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 I 

Abstract 

The	circadian	clock	regulates	physiology	and	behavior	of	various	organisms	in	synchrony	with	daily	

environmental	rhythms.	At	the	cellular	level,	circadian	rhythmicity	is	driven	by	the	interplay	of	clock	

genes	and	proteins	that	interact	via	negative	feedback	loops,	thereby	causing	oscillations	with	a	period	

of	24	h	in	the	expression	of	numerous	target	genes.	The	resulting	rhythms	in	the	abundance	of	proteins	

and	other	biomolecules	are	responsible	for	the	temporal	organization	of	diverse	biological	processes.	

Accumulating	evidence	suggests	that	alternative	splicing	might	be	one	of	these	clock-controlled	pro-

cesses.	Alternative	splicing	describes	a	versatile	mechanism	of	gene	regulation	that	generates	several	

distinct	protein	isoforms	from	a	single	gene	via	the	differential	inclusion	or	exclusion	of	alternate	RNA	

regions.	Both	disruptions	of	the	circadian	clock	and	aberrant	splicing	are	associated	with	carcinogen-

esis	and	tumor	progression.	

This	dissertation	seeks	to	answer	the	question	whether	mammalian	alternative	splicing	is	regulated	

by	the	circadian	clock,	and	whether	the	hypothesized	regulation	differs	between	cancer	cells	in	differ-

ent	tumor	stages.	In	particular,	 it	tries	to	elucidate	whether	changes	in	circadian	regulated	splicing	

events	could	be	responsible	for	the	production	of	protein	isoforms	that	contribute	to	the	malignant	

development	of	cancer	cells.	The	study	is	based	on	data	from	two	human	colon	cancer	cell	lines,	SW480	

and	SW620,	that	have	been	derived	from	a	primary	tumor	and	a	metastasis	of	the	same	patient	and	

thus	serve	as	an	in	vitro	model	of	colorectal	tumor	progression.	A	computational	analysis	was	con-

ducted	to	identify	24-h	rhythmic	genes	and	alternative	splicing	events	on	transcriptome-level	based	

on	the	time-series	data	of	both	cell	lines.	As	a	reference,	previously	published	time-series	data	of	nu-

merous	healthy	tissues	from	mouse	and	baboon	organs	were	analyzed.	

The	analysis	revealed	differences	in	the	circadian	phenotype	of	the	two	cell	lines,	with	the	metastasis-

derived	cell	line	SW620	exhibiting	a	stronger	dysregulation	of	circadian	rhythmicity.	Furthermore,	this	

work	shows	that	splicing-related	genes	and	putative	splicing	events	display	24-h	rhythms	that	differ	

between	primary	tumor-	and	metastasis-derived	cells.	Both	in	healthy	tissues	and	cancer	cells,	rhyth-

mic	splicing	was	found	to	affect	many	genes	that	are	themselves	involved	in	splicing,	suggesting	a	par-

tial	autoregulation	of	the	process.	Several	of	the	spliced	candidate	genes	encode	for	protein	isoforms	

that	 are	 involved	 in	processes	promoting	 tumor	progression,	 such	 as	migration	 and	 angiogenesis.	

Taken	together,	the	results	presented	in	this	dissertation	point	to	a	circadian	regulation	of	alternative	

splicing	that	plays	a	role	in	cancer	development.	
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1.1 The Circadian Clock 1 

1 Introduction 

„	[…]	there	is	apparently	no	organ	and	no	function	in	the	

body	which	does	not	exhibit	a	similar	daily	rhythmicity.	

– Jürgen Aschoff 

German	Physician	and	Chronobiologist	

1.1 The Circadian Clock 

Life on Earth is subject to diurnal changes of light and darkness caused by the planet’s counter-

clockwise rotation around its own axis. Organisms have adapted to these recurring and predictable 

changes in the environment by evolving a highly accurate internal time-keeping system known as 

the circadian clock, derived from the Latin words circa and diem, meaning “about a day”. Circadian 

clocks are responsible for the generation of ~24-h rhythms in physiology and behavior that can be 

found in virtually all light-sensitive organisms across the three domains of life, including cyanobac-

teria (Cohen and Golden, 2015), fungi (Liu and Bell-Pedersen, 2006), plants (Greenham and 

McClung, 2015), insects (Tomioka and Matsumoto, 2010), fish (Reebs, 2002), and mammals 

(Mohawk et al., 2012). Though the genetic components of the individual clocks differ, ranging 

from three genes forming a cell-autonomous oscillator in cyanobacteria to multiple interlocked 

oscillators in mammals (Bell-Pedersen et al., 2005), they all share the same defining properties: 

They generate innate, endogenous, and self-sustained rhythms with a period of ~24 h that persist 

even in the absence of cyclic environmental signals (free-running rhythms) (Pittendrigh, 1960; 

Roenneberg and Merrow, 2005). The circadian period is temperasture-compensated, meaning that 

it is kept constant for temperatures within a physiological range, and undergoes only slight changes 

under free-running conditions (Aschoff, 1981; Pittendrigh, 1954). The phase, i.e., peak time of the 

rhythm, can be entrained to the environment by external timing cues called “Zeitgebers” (German 

for “time givers”) of which light is the most dominant one but which also include non-photic stimuli 

such as temperature, activity, and feeding time (Refinetti, 2010). The entrainment of the internal 

clock to the external time facilitates the anticipation of and adaption to daily cycles in the environ-

ment and thus likely confers an evolutionary advantage to the organism (Pittendrigh, 1993). 
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1.1.1 A Brief History of Chronobiology 

The	earliest	records	of	circadian	processes	can	be	traced	back	to	the	fourth	century	BC	when	the	Greek	

admiral	Androsthenes,	who	served	under	Alexander	the	Great,	noted	the	daily	opening	and	nightly	

closing	of	the	leaves	of	the	tamarind	tree	Tamarindus	indicus	(Lee	Phillips,	2005).	Over	2000	years	

later,	in	1729,	the	French	astronomer	Jean-Jacques	d’Ortous	de	Mairan	conducted	the	first	recorded	

circadian	experiment	by	placing	a	Mimosa	pudica	in	constant	darkness	(de	Mairan,	1729).	De	Mairan	

observed	that	the	plant	continued	the	daily	folding	and	unfolding	of	its	leaflets	despite	the	lack	of	light	

and	concluded	that	the	plant	“sensed	the	sun	without	seeing	it”.	The	endogenous	character	of	the	cir-

cadian	clock	in	plants	was	first	described	in	1832	by	the	Swiss	botanist	Augustin	Pyramus	de	Candolle	

who	reported	a	free-running	rhythm	of	22	h	for	a	mimosa	placed	under	constant	light	(de	Candolle,	

1832).		

In	the	20th	century,	circadian	research	expanded	from	plants	to	encompass	the	exploration	of	daily	

rhythmicity	in	animals	and	other	organisms.	Important	hallmarks	include	the	discovery	of	the	herita-

bility	of	the	circadian	clock	in	plants	by	Erwin	Bünning	(Bünning,	1932),	the	temperature-compensa-

tion	of	its	period	in	Drosophila	melanogaster	by	Colin	Pittendrigh	(Pittendrigh,	1954),	and	the	human	

circadian	clock	in	temporal	isolation	by	Jürgen	Aschoff	(Aschoff	and	Wever,	1962).	The	term	“circa-

dian”	was	first	coined	by	Franz	Halberg	in	the	late	1950s	to	describe	endogenous	biological	rhythms	

with	a	diurnal	periodicity	(Halberg	et	al.,	1959).	A	further	milestone	in	the	research	of	mammalian	

circadian	clocks	was	the	identification	of	the	suprachiasmatic	nucleus	(SCN)	of	the	hypothalamus	as	

the	 central	 circadian	pacemaker	 in	mammals	 by	 ablation	 experiments	 in	 rats	 (Moore	 and	Eichler,	

1972;	Stephan	and	Zucker,	1972).	While	the	existence	of	circadian	clocks	in	various	eukaryotic	species	

from	single-celled	organisms	to	plants	to	animals	was	widely	accepted	by	the	1960s	(Roenneberg	and	

Merrow,	2005),	prokaryotes	were	long	considered	incapable	of	expressing	circadian	rhythms	due	to	

being	“too	simple”	–	a	dogma	that	was	finally	overthrown	by	the	discovery	of	a	circadian	rhythm	of	

nitrogen	fixation	in	photosynthesizing	cyanobacteria	(Mitsui	et	al.,	1986).	Research	on	the	molecular	

mechanisms	of	the	clock	was	fueled	by	the	discovery	of	the	first	clock	mutants	in	a	Drosophila	mutant	

screen	(Konopka	and	Benzer,	1971)	with	the	responsible	gene	aptly	named	period	(per)	and	later	suc-

cessfully	cloned	by	Michael	Young	and	colleagues	(Bargiello	et	al.,	1984).	The	discovery	of	the	self-

suppressing	role	of	the	Period	protein	(PER)	led	Paul	Hardin,	Jeffrey	Hall,	and	Michael	Rosbash	to	pro-

pose	a	transcriptional	translational	feedback	loop	(TTFL)	as	the	molecular	mechanism	responsible	for	

the	 generation	 of	 circadian	 rhythmicity	 (Hardin	 et	 al.,	 1990).	 These	 and	 other	 findings	 raised	 the	

awareness	of	the	importance	of	the	circadian	clock	for	human	physiology	which	culminated	in	Hall,	

Rosbash	and	Young	receiving	the	Nobel	Prize	in	Physiology	or	Medicine	2017	"for	their	discoveries	of	

molecular	mechanisms	controlling	the	circadian	rhythm".	
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1.1.2 Architecture of the Mammalian Circadian System 

The	mammalian	circadian	clock	can	be	conceptualized	as	a	hierarchical	system	consisting	of	a	main	

oscillator	or	“pacemaker”	in	a	brain	region	known	as	the	SCN	and	peripheral	oscillators	residing	in	

organs	and	tissues	throughout	the	body	(Welsh	et	al.,	2010).	Located	in	the	anteroventral	hypothala-

mus	of	the	brain,	the	SCN	is	composed	of	two	clusters	of	tightly	interconnected	neurons	(~10.000	each	

in	mouse)	that	are	situated	immediately	dorsal	to	the	optic	chiasm	and	receive	direct	photic	input	from	

the	intrinsically	photosensitive	retinal	ganglion	cells	of	the	 inner	retina	via	the	retinohypothalamic	

tract	(RHT)	(Patton	and	Hastings,	2018).	In	short,	a	glutamate	release	at	synaptic	contacts	between	the	

RHT	and	SCN	neurons	 leads	 to	a	depolarization	of	 the	neuronal	membrane	 (Meijer	and	Schwartz,	

2003).	The	resulting	calcium	influx	likely	activates	cAMP	response	element-binding	protein-mediated	

transcription	of	the	core	clock	genes	Per1	and	Per2	that	contain	cAMP	response	elements	in	their	pro-

moters	(Meijer	and	Schwartz,	2003).	Since	Per	genes	are	only	light-inducible	in	the	SCN	during	the	

subjective	night	of	an	animal,	this	enables	a	reset	of	the	circadian	phase	in	accordance	with	external	

light	conditions	and	thus	allows	for	the	entrainment	of	the	SCN	to	solar	time	(Dibner	et	al.,	2010).	

Though	cell-autonomously	generated	and	self-sustained,	circadian	rhythms	in	the	SCN	additionally	

rely	on	electrophysiological	coupling	mechanisms	between	neurons	that	allow	them	to	maintain	their	

intercellular	synchrony	even	in	constant	darkness	(Patton	and	Hastings,	2018;	Welsh	et	al.,	2010).	The	

SCN	fulfills	its	pacemaker	function	by	generating	output	signals	that	coordinate	the	synchronization	of	

local	clocks	in	other	brain	regions	and	peripheral	tissues	through	a	variety	of	direct	and	indirect	path-

ways.	Direct	pathways	include	the	circadian	variation	of	neuronal	and	humoral	signals,	while	indirect	

pathways	include	circadian	changes	in	body	temperature,	as	well	as	rest-activity	and	feeding-fasting	

cycles	(Dibner	et	al.,	2010).	In	addition,	cell-autonomous	oscillators	reside	in	most	peripheral	tissues	

of	 the	organism	where	they	regulate	 local	circadian	physiology	relevant	 to	 the	respective	cell	 type	

(Mohawk	et	al.,	2012).	The	clocks	of	both	peripheral	tissues	and	SCN	neurons	share	the	same	molecular	

makeup:	They	consist	of	a	regulatory	network	of	clock	genes	and	proteins	which	interact	via	positive	

and	negative	TTFLs	(Dibner	et	al.,	2010)	(Figure	1-1).	At	the	core	of	the	mammalian	clock	network,	

the	activators	CLOCK	(and	its	paralogue	NPAS2)	and	BMAL1	(also	known	as	ARNTL)	form	a	heterodi-

meric	basic	helix-loop-helix	PER-ARNT-SIM	transcription	factor	complex	that	rhythmically	activates	

the	expression	of	target	genes	from	the	Per	(Per1,	Per2,	Per3)	and	Cryptochrome	(Cry1,	Cry2)	families	

by	binding	to	consensus	E-box	DNA	motifs	in	their	promoters	(Takahashi,	2017).	The	translated	PER	

and	CRY	proteins	form	a	complex	that	translocates	from	the	cytoplasm	to	the	nucleus	where	it	inhibits	

the	CLOCK:BMAL1-mediated	transcription	of	Per	and	Cry	genes,	thus	forming	a	negative	feedback	loop	

(Shearman	et	al.,	2000).	Once	the	repressor	proteins	are	degraded	through	ubiquitin-dependent	path-

ways,	transcription	of	the	genes	can	resume	again	and	the	cycle	starts	anew	(Partch	et	al.,	2014).	The	

rate	at	which	the	PER:CRY	complex	enters	the	nucleus	and	gets	degraded	is	further	controlled	by	the	

casein	kinases	CKIδ	and	CKIε	and	by	E3	ligase	complexes	which	target	PER	and	CRY	proteins	for	ubiq-

uitylation	(Gallego	and	Virshup,	2007).	
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Figure	1-1:	Mammalian	core	circadian	feedback	loops.	Adapted	from	Takahashi	(2017).		

In	a	second	negative	feedback	loop,	the	CLOCK:BMAL1	complex	activates	the	transcription	of	genes	

from	the	Rev-Erb	family	(Nr1d1,	Nr1d2)	also	via	E-box	binding	(Triqueneaux	et	al.,	2004).	The	trans-

lated	orphan	nuclear	receptors	REV-ERBα	and	REV-ERBβ	repress	the	transcription	of	Bmal1	by	bind-

ing	to	RevDR2	and	retinoic	acid-related	orphan	receptor-binding	elements	(ROREs)	in	its	promoter	

region	(Preitner	et	al.,	2002).	The	resulting	rhythmic	expression	of	Bmal1	mRNA	is	further	modulated	

by	orphan	nuclear	receptors	from	the	ROR	family	(RORa,	RORb,	RORc)	which	compete	with	the	REV-

ERB	proteins	 for	ROREs	binding	but,	 in	contrast	 to	 them,	activate	Bmal1	 transcription	 (Sato	et	al.,	

2004).	A	third	loop	involves	the	nuclear	factor	NFIL3	(also	known	as	E4BP4)	and	three	members	of	

the	proline	and	acidic	amino	acid-rich	(PAR)	basic	leucine	zipper	transcription	factor	family:	DBP,	TEF,	

and	HLF	(Takahashi,	2017).	Together,	these	transcription	factors	regulate	circadian	gene	expression	

by	interacting	on	D-box	containing	promoters	and	enhancers	of	target	genes,	with	NFIL3	repressing	

and	the	clock-controlled	PAR	proteins	activating	their	transcription	(Mitsui	et	al.,	2001).	Analogous	to	

Bmal1,	Nfil3	expression	itself	is	repressed	by	REV-ERBα	(Duez	et	al.,	2008),	whereas	Dbp	transcription	

is	activated	via	CLOCK:BMAL1	E-box	binding	(Yamaguchi	et	al.,	2000).	Together,	these	interlocking	

feedback	loops	generate	robust	endogenous	rhythms	in	the	expression	of	so-called	clock-controlled	

genes	with	a	periodicity	of	approximately	24	h	and	a	variety	of	phases.	In	addition	to	the	direct	regula-

tion	via	core-clock	protein	binding	to	circadian	cis-regulatory	elements	of	clock-controlled	genes	(E/E’-

boxes,	D-boxes,	ROREs),	the	circadian	transcriptome	is	controlled	by	a	multitude	of	downstream	sig-

naling	circuits.	Recent	genome-wide	multi-organ	studies	of	the	circadian	transcriptome	in	nocturnal	

and	diurnal	mammals	have	shown	that	in	any	given	tissue,	~5–20%	of	expressed	genes	undergo	cir-

cadian	oscillations	in	mRNA	levels	and	that	~40–65%	of	protein-coding	genes	and	97%	of	ubiquitously	

expressed	genes	oscillate	in	at	least	one	organ	(Mure	et	al.,	2018;	Zhang	et	al.,	2014).		
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Circadian	transcriptional	programs	are	highly	diverse	as	well	as	tissue-specific,	thus	enabling	the	co-

ordination	of	local	physiology	and	organ	function.	Well-studied	clock-controlled	cellular	processes	in-

clude	metabolism	(Reinke	and	Asher,	2019),	cell	cycle	(Gaucher	et	al.,	2018),	stem	cell	division	and	

differentiation	 (Brown,	 2014),	 as	 well	 as	multiple	 post-transcriptional	mechanisms	 (Torres	 et	 al.,	

2018).	The	clock	further	controls	diverse	physiological	and	behavioral	processes	such	as	variations	in	

body	temperature	(Aschoff,	1983),	blood	pressure	(Giles,	2006),	hormone	production	(Hastings	et	al.,	

2007),	immune	activity	(Scheiermann	et	al.,	2013),	sleep-wake	and	rest-activity	cycles	(Beersma	and	

Gordijn,	2007),	and	memory	consolidation	(Eckel-Mahan	and	Storm,	2009).	 Indeed,	 Jürgen	Aschoff	

proved	to	be	quite	far-sighted	when	he	noted	that	“there	is	apparently	no	organ	and	no	function	in	the	

body	which	does	not	exhibit	a	similar	daily	rhythmicity”	(Aschoff,	1965).	

1.1.3 The Role of the Circadian Clock in Cancer 

Given	the	scope	of	biological	processes	under	circadian	control,	it	is	not	surprising	that	the	clock	has	a	

profound	impact	on	human	health	and	that	dysregulations	of	the	circadian	system	are	associated	with	

several	pathologies	(Roenneberg	and	Merrow,	2016).	These	include	sleep	disorders	(Toh	et	al.,	2001),	

mood	disorders	(Grandin	et	al.,	2006),	metabolic	syndrome	and	obesity	(Bishehsari	et	al.,	2016),	car-

diovascular	disorders	(Crnko	et	al.,	2019)	as	well	as	susceptibility	to	cancer	(Fu	and	Kettner,	2013;	Fu	

and	Lee,	2003).	Dysregulations	of	the	circadian	clock	can	be	caused	both	by	environmental	perturba-

tions	 of	 the	 organism’s	 internal	 circadian	 rhythm	 and	 by	 genetic	 mutations	 within	 clock	 genes	

(Preußner	and	Heyd,	2016).	

The	first	reports	of	a	connection	between	disrupted	circadian	rhythms	and	tumor	development	date	

back	to	the	1960s	and	describe	the	formation	of	spontaneous	mammary	tumors	in	rodents	induced	via	

constant	light	exposure	and	ablation	of	the	pineal	gland	(Hamilton,	1969;	Jöchle,	1964).	In	a	series	of	

epidemiological	studies,	a	higher	incidence	of	breast,	colorectal,	and	prostate	cancer	in	addition	to	met-

abolic	and	gastrointestinal	diseases	were	reported	for	long-term	shift	workers	such	as	radio	operators	

and	night-time	nurses	(Hansen,	2001;	Knutsson,	2003;	Schernhammer	et	al.,	2001;	Schernhammer	et	

al.,	2003;	Tynes	et	al.,	1996).	Apparently,	the	continuous	misalignment	of	the	internal	circadian	clock	

with	the	environment	increases	the	risk	of	carcinogenesis	which	led	the	International	Agency	for	Re-

search	on	Cancer	of	the	World	Health	Organization	to	classify	shift	work	involving	circadian	disruption	

as	“probably	carcinogenic	to	humans”	(exposure	circumstances,	class	2A	carcinogen)	(IARC,	2007).	

Disrupted	circadian	rhythms	have	also	been	shown	to	constitute	a	prognostic	biomarker	for	survival	

and	tumor	response	of	cancer	patients	(Mormont	et	al.,	2000;	Sephton	et	al.,	2000).	Studies	in	animal	

models	have	shown	that	the	disruption	of	circadian	rhythms	through	ablation	of	the	SCN	or	exposure	

to	chronic	jet-lag	enhances	the	growth	of	tumors	in	mice	(Filipski	et	al.,	2002;	Filipski	et	al.,	2009).	The	

above	described	findings	suggest	that	a	functioning	clock	may	act	as	a	tumor	suppressor	and	that	a	

disrupted	clock	might	promote	tumorigenesis	(Fu	and	Kettner,	2013).	However,	the	underlying	mech-



	
6 Chapter 1 Introduction 

anisms	by	which	the	dysregulation	of	circadian	rhythmicity	may	affect	tumor	growth	are	still	the	sub-

ject	of	ongoing	research	and	it	is	not	yet	clear	whether	a	malfunctioning	clock	is	a	cause	or	a	conse-

quence	of	carcinogenesis	and/or	tumor	progression.	

At	the	molecular	level,	the	mammalian	circadian	clock	is	coupled	with	a	second	biological	oscillator	

that	 plays	 a	 fundamental	 role	 in	 controlling	 cell	 growth	 and	 proliferation:	 the	 cell	 division	 cycle	

(Gaucher	et	al.,	2018).	In	analogy	to	findings	in	unicellular	organisms	where	the	circadian	clock	con-

trols	the	timing	of	cell	division	(Yang	et	al.,	2010),	it	has	been	suggested	that	the	circadian	clock	may	

also	act	as	a	gating	mechanism	for	cell	cycle	progression	in	mammalian	cells,	allowing	cell	division	only	

at	specific	times	of	the	day	(Nagoshi	et	al.,	2004).	However,	more	recent	studies	have	rejected	the	gat-

ing	hypothesis	in	favor	of	either	a	unidirectional	(Bieler	et	al.,	2014)	or	a	bidirectional	coupling	(Feillet	

et	al.,	2014)	between	the	circadian	clock	and	the	cell	cycle.	A	number	of	molecular	connections	between	

core	circadian	and	cell	cycle	components	have	been	identified	in	recent	years	(Feillet	et	al.,	2015;	Fu	

and	Kettner,	2013;	Shostak,	2017)	(Figure	1-2).	One	of	these	connections	is	the	WEE1	kinase	which	

inhibits	the	cell	cycle	regulator	CDK1	through	phosphorylation	and	thus	acts	as	a	G2/M	checkpoint	by	

preventing	the	cell’s	entry	into	mitosis.	In	mice,	Wee1	transcriptional	expression	has	been	found	to	be	

directly	activated	by	the	Clock:Bmal1	heterodimer	and	to	be	suppressed	by	Per/Cry	proteins	(Matsuo	

et	al.,	2003).	Though	not	reported	as	rhythmic	itself,	the	multifunctional	nuclear	protein	NONO	is	part	

of	the	mammalian	circadian	circuitry	through	binding	to	PER	proteins	and	antagonizing	their	repres-

sive	activity	(Brown	et	al.,	2005).	In	mice,	Nono	was	found	to	bind	to	the	G1/S	checkpoint	and	tumor	

suppressor	 gene	p16-Ink4a	 and	 to	 activate	 its	 circadian	 transcription	 in	 a	 Per-dependent	manner	

(Kowalska	et	al.,	2013).	A	recent	study	further	provided	evidence	for	p16-Ink4a	acting	as	a	mediator	

for	 changes	 in	 the	 circadian	 period	 upon	 Ras-mediated	 oncogenic	 dysregulation	 of	 the	 clock	 (El-

Athman	et	al.,	2017).	Additional	links	from	the	clock	to	cell	cycle	regulators	include	CRY2-dependent	

protein	turnover	of	the	oncogene	and	cell	cycle	regulator	c-MYC	(Huber	et	al.,	2016),	the	rhythmic	reg-

ulation	of	p21	transcription	via	binding	of	elements	from	the	ROR	and	REV-ERB	protein	families	to	

ROREs	motifs	in	its	promoter	(Gréchez-Cassiau	et	al.,	2008),	and	Per2	preventing	the	Mdm2-mediated	

ubiquitination	of	the	tumor	suppressor	p53	(Gotoh	et	al.,	2016).	Notably,	p53	influences	the	circadian	

clock	and	the	cell	cycle	in	a	bidirectional	fashion	which	can	be	considered	as	further	evidence	for	a	

coupling	between	 the	 two	oscillators:	p53	 represses	Per2	 transcription	by	blocking	 the	binding	of	

Clock:Bmal1	(Miki	et	al.,	2013),	whereas	p53	transcription	is	in	turn	controlled	by	Bmal1	(Jiang	et	al.,	

2016).	Overall,	the	precise	molecular	interplay	between	the	clock	and	the	cell	cycle	in	healthy	and	tu-

mor	tissues	is	hard	to	uncover	due	to	the	plasticity	of	both	cell	cycle	control	and	the	circadian	circuitry	

(Partch	et	al.,	2014;	Shostak,	2017).	
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Figure	1-2:	Molecular	connections	between	the	circadian	clock	and	the	cell	cycle	in	mammals.		

Mutations	 and	 alterations	 in	 the	 expression	 of	 core	 clock	 and	 clock-regulated	 genes	 are	 common	

throughout	many	types	of	cancers	and	have	been	found	to	be	associated	with	patient	survival,	tumor	

stage,	and	clinical	subtype	(Benna	et	al.,	2017;	Ye	et	al.,	2018).	In	a	recent	study,	Ye	et	al.	(2018)	exam-

ined	the	expression	levels	of	core	clock	genes	across	multiple	human	cancers	and	found	them	to	be	

altered	dependent	on	their	role	in	the	circadian	TTFL	circuitry,	with	transcriptional	repressors	tending	

to	be	downregulated,	and	transcriptional	activators	tending	to	be	upregulated	in	cancer.	For	instance,	

dysregulations	in	the	expression	levels	of	members	of	the	PER	circadian	repressor	family	have	been	

linked	to	cancer	in	various	clinical	(Chen	et	al.,	2005;	Zhao	et	al.,	2014a)	and	in	vitro	studies	(Gery	et	

al.,	2006;	Hua	et	al.,	2006),	predominantly	in	a	tumor	suppressor	context.	Overexpression	of	Per2	has	

been	found	to	induce	apoptotic	cell	death	in	murine	and	human	cancer	cells	via	downregulation	of	the	

anti-apoptotic	oncogenes	c-Myc,	Bcl-XL,	and	Bcl‐2	and	the	upregulation	of	the	pro-apoptotic	tumor	sup-

pressor	gene	p53	and	its	target	gene	Bax	(Hua	et	al.,	2006;	Oda	et	al.,	2009).	Despite	the	widely	accepted	

tumor-suppressive	role	of	the	circadian	clock	(Davis	et	al.,	2019),	some	studies	also	report	tumor-pro-

moting	properties	of	clock	genes	that	are	partly	in	conflict	with	other	findings.	For	example,	on	the	one	

hand,	the	disruption	of	the	clock	via	a	simultaneous	deletion	of	both	Cry	genes	has	been	found	to	reduce	

the	risk	of	carcinogenesis	in	a	mice	strain	that	is	cancer-prone	due	to	a	p53	mutation	(Ozturk	et	al.,	

2009).	On	the	other	hand,	the	same	deletion	has	been	reported	to	enhance	the	formation	of	carcinomas	

in	mice	exposed	to	irradiation	and	carcinogenic	compounds	(Lee	et	al.,	2010;	Mteyrek	et	al.,	2017),	

indicating	that	the	role	of	the	circadian	clock	in	cancer	is	context-dependent	(Shostak,	2017).	

