to be helpful to compare with the ordinary U(1) gauge theory, as this

theory might be more familiar to most of the readers, and, especially, to motivate

the analytic form of the Z2 Hamiltonian emphasis lies on the U(1) theory in its

discretized lattice version. This chapter only scratches on the surface of this vast

field. Further readings can be found in many textbooks [11, 36, 14], larger reviews

[68, 31], and a plethora of lecture notes.

3.1. Gauge theory on a lattice

In Chapter 2, it was argued that a lattice gauge theory describes the low-energy

physics of quantum spin liquids. The exact derivation depends on many details

and shall not be addressed. Instead, it is assumed that after integrating out the

fermionic fields, the Lagrangian L governing the path integral depends solely on

the field eaµτ
µ ∼ A, where the notation A is chosen to emphasize the analogy to

the vector potential as it is used in electrodynamics. Contrary to electrodynamics

and reminiscent to the character of the underlying phase fluctuations, which led to

the emergence of the gauge fields Ai ∈ [0, 2π] takes only values within a compact

interval. It shall further be possible that L can be decomposed into kinetic part

T (Ȧ) and a potential U(A) such that L(A) = T (Ȧ) − U(A). In electrodynamics,

the kinetic energy is given by

T =

∫
d3r

ε0Ȧ
2

2
=

∫
d3r

ε0(E +∇ψ)2

2
, (3.1)

where E is the electric field, ψ the temporal component of the vector field and ε0
the vacuum permittivity. In the discrete setting one can identify

a0
r = ψ(x)|x=r, arr′ =

∫ r′

r

dxA(x), (3.2)
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3. Lattice gauge theory

where x is a point in space and r is a position on the lattice. One finds then the

lattice kinetic term as [11]

T =
∑
〈rr′〉

e2
rr′

4J
, (3.3)

with J some coupling parameter and the electric flux through a link err′ = ȧrr′ +

a0
r − a0

r′ . The potential term is a function of the magnetic flux Φ =
∮
δS

A(r)dr that

should further respect, at least in the compact theory, the periodicity of the field

arr′ ∼ arr′ + 2π. On a lattice, the potential is given by [11]

U = g
∑
p

cos(Φp), (3.4)

with g being another coupling parameter. The lattice flux is given on a square lattice

by

Φr = ar,r+êx + ar+êx,r+êx+êy + ar+êx+êy ,r+êy + ar+êy ,r. (3.5)

The resulting Lagrangian is invariant under a U(1) gauge transformation given by

arr′(t)→ arr′(t)− φr(t) + φr′(t), a0
r(t)→ a0

r(t) + φ̇r(t), (3.6)

for φr(t) an arbitrary function of time on the lattice.

A quantum theory can be derived by determining the canonical momentum πi =
∂L
∂Ȧi

and promoting the Poisson brackets to the commutator {πi, Aj} → [πi, Aj] =

−iδij1, while ~ = 1. The resulting lattice Hamiltonian is

H =
1

4J

∑
〈rr′〉

e2
rr′ − g

∑
r

cos(Φr). (3.7)

Eventually, before going to the Z2 scenario, one final remark should be made about

charge conservation and the quantization of the electric flux. Dealing with a com-

pact theory requires that a wave function has to respect the periodicity of the field

Ψ(arr′) = Ψ(arr′ + 2π). Using a plain wave Ansatz Ψ(arr′) → Ψm(arr′) ∝ e−imarr′

and the fact that the electric flux is conjugate to arr′ readily leads to

err′Ψm(arr′) = i
∂

∂arr′
Ψm(arr′) = mΨm(arr′). (3.8)

This means that the eigenvalues of err′ have to be quantized. Yet this does not

necessarily imply that they are integer. The physical theory is made of bilinear

1In the Coulomb gauge the electric field is the conjugate variable [err′ , arr′ ] = −iδrr′ .
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3.2. Z2 Lattice gauge theory

ρr

Φr

σx

σz

x̂

ŷ

Figure 3.1: Illustration of the

charge operator ρr and the flux

operator Φr on a square lattice.

The red sites indicate the posi-

tion on which each operator is

applied. The blue bonds corre-

spond to an σz operation and

the red bonds to an operation

of σx.

terms Ψ∗Ψ such that the periodicity requires merely Ψ∗(arr′ + 2π) = e−iθΨ∗(arr′)

and Ψ(arr′ + 2π) = eiθΨ(arr′) which could also allow half-integer values.

Motivated by Gauss-law ∇E = ρ one defines the electric lattice charge as qr =∑
µ er,r+êµ where

∑
µ denotes the sum over all adjacent sites connected to r. Using

the transformation Eq. (3.6) and the definition of the electric flux indicate that

charge is a gauge invariant quantity. With the electric flux quantized, the electric

charge is also quantized. Furthermore, one can show that [qr, H] = 0, which means

that these local charges are conserved quantities, and the Hamiltonian can be block

diagonalized. These locally conserved quantities are not surprising as it was already

observed that the theory is invariant under a local gauge transformation. One can

thus identify these charge operators as the generators of this gauge transformation

[62].

3.2. Z2 Lattice gauge theory

The Z2 theory is obtained by restricting the image of the bond variables to two

distinct values eaµτ
µ ∈ {−1, 1}. The Hamiltonian is

H = −Γ
∑
〈rr′〉

σxrr′ − λ
∑

plaquets

∏
�

σzrr′ . (3.9)

Here σx, σz are operators represented by the corresponding Pauli matrices and de-

fined on the links of the underlying lattice. The notation
∏

� σ
z
rr′ indicates the

product of all bond operators following a closed loop around an elementary plaque-

tte, i.e., on a square lattice
∏

� σ
z
rr′ = σzr,r+êx

σzr+êx,r+êx+êy
σzr+êx+êy ,r+êy

σzr+êy ,r
. This

is illustrated in Fig. 3.1. These plaquette terms are the discrete equivalent of the

magnetic flux Φr. Γ, and λ are some coupling parameters. Similar to the U(1)

theory, one can define electric charges ρr =
∏

µ σ
x
r,r+êµ

, where the product is taken

over all from site r emanating bond operators, e.g., ρr = σxr,r+êx
σxr,r+êy

σxr,r−êxσ
x
r,r−êy

on the square lattice, as shown in Fig. 3.1. These operators commute with σxrr′ , the
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3. Lattice gauge theory

Figure 3.2.: The ground state of the confining phase is given by the uniform configuration

for which every σxrr′ = +1 and ρr = +1 represented by a black line or respectively a dot.

(a) Two charges ρ = −1 are inserted by changing σx = −1 as denoted by the red link. (b)

insertion of neighboring negative links separates the two charges. (c) the application of the

plaquette term Φ flips the values of all adjacent links. This distorts the string connecting

the two charges.

plaquette operators [ρr,
∏

� σ
z
rr′ ] = 0, and hence with the entire Hamiltonian. Con-

sequently, analog to the U(1) case the electric flux and the magnetic flux are gauge

invariant quantities, and the Hamiltonian can be block diagonalized according to

different charge sectors.

3.2.1. Confining phase Γ� λ

To start the analysis, one assumes the limit Γ→∞. The second term in Eq. (3.9)

becomes irrelevant and the ground state is formed by the unique configuration σxrr′ =

+1 on all bonds. The electric charge operator is also uniform ρr = +1 on all

sites. This sector is called the charge-free sector. Flipping one variable σxr0r1 → −1

creates two electric charges as illustrated in Fig. 3.2. Such a bond flip provokes

an energy penalty of 2Γ. Nevertheless, as this configuration belongs to a different

charge sector, it cannot be directly compared to the charge-free state. Flipping a

second bond adjacent to one of the two charges does not include further charge.

Yet it increases the energy again by 2Γ. Including more and more negative bonds,

neighboring the previous ones, separates the two charges while remaining in the

same charge sector. This spatial separation of the two initial charges disturbs the

initial configuration along a string, as depicted in Fig. 3.2. If one defines the string

length between the two charges as `, then the separation energy can be expressed

via ε` = 2Γ`. By lowering Γ but remaining in the regime Γ� λ, the second term in

the Hamiltonian (3.9) can be treated perturbatively. The σz operators will induce

fluctuations. However, it does not change the charge sector as ρr commutes with the

magnetic flux. Analogously, by inducing two spatially separated charges, one gets

some insight on the effect of this perturbing term. Applying the plaquette operator
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3.2. Z2 Lattice gauge theory

flips the σx variables around the plaquette. If now this happens on a plaquette

adjacent to the separating string of the two charges, the string gets twisted, and its

length is extended by 2`, as shown in Fig. 3.2 on a square latte. On the one hand,

this twisting gives an energy gain of λ by applying the plaquette term. On the other

hand, it is punished by extending the length of the string. The separation energy of

the two charges is usually expressed via ε` = σ`, where σ = 2Γ − O(λ/Γ) is called

the string tension [14]. As long as the limit Γ � λ is maintained, the term 2Γ will

be the dominant contribution, and the energy cost of separating two charges grows

monotonically. In this regime, charges are always confined to a local region. One

speaks of the confining phase. The point in parameter space where σ = 0 marks a

phase transition, which is exactly tractable [66, 35, 68].

3.2.2. Deconfining phase Γ� λ

In the opposite extreme where λ→∞ the first term of Eq. (3.9) becomes negligible.

The ground state configuration is determined by a state in which all plaquettes are∏
� σ

z
rr′ = +1. Yet this description does not lead to a unique configuration since

the product of the bond variables, measured in the σz-basis, is positive if an even

number of negative bonds are included. Following Kitaev’s arguments on deriving

the ground state [40] one picks the charge-free sector, ρr = +1 for all r. Because all

charge sectors obey the same physics, this is a convenient choice since the absence

of charges simplifies the analysis. The ground state has then to fulfill two criteria∏
�

σzrr′ |Ψ〉 = |Ψ〉 , qr |Ψ〉 = |Ψ〉 , ∀�, r. (3.10)

A local constraint can formulate the charge condition: Every link is assigned an in-

going or out-going arrow according to the σx values (measured in the corresponding

σx basis). An arrow pointing in either positive x or y direction corresponds to

σx = +1 whereas σx = −1 if it points in a negative direction. The charge condition

requires an even number of in- and out-going arrows on every lattice site, as shown

in the first row of Fig. 3.3. In the second row of Fig. 3.3 a different representation is

constructed in which σx = −1 values are drawn by a blue lines on the lattice. Any

configuration which fulfills the charge condition has to be represented by closed blue

loops. Since no particular loop configuration can be preferred over the others, the

ground state can be understood as a coherent superposition of all loop configurations.

Sometimes this state is called a loop or string-net condensate [69, 11]. Acting on

such a state with the operator
∏

� σ
z
rr′ flips all arrows around the plaquette to the

opposite direction, yielding a loop configuration in the other representation again.

Therefore, the loop condensate is an eigenstate of the plaquette operator. Focusing

on the charge sector with two test charges, in order to compare with the previous
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3. Lattice gauge theory

Figure 3.3.: Different ground state configurations (a)-(c) of the deconfining phase in the

charge free sector. The first row shows the configuration in the arrow representaion the

second row corresponds to a presentation for which σxrr′ = −1 bonds are colored in blue.

In the later representation valid configuration must contain closed loops as shown in (c).

Note that these loops can extend to infinity as illustrated in (b).

case, shows that a superposition of loop configurations can equally describe the

ground state configuration for this sector with the difference that one open string,

connecting the two test charges, is included. In the superposition, this string can

have any possible length, and one concludes that there is no confinement of charges.

Evidently, this phase is called the deconfining phase. An excitation in this phase

is induced by a single bond flip σzr0r1 → −1, creating two frustrated plaquettes.

These objects are the discrete version of vortices in the U(1) theory, and sometimes

called visons [30]. Analog to the charge excitation in the confining phase, these flux

excitations can be separated by further flipping adjacent bonds.

Keeping Γ� λ the electric term can be added perturbatively. One finds that the

strength of an induced effective interaction between charges exponentially decays

with the distance between the charges such that the deconfining property remains

robust[14].

3.2.3. Topological ground state degeneracy

The deconfined phase has an additional property, which is remarkable. If the system

is considered on a topologically non-trivial object, a torus, for instance, one finds that

different low-energy sectors cannot be mutually connected by any local operation.
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3.2. Z2 Lattice gauge theory

C̃x

Cx

C̃y

Cy

x̂

ŷ

Figure 3.4: Different non-contractible loops

on a torus. The arrows indicate which

edges have to be identified. The loops

C̃ live on the dual lattice and define the

’t Hooft operators Vx and Vy. The corre-

sponding operation on the original lattice

is given by all σxrr′ for which r′ − r is inter-

sected by the loop. The loops C correspond

to the operator Wx and Wy. Their action

applies σzrr′ on all links which belong to the

respective loop.

The reason for this lies in the fact that in addition to the local gauge operators,

other operators exist which commute with the Hamiltonian. These operators are

given on a torus by

Vx =
∏
C̃x

σxrr′ , Vy =
∏
C̃y

σxrr′ , (3.11)

where and C̃x, C̃y denote non-contractible loops along one direction of the torus on

the dual lattice as illustrated in Fig. 3.4. These operators are sometimes referred to

as ’t Hooft loop operators. The sites of the dual lattice are defined on the centers

of the plaquettes of original lattice [14]. The operation
∏

C̃x
σxrr′ means that σxrr′

acts on every link of the original lattice which is intersected by the loop of the dual

lattice. Since these operators form closed loops, they always act on two edges of

every plaquette. Thus one finds that [Vx, H] = [Vy, H] = 0. In the confining phase,

it was argued that the ground state is given by σxrr′ = +1 on all bonds. This is fine

for Vx = Vy = +1. However, to have, for instance, Vx = −1, at least one bond must

be negative; such a configuration receives an energetic penalty of large Γ. Therefore,

it cannot be degenerate with the ground state. Things are different in the deconfined

phase. Defining operators which measure a Z2 flux through the holes of the torus as

Wx =
∏
Cx

σzrr′ , Wy =
∏
Cy

σzrr′ , (3.12)

where Cx, Cy define non-contractible loops, this time, on the original lattice. One

can easily show that the V and W operators anti-commute for different directions,

and commute for the same direction

{Wx, Vy} = {Wy, Vx} = [Wx, Vx] = [Wy, Vy] = 0. (3.13)
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3. Lattice gauge theory

In the limit Γ = 0 one finds that the ground state Eq. (3.10) is an eigenstate

Wx,y |Ψ〉 = ± |Ψ〉. The state Vx |Ψ〉 is an eigenstate of Wy with the opposite eigen-

value. Yet Vx |Ψ〉 is degenerate with the ground state. Similarly, Vy |Ψ〉 and VyVx |Ψ〉
are degenerate with the ground state, but can be distinguished according to their

eigenvalues of Wx, Wy. Therefore, the ground state on the torus is fourfold degen-

erate, while each state corresponds to the presence or absence of a Z2 flux through

the holes of the torus. One can construct linear combinations (1 ± Vx) |Ψ〉 and

(1± Vy) |Ψ〉, which have eigenvalues Vx = ±1 and Vy = ±1, in contrast to the con-

fining phase. If 0 < Γ� λ, these states are no longer degenerate. Yet the splitting

in energy is exponentially suppressed ∼ e−| ln Γ|L where L is one of the circumfer-

ences of the torus [14]. Importantly, there are no local operators that could induce

tunneling from one state to another. Such an operation has to wind around the

entire torus. This robustness may be an important ingredient to build a quantum

computer, and it sparked a great interest in studying Z2 quantum spin liquids.

3.3. Concluding remarks

The previous analysis results can be summarized in a phase diagram of the two

dimensional Z2 theory, which is shown in Fig. 3.5. The discerning quantity is the

string tension σ, a function of the couplings λ/Γ. The two different phases can

be interpreted in the context of quantum spin liquids as follows: The deconfining

phase corresponds to one phase for which spinons exists as fractionalized spin−1/2

excitations. The confining phase is characterized by spin−1 excitations, also called

magnons or spin-waves. Contrarily, the two-dimensional U(1) lattice gauge theory

has only a single confining phase, as shown in Fig. 3.5 [70, 68, 14]. Note that this

prohibits the existence of a spin liquid phase only in the pure gauge theory Eq. 3.7.

In a theory where also matter degrees of freedom enter the effective low-energy

description, it is still not known what the exact phase diagram looks like. Some

studies suggest that it could be possible that deconfinement appears despite a gauge

field of a U(1) type. Other studies say the converse [71, 72, 73, 74, 75]. However,

this ongoing debate will not be answered in this thesis.
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Figure 3.5.: Phase diagram for the Z2 and U(1) lattice gauge theories in two dimensions.

(a) string tension σ as a function of the coupling strength λ/Γ for the Z2 lattice gauge

theory Eq. (3.9). Two different phases exist which are separated by a phase transition

occurring at (λ/Γ)c. (b) shows the string tension σ as a function of the coupling strength

gJ for the U(1) lattice gauge theory Eq. (3.7). Only one phase exist in which charges are

in a confining potential.
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4. Projective symmetry groups (PSG)

In Chapter 2, it was explained that writing the spin problem in a fermionic repre-

sentation incorporates a redundancy that is manifested by a class of transformations

that leave the physical state vector invariant. In this chapter, a different type of

transformation is taken into account. These transformations explicitly change the

state vectors and can be very useful to reduce the problem’s complexity. If such a

transformation relates two different state vectors, one speaks of a symmetry. Symme-

try transformations can be understood as groups and have been exhaustively studied

in mathematics, yielding large machinery called group theory from which especially

the sub-field representation theory is of major interest for physics. Scrutinizing the

symmetries of a system and, in particular, what happens if these symmetries are

broken has been a compelling strategy. This method has been applied in literally

every domain of theoretical physics in the last century [76, 77, 62, 63]. Therefore,

it might be worth investigating the ramifications that arise due to a redundancy in

the description and how symmetry and gauge transformation mutually affect each

other. Yet, there is another interesting point that will be addressed. If one wants

to study systems like quantum spin liquids that do not break any symmetry, the

usual classification scheme proposed by Lev Landau is futile. It turns out that for

these cases replacing the group structure by a projective group structure can be

very helpful. This group extension leads to the entirely new concept of topological

order or quantum order, which can then be used to classify different quantum states.

These advances were mostly developed by Xiao-Gang Wen [67, 5, 10].

In Chapter 2, it was further argued that in the case that the emergent gauge field

has an excitation gap, one can rely on the results of zeroth-order mean-field theory as

an effective low-energy description. The projective symmetry description provides a

framework to systematically study which saddle-points the emergent fields exhibit

an excitation gap.

4.1. Extension of the symmetry group

As explained in Chapter 2 gauge transformations act as Ψr → WrΨr on a spinor

Ψr, with Wr ∈ SU(2), which can equivalently be formulated as the action on the

auxiliary fields (2.17) as urr′ → Wrurr′W
†
r . These simultaneous transformations

leave the spin operator and thus the Heisenberg Hamiltonian invariant and hence
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4. Projective symmetry groups (PSG)

do not change the physical content of the theory. This does not hold any longer

as soon as the auxiliary field takes a static value such that the operator matrix

is replaced by a complex matrix u0
rr′ , which is what happens in mean-field theory.

The gauge transformation then acts solely on the spinor. The Hamiltonian is only

invariant if W †
ru

0
rr′Wr′ = u0

rr′ . Any generic mean-field matrix does not commute

u0
rr′ 6= W †

ru
0
rr′Wr′ for arbitrary Wr ∈ SU(2). However, a subgroup might exist

G ⊂ SU(2) for which the equality still holds. This subgroup is called the invariant

gauge group (IGG) and is defined as

G =
{
Wr|W †

ru
0
rr′Wr′ = u0

rr′ , Wr ∈ SU(2)
}
. (4.1)

These types of transformations are called pure gauge transformations. Note that

this group has at least two elements since, besides the identity, Wr = −τ 0 for all

sites r fulfills this relation.

The action of a given symmetry group of the underlying lattice S can be written

as Ψr → T (Ψr) or equivalently urr′ → T (urr′), where T is a group element of S.

Certainly, this prescription by itself is of minor value to study invariance properties

of the Hamiltonian since one has the freedom to apply further gauge transformations.

Combining these two operations yields what is called the projective symmetry group

(PSG). In order to be invariant, a Hamiltonian, which shall be specified by its

mean-field matrix u0
rr′ and a multiplier field aµrσµ, has to fulfill

G†T (r)u
0
T (r)T (r′)GT (r′) = u0

rr′ ,

G†T (r)a
µ
T (r)σµGT (r) = aµrσµ, GT (r)) ∈ SU(2). (4.2)

The gauge transformations GT are not unique as a transformation under any element

of G also comply with Eq. (4.2). In fact, the invariance group is a normal subgroup

[76] of the PSG, which allows a factorization according to

PSG = SGn IGG. (4.3)

Since the IGG depends on a particular Ansatz, the PSG does so, too. This depen-

dency allows to use PSGs to define an equivalence relation between different Ansätze.

Thus Ansätze sharing the same PSG belong to an equivalence class. These classes

are said to be universal in the sense that a stable Ansatz is robust against generic

perturbations. One can now assign a quantum phase to each class. Similar to the

symmetry protected topological phases (STP), these phases are protected by their

PSG [11, 5]. This equivalence relation will be explained further in Chapter 5.

4.2. Invariance group and gauge fields

Unfortunately, the entire reasoning stems on the ground that the mean-field solution

is a valid candidate. So far, no tool has been presented that could help to identify a
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4.2. Invariance group and gauge fields

stable mean-field Ansatz. In fact, the IGG provides such a device. The elements of

G generate the gauge fields under which the fluctuations transform. To make this

statement more precise, assume that inside G a subgroup exists being parametrized

by a compact value as it is the case for a U(1) theory{
Wr = eiθn

µ
r σµ | θ ∈ [0, 2π[ , |n| = 1

}
⊂ G. (4.4)

Using the local SU(2) gauge freedom it is possible to rotate the coordinate system of

the spinor space on each site such that GrW
(θ)
r G†r = eiθσ

3
with Gr ∈ SU(2). In this

new gauge, a mean-field matrix transforms according to u0
rr′ → ũ0

rr′ = Gru
0
rr′G

†
r′ .

To see what happens beyond the mean-field level fluctuations should be taken

into account. As mentioned in Chapter 2 this can be achieved by replacing

urr′ = u0
rr′e

iarr′σ
3
, whereas for simplicity consider only fluctuations in the σ3 di-

rection. The gauged ũrr′ then transforms under a local U(1) transformation, which

is parametrized by the elements of G as in Eq. (4.4), according to

ũrr′ → eiθrσ
3

ũrr′e
−iθr′σ3

= eiθrσ
3

ũ0
rr′e

iarr′σ
3

e−iθr′σ
3

= GrW
(θr)
r u0

rr′G
†
r′e

iarr′σ
3

e−iθr′σ
3

= Gru
0
rr′W

(θr)
r′ G†r′e

iarr′σ
3

e−iθr′σ
3

= ũ0
rr′e

iθrσ3

eiarr′σ
3

e−iθr′σ
3

. (4.5)

Is was used that W
(θr)
r u0

rr′ = u0
rr′W

(θr)
r′ , which is a consequence of W

(θr)
r being a

member of the IGG, and that eiθrσ
3
Gr = GrW

(θr)
r , which follows from the special

gauge that is used. Thus one finds the transformation rule arr′ → a′rr′ = arr′+θr−θr′
for the fluctuations, which includes the elements of G [11, 5, 36]. The lesson to learn

from this result becomes clear by realizing that the transformation Eq. (4.5) did not

change anything on the mean-field level, as it is generated by the IGG, and both

descriptions result the same physical state. Therefore, the resulting energies should

be equal E(u0
rr′ , e

iarr′σ
3
) = E(u0

rr′ , e
i(arr′+θr−θr′ )σ3

). Expanding both sides in arr′ up

to second order and comparing coefficients shows that (arr′)
2 has to vanish [5, 11].

Usually, quadratic terms couple to the mass, which means that these arr′ fields have

to be massless. Thus they participate in the low-energy regime of the system. One

immediately sees that by restricting θ ∈ {0, π} the argument does not longer hold,

and one expects the arr′ field to become massive.
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Projective symmetry groups provide a framework to classify symmetric quantum

spin liquids according to a given symmetry group, similar to the ordinary symmetry

classification. The main difference lies in the group extension, which carries over

to the representations of the symmetry group. In order to find gauge inequivalent

members of every class, it is necessary to identify representations of the projective

symmetry group, which are not related by a gauge transformation. Each PSG rep-

resentation then offers a way to construct a symmetric mean-field Ansatz, which

according to its transformation properties, should differ from another mean-field

Ansatz built upon a non-equivalent representation. Therefore, the equivalence re-

lation can be defined as the transformation properties of a mean-field state, and

a class representative is simply the constructed Ansatz. The set of gauge inequiv-

alent PSG representations is sometimes called the algebraic PSG, and those that

genuinely lead to distinct mean-field states are called the invariant PSG [5, 11].

This chapter will explain how algebraic PSGs are, in principle, derived for a given

lattice. Lattices can be described through a symmetry group S which contains

translation operators

Tµ : r→ r + êµ, (5.1)

where r points on given site of the lattice and êµ denotes a Cartesian basis vector in

direction µ, e.g. µ ∈ {x, y, z} in three dimensions. Furthermore, S includes a point

group O whose elements act via linear transformations

O : r→MO(r), (5.2)

here MO denotes the matrix representation of the point group operator O. If it

becomes clear from the context O and its representation, MO will be denoted equally.

Finally, time-reversal symmetry T shall be included, which, contrary to the other

operators, acts via an anti-unitary operator directly on the Hilbert space. The

extension of the symmetry group is considered to be G = Z2. At the end of this

chapter, it will also be considered how the entire theory differs if spin rotational

symmetry is broken. It will be discussed in short how the decoupling changes by

taking triplet channels into account. This further requires representations which

explicitly act within the spin space.
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5.1. Uniform gauge and lattice translations

In order to find the gauge inequivalent representations, it is first necessary to filter

out the gauge freedom such that it becomes possible to determine true differences.

This can be done by fixing the gauge, which means in particular to reduce the local

freedom. Yet gauge fixing does not mean that further gauge transformations are

forbidden. However, bookkeeping becomes possible as soon as some reference is

assigned and usually later gauge transformations have a global effect. A particular

gauge that turns out to be convenient is the uniform gauge. Here it will be explained

for a three-dimensional cubic lattice. Before this gauge is explained any further, it

is essential to see how the gauge part of a PSG representation changes under a pure

gauge transformation. Assume that for a given symmetry operation, GOO is an

element of the PSG, which means by definition (4.2) that1

G†O(O(r))uO(r)O(r′)GO(O(r)) = urr′ . (5.3)

If now two different urr′ are related by a gauge transformation Wr the GO matrix

transforms according to

GO(r)→ W †
O−1(r)GO(r)Wr, (5.4)

which can easily be verified by inserting identities W †
O(r)WO(r) = 1 in Eq. (5.3), and

using the invariance properties. Turning back to the uniform gauge in which one

wants the gauge transformation belonging to translations GTµ to be as simple as

possible, i.e. ideally, they are given by the unit matrix. In three dimensions, one

starts the gauging process at a given site r0 = (x0, y0, z0). One seeks a gauge such

that G̃Tx(r0) = τ 0, where τ 0 is the identity matrix. This operation fixes the gauge

transformation on a neighboring site determined by Eq. (5.4) as

G̃Tx(r0)
!

