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Abstract

Superconductors exhibit a collective amplitude mode of the order parameter, which is called
Higgs mode. With the upcoming of new THz laser technology in recent years, it was possible to
excite Higgs oscillations in nonequilibrium experiments. This thesis studies Higgs oscillations in
unconventional superconductors with nontrivial pairing symmetry. In comparison to conventional
superconductors, unconventional superconductors show a much richer spectrum of Higgs modes.

The occurring Higgs modes depend on the pairing symmetry and the excitation scheme. These
modes are interesting to study as their oscillation frequency encodes multiple ground state
properties of the energy gap like number of nodes in the pairing symmetry, sign of the symmetry
function, number of gaps or even coupling to other modes. In this thesis, different kinds of
excitation schemes are explored, including interaction quenches, state quenches, coupling to
ultrashort THz light pulses or periodic driving with light. Excited by these methods, several
observables are investigated, including the induced gap oscillation itself, time-resolved optical
conductivity, time-resolved ARPES spectra and third-harmonic generation responses. In all of
these quantities, Higgs oscillations can be observed, which allows for an experimental observation.
This thesis is embedded in a new upcoming field, termed Higgs spectroscopy, which aims for
the systematic investigation and identification of Higgs modes in superconductors. As a future
perspective, the tool of Higgs oscillations might be used as a novel spectroscopic tool for studies
on unconventional superconductors.
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Zusammenfassung

In Supraleitern existiert eine kollektive Amplitudenmode des Ordnungsparameters, welche Higgs-
Mode genannt wird. Mit Hilfe der in den letzten Jahren aufkommenden THz Laser Technologie
war es möglich, Higgs-Oszillationen im Nichgleichgewicht anzuregen. Diese Arbeit untersucht
Higgs-Oszillationen in unkonventionellen Supraleitern mit nichttrivialer Paarungssymmetrie. Im
Vergleich zu konventionellen Supraleitern weisen unkonventionelle Supraleiter ein viel komplexeres
Spektrum auf.

Die auftretenden Higgs-Moden hängen dabei von der Paarungssymmetrie und der Anregungs-
art ab. Diese Moden sind interessant zu untersuchen, da ihre Oszillationsfrequenz eine Vielzahl
von Grundzustandseigenschaften enthält, wie Anzahl von Knoten der Paarungssymmetrie, das
Vorzeichen der Symmetriefunktion, Anzahl an Energielücken oder sogar die Kopplung an andere
Moden. In dieser Arbeit werden unterschiedliche Anregungsarten untersucht, wie Wechselwirkung-
Quenches, Zustand-Quenches, Kopplung an ultrakurze THz-Lichtpulse oder periodisches Treiben
mit Licht. Nach der Anregung durch diese Methoden werden unterschiedliche Beobachtungsgrö-
ßen ausgewertet, darunter die induzierten Energielückenoszillationen, die zeitaufgelöste optische
Leitfähigkeit, zeitaufgelöste ARPES-Spektren und die erzeugte dritte-harmonische Antwort. In all
diesen Größen können Higgs-Oszillationen beobachtet werden, wodurch eine experimentelle Mes-
sung möglich wird. Diese Arbeit ist in einem neuen aufstrebenden Feld, der Higgs-Spektroskopie,
eingebettet, welches darauf abzielt, die Higgs-Moden in Supraleitern systematisch zu untersuchen
und zu identifizieren. Perspektivisch könnten Higgs-Oszillationen als ein neues spektroskopisches
Werkzeug zur Untersuchung von unkonventionellen Supraleitern verwendet werden.
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1 Introduction

Condensed matter physics has several conceptual connections to high-energy physics. There
are analogies on the fermionic side such as Majorana fermions, where quasiparticles are their
antiparticles in topological superconductors [1], or Weyl fermions and massless Dirac particles
in semimetals [2]. On the bosonic side, there is one analogy, which is connected to the Higgs
mechanism. Actually, this mechanism applied to superconductors was first described by P. W.
Anderson in 1963 [3] and was extended to a relativistic description for particle physics by P.
Higgs and others one year later [4–6]. In condensed matter physics, it is therefore often called
Anderson-Higgs mechanism. While in high-energy physics, the Higgs mechanism gives mass to
the W± and Z0 gauge bosons of the weak interaction, in superconductors, the Higgs mechanism
gives mass to the photons. This corresponds to the Meissner effect, i.e. an expulsion, or more
accurately, an exponential decay of the magnetic field in the material due to the finite mass of
the photon. Just as the Higgs boson is the elementary excitation of the Higgs field, there is also
an elementary excitation in superconductors. As the superconducting condensate represents the
Higgs field, the Higgs mode is a collective excitation of the superconducting order parameter.
On a phenomenological level, there is a basic picture to visualize the Higgs mode. The Ginzburg-
Landau free energy of a superconductor has the shape of a Mexican hat (Fig. 1.1), where in
the ground state, the order parameter is located at the minimum of the brim. The Higgs mode
corresponds to radial excitations in this picture, i.e. fluctuations in the amplitude of the order
parameter. In an s-wave superconductor, the energy of the Higgs mode or the frequency of the
oscillation is given by the value of the superconducting gap 2∆.

While the Anderson-Higgs mechanism was already predicted theoretically in the 1960s, there
was no experimental evidence for the Higgs mode in superconductors for a long time. This is
due to the fact that an excitation of the Higgs mode is rather challenging as its coupling to
external probes is weak. The Higgs mode is a scalar mode without electric or magnetic dipole
moment. Thus, it cannot couple linearly to light. Its excitation is restricted to nonlinear processes,
which makes its detection difficult. The fundamental excitation can be understood as an effective
Raman excitation depicted in Fig. 1.2a), which is a two-photon process. However, light cannot
couple directly to the Higgs mode as the light-matter coupling occurs in the charge channel,
whereas the Higgs mode occurs in the orthogonal amplitude channel [9–11]. Therefore, the vertex
shown in Fig. 1.2a) should be understood as an effective vertex including additional components.
Indeed, the first experimental fingerprint was rather indirect. In 1980/1981, it was observed

[12, 13] and also theoretically described [14, 15] that in the superconductor NbSe2, the Higgs
mode can couple to a charge density wave (CDW), which is on a similar energy scale in this
specific material. In a Raman experiment, a peak below 2∆ was observed. It was attributed to
the renormalized Higgs mode coupling to the CDW and through this, it becomes Raman-active.
These experiments were recently repeated for varying temperature comparing NbSe2 with NbS2,
where no CDW exists [16, 17]. In addition, pressure dependence has been investigated [18, 19],
confirming the results of the early experiments.

A direct excitation of the Higgs mode is believed to be possible only in nonequilibrium experi-
ments. This was predicted for the first time in 1974 [20], where a quench of the superconducting
order parameter was considered and the ensuing nonequilibrium dynamic calculated. In the
description of the free energy, a quench corresponds to a fast shrinking of the Mexican hat, such
that the old equilibrium position is no longer an equilibrium position of the quenched system
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a) Quench

Re Δ

Im Δ

t0

t1

b) Drive

Re Δ

Im Δsingle-cycle THz quench

ωH=2Δ

multi-cycle THz drive

ω=2Ω

third-harmonic generation

resonance at
2Ω=2Δ

Ω

3Ω

linear response

THz
probe pulse

Figure 1.1 a) Free energy F of a superconductor shaped as a Mexican hat, where the black ball represents
the order parameter. After a quench with a THz laser pulse, the equilibrium potential shrinks from t0 → t1.
The order parameter ends up in an out of equilibrium position and starts to oscillate around the new
minimum with a frequency of ωH = 2∆. This radial oscillation corresponds to the Higgs mode, i.e. a
fluctuation in the amplitude of the order parameter. The oscillation can be probed in linear response with
a second pulse. b) Driven Higgs oscillations with a multi-cycle THz laser pulse of frequency Ω. Due to
the quadratic coupling, the order parameter is enforced to oscillate with 2Ω. A third-harmonic generation
(THG) signal is emitted, which shows a resonance when the driving frequency coincides with the energy
of the Higgs mode, i.e. at 2Ω = 2∆. Figure adapted from [7] and [8].

and oscillations around the new minimum occur (Fig. 1.1a). These induced oscillations have a
frequency of 2∆, i.e. the energy of the Higgs mode.
This idea of quenching the superconductor to push it to a nonequilibrium state has led to a

large number of theoretical studies including explorations of different quench regimes [21–23],
studies about the integrability of the quenched system [24–27], how to quench a superconductor
with light pulses [28–31] and studies on 1d [32] or multiband systems [33]. Furthermore, the
general theory of Higgs physics in superconductors and other condensed matter systems has been
widely explored [9, 34, 35].

However, after these theoretical works, it took a few more years until the first experimental
observation of Higgs oscillations in nonequilibrium in the s-wave superconductor Nb1−xTixN in
2013 [36]. In this experiment, Higgs oscillations could be observed in the time-resolved optical
conductivity in a pump-probe setup (Fig. 1.1a). Coincidentally, this happened just one year after
the detection of the long-sought Higgs boson of the standard model at CERN in 2012 [37, 38],
which boosted the research interest on Higgs physics in condensed matter. The nonequilibrium
experiment on superconductors requires phase-stable single-cycle ultrafast THz laser pulses in
order to quench the superconductor. While THz technology is required to match with the typical
energy gap sizes of superconductors in the meV range, single-cycle pulses are crucial to change
the system fast in a nonadibatic way to resemble a quantum quench. Such experiments are a
new method compared to traditional pump-probe experiments, where the system is excited by a
pump pulse to high energy states and the relaxation is studied by a second weak probe pulse,
which is applied after a variable time delay to scan the dynamic. With the ultrafast THz lasers,
the pump pulse acts as a quench and excites the system only gently such that its dynamic can
be observed with the probe pulse without the whole signal being screened by the response of hot
electrons.

2
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2Δ

broken
Cooper pairs

continuum

THz
pulse

σ1

Energy

c)

τ< h/2Δ

A

Time

H

A

A

Γ

Figure 1.2 a) Feynman diagram describing the excitation of the Higgs mode with light via a nonlinear
two-photon effective Raman process. The vertex Γ is an effective vertex describing the coupling of light
to the Higgs mode. The wiggly line represents the photon and the double-dashed line the Higgs mode. b)
Experimental requirement of the quench pulse energy. The THz pulse should only slightly overlap with the
quasiparticle continuum in order to not completely deplete the condensate. c) Experimental requirement
of the quench pulse in time. The pulse should be short in time, i.e. τ < h/2∆, in order to quench the
condensate and induce a nonadiabatic change of the system. Figure adapted from [7].

The actual implementation of the pump or quench pulse contains certain subtleties, which
make the quench-probe experiments difficult to conduct. There are two contradictory conditions
for the quench pulse, which are depicted in Fig. 1.2b) and c). On the one hand, the pulse
should be narrow in energy and positioned inside the gap 2∆, with only a small overlap over the
quasiparticle continuum. With this, the required excitation energy still lies within the bandwidth
of the pulse but only with low intensity such that a strong depletion of the condensate is prevented,
which would screen the measured signal due to a strong Drude response. On the other hand,
the pulse must also be short in time in order to induce a fast change of the system and act as
a quench. A pulse which is too wide changes the system only adiabatically, which means, in
the picture of the Mexican hat, that the ball would always stay in the ground state during the
shrinking of potential and no oscillations occur. These two conditions cannot be fulfilled perfectly
simultaneously due to the quantum mechanical energy-time uncertainty. However, single-cycle
THz pulses lie exactly in between these two regimes, which makes them the perfect tool for such
nonequilibrium excitations.
Only shortly later after the pump-probe experiment, the Higgs mode was measured with

an alternative setup in 2014 [39]. Instead of quenching the superconductor, it was periodically
driven with a multi-cycle THz pulse (see Fig. 1.1b). Due to the quadratic coupling of light to
the condensate, a driving with frequency Ω leads to an effective 2Ω drive. When the energy of
the driving field matches with the energy of the Higgs mode, i.e. 2Ω = 2∆, a resonance occurs,
which can be observed in the nonlinear third-harmonic generation (THG) response [40]. This
allows to detect the existence of the Higgs mode due to a resonance in the THG spectrum.

With the experimental observability of the Higgs mode proven, a huge number of new theoretical
efforts were stimulated. This is demonstrated by the following long enumeration, which gives an
overview of pursued research directions. The research includes predictions on the observability
of the Higgs mode in time-resolved angle-resolved photo emission spectroscopy (tr-ARPES)
[41–44], investigations on additional contributions to the intensity in third-harmonic generation
experiments [45–48], further studies on multiband systems [47–51] and pump-probe experiments
[52–58], studies on coupling to other modes such as the Bardasis-Schrieffer mode [59–61], Leggett
mode [48, 50] or charge density wave and bound-density wave order [62–64], investigations on the
effect of impurity scattering in dirty superconductors, which enhances the coupling of light to the
Higgs mode [65–70], analysis of dissipation or damping of the Higgs mode [43, 71–73], descriptions
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of light-condensate coupling with gauge-invariant theories [69, 74–78], investigations of effects
in strongly coupled superconductors [46, 72, 79], studies on linear activation in current-carrying
states [80, 81] and further research on more exotic systems such as chiral Higgs modes in nematic
superconductors [82], Higgs modes in pair-density wave states [83, 84], triplet superconductors
[75, 85, 86], Higgs mode in proximized superconducting systems [87], Higgs mode in transport [88,
89], Rabi-Higgs oscillations in systems where the density of state is driven near the Fermi level
[90], quench dynamic in nanorods [91], finite-momentum pairing states [92] or Higgs modes in
massless Dirac fermion systems [93] as well as studies on general Higgs physics in superconductors
[10, 94–102].
Compared to this large number of theoretical works, there were only a handful of further

experimental investigations [103–111], which emphasizes the difficulties in performing these
ultrafast THz experiments.

While most of the studies consider only s-wave superconductors, only few of them concentrate
on unconventional superconductors like d-wave systems [29, 42, 53, 78, 94, 112]. These first
studies indicate that in superconductors with nontrivial gap symmetry, a much richer spectrum
of Higgs oscillations can occur. Thus, one might draw the conclusion that the information from
the Higgs oscillation spectrum can be used to learn something about the ground state of the
superconductor, despite the fact that the experiments are performed in nonequilibrium. For
the simple s-wave case, one can already gain information about the value of the gap, to which
the frequency of the oscillation corresponds to. Higgs oscillations of multiband systems contain
information about all gaps and also the coupling in between them (Leggett mode). Furthermore,
if the Higgs mode couples to energetic nearby modes, the energies of these modes can also be
found in the frequency spectrum. And finally, if properly excited, nontrivial gap symmetry can
lead to additional Higgs modes as well, which encodes information of the symmetry of the order
parameter into the oscillation spectrum.

This thesis concentrates mainly on the latter aspect, investigating Higgs oscillations of uncon-
ventional superconductors with arbitrary gap symmetry in different kinds of excitation schemes
(interaction quenches, state quenches, quenching with light, driving with light) and the resulting
observables (gap oscillations, time-resolved optical conductivity, tr-ARPES, THG). It is proposed
that the study of Higgs modes in superconductors, termed “Higgs spectroscopy” can serve as a
new tool, which might be used in future as an alternative or complementary probe to currently
used experiments on superconductors. While the experiments are still challenging to perform
today, with future improved THz laser technology, simple table-top setups might be possible.
With the technological obstacles overcome, Higgs spectroscopy has some advantages to the

currently used techniques for studying the superconducting ground state properties. To gain
detailed information about the gap structure, typically, different kinds of experiments have to
be performed. For example, ARPES, spin-lattice relaxation rates 1/T1 in NMR experiments,
optical conductivity measurements or tunneling experiments can yield information about the
amplitude of the gap. NMR Knight shift experiments provide information about the parity, i.e. if
the order parameter is singlet or triplet. Kerr effect or muon spin resonance spectroscopy reveal
information about whether time reversal symmetry breaking occurs and if the order parameter is
complex. Finally, quasiparticle tunneling spectroscopy or Josephson interferometry experiments
yield information about the phase of the order parameter. The idea of Higgs spectroscopy
is that some of this information such as the amplitude, phase or nodal structure can be, in
principle, obtained simultaneously with properly designed experiments and phase-stable THz
lasers. Another direction where Higgs spectroscopy may be used in future is to use the observation

4



of a stable Higgs mode as a signature of superconductivity itself, as the Higgs mode is connected
due to the Anderson-Higgs mechanism with the Meissner effect. This will be discussed later in
this thesis.
This thesis is organized as follows. In chapter 2, the theory of Higgs physics and related

concepts such as spontaneous symmetry breaking are explained in more detail. In addition, the
BCS theory in an uniform notation and the Anderson pseudospin formalism are introduced
for later chapters. Lastly, the used methods to calculate nonequilibrium dynamic are stated. In
chapter 3, the nonequilibrium dynamic of a superconductor is studied, which is induced by a
quench of either the pairing interaction or the condensate. The resulting Higgs oscillations are
calculated and the occurring Higgs modes for nontrivial gap symmetry are investigated. This
chapter concludes with a classification and characterization scheme of Higgs oscillations based on
group theory. In chapter 4, quench-probe experiments are simulated, where the superconductor
is quenched by a short pump pulse. In such Higgs spectroscopy experiments, oscillations of the
gap can be observed either optically in the time-resolved optical conductivity or in the time-
resolved ARPES spectrum. In chapter 5, the superconductor is periodically driven to enforce
gap oscillations with the external driving frequency. The third-harmonic generation response is
calculated, where resonances are observed when the driving frequency coincides with the energy
of the Higgs modes. In chapter 6, the findings of the thesis are summarized and discussed and
an outlook for future research is given.
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2 Theory and Methods

In this chapter, the relevant theories and formalisms for this thesis are introduced with an uniform
notation for later calculations. The purpose is to give a compact and selfconsistent overview of
topics which are often scattered over various literature with inconsistent notation. References to
the corresponding literature will be given for further reading at the respective places.

2.1 Higgs Physics

The theory of Higgs physics can be described most easily on a phenomenological level within an
effective field theory description. This allows to introduce the concepts of spontaneous symmetry
breaking, collective modes and the Anderson-Higgs mechanism. The following sections give a
short introduction into these topics and connect the general concepts to superconductivity.

2.1.1 Spontaneous Symmetry Breaking

Symmetry, i.e. the invariance of a property under a certain operation, plays an important role in
theoretical physics. It can either be discrete, such as the reflection or discrete rotation symmetry in
the lattice of a solid, which determines the fundamental lattice vibrations, or it is continuous, such
as the spatial or temporal translation invariance of macroscopic systems. For each continuous
symmetry, the Noether theorem ensures a conservation law, e.g. momentum conservation for
spatial translation invariance or energy conservation for invariance of time translation.
In contrast to the symmetries themselves, the breaking of symmetries has important conse-

quences as well. Especially for phase transitions, where the phases have different symmetries,
spontaneous symmetry breaking (SSB) is a crucial concept. Hereby, the ground state of a system
has lower symmetry than the system itself, i.e. the ground state breaks the symmetry of the de-
scribing Hamiltonian spontaneously [113]. The simplest toy model, which is nevertheless relevant
for superconductivity as we will see, is spontaneous U(1) symmetry breaking in a ψ4 theory. In
this theory, one considers a complex field ψ with a potential

V (ψ) = α|ψ|2 + β

2 |ψ|
4 . (2.1)

Obviously, due to the absolute square, we can multiply the field with an arbitrary constant phase
µ, i.e. ψ → ψeiµ without changing the potential: The theory is U(1) invariant. The ground state,
i.e. the minimum of the potential can easily be derived and reads

|ψ0| =

0 α ≥ 0√
−α
β α < 0

. (2.2)

We have to distinguish the two cases depicted in Fig. 2.1. The α ≥ 0 case corresponds to the
normal phase, where the potential has a bowl shape and the ground state is at the origin having
the same U(1) symmetry as the potential, i.e. is invariant under a global phase change. In contrast
for α < 0, ψ = 0 is no longer the ground state. The potential has the shape of a Mexican hat
and the states with minimum energy lie on the brim. One of these infinite many points is chosen

7



2 Theory and Methods

α > 0 α < 0

Re ψ
Im ψ Goldstone mode

(phase fluctuation) 

Higgs mode
(amplitude fluctuation)

|ψ0| = 0

a) b)

V(ψ) = α|ψ|2 + β|ψ|42
- |ψ0| = β

-α

Figure 2.1 Spontaneously broken U(1) symmetry. a) For α ≥ 0, the system is in the normal state, where
the ground state, marked by the red ball, is invariant under a U(1) phase transformation like the potential
itself. b) For α < 0, the system is in the SSB phase, where the potential takes on the form of a Mexican
hat and the ground state no longer lies at the origin and does not posses a U(1) symmetry. In this SSB
state, collective modes appear, namely the Goldstone mode azimuthally around the brim of the Mexican
hat, i.e. fluctuation of the phase, and the Higgs mode radially, i.e. fluctuations of the amplitude.

spontaneously, which breaks the original U(1) symmetry of the potential: The system is in the
spontaneous symmetry broken phase.

A well-known example for SSB in condensed matter is ferromagnetism, where rotational sym-
metry is spontaneously broken in the ferromagnetic phase due to selection of a particular direction
of the magnetization. Another example are crystals, which break the continuous translation and
rotation invariance of Euclidean space due to a restriction of the invariance to fixed lattice vectors.
Furthermore, in high-energy physics, the electroweak symmetry is spontaneously broken. This
creates the massive W± and Z0 gauge bosons for the weak interaction and the massless photon
for the electromagnetic interaction by the (Anderson)-Higgs mechanism, which is described in
more detail in section 2.1.3. In superconductors, the U(1) symmetry of the Hamiltonian is spon-
taneously broken due to the Cooper pairs (see section 2.1.4), therefore, the following discussion
is based on spontaneous U(1) symmetry breaking.

2.1.2 Higgs and Goldstone Modes

Connected with the concept of SSB is the Goldstone theorem, which in its simplest formulation
states that for every spontaneously broken continuous symmetry, a massless Goldstone boson
exists, i.e. an excitation which costs no energy. For spontaneous U(1) symmetry breaking, this
can easily be understood. In the SSB phase, the model potential Eq. (2.1) has an infinitely
degenerate ground state with |ψ0| =

√
−α
β and arbitrary phase. Fluctuations in the phase will

therefore cost no energy and correspond to the (Nambu-)Goldstone mode (see Fig. 2.1b)). In
addition to these massless or gapless phase fluctuations, there can also be amplitude fluctuations,
depicted as the radial oscillations in the Mexican hat potential in Fig. 2.1b). This amplitude
oscillation is called Higgs mode and has a finite energy, i.e. it is a massive or gapped mode. Both
modes are collective modes as they correspond to fluctuations of the order parameter itself.

To describe the dynamic of these modes in more detail, one can make use of a field theoretical
approach described by an effective Lagrangian. The dynamical terms can be chosen either
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2.1 Higgs Physics

relativistic or nonrelativistic [34, 101], i.e. Lorentz-invariant or non-Lorentz invariant, which will
lead to Klein-Gordon- or Gross-Pitaevskii-like equations of motion, respectively. The difference
between the relativistic and nonrelativistic description is that in the former case, the equation is
in second order in time, whereas in the latter case, it is in first order in time. Thus, the Lagrangian
reads

LKG = (∂µψ)∗(∂µψ)− V (ψ)
= (∂tψ)∗(∂tψ)− (∇ψ)∗(∇ψ)− V (ψ) (Lorentz-invariant) , (2.3a)

LGP = ψ∗(∂tψ)− (∇ψ∗)(∇ψ)− V (ψ) (non-Lorentz invariant) . (2.3b)

Hereby, V (ψ) is the potential of Eq. (2.1) and ∂µ = (∂t,−∇) is the four-vector of time and spatial
derivatives using a metric with (+−−−) signature. Note that c = 1. Next, we use an ansatz for
fluctuations around the ground state ψ0

ψ(r, t) = (ψ0 +H(r, t))eiθ(r,t) (2.4)

with amplitude fluctuations H(r, t) and phase fluctuations θ(r, t). We obtain for the Lagrangian
expressed in the fluctuations

LKG = (∂tH)2 − (∇H)2 + ψ2
0

(
(∂tθ)2 − (∇θ)2

)
+ 2αH2 , (2.5a)

LGP = (ψ0 +H)(∂tH) + i(ψ2
0 + 2ψ0H)(∂tθ)− (∇H)2 − ψ2

0(∇θ)2 + 2αH2 , (2.5b)

where constant terms and terms in third order or higher of the fluctuations are neglected. Now,
we can minimize the action by evaluating Euler-Lagrange equations for H and θ

d
dt

∂L
∂(∂tH) +∇ ∂L

∂(∇H) −
∂L

∂H
= 0 , d

dt
∂L

∂(∂tθ)
+∇ ∂L

∂(∇θ) −
∂L

∂θ
= 0 . (2.6)

Let us first consider the equations of motion for the fluctuations in the relativistic case

(∂2
t −∇2)H = 2αH , (2.7a)

(∂2
t −∇2)θ = 0 . (2.7b)

The equations for amplitude and phase are decoupled and are the Klein-Gordon equations for
massive particles in the case of the amplitude fluctuations and massless particles in the case of
the phase fluctuations. Using an ansatz of

H(r, t) = H0ei(ωt−qr) , θ(r, t) = θ0ei(ωt−qr) (2.8)

yields for the dispersion

ω2
H = q2 − 2α , (2.9a)
ω2
θ = q2 . (2.9b)

In the q → 0 limit for long wavelengths, this corresponds to the massive Higgs mode ω2
H = −2α

and massless Goldstone mode ωθ = 0.

9



2 Theory and Methods

In the nonrelativistic case, the equations of motions are coupled

−iψ0(∂tθ)− (∇2H) = 2αH , (2.10a)
i(∂tH)− ψ0(∇2θ) = 0 , (2.10b)

such that there are no distinct amplitude and phase modes. The equations can be solved using
a single ansatz for the amplitude and phase fluctuations

H(r, t) = θ(r, t) = ei(ωt−qr) , (2.11)

which leads to

ω2 = 2αq2 − q4 . (2.12)

We can see that in the q → 0 limit, there are no finite mass modes. A Lorentz-invariant form of
the Lagrangian is therefore important for distinct amplitude and phase modes and there is not
necessarily a Higgs mode for an arbitrarily given Mexican-hat shaped potential. If the dynamic is
described by both relativistic and nonrelativistic terms, there are coupled amplitude and phase
fluctuations, where the Higgs-like mode remains massive and is pushed to higher energies [10].

2.1.3 Anderson-Higgs Mechanism

So far, the considered field ψ was uncharged. Having a charged field, a coupling to external gauge
fields has to be considered, which will change the spectrum of collective modes in the SSB phase.
As for superconductivity the charge is the electric charge, only a coupling to the electromagnetic
field, i.e. the photon, will be considered in the following discussion. An example of coupling
to other gauge fields can be found in particle physics, where the coupling of the Higgs field to
the photon but also to W± and Z gauge bosons of the weak interaction has to be considered.
We start with a calculation using the relativistic theory, where the coupling is incorporated by
replacing the four-vector of the derivative ∂µ with the gauge covariant derivative Dµ = ∂µ+ ieAµ
and adding a term describing the dynamic of the gauge field.

LKG = (Dµψ)∗(Dµψ)− V (ψ)− 1
4FµνF

µν

= ((∂µ − ieAµ)ψ∗) ((∂µ + ieAµ)ψ)− V (ψ)− 1
4FµνF

µν . (2.13)

Hereby, Fµν = ∂µAν−∂νAµ is the electromagnetic field tensor and Aµ = (φ,−A) the electromag-
netic four-vector with the electric charge e. Now, we can use the same ansatz for the fluctuations
of Eq. (2.4) to write down the Lagrangian for the amplitude and phase modes

LKG =
(
∂µH − ie

(
Aµ + 1

e
∂µθ

)
(ψ0 +H)

)(
∂µH + ie

(
Aµ + 1

e
∂µθ

)
(ψ0 +H)

)
+ 2αH2 − 1

4FµνF
µν . (2.14)

In this expression, we neglected again constant terms and fluctuation terms of higher order than
quadratic.
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2.1 Higgs Physics

The coupling to the gauge fields adds a gauge freedom to the Lagrangian, i.e. the Lagrangian
is invariant under a local phase transformation given by the gauge function χ(r, t) if the gauge
field is transformed accordingly as well

ψ′ = ψeiχ(r,t) , A′µ = Aµ −
1
e
∂µχ(r, t) . (2.15)

As this transformation does not change the physics, we can exploit this freedom to simplify
the expression. By comparing the expression of the gauge transformation with the gauge field
and the phase fluctuation in the brackets in Eq. (2.14), we find the same structure as in the
transformed gauge field. Thus, a gauge choice of χ = −θ, i.e.

ψ′ = ψe−iθ , A′µ = Aµ + 1
e
∂µθ (2.16)

removes the phase fluctuation completely from the Lagrangian, which are included in the redefined
potential A′µ. This means that in the case of a charged field, the massless phase fluctuations are
only an artifact of the original gauge and have no physical meaning. In this context, they are
also sometimes called gauge ghosts. Neglecting the primes in the gauge field, the Lagrangian
then reads

LKG = (∂µH − ieAµ(ψ0 +H)) (∂µH + ieAµ(ψ0 +H)) + 2αH2 − 1
4FµνF

µν

= (∂µH)(∂µH) + 2αH2 − 1
4FµνF

µν + e2ψ2
0AµA

µ + 2e2ψ0AµA
µH , (2.17)

where for the second equal sign, we neglected again higher-order couplings. In addition to the
absence of phase fluctuations, we find a mass term e2ψ2

0AµA
µ for the transformed gauge field. In

the language of high-energy physics, this is interpreted as “the would-be Goldstone boson is being
eaten by the gauge field, which then itself becomes massive”. This is the famous Anderson-Higgs
mechanism, which describes the mass generation of the W± and Z gauge bosons of the weak
interaction and led to the postulation of the Higgs boson in the standard model [4–6] and the
final observation at the LHC in CERN in 2012 [37, 38]. To understand the vanishing of the
Goldstone mode in more detail, it is helpful to look at the involved degrees of freedom [34]. We
started with the massive Higgs mode, the massless Goldstone mode and two massless transversal
degrees of freedom from the vector potential corresponding to the two polarization directions
of the electromagnetic field. After the gauge transformation, the Goldstone mode vanishes and
the gauge field becomes massive, which allows for an additional longitudinal degree of freedom.
Hence, the total number of degrees of freedom is conserved, 1 + 1 + 2 = 4 before the gauge
transformation and 1 + 3 = 4 after the transformation.

For a nonrelativistic theory, the same argumentation is not possible. The Gross-Pitaevskii-like
Lagrangian coupled to the gauge field reads

LGP = (ψ0 +H)(∂tH) + i(ψ2
0 + 2ψ0H)((∂tθ) + eφ)− (∇H)2 − ψ2

0(∇θ)2 + 2αH2 , (2.18)

where the phase fluctuation cannot be gauged away as the Lagrangian does not posses a gauge
freedom. Thus, there are still no distinct Higgs and Goldstone modes and there is no Anderson-
Higgs mechanism in the nonrelativistic case.
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2.1.4 Superconductors and Meissner Effect

Having generally introduced the concepts of Higgs physics for an arbitrary field ψ, let us connect
the derived concepts to superconductivity. The spontaneous U(1) symmetry breaking in the
microscopic BCS theory will be discussed in the next section. On a phenomenological level, the
Ginzburg-Landau theory [114, Chap. 4], [115] is already equivalent to our ψ4 theory. The free
energy of a superconductor close to Tc can be described by the same Mexican hat potential of
the previous sections

F = α|ψ|2 + β

2 |ψ|
4 , (2.19)

where ψ is the superconducting order parameter, β = const. and α = α0(T − Tc) is the
temperature-dependent factor describing the transition from T > Tc with α > 0 to T < Tc
with α < 0, i.e. the transition from the normal to the spontaneously symmetry broken supercon-
ducting phase. The superconducting order parameter plays the role of the Higgs field and the
dynamic has to be described considering the coupling to the electromagnetic field as the super-
conducting condensate is obviously charged [99, 102]. The microscopic BCS theory is in good
approximation particle-hole symmetric, i.e. the quasiparticle dispersion resembles the relativistic
Dirac Hamiltonian dispersion near the Fermi momentum kF such that the Lorentz-invariant the-
ory with the invariance under charge conjugation describes the dynamic of the superconductor
relatively well [9, 10, 96].
We can therefore conclude that a massive Higgs mode should exist in a superconductor and

the Anderson-Higgs mechanism should prevent massless Goldstone modes and lead to massive
photons inside the material. The energy of the Higgs mode ωH =

√
−2α, which depends on the

phenomenological parameter α, cannot be derived from within the Ginzburg-Landau theory. A
comparison with the microscopic description yields ωH = 2∆, i.e. the energy of the Higgs mode
corresponds to the value of the energy gap [10].
To see these effects in more detail, let us derive and evaluate the equations of motion for the

Higgs mode H and gauge field Aµ from the Lagrangian in Eq. (2.17) [34]. We find for the Higgs
field

(∂2
t −∇2)H = 2αH + e2ψ0(φ2 −A2) , (2.20)

which is the same as Eq. (2.7a) plus a nonlinear, quadratic coupling term of the electromagnetic
field to the Higgs mode. The part of the Lagrangian for the gauge field reads

L = −1
2((∂µAν)(∂µAν)− (∂µAν)(∂νAµ)) + e2ψ2

0AµA
µ + 2e2ψ0AµA

µH . (2.21)

Evaluating Euler-Lagrange equations for Aν yields

− (∂µ∂µAν − ∂µ∂νAµ) = 2e2ψ2
0A

ν + 4e2ψ0A
νH (2.22)

and explicitly in terms of φ and A

−(∂2
t −∇2)φ+ ∂2

t φ+ ∂t∇A = 2e2ψ2
0φ+ 4e2ψ0φH , (2.23a)

−(∂2
t −∇2)A−∇(∇A)− ∂t∇φ = 2e2ψ2

0A+ 4e2ψ0AH . (2.23b)
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2.1 Higgs Physics

In the static case for small fields with H = 0, ∇A = 0 and ∂tA = ∂tφ = 0, the equation for the
vector potential reads

∇2A = 2e2ψ2
0A . (2.24)

Applying the curl on both sides leads to

∇2(∇×A) = 2e2ψ2
0(∇×A) , (2.25)

∇2B = 1
λ2B (2.26)

with the magnetic field B and the penetration depth λ =
√

1
2e2ψ2

0
. This equation is the second

London equation, describing the Meissner effect on a phenomenological level. The solution in
one dimension is simply

B = B0e−
1
λ
x , (2.27)

i.e. an exponential decay of the magnetic field; the magnetic field is expelled from the supercon-
ductor. We can therefore understand the massive photon generated through the Anderson-Higgs
mechanism as the cause of the Meissner effect in superconductors. The new longitudinal mode
of the gauge field, which is possible due to the finite mass, plays the role of plasma oscillations
in superconductors. Its energy at the plasma edge is large compared to the energy gap. In
another way, phase fluctuations of the order parameter can be understood as being associated
with fluctuations of the charge density and cost therefore energy due to the long-ranged Coulomb
interaction in the charged material. Hence, it is commonly said that “the Goldstone mode in
superconductors is shifted to the plasma energy” [10].

From the equation of motion Eq. (2.20) for the Higgs mode, we can observe another important
fact: The Higgs mode only couples quadratically to the electromagnetic potential. There is no
linear coupling term which restricts the excitation and observation to experiments beyond the
linear regime. This is due to the fact that the Higgs mode is a scalar mode with no electric or
magnetic dipole moment such that no linear coupling to the vector potential is allowed. Although
it may seem that in this description the quadratic coupling is directly to the Higgs mode, the
microscopic details are more complicated as we will see later in this thesis.
As a short outlook, the amplitude or Higgs mode is a fluctuation in the τ1 channel (see

Eq. (2.56)), whereas light couples to the charge density in the τ3 channel (see Eq. (5.4)). As
these channels are orthogonal, there is no direct coupling of light to the Higgs mode. While there
is a more indirect coupling of light to the Higgs mode due to Raman-active phonons from a
coexisting charge density wave (CDW) order in NbSe2 [10, 14, 15, 17], one can understand the
quadratic coupling as an effective Raman vertex interaction to the Higgs mode [11, 45]. This
coupling is depicted diagrammatically in Fig. 2.2 and corresponds in the q → 0 limit to the
linearized Anderson pseudospin solution derived in section 5.1 [11, 45].
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Figure 2.2 Quadratic coupling of light with frequency Ω and momentum q to the Higgs mode via an
effective Raman vertex Γ. Hereby, γk ∝ ∂2

kεk and τi are the Pauli matrices. Wiggly, solid and double-dashed
lines represent photon, electron and Higgs propagator, respectively. Figure adapted from [11].

2.1.5 Higgs Mode in Other Condensed Matter Physics Systems

Superconductivity is not the only case in condensed matter physics, where SSB and collective
modes play a role. There are other systems where Higgs and Goldstone modes can occur. How-
ever, superconductors are the only example of a charged condensate, which is describable by a
relativistic theory such that the Anderson-Higgs mechanism occurs leading to a distinct Higgs
mode and a vanishing of the Goldstone mode. Strictly speaking, one should call an amplitude
mode “Higgs mode” only in the relativistic and charged case, where the name-giving Anderson-
Higgs mechanism occurs. In all other cases, it is just an amplitude mode (sometimes also called
amplitudon); however, literature is not consistent in this respect and often, any kind of amplitude
mode is called “Higgs mode”. In this work, the term amplitude mode and Higgs mode is also
used interchangeably. In the following, a few examples of condensed matter physics systems are
discussed in which Higgs physics plays a role.

A typical example, in which spontaneous U(1) symmetry breaking occurs, are ultracold Bose
gases. If a diluted neutral gas of bosons (e.g. 87Rb, 23Na or 7Li atoms) is cooled below a critical
temperature, Bose-Einstein condensation (BEC) occurs, where all atoms condense into a single
coherent quantum state [116]. If an optical lattice is used to trap the condensate, the periodic
system is describable by the Bose-Hubbard model, which leads to an inherent particle-hole
symmetry and an effective Lorentz-invariant theory as in superconductors [10, 117, 118]. In
contrast to superconductors, the condensate is neutral, such that no Anderson-Higgs mechanism
occurs and Higgs and Goldstone modes are expected. The advantage of cold atom systems is
that their parameters can be controlled and tuned over a large range. As an example, tuning of
the lasers for the trap allows to precisely adjust the lattice structure [119] or a variation of an
external magnetic field allows to tune the pairing interaction due to Feshbach resonances [120].
Several works have predicted the existence of Higgs modes in ultracold Bose gases, e.g. [117,
118, 121] and indeed, experiments such as [122, 123] have observed an amplitude mode in these
systems.

Just as Bose gases can condense at low temperatures, a gas of fermions (e.g. 40K or 6Li atoms)
can condense as well [124–126]. However, the mechanism is completely different as a condensation
of fermions is forbidden through the Pauli principle. The process can be understood in analogy
to the mechanism of Cooper pairing in superconductors. Two fermions form a pair due to an
attractive interaction, which then can condense into a coherent state describable by a single
wave function. With the help of the already mentioned Feshbach resonances, the pairing strength
can be tuned. For strong interaction, two fermions form a tightly bound pair, which is closer to
a boson and the condensation resembles a BEC. For weak interaction, the pair is only loosely
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Klein-Gordon dynamic Gross-Pitaevskii dynamic
Charged Higgs mode and Higgs mechanism mixed Higgs and Goldstone modes

e.g. superconductors
Neutral Higgs and Goldstone modes mixed Higgs and Goldstone modes

e.g. BECs in optical lattices, e.g. superfluid 4He
superfluid 3He,
ultracold Fermi gases,
excitonic insulators,
antiferromagnets,
incommensurate CDWs

Table 2.1 Summary of collective modes in a ψ4 theory in the spontaneous U(1) symmetry broken
phase for neutral and charged fields with relativistic (Klein-Gordon) or nonrelativistic (Gross-Pitaevskii)
dynamic with examples from condensed matter physics.

coupled with a large dimension such that many pairs overlap in analogy to BCS Cooper pairs.
Changing the interaction strength, BEC to BCS crossover regimes can be explored. In such
a system of cold Fermi gases, the emergence and evolution of a Higgs mode has been widely
explored on the theoretical side in the BCS or the BEC-BCS cross over regime, e.g. [85, 127–132],
and first experimental observations have been reported as well [133].
Helium has two stable isotopes, 4He, which is a boson, and 3He, which is a fermion. It can

condense at low temperatures as well like the previously discussed Bose or Fermi gases. Superfluid
3He is a Fermi gas with two known phases, a high-temperature A-phase, which has p-wave
symmetry and a low-temperature B phase, which has s-wave symmetry [134]. Several theoretical
[135–139] and experimental works [140–144] have investigated the Higgs mode. Due to the p-wave
pairing in the A-phase, multiple Higgs modes can be found. In contrast, superfluid 4He is a Bose
gas, which is described by a nonrelativistic theory [9, 10]. Thus, no distinct Higgs and Goldstone
modes occur.
In semiconductors or semimetals, there can be a BEC- or BCS-like condensation of excitons

into a coherent ground state if the binding energy of the electron-hole pair exceeds either the
bandgap or bandwidth, respectively [145]. This phase is called an excitonic insulator. Due to
the existence of a spontaneous U(1) symmetry breaking in the semiconductor or semimetal to
excitonic insulator phase transition and the emerging of an order parameter, collective amplitude
and phase modes are in principle possible. The condensed excitons have no charge, therefore no
Anderson-Higgs mechanism occurs, such that Higgs and Goldstone modes are expected. While
there are only a few possible material examples, the semiconductor compound Ta2NiSe5 is believed
to be a good candidate for an excitonic insulator [146]; even though recent theoretical work has
proposed that the phase transition is characterized by a discrete symmetry breaking rather
than continuous U(1) symmetry breaking [147], which would only allow for gapped collective
excitations. Nevertheless, ultrafast pump-probe experiments have revealed oscillations in the
reflectivity [148, 149], which are an indicator of collective amplitude oscillations of an excitonic
order parameter.
Charge density waves (CDW) are a periodic modulation of the electron density and lattice

structure, forming a standing wave pattern, which results from a Peierls transition lowering the
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ground state energy due to a shift of adjacent lattice points in opposite direction [150]. This
transition into the CDW phase is accompanied by spontaneous symmetry breaking and an incom-
mensurate CDW phase can be described by a complex order parameter, which allows collective
amplitude and phase modes. There has been a large number of studies on observing collective
amplitude (Higgs) modes in CDW materials with time-resolved pump-probe experiments, e.g. in
the quasi-1d system K0.3MoO3 (blue bronze) [151–154], in TbTe3 [155], in the layered compound
LaAgSb2 [156] or in underdoped YBCO [157].