In	light	of	the	above	described	links	between	disrupted	internal	timing	and	cancer	and	the	apparent	

tumor-suppressive	role	of	the	circadian	clock,	it	seems	only	logical	to	apply	this	knowledge	to	the	ben-

efit	of	patients.	Daily	rhythms	in	human	physiology	modulate	pharmacokinetics	and	pharmacodynam-

ics	and	thus	influence	the	effect	of	xenobiotics	on	the	organism	according	to	the	time-of-day	(Dallmann	

et	al.,	2016).	Humans	display	large	interindividual	differences	regarding	their	internal	time	and	their	

sleep	and	wake	preferences	–	 ranging	 from	extreme	 “larks”	 to	 extreme	 “owls”	 (Roenneberg	et	 al.,	

2003).	The	concept	of	chronotherapy	or	chronopharmacology	aims	at	adjusting	the	dosing-time	to	the	

internal	 time	 of	 patients	 in	 order	 to	 enhance	 treatment	 efficacy	 and	 minimize	 toxic	 side	 effects	

(Cederroth	et	al.,	2019;	Ozturk	et	al.,	2017).	Accordingly,	new	diagnostic	tools	for	the	determination	of	
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internal	circadian	time	are	paving	the	way	for	personalized	clinical	approaches	that	take	the	chrono-

type	of	patients	into	account	(Braun	et	al.,	2018;	Laing	et	al.,	2017;	Wittenbrink	et	al.,	2018).	Promising	

findings	regarding	chronotherapy	have	been	made	in	studies	with	colorectal	cancer	(CRC)	patients.	

CRC	is	the	third	most	commonly	diagnosed	cancer	in	men	and	the	second	in	women	and	remains	a	

major	cause	of	mortality,	especially	in	Western	societies	(Bray	et	al.,	2018).	Most	patients	die	from	

metastases	to	the	liver	and	the	lungs	and	the	five-year	survival	rate	for	CRC	found	at	the	distant	stage	

is	only	~14%	(Noone	et	al.,	2018).	Many	processes	of	the	gastrointestinal	tract	and	the	digestive	sys-

tem	display	circadian	rhythms	(Scheving,	2000)	and	disruption	of	the	circadian	clock	has	been	impli-

cated	in	colorectal	carcinogenesis	and	CRC	progression	(Mazzoccoli	et	al.,	2014).	Alterations	in	clock	

gene	expression	have	been	found	in	tumor	tissues	of	patients	with	CRC	compared	to	healthy	surround-

ing	tissues	(Wang	et	al.,	2012;	Wang	et	al.,	2011)	and	are	further	associated	with	the	formation	of	me-

tastases	and	poorer	survival	rates	(Mazzoccoli	et	al.,	2011;	Oshima	et	al.,	2011).	Chronomodulated	de-

livery	of	chemotherapy	has	shown	favorable	results	for	male	patients	with	metastatic	CRC	in	a	Phase	

III	study,	resulting	in	an	increased	survival	time	for	men	but	nor	for	women,	indicating	a	sex	depend-

ency	for	optimal	treatment	schedules	(Giacchetti	et	al.,	2006).		

In	summary,	dysregulated	circadian	clocks	are	associated	with	mammalian	carcinogenesis	and	cancer	

progression.	Through	its	coupling	to	the	cell	cycle,	the	circadian	clock	is	responsible	for	the	temporal	

regulation	of	key	processes	of	the	cell	whose	disruption	can	result	in	carcinogenesis,	including	cell	pro-

liferation	and	apoptosis,	and	other	hallmarks	of	cancer	(Sulli	et	al.,	2019).	Mutations	and	alterations	in	

the	expression	of	core	clock	and	clock-regulated	genes	are	commonly	observed	in	cancer	patients	and	

cancer	cell	lines	and	studies	in	tumor	models	suggest	a	tumor	suppressor	role	of	the	circadian	system.	

However,	the	exact	mechanisms	of	how	a	disrupted	clock	might	favor	malignant	transformation	are	

still	a	topic	of	ongoing	research	and	might	furthermore	be	context	dependent.	Translational	clinical	

research	tries	to	leverage	the	knowledge	of	links	between	the	clock	and	cancer	in	chronotherapeutical	

treatment	approaches	that	take	the	internal	time	of	patients	into	account.	

1.1.4 Ultradian Rhythms and Circadian Harmonics 

In	addition	to	circadian	rhythms,	mammals	also	exhibit	so-called	sub-circadian	or	ultradian	rhythms	

with	a	period	<	24	h	in	their	physiology	and	behavior	(Prendergast	and	Zucker,	2016).	On	the	molecu-

lar	level,	ultradian	rhythms	in	gene	expression	at	the	second	harmonic	(12	h	period)	and	third	har-

monic	(8	h	period)	of	circadian	rhythmicity	have	first	been	discovered	in	vivo	in	murine	liver	(Hughes	

et	al.,	2009).	The	authors	identified	hundreds	of	12-h	and	dozens	of	8-h	harmonic	genes	in	liver	sam-

ples	and	validated	12-h	rhythmic	genes	in	several	other	tissues	but	found	none	in	ex	vivo	cultured	mu-

rine	and	human	cells.	Several	of	the	12-h	rhythmic	genes	lost	their	oscillations	in	a	restricted	feeding	

experiment,	leading	the	authors	to	hypothesize	that	12-h	rhythms	might	be	regulated	via	feeding	be-

havior	 and	 food	metabolism.	 Based	 on	 these	 findings,	 they	 suggested	 a	 partly	 extrinsic	 origin	 of	

rhythms	at	the	second	harmonic	which	is	based	on	interactions	between	autonomous	circadian	clocks	

and	systemic	cues	that	cannot	be	sufficiently	replicated	in	vitro	(Hughes	et	al.,	2009).	The	existence	of	
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12-h	rhythms	in	mammalian	transcription	has	been	further	validated	in	subsequent	studies	that	were	

predominantly	conducted	in	murine	liver	(Hughes	et	al.,	2012b;	Vollmers	et	al.,	2009;	Zhu	et	al.,	2017).	

Interestingly,	it	was	found	that	loss-of-function	of	the	core	clock	gene	Clock	diminishes	12-h	hepatic	

rhythmicity	and	that	brain-specific	Clock	rescue	converts	12-h	rhythms	into	24-h	rhythms	without	loss	

of	amplitude,	suggesting	that	the	central	circadian	clock	is	at	least	partly	involved	in	their	generation	

(Hughes	et	al.,	2012b).	

Ultradian	rhythms	have	also	been	observed	at	the	proteomic	and	metabolomic	level.	The	Ire1α	gene	

shows	12-h	oscillations	in	murine	liver,	leading	to	12-h	rhythms	in	abundance	of	the	endoplasmic	re-

ticulum	(ER)	membrane	protein	IRE1α	and	a	rhythmic	activation	of	the	IRE1α-XBP1	pathway	in	mouse	

liver	(Cretenet	et	al.,	2010).	The	splicing	efficiency	of	the	transcription	factor	gene	Xbp1	and	the	ex-

pression	of	 the	spliced	protein	 isoform	XBP1s	show	robust	12-h	rhythms	both	 in	vivo	 and	 in	vitro	

(Cretenet	et	al.,	2010;	Zhu	et	al.,	2017).	Furthermore,	it	was	found	that	siRNA-mediated	knockdown	of	

Xbp1	in	mouse	embryonic	fibroblasts	severely	impairs	12-h	rhythms	of	several	genes,	implying	a	role	

for	XBP1s	as	a	transcriptional	regulator	of	a	purportedly	independent	mammalian	12-h	clock	(Zhu	et	

al.,	2017).	Recently,	third	harmonics	of	circadian	rhythms	have	been	observed	in	metabolite	accumu-

lation	in	U2OS	cells,	including	amino	acids,	methylation	products,	and	vitamin	B1	(Krishnaiah	et	al.,	

2017).		

The	detection	of	ultradian	rhythms	requires	sampling	at	a	high	resolution,	e.g.,	every	1	h	or	2	h	(Hughes	

et	al.,	2009),	and	is	further	compounded	by	the	fact	that	circadian	harmonics	are	commonly	masked	

by	co-expressed	circadian	rhythms	(van	der	Veen	and	Gerkema,	2016;	Zhu	et	al.,	2018).	Post	hoc	anal-

yses	of	previously	published	datasets	using	different	methods	for	the	detection	of	ultradian	rhythmic-

ity	than	Hughes	et	al.	(2009)	suggest	that	the	prevalence	of	ultradian	transcriptomic	rhythms	might	

have	been	underestimated	and	offer	alternative	interpretations	of	the	data.	In	contrast	to	the	previous	

findings	by	Hughes	et	al.	(2009),	a	more	recent	study	using	a	non-spectral	analysis	method	for	the	

separation	of	ultradian	from	circadian	components	reported	more	than	900	genes	with	ultradian	ex-

pression	in	NIH	3T3	cells	in	vitro,	supporting	the	hypothesis	of	intrinsically	driven	ultradian	rhythms	

(van	der	Veen	and	Gerkema,	2016).	Another	post	hoc	analysis	of	the	murine	liver	transcriptome	data	

revealed	~4%	of	all	hepatic	genes	to	have	dominant	12-h	transcriptional	rhythms	and	~8%	to	have	

dominant	8-h	rhythms	(Zhu	et	al.,	2017).	A	period	was	defined	as	dominant	if	the	amplitude	of	the	

rhythm	was	the	greatest	among	all	identified	oscillations	(Zhu	et	al.,	2017).	

Despite	these	findings,	only	little	is	known	about	the	molecular	mechanisms	that	give	rise	to	ultradian	

oscillations	and	that	might	consolidate	the	conflicting	reports	of	clock-dependent	and	clock-independ-

ent	 ultradian	 rhythmicity.	 A	 theoretical	 analysis	 by	Westermark	 and	Herzel	 uncovered	 a	 possible	

mechanism	for	the	generation	of	12-h	rhythms	that	is	based	on	an	interplay	between	components	of	

the	circadian	clock	(Westermark	and	Herzel,	2013).	The	authors	propose	a	model	of	a	circadian	AND	

funnel	where	pairs	of	circadian	transcription	factors	bind	to	the	promoters	of	target	genes	in	a	non-

competitive	way.	They	showed	that	12-h	rhythms	in	the	expression	of	a	target	gene	can	be	produced,	

provided	that	both	transcription	factors	are	either	activators	or	repressors	of	transcription	and	out	of	
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phase	by	~12	h	or	that	one	transcription	factor	is	an	activator	and	the	other	a	repressor	and	both	have	

approximately	the	same	phase.	Interestingly,	they	also	showed	that	8-h	rhythms	can	theoretically	be	

generated	by	a	circadian	AND	funnel	if	one	transcription	factor	is	circadian	and	the	other	has	a	12-h	

period	(Westermark	and	Herzel,	2013).	

The	function	of	ultradian	rhythms	is	still	largely	unknown.	Pathway	analysis	carried	out	based	on	the	

ultradian	gene	sets	in	murine	liver	identified	by	Hughes	et	al.	(2009)	revealed	12-h	rhythmic	genes	to	

be	involved	in	diverse	processes	including	ER	homeostasis,	the	regulation	of	cell	division,	and	protein	

processing.	8-h	rhythmic	genes	were	found	to	be	associated	with	NF-kB	signaling	and	lipid	metabolism	

(Hughes	et	al.,	2009).	Later	studies	have	suggested	a	metabolic	relevance	of	ultradian	rhythms,	as	well	

as	a	possible	ultradian	gating	of	the	cell	cycle	(van	der	Veen	and	Gerkema,	2016;	Ventre	et	al.,	2015).	It	

has	further	been	hypothesized	that	12-h	rhythms	in	gene	expression	and	protein	and	metabolite	abun-

dance	might	be	in	tune	with	a	daily	biphasic	“metabolic	stress	cycle”	that	results	from	energy	overdraft	

and	excess	at	transition	periods	between	feeding-fasting	and	sleep-wake	cycles	(Zhu	et	al.,	2018;	Zhu	

et	al.,	2017).	According	to	another	hypothesis,	mammalian	12-h	rhythms	may	have	evolved	from	an	

ancestral	circatidal	clock	which	regulates	the	behavior	of	coastal	and	estuarine	animals	in	sync	with	

the	~12.4-h	periodic	ebb	and	flow	of	the	tides	(Wilcockson	and	Zhang,	2008;	Zhu	et	al.,	2018).	There	is	

still	an	ongoing	debate	about	whether	circatidal	rhythms	are	generated	via	two	antiphasic	24.8-h	pe-

riodic	circadian	clocks	(Palmer,	1995)	or	whether	they	are	the	product	of	a	dedicated	circatidal	clock	

with	a	period	of	12.4	h	that	is	independent	of	the	circadian	clock	(Zhang	et	al.,	2013).	

Overall,	there	is	accumulating	evidence	that	ultradian	rhythms	at	the	second	and	third	harmonic	of	the	

circadian	period	are	prevalent	in	mammalian	tissues,	though	their	physiological	function	and	their	mo-

lecular	underpinnings	still	remain	to	be	elucidated.	

1.1.5 Analysis of Circadian Rhythmicity on the Genome-Scale 

Detecting	rhythms	in	a	time-series,	assessing	their	significance	and	estimating	rhythmic	parameters	is	

a	fundamental	aspect	of	circadian	studies.	A	typical	experimental	layout	of	a	genome-scale	circadian	

experiment	consists	of	~20,000	observations	(e.g.,	genes)	and	6–48	sparsely	sampled,	equidistant	time	

points,	usually	taken	every	2–4	h	for	1–2	circadian	cycles.	For	the	detection	of	circadian	features	in	

genome-scale	data,	statistical	algorithms	are	used	that	can	generally	be	divided	in	parametric	and	non-

parametric	methods.	A	simple	and	widely	used	example	of	a	parametric	algorithm	for	rhythm	detec-

tion	is	the	cosinor	or	harmonic	regression	method	(Figure	1-3).	The	single	cosinor	is	a	harmonic	re-

gression	model	for	a	single	component	that	fits	the	first	harmonics	in	a	Fourier	expansion	to	estimate	

amplitudes	and	phases	of	a	time-series	of	oscillating	data	points	by	employing	a	least	squares	method	

(Cornelissen,	2014;	Lück	et	al.,	2014).	It	can	be	applied	for	the	detection	of	rhythms	in	a	time-series	

under	the	condition	that	the	period	is	known	beforehand,	as	can	be	assumed	for	most	circadian	studies	

(Cornelissen,	2014).	
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Figure	1-3:	Schematic	representation	of	the	harmonic	regression	model.	Time	points	(gray	circles)	are	grouped	accord-

ing	to	their	position	in	a	sinusoidal	curve	with	a	pre-defined	period	(dark	blue	curve).	Measurements	(light	blue	squares)	

are	binned	according	to	the	time	point	groups.	Amplitude	and	significance	of	a	rhythm	can	be	inferred	from	the	slope	of	

the	linear	least	squares	approximation	(red	line).	Adapted	with	permission	from	a	presentation	by	Pål	Westermark.	

A	sum	of	sinusoidal	functions	

𝑦 = 𝑚 + 𝑎 𝑐𝑜𝑠 *!"#
$
+ + 𝑏 𝑠𝑖𝑛 *!"#

$
+ + 𝜀		 (1)	

is	fitted	to	the	time-series	where	y	represents	the	abundance	of	a	molecule	at	time	t,	m	is	the	rhythm-

adjusted	mean,	also	known	as	the	midline	estimating	statistic	of	rhythm	(MESOR),	τ	is	the	period	(in	

radians),	 and	 ε	 is	 the	 error	 term	 (Cornelissen,	 2014).	 Using	 the	 trigonometric	 angle	 sum	 identity	

𝑐𝑜𝑠(𝛼 ± 𝛽) = 𝑐𝑜𝑠(𝛼) 𝑐𝑜𝑠(𝛽) ∓ 𝑠𝑖𝑛(𝛼) 𝑠𝑖𝑛(𝛽)	 and	 the	coefficients	𝑎 = 𝐴	𝑐𝑜𝑠(𝜙)	 and	𝑏 = 𝐴	𝑠𝑖𝑛(𝜙),	

(1)	can	be	rewritten	as	a	single	sinusoid	function	in	the	form	

𝑦 = 𝑚 + 𝐴𝑐𝑜𝑠 *!"#
$
− 𝜙+ + 𝜀		 (2)	

With	a	 relative	amplitude	𝐴 = ±√𝑎! + 𝑏!	 and	phase	 (or	acrophase)	𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛 *%
&
+	 (Cornelissen,	

2014;	Lück	et	al.,	2014).	

The	objective	of	the	linear	least	squares	method	is	to	minimize	the	residual	sum	of	squares	(RSS),	de-

fined	as	the	sum	of	the	differences	between	the	measurements	𝑦' 	obtained	at	time	ti	(i=1,	2,	…,	N)	and	

the	values	𝑦=' 	estimated	from	the	fitted	model	(Cornelissen,	2014)	

𝑅𝑆𝑆 = ∑ (𝑦' − 𝑦=')!(
')* 		 (3)	

Following	an	analytical	approach,	the	least	squares	solution	can	be	found	by	solving	the	normal	equa-

tions	for	linear	regression.	In	order	to	do	this,	the	linear	system	can	be	represented	by	matrix	notation	

and	the	normal	equations	are	formulated	using	matrix	calculus	to	compute	a	scalar-by-vector	deriva-

tive.	

A	general	regression	model	with	n	observations	and	k	explanators	can	be	written	as	

𝑦 = 𝑋𝛽 + 𝑒,	 (4)	

where	y	and	e	are	n	x	1	vectors,	β	is	a	k	x	1	vector	and	X	is	an	n	x	k	matrix.		

In	the	specialized	case	of	a	harmonic	regression	model	for	mean-centered	data	with	m	=	0,	one	has	

𝑦' ≈ 𝑎 𝑐𝑜𝑠 *!"#!
$
+ + 𝑏 𝑠𝑖𝑛 *!"#!

$
+ = 𝐴 𝑐𝑜𝑠 *!"#!

$
− 𝜙+.	 (4)	



	
12 Chapter 1 Introduction 

Then	let	matrix	X	be	

𝑋 = D
cos	(!"#"

$
) sin	(!"#"

$
)

cos	(!"##
$
) sin	(!"##

$
)

… …

K.	 (5)	

Estimates	for	a	and	b	that	minimize	the	RSS	can	be	obtained	by	solving	the	normal	equation	system	

𝑋+𝑋𝛽L = 𝑋+ 𝑦	 (6)	

𝛽L = (𝑎, 𝑏) = (𝑋+𝑋),*𝑋+ 𝑦,	 (7)	

with	𝑋𝛽L 	representing	the	orthogonal	projection	of	y	to	the	column	space	of	X,	and	𝛽L 	representing	the	

vector	of	the	least	squares	prediction	(Davison,	2003)	(Figure	1-4).	

	
Figure	1-4:	Geometric	interpretation	of	the	least	squares	estimation.	The	linear	combination	𝑋𝛽# 	represents	the	orthog-

onal	projection	of	the	observation	y	to	the	column	space	of	X.	The	fitted	value	𝑦% = 𝑋(𝑋!𝑋)"#𝑋!𝑦	is	the	point	that	is	

closest	to	𝑦	in	the	column	space	of	X.	The	vector	of	residuals	𝑒 = 𝑦 − 𝑦%	is	orthogonal	to	𝑦%.	The	estimation	by	least	squares	

amounts	to	minimizing	the	squared	distance	(𝑦 − 𝑋𝛽#)!(𝑦 − 𝑋𝛽#).	Adapted	from	Davison	(2003).	

Statistical	significance	of	the	model	is	determined	by	an	F-test	for	the	null	hypothesis	that	there	is	no	

rhythm	and	that	a	and	b	are	randomly	distributed	according	to	a	Gaussian	probability	distribution	

(Cornelissen,	2014;	Halberg	et	al.,	1967).	The	null	hypothesis	is	rejected	if	the	p-value	for	A	>	0	(or	more	

precisely	either	a	or	b	>	0)	is	below	the	chosen	probability	level	(Lück	et	al.,	2014).	

The	covariance	matrix	of	𝛽L 	can	be	determined	by	

𝑉𝑎𝑟(𝛽L) = 𝜎!(𝑋+𝑋),* = 𝜎! P2/𝑁 0
0 2/𝑁U	

(8)	

where	σ2	is	the	variance	of	the	noise.	Using	the	Jacobian	matrices	

𝐽- = (𝑎/𝐴 𝑏/𝐴)				and	 (9)	

𝐽. = (−𝑏/𝐴! 𝑎/𝐴!),	 (10)	

the	variances	of	amplitude	and	phase	can	be	obtained	by	error	propagation,	resulting	in	

𝑉𝑎𝑟(𝐴) = 𝐽-𝑉𝑎𝑟X𝛽LY𝐽-+ = 𝜎! !
(
				and	 (11)	

𝑉𝑎𝑟(𝜙) = 𝐽.𝑉𝑎𝑟X𝛽LY𝐽.+ = 𝜎! !
-#(

.	 (12)	
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The	same	framework	can	also	be	used	to	test	for	differences	in	rhythmicity,	e.g.,	in	phase	or	amplitude	

of	features	measured	in	different	conditions,	as	implemented	in	the	Detection	of	Differential	Rhythmic-

ity	(DODR)	software	package	(Thaben	and	Westermark,	2016).	

In	case	of	outliers	and	non-Gaussian	variability	of	the	measured	data,	non-parametric	algorithms	using	

rank	sum	testing	can	be	applied	instead.	A	prominent	example	of	a	non-parametric	rank-based	method	

for	biological	rhythm	detection	is	the	JTK_CYCLE	method	that	applies	the	Jonckheere-Terpstra-Kendall	

(JTK)	algorithm	(Hughes	et	al.,	2010).	The	Jonckheere-Terpstra	(JT)	test	for	ordered	alternatives	or	

Jonckheere	trend	test	is	a	non-parametric	statistical	test	that	can	be	used	to	determine	whether	there	

is	a	significant	monotonic	trend	between	an	ordinal	or	a	continuous	dependent	variable	(e.g.,	mRNA	

expression	levels)	and	an	ordinal	independent	variable	(e.g.,	time)	(Jonckheere,	1954;	Terpstra,	1952).	

Given	a	set	of	n	different	samples	X𝑋**, … , 𝑋*/"Y, … , (𝑋0*, … , 𝑋*/$)	of	size	m1,	…,	mn	that	is	taken	from	

independent	populations		𝐹*(𝑥), … , 	𝐹0(𝑥),	the	null	and	alternative	hypotheses	of	the	JT	test	are	given	

by	(13)	and	(14),	respectively:	

𝐻1: 	𝐹*(𝑥) = 	𝐹!(𝑥) = ⋯ = 	𝐹0(𝑥)			and	 (13)	

𝐻*: 	𝐹*(𝑥) < 	𝐹!(𝑥) < ⋯ < 	𝐹0(𝑥),	 (14)	

with	H0	stating	that	the	samples	are	drawn	from	populations	with	the	same	distribution	function	and	

H1	assuming	a	strictly	monotonic	ordering.		

The	JT	test	statistic	is	expressed	as	

𝑠 = ∑ 𝑈'20
'32 = ∑ ∑ 𝑈'20

2)'4*
0,*
')* ,	 (15)	

using	the	Mann-Whitney-U-statistic	for	comparison	of	two	samples:	

𝑈'2 = ∑ ∑ 𝑞'%,2&
/'
6)*

/!
7)* 	with	 (16)	

𝑞'%,2& = b1			𝑖𝑓	𝑋'7 < 𝑋26 ,
0			𝑒𝑙𝑠𝑒															

.	 (17)	

The	Kendall	rank	correlation	coefficient,	also	referred	to	as	Kendall’s	tau,	is	a	measure	of	the	ordinal	

association	between	two	measured	quantities	and	describes	the	similarity	of	orderings	of	 the	data	

when	ranked	(Kendall,	1938).	JTK_CYCLE	applies	the	JT	test	to	compare	the	ranks	of	the	measured	

values	of	a	time-series	to	those	of	a	pre-defined	reference	waveform,	by	default	a	cosine	(Hughes	et	al.,	

2010).	In	a	first	step,	all	points	in	a	time-series	are	compared	in	a	pairwise	manner	to	determine	their	

ranks.	The	resulting	increasing/decreasing	pattern	is	compared	to	the	increasing/decreasing	pattern	

of	a	reference	curve.	Based	on	a	user-defined	range	of	period	lengths,	the	algorithm	then	determines	

an	optimal	combination	of	period	and	phase,	such	that	the	p-value	of	Kendall’s	tau	correlation	between	

the	values	from	the	measured	time-series	and	each	tested	cyclical	ordering	is	minimized.	Afterwards,	

all	minimal	p-values	are	Bonferroni-adjusted	to	correct	for	the	multiple	testing	of	possible	periods	and	

phases	(Hughes	et	al.,	2010).	
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Several	other	non-parametric	algorithms	for	the	genome-scale	detection	of	rhythms	have	been	built	

based	on	the	idea	of	JTK_CYCLE,	including	empirical	JTK	(eJTK)	that	provides	empirically-calculated	p-

values	for	arbitrary	waveforms	(Hutchison	et	al.,	2015),	its	successor	BooteJTK	that	additionally	uses	

parametrically	bootstrapped	re-samplings	of	a	time-series	(Hutchison	et	al.,	2018),	and	the	Rhythmic-

ity	 Analysis	 Incorporating	 Nonparametric	 methods	 (RAIN)	 algorithm	 (Thaben	 and	 Westermark,	

2014).	In	contrast	to	JTK_CYCLE	and	similar	to	eJTK,	RAIN	also	allows	for	non-sinusoidal,	non-sym-

metric	waveforms	that	may	have	differing	shapes	and	lengths	of	the	rising	and	the	falling	parts	of	the	

curve	(Thaben	and	Westermark,	2014).	In	order	to	do	this,	RAIN	applies	a	generalized	version	of	the	

JT	test,	the	so-called	rank	test	for	umbrella	alternatives	that	allows	for	the	detection	of	patterns	with	a	

rising	and	falling	shape,	termed	a	variable	umbrella	peak	(Mack	and	Wolfe,	1981).	Under	the	assump-

tion	that	a	largest	population	𝐹8(𝑥)	and	a	smallest	population	𝐹*(𝑥)	exist,	the	alternative	hypothesis	is	

described	by	

𝐻*: 	𝐹*(𝑥) < 	𝐹!(𝑥) < ⋯ < 	𝐹8(𝑥) > ⋯ > 	𝐹0(𝑥) > 	𝐹*(𝑥)	 (18)	

and	the	test	statistic	is	expressed	as	

𝑠 = ∑ ∑ 𝑈'28
2)'4*

8,*
')* + ∑ ∑ 𝑈2'0

2)'4*
0,*
')8 + ∑ 𝑈2*0

2)84* .	 (19)	

The	data	is	first	grouped	by	measurement	time	and	subsequently	binned	such	that	repeated	measure-

ments	or	time	point	replicates	(e.g.,	ZT0	and	ZT24	for	a	24-h	period)	are	in	the	same	bin	(Figure	1-5)	

(Thaben	and	Westermark,	2014).	The	measured	data	is	then	tested	against	an	oscillation	model	that	

consists	of	a	rising	and	a	falling	slope,	with	the	slopes	being	tested	independently	by	a	summation	of	

Mann-Whitney-U-tests	 (Thaben	 and	Westermark,	 2014).	 Due	 to	 different	 phases,	 amplitudes,	 and	

peak	shapes	being	considered,	the	resulting	p-values	are	internally	corrected	for	partially-dependent	

multiple	testing	using	the	Benjamini-Hochberg	(BH)	method	(Thaben	and	Westermark,	2014).		