= τ 0 = W †
T−1
x (r0)

GTx(r0)Wr0

=⇒ Wr0−êx = GTx(r0)Wr0 . (5.5)

Repeating this procedure n times, fixes the gauge transformation on the other sites to

the left of r0 as Wr0−nêx = GTx(r0− (n−1)êx) . . . GTx(r0)Wr0 . The inverse operation

T−1
x yields a similar result for all sites to the right of r0 such that for the entire line

G̃Tx(x, y0, z0) = τ 0 is fixed. This exhausted the gauge freedom of all sites except

for Wr0 . The same procedure can be done for GTy for lines along the y-direction

starting from an arbitrary point of the line r1 = {r|(x, y0, z0), x ∈ Z}. This assigns

the gauge transformations G̃Ty(r2) = τ 0 in the plane r2 = {r|(x, y, z0), x, y ∈ Z}.
1The superscript of u0

rr′ is not indicated any longer and it is tacitly assumed to deal with mean-field

matrices.
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5.1. Uniform gauge and lattice translations

Finally, one fixes G̃Tz(r) = τ 0 for the entire lattice by starting at given any point of

the plane r2. Thus the entire lattice has been gauged besides the starting point r0.

Therefore, the local gauge freedom has been reduced to a remaining global one Wr0 .

In the following all matrices are given in this gauge and the tilde will be omitted.

Having the gauge fixed, it remains to find the other representations matrices

since so far only GTz is known for the entire lattice. The other representations can

be found by identifying invariant elements of the PSG. These elements correspond

to the stabilizer group of a lattice site. Sometimes this group is also called the

little group; a term mostly used in the literature of relativistic quantum mechanics

[62, 76]. Consider the operation TyTzT
−1
y T−1

z = id, which follows a closed loop and

yields an invariance condition for every lattice site. This condition requires that

GTyTyGTzTzT
−1
y G−1

Ty
T−1
z G−1

Tz
∈ G, which means for a representation that

GTy(r)GTz(r− êy)G−1
Ty

(r− êz)G−1
Tz

(r) = ±τ 0 = ηzyτ
0

=⇒ GTy(r) = ηzyGTy(r− êz), (5.6)

with ηzy = ±1. The representations for lattice sites belonging to r2 have already

been fixed, which means that GTy(r2) = τ 0 = ηzyGTy(r2 − êz). Hence a valid

representation is given by

GTy(r) = ηz0+z
zy τ 0, (5.7)

which fulfills all necessary requirements. Similarly, one determines the representa-

tion of GTx by employing TxTzT
−1
x T−1

z and TxTyT
−1
x T−1

y , which are again little group

elements. This yields

GTx(r) = ηz0+z
zx ηy0+y

yx τ 0 (5.8)

with two different sign parameters ηzx = ± and ηzy = ±. The site r0 is arbitrary

and, without loosing any generality, it can be chosen to be the origin. The PSG

representations of the symmetry group S = {Tx, Ty, Tz} are then given by

GTx(r) = ηzzxη
y
yxτ

0, GTy(r) = ηzzyτ
0, GTz(r) = τ 0, ∀r. (5.9)

These representations are distinguished by the different η = ±1 values yielding 23 =

8 different algebraic PSGs which are gauge inequivalent. The two dimensional case

S = {Tx, Ty} can be obtained by setting z = 0 and neglecting the third generator

Tz resulting in two distinct representations given by

GTx(r) = ηyyxτ
0, GTy(r) = τ 0, ∀r. (5.10)
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5.2. Point group and time-reversal symmetry

Until now, the symmetry group does not contain any point group elements. How-

ever, for most lattices, such point group elements have to be taken into account; see

for instance Appendix A.1, where the point group generators of the square lattice are

given or in Chapter 9 where some three-dimensional lattices and their correspond-

ing points groups are shown. These additional group elements need their projective

representations, which can be derived by the same procedure as the translations

that were not fixed by the local gauge transformations. One identifies little group

elements of a given site r by successively applying symmetry operations starting

and ending at this site. These operations then form closed paths, which lead to con-

ditions on the representations. Starting the path with one particular point group

generator O followed by a translation Tµ yields an equation that relates the repre-

sentation GO(r) with one of its neighbors GO(r + êµ). Repeating this step with all

other translations gives a set of equations determining the translation properties of

representation GO.

To make this procedure more concrete consider as an example a rotation of 120◦

around the (1, 1, 1)-axis, which belongs in the point group of cubic crystal systems.

This rotation acts by permuting the entries of r

P : r = (x, y, z)→ (z, x, y) (5.11)

One little group element is PTxP
−1T−1

y requiring that

GPPGTxTxP
−1G−1

P T−1
y G−1

Ty
∈ G. (5.12)

This further leads to

GP (x, y, z)GTx(y, z, x)G−1
P (x, y − 1, z)G−1

Ty
(x, y, z) = ηyP τ

0

=⇒ GP (x, y, z) = ηzyxη
x
zxη

z
zyηyPGP (x, y − 1, z), (5.13)

where the gauge transformations (5.9) were used. Similarly, one finds for the other

directions

GP (x, y, z) = ηzzxη
y
yxηxPGP (x− 1, y, z) (5.14)

GP (x, y, z) = ηxzyηzPGP (x, y, z − 1). (5.15)

To find a closed solution of GP (x, y, z), one creates all possible elementary loops

around the origin employing the translational conditions. These loops dictate some
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consistency conditions:

GP (0, 0, 0) = ηxPGP (1, 0, 0)

GP (1, 0, 0) = ηzxηyPGP (1, 1, 0) = ηxPGP (0, 0, 0)

GP (1, 1, 0) = ηyxηxPGP (0, 1, 0) = ηzxηyP ηxPGP (0, 0, 0)

GP (0, 1, 0) = ηyPGP (0, 0, 0) = ηyxηzxηyPGP (0, 0, 0). (5.16)

From the last equation it can be learned that ηyx = ηzx to guarantee consistency

of the representations. Taking the other directions into account reveals that all

parameters have to be equal ηyx = ηzx = ηzy ≡ ηX . Any given loop operation can

be decomposed into elementary loops2 and, therefore, such an operation should be

equivalent to the identity operation. Yet if all loops are identity operations, then

there cannot be any path dependence. Hence one can get a solution for GP (r),

with r arbitrary, by a successive application of elementary steps, starting from the

origin for which GP (0, 0, 0) ≡ gP with gP ∈ SU(2). Finally, one obtains the unique

solution

GP (r) = η
x(y+z)
X ηxxP η

y
yP
ηzzP gP . (5.17)

Generally, site-dependent representations of the point group generators can be

expressed in the form GO(r) = ηf(r)gO, where η = ±1, f(r) a local function, and

a global matrix representation gO ∈ SU(2). These gO are not general matrices

as they have to fulfill some more conditions. One condition can be obtained by

taking the point group generators’ cyclic character into consideration since they

form Zn subgroups on their own. For example, P is a three-fold cyclic group with

P 3 = id. This condition requires the matrix representation to cope with g3
P =

±τ 0. Furthermore, these matrix representations are specified by taking mutual

commutation relation of the point group generators into account. In the example

above, it was already encountered that the η sign factors of translations, initially

independent, became dependent on each other after the point group generator P was

incorporated into the symmetry group. This always happens when a generator is

included in the group algebra that does not commute with other group elements, and

it will usually affect the projective representations of the previously determined ones.

The number of all independent algebraic relations of the matrix representations of

the point group generators gO times the number of independent sign factors ηO yields

the number of algebraic PSGs.

Time-reversal symmetry T can also be included to S. This operation is, however,

special compared to the other group elements as it acts by an anti-unitary operator.

2Similar to the principle behind Stokes’ theorem
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5. Algebraic PSGs

On the physical spin operator Sr it acts according to

T : Sr → −Sr, (5.18)

which is readily verified by recalling that the spin can be interpreted as an internal

angular momentum r×p. In the fermionic spin-1/2 representation it is represented

by an anti-untitary operator κU with κ denoting the operator of a complex con-

jugation κ : i → −i and U a unitary transformation [78]. Thus it transforms the

fermions as

T :

(
f↑
f↓

)
→ iσ2

(
f↑
f↓

)
. (5.19)

One sees that each fermion transforms as T : f↑ → f↓ and T : f↓ → −f↑. The action

on a spinor ψr = (fr↑, f
†
r↓)

T is then given as

T : ψr → iτ 2κψr. (5.20)

It is then convenient to chose a global gauge, which transforms ψr → iτ 2ψr.

In this gauge time-reversal acts on the spinor as a simple complex conjugation

T : ψr → (ψr)
∗. This has the advantage that it commutes with other gauge trans-

formations [11, 61]. Time-reversal acts then on a mean-field matrix or a multiplier

field according to

T : urr′ → −urr′ (5.21)

T : aµ(r)τµ → −aµ(r)τµ. (5.22)

This leads to a condition on the PSG elements

−G†T (r)urr′GT (r) = urr′ , (5.23)

which differs by a sign compared to the usual PSG equations given in Eq. (5.3).

The determination of the site-dependent representations for time-reversal can be

achieved in the same way as for the other point group generators.

In Chapter 9, this procedure is further explained as it is used to determine the

projective representations for several three-dimensional lattices.

5.3. Flux operator and invariance group

Once the projective representations are determined it is possible to construct a

mean-field Ansatz, whose projected wave function respects all required symmetries,

and thus might be a valid candidate describing a symmetric quantum spin liquid

state. To avoid a complicated analysis concerning the stability of such an Ansatz, the
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5.3. Flux operator and invariance group

constructions in this work are all based upon a Z2 invariant subgroup, which can be

related to gapped excitations of the emergent gauge field, as explained in Chapter 4.

Yet there is one caveat. The constructed mean-field state can, nevertheless, belong

to a larger invariance subgroup [5, 11]. In fact, the analytic form of a mean-field

matrix urr′ cannot reveal anything about the underlying gauge group, as it obviously

depends on the chosen gauge. However, some quantities can be made of these

matrices called flux operators or Wilson loop operators defined as [23, 22]

Pr =
∏
�

urr′ = urr1ur1r2 . . . urN−1r, (5.24)

with � denoting a closed path. Note the analogy to the flux terms that were

introduced in Chapter 3. These operators transform under a gauge transformation

Pr → W †
rPrWr, which is a recognizable similarity transformation. It follows that the

spectrum of these operators remains untouched; hence their determinant and trace

are gauge invariant quantities. These operators are also subjects to a consistency

condition, which can be stated as follows: Using the defining invariance equation of

G, which can be written as Wr = urr1Wr1u
−1
rr1

or similarly on a neighboring site as

Wr1 = ur1r2Wr2u
−1
r1r2

, etc., one finds for a closed loop that

Wr = ur1r2 . . . urN−1rWr(ur1r2 . . . urN−1r)
−1 = PrWrP

−1
r

=⇒ [Wr, Pr] = 0. (5.25)

Since this should be true for any closed loop, it follows that a local gauge transfor-

mation must commute with all possible Pr operators. This condition can be used to

determine the proper invariance group of an Ansatz, which is given by the smallest

subgroup G ⊂ SU(2), such that Wr ∈ G commutes with all possible flux operators

for all r. Since these operators inherit their translational transformation rules from

the underlying urr′ matrices, it becomes trivial in the unitary gauge to determine Pr′

for r′ 6= r as soon as Pr is known. It remains to check all possible Pr for one particu-

lar site. Again, this problem can be reduced, as one seeks to understand if and how

these operators restrain the form of Wr. A convenient representation for SU(2) ma-

trices is given by Wr = α0τ
0 + inτ . Here τ is the Pauli vector and n = (α1, α2, α3).

The coefficients are real and normalized such that
∑3

i=0 α
2
i = 1. In order to reduce

this form, such that Wr ∈ Z2, the vector term has to vanish n
!

= 0. The flux operator

appears in two different guises P
(o)
r = ip0τ

0 +pτ or P
(e)
r = q0τ

0 + iqτ which can be

verified using an expanded form of the mean-field matrices urr′ = ia0τ
0 + aτ . The

label o corresponds to a loop containing an odd number of links and e to an even

number. Note that all coefficients are real but contrary to the SU(2) case, they are

not subject to any normalization constraint. In these representations one easily sees

that for P (o) the condition to break the invariance to Z2 is pn = 0. Analog for P (e)
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5. Algebraic PSGs

one finds q × n = 0. Due to the symmetry constraints on the mean-field matrices,

it is uncommon that a single loop operator already exists eliminating all necessary

degrees of freedom of n. In order for multiple different flux operators to break the

invariance they have to be linearly independent such that a1p1 + a2p2 + . . . = 0 is

only true if a1 = a2 = . . . = 0.

5.4. Broken spin-rotational symmetry

Until now, the entire discussion was based on decoupling in the singlet spin chan-

nel, i.e., all terms in the Hamiltonian are invariant under rotations in spin space.

In a more realistic scenario, regarding real materials, one should include spin-

orbit coupling terms, which will break this invariance. Such a decoupling of the

triplet channels includes spin-dependent hopping- (f †r↑fr′↑−f †r↓fr′↓) and triplet pairing-

(f †r↑f
†
r′↓ − f †r↓f

†
r′↑) terms. These terms are still invariant under a U(1) spin rotation.

Spin-flip hopping- (f †rαfr′β), with α 6= β, and spin-polarized p-wave pairing- (f †rαf
†
r′α)

terms break this invariance entirely. Starting from a generic model, a corresponding

decoupling leads to a generalized mean-field matrix

ũrr′ =



〈
f †r↑fr′↑

〉 〈
f †r↑f

†
r′↓

〉 〈
f †r↑fr′↓

〉
−
〈
f †r↑f

†
r′↑

〉
−
〈
f †r↓f

†
r′↑

〉∗
−
〈
f †r↓fr′↓

〉∗
−
〈
f †r↓f

†
r′↓

〉∗ 〈
f †r↓fr′↑

〉∗〈
f †r↓fr′↑

〉 〈
f †r↓f

†
r′↓

〉 〈
f †r↓fr′↓

〉
−
〈
f †r↓f

†
r′↑

〉〈
f †r↑f

†
r′↑

〉∗ 〈
f †r↑fr′↓

〉 〈
f †r↑f

†
r′↓

〉
−
〈
f †r↑fr′↑

〉∗


=

(
usrr′ + ut1rr′ ut2rr′ + ut3rr′
−ut2rr′ + ut3rr′ usrr′ − ut1rr′

)
, (5.26)

which couples bilinears of the 4 dimensional spinors Ψr = (fr↑, f
†
r↓, fr↓,−f †r↑)T . The

4×4 matrix can be rewritten in terms of 2×2 matrices with real parameters α, β, γ, δ,

as it was done in the second line of Eq. (5.26). These 2× 2 matrices are given by

usrr′ =iα0
rr′τ

0 +
3∑
i=1

αirr′τ
i,

ut1rr′ =β0
rr′τ

0 + i

3∑
i=1

βirr′τ
i,

ut2rr′ =iγ0
rr′τ

0 +
3∑
i=1

γirr′τ
i,

ut3rr′ =δ0
rr′τ

0 + i
3∑
i=1

δirr′τ
i.

, (5.27)
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5.4. Broken spin-rotational symmetry

where τ i are the three Pauli matrices and τ 0 is the 2× 2 identity matrix. Here usrr′
describes the singlet case, which was studied so far. ut1rr′ are triplet terms which are

invariant under a U(1) spin-rotation. The other triplet terms, that entirely break

spin-rotational symmetry, are the off-diagonal elements ut2rr′ and ut3rr′ . The decoupled

mean-field Hamiltonian can be written as

H =
1

2

∑
(rr′)

(
Ψ†rũrr′Ψr′ +H.c.

)
+

1

2

∑
r

3∑
i=1

alΨ
†
r

(
τ 0 ⊗ τ i

)
Ψr. (5.28)

In order to find projective representations of these mean-field models, it is necessary

to understand how gauge transformations act on the extended 4-dimensional spinor

space. Note that the four-spinor can be decomposed as Ψr = (ψr, iτ
2ψ∗r), with

ψr = (fr↑, f
†
r↓)

T the two-spinor whose transformation properties are known to be

ψr → Wrψr. Focusing on the lower two components which are related by time-

reversal in its pristine form3.(
f↓
−f †↑

)
=

[(
iτ 2

(
f↑
f †↓

))T]†
→
[(

iτ 2W

(
f↑
f †↓

))T]†

=

(f †↑ , f↓) (−i)τ 2iτ 2︸ ︷︷ ︸
1

W †(−i)τ 2

T

=

(f↓,−f †↑) iτ 2W †(−i)τ 2︸ ︷︷ ︸
WT

T = W

(
f↓
−f †↑

)
.

(5.29)

Hence a gauge transformation in this basis is block diagonal, and given by

Ψr → W̃rΨr with W̃r =

(
Wr 0

0 Wr

)
, (5.30)

with Wr ∈ SU(2) a 2× 2 matrix. Another important consequence of breaking spin-

rotational symmetry is that terms describing the spin-orbit coupling can break a

symmetry. Therefore, true invariance can only be guaranteed if a combined trans-

formation on the lattice and the spin degree of freedom leaves the Hamiltonian

invariant. This means that one has to find point group representations acting on

the spin space. A rotation corresponding to an element of the symmetry group acts

on the four-spinor as

Ψr → DSΨS(r). (5.31)

3That means without changing the gauge (see Eq. (5.20)).
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5. Algebraic PSGs

The structure of DS can be specified since the first and third component transform

as regular spin-1/2 objects (
f↑
f↓

)
→ D̃

(
f↑
f↓

)
, (5.32)

with D̃ =

(
γ1 γ2

−γ∗2 γ∗1

)
with γi ∈ C and |γ| + |γ2| = 1. The remaining components

transform as (
f †↓
−f †↑

)
=

[(
iτ 2

(
f↑
f↓

))T]†
→
[(

iτ 2D̃
(
f↑
f↓

))T]†

=

(f †↑ , f †↓) iτ 2(−i)τ 2︸ ︷︷ ︸
1

D̃†iτ 2

T

=

(f †↓ ,−f †↑) (−i)τ 2D̃†iτ 2︸ ︷︷ ︸
D̃T


T

= D̃
(
f †↓
−f †↑

)
.

(5.33)

Thus the four dimensional representation can be decomposed

D =


γ1 0 γ2 0

0 γ1 0 γ2

−γ∗2 0 γ∗1 0

0 −γ∗2 0 γ∗1

 . (5.34)

The entries depend on the corresponding point group element. In Appendix A.1,

the usual spin representations for the point group generators of the square lattice

are given.

Including spin-rotations, the defining PSG equation becomes

G̃†S(r)D
†
S ũS(r)S(r′)DSG̃S(r′) = ũrr′ . (5.35)

Yet it turns out that the irreducible representations are unaffected by the spin

rotations: Consider two elements of the point group, and for simplicity assume that

they commute. Oab = S−1
a S−1

b SaSb is hence an element of the invariance group

which becomes

DOabG̃Oab(r) =
(
G̃Sa(S−1

b (Sa(Sb(r)))
)†
D†Sa

(
G̃Sb(Sa(Sb(r))

)†
D†Sb

×DSaG̃Sa(Sa(Sb(r))DSbG̃Sb(Sb(r)) (5.36)
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5.4. Broken spin-rotational symmetry

in terms of PSG elements. As spin rotations and gauge transformations do not act

on the same subspace they commute which leads to

DOabG̃Oab(r) =D†SaD
†
SbDSaDSb

×
(
G̃Sa(S−1

b (Sa(Sb(r)))
)† (

G̃Sb(Sa(Sb(r))
)†

×G̃Sa(Sa(Sb(r))G̃Sb(Sb(r)). (5.37)

For the square lattice, it follows that, for all combinations, DOab = D†SaD
†
SbDSaDSb =

±14×4 [54]. Since a global sign factor is irrelevant, one concludes that the algebraic

conditions, which define the PSG, are the same for the spin rotational symmetric

and the broken case.

The derivation of the gauge inequivalent representations in the spin-rotational

broken case follows the same scheme, as explained previously. In Appendix A.2,

the relevant PSG equations are given, which are needed to construct the symmet-

ric mean-field matrices used in Chapter 7. The entire projective symmetry group

analysis for the square lattice with spin rotational symmetry broken is explained in

Ref. [54].
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6. Neutron scattering and dynamical

structure factor

So far, much effort was made to develop a theoretical framework. In this regard,

the following chapter digresses from the main route as some experimental concepts

will be treated. These concepts are nevertheless important for any advancement of

the physical understanding, which can only be achieved via a synthesis of theory

and experimental evidence. From a theoretician’s point of view, it is seemingly easy

to write down a state which prevails from conventional ordering down to absolute

zero temperature, but quantum spin liquids are notoriously hard to identify in an

experiment. How is it possible to measure something absent? One way of doing

so employs neutron scattering. Here it will be briefly explained what the measured

quantities are and how to connect them to the theoretical framework, which was

introduced in the previous chapters.

6.1. Neutron scattering experiments

As the name already suggests, neutrons are scattered at a sample of a given material

in a neutron scattering experiment. This is schematically illustrated in Fig. 6.1. The

reason to use neutrons is that any electrically charged projectile and electromagnetic

radiation would immediately interact with the charged particles of the material

itself. This causes two problems: These interactions shade the pristine properties

that one seeks to understand, and secondly, the penetration depth is relatively short

Sample

Detector

Source

|ki, ωi, σi〉
|kf , ωf , σf 〉

Figure 6.1: Schema of the experimental set

up. The incoming neutron is initialized in

the source with wave function |ki, ωi, σi〉, de-

noted in blue. After a scattering event oc-

curred in the sample material the outgoing

neutron, denoted in red, is specified by wave

function |kf , ωf , σf 〉 which is recorded in the

detector.
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6. Neutron scattering and dynamical structure factor

such that only the interface of the sample is accessible. As in any other scattering

experiment an initial state |ki, ωi, σi〉 prepared with momentum k, energy ω, and a

spin quantum number σ undergoes a transformation in the scattering process and

the finial state |kf , ωf , σf〉 can be measured. This transformation can be described

in terms of a time-dependent perturbation series induced by a scattering potential

V (r). The initial and final states are considered to be asymptotically free [62, 78, 2].

The difference in momenta, energy, and spin

∆q = ki − kf

∆E =
~2

2m

(
k2
i − k2

f

)2

∆σ = σi − σf (6.1)

provide the information of the sample due to the conservation of energy and mo-

mentum. Here m denotes the neutron mass. Since neutrons are spin-1/2 particles,

the transferred spin is integer-valued. In a real experiment, one fixes the wave-

length of the incoming particle. The detecting apparatus is then adjusted such that

it measures within a solid angle ∆Ω the scattering angle and in a certain range

∆E the energy transfer. These quantities are combined in the partial differential

cross-section

d2σ

dΩdE
= r2

0

kf
ki
φ(q, ω, σ), (6.2)

which measures the number of scattered neutrons into the solid angle dΩ in a range of

energy E+dE per seconds and per unit flux. The parameter r0 gives a characteristic

length scale and φ(q, ω, s) is a function that can be further specified [36, 78].

Two possible scattering events can occur. In the first one, the neutron is scattered

at an atomic nucleus, e.g., phonon or Bragg scattering. The second event, which is of

greater importance for the present discussion, describes the scattering by a magnetic

moment or a spin. The relevant scattering potential can be described by a magnetic

field B(t, r), which is induced by the orbital angular momentum and the spin of the

sample. Yet as the experiment is measured in the momentum basis for which the

potential becomes the Fourier transform B(ω,q) some ramifications have to be taken

into account. According to Maxwell’s equation ∇B = 0, one finds that the Fourier

transform has to be perpendicular to the scattering vector q. Thus the neutrons can

only resolve transversal components. To guarantee this analytically one can include

an orientation factor that projects onto the perpendicular subspace (δαβ − q̂αq̂β)

where q̂ = q
|q| denotes a unit vector and α labels the different components. A second

problem lies in the fact that the objects evoking the magnetic field are not fully

localized, and the neutron is subject to a scattering density distribution. However,

as shown by the Wigner-Eckart theorem, one can replace such a density distribution
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by an effective point like field [36]. This leads to a modification that can be included

by a magnetic form factor f , which depends on the type of atoms within the sample.

In order to relate to theoretical accessible quantities, one treats the magnetic field

in linear response theory revealing the relevant correlation function [36, 2]

Sαβ(q, ω) =

∫ ∞
−∞

dt

2π
eiωt

1

N

∑
rr′

eiq(r−r′)
〈
Sαr (t)Sβr′(0)

〉
, (6.3)

which is called the dynamical structure factor. In this equation r denote different

lattice sites, N is the total number of sites, S represents the spin operator, and q, ω

is the energy and momentum of the incoming neutron. Taking further the additional

orientation and form factor into account, one finds that the partial differential cross-

section is given by [36]

d2σ

dΩdE
= r2

0

kf
ki
f(q)2

∑
αβ

(δαβ − q̂αq̂β)Sαβ(q, ω). (6.4)

The following theoretical discussions will, however, put more emphasis on the dy-

namical structure factor without modification. Yet comparing to real experimental

data, these remarks should be kept in mind.

6.2. Dynamical structure factor

The dynamical structure factor can be calculated within the mean-field theory ex-

plained in Chapter 2. Without specifying a particular saddle-point, here it is as-

sumed that the effective Hamiltonian has a generic form including hopping χrr′ and

pairing ∆rr′ amplitudes

H =
∑

rr′,σ,σ′

[
χrr′f

†
rσfr′σ + ∆∗rr′f

†
rσf
†
r′σ′εσσ′ +H.c.