Two-dimensional antiferromagnets can be described by a two-dimensional order parameter. The
transition into the antiferromagnetic phase breaks the spin rotational symmetry spontaneously
and collective phase and amplitude modes can occur. Here, the order parameter is not charged,
such that the gapped Higgs mode can decay into the gapless Goldstone modes if not protected
by other mechanisms. The Higgs mode in such systems has been explored theoretically e.g. in
[158] but also experimentally, e.g. in TlCuCl3 [159, 160], Ca2RuO4 [161, 162], C9H18N2CuBr4
[163, 164] or SrMnO3 [165].

Besides the discussed systems, there are also efforts on detecting the Higgs mode in crystalline
solids [166–168], exciton-polariton condensates in a cavity [169–171], supersolid quantum gases
[172, 173], superfluids of neutrons [174] or superfluid Bose-Fermi mixtures [175].
We conclude with a summary of the results of the previous sections in Table 2.1. The table

gives an overview of the collective modes for charged and uncharged condensates in a ψ4 theory
with spontaneous U(1) symmetry breaking under a relativistic or nonrelativistic dynamic. The
discussed examples from condensed matter physics are assigned to the respective cases.

2.2 BCS Theory

The BCS theory is the microscopic theory which describes superconductivity. Originally, it was
developed by Bardeen, Cooper and Schrieffer in 1957 [176, 177] to describe conventional super-
conductors, i.e. superconductors with s-wave symmetry and phonon-mediated pairing interaction.
However, it can also be extended to describe unconventional superconductors with non-trivial
symmetries. Hereby, the symmetry is considered by the symmetry of the pairing interaction,
whereas the pairing mechanism is not considered and can be arbitrary. A good introduction to
BCS theory is found in the textbooks of Annett [178] and Tinkham [114].

For uniform notation of equilibrium or quenched values and temperature or time dependence of
quantities, the following convention is used throughout this thesis: No indices or function values
correspond to the equilibrium value, e.g. ∆ or 〈c−k↓ck↑〉 correspond to the equilibrium value of
the gap or anomalous electron expectation value. If the explicit temperature dependence of the
equilibrium value shall be expressed, the index T , e.g. ∆T or 〈c−k↓ck↑〉T is used. A ground state
wave function is noted by an index 0, e.g. |Ψ0〉. The time-dependence of quantities is written in
an explicit functional form such as ∆(t) or 〈c−k↓ck↑〉 (t). An index q stands for the value directly
after a quench, e.g. ∆q or 〈c−k↓ck↑〉q. Throughout this thesis, quenches are performed at t = 0,
such that for these cases, we can identify ∆(0) = ∆q and ∆(−∞) = ∆.

2.2.1 Hamiltonian and Energy Gap Equation

The generalized BCS Hamiltonian for singlet superconductors can be derived from the general sec-
ond quantized Hamiltonian for electrons with two-particle interacting under the assumption that
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the single-particle potential is zero and the attractive two-particle interaction is only mediated
between electrons with (k ↑) and (−k ↓). It reads

H =
∑
kσ

εkc
†
kσckσ −

∑
kk′∈W

Vkk′c
†
k↑c
†
−k↓c−k′↓ck′↑ , (2.28)

where εk = ξk − εF is the electron dispersion ξk measured relatively to the Fermi energy εF.
The arbitrary pairing interaction is denoted by Vkk′ . Note that the second sum runs over all k
such that the energy is smaller than some cutoff energy εc, i.e. W = {k | |εk| < εc}. For phonon-
mediated superconductivity, the cutoff energy is given by the Debye energy. In the following,
we will implicitly restrict the k-range for all k-sums within this range. Now, one can perform a
mean-field approximation

c†k↑c
†
−k↓c−k′↓ck′↑ ≈ 〈c

†
k↑c
†
−k↓〉 c−k′↓ck′↑ + 〈c−k′↓ck′↑〉 c†k↑c

†
−k↓ + 〈c†k↑c

†
−k↓〉 〈c−k′↓ck′↑〉 , (2.29)

where the product of two creation and annihilation operators are replaced by their expectation
value. Then, we define the superconducting energy gap

∆k =
∑
k′

Vkk′ 〈c−k′↓ck′↑〉 . (2.30)

Neglecting the constant term, one obtains the general mean-field BCS Hamiltonian

H =
∑
kσ

εkc
†
kσckσ −

∑
k

∆kc
†
k↑c
†
−k↓ −

∑
k

∆∗kc−k↓ck↑ . (2.31)

In order to be able to solve the gap equation, we assume a separable pairing interaction of
strength V with a symmetry defined by a function fk

Vkk′ = V fkfk′ . (2.32)

Due to this separable interaction, we can define a k-independent gap ∆

∆k = ∆fk with ∆ = V
∑
k

fk 〈c−k↓ck↑〉 . (2.33)

As the BCS Hamiltonian (2.31) depends explicitly on the energy gap (2.33), which again is
determined by the Hamiltonian, the problem has to be solved self-consistently. The symmetry
function fk depends on the considered system. Examples for common symmetry functions are
listed in table 2.2.
The transition from the general Hamiltonian Eq. (2.28) to the BCS Hamiltonian Eq. (2.31)

via the mean-field approximation creates the spontaneous symmetry breaking, discussed in
the previous section, on a microscopic level. The general Hamiltonian is U(1) invariant as a
multiplication of creation or annihilation operators with a constant phase µ, i.e. ck↑ → ck↑eiµ

leaves the Hamiltonian invariant due to the pairwise occurrence of creation and annihilation
operators. Yet, the BCS Hamiltonian contains only products of two creation or two annihilation
operators, such that it is no longer invariant under a U(1) transformation. This can also be seen
in the BCS ground state wave function in Eq. (2.51), which also breaks the U(1) symmetry.
Moreover, the phenomenological Higgs field ψ from the previous section corresponds to the order
parameter ∆ on the microscopic level.
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Name Symmetry Function fk Polar coordinates f(ϕ)
s-wave 1 1 1
nodal s-wave (x2 − y2)2 (cos kx − cos ky)2 cos2(2ϕ)
d-wave x2 − y2 −(cos kx − cos ky) cos(2ϕ)
dxy-wave xy sin kx sin ky sin(2ϕ)
g-wave xy(x2 − y2) − sin kx sin ky(cos kx − cos ky) sin(4ϕ)

Table 2.2 Common gap symmetry names of singlet superconductors and their representation in momen-
tum space, as well as a function of the polar angle on the Fermi surface.

2.2.2 Nambu-Gorkov Basis
It is often convenient to express the Hamiltonian in the Nambu-Gorkov basis. We start by
rewriting the kinetic term in the Hamiltonian (2.31). We assume that the dispersion is parity
symmetric, i.e. ε−k = εk and we will neglect all constant terms as they only shift the absolute
value of the energy. Using the anti-commutation relation {ckσ, c†k′σ′} = δkk′δσσ′ , we find

Hkin =
∑
k

εk(c†k↑ck↑ + c†k↓ck↓) =
∑
k

(
εkc
†
k↑ck↑ − εkc−k↓c

†
−k↓

)
. (2.34)

With this, the full BCS Hamiltonian reads

H =
∑
k

(
εkc
†
k↑ck↑ − εkc−k↓c

†
−k↓ −∆kc

†
k↑c
†
−k↓ −∆∗kc−k↓ck↑

)
=
∑
k

(
c†k↑, c−k↓

)( εk −∆k

−∆∗k −εk

)(
ck↑
c†−k↓

)

=
∑
k

Ψ†k

(
εk −∆k

−∆∗k −εk

)
Ψk , (2.35)

where we define the Nambu-Gorkov spinor

Ψ†k =
(
c†k↑, c−k↓

)
. (2.36)

2.2.3 Bogoliubov Transformation
The BCS Hamiltonian can be diagonalized by an unitary Bogoliubov transformation. In the
Hamiltonian (2.35) for arbitrary gap ∆k(t) at time t, which must not necessarily be the equilibrium
value, we insert the unitary operator U

H(t) =
∑
k

Ψ†kUU
†
(

εk −∆k(t)
−∆∗k(t) −εk

)
UU †Ψk , (2.37)

where we choose the following representation of the unitary matrix

UU † = 1 , U =
(
u∗k vk
−v∗k uk

)
, U † =

(
uk −vk
v∗k u∗k

)
, |uk|2 + |vk|2 = 1 . (2.38)
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2.2 BCS Theory

This commonly used choice follows e.g. [114], but other definitions with swapped minus sign
and complex conjugation are also found in literature. We define the Bogoliubov quasiparticle
operators (

αk
β†k

)
= U †Ψk =

(
uk −vk
v∗k u∗k

)(
ck↑
c†−k↓

)
=
(
ukck↑ − vkc†−k↓
v∗kck↑ + u∗kc

†
−k↓

)
, (2.39a)(

ck↑
c†−k↓

)
= U

(
αk
β†k

)
=
(
u∗k vk
−v∗k uk

)(
αk
β†k

)
=
(
u∗kαk + vkβ

†
k

−v∗kαk + ukβ
†
k

)
, (2.39b)

which fulfill the fermionic anticommutation rules

{αk, α†k′} = {βk, β†k′} = δk,k′ , (2.40a)
{αk, αk′} = {α†k, α

†
k′} = {βk, βk′} = {β†k, β

†
k′} = 0 . (2.40b)

Again, we neglect constant terms in the Hamiltonian and find

H(t) =
∑
k

(
α†k, βk

)(Rk Ck
C∗k −Rk

)(
αk
β†k

)
=
∑
k

Rk(α†kαk + β†kβk) +
∑
k

Ckα
†
kβ
†
k − C

∗
kαkβk (2.41)

with

Rk(t) = εk
(
|uk|2 − |vk|2

)
+ ∆k(t)ukv∗k + ∆∗k(t)u∗kvk , (2.42a)

Ck(t) = 2εkukvk −∆k(t)u2
k + ∆∗k(t)v2

k . (2.42b)

We choose the following values for uk and vk

uk =
√

1
2

(
1 + εk

Ek

)
, vk = eiκ

√
1
2

(
1− εk

Ek

)
(2.43)

with the definition of the quasiparticle energy Ek

Ek =
√
ε2k + |∆k|2 , ∆k = |∆|eiκfk . (2.44)

The value |∆| is the absolute value and κ is the phase of the equilibrium energy gap. For
finite temperature T , the temperature-dependent value ∆T has to be used to diagonalize the
Hamiltonian in equilibrium. With these values it follows

Rk(t) = εk

[1
2

(
1 + εk

Ek

)
− 1

2

(
1− εk

Ek

)]
+ ∆k(t)

2 e−iκ

√
1− ε2k

E2
k

+ ∆∗k(t)
2 eiκ

√
1− ε2k

E2
k

= 1
2Ek

(
2ε2k + ∆k(t)∆∗k + ∆∗k(t)∆k

)
, (2.45a)

Ck(t) = 2εk
eiκ

2

√
1− ε2k

E2
k

− ∆k(t)
2

(
1 + εk

Ek

)
+ ∆∗k(t)

2 e2iκ
(

1− εk
Ek

)
= 1

2Ek

(
2εk∆k −∆k(t)(Ek + εk) + ∆∗k(t)e2iκ(Ek − εk)

)
. (2.45b)
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In equilibrium, i.e. ∆k(t) = ∆k, the expressions simplify to

Rk = Ek , Ck = 0 (2.46)

and the Hamiltonian becomes diagonal

H =
∑
k

Ek(α†kαk + β†kβk) . (2.47)

For later usage, we express the following four expectation values of the electron operators with
the help of the new Bogoliubov operators

〈c−k↓ck′↑〉 =
〈(
−vkα†k + u∗kβk

) (
u∗k′αk′ + vk′β

†
k′

)〉
= −vku∗k′ 〈α

†
kαk′〉 − u

∗
kvk′

(
〈β†k′βk〉 − δkk′

)
− u∗ku∗k′ 〈αk′βk〉 − vkvk′ 〈α

†
kβ
†
k′〉 , (2.48a)

〈c†k↑c
†
−k′↓〉 =

〈(
ukα

†
k + v∗kβk

) (
−v∗k′αk′ + uk′β

†
k′

)〉
= −ukv∗k′ 〈α

†
kαk′〉 − v

∗
kuk′

(
〈β†k′βk〉 − δkk′

)
+ v∗kv

∗
k′ 〈αk′βk〉+ ukuk′ 〈α†kβ

†
k′〉 , (2.48b)

〈c†k↑ck′↑〉 =
〈(
ukα

†
k + v∗kβk

) (
u∗k′αk′ + vk′β

†
k′

)〉
= uku

∗
k′ 〈α

†
kαk′〉 − v

∗
kvk′

(
〈β†k′βk〉 − δkk′

)
− v∗ku∗k′ 〈αk′βk〉+ ukvk′ 〈α†kβ

†
k′〉 , (2.48c)

〈c−k↓c†−k′↓〉 =
〈(
−vkα†k + u∗kβk

) (
−v∗k′αk′ + uk′β

†
k′

)〉
= vkv

∗
k′ 〈α

†
kαk′〉 − u

∗
kuk′

(
〈β†k′βk〉 − δkk′

)
+ u∗kv

∗
k′ 〈αk′βk〉 − vkuk′ 〈α

†
kβ
†
k′〉 . (2.48d)

The expectation values of the Bogoliubov operators expressed with the electron operators read

〈αkβk′〉 =
〈(
ukck↑ − vkc†−k↓

) (
vk′c

†
k′↑ + uk′c−k′↓

)〉
= −ukvk′

(
〈c†k′↑ck↑〉 − δkk′

)
+ vkuk′

(
〈c−k′↓c†−k↓〉 − δkk′

)
− ukuk′ 〈c−k′↓ck↑〉+ vkvk′ 〈c†k′↑c

†
−k↓〉 , (2.49a)

〈α†kβ
†
k′〉 =

〈(
u∗kc
†
k↑ − v

∗
kc−k↓

) (
v∗k′ck′↑ + u∗k′c

†
−k′↓

)〉
= u∗kv

∗
k′ 〈c

†
k↑ck′↑〉 − v

∗
ku
∗
k′ 〈c−k↓c

†
−k′↓〉 − v

∗
kv
∗
k′ 〈c−k↓ck′↑〉+ u∗ku

∗
k′ 〈c

†
k↑c
†
−k′↓〉 , (2.49b)

〈α†kαk′〉 =
〈(
u∗kc
†
k↑ − v

∗
kc−k↓

) (
uk′ck′↑ − vk′c†−k′↓

)〉
= u∗kuk′ 〈c

†
k↑ck′↑〉+ v∗kvk′ 〈c−k↓c

†
−k′↓〉 − v

∗
kuk′ 〈c−k↓ck′↑〉 − u∗kvk′ 〈c

†
k↑c
†
−k′↓〉 , (2.49c)

〈β†kβk′〉 =
〈(
v∗kck↑ + u∗kc

†
−k↓

) (
vk′c

†
k′↑ + uk′c−k′↓

)〉
= −v∗kvk′

(
〈c†k′↑ck↑〉 − δkk′

)
− u∗kuk′

(
〈c−k′↓c†−k↓〉 − δkk′

)
− v∗kuk′ 〈c−k′↓ck↑〉 − u∗kvk′ 〈c

†
k′↑c

†
−k↓〉 . (2.49d)
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Finally, we can express the gap equation in the Bogoliubov quasiparticle basis

∆ = V
∑
k

fk 〈c−k↓ck↑〉

= V
∑
k

fk
[
u∗kvk

(
1− 〈α†kαk〉 − 〈β

†
kβk〉

)
− (u∗k)2 〈αkβk〉 − v2

k 〈α
†
kβ
†
k〉
]
. (2.50)

2.2.4 Equilibrium State

Let us first consider the case for zero temperature T = 0. Here, the mean-field ground state can
be written with the help of the factor uk and vk as

|ψ0〉 =
∏
k<kF

(
uk + vkc

†
k↑c
†
−k↓

)
|0〉 . (2.51)

Hereby, the factor uk describes the unoccupation of a pair state (k ↑,−k ↓), whereas the factor
vk describes the occupation of a pair state. Their functional form is shown in Fig. 2.3. In the
normal state, there is a sharp transition from zero to one at kF for v2

k and from one to zero for
u2
k. In the BCS state, this transition is smeared out. The equilibrium expectation values for the

electron operators can be evaluated and read

〈c−k↓ck↑〉 =
〈

0
∣∣∣∣∣
(∏
k′

(u∗k′ + v∗k′ck′↑c−k′↓)
)
c−k↓ck↑

(∏
k′

(uk′ + vk′c
†
k′↑c

†
−k′↓)

) ∣∣∣∣∣ 0
〉

= u∗kvk = eiκ

2

√
|∆k|2
E2
k

= ∆k

2Ek
, (2.52a)

〈c†k↑c
†
−k↓〉 = ukv

∗
k = e−iκ

2

√
|∆k|2
E2
k

= ∆∗k
2Ek

, (2.52b)

〈c†k↑ck↑〉 = |vk|2 = 1
2 −

εk
2Ek

, (2.52c)

〈c−k↓c†−k↓〉 = |uk|2 = 1
2 + εk

2Ek
. (2.52d)

A comparison of Eqs. (2.52a) - (2.52d) with Eqs. (2.48a) - (2.48d) yields for the equilibrium
expectation values of the quasiparticles

〈αkβk〉 = 〈α†kβ
†
k〉 = 〈α†kαk〉 = 〈β†kβk〉 = 0 . (2.53)

This is as expected since the BCS ground state is the vacuum state for the Bogoliubov quasipar-
ticles.
Now, we consider the case of finite temperature T . As the quasiparticles are fermions, they

obey the Fermi-Dirac statistic

〈α†kαk〉T = 〈β†kβk〉T = 1
1 + exp

(
Ek
kBT

) , 〈αkβk〉T = 〈α†kβ
†
k〉T = 0 . (2.54)
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Using Eq. (2.54) and (2.48a) - (2.48d) it follows for the electron expectation values at finite
temperature

〈c−k↓ck↑〉T = u∗kvk

1− 2
1 + exp

(
Ek
kBT

)
 = ∆k

2Ek
tanh

(
Ek

2kBT

)
, (2.55a)

〈c†k↑c
†
−k↓〉T = ∆∗k

2Ek
tanh

(
Ek

2kBT

)
, (2.55b)

〈c†k↑ck↑〉T = |uk|2
1

1 + exp
(
Ek
kBT

) + |vk|2
1− 1

1 + exp
(
Ek
kBT

)


= 1
2 −

εk
2Ek

tanh
(

Ek
2kBT

)
, (2.55c)

〈c−k↓c†−k↓〉T = 1
2 + εk

2Ek
tanh

(
Ek

2kBT

)
. (2.55d)

2.2.5 Anderson Pseudospin Formalism
The Anderson pseudospin formalism [179] is a reformulation of the BCS Hamiltonian. It maps
the occupation of Cooper pairs (k ↑,−k ↓) to (pseudo)spin states such that an up-spin will
represent the occupied pair state and a down-spin the unoccupied pair state. This allows for an
intuitive pictorial interpretation of the superconducting state and its excitations as we will see
in the following.
We start from the BCS Hamiltonian (2.35) expressed in the Nambu-Gorkov basis and split

the energy gap in its real and imaginary part ∆k = ∆′k + i∆′′k

H =
∑
k

Ψ†k

(
εk −∆k

−∆∗k −εk

)
Ψk

=
∑
k

Ψ†k

[
εk

(
1 0
0 −1

)
−∆′k

(
0 1
1 0

)
+ ∆′′k

(
0 −i
i 0

)]
Ψk

=
∑
k

Ψ†k
[
εkτ3 −∆′kτ1 + ∆′′kτ2

]
Ψk (2.56)

with the Pauli matrices τi. Next, we define the Anderson pseudospin

σk = 1
2Ψ†kτΨk = 1

2

Ψ†kτxΨk

Ψ†kτyΨk

Ψ†kτ zΨk

 = 1
2


c−k↓ck↑ + c†k↑c

†
−k↓

i
(
c−k↓ck↑ − c†k↑c

†
−k↓

)
c†k↑ck↑ − c−k↓c

†
−k↓

 (2.57)

and the pseudomagnetic field

b>k =
(
−2∆′k, 2∆′′k, 2εk

)
. (2.58)

With this, the Hamiltonian can be brought into the simple form

H =
∑
k

bkσk , (2.59)
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Figure 2.3 Coherence factors uk and vk (top), pseudospin 〈σk〉 (middle) and pseudomagnetic field bk

(bottom) in the a) normal or b) BCS state. All quantities are plotted for a 1d momentum k. For the
pseudospin and pseudomagnetic field, only the z- and x- component is shown.

which is equivalent to the Hamiltonian of a classic spin 1
2 exposed to an external magnetic field.

The gap equation expressed in this formalism reads

∆ = V
∑
k

fk 〈c−k↓ck↑〉 = V
∑
k

fk
(
〈σxk〉 − i 〈σyk〉

)
. (2.60)

Please note that the definition of the pseudomagnetic field is not consistent in literature as the
factor of 2 is not always included. Furthermore, in some literature, the gap is defined as the
complex conjugate version of the definition used here, i.e. as the sum over the expectation values
〈c†k↑c

†
−k↓〉. This leads to an opposite sign in the y-component of the pseudomagnetic field and

the imaginary part in the gap equation.
With the help of equations (2.55a) - (2.55d), the equilibrium expectation values for the pseu-

dospins read

〈σxk〉T = ∆′k
2Ek

tanh
(

Ek
2kBT

)
, (2.61a)

〈σyk〉T = − ∆′′k
2Ek

tanh
(

Ek
2kBT

)
, (2.61b)

〈σzk〉T = − εk
2Ek

tanh
(

Ek
2kBT

)
. (2.61c)

By inspecting the definition of the pseudospin in Eq. (2.57) and the equilibrium expectation
values in Eq. (2.61), we can see that the z-component of the pseudospin represents the occupation
of pair states (k ↑,−k ↓), whereas the x- and y-component are a measure of the anomalous
expectation values inherent for the BCS state. This can be visualized by plotting the expectation
values of the pseudospin as a function of the momentum as shown in Fig. 2.3 for T = 0. In
the normal state, the anomalous expectation values and therefore the energy gap ∆ is zero. All
states are occupied up to the Fermi level and unoccupied above. This leads to 〈σxk〉 = 〈σyk〉 = 0
and 〈σzk〉 = − sgn(εk)/2. Thus, occupied states are represented by an up-spin and unoccupied
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states are represented by a down-spin with a sharp transition at kF where εk switches its sign.
In the BCS state with finite ∆, there is a smooth transition between up- and down-spins across
the Fermi level by a rotation through the x- (and y- for complex ∆) plane. This can also be
understood from the analogy of the Hamiltonian with a spin 1

2 in an external field. The spins will
align themselves antiparallel to the external field to minimize their energy. By considering the
pseudomagnetic field in Eq. (2.58), it is evident that the pseudospins in equilibrium are exactly
aligned in the opposite direction.

2.3 Nonequilibrium Dynamic
A superconductor can be brought out of equilibrium by different types of perturbations. Pos-
sibilities are, for example, a sudden change of the interaction strength V → V q (interaction
quench) or a sudden change of the quasiparticle distribution (state quench) as well as a coupling
to external fields, which adds additional time-dependent interaction terms to the Hamiltonian.
In nonequilibrium, the expectation value 〈c−k↓ck↑〉 and therefore the energy gap becomes time-
dependent

∆k(t) = ∆(t)fk , ∆(t) = V
∑
k

fk 〈c−k↓ck↑〉 (t) . (2.62)

This leads to an implicit time dependence in the Hamiltonian due to the self-consistency relation

H → H(t) = H(∆k(t)) , (2.63)

even if the Hamiltonian is not explicitly time-dependent. A Bogoliubov transformation at the
fixed equilibrium value ∆k will therefore no longer diagonalize the Hamiltonian. To calculate the
dynamic, there are different approaches used in this thesis, which are explained in the following.

2.3.1 Bloch Equations in Pseudospin Formalism
The time evolution of the pseudospins can be calculated with the help of Heisenberg’s equation
of motion

∂tσk = i
~

[H,σk]

= i
~
∑
k′

∑
i

bik′
[
σik′ ,σk

]
= i

~
∑
k′

∑
i,j

bik′
[
σik′ , σ

j
k

]
︸ ︷︷ ︸∑
l
iεijlσlkδk,k′

êj

= −1
~
∑
i,j,l

bik εijl︸︷︷︸
=−εilj

σlk êj = 1
~
bk × σk , (2.64)

which takes the form of Bloch equations for spins in a magnetic field [179]. These are three
coupled differential equations which have to be solved together with the gap equation for each
point k in momentum space. From the Bloch equations for classical spins, it is known that a
perturbation of the spin configuration or magnetic field will lead to a precession dynamic. We
can expect the same behavior for the pseudospins. This is depicted schematically in Fig. 2.4. At
each point k in momentum space, a pseudospin precesses around its local pseudomagnetic field.
A precession of all the pseudospins will lead to a collective excitation as we will see later.
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〈σk〉
z

x k

bk

Figure 2.4 Schematical picture of the pseudospin precession triggered by a small perturbation. Each
pseudospin precesses around its local pseudomagnetic field. All quantities are plotted for a 1d momentum
k and only the z- and x- component of the pseudospin are shown.

2.3.2 Density Matrix Formalism
We can evaluate Heisenberg’s equation of motion not only for the pseudospins but in general for
any expectation values or density matrices, e.g. the four expectation values of the quasiparticles
〈αkβk〉, 〈α†kβ

†
k〉, 〈α

†
kαk〉, 〈β

†
kβk〉 appearing in the gap equation (2.50). For example, for 〈α†kαk〉 (t),

one has to evaluate

∂t 〈α†kαk〉 (t) = i
~
〈[H,α†kαk]〉 (t) . (2.65)

An evaluation of the commutator on the right-hand side will in general produce additional
expectation values for which Heisenberg’s equation of motion have to be evaluated as well. If the
Hamiltonian is bilinear, we will find a closed set of differential equations. Otherwise, an infinite
hierarchy of differential equations appears, which has to be truncated [52, 180–182]. Indeed, in
the case of the BCS Hamiltonian, the four expectation values form a closed set of differential
equations, which can be solved together with the gap equation for each point k in momentum
space.

2.3.3 Iterated Equation of Motion Approach
If we are not only interested in specific expectation values but in the time evolution of the
operators in the Heisenberg picture, we may evaluate Heisenberg’s equation of motion for the
operators itself, which is called Iterated Equation of Motion approach [180]. We are mainly
interested in the quasiparticle operators, which read in the Heisenberg picture

α†k(t) = U †(t)α†kU(t) , β†k(t) = U †(t)β†kU(t) , (2.66)

where U(t) is the unitary time evolution operator. The equation of motion for these read

∂tα
†
k(t) = i

~
[H̃(t), α†k(t)] , ∂tβ

†
k(t) = i

~
[H̃(t), β†k(t)] (2.67)

with the Hamiltonian H̃(t) = U †(t)H(t)U(t) in the Heisenberg picture. From these time-
dependent operators, every expectation value can be calculated, e.g.

〈α†kαk〉 (t) = 〈ψ(t)|α†kαk|ψ(t)〉
= 〈ψ0U

†(t)|α†kU(t)U †(t)αk|U(t)ψ0〉 = 〈ψ0|α†k(t)αk(t)|ψ0〉 . (2.68)
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Here, we face the same problem that we receive in general an infinite hierarchy of differential
equations. The idea of the iterated equation of motion method is to introduce an ansatz for the
operators as a superposition of basis functions. This ansatz can than be truncated at a certain
expansion level in order to obtain a closed set of equations [180]. For the quasiparticles we choose

α†k(t) = a0k(t)α†k + a1k(t)βk , (2.69a)
β†k(t) = b0k(t)β†k + b1k(t)αk . (2.69b)

With such an ansatz, we exploit again the bilinearity of the Hamiltonian and we obtain again a
closed set of differential equations which is exact.
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3 Classification and Characterization of Higgs
Modes

In this chapter, quantum quenches of the superconducting condensate are studied to gain a basic
understanding of the induced dynamic. These quenches simulate the effect of an experimental
ultrafast THz pump pulse, which will be considered in the next chapter. There are different
possibilities how one can perform such a quench. The simplest possible quench is an interaction
quench which is discussed in the first section. As such a quench acts only symmetrically on the
condensate, momentum-dependent quenches are introduced in section 3.2 to explore new effects.

3.1 Excitation of Higgs Oscillations with Interaction Quenches
We start by studying interaction quenches. Such a quench is defined by changing the interaction
strength abruptly, i.e.

Vkk′ = V fkfk′ → V q
kk′ = V qfkfk′ , (3.1)

where V q = gV is the quenched interaction strength changed by a factor g. These kinds of
interaction quenches have been studied in multiple papers for s-wave superconductors [20–27,
93, 183] and also for d-wave [53, 183] systems. Furthermore, for strongly interacting fermions in
Bose-Einstein condensates (BEC) or in the BCS-BEC crossover regime, the dynamic and different
quench regimes have been explored [21–23, 85, 132, 184]. Here, we allow momentum-dependent
pairing interaction and generalize the analysis for arbitrary gap symmetry and compare the
results with the well-known s-wave case.

3.1.1 Linear Analysis within Pseudospin Formalism
Let us first exploit the simplicity of Anderson pseudospin formalism to obtain an analytic insight
into the dynamic triggered by an interaction quench. In this and all following sections, we consider
only 2d systems to reduce the computational cost. This choice is also motivated by quasi-2d
systems, like the layered cuprates with an unconventional d-wave symmetry.

We assume that the gap only depends on the polar angle ϕ, therefore we write fk = f(ϕ). In
addition, we assume that the dispersion εk = ε(|k|) depends only on the absolute value of k near
the Fermi surface where all the relevant physics is happening. Then, the momentum sum in the
gap equation can easily be replaced with an integral over the energy

∆(t) = V
∑
k

fk
(
〈σxk〉 (t)− i 〈σyk〉 (t)

)
= λ

∫ εc

−εc
dε
∫ 2π

0
dϕf(ϕ)

(
〈σxk〉 (t)− i 〈σyk〉 (t)

)
. (3.2)

Here, we introduce a dimensionless constant λ = V D(εF) with the density of states D(εF) at the
Fermi energy which is assumed to be constant. The constant λ is calculated by considering the
equilibrium case for T = 0

∆ = λ

∫ εc

−εc
dε
∫ 2π

0
dϕf(ϕ)∆f(ϕ)

2Ek
, (3.3)
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which leads to

λ =
(∫ 2π

0
dϕf(ϕ)2

∫ εc

−εc
dε 1

2
√

∆2f(ϕ)2 + ε2

)−1

=
(∫ 2π

0
dϕf(ϕ)2 sinh−1

(
εc

∆|f(ϕ)|

))−1
. (3.4)

For further analysis, we consider a small quench with g . 1. Due to the small quench, it is
justified to use the ansatz

〈σxk〉 (t) = 〈σxk〉+ xk(t) , (3.5a)
〈σyk〉 (t) = 〈σyk〉+ yk(t) , (3.5b)
〈σzk〉 (t) = 〈σzk〉+ zk(t) , (3.5c)

where xk(t), yk(t), zk(t)� 1 are small deviations from the equilibrium state. The same can be
assumed for the energy gap

∆(t) = ∆q + δ∆(t) (3.6)

with the deviation δ∆(t) and the value ∆q = ∆(0) of the gap directly after the quench. It follows
for the gap dynamic after the quench

∆(t) = λq

∫ εc

−εc
dε
∫ 2π

0
dϕf(ϕ)

(
〈σxk〉 (t)− i 〈σyk〉 (t)

)
= g∆ + λq

∫ εc

−εc
dε
∫ 2π

0
dϕf(ϕ)

(
xk(t)− iyk(t)

)
, (3.7)

such that we can identify

∆q = ∆(0) = g∆ , (3.8a)

δ∆(t) = λq

∫ εc

−εc
dε
∫ 2π

0
dϕf(ϕ)

(
xk(t)− iyk(t)

)
. (3.8b)

The time evolution for the pseudospin is described by the Bloch equations (2.64). Inserting the
ansatz (3.5) and (3.6) and using the equilibrium value (2.61) for the pseudospin at T = 0, it
follows ẋk(t)

ẏk(t)
żk(t)

 =

−2f(ϕ)(∆′q + δ∆′(t))
2f(ϕ)(∆′′q + δ∆′′(t))

2εk

×


f(ϕ)∆′
2Ek

+ xk(t)
−f(ϕ)∆′′

2Ek
+ yk(t)

− εk
2Ek

+ zk(t)

 (3.9)

and therefore

ẋ(t) = ε

E
f
(
∆′′ −∆′′q − δ∆′′(t)

)
+ 2f

(
∆′′q + δ∆′′(t)

)
z(t)− 2εy(t) , (3.10a)

ẏ(t) = ε

E
f
(
∆′ −∆′q − δ∆′(t)

)
+ 2f

(
∆′q + δ∆′(t)

)
z(t) + 2εx(t) (3.10b)

ż(t) = 1
E
f2
(
∆′′(∆′q + δ∆′(t))−∆′(∆′′q + δ∆′′(t))

)
,

− 2f
(
y(t)(∆′q + δ∆′(t)) + x(t)(∆′′q + δ∆′′(t))

)
. (3.10c)
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3.1 Excitation of Higgs Oscillations with Interaction Quenches

Please note that in these equations and the following, the function values k and ϕ are omitted
for shorter and clearer notation where no ambiguity is possible. In addition, ~ is set to 1. Up
to now, the equations are exact and they will be solved numerically later on. Here, we continue
the analytic analysis with a linear approximation by neglecting all terms of higher order in
the deviation terms, e.g. terms like δ∆(t)z(t). To solve these coupled differential equations, we
perform a Laplace transformation to receive algebraic equations. The Laplace transformation
f(s) for a function f(t) is defined as

f(s) =
∫ ∞

0
e−stf(t) dt (3.11)

with the complex frequency s. We obtain

sx(s) = 1
s

ε

E
f
(
∆′′ −∆′′q

)
− ε

E
fδ∆′′(s) + 2f∆′′qz(s)− 2εy(s) , (3.12a)

sy(s) = 1
s

ε

E
f
(
∆′ −∆′q

)
− ε

E
fδ∆′(s) + 2f∆′qz(s) + 2εx(s) , (3.12b)

sz(s) = 1
s

1
E
f2
(
∆′′∆′q −∆′∆′′q

)
+ 1
E
f2
(
∆′′δ∆′(s)−∆′δ∆′′(s)

)
− 2f

(
∆′qy(s) + ∆′′qx(s)

)
(3.12c)

together with the gap equation

δ∆(s) = λq

∫ εc

−εc
dε
∫ 2π

0
dϕf(x(s)− iy(s)) . (3.13)

Without loss of generality, we choose the global phase of the equilibrium gap such that ∆′′ =
∆′′q = 0 and therefore neglect the primes on the expressions ∆′ and ∆′q. Solving for x(s) and y(s)
yields

x(s) =
4ε2f

(
∆q−∆
s + δ∆′(s)

)
2E(4ε2 + 4∆2

qf
2 + s2) −

2εf
(
4∆qf

2 ∆q−∆
s + s

)
δ∆′′(s)

2E(4ε2 + 4∆2
qf

2 + s2) , (3.14a)

y(s) = − 4ε2fδ∆′′(s)
2E(4ε2 + 4∆2

qf
2 + s2) −

2εf((∆q −∆) + sδ∆′(s))
2E(4ε2 + 4∆2

qf
2 + s2) − 4f3∆∆qδ∆′′(s)

2E(4ε2 + 4∆2
qf

2 + s2) .

(3.14b)

The solutions for x(s) and y(s) are inserted back into the gap equation. Integral expressions of
the form

I ∝
∫ εc

−εc
dε ε

2E(4ε2 + 4∆2
qf

2 + s2) = 0 (3.15)

vanish due to the asymmetry of the integrand in ε. Thus, real and imaginary parts of the gap are
not coupled as the terms mixing both expressions vanish. Furthermore, the equation for δ∆′′(s)
is underdetermined as δ∆′′(s) can be canceled on both sides such that the only valid solution is
δ∆′′(s) = 0. This means that the initial real gap stays real under the dynamic triggered by an
interaction quench. The remaining term for δ∆(s) = δ∆′(s) is of the form

I ∝
∫ εc

−εc
dε
∫ 2π

0
dϕ 4ε2f2

2E(4ε2 + 4∆2
qf

2 + s2) . (3.16)
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The expression is rewritten by adding a zero in the nominator

I ∝
∫ εc

−εc
dε
∫ 2π

0
dϕ

f2
(
4ε2 + 4∆2

qf
2 + s2 − 4∆2

qf
2 − s2

)
2E(4ε2 + 4∆2

qf
2 + s2)

=
∫ εc

−εc
dε
∫ 2π

0
dϕ f2

2E

−
∫ 2π

0
dϕf2

(
4∆2

qf
2 + s2

) ∫ εc

−εc
dε 1

2E(4ε2 + 4∆2
qf

2 + s2)

= 1
λ
− F (s) . (3.17)

In the last step, the equilibrium gap equation (3.3) is identified. The function F (s) reads

F (s) =
∫ 2π

0
dϕf2

(
4∆2

qf
2 + s2

) ∫ ∞
−∞

dε 1
2Eq(4E2

q + s2) , (3.18)

where the approximation E ≈ Eq =
√
ε2 + ∆2

qf
2 is used for small quenches g . 1. The integral

borders are replaced by εc →∞, which is justified as long as εc � ∆. With this, the gap equation
reads

δ∆(s) =
(∆q −∆

s
+ δ∆(s)

)(
λq
λ
− λqF (s)

)
(3.19)

and the solution is

δ∆(s) = ∆−∆q
s

λF (s)− 1
λ
λq
− 1 + λF (s)

= ∆−∆q
s

(
1− 1

λF (s)

)
(3.20)

using the approximation λ
λq
− 1 ≈ 0 in the last step. The ε integral in F (s) can be evaluated

analytically with the help of the formula [185, p. 1091]
∫ 1

(ax2 + b)
√
cx2 + d

dx =
tan−1

(
x
√
ad−bc√

b
√
cx2+d

)
√
b
√
ad− bc

(3.21)

and the hyperbolic relations

tan−1(ix) = i tanh−1(x) , tanh−1
(

x√
x2 + a2

)
= sinh−1

(
x

|a|

)
. (3.22)

We identify

a = 4 , b = 4∆2
qf

2 + s2 , c = 4 , d = 4∆2
qf

2 , ad− bc = −4s2 (3.23)

and find

F (s) =
∫ 2π

0
dϕf2

(
4∆2

qf
2 + s2

)sinh−1
(

s
2∆q|f |

)
s
√

4∆2
qf

2 + s2

= 1
s

∫ 2π

0
dϕf2

√
4∆2

qf
2 + s2 sinh−1

(
s

2∆q|f |

)
. (3.24)

In order to evaluate the ϕ integral, we have to consider a specific gap symmetry, which we will
do in the following subsections exemplarily for the s-, d- and d+s-wave case.
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3.1 Excitation of Higgs Oscillations with Interaction Quenches

Solution for s-wave

Let us first consider the simplest case, namely s-wave with f(ϕ) = 1. Then, the ϕ integral is
trivial and it follows

F (s) = 2π
s

√
4∆2

q + s2 sinh−1
(

s

2∆q

)
(3.25)

and for δ∆(s)

δ∆(s) = (∆−∆q)

1
s
− 1
λ
√

4∆2
q + s2 sinh−1

(
s

2∆q

)
 . (3.26)

Hereby, we implicitly define a new λ → 2πλ for the s-wave case to absorb the factor 2π. The
imaginary axis s = iω in Laplace space corresponds to the real frequency axis of a Fourier
transform. Therefore, we can already see from this expression that δ∆(s = iω) is peaked at
ω = 2∆q. This corresponds to 2∆q Higgs oscillations of the order parameter. To obtain the
solution explicitly in the time-domain, we have to evaluate the Bromwich integral

δ∆(t) = 1
2πi

∫ γ+i∞

γ−i∞
ds estδ∆(s) , (3.27)

where γ ∈ R is arbitrary but larger than any of the real parts of the poles of the integrand. The
first term ∝ 1

s in δ∆(s) yields just a constant offset ∆ −∆q. For the second term, we extend
the integral to the closed loop integral in the complex plane shown in Fig. 3.1 with R→∞ and
ε → 0, where we exclude the branch cut s ∈ [−2i∆q, 2i∆q] and add the contribution from the
pole at s = 0. The right vertical part c0 is our sought integral

∫ γ+i∞

γ−i∞
=
∫
c0

=
∫
ctot
−

8∑
i=1

∫
ci

. (3.28)

The integral we have to evaluate reads

I0 = ∆q −∆
λ

1
2πi

∫ γ+i∞

γ−i∞
ds est√

4∆2
q + s2 sinh−1

(
s

2∆q

) . (3.29)

According to Cauchy’s integral theorem, the closed loop integral is zero as we have excluded all
poles. Likewise, the integrals c1, c7 and c8 are vanishing for R→∞. The integrals c2 and c6 are
canceling each other for ε→ 0. The pole at s = 0 contributes with its residue

I4 = ∆q −∆
λ

1
2πi

∫
c4

ds est√
4∆2

q + s2 sinh−1
(

s
2∆q

)
= ∆q −∆

λ
Indc4(0) Res0

 est√
4∆2

q + s2 sinh−1
(

s
2∆q

)


= −∆q −∆
λ

, (3.30)
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=

Figure 3.1 Contour to solve the Bromwich integral Eq. (3.29) corresponding to the path c0. The red
zigzag line from −2i∆q to 2i∆q indicates the chosen branch cut for the expression, while the blue dot at
s = 0 indicates the pole. The total closed loop integral, as well as the contributions c1, c2, c6, c7 and c8
are vanishing. There are only contributions from the pole at s = 0 and the paths c3 and c5 located on
the right and left side of the branch cut.

where Indc4(0) = −1 is the winding number due to the clockwise circling around the pole.
The remaining two paths are parametrized as s(r) = −ir for c3 and s(r) = ir for c5 with
r ∈ [−2∆q, 2∆q]. The path c3 is weighted with an additional minus sign due to the opposite side
of the branch cut. It follows

I3 + I5 = ∆q −∆
λ

1
2πi

∫ 2∆q

−2∆q

(
− e−irt (−i) dr√

4∆2
q − r2 sinh−1

(
−ir
2∆q

) + eirt i dr√
4∆2

q − r2 sinh−1
(

ir
2∆q

))

= ∆−∆q
λ

1
π

∫ 2∆q

−2∆q

sin(rt) dr√
4∆2

q − r2 sin−1
(

r
2∆q

) . (3.31)

Next, we substitute the integration variable

r = 2∆q sin(u) , u = arcsin
(

r

2∆q

)
, dr = 2∆q cos(u) du , (3.32)

such that it follows

I3 + I5 = ∆−∆q
λ

1
π

∫ π/2

−π/2

sin(2∆qt sin(u))
u

du . (3.33)

This expression can be evaluated further in the long-time limit. For large times t, the integrand
oscillates fast and cancels out except near the points u = ±π/2, where sin(±π/2) = ±1. Thus,
we expand the sin(u) function around u = ±π/2

sin(u) = ±1∓ 1
2

(
u∓ π

2

)2
+O(u4) . (3.34)
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The integrand is split into the contributions from the two stationary points and expressed again
with exponential functions

I3 + I5 = ∆−∆q
λ

1
π

∫ π/2

−π/2

( 1
2i

(
e2i∆qte−i∆qt(u−π2 )2 − e−2i∆qtei∆qt(u−π2 )2

)
π/2

−
1
2i

(
e−2i∆qtei∆qt(u+π

2 )2 − e2i∆qte−i∆qt(u+π
2 )2
)

π/2

)
du . (3.35)

We shift the integration variables by ±π/2 and summarize the expression

I3 + I5 = ∆−∆q
λ

2
π2i

[
e2i∆qt

∫ π

0
e−i∆qtu2 du− e−2i∆qt

∫ π

0
ei∆qtu2 du

]
. (3.36)

We can replace π →∞ in the integral border, as the integrand is oscillating fast for large values
of u and thus canceling out. One obtains

I3 + I5 = ∆−∆q
λ

2
π2i

[
e2i∆qt 1

2

√
π

2
1− i√

∆qt
− e−2i∆qt 1

2

√
π

2
1 + i√

∆qt

]

= −∆−∆q
λ

2
π3/2

cos(2∆qt+ π
4 )√

∆qt
. (3.37)

Collecting all contributions, i.e. δ∆ = ∆−∆q − I4 − (I3 + I5), the total expression for the gap
oscillations finally reads

δ∆(t) = (∆−∆q)
(

1− 1
λ

+ 1
λ

2
π3/2

cos(2∆qt+ π
4 )√

∆qt

)
. (3.38)

The order parameter is oscillating with a frequency of 2∆q, the energy of the Higgs mode.
The square root decay of the oscillations is characteristic for the Higgs mode in s-wave super-

conductors [20, 23] and describes an intrinsic dephasing independent of any additional damping,
which is not included in this calculation but will be present in real experiments, for example due
to scattering effects. Additional damping of the oscillations will be discussed on a phenomenolog-
ical level in section 3.1.2. The origin of the intrinsic dephasing can be understood most easily in
the picture of the Anderson pseudospin. The quench causes a change in the pseudomagnetic field
and creates an additional time-dependence due to the self-consistent dependence on the gap (see
Eq. (3.9)). This causes a precession of the pseudospins around the pseudomagnetic field accord-
ing to the Bloch equations (see Fig. 2.4). As the pseudomagnetic field is momentum-dependent
even for the s-wave case due to the dependence on the dispersion in the z-component, the
precession frequency ωp of each pseudospin in momentum-space differs. The frequency is given
by the poles in the expressions Eq. (3.14) corresponding to two times the quasiparticle energy
ωp = 2Eq

k = 2
√
ε2k + ∆2

q. In the gap equation, the precession of all the pseudospins is summed
up, where the oscillation at the Fermi-level with εk = 0 has the largest amplitude and therefore
dominates the resulting dynamic with a frequency of 2∆q. However, the oscillation frequencies
different from 2∆q cannot be neglected completely. Over time, they start to dephase such that
a destructive interference occurs, leading to the observed square root decay. For nontrivial gap
symmetry, there will be even more different precession frequencies of the pseudospins as a result
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of the strong angular dependence of the gap. As shown in the next section, the decay of the gap
oscillations will be stronger.
So far, the analysis of the quench dynamic is performed in the linear regime, where ∆q ≈ ∆.