	

Figure	 1-5:	 Schematic	 representation	 of	 the	 RAIN	 algorithm	 for	 rhythm	 detection.	 Adapted	 from	 Thaben	 and	

Westermark	(2014).	

For	genome-scale	studies,	a	further	correction	for	multiple	testing	of	the	computed	p-values	should	be	

considered	based	on	 the	number	of	 tested	 features	 (e.g.,	 expressed	genes)	 (Storey	and	Tibshirani,	

2003).	The	p-value	estimates	the	probability	of	finding	the	observed	or	more	extreme	results	when	the	

null	hypothesis	is	true	(e.g.,	for	a	truly	non-rhythmic	gene).	The	adjusted	p-value	or	q-value	obtained	
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by	multiple	testing	correction	estimates	the	expected	false	discovery	rate	(FDR)	when	rejecting	the	

null	 hypothesis	 for	 results	 with	 an	 equal	 or	 smaller	 q-value.	 To	 filter	 for	 biologically	 significant	

rhythms,	it	is	further	recommended	to	exclude	rhythmic	features	with	very	small	amplitudes	by	addi-

tionally	employing	an	amplitude	cutoff	as	determined	by	harmonic	regression,	e.g.,	A	≥	0.1.	To	increase	

the	detection	power	in	genome-scale	experiments,	the	amplitude	cutoff	can	also	be	employed	to	pre-

filter	RAIN	p-values	before	the	correction	for	multiple	testing,	since	the	estimated	p-value	is	independ-

ent	from	the	amplitude	(Bourgon	et	al.,	2010).	

In	this	thesis,	both	the	parametric	harmonic	regression	method	and	the	non-parametric	RAIN	algo-

rithm	are	applied	for	the	genome-scale	detection	of	circadian	rhythmicity	in	transcription.	Harmonic	

regression	is	further	used	for	the	estimation	of	rhythmic	parameters,	i.e.,	phase	and	amplitude	of	oscil-

lations,	and	the	DODR	method	is	used	to	detect	differences	in	rhythmicity	of	a	gene	measured	in	two	

conditions.	

1.2 Pre-mRNA Splicing 

During	transcription	in	the	nucleus,	eukaryotic	genes	are	synthesized	as	precursor	messenger	RNAs	

(pre-mRNAs)	that	require	various	processing	steps	such	as	5’	capping,	splicing,	and	polyadenylation	

of	the	3’	end	before	being	transported	to	the	cytoplasm	where	they	are	subsequently	translated	into	

proteins.	Splicing	describes	the	process	of	excising	the	non-coding	intervening	sequences	(introns)	and	

concatenating	the	coding	expressed	sequences	(exons)	of	a	pre-mRNA	transcript	to	produce	a	mature	

messenger	RNA	(mRNA)	transcript.	Most	mammalian	genes	contain	multiple	introns,	making	splicing	

an	essential	step	in	pre-mRNA	editing	and	gene	expression.	

1.2.1 Mechanism and Regulation of Splicing 

The	biochemical	mechanism	of	 pre-mRNA	 splicing	has	been	 extensively	 studied,	 e.g.,	 in	 yeast	 and	

mammalian	model	systems,	and	has	been	found	to	be	largely	conserved	between	lower	and	higher	

eukaryotes	(Wahl	et	al.,	2009;	Will	and	Lührmann,	2011).	It	consists	of	two	consecutive	transesterifi-

cation	reactions	(i.e.,	phosphate	transfer)	occurring	between	RNA	nucleotides	in	order	to	first	cleave	

the	intronic	region	and	subsequently	ligate	the	two	flanking	exons	(Shi,	2017)	(Figure	1-6).	In	the	first	

reaction,	the	2’-hydroxyl	group	of	a	conserved	adenosine	residue	at	the	intronic	branch	point	sequence	

(BPS)	upstream	of	the	3’	splice	site	of	the	pre-mRNA	initiates	a	nucleophilic	attack	on	the	5’	terminal	

phosphate	of	the	5’	splice	site	and	forms	a	2’–5’	phosphodiester	bond,	thereby	cleaving	the	upstream	

exon	from	the	intron.	The	result	is	a	released	upstream	exon	with	a	3’-hydroxyl	group	and	a	lariat	in-

termediate	consisting	of	the	intron	and	the	downstream	exon.	In	the	second	step,	the	3’-hydroxyl	group	

of	the	released	exon	performs	a	nucleophilic	attack	on	the	phosphodiester	bond	at	the	last	intronic	

nucleotide	of	the	3’	splice	site,	yielding	two	ligated	exons	and	an	excised	intron	lariat.	Since	splice	site	

sequences	are	usually	short	and	often	degenerate	(Smith	and	Valcárcel,	2000),	the	accurate	recognition	

of	the	exact	sites	for	the	transesterification	reactions	requires	multiple	proofreading	mechanisms	and	
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a	complex	network	of	RNA-protein,	RNA-RNA,	and	protein-protein	interactions	to	ensure	the	precision	

and	specificity	needed	for	a	correct	splicing	process	(Bonnal	et	al.,	2012).	In	addition	to	splice	site	se-

quences,	cis-acting	splicing	regulatory	elements	also	include	intronic	and	exonic	splicing	enhancers	or	

silencers	located	in	the	vicinity	of	3’	and	5’	splice	sites	that	modulate	splicing	by	binding	trans-acting	

regulatory	proteins	that	either	stimulate	or	inhibit	the	splicing	process	(Will	and	Lührmann,	2011).	

In	most	cases,	pre-mRNA	splicing	is	catalyzed	by	the	major	spliceosome,	a	large	and	highly	dynamic	

ribonucleoprotein	(RNP)	complex	comprised	of	the	five	small	ribonucleoproteins	(snRNPs)	U1,	U2,	U5,	

U4/U6,	 and	more	 than	200	additional	 non-snRNP	proteins	 (Wahl	 et	 al.,	 2009)	 (Figure	1-7).	 Each	

snRNP	consists	of	one	or,	in	the	case	of	U4/U6,	two	small	nuclear	RNAs	(snRNAs),	a	group	of	highly	

abundant	RNA	molecules	with	a	length	of	100–300	nucleotides,	and	specific	associated	proteins	(Wahl	

et	al.,	2009).	While	the	snRNPs	U1,	U2,	U4,	and	U5	have	a	binding	site	for	the	seven	core	Sm	proteins	

B/B’,	D1,	D2,	D3,	 E,	 F,	 and	G,	 the	U6	 snRNP	associate	with	a	 set	of	 Sm-like	LSm	proteins	 (Will	 and	

Lührmann,	2011).	Some	metazoan	species	and	plants	have	an	additional	minor	spliceosome	whose	

assembly	is	compositionally	distinct	with	different	but	functionally	analogous	components	(Will	and	

Lührmann,	2011).	

	

Figure	1-6:	Transesterification	reactions	during	pre-mRNA	splicing.	Adapted	from	Shi	(2017).	

In	addition	to	the	core	spliceosomal	components,	a	large	number	of	trans-acting	auxiliary	splicing	reg-

ulatory	factors	or	splicing	factors	(SFs)	is	required	for	the	assembly	of	the	spliceosome	and	the	splicing	

process.	SFs	include	members	of	the	SR	protein	family,	a	conserved	group	of	proteins	encoded	by	nine	

genes	in	humans	that	is	characterized	by	an	RS	domain	containing	long	repeats	of	serine	and	arginine	
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amino	acid	residues	(Shepard	and	Hertel,	2009).	SR	proteins	regulate	exon	inclusion	by	binding	to	ex-

onic	splicing	enhancers,	thereby	facilitating	the	recruitment	of	other	spliceosomal	components	to	the	

regulated	splice	site	(Long	and	Caceres,	2009).	The	splicing-promoting	activities	of	SR	proteins	com-

pete	in	an	antagonistic	way	with	another	group	of	non-snRNPs	involved	in	splicing	known	as	hetero-

geneous	nuclear	RNPs	(hnRNPs)	(Zhu	et	al.,	2001).	HnRNPs	are	a	structurally	diverse	and	highly	abun-

dant	group	of	primarily	nuclear	RNA-binding	proteins	(RBPs)	that	form	complexes	with	transcripts	

produced	by	RNA	polymerase	II	(Han	et	al.,	2010).	More	than	half	of	the	major	hnRNPs	have	been	re-

ported	or	proposed	to	be	involved	in	splicing	(Martinez-Contreras	et	al.,	2008).	Most	hnRNPs	repress	

splicing	by	either	antagonizing	the	recognition	of	splice	sites	or	by	interfering	with	the	binding	of	pro-

teins	 bound	 to	 splicing	 enhancers	 (Martinez-Contreras	 et	 al.,	 2008).	 But	 there	 are	 also	 reports	 of	

hnRNPs	playing	a	positive	role	in	splicing	control	depending	on	the	location	of	their	binding	sites	rela-

tive	to	the	regulated	splice	sites	(Martinez-Contreras	et	al.,	2008).	Another	essential	SF	is	the	heterodi-

mer	complex	U2AF	that	consists	of	a	35-kDA	and	a	65-kDA	subunit	(Mollet	et	al.,	2006).	In	conjunction	

with	the	SF	SF1,	U2AF65	mediates	the	recognition	of	the	pre-mRNA	BPS	in	order	to	define	the	3’	end	

of	the	intron	during	early	spliceosome	assembly	(Selenko	et	al.,	2003).	

	

Figure	1-7:	Stepwise	spliceosome	assembly.	Adapted	from	Nguyen	et	al.	(2016).		

The	core	spliceosomal	components	and	SFs	assemble	in	a	sequential	manner	on	the	pre-mRNA	to	cat-

alyze	the	two	transesterification	steps	(Wahl	et	al.,	2009)	(Figure	1-7).	In	short,	the	spliceosome	as-

sembly	is	initiated	by	the	ATP-independent	binding	of	the	U1	snRNP	to	the	5’	splice	site	and	the	binding	

of	the	65-kDa	and	35-kDa	subunits	of	U2AF	to	the	polypyrimidine	tract	and	the	conserved	AG	dinucle-

otide	of	the	3’	splice	site,	respectively.	The	U1	snRNP	binding	is	stabilized	by	members	of	the	SR	protein	

family	while	the	U2AF65	binding	is	supported	by	SF1.	Together,	they	form	the	spliceosomal	complex	

E.	U2AF	in	turn	supports	the	binding	of	U2	snRNP	and	U2-related	proteins	to	the	BPS	in	an	ATP-de-

pendent	manner	which	leads	to	the	disassociation	of	SF1/mBBP,	resulting	in	the	formation	of	complex	

A.	Subsequently,	the	preassembled	U4/5/6	tri-snRNP	bind	to	form	the	inactivated	complex	B.	To	be-

come	catalytically	active,	the	spliceosome	undergoes	major	conformational	and	compositional	changes	
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including	the	release	of	U1	and	U4,	leading	to	the	activated	complex	B*.	The	first	transesterification	

reaction	gives	rise	to	the	complex	C	which	again	undergoes	rearrangements	before	the	second	trans-

esterification	reaction	takes	place	and	the	spliceosome	disassociates.	During	assembly	and	activation,	

the	protein	composition	of	the	spliceosome	undergoes	drastic	changes,	including	an	extensive	remod-

eling	of	spliceosomal	subunits	(Wahl	et	al.,	2009).	While	some	proteins	are	present	throughout	the	

whole	splicing	cycle,	such	as	U2-associated	proteins	and	members	of	the	SR	and	hnRNP	protein	fami-

lies,	others	seem	to	be	only	loosely	associated	or	required	in	specific	situations,	e.g.,	different	RBPs	

(Wahl	et	al.,	2009).	Mass	spectrometric	analyses	of	human	spliceosomal	complexes	at	different	stages	

of	assembly	have	revealed	that	over	170	proteins	associate	with	the	spliceosome	at	some	point	during	

the	splicing	process	(Will	and	Lührmann,	2011).	Overall,	splicing	is	a	highly	complex	and	tightly	regu-

lated	process	that	involves	a	multitude	of	components	at	specific	points	of	the	assembly	and	for	specific	

target	genes.	

1.2.2 Alternative Splicing 

In	most	multi-exon	genes,	there	exist	several	alternative	patterns	of	exon	inclusion	and	intron	removal	

for	a	single	primary	transcript	which	allows	for	the	differential	processing	of	pre-mRNAs,	known	as	

alternative	splicing	(AS).	While	constitutively	spliced	exons	are	present	in	every	mRNA	that	is	pro-

duced	from	a	given	pre-mRNA,	alternatively	spliced	exons	can	either	be	excised	or	included	fully	or	

partly	in	the	mature	mRNA	transcript	(Blencowe,	2006).	The	production	of	multiple	mRNAs	with	dif-

fering	exonic	compositions	enables	cells	to	create	several	protein	isoforms	with	related,	distinct	or	

even	antagonistic	properties	from	a	single	gene	locus	and	is	thus	assumed	to	increase	not	only	the	

complexity	of	the	transcriptome	but	also	to	engender	proteome	diversity	(Blencowe,	2017;	Gallego-

Paez	et	al.,	2017;	Liu	et	al.,	2017a).	AS	can	also	act	as	an	on-off	switch	of	gene	expression	by	introducing	

premature	stop	codons	into	the	mRNA	transcripts,	thus	affecting	the	quantitative	control	of	gene	ex-

pression	(Lopez,	1998).	While	AS	events	occur	ubiquitously	in	eukaryotes,	the	rate	of	AS	is	higher	in	

organisms	with	a	large	cell	type	diversity	(e.g.,	birds	and	mammals)	than	in	species	with	fewer	distinct	

cell	types,	suggesting	a	link	between	AS	and	organism	complexity	(Chen	et	al.,	2014b;	Kim	et	al.,	2007).	

There	are	several	types	of	AS	events	whose	prevalence	varies	among	species	(Keren	et	al.,	2010)	(Fig-

ure	1-8).	Exon	skipping	or	cassette	alternative	exons	denote	alternatively	spliced	exonic	sequences	

that	can	either	be	included	or	skipped	in	the	mature	mRNA,	independent	of	the	excision	or	retention	

of	other	exons.	Exon	skipping/cassette-type	alternative	exons	are	 the	most	 common	 type	of	AS	 in	

higher	eukaryotes,	accounting	for	nearly	40%	of	known	AS	events	(Keren	et	al.,	2010).	The	second	and	

third	most	frequent	events	are	the	selections	of	alternative	3’	and	5’	splice	sites	that	sometimes	intro-

duce	changes	in	the	coding	sequence	that	differ	only	in	a	single	codon	(Blencowe,	2006).	Together,	they	

account	for	at	least	one	quarter	of	AS	events	in	mammals	(Sugnet	et	al.,	2004).	Intron	retention	de-

scribes	the	inclusion	of	an	otherwise	intronic	sequence	in	the	mature	mRNA	transcript	which	contrib-

utes	to	less	than	5%	of	known	AS	events	in	metazoans	(Keren	et	al.,	2010).	Other	less	frequent	and	

more	complicated	events	have	an	impact	on	adjacent	or	distal	AS	events	in	the	same	transcript	such	as	
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the	selection	of	a	set	of	two	or	more	mutually	exclusive	alternative	exons	(Blencowe,	2006).	In	addition	

to	the	above	described	AS	events,	other	mechanisms	of	pre-mRNA	processing	exist,	including	alterna-

tive	promoter	usage	which	can	lead	to	the	inclusion	of	alternative	first	exons	(Davuluri	et	al.,	2008)	

and	the	selection	of	alternative	polyadenylation	sites	which	can	lead	to	differing	terminal	exons	(Lutz,	

2008).	

	

Figure	1-8:	Types	of	AS	events.	Adapted	from	Keren	et	al.	(2010).	

According	to	genome-wide	studies,	nearly	95%	of	human	multi-exon	genes	undergo	AS,	resulting	in	

more	than	100,000	distinct	AS	events,	of	which	the	majority	has	been	reported	to	display	tissue-de-

pendent	variations	(Pan	et	al.,	2008;	Wang	et	al.,	2008).	It	has	been	estimated	that	the	majority	of	hu-

man	genes	generates	almost	eight	different	mRNAs	(Chacko	and	Ranganathan,	2009)	and	the	most	

recent	release	of	the	Ensembl	genome	database	reports	~20,500	known	human	protein-coding	genes	

in	comparison	to	~227,000	produced	transcripts	(Cunningham	et	al.,	2018).	However,	not	all	reported	

AS	events	are	necessarily	functional	and/or	result	in	protein-coding	transcripts	but	might	also	be	due	

to	errors	in	the	splicing	process	(Melamud	and	Moult,	2009;	Pickrell	et	al.,	2010).	Moreover,	not	all	

protein	isoforms	resulting	from	AS	events	are	functionally	different	or	important	(Bhuiyan	et	al.,	2018;	

Tress	et	al.,	2017a,	b).	Nonetheless,	AS	plays	an	important	role	in	controlling	enzymatic	properties,	

intracellular	localization,	and	ligand	interactions	of	proteins	which	have	profound	functional	effects	on	

diverse	biological	processes	(Kelemen	et	al.,	2013).	While	the	effect	of	an	individual	splicing	isoform	is	

often	small,	so-called	splicing	programs	seem	to	regulate	global	changes	in	AS	to	generate	coordinated	

patterns	of	splicing	events	with	a	collective	impact	on	physiology	(Kelemen	et	al.,	2013).	For	instance,	

AS	enables	differential	gene	expression	between	cell	types	during	differentiation	and	development	and	

thereby	contributes	to	the	tissue-specificity	of	multicellular	organisms	(Baralle	and	Giudice,	2017).	

However,	the	functional	impact	of	many	alternatively	spliced	isoforms	is	still	unknown,	necessitating	

further	research.	

1.2.3 The Role of Aberrant Splicing in Cancer 

Aberrant	pre-mRNA	splicing	is	frequently	implicated	in	human	disease,	notably	in	carcinogenesis	and	

tumor	progression	(David	and	Manley,	2010;	Ghigna	et	al.,	2008;	Kaida	et	al.,	2012).	Dysregulations	in	

AS	patterns	are	associated	with	various	aspects	of	tumor	biology,	such	as	the	control	of	metabolism,	
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proliferation,	apoptosis,	angiogenesis,	and	metastasis	(Bonnal	et	al.,	2012),	and	have	even	been	pro-

posed	to	constitute	an	additional	hallmark	of	cancer	(Ladomery,	2013).	It	has	further	been	suggested	

that	the	high	flexibility	of	alternatively	spliced	gene	products	might	provide	tumor	cells	with	the	ability	

to	produce	protein	isoforms	that	are	normally	expressed	in	specific	developmental	stages	but	down-

regulated	in	adult	cells	(David	and	Manley,	2010).	In	cancer,	these	isoforms	could	promote	unchecked	

growth	and	survival,	promoting	the	spread	of	tumor	cells.	Isoform	switches	in	different	tumor	types	

have	been	linked	to	losses	in	functional	protein	domain	families	that	are	frequently	mutated	in	cancer,	

possibly	conferring	a	selective	advantage	to	tumor	cells	similar	to	that	caused	by	somatic	mutations	in	

cancer	drivers	(Climente-Gonzalez	et	al.,	2017).	However,	despite	large-scale	alterations	in	AS	having	

been	observed	in	cancer,	so	far,	only	few	AS	events	have	been	shown	to	be	functionally	relevant	in	

cancer-related	processes	(David	and	Manley,	2010).		

A	well-studied	example	of	a	gene	with	cancer-relevant	AS	is	the	apoptosis	regulator	Bcl-X	that	can	be	

alternatively	spliced	at	two	competing	5’	splice	sites,	leading	either	to	the	production	of	the	anti-apop-

totic	isoform	Bcl-XL	that	is	usually	overexpressed,	or	the	pro-apoptotic	isoform	Bcl-XS	that	is	down-

regulated	in	cancer	cells	(Kaida	et	al.,	2012;	Oltean	and	Bates,	2014).	Another	prominent	example	for	

aberrant	AS	in	cancer	is	the	SF2/ASF-regulated	splicing	of	the	vascular	endothelial	growth	factor	VEGF	

that	has	two	main	groups	of	isoforms:	VEGFxxx	and	VEGFxxxb	(Nowak	et	al.,	2010).	While	the	VEGFxxx	

isoforms	promote	angiogenesis	and	are	overexpressed	in	cancer,	the	VEGFxxxb	isoforms	are	anti-an-

giogenetic	and	downregulated	in	cancer	(Kaida	et	al.,	2012).	Aberrant	splicing	also	affects	oncogenes	

and	tumor	suppressors.	Isoforms	of	the	oncoprotein	MDM2	arise	through	intricate	patterns	of	AS	and	

have	 been	detected	 to	 be	 frequently	 overexpressed	 in	 human	 tumors	 (Jeyaraj	 et	 al.,	 2008).	While	

MDM2	normally	binds	to	and	degrades	p53	(Figure	1-2),	the	isoform	MDM2-B	lacks	the	p53-binding	

domain	and	interacts	with	full-length	MDM2	instead,	thereby	inhibiting	MDM2-mediated	degradation	

of	mutated	p53	and	promoting	its	accumulation	and	gain-of-function	in	tumorigenesis	(Zheng	et	al.,	

2013).	

Other	examples	for	altered	AS	patterns	with	consequences	in	cancer	include	the	genes	encoding	for	

the	transmembrane	protein	CD44	and	the	fibroblast	growth	factor	receptor	FGFR2	which	are	both	in-

volved	in	epithelial-to-mesenchymal	transition	(EMT).	EMT	describes	the	process	of	polarized	epithe-

lial	cells	undergoing	a	transition	to	assume	a	mobile	mesenchymal	cell	phenotype	which	plays	a	critical	

role	in	embryonic	development	(Kalluri	and	Weinberg,	2009).	Epithelial	cancer	cells	can	hijack	this	

process	to	gain	enhanced	migratory	and	invasive	capacity	as	well	as	increased	resistance	to	apoptosis	

(Pastushenko	and	Blanpain,	2018).	The	genomic	structure	of	human	CD44	consists	of	20	exons,	ten	of	

which	are	included	or	skipped	in	a	variable	fashion,	defining	the	attachment	properties	of	the	molecule	

and	its	subsequent	impact	on	cancer	metastasis	and	EMT	(Cooper	and	Dougherty,	1995;	Warzecha	and	

Carstens,	2012).	FGFR2	encodes	for	two	isoforms	due	to	mutually	exclusive	splicing	of	alternative	cas-

sette	exons	IIIb	which	is	characteristic	to	epithelial	cells	and	isoform	IIIc	which	is	characteristic	to	mes-

enchymal	cells	(Warzecha	et	al.,	2009).	A	switch	from	the	IIIb	to	the	IIIc	isoform	correlates	with	ag-

gressive	tumor	growth	and	invasive	capability	of	cancers	(Oltean	et	al.,	2006;	Yan	et	al.,	1993).	
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Changes	in	AS	patterns	can	be	due	to	mutations	in	splicing	regulatory	sequences	which	usually	result	

in	an	impaired	recognition	of	the	splice	site	(Brooks	et	al.,	2014;	Dorman	et	al.,	2014;	Kim	et	al.,	2015b).	

However,	many	cancer-associated	AS	events	have	been	found	to	occur	in	the	absence	of	mutations	in	

the	affected	genes	(Grosso	et	al.,	2008b).	Instead,	changes	in	the	splicing	machinery	and	splicing	regu-

latory	networks	seem	to	be	responsible	for	many	aberrant	splicing	events.	Various	SFs	have	been	re-

ported	to	be	mutated	in	cancer,	including	U2AF1,	SF3B1,	SRSF2,	and	RBM10	(Imielinski	et	al.,	2012;	

Yoshida	et	al.,	2011).	SFs	have	also	been	observed	to	be	upregulated	or	to	a	slighter	extent	downregu-

lated	in	various	human	tumors,	suggesting	that	they	can	act	as	proto-oncogenes	and	tumor	suppres-

sors,	respectively	(Grosso	et	al.,	2008b;	Sebestyén	et	al.,	2016).	For	instance,	the	SR	protein	SF2/ASF	

that	is	encoded	by	SRSF1	and	regulates	both	constitutive	and	AS	is	upregulated	in	various	human	can-

cers	and	its	overexpression	can	trigger	malignant	transformation,	suggesting	a	proto-oncogenic	role	

(Karni	et	al.,	2007).	It	has	been	shown	that	alterations	of	AS	events	and	the	expression	of	particular	SFs	

can	be	indicative	of	tumor	grade	and	response	to	therapy	and	can	thus	be	used	as	biomarkers	for	the	

classification	of	tumors	(David	and	Manley,	2010;	Grosso	et	al.,	2008b;	Relógio	et	al.,	2005).	Splicing-

based	 therapeutic	approaches	also	 include	 the	use	of	cancer-specific	splicing	 isoforms	as	potential	

drug	targets	(Le	et	al.,	2015).	The	splicing	machinery	itself	has	further	been	proposed	as	a	target	of	

anti-tumor	 drugs	 in	 order	 to	 inhibit	 and	 partly	 correct	 cancer-associated	 splicing	 abnormalities	

(Bonnal	et	al.,	2012;	Grosso	et	al.,	2008b).	