]
. (6.5)

Defining a doublet via Ψr = (fr↑, f
†
r↓) it can be written in compact form

H =
∑
rr′

Ψ†rurr′Ψr′ . (6.6)

The lattice might consists of multiple atoms within a unit cell and can be separated

according to r = R + δr, where the vectors R form a Bravais lattice and δr denotes

the position within one unit cell. By Fourier transformation

Ψ†R,δr =
1√
NB

∑
k

e−iRkΨ†k,δr, (6.7)
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whereNB denotes the number of Bravais lattice sites, the Hamiltonian can be written

in a block diagonal form

H =
∑
k

∑
δrδr′

Ψ†k,δruk;δr,δr′Ψk,δr′ , (6.8)

with uk;δr,δr′ =
∑

∆R
ei∆Rku∆R;r,r′ and ∆R = R′ − R. Each block can be further

diagonalized by Dkuk;δr,δr′D†k = ξkδrr′ yielding

H =
∑
k,δr

ξk,δrΨ̃
†
k,δrΨ̃k,δr. (6.9)

In order to derive the corresponding two-point correlator, it is convenient to choose

an imaginary-time representation. The real-time representation can afterward be

obtained by analytic continuation [2]. Going to momentum space the dynamical

structure factor becomes

Sαβ(q, iωn → ω + iη) =

∫ β

−β
dτeiωnτ

1

Nu

∑
δr,δr′

eiq(δr−δr′)
〈
Sα−q,δr(τ)Sβq,δr′(0)

〉
, (6.10)

here Nu denotes the number of atoms in one unit cell. Using the parton mapping

(2.2) of the spin operators the momentum space representation is found as

Sαq,δr =
1

2
√
NB

∑
k

(
f †k,δr,aσ

α
abfk+q,δr,b

)
. (6.11)

In the following, it will be assumed that the system is invariant under rotations

in spin space such that it suffices to consider the Szz component of the spin-spin

correlation function. After a Wick contraction and the neglect of constant terms,

this correlator can be expressed by〈
Sz−q,δr(τ)Szq,δr′(0)

〉
= −1

4

∑
k

Tr
{

¯̄Gδr,δr′(k, τ) ¯̄Gδr′,δr(k + q,−τ)
}
. (6.12)

Here Nambu-Green’s functions were used

¯̄Gδr,δr′(k, τ) =−
〈
TτΨk,δr(τ)Ψ†k,δr′(0)

〉
=

(Gδr,δr′,↑↑(k, τ) Fδr,δr′,↑↓(−k, τ)

F∗δr,δr′,↓↑(k, τ) G∗δr,δr′,↓↓(−k, τ)

)
, (6.13)

Tτ denotes the time ordering operator, the simple Green’s function is defined as

Gδr,δr′,↑↑(k, τ) = −
〈
Tτfk,δr,↑(τ)f †k,δr′,↑(0)

〉
(6.14)
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and the anomalous Green’s function as

F∗δr,δr′,↓↑(k, τ) = −
〈
Tτf

†
−k,δr,↓(τ)f †k,δr′,↑(0)

〉
. (6.15)

Choosing the basis Eq. (6.9), in which the Hamiltonian becomes diagonal, yields

¯̄Gδr,δr′(k, τ) =D†kG̃(k, τ)δδr,δr′Dk. (6.16)

G̃(k, τ) is now diagonal and can be further evaluated by taking the imaginary time

derivative which yields

∂τ G̃δr,δr(k, τ) =− δ(τ)
〈

Ψ̃k,δr(τ)Ψ̃†k,δr(0)
〉
−Θ(τ)

〈[
H, Ψ̃k,δr

]
(τ)Ψ̃†k,δr(0)

〉
. (6.17)

The commutator can be easily evaluated using Eq. (6.9) as[
H, Ψ̃k,δr

]
(τ) = −ξk,δrΨ̃k,δr(τ). (6.18)

The last two results and a transformation into Matsubara frequency space can be

used to derive the spin-spin correlator as [79, 2]

1

β

∑
k,iΩn

Tr
{

¯̄Gδr,δr′(k, iΩn) ¯̄Gδr′,δr(k + q, iωn + iΩn)
}
eiΩnη (6.19)

=
NB

β

∑
iΩn

∫
d2k

(2π)2
Tr
{
D†kG̃(k, iΩn)DkD†k+qG̃(k + q, iΩn + iωn)Dk+q

}
eiΩnη.

The sum over the Matsubara frequencies in this expression can be evaluated using

1

β

∑
iΩn

f(iΩn)eiΩnη =
∑
j

Res
z=zj

[f(z)] nF (zj)e
zjη, (6.20)

with nF (z) being the Fermi distribution. One finds that

1

β

∑
iΩn

Tr
{
D†kG̃(k, iΩn)DkD†k+qG̃(k + q, iΩn + iωn)Dk+q

}
eiΩnη

= O(k,q, a, b)
(
nF (ξbk+q)− nF (ξak)

)( 1

ξbk+q − ξak − ω
+ iπδ

(
ξbk+q − ξak − ω

))
(6.21)

where a representation of the δ-function δ(x) = 1
π

η
x2+η2

was used, and ωn has been

analytically continued. The Latin indices label the bands according to the number of

atoms within the unit cell and the Nambu space. The function O(k,q, a, b) accounts
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6. Neutron scattering and dynamical structure factor

for the transformations Dk. In the following only the imaginary part is kept. The

zz- component of the structure factor can then be evaluated as

Szz(q, ω) =
π

4Nu

∑
a,b

∫
d2k

(2π)2
f(k,q, a, b)

(
nF (ξak)− nF (ξbk+q)

)
δ
(
ξbk+q − ξak − ω

)
.

(6.22)

The function

f(k,q, a, b) =

∣∣∣∣∣∑
κ

φ∗aκ(k)φbκ(k + q)eiqRκ

∣∣∣∣∣
2

(6.23)

accounts for the exponential functions eiq(δr−δr′) = eiqRκ as well as for the similarity

transformations Dk, which consist of the eigenfunctions φaκ(k), the sum over κ runs

over all possible vectors δr− δr′ in one unit cell.

The factor
(
nF (ξak)− nF (ξbk+q)

)
in the dynamical structure factor (6.22) describes

particle-hole like transitions. Such a transition occurs if an occupied state of mo-

mentum k in the spinon spectrum can be connected to a vacant state of momentum

k + q. The delta function δ
(
ξbk+q − ξak − ω

)
assures that energy is conserved. Each

transition receives additionally a certain weight according to the overlap of the

spinon wave functions involved in the process. This weight is given by the function

f(k,q, a, b). The integral counts all possible processes which together determine the

spin structure factor.

6.3. Concluding remarks

Now that the experimental technique and the measured quantities are known, one

can answer the initial question of how a quantum spin liquid can be measured. One

does not expect significant peaks in the momentum resolved structure factor since

such signals would correspond to a certain periodicity in real space, which implies a

magnetically ordered state. For instance, in an anti-ferromagnetically ordered state,

one expects that magnons govern the low-energy regime. These quasiparticles carry

spin−1, and their dispersion is linear. The neutron can only scatter if it has the right

energy and momentum such that it coincides with the magnon dispersion. It can

excite exactly one magnon. The resulting signal reflects this one particle spectrum

characterized by a sharp line. On the other hand, a signal homogeneously spread

over the entire Brillouin zone suggests a paramagnetic phase in which the spins

inside the sample point in random directions. For the collective behavior of spinons,

governing the low-energy regime of a quantum spin liquid phase, one anticipates

a relatively homogeneous signal and shows a non-trivial momentum dependency

different from the diffusive signature of a simple paramagnet. The main difference

46



6.3. Concluding remarks

compared to magnons is that due to the conservation of total spin, neutrons can

only excite a pair of spinons. As a result, the scattering experiment identifies a two

particle spinon continuum. These characteristics will be explained in more depth

in Chapters 8 and 9, where the dynamical structure factor is calculated for several

models. Truth be told, a smoking gun evidence of a quantum spin liquid phase

can currently not be made by neutron scattering experiments on their own. In

order to get a broader picture, further indications, for instance, the temperature

dependency of the heat capacity, should be taken into account. The ultimate proof

may eventually be given by braiding experiments that could reveal once and for all

the entanglement properties of a topologically degenerate spin liquid ground state.
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7. Topological spinon bands and vison

excitations in spin-orbit coupled quantum

spin liquids

The following chapter is intended to explain the author’s work, which culminated

in the publication [53].

In the past decades, topological aspects have become very prominent in condensed

matter physics. The underlying concepts borrowed from a seemingly abstract realm

of mathematics dealing with continuous deformations disclose themselves as powerful

tools by characterizing and classifying new phases of matter. Some of the most

prominent specimens are the integer [80, 81] and fractional [3, 4] quantum Hall

effects, the topological insulator [82, 83, 84] and, of course, quantum spin liquids

[67, 10]. The strength of these approaches are, in fact, the capability of abstraction.

It enables one to make rigorous arguments about physical states, ignoring most of

the microscopic details. It is often possible to reduce one of the key properties to a

single number called a topological invariant. One can vaguely discern between two

fields in which these concepts arise. The first one treats electronic band structures of

weekly interacting electrons. In this realm of almost free electrons, symmetries can

protect certain states against any generic but symmetry preserving perturbation.

Based on the classifications of different symmetry groups, one is capable of tracking

down phases in which these states either exist or do not [85, 86]. Topology enters as it

is impossible to continuously deform one phase into the other. One speaks of trivial

topology if a deformation of a given state to the vacuum state exists. It is further

possible to assign topological indexes to each phase. The second area deals with

strongly interacting electronic systems in which approximating electrons as almost

free is impossible. Here topologically distinct ground states arise, tightly related

to fractional excitations [39, 38, 67, 26, 87]. Quantum spin liquids and fractional

quantum Hall states are prominent members of the second field. Interestingly, there

are scenarios for which both concepts apply at the same time [88, 89, 90, 91]. The

current chapter also describes such a scenario.

As explained in the preliminary chapters of this thesis, the fundamental con-

stituents of Z2 spin liquids can be described by fermionic spinons and visons, a

bosonic flux excitation. A deconfined spinon can be effectively treated as a free
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7. Topological spinon bands and vison excitations

fermion [39, 38, 92]. If spin-orbit coupling effects are explicitly taken into account

for the interaction’s decoupling, it becomes possible to construct spinon mean-field

states whose dispersion can exhibit non-trivial topology [93, 94, 54, 95].

In reference [54], an exhaustive classification using the concept of PSGs has been

made on a square lattice. It was found that by breaking spin rotational invariance,

1488 new PSG representations appeared. These new representations are distinct

from the 272 PSGs initially found in a classification on the square lattice based on a

decoupling that did not include spin rotational symmetry breaking terms [5]. This

massive amount of possible states exacerbates a detailed case study. Yet in this

classification, all possible symmetry respecting states are counted regardless of their

bond distance. In the presented work, these classified representations are scrutinized

to identify those that lead to short-ranged states in which only the nearest neighbors

terms enter the effective mean-field model. By this means, a feasible number of states

could be identified, which are analyzed with the main focus on finding spinon bands

exhibiting a non-trivial topology. It is found that states including only nearest-

neighbor bonds, cannot develop a topology different from the vacuum. However,

including second neighbor bonds can immediately lead to non-trivial spinon bands.

Except for minor modifications, the corresponding mean-field Hamiltonians resemble

the Bernevig-Hughes-Zhang (BHZ) model [55]; a model that describes a topological

insulator.

Furthermore, the effects of visons are taken into account. Including a single pair

of visons revealed their binding potential to spinon modes, which in the case of a

topologically non-trivial spinon band, leads to modes whose energy is asymptotically

vanishing in dependence of the distance between the visons forming the pair. This

phenomenon has already been observed in the context of vortices coupled to fermions

and, in particular, in the case of p+ ip superconductors [56, 57, 58, 96]. The relation

between these models and the spinon-vison case could be made rigorous by finding a

mapping from the present case to the Bogoliubov-de Gennes Hamiltonian, including

a vortex. Finally, the comportment of a vison gas has been investigated. Therefore,

multiple visons are introduced and randomly distributed over the entire lattice.

This setting mimics the effect of an increasing temperature as the required energy

to excite the gauge field can be supplied by thermal fluctuations. It was found

that the spinon modes bound to the visons can form bands on their own, which

usually emerge at low energies. The corresponding energy distribution shows some

clear peaks which emerge within the band gap. Such a formation of bands and the

corresponding signature in the energy distribution could be an identifying feature

useful for future experiments.
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7.1. Short-range couplings and topological spinon states

7.1. Short-range couplings and topological spinon states

A PSG classification for mean-field models, including singlet and triplet channels, as

explained in Chapter 5, reveals all different ways of representing the gauge transfor-

mation corresponding to the symmetry generators of the square lattice. The sym-

metry group generators and the corresponding spin representations are explained

in Appendix A.1. For each channel, one finds a different set of requirements that

a mean-field Ansatz has to obey in accordance with the lattice symmetry. These

equations can be found in the Appendix A.2. In order to identify short-range states

it is convenient to label the uXrr′ matrices according to the distance between site r

and r′. Here X labels the different channels s, t1, t2, t3. The coupling matrices can

be written as

uXrr′ = ηxδyuXδr, (7.1)

with η = ±1 a sign factor which appears in the representations of lattice translations.

First neighbor states can be found by limiting the possible coupling vectors to δr1 =

{(±1, 0), (0,±1)}. This reduces drastically the number of representations that lead

to a non-vanishing Ansatz. The remaining states are required to have an invariance

group of a Z2 type. As explained in Chapter 5 this requirement can be formulated as

in Eq. (5.25) in terms of loop operators Pr. It was in particular shown that there exist

two distinct analytic expressions: P
(e)
r and P

(o)
r . Since the present case deals with

multiple channels, one must extend this requirement to the four-dimensional spinor

space. The generalized loop operators are generated analog to the two-dimensional

case except that the generalized ũrr′ , defined in Eq. (5.27), enter the product along

the loop. One finds that the generalized loop operator can be written as

P̃r =

(
P a
r P b

r

P c
r P d

r

)
. (7.2)

Each block P µ
r is expressed by a two dimensional loop operator whereas the label µ =

{a, b, c, d} indicates that every individual operator is independently given by either

P
(e)
r or P

(o)
r . The condition for the invariance group can be formulated similarly to

the one for the singlet channel explained in Chapter 5. By using the fact that the

four-dimensional gauge transformation Eq. (5.30) can be made block diagonal, one

finds that

[Wr, (P
µ
r )] = 0, (7.3)

with Wr a two-dimensional gauge transformation. This means that Wr must com-

mute with each block component P µ
r simultaneously. Eventually, there are only 28

different PSGs for nearest neighbors realizing a Z2 invariance group. These PSGs

are listed in Appendix A.3.
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7. Topological spinon bands and vison excitations

The difference of the PSG classifications for the spin rotational invariant and the

broken case manifests itself through the symmetry operation

Pz : z → −z. (7.4)

By using the fact that the four-dimensional gauge transformation Eq. (5.30) can be

made block diagonal, one finds that The corresponding local representation matrix

can, like the other symmetry generators, be expressed as GPz(r) = η
f(r)
Pz gPz , with

a sign factor ηPz = ±1, an integer-valued function of the lattice coordinates f(r),

and a site-independent SU(2) matrix gPz . Under the assumption that Pz has a non-

trivial implementation, i.e. gPz 6= τ 0, which is a necessary condition for the finite off-

diagonal elements ut2 , ut3 , one finds that time-reversal has to have an implementation

gT = τ 0. Unfortunately, this representation does not support any Kramer’s pairs,

and the resulting spinon band models can be identified as members of the Altland-

Zirnbauer class BDI, which has no topological index in two dimensions [97, 85].

Ten different Altland-Zirnbauer classes classify random matrices according to their

transformation properties of time-reversal, particle-hole and chiral symmetry. Based

on these classes, one can create a periodic table that tells immediately whether

a d− dimensional system can host a topological invariant. By including second

nearest neighbor bonds, it is found that Z2 states exist having neither Pz nor T
implemented by a unity matrix. If gT = iτ 2, Kramer’s theorem applies, and these

states belong to class DIII. In this class, it is possible to define a Z2 topological

invariant in two dimensions, which discerns between two phases where one phase

can host Majorana zero modes as it will be further explained below. The major

difference compared to the first neighbor case is that now closed loops can be made

by including diagonal bonds. This results in the freedom to create even and odd-

numbered loops simultaneously, whereas the first neighbor bonds only allow even-

numbered loops. These two different loop operators are most likely not linearly

dependent and thus break the invariance group.

The characteristics of the first neighbor state are multifarious. Their dispersion

can exhibit band gaps, nodal Dirac points, or entire Fermi surfaces. Even mean-

field models belonging to the same PSG depend on multiple amplitudes altering

the spectral comportment entirely. This impedes any general statement and to gain

more insight becomes cumbersome. One possible route to follow is self-consistent

calculations, which could reduce the size of the parameter space spanned by the

different amplitudes. This approach will not be further elaborated here. Instead,

one specimen shall be introduced and studied in more detail, leaving the other open

for future studies. The defining PSG is given by

gPz = iτ 3, gT = τ 0, gPxy = iτ 3, gPx = iτ 1, gPy = iτ 1

ηPz = 1, ηT = −1, η = ±1, ηPx = −1, ηPy = −1.
(7.5)
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7.1. Short-range couplings and topological spinon states

Among the first neighbor states this state has the unique property that spin-

up and spin-down sectors decouple. Therefore, an appropriate basis is1 Ψk =

(fk↑, f
†
k↑, fk↓, f

†
k↓)

T . The matrix ũk then becomes block-diagonal. The resulting mean-

field Hamiltonian can be written in momentum space as

Hk =
∑
k

Ψ†k

(
h1
k 0

0 h2
k

)
Ψk with (7.6)

h1
k =

(
(α + β) cos kx + (α− β) cos ky −(γ − δ) sin kx + i(γ + δ) sin ky
(−γ + δ) sin kx + i(γ + δ) sin ky −(α + β) cos kx + (α− β) cos ky

)
h2
k =

(
(α− β) cos kx + (α + β) cos ky −(γ + δ) sin kx + i(γ − δ) sin ky
−(γ + δ) sin kx + i(γ − δ) sin ky (−α + β) cos kx − (α + β) cos ky

)
α, β, γ, δ are real valued parameters that correspond to the certain hopping and

pairing amplitudes. These two blocks h1
k, h

2
k are not mutually related by a single

symmetry operation. The spectrum, shown in Fig. 7.1, exhibits a bandgap that is

persistent in the generic case that all parameters have different finite values. Fine-

tuning, however, δ = γ induces a band touching point. Putting the system on a

cylinder induces edge modes that appear along the ends of the cylinder. These

edge modes are created by only one of the blocks depending on whether the x or y

direction is periodic. However, as this state belongs in the topological trivial class

BDI these boundary states are unprotected. It is seen in Fig. 7.1 that they are

separated from the bulk band. Applying a generic perturbation shows that these

states can merge in the bulk continuum, and they vanish. This Ansatz will reappear

latter in order to study the effect of visons.

As there are no topological spinon bands found for mean-field models, including

first neighbor bonds only, it is inevitable to include further second nearest neighbor

bonds. This, unfortunately, increases the number of possible candidates tremen-

dously. To circumvent an extended analysis of all of these states additional criteria

are imposed. In order to assure protected Kramer modes time-reversal shall be im-

plemented as gT = iτ 2. As a second condition, only states are considered whose

second neighbor bonds do not include any triplet terms. This simplification might

be justified because usually, spin-orbit effects are small in realistic materials and

can be treated in perturbation theory resulting in small modifications. One expects

further that the coupling strengths decrease with distance as they correspond to

overlap integrals. These two effects combined should yield very small amplitudes in

the triplet channels. A third condition is motivated by having less computational

effort, and it is required that the mean-field model can be written in a block diag-

onal form. After rejecting possible states according to these limitations, only two

1The tilde Ψ̃ will be omitted in the following chapter and one should always think of the four dimensional

spinor space.
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7. Topological spinon bands and vison excitations

Figure 7.1.: Spinon-band structure of the nearest neighbor Hamiltonian in Eq. (7.6) using

the parameters α = β = γ = 1 and δ = 2. The h1
k bands (h2

k bands) are plotted in red

(blue) color. (a) Spinon bands for periodic boundary conditions in x and y directions.

(b) Band structure of the h1
k block for a cylinder edge along the x direction. (c) Band

structure of the h2
k block for a cylinder edge along the x direction. Note that for an edge

along one of the lattice directions, only one block shows topologically trivial edge states.

(Figure taken from [53])

54



7.1. Short-range couplings and topological spinon states

candidates remain. The first one is defined through its transformation behavior of

the following PSG

gPz = iτ 3, gT = iτ 2, gPxy = τ 0, gPx = τ 0, gPy = τ 0

ηPz = 1, ηT = 1, η = 1, ηPx = 1, ηPy = 1.
(7.7)

The mean-field Hamiltonian is given in the spinor basis Ψk = (fk↑, f
†
k↑, fk↓, f

†
k↓)

T ,

which decouples the different spin sectors, as

Hk =
∑
k

Ψ†k

(
hk 0

0 h∗−k

)
Ψk with (7.8)

hk =

(
α (cos kx + cos ky) + β cos kx cos ky γ (i sin kx − sin ky)

γ (i sin kx + sin ky) −α (cos kx + cos ky)− β cos kx cos ky

)
.

The parameters α, β, γ are real numbers and can be identified as hopping and pairing

amplitudes. The upper and lower blocks are related by time-reversal symmetry T :

hk → h∗−k. This model has an astonishing resemblance with the Bernevig-Hughes-

Zhang (BHZ) model [55]. The BHZ model is an effective model initially formulated

to describe the quantum spin Hall effect and a topological phase transitions in HgTe.

Its basis is made of s- and p-orbitals ΨBHZ = (s↑,
1√
2
(px + ipy)↑, s↓,

1√
2
(px + ipy)↓)

T .

Therefore, the i sin kx + sin ky term, which is linearized in the BHZ model kx + iky,

has a different interpretation in these two models. In the BHZ model it describes a

momentum dependent spin-orbit coupling whereas in the spinon model it represents

a p-wave condensation of spinons. In this regard, one can think of this model as

a description of two copies of a topological spinon superconductor related by time-

reversal symmetry [98, 99, 100]. This term’s physical importance is that it induces a

spin-momentum locking in both models, which is the reason for a topological band

structure as it results in edge modes with different chirality. The exact meaning of

this will be further explained below in the text. The major difference between these

two models is the β cos kx cos kyτ
3 term in the spinon model which is a quadratic

term in the BHZ model
[
M −B(k2

x + k2
y)
]
τ 3. These terms can be related to an

effective mass arising in a linearized theory around the Γ point in both models.

Importantly, the mass has an opposite sign for the upper and lower bands. Away

from the Γ point, the cos kx cos ky term is capable of inducing a second transition

point, which is lacking in the BHZ model. This can be understood by considering

the phase diagram of the spinon model, which is shown in Fig. 7.2. Fixing the

amplitudes α = γ = 1 sets the global energy scale and the size of the gap. Yet, it

does not affect the transition points. These points depend on β, which can be seen

when β is varied between (0, 3)2. For β = 0 the system is gapless with band touching

2A sign reversed image of the phase diagram is obtained by a reflection β → −β
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points at k = (±π, 0) and k = (0,±π). Increasing β opens a bandgap. One finds

two bands that are twice degenerate, corresponding to the spin-up and spin-down

block. The two blocks have non-trivial Chern numbers n↑ = 1 and n↓ = −1 which

yields a non-trivial Z2 invariant ν =
n↑−n↓

2
|mod2 = 1 [101, 97]. This is because both

blocks are mutual images under time-reversal. The spectrum of the system put on

a cylinder shows two degenerate modes emerging within the bulk gap. Note that

the degeneracy comes from the fact that the cylinder has two edges. Focusing on

only one edge, one finds that these modes are simultaneously protected by Pz and T
[54]. Due to the already mentioned spin-momentum locking, one mode has a fixed

spin projection and moves to the right, whereas the other mode has the opposite

spin and moves to the left. After assigning Majorana operators to these modes, γR
for the right mover and γL for the left mover, one finds that time-reversal acts as

T : γR → γL and T : γL → −γR. A possible mass term, capable of gapping these

modes out, would couple to iγRγL and is hence forbidden by time-reversal. Similarly,

one finds that Pz : γR → γR and Pz : γL → −γL. Thus, to evoke a possible mass

term, both symmetries need to be broken simultaneously.

Setting β = 2 shows that a second transition occurs for which the bulk gap closes

at momenta k = (±π,±π). After this transition point the Chern numbers of the

upper and lower bulk bands have increased n↑ = 2 and n↓ = −2. The resulting

topological invariant indicates a trivial phase ν = 0. This phase persists for β →∞.

Yet, at this point, the Z2 invariant might be misleading. It is seen in the spectrum

on a cylinder that additional edge modes appear, which pass through zero energy

at momenta kx = π. The corresponding Majorana operators are denoted by ηR, ηL.

Similar to the γR, γL, these modes cannot couple to a mutual mass term as iηRηL is

prohibited by time-reversal symmetry. Any coupling between different modes iηLγR
requires a finite momentum transfer ∆kx = π which can only appear if translational

symmetry in x direction is broken. Therefore, this model could be regarded as a

crystalline topological spinon superconductor [102, 103].

The second model belongs to the PSG

gPz = iτ 3, gT = iτ 2, gPxy = τ 0, gPx = iτ 3, gPy = iτ 3

ηPz = 1, ηT = −1, η = 1, ηPx = −1, ηPy = −1.
(7.9)

The corresponding mean-field Hamiltonian reads

Hk =
∑
k

Ψ†k

(
hk 0

0 h∗−k+(π,π)T

)
Ψk with (7.10)

hk =

(
α (− cos kx + cos ky) + β cos kx cos ky γ (i sin kx − sin ky)

γ (−i sin kx + sin ky) −α (− cos kx + cos ky)− β cos kx cos ky

)
,
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7.2. Vison excitations

Figure 7.2.: Top: Phase diagram of the topological spinon bands for the mean-field Hamil-

tonian in Eq. (7.8) using α = 1. Chern numbers n↑ of the block hk are indicated in each

phase. Note that the phase diagram is independent of γ. (a)-(d) Spinon band structures

for β = 0, 1, 2, 3 and α = γ = 1 where the upper plots correspond to a cylinder geometry

with an edge along the x-axis and the lower plots are for a torus geometry. All spinon

bands are doubly degenerate with respect to the spin degree of freedom. (Figure taken

from [53])

in the spin decoupled spinor basis Ψk = (fk↑, f
†
k↑, fk↓, f

†
k↓)

T , with α, β, γ ∈ R. Due to

a negative sign factor ηT = −1, the representation of time-reversal becomes site de-

pendent GT (r) = (−1)x+yiτ 2. This leads to a momentum shift of the time-reversed

block k→ k+(π, π)T . Besides this modification the spectral and topological proper-

ties are equivalent to the previously discussed model (compare Eq. (7.8) and Fig. 7.2)

and shall not be repeated.

7.2. Vison excitations

7.2.1. Static approximation

Up to now, the existence of a dynamic gauge field was entirely ignored. As explained

in Chapter 2, this corresponds to the zeroth-order mean-field theory in which spinons

are treated as free fermions. This bare mean-field theory yields reasonable solutions

only in very specific cases. One of the scenarios in which mean-field results become

trustworthy is linked to the emergence of a Z2 gauge field. In the previous section,

all mean-field Hamiltonians were constructed such that the invariance group is Z2,

and this should lead to a Z2 gauge field as described in Chapter 4. Therefore, the

effective low-energy theory should resemble a Z2 lattice gauge theory as introduced
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7. Topological spinon bands and vison excitations

in Chapter 3. If one considers Z2 phase fluctuations σzrr′ = ±1 and replaces urr′ =

σzrr′u
0
rr′ as discussed in Chapter 2 one obtains

H =
∑
(rr′)

(
Ψ†rσ

z
rr′urr′Ψr′ + h.c

)
. (7.11)

This model is invariant under a combined transformation

G : Ψr → −Ψr, σzrr′ → −σzrr′ , (7.12)

where r′ represents all relevant nearest neighbors as indicated in Fig. 7.3, and thus

defines a Z2 gauge theory [30]. It was explained in Chapter 3 that the pure Z2 gauge

theory has two different phases: the first phase confines two charges locally while in

the second phase, charges are free entities. If one identifies the physical spinon as the

charge, the deconfining phase describes the spin liquid phase. Note that the spinon

field operator Ψr is gauge dependent and hence not a physical quantity. Motivated

by the pure gauge theory, one expresses the local gauge transformation as

Sr =
∏

r′∈Star(r)

σxrr′ , (7.13)

where σxrr′ induces a sign flip of the fluctuating bond variables σzrr′ , if both σx and

σz are understood as Pauli operators. The star of r contains all connected neighbor

sites as illustrated in Fig. 7.3. The gauge transformation acts then according to

G : Ψr → −Ψr, σzrr′ → Srσzrr′Sr. (7.14)

In the discussion of Chapter 3, the charge-free sector was selected. For the problem

at hand, fixing the sector has to respect the one particle per site condition, which

can be expressed by the constraint [30, 36]

Sr(−1)f
†
r↑fr↑+f

†
r↓fr↓ = −1. (7.15)

This requirement has to hold for all r, and importantly it does not commute with

the Hamiltonian (7.11). Thus it evokes a connection between the σzrr′ and the Ψr

operators, which otherwise could be treated separately. This leads, unfortunately,

to a complicated many-body problem similar to the initial spin model.