For stronger quenches, the gap will be substantially reduced and the gap oscillations will be no
longer around the equilibrium value but approaching a new value for long times ∆∞ < ∆q < ∆.
In this case, the dynamic of the gap for long times can be described by the general formula

∆(t) = ∆∞ +A
cos(2∆∞t+ φ)√

t
, (3.39)

where the parameters ∆∞, A and φ are determined by the quench strength. This result can be
derived analytically for arbitrary quench strength with the help of the Lax reduction method
[21–23, 25–27, 54, 112] as the quench dynamic in the s-wave system is integrable.
To determine ∆∞ for small quenches, we use the expression for δ∆(s) in Laplace space of

Eq. (3.20). By using the final value theorem, we can write

∆∞ = lim
s→0

s∆(s)

= lim
s→0

s

(
∆q
s

+ ∆q −∆
s

( λq
λ − λqF (s)

1− λq
λ + λqF (s)

))
. (3.40)

Using again εc →∞ for εc � ∆, the limit for F (s) reads

F∞ = lim
s→0

F (s)

= lim
s→0

∫ 2π

0
dϕf2(4∆2

qf
2 + s2)

∫ ∞
−∞

dε 1
2E(4ε2 + 4∆2

qf
2 + s2)

=
∆q cos−1

(
∆q
∆

)
√

∆2 −∆2
q

∫ 2π

0
dϕf2 . (3.41)

With ∆q = g∆ and λq = gλ, it follows

F∞ = g cos−1(g)√
1− g2

∫ 2π

0
dϕf2 , (3.42a)

∆∞ = ∆ gλF∞
1 + g(λF∞ − 1) . (3.42b)

In literature, the Lax reduction method has been used to derive an expression for ∆∞ beyond
the linear regime [23]. It is implicitly defined by the equation

∆∞ = ∆ cosκ , log
(∆f

∆

)
= −κ tan κ2 . (3.43)

Hereby, the parameter ∆f is the equilibrium value of the gap for the quenched interaction, which
is defined by

∆f = λq

∫ εc

−εc
dε ∆f

2
√

∆2
f + ε2

= λq∆f sinh−1
(
εc
∆f

)
. (3.44)
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Figure 3.2 Higgs oscillations of s-wave superconductor after interaction quench. a) Comparison of Higgs
oscillations calculated numerically without and within linear approximation and a fit with the analytic
formula Eq. (3.39) for small quench strength g = 0.999. The fit lies exactly on top of the numeric solution.
The used parameters and details about the implementation can be found in appendix A. b) Fourier
transform of the numeric oscillations compared with the analytic expression of Eq. (3.20). All solutions
show a sharp peak at 2∆∞ ≈ 2∆q.

Solving for ∆f and using λq = gλ, it follows

∆f = εc

sinh
(

1
λq

) = εc

sinh
(

sinh−1( εc∆ )
g

) . (3.45)

In Fig. 3.2, we compare the result from the linear analysis with the full solution and the analytic
formula Eq. (3.39) by fitting the function to the numeric result using ∆∞, A and φ as the fit
parameters. The linear and full solution is obtained by evaluating the Bloch equations numerically
on a momentum grid. For details about the implementation and the used parameters, see appendix
A. All three solutions fit perfectly for the chosen small quench strength g = 0.999. A Fourier
transform of the oscillations shows a sharp peak at 2∆∞ ≈ 2∆q, which matches the analytic
solution of Eq. (3.20) at the imaginary axis s = iω.

To check whether the result also holds in the nonlinear regime, the interaction quench strength
g is varied continuously and the resulting oscillations are fitted again by using the formula
(3.39). In addition to the previous fit parameters, we also use the oscillation frequency ωH as an
additional parameter. The result can be found in Fig. 3.3. For each quench strength, a perfect
fit is possible as can be seen in Fig. 3.3a). If the quenched interaction drops below g ≈ 0.67,
the gap enters a regime, where it vanishes for long times [21–23, 85, 132, 184]. The resulting fit
parameters are shown in Fig. 3.3b),c). There is perfect agreement of ωH = 2∆∞ as stated by
Eq. (3.39). In addition, we can see that the oscillation amplitude A behaves nonmonotonic. The
amplitude increases for increasing quench strength up to a maximum value and then decreases
again until it approaches zero. The phase of the oscillations changes monotonically from φ = π/4,
as found in the linear analysis above and e.g. in [23], to φ = 0 at the quench strength where the
gap vanishes. There is a small difference in the phase if one fits the oscillations straight from
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Figure 3.3 Fit parameters for Higgs oscillations of s-wave superconductor after interaction quench.
a) Oscillations for different quench strengths g calculated numerically (solid lines) and fitted with the
analytic formula (3.39) (points). The formula fits perfectly for all values of g where ∆∞ > 0. For values
g < 0.67, the superconductor is quenched into a gapless region with ∆(t) = 0. The time is normalized to
the respective ∆∞ for each g. b) Fit parameters 2∆∞, ωH and the analytic expression Eq. (3.42b) and
Eq. (3.43). There is perfect agreement ωH = 2∆∞ for all quench strengths. The linear analytic expression
is only valid for small quench strengths. c) Fit parameters A and φ. The maximum amplitude A is found
for g ≈ 0.74. The phase changes continuously from φ = π/4 for small quenches g ≈ 1 to φ = 0 at the
value for g where the gap vanishes. The used parameters and details about the implementation can be
found in appendix A.

t = 0 or aims for good match in the long-time limit. One obtains the value of φ = π/4 for small
quenches only in the long-time limit, otherwise the phase is slightly smaller.

In Fig. 3.3b), we also compare the analytic solution of ∆∞ derived above in the linear regime
of Eq. (3.42b) with the solution Eq. (3.43) from literature and the numerical solution. For small
quenches g ≈ 1, there is good agreement; for larger values, the linear formula starts to deviate,
whereas Eq. (3.43) holds for all values of g.

Solution for nontrivial gap symmetry

For nontrivial gap symmetry f = f(ϕ), the ϕ integral in Eq. (3.24) is no longer trivial and we
cannot solve it analytically. Nevertheless, it is instructive to study the analytic expression for
δ∆(s) derived in the linear regime in frequency space, which reads explicitly

δ∆(s) = (∆−∆q)

1
s
− 1
λ
∫ 2π

0 dϕf2
√

4∆2
qf

2 + s2 sinh−1
(

s
2∆q|f |

)
 . (3.46)

Compared with the s-wave case (3.26), there is no longer a sharp peak at ω = 2∆q for s = iω due
to the integration and continuous variation of f(ϕ). Yet, any minima in the denominator will
lead to peaks in the spectrum and thus determine the frequencies of the Higgs oscillations. The
minima in the denominator are approximately given by ω = 2∆qf(ϕf), where ϕf are angles for
which ∂ϕf(ϕf)2 = 0, i.e. flat regions of f(ϕ)2. For these angles, the expression

√
4∆2

qf(ϕ)2 − ω2

integrated over ϕ becomes minimal as a larger number of terms for ϕ ≈ ϕf cancel compared
to other values of ϕ. The exact minima and shape of the resulting peak is determined by the
remaining terms in the integrand.
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Figure 3.4 Gap oscillation and Fourier spectrum of Higgs oscillations after interaction quench for different
gap symmetries. a) Oscillations in time calculated by numerical integration of Bloch equations. b) Fourier
transform of the oscillations compared with the analytic expression Eq. (3.46). The time and energy is
normalized to ∆∞ for each symmetry. For details about the calculation, see appendix A.

As an example, we consider d-wave with f(ϕ) = cos(2ϕ) first. Here, the flat regions are at
ϕf = 0, π/2, π, 3π/2, where |f(ϕf)| = 1. Thus, we expect again a peak at ω ≈ 2∆q, however, with
a broader width. As another example, we consider d+s-wave with

f(ϕ) = 0.9 cos(2ϕ) + 0.1 , (3.47)

i.e. a d-wave order parameter with a small admixture of s-wave as found for example in overdoped
YBCO [186–188], or discussed for organic superconductors [189]. Here, the flat regions are again
at ϕf = 0, π/2, π, 3π/2. In contrast to pure d-wave, there are two different values for f(ϕf),
namely |f(0)| = |f(π)| = 1 and |f(π/2)| = f(3π/2) = 0.8 reflecting two different lobe sizes. Thus,
we expect two Higgs modes.

To confirm this analysis, we solve the Bloch equations numerically for these gap symmetries
and compare the results with a numerical evaluation of Eq. (3.46). The calculated time dynamic
can be found in Fig. 3.4a). Compared to the s-wave case, the oscillations for d-wave and d+s-
wave are much stronger damped, which is understandable due to the missing of the exact
resonance. As already mentioned in the previous section, this can also be understand as a stronger
dephasing effect of the pseudospins compared to the s-wave case as more precession frequencies
ωp = 2Eq

k = 2
√
ε2k + ∆2

qf
2
k occur. In a physical picture, this can also be comprehended as a decay

of the Higgs mode into gapless quasiparticle excitations which exist in the nodal region. In the
d+s-wave case, it can also be observed that the oscillations contain more than one frequency.
Please note that the small high-frequency oscillations visible for the d- and d+s-wave case are
numerical effects introduced by the energy cutoff. These artifacts are discussed in more detail in
appendix A.
In Fig. 3.4b), the Fourier transform of the oscillations compared to the numerical evaluation

of Eq. (3.46) is shown. As expected for d-wave, a broad peak slightly below ω = 2∆q can be
observed. In the d+s-wave case, a two-peak or two-kink structure is visible in the spectrum
with kinks at ωH1 ≈ 2∆q and ωH2 = 1.6∆q, corresponding to the values of the two lobes. The
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Figure 3.5 Fit of Higgs oscillations for d-wave using Eq. (3.48). For a)-c), the fit tries to match the short-
time range t . 10, for d)-f), the fit tries to match the long-time limit t & 30. a) Numerically calculated
gap oscillations exemplary for g = 0.95 compared with the fit solution. There is good agreement in the
short-time range. b) Fit parameters ∆∞ and ωH. There is small deviation from the identity ωH = 2∆∞
for small quenches. c) Fit parameters A, φ and n. d) Numerically calculated gap oscillations exemplary for
g = 0.95 compared with the fit solution. There is good agreement in the long-time limit. e) Fit parameters
∆∞ and ωH. The identity ωH = 2∆∞ fits perfectly. f) Fit parameters A, φ and n. In the long-time limit,
the data could only be fitted for g > 0.73 because for stronger quenches, the Higgs frequency is so low
that the required data for the long-time limit could not be obtained. The fit is not useful for g . 0.8
as both the amplitudes and the decay rates change drastically. Details about the calculation and used
parameters can be found in appendix A.

evaluation of the analytic formula shows the same qualitative behavior with small deviations
due to the approximation used in the derivation.

The numerical solution indicates that the oscillations might be fitted again by a similar formula
like in the s-wave case. For the d-wave case, we assume (see also [53])

∆d(t) = ∆∞ +A
cos(2ωHt+ φ)

tn
(3.48)

and for the d+s-wave case

∆d+s(t) = ∆∞ +A1
cos(2ωH1t+ φ1)

tn1
+A2

cos(2ωH2t+ φ2)
tn2

. (3.49)

Compared to the s-wave case, where the decay of the oscillations is fixed with 1/
√
t, we introduce

an additional parameter n or n1 and n2, which describe a variable decay rate of the oscillations.
In Fig. 3.5, we calculate the gap dynamic for d-wave numerically for varying quench strength g
and fit the resulting oscillations with the formula (3.48). The simple formula fits the numerical
result (locally) well; however, the resulting parameters differ depending on the chosen fit range.
To see the differences, we perform two different fits, one aiming for a good match in the

short-time dynamic t . 10, as shown exemplarily for g = 0.95 in Fig. 3.5a), and one aiming for

38



3.1 Excitation of Higgs Oscillations with Interaction Quenches

0.999

1

1.001

0 20 40 60 80 100

a)

g = 0.95

0

0.5

1

1.5

2

0.7 0.8 0.9 1

b)

0

0.5

1

1.5

2

2.5

3

3.5

4

0.7 0.8 0.9 1
−π

−π
2

0

c)

×2 · 10−6

×2 · 10−7

G
ap
|∆

(t
)|

(∆
)

Time t (1/∆∞)

numeric
fit

E
ne

rg
y

(∆
)

Quench strength g

2∆∞
0.8 · 2∆∞
ωH1

ωH2

A
1
,A

2
,n

1
,n

2

P
ha

se
φ
1
,φ

2

Quench strength g

A1 (∆)
A2 (∆)

φ2

n1

n2

φ1

Figure 3.6 Fit of Higgs oscillations for d+s-wave with f(ϕ) = 0.9 cos(2ϕ) + 0.1 using Eq. (3.49). The fit
is performed for t & 10. a) Numerically calculated gap oscillations exemplary for g = 0.95 compared with
the fit solution. There is good agreement in the chosen time range. b) Fit parameters ∆∞, ωH1 and ωH2.
The identities ωH1 = 2∆∞ and ωH2 = 0.8 · 2∆∞ match perfectly. c) Fit parameters A1, A2, φ1, φ2, n1 and
n2. The data could only be fitted for g > 0.72. The fit is not useful for g . 0.76 as both the amplitudes
and the decay rates change drastically. Details about the calculation and used parameters can be found
in appendix A.

a good match in the long-time limit t & 30, as shown exemplarily for g = 0.95 in Fig. 3.5d).
Like in the s-wave case, for quench strengths g < 0.67, the system is quenched into a gapless
regime. The identity ωH = 2∆∞ fits again perfectly in the long-time limit (Fig. 3.5e)), in the
short-time limit, there is a small deviation from the formula for small quenches (Fig. 3.5b)). In
the short-time limit, the amplitude A and phase φ behave similar to the s-wave case. There is a
value g ≈ 0.8 for which the amplitude becomes maximal and the phase changes continuously over
the whole range. The differences are the values of the parameters. In order to fit the oscillations,
the amplitude is 105 times larger than in the s-wave case and the phase is shifted to negative
values. The decay rate is n ≈ 1.9 for small quenches and stays approximately constant up to
g ≈ 0.8. From then on, it decreases in size for large quenches, i.e. the oscillations are less damped
for strong quenches.

In the long-time limit, the phase is shifted again but shows similar behavior than the short-time
dynamic. The decay rate is slightly higher at n ≈ 2 and stays again constant up to g ≈ 0.8. For
larger quenches, the behavior then deviates drastically from the short-time limit, as the decay
rate and the amplitude increases. However, this is due to the fact that the simple formula (3.48)
fails to describe the oscillations for large quenches precisely. The fit converges to a solution, where
the amplitude increases strongly to compensate for the stronger damping. Formula Eq. (3.48) is
just an approximation, the real oscillations contain more components with different frequencies
and different decay rates, especially for stronger quenches (see section 3.1.3). Therefore, a simple
fit with Eq. (3.48) works only for certain regions, but fails if applied globally. Changing the fit
range yields therefore different fit parameters. In addition, the fit formula contains a certain
arbitrariness as locally, the same decaying oscillations can be described with either small n
and A or large n and A. A strong increase in both parameters has therefore no real meaning.
In conclusion, we can state that the d-wave Higgs oscillations are approximately described by
Eq. (3.48) with a decay rate of n ≈ 2 in the long-time limit for small quenches.
Now, we proceed to the d+s-wave case. As already the simple formula for d-wave cannot
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describe the dynamic precisely for strong quenches, we do not expect formula Eq. (3.49) to fit the
oscillations for the more complex case perfectly. In Fig. 3.6 the result of a fit for a medium-limit
time range t & 10 can be found. Surprisingly, the formula works well for less strong quenches.
Moreover, the identities ωH1 = 2∆∞ and ωH2 = 0.8 · 2∆∞ fit perfectly for all quench strengths,
i.e. the Higgs modes for d+s-wave are given by the two local gap maxima. The decay rate for
both modes is again approximately n1 ≈ n2 ≈ 2. At the quench strength g ≈ 0.76, there seems
to be a maximum in the amplitude. However, as already discussed in the d-wave case, at this
value, both the decay rate and the amplitude change drastically, such that the fit is no longer
useful and the oscillations should be described by a fit formula with more features. Thus, for
the d+s-wave case, we can conclude that for small quenches, the oscillations are described by
Eq. (3.49) with n1 ≈ n2 ≈ 2 in the long-time limit.

3.1.2 Additional Damping of Oscillations
In an actual experiment with real materials, several factors might exist leading to a faster decay
of Higgs oscillations compared to the power-law decay predicted by pure BCS theory. This can
already be seen in the experimental data of the first direct observation of Higgs oscillations for the
s-wave superconductor NbN, where oscillations in the optical conductivity were observed after an
excitation with an ultrashort THz laser pulse [36]. The main result of this experiment is shown
in Fig. 3.7a). Here, the observed oscillations were fitted with a power-law decay with exponents
between 1 and 3 depending on the pump fluence, where BCS theory predicts an exponent of
1/2 for s-wave superconductors as shown in the previous sections. Possible explanations of such
stronger decay are diverse, ranging from scattering on defects, decay into other modes, strong-
coupling regimes [190], interaction with the electronic subsystem of quasiparticle and decay into
the continuum [71] or crossover into the overdamped phase for strong quenches [22].
On a phenomenological level, we can incorporate damping into BCS theory by introducing

relaxation terms in the Bloch equations in analogy to the T1 and T2 relaxation times used to
describe NMR experiments. A similar approach has been used in a recent study to describe the
damping in a THz driving experiment on NbN and Nb3Sn [71, 191].
The Bloch equations with relaxation terms read

∂t 〈σk〉 (t) = bk(t)× 〈σk〉 (t)−
〈σk〉 (t)− 〈σk〉

τ
, (3.50)

where we use a single relaxation time τ for simplicity. Using again the linear approximation
from the previous sections and neglecting the imaginary part of the gap, the Bloch equations in
Laplace space read

sx(s) = −2εy(s)− 1
τ
x(s) , (3.51a)

sy(s) = 1
s

ε

E
f
(
∆−∆q

)
− ε

E
fδ∆(s) + 2f∆qz(s) + 2εx(s)− 1

τ
y(s) , (3.51b)

sz(s) = −2f∆qy(s)− 1
τ
z(s) . (3.51c)

One finds for the solution for x(s)

x(s) =
4ε2f

(
∆q−∆
s + δ∆(s)

)
2E

(
4ε2 + 4∆2

qf
2 +

(
s+ 1

τ

)2
) . (3.52)
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Figure 3.7 Damped Higgs oscillations. a) Experimentally measured Higgs oscillations in a pump-probe
experiment for NbN, visible in the change of the transmitted electrical field for different pump fluences.
The data has been fitted with an additional power-law decay with exponents between 1 and 3. The figure
is taken from [36]. b) Higgs oscillations for s-wave superconductor with additional phenomenological
relaxation time τ = 0.15 ∆−1 calculated numerically using Bloch equations (3.50). For the analytic curve,
the solution Eq. (3.39) is fitted to a calculation without damping and then multiplied with e−t/τ as found
by Eq. (3.56). For details about the calculation and used parameters, see appendix A.

Inserting the expression in the gap equation, the gap reads in analogy to section 3.1.1

δ∆(s) = ∆−∆q
s

(
1− 1

λFτ (s)

)
(3.53)

with

Fτ (s) = 1(
s+ 1

τ

) ∫ 2π

0
dϕf2

√
4∆2

qf
2 +

(
s+ 1

τ

)2
sinh−1

(
s+ 1

τ

2∆q|f |

)
. (3.54)

In comparison to the expression without additional damping, there is no longer a sharp peak
at ω = 2∆q for s = iω even for the s-wave case as the pole is shifted into the complex plane.
This leads to a much broader peak, corresponding to a stronger damping. To obtain an explicit
solution for the damping factor, we write down the Bromwich integral for the inverse Laplace
transform. Concentrating on the last part, the expression reads

I = (∆q −∆) 1
2πi

∫ γ+i∞

γ−i∞
ds est∫ 2π

0 dϕf2
√

4∆2
qf

2 +
(
s+ 1

τ

)2
sinh−1

(
s+ 1

τ
2∆q|f |

) . (3.55)

A shift of the integration variable s→ s− 1/τ yields

I = e−t/τ (∆q −∆) 1
2πi

∫ γ+i∞

γ−i∞
ds est∫ 2π

0 dϕf2
√

4∆2
qf

2 + s2 sinh−1
(

s
2∆q|f |

) , (3.56)
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i.e. the same expression as in the previous section with an additional exponential decay factor
e−t/τ . Thus, the relaxation time τ leads to an exponential decay of the oscillations.
In Fig. 3.7b), the numerically calculated Higgs oscillations for s-wave are shown with a re-

laxation time τ = 0.15 ∆−1. To compare the result with the predicted exponential decay from
the linear analysis in Eq. (3.56), a calculation with the same parameters without damping is
performed. This result is fitted by the solution Eq. (3.39) and then multiplied with an additional
exponential decay e−t/τ using the chosen relaxation time τ . The resulting curve fits the numerical
solution perfectly.
Using different relaxation times τ1 and τ2 for longitudinal and transversal relaxation adds

an additional shift in time. Different relaxation times have also been used in [71] to describe
the damping and shift found in the pump-probe experiment on NbN [36]. While there is some
analogy of the Bloch equations in NMR experiments with the Bloch equations for the pseudospin,
such that in [71], the transverse relaxation time τ2 was attributed to dephasing of pseudospins
like the spin-spin relaxation in NMR and the longitudinal relaxation time τ1 was attributed
to relaxation due to quasiparticle interaction like the spin-lattice relaxation in NMR, there are
some differences that make this analogy not complete. The BCS type of Bloch equations contains
the self-consistency condition, i.e. the pseudomagnetic field depends on the time-dependent gap
itself, such that there is a stronger coupling between all components of the pseudospin. This
makes the interpretation of the relaxation times as in NMR experiments more vague.

As stated in the beginning of this section, the microscopic cause of additional damping can be
diverse. To conclude this section, we estimate the scattering time for a type-II superconductor
in an external magnetic field. As type-II superconductors above the critical field Hc1 exhibit
a finite resistance proportional to the applied magnetic field [192], power might be dissipated
leading to damped oscillations. This is caused by movement of vortices due to the Lorentz force
on the flux lines [193]

F = φ0
c
j × êφ0 , (3.57)

where j is the external supercurrent density, φ0 = h/(2e) the flux quantum and êφ0 the vector
along the flux line. This deflection of the vortices orthogonal to the current is similar to the
classic Magnus effect of spinning objects exposed to a flow. As work is done, power is dissipated,
which leads to a finite resistance. It was shown that in such a mixed vortex state, collective modes
are damped [194, 195]. For the pseudospin precession or Higgs oscillation, such a resistance can
be understood as an additional decay channel, which leads to a damping of the oscillation.
There are different mechanisms discussed in literature to describe this dissipation effect in

more detail [196–201]. To give a rough estimate of the phenomenological relaxation time τ in our
model, we use the result of the Bardeen-Stephen model [197]. This model gives an expression
for the flow resistivity ρf in dependence of the magnetic field B and the normal resistivity ρn if
there is no flux pinning

ρf ≈ ρn
B

Hc2
. (3.58)

We take the Drude model formula, which connects the resistivity with the scattering time τ

ρ = m

ne2τ
. (3.59)
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Figure 3.8 Higher-harmonic Higgs oscillations for strong interaction quenches. a) Higgs oscillations for
three different quench strengths g. b) Spectrum of oscillations. For increasing quench strength, higher-
harmonic Higgs oscillations are visible at ωH , 2ωH , 3ωH . The time and energy is normalized to the
respective ∆∞ for each quench. The oscillations are calculated numerically. For details about the calculation
see Appendix A.

It follows for the scattering time

τ = m

ne2ρn

Hc2
B
∝ 1
B
. (3.60)

We see that the scattering time is inverse proportional to the magnetic field strength; thus, the
damping is increased for stronger magnetic fields.

3.1.3 Higher-harmonic Higgs Oscillations

The analysis in section 3.1.1 for Higgs oscillations in s-wave superconductors within the linear
approximation (3.38) or the general formula (3.39) suggest that, at least in the long-time limit,
the gap oscillates with a single frequency ωH = 2∆∞. However, this is not the whole truth as
strong quenches can induce nonlinear effects beyond these formulas.
To investigate these effects, we solve again the Bloch equations numerically for increasing

quench strength and study the oscillations spectrum in more detail. The result can be found
in Fig. 3.8. While looking at higher energies, one observes that for increasing quench strength
higher harmonics are visible. For the small quench g = 0.99, which is still described by the linear
analysis, only one peak in the frequency spectrum in Fig. 3.8b) at ω = ωH = 2∆∞ is visible.
For the larger quench strength g = 0.75, a second-harmonic peak at ω = 2ωH is visible. For the
strongest quench g = 0.69, just before the system is quenched into the gapless regime, even a
small third-harmonic peak at ω = 3ωH is visible. These effects are not captured by the linear
analysis, as higher-order perturbations such as zk(t)δ∆(t) are explicitly ignored.
Experimentally, these nonlinear effects are probably difficult to measure. The intensity of a

quench pulse has to be fine-tuned such that the condensate is quenched maximally just before the
system is quenched into the gapless regime. Only for these strong quenches, the effect is visible,
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but even then, the second-harmonic is less than 10% of the amplitude of the first-harmonic. In
addition, for strong quenches, other difficulties arise, such as heating or screening of the signal
by large amount of broken Cooper pairs.
The higher-harmonic Higgs modes should not be confused with the driven higher-harmonic

Higgs oscillations found in recent experiments [110, 111]. Driving a superconductor with light
of frequency Ω results typically in a driven 2Ω Higgs oscillation. A linear response, i.e. a driven
oscillation with Ω, is forbidden due to parity of the Hamiltonian. This will be discussed in more
detail in chapter 5. In these experiments, an intense multi-cycle pulse with asymmetric shape
drives the superconductor and induces higher-harmonic oscillations at 4Ω in addition to 2Ω
oscillations. Furthermore, due to the asymmetric shape of the pulse, an effective dc component
is induced, which leads to a dynamical symmetry breaking. As a result, the usual forbidden odd
order driven oscillations are allowed, and Higgs oscillations at Ω and 3Ω are observed as well.
Driving with light in the presence of a dc current is discussed in more detail in section 5.3. In
contrast, the oscillations discussed here are the intrinsic Higgs modes at fixed frequencies ωH ,
2ωH , etc. independent of the frequency of a quench pulse.

3.2 Excitation of Higgs Oscillations with State Quenches
As we have seen in the previous section, interaction quenches can be used to push a supercon-
ductor out of equilibrium and excite Higgs oscillations. However, they are difficult to realize
experimentally for superconductors in contrast to cold atom systems, where the interaction can
be tuned more easily with Feshbach resonances [120]. Moreover, a change only in the pairing
strength excites the system in a symmetric fashion regarding the ground state gap symmetry,
i.e. the quench is k-independent. As a result, the condensate oscillates always within its ground
state symmetry channel. For nontrivial gap symmetry, we expect richer features if we were able
to apply a k-dependent quench. Parts of the following calculation and analysis have already been
published in [7].

To implement a quench with these properties, we will go beyond the usually used interaction
quench scheme and quench the condensate directly, which allows to modify the symmetry of
the condensate. We name such a quench a state quench as it alters the state of the system, i.e.
the condensate or quasiparticle distribution, compared to the interaction quench, which changes
the Hamiltonian. Moreover, a change in the quasiparticle distribution reflects more closely the
effect of pump pulses used in experiments to push the system out of equilibrium as the light
pulse breaks some of the Cooper pairs and therefore excites quasiparticles. In the context of the
Anderson pseudospin picture, the effect of a pump pulse has also been described in literature as
“scrambling of the orientations of Anderson pseudospins” [54].

According to section 2.2.4, the equilibrium expectation values at temperature T read

〈c−k↓ck↑〉 = ∆k

2Ek
tanh

(
Ek

2kBT

)
, (3.61a)

〈c†k↑c
†
−k↓〉 = ∆∗k

2Ek
tanh

(
Ek

2kBT

)
, (3.61b)

〈c†k↑ck↑〉 = 1
2 −

εk
2Ek

tanh
(

Ek
2kBT

)
, (3.61c)

〈c−k↓c†−k↓〉 = 1
2 + εk

2Ek
tanh

(
Ek

2kBT

)
. (3.61d)
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One can see that these expectation values follow the same symmetry as the energy gap. In
particular, if we consider 〈c−k↓ck↑〉 at k values far from the Fermi level, where εk � ∆, we can
approximate for T = 0

〈c−k↓ck↑〉 ≈
∆

2εk
fk ∝ fk . (3.62)

Thus, 〈c−k↓ck↑〉 at values far from kF is a good representation of the gap symmetry and even
the exact functional form.

To push the system out of equilibrium in an asymmetric way, we perform a quench by changing
the symmetry of these expectation values. In order to have a controlled excitation, we assume
that the system starts at an equilibrium position of a different symmetry fmod

k and let it then
evolve in the system with the original symmetry fk. We define the quenched expectation values

〈c−k↓ck↑〉q = ∆fmod
k

2Emod
k

tanh
(
Emod
k

2kBT

)
, (3.63a)

〈c†k↑c
†
−k↓〉

q = (∆fmod
k )∗

2Emod
k

tanh
(
Emod
k

2kBT

)
, (3.63b)

〈c†k↑ck↑〉
q = 1

2 −
εk

2Emod
k

tanh
(
Emod
k

2kBT

)
, (3.63c)

〈c−k↓c†−k↓〉
q = 1

2 + εk
2Emod

k

tanh
(
Emod
k

2kBT

)
, (3.63d)

where Emod
k =

√
ε2k + |∆fmod

k |2. For the modified symmetry function fmod
k , we assume that it is

a deviation from the original symmetry of strength g in another symmetry channel f ′k, i.e.

fmod
k = fk + gf ′k . (3.64)

Please note that in contrast to the interaction quench, where a value of g ≈ 0 corresponds to a
strong quench, here, a value of g ≈ 0 corresponds to a small quench. In analogy, we define the
quenched expectation values for the pseudospins

〈σxk〉
q = ∆′fmod

k
′

2Emod
k

tanh
(
Emod
k

2kBT

)
, (3.65a)

〈σyk〉
q = −∆′′fmod

k

2Emod
k

tanh
(

Eq
k

2kBT

)
, (3.65b)

〈σzk〉
q = − εk

2Emod
k

tanh
(
Emod
k

2kBT

)
(3.65c)
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and the quenched expectation values for the Bogoliubov quasiparticles

〈αkβk〉q = εk(∆k −∆fmod
k )

2EkEmod
k

tanh
(
Emod
k

2kBT

)
, (3.66a)

〈α†kβ
†
k〉

q = −εk(∆∗k − (∆fmod
k )∗)

2EkEmod
k

tanh
(
Emod
k

2kBT

)
, (3.66b)

〈α†kαk〉
q = 1

2

(
1− ε2k + |∆|2fkfmod

k

EkE
mod
k

tanh
(
Emod
k

2kBT

))
, (3.66c)

〈β†kβk〉
q = 〈α†kαk〉

q
. (3.66d)

After applying such a quench, we let the system evolve freely in time again and study the time
dynamic.

3.2.1 Linear Analysis within Pseudospin Formalism

To gain a basic understanding, we again make use of the simplicity of the BCS Hamiltonian in
the linearized pseudospin representation for T = 0. We use a similar ansatz for the pseudospins
and the gap as in the calculation for the interaction quench

〈σxk〉 (t) = 〈σxk〉q + xk(t) , (3.67a)
〈σyk〉 (t) = 〈σyk〉

q + yk(t) , (3.67b)
〈σzk〉 (t) = 〈σyk〉

q + zk(t) , (3.67c)
∆(t) = ∆q + δ∆(t) (3.67d)

with

∆q = λ

∫ εc

−εc
dε
∫ 2π

0
dϕf(ϕ)(〈σxk〉q − i 〈σyk〉

q)

= ∆λ
∫ 2π

0
dϕf(ϕ)fmod(ϕ) sinh−1

(
εc

∆|fmod(ϕ)|

)
, (3.68a)

δ∆(t) = λ

∫ εc

−εc
dε
∫ 2π

0
dϕf(ϕ)(xk(t)− iyk(t)) . (3.68b)

The linearized equations of motion (2.64) in Laplace space for real equilibrium gap ∆ read

sx(s) = − ε

Emod fδ∆
′′(s)− 2εy(s) , (3.69a)

sy(s) = 1
s

ε

Emod

(
∆fmod −∆qf

)
− ε

Emod fδ∆
′(s) + 2f∆qz(s) + 2εx(s) , (3.69b)

sz(s) = − 1
Emod ff

mod∆δ∆′′(s)− 2f∆qy(s) . (3.69c)
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Solving for x(s), y(s) and z(s) yields

x(s) =
4ε2

(
∆qf−∆fmod

s + fδ∆′(s)
)

2Emod(4ε2 + 4∆2
qf

2 + s2) −
2εf

(
4∆qf

∆qf−∆fmod

s + s
)
δ∆′′(s)

2Emod(4ε2 + 4∆2
qf

2 + s2) , (3.70a)

y(s) = − 4ε2fδ∆′′(s)
2Emod(4ε2 + 4∆2

qf
2 + s2) −

2ε((∆qf −∆fmod) + sfδ∆′(s))
2Emod(4ε2 + 4∆2

qf
2 + s2)

− 4f2fmod∆∆qδ∆′′(s)
2Emod(4ε2 + 4∆2

qf
2 + s2) , (3.70b)

z(s) = 4εf2∆qδ∆′(s)
2Emod(4ε2 + 4∆2

qf
2 + s2) +

2f(4ε2 ∆qf−∆fmod

s − s∆fmod)δ∆′′(s)
2Emod(4ε2 + 4∆2

qf
2 + s2)

+
4fε∆q

∆qf−∆fmod

s

2Emod(4ε2 + 4∆2
qf

2 + s2) . (3.70c)

The solution is inserted into the gap equation (3.68b). Like in the interaction quench case, the
real and imaginary part are not coupled and again, the imaginary part is zero. For δ∆(s), it
follows

δ∆(s) = ∆qI1(s)−∆I2(s)
s

+ δ∆(s)I1(s) (3.71)

with

I1(s) = λ

∫ εc

−εc
dε
∫ 2π

0
dϕ 4ε2f2

2Emod(4E2
q + s2) = Cf − λH(s) , (3.72a)

I2(s) = λ

∫ εc

−εc
dε
∫ 2π

0
dϕ 4ε2ffmode

2Emod(4E2
q + s2) = ∆q

∆ − λG(s) , (3.72b)

where

Cf = λ

∫ εc

−εc
dε
∫ 2π

0
dϕ f2

2Emod = λ

∫ 2π

0
dϕf2 sinh−1

(
εc

∆|fmod|

)
, (3.73a)

G(s) =
∫ 2π

0
dϕffmod(4∆2

qf
2 + s2)

∫ εc

−εc
dε 1

2Emod(E2
q + s2) , (3.73b)

H(s) =
∫ 2π

0
dϕf2(4∆2

qf
2 + s2)

∫ εc

−εc
dε 1

2Emod(E2
q + s2) . (3.73c)

Thus, it follows finally

δ∆(s) = 1
s

(
∆ λG(s)

1− Cf + λH(s) −∆q

)
. (3.74)

The ε integral in G(s) and H(s) can be evaluated and the result reads

G(s) =
∫ 2π

0
dϕffmod

√
4∆2

qf
2 + s2

tanh−1
(√

4∆2
qf

2−4∆2(fmod)2+s2√
4∆2

qf
2+s2

)
√

4∆2
qf

2 − 4∆2(fmod)2 + s2
, (3.75a)

H(s) =
∫ 2π

0
dϕf2

√
4∆2

qf
2 + s2

tanh−1
(√

4∆2
qf

2−4∆2(fmod)2+s2√
4∆2

qf
2+s2

)
√

4∆2
qf

2 − 4∆2(fmod)2 + s2
. (3.75b)
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We stop here with a further analytic evaluation. The gap δ∆(s) has no exact poles; however, any
peaks in the spectrum are determined by the expressions G(s) and H(s) and more specifically
by the terms

√
4∆2

qf
2 − 4∆2(fmod)2 + s2 and

√
4∆2

qf
2 + s2 in a nontrivial way. What we can

see is that the difference between the gap symmetry f and the changed symmetry fmod plays a
crucial role. In the next section, we will calculate the gap dynamic numerically for certain gap
and quench symmetries and compare the result with the here analytically derived formula.