1.2.4 Analysis of Alternative Splicing on the Genome-Scale 

The	genome-wide	screening	of	AS	patterns	requires	the	use	of	high-throughput	technologies	such	as	

splicing-sensitive	DNA	microarrays	or	RNA-sequencing	(RNA-seq).	DNA	microarrays	are	two-dimen-

sional	microchips	 that	contain	anchored	arrays	of	short	single-stranded	DNA	molecules,	known	as	

probes.	For	measuring	gene	expression,	nucleic	acid	samples,	e.g.,	DNA	or	RNA,	are	isolated,	converted	

into	complementary	DNA	and	labelled	with	fluorescent	dyes,	before	being	applied	to	the	array	where	

they	bind	to	complementary	probes	in	a	process	known	as	hybridization.	The	strength	of	the	fluores-

cence	signal	emitted	from	specific	spots	on	the	hybridized	array	upon	laser	excitation	corresponds	to	

the	amount	of	bound	nucleotides	and	can	be	used	to	infer	expression	values	of	genomic	features.	De-

pending	on	the	design	of	the	array,	this	enables	the	quantitative	analysis	of	expression	on	gene-level	

(gene	arrays)	or	exon-level	(exon	arrays),	as	well	as	the	detection	of	AS	events	(exon	and	transcriptome	

arrays)	(Figure	1-9).	
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Figure	1-9:	Microarray	design.	The	Affymetrix	Human	Transcriptome	Array	(HTA)	2.0	interrogates	over	six	million	dis-

tinct	probes	for	both	coding	and	non-coding	genes.	On	average,	exons	are	measured	with	ten	probes	and	splice	junctions	

with	four	probes.	Probes	are	arranged	into	probe	sets	that	usually	coincide	with	an	exon.	Each	probe	set	is	assigned	to	a	

transcript	cluster	that	corresponds	to	a	gene.	In	comparison,	Affymetrix	exon	arrays	measure	up	to	four	probes	per	exon,	

and	Affymetrix	gene	arrays	measure	approximately	25	probes	per	transcript	cluster.	Adapted	from	Xu	et	al.	(2011).	

The	Finding	Isoforms	using	Robust	Multichip	Analysis	(FIRMA)	method	can	be	used	to	detect	AS	of	

internal	cassette	exons	from	exon	array	data	of	single	samples	without	replicates	(Purdom	et	al.,	2008).	

FIRMA	detects	exon-specific	changes	in	expression	levels	and	scores	them	depending	on	whether	they	

deviate	 from	 the	 expected	 gene	 expression	 level	 by	 fitting	of	 the	 robust	multichip	 average	 (RMA)	

model.	RMA	is	a	widely	accepted	standard	for	preprocessing	data	from	multiple	microarrays	to	gain	

comparable	gene	expression	values	(Irizarry	et	al.,	2003a).	Starting	with	raw	Affymetrix	CEL	files	con-

taining	intensity	values,	the	method	employs	three	steps	to	produce	so-called	RMA	expression	values:	

In	the	first	step,	the	background	is	adjusted	to	remove	local	artifacts	and	noise,	followed	by	a	quantile-

normalization	to	remove	the	effects	of	individual	arrays	and	make	the	measurements	from	different	

arrays	comparable.	In	the	final	step,	probe	intensities	are	summarized,	resulting	in	log2-transformed	

measurements	that	represent	gene	expression	levels.	The	expression	measure	is	obtained	by	fitting	

the	following	linear	additive	model	for	each	probe	set:	

𝑌'7 = 𝑐' + 𝑝7 + 𝜀'7 ,	 (20)	

where	Yik	is	the	background-adjusted,	normalized,	and	log2-transformed	intensity	for	probe	j	in	sample	

i,	ci	is	the	chip	effect,	pk	is	the	log-scale	probe	effect	for	probe	k	and	εik	represents	the	error	term	that	is	

assumed	to	be	independent	and	identically	distributed	with	mean	0	(Irizarry	et	al.,	2003b).	To	make	

all	probe	effects	relative	and	identifiable,	∑ 𝑝277 = 0	is	assumed	for	all	probe	sets.	Model	parameters	

are	estimated	using	robust	procedures	such	as	median	polish	or	iteratively	reweighted	least	squares.	

The	expression	measure	of	a	gene	in	sample	i	is	defined	as	the	estimate	of	the	chip	effect	ci.	

To	include	the	possibility	of	different	expression	levels	per	exon	of	a	gene,	FIRMA	considers	the	more	

general	additive	model	

𝑌'27(2) = 𝑐' + 𝑒2 + 𝑑'2 + 𝑝7(2) + 𝜀'27(2),	 (21)	
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where	ci	is	again	the	chip	effect	for	sample	i,	ej	is	the	relative	change	in	expression	for	exon	j,	dij	is	the	

relative	change	for	sample	i	in	exon	j,	and	pk(j)	is	the	nested	relative	probe	effect	for	the	k-th	probe	in	

exon	j	(Purdom	et	al.,	2008).	High	values	of	dij	represent	large	discrepancies	of	sample	i	in	exon	j	from	

the	expected	expression	of	this	exon	and	are	thus	considered	an	indication	for	differential	splicing.	To	

avoid	having	to	estimate	the	term	dij	explicitly	and	thus	adding	more	noise	to	the	parameter	estimates,	

FIRMA	instead	formulates	the	detection	of	AS	as	an	outlier	detection	problem:	For	each	exon,	a	sum-

mary	score	is	computed	based	on	the	residuals	of	the	observed	probe-level	expression	within	that	exon	

from	the	estimated	expression	produced	by	fitting	the	standard	RMA	model	(20).	A	log2	FIRMA	score	

of	0	indicates	no	departure	from	the	model	while	extremely	high	or	low	scores	can	be	indicative	of	

exon	inclusion	or	skipping,	respectively.	While	there	is	no	obvious	threshold	for	calling	an	exon	differ-

entially	spliced,	it	has	been	shown	that	high-scoring	exons	are	tracking	real	AS	events	and	that	the	

difference	between	the	FIRMA	scores	of	two	conditions	allows	for	the	detection	of,	e.g.,	cancer-specific	

splicing	(Purdom	et	al.,	2008).	Interestingly,	FIRMA	has	also	been	used	for	the	detection	of	rhythmic	

AS	 in	 time-series	microarray	data	 from	murine	 liver	(McGlincy	et	al.,	2012)	(see	subsection	1.3.2).	

However,	FIRMA	can	only	be	used	for	the	detection	of	cassette-type	alternative	exons	which	is	the	most	

common	type	of	AS	in	mammals,	but	does	not	allow	the	reconstruction	of	more	complex	types	of	AS	

(Figure	1-8).	

While	FIRMA	has	originally	been	developed	for	Affymetrix	exon	arrays	that	contain	only	up	to	four	

probes	per	probe	set	(~10%	of	probe	sets	have	fewer	than	four	probes	due	to	probe	selection	region	

lengths	and	sequence	constraints),	 it	can	also	be	applied	to	other	splicing-sensitive	arrays.	For	this	

thesis,	splicing-sensitive	arrays	of	the	HTA	type	were	used	that	contain	a	median	of	ten	probes	per	

exon	(Figure	1-9).	Derivatives	of	the	FIRMA	method	include	the	Integrated	Gene	and	Exon	Model	of	

Splicing	 (iGEMS)	 (Sood	 et	 al.,	 2016),	 the	 Random	 Effects	 for	 Identification	 of	 Differential	 Splicing	

(REIDS)	model	(Van	Moerbeke	et	al.,	2017),	and	FIRMAGene	(Robinson	and	Speed,	2009),	which	was	

developed	for	the	smaller	Affymetrix	Gene	1.0	ST	array.	While	the	gene	array	shares	a	large	number	of	

probes	with	the	Affymetrix	exon	array,	the	design	of	the	platform	is	not	optimized	for	the	detection	of	

AS,	necessitating	adjustments	in	the	algorithm’s	assumptions.	Similar	to	the	original	FIRMA	algorithm,	

FIRMAGene	uses	the	RMA	model	to	decompose	probe-level	microarray	data	into	probe	effects	and	

expression	levels	and	calculates	probe-wise	residuals	from	the	RMA	fit	(Robinson	and	Speed,	2009).	

Based	on	the	assumption	that	several	adjacent	poorly	fitting	probes	for	the	same	exon	region	that	be-

have	differently	from	the	rest	(residuals	away	from	zero	and	in	the	same	direction)	can	be	evidence	of	

potential	AS,	the	algorithm	scores	the	persistence	of	residuals	from	the	RMA	fit,	yielding	gene-level	

FIRMAGene	scores	(Robinson	and	Speed,	2009).	In	this	thesis,	both	the	original	FIRMA	algorithm	as	

well	as	the	FIRMAGene	derivative	are	used	to	detect	putative	AS	events	in	microarray	data	originating	

from	different	platforms.	In	particular,	FIRMA/FIRMAGene	scores	are	tested	for	circadian	rhythms.	

In	recent	years,	high-throughput	next-generation	sequencing	(NGS)	techniques	such	as	RNA-seq	have	

largely	replaced	the	use	of	microarrays	in	transcriptomic	studies.	RNA-seq	enables	the	detection	and	

quantification	of	distinct	transcripts	of	a	gene,	making	it	possible	to	analyze	differences	in	expression	

at	the	resolution	of	individual	splice	isoforms	(Wang	et	al.,	2009).	RNA-seq	datasets	for	transcriptomic	
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analyses	 commonly	 consist	 of	 tens	 to	hundreds	of	millions	 of	 relatively	 short	 (<200	nt)	 single-	 or	

paired-end	sequences	(reads)	that	represent	fragments	of	the	original	RNA	molecules.	To	estimate	the	

abundance	of	individual	isoforms	from	these	short	sequences,	the	reads	first	need	to	be	assigned	to	

their	original	location	on	the	reference	genome	or	transcriptome	in	a	process	known	as	alignment.	This	

is	complicated	by	the	fact	that	reads	can	contain	sequencing	errors	and	genomic	variants	that	differ	

from	the	reference	sequence,	and	the	need	to	account	for	non-unique	sequences	and	introns	in	the	

genome	that	lead	to	non-contiguous	reads	that	span	more	than	one	exon	(Figure	1-10).	Various	RNA-

seq	alignment	methods	have	been	developed	that	differ	in	speed,	memory	requirements,	accuracy,	and	

their	ability	to	deal	with	spliced	alignments.	Following	the	alignment,	reads	covering	a	specific	genomic	

feature	are	counted	and	normalized	for	sequencing	depth	and	feature	length	to	infer	gene	and/or	tran-

script	expression	levels.	Common	RNA-seq	metrics	for	expression	levels	are	reads	per	kilobase	million	

(RPKM)	for	single-end	reads,	fragments	per	kilobase	million	(FPKM)	for	paired-end	reads,	and	tran-

scripts	per	million	(TPM)	(Conesa	et	al.,	2016).	

	

Figure	1-10:	Types	of	RNA-seq	reads.	In	contrast	to	exonic	reads,	junction	reads	are	non-contiguous	and	span	one	or	

more	exons.	AS	creates	ambiguity	 concerning	 the	origin	of	 reads	 that	do	not	map	uniquely	 to	a	 specific	 transcript.	

Adapted	from	Kim	et	al.	(2015a).	

In	the	following,	two	methods	that	were	applied	in	this	study	for	the	mapping	of	RNA-seq	reads	and	

the	subsequent	quantification	of	transcript	abundance	are	briefly	described.	The	Spliced	Transcripts	

Alignment	to	a	Reference	(STAR)	aligner	is	one	of	the	most	widely	used	methods	for	splice-aware	RNA-

seq	read	alignment	that	is	characterized	by	its	high	mapping	speed	and	accuracy	as	well	as	its	ability	

to	discover	novel	splice	junctions	and	chimeric	alignments	(Dobin	et	al.,	2013).	The	STAR	algorithm	

aligns	non-contiguous	read	sequences	directly	to	the	reference	genome	in	a	seed	searching	step	fol-

lowed	by	a	clustering-stitching-scoring	procedure.	The	seed	searching	step	is	based	on	the	concept	of	

a	sequential	search	for	a	maximal	mappable	prefix	(MMP)	between	reads	(or	pairs	of	reads)	and	the	

reference	genome	(Figure	1-11A).	For	a	read	R,	a	read	location	i,	a	reference	genome	G,	and	a	maxi-

mum	mappable	length	(MML),	the	MMP(R,i,G)	is	defined	as	the	longest	substring	of	the	read	(Ri,	Ri+1,	
…,	Ri+MML−1)	that	matches	exactly	one	or	more	substrings	of	the	genome.	To	enable	a	fast	MMP	search,	

the	reference	genome	is	converted	to	a	suffix	array	prior	to	the	mapping.	In	the	following	step,	STAR	

clusters	and	stitches	the	previously	aligned	seeds	together	in	accordance	with	a	local	alignment	scoring	

scheme	for	(mis-)matches,	indels,	and	splice	junction	gaps.	For	each	read,	the	highest	score	determines	

which	stitching	combination	is	chosen	as	the	best	alignment,	while	in	the	case	of	multi-mapping	reads,	
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all	alignments	with	a	score	above	a	user-defined	threshold	are	reported	for	subsequent	analyses.	After	

the	generation	of	the	alignment,	further	steps	are	needed	for	the	quantification	of	gene	abundance,	e.g.,	

counting	tools	such	as	HTSeq-count	(Anders	et	al.,	2015)	or	featureCounts	(Liao	et	al.,	2013).	For	the	

quantification	of	transcript	(i.e.,	isoform)	abundance	based	on	a	precomputed	alignment,	tools	such	as	

RSEM	(Li	and	Dewey,	2011),	RNA-eXpress	(Forster	et	al.,	2013),	TIGAR	(Nariai	et	al.,	2013),	and	Salmon	

(Patro	et	al.,	2017)	can	be	used.	

	

Figure	1-11:	Schematic	representation	of	the	mapping	strategies	of	STAR	and	Salmon.	(A)	STAR	searches	for	MMPs	

between	a	read	and	the	reference	genome	and	stitches	them	together.	Adapted	from	Dobin	et	al.	(2013).	(B)	Salmon	

applies	a	quasi-mapping	step	where	MEMs	and	SMEMs	between	a	read	and	the	transcripts	are	identified	and	chained.	

Adapted	from	Patro	et	al.	(2016).	

Salmon	is	a	method	for	quantifying	transcript	abundance	that	has	both	an	alignment-free,	so	called	

quasi-mapping	mode,	and	an	alignment-based	mode	(Patro	et	al.,	2017).	In	the	alignment-free	mode,	

the	quantification	is	performed	directly	with	an	index	of	the	reference	transcriptome	and	the	raw	reads	

as	input.	In	the	quasi-mapping	step,	the	algorithm	searches	for	maximal	exact	matches	(MEM)	between	

the	reads	(query)	and	the	transcripts	(reference)	(Patro	et	al.,	2016)	(Figure	1-11B).	A	MEM	between	

two	sequences	is	defined	as	an	exact	match	that	cannot	be	extended	in	either	direction	without	pro-

ducing	a	mismatch.	A	super	maximal	exact	match	(SMEM)	is	a	MEM	that	is	not	contained	in	any	other	

MEM	in	either	the	query	or	the	reference	(Li,	2013).	Salmon	attempts	to	cover	the	read	by	forming	

chains	of	SMEMs	and	MEMs,	allowing	only	small	gaps	between	them.	If	the	chain	covers	a	user-defined	

fraction	of	the	read,	the	transcript	is	considered	as	a	possible	locus	of	origin.	Alternatively,	Salmon	can	

also	be	used	in	the	alignment-based	mode	that	requires	a	previously	computed	alignment	to	the	tran-

scriptome	as	input.	In	the	following	inference	step,	Salmon	attempts	to	find	nucleotide	fractions	(i.e.,	

transcript	abundances)	that	optimize	the	probability	of	a	maximum	likelihood	model	of	the	observed	

data	while	simultaneously	learning	parameters	for	a	data-based	auxiliary	bias	model	to	account	for	

sample-specific	parameters	and	biases	(e.g.,	fragment	length	distributions).	If	a	read	maps	to	several	

transcriptomic	positions,	the	algorithm	considers	all	the	projected	positions	and	allocates	it	probabil-

istically	by	maximizing	the	joint	likelihood	of	all	the	observed	data.	

Various	strategies	have	been	developed	for	the	detection	of	differential	splicing	events	between	two	

conditions	(reviewed	in	Adams	et	al.	(2011))	which	are	not	covered	here	because	they	do	usually	not	

consider	time-series	RNA-seq	data.	In	recent	years,	there	has	been	a	growing	interest	in	measuring	

temporal	dynamics	in	gene	expression	on	a	genome-wide	scale	by	high-throughput	time-series	exper-

iments	(Oh	et	al.,	2014).	Accordingly,	several	tools	have	been	introduced	in	the	last	years	that	aim	at	
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the	detection	of	differential	gene	expression	(Spies	et	al.,	2017)	and	AS	isoform	switches	(Guo	et	al.,	

2017;	Huang,	2018;	Nueda	et	al.,	2017)	in	RNA-seq	time-series	data.	However,	none	of	these	methods	

have	been	developed	for	the	analysis	of	circadian	datasets	and	thus	usually	require	the	repeated	sam-

pling	of	biological	replicates	at	the	same	time	point	which	is	often	not	feasible	in	the	experimental	de-

sign	of	genome-wide	studies	on	a	circadian	timescale.	Under	the	assumption	that	AS	events	might	be	

rhythmically	regulated	by	the	circadian	clock	(see	subsection	1.3.2),	new	pipelines	and	methods	for	

the	genome-wide	detection	of	putatively	rhythmic	changes	in	isoform	expression	need	to	be	developed	

that	take	the	specific	challenges	presented	by	circadian	datasets	into	account.	In	this	thesis,	STAR	and	

Salmon	(in	alignment-mode)	are	used	jointly	to	quantify	transcript-level	expression	for	time-series	

data	and	thus	enable	the	detection	of	rhythms	in	the	transcription	of	individual	splice	variants.	

1.3 Interplay between the Circadian Clock and mRNA Splicing 

Circadian	rhythmicity	in	gene	expression	was	long	assumed	to	be	mainly	due	to	the	circadian	TTFL,	

with	particular	emphasis	on	the	rhythmic	activation	and	inhibition	of	E-box-mediated	transcription	

via	the	CLOCK:BMAL1	complex	(see	subsection	1.1.2).	However,	studies	comparing	circadian	rhyth-

micity	on	nascent	RNA-	and	mRNA-level	in	murine	liver	have	revealed	that	rhythmic	de	novo	transcrip-

tion	only	accounts	for	about	22–30%	of	genes	with	rhythmic	mRNA	expression	patterns,	indicating	

that	the	majority	of	rhythmic	mRNAs	may	instead	result	from	a	combination	of	diverse	post-transcrip-

tional	 events	 (Koike	 et	 al.,	 2012;	Menet	 et	 al.,	 2012).	 Accordingly,	 RNA-based	 post-transcriptional	

mechanisms	 in	 clock	 regulation	 have	 increasingly	 moved	 into	 the	 focus	 of	 circadian	 research	

(Preußner	and	Heyd,	2016).	Several	post-transcriptional	processes	are	known	to	be	under	clock	con-

trol	and	to	contribute	to	circadian	gene	expression	and	protein	abundance,	including	alternative	poly-

adenylation,	mRNA	degradation,	translation,	and	mRNA	splicing	(Kojima	and	Green,	2014;	Lim	and	

Allada,	2013;	Mermet	et	al.,	2017).	

1.3.1 Regulation of the Circadian Clock via Alternative Splicing 

In	recent	years,	AS	has	emerged	as	an	important	post-transcriptional	mechanism	responsible	for	the	

maintenance	of	the	circadian	clock	and	its	response	to	environmental	inputs	in	several	circadian	model	

systems	(Figure	1-12A).	Many	core	clock	genes	have	more	than	one	transcript,	making	them	potential	

targets	for	AS	mechanisms	and	post-transcriptional	regulation,	e.g.,	by	producing	clock	isoforms	with	

distinct	functions	or	by	controlling	their	expression	levels	via	producing	non-functional	transcripts	

and/or	inducing	nonsense-mediated	decay	(NMD).		
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Figure	1-12:	Interplay	between	the	circadian	clock	and	alternative	splicing.	(A)	Regulation	of	the	circadian	clock	via	AS.	

Literature	findings	about	alternative	splice	variants	of	core-clock	genes	and	their	potential	functional	consequences	are	

represented	for	various	organisms.	(B)	Regulation	of	AS	via	the	circadian	clock.	Literature	findings	about	circadian	splic-

ing	regulators	and	circadian	AS	events	and	their	potential	functional	consequences	are	represented	for	Drosophila	and	

mouse.	

Splice	variants	of	clock	components	of	the	circadian	model	plant	Arabidopsis	thaliana,	particularly	of	

LHY	and	CCA1,	have	been	extensively	studied	in	the	context	of	temperature	adaptation	and	compensa-

tion.	Temperature	reduction	leads	to	the	retention	of	an	LHY	intron,	likely	resulting	in	NMD	due	to	the	

introduction	of	a	premature	stop	codon,	 thereby	modulating	 the	expression	 levels	of	 the	normally	

spliced	LHY	protein	in	response	to	cold	(James	et	al.,	2012;	Seo	et	al.,	2012).	In	contrast,	cold	tempera-

tures	have	been	found	to	prevent	the	intron	retention	of	a	CCA1	transcript	that	acts	as	a	dominant	

negative	inhibitor	of	the	normally	spliced	transcript	(James	et	al.,	2012).	The	reduced	production	of	

the	alternative	CCA1	isoform	likely	contributes	to	freezing	tolerance	of	plants	(Seo	et	al.,	2012).	More-

over,	several	splicing-related	genes	have	been	identified	that	influence	AS	of	clock	genes	in	Arabidopsis,	

including	SFs	that	play	a	conserved	role	in	other	species,	e.g.,	GEMIN2	(Schlaen	et	al.,	2015),	LSM4	and	

LSM5	(Perez-Santángelo	et	al.,	2014),	PRMT5	(Sanchez	et	al.,	2010),	and	SR45	(Filichkin	et	al.,	2015).	In	

most	cases,	mutations	of	these	SFs	lead	to	a	lengthening	of	the	free-running	circadian	period,	however,	

the	underlying	mechanisms	of	how	changes	in	SF	networks	lead	to	the	AS	of	clock	genes	and	subse-

quently	to	changes	in	the	circadian	phenotype	are	still	mostly	unknown	(Shakhmantsir	and	Sehgal,	

2019).		

Temperature-dependent	AS	events	in	clock	genes	are	not	limited	to	plants.	In	the	fungal	model	organ-

ism	Neurospora	crassa,	thermosensitive	AS	of	the	core	clock	gene	frq	determines	the	ratio	of	the	long	

protein	isoform	l-FRQ	to	the	short	isoform	s-FRQ	that	is	responsible	for	fine-tuning	the	circadian	pe-

riod	length	and	maintaining	a	robust	rhythmicity	in	response	to	temperature	changes	(Diernfellner	et	

al.,	2007;	Liu	et	al.,	1997).	The	retention	of	an	intron	in	the	3’-untranslated	region	of	Drosophila	core	

clock	gene	per	is	a	thermosensitive	splicing	event	that	has	been	linked	to	the	timing	of	evening	activity	

in	flies	and	likely	plays	a	role	in	the	adaptation	to	seasonal	weather	changes	(Low	et	al.,	2008;	Majercak	

et	al.,	1999).	Likewise,	AS	of	Drosophila	core	clock	gene	tim	is	temperature-dependent	and	results	in	at	
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least	four	distinct	isoforms	of	which	two	are	cold-specific	and	which	might	contribute	to	the	tempera-

ture	compensation	of	the	fly	clock	(Anduaga	et	al.,	2019;	Boothroyd	et	al.,	2007;	Evantal	et	al.,	2018;	

Foley	et	al.,	2019).	Though	not	linked	to	temperature,	rhythmic	AS	patterns	of	genes	encoding	for	the	

clock	proteins	CRY	and	Shaggy	have	been	 identified	 in	Drosophila	 circadian	neurons	 (Wang	et	 al.,	

2018).	

AS	also	seems	to	control	different	aspects	of	the	mammalian	circadian	clock,	with	many	clock	compo-

nents	displaying	several	isoforms,	though	the	functional	consequences	of	these	AS	events	are	often	

only	poorly	understood	so	far.	Alternatively	spliced	variants	of	Bmal1	(Ikeda	and	Nomura,	1997;	Lee	

et	al.,	2018;	Yu	et	al.,	1999)	and	Bmal2	(Schoenhard	et	al.,	2002)	have	been	described	for	humans,	mice,	

and	rats,	where	they	often	show	divergent	expression	levels	among	tissues,	indicating	a	functional	rel-

evance.	For	instance,	the	human-specific	alternative	isoform	BMAL1a	remains	in	the	cytoplasm	and	

does	not	enter	the	nucleus	due	to	a	loss	of	the	N-terminal	nuclear	localization	signal	(Lee	et	al.,	2018).	

However,	BMAL1a	still	dimerizes	with	its	canonical	isoform	or	with	CLOCK,	thereby	interfering	with	

the	formation	of	the	CLOCK:BMAL1	heterodimer	complex	and	thus	acting	as	a	negative	regulator	of	

the	clock	(Lee	et	al.,	2018).	PER2S,	an	alternative	isoform	of	human	PER2,	has	been	found	to	be	ex-

pressed	both	at	mRNA-	and	protein-level	in	the	nucleolus	of	human	keratinocytes	and	likely	plays	a	

role	in	their	circadian	synchronization	(Avitabile	et	al.,	2014).	An	alternative	Cry1	isoform	with	an	an-

tiphasic	expression	pattern	to	the	canonical	isoform	has	been	observed	in	the	murine	SCN	(Pembroke	

et	al.,	2015).	A	study	on	rhythmic	AS	events	in	murine	tissues	detected	by	exon	arrays	further	revealed	

circadian	rhythms	in	exon	inclusion	of	several	other	clock	genes,	including	Clock,	Npas2	and	Nr1d1	

(McGlincy	et	al.,	2012).	A	well-studied	example	of	an	alternatively	spliced	isoform	affecting	a	core	com-

ponent	of	the	mammalian	clock	is	the	murine	SF	U2af26/U2af1l4.	24-h	rhythmic	skipping	of	exons	6	

and	7	of	U2af26	results	in	a	frameshift	mutation	that	leads	to	the	addition	of	a	new	C	terminus	to	the	

protein	which	shows	homology	to	the	Drosophila	clock	protein	TIM	(Preußner	et	al.,	2014).	Analogous	

to	TIM,	the	alternative	isoform	U2af26De67	interacts	with	Per1	and	destabilizes	it	(Preußner	et	al.,	

2014).	U2af26-deficient	mice	show	near-arrhythmic	Per1	levels	and	display	increased	phase	advance	

adaptation	following	experimental	jetlag,	indicating	a	functional	importance	of	U2af26	for	correct	cir-

cadian	gene	expression	and	the	resetting	of	the	clock	(Preußner	et	al.,	2014).		