A pure gauge theory can, at least in principle, be derived from Eq. 7.11 by in-

tegrating over the Ψr fields. This can be done if the free spinon models exhibit

a bandgap. Respecting the constraint (7.15) generates σxrr′ terms in the resulting

model. The pure gauge theory should contain all possible gauge invariant terms,

i.e., they are made of operators which locally commute with the generator of gauge

transformation Eq. (7.14) [68, 104, 11]. These terms can be interpreted as electric
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7.2. Vison excitations

Figure 7.3: Effect of a local gauge transfor-

mation Sr [Eq. (7.15)] acting on a site r de-

noted by a black dot: All bond variables σzrr′

are flipped (σzrr′ → −σzrr′) on links belonging

to the star of r illustrated by red lines. (a)

For a nearest neighbor mean-field model the

star consists of four bonds emanating from r.

When second neighbor mean-field amplitudes

are added (dashed lines), the gauge fields σzrr′

are also defined on diagonal links, such that

the gauge transformation acts on all bonds

highlighted in (b). (Figure taken from [53])

and magnetic fluxes. Therefore, one expects that the resulting gauge theory is given

by a Hamiltonian

Hgauge =− h1

∑
〈rr′〉

σxrr′ − h2

∑
〈〈rr′〉〉

σxrr′ −K1

∑
plaquette

∏
�

σzrr′

−K2

(∑∏
σzrr′ +

∑∏
σzrr′

+
∑∏

σzrr′ +
∑∏

σzrr′

)
− . . . . (7.16)

The simple brackets 〈rr′〉 indicate a summation of nearest neighbor pairs while

〈〈rr′〉〉 denotes second neighbors. The � symbol represents an elementary plaque-

tte of the square lattice as already introduced in Chapter 3. Analog the symbols

, , , denote the plaquettes encircled by two first neighbor bonds and one di-

agonal second neighbor bond. The terms proportional to h2 and K2 extend the

simple gauge theory such that it respects higher plaquette terms as they arise for

models with second neighbor mean-field amplitudes. As discussed in Chapter 3 the

ground state of the deconfined phase is characterized by a configuration in which

all plaquette terms are uniform
∏

�σ
z
rr′ = 1 =

∏
σzrr′ = . . .. This is not a unique

description in terms of the bond variables, and the true ground state is a coherent

superposition of extensively many different configurations. The elementary excita-

tions in this phase correspond to frustrated plaquette terms which means that the

product becomes negative
∏

�σ
z
rr′ = −1 =

∏
σzrr′ = . . .. In order to study these

vison excitations, one has, in principle, to deal with a highly entangled fluctuating

ground state. To simplify this intricate problem an approach is pursued in which

only one configuration is considered. Using the mean-field model (7.11) for which

fluctuations are taken into account by one configuration of the σzrr′ field but ignoring
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7. Topological spinon bands and vison excitations

the constraint Eq. (7.15) such that these fluctuations are deprived of their dynamics

will make an investigation feasible. This might seem a rather drastic approach, but

confinement properties, in particular, should not depend on these dynamical prop-

erties. Furthermore, in the case of an exactly soluble spin model, it was shown that

the gauge field configurations are indeed static [31, 11].

7.2.2. Vison deconfinement in selected PSG solutions

In the static approximation, different mean-field spinon models are considered to

scrutinize the confinement behavior of visons. A fixed configuration of σzrr′urr′ bonds

on a square lattice is assumed. The urr′ are chosen according to the symmetric mod-

els derived in a previous section of this chapter. The resulting Hamiltonian (7.11)

can be diagonalized, revealing the quasi-particle spectrum. This has to be done for

each configuration anew. Starting with a flux free configuration in which all σzrr′ = 1

one can insert a pair of vison by changing the value of one bond variable creating

two visons on the adjacent plaquettes. Comparing the ground state energies of these

two configurations supplies information about the magnetic coupling constant K of

the pure gauge model Eq. (7.16). Note that in the static approximation, one can-

not access the electric coupling h. By correctly inserting more and more negative

bonds, one can separate the vison pair without adding more of them, as illustrated in

Fig. 7.4. Note that if second neighbor bonds are included one has to flip additional

diagonal bonds to avoid the creation of unwanted vison pairs. The confining poten-

tial E(d) as a function of the distance between the individual visons is calculated

by subtracting the flux free ground state energy from the ground state energies of

a configuration containing one pair of visons, where d is the distance of the visons

calculated in the metropolis norm. Here one block corresponds to one unit square of

the lattice. These confining potentials are shown in Fig. 7.4 for the nearest neighbor

model Eq. (7.6) and the BHZ like model Eq. (7.8) in two different phases n↑ = 1

and n↑ = 2. It is found that regardless of the specific spinon properties, the vison

potential is constant for sufficiently large distances. This means that the creation

of one pair requires a finite amount of energy. A separation does not require further

energy. Hence the visons are, in fact, deconfined. This was already anticipated since

the gauge transformation Sr deforms the string connecting the vison pair. There-

fore, the string operator should not be a measurable quantity. Interestingly, E(d)

reaches a constant value for very short distances. This supports the argument that

in the pure gauge theory the leading terms are made by loops including only first

K1 and second neighbors K2. Comparing the vison gap E(d→∞) with the spinon

gap ∆ shows that they are of the same magnitude.
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7.2. Vison excitations

Figure 7.4.: (a) Possible gauge field configuration for a pair of separated visons (marked

by stars) in the case of nearest neighbor mean-field models. The full red lines indicate

bonds with σzrr′ = −1 while σzrr′ = 1 otherwise. Gauge fields σzrr′ = −1 occur on all

bonds crossing the “gauge string” (dashed red line). The plaquettes at which the visons

reside are threatened by a finite local flux. (b) Vison pair-excitation energy E(d) as a

function of the distance d for the nearest neighbor PSG solution in Eq. (7.6) using the

parameters α = β = γ = 1, δ = 2. Here, d is defined in units of the nearest-neighbor

lattice spacing and the separation is along a lattice direction. For comparison, the spinon

bulk gap ∆ is indicated in the figure. (c) Same as (a) but with additional second neighbor

mean-field amplitudes. In this case also diagonal bond variables σzrr′ need to be flipped

along the gauge string. (d) Vison potentials E(d) for the BHZ-like model [see Eq. (7.8)]

in the phases with Chern numbers n↑ = 1 (blue line with parameters α = β = γ = 1) and

n↑ = 2 (yellow line with parameters α = γ = 1, β = 3). (Figure taken from [53])

7.2.3. Spinon-vison bound states

In lattice gauge theory, electric charges and magnetic fluxes can form composite

objects which obey certain fusion rules [31, 14]. These objects may have non-trivial

exchange statistics. That means in the spin liquid context, the presence of a vison

influences the spinon comportment and vice versa. Indeed it was numerically found

that visons and spinon form bound states. In the spinon spectrum, states can be

identified, which have a real-space probability distribution correlated to the vison

positions, as shown in Fig. 7.5. Their corresponding eigenenergies appear within the

spinon gap. These compound objects depend on the spinon mean-field model. In the

case of a topologically non-trivial spinon band the vison-spinon pair’s energy tends to

zero if the visons of the pair are sufficiently far separated. This can be seen by taking

the energy of such a mode ε(d) as a function of the separation distance, which can be

seen in Fig. 7.5. The separation is defined analog to the previously explained example

and counted in the units of square plaquettes. For the non-topological first neighbor

spinon model Eq. (7.6), it is found that the appearing in-gap modes do not depend

on the separation distance. In the BHZ like spinon model (7.8), for which only the

positive part of the spectrum is taken into account as the negative part is connected

by particle-hole symmetry, one finds in the phase with Chern number n↑ = 1 two

degenerate modes, each corresponding to one spin degree, that can be identified as
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7. Topological spinon bands and vison excitations

Figure 7.5.: (a)-(c) Excitation energies ε(d) of in-gap states as a function of the vison-pair

separation d for (a) the nearest neighbor spin liquid in Eq. (7.6), (b) the BHZ-like spin

liquid in the phase with n↑ = 1 [see Eq. (7.8)] and (c) the BHZ-like spin liquid in the phase

with n↑ = 2. The corresponding mean-field parameters are the same as in Fig. 7.4. The

plots in (b) and (c) use a logarithmic energy axis and only show the positive part of the

spectrum (the negative part is an exact mirror image). Note that all depicted data points

are degenerate with respect to the spin degree of freedom. In (b) we find indications for

an oscillating modulation as indicated by a fit of ε(d) to a function ∼ e−ad cos(bd + φ)

with fit parameters a, b, φ (blue line). The quality of the fit becomes worse at larger d,

see dashed blue line. (d) Real-space probability distribution of the spinon wave function

corresponding to the zero-energy mode of the n↑ = 1 BHZ-like system in (b). The locations

of the vison cores are given by the red spots where the wave function is sharply peaked.

(Figure taken from [53])

62



7.2. Vison excitations

ϕ = 0
?

r r′

Figure 7.6: Possible gauge-field configuration

σzrr′ for a single vison, located at the origin

(marked by a red star). Blue (red) bonds cor-

respond to σzrr′ = 1 (σzrr′ = −1). Bonds with

σzrr′ = −1 form a string along the ϕ = 0 line.

For large r, r′ � 1, the angle ϕr − ϕr′ be-

tween two coupled lattice sites r, r′ vanishes,

see text for details. (Figure taken from [53])

spinon-vison pairs. The modes show an exponential decay in energy as the visons

of the pair are spatially separated. The plots may suggest that the exponential

decay is further modified by an oscillating function. Such behavior has also been

observed in numerical studies of the Kitaev honeycomb model where included visons

form superlattices [105, 106]. These oscillations are linked to fusion rules of the

composite particles. If the model is in the phase for which n↑ = 2 two additional

degenerate modes appear. One also finds an exponential decay as the distance

between the pair constituents increases. These localized modes can be linked to the

previously discussed Majorana modes γL, γR, ηL, ηR [107, 108]. Their existence can

be understood by the following argument: The boundary of the frustrated plaquette

describes a phase transition between a trivial phase, governing the interior of the

vison core, and the topological phase surrounding it. The interface marks then

the gap closing point. This effect is well known for fermionic systems coupled to

a vortex [56], and a similar phenomenon has been explained for topological p + ip

superconductor [57, 109, 96]. The correspondence between the spinon-vison model

and the one describing superconductors can be made rigorous by taking a continuum

limit of the lattice model. To this end the BHZ like spinon model (7.8) in the phase

n↑ = 1 is expanded up to second-order around k = 0. In the continuum limit, the

real-space Hamiltonian is given by

H =

∫
d2r Ψ†(r)

(
h(r) 0

0 h∗(r)

)
Ψ(r), (7.17)

with

h(r) =

(
− 1

2m
∇2 + µ γ (∂x + i∂y)

γ (∂x − i∂y) 1
2m
∇2 − µ

)
. (7.18)

The mass term can be expressed in terms of the lattice model parameters as −1
α+β

and the chemical potential as µ = 2α + β. Each spin sector h(r) has the typical

Bogoliubov-de Gennes form of a triplet superconductor where γ denotes the pairing

amplitude. In the lattice model, k = 0 marked a band inversion point. This

63



7. Topological spinon bands and vison excitations

topological property is correctly captured in the continuum model for which the

mass changes sign in the lower band of Eq. (7.18). Going back to the lattice model

H =
∑
rr′

[
Ψ†rσ

z
rr′

(
hrr′ 0

0 h∗rr′

)
Ψr + h.c.

]
(7.19)

one can include a single vison at the origin by inserting a string of negative bonds

that extend to x → ∞. This, as illustrated in Fig. 7.6, shifts the second vison to

infinity. To put the origin in the center of a plaquette all sites are labeled according

to r = (0.5 + nx, 0.5 + ny) for nx, ny ∈ Z. The string of negative bonds σzrr′ = −1 is

then defined for all bonds connecting r, r′ where x, x′ > 0 and y > 0, y′ < 0. All other

bonds are positive σzrr′ = 1. In the continuum model this string will cause a branch

cut. In order to circumvent this obstruction consider the gauge transformation(
fr↑
f †r↓

)
→
(
ei
ϕr
2 0

0 e−i
ϕr
2

)(
fr↑
f †r↓

)
(7.20)

which includes a phase variable ϕ ∈ [0, 2π[ given by the polar angle of r in the

mathematical sense such that the x axis defines ϕ = 0. This transformation acts on

the upper block of Eq, (7.19) as

hrr′ →
(
h11
rr′e
−i

ϕr−ϕr′
2 h12

rr′e
−i

ϕr+ϕr′
2

h21
rr′e

i
ϕr+ϕr′

2 h22
rr′e

i
ϕr−ϕr′

2

)
(7.21)

where the superscripts denote the corresponding matrix elements of hrr′ . In this

gauge, one can now approach the continuum limit. If r, r′ � 1 the corresponding

angles become equal, which leads to a transformation

hrr′ →
(

h11
rr′ h12

rr′e
−iϕr

h21
rr′e

iϕr h22
rr′

)
. (7.22)

For sites that are connected by a negative bond, the phase angle is ϕr = δϕ and

ϕr′ = 2π − δϕ. In the continuum limit δϕ → 0 vanishes. For these bonds the

transformation becomes

hrr′ → −hrr′ . (7.23)

Thus this construction has correctly included a continuous phase variable ϕ(r) and

the branch cut, leading to a winding number. The resulting continuum model in-

cludes one single vison and can be written as

h(r) =

( − 1
2m
∇2 + µ γ (∂x + i∂y) e

−iϕ(r)

γ (∂x − i∂y) eiϕ(r) 1
2m
∇2 − µ

)
(7.24)
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which represents the Bogoliubov-de Gennes Hamiltonian of a p+ ip superconductor

coupled to a vortex in the pairing field. For this system the existence of Majorana

zero modes has been analytically shown [56, 57, 96]. This discussion does not entirely

capture the properties of the n↑ = 2 phase as a second point of band inversion exists.

One would have to do a second expansion around this point to derive the correct

continuum model.

7.2.4. Vison gas

After gaining a grasp of the physics behind a single vison pair, in the following,

the more realistic scenario will be studied in which a finite number of visons are

initialized. This number has to be much smaller than the total number of plaquettes

to remain in the same phase of the model. Two different vison populations are taken

into account for which the vison density, given by the ratio of frustrated plaquettes

to the total number of plaquettes, is fixed to 0.6% or 2%. This yields a mean

distance of approximately ∼ 14 to ∼ 7.5 lattice spacing between the vison pairs.

To avoid unwanted boundary effects the calculations are executed on a torus. The

results for the three spinon models, already encountered in the last sections, are

given in Fig. 7.7. In all examples, a clear peak in the bulk gap is seen. In the trivial

nearest-neighbor model this peak is located at a finite energy ε ≈ 0.52, whereas, for

both topological models, it appears around zero energy. A broadening of this peak

at zero energy is observed at the higher density of 2%, which is more pronounced in

the phase n↑ = 2. This broadening is due to hybridization among the different zero

modes. In the phase n↑ = 2 hosts twice as many Majorana modes compared to the

n↑ = 1 phase. This explains the different broadening behavior. In both topological

models, a second yet significantly smaller peak can be identified at ε ≈ 0.26, which

can be related to two visons having a distance of one single plaquette. This peak is

expected to be an artifact of the static approximation. If the gauge field dynamics

are considered, visons may be subject to a mutual repulsive or attractive force that

modifies the position and weight of this peak. In all three studied scenarios, such an

in-gap peak might be a relevant signature that could be verified in an experiment,

and its position could yield valuable information about the spinon band topology.

7.3. Conclusion

The first part of this work continued an analysis in order to identify and characterize

spinon mean-field states exhibiting exotic band properties. The previous analysis

[54] based on a projective symmetry group classification on the square lattice, in

which it was explicitly assumed that spin-orbit effects break spin rotational symme-

try, revealed too many states such that it became impossible to draw any unifying
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7. Topological spinon bands and vison excitations

Figure 7.7.: Fermionic spinon density of states N(ε) in the bulk gap for a dilute gas of

randomly arranged visons. The vison density is indicated for each curve. Using a system

size of 100 × 100 lattice sites, N(ε) counts the number of states in each energy interval

of length 0.01. All results are averaged over 100 different realizations. The thick gray

line indicates the onset of the bulk gap. The data in (a) - (c) corresponds to the nearest-

neighbor spin liquid, the BHZ-like model with n↑ = 1 and the BHZ-like model with n↑ = 2,

respectively, with the same parameters as in Fig. 7.4. The insets in (b) and (c) show the

density of states in the low-energy region. (Figure taken from [53])

conclusions. In order to circumvent this problem here only states were taken into

account whose mean-field Hamiltonian includes only short-ranged coupling terms.

This assumption reflects the expected behavior of realistic materials and, in this

regard, makes the scenario even more plausible than the generic case where the cou-

pling length is unrestricted. In the case where only nearest-neighbor sites couple,

the number of relevant PSG representations is reduced from initially 1488 to 28. It

was found that the corresponding mean-field models cannot bear topological spinon

band features. This observation relies on a competition between different represen-

tation matrices and the requirement that the resulting spinon model contains only a

Z2 invariance group. The invariance group is determined by the sub-space perpen-

dicular to the direction of loop operators in the spinor space. These loop operators

are products of coupling matrices along a closed path. Nearest-neighbor coupling

matrices on the square lattice are not flexible enough to produce the necessary loop

operators to break the gauge freedom down to Z2. Even for these 28 remaining

candidates, it was not possible to find some unifying features. The band dispersion

depends on too many parameters, and for a single model, different phases can be

constructed according to the parameter tuning. One particular PSG is identified

for which the mean-field Hamiltonian decouples in the spin sector. Including sec-

ond neighbors paves the way for more complex loop operators, which immediately

leads to possible Z2 states. As this also drastically increases the number of relevant

PSGs, further assumptions were made, which led to only two distinct spinon mod-

els. Both models resemble the Bernevig-Hughes-Zhang model and host non-trivial

spinon bands. For one of these models, the band properties are studied in detail,

and the existence of protected Majorana modes is explained.
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7.3. Conclusion

In the second part, the prior constructed spinon models are extended by coupling

to a static gauge field. By choosing one proper configuration of this gauge field,

one can mimic the effect of a vison. In this setting, the confining properties of

spinon particles were studied. For all models, it could be affirmed that the resulting

quasiparticles are subjects to a weak short-ranged potential, thus corroborating the

assumption that the underlying physics should be governed by a Z2 lattice gauge

theory in the deconfining phase. In the case of non-trivial spinon bands, it was

further observed that visons bind to spinon modes, and the resulting composite

objects can be described by a Majorana zero mode. This behavior, similarly observed

in the context of p + ip superconductors and vortices, could be made rigorous by

a mapping from the present lattice model to a continuum theory. Finally, the

effect of multiple visons was studied. These visons were randomly distributed over

a given sample by keeping their density fixed. The resulting observation provides

information about some features in the energy distribution, which can be used in

future experiments to gain information about the spinon band topology.
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8. Signatures for spinons in the quantum

spin liquid candidate Ca10Cr7O28

This chapter is dedicated to the theoretical work which was published in Ref. [59].

The idea of a quantum spin liquid and the theory behind hurries ahead of accessible

experimental materials; First proposed in the early seventies by Phil Anderson [15],

it took over thirty years until experiments caught up and revealed that in some

organic salt compounds, the heat capacity grows linearly for low temperatures [110].

This would not be worth mentioning if these materials were usual conductors. For

conductors, it is a well-established result by Sommerfeld’s semiclassical extension of

the Drude model. In the Sommerfeld model, quantum effects are taken into account

using a Fermi distribution instead of a classical Boltzmann partition function [111].

Employing this theory, one can relate the fact that free electrons are ferimons to

the linear temperature dependence of the heat capacity. Yet these organic salt

compounds are insulators in which no electric charge is transported. This obstructs

the usual arguing. It seems like there is something that behaves as a fermion but

does not move electric charge. This something can be most likely identified by

spinons [29, 112, 113]. κ-salt compounds are not the only materials showing spin

liquid behavior and signatures of spinons. Other are for example Herbertsmithite

which has a kagome lattice structure [43, 44, 114] [ZnCu3(OH)6Cl2], YbMgGaO4

forming a triangular lattice [115, 116, 117], and α-RuCl3 which has gained a lot

attention lately as it might realize the Kitaev honeycomb material [46, 48, 47, 118,

49]. However, until now, it is still under debate whether real spin liquid materials

have been found. As often, an unambiguous interpretation of the experiments is

not given. For instance, the properties observed in the case of YbMgGaO4 might be

merely induced by disorder [119]. Other materials initially related to quantum spin

liquids eventually develop magnetic order as lower temperatures are approached. In

this regard building, a bridge between possible experimental realizations and current

theoretical development is of paramount importance for advancing the field.

The compound Ca10Cr7O28 is another candidate that has been recently identi-

fied [50]. The crystal structure of this material and its essential properties will

be explained in some depth. It will serve as a candidate to test the mean-field

theory developed in Chapter 2. Based on the parton approach and the resulting

mean-field theory, an effective spinon model is presented, which at one hand sim-
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8. Signatures for spinons in the quantum spin liquid candidate Ca10Cr7O28

plifies the complex double layer crystal structure of the investigated material but,

on the other hand, draws a coherent picture of the fundamental physics behind the

measured data. The assumptions behind this model are explained and physically

motivated. The model further allows for the evaluation of the dynamical structure

factor which, as explained in Chapter 6, is the relevant quantity resolved by in-

elastic neutron scattering experiments. Many of the observed features found in the

experiment are reproduced in the theoretical calculation, and it is possible to track

down their physical origin. In the end, it is studied how a spinon pairing mechanism

can explain measured deviations from a linear temperature dependence of the heat

capacity. Such a pairing is in accordance with the prior developed spinon hopping

model and completes the picture of Z2 quantum spin liquid.

8.1. Ca10Cr7O28

Among spin liquid candidates, there is one particularly interesting, namely

Ca10Cr7O28 [50, 51]. Its crystal structure consists of a kagome bilayer built by

the magnetic active Cr5+ ions, which is illustrated in Fig. 8.1. These ions carry

spin-1/2. The intriguing fact is that their mutual couplings are ferro- as well as

antiferromagnetic, as shown in Tab. 8.1. This leads to a rather unusual mechanism

of frustration. Combining these different couplings yields a microscopic picture

expressed by a Heisenberg Hamiltonian H = 1
2

∑
rr′ SrSr′ . It was observed that

couplings of a certain type form triangles, i.e., three spins are coupled either ferro-

or antimagnetically. These triangles appear in an alternating order such that one

triangle of a certain type is adjacent to the opposite type. Taking the spatial di-

rection perpendicular to these planes into account shows that a stacking pattern

arises where one ferromagnetic triangle lies on top of an antiferromagnetic one and

vice versa. This combination results in the bilayer kagome structure. Importantly,

an additional ferromagnetic coupling between these layers drives the mechanism of

frustration. Supported by numerical studies, this material seems to refrain magnetic

order even at zero temperature [50, 120, 121, 122].

J0 J21 J22 J31 J32

−0.08(4) −0.76(5) −0.27(3) 0.09(2) 0.11(3)

Table 8.1.: Exchange couplings of Ca10Cr7O28 as determined in Refs. [50, 51]. All couplings

are given in meV.

As other spin liquid claimants, this material shows a linear temperature depen-

dency of the heat capacity in an extended low-temperature range, as shown in

Fig. 8.2. Data obtained by inelastic neutron scattering experiments represented

70



8.1. Ca10Cr7O28

Figure 8.1.: (a) Bilayer kagome lattice as realized in Ca10Cr7O28. The differently colored

bonds carry the interactions J0, J21, J22, J31, and J32 as indicated in the figure, see also

Table 8.1. (b) Effective decorated honeycomb lattice arising from a projection of the

ferromagnetically coupled triangles (green triangles labeled I, J) of the bilayer kagome

system into one plane. Bonds are colored and labeled in the same way as in (a), except

the antiferromagnetic (blue) bonds which are not shown for reasons of clarity. Note that

sites coupled by the vertical ferromagnetic interlayer couplings (red lines) almost coincide

in their position after projection. We have, hence, increased their in-plane distance in

this illustration for better visibility. Dark gray (light gray) dots denote sites in the lower

(upper) plane. Dashed lines mark the boundaries of the unit cell and numbers label

the sites within ferromagnetically coupled triangles. (c) Effective honeycomb lattice with

hopping amplitudes ta1, ts2 as they are used in the phenomenological model in Eq. (8.4). In

this illustration, each green point corresponds to a ferromagnetic triangle. (Figure taken

from [59])
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8. Signatures for spinons in the quantum spin liquid candidate Ca10Cr7O28

Figure 8.2: Measured heat capacity of

Ca10Cr7O28 in an extended temperature

range. Shown are two different data sets

corresponding to two different experimental

methods that have been used for the mea-

surement. The exact details of these meth-

ods are explained in Refs. [59, 50, 51, 52].

The black line indicates the approximate

linear behavior at low temperatures. (Fig-

ure taken from [59])

in Fig. 8.3 show a very diffusive response in the low-temperature regime, which

is not compatible with any sharp dispersive excitations. This indicates that no

magnetic order is present and excludes spin-wave excitations, as discussed in Chap-

ter 6. Besides the fact that no magnetic peaks can be identified1 one sees, however,

some structural features. For instance, one finds two distinct regions of finite in-

tensity, best seen in subfigure Fig. 8.2(f). The low-energy region reaches roughly

from 0 − 0.6 meV and the high energy region from 0.8 − 1.5 meV . In the lower

region, one observes V -shaped forms appearing around the Γ points. The plots of

an extended region in momentum space for constant energies show in the low-energy

region that the signal is mostly pronounced within the first Brillouin zone (black

lines) Fig. 8.2(a, b). One sees further that for an increment of the energy, the signal

vanishes at the zone center Γ. The largest intensity observed for the higher region in

energy Fig. 8.2(c, d) lies outside of the first zone and tends towards the zone bound-

ary of the extended Brillouin zone (red lines). As it will be explained in the suite

of this chapter many of these signatures can be coherently explained by a spinon

picture based on an effective mean-field theory.

8.2. Effective spinon model for Ca10Cr7O28

Instead of carrying out a lengthy PSG analysis, as it is done in the other contribu-

tions to this thesis, which would reveal the symmetry dictated form of any possible

Ansatz plus necessary information about the low-energy gauge group, in this work,

a bolder tactic is chosen. Guided by the experimental evidence, it is suggested that

Ca10Cr7O28 is indeed a quantum spin liquid. Its fundamental excitations are frac-

tional spin-1/2 objects such that the parton approach, introduced in Chapter 2, is

the right formalism to describe these deconfined particles. The low-energy behavior

is governed by a stable saddle-point solution obtained from a mean-field decoupling

1The peaks that are visible at the M points can be related to phonons.
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8.2. Effective spinon model for Ca10Cr7O28

(a) (b)

(c) (d)

(e) (f)
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Figure 8.3.: Inelastic neutron scattering data of Ca10Cr7O28. (a) - (d) Constant energy

slices as a function of the momentum transfer in the kagome bilayer plane. The black

(red) hexagons indicate the boundaries of the first (extended) Brillouin zone. The energy

transfer is indicated in each plot. (e) - (f) Energy versus momentum slices along two

high-symmetry directions within the kagome bilayer plane. The two momentum cuts are

illustrated by the gray lines in (d). Note that the color scale is different in each subfigure.