3.2.2 Additional Higgs Modes for Nontrivial Gap Symmetries
In principle, we can choose any modified symmetry function fmod

k to quench the system and push
it out of equilibrium. To perform a systematic study, we restrict the deviations from the original
symmetry to the fundamental symmetry channels, which are important with respect to the point
group of the system. As an example, cuprate superconductors with d-wave symmetry have a
square lattice described by the D4h point group. The irreducible representations for this group
are A1g, A2g, B1g and B2g [202], where the d-wave symmetry is represented by the B1g channel.
Hereby, A (B) means symmetric (antisymmetric) under rotation by π/2 around the z-axis and
the subscript 1 (2) means symmetric (antisymmetric) under reflection at the x- or y-axis. The
symmetry functions are given in Table 3.1. Exemplary, a quench of a d-wave symmetry in the
A1g channel of strength g would look like

fmod
k = fk + gf ′k = cos(2ϕ) + g . (3.76)

Hereby, fk = cos(2ϕ) is the gap symmetry and f ′k = 1 the quench symmetry.
One can visualize the effect of these quenches by plotting fmod

k . This is done for all combinations
of the irreducible representations as gap and quench symmetry in Fig. 3.9. A condensate quenched
away from its original symmetry will then start to oscillate around its ground state symmetry.
We name this oscillation according to its symmetry. As an example, an s-wave superconductor
quenched in the A1g channel (first column, first row in Fig. 3.9) stays in its original symmetry
channel and performs therefore a symmetric A1g

s oscillation, where the index s indicates the
original symmetry. The same would be true for a B1g-quench for d-wave (third column, third
row), which is named A1g

x2−y2 . A different combination of gap and quench symmetry will induce
asymmetric oscillations. For d-wave, the motion is sketched in Fig. 3.10, where the arrows indicate
the movement of the lobes. Whether these asymmetric oscillations lead to additional Higgs modes
is not clear from the beginning as the spectrum is determined in a nontrivial way by the integrals
in Eq. (3.75). The time dynamic has to be calculated explicitly by numerical integration.

We start with d-wave symmetry, which we quench in all four different symmetry channels. The
result can be found in Fig. 3.11, exemplary for a quench strength of g = 0.2. A Fourier transform

Irreducible representation Basis function Basis function in polar coordinates
A1g 1 1
A2g xy(x2 − y2) sin(4ϕ)
B1g x2 − y2 cos(2ϕ)
B2g xy sin(2ϕ)

Table 3.1 Even parity basis functions for D4h point group in Cartesian coordinates and as a function of
the azimuthal angle ϕ in polar coordinates [202].
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Figure 3.9 Effect of quenches on a symmetry function for all combinations of irreducible representations
as gap and quench symmetry of the D4h point group. The left column represents the gap symmetry fk,
the top row the quench symmetry f ′k and the cells the resulting modified function fmod

k according to
Eq. (3.64) exemplary for a quench strength of g = 0.4. The grey dotted lines are the nodal lines. The cell
labels describe the induced oscillations, which are named according to their symmetry property with an
additional subscript indicating the ground state symmetry. Figure adapted from [7].
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A1gx2-y2 A2g
x2-y2

B2g
x2-y2

+

B1g
x2-y2

Figure 3.10 Fundamental oscillations for d-wave symmetry. The A1g
x2−y2 oscillation represents a breathing

mode, the A2g
x2−y2 oscillation represents a rotating mode, the B1g

x2−y2 oscillation represents an osculating
mode, the B2g

x2−y2 oscillation represents a clapping mode. Figure adapted from [7].

of the oscillations in Fig. 3.11a) is shown in Fig. 3.11b). The spectra for the quenches differ. For
the B1g and A2g quench, the spectrum resembles the interaction quench case with a broad peak
at ω ≈ 2∆∞. For the A1g and B2g quench, a pronounced kink at ω ≈ 0.4∆∞ is visible in addition
to the ω ≈ 2∆∞ peak. By restricting the Fourier transform to the long-time limit (Fig. 3.11c)),
the kink transforms into a clear peak. These two quenches induce therefore a second Higgs mode
at lower energies.
Now, two questions arise. First, what is the difference between the quenches or induced

oscillations such that in one case, one observes two Higgs modes and in the other case, only
one Higgs mode, despite the fact that in both cases (except for the A1g quench) asymmetric
oscillations are induced? And second, what determines the energy of the new Higgs mode? It
will turn out that both questions are coupled.

To find an answer, it is instructive to look at the analytic expression for δ∆(s) in Eq. (3.74) and
the expressions for G(s) and H(s) in Eq. (3.75) again. As already mentioned, in these expressions,
the difference between the gap symmetry f and the modified symmetry fmod plays an important
role. As in the interaction quench, minima in the denominator determine the frequency spectrum.
Here, the minima cannot easily be seen as the expressions are more complex. We expect new
modes if there are significant changes to the gap symmetry. In particular it turns out, new modes
arise if the quench shifts the nodal lines between positive and negative lobes compared to the
ground state symmetry. This is visualized with the grey dotted lines in Fig. 3.9, representing
the nodal directions. In the d-wave case, one observes that the A1g and B2g quenches shift the
nodal lines, whereas the A2g and B1g quenches do not. This corresponds with the arising of two
or one Higgs modes for these quenches, respectively. In section 3.2.6, we summarize the observed
modes for all gap and quench symmetries. In the next section, we will answer the questions what
determines the energy of the Higgs modes and how it can be tuned.
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Figure 3.11 State quench of d-wave superconductor in the four different symmetry channels A1g, A2g,
B1g and B2g with a strength of g = 0.2. a) Gap oscillations b) Spectrum of oscillations over the whole
time range. For the A1g and B2g quench, a pronounced kink at ω ≈ 0.4∆∞ is visible in addition to the
peak at ω ≈ 2∆∞. c) Spectrum of oscillations in the long-time limit t & 15. The low-lying kink becomes
a visible peak. All times and energies are normalized to the respective ∆∞ for each quench. Details about
the numerics and the used parameters can be found in appendix A.

3.2.3 Quench Strength Dependence

From the interaction quench strength analysis, we already know that the “usual” Higgs mode has
an energy of ωH = 2∆∞, where 2∆∞ is the asymptotic long-time value of the gap. The energy
of the Higgs mode therefore decreases for increasing quench strength as more energy is pumped
into the system, which reduces the gap. The same is true in the state quench case, which one
can see in the expression Eq. (3.75) in the linear analysis where ∆∞ ≈ ∆q. As in the interaction
quench case, an expression

√
4∆2

qf
2 + s2 occurs, which creates the 2∆∞ peak in the spectrum.

A possible second peak is controlled by the expression
√

4∆2
qf

2 − 4∆2(fmod)2 + s2. For g = 0,
the expression 4∆2

qf
2 − 4∆2(fmod)2 vanishes and scales with g for increasing quench strength.

Therefore, one can expect a second mode appearing at zero energy, which increases in energy for
increasing quench strength.
As a rough estimate, we fit a two frequency oscillation like Eq. (3.49) to the oscillations of a

d-wave order parameter quenched in the A1g channel, whose spectrum shows a two-peak structure
(Fig. 3.11). The result for varying quench strength g can be found in Fig. 3.12. Using the simple
two frequency fit formula yields accurate results for ∆∞ and ωH1 and ωH2. Hereby, the identity
2∆∞ = ωH1 is fulfilled, where ∆∞ decreases for increasing quench strength g. As expected, the
frequency of ωH2 increases for increasing quench strength as the difference between the gap and
modified symmetry increases. For large enough quench strength, the second mode approaches
the 2∆∞ Higgs mode and merges; however, a clear answer about the behavior cannot be given
from the fit data as for higher quenches, a fit is no longer reliable. In Fig. 3.12b), all other fit
parameters are shown. The result is unusable. While the frequencies can be captured rather well
by the simple formula, amplitudes, decay rates and phase cannot, i.e. one would have to use a
multiple frequency fit to model the dynamic more accurately. Nevertheless, one can draw the
conclusion that the decay rates are typically higher at about n ≈ 3 compared to the interaction
quench case with n ≈ 2. This can also be seen directly in the oscillations in Fig. 3.11a).
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Figure 3.12 Fit of gap oscillations of d-wave order parameter quenched in the A1g channel for varying
quench strength g using a two frequency formula Eq. (3.49) in a range t & 15. a) Fit parameters ∆∞, ωH1
and ωH2. The identity 2∆∞ = ωH1 holds rather accurately. b) Fit parameters A1, A2, φ1, φ2, n1, n2. The
two frequency fit formula is too simple to capture the dynamic, which leads to erratic fit results. Details
about the numerics and the used parameters can be found in appendix A.

To study the energy of the Higgs modes in more detail, we plot the Fourier transform of the
oscillations for all quench channels as a function of the quench strength g in Fig. 3.13. Hereby,
we concentrate on the longtime limit, where the peaks are more pronounced. The behavior of
the analysis with the simple two-frequency fit can clearly be seen. In the A1g and B2g cases, a
low-lying Higgs mode starting at ω = 0 for g = 0 is visible, whose energy increases for increasing
quench strength. At the same time, the energy of the 2∆∞ Higgs mode decreases until it merges
with the second Higgs mode. For the A2g and B1g quenches, there is always only one peak visible.

To see whether the analytic formula Eq. (3.74) captures the discussed behavior, we evaluate
the formula exemplarily for d-wave symmetry with an A1g quench in Fig. 3.14. The formula fits
nearly perfectly for high frequencies, even for the chosen quench strengths beyond the linear
approximation. At low frequencies, the formula also captures the low-lying Higgs mode and
its shift to higher frequencies for increasing quench strength. There are deviations in the low
frequencies regime, which are a result of errors from the numerical evaluation of the integrals
in Eq. (3.75). The integrands are not well-behaved and problematic to evaluate and one has to
take special care of poles in the integration range.
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Figure 3.13 Spectrum of Higgs oscillations of d-wave superconductor after state quench in a) A1g, b)
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energy increases for increasing quench strength and merges with the 2∆∞ Higgs mode. Details about the
numerics and the used parameters can be found in appendix A.
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Figure 3.14 Comparison of the analytic formula for the state quench Eq. (3.74) with the numerical result,
exemplarily evaluated for d-wave gap symmetry with an A1g quench for two different quench strengths.
The formula fits the numeric result well for high frequencies and also captures the low-lying Higgs mode
and its shift to higher energies for increasing quench strength even for the strong quench strengths beyond
the linear analysis. The observed deviations in the low frequency regime result from the approximation of
the analytic formula as well as numerical instabilities while evaluating the integrals in Eq. (3.75). Details
about the numerics and the used parameters can be found in appendix A.
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3.2.4 Time Evolution of the Condensate
To gain a deeper understanding of the dynamic induced by the state quenches, we will have
a closer look at the condensate itself, i.e. we will study the time evolution of 〈c−k↓ck↑〉 (t). As
noted in Eq. (3.62), this expectation value far from kF gives a rough estimate of the shape of
the symmetry function fk. Values close to kF have the same symmetry (nodal structure and
sign) but a different shape. As an example, in equilibrium 〈c−kF↓ckF↑〉 = 1

2 sgn(f(ϕ)), i.e. the
expectation values have the same signs and nodal lines as a function of ϕ but no longer the
shape of f(ϕ). In the previous sections, it was stated that the condensate will oscillate around
its equilibrium value, where we already introduced a naming scheme for the oscillations. Now,
we will confirm this ad hoc definition.

To this end, we quench a d-wave order parameter exemplarily and extract the expectation
value 〈c−k↓ck↑〉 (t). The result at different time steps can be seen in Fig. 3.15. We plot this
expectation value as a function of the polar angle ϕ in a polar plot for two fixed values of k = |k|,
one far away from the Fermi level, i.e. k � kF, and one close to the Fermi level, i.e. k ≈ kF.
From the pseudospin analysis, we know that each point in momentum space oscillates with a
frequency of ωp = 2

√
ε2k + ∆2

∞f
2
k . Thus, it follows that for k ≈ kF, the oscillation frequency is

ωp ≈ 2∆∞|fk|, whereas for k � kF the oscillation frequency is ωp ≈ 2|εk|.
First, let us concentrate on an A1g quench (Fig. 3.15a) and b)). Here, we can clearly see that

the quench increases the positive lobe (red part) and decreases the negative lobe (blue part)
compared to the equilibrium shape (grey curve). After half of the oscillation period T = 2π/ωp,
the situation is exactly reversed. Now, the negative lobe has increased while the positive lobe
has decreased for k � kF. This continues for progressing time, corresponding exactly to the
osculating B1g

x2−y2 oscillations, shown schematically in Fig. 3.10. For k ≈ kF, the shape approaches
1
2 sgn(f(ϕ)) as shown before; however, an increase of the positive lobe can also be seen directly
after the quench. For progressing time, an oscillation is hardly visible, which is due to the fact
that the oscillation amplitude at kF approaches zero. This can be seen, for example, in the
solution for xk(s) in the linear analysis in Eq. (3.70). The term scales with ε2, which results in a
vanishing for k → kF.

For the B1g quench (Fig. 3.15c) and d)), the situation is analogous. The quench rotates all
lobes in one direction and the following oscillation consists of a rotating A2g

x2−y2 mode.
The distortions seen for longer times in Fig. 3.15b) and d) have two causes. On the one

hand, there are high-frequency oscillation artifacts introduced by the finite energy cutoff in the
numerical simulation (see Appendix A for more details). On the other hand, a distortion is also
intrinsic. As the frequency is ωp = 2

√
ε2k + ∆2

∞f
2
k , there is of course also an angular dependence

of the frequency, which leads to an oscillation with different frequency at different angles. The
calculation is performed for a dispersion εk = ε(|k|), where the only angular dependence stems
from f(ϕ). Thus, as shown above, for k � kF, the angular influence is smaller, whereas for
k ≈ kF, a stronger distortion due to multiple frequency oscillation occurs.
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3.2 Excitation of Higgs Oscillations with State Quenches

A1g quench

a)
〈c−k↓ck↑〉 (t) at k � kF (a.u.)

〈c−k↓ck↑〉 (t) at k ≈ kF (a.u.)
b)

t = 0 t = 0.15 t = 1.5 t = 15

B2g quench

c)
〈c−k↓ck↑〉 (t) at k � kF (a.u.)

〈c−k↓ck↑〉 (t) at k ≈ kF (a.u.)
d)

t = 0 t = 0.15 t = 1.5 t = 15

Figure 3.15 Snapshots of time evolution of the condensate 〈c−k↓ck↑〉 at k � kF for a),c) and k ≈ kF for
b),d) for d-wave superconductor after A1g and B2g quenches with g = 0.4. The expectation value is plotted
as polar plot, where positive parts are colored red and negative parts are colored blue. The equilibrium
shape is shown as a thin grey line. For k � kF, the oscillation period is T = 2π

ωp
= 2π

2
√
ε2

k
+∆2

∞f2
k

≈ 0.15,
whereas for k ≈ kF, the oscillation period is T ≈ 3. For k ≈ kF, the oscillation is hardly visible as the
amplitude of the oscillation is much smaller than for k � kF. The osculating B1g

x2−y2 oscillation can clearly
be seen for the A1g quench and the rotating A2g

x2−y2 oscillation for the B2g quench. All times are given in
units of 1/∆∞. Details about the numerics and the used parameters can be found in appendix A.

55



3 Classification and Characterization of Higgs Modes

3.2.5 Temperature Dependence
So far, all calculations have been performed for zero temperature. In this section, the effect of
finite temperature will be investigated. According to the BCS gap equation, the temperature
dependence of the gap reads

∆T = V
∑
k

fk
∆T f

2Ek
tanh

(
Ek

2kBT

)
. (3.77)

This equation cannot be solved analytically, but has to be evaluated iteratively. For T ≈ 0 or
near the critical temperature T ≈ Tc, approximate formulas can be derived [114, 178]. For the
whole temperature range, there exists an interpolation formula

∆T = ∆ tanh

κ
√
Tc
T
− 1

 , (3.78)

where κ is a parameter depending on the gap symmetry. As the gap decreases with increasing
temperature, we obviously expect the energy of the usual Higgs mode ωH = 2∆∞ to follow the
same temperature dependence.
For the low-lying Higgs modes resulting from the asymmetric oscillations, the temperature

dependence is not obvious. Keeping the temperature dependence and performing the same
analysis as in section 3.2.1, we end up with a similar result except that in Eq. (3.73), the
temperature dependence factor tanh

(
Emod
k /(2kBT )

)
occurs in the integrand. This prevents an

analytic evaluation of the ε integral.
In Fig. 3.16, a numerical evaluation of the temperature dependence of the oscillations spectrum

is shown exemplarily for d-wave symmetry with an A1g quench for two different quench strengths.
As expected, the 2∆∞ Higgs mode follows the temperature dependence of the gap, shown as
a solid black line, exactly. For the low-lying Higgs mode, the behavior is exactly the opposite.
For increasing temperature, the energy increases until it merges with the 2∆∞ Higgs mode. The
behavior looks similar as for increasing quench strength in Fig. 3.13 and is also qualitatively the
same for different gap and quench symmetries. Thus, we can conclude that finite temperature
increases the energy of the asymmetric Higgs modes until they merge with the upper Higgs
mode. Low temperatures are therefore advantageous for the visibility of a distinct low-lying
Higgs mode.
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Figure 3.16 Spectrum of Higgs oscillations of d-wave superconductor after A1g state quench for a)
g = 0.2 and b) g = 0.4 as a function of temperature T . As a comparison, the black curve is the numerically
calculated ∆(0) = ∆q for finite T . It can be rather accurately described by Eq. (3.78), using κ = 1.68 and
replacing the equilibrium ∆ with the quenched value ∆q for T = 0. The Fourier transform is performed
in the longtime limit for t & 15. For finite T , the order parameter is reduced, leading to a decrease of the
2∆ Higgs mode. In contrast, the energy of the low-lying Higgs mode is increased for finite temperature.
Details about the numerics and the used parameters can be found in appendix A.

3.2.6 Classification and Characterization of Higgs Oscillations

As we have seen in the previous sections, quenches, which change the symmetry of the super-
conducting condensate with respect to the ground state, induce asymmetric oscillations, which
can be classified according to the irreducible representation of the lattice point group of the
system. Whether these asymmetric oscillations show up as additional Higgs modes depends on
the specific change of the symmetry, e.g. whether nodal lines between positive and negative lobes
are shifted due to the quench. There is no general rule and different systems have to be studied
case by case.
To study this systematically, we quench an s-wave, gxy(x2−y2)-wave, dx2−y2-wave, dxy-wave,

s(x2−y2)2-wave and d+s-wave superconductor in all symmetry channels of the D4h point group.
The result can be seen in Fig. 3.17. It confirms the previous analysis. The 2∆∞ mode is always
present, i.e. A1g oscillations are always excited independent of the quench. In the cases, where
the quench symmetry deviates from the gap symmetry significantly, a low-lying mode can be
observed. This can lead up to three modes for d+s-wave as two modes are always present as seen
before. The nodal s(x2−y2)2-wave is a special case. It belongs to the A1g representation, but has
the same nodal structure as a d-wave. Here, the resulting Higgs modes depend on the exact shape
of the symmetry function. For the chosen function f(ϕ) = cos(2ϕ)2, every quench different from
the A1g symmetry shows a second peak as the modified symmetry function fmod

k has induced
negative parts with shifted or new nodal lines. On the contrary, a function f(ϕ) = | cos(2ϕ)|,
which is also in the A1g channel with the same nodal structure, shows only a second Higgs mode
for the B2g quench. Only in this case, a negative part is induced with shifted nodal lines, whereas
for the other quenches, only the positive lobes are shifted, which does not lead to a second Higgs
mode.
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Figure 3.17 Spectrum of Higgs oscillations of a) s-wave, b) gxy(x2−y2)-wave, c) dx2−y2 -wave, d) dxy-wave,
e) s(x2−y2)2-wave, f) d+s-wave superconductors after quenching in different symmetry channels. The
symmetry functions are defined in Table 2.2. The quench strength is g = 0.4 and the Fourier transform is
performed in the long-time limit. Details about the numerics and the used parameters can be found in
appendix A.
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3.2 Excitation of Higgs Oscillations with State Quenches

The result is summarized in Table 3.2, where all the investigated gap symmetries are listed
with all combinations of quench symmetries and the resulting condensate oscillations. In the
last column, the expected number of observable Higgs modes is shown. A measurement of the
time-resolved optical conductivity or the resonances in the third-harmonic generation signal
can reveal the number of Higgs mode as it will be shown in chapters 4 and 5. Such a table
can then be used to determine the underlying gap symmetry based on the number of observed
modes. However, as the spectra are degenerate, a combination of multiple selected excitations is
required to obtain an unique result. Whether and how these specific excitation can be realized
experimentally will be discussed in later chapters, yet, this is still an open question for future
research.
The derived fundamental oscillations in this chapter are general, even though the analysis

has be performed by quenching the condensate explicitly in certain symmetry channels. With
this procedure, it is possible to selectively excite the fundamental oscillations. Yet, any other
excitation mechanism works as well, e.g. the experimental excitation with ultrashort THz laser
pulses or driving a symmetry channel periodically. With such excitation schemes, the excitation is
less selective and may result in a superposition of fundamental oscillation modes, which requires
a more careful analysis.

In an optical experiment, the resulting condensate oscillations 〈c−k↓ck↑〉 (t) cannot be resolved
directly as the response is determined by the momentum-summed quantity ∆(t). Therefore,
these kinds of experiments can access only the information about the number and energy of
Higgs modes. In contrast, angle-resolved photoemission experiments allow to gain information
about the momentum resolution and with this, a direct observation of 〈c−k↓ck↑〉 (t) if performed
time-resolved. This will be explored in more detail in section 4.2, where the actual condensate
oscillation is observable in the spectral function.

One can perform such an analysis for any gap symmetry and quench symmetry and also extend
it for multiband or triplet superconductors. In these cases, a multitude of new gap symmetries
can be considered, such as s++, s±, s+ is, s+ id, d+ id as well as p or chiral px + ipy and much
more. For these, multiple Higgs modes are expected independent of the quench [48–51, 112],
namely one for each superconducting gap as well as a relative phase mode between coupled gaps
(Leggett mode). However, quenched in a symmetry channel different from the ground state, one
can expect an even richer spectrum in these cases. What exactly the spectrum looks like in these
cases is an open question for further investigations.
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Gap symmetry fk Quench symmetry f ′k
Condensate oscillations

〈c−k↓ck↑〉 (t) Higgs modes

s 1 A1g
s

xy(x2 − y2) A2g
s + A1g

s

x2 − y2 B1g
s + A1g

s

xy B2g
s + A1g

s

gxy(x2−y2) 1 A2g
xy(x2−y2) + A1g

xy(x2−y2)
xy(x2 − y2) A1g

xy(x2−y2)
x2 − y2 B2g

xy(x2−y2) + A1g
xy(x2−y2)

xy B1g
xy(x2−y2) + A1g

xy(x2−y2)

dx2−y2 1 B1g
x2−y2 + A1g

x2−y2

xy(x2 − y2) B2g
x2−y2 + A1g

x2−y2

x2 − y2 A1g
x2−y2

xy A2g
x2−y2 + A1g

x2−y2

dxy 1 B2g
xy + A1g

xy

xy(x2 − y2) B1g
xy + A1g

xy

x2 − y2 A2g
xy + A1g

xy

xy A1g
xy

s(x2−y2)2 1 A1g
(x2−y2)2

xy(x2 − y2) A2g
(x2−y2)2 + A1g

(x2−y2)2

x2 − y2 B1g
(x2−y2)2 + A1g

(x2−y2)2

xy B2g
(x2−y2)2 + A1g

(x2−y2)2

d+s 1 B1g
d+s + A1g

d+s
xy(x2 − y2) B2g

d+s + A1g
d+s

x2 − y2 A1g
d+s

xy A2g
d+s + A1g

d+s

Table 3.2 Summary of condensate oscillations and expected Higgs modes for various gap symmetries.
The first column depicts a certain gap symmetry. The second column lists all fundamental symmetries
of the even parity basis functions of the D4h point group used as quench symmetry. The third column
lists the induced condensate oscillations. The fourth column shows a schematic picture of the number of
expected Higgs modes. Table adapted from [7].
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4 Higgs Spectroscopy with Quench-Probe
Experiments

In the previous chapter, the superconductor has been quenched directly by changing either the
interaction strength or the condensate abruptly. Interaction quenches are only possible in cold
atom experiments, where the pairing interaction can be tuned by Feshbach resonances [120].
But this is not possible in superconductors in which no such tuning knob exists. However, in
superconductors, the system can be excited by light pulses, which disturb the quasiparticle
distribution. Hence, such experiments are an implementation of the proposed state quenches.
The excitation with light pulses will be explored in the first part of this chapter. Furthermore, the
time-resolved optical conductivity, which is measurable in a pump-probe experiment, is calculated
to investigate whether the Higgs signal is observable in this quantity. In the second part of this
chapter, the time-resolved ARPES signal is explored as another possible pump-probe setup. While
THz pump-probe experiments on s-wave superconductors have already been performed to study
Higgs oscillations in the optical response there are neither such experiments for unconventional
systems nor THz tr-ARPES experiments even only for s-wave superconductors.

4.1 Time-resolved Optical Conductivity
We start by studying the coupling of light pulses to the condensate to simulate THz pump-probe
experiments. We will see that for short enough pump pulses, the effect of the pulse resembles
the effect of a state quench. Thus, we also name the pump pulse quench pulse. In addition to
the induced gap oscillations, the time-resolved optical conductivity as a physically measurable
quantity is also calculated, where the Higgs oscillations can be observed as well. Some parts
of the calculation and discussion in this chapter have already been published in [7]. The used
density matrix formalism applied to the BCS theory coupled to light is similar to the methods
used e.g. in [28, 50, 52].

4.1.1 Coupling to Light and Equations of Motion
The light pulse is described by a vector potential A(r, t), which relates to the electric field E(r, t)
via E(r, t) = −∂tA(r, t). Here, we work in a gauge, in which the scalar potential φ(r, t) is set
to zero. The vector potential enters the Hamiltonian via minimal coupling p → p + eA(r, t)
with the electron charge e. Assuming a quadratic dispersion ε(p) = p2

2m , the BCS Hamiltonian
in second quantization coupled to the vector potential reads

H = HBCS +H(1)
em +H(2)

em , (4.1a)

H(1)
em = e~

2m
∑
k,q,σ

(2k + q)Aq(t)c†k+q,σck,σ , (4.1b)

H(2)
em = e2

2m
∑
k,q,σ

∑
q′

Aq−q′(t) ·Aq′(t)

 c†k+q,σck,σ . (4.1c)

Hereby, HBCS is the BCS Hamiltonian in Eq. (2.31). A derivation of the expressions can be
found in appendix B. For finite light momentum q, the interaction terms couple off-diagonal
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Figure 4.1 Fit of experimentally obtained single-cycle THz pulse with the Gaussian-shaped envelope
pulse in Eq. (4.4). a) Electric field. b) Vector potential. The fit parameters are Ω = 1.38meV (0.33THz)
and τ = 1.72 ps. Experimental data has been provided by Stefan Kaiser (MPI Stuttgart). Figure adapted
from [7].

elements (k,k + q), such that a description with only diagonal elements (k,k) in the Anderson
pseudospin picture is not possible. In order to calculate the time dynamic, we use the density
matrix formalism described in section 2.3.2. For this, it is advantageous to perform the Bogoliubov
transformation Eq. (2.39) to calculate the dynamic of the Bogoliubov quasiparticle expectation
values. After the transformation, the interaction part of the Hamiltonian reads

H(1)
em = e~

2m
∑
k,q

(2k + q)Aq(t)
(
L

(+)
k,qα

†
k+qαk − L

(+)∗
k,q β†kβk+q

+M (−)∗
k,q α†k+qβ

†
k +M

(−)
k,q αkβk+q

)
, (4.2a)

H(2)
em = e2

2m
∑
k,q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k,qα

†
k+qαk + L

(−)∗
k,q β†kβk+q

+M (+)∗
k,q α†k+qβ

†
k −M

(+)
k,q αkβk+q

)
(4.2b)

with the following abbreviations

L
(±)
k,q = uk+qu

∗
k ± vk+qv

∗
k , M

(±)
k,q = u∗k+qv

∗
k ± v∗k+qu

∗
k . (4.3)

For the calculation, one has to specify a certain functional form of the vector potential. To
simulate ultrafast THz pump-probe experiments, a single-cycle pulse is required. We assume
that the laser pulse has a Gaussian-shaped envelope in time. Therefore, we write

A(r, t) = A0e−4 ln(2)( tτ )2
cos(Ωt− q0r) . (4.4)

with the central frequency Ω, wave momentum |q0| = q0 = Ω
c and full width at half maximum τ of

the Gaussian envelope. To confirm that the chosen form is reasonable, it is compared to the shape
of an experimental pulse obtained from a THz laser pulse in Fig. 4.1. There is good agreement
between the Gaussian shaped pulse and the experimental pulse shape. For the calculation, we
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need the spatial Fourier representation of the vector potential

Aq(t) = 1
V

∫
d3rA(r, t)e−iqr

= A0e−4 ln(2)( tτ )2 (
δq,q0eiΩt + δq,−q0e−iΩt

)
. (4.5)

The wave vector q0 and amplitude A0 are parameterized by spherical coordinates
q0 = −q0êr , A0 = A0(cosχêϑ + sinχêϕ) (4.6)

with

êr =

sinϑ cosϕ
sinϑ sinϕ

cosϑ

 , êϕ =

− sinϕ
cosϕ

0

 , êϑ =

cosϑ cosϕ
cosϑ sinϕ
− sinϑ

 (4.7)

and the polarization angle χ. For the following calculations in two dimensions, we assume an
in-plane wave vector, i.e. ϑ = π/2, and fix the polarization to also be in-plane, i.e. χ = π/2. This
simplifies the expressions to

q>0 =
(
cosϕ, sinϕ, 0

)
, A>0 = E0

(
− sinϕ, cosϕ, 0

)
(4.8)

with the single angular parameterϕ determining the incident direction of the pulse. The integrated
fluence of this pulse is given by fA = A2

0τ .
Using the density matrix formalism, we write down equations of motion for the four expectation

values 〈α†kβ
†
k′〉, 〈αkβk′〉, 〈α

†
kαk′〉 and 〈β

†
kβk′〉 occurring in the gap equation (2.50). Due to the

bilinearity of the BCS Hamiltonian, they form a closed set of differential equations together
with the gap equation. The equations of motion are derived by evaluating the commutator in
Heisenberg’s equation of motion, i.e.

∂t 〈α†kβ
†
k′〉 (t) = i

~
〈[H,α†kβ

†
k′ ]〉 (t) , ∂t 〈αkβk′〉 (t) = i

~
〈[H,αkβk′ ]〉 (t) ,

∂t 〈α†kαk′〉 (t) = i
~
〈[H,α†kαk′ ]〉 (t) , ∂t 〈β†kβk′〉 (t) = i

~
〈[H,β†kβk′ ]〉 (t) . (4.9)

The resulting expressions are rather lengthy and the derivation can be found in appendix C. As
an example, using the explicit expression for the vector potential in Eq. (4.5), the equation for
〈α†kβ

†
k′〉 reads

∂t 〈α†kβ
†
k′〉 (t) = i

~

{
(Rk +Rk′) 〈α†kβ

†
k′〉 − C

∗
k(〈β†k′βk〉 − δk,k′)− C

∗
k′ 〈α

†
kαk′〉

+ e~
2m

∑
q=±q0

2kAq(t)
(
L

(+)
k,q 〈α

†
k+qβ

†
k′〉+M

(−)
k,q (〈β†k′βk+q〉 − δk+q,k′)

−L(+)
k′,−q 〈α

†
kβ
†
k′−q〉 −M

(−)
k′,−q 〈α

†
kαk′−q〉

)
+ e2

2m
∑

q=0,±2q0

 ∑
q′=±q0

Aq−q′(t) ·Aq′(t)

(L(−)
k,q 〈α

†
k+qβ

†
k′〉

+ L
(−)
k′,−q 〈α

†
kβ
†
k′−q〉 −M

(+)
k,q

(
〈β†k′βk+q〉 − δk+q,k′

)
−M (+)

k′,−q 〈α
†
kαk′−q〉

)}
. (4.10)
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For q0 = 0, one has L(+)
k,0 = 1 and M (−)

k,0 = 0, such that the linear coupling to A vanishes. With
q0 6= 0, particle-hole symmetry is broken and a linear coupling due to the ∝ pA term is possible,
which enhances the coupling of light to the condensate. Since q0 is small for a THz laser pulse
(on the order of ∼ 10−5kF), the effect is small but not completely negligible. In addition, the
momentum couples elements (k,k + q0), i.e. it populates off-diagonal elements of the density
matrices. This can lead to asymmetric state quenches as we will see.
The equations of motion are implemented on a grid in momentum space. Details about the

calculation and used parameters can be found in appendix A.3.

4.1.2 Induced Gap Oscillations by Quench Pulse
In this section, the dynamic induced by a single pump pulse will be explored. This pulse acts as
a quench and the resulting gap oscillations will be calculated.

Quench vs. Adiabatic Excitation

The quenches of the previous chapter act instantaneously per definition. The system is altered
suddenly. In contrast, an excitation with a pump pulse can never be instantaneous as any
realistic pulse lasts for a certain time. In order to quench the system, the pulse must be shorter
than the intrinsic timescale of the dynamic which shall be triggered. Otherwise, the change is
adiabatic, during which the system always stays approximately in equilibrium describable by
an effective temperature. The dynamic we want to observe is, of course, the oscillation of the
gap. As a consequence, the pulse width τ should be smaller than the Higgs oscillation period, i.e.
τ < TH = h/(2∆) [28, 31, 33, 52, 181]. In the following, we will apply pulses of different widths
to verify the quench and adiabatic excitation regimes.
In Fig. 4.2, the gap dynamic ∆(t) of an s- and d-wave superconductor is shown under the

influence of pump pulses with different widths τ . For the widths of the pulses, we choose τ =
0.25TH , τ = TH , τ = 1.5TH , such that we are below, at and above the intrinsic time scale.
Following literature [28, 31, 33, 52], we keep the fluence fA = A2

0τ constant (left column). We can
clearly see that for the short pump pulse, Higgs oscillations are induced, whereas the long pulse
only leads to an adiabatic change without inducing oscillations. This observation has already
been made in previous theoretical studies and is well-known [28, 31, 33, 52, 181]. Here, we can see
that it also holds for the d-wave case. Yet, this transition from the nonadiabatic to the adiabatic
regime by increasing the pulse width is only valid for keeping the fluence constant. If we increase
the pump fluence, e.g. by keeping the amplitude constant while increasing the pulse width, the
picture changes. This can be seen in the right column of Fig. 4.2. In this case, also pulses with
τ > TH induce oscillations due to the increased pump energy. This can be contributed to the
nonlinear effects by the quadratic coupling, which become more important for strong pulses [181].
Hence, the criterion τ < TH = h/(2∆) is not a strict rule but rather a rule of thumb valid for
lower fluence.

Additional Higgs Modes

We want to examine, whether a pump pulse can induce an additional Higgs mode below 2∆ as
discussed in the previous chapter. We have seen that in order to excite one of these additional
Higgs modes, a quench in a different symmetry channel is required. One possibility to control
an asymmetric excitation is to vary the incident direction of the pump pulse with respect to
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Figure 4.2 Gap dynamic induced by pump pulses of different widths. In the first column, the pump
fluence A2

0τ is kept constant, while in the second column, the amplitude A0 of the vector potential is kept
constant. a) Vector potential A(t)2 given by Eq. (4.4). b) Gap dynamic of s-wave superconductor. c) Gap
dynamic of d-wave superconductor. The energies are normalized individually to ∆∞ for each calculation.
Details about the parameters can be found in appendix A.3.

the gap symmetry. In the coupling term of the Hamiltonian in Eq. (4.1), one can see that the
light momentum q0 introduces a preferred direction as points in momentum space k are coupled
with k+ q0. Thus, a change in symmetry can be expected, which is controllable by changing the
incident angle ϕ. In Fig. 4.3, the gap oscillations induced by a pulse with varying angles ϕ are
shown for s-, d- and d+s-wave. For s-wave (Fig. 4.3a)), all directions are equivalent; there is no
ϕ dependence and the gap oscillates with a single frequency of 2∆∞. For d-wave (Fig. 4.3b)),
a second peak below 2∆ is observable for ϕ = 0. Rotating the incident angle to ϕ = π/4, the
second peak vanishes. In the case of d+s-wave (Fig. 4.3c)), a three-peak structure is visible for
ϕ = 0, which turns into a two-peak structure for ϕ = π/4. These findings fit the previous results
perfectly. In the case of ϕ = 0, the pulse quenches the positive lobes differently compared to the
negative lobes as the lobe axes are parallel or perpendicular to the pulse directions. This changes
the original ground state symmetry and induces asymmetric oscillations of the condensate, which
lead to a second Higgs mode in the spectrum. For ϕ = π/4, the effect of the pump pulse is the
same for both lobes as the incident direction is exactly in between both lobes along the nodal
lines. Hence, the condensate oscillates symmetrically and no second Higgs mode is visible. For
other angles, the change in symmetry is less than for ϕ = 0, which shifts the second Higgs mode
to lower energies. For d+s-wave, the same effect occurs leading to a low-lying Higgs mode for
ϕ = 0, in addition to the always present two-peak structure due to the lobes of different sizes as
discussed in the previous chapter.
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Figure 4.3 Gap oscillations of a) s-wave, b) d-wave, c) d+s-wave superconductor excited by a pump
pulse with different incident direction ϕ. For s-wave, only the 2∆ Higgs mode is excited independently of
ϕ. For d-wave, a second low-lying Higgs mode is visible for ϕ = 0. For d+s-wave, there are always two
Higgs modes as a result of the lobes with different sizes. For ϕ = 0, a low-lying Higgs mode is visible.
Details about the parameters can be found in appendix A.3.

Fluence Dependence

In analogy to section 3.2.3, where the quench strength dependence on the Higgs modes has been
investigated, we will investigate the fluence dependence on the Higgs modes. To this end, the
amplitude A0 of the pump pulse is varied at constant pulse width and the resulting oscillations
for an s-, d- and d+s-wave superconductor are calculated. The spectrum of the oscillations can
be found in Fig. 4.4. The resulting energy dependence curves resemble the result of the quench
analysis in Fig. 3.13 closely. For increasing fluence, the gap is suppressed, leading consequently
to a reduction of the energy of the 2∆ Higgs mode. As in the quench case, the energy of the
low-lying Higgs mode, resulting from the asymmetric oscillation of the condensate, increases in
energy for increasing pump fluence. This confirms again that the effect of the pump pulse is
captured closely by the state quench.
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Figure 4.4 Fluence dependence of Higgs modes for a) s-wave, b) d-wave pumped in ϕ = 0 direction, c)
d-wave pumped in ϕ = π/4 direction, d) d+s-wave pumped in ϕ = 0 direction. Please note that, as can be
seen in Fig. 4.3c), the peak at 2∆∞ is rather a kink, which makes the always present two-peak structure
difficult to see in the d+s-wave case. Details about the parameters can be found in appendix A.3.

4.1.3 Higgs Oscillations in the Optical Conductivity

To measure the induced gap oscillations, a pump-probe experiment can be performed. Hereby,
a second probe pulse is applied after the pump pulse. The intensity of the probe pulse should
be weak, such that it does not disturb the system and induce an additional nonlinear dynamic.
Its purpose is to capture the instantaneous state of the system measurable as the linear optical
response. By repeating the experiment with varying time delay tpp between pump and probe
pulse, the dynamic of the system can be scanned. This is depicted schematically in Fig. 4.5.
In linear response, the optical conductivity σ(ω) is defined by

jq(ω, tpp) = σq(ω, tpp)Eq(ω, tpp) = −iωσq(ω, tpp)Aq(ω, tpp) , (4.11)

where we use Eq(t) = −∂Aq(t)
∂t or Eq(w) = −iωAq(ω). With Aq(ω) = Aq(ω)êA and |êA| = 1, we

obtain for the optical conductivity

σq(ω, tpp) = jq(ω, tpp)êA
−iωAq(ω, tpp) . (4.12)

In this expression, the pump-probe delay tpp is a variable parameter, for which the calculation
is repeated. This time delay is chosen such that pump and probe pulse do not overlap.

The current jq(t) = j
(1)
q (t)+j(2)

q (t) consists of two terms, where the second term j
(2)
q (t) ∝ A(t)

can be neglected as it only leads to an offset in the imaginary part of the conductivity [28]. The
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Figure 4.5 Schematic picture of a pump-probe experiment. The pump pulse is applied at time t0 and
acts as a quench to trigger the nonequilibrium dynamic. After a variable time delay tpp, a second weak
probe pulse is applied at time t1 to measure the instantaneous state of the system.

first term expressed in the Bogoliubov quasiparticles reads (see appendix D for a derivation)

j(1)
q = − e~

2mV
∑
k

(2k + q)
(
L(+)∗α†kαk+q − L(+)β†k+qβk

−M (−)∗α†kβ
†
k+q −M

(−)αk+qβk
)
. (4.13)

In Fig. 4.6, the time-resolved optical conductivity is shown for s-, d- and d+s-wave supercon-
ductors for different pumping angles ϕ. Details of the numerical calculation can be found in
appendix A.3. For s-wave, the conductivity is independent of the angle ϕ. The real part of the
optical conductivity σ1 is peaked at the energy 2∆∞ (Fig. 4.6a)). As a function of the time
delay tpp, one can clearly see an oscillation in the amplitude, both at the peak maximum (black
curve) and next to it (dark and bright red curve). The Fourier spectrum along the shown three
cuts at fixed energy ω are shown in the lower part in comparison to the spectrum of the gap
oscillation (blue curve). One can observe that the oscillation frequency of the optical conductivity
coincides with the Higgs oscillation frequency at 2∆∞. Yet, as the time evolution of the optical
conductivity is restricted due to high computational costs, the resolution of the spectrum is lower
compared to the spectrum of the gap oscillation.