1.3.2 Regulation of Alternative Splicing via the Circadian Clock 

As	described	in	the	previous	subsection,	several	alternatively	spliced	isoforms	have	been	reported	to	

display	24-h	rhythmic	patterns	at	the	mRNA	and/or	protein-level,	indicating	that	the	circadian	clock	

might	play	a	role	in	the	regulation	of	AS	(Figure	1-12B).	Splicing	is	a	rapid	process	that	in	vivo	takes	

place	 in	 the	range	of	seconds	 to	minutes	(Carmo-Fonseca	and	Kirchhausen,	2014;	Huranová	et	al.,	

2010;	Martin	et	al.,	2013).	The	precise	timing	of	splicing	is	assumed	to	be	important	for	the	dynamic	

control	of	AS	decisions	(Carmo-Fonseca	and	Kirchhausen,	2014).	A	temporal	regulation	of	splicing	via	

the	circadian	clock	might	both	result	in	rhythmic	patterns	of	AS,	e.g.,	exon	inclusion	or	intron	retention,	

as	well	as	in	non-rhythmic	splicing	events,	e.g.,	the	production	of	an	alternatively	spliced	isoform	due	
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to	changes	in	the	oscillatory	patterns	of	splicing-related	genes.	Indeed,	SFs	and	other	splicing-related	

genes	have	been	observed	to	display	rhythmic	expression	patterns	with	a	circadian	period	in	several	

organisms	and	can	sometimes	be	linked	to	AS	of	possible	target	genes	(Perez-Santángelo	et	al.,	2012).	

In	a	study	exploring	the	circadian	transcriptome	of	the	Drosophila	brain	using	RNA-seq	libraries,	the	

abundance	of	relatively	few	alternatively	spliced	isoforms	was	found	to	be	regulated	as	a	function	of	

time	of	day,	suggesting	a	limited	influence	of	circadian	AS	regulation	in	the	fly	brain	(Hughes	et	al.,	

2012a).	However,	many	AS	events	were	affected	by	loss	of	function	of	the	clock	gene	per	(Hughes	et	al.,	

2012a).	In	a	more	recent	study,	Wang	et	al.	(2018)	used	a	previously	published	time-series	RNA-seq	

dataset	to	characterize	AS	profiles	in	subtypes	of	circadian	Drosophila	neurons.	They	discovered	neu-

ron-specific	expression	patterns	of	genes	encoding	for	RBPs	and	rhythmic	AS	events,	the	majority	of	

which	did	not	cycle	at	the	total	mRNA	level.	In	contrast,	only	few	rhythmic	AS	events	were	identified	

in	a	negative	control	group	of	non-circadian	neurons	that	do	not	express	clock	genes,	reinforcing	the	

hypothesis	of	a	circadian	regulation	of	rhythmic	AS	events	that	is	possibly	driven	by	rhythmic	RBPs	

that	are	only	active	at	specific	times	of	the	day	(Wang	et	al.,	2018).	Among	the	genes	with	rhythmic	AS	

events,	several	were	encoding	for	splicing	regulators	and	might	thus	be	responsible	for	downstream	

daytime-dependent	splicing	changes.	

An	early	example	of	mammalian	circadian	AS	was	reported	in	murine	liver	for	the	gene	encoding	for	

the	signaling	protein	PSEN2	that	shows	oscillations	of	several	shorter	alternatively	spliced	isoforms	in	

contrast	to	the	non-rhythmic	full-length	isoform	(Bélanger	et	al.,	2006).	The	first	genome-wide	study	

on	rhythmic	AS	in	mammals	was	also	conducted	in	murine	liver	(McGlincy	et	al.,	2012).	Using	time-

series	exon-microarrays,	the	authors	identified	several	exons	that	were	alternatively	spliced	in	a	circa-

dian	manner	and	that	could	be	validated	in	other	murine	tissues.	For	the	majority	of	these	circadian	

exons,	phase	and	amplitude	of	AS	were	found	to	be	tissue-dependent	and	concurrent	with	circadian	

transcript	abundance	(McGlincy	et	al.,	2012),	raising	the	idea	that	circadian	AS	occurs	co-transcription-

ally	(Kojima	and	Green,	2014).	Furthermore,	it	was	found	that	hepatic	circadian	AS	is	at	least	partly	

controlled	by	the	autonomous	liver	clock	and	that	it	could	be	modulated	by	fasting	(McGlincy	et	al.,	

2012).	The	authors	also	examined	the	hepatic	mRNA	expression	of	over	200	SFs	listed	by	Grosso	et	al.	

(2008a)	 and	 identified	 15	 robustly	 circadian	 SFs,	 including	Srsf3,	Srsf5,	Sf3b1,	Hnrnpdl,	Cirbp,	 and	

Pcbp2,	further	supporting	the	hypothesis	that	the	expression	of	some	SFs	might	be	regulated	by	the	

circadian	clock.	In	their	multi-organ	study	of	the	murine	circadian	transcriptome,	Zhang	et	al.	(2014)	

found	that	circadian	genes	have	more	expressed	splice	isoforms	than	non-circadian	genes	(46%	of	

protein-coding	circadian	genes	expressed	multiple	isoforms)	and	that	for	circadian	genes,	the	identity	

of	the	dominant	isoform	tended	to	differ	more	across	tissues.	

Due	to	being	entrainable	to	light	and	persisting	in	constant	darkness,	rhythmic	AS	of	the	SF	U2af26	

(see	subsection	1.3.1)	had	initially	been	termed	circadian	(Preußner	et	al.,	2014).	However,	later	ex-

periments	with	young,	not	yet	fully	endothermic	mice	subjected	to	changes	in	the	ambient	tempera-

ture	revealed	that	splicing	of	U2af26	is	instead	controlled	via	circadian	body	temperature	cycles	that	

drive	the	rhythmic	phosphorylation	of	SR	proteins,	e.g.,	of	Srsf2	and	Srsf7	(Preußner	et	al.,	2017).	The	
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authors	found	that	 low	body	temperature	leads	to	SR	protein	phosphorylation,	whereas	high	body	

temperature	leads	to	their	dephosphorylation.	Other	temperature-responsive,	core	clock-independent	

24-h	rhythmic	AS	events	(also	termed	“endothermic	circadian”	by	the	authors)	include	the	core	tran-

scription	factor	Tbp,	as	well	as	Hnrnpa2b1	and	Ktn1,	but	no	core	clock	genes.	Since	most	adult	mam-

malian	species	are	endothermic,	the	authors	conclude	that	it	is	hard	to	discriminate	between	truly	cir-

cadian	and	endothermic	circadian	rhythms,	underlining	the	need	for	in	vivo	experimental	setups	that	

disrupt	body	temperature	rhythms	or	in	vitro	cell	culture	experiments	under	constant	temperature	

conditions	(Preußner	and	Heyd,	2018).	

While	all	of	the	aforementioned	examples	describe	rhythmic	changes	in	AS,	components	of	the	circa-

dian	clock	can	also	influence	the	outcome	of	splicing	without	necessarily	causing	rhythms	in	isoform	

expression.	In	a	recent	study,	a	skeletal	muscle-specific	knockout	of	Bmal1	was	found	to	result	in	a	shift	

in	expression	from	a	short	to	a	long	isoform	of	the	largest	known	protein	Titin	in	murine	muscles	tis-

sues	with	potential	implications	for	changes	in	muscle	tension	(Riley	et	al.,	2018).	Overall,	there	seems	

to	be	accumulating	evidence	for	a	reciprocal	 interplay	between	AS	and	the	circadian	circuitry	with	

possible	functional	implications	for	diverse	biological	processes.	

1.3.3 A Role for Clock-Regulated Splicing Events in Cancer? 

As	previously	described,	disruptions	of	the	circadian	clock	(see	subjection	1.1.3)	and	aberrant	splicing	

(see	subsection	1.2.3)	are	associated	with	various	aspects	of	tumor	biology.	Several	genes	that	have	

alternatively	spliced	isoforms	with	important	functions	in	carcinogenesis-	and	tumor	progression	are	

themselves	under	control	of	the	circadian	clock	or	interact	with	clock	components	on	the	protein-level,	

including	MDM2	(Liu	et	al.,	2018),	VEGFA	(Jensen	and	Cao,	2013),	and	BCL-X	(Hua	et	al.,	2006),	indicat-

ing	a	possible	circadian	control	of	cancer-relevant	AS.	Additionally,	several	SFs	with	robustly	circadian	

gene	expression	patterns	in	murine	liver	(McGlincy	et	al.,	2012)	play	a	critical	role	in	cancer:	For	in-

stance,	both	SRSF3	and	SRSF5	are	upregulated	in	various	cancers	and	have	been	identified	as	onco-

genes	responsible	for	the	production	of	isoforms	that	promote	cell	proliferation	and	transformation	

(Jia	et	al.,	2019;	Yang	et	al.,	2018).	Changes	in	SF	expression	are	often	observed	in	cancer	where	they	

can	affect	the	splicing	of	target	genes	and	thus	contribute	to	tumorigenesis	(Sveen	et	al.,	2016).	

Therefore,	it	is	conceivable	that	clock-controlled	oscillations	in	the	expression	levels	of	SFs	might	be	

required	for	the	correct	production	of	a	specific	isoform	at	a	specific	time	during	the	daily	cycle.	A	clock-

controlled	timing	of	AS	might	serve	as	an	additional	temporal	layer	of	proteome	diversification.	A	dis-

ruption	of	this	hypothesized	time-of-day-dependent	AS	could	interfere	with	molecular	processes	such	

as	metabolism,	the	cell	cycle,	and	proliferation.	Cancer	cells	with	dysregulated	circadian	clocks	could	

potentially	hijack	this	process	by	producing	cancer-relevant	isoforms	that	ultimately	lead	to	carcino-

genesis	and	tumor	progression.	
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1.4 Aim and Structure of the Thesis 

The	question	whether	the	circadian	clock	regulates	the	abundance	of	alternatively	spliced	isoforms	has	

been	named	one	of	the	outstanding	open	problems	in	the	circadian	field	(Hughes	et	al.,	2012a).	Though	

comprehensive	efforts	have	been	made	to	uncover	circadian	rhythms	in	AS	on	the	genome-scale	in	

Drosophila	(Hughes	et	al.,	2012a;	Wang	et	al.,	2018)	and	in	mice	(McGlincy	et	al.,	2012),	the	mechanics	

and	the	potential	functions	of	rhythmic	mRNA	splicing	remain	largely	unknown.	Emerging	evidence	

points	to	an	interplay	between	clock	components	and	splicing-related	genes	that	might	affect	mamma-

lian	cancer	development	and	progression.	

This	thesis	aims	to	investigate	the	hypothesized	circadian	control	of	splicing	in	mammals	and	its	po-

tential	role	in	cancer	by	a	computational	analysis	of	time-series	transcriptome	data	of	human	cancer	

cell	lines	and	healthy	mammalian	tissues	(Figure	1-13).	In	particular,	it	aims	to	determine	

- whether	the	expression	of	genes	encoding	for	spliceosome	components	and	SFs	is	circadian	and	

whether	their	expression	patterns	differ	between	healthy	mammalian	tissues	and	cells	in	differ-

ent	stages	of	cancer,	and	

- whether	circadian	rhythms	in	AS	events	can	be	observed	in	mammalian	tissues	and	human	cancer	

cells	and	whether	the	produced	isoforms	might	be	involved	in	the	timing	of	cancer-relevant	pro-

cesses,	such	as	metabolism,	proliferation,	apoptosis,	angiogenesis,	and	metastasis.	

	

Figure	1-13:	Structure	of	the	thesis.	

To	this	end,	a	computational	analysis	for	the	detection	of	candidate	rhythmic	splicing	events	in	DNA	

microarray	and	RNA-seq	time-series	datasets	was	conducted.	In	the	first	part	of	the	analysis,	the	circa-

dian	transcriptome	of	a	model	system	of	human	CRC	progression	was	investigated	based	on	time-se-

ries	microarray	data	from	two	cell	lines	that	originate	from	a	primary	colorectal	tumor	(SW480)	and	a	

lymph	node	metastasis	(SW620)	of	the	same	patient.	24-h	rhythms	in	gene	expression	were	identified	
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and	explored	 to	elucidate	how	 transcriptional	 rhythmicity	and	 the	 temporally	 regulated	biological	

pathways	might	differ	between	CRC	tumor	stages.	Differentially	rhythmic	genes	were	compared	be-

tween	the	cell	lines,	with	a	particular	focus	on	changes	in	oscillations	of	spliceosome	components	and	

SFs.	Candidate	differential	AS	events	between	SW480	and	SW620	cells	as	well	as	putative	circadian	AS	

events	were	 detected	 and	 their	 possible	 functional	 consequences	 for	 tumor	 progression	were	 ex-

plored.	

For	the	second	part	of	the	analysis,	the	circadian	transcriptome	of	the	same	CRC	progression	model	

was	profiled	by	RNA-seq.	Being	of	different	lengths	and	starting	at	different	time	points,	the	two	da-

tasets	were	normalized	and	concatenated	to	gain	a	longer	time-series	that	allows	for	a	more	robust	

identification	of	circadian	rhythms	in	gene	expression.	Gene	expression	and	24-h	rhythmic	gene	sets	

were	compared	between	the	two	platforms.	Differentially	rhythmic	splice	variants	of	the	same	gene	

were	identified	based	on	the	transcript-level	RNA-seq	data	and	compared	between	the	cells	lines	as	

well	as	with	the	candidate	circadian	AS	events	gained	from	the	microarray	data.	In	the	third	part	of	the	

analysis,	the	hypothesized	24-h	rhythmicity	of	AS	was	further	investigated	in	two	previously	published	

multi-organ	circadian	transcriptome	datasets	of	a	nocturnal	rodent	(Zhang	et	al.,	2014)	and	a	diurnal	

primate	(Mure	et	al.,	2018)	that	serve	as	examples	for	healthy	mammalian	tissues.	In	addition,	the	data	

was	screened	for	potentially	12-h	rhythmic	genes	and	AS	events,	since	the	sampling	resolution	of	the	

time-series	was	higher	than	that	of	the	CRC	cell	line	data.	Rhythmic	expression	patterns	of	splicing-

related	genes	were	analyzed	and	 compared	between	 species,	with	a	view	on	elucidating	potential	

mechanisms	that	might	responsible	for	a	rhythmic	regulation	of	AS	in	mammalian	tissues	in	health	and	

disease.
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2 Materials and Methods 

2.1 Materials 

2.1.1 Deposited Data 

Resource	 Author	 Identifier/URL	

Adapter	sequences	TruSeq3-PE-2.fa	 Trimmomatic	develop-
ment	team	

https://github.com/timflutre/trimmo-
matic/blob/master/adapters/TruSeq3-
PE-2.fa	

Affymetrix	mogene10	annotation	data	mo-
gene10sttranscriptcluster.db	

MacDonald	(2017)	 http://bioconductor.org/packages/re-
lease/data/annotation/html/mo-
gene10sttranscriptcluster.db.html	

CDF	mogene10	annotation	data	MoGene-
1_0-st-v1,mm9.cdf	

FIRMAGene	development	
team	

http://bioinf.wehi.edu.au/folders/firma-
gene/	

Circadian	microarray	data	of	12	murine	tis-
sues	

Zhang	et	al.	(2014)	 GEO:	GSE54650	

Circadian	RNA-seq	data	of	12	murine	tis-
sues	

Zhang	et	al.	(2014)	 GEO:	GSE54651	

Circadian	RNA-seq	data	of	64	olive	baboon	
tissues	

Mure	et	al.	(2018)	 GEO:	GSE98965	

Circadian	microarray	data	of	cell	lines	
SW480	and	SW620	

El-Athman	et	al.	(2018)	 ArrayExpress:	E-MTAB-5876	

Circadian	RNA-seq	data	of	cell	lines	SW480	
and	SW620	

El-Athman	et	al.	(2019)	 ArrayExpress:	E-MTAB-7779	

Genome	wide	annotation	for	human	
org.Hs.eg.db	

Marc	Carlson	 https://bioconductor.org/packages/re-
lease/data/annota-
tion/html/org.Hs.eg.db.html	

Genome	wide	annotation	for	mouse	
org.Mm.eg.db	

Marc	Carlson	 https://bioconductor.org/packages/re-
lease/data/annota-
tion/html/org.Mm.eg.db.html	

Human	reference	genome	Ensembl	release	
92,	GRCh38	

Genome	Reference	Con-
sortium	

https://www.ensembl.org/Homo_sapi-
ens/Info/Index	

Olive	baboon	(Papio	Anubis)	reference	ge-
nome	Ensembl	release	93,	Panu_3.0	

Genome	Reference	Con-
sortium	
	

https://www.ensembl.org/Papio_anu-
bis/Info/Index	
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2.1.2 Software and Algorithms 

Resource Version Author URL 

AME 4.12.0 McLeay and Bailey (2010) http://meme-suite.org/doc/ame.html 

Aroma.Affymetrix 3.1.1 Bengtsson et al. (2008) https://cran.rstudio.com/web/pack-
ages/aroma.affymetrix/index.html 

Bedtools 2.26.0 Quinlan (2014) https://github.com/arq5x/bedtools2 

circular 0.4-93 Agostinelli and Lund (2017) https://cran.r-project.org/web/pack-
ages/circular/index.html 

clusterProfiler 3.10.1 Yu et al. (2012) http://bioconductor.org/packages/re-
lease/bioc/html/clusterProfiler.html 

DeltaCCD 0.0.0.9001 Shilts et al. (2018) https://github.com/hugheylab/deltaccd 

DODR 0.99.2 Thaben and Westermark 
(2016) 

https://cran.r-project.org/web/pack-
ages/DODR/index.html 

edgeR 3.20.9 Robinson et al. (2010) https://bioconductor.org/packages/re-
lease/bioc/html/edgeR.html 

eulerr 5.0.0 Larsson (2018) https://cran.r-project.org/web/pack-
ages/eulerr/index.html 

FastQC 0.11.7 Andrews (2010) https://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc/ 

FIRMAGene 0.9.8 Robinson and Speed (2009) https://rdrr.io/rforge/FIRMAGene/ 

GenomeGraphs  1.38.0 Durinck et al. (2009) https://bioconductor.org/packages/re-
lease/bioc/html/GenomeGraphs.html 

HarmonicRegression 1.91 Lück et al. (2014) https://cran.r-project.org/web/pack-
ages/HarmonicRegression/index.html 

Mfuzz 2.38.0 Kumar and Futschik (2007) http://bioconductor.org/packages/re-
lease/bioc/html/Mfuzz.html 

Oligo 1.42.0 Carvalho and Irizarry (2010) https://bioconductor.org/packages/re-
lease/bioc/html/oligo.html 

RAIN 1.12.0 Thaben and Westermark 
(2014) 

https://www.bioconductor.org/pack-
ages/release/bioc/html/rain.html 

Salmon 0.10.2 Patro et al. (2017) https://github.com/COMBINE-
lab/salmon 

STAR 2.6.0a Dobin et al. (2013) https://github.com/alexdobin/STAR 

Trimmomatic 0.38 Bolger et al. (2014) http://www.usadel-
lab.org/cms/?page=trimmomatic 

Tximport 1.6.0 Soneson et al. (2015) https://bioconductor.org/packages/re-
lease/bioc/html/tximport.html 
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2.2 Molecular and Cell Biology Methods 

2.2.1 Sample Preparation 

Unless	stated	otherwise,	wet-lab	experiments	were	carried	out	by	Luise	Fuhr	from	the	AG	Relógio.	For	

this	reason,	only	an	overview	of	molecular	and	cell	biology	methods	is	given	here.	For	details	on	mate-

rials	and	methods	for	the	cell	culture	and	the	sample	preparation,	please	refer	to	Fuhr	et	al.	(2018),	El-

Athman	et	al.	(2018),	and	El-Athman	et	al.	(2019).	

Cells	from	the	human	colorectal	carcinoma	cell	lines	SW480	and	SW620	were	seeded	one	day	prior	to	

the	start	of	the	experiment	and	kept	in	constant	conditions	at	37°C	in	a	humidified	atmosphere	with	

5%	CO2.	Cell	populations	were	synchronized	by	changing	the	culture	medium.	Time-series	sampling	

(with	every	time	point	sampled	from	an	individual	plate	of	cells	to	avoid	longitudinal	batch	effects)	

was	either	started	immediately	(for	the	microarrays)	or	12	h	after	synchronization	(for	RNA-seq)	(Fig-

ure	2-1).	Samples	were	taken	every	3	h	for	a	time-series	of	either	24	h	(for	the	microarrays)	or	30	h	

(for	RNA-seq)	and	prepared	for	RNA	extraction.	The	microarray	hybridization	was	carried	out	by	the	

Labor	für	funktionelle	Genomforschung	of	the	Charité	–	Universitätsmedizin	Berlin,	DE.	The	CEL	files	

containing	 raw	 intensities	 have	 been	 deposited	 in	 the	 ArrayExpress	 database	 at	 EMBL-EBI	

(www.ebi.ac.uk/arrayexpress)	under	accession	number	E-MTAB-5876.	The	mRNA	libraries	for	RNA-

seq	were	sequenced	on	an	Illumina	NextSeq	500	platform	to	an	average	depth	of	74M	(min.	49M,	max.	

129M)	75	bp	paired-end	reads	at	the	EMBL	GeneCore	Facility,	Heidelberg,	DE.	The	raw	RNA-seq	read	

files	have	been	deposited	 in	 the	ArrayExpress	database	at	 the	EMBL-EBI	 (www.ebi.ac.uk/arrayex-

press)	under	accession	number	E-MTAB-7779.	

	

Figure	2-1:	Sampling	of	a	cellular	model	of	human	CRC	progression.	Gene	expression	of	two	CRC	cell	lines	originating	

from	the	same	patient	were	profiled	over	a	time-series	of	24	h	and	30	h	using	microarrays	and	RNA-seq,	respectively.	

The	SW480	cell	line	is	derived	from	the	primary	colon	adenocarcinoma	and	the	cell	line	SW620	is	derived	from	a	lymph	

node	metastasis.	

2.3 Bioinformatics and Statistical Methods 

Unless	stated	otherwise,	bioinformatics	and	statistical	analyses	were	conducted	using	the	R	program-

ming	language	(v3.4–3.5)	in	the	RStudio	integrated	development	environment.	
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2.3.1 Processing of Microarray Transcriptome Data 

The	raw	microarray	expression	data	of	twelve	murine	organs	(Table	S	5)	sampled	every	2	h	for	two	

circadian	cycles	by	Zhang	et	al.	(2014)	was	downloaded	from	the	Gene	Expression	Omnibus	(GEO)	

database	(GSE54650).	The	raw	microarray	expression	data	of	the	human	CRC	cell	lines	and	the	murine	

organs	was	preprocessed	for	all	time	points	of	each	dataset	as	one	batch	using	the	RMA	methodology	

(see	subsection	1.2.4)	(Bolstad	et	al.,	2003;	Irizarry	et	al.,	2003a)	as	implemented	in	the	oligo	package	

(v1.42.0)	(Carvalho	and	Irizarry,	2010).	A	transcript	cluster	consists	of	one	or	more	exon	clusters	(on	

exon	 array)	 or	 probes	 (on	 gene	 arrays)	 and	 roughly	 corresponds	 to	 known	 or	 putative	 genes	

(Affymetrix).	Transcript	clusters	of	the	human	CRC	cell	lines	SW480	and	SW620	were	annotated	with	

NCBI	Gene	IDs	(Entrez	IDs)	and	Ensembl	IDs	using	Affymetrix	HTA	2.0	annotation	data	(hta20tran-

scriptcluster.db,	v8.7.0).	For	genes	annotated	by	multiple	transcript	clusters,	only	the	transcript	cluster	

with	the	highest	mean	expression	over	all	time	points	in	both	cell	lines	was	retained	to	enable	a	com-

parison	across	cell	lines.	For	the	comparison	of	the	microarray	data	with	the	RNA-seq	data	of	the	CRC	

cell	lines,	only	the	transcript	cluster	with	the	highest	mean	expression	over	all	time	points	of	the	re-

spective	cell	line	was	retained.	For	the	murine	data,	transcript	clusters	were	annotated	with	Ensembl	

IDs	using	Affymetrix	mogene10	annotation	data	(mogene10sttranscriptcluster.db,	v8.7.0).	In	the	fol-

lowing,	microarray	transcript	clusters	will	be	referred	to	as	“genes”	to	avoid	confusion	with	features	

identified	on	transcript-level	in	the	RNA-seq	data.	

2.3.2 Processing of RNA-seq Transcriptome Data 

For	the	human	CRC	cell	lines	RNA-seq	dataset,	quality	control	was	performed	using	FastQC	(v0.11.7)	

(Andrews,	2010).	Since	the	quality	control	revealed	overrepresented	sequences	in	several	samples	

that	might	be	adapters,	they	were	cut	using	Trimmotatic	(v0.38)	(Bolger	et	al.,	2014)	with	TruSeq3-

PE-2.fa	adapter	sequences	(default	parameters).	Only	paired-end	reads	were	retained	for	the	down-

stream	analyses.	RNA-seq	reads	(paired-end,	100	bp)	from	12	murine	tissues	sampled	every	6	h	for	

two	circadian	cycles	(GSE54651)	(Zhang	et	al.,	2014)	and	RNA-seq	reads	(single-end,	50	bp)	from	64	

olive	baboon	tissues	(Table	S	5)	sampled	every	2	h	for	one	circadian	cycle	(GSE98965)	(Mure	et	al.,	

2018)	were	downloaded	from	the	European	Nucleotide	Archive.	Reads	for	the	baboon	iris	(IRI)	sam-

pled	 at	 ZT22	 were	 missing.	 Sequencing	 reads	 were	 aligned	 to	 the	 human	 genome	 (Homo_sapi-

ens.GRCh38,	Ensembl	release	92),	the	murine	genome	(Mus_musculus.GRCm38,	Ensembl	release	95),	

and	the	olive	baboon	genome	(Panu_3.0,	Ensembl	release	93),	respectively,	using	the	STAR	software	

(v2.6.0a)	(Dobin	et	al.,	2013)	(see	subsection	1.2.4)	with	default	parameters	and	the	option	--quant-

Mode	TranscriptomeSAM.	The	TranscriptomeSAM	option	generates	both	a	genome	and	a	transcrip-

tome	alignment	by	first	aligning	reads	to	the	genome	and	then	searching	for	concordance	between	the	

genomic	 alignment	 and	 annotated	 transcripts.	 If	 a	 genomic	 alignment	 is	mapped	 to	 several	 tran-

scriptomic	coordinates,	it	is	projected	to	all	of	them.	The	baboon	amygdala	(AMY)	sample	taken	at	ZT08	

had	a	very	low	mapping	rate	(<	1%)	and	was	therefore	excluded	from	further	analyses.	The	resulting	

STAR	transcriptome	alignments	were	saved	as	unsorted	bam	files.	Based	on	the	alignment,	transcript-
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level	abundances	were	quantified	in	units	of	TPM	using	Salmon	(v0.10.2)	(Patro	et	al.,	2017)	in	align-

ment-based	mode	(see	subsection	1.2.4)	with	default	parameters	and	the	--seqBias	option	which	ena-

bles	the	algorithm	to	learn	and	correct	for	sequence-specific	biases	in	the	input	data.		