The sharp features appearing in red outside the color scale are phonons dispersing out of

nuclear Bragg peaks. Note that the constant energy slices in (a) and (b) were measured

with a final energy of Ef = 2.5 meV which leads to an overall lower intensity compared

to the constant energy slices in (c) and (d) measured with Ef = 3 meV. For the energy

versus momentum slices in (e) and (f) all data was taken with Ef = 3 meV. Furthermore,

the data in these two plots was collected by integrating the signal over ±0.2 r.l.u. in

directions perpendicular to the respective cuts. (Figure taken from [59])
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8. Signatures for spinons in the quantum spin liquid candidate Ca10Cr7O28

in which the spinons are expressed as free fermions. The gauge field can be safely

approximated as being static. After this long list of rather keen assumptions, the

dear reader’s alarm bell should start ringing as there are doubtlessly many question

marks behind every statement. However, the phenomenological spinon model pre-

sented here renders an astonishingly coherent description of the empirical findings.

The starting point of this phenomenological description is a generic mean-field

Hamiltonian which can be written as [26, 5, 11]

H =
∑
rr′

(
trr′f

†
rαfr′α + ∆rr′fr↑fr′↓ + h.c.

)
+ µ

∑
r

nr, (8.1)

with spinon creation operators f †rα, hopping amplitudes trr′ , singlet pairing ampli-

tudes ∆rr′ and a chemical potential µ. This model stems from a decoupling of the

interacting Heisenberg Hamiltonian in the singlet channel only, which is in accor-

dance with the experimental data [50]. Using Eq. 8.1 one can obtain the dynamical

structure factor as described in Chapter 6. The remaining task then is to adjust the

mean-field amplitudes such that it best fits the neutron data. Similar approaches

have been made in the past for other materials like YbMgGaO4, herbertsmithite,

Na4Ir3O8 and Ba3NiSb2O9 [115, 94, 95, 123, 124, 125]. Yet for those materials, the

Heisenberg model comprises only very few magnetic couplings Jrr′ . Even though

there is no one-to-one mapping between the coupling constants and the mean-field

amplitudes, it is a plausible route to derive the corresponding mean-field ampli-

tudes2. The difficulty of doing this for Ca10Cr7O28 lies in the complicated structure

of the spin model, which includes multiple ferro- and antiferromagnetic coupling

constants. Instead of pursuing the goal of determining all possible hopping and

pairing amplitudes, here a minimal model is presented, which reduces the number

of relevant tuning parameters yet still capturing the key features of the experimental

data. This reduction is based on the observation that in the kagome double layer

crystal structure of Ca10Cr7O28 one triangle per layer per unit cell exists in which

the magnetic relevant Cr5+ ions are coupled ferromagnetically, represented by the

green bonds in Fig. 8.1. These ferromagnetic couplings are at least twice as strong as

their antiferromagnetic counterpart (compare Tab. 8.1). This observation suggests

using a basis reflecting this comportment rather than using the individual spinon

operators frα. The first basis vector is built as a symmetric superposition of the

three ferromagnetically coupled sites of one layer defined as

csIα =
1√
3

(fI1α + fI2α + fI3α) . (8.2)

The index I ∈ {1, 2} corresponds to one specific triangle, the index α remains the

spin degree, and s denotes the first basis vector as the symmetric superposition.
2Obviously, trr′ and ∆rr′ are gauge dependent quantities and hence cannot be directly matched with the

physical Jrr′ constants.
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8.2. Effective spinon model for Ca10Cr7O28

This new operator csIα, since it combines three ferromagnetically coupled spin-1/2

particles, can be regarded as a creation operator of an effective spin-3/2 object.

These objects will be the relevant constituents for the low-energy regime. In order

to span the entire vector space, two additional linear independent basis vectors are

required which are chosen to be

ca1Iα =
1√
2

(fI1α − fI2α)

ca2Iα =
1√
6

(fI1α + fI2α − 2fI3α) , (8.3)

where the indexes a1, a2 denote antisymmetric superpositons3. These spin-1/2 ob-

jects will be relevant for the high energy regime of the effective theory. A sim-

ple counting shows that after summing over the layer index I a basis given by

{cs1α, cs2α, ca11α, . . .} correctly represents the 6 atomic unit cell for spin α.

Focusing on the basis vectors csIα, it seems natural to redraw the lattice such that

the bilayer kagome lattice becomes a honeycomb lattice effectively as illustrated in

Fig. 8.1. Neglecting possible pairing terms for the time being it is suggested that

an effective spinon hopping model can be built upon this honeycomb lattice using

the c operators. Such a model can generically be written as

H =
∑
α

∑
〈IJ〉

t1sc
†
sIαcsJα + t1a

(
c†a1Iαca1Jα + c†a2Iαca2Jα

)
+
∑
〈〈IJ〉〉

t2sc
†
sIαcsJα + t2a

(
c†a1Iαca1Jα + c†a2Iαca2Jα

)
+ h.c.

+
∑
I

µsc
†
sIαcsIα + µa

(
c†a1Iαca1Iα + c†a2Iαca2Iα

)]
, (8.4)

where the amplitudes t1s, (t2s) describe hopping between (next) nearest neighbor

sites of the cs objects on the honeycomb lattice, correspondingly t1a, (t2a) for the

ca1, ca2 objects. The chemical potentials µs, µa are of paramount importance as they

separate between the symmetric and antisymmetric sectors energetically. Thus one

can distinguish between the dynamics of the spin-3/2 objects which emerge due

to the comparably strong ferromagnetic coupling in one triangle and the spin-1/2

objects which reflect a single spin-flip within one of these triangles. As there is

no physical argument about the exact structure of the antisymmetric sector the

corresponding hopping amplitudes ta1 = ta2 ≡ ta and the chemical potential µa1 =

µa2 ≡ µa are equal such that the Hamiltonian is symmetric under an exchange of

3Note that the new basis vector cs, ca1, ca2 correspond to the irreducible representations of the dihedral

group D3 describing the underlying equilateral triangle [76, 77].
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8. Signatures for spinons in the quantum spin liquid candidate Ca10Cr7O28

Figure 8.4.: (a), (b) Weight factors gLL(q) and gLH(q) of the dynamical spin structure

factor S(q, E) as defined in Eqs. (8.5)-(8.9) for the spinon hopping amplitudes given in

Eq. (8.10). Here, gLL(q) (gLH(q)) is the total weight factor for all particle-hole excitation

processes within the low-energy bands formed by cs (between the low-energy bands formed

by cs and the high-energy bands resulting from ca1 , ca2). Black (red) dashed lines indicate

the boundaries of the first (extended) Brillouin zone. (c) Spinon band structure for the

same set of spinon hopping amplitudes [see Eq. (8.10)]. Low-energy (high energy) bands

are marked by the corresponding spinon operators cs (ca1 and ca2) they result from. The

red line marks the Fermi surface. Note that all bands are doubly degenerate. (d) Illustra-

tion of two different particle-hole excitations around the Fermi surface with a given energy

E. Process 1 shows an excitation from an occupied state (full black dot) with momentum

and energy k, ε to an unoccupied state (open dot) with k + q, ε + E for the minimal

momentum transfer q which linearly depends on the energy E. Process 2 is an example

for a particle-hole excitation with larger momentum transfer. (Figure taken from [59])

the indices a1 ↔ a2. This division into low and high energy sectors can be related

to a semi-classical study of Ca10Cr7O28 where it has been observed that the spins

develop different dynamics on short and long time-scales [120].

In fact, merely tuning the chemical potentials µs, µa, such that the Fermi energy

cuts the energy bands of the symmetric sector, yielding a Fermi surface as indicated

by the linear temperature dependence of the heat capacity, and pushing the bands of

antisymmetric sector up in energy such that a gap in energy separates both sectors,

already reveals some of the main features seen in the dynamical structure factor,

remarkably, without any tuning of the remaining hopping amplitudes. Recalling the

fermionic representation of the dynamical structure factor as explained in Chapter 6

Szz(q, E) =
π

24

∑
a,b

∫
d2k

(2π)2
f(k,q, a, b) [na(k)− nb(k + q)] δ(εb(k + q)− εa(k)− E),

(8.5)

here na(k) denotes the occupation number of a band labeled by index a at momen-

tum k, εa(k) represents the corresponding energy. As there is a six atomic unit
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8.2. Effective spinon model for Ca10Cr7O28

cell4 the band index takes the values a = {1, . . . , 6}. The two lower bands corre-

spond to the symmetric operators csI and the four others to ca1I , ca2I . The spin

structure factor describes processes of spinon particle-hole excitations. The factor

na(k) − nb(k + q) gives finite contributions to the integral for all possible ways of

how an occupied particle state can connect to an empty hole state and vice versa,

by conserving the energy E and momentum q of the incoming neutron, which is

guaranteed by the delta function. This is depicted in Fig. 8.4. Up to now nothing

has been said about the function f(k,q, a, b). It turns out that this function plays

an interesting role. In Chapter 6, it was identified as a product of different matrix

elements of the unitary transformations which diagonalized the Hamiltonian. It can

be written as

f(k,q, a, b) =

∣∣∣∣∣∑
κ

φ∗aκ(k)φbκ(k + q)eiqRκ

∣∣∣∣∣
2

(8.6)

with φaκ(k) being an eigenstate of Eq. 8.4 at sublattice position κ of band a at

momentum k. The vector Rκ points to the position of κ within the unit cell. This

means that f gives the overlap of the particle and hole wave functions. By first

taking its momentum integrated form

g(q, a, b) =

∫
d2k

(2π)2
f(k,q, a, b) (8.7)

one can separate it further according to different band indexes

gLL(q) =
∑
a,b=1,2

g(q, a, b), (8.8)

which takes processes of the low-energy part into account, and

gLH(q) =
∑
a=1,2

∑
b=3,4,5,6

g(q, a, b), (8.9)

which represents processes that involve one state of a lower band and one from

a higher band. This separation reveals valuable information about particle-hole

processes according to the involved sectors. As shown in Fig. 8.4, a process within

the sector of the lower bands, corresponding to the symmetric sector, shows a high

intensity around the Γ point within the first Brillouin zone. Yet any signal vanishes

outside the first zone. This is due to the orthogonality of the eigenstates involved

in this process. One immediately sees that f(k,q = 0, a, b 6= a) = 0 and f(k,q =

0, a, b = a) = 1. Therefore, gLL has to have its maximum at q = Γ. Analogously,

one can argue that gLH , describing a process in which a particle of the symmetric

4Since there is no spin dependency, only one spin sector is taken into account
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8. Signatures for spinons in the quantum spin liquid candidate Ca10Cr7O28

type becomes a hole of the antisymmetric type, cannot have a finite signal at q =

Γ. The intensity distribution of gLH is high outside the first Brillouin zone and

vanishes inside. These general properties of gLL and gLH , as shown in Fig. 8.4, are

robust and do not depend on the precise values of the hopping amplitudes as long

as they are in a reasonable range such that the two sectors are well separated in

energy. With this in mind, the response can be explained as follows: Starting at low

energies the relevant processes involve particle-hole excitations close to the Fermi

surface. These processes are entirely governed by the dynamics of the effective spin-

3/2 objects defined by the symmetric superposition of ferromagnetically coupled

spins. Neglecting anisotropic effects that could discern between different layers and

hence between different triangles leads to degenerate low-energy bands. This further

implies that the corresponding wave functions are parallel, and thus, the scattering

function f(k,q, a, b = a) has a high intensity inside the first Brillouin zone and the

signal vanishes outside. If an incoming neutron’s energy increases and becomes larger

than the width of the lower band, the intensity goes to zero. A gap will be seen in

the structure factor. As the energy further increases such that it becomes sufficiently

large to connect the lower band with the upper ones, the relevant processes involve

the symmetric as well as the antisymmetric sector. Since the corresponding wave

functions become orthogonal, the signal has to disappear in the first Brillouin zone

and becomes finite in the extended zone.

After having identified the mechanism behind the response function the lasting

endeavor is to adjust the hopping amplitudes t1s, t2s, t1a, t2a which will fix the band

width of the upper and lower bands respectively. Unfortunately, there is no analytic

relation known which could be exploited to find the right values such that the set

of parameters, which is given below has been determined by the eagle eye method

t1s = 0, t2s = 0.05 meV, t1a = 0.1 meV, t2a = 0,

µs = −0.1 meV, µa = 0.9 meV. (8.10)

This set describes a hopping of the symmetric objects cs between next-nearest neigh-

bors on the honeycomb lattice. This means that they reside in one layer of the double

kagome lattice. The resulting dispersion thus resembles a hopping model on a trian-

gular lattice. As this happens for both layers equally, the low-energy bands are twice

degenerate. The prior assumption chooses the chemical potentials, i.e., the Fermi

surface cuts the lower bands, and the upper bands have to be clearly separated by a

sufficiently large gap. The corresponding dispersion can be seen in Fig. 8.4. Using

these amplitudes the dynamical structure factor has been calculated, and the result

is shown in Fig. 8.5 for different energy and momenta.

At this point, it should be stressed that these results are not meant to be a

quantitative explanation of the experimental data, but rather a tentative to relate
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8.2. Effective spinon model for Ca10Cr7O28

physical aspects to the signatures of the experiment. Some general statements can be

readily linked to the weight function, which has previously been discussed. Tracing

out paths through the Brillouin zone (shown in subfigure (e) and (f)) clearly indicates

the two regions dictated by gLL, which ranges from energies between 0 meV to

roughly 0.35 meV , and by gLH , valid for energies between 0.7 meV up to 1.4 meV .

Focusing first on the low-energy regime, one sees no signal precisely at the Γ point.

This can be explained by the dispersion of the spinon bands. Any finite signal

here would require the existence of an occupied and unoccupied level of parallel

eigenvectors, i.e., both belonging to the symmetric sector. Since there is only one

degenerate band, this is impossible. Moving slightly away from the Γ point, one sees

cone-like shapes. The appearance of cones is caused by processes that happen very

close to the Fermi surface. In this regime, the dispersion can be approximated as

being linear such that the condition for an energy transfer becomes E = vsp|q|, with

vsp denoting the spinon Fermi velocity. The opening angle of the cone is thus directly

related to vsp. The combined effect of this finite Fermi velocity and the overlap of the

particle-wave functions manifests in the structure factor plots for constant energy

as rings of finite intensity, which appear around the Γ point in the first Brillouin

zone (compare subfigure (a), (b)). Shifting the focus to the upper region shows that,

as anticipated due to the orthogonal eigenvectors involved, a finite signal appears

only between the first and extended Brillouin zone borders. Further characteristics

depend on the precise choice of the hopping amplitudes. As this goes beyond the

applicability of the model, it shall not be discussed here.

The spinon model juxtaposed to the neutron data in Fig. 8.3 shows that many of

the measured signatures can be nicely explained, but there are clearly some short-

comings. In the low-energy region, the experimental data show a broad region of

a homogeneously diffusive signal contrary to the spinon model for which the signal

is rather sharply drawn. This discrepancy may be explained by the lack of visonic

excitations, which are completely neglected in the pure spinon model. Yet they are

expected to be present in a real quantum spin liquid, and coupling between visons

and spinon can lead to a smearing of the signal as demonstrated in a study con-

ducted on an antiferromagnetical monolayer kagome system [92]. A second point

for which the spinon model cannot provide an adequate description is the response

observed for high energies at the Γ point. As explained, due to the orthogonality of

the wave functions involved in these high energetic processes, it is impossible within

this spinon theory to obtain a finite signal in this region. A remedy may be found

by including terms in the mean-field model, which take anisotropic effects into ac-

count. Such anisotropic terms are indeed compatible with the Ca10Cr7O28 crystal

as the triangles are slightly distorted. Another issue is that the pure spinon hopping

model leads to a U(1) invariance group for which it is not a priori known if the
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Figure 8.5.: Calculated spin-structure factor for the effective spinon model in Eq. (8.4)

using the representation of S(q, E) from Eq. (8.5) and the spinon parameters in Eq. (8.10).

The plots (a)-(d) show the spin structure factor in momentum space for the same fixed

energies E as for the experimental neutron data in Fig. 8.3 (a)-(d). Black (red) dashed

lines indicate the boundaries of the first (extended) Brillouin zone. The figures (e) and (f)

show S(q, E) as a function of energy along two momentum space directions to compare

with Fig. 8.3 (e) and (f), respectively. The data in (a)-(d) has been convoluted with a

gaussian distribution function to match the experimental resolution while in (e) and (f) the

finite energy resolution and perpendicular q-integration have not been taken into account.

Note that the magnetic form factor of the Cr5+ ions is not included in these plots. (Figure

taken from [59])
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saddle-point solution is stable [70, 73, 126, 72, 71]. One last caveat insinuates that

the one-particle per site condition is violated since the four bands corresponding to

the antisymmetric sector are empty, whereas the two lower bands are not entirely

filled to guarantee the presence of a Fermi surface.

8.3. Heat capacity and spinon pairing

So far, besides the fact that the resulting spinon model should be following a linear

temperature dependency of the heat capacity and therefore contained a Fermi sur-

face, only the neutron scattering data were taken into account. Yet a closer look at

the measured heat capacity, as presented in Fig. 8.6, shows small deviations from

the linear behavior in a small range of the lowest recorded temperature. These devi-

ations modify the functional dependency, which appears to be best approximated as

quadratic in temperature T 2. One possible explanation for a low temperature mod-

ification is the presence of visons since they appear as gapless excitations within a

U(1) theory. Yet the resulting modification would rather suggest a T 2/3 dependence

[127]. Another scenario could be when the spinons feel an attractive potential such

that they start to pair similar to electrons in a superconductor. Such a spinon pair-

ing ∆rr′ renders, in fact, a coherent picture. It leads to a breaking of the U(1) gauge

group, and the free fermion model becomes plausible as it is derived from a stable

saddle-point solution. Visons acquirer an excitation gap and do not enter the lowest

temperature regime. Even the one-particle-per-site condition might be fulfilled as

the constraint can be reformulated in the Z2 case, which was explained in Chapter 4.

The overall heat capacity curve is then divided into three regions: (1) for very

small temperature T ≤ 0.1 K spinons feel an attractive potential and start to

form Cooper pair like objects which condense. This opens a small gap, except for

possible nodal points. (2) for small temperatures, 0.1 K < T ≤ 0.5 K spinons

behave as free fermions whose dispersion seemingly contains a Fermi surface. (3) for

high temperatures, 0.5 K < T thermal fluctuations are sufficiently large to excite

phonons and visons. Also, impurity scattering becomes more and more important

such that the linear temperature dependency of the heat capacity is lost.

These temperature regimes indicate that the neutron scattering data for which

the energy resolution is in order of 0.1 meV ' 1K · kB is not capable of resolving

the pairing gap. Therefore, no tentative has been made to include such a pairing

term into the previously discussed spinon model. Nevertheless, the heat capacity

measurement is analyzed in order to make some statements about the pairing type.

Based on this investigation, it is suggested that such a pairing has a momentum

dependency, which is not in line with a naive s-wave paring leading to a constant

gap ∆(k) ≡ ∆s. Such an s-wave pairing implies a temperature dependency of the
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Figure 8.6: (a) Measured heat capacity of

Ca10Cr7O28 in an enlarged view of the low-

temperature behavior of the measured heat

capacity (see Fig. 8.2). Several fits are shown:

Linear temperature dependence as obtained

for an intact Fermi surface (black line), s-

wave pairing model with a k-independent

gap ∆s = 0.039 meV (gray dashed line),

and f -wave pairing model with the gap func-

tion in Eq. (8.11) using ∆f = 0.039 meV

(blue line). Inset: Heat-capacity data in a

double-logarithmic plot. For comparison, the

black line shows a T 2 temperature depen-

dence. (c) Low-energy spinon band structure

for the f -wave pairing model in Eq. (8.11)

with ∆f = 0.039 meV. The energy regimes

which lead to a linear and quadratic temper-

ature dependence of the heat capacity are in-

dicated. (Figure taken from [59])

heat capacity as c(T ) ∝ exp(− ∆s

kBT
) [111, 128]. As shown in Fig. 8.6, a better

agreement is achieved by a momentum dependent f -pairing of the form

∆(k) = ∆f | sin(3ϕk + ϕ0)|. (8.11)

Such an f -wave pairing does not entirely gap out the spectrum, but comprises

six nodal Dirac points that comply with the kagome lattice’s three-fold rotational

symmetry. The momentum dependent polar angle is given by tan(ϕk) = ky
kx

. The

best fit for the available data is obtained by ∆f = 0.039 meV , which is indeed one

order of magnitude smaller than the step size of the dynamical structure factor plots

in Fig. 8.3. The resulting picture is illustrated in Fig. 8.6: For a very high resolution

in energy, one finds that the picture of a Fermi surface is not entirely correct and the

lower bands exhibit nodal Dirac points. However, on energy scales larger than the

size of the gap, these nodal points are invisible such that the Fermi surface picture

yields good agreement with the observations.

8.4. Conclusion

The compound Ca10Cr7O28 is a recently discovered material that shows some of the

key features characterizing a quantum spin liquid candidate. Neutron scattering

experiments indicate that even at very low temperatures, no sign of magnetic order
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appears. However, one observes some underlying structure in the intensity spectrum,

which hints at a collective behavior rather than a mere disorder response. The

heat capacity measurement shows within an extended range a linear temperature

dependency, a behavior that insinuates the presence of a Fermi surface. This is

somewhat unusual for an electric charge insulating material. A small deviation

from the linearity has also been observed in a short interval of the lowest measured

temperature. All these facts suggest that a quantum spin liquid state is, in fact, a

plausible scenario in order to describe the low-temperature behavior of Ca10Cr7O28.

This implies that one of the low-energy degrees of freedom corresponds to spinons

if the current theory is correct. Since, as the heat capacity data suggests, these

spinons should exhibit a Fermi surface, they are adequately represented by the

fermionic parton theory introduced in Chapter 2.

This argument sets the stage for the presented mean-field spinon model. Instead

of using the naive basis in which each site is represented by an individual spinon

operator, the peculiar pattern of ferro- and antiferromagnetic couplings measured

for the material Ca10Cr7O28 suggests the choice of different basis elements. The

crystal of Ca10Cr7O28 can be partitioned into different triangles. Within a given

triangle spins couple either ferro- and antiferromagneticly. Since the ferromagnet-

ical couplings are dominant in strength, a new basis is introduced, which contains

states that combine these three ferromagnetically coupled spins into one symmet-

ric superposition. For the resulting spin-3/2 objects, it appears natural to draw

an effective honeycomb lattice rather than using the double-layer kagome lattice.

These objects govern the low-energy regime,, which can be guaranteed in the spinon

model by fixing a chemical potential such that the corresponding bands exhibit a

Fermi surface. Choosing additional basis elements perpendicular to the first ones,

in order to correctly describe the full vector space, almost completes the model as

it was shown that the exact hopping pattern matters only a little. Merely a second

potential term has to be added to energetically separate the resulting new spin-1/2

objects from the previously encountered spin-3/2 objects. This relatively simple

model is capable of well explaining many features that have been observed in the

scattering experiment. Furthermore, it coincides with the results of a semi-classical

study in which it was observed that spins undergo two different dynamical processes

[120].

To cope with the deviations from a linear temperature dependency of the heat

capacity, seen in the lowest temperature regime it is argued that spinons enter a

pairing state. The geometry of an f -wave pairing seems most plausible as it yields

the best fit and complies with the symmetry of the material. The corresponding

pairing amplitude is too small to be identified in the neutron data and is therefore not

explicitly included in the spinon model. However, conceptually it is of paramount

importance as it breaks the invariance group from U(1), which applies for the pure
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hopping model, down to Z2. Only in the later case, one can a posteriori justify the

neglect of visonic degrees of freedom, which were entirely neglected so far in the

spinon model. This last bit of information completes the picture and indicates that

Ca10Cr7O28 is a Z2 quantum spin liquid which can be described by a mean-field

theory resulting from a fermionic parton approach.
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of quantum spin liquids on the simple

cubic, body centered cubic, and face

centered cubic lattices

In this work, a projective symmetry group classification [5, 11] is carried out for sev-

eral three-dimensional lattices. This chapter’s underlying work has been published

in [60].

PSG classifications have been made for multiple two-dimensional lattice groups

[5, 129, 130, 131, 54, 61], but they remain scarce in three dimensions [132, 95, 133,

134, 135]. Interestingly, the best-known examples of three-dimensional space groups,

namely the simple-, the body- and the face centered cubic lattices, have not been

considered until now, although they show very rich phase diagrams of their classical

Heisenberg models. For example, the classical antiferromagnetic Heisenberg model

of the face centered cubic lattice exhibits already for first neighbor couplings only a

subextensive ground state degeneracy which manifests itself via lines in reciprocal

space [136]. Even though fluctuations become generally less important in higher di-

mensions, which naively would reduce the likelihood of finding quantum spin liquids

phases, three-dimensional systems are actively studied in the context of frustrated

magnetism, and it has been found that some geometries lead to a high degree of

frustration, which in return increases the propensity of forming exotic quantum spin

liquid states [137, 138, 139, 140, 141, 142, 143]. Most of these studies are based

on numerical approaches for which it is hard to identify the underlying microscopic

Hamiltonians describing the energetically low lying quasiparticles. Therefore, a

PSG classification and the revealed symmetry group representations are important

to construct possible symmetry obeying mean-field Hamiltonians. These effective

models can help to connect the numerical results with a corresponding quantum

Hamiltonian. Although these Hamiltonians cannot provide a complete description

for the systems in question, they may, nevertheless, deliver valuable information on

its own. As explained in Chapter 2, the main issue with such mean-field models is

that they do not take the emergent gauge fields into account and thus neglecting

visons, which are some fundamental excitations of the spin liquid state. However,

in the case of a Z2 quantum liquid, these visons only appear above a certain energy
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threshold, and if that is the case, the mean-field Hamiltonian do, in fact, provide an

accurate low-energy description. Regardless whether these Hamiltonians correctly

describe true Z2 states, their ground states can be employed as initial states for

further variational Monte Carlo studies, or they may be enhanced via functional

renormalization group methods as explained in Ref. [144].

This work might also be valuable from a material scientist’s point of view. Re-

cently, some materials have been identified as Mott insulators showing some of a

quantum spin liquid’s characteristic features. The relevant magnetic spin-1/2 ions in

these candidates form cubic lattices. For example the Cu2+ ions of Ca3Cu2GeV2O12

sit on a body centered cubic lattice. Neutron scattering experiments on this com-

pound could not reveal any sign of magnetic order down to 70 mK [145]. Such

behavior might be explained by the proximity of this system to the phase transition

point in the J1 − J2 antiferromagnetic Heisenberg model for which the transition

point is at J2/J1 ∼ 0.7 [146, 147]. Examples of the face centered cubic lattice may be

realized through Ba2CeIrO6 [148] and the molecular antiferromagnet Cs3C60 [149].

While the former shows a high degree of frustration for the second specific heat ca-

pacity measurements revealed the occurrence of both long-range antiferromagnetic

order and a quantum paramagnetic state below 2.2 K.

In the first part, the PSG classifications, as introduced in Chapter 4 and 5, for

the simple cubic, the body centered cubic, and the face centered cubic lattice are

presented. These analyses reveal the relevant symmetry conditions which every

symmetric Ansatz needs to fulfill. They further supply the irreducible represen-

tations of the relevant gauge transformations within the projective group setting.