As shown before, the dynamic in the d-wave case depends on the pumping angle ϕ. Examples
for ϕ = π/4 and ϕ = 0 are shown in Fig. 4.6b) and c). For ϕ = π/4, the real part of the optical
conductivity is peaked at 2∆∞; however, the peak is slightly broader. There are oscillations
visible as a function of the time delay and a Fourier transform along cuts at fixed energy reveals
again a single Higgs oscillation frequency as expected for d-wave pumped at ϕ = π/4. For ϕ = 0,
the real part of the optical conductivity has spectral weight at ω = 2∆∞ again but, in addition,
also weight below delta at ω ≈ 0.9∆, which corresponds roughly to the second observed Higgs
mode for the chosen pump fluence. We can understand this in such a way that the superconductor
not only absorbs light at the usual 2∆ Higgs mode but also at a lower energy corresponding
to the second Higgs mode. The optical conductivity also exhibits oscillations in the time delay
tpp. The spectrum shown in Fig. 4.6c) clearly shows a two-peak structure, which coincides with
the two-peak structure of the gap oscillation spectrum. The same behavior is observable for the
d+s-wave case (Fig. 4.6d)). Here, a three-peak structure is visible, both in the real part of the
optical conductivity and in the spectrum of the time-resolved optical conductivity.
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Figure 4.6 Time-resolved optical conductivity (real part) for a) s-wave, b) d-wave at ϕ = π/4, c) d-wave
at ϕ = 0 and d) d+s-wave at ϕ = 0. The upper figure in each case shows the real part of the optical
conductivity σ1 as a function of energy ω and pump-probe time delay tpp. The lower figure always shows
the Fourier transform along three different cuts at fixed energies ω along the time axis tpp, in comparison to
the Fourier transform of the gap oscillations ∆(ωpp). Details about the numerics and the used parameters
can be found in appendix A.3.
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4.1.4 Discussion

A calculation of the gap dynamic induced by a pump pulse shows that the effect is captured
relatively well by the state quench analysis of the previous chapter. For short enough pump pulses,
the condensate is quenched and Higgs oscillations occur. Here, an asymmetry of the quench can
be controlled by the incident direction of the pulse with respect to the ground state symmetry.
With the proposed coupling of light to the condensate, only certain quench symmetries can be
realized. With the pump pulse along the antinodal direction of a d-wave order parameter, one
lobe is quenched stronger than the other, which resembles an A1g-quench and induces B1g

x2−y2

oscillation of the condensate. A possible excitation with two pulses along the x- and y-directions
with a short time delay in between could implement such a quench even more closely.

The simulation of a pump-probe experiment with variable time delay and calculation of the
time-resolved optical conductivity shows that the Higgs oscillations can be found in the optical
response as amplitude oscillations of the conductivity. Another study has shown that oscillations
of the conductivity in energy should also be visible [56]. For this, a slightly modified pump-probe
scheme is considered, in which the Fourier transform is not performed along the pump-probe time
delay axis. In this scheme, the total time is kept fixed and the probe pulse is swept backwards in
time. Then, along this new time axis, the Fourier transform is performed. This has the advantage
that the system is always in the same state after the pump pulse. As an alternative, it is proposed
that if the decay of the induced current is considered, which is not included in our model, the
probe pulse should also resolve oscillations in energy with the method used in this thesis. The
reason, why the energy oscillations cannot be resolved with the method used here, is based on
the fact that due to the long oscillating current, the oscillations in energy are averaged effectively
and the peak position in the optical conductivity is fixed at the mean value ∆∞. Nevertheless,
the simulations show that Higgs oscillations excited by a pump pulse can be measured effectively
as amplitude or, possibly, energy oscillations of the optical conductivity.

4.2 Time-resolved ARPES
Photoemission spectroscopy is a spectroscopic technique which makes use of the photoelectric
effect, namely the emission of electrons due to absorption of light. If one analyzes the angu-
lar dependence on the emitted electrons, one calls the method angle-resolved photoemission
spectroscopy (ARPES) [203–206]. This allows for a direct measurement of the density of single
electron excitations and thus, a measurement of the electron band structure. In addition, if the
system is brought into an excited state prior to the photoemission, a time-resolved ARPES
(tr-ARPES) experiment can be used to study the dynamic of the nonequilibrium system.

In this section, the tr-ARPES signal of a superconductor excited by a quantum quench will be
investigated. A tr-ARPES experiment has the advantage that one has access to the momentum-
resolved dynamic of the system. In comparison, an optical pump-probe experiment, as considered
in the previous section, measures only a momentum-averaged quantity. This enables us to study
and observe not only the collective Higgs oscillations but also the underlying condensate dynamic.
So far, there have been little theoretical research efforts studying nonequilibrium Higgs oscillations
with tr-ARPES [41–44]. In addition, these studies only considered oscillations of the maximum
of the energy distribution curve, which reflects the collective Higgs oscillations. While this
indeed allows to observe the gap oscillations in tr-ARPES, it does not make full use of the
additional momentum-resolved information contained in the ARPES spectrum. In this section,
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the amplitude oscillation of the spectral function will be studied, which is a direct measure of
the momentum-resolved condensate dynamic and thus, contains more information. This section
is based on the publication [207] from which figures, text and calculations are partly taken.

4.2.1 Theory and Iterated Equation of Motion Approach
One possibility to describe the photoemission process is called one-step model, where photon
absorption, electron excitation, emission and detection are treated in a single coherent process.
This is the most correct description, yet a difficult task. The many-body excited state, electron-
electron interactions and mixture of the final free electron and remaining bulk state have to be
considered. Therefore, one often makes use of the three-step model. Hereby, the excitation process
is split into three independent parts:

1. Excitation of an electron from initial to final bulk Bloch state

2. Travel of the excited electron to the surface

3. Transmission of the photoelectron from the bulk into vacuum

This has the advantage that each process can be treated separately in a much simpler way. The
two processes are depicted in Fig. 4.7 schematically. In addition, one often uses the independent-
particle picture, in which many-body interactions are neglected and the sudden approximation,
in which the photoemission process is assumed to be sudden. With this assumption, there is
no interaction between the excited photoelectron and the system left behind. The removal of
the electron is much faster than the relaxation time of the excited system. The description of
time-resolved ARPES contains further difficulties as the nonequilibrium state induced by the
pump pulse has to be considered. Nevertheless, following the usual approach in literature and
neglecting transition matrix element effects, the time-resolved ARPES intensity A(k, ω, t) is
proportional to the electron removal spectral function, which is defined in terms of the lesser
Green’s function [41, 44, 208–211]

A(k, ω, t) ∝ Im
∫

dt2
∫

dt1G<(k, t1, t2)p(t1 − t)p(t2 − t)eiω(t1−t2) , (4.14)

where the lesser Green’s function in the time-domain is given by

G<(k, t1, t2) = i 〈c†k↑(t2)ck↑(t1)〉 . (4.15)

Hereby, the finite width of the probe pulse is incorporated by a Gaussian function

p(t) =
√

4 log 2
πτ2

p

exp

−4 log 2
(
t

τp

)2
 (4.16)

with full width at half maximum τp, which broadens the spectral function. Details about the
numerical evaluation of the integral can be found in appendix E.
In order to obtain the two-time lesser Green’s function, we can no longer use the density

matrix formalism as in the previous chapter. The reason is that now, we need expectation values
of the product of two operators at different times, whereas the density matrix formalism only
provides expectation values for equal times. To calculate the required quantities, we switch to
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Figure 4.7 Description of the photoemission process in the a) one-step model and b) three-step model.
Figure adapted from [206].

the Heisenberg picture and calculate the time evolution of the required operators individually,
such that we can construct the expectation values of two operators for arbitrary times. We make
use of the iterated equation of motion approach introduced in section 2.3.3 to write down an
ansatz for the time-dependent operators and to evaluate the equations of motion. As the BCS
Hamiltonian is bilinear, there will be no infinite hierarchy of coupled equations and the simple
ansatz of Eq. (2.69), i.e.

α†k(t) = a0k(t)α†k + a1k(t)βk , β†k(t) = b0k(t)β†k + b1k(t)αk (4.17)

will be sufficient to express the time-dependent operators without approximation and create a
closed set of differential equations. For these operators, Heisenberg’s equation of motion

∂tα
†
k(t) = i

~
[H̃(t), α†k(t)] , ∂tβ

†
k(t) = i

~
[H̃(t), β†k(t)] (4.18)

can be evaluated. The derivation of the equations can be found in appendix E. The resulting
differential equations for the prefactors read

∂ta0k(t) = i
~

[
Rk(t)

[
a0k(t)

(
|a0k(t)|2 + |a1k(t)|2 − |b1k(t)|2

)
− a1k(t)b0k(t)b∗1k(t)

]
+ Ck(t)

[
a0k(t)

(
a0k(t)b1k(t) + a1k(t)b0k(t)

)]
+ C∗k(t)

[
b∗1k(t)

(
|a0k(t)|2 + |a1k(t)|2

)]]
, (4.19a)

∂ta1k(t) = i
~

[
−Rk

[
a1k(t)

(
|b0k(t)|2 − |a1k(t)|2 − |a0k(t)|2

)
+ a0k(t)b∗0k(t)b1k(t)

]
+ Ck(t)

[
a0k(t)a1k(t)b1k(t) + a1k(t)2b0k(t)

]
+ C∗k(t)

[
b∗0k(t)

(
|a0k(t)|2 + |a1k(t)|2

)]]
, (4.19b)
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∂tb0k(t) = i
~

[
Rk(t)

[
b0k(t)

(
|b0k(t)|2 + |b1k(t)|2 − |a1k(t)|2

)
− a0k(t)a∗1k(t)b1k(t)

]
− Ck

[
a1k(t)b0k(t)2 + a0k(t)b0k(t)b1k(t)

]
− C∗k

[
a∗1k(t)

(
|b0k(t)|2 + |b1k(t)|2

)]]
, (4.19c)

∂tb1k(t) = i
~

[
−Rk(t)

[
b1k(t)

(
|a0k(t)|2 − |b0k(t)|2 − |b1k(t)|2

)
+ a∗0k(t)a1k(t)b0k(t)

]
− Ck

[
a1k(t)b0k(t)b1k(t) + a0k(t)b1k(t)2

]
− C∗k(t)

[
a∗0k(t)

(
|b0k(t)|2 + |b1k(t)|2

)]]
. (4.19d)

To solve these equations, initial values of the prefactors have to be provided

a0k(0) =
√

1− 〈α†kαk〉 (0) , b0k(0) =
√

1− 〈β†kβk〉 (0) ,

a1k(0) = 〈α†kβ
†
k〉 (0)√

1− 〈β†kβk〉 (0)
, b1k(0) = 〈αkβk〉∗ (0)√

1− 〈α†kαk〉 (0)
. (4.20)

These are derived in appendix E. Depending on the desired calculation, the initial expectation
values 〈α†kαk〉 (0) etc. are chosen either to be the temperature-dependent equilibrium distribution
Eq. (2.54) or according to Eq. (3.66) in the quenched case. Finally, the two-time electron expecta-
tion value, required to express the Green’s function (4.15), is expressed with the time-dependent
Bogoliubov quasiparticle operators

〈c†k↑(t2)ck↑(t1)〉 = |uk|2 〈α†k(t2)αk(t1)〉

+ |vk|2
(
b∗0k(t2)b0k(t1) + b∗1k(t2)b1k(t1)− 〈β†k(t1)βk(t2)〉

)
+ u∗kv

∗
k

(
a∗0k(t1)b∗1k(t2) + a∗1k(t1)b∗0k(t2)

− 〈αk(t1)βk(t2)〉
)

+ ukvk 〈α†k(t2)β†k(t1)〉 . (4.21)

To obtain a basic understanding of the spectral function, let us consider the equilibrium case
for T = 0. Here, an analytic calculation can be performed. The Hamiltonian is diagonal and
time-independent

H =
∑
k

Ek(α†kαk + β†kβk) , (4.22)

i.e. Rk(t) = Ek and Ck(t) = 0. According to Eq. (4.20), the initial conditions read

a0k(0) = b0k(0) = 1 , a1k(0) = b1k(0) = 0 , (4.23)

i.e. α†k(0) = α†k and β†k(0) = β†k. Thus, from (4.19) it follows

a1k(t) = b1k(t) = 0 (4.24)
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Figure 4.8 Equilibrium spectral function of an s-wave superconductor. a) Spectral function A(k, ω)
according to Eq. (4.28). The energy distribution curve maximum is marked by E . b) Quasiparticle energy
Ek and coherence factor |vk|2. The spectral function traces the quasiparticle energy weighted by the
coherence factor. The used parameters are given in Eq. (A.9) and τp = 10.

and

∂ta0k(t) = iEk
~
a0k(t)|a0k(t)|2 , ∂tb0k(t) = iEk

~
b0k(t)|b0k(t)|2 . (4.25)

The solution is

a0k(t) = eiEk
~ t , b0k(t) = eiEk

~ t , (4.26)

which leads to the following Green’s function

G<(k, t1, t2) = i|vk|2b∗0k(t2)b0k(t1) = i|vk|2eiEk
~ (t1−t2) , (4.27)

which depends only on the time difference t1 − t2. The spectral function in frequency domain
using Eq. (4.14) reads

A(k, ω) ∝ |vk|2e
τ2
p

8 log(2)

(
ω+Ek

~

)2

. (4.28)

A plot of the spectral function for an s-wave superconductor is shown in Fig. 4.8 in comparison
to the quasiparticle energy. We can see that the spectral function traces the quasiparticle energy
Ek weighted by the coherence factor |vk|2, i.e. the occupation of pair states. The value of the
gap can be read off from the position E . It is the maximum of the energy distribution curve
(EDC), i.e. the vertical cut of the spectral function at k = kF. This quantity will be defined in
the next section, in which we will study its time-dependence and also the time-dependence of
the amplitude of the spectral function A.
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Figure 4.9 Spectral function of an s-wave superconductor after performing an interaction quench. a)
Equilibrium spectral function A(k,w, t = −∞); the maximum of the energy distribution curve (EDC)
at k = kF is marked by a circle and labeled E . b) Spectral function A(k,w, t = 0) after the interaction
quench, spectral weight is shifted towards the Fermi level. c) Time evolution of the EDC at k = kF. d)
Gap oscillations ∆(t), oscillations of the EDC maximum |E(t)| and amplitude oscillation A(t, k = kF) of
the spectral function. The edges in E(t) are an artifact due to the finite frequency resolution and the
decreased amplitude of the spectral function in the beginning results from decreased weight due to the
cutoff of the probe pulse envelope at t = 0. e) Fourier transform of oscillations; all quantities oscillate
with the Higgs frequency ω = 2∆∞. The probe pulse width is τp = 1. The used parameters are given in
appendix A.4. Figure adapted from [207].

4.2.2 Higgs Oscillations in the Spectral Function

In the following, we will investigate the dynamics of two quantities. On the one hand, we will
consider the position of the maximum of the energy distribution curve (EDC) at k = kF, i.e.

E(t, ϕ) = argmaxω A(k = kF, ϕ, ω, t) . (4.29)

This quantity, i.e. the position of the maximum with respect to the Fermi level reflects the energy
gap. On the other hand, we will follow the dynamic of the amplitude of the spectral function at
ω = −∆∞, where the strongest dynamic can be expected, i.e.

A(t, k, ϕ) = A(k, ϕ, ω = −∆∞, t) . (4.30)

In these expressions, the momentum is expressed in polar coordinates with absolute value k and
polar angle ϕ. While the first quantity is typically used to trace the time evolution of the system
[41, 42], it will appear that an investigation of the second quantity yields even more information.
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the EDC curve (black line) as defined in Eq. (4.29) with the momentum-independent frequency ωE = 2∆∞
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momentum-dependent frequency ωAk = 2
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ε2k + (∆∞fk)2. At k = kF and fk = 1, ωAk = ωE = 2∆∞.

Figure adapted from [207].

Before studying superconductors with nontrivial gap symmetry, we first consider the s-wave
case with fk = 1, where we perform a simple interaction quench to trigger the time dynamic.
In Fig. 4.9, the time evolution of the spectral function can be found. One observes that after
the quench (Fig. 4.9b)), spectral weight is shifted towards and above the Fermi level compared
to the equilibrium case (Fig. 4.9a)). This can especially be seen by determining E as defined in
(4.29). This position of the maximum, indicated by a circle in Fig. 4.9a) and Fig. 4.9b) is shifted
from its initial value |E(t = −∞)| = ∆ to a smaller value |E(t = 0)| < ∆, which indicates a
suppression of the energy gap after the quench. To trace the induced dynamic, we look at the
time evolution of the EDC at k = kF shown in Fig. 4.9c) and Fig. 4.10, where we extract the two
quantities E(t) and A(t, k = kF). The oscillation dynamic in energy or amplitude is indicated
with a black arrow labeled ωE and with a blue arrow labeled ωAk , respectively.

For a sufficient short probe pulse (small τp), the time resolution is high enough to directly
observe the induced Higgs oscillations of the order parameter as oscillations of E(t), i.e. an
oscillation of the spectral function in energy. The extracted curve E(t) is shown in Fig. 4.9d) in
comparison to the calculated dynamic of the order parameter ∆(t), where a close accordance
can be observed.
In addition to the oscillation of E(t), we also look at the dynamic of the amplitude of the

spectral function A(t, k = kF) as defined in Eq. (4.30), shown as well in Fig. 4.9d) and Fig. 4.10
for comparison. We find oscillations with the same frequency as the order parameter. This is
confirmed in Fig. 4.9e), where the Fourier transform of the order parameter ∆(t), the maximum of
the EDC E(t) and the spectral function A(t, k = kF) are compared. All three quantities show the
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Figure 4.11 Influence of probe pulse width on ARPES spectrum and its time evolution for an s-wave
superconductor after an interaction quench. For decreasing probe pulse width (right to left), the energy
resolution of the spectral function decreases while the time resolution of oscillation in E(t) and A(t)
increases. The edges in E are an artifact due to the finite frequency resolution. The decreased amplitude
of the spectral function in the beginning results from decreased weight due to the cutoff of the probe
pulse envelope at t = 0. The used parameters are given in appendix A.4. Figure adapted from [207].

same oscillation with a frequency of ω = 2∆∞, the energy of the Higgs mode. Thus, the spectral
function provides a direct measure of Higgs oscillations for superconductors in nonequilibrium,
both in energy and amplitude.

The pulse width plays a crucial role for the resolution of the gap dynamic in E and A [211]. If
the probe pulse is too wide, it cannot resolve the oscillations of the system. Hereby, the pulse
width has to be compared with the timescale of the intrinsic oscillations of the system, i.e. the
energy of the Higgs mode. As a result of too wide pulses, E will be constant in time at the mean
value ∆∞, the value of the order parameter after a long time and A will be constant as well.
However, if the probe pulse is short in time, i.e. shorter than the intrinsic oscillation period of
the system, it can scan the oscillations, which leads to oscillations of the spectral function in
energy and amplitude.
In Fig. 4.11, the spectral function of an s-wave superconductor after an interaction quench

is shown for different probe pulse widths. An infinite long probe pulse with τp = ∞ leads to
a sharp spectral function in energy (Fig. 4.11a) right). However, no oscillations in the spectral
function can be observed in this case (black and blue curve in Fig. 4.11b) right), despite the
oscillations in the gap (red curve). For decreasing probe pulse width (right to left), the energy
resolution of the spectral function decreases and the spectral function peak becomes broader.
Simultaneously, the time resolution increases and oscillations of the EDC maximum E(t) and
the spectral function’s amplitude A(t) can be observed.
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4.2.3 Momentum-resolved Condensate Dynamic
After having considered the s-wave case with an isotropic interaction quench, we will proceed to
a d-wave superconductor, which we will quench in different symmetry channels with the help of a
state quench as defined in section 3.2. We will consider all four fundamental quenches for the D4h
point group as discussed in section 3.2.2. The symmetry function and the quenched symmetry
function, as well as the spectral function after the quench, can be found in Fig. 4.12. First of all,
in the equilibrium case, the spectral function resembles the angular dependence of the absolute
value of the symmetry function closely. In the antinodal directions at ϕ = [0, π/2, π, 3π/2],
a full open gap can be observed with |E| = ∆. Moving ϕ towards the nodal directions ϕ =
[π/4, 3π/4, 5π/4, 7π/4], the maximum E approaches zero.

The influence of the different quenches is also reflected in the change in the spectral function.
The A1g- and B2g-quenches shift the position of the nodes. In the case of the A1g-quench, the
shift is in opposite directions relative to the lobe maxima, which creates lobes with different sizes.
The B2g-quench shifts all nodes in the same direction, which results in a rotation of all lobes.
This can be seen by a transfer of spectral weight above the Fermi level at exactly these points in
the spectral function. The B1g-quench does not change the symmetry at all and the A2g-quench
only shifts weight inside the lobes, such that for these two quenches, no obvious change in the
symmetry of the spectral function is observable. As it was discussed earlier in section 3.2.2, this
fact is crucial for the induced Higgs oscillations of the gap, as for the A1g- and B2g-quenches,
the shift of the nodal lines creates a second low-lying Higgs mode, whereas for the other two
quenches, it will not.
Now, we will analyze the amplitude oscillations of the spectral function A(t) in more detail

to gain a deeper understanding of the dynamic creation of the low-lying Higgs mode. According
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formula of Eq. (4.31) (lines). There is perfect agreement. The frequency distribution is independent of
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used parameters are given in appendix A.4. Figure adapted from [207].
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to the gap equation (2.62), the value of ∆(t) is obtained by a summation over the condensate
〈c−k↓ck↑〉 (t). Both, the anomalous Green’s function 〈c−k↓ck↑〉 (t) and the normal Green’s function
〈c†k↑ck↑〉 (t) share a similar dynamic as their equations of motion are coupled. This can be seen in
the Bloch equations (3.10), where the differential equations for the x- and z-components, which
correspond to the anomalous or normal Green’s function, respectively, are coupled. Therefore,
a momentum-resolved analysis of the spectral function, i.e. A(t, k, ϕ), which is proportional to
the normal Green’s function, can reveal important information about the dynamic processes.
In comparison, an angle-resolved evaluation of the maximum of the EDC curve, i.e. E(t, ϕ), as
considered in [42], does not give further insight as it only traces the momentum-averaged quantity
∆(t) and does not depend on ϕ.

To this end, we extract A(t, k, ϕ) and its frequency ωAk not only at k = kF but for all points in
momentum space and plot its distribution in Fig. 4.13a) for a d-wave superconductor quenched
in the A1g- and B1g-channels. The resulting frequencies are momentum-dependent, yet, do not
depend on the quench. They are exactly the same for the A1g- and B1g-quenches. The momentum-
dependent frequencies are given by the pseudospin precession frequencies. For the state quench,
we can read off the precession frequency as the poles in Eq. (3.70). The frequency at each
momentum point k is given by

ωAk = 2
√
ε2k + (∆∞fk)2 . (4.31)

Hereby, we generalize the solution of the linear analysis in the pseudospin calculation and replace
∆q → ∆∞. The same result for s-wave symmetry and an interaction quench was also found in
[23]. A comparison of the extracted frequencies and the analytic formula shows perfect agreement
as shown in Fig. 4.13a).
In the summation process of the gap equation, the frequency with the largest weight will

dominate the oscillations. In the case of s-wave with fk = 1, this turns out to be at k = kF ,
where εk = 0, which results in a single main frequency ω = 2∆∞. However, as the other frequencies
still contribute, the superposition of all different frequencies drives the oscillations out of phase
in the long-time limit, which results in the 1/

√
t decay as seen in the previous chapters. In the

case of d-wave, there is a much larger variety of frequencies due to the angular dependence of
the gap ∆k. As shown in section 3.1.1, the summation process creates a much stronger decay.

The second low-lying frequency for certain quenches can be explained in the same picture. In
Fig. 4.13b), we show the extracted amplitudes for ωAk at each momentum point, which correspond
to the actual weight for each frequency. While there is no difference in the frequency distribution
between different quenches in Fig. 4.13a), we can clearly see a difference in the amplitudes between
the A1g-quench, which shows a second peak in the Higgs oscillations, and the B1g-quench, which
shows no second peak. The change in symmetry due to the quench creates a strong asymmetry
in the weights regarding the positive and negative lobe directions in the case of the A1g-quench,
while the amplitudes for the B1g-quench are symmetric. This can result in the summation process
in an additional enhancement of frequencies other than ω = 2∆∞. In Fig. 4.13c), we show the
histogram of the frequencies of all momentum points. The raw histogram (dark blue curve)
looks exactly the same for both quenches, with a peak at ω = 2∆∞ already without additional
weighting. Now, if we weight the histogram with the amplitude of the oscillation, the picture
changes (light blue curve). In the case of the A1g-quench, a two-peak or two-kink structure
becomes visible, similar to the Fourier transform of the gap oscillation (red curve), whereas the
symmetric weighting in the case of the B1g-quench only shows a one-peak structure. Hence,
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Figure 4.14 Spectral function of a nodal s-wave superconductor after a state quench. Top: Symmetry
function fk (blue) and quenched symmetry function fmode

k (red) for different channels. Bottom: Corre-
sponding spectral function; shift of nodal lines is reflected by a shift of spectral weight in the nodal region.
The probe pulse width is τp = 10. The used parameters are given in appendix A.4. Figure adapted from
[207].

a careful analysis of the momentum-resolved frequencies in the ARPES spectrum reveals the
dynamic of the condensate and explains the underlying processes leading to the collective Higgs
oscillations.
In analogy to Fig. 4.12, we quench a nodal s-wave superconductor in all symmetry channels

of the D4h lattice point group. The result can be found in Fig. 4.14. In the areas, in which the
quench shifts nodal lines, we can observe a corresponding shift in spectral weight. For the chosen
quench strength g = −0.4, all quenches shift nodal lines resulting in a two-peak or two-kink
structure for all quenches. In comparison, the quench with opposite sign g = +0.4 in Fig. 3.17
does not shift nodes in the A1g case, where no second peak can be observed. In the case of
the B1g-quench, this shift is smaller compared to the other quenches, which results in a lower
frequency of the second Higgs mode (see 3.17).

4.2.4 Analysis of Oscillation Phase
In the previous section we have seen how the oscillation of the spectral function can provide a
deep insight into the creation process of the collective Higgs oscillation of the order parameter.
Now, we will analyze the phase of these oscillations at different points in momentum space to
resolve the collective condensate dynamic. We have seen that an A1g-quench for d-wave changes
the sizes of the positive and negative lobes, i.e. the lobes of one sign increase in size while the
others decrease. The resulting movement of the condensate will therefore be an oscillation, in
which the smaller lobe increases while the larger lobe decreases. Thus, the movement of the lobes
is out of phase (see Fig. 4.15a) and Fig. 3.10).
The same quench applied to a nodal s-wave superconductor with fk = cos2(2ϕ), which has
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Figure 4.15 Oscillation of spectral function after A1g-quench for d-wave (top) and nodal s-wave (bottom)
superconductor. Points in momentum space rotated by π/2 oscillate with opposite phase in the case of
d-wave and in phase in the case of nodal s-wave. For a B1g-quench, the situation would be reversed. The
decreased amplitude of the spectral function in the beginning results from decreased weight due to the
cutoff of the probe pulse envelope at t = 0. The probe pulse width is τp = 1. The used parameters are
given in appendix A.4. Figure adapted from [207].

the same nodal structure, will change its lobes all equally due to the same sign of the gap. The
resulting oscillations are therefore in phase (see Fig. 4.15c)). Even though the oscillation of the
lobes is in phase for this quench, the gap oscillation shows a two-peak structure due to a shift
of nodal lines as discussed in the previous section. Thus, a comparison of the Higgs oscillation
spectrum does not allow to distinguish between d-wave and nodal s-wave in this case.

To see whether we can observe the different condensate dynamics for these two gap symmetries
in the spectral function, we extract the amplitude oscillations A(t, k = kF, ϕ) at ϕ = 0 and
ϕ = π/2, i.e. at points in momentum space rotated by ϕ = π/2, which should oscillate with
opposite phase in the case of d-wave and with the same phase for the nodal s-wave. The result
can be found in Fig. 4.15b) and d) and confirms the expected oscillatory behavior. For a B1g-
quench, the situation would be reversed. Oscillations of the spectral function’s amplitude provide
therefore not only information about the amplitude of the gap but also relative phase information
at different points in momentum space can be extracted. This shows that the information
obtainable from the time-dependent amplitude of the spectral function allows to clearly trace
the collectively induced condensate movement.

4.2.5 Discussion

The analysis of the spectral function measurable in tr-ARPES experiments shows how the
collective Higgs oscillations of the superconducting order parameter can be traced back and
observed as oscillations of the spectral function. There are two kinds of dynamics, namely
momentum-independent oscillations of the EDC maximum E(t), which directly correspond to
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oscillations of the energy gap ∆(t), and momentum-dependent oscillations of the amplitude of the
spectral function A(t, k, ϕ). While the E dynamic only reveals information about the momentum-
averaged quantity ∆(t), the amplitude oscillation of the spectral function A allows to perform a
momentum-resolved analysis of the condensate dynamic. Experimental conditions might dictate
which quantity can be observed more easily. Both quantities require short enough probe pulses to
resolve the Higgs oscillations. The EDC maximum oscillations are restricted in their amplitude
by the oscillation amplitude of the gap, which can be in the sub-percentage range depending
on quench strength and gap symmetry. In contrast, the amplitude oscillations of the spectral
function can be up to several percentages in size and thus, much larger for certain conditions.
However, they might be more difficult to resolve in general than oscillations in energy.
A tracking of the amplitude oscillation frequencies ωAk of the spectral function A(t, k, ϕ) at

different momenta leads to a deeper understanding of the microscopic creation process of collective
Higgs oscillations ∆(t). While the frequencies can be described with a single formula independent
of gap and quench symmetry, the relative weight of each frequency contributing to the collective
amplitude oscillation of the order parameter is determined by the gap and quench symmetry in
a nontrivial way. If there are asymmetries in the weights, additional Higgs modes can appear,
which are dynamically created due to quenching the condensate in a symmetry channel different
from its equilibrium value.
Furthermore, quenching the condensate in defined symmetry channels and observing the

oscillation phase of the spectral function allows to resolve the exact condensate movement. This
condensate dynamic depends on the gap and quench symmetry. Here, the quench symmetry
for a certain gap was given such that the resulting condensate movement, like an in-phase or
out-of-phase oscillation of lobes of a d-wave or nodal s-wave superconductor, is clearly defined.
This explicit construction of a quench symmetry allows to distinguish between the two different
gaps with the same nodal structure but different phase. Experimentally, it is not yet clear how
to quench the condensate in a defined symmetry channel. This is an open question for further
reasearch. Nevertheless, this analysis shows that tr-ARPES experiments are in principle able to
retrieve phase information of the superconducting gap if the oscillation phase of the spectral
function is evaluated.
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This chapter changes the perspective compared to the previous ones. While before, quenches
of superconductors were studied, which excite the intrinsic Higgs oscillations, here, driven or
enforced Higgs oscillations will be explored. For s-wave superconductors, it was shown that
driven Higgs oscillations resonate with the energy of the Higgs mode, which can be observed in
the third-harmonic response [40]. In a nutshell, one can understand this effect as follows. The
quadratic coupling to the condensate of a multi-cycle light pulse A(t) with frequency Ω induces
oscillations of the energy gap δ∆(t) with twice the driving frequency 2Ω. This nonlinear coupling
also induces a higher-order current j, where a third-harmonic generation (THG) component
j(3)(t) arises. It results from the driven gap oscillations, i.e. j(3)(t) ∝ A(t)δ∆(t). If the effective
2Ω driving frequency is tuned to the energy of the Higgs mode 2∆, a resonance occurs in the gap
oscillation and consequently, also in the THG intensity, which indicates the existence of the Higgs
mode. This process is depicted schematically in the introduction in Fig. 1.1b). The analysis of
the known s-wave case will be extended for unconventional superconductors to investigate the
resonance behavior for these cases.

There are two important points which have to be kept in mind in the following. The first one
is a conceptual one resulting from experimental conditions. With current technology, there is
no tunable THz laser available in the required energy range. Therefore, one cannot sweep the
driving frequency to hit the resonance with the Higgs mode. Instead, experiments are performed
with fixed driving frequency. To find the resonance, the energy of the Higgs mode 2∆T is tuned
by varying the temperature T . It is therefore important to study the temperature dependence
of the THG signal, which will be done in section 5.2.1.

The second point concerns the uniqueness of the resonance in the signal. Recent studies have
pointed out that charge density fluctuations (CDF) can contribute to the THG resonance as
well [45–48]. Actually, in clean superconductors, this contribution is much larger than the Higgs
contribution. Yet, impurity scattering in dirty superconductors can enhance the Higgs signal
significantly due to a paramagnetic coupling of light to the condensate [65–70]. The analysis
in this chapter is within the clean limit with no impurity scattering. Thus, the calculated
CDF contribution will dominate the total THG signal. Nevertheless, one can extract important
information about the polarization dependence of the different contributions, which should also
be valid in the dirty case. A full analysis revealing the strength of each contribution for real
materials depends on many parameters and will not be considered. Here, the CDF contribution
is calculated, but the main attention is to study the influence of nontrivial pairing symmetry on
the THG response resulting from Higgs oscillations. This chapter is based on the publication [8],
from which figures, text and calculations are partly taken.

5.1 Driven Higgs Oscillations

To study the periodic driving, we neglect the light momentum q0, which allows us to use a
description within the Anderson pseudospin formalism. Using minimal substitution, the BCS
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Hamiltonian reads

H =
∑
kσ

εk−eA(t)c
†
kσckσ −

∑
k

∆kc
†
k↑c
†
−k↓ −

∑
k

∆∗kc−k↓ck↑ , (5.1)

where we use

A(t) =
(
Ax(t)
Ay(t)

)
= A0A(t) = A0(t)êA = A0 sin(Ωt)

(
cos(χ)
sin(χ)

)
(5.2)

with the driving amplitude A0, polarization vector êA and the explicit time-dependence

A(t) = sin(Ωt) (5.3)

with driving frequency Ω and polarization angle χ. Compared with the parametrization of the
vector potential in chapter 4, this corresponds to the choice ϑ = 0 and ϕ = 0, i.e. the in-plane
component of the light momentum q0 is zero as the light direction is perpendicular to the xy-
plane and the polarization is in-plane. For simplicity, in order to perform an analytic analysis, the
time-dependence of the light is chosen purely sinusoidally; however, in a numerical calculation the
sine function can be, in principle, convolved with an arbitrary envelope to resemble experimental
multi-cycle pulses.

Transforming the Hamiltonian to the Anderson pseudospin formalism is possible in an analo-
gous way to section 2.2.5 with a redefined pseudomagnetic field

b>k =
(
−2∆′k, 2∆′′k, εk−eA(t) + εk+eA(t)

)
. (5.4)

One observes that the coupling of light to the system happens in the z-component of the
pseudomagnetic field, i.e. in the τ3 channel, whereas the Higgs oscillations live in the x-component,
i.e. the τ1 channel. Thus, light-condensate coupling is not direct but through the τ3 charge channel.

For the further analysis, we expand the z-component of the pseudomagnetic field into powers
of A0

εk−eA(t) + εk+eA(t) = 2εk + γA
2

k (t) +O(A4
0) (5.5)

with

γA
2

k (t) = e2∑
ij

∂2
ijεkAi(t)Aj(t) = e2A2

0 sin2(Ωt)Dεk(χ) (5.6)

and the definition of

Dεk(χ) = cos2(χ)∂2
xxεk + sin2(χ)∂2

yyεk + 2 sin(χ) cos(χ)∂2
xyεk , (5.7)

where the abbreviation ∂2
ijεk = ∂2εk

∂ki∂kj
is used. Due to particle-hole symmetry, i.e. εk = ε−k, the

term linear in A0, or in general all odd orders, vanish and light only couples in even powers of
A0 to the condensate. The term Dεk(χ) contains the polarization dependence and the second
derivatives of the dispersion. For a parabolic dispersion, it becomes k-independent, which leads
to a vanishing of the coupling as shown later. Thus, the coupling of light to the condensate is
relatively small, as it is only possible in second order and depends on the deviations from a
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parabolic dispersion. An enhancement is possible due to finite in-plane light momentum q0, as
shown in chapter 4, or in the dirty-limit [67, 68, 70]. In both cases, a paramagnetic coupling via
the pA term is possible and the quadratic coupling does not vanish for parabolic dispersion.

For small driving amplitude, an analytic evaluation is possible in analogy to chapter 3. With
the ansatz for the pseudospins of Eq. (3.5) and

∆(t) = ∆ + δ∆(t) , (5.8)

the linearized Bloch equations in Laplace space read

sxk(s) = −2εkyk(s)− fk
Ek

εkδ∆′′(s) , (5.9a)

syk(s) = 2εkxk(s) + 2fk∆zk(s) + fk
Ek

(1
2γ

A2
k (s)∆− εkδ∆′(s)

)
, (5.9b)

szk(s) = −2fk∆yk(s)− ∆f2
k

Ek
δ∆′′(s) . (5.9c)

For the solution, it follows

xk(s) =
εkfk

(
2εkδ∆′(s)−∆γA2

k (s)− sδ∆′′(s)
)

Ek(4E2
k + s2) , (5.10a)

yk(s) =
−fk

(
2sεkδ∆′(s)− s∆γA

2
k (s) + 4E2

kδ∆′′(s)
)

2Ek(4E2
k + s2) , (5.10b)

zk(s) =
∆f2

k

(
2εkδ∆′(s)−∆γA2

k (s)− sδ∆′′(s)
)

Ek(4E2
k + s2) (5.10c)

with the Laplace transform of the coupling term

γA
2

k (s) = e2A2
0

2Ω2

s(s2 + 4Ω2)Dεk(χ) . (5.11)

To proceed, we use several assumptions and approximations. The x- and y-directions shall be
equivalent for f2

k and εk, i.e. f(kx, ky)2 = f(ky, kx)2 and ε(kx, ky) = ε(ky, kx). This assumption is
true for energies like εk = ε(|k|) or tight-binding dispersions εk ∝ cos(kx) + cos(ky) and s-wave
fk = 1 or d-wave fk ∝ cos(kx)−cos(ky) symmetry functions. With this, it follows for any function
ak whose k-dependence only stems from f2

k or εk that∑
k

(∂2
xxεk)ak =

∑
k

(∂2
yyεk)ak = 1

2
∑
k

(∇2εk)ak . (5.12)

As we are mostly interested in values close to the Fermi energy εF, i.e. values of εk ≈ 0, we
expand the Laplacian of the dispersion to first order in the dispersion

1
2∇

2εk = α0 + α1εk +O(ε2k) . (5.13)

Hereby, αi are expansion coefficients. In fact, for the single-band tight-binding dispersion on the
square lattice with nearest neighbor hopping t

εk = −2t(cos(kx) + cos(ky))− εF , (5.14)
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the expansion is exact with α0 = −εF/2 and α1 = −1/2. Further, we assume that for typical
dispersions, the mixed derivatives vanish, i.e. ∂2

xyεk = 0. Using these assumptions, the interaction
term γA

2
k (t) can be simplified if summed over in momentum space∑

k

γA
2

k (t)ak = e2A2
0 sin2(Ωt)

∑
k

(α0 + α1εk)ak . (5.15)

In this expression, the polarization dependence has vanished. With this knowledge, the gap
equation can be evaluated, i.e.