The	tximport	package	(v1.6.0)	(Soneson	et	al.,	2015)	was	used	to	import	and	scale	the	resulting	tran-

script-level	count	tables	by	first	multiplying	TPM	by	feature	length	and	then	scaling	up	to	the	library	

size	(lengthScaledTPM),	resulting	in	both	transcript-level	(txOut=TRUE,	based	on	Ensembl	Gene	IDs)	

and	summarized	gene-level	 (txOut=FALSE,	based	on	Ensembl	Transcript	 IDs)	count	estimates.	For	

each	sample,	normalization	factors	to	scale	the	raw	library	sizes	were	calculated	using	the	trimmed	

mean	of	M-values	(TMM)	method	and	counts	were	log2-transformed	using	the	cpm	function	from	the	

edgeR	package	(v3.20.9)	(Robinson	et	al.,	2010).	For	the	murine	and	the	baboon	tissues,	 lowly	ex-

pressed	genes	and	transcripts	were	filtered	out,	retaining	only	features	with	at	least	0.5	counts	per	

million	(CPM)	on	average	over	all	time	points	per	tissue.	For	the	human	CRC	cell	lines,	all	features	with	

at	least	0.5	CPM	on	average	over	all	time	points	in	at	least	one	of	the	two	cell	lines	were	retained.	For	

the	comparison	of	the	microarray	data	with	the	RNA-seq	data	of	the	CRC	cell	lines,	all	features	with	at	

least	0.5	CPM	on	average	over	all	time	points	per	cell	line	were	retained.	Subsequently,	counts	were	

renormalized	using	only	the	selected	features.	

2.3.3 Rhythmicity Analysis 

To	detect	rhythmic	features	and	parameters,	the	parametric	harmonic	regression	method	(see	subsec-

tion	1.1.5)	as	implemented	in	the	HarmonicRegression	package	(v1.91)	(Lück	et	al.,	2014)	and	the	non-

parametric	 RAIN	 algorithm	 (see	 subsection	 1.1.5)	 as	 implemented	 in	 the	 RAIN	 package	 (v1.12.0)	

(Thaben	and	Westermark,	2014)	were	applied,	using	successive	filtering	steps.	Rhythmicity	analysis	

was	performed	on	the	absolute	RMA-preprocessed	gene	expression	values	for	the	array	data	and	on	

the	transcript-	and	gene-level	CPM	values	for	the	RNA-seq	data.		

For	the	human	CRC	cell	lines	microarray	dataset,	24-h	rhythmicity	was	assessed	using	the	RAIN	algo-

rithm	with	a	period	of	24	h.	Phases	and	amplitudes	were	estimated	by	fitting	a	robust	harmonic	re-

gression	model	with	a	period	of	24	h	to	the	time-series	if	the	harmonic	regression	p	<	0.5.	For	a	har-

monic	regression	p	≥	0.5,	the	phase	as	estimated	by	the	RAIN	algorithm	was	taken	instead	and	the	am-

plitude	was	calculated	as	the	peak-to-trough	ratio	of	the	maximum	and	the	minimum	expression	value.	

A	mean	expression	threshold	of	2.5	and	a	fold	change	(FC)	amplitude	threshold	of	1.15	were	used	to	

filter	 for	expressed	gene	with	biologically	significant	rhythms.	The	RAIN	p-values	of	 the	remaining	

genes	were	FDR-corrected	using	the	BH	procedure.	Significance	for	24-h	rhythmic	genes	from	the	CRC	

cell	lines	microarray	dataset	was	bounded	by	q	<	0.08.	For	the	differential	rhythmicity	analysis	of	the	

24-h	rhythmic	transcriptome	of	the	CRC	cell	lines	microarray	dataset,	the	robust	DODR	method	from	

the	DODR	package	(v0.99.2)	(Thaben	and	Westermark,	2016)	was	applied	for	all	genes	that	were	iden-

tified	as	robustly	24-h	rhythmic	in	at	least	one	of	the	two	cell	lines.	DODR	p-values	were	BH-adjusted	

for	multiple	testing	with	a	DODR	q-value	cutoff	of	0.05	determining	genes	with	differential	rhythmicity.	
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Genes	were	further	divided	in	genes	with	amplitude	gains	in	one	of	the	two	cell	lines	when	their	abso-

lute	log2	amplitude	change	in	one	cell	line	compared	to	the	other	was	>	0.5	and	in	genes	with	a	pure	

phase	 shift	 when	 their	 FC	 amplitude	was	 >	1.15	 in	 both	 cell	 lines,	 their	 absolute	 log2	 amplitude	

change	<	0.1,	and	the	phase	shift	between	the	cell	lines	>	1	h.	

For	the	murine	multi-organ	microarray	dataset,	the	baboon	multi-organ	RNA-seq	dataset,	and	the	CRC	

cell	lines	RNA-seq	dataset,	12-h	and	24-h	rhythmicity	was	assessed	using	the	RAIN	algorithm	with	a	

period	of	12	h	and	24	h.	In	the	case	of	multiple	genes	annotated	with	the	same	Ensembl	Gene	ID	in	the	

array	data,	only	the	gene	with	the	lowest	RAIN	p-value	per	tissue	was	retained.	Phase	and	relative	am-

plitude	were	determined	by	fitting	a	robust	harmonic	regression	model	with	a	period	of	12	h	and	24	h,	

respectively.	For	both	the	mouse	array	and	the	baboon	and	CRC	cell	lines	RNA-seq	data,	rhythmic	fea-

tures	with	a	relative	amplitude	<	0.1	were	excluded	from	the	set.	The	p-values	of	the	remaining	genes	

and	transcripts	of	the	mouse	array	data	were	FDR-corrected	using	the	BH	method.	Significance	for	

12-h	and	24-h	rhythmic	features	was	bounded	by	q	<	0.05	for	the	mouse	array	data,	by	p	<	0.005	for	

the	baboon	RNA-seq	data,	and	by	p	<	0.05	for	the	CRC	cell	lines	RNA-seq	data.	

Circular	mean	and	median	of	phases	across	several	tissues	were	calculated	with	the	R	package	circular	

(v0.4-93)	(Agostinelli	and	Lund,	2017).	Phase	synchrony	across	tissues	was	tested	by	the	Rayleigh	test	

of	uniformity	as	implemented	in	the	R	package	circular	(v0.4-93).	

2.3.4 Correlation Analysis 

For	the	human	CRC	cell	lines	microarray	data,	the	relationship	between	the	expression	values	of	ten	

core	clock	genes	(BMAl1,	NPAS2,	CLOCK,	CRY1,	CRY2,	NR1D1,	NR1D2,	PER1,	PER2,	PER3)	and	two	clock-

regulated	genes	(DBP,	TEF)	was	quantified	by	calculating	the	Spearman	correlation	between	each	pair	

of	genes	using	the	DeltaCCD	package	(v0.0.0.9001)	(Shilts	et	al.,	2018).	For	reference	Spearman	corre-

lations,	the	samples	from	the	murine	multi-organ	microarray	dataset	from	Zhang	et	al.	(2014)	were	

used.	

For	the	comparison	of	the	human	CRC	cell	 lines	microarray	data	with	data	from	different	RNA-seq	

pipelines,	correlation	of	expression	values	of	commonly	expressed	genes	was	conducted	between	all	

four	pipeline	methods	(microarray,	STAR	+	featureCounts,	STAR	+	Salmon,	Salmon)	in	a	pairwise	man-

ner	for	samples	of	the	same	cell	line	taken	at	identical	time	points,	considering	only	those	time	points	

that	are	shared	between	all	methods	(12–24	h).	The	resulting	Pearson	correlation	coefficients	were	

averaged	over	all	time	points	for	each	method	comparison.	Circadian	parameters	(i.e.,	phases	and	rel-

ative	amplitudes)	of	24-h	rhythmic	genes	were	compared	between	the	three	datasets	(microarray,	

RNA-seq,	and	the	concatenation	of	both)	in	a	pairwise	manner.	Only	genes	that	were	commonly	iden-

tified	to	be	24-h	rhythmic	were	taken	into	account	for	the	correlation	analyses.	Circular	Pearson	cor-

relation	coefficients	were	computed	for	phases	of	24-h	rhythmic	genes	and	statistical	significance	was	

tested	using	 the	 function	 core-circular	 from	 the	R	package	 circular	 (v0.4-93)	 for	 circular	 statistics	
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(Agostinelli	and	Lund,	2017).	For	relative	amplitudes,	Pearson	correlation	coefficients	were	computed,	

and	statistical	significance	was	tested	using	the	function	cor.test	from	the	R	package	stats.	

2.3.5 Clustering Analysis 

For	the	human	CRC	cell	lines	microarray	data,	noise-robust	soft	clustering	of	24-h	rhythmic	gene	ex-

pression	patterns	was	performed	with	the	Mfuzz	package	(v2.38.0)	(Kumar	and	Futschik,	2007)	using	

default	parameters.	The	number	of	clusters	was	set	to	four.	Prior	to	clustering,	the	log2	gene	expression	

intensities	were	transformed	to	the	standard	normal	distribution.		

2.3.6 Detection of Alternatively Spliced Exons in Microarray Data 

For	the	human	CRC	cell	lines	transcriptome	array	data,	putative	alternatively	spliced	exons	were	pre-

dicted	using	the	FIRMA	algorithm	(Purdom	et	al.,	2008)	as	implemented	in	the	aroma.affymetrix	pack-

age	(v3.1.1)	(Bengtsson	et	al.,	2008)	and	a	custom	chip	definition	file	(CDF)	for	HTA	2.0	arrays	from	

Brainarray	(v19)	(Dai	et	al.,	2005).	For	each	cell	line	and	each	time	point,	FIRMA	scores	were	computed	

for	 all	 probe	 sets	 and	 annotated	with	Ensembl	 exon	 IDs.	 Exons	with	 a	 log2	 expression	<	2.5	were	

marked	as	absent.	Exons	that	were	absent	in	more	than	half	of	the	samples	of	a	cell	line	were	excluded	

from	the	analysis,	as	were	genes	where	at	least	half	of	the	probe	sets	in	more	than	half	of	the	samples	

of	a	cell	line	were	absent.	Paired	differences	in	FIRMA	scores	were	computed	as	the	log2	FC	of	two	

FIRMA	scores	for	the	same	exon	at	the	same	time	point.	24-h	rhythmic	changes	in	FIRMA	scores	over	

time	were	determined	by	RAIN	(p	<	0.05)	(Figure	2-2A).	

	

Figure	2-2:	Schematic	representation	of	the	FIRMA	and	FIRMAGene	analysis	to	identify	candidate	rhythmic	splicing	

events	in	microarray	data.	(A)	FIRMA	detects	exon-specific	changes	in	expression	levels	derived	from	exon/transcrip-

tome	arrays	and	scores	them	depending	on	whether	they	deviate	from	the	expected	gene	expression	level	by	fitting	the	

RMA	model.	(B)	FIRMAGene	scores	the	persistence	of	residuals	of	adjacent	gene	array	probes	for	the	same	exon	region	

from	the	RMA	fit,	yielding	gene-level	FIRMAGene	scores	for	each	individual	time	point.	Rhythmic	changes	in	FIRMA	or	

FIRMAGene	scores	were	identified	using	RAIN.		
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For	the	murine	whole-transcript	microarray	data,	candidate	genes	with	putative	rhythmic	differential	

splicing	events	were	predicted	using	the	FIRMAGene	method	that	was	specifically	developed	for	the	

Affymetrix	Gene	1.0	ST	platform	(Robinson	and	Speed,	2009)	(Figure	2-2A).	Gene-level	FIRMAGene	

scores	were	calculated	for	each	time	point	using	the	FIRMAGene	package	(v0.9.8)	in	the	Aroma	plat-

form	as	implemented	in	the	aroma.affymetrix	package	(v3.1.1)	and	a	CDF	for	MoGene	arrays	(MoGene-

1_0-st-v1,mm9.cdf).	Phases	and	relative	amplitudes	of	the	FIRMAGene	scores	were	determined	by	fit-

ting	a	robust	harmonic	regression	using	the	HarmonicRegression	package	(v1.91)	with	a	period	of	12	h	

and	24	h,	respectively.	Scores	with	a	relative	amplitude	<	0.1	were	excluded.	The	RAIN	p-values	of	am-

plitude-filtered	scores	were	FDR-corrected	using	the	BH	method	and	significance	for	12-h	and	24-h	

rhythmic	FIRMAGene	scores	was	bounded	by	q	<	0.1.	

2.3.7 Detection of Differentially Rhythmic Splice Variants in RNA-seq Data 

For	 the	 detection	 of	 differentially	 rhythmic	 splice	 variants	 in	 the	 RNA-seq	 data,	 the	 robustDODR	

method	from	the	DODR	package	(v0.99.2)	was	applied	to	calculate	the	p-value	of	differential	rhythmic-

ity	for	each	pair	of	rhythmic	transcripts.	For	the	baboon	RNA-seq	data,	two	rhythmic	transcripts	were	

defined	as	a	pair	if	they	had	the	same	gene	identifier	and	the	same	period	in	the	same	tissue	and	if	one	

transcript	had	a	RAIN	p	<	0.005	and	the	other	RAIN	p	<	0.05.	For	the	human	CRC	cell	lines	RNA-seq	

data,	all	transcripts	pairs	with	a	RAIN	p	<	0.05	were	considered.	The	DODR	p-values	of	the	total	number	

of	12-h	and	24-h	rhythmic	splice	variant	pairs	(SVPs)	per	tissue	were	FDR-corrected	using	the	BH	

method	and	significance	for	differential	rhythmicity	was	bounded	by	DODR	q	<	0.05.	To	specifically	

identify	splice	variants	with	similar	amplitudes	and	a	strong	phase	difference,	only	differentially	rhyth-

mic	SVPs	with	a	relative	amplitude	difference	<	2	and	a	phase	difference	≥	2	h	(for	baboon	tissues)	for	

12-h	rhythmic	transcripts	and	≥	4	h	for	24	h	rhythmic	transcripts	(for	baboon	tissues	and	human	CRC	

cell	lines)	were	retained	for	subsequent	analyses.	

	

Figure	2-3:	Schematic	representation	of	the	analysis	of	differentially	rhythmic	splice	variant	pairs	in	RNA-seq	data.	The	

rhythmic	patterns	of	all	expressed	and	rhythmic	(with	the	same	period)	splice	variants	of	the	same	gene	in	the	same	

tissue	are	compared	in	a	pairwise	manner	using	the	robust	DODR	method	in	order	to	identify	differentially	rhythmic	

SVPs	with	a	phase	shift	in	peak	expression.	

2.3.8 Prediction of Transcription Factor Binding Sites 

For	the	three	sets	of	differentially	24-h	rhythmic	genes	identified	based	on	the	SW480	and	SW620	mi-

croarray	data	(genes	with	a	higher	amplitude	in	SW480	cells,	gene	with	a	higher	amplitude	in	SW620	
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cells	and	phase-shifted	genes),	promoter	sequences	were	extracted	±1,000	bp	of	the	RefSeq	transcrip-

tion	start	sites	(TSSs).	For	the	baboon	RNA-seq	dataset,	promoter	sequences	were	extracted	for	the	

two	sets	of	splicing-related	genes	detected	to	be	24-h	rhythmic	in	at	least	ten	of	the	baboon	tissues	that	

showed	an	early	and	a	late	peak	of	expression,	respectively,	and	for	a	set	of	arrhythmic	splicing-related	

genes.	For	each	consistently	24-h	rhythmic	splicing-related	gene,	all	associated	24-h	rhythmic	tran-

scripts	were	identified,	while	for	the	set	of	arrhythmic	splicing-related	genes,	the	associated	transcripts	

were	filtered	for	those	expressed	in	at	least	one	baboon	tissue	but	not	detected	to	be	24-h	rhythmic	

(p	>	0.05)	in	any	tissue.	Sequences	of	promoter	regions	±1000	bp	of	the	TSSs	from	Ensembl	BioMart	

(Ensembl	Genes	95)	(Zerbino	et	al.,	2017)	were	extracted	using	bedtools	(v2.26.0)	(Quinlan,	2014).	

Duplicate	sequences	were	removed.	The	enrichment	of	four	potential	clock	transcription	factor	bind-

ing	sites	(D-box,	E-box,	E’-box,	and	RRE)	in	the	promoter	regions	of	the	respective	gene	sets	was	tested	

using	the	Analysis	of	Motif	Enrichment	(AME)	tool	of	the	MEME	Suite	(v4.12.0)	(McLeay	and	Bailey,	

2010)	based	on	position-specific	scoring	matrices	from	McGlincy	et	al.	(2012),	employing	the	average	

odds	scoring	method	and	one-tailed	Fisher's	exact	test	with	shuffled	input	sequences	as	control.	

2.3.9 Functional Enrichment Analysis 

Enriched	GO	terms	and	KEGG	pathways	for	24-h	rhythmic	gene	clusters	from	the	SW480	and	SW620	

microarray	data	were	computed	using	the	Database	for	Annotation,	Visualization,	and	Integrated	Dis-

covery	(DAVID)	(v6.8)	(Huang	et	al.,	2009)	against	a	background	of	all	expressed	genes	in	the	respec-

tive	cell	line.	The	resulting	annotations	were	grouped	into	annotation	clusters	based	on	common	gene	

members.	The	enrichment	score	of	each	annotation	cluster	is	defined	as	the	geometric	mean	(in	-log10	

scale)	of	the	individual	annotations’	p-values.	DAVID	was	further	used	to	compute	enriched	GO	terms	

for	the	three	sets	of	differentially	rhythmic	transcripts	in	SW480	and	SW620	cells	and	for	the	candidate	

genes	with	differential	AS	events	between	the	cell	lines,	based	on	the	microarray	data.	Circadian	path-

ways	were	determined	by	PSEA	(v1.1)	(Zhang	et	al.,	2016)	based	on	the	sets	of	24-h	rhythmic	genes	

identified	in	the	SW480	and	SW620	microarray	data.	Gene	sets	were	downloaded	from	the	Molecular	

Signatures	database	(MSigDB)	C2	(KEGG	gene	sets)	(v6.1)	(Subramanian	et	al.,	2005).	Sets	containing	

fewer	than	five	24-h	rhythmic	genes	were	excluded	from	the	analysis.	The	Kuiper	test	was	used	to	

identify	circadian	gene	sets	by	comparing	the	phases	of	all	24-h	rhythmic	genes	(rounded	to	the	full	

hour)	belonging	to	each	gene	set	to	a	uniform	background	distribution	and	by	testing	for	non-uni-

formity	(q	<	0.01).	

Gene	Ontology	(GO)	enrichment	analysis	of	gene	sets	identified	based	on	the	murine	and	the	baboon	

data	as	well	as	the	SW480	and	SW620	RNA-seq	data	was	performed	using	the	clusterProfiler	R	package	

(3.10.1)	(Yu	et	al.,	2012).	For	the	two	sets	of	murine	candidate	genes	with	12-h	and	24-h	rhythmic	

FIRMAGene	scores,	p-values	were	FDR-corrected	using	the	BH	procedure	with	significance	bounded	

by	q	<	0.01.	The	baboon	candidate	genes	with	differentially	rhythmic	phase-shifted	SVPs	were	mapped	

to	orthologous	human	genes	using	Ensembl	BioMart	 (Ensembl	Genes	95).	P-values	were	FDR-cor-

rected	using	the	BH	procedure	with	significance	bounded	by	p	<	0.002	for	genes	with	24-h	rhythmic	
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SVPs	in	SW480	and	with	q	<	0.05	for	genes	with	24-h	rhythmic	SVPs	in	SW620	cells	and	by	q	<	0.05	for	

genes	with	24-h	rhythmic	and	by	p	<	0.001	for	genes	with	12-h	rhythmic	SVPs	in	baboon	tissues.	

2.3.10 Compilation of Lists of Splicing-related Genes 

A	list	of	254	human	spliceosome	components	and	other	splicing-related	genes	(Table	S	1)	was	com-

piled	from	three	sources:	from	a	publication	by	Relógio	et	al.	(2005)	and	from	two	public	databases	for	

spliceosome	components,	SpliceosomeDB	(Cvitkovic	and	Jurica,	2012),	and	for	human	SFs,	SpliceAid-

F	(Giulietti	et	al.,	2012).	Genes	were	grouped	according	to	their	recruitment	to	different	complexes	of	

the	spliceosome	(A,	B,	Bact,	and	C	complex),	different	snRNPs	(U11/12,	U1,	17S	U2,	U5,	and	U4/U6	

snRNP),	and	other	spliceosomal	complexes	and	proteins	(PRP19	and	RES	complex,	EJC/mRNP,	and	

Sm/LSm	proteins),	as	well	as	hnRNPs,	SR	proteins,	and	other	splicing	regulators.	A	larger	list	of	426	

human	spliceosome	and	splicing-related	genes	(Table	S	1)	was	compiled	by	aggregating	elements	

from	the	following	sources:	1)	the	previous	list	of	254	spliceosome	components	and	splicing	regulators	

and	2)	404	splicing	factor	genes	from	Seiler	et	al.	(2018).	Mapping	these	genes	to	their	orthologues	

using	Ensembl	BioMart	 (Ensembl	Genes	95)	 (Zerbino	et	al.,	2017)	resulted	 in	429	splicing-related	

genes	for	olive	baboon	and	451	splicing-related	genes	for	mouse.	

2.3.11 Visualization 

Unless	otherwise	stated,	graphics	were	created	in	the	R	software	environment	using	the	ggplot2	pack-

age	(v3.2.0)	for	data	visualization	(Wickham,	2016).	For	the	human	CRC	cell	 lines	microarray	data,	

exon-level	expression	and	FIRMA	scores	for	individual	genes	were	visualized	at	the	genomic	level	us-

ing	the	GenomeGraphs	package	(v1.38.0)	(Durinck	et	al.,	2009).	Tissue-wise	area-proportional	Venn	

diagrams	of	the	logical	relations	between	12-h	and	24-h	rhythmic	gene	and	transcript	sets	of	the	ba-

boon	RNA-seq	dataset	were	visualized	using	the	eulerr	package	(v5.0.0)	(Larsson,	2018).	All	other	

area-proportional	Venn	diagrams	were	visualized	using	BioVenn	(Hulsen	et	al.,	2008).	Graphics	were	

refined	and	figures	were	assembled	in	Adobe	Illustrator	CC	(v17.0.0).
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3 Results 

3.1 Analysis of the Circadian Transcriptome of Human CRC Cell Lines 

To	investigate	the	hypothesized	influence	of	circadian	regulated	AS	on	cancer	development,	the	CRC	

cell	lines	SW480	(derived	from	a	primary	carcinoma)	and	SW620	(derived	from	a	lymph	node	metas-

tasis	from	the	same	male	patient)	were	chosen	as	a	model	system	of	tumor	progression.	The	chapter	

starts	with	a	comparison	of	the	time-series	expression	of	core	clock	genes	and	circadian	transcription	

factors	between	the	two	cell	lines,	followed	by	a	detailed	analysis	of	differential	rhythmicity	on	the	

transcriptome-level.	 In	 the	 second	and	 third	part,	 biological	processes	 enriched	 for	24-h	 rhythmic	

genes	are	analyzed,	with	a	particular	 focus	on	the	spliceosome	pathway	and	other	splicing-related	

genes.	The	chapter	closes	with	an	analysis	of	candidate	differential	and	circadian	AS	events	in	the	cell	

line	model	and	their	possible	implications	for	tumor	progression.	The	results	described	in	this	chapter	

have	for	the	most	part	been	published	in	El-Athman	et	al.	(2018).	Text	passages	and	figures	of	the	pub-

lication	have	been	adapted	for	this	thesis.	

3.1.1 Genome-wide Analysis of Differential Rhythmicity between SW480 and SW620 Cells 

The	circadian	transcriptome	of	the	CRC	cell	lines	SW480	and	SW620	was	profiled	using	whole	tran-

scriptome	microarrays.	RNA	was	sampled	every	3	h	for	a	full	circadian	cycle	(24	h)	after	synchroniza-

tion	of	the	cells	by	a	change	of	the	growth	medium.	The	14	core	clock	components	BMAL1,	BMAL2,	

CLOCK,	NPAS2,	CRY1,	CRY2,	PER1,	PER2,	PER3,	NR1D1,	NR1D2,	RORA,	RORB,	and	RORC,	and	the	clock-

regulated	transcription	factor	genes	DBP	and	TEF	were	all	expressed	with	medium	to	high	levels	in	

SW480	and	SW620	cells,	with	the	exception	of	RORB	that	displayed	only	relatively	low	expression	lev-

els	in	both	cell	lines	(mean	RMA	expression	value	<	4)	(Figure	S	1).	As	expected	for	a	functioning	core	

clock	system,	BMAl1	was	oscillating	in	anti-phase	to	PER1,	PER2,	PER3,	NR1D1,	and	NR1D2	in	SW480	

cells	(Figure	3-1A).	However,	several	of	the	robust	clock	gene	oscillations	in	SW480	cells	were	se-

verely	diminished	in	the	metastasis-derived	cell	line:	BMAL1,	NR1D1,	PER3,	and	DBP	were	not	oscillat-

ing	in	SW620	cells,	whereas	NR1D2	and	CRY1	oscillated	in	a	circadian	manner	in	both	cell	lines	but	

displayed	lower	amplitudes	in	SW620	cells,	indicating	a	disruption	of	the	core	clock	in	SW620	cells.	

Overall,	core	clock	genes	tended	to	have	lower	expression	levels	in	SW620	cells	when	compared	to	

SW480	cells	(Figure	S	1).	For	genes	whose	oscillations	were	diminished	or	abolished	in	SW620	cells,	
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such	as	BMAL1,	NR1D1,	NR1D2,	and	PER3,	the	mean	expression	levels	over	time	in	SW620	cells	corre-

sponded	to	the	troughs	of	the	oscillation	in	SW480	cells.	

	

Figure	3-1:	Core	clock	genes	and	circadian	transcription	factors	in	SW480	and	SW620	cells	(microarray	data).	(A)	Time-

series	expression	of	core	clock	genes	in	primary	tumor-derived	SW480	cells	(blue)	and	metastasis-derived	SW620	cells	

(orange).	A	harmonic	regression	was	fitted	to	genes	that	were	identified	as	24-h	rhythmic	(RAIN	q	<	0.08	after	filtering	

for	genes	with	a	minimum	FC	amplitude	of	1.15).	(B)	Heatmaps	of	Spearman	correlation	(rho)	between	each	pair	of	core	

clock	genes	for	SW480	and	SW620	cells	in	comparison	to	a	healthy	murine	multi-organ	reference	set	(GSE54650).	