These results are used to construct all relevant short-range mean-field states for

the body centered- and face centered cubic lattice. Starting with the first neigh-

bor states, it will be shown how these states change by further adding up to third

neighbor couplings. The magnetic coupling strengths J1, J2, J3 are chosen such that

the corresponding classical Heisenberg model is close to a phase transition point.

In the vicinity of these points, large quantum fluctuations might enable the exis-

tence of a quantum liquid state [150, 151, 152, 147, 142]. The resulting mean-field

models are treated by a self-consistent Hartree-Fock procedure in order to calculate

the relevant hopping and pairing amplitudes, the multiplier fields, which guarantee

single-occupation, at least, on average, and the corresponding mean-field ground

state energies. The dispersion and the dynamical structure factor of these states are

shown and discussed.
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9.0.1. Simple cubic lattice

The octahedral point group Oh is built by the generators

Πz(x, y, z)→ (−x,−y, z)
Πy(x, y, z)→ (−x, y,−z)

Πxy(x, y, z)→ (y, x,−z)

I(x, y, z)→ (−x,−y,−z)

P (x, y, z)→ (z, x, y). (9.1)

The full space group includes translations

Tx(x, y, z)→ (x+ 1, y, z)

Ty(x, y, z)→ (x, y + 1, z)

Tz(x, y, z)→ (x, y, z + 1), (9.2)

where x, y, z take integer values. This definition implies that the lattice constant of

the cubic unit cell is unity a = 1, which will always be assumed in the following.

As discussed in Chapter 5 time-reversal symmetry shall be included as well. The

point group generators Eq. (9.1), except for the generator of rotations around the

(1, 1, 1)-axis (which effectively permutes the entries of a vector therefore it is denoted

by P ), can be identified by cyclic subgroups of order two since they map onto the

identity when applied twice. Only P forms a cyclic group of order three.

As discussed in Chapter 5 a valid group representation follows from the algebraic

relations of the group itself. Thus a set of constraints on the representation can

be formulated. To ensure that different representations are gauge inequivalent it is

convenient to fix a gauge. Here the gauge is used in which all gauge transformation

belonging to translations are represented by

GTx(r) = ηzzxη
y
yxτ

0

GTy(r) = ηzzyτ
0

GTz(r) = τ 0. (9.3)

The explicit construction can be found in Chapter 5. Note that the gauging of the

GTµ(r) matrices does not fix the entire gauge freedom as global gauge transformations

can be made without changing Eq. (9.3). Identifying the elements of the little group

leads to determining equations. These conditions can be solved by decomposing the

site-dependent gauge transformations into site-dependent sign factors ηf(r), with f

some function, and site-independent matrices g of the form G(r) = ηf(r)g. One finds
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9. Projective symmetry group classifications in 3D

thus that the PSG is defined by

GTz(r) = τ 0, GTy(r) = ηzXτ
0, GTx(r) = ηz+yX τ 0,

GT (r) = ηx+y+z
T gT , g2

T = ±τ 0,

GI(r) = ηx+y+z
I gI , g2

I = ±τ 0,

GΠz(r) = ηx+y
Π gΠz , g2

Πz = ±τ 0,

GΠy(r) = ηx+z
Π gΠy , g2

Πy = ±τ 0,

GΠxy(r) = ηxyX η
z
ΠxygΠxy , g2

Πxy = ±τ 0,

GP (r) = η
x(y+z)
X ηx+y

P gP , g3
P = ±τ 0,

[gT , gO]± = 0, [gI , gO6=I ]± = 0,
[
gΠz , gΠy

]
± = 0,

gΠzgΠxyg
−1
Πy
g−1

Πxy
gΠy = ±τ 0, gΠzgPg

−1
Πy
g−1
P = ±τ 0,

gPgΠxygPgΠxyg
−1
Πy

= ±τ 0, ηΠηΠxyηP = 1. (9.4)

The symbol O denotes the point group generators and η = ±1. The notation

[. . .]± represents either the commutator or the anti-commutator. A full set of gauge

inequivalent g-matrices can be found in the Appendix A.4. To obtain the equa-

tions (9.4) an additional gauge transformation W (r) = ηxwxη
y
wyη

z
wzτ

0 was made.

However, this gauge transformation does not change the previously obtained re-

sults as it acts on translations as GTµ(r) → ηwµGTµ(r). The resulting global sign

can then be absorbed by redefining GTµ(r). It further commutes with most of

the other transformations. Only P and Πxy are affected. These two operations

transform as GΠxy(r) → ηx+y
wx η

x+y
wy GΠxy(r) and GP (r) → ηx+z

wx η
x+y
wy η

y+z
wz GP (r). By

choosing the values ηwµ one can hence eliminate some of the other sign factors of P

and Πxy. Concerning the algebraic conditions of the g-matrices one finds that only

gΠz = gΠy = τ 0 fulfills all conditions at once. The number of distinct PSGs can

be calculated by counting the number of inequivalent g-matrices times two to the

power of independent η values. Regarding ηΠηΠxyηP = 1 shows that three different

sign factors are mutually dependent, and thus, only two are counted as independent.

The number of distinct PSGs on the simple cubic lattice is found to be 21 ·25 = 672.

Since ηT = 1 and gT = τ 0 ultimately leads to a vanishing mean-field Ansatz the

corresponding PSGs are excluded. One finds eventually that 21 · 25 − 9 · 24 = 528

distinct mean-field Ansätze can be constructed on the simple cubic lattice.

9.1. Body centered cubic lattice

The results of the simple cubic lattice can be extended to the body centered cubic

lattice. The difference is that an additional generator of the point group needs to
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9.1. Body centered cubic lattice

be taken care of. The action of this operator results in an additional translation

t(x, y, z)→ (x+ 1/2, y + 1/2, z + 1/2). (9.5)

By superposing two distinct simple cubic lattice which shall be called sub-lattice

A = {(x, y, z)|x, y, z ∈ Z} and B = {(x+ 1/2, y + 1/2, z + 1/2)|x, y, z ∈ Z} a

body centered cubic lattice can be constructed. For each sub-lattice a complete

description, besides the new generator t, of the symmetry representations is given

by the equations (9.4). Yet there is an important difference since on sub-lattice B the

invariant element, which is the origin (0, 0, 0) on sub-lattice A, is r0 = (1/2, 1/2, 1/2).

That means that symmetry operations on sub-lattice B need to be modified such

that r0 is indeed the invariant element under point group operations. Take inversion

as an example for which the naive operations acting on sub-lattice B yields

I(x+ 1/2, y + 1/2, z + 1/2)→ (−(x+ 1/2),−(y + 1/2),−(z + 1/2)). (9.6)

The modified operation given by

I ′(x+ 1/2, y + 1/2, z + 1/2)→ (−x+ 1/2,−y + 1/2,−z + 1/2) (9.7)

leaves r0 invariant. However, for the entire lattice, consisting of both sub-lattices,

the center of inversion should be the zero vector. The inversion defined on sub-

lattice B can be related to the naive inversion. This can be achieved by including

translations Tµ

I ′ = TxTyTzI. (9.8)

which becomes

GI′I
′ = GTxTxGTyTyGTzTzGII. (9.9)

for the representation matrices. Similarly, for the other generators Πz,Πy and Πxy,

which do not leave r0 invariant on sub-lattice B, one can identify the connections

between these redefined operations and the naive ones given by

Π′z = TxTyΠz

Π′y = TxTzΠy

Π′xy = TzΠxy. (9.10)

Since lattice translations Tµ are defined for integer steps the exponents of the η val-

ues take only integer values regardless the sub-lattice. The new symmetry operation

t connects both sub-lattices, and the algebraic relations that include t merge the two

distinct representations into one, which is valid on the entire body centered cubic
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9. Projective symmetry group classifications in 3D

lattice. In the following, the procedure will be explained using some concrete exam-

ples. Consider for instance the operation T−1
x tTxt

−1 = id which translates, starting

from a given site r, following a closed path back to site r, thus belonging to the sta-

bilizer group of r. The requirement reads T−1
x (GTx)

−1Gtt(GTx)Txt
−1(Gt)

−1 ∈ IGG
which then gives a condition on the representation

(GA
Tx)
−1(x+ 1, y, z)GA

t (x+ 1, y, z)×
×GB

Tx(x+ 1/2, y − 1/2, z − 1/2)(GA
t )−1(x, y, z) = ηAtxτ

0

=⇒ GA
t (x, y, z) = (ηAXη

B
X)y+zηAtxG

A
t (x+ 1, y, z). (9.11)

Similarly, one finds conditions for the other directions

GA
t (x, y, z) = (ηAXη

B
X)zηAtyG

A
t (x, y + 1, z)

GA
t (x, y, z) = ηAtzG

A
t (x, y, z + 1). (9.12)

For sub-lattice B a similar calculation yields

GB
t (x+ 1/2, y + 1/2, z + 1/2) =

(ηAXη
B
X)y+zηBtxG

B
t (x+ 1 + 1/2, y + 1/2, z + 1/2)

GB
t (x+ 1/2, y + 1/2, z + 1/2) =

(ηAXη
B
X)zηBtyG

B
t (x+ 1/2, y + 1 + 1/2, z + 1/2)

GB
t (x+ 1/2, y + 1/2, z + 1/2) =

ηBtzG
B
t (x+ 1/2, y + 1/2, z + 1 + 1/2). (9.13)

Combining these facts indicates that a closed solution exists, if the condition ηAX =

ηBX ≡ ηX is met, which is given by

GA
t (r) = (ηAtx)

x(ηAty)
y(ηAtz)

zgAt

GB
t (r) = (ηBtx)

x(ηBty)
y(ηBtz)

zgBt . (9.14)

The sub-lattices A,B can be connected via t2 = TzTyTx, which yields that ηAtx =

ηBtx ≡ ηtx , η
A
ty = ηXη

B
ty ≡ ηty and ηAtz = ηBtz ≡ ηtz . The site-independent matrices

need to fulfill gAt g
B
t = ±gBt gAt = ±τ 0 such that one can define gAt = ±gBt ≡ gt with

g2
t = ±τ 0.

The inclusion of inversion leads to the algebraic relation combining inversion and

the new translation as I−1t−1I ′t = I−1t−1TxTyTzIt = id, which yields ηAI = ηBI , as a

consequence that this equation should be independent of the x, z component of an

initial site r, and ηAtyη
B
tyη

A
I η

B
I = 1, which results from independence of the y compo-

nent. Gathering the previous results shows that ηX = 1. This means that all gauge

transformations of translations are now trivially represented by τ 0. Importantly, this
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9.2. Face centered cubic lattice

further implies that the gauge transformations do no longer distinguish between the

redefined and the naive operations. The relations Pt = tP and ΠxyTzt
−1Πxyt = id

connect the sign factors of different directions ηtx = ηty = ηtz ≡ ηt. Regarding the

matrix representations, one finds, in the case of inversion, that the matrices have to

obey g−1
t gAI gt = ±gBI . Similar results are obtained for all the other elements of the

simple cubic lattice point group

g−1
t gAI gt = ±gBI
g−1
t gAT gt = ±gBT
g−1
t gAΠxygt = ±gBΠxy
g−1
t gAP gt = ±gBP . (9.15)

For each sub-lattice, one can find an irreducible set of gS representations. As these

two sub-lattices are equivalent descriptions of the simple cubic lattice, the two sets

are also equivalent. To fulfill equations (9.15) in the case of gAS 6= gBS one would re-

quire a global transformation, which exchanges between two representations. How-

ever, this is not possible since they are gauge inequivalent by construction. As a

result, it follows that gAS = ±gBS . Yet the appearing sign can be eliminated by a

proper definition. Luckily, it turns out that one can also use the results for the

simple cubic lattice Eq. (9.4) to represent the generators of the body centered cubic

lattice, whereas ηX = 1 and the additional generator Gt(r) needs to be added

Gt(r) = ηx+y+z
t gt, g2

t = ±τ 0,

[gt, gS ]± = 0, gΠzgΠygΠxygPgtgΠxygP = ±gt. (9.16)

It is important to remember that due to the different sub-lattices, the coordinates

in the exponents depend on the simple cubic lattice’s unit cell. Irreducible represen-

tations for the body centered cubic lattice are shown in Appendix A.4. The number

of distinct PSGs for the body centered cubic lattice is 59 · 25 = 1888. Removing

those PSGs that lead to vanishing mean-field matrices yields 59 · 25− 23 · 24 = 1520.

9.2. Face centered cubic lattice

Similarly to the body centered cubic lattice the face centered cubic lattice can be

obtained from the simple cubic lattice by including additional symmetry generators.

In this case, one has to add two additional translations

t1(x, y, z)→ (x, y + 1/2, z + 1/2)

t2(x, y, z)→ (x+ 1/2, y + 1/2, z). (9.17)
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9. Projective symmetry group classifications in 3D

This lattice can be constructed by superposing four distinct simple cubic lat-

tices A = {(x, y, z)|x, y, z ∈ Z}, B = {(x+ 1/2, y + 1/2, z)|x, y, z ∈ Z}, C =

{(x+ 1/2, y, z + 1/2)|x, y, z ∈ Z}, and D = {(x, y + 1/2, z + 1/2)|x, y, z ∈ Z}. As

for the body centered lattice these four sub-lattices are connected by incorporating

t1, t2. Using the same gauge as for the simple cubic lattice, in a similar treatment,

as described above in the case of the body centered cubic lattice, one finds that

the gauge transformations can be represented equally on all different sub-lattices

GA
S = GB

S = GC
S = GD

S . The sign corresponding to translations must again be

positive ηX = +1. The gauge transformations related to the new generators are

determined by

Gt1(r) = ηx+y+z
t gt1 g2

t1
= ±τ 0,

Gt2(r) = ηx+y+z
t gt2 g2

t2
= ±τ 0,

(gt1gt2)
2 = ±τ 0, [gT , gt1 ]± = 0, [gT , gt2 ]± = 0,

[gI , gt1 ]± = 0, [gI , gt2 ]± = 0,
[
gΠxy , gt2

]
± = 0,

gt2gt1gΠxygt1gΠxy = ±τ 0, gPgt2g
−1
P gt1 = ±τ 0,

gΠxygPgt1gΠxygPgt1 = ±τ 0. (9.18)

Note that there is only one possible sign factor ηt for both transformations. Contrary

to the body centered cubic lattice one finds that in order to solve equations (9.18) t1
as t2 can only have a trivial matrix representation such that the corresponding gauge

transformations are given by Gt1(r) = Gt2(r) = ηx+y+z
t τ 0. As a reminiscence of this

construction, four elements in the unit cell are labeled by the same coordinates

leading to the same exponents of the sign values η. Gauge inequivalent matrix

representations are shown in Appendix A.4. The total number of distinct PSGs is

equivalent to the simple cubic lattice 21 · 25 = 672. This is because gt1 = gt2 = τ 0

and that the sign factor ηX of the integer translations is replaced by the sign factor

ηt of the new translations. This leads, after PSGs have been removed, which results

in vanishing mean-field matrices, to 21 · 25− 9 · 24 = 528 possible mean-field models

on the face centered cubic lattice.

9.3. Constructing a short-rang mean-field Ansatz

The PSG representations at hand, it is possible to construct mean-field Ansätze

whose projected wave function will obey the desired symmetry relations. The en-

tire construction is based on the PSG defining property Eq. (4.2) as explained in

Chapter 4 and Chapter 5. The calculation of all mean-field models is too long

as that it should be repeated here explicitly. In order to explains, nevertheless,

the main procedure, a sketch of the construction for the nearest neighbor states
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9.3. Constructing a short-rang mean-field Ansatz

Figure 9.1.: In the upper right corner the first unit cell of the simple cubic lattice is drawn

in bold lines. The Blue points indicate the A sub-lattice sites. The red points show the

positions of sub-lattice B sites. The boldly drawn dots indicate the two sites belonging

to the first unit cell. The first neighbors of site rA0 are the eight depicted B sites. (The

author gratefully received this figure from Johannes Reuther [60].)

of the body centered cubic lattice is given. The defining symmetry operators are

S = {Tx, Ty, Tz, t, T , I,Πz,Πy,Πxy, P}. Employing PSG equations (4.2) for all

three lattices translations Tµ shows that

G†Tµ(Tµ(r))uTµ(r)Tµ(r′)GTµ(Tµ(r′)) = ur+êµr′+êµ = urr′ , (9.19)

in the second equality it was used that the corresponding representations for the

body centered cubic lattice are all represented by the identity GTµ(r) = τ 0. This

translational invariance reduces the number of independent mean-field matrices,

and it is sufficient to determine only the matrices that connect to the origin. In

the considered case, one finds 8 first neighbors as shown in Fig. 9.1, which are

assigned by the vectors δr = {±1/2,±1/2,±1/2}. For the following one defines

δr = r′ − r and fixes r = (0, 0, 0) to be the origin. The relevant coupling matrices

are urr′ = u(0,0,0),r′ ≡ uδr. It will be convenient to expand them in terms of Pauli

matrices

uδr = iα0
δr +

3∑
i=1

αiδrτ
i. (9.20)

Among these matrices one picks u(1/2,1/2,1/2) ≡ uδr1 . The remaining ones are derived

according to the symmetry properties defined by the point group operators. Before

connecting different uδri some conditions dictate the general from of any possible
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9. Projective symmetry group classifications in 3D

matrix. For instance, time-reversal invariance requires

−G†T (T (r))urr′GT (T (r′)) = urr′

− ηx′+y′+z′T g−1
T uδrgT = uδr. (9.21)

This means δr1 = (0, 0, 0) since r and r′ lie in the simple cubic unit cell of the

origin. Hence the sign factor ηT vanishes. Therefore, uδr1 has to anti-commute

with the representation matrix of gT . This matrix can either be represented by

the identity, or by iτ 2 (see Tab. A.2 in the Appendix A.4). This implies further

that for any finite Ansatz the representation must be gT = iτ 2. To anti-commute

with this representation the coefficients α0
δr1

= α2
δr1

= 0 have to vanish. It fol-

low that (uδr1)
† = uδr1 . Generally, the effect of hermitian conjugation is given by

(urr′)
† = u∗r′r = u∗−δr. In this case one finds uδr1 = u−δr1 = u(−1/2,−1/2,−1/2). The

corresponding coupling vector points from the origin to the simple cubic unit cell

with the coordinates (x, y, z) = (−1,−1,−1) such that the sign factor ηT does not

vanish in Eq. (9.21). Consequently, only ηT = +1 leads to a finite Ansatz. Com-

bining hermitian conjugation and inversion leads to another criteria: Any coupling

matrix has to comply with

G†I(I(r))uI(r)I(r)GI(I(r′)) = urr′

η
I(x′)+I(y′)+I(z′)
I g−1

I u−δrgI = uδr

η
I(x′)+I(y′)+I(z′)
I g−1

I (uδr)
† gI = uδr. (9.22)

In the case of δr1 this demands that uδr1 has to commute with the representation

matrix gI . Since this must hold equally for u−δr1 one finds that the corresponding

sign factor can only be positive ηI = +1. Next consider the requirement dictated

by permutation symmetry, which reads

G†P (P (r))uP (r)P (r)GP (P (r′)) = urr′

η
P (x′)+P (y′)
P g−1

P uP (δr)gP = uδr. (9.23)

This operation leaves δr1 invariant, and the exponent vanishes in the case of δr1.

It follows that uδr1 has to commute with gP , which can only by accomplished by

a trivial representation gP = τ 0. Contrary to the cases above, the condition of

u−δr1 , which also remains invariant under P , does not require that ηP has to be

positive. The other point group operations can be used to connect between different

δr according to

η
Πz(x′)+Πz(y′)
Π uΠz(δr) = uδr (9.24)

η
Πy(x′)+Πy(z′)
Π uΠy(δr) = uδr (9.25)

η
Πxy(z′)
Πxy

g−1
Πxy

uΠxy(δr)gΠxy = uδr. (9.26)
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9.3. Constructing a short-rang mean-field Ansatz

ηT gT ηP gP ηIgI ηΠxygΠxy ηtgt

+iτ2 ±τ0 +τ0 +τ0 +τ0

+iτ2 ±τ0 +τ0 +iτ3 +τ0

+iτ2 ±τ0 +τ0 +τ0 +iτ3

+iτ2 ±τ0 +τ0 +iτ3 +iτ3

+iτ2 ±τ0 +iτ3 +τ0 +τ0

+iτ2 ±τ0 +iτ3 +τ0 +iτ3

+iτ2 ±τ0 +iτ3 +iτ3 +τ0

+iτ2 ±τ0 +iτ3 +iτ3 +iτ3

Table 9.1.: Possible PSG representations for first neighbor Ansätze on the body centered

cubic lattice.

Combining these rotations with inversion leads to further consistency condi-

tions. For instance, one finds that Πxy(1/2, 1/2,−1/2) = (1/2, 1/2, 1/2) =

Πz(I(1/2, 1/2,−1/2)), which yields g−1
Πxy

uδr1gΠxy = g−1
I uδr1gI . Furthermore, from

the relation Πxy(1/2,−1/2, 1/2) = I(1/2,−1/2, 1/2) = (−1/2, 1/2,−1/2) it follows

that the sign factor belonging to Πxy has to be positive ηΠxy = +1. The sign con-

straint ηΠxyηΠηP = 1 locks the remaining sign values ηP = ηΠ. It remains to checked

how t transforms the coupling matrices

G†t(t(r))ut(r)t(r′)Gt(t(r
′)) = urr′ . (9.27)

Acting on uδr1 yields ηtg
−1
t uδr1gt = uδr1 , where the definition δr = r′ − r, and

the invariance under lattice translations Tx, TyTz were used. Repeating the same

procedure for u−δr1 shows that g−1
t uδr1gt = uδr1 . Thus it follows that ηt = +1 and

that uδr1 has to commute with gt, which leaves τ 0 or iτ 3 as possible representations.

Putting everything together identifies all relevant PSG representations, which are

shown in Table 9.1, and correspond to the eight different choices of gI , gΠxy and gt,

which can independently be represented by either τ 0 or iτ 3. The representations

of all but the first line in Table 9.1 demand that an Ansatz given by Eq. (9.20)

has only finite coefficients belonging to τ 3. This yields uδr = α3
δrτ

3 for all δr. The

requirements given by the PSG representation of the first line in Table 9.1 are less

restrictive, and an Ansatz could be uδr = α1
δrτ

1 +α3
δrτ

3. However, since all matrices

except for time-reversal are represented by the identity one can apply a global gauge

transformation W = e−iθτ
2
, with θ(α1

δr1
, α3

δr1
) denoting the angle within the plane

spanned by τ 1 and τ 3, without altering the PSG representation. This rotation turns

the coupling matrix along the τ 3 axis, and thus the coefficient along τ 1 vanishes

α1
δr = 0. This is possible because the coefficients for different first neighbor δr are

all locked such that the angle in the τ 1, τ 3-plane is the same for all uδr. Note that

this is possible only for first neighbor couplings. Eventually, there are only two
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distinct mean-field Ansätze on the body centered cubic lattice for nearest neighbor

coupling. These two can be distinguished by the sign value ηP .

Before the full mean-field Hamiltonian can be written out, some comments about

the multiplier fields are due. In order to make the Hamiltonian invariant these fields

have to comply with all the symmetry requirements too, which is expressed by the

equation

G†S(S(r))aµ(S(r))τµGS(S(r)) = aµ(r)τµ. (9.28)

One immediately finds that aµ(r + êν) = aµ(r) ≡ aµ, for ν = {x, y, z} by taking

advantage of translational invariance. Since the gauge transformation matrices mul-

tiplied from the left and right side are always on the same site r the η factors of any

transformation will square and hence are irrelevant. For the remaining operations,

aµτ
µ transforms according to

−g−1
T aµτ

µgT = aµτ
µ

g−1
O aµτ

µgO = aµτ
µ, (9.29)

while O can be any point group generator. This means that aµτ
µ has to anti-

commute with the representation of gT and has to commute with all other represen-

tation matrices gO.

The uδr matrices and the multiplier field aµ constructed according to the presented

discussion yield the desired mean-field Hamiltonian. The matrix structure of uδr
is entirely fixed by the PSG. The remaining freedom is the value of the hopping

amplitude α3
δr1
≡ χ1 and the chemical potential a3. These values are calculated

self-consistently as described in Chapter 2. In the following sections, the resulting

mean-field states will be explained in detail for the body centered and face centered

cubic lattice. Beginning at the first neighbor level up to third nearest neighbor

couplings will be taken into account. Their construction follows the same scheme as

it is discussed here and will therefore not be explained again.

9.4. Body centered cubic lattice

On the body centered cubic lattice the classification reveals that there are two

distinct first neighbor states BCC 1 and BCC 2, which can be distinguished by the

sign factor ηP = ±1.

9.4.1. BCC 1: ηP = +1 state

The mean-field Hamiltonian is given by a uniform hopping

BCC 1 first : uδr =χ1τ
3, ∀δr first neighbors

a3 6=0. (9.30)

96



9.4. Body centered cubic lattice

(a) (b) (c)

Figure 9.2.: First neighbor state ”BCC 1 first” on the body centered cubic lattice. The high

symmetry points are given by H = (0, 0, 2π), N = (0, π, π) and P = (π, π, π) (a) shows

the dispersion of Eq. (9.30) along a path through the Brillouin zone. The Fermi surface

is depicted in (b) where the green region indicates the first Brillouin zone. Sub-figure (c)

represents the dynamical structure factor along a path in reciprocal space. (Figure taken

from [60])

Calculating the invariance group of this state, as explained in Chapter 5, reveals the

SU(2) character of this state. The self-consistently calculated hopping amplitude

is found to be χ1 = 0.129 and the on-site term a3 = 0.003. The resulting ground-

state energy per site is determined as ε1 = −0.149. These values are obtained for

a fixed coupling J1 = 1 for all first neighbor δr, while all other couplings are set

to zero J2, J3, . . . = 0. It is not expected that this state represents a quantum spin

liquid state. The reason for this is that for nearest neighbor couplings only the

underlying spin model on the body centered cubic lattice is not frustrated. The

resulting ground state is given by a q = (2π, 0, 0) Néel order, shown in Fig. 9.3.

However, as further neighbor couplings are included, it was found that the system

can get into a magnetically disordered phase [147]. In this perspective, the first

neighbor mean-field state is a starting point for extended models in which J1 is the

dominant coupling. These extended models, including second and third neighbor

couplings, will be explained below. The dispersion of the first neighbor state is

shown in Fig. 9.2. It exhibits a Fermi surface, illustrated in Fig. 9.2, which consists

of almost parallel planes. The small curvature at the edges of these planes is due

to the chemical potential term a3. The dynamical structure factor, introduced in

Chapter 6, can be seen in Fig. 9.2. It shows a high intensity around the H point.

This signal can be understood by the form of the underlying Fermi surface in which

two opposite planes are connected by a nesting vector H = (2π, 0, 0). A second

characteristic is cone-like signals found around the Γ point. The opening angle of a

cone can be linked to the slope of the dispersion and thus gives information about

the Fermi velocity vF . Comparing this angle for different directions departing from

the Γ point shows that it is smaller on the line ΓP than it is on the line ΓH indicating
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9. Projective symmetry group classifications in 3D

Figure 9.3.: Phase diagram of the classical J1 − J2 − J3 Heisenberg model on the body

centered cubic lattice. The region drawn in gray represent the classical phases for which

the corresponding wave vector is given accordingly. The black lines denote the phase

boundaries of the classical model. For the region drawn in red Ref. [147] identified a non

magnetic phase. The red points denote the coupling strengths as they are used in the mean-

field models. In the bottom left Néel order according to the wave vector q = (2π, 0, 0) is

shown. In the bottom right one sees an image of the stripy ordered phase given by wave

vector q = (π, π, π). Note that in this case sub-lattice B has the same spin configuration

as the shown sub-lattice A yet with a relative phase shift of π/2. (The author gratefully

received these figures from Johannes Reuther [60].)
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9.4. Body centered cubic lattice

a momentum dependency of the Fermi velocity.