δ∆′(s) = λ

∫ εc

−εc
dε
∫ 2π

0
dϕf(ϕ)xk(s) , (5.16a)

δ∆′′(s) = −λ
∫ εc

−εc
dε
∫ 2π

0
dϕf(ϕ)yk(s) . (5.16b)

First, we start by evaluating the real part of the gap. For parabolic band dispersion, i.e. k-
independent Dεk , the integral over the terms ∝ γA

2
k (s) vanishes according to Eq. (3.15), such

that the real part of the gap is unaffected by the driving. The terms ∝ δ∆′′(s) and ∝ α0 always
vanish and the remaining part can be evaluated in analogy to section 3.1.1. It follows

δ∆′(s) = 1
2α1∆e2A2

0
2Ω2

s(s2 + 4Ω2)

(
1− 1

λF (s)

)
(5.17)

with F (s) given by Eq. (3.24) and the replacement ∆q = ∆. The solution in time-domain
is obtained by the inverse Laplace transform, i.e. the Bromwich integral Eq. (3.27). The first
summand ∝ 1 in the bracket of Eq. (5.17) is trivial and yields

δ∆D(t) = α1∆e2A2
0
1− cos(2Ωt)

4 , (5.18)

which is just a forced oscillation with 2Ω due to the quadratic coupling. Hereby, the index D
stands for driven. For the second part, the Bromwich integral reads explicitly

I(t) = α1∆e2A2
0

1
2πi

∫ γ+i∞

γ−i∞
est Ω2

s2 + 4Ω2
1

λ
∫ 2π

0 dϕf2
√

4∆2f2 + s2 sinh−1
(

s
2∆|f |

) . (5.19)

It can be evaluated similarly to section 3.1.1 by extending the integration into a closed loop
integral in the complex plane excluding the poles and the branch cut as shown in Fig. 5.1∫ γ+i∞

γ−i∞
=
∫
c0

=
∫
ctot
−

12∑
i=1

∫
ci

. (5.20)

The difference to section 3.1.1 is that there are two new poles located at s = ±2iΩ, which can
merge with the branch points when 2Ω = 2∆. This indicates the existence of a resonance at
these points. The contributions from the paths ctot, c1, c3, c6, c8, c10, c11 and c12 are zero. The
paths around the poles can be evaluated with the help of the residue theorem∑

i=2,5,7

1
2πi

∫
ci

Iint ds =
∑

i=2,5,7
Indci(si) Ressi(Iint) , (5.21)
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Figure 5.1 Contour to solve the Bromwich integral Eq. (5.19) corresponding to the path c0. The red
zigzag line from −2i∆ to 2i∆ indicates the chosen branch cut for the expression, while the blue dots at
s = 0,±2iΩ indicate the poles. The total closed loop integral as well as the contributions c1, c3, c6, c8,
c10, c11 and c12 are vanishing. There are only contributions from the poles at s = 0,±2iΩ and the paths
c4 and c9 located on the right and left side of the branch cut.

where si are the poles enclosed by the path ci and Iint stands for the integrand in Eq. (5.19) and
Indci(si) = −1 is the winding number due to the clockwise circling around the pole. It follows

Indc5(0) Res0(Iint) = − 1
4λ
∫ 2π

0 f2 dϕ
, (5.22a)

Indc2,7(±2iΩ) Res±2iΩ(Iint) = Ωe±2iΩt

8λ
∫ 2π

0 dϕf2
√

∆2f2 − Ω2 sin−1
(

Ω
∆|f |

) . (5.22b)

The solution for the poles ±2iΩ represents a driven oscillation with a resonant amplitude due to
the

√
∆2f2 − Ω2 term in the denominator. The paths c4 and c9 are parametrized as s(r) = −ir

for c4 and s(r) = ir for c9 with r ∈ [−2∆, 2∆]. It follows in analogy to Eq. (3.31)
1

2πi

(∫
c4
Iint ds+

∫
c9
Iint ds

)
= − 1

π

∫ 2∆

−2∆

Ω2

4Ω2 − r2
sin(rt) dr

λ
∫

dϕf2
√

4∆2f2 − r2 sin−1
(

r
2∆|f |

) . (5.23)

Combining all the expressions, we obtain

δ∆′(t) = α1∆e2A2
0(δ∆D(t) + δ∆H(t) + δ∆R(t)) , (5.24)

where

δ∆D(t) = 1− cos(2Ωt)
4 , (5.25a)

δ∆H(t) = − 1
π

∫ 2∆

−2∆

Ω2

4Ω2 − r2
sin(rt) dr

λ
∫

dϕf2
√

4∆2f2 − r2 sin−1
(

r
2∆|f |

) − 1
4λ
∫
f2 dϕ , (5.25b)

δ∆R(t) = Ω cos(2Ωt)
4λ
∫

dϕf2
√

∆2f2 − Ω2 sin−1
(

Ω
∆|f |

) . (5.25c)
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The term δ∆D(t) is a driven oscillation with frequency 2Ω. The term δ∆H(t) is the intrinsic
Higgs oscillation with a frequency of ∼ 2∆ induced by an effective interaction quench due to the
periodic driving (see appendix F for details). The amplitude of the Higgs oscillation depends on
the driving frequency Ω. Without solving the integral explicitly, one observes that there will be
a resonant behavior when 2Ω = 2∆ induced by the prefactor (4Ω2 − r2)−1. We can understand
this as a matching of the two oscillations 2Ω and 2∆, when Ω is tuned to ∆. In the s-wave case,
the expression can be evaluated in analogy to section 3.1.1 (see also [40]). It follows

δ∆s-wave
H (t) = 1

4λ

(
2

π3/2
Ω2

Ω2 −∆2
cos(2∆t+ π

4 )√
∆t

− 1
)
. (5.26)

This resonance can also be found in the third term, which is again a forced oscillation of 2Ω,
yet having a frequency-dependent amplitude. In the longtime limit, the 2Ω oscillation survives,
as the intrinsic 2∆ oscillation is damped as shown in the previous chapters. We rewrite the
resonance term as

δ∆R(t) = 1
4λA(Ω)e−iζ(Ω) cos(2Ωt) , (5.27)

where A(Ω) represents the oscillation amplitude and ζ(Ω) the phase relative to the driving. For
s-wave, these terms were already evaluated in [40]. There are two isolated branch points at
s = ±2i∆, which lead to an exact resonance in the amplitude if 2Ω = 2∆. With f(ϕ) = 1 and
λ→ 2πλ, it follows

As-wave(Ω) =


Ω√

∆2−Ω2
1

sin−1( Ω
∆) Ω < ∆

Ω√
Ω2−∆2

1√
cosh−1( Ω

∆)2+(π2 )2
Ω > ∆ , (5.28a)

ζs-wave(Ω) =


0 Ω < ∆

− tan−1
(

π/2
cosh−1( Ω

∆)

)
Ω > ∆

. (5.28b)

This amplitude and phase are plotted in Fig. 5.2. One observes a sharp resonance in A(Ω) and
a sharp π/2 phase jump at the resonance condition.
Next, let us consider the d-wave case where f(ϕ) = cos(2ϕ). Here, we do no longer have an

exact resonance condition, but there is still a maximum of the amplitude given by the minimum
of the integral in the denominator of Eq. (5.25c). This leads to a broad peak in the amplitude
accompanied by a smooth phase change of ζ(0)− ζ(∆) < π/2. The peak in the amplitude is at
an energy slightly below 2Ω = 2∆, whereas a sharp kink in the phase at 2Ω = 2∆ is found.
For nontrivial gap symmetry, the gap oscillation spectrum does not have to be peaked at

exactly 2∆. We have already observed this behavior in section 3.1 about the interaction quench.
For d-wave, the spectrum was peaked slightly below 2∆. In particular, here, the position of the
peak is determined by the interplay between the terms f2 and

√
∆2f2 − Ω2 under the integral

over ϕ in (5.25c). For values 2Ω ≈ 2∆, the terms with the highest weights, i.e. f ≈ 1, vanish,
which decreases the value of the integral and creates its minimum. Therefore, in the case of
d-wave, the maximum of the amplitude can still be found roughly at 2Ω ≈ 2∆. Depending on
the exact shape of f , it can be shifted to lower energies. For values 2Ω > 2∆, the square root is
always imaginary for each value of ϕ, which leads to the sharp edge in the phase at 2Ω = 2∆.
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Figure 5.2 Amplitude A and phase ζ of the driven gap oscillation in Eq. (5.27). In the case of s-wave, a
sharp resonance at 2Ω = 2∆ occurs, whereas for d-wave, a broad peak slightly below 2∆ is apparent. In
addition, the phase of s-wave shows a sharp jump from 0 for 2Ω < 2∆ to π/2 at 2Ω = 2∆ and a drifting
for 2Ω > 2∆. For d-wave, there is a broad phase change from 0 for Ω = 0 up to a value slightly below π/2
for 2Ω = 2∆. At this point, there is a sharp kink and a drifting for 2Ω > 2∆ similar to the s-wave case.
Figure adapted from [8].

After studying the real part, finally, we will also calculate the imaginary part of the gap with
Eq. (5.16b). Similar to the real part, the terms ∝ δ∆′(s) and ∝ α1 vanish and we are left with

δ∆′′(s) = −α0∆e2A2
0s

2Ω2

s(s2 + 4Ω2)λ
∫

dϕ f2

2E2(4E2 + s2)

+ δ∆′′(s)− δ∆′′(s)s2λ

∫
dϕ f2

2E2(4E2 + s2) . (5.29)

Solving for δ∆′′(s) yields

δ∆′′(s) = −α0∆e2A2
0

2Ω
s2(s2 + 4Ω2) (5.30)

and the solution in time-domain is given by

δ∆′′(t) = −α0∆e2A2
0

(
t

2 −
sin(2Ωt)

4Ω

)
= −α0∆e2

∫ t

0
A0(t′)2 dt′ . (5.31)

We can see that the imaginary part is independent of the gap symmetry and it follows the
oscillation of the driving frequency with a frequency-independent amplitude. In addition, it
contains a drift linear in time. As in the s-wave case, for small driving amplitudes, the imaginary
part only contributes to the phase ϕ∆ of the gap ∆(t) = |∆(t)|eiϕ∆(t)

ϕ∆(t) = arctan
(

δ∆′′(t)
∆ + δ∆′(t)

)
≈ δ∆′′(t)

∆ . (5.32)

The absolute value of the gap is independent of the imaginary part and is solely determined by
the real part

|∆(t)| =
√

(∆ + δ∆′(t))2 + δ∆′′(t)2 ≈ ∆ + δ∆′(t) . (5.33)
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5.2 Observation of Higgs Modes in Third-harmonic Generation
Response

The resonance of the forced gap oscillation with the Higgs mode can be found experimentally
in the transmitted light field. The nonlinear coupling of the vector potential to the condensate
leads to higher-harmonic generation where the lowest non-vanishing order is third-harmonic
generation. Its intensity ITHG, which is proportional to the amplitude squared of the induced
third-order current j(3)(3Ω)

ITHG ∝
∣∣∣j(3)(3Ω)

∣∣∣2 , (5.34)

shows the same resonance as the gap oscillation and will be calculated in the following. However,
as mentioned in the introduction of this chapter, not only the driven gap oscillations contribute
to THG but also charge density fluctuations, i.e. single particle excitations resonating at the
pair-breaking energy 2∆. Therefore, this contribution is considered and calculated in this section
as well and compared to the contribution of the Higgs oscillation.
Driving the superconductor periodically will induce an electric current [40]

j(t) = e
∑
k

vk−eA(t) 〈nk〉 (t) (5.35)

with the group velocity vk = ∇εk and the charge density

〈nk〉 (t) = 〈c†k↑ck↑ + c†k↓ck↓〉 (t) . (5.36)

To calculate the lowest order response, we expand the velocity in A0

vk−eA(t) = vk − e
∑
j

Aj(t)∂jvk +O(A2
0) . (5.37)

The charge density can be expressed with the z-component of the pseudospin and we obtain for
the current

j(t) = j(0)(t) + j(1)(t) + j(3)(t) , (5.38)

where

j(0)(t) = e
∑
k

vk 〈nk〉 (t) , (5.39a)

j(1)(t) = −2e2∑
k

∑
j

Aj(t)∂jvk
(
〈σzk〉 (0) + 1

2

)
, (5.39b)

j(3)(t) = −2e2∑
k

∑
j

Aj(t)∂jvkzk(t) . (5.39c)

The first term j(0)(t) vanishes due to parity, the second term j(1)(t) represents the induced
current oscillating with the driving frequency Ω. The third term j(3)(t) is the lowest order of
higher-order generation, which oscillates with 3Ω because of the proportionality ∝ Aj(t)zk(t).
This is due to the fact that zk(t) oscillates with 2Ω as we have seen in the previous section. The
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induced current for an arbitrary angle relative to the polarization of the vector potential can
be decomposed into a parallel and perpendicular component, which we will calculate separately.
We insert the expression for the vector potential and expand the summation of the components

j
(3)
‖⊥(t) = j(3)(t) · ê‖⊥A = −2e2A0(t)

∑
k

D‖⊥εk (χ)zk(t) (5.40)

with the directions parallel ê‖A =
(
cos(χ), sin(χ)

)>
and perpendicular ê⊥A =

(
sin(χ), − cos(χ)

)>
to the light polarization. For the terms containing the derivatives, we use D‖εk(χ) = Dεk(χ) of
Eq. (5.7) and define additionally

D⊥εk(χ) = sin(χ) cos(χ)(∂2
xxεk − ∂2

yyεk) + ∂2
xyεk(sin2(χ)− cos2(χ)) . (5.41)

To obtain an expression for the spectrum, we perform a Fourier transform to frequency ω

j
(3)
‖⊥(ω) = −2e2∑

k

D‖⊥εk (χ) 1√
2π

∫
A0(ω′)zk(ω − ω′) dω′ . (5.42)

Using the expression for the vector potential (5.3), the convolution can be evaluated and the
current at ω = 3Ω reads

j
(3)
‖⊥(3Ω) = ie2A0

∑
k

D‖⊥εk (χ)zk(2Ω) , (5.43)

where the additionally occurring higher-order oscillation term zk(4Ω) is neglected for small
driving amplitude. We can see that the THG response 3Ω is determined by the 2Ω response of
the system. For further analysis, we make use of the solution zk(ω) = zk(s = iω) of the linearized
Bloch equations (5.10c) and also include the temperature dependence. The term zk(s) has three
contributions, namely, one term proportional to the real part of the gap ∝ δ∆′(s), one term
proportional to the imaginary part of the gap ∝ δ∆′′(s) and one term proportional to driving
γA

2
k (s). Therefore, we write

j
(3)
‖⊥(3Ω) = j

(3)H
‖⊥ (3Ω) + j

(3)P
‖⊥ (3Ω) + j

(3)C
‖⊥ (3Ω) , (5.44)

where the indices H, P, C stand for Higgs, phase and charge, respectively. We insert the solution
zk(s) in Eq. (5.10c) into the expression (5.43) for the current. To write the resulting expressions
in a compact form, we define several quantities

x0(s) = V
∑
k

f2
k

Ek(4E2
k + s2) tanh

(
Ek

2kBT

)
, (5.45a)

x1(s) = V
∑
k

f4
k

Ek(4E2
k + s2) tanh

(
Ek

2kBT

)
, (5.45b)

x2(s) = V
∑
k

εkf
2
k

Ek(4E2
k + s2) tanh

(
Ek

2kBT

)
, (5.45c)

x3(s) = V
∑
k

ε2kf
2
k

Ek(4E2
k + s2) tanh

(
Ek

2kBT

)
, (5.45d)
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x
‖⊥
4 (s) = V

∑
k

D
‖⊥
εk f

2
k

Ek(4E2
k + s2) tanh

(
Ek

2kBT

)
, (5.45e)

x
‖⊥
5 (s) = V

∑
k

εkD
‖⊥
εk f

2
k

Ek(4E2
k + s2) tanh

(
Ek

2kBT

)
, (5.45f)

x
‖⊥
6 (s) = V

∑
k

D
‖
εkD

‖⊥
εk f

2
k

Ek(4E2
k + s2) tanh

(
Ek

2kBT

)
. (5.45g)

It follows for the three contributions

j
(3)H
‖⊥ (3Ω) = ie2A0

1
V

2∆x‖⊥5 (2iΩ)δ∆′(2iΩ) , (5.46a)

j
(3)P
‖⊥ (3Ω) = −ie2A0

1
V
s∆x‖⊥4 (2iΩ)δ∆′′(2iΩ) , (5.46b)

j
(3)C
‖⊥ (3Ω) = −ie4A3

0A
2(2iΩ) 1

V
∆2x

‖⊥
6 (2iΩ) . (5.46c)

The real and imaginary part of the gap expressed within the same formalism reads

δ∆′(s) = ∆e2A2
0(s)

s2x2(s)x‖4(s) + 2x‖5(s)
(
2∆2x1(s) + 2x3(s)− 1

)
2s2x2(s)2 + 2

(
2x3(s)− 1

)(
2∆2x1(s) + 2x3(s)− 1

) , (5.47a)

δ∆′′(s) = s∆e2A2
0(s) 2x3(s)x‖4(s)− x‖4(s)− 2x2(s)x‖5(s)

2s2x2(s)2 + 2
(
2x3(s)− 1

)(
2∆2x1(s) + 2x3(s)− 1

) . (5.47b)

Up to now, the expressions are exact within the linear regime. For a better understanding, we
make use of the same assumptions about the isotropy of dispersion and symmetry functions as
in the previous sections and we set T = 0. This simplifies the terms and we obtain

x2(s) = x⊥4 (s) = x⊥5 (s) = 0 , (5.48a)

x
‖
4(s) = V

∑
k

∂2
xxεkf

2
k

Ek(4E2
k + s2) = α0x0(s) , (5.48b)

x
‖
5(s) = V

∑
k

εk∂
2
xxεkf

2
k

Ek(4E2
k + s2) = α1x3(s) , (5.48c)

x⊥6 (s) = 1
4 sin(4χ)V

∑
k

f2
k

(∂2
xxεk)2 − (∂2

xxεk)(∂2
yyεk)

Ek(4E2
k + s2)

≈ 1
4 sin(4χ)

(
2α2

0x0(s) + 2α2
1x3(s)

)
, (5.48d)

x
‖
6(s) =

(
1− 1

2 sin2(2χ)
)
V
∑
k

(∂2
xxεk)2f2

k

Ek(4E2
k + s2)

+ 1
2 sin2(2χ)V

∑
k

(∂2
xxεk)(∂2

yyεk)f2
k

Ek(4E2
k + s2)

≈
(

1− 1
2 sin2(2χ)

)(
2α2

0x0(s) + 2α2
1x3(s)

)
. (5.48e)
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In these expression, we used the identities

sin4(χ) + cos4(χ) = 1− 1
2 sin2(2χ) , (5.49a)

2 sin2(χ) cos2(χ) = 1
2 sin2(2χ) , (5.49b)

sin(χ) cos(χ)(cos2(χ)− sin2(χ)) = 1
4 sin(4χ) (5.49c)

and neglected sums with terms ∝ (∂2
xxεk)(∂2

yyεk). Using these simplified expressions, the real
part of the gap reduces to

δ∆′(s) = 1
2α1∆e2A2

0(s)
(

1 + 1
2x3(s)− 1

)
. (5.50)

With the general identity

2x3(s) = 1− 2∆2x1(s)− 1
2s

2x0(s) = 1− λF (s) (5.51)

the expression is equivalent to the result Eq. (5.17) from the previous section. In analogy, the
imaginary part reduces to Eq. (5.30)

δ∆′′(s) = −α0∆e2A
2
0(s)
s

. (5.52)

Within this approximation, the resulting THG currents read

j
(3)H
⊥ (3Ω) = j

(3)P
⊥ (3Ω) = 0 , (5.53a)

j
(3)H
‖ (3Ω) = ie4A3

0A
2(2iΩ) 1

V
∆2α2

1x3(2iΩ)
(

1 + 1
2x3(2iΩ)− 1

)
, (5.53b)

j
(3)P
‖ (3Ω) = ie4A3

0A
2(2iΩ) 1

V
∆2α2

0x0(2iΩ) , (5.53c)

j
(3)C
‖ (3Ω) = −ie4A3

0A
2(2iΩ) 1

V
∆2
(

1− 1
2 sin2(2χ)

)(
2α2

0x0(s) + 2α2
1x3(s)

)
, (5.53d)

j
(3)C
⊥ (3Ω) = −ie4A3

0A
2(2iΩ) 1

V
∆2 1

4 sin(4χ)
(
2α2

0x0(s) + 2α2
1x3(s)

)
. (5.53e)

Now, we write the sums as integrals using the identity Eq. (5.51) and writing x0(s) = 2λK(s)
with

K(s) =
∫ 2π

0
dϕf2

∫ ∞
−∞

dε 1
2E(4E2 + s2) =

∫ 2π

0
dϕf2

sinh−1
(

s
2∆|f |

)
s
√

4∆2f2 + s2 . (5.54)

This leads to

j
(3)H
‖ (3Ω) ∝ α2

1∆2A3
0

(
1− λF (2iΩ)

2 − 1
2λF (2iΩ)

)
, (5.55a)

j
(3)P
‖ (3Ω) ∝ α2

0∆2A3
02λK(2iΩ) , (5.55b)

j
(3)C
‖ (3Ω) ∝ −∆2A3

0

(
1− 1

2 sin2(2χ)
)(

4α2
0λK(2iΩ) + α2

1(1− λF (2iΩ))
)
, (5.55c)

j
(3)C
⊥ (3Ω) ∝ −∆2A3

0
1
4 sin(4χ)

(
4α2

0λK(2iΩ) + α2
1(1− λF (2iΩ))

)
. (5.55d)
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Figure 5.3 Individual contributions of the current j(3)
‖ (3Ω) for s- and d-wave originating from Higgs,

CDF and phase oscillations using Eqs. (5.55a), (5.55b) and (5.55c). The phase and CDF contribution lie
approximately on top of each other. The parameters are ∆ = 20meV, χ = 0, λ = 0.1 and α0 = −εF/2,
α1 = −0.5 with εF = −400meV assuming the tight-binding dispersion (5.14). Figure adapted from [8].

These are the final expressions for the THG currents derived in this chapter.
The first term j(3)H(3Ω) is the Higgs contribution following from the amplitude oscillation of

the order parameter. The second term j(3)P(3Ω) follows from the oscillation of the imaginary
part of the gap, i.e. oscillations of the phase. The third term j(3)C(3Ω) describes charge density
fluctuations as the expression has the form of a density-density correlation function [45]. Each
of the three terms for the current contribute to the THG intensity

ITHG
‖⊥ ∝

∣∣∣j(3)
‖⊥(3Ω)

∣∣∣2 . (5.56)

Within the chosen assumptions we obtain an important result, namely that the Higgs and
phase contributions are polarization-independent and their contributions perpendicular to the
polarization vector vanish. In case of the CDF, both parallel and perpendicular contributions
exist and are polarization-dependent with a characteristic functional form independent of the gap
symmetry and dispersion. Both expressions K(2iΩ) occurring in the phase and CDF terms as
well as 1/F (2iΩ) in the Higgs term diverge for 2Ω = 2∆ in the s-wave case or show a maximum
in the d-wave case. Hence, the resonance of the amplitude oscillation with the Higgs mode is
not the only cause of the peak found in the THG. In particular, the individual strengths are
determined by the parameters λ and α0.
For α0 = 0, e.g. the half-filling case in the tight-binding model, the resonance due to the K

term vanishes, which removes the phase contribution completely and suppresses the CDF term
strongly. For a polarization value of χ = π/4, the perpendicular CDF contribution vanishes and
the diverging part due to K in the parallel contribution cancels exactly the phase contribution.
The polarization dependence will be discussed in more detail in section 5.2.2. For large λ, i.e.
large interaction strength, the CDF contribution is enhanced over the Higgs contribution. It can
be understood in such a way that the resonance term for the Higgs contribution scales with 1

λ
due to the 1

F term, whereas the resonance term for the CDF contribution scales with λ due to
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the K term. Therefore, one can roughly estimate that j(3)H
‖ (3Ω) ∝ 1/λ2j

(3)C
‖ (3Ω).

In Fig 5.3, a comparison of the individual contributions for the s- and d-wave case are shown
by evaluating the expressions (5.55a), (5.55b) and (5.55c) for typical parameters. We can see that
the CDF term exceeds the Higgs term by more than two orders of magnitude. Within the chosen
approximations and parameters, the phase term is roughly 1/2 of the CDF term. Both terms,
CDF and phase, show a sharp peak at 2Ω = 2∆ for the s- and d-wave case. This results from the
resonance in K(2iΩ), which is sharply peaked at 2∆ independent of the pairing symmetry. The
shape of the Higgs term, originating from the resonance in the amplitude oscillation 1/F (2iΩ),
follows the shape shown in Fig. 5.2, i.e. a sharp peak for s-wave and a broad peak for d-wave.
Again for d-wave, there is a lot of weight in the range 2Ω < 2∆ as for any Ω, there is always a
∆k for which 2Ω = 2∆k leading to an enhancement of the amplitude. The phase change in the
s-wave case is sharp for all contributions, while for the d-wave case, there are small differences.
The phase change in the Higgs term is similar to the phase change of the amplitude oscillation,
while the phase change of the CDF and phase term is smooth in the beginning but contains a
steep step around 2Ω = 2∆.
Despite the fact that the CDF contribution exceeds the Higgs contribution in our simple

analysis, it is still useful for the understanding of the physical mechanisms. The actual weighting
of the terms in an experiment depends strongly on the material by further effects not considered
in our analysis, like retardation effects in materials with phonon-mediated interaction [46] or the
paramagnetic coupling for superconductors in the dirty-limit [65–68, 70, 74].

After having gained a first understanding of the terms contributing to the THG intensity under
the chosen assumptions for εk and fk, we will drop these in the following sections and solve the
summations numerically without approximation and also include the temperature dependence.
This allows for arbitrary dispersion and gap symmetries to be considered, which can introduce
new features like additional resonances and polarization dependencies.

5.2.1 Temperature Dependence

In all current experiments so far, the driving frequency cannot be tuned continuously as done
in the theoretical analysis of the previous section. In order to find the resonance, the driving
frequency is fixed and the temperature is varied until 2Ω = 2∆T is fulfilled [39]. In the following,
we will solve the sums (5.45a)-(5.45g) numerically without further approximations. For details
about the implementation and used parameters, see appendix A.5.

In Fig. 5.4, the temperature dependence of the THG intensity and the phase shift for d-wave
in comparison with s-wave are shown for different driving frequencies. For driving frequencies
Ω > ∆, no resonance occurs and the THG intensity follows the temperature dependence of the
energy gap to the power of four, i.e. ∼ ∆4

T roughly, which can be seen in Eq. (5.55). As soon
as Ω < ∆, there is a temperature where Ω = ∆T and a resonance occurs. There are two main
differences in the intensities of s- and d-wave for the Higgs contribution (dotted lines). First,
for the same driving frequency, the resonance peaks are broader for d-wave as there is no single
resonance point as in the s-wave case. Second, due to the continuous variation of the gap from
0 to ∆ for d-wave, there is always some resonant gap for temperatures T < TR, where TR is
the temperature for which Ω = ∆TR . This leads to a larger THG intensity background in that
temperature range. One can also see that for the chosen parameters, the CDF contribution
dominates as there is still a sharp resonance peak in the total d-wave intensity.

Even though the calculation for a pure s-wave order parameter compared to a pure d-wave order
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Figure 5.4 Temperature dependence of THG intensity for s-wave (left) and d-wave (right) for four
different driving frequencies. a) Driving frequencies in relation to the energy gap. b) THG intensity c)
Phase shift of THG signal. The polarization is χ = 0. The solid lines are the full THG intensity, the
dotted lines only the Higgs contribution. All intensities are normalized to their individual maximum. For
details about the parameters, see appendix A.5. Figure adapted from [8].

parameter shows a clear difference in the peak-to-background ratio for the Higgs contribution,
a comparison of intensities in an experiment is difficult. On the one hand, there is nothing to
compare to for a given material. On the other hand, peak intensities can vary due to additional
damping effects, which makes a clear distinguishing unreliable.

The phase analysis confirms the analytic result in Fig. 5.3. For s-wave, a sharp phase jump of
π/2 occurs at the resonance, whereas for d-wave, the phase jump is much broader.
After having studied the d-wave case, we want to explore whether a multigap structure can

also be seen in the THG response. To this end, we will investigate the d+s-wave case, as already
introduced in section 3.1.1 in Eq. (3.47). In the quench analysis, we have seen that the gap
structure results in two Higgs modes peaked at the local maxima. The temperature dependence
of the THG intensity is shown in Fig. 5.5. In the upper row, we show the temperature dependence
of the two local gap maxima, i.e. ∆max

1 = ∆ and ∆max
2 = 0.8∆. We can see that if Ω < ∆max

2 ,
two resonances occur when the driving frequency matches these two maxima. This can be seen
both in the THG intensity as two peaks and in the phase where a broad phase transition occurs
in the range of the two resonance temperatures with sharp kinks at the resonance points.
It is interesting to note that the two-peak structure is an effect originating alone from the

Higgs contribution despite its smaller value. While the CDF contribution only shows a single
peak, it is the Higgs contribution which shows the two-peak structure. We can understand this
as two Higgs modes at energies ∆max

1 and ∆max
2 for each local gap maxima, which resonate

with the driving frequency. This shows that even if the CDF contribution dominates, the Higgs
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Figure 5.5 Temperature dependence of THG intensity for d+s-symmetry. a) Driving frequency in relation
to the temperature-dependent maxima of the energy gap. b) THG intensity. Total THG intensity is shown
with solid lines and exemplary for one driving frequency, the respective CDF (dashed) and Higgs (dotted)
contribution. The intensity values are normalized individually to their maximum. c) Phase shift of THG
signal. For details about the parameters, see appendix A.5. Figure adapted from [8].

contribution may still contribute to specific features visible in the spectrum. If the polarization is
tuned to χ = π/4, the CDF contribution contains a two-peak structure as well. This results from
the fact that the previously dominant K term in Eq. (5.55c) is suppressed due to the equivalent
term with opposite sign in Eq. (5.55b). The single-peak structure of the K term vanishes and
the smaller F term with the two-peak structure becomes visible. We can conclude this section by
stating that additional Higgs modes present due to nontrival pairing symmetries can be observed
in the THG spectrum as additional resonances.

5.2.2 Polarization Dependence

As stated above, one possibility to gain more insight about the relative weight of Higgs and CDF
contributions in an experiment is the polarization dependence. As one can see in Eq. (5.55c),
the CDF contribution has a characteristic polarization dependence, whereas the Higgs and
phase terms do not depend on the polarization, independent of the gap symmetry. If there is
no polarization dependence in an experiment, it can be a hint that the Higgs contribution is
stronger than the CDF part. This was observed in [105], where it was concluded that in NbN,
the Higgs contribution dominates the THG intensity. If we look at the expressions (5.55c) and
(5.55b) for the CDF and phase contribution of the current, we can see that for χ = π/4, the
K(2iΩ) term in the CDF expression cancels exactly the K(2iΩ) term in the phase expression.
This means that for this particular polarization angle, only the Higgs contribution remains.

However, the derived formulas for the current are only valid under the chosen special assump-
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Figure 5.6 Polarization dependence of the a) Higgs contribution, b) phase contribution, c) CDF con-
tribution and d) total THG intensity. The analytic formulas of Eqs. (5.55a)-(5.55c), derived using the
assumption of equivalence of x- and y-direction in f2

k and εk, are compared with the numerically calculated
results for s- and d-wave using dispersion Eq. (5.14) and d+s-wave using dispersion Eq. (5.57) without
approximation. The analytic solution matches exactly the numerical solution for s- and d-wave. All ex-
pressions are normalized to their maximum value. For details about the parameters, see appendix A.5.
Figure adapted from [8].

tions that f2
k and εk are symmetric under the exchange of kx ↔ ky, as it is the case for s- or

d-wave symmetry and a single band tight-binding dispersion. For the d+s-wave case this is no
longer valid. In Fig. 5.6, the polarization dependence for s-, d- and d+s-symmetry calculated nu-
merically is shown in comparison with the analytic result. To show the influence of the dispersion,
we use a slightly distorted square lattice dispersion in the d+s-wave case

εk = −2t((1 + δ0) cos kx + (1− δ0) cos ky)− 4t′ cos kx cos ky − εF (5.57)

with δ0 = −0.03, t = 200meV, t′ = −80meV and εF = −240meV [186]. One can see that for s-
and d-wave, the numerical result follows the approximation closely, i.e. the Higgs contribution is
polarization-independent and the CDF contribution has a ∝ 1− 1

2 sin2(2χ) dependence with a
small offset resulting from the chosen approximations in the analytic calculation. This changes for
d+s, where the Higgs and phase terms also become polarization-dependent and the polarization
dependence of the total THG intensity deviates from the analytic formula. Choosing a different
dispersion can lead to another polarization dependence. We can see that the polarization depen-
dence alone is not enough to unambiguously distinguish between Higgs and CDF contributions
if the band dispersion is not exactly known. This was also concluded in [47], where it was shown
that under certain circumstances, the Higgs contribution can become polarization-dependent as
well, while the polarization dependence of the CDF contribution can be suppressed.
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5.2.3 Asymmetric Driving
In an experiment, the coupling of light to the superconducting condensate may contain more
subtleties and consists not only of a symmetric diamagnetic A2 term. For example, small in-plane
components of the wavevector, as discussed in chapter 4, may induce an asymmetry while driving.
Here, a phenomenological asymmetric driving scheme is explored to describe generally such

effects in an experiment. Due to a momentum-dependent driving, the gap symmetry is altered by
an additional symmetry component f ′k. We add such a term to the pseudomagnetic field altering
the gap symmetry with the same time dependence as the usual driving term

bk =

−2∆′(fk + g sin2(Ωt)f ′k)
2∆′′(fk + g sin2(Ωt)f ′k)

2εk + γA
2

k (t)

 , (5.58)

where g determines the strength of the asymmetric driving. In comparison to the static quench
of the condensate in chapter 3.2, here, we drive the gap directly. There is some similarity to
[94], where, however static and ab initio, a composite pairing interaction leads to multiple Higgs
modes in the different pairing channels.
This approach is purely phenomenological and neglects additional polarization dependencies,

which are likely to occur due to the asymmetric driving. As the polarization dependence is difficult
to predict without a detailed understanding of the actual microscopic coupling, we neglect it in
this approach.
Using the modified pseudomagnetic field and performing a linearization in the same way as

in the previous sections, one would neglect important contributions of the products between
the asymmetric driving term and the deviations, e.g. g sin2(Ωt)f ′kxk(t), etc. Therefore, in this
section, the Bloch equations are solved numerically without any approximation by integrating
the differential equations in time. As we have not added an additional polarization dependence,
we can suppress the CDF contribution by choosing χ = π/4 to obtain the contribution of the
Higgs channel.
In Fig. 5.7, we show the temperature dependence of the THG intensity for a d-wave gap

with an asymmetric driving f ′k = 1, i.e. a distortion in the s-wave channel. This corresponds to
driving the B1g mode of the d-wave gap. It does not correspond to any experimental excitation
scheme directly but acts as a proof of principle to study the induced effects. Any possible
experimental realizations are likely a superposition of fundamental symmetries. For low driving
frequencies, one can observe a second resonance peak in the THG signal below the 2∆ peak,
which is also accompanied by a phase change of π/2. Higher driving frequencies do not show
such a resonance. This can be understood better by calculating the frequency dependence of
THG for different temperatures from which one can extract the temperature dependence of
the modes. For the chosen set of parameters, the resulting curve of the second mode follows
approximately ωB1g = 0.44∆T , which is also shown in Fig. 5.7a). As one can see, the chosen
higher driving frequency of 2Ω = ∆ always stays above the second mode, which explains that
there is no second resonance peak. For the lower driving frequency of 2Ω = 0.4∆, the second
resonance peak appears at the point where 2Ω = ωB1g .
This short analysis acts as a proof of principle to show that an asymmetrically driven super-

conductor can show additional resonances in the THG spectrum. The chosen approach is purely
phenomenological and does not directly correspond to an experimental excitation scheme. Yet,
it demonstrates possible new effects resulting from special driving geometries.
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Figure 5.7 Temperature dependence of THG for d-wave for two different driving frequencies using the
asymmetric driving scheme (5.58) with g = 0.1. a) Driving frequencies in relation to the energy gap
and the second mode. b) THG intensity. c) Phase shift of THG signal. The result of the asymmetric
driving (solid) is compared with the standard driving (dashed). For details about the parameters, see
appendix A.5. Figure adapted from [8].

5.3 Linear Activation of Higgs Oscillations in Current-carrying States

In all chapters of this thesis, the coupling of light to the condensate was realized due to the
nonlinear, quadratic coupling. The reason was the already mentioned property of the Higgs mode
of being without charge. It has no dipole moment; thus, a linear activation is forbidden. The
Hamiltonian is particle-hole symmetric and any linear coupling term vanishes due to parity.

However, a recent theoretical study investigated the excitation of the Higgs mode in supercon-
ductors carrying a supercurrent [80]. It was found that in the presence of the current, a linear
activation is possible. With this mechanism, the Higgs mode can be probed in the linear regime.
In contrast to the 2Ω = 2∆ resonance visible in the THG spectrum as discussed in the previous
sections, now, a Ω = 2∆ resonance occurs. The reason for this linear activation results from the
fact that the current destroys particle-hole symmetry and provides additional momentum such
that a linear coupling term is possible.
After this theoretical prediction, an experiment on the superconductor NbN was performed,

which was driven by a dc supercurrent [109]. Indeed, a resonant behavior in the linear response
could be observed. The question arises how this linear excitation can be understood on a
microscopic level. The experiment claimed the excitation to be an infrared activation. Yet, one
can ask whether the Higgs mode really changes its nature in the presence of the supercurrent
and is excited by a single photon and thus, becomes infrared active.
This section investigates the linear excitation of the Higgs mode in the presence of a dc

supercurrent to understand the process on a microscopic level. One finds that the activation can
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be understood as a current-assisted Raman process, which can be described coherently within
the usual two-photon excitation picture. It also fits within the description of the Higgs excitation
due to a difference-frequency generation (DFG) or sum-frequency generation (SFG) process. This
section is based on the publication [11], from which figures, text and calculations are partly
taken.

5.3.1 Phenomenological Description
To describe the coupling of light to current-carrying superconductors, we start with a phenomeno-
logical description using the effective Lagrangian introduced in section 2.1.3

L = (∂µH)(∂µH) + 2αH2 − 1
4FµνF

µν + e2ψ2
0AµA

µ + 2e2ψ0AµA
µH , (5.59)

where H are the amplitude (Higgs) oscillations and Aµ the gauge field. As discussed, there
is only a quadratic coupling term 2e2ψ0AµA

µH between the gauge field and the Higgs mode.
Now, we model both the coupling of the external driving with light and the dc supercurrent by
the gauge field Aµ. The superconductor shall be driven by a periodic light field A(t) = A0eiΩt

and simultaneously carry a constant dc supercurrent j. The gauge invariant expression for the
current reads j = ens~/m(eA−∇θ) = ens~/mQ, with the superfluid density ns and condensate
momentum Q. As discussed in 2.1.3, the phase (Goldstone) mode θ can be gauged out by a
special gauge choice and redefinition of the gauge field Aµ. Thus, we include the condensate
momentum in the gauge field as

Aµ =
(
0, A(t) +Q/e

)
. (5.60)

Hereby, we choose the scalar potential φ = 0. According to Eq. (2.20), the equation of motion
for spatially constant Higgs field H reads

∂2
tH = 2αH + e2ψ0

(
A+ 1

e
Q

)2

= 2αH + e2ψ0A
2 + 2eψ0QA+ ψ0Q

2 . (5.61)

One observes that for finite Q, a linear coupling term 2eψ0QA arises. To solve the equation of
motion, we choose a stationary solution ansatz H = A+BeiΩt +Ce2iΩt. One obtains as solution

H = ψ0Q
2

ω2
H

− 2eψ0QA0
Ω2 − ω2

H

eiΩt − e2ψ0A
2
0

4Ω2 − ω2
H

e2iΩt (5.62)

with the energy of the Higgs mode ω2
H = −2α as defined in Eq. (2.9a). For Q = 0, only the

nonlinear driven oscillations exists with ω = 2Ω resonating at 2Ω = 2∆. This corresponds to
the periodically driven Higgs oscillation at 2Ω discussed in the previous sections, leading to the
resonant behavior in THG. For Q 6= 0, a linear coupling is possible resulting in an oscillation
with ω = Ω resonating at Ω = 2∆. This corresponds to a second-harmonic generation (SHG) in
transmission with a modified resonance condition. Using similar arguments, this result of linear
coupling was first derived in [80]. In general, one could have included an additional nonrelativistic
Gross-Pitaevskii-like term ∝ ψ∗D0ψ in addition to the relativistic Klein-Gordon-like description
of the dynamic. However, it is known that in the nonrelativistic case, there is no distinct Higgs
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a)

H

b)

H
0 0

Figure 5.8 Feynman diagrams describing excitation of Higgs mode in current-carrying state with conden-
sate momentum Q and light frequency Ω. a) Single-photon infrared excitation with jk ∝ ∂kεk. b) Effective
Raman excitation with γk ∝ ∂2

kεk. Wiggly, solid and double-dashed lines represent photon, electron and
Higgs propagator. Figure adapted from [11].

mode as amplitude and phase channel are coupled [10]. Despite the fact that a current would
support a particle-hole breaking term, its contribution cannot be large. Otherwise, a resonance
at ωH is not explainable.
Within this phenomenological description, we can describe the arising of a linear activation

of the Higgs mode. Yet, it does not give insight how the linear coupling on a microscopic level
is possible. At first glance, an infrared activation described by the diagram in Fig. 5.8a) seems
reasonable, where light couples linearly to the electron bubble and the current provides additional
momentum Q within an effective vertex interaction. Yet, an evaluation of this diagram shows
that for Q → 0, the response vanishes [11]. This is expected as for Q = 0, there is no linear
coupling. For small but finite Q, the diagram is still negligible compared to the effective Raman
process, which we will discuss next. Only for large Q, the response of this diagram becomes
significant; however, its response is no longer peaked at 2∆ but is shifted to higher energies.
This can also be seen in the dispersion Eq. (2.9a) for the Higgs mode, which has a quadratic
dependence on q. As such a shift is neither expected theoretically nor observed experimentally,
the value of Q must be small. Using parameters of the experiment in [109], one can estimate the
value of the supercurrent induced momentum in units of the lattice constant 1/a0 = 108 cm−1

Qa0 = m

ens~
ja0 ≈ 3.7 · 10−4 (5.63)

with electron mass m = me and charge e, superfluid density ns = 5.4 · 1020 cm−3 and current
density j = 3.7MA/cm2. The contribution of the diagram for this small value of Q is negligible.
Thus, an infrared activation via such a process cannot explain a resonance at Ω = 2∆ in the
current-carrying state. To find a suitable description of the excitation process, one can be guided
by a microscopic description, to which we will proceed in the next section.

5.3.2 Microscopic Description

To gain an understanding of the microscopic excitation process of the Higgs mode in the presence
of a supercurrent, we extend the description of section 5.1 including the current in the pseudospin
formulation. In addition to the light field A(t), we include the effect of the current by a shift of
momentum Q. Thus, the pseudomagnetic field reads

b>k (t) =
(
−2∆k(t), 0, εk−eA(t)−Q + εk+eA(t)+Q

)
. (5.64)
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Hereby, the imaginary part of the gap is neglected as it does not show a resonance behavior as
shown in section 5.1 in Eq. (5.31). It is therefore unimportant for the following discussion. Now,
we can expand again the z-component of the pseudomagnetic field in powers of A0

bzk ≈ 2εk + γA
2

k (t) + γAQk (t) + γQ
2

k +O(A3
0) (5.65)

with γA2
k (t) defined in Eq. (5.6) and

γAQk (t) = 2e
∑
ij

∂2
ijεkAi(t)Qj = 2eA0(t)DAQ

εk
(χ) , (5.66a)

γQ
2

k =
∑
ij

∂2
ijεkQiQj = DQ2

εk
, (5.66b)

where

DAQ
εk

(χ) = cos(χ)Qx∂2
xxεk + sin(χ)Qy∂2

yyεk + (cos(χ)Qy + sin(χ)Qx)∂2
xyεk , (5.67a)

DQ2
εk

= Q2
x∂

2
xxεk +Q2

y∂
2
yyεk + 2QxQy∂2

xyεk . (5.67b)

Compared with the Q = 0 case, a linear coupling term γAQk (t) arises in analogy to the phe-
nomenological description in the previous section. In the same way as in section 5.1 in Eq. (5.9),
we can write down linearized Bloch equations in Laplace space

sxk(s) = −2εkyk(s) , (5.68a)

syk(s) = 2εkxk(s) + 2fk∆zk(s) + fk
Ek

(∆
2
(
γA

2
k (s) + γAQk (s) + γQ

2

k (s)
)
− εkδ∆(s)

)
, (5.68b)

szk(s) = −2∆fkyk(s) , (5.68c)

where the solution for xk(s) reads

xk(s) =
εkfk

(
2εkδ∆(s)−∆

(
γA

2
k (s) + γAQk (s) + γQ

2

k (s)
))

Ek(4E2
k + s2) . (5.69)

Hereby, the Laplace transform of the quadratic coupling term is given in Eq. (5.11) and for the
new terms, it follows

γAQk (s) = 2eA0
Ω

Ω2 + s2D
AQ
εk

(χ) , (5.70a)

γQ
2

k (s) = 1
s
DQ2
εk
. (5.70b)

Using the assumptions about isotropy of the dispersion and symmetry function of section 5.1,
the interaction terms can be simplified under a summation over k with an arbitrary factor ak∑

k

γAQk (s)ak = 2eA0(s)(cos(χ)Qx + sin(χ)Qy)
∑
k

(α0 + α1εk)ak , (5.71a)

∑
k

γQ
2

k (s)ak = 1
s
Q2∑

k

(α0 + α1εk)ak . (5.71b)
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Figure 5.9 Amplitudes of the resonance terms of the induced gap oscillations of Eq. (5.77b) for s-wave
superconductor (blue) in comparison to d-wave superconductor (red). Resonances of the driving light with
the Higgs mode appear at Ω = 2∆ with supercurrent in Eq. (5.77b) (solid lines) and at 2Ω = 2∆ without
in Eq. (5.77a) (dotted lines). Figure adapted from [11].