To	further	quantify	the	extent	of	circadian	perturbation	in	the	CRC	cell	lines,	the	Spearman	correlation	

between	the	expression	values	of	ten	core	clock	genes	and	DBP	and	TEF	was	computed	(Shilts	et	al.,	

2018)	and	compared	to	a	reference	signature	of	clock	gene	co-expression	from	healthy	mouse	organs	

(Zhang	et	al.,	2014)	(Figure	3-1B).	Mammalian	clock	genes	and	proteins	are	known	to	be	highly	con-

served,	thus	allowing	for	a	comparison	of	correlation	patterns	across	species.	The	correlation	pattern	

of	SW480	cells	closely	resembled	the	reference	pattern:	Two	groups	of	clock	genes	(BMAL1,	NPAS2,	

CLOCK,	and	CRY1	versus	CRY2,	NR1D1,	NR1D2,	PER1,	PER2,	PER3,	DBP,	and	TEF)	were	positively	cor-

related	with	genes	within	their	own	group	but	negatively	correlated	with	genes	from	the	respective	

other	group.	In	SW620	cells,	the	separation	in	two	groups	was	less	distinct	and	the	genes	NPAS2	and	

DBP	showed	a	negative	correlation	with	genes	within	their	own	group,	indicating	a	stronger	dysregu-

lation	of	the	clock	in	the	metastasis-derived	cell	line	in	comparison	to	cells	derived	from	a	primary	CRC	

tumor.	

In	the	next	step,	24-h	rhythmic	gene	expression	was	analyzed	and	compared	between	both	cell	lines	

at	the	whole	transcriptome-level.	24-h	rhythmic	genes	were	determined	by	the	RAIN	algorithm	and	

corrected	for	multiple	testing	after	filtering	for	genes	with	a	minimal	FC	amplitude	of	1.15.	The	non-

parametric	RAIN	algorithm	was	chosen	for	the	analysis	of	rhythmicity	because	it	allows	for	the	detec-

tion	of	rhythms	with	arbitrary	waveforms	and	only	requires	the	period	length	(~24	h)	as	input,	which	

can	be	inferred	from	previous	bioluminescence	measurements	of	core	clock	gene	reporter	activity	in	

the	cell	lines	(Fuhr	et	al.,	2018).	Given	an	FDR	of	8%,	2282	(~9.5%)	genes	were	identified	in	SW480	

cells	and	1921	(~8.0%)	in	SW620	cells	(Figure	3-2A).	The	FDR	cutoff	of	8%	was	chosen	because	a	

more	stringent	cutoff	of	5%	yielded	no	24-h	rhythmic	genes	for	SW620	cells	(Figure	S	2A).	This	seems	

improbable	given	that	circadian	oscillations	of	several	core	clock	genes	were	observed	in	the	cell	line	

(Figure	3-1A)	which	are	likely	propagated	to	target	clock-controlled	genes.	The	resulting	percentages	
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of	24-h	rhythmic	genes	per	cell	line	are	comparable	to	previous	results	gained	from	mammalian	tissues	

(Zhang	et	al.,	2014).	In	both	cell	lines,	the	sets	of	24-h	rhythmic	genes	displayed	bimodal	phase	distri-

butions	(Figure	3-2B	and	C).	In	SW480	cells,	~47%	of	the	24-h	rhythmic	genes	peaked	between	6	to	

12	h	(early	peak)	and	~23%	between	19–24/0	h	after	synchronization	(late	peak).	The	late	peak	oc-

curred	~12	h	after	the	peak	of	rhythmic	BMAL1	expression	(9.9	h),	and	the	early	peak	occurs	~12	h	

after	the	peaks	of	NR1D1	 (18.2	h)	and	NR1D2	 (20.5	h),	suggesting	that	 the	observed	oscillations	 in	

SW480	cells	might	be	regulated	via	rhythmic	E-box	and	ROREs	binding.	In	SW620	cells,	~58%	of	the	

24-h	rhythmic	genes	peak	between	4–10	h	(early	peak)	and	~18%	between	16–21	h	after	synchroni-

zation	(late	peak).	The	phase	shift	of	-2–3	h	from	SW480	to	SW620	cells	points	to	a	shift	of	clock	activity	

from	primary	tumor	to	metastasis,	possibly	resulting	from	the	observed	dysregulation	of	the	core	clock	

in	SW620	cells.	

	

Figure	3-2:	Transcriptome-level	analysis	of	24-h	rhythmic	genes	in	SW480	and	SW620	cells	(microarray	data).	(A)	Me-

dian-normalized,	phase-ordered	expression	heatmaps	of	genes	that	were	identified	as	24-h	rhythmic	in	SW480	and	

SW620	cells	(RAIN	q	<	0.08	after	filtering	for	genes	with	a	minimum	FC	amplitude	of	1.15).	Each	row	represents	one	

gene.	(B)	3-h	phase	bins	of	the	24-h	rhythmic	gene	sets	identified	in	SW480	SW620	cells.	(C)	Phase	and	amplitude	dis-

tributions	of	the	24-h	rhythmic	genes	identified	in	SW480	and	SW620	cells.	Each	24-h	rhythmic	gene	is	represented	by	

a	dot;	core	clock	genes	are	highlighted	in	black.	

Less	than	600	genes	were	identified	as	24-h	rhythmic	in	both	cell	lines,	yet	many	of	the	non-intersect-

ing	genes	also	showed	oscillations	in	the	respective	other	cell	line	(Figure	S	2B	and	C).	This	observa-

tion	demonstrates	that	even	though	a	gene	may	be	defined	as	rhythmic	in	one	condition	according	to	

the	chosen	statistical	threshold,	while	not	being	significantly	rhythmic	in	another	condition,	it	does	not	

necessarily	follow	that	they	also	have	significantly	different	expression	patterns.	To	attain	a	better	un-

derstanding	regarding	the	changes	in	circadian	rhythmicity	during	tumor	progression,	the	amplitudes	

and	phases	of	individual	genes	were	compared	between	both	cell	lines	using	the	robust	DODR	method	
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for	the	detection	of	differential	rhythmicity.	The	DODR	method	tests	for	significant	differences	in	rhyth-

micity,	i.e.,	in	phase	or	amplitude,	between	two	time-series	by	fitting	them	to	sine	curves	with	a	fixed	

period	and	free	phase	and	amplitude.	

	

Figure	3-3:	Differential	rhythmicity	analysis	between	rhythmic	genes	in	SW480	and	SW620	cells	(microarray	data).	(A)	

Changes	in	rhythmicity	(amplitudes	and/or	phases)	from	SW480	to	SW620	cells	of	the	genes	that	show	24-h	rhythms	in	

either	one	of	the	cell	lines	were	estimated	using	the	robust	DODR	method.	The	transcripts	with	BH-adjusted	p	<	0.05	

were	further	divided	in	genes	with	a	higher	amplitude	in	SW480	cells	(blue),	genes	with	a	higher	amplitude	in	SW620	

cells	(orange),	and	genes	with	a	pure	phase	shift	(dark	gray).	(B)	Log2	amplitude	changes	from	SW480	to	SW620	cells	

for	genes	with	a	higher	amplitude	in	either	SW480	or	SW620.	(C)	Phases	for	genes	with	higher	amplitudes	in	SW480	

cells	(upper	panel,	blue)	and	SW620	cells	(lower	panel,	orange).	(D)	Time-series	expression	in	SW480	cells	(blue)	and	

SW620	cells	(orange)	for	eight	genes	with	the	largest	loss	of	oscillations	in	SW620	cells.	(E)	Phases	in	SW480	and	SW620	

cells	for	genes	with	pure	phase	shifts.	Genes	with	absolute	phase	shifts	>	3	h	(black	border)	are	labeled	with	the	gene	

name.	Selected	transcripts	represented	in	(F)	are	written	in	bold.	(F)	Time-series	expression	for	selected	phase-shifted	

genes	in	SW480	cells	(blue)	and	SW620	cells	(orange).	

DODR	p-values	were	computed	for	all	3606	pairs	of	24-h	rhythmic	genes	that	oscillated	in	at	least	one	

of	the	two	cell	lines.	The	resulting	1005	genes	with	significant	differential	rhythmicity	between	the	cell	

lines	(BH-adjusted	DODR	p	<	0.05)	were	further	grouped	in	three	sets	(see	subsection	2.3.3	for	crite-

ria):	Genes	with	a	higher	amplitude	in	SW480	cells	(39.5%),	genes	with	a	higher	amplitude	in	SW620	

cells	(25.9%),	and	genes	displaying	a	pure	phase	shift	(5.6%)	(Figure	3-3A).	The	remaining	differen-

tially	rhythmic	genes	did	not	meet	any	of	the	criteria	and	were	therefore	not	assigned	to	any	group.	In	
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line	with	the	observed	weaker	oscillations	of	core	clock	genes	in	SW620	cells,	a	tendency	for	increased	

amplitudes	in	genes	with	higher	amplitudes	in	SW480	cells	compared	to	genes	with	higher	amplitudes	

in	 SW620	 cells	 could	 be	 observed	 (Figure	3-3B).	 Furthermore,	 genes	with	 a	 higher	 amplitude	 in	

SW620	cells	tended	to	have	earlier	phases	than	those	with	a	higher	amplitude	in	SW480	cells	(Figure	

3-3C),	again	suggesting	a	temporal	shift	in	the	activity	of	clock-controlled	genes	in	the	metastasis-de-

rived	cell	line.	

To	gain	mechanistic	insights	into	possible	causes	for	the	altered	rhythmicity	between	the	circadian	

transcriptome	of	 SW480	and	SW620	 cells,	 a	 search	 for	 enriched	 transcription	 factor	binding	 sites	

among	the	differentially	rhythmic	genes	sets	was	conducted.	Promoter	regions	within	1000	bp	of	the	

TSSs	were	queried	for	overrepresented	clock	transcription	factor	binding	sites	(E-box,	E’-box,	D-box,	

and	RORE).	The	E-box	motif	was	found	to	be	enriched	for	both	the	set	of	genes	with	amplitude	gains	in	

SW480	(adj.	p	=	1.42e-8)	and	SW620	cells	(adj.	p	=	0.0035).	Additionally,	the	RORE	motif	was	enriched	

for	genes	with	an	amplitude	gain	in	SW480	cells	(adj.	p	=	0.024),	raising	the	possibility	that	the	loss	of	

NR1D1	oscillations	might	in	part	be	responsible	for	the	diminished	amplitudes	in	SW620	circadian	

gene	expression.	No	clock	transcription	factor	binding	motif	was	found	to	be	enriched	for	the	set	of	

phase-shifted	genes.	

Eight	genes	with	an	absolute	log2	FC	>	4	between	the	two	cell	lines	were	identified	that	all	displayed	

amplitude	gains	and	higher	expression	levels	in	SW480	cells	(Figure	3-3D).	The	set	includes	the	core-

clock	gene	PER3,	 five	other	protein-coding	genes	(ADGRE5,	EDN1,	EPN2,	MYEF2,	STXBP6),	and	two	

non-coding	RNA	genes	(TPRXL,	SH3PXD2A-AS1).	MYEF2	is	a	paralog	of	the	SF	HNRNPM	and	acts	as	a	

suppressor	factor	in	myelinating	and	erythroid	cells	(van	Riel	et	al.,	2012).	ADGRE5,	EDN1,	and	STXBP6	

are	all	 involved	 in	cell-cell	adhesion	(Davenport	et	al.,	2016;	Lenka	et	al.,	2017;	Sood	et	al.,	2016),	

whereas	EPN2	is	involved	in	clathrin-mediated	endocytosis	and	acts	as	a	suppressor	of	VEGF-mediated	

angiogenesis	(Rahman	et	al.,	2016).	In	a	cancer	context,	angiogenesis	describes	the	process	of	blood	

vessel	growth	that	provides	a	tumor	with	oxygen	and	nutrients,	allowing	it	to	grow	beyond	a	limited	

size	and	to	metastasize	to	distant	sites.	The	adhesive	properties	of	cells	are	essential	for	the	interaction	

of	tumor	cells	with	endothelial	cells	during	angiogenesis	(Farahani	et	al.,	2014).	The	non-coding	RNA	

genes	TPRXL	and	SH3PXD2A-AS1	have	both	been	linked	to	cancer	as	well	(Hao	et	al.,	2018;	Torres-

Martín	et	al.,	2015).	It	is	thus	conceivable	that	the	combination	of	higher	expression	levels	and	stronger	

oscillations	of	angiogenesis-	and	other	cancer-related	genes	contribute	to	differences	in	the	pheno-

types	of	primary	tumor-	and	metastasis-derived	CRC	cells.	25	genes	displayed	an	estimated	pure	phase	

shift	>	3	h	between	the	cell	lines	(Figure	3-3E	and	F).	Several	of	them	encode	for	membrane-related	

proteins	(DHRS7,	NRP2,	PSMD1,	SCD,	SEC61A1)	or	are	involved	in	transmembrane	transport	(ABCC1,	

VDAC1)	while	others	are	related	to	the	cell	cycle	(AURKB,	CYLD,	ESCO2).	ABCC1	encodes	for	the	protein	

MRP1	that	plays	an	important	role	in	conferring	resistance	to	chemotherapeutic	drugs	in	cancer	cells	

(Kunická	and	Souček,	2014),	making	it	a	potential	target	for	cancer	stage-specific	chronotherapeutical	

approaches	that	take	the	internal	time	of	patients	into	account.	
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To	further	analyze	whether	the	three	types	of	differentially	rhythmic	genes	between	the	cell	lines	are	

involved	in	biologically	related	processes	or	share	molecular	functions,	a	functional	annotation	analy-

sis	was	conducted	against	the	background	of	all	24-h	rhythmic	genes	in	either	cell	line	(Figure	S	3).	

Biological	processes	enriched	for	genes	that	oscillated	in	SW480	cells	but	lost	their	rhythmicity	in	the	

metastasis-derived	cell	line	include	chromatin	silencing	and	modification,	the	regulation	of	mitotic	nu-

clear	division,	and	homophilic	cell	adhesion.	Genes	with	higher	amplitudes	in	the	metastasis-derived	

cell	line	are	associated	with,	i.a.,	the	regulation	of	transcription	from	an	RNA	polymerase	II	promoter	

and	the	regulation	of	smooth	muscle	cell	proliferation.	Cell	adhesion	properties	determine	the	cell’s	

abilities	to	escape	from	its	site	of	origin,	invade	other	tissues,	and	ultimately	metastasize	and	thus	play	

an	important	role	in	cancer	progression	(Okegawa	et	al.,	2004).	Likewise,	the	smooth	muscle	layer	is	

often	lacking	in	tumor	vessels	and	the	apoptosis	of	vascular	smooth	muscle	cells	facilitates	the	intrav-

asation	of	CRC	cells	into	the	bloodstream	and	promotes	metastasis	(Li	et	al.,	2017).	The	loss	of	oscilla-

tions	in	the	expression	of	genes	involved	in	cell	cycle	regulation	and	cell	adhesion	and	the	gain	of	rhyth-

micity	for	genes	regulating	smooth	muscle	cell	proliferation	might	enable	CRC	cells	to	develop	proper-

ties	that	are	favorable	for	proliferation	and	the	formation	of	metastases.	Biological	processes	enriched	

for	the	set	of	phase-shifted	genes	include	replication	fork	processing,	DNA	binding,	and	retinoid	X	re-

ceptor	(RXR)	binding.	Interestingly,	the	RXR	element	has	previously	been	reported	as	a	binding	motif	

of	circadian	TFs	(Westermark	and	Herzel,	2013)	and	RXRs	interact	with	several	elements	of	the	posi-

tive	limp	of	the	circadian	TTFL.	For	instance,	the	interaction	of	RXRα	with	CLOCK	and	NPAS2	hinders	

the	transcriptional	activation	of	clock	gene	expression	(McNamara	et	al.,	2001).	RXRα	further	modu-

lates	the	canonical	Wnt/β-catenin	signaling	pathway,	which	is	deregulated	in	CRC	due	to	over-phos-

phorylation	of	RXRα	that	leads	to	hyperactivated	β-catenin	signaling	(Ruan	et	al.,	2017).	A	phase	shift	

of	oscillating	RXR-binding	genes	might	thus	be	responsible	for	a	change	in	the	temporal	regulation	of	

cancer-relevant	downstream	pathways.	

Overall,	the	analysis	of	the	circadian	transcriptome	of	SW480	and	SW620	cells	demonstrates	that	the	

dysregulated	core	clock	observed	in	SW620	cells	likely	leads	to	the	differential	rhythmicity	of	clock-

controlled	genes,	several	of	which	are	associated	with	hallmarks	of	tumor	progression.	However,	it	

remains	to	be	elucidated	how	the	loss	or	gain	of	rhythms	in	gene	expression	and	the	change	of	phases	

contribute	to	the	cellular	phenotype	in	comparison	to	overall	changes	in	gene	expression	between	the	

primary	tumor-	and	the	metastasis-derived	cell	line.	

3.1.2 Functional Annotation of Circadian Genes in CRC Cells Reveals Phase-shifted Pathways 

To	explore	the	functional	relevance	of	the	complete	circadian	transcriptome	of	the	CRC	cell	lines,	24-h	

rhythmic	genes	were	grouped	into	four	clusters,	respectively,	based	on	their	temporal	expression	in	

SW480	(Figure	S	4A)	and	in	SW620	cells	(Figure	S	5A).	The	clusters	contain	200–800	rhythmic	genes	

each	and	exhibit	different	phases	of	peak	expression.	A	functional	annotation	of	the	eight	gene	sets	

revealed	various	important	pathways	and	biological	processes	known	to	be	under	circadian	control,	
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such	as	the	cell	cycle	(e.g.,	G1/S	transition	of	mitotic	cell	cycle	and	DNA	replication	initiation)	and	di-

verse	metabolic	processes	(e.g.,	canonical	glycolysis,	fructose	and	mannose	metabolism,	starch	and	su-

crose	metabolism)	(Figure	S	4B	and	Figure	S	5B).	Other	biological	processes	enriched	for	the	24-h	

rhythmic	gene	sets	are	less	well	known	to	be	controlled	by	the	clock,	e.g.,	cell-cell	adhesion	and	mRNA	

splicing.	Interestingly,	some	biological	processes	were	identified	as	rhythmic	in	both	cell	lines,	but	the	

associated	gene	clusters	showed	expression	peaks	at	different	times	of	the	circadian	day.	For	instance,	

in	SW480	cells,	the	spliceosome	pathway	is	enriched	for	the	gene	set	that	peaks	at	~9	h	after	synchro-

nization,	whereas	in	SW620	cells,	it	is	associated	with	the	gene	set	peaking	at	about	6	h	after	synchro-

nization.	Other	processes	such	as	cell-cell	adhesion	are	enriched	for	more	than	one	cluster	in	the	same	

cell	line,	indicating	that	while	these	processes	are	enriched	for	24-h	rhythmic	genes,	the	associated	

genes	have	diverse	temporal	expression	patterns.	

The	latter	case	demonstrates	that	the	binning	of	genes	with	continuous	peak	times	into	discrete	clus-

ters	prior	to	the	functional	annotation	does	not	necessarily	allow	for	the	detection	of	pathways	that	

are	exclusively	enriched	for	genes	with	similar	peak	times.	To	specifically	identify	biologically	related	

gene	sets	with	temporally	coordinated	transcription,	the	periodicity	of	the	data	(i.e.,	the	peak	expres-

sion	phases	of	the	rhythmic	genes)	needs	to	be	taken	into	account	as	part	of	the	enrichment	analysis.	

In	analogy	to	gene	set	enrichment	analysis	where	each	set	member	contributes	to	the	score	of	the	en-

tire	set,	PSEA	makes	use	of	the	peak	phases	to	identify	biological	processes	enriched	for	sets	of	24-h	

rhythmic	genes	with	non-uniformly	distributed	phases	and	to	estimate	the	circular	mean	phase	of	the	

entire	set.	Applying	PSEA	for	the	complete	sets	of	24-h	rhythmic	genes,	15	and	36	KEGG	pathways	were	

found	to	be	significantly	temporally	coordinated	(q	<	0.01)	in	SW480	and	SW620	cells,	respectively	

(Figure	3-4).	With	the	exception	of	the	systemic	lupus	erythematosus	pathway,	all	phase-clustered	

circadian	pathways	in	SW480	cells	had	a	circular	mean	phase	between	4	and	12	h	after	synchroniza-

tion.	In	SW620,	the	circular	mean	phases	were	even	more	closely	clustered	between	~5	and	~10	h	

after	synchronization.	Despite	the	bimodal	distributions	of	peak	phases	of	24-h	rhythmic	genes	(see	

subsection	3.1.1),	no	pathways	with	circular	mean	phases	between	16	and	4	h	were	identified	in	either	

cell	line.	In	the	primary	tumor	cell	line	SW480,	the	analysis	further	revealed	a	significant	temporal	or-

chestration	for	important	signaling	pathways,	including	the	Jak-STAT	signaling	pathway	(4.9	h)	and	

the	Toll-like	receptor	pathway	(6.8	h)	that	were	not	identified	in	the	previous	functional	annotation	of	

circadian	gene	clusters.	In	the	metastatic	SW620	cells,	several	cancer-associated	pathways	were	found	

to	be	temporally	coordinated,	including	small/non-small	cell	lung	cancer	(7.4	h/7.3	h),	pancreatic	can-

cer	 (7.4	h),	 and	 oxidative	 phosphorylation	 (8.8	h).	 Several	 temporally	 coordinated	 pathways	 are	

shared	between	both	cell	lines,	including	protein	export	(circular	mean	phase	of	7.4/6.2	h	after	syn-

chronization	 in	 SW480/SW620	 cells),	 antigen	 processing	 and	 presentation	 (7.6/6.6	h),	 and	 the	

spliceosome	(9.4/8.5	h),	as	well	as	nucleotide	metabolic	processes	(purine	metabolism:	9.8/8.3	h;	py-

rimidine	metabolism:	10.0/8.6	h),	DNA	replication	(11.1/9.2	h),	several	DNA	repair-related	pathways	

(base	 excision	 repair:	 10.3/9.2	h;	 mismatch	 repair:	 11.1/9.4	h,	 homologous	 recombination:	

11.1/10.0	h),	and	the	cell	cycle	(11.4/8.0	h).	
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Figure	3-4:	Phase-clustered	circadian	pathways	in	SW480	and	SW620	cells	(microarray	data).	The	circular	axis	(blue	

lines:	SW480;	orange	lines:	SW620)	represents	the	average	phase	of	all	24-h	rhythmic	genes	from	a	KEGG	pathway.	

Pathways	that	are	temporally	coordinated	in	both	cell	lines	are	marked	with	an	asterisk.	The	circular	histograms	show	

the	3-h	phase	bins	of	the	24-h	rhythmic	genes.	

To	further	assess	temporal	shifts	from	SW480	to	SW620	cells	on	the	level	of	phase-clustered	circadian	

pathways,	PSEA	was	applied	to	identify	processes	with	significant	phase	shifts	between	the	cell	lines.	

Based	on	the	set	of	597	genes	that	oscillated	in	both	cell	lines,	16	pathways	were	identified	as	signifi-

cantly	phase-shifted	with	shifts	between	0.5	and	2.5	h	(Figure	3-5A).	Interestingly,	the	spliceosome	

was	among	the	resulting	phase-clustered	pathways	whose	associated	genes	showed	a	small	but	signif-

icant	shift	of	peak	expression	(0.76	h,	q	<	0.01)	(Figure	3-5A).	In	both	cell	lines,	the	sets	of	the	circadian	

spliceosome-associated	genes	were	unimodally	distributed,	though	the	composition	of	the	sets	and	the	

peak	times	of	the	genes	differed	(Figure	3-5B).	Any	phase	shift	smaller	than	3	h	has	to	be	considered	

carefully	because	 the	 small	 sampling	 resolution	does	not	allow	 the	exact	determination	of	phases.	

However,	since	the	result	is	not	based	on	the	expression	of	a	single	gene	but	rather	on	the	peak	phases	

of	several	genes,	it	can	be	taken	as	an	indication	that	the	rhythmic	orchestration	of	the	spliceosome	

undergoes	subtle	but	significant	changes	during	CRC	metastasis.	
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Figure	3-5:	Spliceosome-associated	genes	are	phase-shifted	between	SW480	and	SW620	cells	(microarray	data).	(A)	

Circadian	pathways	with	a	significant	phase	shift	between	SW480	and	SW620	cells.	(B)	Phases	of	spliceosome-associ-

ated	genes	in	SW480	cells	(left	panel)	and	SW620	cells	(right	panel).	The	dotted	line	depicts	the	empirical	cumulative	

phase	distribution	of	spliceosome-associated	genes.	The	solid	line	depicts	the	uniform	distribution.	The	height	of	the	

bars	corresponds	to	the	percentage	of	24-h	rhythmic	genes	in	the	spliceosome	pathway	that	peak	at	a	certain	time	after	

synchronization.	A	greater	contribution	of	a	gene	to	the	overall	phase	clustering	of	the	pathway	is	represented	by	a	larger	

font	size.	

3.1.3 Detection of Differential Rhythmicity of Splicing-related Genes 

In	order	to	further	investigate	and	compare	the	temporal	expression	patterns	of	genes	involved	in	the	

splicing	process	between	the	two	CRC	cell	lines,	a	list	of	254	splicing-related	genes	was	compiled	(see	

subsection	2.3.10)	(Table	S	1).	The	list	consists	of	components	recruited	at	different	complexes	of	the	

spliceosome,	different	snRNPs,	other	spliceosomal	complexes	and	proteins	(PRP19,	RES	complex,	EJC/	

mRNP,	and	LSm	proteins),	as	well	as	hnRNPs,	SR	proteins,	and	other	splicing	regulators.	In	SW480	

cells,	46	(~18%)	of	the	splicing-related	genes	from	the	list	showed	24-h	rhythms	in	expression	(Figure	

3-6A)	compared	to	35	genes	(~14%)	in	SW620	cells	(Figure	3-6B).	The	percentages	are	nearly	twice	

the	respective	percentages	of	24-h	rhythmic	genes	identified	on	the	whole	transcriptome-level	(see	

subsection	3.1.1).	As	expected	from	the	results	of	the	functional	annotation	and	the	circadian	pathway	

analysis	(see	subsection	3.1.2),	the	phase	distributions	of	the	24-h	rhythmic	splicing-related	genes	dif-

fered	between	SW480	and	SW620	cells:	30	out	of	the	35	24-h	rhythmic	spliceosome	components	and	

splicing	regulators	in	SW620	cells	peaked	between	6	and	10	h	after	synchronization	whereas	in	SW480	

cells,	the	phases	were	distributed	throughout	the	circadian	day	with	a	peak	of	expression	around	9	h	

after	synchronization.	The	24-h	rhythmic	splicing-related	genes	identified	in	SW480	and	SW620	cells	

belong	to	diverse	spliceosomal	complexes	and	splicing-related	protein	classes	(Figure	3-6C	and	D).	