The gauge transformation, which made an Ansatz belonging to the PSG defined

by the first line in Tab. 9.1 equivalent to an Ansatz determined by the PSGs of

the other lines, does generally not work for second and third neighbor states. The

following discussion is, therefore, divided into two parts. The first one deals with the

states corresponding to the PSG representation given by the first line in Tab. 9.1.

The second neighbor terms for this PSG representation can include uniform hop-

ping and additionally uniform pairing terms

BCC 1a second: uδr = χ2τ
3 + ∆2τ

1,

∀δr second neighbors. (9.31)

The amplitudes and the ground state energy per site are calculated for a fixed

ratio of J2
J1

= 2
3
. At this point previous studies suggest (see Fig. 9.3) that the

J1−J2 antiferromagnetic Heisenberg model exhibits a phase transition between a q =

(2π, 0, 0) Néel ordered and a q = (π, π, π) stripy long range antiferromagnetically

ordered phase [150, 151]. At the transition fluctuations increase, which could lead

to a quantum spin liquid phase [152, 147]. The numerical values are calculated

as χ1 = 0.116, χ2 = 0, ∆2 = −0.106 and the chemical potential a3 = −0.001. In

principle, one could also include an additional Lagrange multiplier along the τ 1 axis,

which is found to be redundant a1 = 0. The energy is determined as ε2 = −0.178.

The additional pairing term is responsible that a gap in the spectrum appears, as

illustrated in Fig. 9.4. Including second neighbors allows for odd-numbered flux

operators. This breaks the SU(2) invariance group of the first neighbor state down

to a U(1) invariance group. The dynamical structure factor captures the gap in the

(a) (b)

Figure 9.4.: Second neighbor state ”BCC 1a second” on the body centered cubic lattice. (a)

shows the dispersion of the Hamiltonian consisting of first neighbor terms Eq. (9.30) and

second neighbor terms Eq. (9.31) along a path through the Brillouin zone. (b) illustrates

the corresponding dynamical structure factor along a path in reciprocal space (see Fig. 9.2).

(Figure taken from [60])

energy spectrum, and thus the cone-like signal at the Γ point disappears below a
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9. Projective symmetry group classifications in 3D

threshold. The response can be divided into three arcs; one between the Γ, H points,

the second between H,P points, and the third between P,Γ points. Inside the first

and the third arc, the intensity is relatively homogeneous. The second one appears

as a superposition of two slightly shifted ones. The arcs’ maxima are at the minima

positions of the dispersion.

The requirements of this projective representation for the third nearest neighbors

can be satisfied by terms that, similar to the second neighbor case, consists of

uniform hopping and pairing terms

BCC 1a third: uδr = χ3τ
3 + ∆3τ

1,

∀δr third neighbors. (9.32)

These terms can break the remaining invariance group down to Z2. The couplings

are chosen as J2
J1

= 2
3

and J3
J1

= 1
4
, which marks a point within a non-magnetic phase,

as seen in Fig. 9.3. The calculation of the amplitudes yields χ1 = 0.116, χ2 = 0,

∆2 = −0.105, χ3 = 0 and ∆3 = −0.014, and vanishing chemical potentials a3 = 0

and a1 = 0. The ground state energy per site is ε3 = −0.178. The dispersion shows

similar properties to the second neighbor state and has an energy gap. This applies

also for the dynamical structure factor.

The second neighbor terms for the PSGs represented by the lines 2-8 of Tab. 9.1

can only be given by a uniform hopping between second neighbor sites

BCC 1b second: uδr = χ2τ
3,

∀δr second neighbors. (9.33)

The only consequence by adding these new terms to the Hamiltonian is a symmetry

breaking of the SU(2) gauge group down to a U(1) group. The self-consistently

determined amplitudes are χ1 = 0.129, χ2 = −0.001 and a3 = −0.002. The energy

per site is calculated as ε2 = −0.149. These values have been determined, as before,

for J2
J1

= 2
3
. In total, this extension does not change the qualities of the state,

which still contains a Fermi surface. The dynamical structure factor also carries the

characteristic of the first neighbor state (see Fig. 9.2).

The third neighbors can similarly be included by a uniform hopping between third

neighbors

BCC 1b third: uδr =χ3τ
3, ∀δr third neighbors. (9.34)

Adding third nearest neighbors has no significant impact, at least, if the third neigh-

bor J3 coupling is relatively small J3
J1

= 0.25, which is the case for the considered

non-magnetic point in the coupling parameter space (see Fig. 9.3). The exchange

couplings for the second neighbors are again set to J2
J1

= 2
3
. The self-consistently
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9.4. Body centered cubic lattice

obtained values for the amplitudes are χ1 = 0.125, χ2 = 0.036, χ3 = −0.041 and

a3 = 0.095. The energy per site is ε3 = −0.152.

In comparison between these two extensions (a, b), it is found that an Ansatz

defined by the PSG of the first line in Tab. 9.1 yields the lower mean-field energies

for the studied second and third neighbor cases. In this PSG, all representation

matrices gI , gΠxy , and gt are given by τ 0, which allows for pairing terms; absent in

the other mean-field model. These pairing terms bring a gain in energy, and they

further break the invariance group down to Z2, at least for the third neighbor model.

9.4.2. BCC 2: ηP = −1 state

The second Ansatz is described by real hopping terms, which have a different sign

structure induced by a non-trivial transformation of Πz,Πy, and P due to the neg-

ative factor ηP = −1. It can be constructed according to

BCC 2 first: u(1/2,1/2,1/2) = χ1τ
3 = u(−1/2,−1/2,−1/2)

= u(1/2,−1/2,1/2) = u(−1/2,1/2,−1/2)

= u(1/2,1/2,−1/2) = u(−1/2,−1/2,1/2)

= −u(−1/2,1/2,1/2) = −u(1/2,−1/2,−1/2)

a3 6= 0. (9.35)

The invariance group of this Ansatz contains the full SU(2) space. By fixing the

exchange coupling J1 = 1 the self-consistently calculated energy per site is given

by ε1 = −0.208 while the amplitude is χ1 = 0.152 and the Lagrange multiplier

a3 = −0.004. Following the line of argument already made for the BCC 1 state,

the first neighbor Ansatz is explained even though it has no direct relevance as a

possible spin liquid state. The dispersion of this Ansatz is shown in Fig. 9.5. Like

the other first neighbor state (BCC 1), it has a Fermi surface that has an entirely

different form and does not contain any parallel planes. This is also reflected in

the dynamical structure factor for which, in the absence of any nesting vectors, the

signal’s intensity appears fairly homogeneous and can be divided into two arc-like

signals. The first arc reaches from the Γ point to the P point (on the momentum

axis, including the H and N points) with its maxima roughly at the H point. The

second arc, significantly less intense, emerges between the P and Γ point. Inside

the first arc, two smaller domes appear in which the signal vanishes. The opening

angle of the cone around the Γ point is constant for both directions ΓH and ΓP .

This indicates a constant Fermi velocity.

No second neighbor terms are compatible with the underlying symmetry require-

ments dictated by the PSG representations ηΠ = ηP = −1.
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9. Projective symmetry group classifications in 3D

(a) (c)(b)

Figure 9.5.: First neighbor state ”BCC 2 first” on the body centered cubic lattice. (a) shows

the dispersion of Eq. (9.35) along a path through the Brillouin zone. The Fermi surface

is depicted in (b) where the green region indicates the first Brillouin zone. Sub-figure (c)

represents the dynamical structure factor along a path in reciprocal space. (Figure taken

from [60])

Similar to the previously discussed state (BCC 1), the third neighbor can be

incorporated in two different fashions, depending on the PSG representations, thus

lifting the degeneracy of the first neighbor case where the Ansätze of different PSGs

can be connected by a gauge transformation.

An Ansatz belonging to a PSG given by the first line of Tab. 9.1 can have third

neighbor terms including hopping and pairing amplitudes

BCC 2a third: u(1,1,0) = χ3τ
3 + ∆3τ

1 = u(−1,−1,0)

= u(0,1,1) = u(0,−1,−1) = u(1,0,−1) = u(−1,0,1)

= −u(1,0,1) = −u(−1,0,−1) = −u(1,−1,0) = −u(−1,1,0)

= −u(0,1,−1) = −u(0,−1,1). (9.36)

Due to the absence of second neighbors, the point, which will be used here at J3
J1

= 1
4
,

lies in the vicinity of a triple point, as indicated in the phase diagram Fig. 9.3,

between a Néel ordered phase with wave vector q = (2π, 0, 0), a spiral order given

by q = (2π−q, q, 0), and a spiral ordered phase q = (2π−q, q, q). Fig. 9.6 illustrates

the incommensurate spiral ordering. The self-consistent amplitudes are χ1 = 0.151,

χ3 = −0.001 and ∆3 = 0.028. The chemical potential is found at a3 = −0.004

and a1 = 0 yielding an energy per site of ε3 = −0.209 slightly lower than the first

neighbor state. The invariance group is broken down to Z2, and the dispersion has

a nodal point at P = (π, π, π), as shown in Fig. 9.7. The dynamical structure factor

bears similar properties to the first neighbor state (BCC 2 first).

Possible third neighbors according to PSG representations given by lines 2-8 of
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(a) (b)

Figure 9.6.: Incommensurate spiral ordering at the triple point of the body centered cubic

lattice (see Fig. 9.3) which is used for the thrid neighbor models (9.36),(9.37). Sub-figure

(a) corresponds to q = (2π − q, q, 0) and (b) represents q = (2π − q, q, q). (The author

gratefully received these figures from Pratyay Ghosh)

(a) (b)

Figure 9.7.: Third neighbor state ”BCC 2a third” on the body centered cubic lattice. (a)

shows the dispersion of the Hamiltonian consisting of first neighbor terms Eq. (9.35) and

third neighbor terms Eq. (9.36) along a path through the Brillouin zone. (b) illustrates the

corresponding dynamical structure factor along a path in reciprocal space (see Fig. 9.2).

(Figure taken from [60])

Tab. 9.1 can be included by

BCC 2b third: u(1,1,0) = χ3τ
3 = u(−1,−1,0)

= u(0,1,1) = u(0,−1,−1)

= u(1,0,−1) = u(−1,0,1)

= −u(1,0,1) = −u(−1,0,−1)

= −u(1,−1,0) = −u(−1,1,0)

= −u(0,1,−1) = −u(0,−1,1). (9.37)

The self-consistent amplitudes were calculated at J3
J1

= 0.25 as χ1 = 0.152 and χ3 = 0

with an on-site term a3 = −0.004 resulting in an energy per site ε3 = −0.208. For
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9. Projective symmetry group classifications in 3D

non vanishing amplitudes the third neighbor state could break the invariance group

to U(1). Besides that it bears exactly the same properties as the corresponding first

neighbor state BCC 2.

9.4.3. Summary BCC

On the body centered cubic lattice, two distinct SU(2) nearest-neighbor states were

identified labeled ”BCC 1” and ”BCC 2”. Their mean-field Hamiltonians contain

real uniform hopping terms in the first case and sign dependent real hopping terms

in the second case. Both states have gapless excitations due to a Fermi surface in

their spectra. Comparison of the ground state energy favors the ”BCC 2”, which is

roughly 40% lower. The Fermi surface of ”BCC 1” contains almost parallel planes,

which implies nesting vectors. These nesting vectors produce a strong characteristic

response in the dynamical structure factor. A second identifying feature for the

state ”BCC 1” is a momentum dependency of the Fermi velocity. This observation

is based on the momentum dependency of the opening angle of a cone-like signal

around the Γ point. For each state extending to higher neighbors can be done in two

different, projective symmetry respecting, ways that are labeled ”a” and ”b”. The

”a” extension includes real hopping and real pairing terms. The extended states

were calculated by fixing J2
J1

= 2
3

for the second neighbors and J3
J1

= 1
4

for the third

neighbors. These couplings are suggested by classical studies of the corresponding

Heisenberg system as they lie at a phase transition point or in a paramagnetic

phase, respectively (see Fig. 9.3). The involved pairing terms are responsible for the

opening of an energy gap for the ”BCC 1a” state, and they break the invariance

group down to U(1) if the second nearest neighbors are included and to Z2 if the

third nearest neighbors are present. The ”b” extension only allows additional real

hopping terms. This extension breaks the invariance group down to U(1) irrespective

of the included neighbors. The properties of the first neighbor state are maintained

in this scenario. The ”a” extension has an energetically advantage of about 19% over

the ”b” extension for second neighbors and approximately 17% if third neighbors

are involved. The ”BCC 2” state cannot include any second nearest neighbor terms.

However, the third neighbor extensions can again be made by either including real

hopping and real pairing ”a” or by real hopping only ”b”. The ”BCC 2a” state

has a Z2 invariance group, and the Fermi surface is reduced to nodal points, thus

preserving a gapless spectrum. The invariance group of the ”BCC 2b” state is U(1),

and all other characteristics of the first neighbor state are unchanged. No difference

in energy was found for the ”BCC 2” states.
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9.5. Face centered cubic lattice

9.5. Face centered cubic lattice

The first neighbor states on the face centered cubic lattice can be classified by

six different PSG representations, which are given in Tab. 9.2. As it has been

encountered before, an Ansatz constructed according to the representations of the

first line can be connected to one built according to lines 2− 4 by a gauge rotation

around the τ 2 axis, which leaves all representations untouched. This, however, can

be done only for the first neighbors. The representations given by the fifth and

sixth line yield similar mean-field models in which merely the axes are relabeled by

a permutation. Therefore, here only the state belonging to the PSG given in the

fifth line is discussed. Summarizing, one can distinguish between two different states

on a first neighbor level according to the representation gP = τ 0 or gP = ei
π
3
τ2 .

ηT gT ηP gP ηIgI ηΠxygΠxy

+iτ2 +τ0 +τ0 +τ0

+iτ2 +τ0 +iτ3 +τ0

+iτ2 +τ0 +τ0 +iτ3

+iτ2 +τ0 +iτ3 +iτ3

+iτ2 +ei
π
3
τ2 +τ0 +iτ3

+iτ2 +ei
2π
3
τ2 +τ0 +iτ3

Table 9.2.: Possible PSG representations for first neighbor Ansätze on the face centered

cubic lattice.

9.5.1. FCC 1: gP = τ 0 state

This Ansatz class, valid for the first to fourth line of Tab. 9.2 consists of a uniform

hopping between first neighbor sites on the face centered cubic lattice

FCC 1 first : uδr =χ1τ
3, ∀δr first neighbors

a3 6=0. (9.38)

The hopping amplitude χ1 = 0.109 and the chemical potential a3 = 0.204 are self-

consistently calculated by fixing the exchange coupling J1 = 1 for all first neighbors.

On the face centered cubic lattice already first neighbor couplings result in frustra-

tion of the classical Heisenberg model, and numerical studies found non-magnetic

phases [153, 148]. This can be linked to energetically degenerate lines, which exist in

reciprocal space and enhance quantum fluctuations [136, 142]. Such a ground state

degeneracy of the classical model enhances the propensity for spin liquid formation.

The corresponding ground state energy per site is ε1 = −0.156. The mean-field

state exhibits a Fermi surface as shown in Fig. 9.8. The invariance group of this
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(c)(b)(a)

Figure 9.8.: First neighbor state ”FCC 1” on the face centered cubic lattice. (a) shows

the dispersion of Eq. (9.38) along a path through the Brillouin zone. The Fermi surface

is depicted in (b) where the green region indicates the first Brillouin zone. Sub-figure

(c) represents the dynamical structure factor along a path in reciprocal space. The high

symmetry points are given by X = (0, 2π, 0), W = (π, 2π, 0), L = (π, π, π), and K =

(3
2π,

3
2π, 0). (Figure taken from [60])

Figure 9.9: Two different magnetically

ordered phases at the transition point
J2
J1

= 0.5 of the classical J1−J2 Heisen-

berg model on the face centered cu-

bic lattice. (The author gratefully

received these figures from Johannes

Reuther [60].)

state is U(1). The dynamical structure factor illustrated in Fig. 9.8 shows a fairly

homogeneous signal with small regions of higher intensities visible as the flanks of

a cone around the Γ point. The opening angle of this cone is constant indicating a

constant Fermi velocity.

For the second neighbors the J1, J2 couplings are fixed at J2
J1

= 0.5. At this point

the classical Heisenberg model undergoes a phase transition between a q = (2π, π, 0)

order to a q = (π, π, π) order, as shown in Fig. 9.9. The line degeneracy, present

in the J1 model, even expands to a surface degenarcy for these couplings [142]. A

second neighbor Ansatz built according to the PSG representations given by the

first line of Tab. 9.2 can incorporate real hopping and real pairing terms

FCC 1a second : uδr = χ2τ
3 + ∆2τ

1,

∀δr second neighbors. (9.39)
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Solving the self-consistent equations yields the amplitudes χ1 = 0.106, χ2 = −0.075

and ∆2 = −0.059. The chemical potential sits at a3 = 0.090 satisfying single-

occupancy. A further on-site term is symmetry permitted but vanishes a1 = 0. The

resulting energy per site is ε2 = −0.185. The ramification of an additional pairing

term is twofold. It breaks the U(1) invariant group of the first neighbor state down

to Z2 and it opens a bandgap as shown in Fig. 9.10. The dynamical structure

(a) (b)

Figure 9.10.: Second neighbor state ”FCC 1a second” on the face centered cubic lattice. (a)

shows the dispersion of the Hamiltonian consisting of first neighbor terms Eq. (9.38) and

second neighbor terms Eq. (9.39) along a path through the Brillouin zone. (b) illustrates

the corresponding dynamical structure factor along a path in reciprocal space (see Fig. 9.8).

(Figure taken from [60])

factor in Fig. 9.10 also indicates an energy gap. The cone at the Γ point does not

appear below this gap. The maximal energy rises, and the entire signal appears

more stretched compared to the first neighbor state. Especially the first two-thirds

of the plotted momentum range show more structural features in the signal.

For the third neighbors, the Heisenberg couplings are considered at J2
J1

= 0.5 and
J3
J1

= 0.25. The classical model shows a tricritical point between two magnetic phases

given by the commensurate ordering vectors q = (2π, 0, 0) and q = (π, π, π), and a

non-commensurate spiral order q = (q, 0, 0) [154]. Including third neighbors in the

mean-field model can again be done by adding real hopping and real pairing terms

FCC 1a third : uδr = χ3τ
3 + ∆3τ

1,

∀δr third neighbors. (9.40)

The self-consistent amplitudes are found to be χ1 = 0.106, χ2 = −0.066, ∆2 = 0.067,

χ3 = −0.028, ∆3 = −0.013 and the on-site term a3 = 0.093. The ground state

energy per site is ε3 = −0.192. The properties of this extended state do not alter

compared to the second neighbor state.

The PSG representations given by line two to four in Tab. 9.2 are more restrictive

than the previously discussed case, and second neighbors can only be included by
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adding uniform hopping terms

FCC 1b second : uδr = χ2τ
3,

∀δr second neighbors. (9.41)

Amplitudes and chemical potential are calculated as χ1 = 0.107, χ2 = −0.087 and

a3 = 0.067, where the couplings were fixed J2
J1

= 0.5, as explained above. The

differences compared to the first neighbor state are only quantitative in nature, and

all characteristics are maintained. The ground state energy per site is lowered to

ε2 = −0.183.

A possible third neighbor extension can again include only a uniform hopping

between third neighbors

FCC 1b third : uδr = χ3τ
3,

∀δr third neighbors. (9.42)

Fixing J2
J1

= 0.5 and J3
J1

= 0.25 at the tricritical point yields the amplitudes as

χ1 = 0.108, χ2 = −0.078, χ3 = −0.026 and an on-site term a3 = 0.070. The

resulting energy per site is further lowered to ε3 = −0.188. Yet all characteristics

remain the same regarding the first neighbor state.

Similar to the BCC states it is found that the higher neighbor extensions including

pairing terms yield the lower mean-field ground state energies.

9.5.2. FCC 2: gP = ei
π
3
τ2 state

The Ansatz belonging to this PSG is built according to

u(1/2,1/2,0) = χ1τ
3

= u(1/2,−1/2,0) = u(−1/2,1/2,0) = u(−1/2,−1/2,0),

u(1/2,0,1/2) = χ1

(√
3

2
τ 1 − 1

2
τ 3

)
= u(1/2,0,−1/2) = u(−1/2,0,1/2) = u(−1/2,0,−1/2),

u(0,1/2,1/2) = χ1

(
−
√

3

2
τ 1 − 1

2
τ 3

)
= u(0,1/2,−1/2) = u(0,−1/2,1/2) = u(0,−1/2,−1/2). (9.43)

This state has an interesting property: choosing a gauge such that one direction

is fixed to include only a hopping amplitude, the peculiar representation of permu-

tation immediately induces pairing terms for other directions. Thus this state has

already on the nearest neighbor level the invariance group broken down to Z2.
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In momentum space, the action of time-reversal, followed by inversion IT maps

any momentum back onto itself k → k. In the corresponding PSG time-reversal is

implemented by gT = iτ 2, which combined with inversion gI = τ 0 yields a condi-

tion on the mean-field Hamiltonian (gIgT )†H(k)gIgT = −H(k). It follows that the

Hamiltonian has to anti-commute with the corresponding representation. Further-

more, for momenta that map back onto themselves under permutation P (k) = k,

gP provides an additional condition on the Hamiltonian: g†PH(k)gP = H(k). These

two conditions collide since there cannot be any finite H(k) that anti-commutes

with IT = iτ 2 and commutes with gP = eiθτ
2

at the same time. Indeed, one finds

zero-energy modes in the spectrum shown in Fig. 9.11 along the lines ΓL and LL′,

invariant under P . One sees that additionally to the diagonal lines, a cube-like

object at zero energy. This cube connects different L points in the Brillouin zone,

and its existence is due to the small translations t1 and t2 of the face centered cu-

bic lattice. Acting with these translations on the momentum representation of the

mean-field matrices reveals that uk has to vanish for momenta lying on the edges of

the cube. This manifold of zero-energy modes, pervasive through the entire space,

is protected by the projective symmetries.

(a) (c)(b)

Figure 9.11.: First neighbor state ”FCC 1” on the face centered cubic lattice. (a) shows

the dispersion of Eq. (9.43) along a path through the Brillouin zone. The Fermi surface

is depicted in (b) where the green region indicates the first Brillouin zone. Sub-figure (c)

represents the dynamical structure factor along a path in reciprocal space. (Figure taken

from [60])

To compute the self-consistent amplitudes J1 = 1 is fixed for nearest neighbors

(see discussion FCC 1) yielding χ1 = 0.121. There is no symmetry allowed Lagrange

multiplier possible. The ground state energy per site is ε1 = −0.198. The dynamical

structure factor illustrated in Fig. 9.11 shows the typical cone around the Γ-point

with a constant opening angle. It also shows a feature that looks like a crossings at

ω ≈ 1 at the W point. The edges of the cube, which appear at zero energy can be

connected with nesting vectors X = (2π, 0, 0) (and other permutations). This leads

to a characteristic signal in the spin structure factor. Since here only lines exist the
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9. Projective symmetry group classifications in 3D

intensity of this signal is much lower, as compared to the BCC 1 state for which the

Fermi surface includes entire planes.

Second neighbor terms cannot be included without violating any symmetry con-

dition.

Third neighbor terms follow the description

u(1/2,1/2,1) = χ3τ
3 = u(−1/2,−1/2,−1)

= u(−1/2,−1/2,1) = u(1/2,−1/2,−1) = u(−1/2,1/2,−1)

= u(1/2,1/2,−1) = u(−1/2,1/2,1) = u(1/2,−1/2,1),

u(1/2,1,1/2) = χ3

(√
3

2
τ 1 − 1

2
τ 3

)
= u(−1/2,−1,−1/2)

= u(−1/2,−1,1/2) = u(1/2,−1,−1/2) = u(−1/2,1,−1/2)

= u(1/2,1,−1/2) = u(−1/2,1,1/2) = u(1/2,−1,1/2),

u(1,1/2,1/2) = χ3

(
−
√

3

2
τ 1 − 1

2
τ 3

)
= u(−1,−1/2,−1/2)

= u(−1,−1/2,1/2) = u(1,−1/2,−1/2) = u(−1,1/2,−1/2)

= u(1,1/2,−1/2) = u(−1,1/2,1/2) = u(1,−1/2,1/2). (9.44)

The amplitudes for the fixed ratio J3
J1

= 0.25 are found to be χ1 = 0.121 and

χ3 = −0.035 yielding a ground state energy per site as ε3 = −0.208. The properties

of the third neighbor state are similar to the first neighbor state which also includes

the presence of the zero lines in the energy spectrum.

9.5.3. Summary FCC

The first neighbor states for the face centered cubic lattice can be grouped into

two different Ansatz classes that are called ”FCC 1” and ”FCC 2”. The mean-field

Hamiltonian of ”FCC 1” contains uniform real hopping terms between nearest neigh-

bors. The resulting state has a U(1) invariance group, and its dispersion contains

a Fermi surface. The other possible state, ”FCC 2”, has an interesting structure

combining real hopping and real pairing amplitudes directional dependent. The

invariance group is broken down to Z2. The corresponding projective group repre-

sentation protects some zero-energy nodal lines against any possible perturbation

as long as the projective symmetries are respected. The ground state energy of the

”FCC 2” state is about 27% lower than that of the ”FCC 1” state. Including higher

neighbors to the ”FCC 1” state can be achieved by adding real hopping and real

pairing terms ”a” or by real hopping terms only ”b”. The J couplings were set to
J2
J1

= 1
2

for the second neighbors and J3
J1

= 1
4

for the third neighbors. These couplings
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9.6. Conclusion

relate to phase transitions points of the antiferromagnetic Heisenberg model. The

”FCC 1a” acquires an excitation gap, and the invariance group is further broken

down to Z2 by adding second nearest neighbors. Taking third neighbors into account

does not qualitatively change these results. According to the ”b” description, ex-

tending the first neighbor state has no qualitatively effect neither for the second nor

the third neighbors. Comparing the resulting mean-field energies shows that ”FCC

1a” is slightly lower than ”FCC 1b”. The difference is merely about 1% to 2% com-

paring the second or third neighbor states, respectively. For the ”FCC 2” state, it

was derived that no second neighbor terms respect the symmetries and are absent.

Third neighbor terms have a similar structure to the first neighbor terms and do

not qualitatively change any of the first neighbor state properties. The mean-field

energy remains lower for the ”FCC 2” state.