Splitting the current momentumQ into components parallel and perpendicular to the polarization

Q = Q‖ê
‖
A +Q⊥ê

⊥
A , (5.72)

we find ∑
k

γAQk (s)ak = 2eA0(s)Q‖
∑
k

(α0 + α1εk)ak . (5.73)

We can see that only the parallel component of the current momentum allows the linear coupling.

The next steps towards a solution for δ∆(t) are straight forward. We insert the solution for
xk(s) of Eq. (5.69) into the gap equation Eq. (5.16a) and we obtain in comparison with Eq. (5.17)

δ∆(s) = 1
2α1∆

(
e2A2

0
2Ω2

s(4Ω2 + s2) + 2eA0Q‖
Ω

Ω2 + s2 +Q2 1
s

)(
1− 1

λF (s)

)
. (5.74)

We split the expression into three parts

δ∆(s) = δ∆A2(s) + δ∆AQ(s) + δ∆Q2(s) , (5.75)

where each term follows from the respective interaction. For the inverse Laplace transform, we
use the same contour as shown in Fig. 5.1. The linear part δ∆AQ(s) has poles at s = ±iΩ and
the constant part δ∆Q2(s) a pole at s = 0. In the following, we neglect the constant part as
it only adds an irrelevant offset to the solution. The long-time solution is again given by the
residues of the poles. For the linear term, it follows

Indc2,7(±iΩ) Res±iΩ(estδ∆AQ(s)) =

1
2α1∆eA0Q‖

∓ie±iΩ ± iΩe±iΩ

λ
∫

dϕf2
√

4∆2f2 − Ω2 sin−1
(

Ω
2∆|f |

)
 . (5.76)
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Using the solution (5.25c) for the quadratic coupling, the final long-time solution of the oscillations
reads

δ∆A2(t) = α1∆e2A2
0

1− cos(2Ωt)
4 − 1

4λ
∫

dϕf2 + Ω cos(2Ωt)
4λ
∫

dϕf2
√

∆2f2 − Ω2 sin−1
(

Ω
∆|f |

)
 ,

(5.77a)

δ∆AQ(t) = α1∆eA0Q‖

sin(Ωt)− Ω sin(Ωt)
λ
∫

dϕf2
√

4∆2f2 − Ω2 sin−1
(

Ω
2∆|f |

)
 . (5.77b)

In addition to the already known 2Ω oscillation, a term oscillating with Ω exists, which was
forbidden before. It has a resonance at Ω = 2∆ in the s-wave case. The amplitudes of both
resonance terms are shown in Fig. 5.9 evaluated for s- and d-wave. The same qualitative behavior
compared to the phenomenological description is observed.
Yet, the microscopic description contains further details, which allows to understand the

excitation process on a diagrammatic level. From the expansion in Eq. (5.65), we see that both
the linear and quadratic couplings are proportional to the second derivative of the dispersion. In
addition, the coupling occurs in the z-component of the pseudomagnetic field, i.e. the τ3 channel,
reflecting a Raman coupling [212, 213]. Thus, we might describe both processes, the quadratic
and linear coupling, with an effective Raman vertex as shown in Fig. 5.8b). For the quadratic
coupling, each incident photon line corresponds to one photon of frequency ω = Ω, resulting
in the 2Ω = 2∆ resonance. For the linear coupling, one incident photon corresponds to the
light photon with ω = Ω, whereas the second incident photon line is a virtual photon at ω = 0,
representing the dc supercurrent. An evaluation of the diagram shows that it is equivalent to
the linearized solution in the pseudospin formalism [11]. Thus, such a current-assisted Raman
diagram can explain the Ω = 2∆ resonance in the current-carrying state.

5.3.3 Interpretation via Current-assisted Raman Process
With the knowledge from the previous section and the analysis of the pump-probe chapter 4, we
can summarize and classify the possible excitation schemes of Higgs modes. The processes are
shown schematically in Fig. 5.10.

The pump-probe excitation, in which the Mexican hat potential of the complex superconducting
order is quenched, can be understood as an impulsive stimulated Raman process [213, 214] shown
in Fig. 5.10a). Hereby, the Higgs mode is excited via the difference frequency of the photons Ω1
and Ω2 originating from the same pulse. The required frequencies are within the bandwidth of
the ultrashort broadband THz pulse. This excitation scheme is used in the experiment on NbN,
where the 2∆ Higgs response was observed [36].

In comparison, the periodic driving of the superconductor can be understood in a sum-frequency
process, where Raman-active modes are excited [215]. This is shown in Fig. 5.10b). In this case,
the two photons Ω1 = Ω2 = Ω have the same frequency and add up to an effective 2Ω drive.
The 2Ω oscillations of the driven Higgs mode in NbN [39], Nb3Sn [110, 111] and in cuprates
[106, 108], as well as the driven Leggett mode in MgB2 [216] can be understood in this way. In
addition, in analogy to Fig. 5.10a), this process can also describe a quench of the system, where
the two photons stem from the same pulse.

The possible infrared excitation of the Higgs mode in the presence of a supercurrent, discussed
in the previous sections, would be a one photon absorption process shown in Fig. 5.10c). In this
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Figure 5.10 Different excitation schemes of Higgs mode. a) Excitation due to quench with two-photon
Raman difference-frequency generation (DFG) process. The frequencies Ω1 and Ω2 are within the band-
width of the quench pulse. b) Driving of Higgs mode with two-photon Raman sum-frequency generation
(SFG) process. The frequencies of the photons are equal Ω1 = Ω2 = Ω. Alternatively, a quench can be
implemented as SFG process as well, where the two frequencies are within the bandwidth of the quench
pulse. c) One-photon infrared process. d) Two-photon current-assisted Raman process with Ω1 = Ω and
Ω2 = 0 reflecting a special case of a SFG or DFG process. Figure adapted from [11].

process, light would couple to the dipole moment of the mode. However, as the previous analysis
has revealed, an infrared excitation is not possible. The linear excitation of the Higgs mode
in the current-carrying state should rather be understood as a current-assisted Raman process.
This process is still a two-photon process, in which one photon Ω1 = Ω corresponds to the light
frequency, whereas the second photon Ω2 = 0 is a virtual photon representing the dc supercurrent.
This excitation scheme is depicted in Fig. 5.10d). It can be understood as a difference-frequency
generation (DFG) or sum-frequency generation (SFG) process with Ω1 ± Ω2 = Ω in analogy to
a) and b) leading to the new resonance condition Ω = 2∆. Thus, this description fits coherently
in the picture of the usual excitation mechanism. The Higgs mode does not change its nature in
the presence of the current as the current-assisted Raman excitation is just a special case.

This mechanism also describes the observation of the Higgs mode in the linear THz spectrum
of NbN in the presence of a dc current [109] correctly. Furthermore, it explains the additional Ω
and higher uneven orders of Ω oscillations observed in the superconductor Nb3Sn driven by THz
light in recent experiments [110, 111]. Hereby, an effective dc current component is dynamically
induced by driving the material with strong THz fields. As a result, the usually forbidden odd
orders of Ω oscillations are allowed, describable through the current-assisted Raman process.

5.4 Discussion

Periodic driving of the superconductor with light enforces Higgs oscillations with twice the driving
frequency. This happens both for s-wave and unconventional superconductors. The driving
resonates with the energy of the intrinsic Higgs modes. Thus, for nontrivial gap symmetry, where
multiple Higgs modes can occur, multiple resonances can be found in the spectrum. All resonances
in the gap oscillation spectrum can also be found in the third-harmonic generation (THG)
spectrum, which is the experimental measurable quantity. In addition, driving the superconductor
in a symmetry channel different from its ground state can lead to additional resonances resulting
from asymmetric Higgs modes. This allows to use THG experiments as an alternative probe for
measuring Higgs modes in superconductors.

Here, in the analysis in the clean limit, the contribution of charge density fluctuations (CDF)
to the total THG intensity is large and overlays the signal originating from the Higgs mode.
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In real materials, impurity scattering can enhance the Higgs contribution significantly [65–70].
A calculation of the polarization dependence shows that under the assumption of isotropy for
dispersion and gap symmetry, the Higgs contribution has no polarization dependence independent
of the gap symmetry, whereas the CDF depends on the polarization of light. As long as impurity
scattering has no preferred direction, the polarization dependence should be unaffected. This
allows, in principle, to disentangle which contribution dominates in an experiment. Yet, it is
important to note that dropping the assumptions about the isotropy of the dispersion and gap
symmetry, the polarization dependence can change. For CDF, the polarization dependence can
vary and the Higgs contribution can become polarization-dependent. This was also pointed out
in a recent study [47]. Furthermore, even though impurity scattering might not change the overall
shape of the polarization dependence of CDF, it can wash out the functional form leading to a
reduction of the polarization dependence. This makes the distinction between the CDF and Higgs
difficult. For a detailed analysis of the contributing terms measured in an experiment, special
care has to be taken considering correct band structure data to interpret the data correctly.

Finally, in the presence of a dc supercurrent, a linear activation of the Higgs mode is possible.
The additional momentum of the current gives rise to a new linear driving term. This leads to
additional Ω oscillations of the order parameter resonating at a new resonance condition Ω = 2∆
in comparison to the usual 2Ω oscillations resonating at 2Ω = 2∆. Consequently, there will
also be a second-harmonic generation in emission, which was previously forbidden. The linear
activation can be understood as a current-assisted two-photon effective Raman process, where
one photon represents the external light and one photon is a virtual photon with zero frequency
representing the dc supercurrent. This contrasts with a one photon infrared activation, which is
negligible. Thus, the linear activation of the Higgs mode can be understood as a special case of
a sum-frequency generation or difference-frequency generation process.
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Summary and Discussion
In this thesis, the nonequilibrium response of unconventional superconductors was studied, which
exhibits amplitude (Higgs) oscillations of the order parameter. It was found that the spectrum of
these oscillations is more complex for unconventional superconductors compared to conventional
superconductors as additional Higgs modes can occur. These oscillations were classified and
characterized and it was shown that the extracted information can be used as a new spectroscopic
tool to study ground state properties. Furthermore, predictions about new experimental schemes
and observables suitable for Higgs spectroscopy were made within a quench or periodic driving
setup.
In particular, quenches of the superconducting condensate were studied, which push the sys-

tem out of equilibrium and trigger a nonequilibrium dynamic and collective Higgs oscillations.
To describe the system and calculate the dynamic, the mean field BCS Hamiltonian in the
Anderson pseudospin formalism was used. Within this formalism, analytic expressions for the
occurring Higgs oscillations were derived and compared with the full numeric solution obtained
by integrating the ensuing Bloch equations on a momentum grid.
Two types of quenches were considered, namely, first, an isotropic interaction quench, which

is well-known in literature. It was already used to investigate Higgs oscillations in s-wave su-
perconductors. If unconventional superconductors are excited with such a quench, the dynamic
resembles the s-wave case, i.e. Higgs oscillations with a frequency of 2∆∞ are induced, where
∆∞ is the asymptotic gap after a long time. However, an important difference was found in the
decay of the oscillations. While in the s-wave case, the oscillation decays with 1/

√
t, the decay in

the d-wave case is much stronger with approximately 1/t2. In both cases, the decay results from
a dephasing of the underlying condensate oscillation at different momenta, where the frequency
is given by the quasiparticle energy ωp = 2Ek = 2

√
ε2k + ∆2

∞f
2
k . Due to the variation of the gap

from 0 to ∆ in the d-wave case, there is a much wider frequency distribution and thus, a stronger
decay.

Second, in order to find new effects resulting from nontrivial pairing symmetry, one has to go
beyond the isotropic interaction quench. To this end, a new type of quench was introduced in
this thesis. This state quench changes the superconducting condensate directly, which resembles
more closely the effect of an experimental excitation with a light pulse, where the quasiparticle
distribution is modified due to partly melting the condensate. Moreover, this quench allows a
momentum-dependent excitation, which can change the induced Higgs dynamic for nontrivial
pairing symmetry. If the superconductor is quenched in a symmetry channel different from its
ground state, additional Higgs modes can arise, which result from an asymmetric oscillation of
the condensate with respect to the ground state symmetry. These additional modes depend on
the gap and quench symmetry and only occur if the change in the symmetry is significant, e.g. a
change of nodal lines. Furthermore, for composite order parameters like d+s-wave, an additional
Higgs mode already arises in the symmetric excitation case, where each Higgs mode corresponds
to the energy of a local gap maximum. Excited asymmetrically, up to three modes are visible. All
occurring condensate oscillations can be classified according to the point group of the underlying
lattice and a classification and characterization table is provided for all combinations of gap and
quench symmetry for the D4h point group.
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A quench of a superconductor can be realized experimentally with an ultrafast THz laser
pulse. The effect of the pulse is to melt a small portion of the condensate on a short timescale.
This fast change in the Cooper pair or quasiparticle distribution acts as a quench and resembles
the introduced state quench. To see these effects, pump-probe experiments were simulated by
coupling the BCS Hamiltonian to a vector potential, which describes the light pulse. The ensuing
equations of motion were solved numerically using a density matrix formalism. In the description
of the coupling to light, the physical momentum of the light pulse was considered, which is small
but turns out to be non-negligible. The effect of the provided momentum is two-fold. On the one
hand, it allows a paramagnetic excitation, which would vanish otherwise, such that the coupling
is enhanced. On the other hand, it introduces an asymmetry in the excitation due to a preferred
direction resulting form the orientation of the light pulse.
The calculated gap oscillations show that with this description of the light-superconductor

coupling, nonequilibrium Higgs oscillations can be excited. In addition, a change in the direction
of the light pulse with respect to the pairing symmetry allows to control the asymmetry of the
induced oscillation and to excite an additional Higgs mode. To connect the gap response with
experimentally observable quantities, the time-resolved optical conductivity was calculated in
a pump-probe setup. The Higgs oscillations can be observed as amplitude oscillations of the
conductivity as a function of the time delay between pump and probe pulse. This demonstrates
that with a carefully designed experimental setup, an excitation and observation of additional
Higgs modes in unconventional superconductors is in principle possible. So far, an excitation and
observation of Higgs oscillations in a pump-probe setup had only been realized in the s-wave
system NbN [36]. There are also ongoing efforts to demonstrate Higgs oscillations for cuprates in
a pump-probe geometry; yet, these kinds of experiments are difficult to conduct. Clean samples
are required and experimental conditions like the usage of the required ultrashort THz laser
pulses, heating and overdamping are still challenging problems.
To also study alternative setups, a time-resolved ARPES experiment was proposed and in-

vestigated. In comparison to an optical pump-probe experiment, a measurement of the ARPES
intensity allows to study the condensate dynamic momentum-resolved. For that, the super-
conducting condensate was quenched and the time evolution of the experimentally observable
spectral function was calculated. The simulation was performed by numerically integrating the
equations of motions of the Bogoliubov quasiparticle operators in the Heisenberg picture with
the help of the iterated equation of motion method. In contrast to previous theoretical studies on
tr-ARPES [41, 42], two different dynamical quantities were considered. The first quantity is the
time evolution of the maximum of the energy distribution curve, which is a direct measure of the
gap. Confirming literature, oscillations of the position of the maximum in energy with respect
to the Fermi level are observable, which correspond directly to the collective Higgs oscillations.
Second, for the first time, amplitude oscillations of the spectral function were studied.
As the spectral function relates directly to the underlying condensate, any dynamic induced

in the condensate is also observable in the ARPES intensity. This gives access to study the
time evolution of the condensate and allows to understand the creation process of collective
Higgs modes in detail. The collective Higgs modes result from a weighted summation process
of the condensate oscillations over the whole Brilloin zone. Additional Higgs modes arise if the
weight distribution of these oscillations is non-uniform, which can enhance different frequencies.
Furthermore, by studying the phase of these oscillations, the collective condensate dynamic, e.g.
an osculating or rotating mode, is detectable. As a consequence, if superconductors are quenched
in a defined symmetry channel, a distinction between superconducting symmetries with the
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same absolute value but different phase, like d- or nodal s-wave, is possible as the induced
condensate movement differs. This opens a new possibility for phase-sensitive measurements
of the superconducting gap. So far, no THz quench tr-ARPES experiments have ever been
performed. These kinds of experiments are still challenging; yet, first research in this direction
has started.
Finally, periodically driven superconductors were studied. The periodic driving enforces the

superconducting gap to oscillate with twice the driving frequency Ω due to the quadratic coupling
of light to the condensate. It is already known that in the s-wave case, the periodic driving can
resonate with the energy 2∆ of the Higgs mode, i.e. at 2Ω = 2∆, a massive enhancement of
the Higgs oscillation amplitude occurs [40]. This resonant behavior is observable in the optical
response as a resonance in the third-harmonic generation (THG) component and thus, allows a
detection of the Higgs mode in such a setup. In this thesis, the periodic driving and THG response
of superconductors with nontrivial pairing symmetry were studied. Analytic expressions of the
driven gap oscillations and THG response were derived and the temperature and polarization
dependence were studied. It was found that the driving also resonates with the 2∆ Higgs mode.
Moreover, any other possible Higgs modes lead to additional resonances.
Furthermore, the additional contribution of charge density fluctuation to the THG intensity

was analyzed. Unfortunately, as already known from literature [45], in the clean limit, these
also lead to resonances at the same energy, which makes an observation of resonances in THG
not unique if not special care is taken to disentangle all contributions. In this thesis, it was
shown that polarization dependencies are one possibility to differentiate between the individual
contributions. Under certain conditions, the polarization dependence for nontrivial symmetry is
independent of the pairing symmetry and thus, the same for the already known s-wave case. The
Higgs contribution is polarization-independent, whereas the CDF contribution is polarization-
dependent. Nevertheless, THG experiments are in principle a suitable alternative to pump-probe
experiments for the detection of Higgs modes in unconventional superconductors. Actually, until
now, most experimental efforts for detecting nonequilibrium Higgs oscillations are in periodically
driven or multi-cycle setups, where the transient response of the enforced oscillations is investi-
gated [106, 107, 110, 111]. The resonances in THG were observed in NbN [39, 105] and recent
experiments studying THG in different cuprates were performed [108].
If the nonequilibrium response of superconductors carrying a dc supercurrent is studied, a

recent study found that a linear activation of the Higgs mode is possible [80], which is usually
forbidden due to particle-hole symmetry of the Hamiltonian and the nonexistence of an electric
dipole moment of the Higgs mode. In this thesis, the coupling of light to the superconductor
in the presence of a dc supercurrent was studied, both on a phenomenological and microscopic
level. The new resonance condition due to the linear coupling at Ω = 2∆, found in the previous
theoretical study and in an experiment [109], was recovered. Beyond that, the analysis reveals
that this linear activation should not be understood as a single-photon infrared excitation, as
some interpretations suggest [109], but still as an effective two-photon Raman process. Hereby,
one photon represents the actual light photon, whereas the other one is a virtual photon with zero
frequency representing the dc supercurrent. This interpretation is motivated by the microscopic
analysis and in full agreement with the previous results. It also fits into the usual understanding of
the Higgs excitation as an effective Raman process within a difference-frequency or sum-frequency
generation scheme.
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6 Discussion and Outlook

Future Directions of Higgs Spectroscopy

This thesis is only the beginning of further studies of nonequilibrium Higgs oscillations in uncon-
ventional superconductors. There are still many open questions and directions in this new field for
future research. In this thesis, the classification and characterization of Higgs modes were mainly
conducted for fundamental symmetries of the D4h group. Additional important point groups
should also be considered. Furthermore, multiband superconductors are also interesting to study
with gap symmetries like s++, s±, s+ is, s+ id or d+ id. In these cases, an even richer spectrum
is expected as each band will exhibit its own Higgs mode and in addition, Leggett modes, i.e.
relative phase modes, can occur as well [33, 48–51, 64]. Moreover, triplet superconductors with
e.g. p or chiral px + ipy symmetry are also worth to be considered. The vector character of the
gap will probably enrich the spectrum as well.
In real materials, the physics is much more complex compared to the systems studied in

this thesis, where mainly the influence of the pairing symmetry was investigated. In a material,
competing or coexisting orders and phases can occur like charge density wave, spin density wave
or the pseudogap phase. As an example, the charge density wave order in NbSe2 couples to the
Higgs mode and shifts its energy [16]. This coupling is possible despite the fact that the energy of
this coexisting order is only close to the energy of the superconducting gap, but still above the gap.
Thus, other collective modes, such as the magnetic-resonance mode in cuprates, whose energy is
even below the gap, will certainly affect the Higgs spectrum. Moreover, strong coupling regimes
are expected to influence collective modes. Furthermore, order parameters can be composite,
like the d+s-wave case also studied in this thesis, and there can be subleading pairing channels,
which can give rise to collective Bardasis-Schrieffer modes. All of these additional features were
not the main focus of this thesis and have been neglected for the most part. However, new effects
are certainly expected for all of the mentioned extensions and it is crucial to understand the
mechanisms if experimental data should be interpreted correctly for real materials. This will
require to go beyond BCS theory including the explicit coupling to other modes or studying
the effects in more general systems like the Hubbard model, where additional modes and phases
arise naturally.
Another important point to study in more detail is the mentioned influence of the charge

density fluctuations on the THG intensity. Even though the results of this thesis suggest that the
polarization dependence might be usable to distentangle the contributions, the results are derived
under certain conditions. Other studies have also shown [47] that the results are model-dependent
and thus, can vary from system to system, which makes the polarization dependence criteria not
easy to use. In this context, it is also worth to study the influence of impurity scattering in dirty
superconductors. So far, most studies of quench, pump-probe or periodically driven excitation
of Higgs modes were performed in the clean limit. Only few studies exist [65, 67, 68, 70], which
include the effects of impurity scattering. New studies have to answer important questions like
how and how much the Higgs contribution to THG is enhanced due to an additional paramagnetic
coupling as the first studies suggest. Furthermore, how does the impurity scattering influence the
polarization dependence? How is the damping of the oscillations changed? Is there an influence on
the time-resolved optical conductivity? Does the response of multiband superconductors change?
All of these questions are still unresolved and need further investigations.

The experimental excitation schemes also need further research. Unresolved questions include,
how exactly the coupling to a light pulse happens experimentally. Does the phase of single-cycle
pulses play a role and does it couple to the phase of the superconductor, which would allow
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for additional phase-sensitive information to be extracted? What does actually determine the
quench of the superconductor within a pump pulse? As the calculation has shown, even multi-
cycle pulses longer than the intrinsic time scale of the Higgs oscillations can quench and induce
Higgs oscillations for higher fluence. Does the subcycle dynamic play a role? Concerning the
realization of the proposed state quenches in symmetry channels different from the ground state
symmetry, there are also open questions to be answered. One possibility of an asymmetric quench
was proposed in this thesis by an in-plane light wave momentum inducing a preferred direction.
Yet, the question is, how this can be realized experimentally and whether the light momentum
is large enough to have an effect. For example, the in-plane component could be enhanced and
controlled with transient gradient or four-wave mixing setups. One can also ask if the polarization
of light can be used as an additional knob for asymmetric excitations. So far, the results deny
this, but maybe there are still unexplored effects. In addition to quenching with light, maybe
there are also other possibilities of excitations, for example a tuning of pairing interactions with
light or pressure to realize interaction quenches.

Finally, new experimental schemes can be considered for excitations and observations of Higgs
modes. The first indirect observation of the Higgs mode was in NbSe2, where the Higgs mode
couples to the nearby CDW and thus, becomes Raman-active [16]. This experiment could be
extended to nonequilibrium to perform a time-resolved Raman experiment. Hereby, the system is
quenched prior to the Raman experiment and an oscillation of the peak in the spectrum associated
with Higgs should oscillate in amplitude and position as the underlying order parameter oscillates.
In general, the Higgs mode should also appear in the Raman spectrum of cuprates, where the
Higgs mode is excited due to an effective Raman process depicted in the diagram in Fig. 5.8b).
For example, the A1g response of YBCO could never be fully described with the usual electron
response [217]. There might be a contribution to the observed peak coming from Higgs, which
should also be detectable in a tr-Raman experiment as an oscillation of the peak. Furthermore,
Higgs modes could be observable in transport experiments as first studies on superconducting
junctions suggest [87–89].

Measurements of Higgs oscillations have several possible applications. In future, this technique
could be used to learn about the value of the gap, number of gaps, symmetry properties of
the order parameter including nodal lines or phase and coupling to other modes. Compared
to other methods like transport measurements, NMR, ARPES or Josephson interferometry,
multiple properties can be, in principle, obtained simultaneously within one experiment, where a
combination of multiple traditional experiments would be required to obtain the same information.
This method can also be applied to other condensates where amplitude oscillations occur, like
excitonic insulators, ultra cold atoms in optical lattices or magnetic systems. Yet, in contrast
to superconductors, there is no Anderson-Higgs mechanism, which makes the amplitude (Higgs)
mode unstable for a decay into lower Goldstone modes. In a more general sense, a measurement
of Higgs modes may also serve as a new measure for defining superconductivity in nonequilibrium.
Recent experiments and theoretical studies on light-induced superconductivity [218–227] raise
the question on how one defines superconductivity in a short-lived nonequilibrium state. So
far, the criterion only includes the vanishing resistivity property of superconductors measured
by a divergent imaginary part of the optical conductivity for ω → 0. Yet, this criterion is not
precise, as a measurement at ω = 0 cannot be performed and thus, a divergence cannot be
proven. In addition, the expelling of a magnetic field, i.e. the Meissner effect, as the second
required criterion for superconductivity has not yet been considered. As the Meissner effect is
induced by the Anderson-Higgs mechanism, a measurement of a stable Higgs mode should be
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6 Discussion and Outlook

an equivalent fingerprint of superconductivity. While the repulsion of a magnetic field on an
ultrashort timescale is difficult or even impossible to measure, a resonant behavior of the THG
signal or even oscillations of the optical response in a pump-probe setup in the light-induced
superconducting state could be realized potentially. This might also help to shine light on the
questions if and how preformed pairs are induced or play a role in these experiments as possible
amplitude oscillations should only be present in a coherent condensate state.
All in all, Higgs spectroscopy on superconductors in nonequilibrium has great potential as a

new tool to investigate ground state properties of the order parameter.

116



A Numerical Implementation

A.1 Implementation of Bloch Equations
The Bloch equations (2.64) are solved numerically on a 2d grid in momentum space. For the
integration, a Runge-Kutta Dormand-Prince algorithm1 is used with adaptive stepsize. All
differential equations on each point on the momentum grid are coupled through the gap and
the self-consistency condition. Thus, it is important that in each time step, before evaluating
the right hand side of the differential equation, the gap equation (2.60) is evaluated to fulfill the
self-consistency condition.
To obtain a fine enough momentum grid resolution, only the region around the Fermi level

within {k | |εk| < εc} is considered. As all considered configurations for the quench problem
separate in radial and angular parts, it is advantageous to discretize the momentum space in
new coordinates (see Fig. A.1)

ε = ε(kx, ky) , ϕ = arctan
(
ky
kx

)
. (A.1)

In radial direction, we choose Nk points and in the angular direction Nϕ. The discretization step
widths are defined as

∆ε = 2εc
Nk − 1 , ∆ϕ = φmax

Nϕ
, (A.2)

where φmax is either 2π or π depending on the symmetry as discussed below. The grid is then
build via

ϕi = i∆ϕ for i ∈ [0, Nϕ − 1] , (A.3a)
kj(ϕi) = k′ where ε(k′, ϕi) = −εc + j∆ε for j ∈ [0, Nk − 1] . (A.3b)

In the momentum sum of the gap equation, one has to consider the Jacobian element to account
for the non-square integration elements. It follows

dA = dkxdky = Jdεdϕ , (A.4)

J =
∣∣∣∣∣
(
∂εkx ∂ϕkx
∂εky ∂ϕky

)∣∣∣∣∣ . (A.5)

As in most cases, the dispersion cannot be inverted analytically, we consider the inverse relation

dÃ = dεdϕ = J̃dkxdky (A.6)

with J = 1/J̃ and

J̃ =
∣∣∣∣∣
(
∂kxε ∂kyε
∂kxϕ ∂kyϕ

)∣∣∣∣∣ . (A.7)

1https://www.boost.org/doc/libs/1_72_0/libs/numeric/odeint/doc/html/boost/numeric/odeint/runge_
kutta_dopri5.html

117

https://www.boost.org/doc/libs/1_72_0/libs/numeric/odeint/doc/html/boost/numeric/odeint/runge_kutta_dopri5.html
https://www.boost.org/doc/libs/1_72_0/libs/numeric/odeint/doc/html/boost/numeric/odeint/runge_kutta_dopri5.html


A Numerical Implementation

kx

ky

εk=0

εk=-εc
εk=εc

}

Figure A.1 Used discretization grid for evaluation of Bloch equations for quenched superconductor. The
grey curve is the Fermi level εk = 0. The blue and red curves represent the upper and lower bound of the
energy cutoff, i.e. εk = εc or εk = −εc. The grid is chosen in polar coordinates with an equidistant spacing
∆ε in radial and equidistant spacing ∆ϕ in azimuthal direction. Please note that the radial spacing ∆k is
not equidistant.

It follows

J =
k2
x + k2

y

x∂kxε+ y∂kyε
. (A.8)

One can make use of symmetry properties for the problem for certain parameters to restrict the
momentum grid further. As an example, for s-wave symmetry with εk = ε(|k|) and a symmetric
quench, it is enough to use only a 1d grid as there is no angular dependence. If the values are
periodic in the angular angle, e.g. for d-wave, one can restrict the momentum grid to one quarter.
In appendix A.2, the influence of the number of discretization points on the result is explored to
obtain an optimal value.
The following parameters are used in chapter 3 for the calculations of the quench dynamics

∆ = 1 meV , εk = thopk
2 − εF ,

thop = 50 meV , εF = 100 meV ,

εc = 10 meV . (A.9)

In the implementation, all energies are given in meV and the time in fs. All results shown in the
thesis are rescaled. Energies are given in units of ∆ or ∆∞, times are given in ~/∆ or ~/∆∞.
The chosen parameters do not correspond to a certain material but are chosen for convenience.
All results do only depend quantitatively on the parameters but are qualitatively the same.

When calculating the Fourier transform of the gap oscillations ∆(ω), the mean, i.e. ∆∞, is
subtracted first to remove an ω = 0 peak due to the offset.
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A.2 Influence of Momentum Grid Resolution
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Figure A.2 Variation of the number of grid points Nk on a 1d grid for s-wave symmetry with A1g quench
and parameters from Eq. (A.9). a) Gap oscillations for varying number of grid points Nk = 100...2000.
As all curves lie on top of each other, they are shifted by 0.05 on the y-axis for each value of Nk for a
better view. For each Nk, there is maximum time tmax, beyond which the integration fails due to too low
momentum resolution. b) Extracted time tmax, which scales linearly with Nk.

A.2 Influence of Momentum Grid Resolution

Here, the influence of the momentum grid resolution on the result is explored. First, a calculation
in 1d (Nϕ = 1) of an s-wave superconductor quenched in the A1g channel is performed with the
parameters of Eq. (A.9) and a variation of the number of points Nk. The result can be found
in Fig. A.2. The momentum grid resolution determines the maximum time tmax, up to which
a calculation is valid. For t < tmax, the calculated result is independent of Nk and the curves
lie exactly on top of each other. For larger t, the calculation breaks down and noisy oscillations
occur. In Fig. A.2b), the time tmax is shown as a function of Nk. It scales linearly with the
number of points.
Next, the influence of Nk and Nϕ in a 2d calculation is checked. For this, a d-wave order

parameter is quenched in the A1g channel with the parameters of Eq. (A.9). From the 1d case
we know that Nk = 2000 points are required to calculate up to t = 200 ps, so Nk is fixed at
this value and Nϕ is varied. The result is shown in Fig. A.3. There is again a maximum time
tmax up to which a calculation is possible, which scales linearly with the number of points Nϕ.
An increase of Nk (not shown) does not improve the result (at least up to t = 200 ps), the time
resolution here is restricted by Nϕ. This qualitative behavior is independent of the parameters,
but depends quantitatively on the calculation. For larger discretization range (depending on
εk and εc) and more complex gap or quench symmetry, more points have to be chosen. The
parameters of Eq. (A.9) require roughly Nk = 2000 and Nϕ = 1000 points for tmax = 100 ps.
There is another finite size effect resulting from the energy cutoff, namely, the resulting gap

oscillations show a high-frequency oscillation at 2εc. Depending on the absolute value of the
calculated gap oscillations, they are hardly visible if the gap oscillations are much larger. Yet, for
smaller gap oscillations as in the d-wave case at longer times, these become prominently visible.
Therefore, the cutoff should be chosen much higher than the gap, such that this frequency does
not interfere with the actual dynamic.
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Figure A.3 Variation of the number of grid points Nϕ on a 2d grid for d-wave symmetry with A1g
quench and parameters from Eq. (A.9). a) Gap oscillations for varying number of grid points Nϕ =
200, 400, 600, 800, 1000. As all curves lie approximately on top of each other, they are shifted by 0.0001
on the y-axis for each value of Nϕ for a better view. For each Nϕ, there is maximum time tmax, beyond
which the integration fails due to too low momentum resolution. b) Extracted time tmax, which scales
linearly with Nϕ.

A.3 Implementation of Density Matrix Formalism
The equations of motion in the density matrix formalism are implemented on a different grid
in momentum space compared to the Bloch equations. As it can be seen e.g. in Eq. (4.10), off-
diagonal expectation values at k and k′ are coupled. This coupling is due to the finite momentum
q0 originating from the light, i.e. there is a coupling of (k,k′ = k ± nq0) with n ∈ N. As the
coupling to more distant off-diagonal elements scales with A0, higher-order couplings can be
neglected. One finds [28, 52] that it is sufficient for calculations of the pump pulse to include only
couplings up to n = 4, whereas for the probe pulse, n = 1 is enough. To consider this coupling, we
choose a 2d grid similar to [52], where the momentum space is discretized in x-direction (i.e. the
direction of q0) with a step size of |q0| and in y-direction, there are Ny points. By choosing such a
grid, the resolution in x-direction is high enough to resolve the coupling due to the light, whereas
the coupling in y-direction is only indirect via ∆(t) and can be chosen lower. Furthermore, the
coupling between the off-diagonal elements (k,k′ = k ± nq0) can be captured directly. The grid
is sketched in Fig. A.4a). If the incident direction of the light pulse is varied by varying the angle
ϕ, the grid must be rotated accordingly to obtain the required grid resolution in the direction
of the light pulse. Alternatively, the grid can be kept fixed and the gap symmetry is rotated
in opposite direction. This is sketched in Fig. A.4b). For the calculation of the pump-probe
experiment, the following parameters are chosen

∆ = 1 meV , εk = thopk
2 − εF , thop = 2000 meV , εF = 10000 meV ,

Apump
0 = 7 · 10−8 Js/(Cm) , Ωpump = 2 meV , τpump = 400 fs ,

Aprobe
0 = 5 · 10−9 Js/(Cm) , Ωprobe = 2 meV , τprobe = 250 fs ,
T = 0 , εc = 10 meV , Ny = 200 . (A.10)

When implementing a second probe pulse, the equations of motion are first integrated for
the pump pulse from −tc to t, where tc = τp/2

√
log(1000)/ log(2), i.e. the pulse is cut off at
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Figure A.4 Used discretization grid for calculating the time evolution in the density matrix formalism.
a) The momentum space is discretized around the Fermi level in a region ±εc. The step width in direction
of the light wave (x-direction) is chosen as the light momentum q0. In y-direction, the grid has Ny points.
b) A rotation of the direction of the incident light by an angle ϕ is implemented as an opposite rotation
of the gap symmetry to keep the same momentum grid.

1/1000 of its maximum value. Then, the equations of motion are integrated further using the
nonequilibrium state induced by the pump pulse at variable time t as initial state while the
probe pulse is applied. Hereby, it is ensured that pump and probe pulse do not overlap. The
calculation of the optical conductivity contains certain numerical difficulties. To ensure that only
the current induced by the probe pulse enters the calculation of the optical conductivity, the
nonzero off-diagonal elements of the initial nonequilibrium state after the pump pulse are set to
zero. This removes most of the pump current effects; nevertheless, a background is still visible in
the current. This background, which would show up as a low frequency peak in the spectrum, is
subtracted prior to the Fourier transform. Furthermore, as there are transient effects resulting
from the two calculations of pump and probe pulse, the Fourier transform is started with a small
time offset. These numerical issues lead to phase mixing between real and imaginary part of the
optical conductivity, which has to be corrected to obtain the absorption and dispersion part. As
a result of these issues, the ω → 0 behavior is not reliable. The spectra shown in section 4.1 are
corrected by these methods as in some cases, the important features would otherwise be buried
under the numerical background.
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A Numerical Implementation

A.4 Implementation of Iterated Equation of Motion Approach
The iterated equation of motion approach is implemented on the same grid as the Bloch equations.
The following parameters are used in chapter 4.2 for the calculations of the quench dynamics

∆ = 1.35 meV , εk = thopk
2 − εF , thop = 2005.25 meV , εF = 9470 meV ,

gs = −0.4 , gi = 0.8 , T = 0 ,
εc = 8.3 meV , Nk = 1000 , Nϕ = 1000 . (A.11)

The system parameters correspond to material parameters of lead, following [28]. All results
depend only quantitatively on the parameters and can be rescaled to any other material values.

To evaluate the 2d time integral in Eq. (4.14) efficiently for the spectral function in frequency
domain, the integral is rewritten with τ = t1 − t2

A(k, ω, t) ∝ Im
∫

dt2
∫

dt1 p(t1 − t)p(t2 − t)eiω(t1−t2)G<(k, t1, t2)

= Im
∫

dt2 p(t2 − t)
∫

dτ p(t2 + τ − t)eiωτG<(k, t2 + τ, t2) . (A.12)

We define a new function Ã, which is A with an additional factor eiω′t2 in the integrand

Ã(k, ω, ω′, t) ∝ Im
∫

dt2 p(t2 − t)eiω′t2
∫

dτ p(t2 + τ − t)eiωτG<(k, t2 + τ, t2) . (A.13)

This can be interpreted as 2d Fourier transform in (t2, τ)→ (ω′, ω) of

p(t2 − t)p(t2 + τ − t)G<(k, t2 + τ, t2) (A.14)

and implemented with a 2d FFT. After the 2d Fourier transform, we set ω′ = 0 to obtain the
original result

A(k, ω, t) = Ã(k, ω, ω′ = 0, t) . (A.15)

A.5 Numerical Evaluation of THG Intensities
To calculate the temperature-dependent THG intensity, the interaction strength V is calculated
for a chosen initial energy gap at T = 0. Then, the temperature dependence of the energy
gap ∆T is determined self-consistently for each temperature. To handle the divergences in the
summations of the integrals and keep the required momentum grid resolution in a reasonable
range, a residual broadening of 2iΩ → 2iΩ + 0.01∆ is introduced. This slightly broadens the
resonance peaks and washes out the sharp phase jumps but does not change the overall result.
The numerical calculation is implemented on the same grid as described in section A.1. For the
calculation, the following parameters are used

∆ = 20 meV , t = 200 meV , εF = −400 meV , εk = −2t(cos(kx) + cos(ky))− εF ,
εc = 40 meV , Nk = 2000 , Nϕ = 2000 . (A.16)
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B Derivation of Coupling to Light for
Pump-Probe

Parts of the following derivation can be found e.g. in [228]. For free electrons, the Hamiltonian
coupled to light with minimal substitution reads

H = [p+ eA(r, t)]2

2m

= − ~2

2m∇
2 − i e~2m

(
∇A(r, t) +A(r, t)∇

)
+ e2

2mA(r, t)2

= − ~2

2m∇
2 − i e~2m

(
(∇A(r, t)) + 2A(r, t)∇

)
+ e2

2mA(r, t)2

=: Hkin +H(1)
em +H(2)

em , (B.1)

where we defined the linear H(1)
em and quadratic H(2)

em coupling term of the electromagnetic field.
Now, we transform this Hamiltonian into second quantization

H =
∑
k,k′

〈
k
∣∣H ∣∣k′〉 c†kck′ . (B.2)

Please note that for this derivation, the spin degree of freedom is neglected for shorter notation.
It will be added again at the end. The momentum eigenstate is given by

|k〉 = 1√
V

∫
d3r eikr |r〉 , 〈k|k′〉 = δk,k′ (B.3)

with k = 2π
a (nxêx + ny êy + nz êz). The volume V = a3 is the volume of a single unit cell with

lattice constant a. The inverse relation is given by

|r〉 = 1√
V

∑
k

e−ikr |r〉 , 〈r|r′〉 = δ(r − r′) (B.4)

and the second quantized wave function reads

ψ̂(r) = 1√
V

∑
k

eikrck . (B.5)

The spatial Fourier transform of the vector potential reads

Aq(t) = 1
V

∫
d3rA(r, t)e−iqr , A(r, t) =

∑
q

Aq(t)eiqr . (B.6)

The first term is the usual kinetic term〈
k

∣∣∣∣∣− ~2

2m∇
2
∣∣∣∣∣k′
〉

= − ~2

2m
1
V

∫
d3r e−ikr∇2eik′r = ~2k′2

2m
1
V

∫
d3r e−i(k−k′)r

= ~2k2

2m δk,k′ (B.7)
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and it follows

Hkin =
∑
k,k′

~2k2

2m δk,k′c
†
kck′ =

∑
k

~2k2

2m c†kck . (B.8)

The second term describes the linear coupling to the electromagnetic field〈
k

∣∣∣∣−i e~2m
(

(∇A(r, t)) + 2A(r, t)∇
) ∣∣∣∣k′〉

= −i e~2m
1
V

∫
d3r e−i(k−k′)r

(
(∇A(r, t)) + 2ik′A(r, t)

)
= e~

2m
1
V

∫
d3r e−i(k−k′)r

(
k − k′ + 2k′

)
A(r, t)

= e~
2m(k + k′)Ak−k′(t) , (B.9)

where we used∫
d3r e−i(k−k′)r(∇A(r, t)) = e−i(k−k′)rA(r, t)

∣∣∣︸ ︷︷ ︸
=0

+
∫

d3r i(k − k′)e−i(k−k′)A(r, t) . (B.10)

It follows

H(1)
em =

∑
k,k′

e~
2m(k + k′)Ak−k′(t)c†kck′

k→k+q=
k′→k

e~
2m

∑
k,q

(2k + q)Aq(t)c†k+qck . (B.11)

The third term describes the quadratic coupling to the electromagnetic field〈
k

∣∣∣∣∣ e2

2mA(r, t)2
∣∣∣∣∣k′
〉

= e2

2m
1
V

∫
d3r e−i(k−k′)rA(r, t)2

= e2

2m
∑
q,q′

Aq(t)Aq′(t)
1
V

∫
d3r ei(k′−k+q+q′)r

= e2

2m
∑
q′

Aq′(t)Ak−k′−q′(t) . (B.12)

It follows

H(2)
em =

∑
k,k′

e2

2m

∑
q′

Aq′(t)Ak−k′−q′(t)

 c†kck′
k→k+q=
k′→k

e2

2m
∑
k,q

∑
q′

Aq′(t)Aq−q′(t)

 c†k+qck . (B.13)
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Adding the spin degree of freedom, the interaction part of the Hamiltonian reads

H(1)
em = e~

2m
∑
k,q,σ

(2k + q)Aq(t)c†k+q,σck,σ , (B.14a)

H(2)
em = e2

2m
∑
k,q,σ

∑
q′

Aq−q′(t) ·Aq′(t)

 c†k+q,σck,σ . (B.14b)

Now, we apply the Bogoliubov transformation Eq. (2.39) to the interaction part. The first term
H

(1)
em is rewritten

H(1)
em = e~

2m
∑
k,q,σ

(2k + q)Aq(t)c†k+q,σck,σ

= e~
2m

∑
k,q

(2k + q)Aq(t)
(
c†k+q↑ck↑ + c†k+q↓ck↓

)
= e~

2m
∑
k,q

(2k + q)Aq(t)
(
c†k+q↑ck↑ − c

†
−k↓c−(k+q)↓

)
, (B.15)

where k → −(k + q) was replaced in the second summand. We apply the Bogoliubov transfor-
mation and neglect terms ∝ δk,k+q as q 6= 0

H(1)
em = e~

2m
∑
k,q

(2k + q)Aq(t)
((
uk+qα

†
k+q + v∗k+qβk+q

) (
u∗kαk + vkβ

†
k

)
−
(
−v∗kαk + ukβ

†
k

) (
−vk+qα

†
k+q + u∗k+qβk+q

))
= e~

2m
∑
k,q

(2k + q)Aq(t)
(
L

(+)
k,qα

†
k+qαk − L

(+)∗
k,q β†kβk+q

+M (−)∗
k,q α†k+qβ

†
k +M

(−)
k,q αkβk+q

)
(B.16)

with the following abbreviations

L
(±)
k,q = uk+qu

∗
k ± vk+qv

∗
k , M

(±)
k,q = u∗k+qv

∗
k ± v∗k+qu

∗
k . (B.17)

The transformation of H(2)
em is analogous except that the second summand in Eq. (B.15) does

not have a negative sign. We find

H(2)
em = e2

2m
∑
k,q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k,qα

†
k+qαk + L

(−)∗
k,q β†kβk+q

+M (+)∗
k,q α†k+qβ

†
k −M

(+)
k,q αkβk+q

)
. (B.18)
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C Derivation of Equations of Motion for
Pump-Probe

The full Hamiltonian reads

H = HBCS +H(1)
em +H(2)

em , (C.1a)
HBCS =

∑
k

Rk(α†kαk + β†kβk) +
∑
k

Ckα
†
kβ
†
k − C

∗
kαkβk , (C.1b)

H(1)
em = e~

2m
∑
k,q

(2k + q)Aq(t)
(
L

(+)
k,qα

†
k+qαk − L

(+)∗
k,q β†kβk+q

+M (−)∗
k,q α†k+qβ

†
k +M

(−)
k,q αkβk+q

)
, (C.1c)

H(2)
em = e2

2m
∑
k,q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k,qα

†
k+qαk + L

(−)∗
k,q β†kβk+q

+M (+)∗
k,q α†k+qβ

†
k −M

(+)
k,q αkβk+q

)
. (C.1d)

We want to evaluate Heisenberg’s equation of motion

∂t 〈α†kβ
†
k′〉 (t) = i

~
〈[H,α†kβ

†
k′ ]〉 (t) , ∂t 〈αkβk′〉 (t) = i

~
〈[H,αkβk′ ]〉 (t) ,

∂t 〈α†kαk′〉 (t) = i
~
〈[H,α†kαk′ ]〉 (t) , ∂t 〈β†kβk′〉 (t) = i

~
〈[H,β†kβk′ ]〉 (t) . (C.2)

For the evaluation of the commutators, the following (anti)commutation relations are useful

[A,BC] = [A,B]C +B[A,C] , [AB,C] = A[B,C] + [A,C]B ,
[A,BC] = {A,B}C −B{A,C} , [AB,C] = A{B,C} − {A,C}B . (C.3)

This allows to derive the relations

[AB,CD] = [AB,C]D + C[AB,D]
= A{B,C}D − {A,C}BD + CA{B,D} − C{A,D}B . (C.4)

In addition, there are useful relations of the factors L(±)
k,q and M (±)

k,q defined in Eq. (B.17)

L
(±)
k−q,q = uku

∗
k−q ± vkv∗k−q = L

(±)∗
k,−q , M

(±)
k−q,q = u∗kv

∗
k−q ± v∗ku∗k−q = ±M (±)

k,−q . (C.5)

We evaluate the three commutators for the first equation of motion

[HBCS, α
†
kβ
†
k′ ] =

∑
k̃

(
Rk̃(α†

k̃
αk̃ + β†

k̃
βk̃) + Ck̃α

†
k̃
β†
k̃
− C∗

k̃
αk̃βk̃

)
, α†kβ

†
k′


=
∑
k̃

Rk̃

(
α†
k̃
δk̃,kβ

†
k′ + α†kβ

†
k̃
δk̃,k′

)
− C∗

k̃

(
− δk̃,k βk̃β

†
k′︸ ︷︷ ︸

δk̃,k′−β
†
k′βk̃

+α†kαk̃δk̃,k′
)

= (Rk +Rk′)α†kβ
†
k′ − C

∗
k(β†k′βk − δk,k′)− C

∗
k′α
†
kαk′ , (C.6)
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[H(1)
em , α

†
kβ
†
k′ ] =

[
e~
2m

∑
k̃,q

(2k̃ + q)Aq(t)
[
L

(+)
k̃,q
α†
k̃+qαk̃ − L

(+)∗
k̃,q

β†
k̃
βk̃+q

+M
(−)∗
k̃,q

α†
k̃+qβ

†
k̃

+M
(−)
k̃,q

αk̃βk̃+q

]
, α†kβ

†
k′

]

= e~
2m

∑
k̃,q

(2k̃ + q)Aq(t)
[
L

(+)
k̃,q
α†
k̃+qδk̃,kβ

†
k′ − L

(+)∗
k̃,q

α†kβ
†
k̃
δk̃+q,k′

+M
(−)
k̃,q

(
− δk̃,k βk̃+qβ

†
k′︸ ︷︷ ︸

δk̃+q,k′−β
†
k′βk̃+q

+α†kαk̃δk̃+q,k′
)]

= e~
2m

∑
q

Aq(t)
[
(2k + q)

(
L

(+)
k,qα

†
k+qβ

†
k′ +M

(−)
k,q (β†k′βk+q − δk+q,k′)

)

− (2k′ − q)
(
L

(+)∗
k′−q,qα

†
kβ
†
k′−q −M

(−)
k′−q,qα

†
kαk′−q

) ]

= e~
2m

∑
q

Aq(t)
[
(2k + q)

(
L

(+)
k,qα

†
k+qβ

†
k′ +M

(−)
k,q (β†k′βk+q − δk+q,k′)

)

− (2k′ − q)
(
L

(+)
k′,−qα

†
kβ
†
k′−q +M

(−)
k′,−qα

†
kαk′−q

) ]
, (C.7)

[H(2)
em , α

†
kβ
†
k′ ] =

[
e2

2m
∑
k̃,q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k̃,q
α†
k̃+qαk̃ + L

(−)∗
k̃,q

β†
k̃
βk̃+q

+M
(+)∗
k̃,q

α†
k̃+qβ

†
k̃
−M (+)

k̃,q
αk̃βk̃+q

)
, α†kβ

†
k′

]

= e2

2m
∑
k̃,q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k̃,q
α†
k̃+qδk̃,kβ

†
k′ + L

(−)∗
k̃,q

α†kβ
†
k̃
δk̃+q,k′

−M (+)
k̃,q

(−δk̃,k βk̃+qβ
†
k′︸ ︷︷ ︸

δk′,k̃+q−β
†
k′βk̃+q

+α†kαk̃δk̃+q,k′)
)

= e2

2m
∑
q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k,qα

†
k+qβ

†
k′ + L

(−)∗
k′−q,qα

†
kβ
†
k′−q

−M (+)
k,q

(
β†k′βk+q − δk+q,k′

)
−M (+)

k′−q,qα
†
kαk′−q

)

= e2

2m
∑
q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k,qα

†
k+qβ

†
k′ + L

(−)
k′,−qα

†
kβ
†
k′−q

−M (+)
k,q

(
β†k′βk+q − δk+q,k′

)
−M (+)

k′,−qα
†
kαk′−q

)
. (C.8)
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C Derivation of Equations of Motion for Pump-Probe

All in all, we find for the first equation of motion

∂t 〈α†kβ
†
k′〉 (t) = i

~

{
(Rk +Rk′) 〈α†kβ

†
k′〉 − C

∗
k(〈β†k′βk〉 − δk,k′)− C

∗
k′ 〈α

†
kαk′〉

+ e~
2m

∑
q

Aq(t)
[
(2k + q)

(
L

(+)
k,q 〈α

†
k+qβ

†
k′〉+M

(−)
k,q (〈β†k′βk+q〉 − δk+q,k′)

)

− (2k′ − q)
(
L

(+)
k′,−q 〈α

†
kβ
†
k′−q〉+M

(−)
k′,−q 〈α

†
kαk′−q〉

) ]

+ e2

2m
∑
q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k,q 〈α

†
k+qβ

†
k′〉+ L

(−)
k′,−q 〈α

†
kβ
†
k′−q〉

−M (+)
k,q

(
〈β†k′βk+q〉 − δk+q,k′

)
−M (+)

k′,−q 〈α
†
kαk′−q〉

)}
. (C.9)

If we assume a two-dimensional system and use the explicit form of the vector potential of
Eq. (4.5) of the main text, the equations of motion can be simplified

∂t 〈α†kβ
†
k′〉 (t) = i

~

{
(Rk +Rk′) 〈α†kβ

†
k′〉 − C

∗
k(〈β†k′βk〉 − δk,k′)− C

∗
k′ 〈α

†
kαk′〉

+ e~
2m

∑
q=±q0

2kAq(t)
(
L

(+)
k,q 〈α

†
k+qβ

†
k′〉+M

(−)
k,q (〈β†k′βk+q〉 − δk+q,k′)

−L(+)
k′,−q 〈α

†
kβ
†
k′−q〉 −M

(−)
k′,−q 〈α

†
kαk′−q〉

)
+ e2

2m
∑

q=0,±2q0

 ∑
q′=±q0

Aq−q′(t) ·Aq′(t)

(L(−)
k,q 〈α

†
k+qβ

†
k′〉+ L

(−)
k′,−q 〈α

†
kβ
†
k′−q〉

−M (+)
k,q

(
〈β†k′βk+q〉 − δk+q,k′

)
−M (+)

k′,−q 〈α
†
kαk′−q〉

)}
. (C.10)

As

αkβk′ = −(α†kβ
†
k′)
† , (C.11)

the second equation of motion is the negative complex conjugated version of the first one, i.e.

∂t 〈αkβk′〉 (t) = −
(
∂t 〈α†kβ

†
k′〉 (t)

)∗
. (C.12)

Now, we evaluate the three commutators for the third equation of motion

[HBCS, α
†
kαk′ ] =

∑
k̃

(
Rk̃(α†

k̃
αk̃ + β†

k̃
βk̃) + Ck̃α

†
k̃
β†
k̃
− C∗

k̃
αk̃βk̃

)
, α†kαk′


=
∑
k̃

Rk̃

(
α†
k̃
δk̃,kαk′ − α

†
kδk̃,k′αk̃

)
− Ck̃α

†
kδk̃,k′β

†
k̃

+ C∗
k̃
δk̃,kβk̃αk′

= (Rk −Rk′)α†kαk′ − Ck′α
†
kβ
†
k′ − C

∗
kαk′βk , (C.13)
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[H(1)
em , α

†
kαk′ ] =

[
e~
2m

∑
k̃,q

(2k̃ + q)Aq(t)
[
L

(+)
k̃,q
α†
k̃+qαk̃ − L

(+)∗
k̃,q

β†
k̃
βk̃+q

+M
(−)∗
k̃,q

α†
k̃+qβ

†
k̃

+M
(−)
k̃,q

αk̃βk̃+q

]
, α†kαk′

]

= e~
2m

∑
k̃,q

(2k̃ + q)Aq(t)
[
L

(+)
k̃,q

(
α†
k̃+qδk̃,kαk

′ − α†kδk̃+q,k′αk̃

)
−M (−)∗

k̃,q
α†kδk̃+q,k′β

†
k̃
−M (−)

k̃,q
δk̃,kβk̃+qαk′

]
= e~

2m
∑
q

Aq(t)
[
(2k + q)

(
L

(+)
k,qα

†
k+qαk′ −M

(−)
k,q βk+qαk′

)
−(2k′ − q)

(
L

(+)
k′−q,qα

†
kαk′−q +M

(−)∗
k′−q,qα

†
kβ
†
k′−q

)]
= e~

2m
∑
q

Aq(t)
[
(2k + q)

(
L

(+)
k,qα

†
k+qαk′ +M

(−)
k,q αk′βk+q

)
−(2k′ − q)

(
L

(+)∗
k′,−qα

†
kαk′−q −M

(−)∗
k′,−qα

†
kβ
†
k′−q

)]
, (C.14)

[H(2)
em , α

†
kαk′ ] =

[
e2

2m
∑
k̃,q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k̃,q
α†
k̃+qαk̃ + L

(−)∗
k̃,q

β†
k̃
βk̃+q

+M
(+)∗
k̃,q

α†
k̃+qβ

†
k̃
−M (+)

k̃,q
αk̃βk̃+q

)
, α†kαk′

]

= e2

2m
∑
k̃,q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k̃,q

(
α†
k̃+qδk̃,kαk

′ − α†kδk̃+q,k′αk̃

)

−M (+)∗
k̃,q

α†kδk̃+q,k′β
†
k̃

+M
(+)
k̃,q

δk̃,kβk̃+qαk′

)

= e2

2m
∑
q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k,qα

†
k+qαk′ − L

(−)
k′−q,qα

†
kαk′−q

−M (+)∗
k′−q,qα

†
kβ
†
k′−q −M

(+)
k,q αk′βk+q

)

= e2

2m
∑
q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k,qα

†
k+qαk′ − L

(−)∗
k′,−qα

†
kαk′−q

−M (+)∗
k′,−qα

†
kβ
†
k′−q −M

(+)
k,q αk′βk+q

)
. (C.15)
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C Derivation of Equations of Motion for Pump-Probe

All in all, we find for the third equation of motion

∂t 〈α†kαk′〉 (t) = i
~

{
(Rk −Rk′) 〈α†kαk′〉 − Ck′ 〈α

†
kβ
†
k′〉 − C

∗
k 〈αk′βk〉

+ e~
2m

∑
q

Aq(t)
[
(2k + q)

(
L

(+)
k,q 〈α

†
k+qαk′〉+M

(−)
k,q 〈αk′βk+q〉

)
−(2k′ − q)

(
L

(+)∗
k′,−q 〈α

†
kαk′−q〉 −M

(−)∗
k′,−q 〈α

†
kβ
†
k′−q〉

)]
+ e2

2m
∑
q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k,q 〈α

†
k+qαk′〉 − L

(−)∗
k′,−q 〈α

†
kαk′−q〉

−M (+)∗
k′,−q 〈α

†
kβ
†
k′−q〉 −M

(+)
k,q 〈αk′βk+q〉

)}
. (C.16)

Finally, we evaluate the three commutators for the fourth equation of motion

[HBCS, β
†
kβk′ ] =

∑
k̃

(
Rk̃(α†

k̃
αk̃ + β†

k̃
βk̃) + Ck̃α

†
k̃
β†
k̃
− C∗

k̃
αk̃βk̃

)
, β†kβk′


=
∑
k̃

Rk̃

(
β†
k̃
δk̃,kβk′ − β

†
kδk̃,k′βk̃

)
+ Ck̃β

†
kα
†
k̃
δk̃,k′ − C

∗
k̃
αk̃δk̃,kβk′

= (Rk −Rk′)β†kβk′ − Ck′α
†
k′β
†
k − C

∗
kαkβk′ , (C.17)

[H(1)
em , β

†
kβk′ ] =

[
e~
2m

∑
k̃,q

(2k̃ + q)Aq(t)
[
L

(+)
k̃,q
α†
k̃+qαk̃ − L

(+)∗
k̃,q

β†
k̃
βk̃+q

+M
(−)∗
k̃,q

α†
k̃+qβ

†
k̃

+M
(−)
k̃,q

αk̃βk̃+q

]
, β†kβk′

]

= e~
2m

∑
k̃,q

(2k̃ + q)Aq(t)
[
− L(+)∗

k̃,q

(
β†
k̃
δk̃+q,kβk′ − β

†
kδk̃,k′βk̃+q

)
+M

(−)∗
k̃,q

β†kα
†
k̃+qδk̃,k′ +M

(−)
k̃,q

αk̃δk̃+q,kβk′
]

= e~
2m

∑
q

Aq(t)
[
(2k′ + q)

(
L

(+)∗
k′,q β

†
kβk′+q +M

(−)∗
k′,q β

†
kα
†
k′+q

)
+ (2k − q)

(
−L(+)∗

k−q,qβ
†
k−qβk′ +M

(−)
k−q,qαk−qβk′

) ]
= e~

2m
∑
q

Aq(t)
[
(2k′ + q)

(
L

(+)∗
k′,q β

†
kβk′+q −M

(−)∗
k′,q α

†
k′+qβ

†
k

)
+ (2k − q)

(
−L(+)

k,−qβ
†
k−qβk′ −M

(−)
k,−qαk−qβk′

) ]
, (C.18)
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[H(2)
em , β

†
kβk′ ] =

[
e2

2m
∑
k̃,q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k̃,q
α†
k̃+qαk̃ + L

(−)∗
k̃,q

β†
k̃
βk̃+q

+M
(+)∗
k̃,q

α†
k̃+qβ

†
k̃
−M (+)

k̃,q
αk̃βk̃+q

)
, β†kβk′

]

= e2

2m
∑
k̃,q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)∗
k̃,q

(
β†
k̃
δk̃+q,kβk′ − β

†
kδk̃,k′βk̃+q

)

+M
(+)∗
k̃,q

β†kα
†
k̃+qδk̃,k′ −M

(+)
k̃,q

αk̃δk̃+q,kβk′

)

= e2

2m
∑
q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)∗
k−q,qβ

†
k−qβk′ − L

(−)∗
k′,q β

†
kβk′+q

+M
(+)∗
k′,q β

†
kα
†
k′+q −M

(+)
k−q,qαk−qβk′

)

= e2

2m
∑
q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k,−qβ

†
k−qβk′ − L

(−)∗
k′,q β

†
kβk′+q

−M (+)∗
k′,q α

†
k′+qβ

†
k −M

(+)
k,−qαk−qβk′

)
. (C.19)

All in all, we find for the fourth equation of motion

∂t 〈β†kβk′〉 (t) = i
~

{
(Rk −Rk′) 〈β†kβk′〉 − Ck′ 〈α

†
k′β
†
k〉 − C

∗
k 〈αkβk′〉

+ e~
2m

∑
q

Aq(t)
[
(2k′ + q)

(
L

(+)∗
k′,q 〈β

†
kβk′+q〉 −M

(−)∗
k′,q 〈α

†
k′+qβ

†
k〉
)

+ (2k − q)
(
−L(+)

k,−q 〈β
†
k−qβk′〉 −M

(−)
k,−q 〈αk−qβk′〉

) ]
+ e2

2m
∑
q

∑
q′

Aq−q′(t) ·Aq′(t)

(L(−)
k,−q 〈β

†
k−qβk′〉 − L

(−)∗
k′,q 〈β

†
kβk′+q〉

−M (+)∗
k′,q 〈α

†
k′+qβ

†
k〉 −M

(+)
k,−q 〈αk−qβk′〉

)}
. (C.20)
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D Derivation of Probe Pulse Current
This derivation of the expressions for the current follows [228, p. 221ff.]. During the derivation,
we neglect the spin degree of freedom. It is added again at the end.

The quantum mechanical electrical current density in the presence of a transverse electromag-
netic field is given by

j(r, t) = − e~
2mi

(
ψ∗(r)∇ψ(r)− (∇ψ∗(r))ψ(r)

)
− e2

m
A(r, t)|ψ(r)|2 . (D.1)

We transform the expression into second quantization with the help of Eq. (B.5) and find

j(r, t) = − e~
2miV

∑
kk′

(
e−ikr∇eik′rc†kck′ − eikr∇e−ik′rc†k′ck

)
− e2

mV
A(r, t)

∑
kk′

e−i(k−k′)rc†kck′

= − e~
2mV

∑
kk′

k′
(
e−i(k−k′)rc†kck′ + ei(k−k′)rc†k′ck

)
− e2

mV
A(r, t)

∑
kk′

e−i(k−k′)rc†kck′ . (D.2)

Exchanging k↔ k′ in the second term in Eq. (D.2), we find

j(r, t) = − e~
2mV

∑
kk′

(k′ + k)e−i(k−k′)rc†kck′ −
e2

mV
A(r, t)

∑
kk′

e−i(k−k′)rc†kck′ . (D.3)

We perform a Fourier transformation

jq(t) = 1
V

∫
d3r j(r, t)e−iqr

= − e~
2mV

∑
kk′

(k′ + k)c†kck′
1
V

∫
d3r e−i(k−k′+q)r

− e2

mV

∑
kk′

c†kck′
1
V

∫
d3rA(r, t)e−i(k−k′+q)r

= − e~
2mV

∑
kk′

(k′ + k)c†kck′δk′,k+q −
e2

mV

∑
kk′

c†kck′Ak−k′+q(t)

= − e~
2mV

∑
k

(2k + q)c†kck+q −
e2

mV

∑
kq′

Aq−q′(t)c†kck+q′ . (D.4)

Adding the spin degree of freedom again, we end up with

jq(t) = j(1)
q + j(2)

q (t) , (D.5a)

j(1)
q = − e~

2mV
∑
kσ

(2k + q)c†kσck+qσ , (D.5b)

j(2)
q (t) = − e2

mV

∑
kq′σ

Aq−q′(t)c†kσck+q′σ . (D.5c)
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We apply the Bogoliubov transformation and find

j(1)
q = − e~

2mV
∑
k

(2k + q)(c†k↑ck+q↑ − c†−(k+q)↓c−k↓)

= − e~
2mV

∑
k

(2k + q)
(
L(+)∗α†kαk+q − L(+)β†k+qβk

−M (−)∗α†kβ
†
k+q −M

(−)αk+qβk
)
. (D.6)
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E Derivation of Equations of Motion for
tr-ARPES

Using the iterated equation of motion ansatz Eq. (2.69), the BCS Hamiltonian in the Bogoliubov
quasiparticle basis Eq. (2.41) in the Heisenberg picture reads

H̃(t) = U †(t)
(∑

k

Rk(t)(α†kαk + β†kβk) +
∑
k

Ck(t)α†kβ
†
k − C

∗
k(t)αkβk

)
U(t)

=
∑
k

Rk(t)
[(
a0k(t)α†k + a1k(t)βk

) (
a∗0k(t)αk + a∗1k(t)β†k

)
+
(
b0k(t)β†k + b1k(t)αk

) (
b∗0k(t)βk + b∗1k(t)α†k

)]
+ Ck(t)

(
a0k(t)α†k + a1k(t)βk

) (
b0k(t)β†k + b1k(t)αk

)
− C∗k(t)

(
a∗0k(t)αk + a∗1k(t)β†k

) (
b∗0k(t)βk + b∗1k(t)α†k

)
=
∑
k

α†kαk
[
Rk(t)

(
|a0k(t)|2 − |b1k(t)|2

)
+ Ck(t)a0k(t)b1k(t) + C∗k(t)a∗0k(t)b∗1k(t)

]
+ β†kβk

[
Rk(t)

(
|b0k(t)|2 − |a1k(t)|2

)
− Ck(t)a1k(t)b0k(t)− C∗k(t)a∗1k(t)b∗0k(t)

]
+ α†kβ

†
k

[
Rk(t)

(
a0k(t)a∗1k(t)− b0k(t)b∗1k(t)

)
+ Ck(t)a0k(t)b0k(t) + C∗k(t)a∗1k(t)b∗1k(t)

]
+ αkβk

[
Rk(t)

(
b∗0k(t)b1k(t)− a∗0k(t)a1k(t)

)
− Ck(t)a1k(t)b1k(t)− C∗k(t)a∗0k(t)b∗0k(t)

]
+ const. (E.1)

For the evaluation of the commutators in Eq. (2.67), the (anti)-commutation rule [AB,C] =
A{B,C} − {A,C}B is useful, which allows to derive the following expressions

[
α†kαk, α

†
k

]
= α†k ,

[
β†kβk, α

†
k

]
= 0 ,

[
α†kβ

†
k, α

†
k

]
= 0 ,

[
αkβk, α

†
k

]
= −βk ,[

α†kαk, αk] = −αk ,
[
β†kβk, αk

]
= 0 ,

[
α†kβ

†
k, αk

]
= −β†k ,

[
αkβk, αk

]
= 0 ,[

α†kαk, β
†
k

]
= 0 ,

[
β†kβk, β

†
k

]
= β†k ,

[
α†kβ

†
k, β

†
k

]
= 0 ,

[
αkβk, β

†
k

]
= αk ,[

α†kαk, βk
]

= 0 ,
[
β†kβk, βk

]
= −βk ,

[
α†kβ

†
k, βk

]
= α†k ,

[
αkβk, βk

]
= 0 . (E.2)

With the help of the derived (anti)-commutation rules, Heisenberg’s equation of motion

∂tα
†
k(t) = i

~
[H̃(t), α†k(t)] ∂tβ

†
k(t) = i

~
[H̃(t), β†k(t)] (E.3)

can be evaluated.
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It follows
∂ta0k(t)α†k + ∂ta1k(t)βk

= i
~

[H̃(t), a0k(t)α†k + a1k(t)βk]

= i
~

[
a0k(t)α†k

[
Rk(t)

(
|a0k(t)|2 − |b1k(t)|2

)
+ Ck(t)a0k(t)b1k(t) + C∗k(t)a∗0k(t)b∗1k(t)

]

− a1k(t)βk
[
Rk(t)

(
|b0k(t)|2 − |a1k(t)|2

)
− Ck(t)a1k(t)b0k(t)− C∗k(t)a∗1k(t)b∗0k(t)

]
+ a1k(t)α†k

[
Rk(t)

(
a0k(t)a∗1k(t)− b0k(t)b∗1k(t)

)
+ Ck(t)a0k(t)b0k(t) + C∗k(t)a∗1k(t)b∗1k(t)

]

− a0k(t)βk
[
Rk(t)

(
b∗0k(t)b1k(t)− a∗0k(t)a1k(t)

)
− Ck(t)a1k(t)b1k(t)− C∗k(t)a∗0k(t)b∗0k(t)

]]

= i
~

[
α†k

{
Rk(t)

[
a0k(t)

(
|a0k(t)|2 + |a1k(t)|2 − |b1k(t)|2

)
− a1k(t)b0k(t)b∗1k(t)

]
+ Ck(t)

[
a0k(t)

(
a0k(t)b1k(t) + a1k(t)b0k(t)

)]
+ C∗k(t)

[
b∗1k(t)

(
|a0k(t)|2 + |a1k(t)|2

)]}
− βk

{
Rk
[
a1k(t)

(
|b0k(t)|2 − |a1k(t)|2 − |a0k(t)|2

)
+ a0k(t)b∗0k(t)b1k(t)

]
− Ck(t)

[
a0k(t)a1k(t)b1k(t) + a1k(t)2b0k(t)

]
− C∗k(t)

[
b∗0k(t)

(
|a0k(t)|2 + |a1k(t)|2

)]}]
,

(E.4)
∂tb0k(t)β†k + ∂tb1k(t)αk

= i
~

[H̃(t), b0k(t)β†k + b1k(t)αk]

= i
~

[
− b1k(t)αk

[
Rk(t)

(
|a0k(t)|2 − |b1k(t)|2

)
+ Ck(t)a0k(t)b1k(t) + C∗k(t)a∗0k(t)b∗1k(t)

]
+ b0k(t)β†k

[
Rk(t)

(
|b0k(t)|2 − |a1k(t)|2

)
− Ck(t)a1k(t)b0k(t)− C∗k(t)a∗1k(t)b∗0k(t)

]
− b1k(t)β†k

[
Rk(t)

(
a0k(t)a∗1k(t)− b0k(t)b∗1k(t)

)
+ Ck(t)a0k(t)b0k(t) + C∗k(t)a∗1k(t)b∗1k(t)

]
+ b0k(t)αk

[
Rk(t)

(
b∗0k(t)b1k(t)− a∗0k(t)a1k(t)

)
− Ck(t)a1k(t)b1k(t)− C∗k(t)a∗0k(t)b∗0k(t)

]]

= i
~

[
β†k

{
Rk(t)

[
b0k(t)

(
|b0k(t)|2 + |b1k(t)|2 − |a1k(t)|2

)
− a0k(t)a∗1k(t)b1k(t)

]
− Ck

[
a1k(t)b0k(t)2 + a0k(t)b0k(t)b1k(t)

]
− C∗k

[
a∗1k(t)

(
|b0k(t)|2 + |b1k(t)|2

)]}
+ αk

{
−Rk(t)

[
b1k(t)

(
|a0k(t)|2 − |b0k(t)|2 − |b1k(t)|2

)
+ a∗0k(t)a1k(t)b0k(t)

]
− Ck

[
a1k(t)b0k(t)b1k(t) + a0k(t)b1k(t)2

]
− C∗k(t)

[
a∗0k(t)

(
|b0k(t)|2 + |b1k(t)|2

)]}]
.

(E.5)
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E Derivation of Equations of Motion for tr-ARPES

Comparing the coefficients, one obtains the differential equations for the prefactors Eq. (4.19)
in the main text.
To express the gap equation and the lesser Green’s function and to obtain initial values for

the coefficients, we need the expectation values of the quasiparticle operators expressed in the
iterated equation of motion ansatz. We obtain

〈α†k(t)αk(t′)〉 =
〈
ψ0
∣∣∣ (a0k(t)α†k + a1k(t)βk

) (
a∗0k(t′)αk + a∗1k(t′)β†k

) ∣∣∣ψ0
〉

= a0k(t)a∗0k(t′) 〈α†kαk〉+ a1k(t)a∗1k(t′)
(
1− 〈β†kβk〉

)
+ a0k(t)a∗1k(t′) 〈α†kβ

†
k〉 − a1k(t)a∗0k(t′) 〈αkβk〉 , (E.6a)

〈β†k(t)βk(t′)〉 = b0k(t)b∗0k(t′) 〈β†kβk〉+ b1k(t)b∗1k(t′)
(
1− 〈α†kαk〉

)
− b0k(t)b∗1k(t′) 〈α†kβ

†
k〉+ b1k(t)b∗0k(t′) 〈αkβk〉 , (E.6b)

〈αk(t)βk(t′)〉 = a∗0k(t)b∗0k(t′) 〈αkβk〉+ a∗0k(t)b∗1k(t′)
(
1− 〈α†kαk〉

)
+ a∗1k(t)b∗0k(t′) 〈β†kβk〉 − a

∗
1k(t)b∗1k(t′) 〈α†kβ

†
k〉 , (E.6c)

〈α†k(t)β†k(t′)〉 = a0k(t)b0k(t′) 〈α†kβ
†
k〉+ a0k(t)b1k(t′) 〈α†kαk〉

+ a1k(t)b0k(t′)
(
1− 〈β†kβk〉

)
− a1k(t)b1k(t′) 〈αkβk〉 . (E.6d)

The expectation values on the right-hand side are the equilibrium quasiparticle distributions for
temperature T , such that according to section 2.2.4, 〈αkβk〉 = 〈α†kβ

†
k〉 = 0 and 〈α†kαk〉 = 〈β†kβk〉

are given by the Fermi distribution Eq. (2.54). The equations then simplify to

〈α†k(t)αk(t′)〉 = a0k(t)a∗0k(t′) 〈α†kαk〉T + a1k(t)a∗1k(t′)
(
1− 〈β†kβk〉T

)
, (E.7a)

〈β†k(t)βk(t′)〉 = b0k(t)b∗0k(t′) 〈β†kβk〉T + b1k(t)b∗1k(t′)
(
1− 〈α†kαk〉T

)
, (E.7b)

〈αk(t)βk(t′)〉 = a∗0k(t)b∗1k(t′)
(
1− 〈α†kαk〉T

)
+ a∗1k(t)b∗0k(t′) 〈β†kβk〉T , (E.7c)

〈α†k(t)β†k(t′)〉 = a0k(t)b1k(t′) 〈α†kαk〉T + a1k(t)b0k(t′)
(
1− 〈β†kβk〉T

)
. (E.7d)

To obtain the initial values at t = t′ = 0 for the factors a0k, a1k, b0k and b1k, we set the expectation
values on the left-hand side to the quasiparticle distribution for t = 0 and solve for the factors.
If the system is initially in equilibrium, we have 〈α†k(0)αk(0)〉 = 〈α†kαk〉T etc., i.e. at t = 0, the
quasiparticle distributions are just the temperature expectation values and we find

a0k(0) = 1 , b0k(0) = 1 , a1k(0) = 0 , b1k(0) = 0 . (E.8)

For a nonequilibrium distribution at t = 0, the solution for T = 0 reads

a0(0) = 〈αkβk〉 (0)√
〈β†kβk〉 (0)

, b0(0) = 〈α†kβ
†
k〉 (0)√

〈α†kαk〉 (0)
,

a1(0) =
√
〈α†kαk〉 (0) , b1(0) =

√
〈β†kβk〉 (0) . (E.9)

For finite temperature, the expressions are rather lengthy, such that we do not explicitly list
them here.
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Depending on the choice of the initial expectation values, using Eq. (E.9) causes numerical
problems if 〈β†kβk〉 (0) or 〈α†kαk〉 (0) are zero for certain k values. It is therefore advantageous
to rewrite these expressions. To this end, we first derive the (anti-)commutation rules for the
time-dependent operators

{αk(t), α†k′(t
′)} = δkk′

(
a∗0k(t)a0k′(t′) + a∗1k(t)a1k′(t′)

)
, (E.10a)

{βk(t), β†k′(t
′)} = δkk′

(
b∗0k(t)b0k′(t′) + b∗1k(t)b1k′(t′)

)
, (E.10b)

{αk(t), βk′(t′)} = δkk′
(
a∗0k(t)b∗1k′(t′) + a∗1k(t)b∗0k′(t′)

)
, (E.10c)

{α†k(t), β†k′(t
′)} = δkk′

(
a0k(t)b1k′(t′) + a1k(t)b0k′(t′)

)
. (E.10d)

At equal times t = t′, the commutation rules must be equal to Eq. (2.40). It follows therefore for
the coefficients

a∗0k(t)a0k′(t) + a∗1k(t)a1k′(t) = 1 , (E.11a)
b∗0k(t)b0k′(t) + b∗1k(t)b1k′(t) = 1 , (E.11b)
a0k(t)b1k′(t) + a1k(t)b0k′(t) = 0 . (E.11c)

For T = 0, we can rewrite Eq. (E.7) at t = t′ = 0 using the conditions Eq. (E.11). It follows

〈α†kαk〉 (0) = 1− |a0k(0)|2 , (E.12a)
〈β†kβk〉 (0) = 1− |b0k(0)|2 , (E.12b)
〈αkβk〉 (0) = a∗0k(0)b∗1k(0) , (E.12c)
〈α†kβ

†
k〉 (0) = a1k(0)b0k(0) . (E.12d)

A solution for the prefactors yields the expression Eq. (4.20) in the main text. In these expressions,
a division by zero for vanishing expectation values is prevented.
To calculate the Green’s function, we need to express the electron expectation values for

unequal times. One cannot use the expression of Eq. (2.48) as the modified commutation rules
Eq. (E.10) have to be considered. Taking these into account, one obtains

〈c−k↓(t)ck↑(t′)〉 =
〈(
−vkα†k(t) + u∗kβk(t)

) (
u∗kαk(t′) + vkβ

†
k(t′)

)〉
= −vku∗k 〈α

†
k(t)αk(t′)〉+ u∗kvk 〈βk(t)β†k(t′)〉

+ u∗ku
∗
k 〈βk(t)αk(t′)〉 − vkvk 〈α†k(t)β†k(t′)〉

= −vku∗k 〈α
†
k(t)αk(t′)〉

+ u∗kvk
(
b∗0k(t)b0k(t′) + b∗1k(t)b1k(t′)− 〈β†k(t′)βk(t)〉

)
+ u∗ku

∗
k

(
a∗0k(t′)b∗1k(t) + a∗1k(t′)b∗0k(t)− 〈αk(t′)βk(t)〉

)
− vkvk 〈α†k(t)β†k(t′)〉 , (E.13a)
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E Derivation of Equations of Motion for tr-ARPES

〈c†k↑(t)c
†
−k↓(t

′)〉 =
〈(
ukα

†
k(t) + v∗kβk(t)

) (
−v∗kαk(t′) + ukβ

†
k(t′)

)〉
= −ukv∗k 〈α

†
k(t)αk(t′)〉+ v∗kuk 〈βk(t)β†k(t′)〉

− v∗kv∗k 〈βk(t)αk(t′)〉+ ukuk 〈α†k(t)β†k(t′)〉
= −ukv∗k 〈α

†
k(t)αk(t′)〉

+ v∗kuk
(
b∗0k(t)b0k(t′) + b∗1k(t)b1k(t′)− 〈β†k(t′)βk(t)〉

)
− v∗kv∗k

(
a∗0k(t′)b∗1k(t) + a∗1k(t′)b∗0k(t)− 〈αk(t′)βk(t)〉

)
+ ukuk 〈α†k(t)β†k(t′)〉 , (E.13b)

〈c†k↑(t)ck↑(t
′)〉 =

〈(
ukα

†
k(t) + v∗kβk(t)

) (
u∗kαk(t′) + vkβ

†
k(t′)

)〉
= uku

∗
k 〈α

†
k(t)αk(t′)〉+ v∗kvk 〈βk(t)β†k(t′)〉

+ v∗ku
∗
k 〈βk(t)αk(t′)〉+ ukvk 〈α†k(t)β†k(t′)〉

= uku
∗
k 〈α

†
k(t)αk(t′)〉

+ v∗kvk
(
b∗0k(t)b0k(t′) + b∗1k(t)b1k(t′)− 〈β†k(t′)βk(t)〉

)
+ v∗ku

∗
k

(
a∗0k(t′)b∗1k(t) + a∗1k(t′)b∗0k(t)− 〈αk(t′)βk(t)〉

)
+ ukvk 〈α†k(t)β†k(t′)〉 , (E.13c)

〈c−k↓(t)c†−k↓(t
′)〉 =

〈(
−vkα†k(t) + u∗kβk(t)

) (
−v∗kαk(t′) + ukβ

†
k(t′)

)〉
= vkv

∗
k 〈α

†
k(t)αk(t′)〉+ u∗kuk 〈βk(t)β†k(t′)〉

− u∗kv∗k 〈βk(t)αk(t′)〉 − vkuk 〈α†k(t)β†k(t′)〉
= vkv

∗
k 〈α

†
k(t)αk(t′)〉

+ u∗kuk
(
b∗0k(t)b0k(t′) + b∗1k(t)b1k(t′)− 〈β†k(t′)βk(t)〉

)
− u∗kv∗k

(
a∗0k(t′)b∗1k(t) + a∗1k(t′)b∗0k(t)− 〈αk(t′)βk(t)〉

)
− vkuk 〈α†k(t)β†k(t′)〉 . (E.13d)
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F Effective Interaction Quench due to Periodic
Driving

The term δ∆H(s) arising in the solution Eq. (5.24) is induced by an effective interaction quench
due to the periodic driving, as it was also concluded in [40]. One can understand this by considering
the high-frequency limit. We compare the solution Eq. (5.17) for the driven case

δ∆drive(s) = 1
2α1∆e2A2

0
2Ω2

s(s2 + 4Ω2)

(
1− 1

λF (s)

)
(F.1)

with the solution Eq. (3.20) for the interaction quench case

δ∆quench(s) = ∆−∆q
s

(
1− 1

λF (s)

)
. (F.2)

In the limit Ω→∞, one obtains

δ∆drive(s) = 1
4

1
s
α1∆e2A2

0

(
1− 1

λF (s)

)
, (F.3)

which has the same form as the solution for the interaction quench. Using ∆q = g∆, a comparison
of the expression yields a value for the effective interaction quench strength

g = 1− 1
4α1e

2A2
0 . (F.4)
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