9.6. Conclusion

The classification of the simple cubic lattice revealed that there are 672 different

algebraic PSGs. These PSGs can lead to 528 possible mean-field models. The

resulting irreducible representations of gauge transformations, which are related to

the symmetry generators, could be used to generalize this classification for the PSGs

of the body- and face centered cubic lattice. It was found that for the BCC lattice

1888 algebraic PSGs exist yielding 1520 mean-field Ansätze and for the FCC lattice

672 algebraic PSGs leading to 528 Ansätze. The PSG representations for the body

centered cubic and face centered cubic lattice were in the following used to construct

all possible short-range mean-field states. It was found that despite the large number

of algebraic PSGs, very few are, in fact, relevant for short-ranged states, which

included couplings up to third nearest neighbors. For both lattices, it was found

that for first nearest neighbor only two gauge inequivalent models exist: One which

has a similar form for both lattices and is described by only a uniform hopping

between nearest neighbors. The second scenario exhibits a particular sign structure

of these hopping amplitudes in the case of the BCC lattice and a more complex

structure, which also involves pairing amplitudes in the FCC lattice case. For both

lattices, it was shown that, based on self-consistent calculations of the energy, the

state which is not built by uniform hopping terms is energetically favorable. It was

shown that including higher neighbor terms can be done in two different manners:

(1) A possible extension includes further hopping terms of second and third nearest

neighbors. (2) The extension incorporates hopping and pairing terms for second- and

third nearest neighbors. These extensions are possible for all studied cases except for

the FCC model, which already on the nearest neighbor level includes pairing terms.

Comparing the resulting mean-field energies revealed that the extension, including
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9. Projective symmetry group classifications in 3D

additional pairing terms, always yields lower energies.

Furthermore, for the energetically favorable state of the face centered cubic lattice,

it could be shown that in the spectrum zero-energy lines exist protected by the

representations of some projective symmetries.

112



10. Conclusion

This concluding chapter summarizes the three main research projects conducted

during the author’s doctoral studies. In the end, some unifying remarks are made,

and an outlook is given.

Concerning the first project, the analysis made in Chapter 7 took up a study in

which 1488 representation were identified in a PSG classification [54]. This pre-

cursory classification, calculated on the square lattice, explicitly took spin rotation

symmetry breaking terms into account. These terms result in an extension of the

spinor space, and the decoupling has to be done in additional triplet channels con-

trary to the usual mean-field approach, which considers only the singlet channel. In

the course of this study, it was found that, in this enlarged setting, which expresses

the effect of spin-orbit coupling, spinons can exhibit non-trivial band topologies.

In the follow-up study, the large number of possible PSGs could be reduced under

the physically motivated assumption that the resulting mean-field models should

contain only short-ranged coupling terms. Limiting these couplings to only first

neighbors led to 28 possible PSG representations. It could be shown that the result-

ing spinon models can merely have topologically trivial bands. Loosening the first

neighbor condition by including second nearest neighbors was found to be sufficient

such that the resulting spinon models revealed topological band structures even un-

der further restraining conditions. Two of these models were further studied. One

of them could be identified as a spinon equivalent of the famous Bernevig-Hughes-

Zhang (BHZ) model. Contrary to the electric model, the spinon model contains a

cos kx cos ky dependency of the effective mass, which drives the occurrence of a sec-

ond band inversion resulting in an additional topological phase with Chern number

n↑ = 2. This phase and the second band inversion are absent in the BHZ model.

In the following, the effect of visons was studied. In this regard, the two topologi-

cal second nearest neighbor models, as well as one topologically trivial first neighbor

model, were extended in a manner that a resulting lattice model takes static config-

urations of a background gauge field into account. By choosing these background

configurations, it is possible to mimic the effect of vison excitations. The first result

confirmed that all spinon models represent a vison deconfining phase. The insertion

of a pair of visons amounts to the cost of finite energy. However, the separation of

an existing pair does not require significantly more energy. The responsible confin-
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10. Conclusion

ing potential was observed to be short-ranged in nature and became irrelevant only

after two elementary plaquette steps. It was further found that spinons and visons

form composite objects that appear in the low-energy region of the spectrum. In

the case of the topologically non-trivial spinon band models, it was found that these

spinon-visons pair states are Majorana zero modes. This statement was supported

by an exact mapping between the spinon-vison model to a continuum model, which

was identified as the p + ip Bogoliubiv-de Gennes Hamiltonian coupled to a vortex

in the superconducting pairing field. For the later model, the existence of Majorana

modes had already been rigorously established [56, 57]. The effect of a gas of visons

was also considered. In order to imitate such a gas, visons were included on random

lattice positions. These gases were created such that visons appeared on 0.6% and

2% of all plaquettes. These visons led to the occurrence of characteristic peaks in

the low-energy spectrum. It was claimed that these peaks could be an experimental

signature that reveals information on the spinon band topology.

The second project explained in Chapter . 8, was initiated shortly after the com-

pound Ca10Cr7O28 had been proposed as a quantum spin liquid candidate [50]. At

the moment, such candidates are rare, and thus its discovery is a felicitous circum-

stance and enables the community of condensed matter theorists to affirm or refute

existing theories. In the case of the fermionic mean-field theory, its correctness

would imply that the material, if it is a veritable Z2 quantum spin liquid, should in

the low-energy regime show properties of a free fermionic state. The spinon hop-

ping model concocted in Chapter 8 showed precisely this. In a first step, reflecting

the geometry of the magnetic couplings, the complexity was reduced by an effective

description that was built upon a single layer honeycomb - instead of the original bi-

layer kagome lattice. This reduction introduced a new basis in which the low-energy

degrees of freedom are described by emerging spin-3/2 objects. These objects can be

identified as symmetric superpositions of three ferromagnetically coupled spins sit-

ting on triangles. The full vector space required two additional perpendicular basis

vectors, which correspond to spin-1/2 objects representing antisymmetric superposi-

tions. These three basis vectors can be understood as the irreducible representations

of the dihedral group D3. From a technical point of view, in the spinon model, these

components were energetically separated by choosing a suitable chemical potential.

To reproduce the observed linear temperature dependency of the heat capacity the

chemical potential of the energetically low sitting spin-3/2 objects was tuned such

that a Fermi surface appeared. A second potential term raised the antisymmetric

superposed objects in energy such that separation in the form of an energy gap oc-

curred. Based on the overlap properties of the corresponding eigenstates, this simple

model already explained some of the key features found in the neutron scattering

data.
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High-resolution data of the heat capacity in the lowest accessible temperature

regime showed a small deviation from linearity. The new dependency appears to

be quadratic in temperature. Therefore, it was argued that these deviations are

not due to the, in the free fermion model neglected, visons, for which the expected

behavior follows a T 2/3 law [127], but rather due to a spinon pairing mechanism. The

pairing is most likely momentum dependent, which excludes a simple s-wave spinon

superconductor. Fitting different pairing models to the available data and taking

symmetry arguments into account suggested an f -wave pairing. The corresponding

amplitude, however, appeared to be very small such that no attempt was made in

order to include this feature into the spinon hopping model. The reason for this lies

in the resolution of the scattering plots, which are too coarse to resolve such a small

amplitude correctly. Yet conceptually, this mechanism is crucial as it breaks the

invariance group and therefore completes the picture of a Z2 quantum spin liquid.

In the final project, PSG classifications explained in Chapter 9, were made for the

simple-, body-, and face centered cubic lattice. The relevant PSG equations were

identified which are given respectively in Eq. (9.4), Eq. (9.16) and Eq. (9.18), and

the corresponding irreducible representations shown in Appendix A.4. It was found

that despite the large numbers of possible PSG realizations for every lattice, only a

few of them are, in fact, relevant for short-ranged spinon mean-field models. Based

on these classifications such short-ranged mean-field Hamiltonians were constructed

for the body- and face centered cubic lattice, including up to third nearest neigh-

bors coupling. Using a Hartree-Fock self-consistency procedure, these models were

further scrutinized by analyzing the spinon band dispersion and the dynamical spin

structure factor. On the body centered cubic lattice, two different first neighbor

states could be identified, which can be distinguished through the representation of

the symmetry generator P . Both states result from mean-field models containing

only real hopping amplitudes. For the state which was labeled ”BCC 1”, these am-

plitudes are spatially uniform, whereas the model resulting in the state ”BCC 2”

showed some sign patterns induced by a non-trivial symmetry representation P . The

dispersions of both states contain a Fermi surface. The surface of the state ”BCC 1”

consists of nearly parallel planes leading to the existence of a Nesting vector. This

vector evokes a characteristic signature in the dynamical structure factor. Compar-

ison of the self-consistently calculated mean-field ground state energies suggested

that the ”BCC 2” state is more likely to be realized as it lies about 40% lower in

energy. However, both models include a SU(2) invariance group. Therefore, the ef-

fective low-energy models contain gapless fermionic modes and gapless gauge fields.

This might spark some skepticism about the correctness of the mean-field approach.

Besides that, the classical antiferromagnetic Heisenberg model does not develop any

frustration, and the ground state is described by Néel order. Including second- and
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third neighbors breaks this SU(2) invariance to either U(1) or Z2. The second and

third neighbor models were respectively derived for fixed J1 = 1, J2
J1

= 2
3
, J3
J1

= 1
4

coupling constants. In the case of second neighbors, the corresponding classical

Heisenberg model is at a phase transition point. The parameters for third neighbors

lie in a non-magnetic phase [147]. The spatially extended models include in the Z2

scenario additional real hopping and real pairing terms while the later destroy the

Fermi surface and open a bandgap. The extension resulting in the U(1) state can

consist of only further real hopping terms, which leads to the persistence of gapless

fermionic modes. The self-consistently determined energies indicated that for the

”BCC 1” state, the Z2 scenario is more favorable, whereas for ”BCC 2” state, for

which no second neighbor extensions are symmetry allowed, both scenarios yielded

comparable energies.

On the face centered cubic lattice, it was similarly found that only two different

states appear, which again can be classified according to the representation of P .

The ”FCC 1” state results from a uniform and real spinon hopping Ansatz. It has

a Fermi surface of a circular shape, which is slightly deformed. The U(1) invariance

group of this first neighbor state can be broken by including real pairing terms of

higher neighbor bonds. Such an extension would be energetically favorable compared

to an extension of only further real hopping terms. These findings rely on self-

consistent calculations of the respective mean-field energies with J1 = 1, J2
J1

= 1
2
, J3
J1

=
1
4

fixed. The second neighbor couplings are chosen at a phase transition point, and

the third neighbors are at a triple point of the classical Heisenberg model. The

second state, ”FCC 2”, has a more involved structure. Caused by a non-trivial

representation of P , the first neighbor state already includes hopping and pairing

terms, which immediately break the invariance group down to Z2. The corresponding

amplitudes are symmetry-related and alternate for different spatial directions. It

could be shown that in the spinon band dispersion, zero-energy lines exist, which are

protected by different PSG elements. These zero-energy lines are pervasive through

the entire momentum space. This state cannot contain any symmetry consistent

second neighbor terms. Third neighbor terms show a similar pattern to the first

neighbor terms, and qualitatively do not change the first neighbor state. The ”FCC

2” state has a lower mean-field ground state energy than the ”FCC 1” state.

Within this thesis, several aspects of the mean-field approach to antiferromagnetic

Heisenberg systems have been considered. These mean-field theories are founded

upon a rewriting of the spin operators in terms of fermionic operators, which can

be linked to the fractionalized spinon excitations governing the low-energy regime

of quantum spin liquid states. The usage of this formalism is twofold. In one way,

it makes it possible to classify exotic phases which otherwise evade a conventional

classification scheme. This is achieved using projective symmetry group represen-
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tations. Knowledge of these group representations enables the construction of all

possible symmetry allowed mean-field Ansätze for a given space group. In a second

usage, the fermionic mean-field theory can be applied in order to build a phenomeno-

logical effective low-energy theory as it was explained for the quantum spin liquid

candidate Ca10Cr7O28. Regardless of the details of their derivation, such mean-field

models can help to identify relevant quantum models. This is important since many

numerical methods are powerful in calculating certain correlation functions, but de-

riving the fundamental microscopic models may be an obstacle. Furthermore, in

the mean-field formalism, it is possible to directly access the dynamical spin struc-

ture factor, which can be immediately connected to experimental neutron scattering

data. Numerical methods cannot always probe this quantity. Any given mean-

field state may be readily improved as it provides a starting point for a variational

method in the form of an initial Ansatz. An enhancement could also be obtained

by including pseudofermion functional renormalized vertex functions [144]. Both

methods take fluctuations into account, which are neglected in the bare mean-field

theory. Concerning this last point, the mean-field theory can, on its own, be further

improved. As explained in this work existing mean-field models that entirely ex-

clude the emerging gauge fields can be generalized by incorporating static gauge field

configuration. This method is still not capable of describing full dynamical gauge

fields, but it may serve to study the mutual effect of spinon and vison excitations. In

this context, an experiment was proposed that might reveal some information about

the spinon band dispersion by measuring the energy-resolved density of states while

changing the temperature. The basic idea behind this procedure is that thermal

fluctuations can excite visons, which then bind spinon modes. These composite

objects are expected to emerge in the spectrum at zero energy if the spinon bands

are topologically non-trivial. In summary, this work showed that mean-field theory,

if correctly applied, is, despite its flaws, a suitable analytic tool in order to study

strongly correlated spin systems from the perspective of describing quantum spin

liquid states.
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A. Appendix

A.1. Point group generators and corresponding spin space

representations for the square lattice

The square lattice is besides the two translations Tx, Ty defined by the following

generators

Px : r→ (−x, y)

Py : r→ (x,−y)

Pxy : r→ (y, x)

(A.1)

This is further illustrated in Fig. A.1. In the case that spin rotational symmetry is

broken the PSG classification needs to take a further operator into account, which

acts as

Pz : z → −z. (A.2)

These operators act on a spinor doublet fr = (fr↑, fr↓) according to

Px : fr → exp(−iπ
2
τ 1)fPx(r)

Py : fr → exp(−iπ
2
τ 2)fPy(r)

Pxy : fr → exp(−iπ
2
τ 1) exp(−iπ

4
τ 3)fPxy(r)

Pz : fr → exp(−iπ
2
τ 3)fr.

(A.3)

These relations can be used to determine the coefficients of the representation ma-

trices DS which where defined in Chapter 5.

x

y

r

Pxy(r)

Px(r)

Py(r)

Figure A.1: The action of the gen-

erators given in Eq. (A.1) denoted

in blue on a vector r drawn in red.
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A. Appendix

A.2. Projective symmetry conditions on the mean-field matrices

ũrr′

This appendix shows for the square lattice the projective transformation properties

of an Ansatz for all channels uXrr′ with X = s, t1, t2, t3.

−ηδx+δy
T g†T u

s
δrgT = usδr,

ηδxPxη
δy
Pyg

†
Pxu

s
Px(δr)gPx = usδr,

ηδxPyη
δy
Pxg

†
Pyu

s
Py(δr)gPy = usδr,

ηδxδyg†Pxyu
s
Pxy(δr)gPxy = usδr,

ηδx+δy
Pz g†Pzu

s
δrgPz = usδr,

ηδxδy(us)†−δr = usδr

(A.4)

−ηδx+δy
T g†T u

t1
δrgT = ut1δr,

−ηδxPxη
δy
Pyg

†
Pxu

t1
Px(δr)gPx = ut1δr,

−ηδxPyη
δy
Pxg

†
Pyu

t1
Py(δr)gPy = ut1δr,

−ηδxδyg†Pxyu
t1
Pxy(δr)gPxy = ut1δr,

ηδx+δy
Pz g†Pzu

t1
δrgPz = ut1δr,

ηδxδy(ut1)†−δr = ut1δr

(A.5)

−ηδx+δy
T g†T u

t2
δrgT = ut2δr,

−ηδxPxη
δy
Pyg

†
Pxu

t2
Px(δr)gPx = ut2δr,

ηδxPyη
δy
Pxg

†
Pyu

t2
Py(δr)gPy = ut2δr,

−iηδxδyg†Pxyu
t2
Pxy(δr)gPxy = ut3δr,

−ηδx+δy
Pz g†Pzu

t2
δrgPz = ut2δr,

−ηδxδy(ut2)†−δr = ut2δr

(A.6)

−ηδx+δy
T g†T u

t3
δrgT = ut3δr,

ηδxPxη
δy
Pyg

†
Pxu

t3
Px(δr)gPx = ut3δr,

−ηδxPyη
δy
Pxg

†
Pyu

t3
Py(δr)gPy = ut3δr,

iηδxδyg†Pxyu
t3
Pxy(δr)gPxy = ut2δr,

−ηδx+δy
Pz g†Pzu

t3
δrgPz = ut3δr,

ηδxδy(ut3)†−δr = ut3δr.

(A.7)
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A.3. Nearest neighbor coupling Z2 mean-field Anstätze

In each of these equations, the last line ensures hermiticity of the mean-field Hamil-

tonian.

A.3. Nearest neighbor coupling Z2 mean-field Anstätze

All possible Z2 mean-field Anstätze for nearest neighbor coupling with fully broken

SU(2) spin-rotation symmetry on the square lattice and their corresponding PSG

representations are listed below:

gPz = τ 0, gT = τ 0, gPxy = iτ 3, gPx = iτ 1, gPy = iτ 1

ηPz = −1, ηT = −1, η = ±1, ηPx = 1, ηPy = 1
(A.8)

gPz = τ 0, gT = τ 0, gPxy = iτ 3, gPx = iτ 1, gPy = iτ 1

ηPz = −1, ηT = −1, η = ±1, ηPx = −1, ηPy = −1
(A.9)

gPz = iτ 3, gT = τ 0, gPxy = iτ 3, gPx = iτ 1, gPy = iτ 1

ηPz = 1, ηT = −1, η = ±1, ηPx = −1, ηPy = −1
(A.10)

gPz = iτ 2, gT = τ 0, gPxy = τ 0, gPx = iτ 3, gPy = iτ 3

ηPz = 1, ηT = −1, η = ±1, ηPx = −1, ηPy = −1
(A.11)

gPz = iτ 2, gT = τ 0, gPxy = iτ 3, gPx = τ 0, gPy = τ 0

ηPz = 1, ηT = −1, η = ±1, ηPx = 1, ηPy = 1
(A.12)

gPz = iτ 1, gT = τ 0, gPxy = iτ 3, gPx = iτ 1, gPy = iτ 1

ηPz = 1, ηT = −1, η = ±1, ηPx = 1, ηPy = 1
(A.13)

gPz = iτ 2, gT = τ 0, gPxy = iτ 3, gPx = τ 0, gPy = τ 0

ηPz = −1, ηT = −1, η = ±1, ηPx = 1, ηPy = −1
(A.14)

gPz = iτ 1, gT = τ 0, gPxy = iτ 3, gPx = iτ 1, gPy = iτ 1

ηPz = −1, ηT = −1, η = ±1, ηPx = −1, ηPy = 1
(A.15)

gPz = iτ 2, gT = τ 0, gPxy = iτ 3, gPx = iτ 3, gPy = iτ 3

ηPz = 1, ηT = −1, η = ±1, ηPx = −1, ηPy = −1
(A.16)
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gPz = iτ 2, gT = τ 0, gPxy = iτ 3, gPx = iτ 1, gPy = iτ 1

ηPz = 1, ηT = −1, η = ±1, ηPx = −1, ηPy = −1
(A.17)

gPz = iτ 1, gT = τ 0, gPxy = iτ 3, gPx = iτ 1, gPy = iτ 1

ηPz = −1, ηT = −1, η = ±1, ηPx = −1, ηPy = −1
(A.18)

gPz = iτ 2, gT = τ 0, gPxy = iτ 3, gPx = τ 0, gPy = τ 0

ηPz = −1, ηT = −1, η = ±1, ηPx = 1, ηPy = 1
(A.19)

gPz = iτ 2, gT = τ 0, gPxy = iτ 3, gPx = τ 0, gPy = τ 0

ηPz = 1, ηT = −1, η = ±1, ηPx = −1, ηPy = −1
(A.20)

gPz = iτ 1, gT = τ 0, gPxy = iτ 3, gPx = iτ 1, gPy = iτ 1

ηPz = 1, ηT = −1, η = ±1, ηPx = −1, ηPy = −1
(A.21)

These representations in combination with the PSG equations of Appendix A.2

enable the construction of symmetric mean-field states on the square lattice.

A.4. Inequivalent PSG representations

Tab. A.1 lists a set of inequivalent representation matrices for the point group gen-

erators of the simple cubic lattice. The matrices for Πz,Πy can only be trivially

represented gΠz = gΠy = τ 0 without violating any of the algebraic conditions of

Eq. (9.4). There are 21 different choices for the remaining matrices. For every pos-

sible set of matrices, a set of ηS = ±1 sign factors complete the PSG representation,

besides the case in which gT = τ 0 where only ηT = −1 is possible. In the face

centered cubic lattice the additional symmetries can only have a trivial matrix rep-

resentation gt1 = gt2 = τ 0. The representation matrices are, therefore, the same as

for the simple cubic lattice (see Tab. A.1). In the body centered cubic lattice gauge

inequivalent choices are shown in Tab. A.2. Here are 51 different choices possible.
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A.4. Inequivalent PSG representations

gT gP gI gΠxy

τ 0 τ 0 τ 0 τ 0

τ 0 τ 0 iτ 2 τ 0

τ 0 τ 0 τ 0 iτ 2

τ 0 τ 0 iτ 2 iτ 2

τ 0 τ 0 iτ 2 iτ 3

τ 0 ei
π
3
τ2 τ 0 iτ 3

τ 0 ei
π
3
τ2 iτ 2 iτ 3

τ 0 ei
2π
3
τ2 τ 0 iτ 3

τ 0 ei
2π
3
τ2 iτ 2 iτ 3

iτ 2 τ 0 τ 0 τ 0

iτ 2 τ 0 iτ 2 τ 0

iτ 2 τ 0 iτ 3 τ 0

iτ 2 τ 0 τ 0 iτ 2

iτ 2 τ 0 τ 0 iτ 3

iτ 2 τ 0 iτ 2 iτ 2

iτ 2 τ 0 iτ 3 iτ 2

iτ 2 τ 0 iτ 3 iτ 3

iτ 2 ei
π
3
τ2 τ 0 iτ 3

iτ 2 ei
π
3
τ2 iτ 2 iτ 3

iτ 2 ei
2π
3
τ2 τ 0 iτ 3

iτ 2 ei
2π
3
τ2 iτ 2 iτ 3

Table A.1.: Projective represen-

tation matrices for the simple

cubic and face centered cubic

lattice.

gT gP gI gΠxy gt
τ 0/iτ 2 τ 0 τ 0 τ 0 τ 0

τ 0/iτ 2 τ 0 iτ 2 τ 0 τ 0

τ 0/iτ 2 τ 0 τ 0 iτ 2 τ 0

τ 0/iτ 2 τ 0 τ 0 τ 0 iτ 2

τ 0/iτ 2 τ 0 τ 0 iτ 2 iτ 2

τ 0/iτ 2 τ 0 iτ 2 iτ 2 τ 0

τ 0/iτ 2 τ 0 iτ 2 τ 0 iτ 2

τ 0/iτ 2 τ 0 iτ 2 iτ 2 iτ 2

τ 0/iτ 2 τ 0 iτ 2 iτ 3 τ 0

τ 0/iτ 2 τ 0 iτ 2 τ 0 iτ 3

τ 0/iτ 2 τ 0 τ 0 iτ 2 iτ 3

τ 0/iτ 2 τ 0 iτ 2 iτ 3 iτ 3

τ 0/iτ 2 τ 0 iτ 2 iτ 2 iτ 3

τ 0/iτ 2 τ 0 iτ 2 iτ 3 iτ 2

τ 0/iτ 2 τ 0 iτ 2 iτ 3 iτ 1

iτ 2 τ 0 iτ 3 τ 0 τ 0

iτ 2 τ 0 τ 0 iτ 3 τ 0

iτ 2 τ 0 τ 0 τ 0 iτ 3

iτ 2 τ 0 τ 0 iτ 3 iτ 3

iτ 2 τ 0 τ 0 iτ 3 iτ 1

iτ 2 τ 0 iτ 3 iτ 2 τ 0

iτ 2 τ 0 iτ 3 τ 0 iτ 2

iτ 2 τ 0 iτ 3 iτ 2 iτ 2

iτ 2 τ 0 iτ 3 iτ 3 τ 0

iτ 2 τ 0 iτ 3 τ 0 iτ 3

iτ 2 τ 0 iτ 3 iτ 3 iτ 3

iτ 2 τ 0 iτ 3 iτ 3 iτ 1

iτ 2 τ 0 iτ 3 iτ 1 iτ 1

τ 0/iτ 2 ei
π
3
τ2 τ 0 iτ 3 τ 0

τ 0/iτ 2 ei
π
3
τ2 τ 0 iτ 3 iτ 2

τ 0/iτ 2 ei
π
3
τ2 iτ 2 iτ 3 τ 0

τ 0/iτ 2 ei
π
3
τ2 iτ 2 iτ 3 iτ 2

τ 0/iτ 2 ei
2π
3
τ2 τ 0 iτ 3 τ 0

τ 0/iτ 2 ei
2π
3
τ2 τ 0 iτ 3 iτ 2

τ 0/iτ 2 ei
2π
3
τ2 iτ 2 iτ 3 τ 0

τ 0/iτ 2 ei
2π
3
τ2 iτ 2 iτ 3 iτ 2

Table A.2.: Projective representation matrices for the body

centered cubic lattice. The notation τ0/iτ2 indicated that

gT can either be represented by τ0 or iτ2.
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growth, structure and magnetic properties of Ca10Cr7O28. Journal of Physics:

Condensed Matter, 29(22):225802, apr 2017.

[53] Jonas Sonnenschein and Johannes Reuther. Topological spinon bands and

vison excitations in spin-orbit coupled quantum spin liquids. Phys. Rev. B,

96:235113, Dec 2017.

[54] Johannes Reuther, Shu-Ping Lee, and Jason Alicea. Classification of spin

liquids on the square lattice with strong spin-orbit coupling. Phys. Rev. B,

90:174417, Nov 2014.

[55] B. Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang. Quantum spin

hall effect and topological phase transition in HgTe quantum wells. Science,

314(5806):1757–1761, 2006.

[56] R. Jackiw and P. Rossi. Zero modes of the vortex-fermion system. Nuclear

Physics B, 190(4):681 – 691, 1981.

[57] N. Read and Dmitry Green. Paired states of fermions in two dimensions with

breaking of parity and time-reversal symmetries and the fractional quantum

hall effect. Phys. Rev. B, 61:10267–10297, Apr 2000.

[58] V. Gurarie and L. Radzihovsky. Zero modes of two-dimensional chiral p-wave

superconductors. Phys. Rev. B, 75:212509, Jun 2007.

[59] Jonas Sonnenschein, Christian Balz, Ulrich Tutsch, Michael Lang, Hanjo

Ryll, Jose A. Rodriguez-Rivera, A. T. M. Nazmul Islam, Bella Lake, and Jo-

129



Bibliography

hannes Reuther. Signatures for spinons in the quantum spin liquid candidate

Ca10Cr7O28. Phys. Rev. B, 100:174428, Nov 2019.

[60] Jonas Sonnenschein, Aishwarya Chauhan, Yasir Iqbal, and Johannes Reuther.

Projective symmetry group classifications of quantum spin liquids on the sim-

ple cubic, body centered cubic, and face centered cubic lattices. Phys. Rev. B,

102:125140, Sep 2020.

[61] Samuel Bieri, Laura Messio, Bernard Bernu, and Claire Lhuillier. Gapless

chiral spin liquid in a kagome heisenberg model. Phys. Rev. B, 92:060407(R),

Aug 2015.

[62] Steven Weinberg. The Quantum Theory of Fields, volume 1. Cambridge

University Press, 1995.

[63] Steven Weinberg. The Quantum Theory of Fields, volume 2. Cambridge

University Press, 1996.

[64] L. D. Faddeev and V. N. Popov. Feynman diagrams for the Yang-Mills field.

Physics Letters B, 25(1):29–30, July 1967.
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