However,	neither	phases	nor	amplitudes	were	clustered	 for	specific	 spliceosome	complexes	or	 for	

splicing	genes	encoding	for	proteins	from	the	same	class	or	family,	indicating	a	complex	temporal	reg-

ulation	of	splicing	throughout	the	circadian	day.	
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Figure	3-6:	Splicing-related	genes	display	24-h	rhythms	in	SW480	and	SW620	cells	(microarray	data).	Median-normal-

ized,	phase-ordered	expression	heatmap	(left	panel)	and	3-h	phase	bins	(right	panel)	of	24-h	rhythmic	splicing-related	

genes	in	(A)	SW480	(blue)	and	(B)	SW620	cells	(orange).	Phases	and	amplitudes	of	24-h	rhythmic	splicing-related	genes	

in	(C)	SW480	and	(D)	SW620	cells.	Genes	displaying	24-h	rhythms	in	both	cell	lines	are	marked	by	an	asterisk.	The	genes	

are	color-coded	according	to	their	protein	class/family	or	their	recruitment	to	the	spliceosome	complex.	(E)	Median-

normalized	 time-series	expression	of	 candidate	 robustly	 circadian	splicing-related	genes	 in	SW480	cells	 (blue)	and	

SW620	cells	(orange).	Shown	are	genes	with	a	FC	amplitude	≥	1.5	that	were	identified	to	be	24-h	rhythmic	in	at	least	one	

of	the	cell	lines.	

The	rhythmic	splicing-related	genes	identified	in	SW480	cells	include	several	well	characterized	SFs	

(SF1,	SRSF1,	SRSF2,	SRSF8,	ESRP1,	U2AF2)	and	hnRNP-encoding	genes	(HNRNPA0,	HNRNPAB,	HNRN-

PDL,	HNRNPF,	HNRNPL,	HNRNPLL,	FUS).	17	splicing-related	genes	were	identified	as	24-h	rhythmic	in	

both	cell	lines:	five	hnRNP-encoding	genes	(FUS,	HNRNPA0,	HNRNPL,	RBMX,	SYNCRIP),	one	SR	protein	

encoding	gene	(SRPK1),	three	genes	encoding	for	Sm	and	LSm	proteins	(LSM6,	SNRPD1,	SNRPD3),	four	
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EJC/mRNP	 components	 (ALYREF,	 EIF4A3,	 RBM8A,	 RNPS1),	 one	 element	 of	 the	 PRP19	 complex	

(HSPA8),	as	well	as	 three	other	spliceosome	components	and	splicing	regulators	 (EFTUD2,	PHF5A,	

TARDBP).	Eleven	genes	had	an	estimated	FC	amplitude	≥	1.5	in	at	least	one	of	the	cell	lines	and	thus	

represent	good	candidates	 for	 robustly	 circadian	spliceosome	components	and	SFs	 (Figure	3-6E).	

They	encode	for	three	SR	proteins	(SRSF1,	SRSF2,	SRPK1),	two	hnRNPs	(HNRNPAB,	HNRNPLL),	a	com-

ponent	of	the	U1	snRNP	(SNRPA),	two	RNA	binding	motif	(RBM)	proteins	(RBM25,	RBM8A),	a	PRP19	

complex-related	protein	(PPIL1)	and	two	SFs	(ESRP1,	ZRANB2).	When	comparing	the	time-series	ex-

pression	of	splicing-related	genes	that	oscillated	in	at	least	one	of	the	cell	lines,	it	becomes	apparent	

that	many	of	them	had	higher	expression	levels	in	SW620	cells	(Figure	S	6).	

16	out	of	the	64	genes	that	oscillated	in	either	one	or	both	of	the	cell	lines	were	identified	as	signifi-

cantly	differentially	rhythmic	(DODR	adj.	p	<	0.05)	(see	subsection	3.1.1).	Among	them,	there	were	four	

genes	with	higher	amplitudes	in	SW480	cells	(ACIN1,	ALYREF,	NXT1,	RBM10),	five	genes	with	ampli-

tude	gains	in	SW620	cells	(CXorf56,	DBR,	EIF4A3,	HNRNPU,	PRCC),	and	two	phase-shifted	genes	(FUS,	

PHF5A).	However,	several	of	the	genes	that	were	not	identified	as	differentially	rhythmic	also	showed	

strong	differences	in	(rhythmic)	expression.	For	instance,	HNRNPLL	and	NXT1	displayed	robust	oscil-

lations	in	SW480	cells	but	none	in	SW620	cells,	and	PPIL1	and	SRSF1	had	diminished	amplitudes	in	

SW620	cells	 compared	 to	SW480	cells.	Moreover,	many	splicing-related	genes	showed	similar	but	

slightly	shifted	rhythms	in	SW480	and	SW620	cells.	There	seems	to	be	a	tendency	for	rhythmic	splic-

ing-related	genes	peaking	2–3	h	earlier	in	SW620	cells	than	in	SW480	cells,	e.g.,	for	ESRP1,	FUS,	SF3A3,	

and	SNRNP25.	However,	these	putative	phase	shifts	in	circadian	transcription	are	hard	to	quantify	with	

confidence	due	to	the	relatively	low	sampling	resolution	of	3	h.	Nonetheless,	it	can	be	concluded	that	

several	splicing-related	genes	show	robust	oscillations	in	CRC	cell	lines	that	tend	to	differ	between	pri-

mary	tumor	and	metastasis-derived	cells.	

3.1.4 Identification of Differential and Rhythmic Splicing Events in SW480 and SW620 Cells 

Differences	in	the	expression	levels	of	SFs	are	known	to	cause	changes	in	AS	of	their	target	genes.	To	

investigate	whether	the	observed	differential	rhythmicity	of	splicing-related	genes	leads	to	differences	

in	the	outcome	of	AS	between	the	two	CRC	cell	lines,	the	FIRMA	method	was	applied	(Purdom	et	al.,	

2008).	The	algorithm	allows	for	the	detection	of	candidate	cassette-type	alternative	exons	for	single	

samples	without	replicates	(see	subsection	1.2.4).	FIRMA	scores	are	calculated	on	exon-level	based	on	

the	residuals	of	the	observed	probe-level	expression	from	the	estimated	expression	of	the	RMA	model.	

A	high	positive	FIRMA	score	is	an	indication	for	exon	inclusion	whereas	a	low	negative	FIRMA	score	

indicates	exon	skipping.	

The	first	part	of	the	analysis	aimed	at	the	identification	of	“static”	changes	of	AS	between	the	cells	lines	

that	showed	high	differences	across	the	pairwise	comparison	of	all	time	points.	For	this	purpose,	the	

paired	differences	in	FIRMA	scores	between	SW480	and	SW620	cells	were	computed	for	identical	time	

points.	Of	401,839	expressed	exons,	299	exons	(0.0007%)	of	256	genes	had	significantly	different	(BH-

adjusted	p	<	0.001)	FIRMA	scores	with	high	differences	(mean	absolute	FIRMA	score	log2	FC	≥	1)	and	
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were	selected	as	candidate	exons	for	differential	AS	events	between	the	two	cell	lines	(Figure	3-7A,	

Table	S	2).	158	(52.8%)	of	the	candidate	exons	had	higher	mean	FIRMA	scores	in	SW480	cells	and	141	

(47.2%)	had	higher	scores	in	SW620	cells,	indicating	that	cassette	exons	were	included	or	excluded	to	

approximately	equal	shares	between	the	cell	lines.	A	functional	annotation	analysis	revealed	various	

GO	biological	processes	to	be	enriched	for	the	set	of	candidate	alternatively	spliced	genes	(p	<	0.05)	

(Table	S	3).	Many	of	the	processes	are	associated	with	tumor	progression	and	metastasis,	such	as	the	

regulation	of	cell	proliferation	and	apoptotic	processes,	response	to	drugs,	cell	adhesion,	and	angio-

genesis	(Figure	3-7B).	Interestingly,	axon	guidance,	the	most	enriched	term	for	the	candidate	gene	set,	

has	recently	been	reported	as	a	potential	mediator	of	colon	cancer	metastasis	(Rokavec	et	al.,	2017).	

The	top	30	candidate	alternatively	spliced	genes	(mean	absolute	FIRMA	score	log2	FC	≥	1.35)	have	19	

exons	whose	FIRMA	scores	were	higher	in	SW480	cells	and	11	exons	whose	FIRMA	scores	were	higher	

in	SW620	cells	(Figure	3-7A).	Several	of	the	candidate	genes	have	well-characterized	AS	variants	that	

play	a	role	in	invasion	and	metastasis,	e.g.,	NCAM1	(Figure	S	7A)	which	encodes	for	a	neural	adhesion	

molecule	capable	of	heterotypic	and	homotypic	binding	and	has	been	described	as	a	tumor	suppressor	

(Roesler	 et	 al.,	 1997).	 The	NCAM1	 gene	 consists	 of	 at	 least	 19	 exons	 and	 has	 three	 known	major	

isoforms	(Huerta	et	al.,	2001).	A	splicing	defect	between	exons	12	and	13	that	leads	to	the	production	

of	truncated	transcripts	and	the	loss	of	long	isoform	NCAM1-L-180	has	previously	been	reported	for	

SW620	but	not	for	SW480	cells	and	is	linked	to	clinically	aggressive	CRC	(Huerta	et	al.,	2001;	Roesler	

et	al.,	1997).	The	candidate	exon	identified	in	the	FIRMA	analysis	is	likely	part	of	the	short	NCAM1-204	

transcript	that	contains	a	retained	intron	and	is	annotated	as	a	processed	transcript	without	an	open	

reading	frame	in	the	Ensembl	database.	It	is	currently	unclear	how	its	loss	might	affect	cellular	adhe-

sion	properties	 in	SW620	cells	and	whether	the	observed	differential	AS	event	corresponds	to	 the	

splicing	defect	previously	found	to	be	responsible	for	the	lost	expression	of	NCAM1-L-180	between	

SW480	and	SW620	cells.	Nonetheless,	the	identification	of	NCAM1	as	a	candidate	gene	for	differential	

splicing	events	between	SW480	and	SW620	cells	seems	to	be	well	supported	by	literature.	Further	

candidate	genes	with	AS	events	that	play	a	well-studied	role	in	cancer	include	CD44	(Figure	S	7B)	and	

FGFR2	(Figure	S	7C)	that	are	both	involved	in	EMT	(see	subsection	1.2.3).	The	candidate	differential	

splicing	event	identified	for	CD44	overlaps	with	the	genetic	region	of	the	variant	CD44	exons	v1	–	v10	

and	likely	corresponds	to	v4/exon	9	(Figure	S	7B).	The	FIRMA	score	is	higher	in	SW480	compared	to	

SW620	cells,	indicating	a	loss	of	the	exon	in	the	metastasis-derived	cell	line	which	is	the	case	for	several	

CD44	isoforms	and	might	impact	on	the	attachment	properties	of	the	resulting	molecule.	Two	candi-

date	differential	AS	events	were	detected	for	FGFR2	(Figure	S	7C),	one	with	a	higher	FIRMA	score	in	

SW480	cells	and	the	other	in	SW620	cells.	The	latter	event	might	correspond	to	the	variable	inclusion	

of	the	FGFR2	cassette	exons	III3b	and	IIIc	which	is	responsible	for	determining	the	epithelial	or	mes-

enchymal	character	of	the	cell.		
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Figure	3-7:	Candidate	differential	AS	events	between	SW480	and	SW620	cells	(microarray	data)	are	associated	with	

cancer-relevant	processes.	(A)	Paired	differences	in	FIRMA	scores	of	the	top	30	candidate	exons	with	differential	AS	

events	in	SW480	and	SW620	cells.	The	color	scale	is	not	evenly	spaced	but	based	on	the	percentiles	of	all	FIRMA	scores	

for	all	probesets	and	samples	after	filtering.	(B)	Selected	GO	terms	(biological	processes)	enriched	for	the	256	candidate	

genes	with	differential	AS	events.	

The	second	part	of	the	analysis	aimed	at	the	detection	of	putative	circadian	AS	in	the	CRC	cell	lines.	

Exons	with	24-h	rhythmic	variations	in	FIRMA	scores	were	identified	individually	for	each	cell	line	

(RAIN	p	<	0.05	and	peak-trough-ratio	of	FIRMA	score	≥	2),	resulting	in	59	candidate	rhythmic	alterna-

tive	exons	in	SW480	cells	(59	genes)	(Figure	S	8A)	and	half	as	many	in	SW620	cells	(29	exons,	29	

genes)	(Figure	S	8B).	Peaks	of	FIRMA	scores	could	be	observed	across	the	whole	circadian	cycle	for	

both	cell	lines,	indicating	that	the	putative	circadian	regulation	of	AS	is	not	limited	to	a	specific	time-

of-day	which	is	in	line	with	the	diverse	phases	identified	for	24-h	rhythmic	splicing	related-genes	(Fig-

ure	3-6).	Many	of	the	genes	with	candidate	rhythmic	exons	also	oscillated	on	gene-level	in	one	or	both	

of	the	cell	lines,	suggesting	that	circadian	AS	is	often	concurrent	with	circadian	transcription.	Only	for	

two	of	the	candidate	genes,	the	calcium/calmodulin-dependent	protein	kinase	encoding	CAMK2G	and	

the	DNA	damage	gene	NBR1,	24-h	rhythmic	AS	were	detected	in	both	cell	lines.	In	addition	to	CAMK2G	

and	NBR1,	seven	other	candidates	were	selected	for	a	closer	inspection	due	to	their	interesting	roles	

in	the	circadian	system,	splicing,	and	cancer	(Table	1).	
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Figure	3-8:	Comparison	of	selected	candidate	circadian	AS	events	between	SW480	and	SW620	cells	(microarray	data).	

(A)	Circadian	FIRMA	scores	(solid	line)	and	exon	expression	profiles	(dotted	line)	for	selected	exons	with	24-h	rhythmic	

AS	events	in	SW480	(blue)	and	SW620	cells	(orange).		

Six	of	the	genes	had	candidate	circadian	AS	events	in	SW480	cells	(ABCC1,	CD46,	CNN3,	MAT2A,	PER2,	

and	VEGFA)	and	one	gene	(SF3B1)	in	SW620	cells.	In	most	cases,	the	rise	and	fall	of	the	rhythmic	FIRMA	

score	was	similar	to	variations	in	the	exon	expression	(Figure	3-8).	Most	FIRMA	scores	also	showed	

variations	over	time	in	the	respective	other	cell	line,	with	the	exception	of	the	CNN3	exon	which	had	a	

24-h	rhythmic	FIRMA	score	in	SW480	cells	and	a	constant	score	in	SW620	cells.	Interestingly,	the	cir-

cadian	FIRMA	score	profiles	of	the	exons	from	CAMK2G	and	NBR1	peaked	at	different	times,	suggesting	

a	phase-shift	of	rhythmic	AS	between	SW480	and	SW620	cells	for	these	genes.	NBR1	has	previously	

been	reported	as	a	putative	CLOCK	target	gene	in	CRC	(Alhopuro	et	al.,	2010).	CD46,	MAT2A,	and	CNN3	

have	been	found	to	be	overexpressed	in	CRC	and	CNN3	has	furthermore	been	proposed	as	a	marker	

for	CRC	lymph	node	metastasis	(Chen	et	al.,	2007;	Cho	et	al.,	2016;	Nakarai	et	al.,	2015).	Though	not	

much	is	known	concerning	the	consequences	of	AS	of	these	genes,	it	is	conceivable	that	the	production	

of	functionally	distinct	isoforms	at	a	specific	time-of-day	might	play	a	part	in	the	progression	of	cancer	

cells,	e.g.,	by	evading	circadian	immune	system	signals.	

Different	splice	variants	of	the	candidate	gene	ABCC1	have	previously	been	characterized	(Grant	et	al.,	

1997),	some	of	which	have	been	found	to	confer	a	drug	resistance	phenotype	in	ovarian	cancer	(He	et	

al.,	2004).	Moreover,	circadian	transcriptional	oscillations	of	ABCC1	have	been	observed	in	Caco-2	cells	

(Ballesta	et	al.,	2011)	and	diverse	tissues	in	mouse,	rat,	and	monkey	(Ozturk	et	al.,	2017).	In	the	present	

study,	ABCC1	was	found	to	display	phase-shifted	24-h	rhythmic	expression	patterns	between	SW480	

and	SW620	cells	(Figure	3-3F).	The	dysregulation	of	the	core	clock	system	in	SW620	cells	could	be	the	

reason	for	the	observed	shift	in	the	oscillatory	expression	and	the	putative	circadian	AS	of	ABCC1	which	

might	impact	on	drug	resistance	in	colon	cancer	patients	(Hu	et	al.,	2016).	While	circadian	AS	has	pre-

viously	been	reported	for	core	clock	genes	in	mice,	the	candidates	did	not	include	any	member	of	the	

Per	gene	family	(McGlincy	et	al.,	2012).	The	candidate	circadian	AS	exon	of	PER2	identified	in	SW480	

cells	is	part	of	the	C-terminal	region	of	the	PER2S	splicing	variant	that	was	found	to	be	preferentially	

localized	in	the	nucleolus	(Avitabile	et	al.,	2014)	(see	subsection	1.3.1).	Interestingly,	the	disturbance	

of	nucleolar	function	in	response	to	cellular	stress	is	linked	to	cancer	via	regulation	of	the	p53	pathway:	
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The	disruption	of	the	nucleolar	structure	triggers	the	release	of	the	tumor	suppressor	ARF	and	several	

nucleolar	riboproteins	into	the	nucleoplasm	where	they	bind	to	MDM2,	thereby	preventing	MDM2-

mediated	p53	degradation,	leading	to	cell	cycle	arrest	or	apoptosis	(Suzuki	et	al.,	2012).	The	loss	of	

PER2S	circadian	AS	could	thus	potentially	lead	to	alterations	in	the	nucleolar	function	due	to	disrupted	

circadian	timing	of	its	components	which	may	impact	on	p53	activation	and	ultimately	promote	car-

cinogenesis.	

Table	1:	Overview	of	candidate	genes	with	circadian	AS	events	in	SW480	and	SW620	cells	(microarray	data).	

SF3B1	is	the	only	SF	for	which	a	candidate	AS	event	was	identified.	The	affected	exon	is	located	in	the	

HEAT	repeat	domain	8	which	encodes	for	part	of	the	canonical	isoform	of	the	gene.	While	only	little	is	

known	regarding	the	effects	of	AS	of	SF3B1,	its	knockdown	in	human	myeloid	cell	lines	has	been	re-

ported	to	result	in	over	500	differentially	regulated	splicing	variants	of	nearly	400	genes,	including	

Gene	 Role	in	cancer	 Effects	of	AS	 Observations	in	
SW480/SW620	

ABCC1	 overexpression	confers	resistance	
to	chemotherapeutic	drugs	in	can-
cer	cell	lines	(He	et	al.,	2004)	

higher	frequency	of	AS	in	ovarian	tu-
mors	than	in	matched	normal	tis-
sues;	splice	variants	confer	drug	re-
sistance	(He	et	al.,	2004)	

phase-shifted	24-h	rhythmic	
gene	expression;	24-h	rhythmic	
AS	in	SW480	

CAMK2G	 stabilization	of	MYC	protein	via	
phosphorylation;	promotion	of	T	
cell	lymphoma	(Gu	et	al.,	2017)	

aberrant	splicing	in	patients	with	
myotonic	dystrophy	(Perfetti	et	al.,	
2014)	

24-h	rhythmic	AS	of	the	same	
exon	in	both	cell	lines	(phase-
shifted)	

CD46	 overexpressed	in	CRC	(Cho	et	al.,	
2016)	
	

unknown	 24-h	rhythmic	gene	expression	
in	SW620;	24-h	rhythmic	AS	in	
SW480;	similar	pattern	in	
SW620	

CNN3	 overexpressed	in	CRC;	marker	for	
CRC	lymph	node	metastasis	
(Nakarai	et	al.,	2015)	

unknown	 24-h	rhythmic	AS	in	SW480	

MAT2A	 overexpressed	in	CRC;	promotes	
growth	of	colon	cancer	cell	lines	
(Chen	et	al.,	2007)	

unknown	 24-h	rhythmic	gene	expression	
in	SW480;	24-h	rhythmic	AS	in	
SW480	

NBR1	 mediator	of	migration	via	autoph-
agy-dependent	focal	adhesion	
turnover	(Kenific	et	al.,	2016);	
CLOCK	target	gene	in	CRC	
(Alhopuro	et	al.,	2010)	

unknown	 24-h	rhythmic	gene	expression	
in	SW480;	24-h	rhythmic	AS	of	
the	same	exon	in	both	cell	lines	
(phase-shifted)	

PER2	 overexpression	induces	apoptotic	
cell	death	in	murine	and	human	
cancer	cells	via	downregulation	of	
c-Myc,	Bcl-XL,	and	Bcl‐2	and	upreg-
ulation	of	p53	and	its	target	gene	
Bax	(Hua	et	al.,	2006;	Oda	et	al.,	
2009)	

nucleolar	localization	of	PER2S	splic-
ing	variant	(Avitabile	et	al.,	2014)	

diminished	amplitude	of	oscilla-
tions	in	SW620	cells;	24-h	rhyth-
mic	AS	in	SW480	

SF3B1	 cancer-associated	mutations	pro-
mote	alternative	branch-point	us-
age	of	target	genes	(Alsafadi	et	al.,	
2016)	

unknown	 24-h	rhythmic	AS	in	SW620	

VEGFA	 key	mediator	of	angiogenesis	(the	
formation	of	new	blood	vessels)	to	
supply	tumors	with	oxygen	and	
nutrients,	allowing	them	to	grow	
and	metastasize	(Carmeliet,	2005)	

overexpression	of	pro-angiogenic	
VEGFxxx	isoforms	promote	angio-
genesis	and	downregulation	of	anti-
angiogenic	VEGFxxxb	isoforms	in	
cancer	(Kaida	et	al.,	2012)	

24-h	rhythmic	AS	in	SW480;	sim-
ilar	pattern	in	SW620	
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TP53	(Dolatshad	et	al.,	2015).	A	similar	downstream	effect	could	potentially	result	from	the	changes	in	

circadian	AS	of	SF3B1	observed	in	this	study.	However,	further	experiments	are	necessary	to	elucidate	

a	possible	functional	outcome	of	the	proposed	mechanism.	VEGFA	is	one	of	the	most	well-studied	ex-

amples	of	how	AS	can	affect	cancer-relevant	processes.	Depending	on	the	splice	site	choice,	VEGFA	

isoforms	can	act	either	as	anti-angiogenic	or	as	a	pro-angiogenic	proteins	(see	subsection	1.2.3).	Fur-

thermore,	vegf	has	been	identified	as	a	direct	transcriptional	target	of	Bmal1	in	zebrafish	where	VEGF-

dependent	developmental	angiogenesis	is	under	control	of	the	circadian	clock	(Jensen	and	Cao,	2013).	

So	far,	however,	there	have	been	no	reports	of	circadian	AS	of	VEGFA.	The	candidate	circadian	VEGFA	

exon	detected	in	this	study	is	part	of	the	transcripts	VEGFA-224	and	VEGFA-225	which	are	both	anno-

tated	as	protein-coding	in	the	Ensembl	database.	However,	it	is	unclear	whether	the	encoded	proteins	

act	in	pro-	or	anti-angiogenic	way.	Alternative	splice	forms	of	VEGFA	are	regulated	by	SR	proteins,	e.g.,	

SRSF1,	which	has	been	reported	to	act	as	an	oncogene	and	which	displays	an	altered	rhythmic	pheno-

type	in	the	metastasis-derived	cell	line	SW620	when	compared	to	SW480.	

Overall,	the	analysis	of	both	static	and	circadian	AS	events	in	the	CRC	cell	line	model	yielded	several	

candidate	genes	with	interesting	implications	in	tumor-related	biological	processes,	supporting	the	

hypothesis	that	the	circadian	clock	might	be	involved	in	the	regulation	of	AS	in	cancer	progression.	

However,	it	still	remains	to	be	elucidated	whether	the	observed	changes	are	truly	caused	by	elements	

of	the	clock	and	whether	they	are	functional	on	the	protein-level.	

3.2 Comparison of Circadian Microarray and RNA-Seq Data of CRC Cell Lines 

For	the	second	part	of	the	study,	the	circadian	transcriptomes	of	the	human	CRC	cell	lines	SW480	and	

SW620	were	additionally	profiled	by	RNA-seq.	In	the	first	two	parts	of	the	chapter,	the	RNA-seq	data	

is	compared	to	the	microarray	data	to	investigate	how	well	24-h	rhythmic	genes	and	associated	circa-

dian	parameters	are	replicated	across	platforms.	In	addition,	the	two	time-series	are	normalized	and	

concatenated	to	form	a	longer	time-series.	A	manuscript	based	on	the	results	described	in	these	chap-

ters	is	currently	in	preparation.	In	the	third	part	of	the	chapter,	differentially	rhythmic	splice	variants	

of	the	same	gene	are	detected,	and	the	resulting	candidate	circadian	AS	events	are	compared	to	those	

gained	from	the	microarray	data.	The	results	described	in	the	third	part	of	the	chapter	have	for	the	

most	part	been	published	in	El-Athman	et	al.	(2019).	Text	passages	and	figures	of	the	publication	have	

been	updated	and	adapted	for	this	thesis.	

3.2.1 Correlation of Gene Expression between Microarray and RNA-seq Data 

The	time-series	microarray	data	(E-MTAB-5876)	and	RNA-seq	data	(E-MTAB-7779)	of	the	cell	lines	

SW480	and	SW620	have	been	produced	under	identical	conditions	in	the	same	lab	with	a	sampling	

resolution	of	3	h.	However,	the	two	datasets	do	not	cover	the	same	time	range:	The	microarray	dataset	

consists	of	nine	samples	that	were	taken	from	0	to	24	h	after	synchronization	of	the	cells	by	medium	
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change,	whereas	the	eleven	RNA-seq	samples	were	taken	from	12	to	42	h	after	synchronization.	Ac-

cordingly,	the	datasets	share	five	sampling	time	points	(12,	15,	18,	21,	and	24	h).	The	microarray	da-

taset	covers	a	full	circadian	cycle	with	one	additional	time	replicate	of	the	first	time	point	(0	h	=	24	h)	

and	the	RNA-seq	datasets	covers	1.25	circadian	cycles	with	time	replicates	of	three	time	points	(12	h	

=	36	h;	15	h	=	39	h;	18	h	=	42	h).	For	this	reason,	it	is	not	only	of	interest	to	investigate	how	circadian	

gene	sets	might	differ	between	the	two	technological	platforms,	but	also	how	the	datasets	could	be	

normalized	and	concatenated	to	form	a	longer	time-series.	

The	correlation	between	gene	expression	values	gained	from	the	different	platforms	was	compared	

between	datasets	and	different	preprocessing	methods.	While	the	RMA	method	is	commonly	used	for	

the	preprocessing	of	microarray	data,	no	standard	method	for	the	preprocessing	of	circadian	RNA-seq	

data	has	yet	been	established	(Li	et	al.,	2015).	For	this	reason,	a	tripartite	pipeline	was	used	for	the	

alignment	and	quantification	of	the	raw	RNA-seq	reads:	Two	of	the	chosen	pipelines	employed	the	

STAR	aligner	(Dobin	et	al.,	2013)	for	the	alignment	of	the	raw	reads	to	the	human	genome.	Additionally,	

the	STAR	genome	coordinates	were	transformed	to	the	transcriptome	space	to	get	a	transcriptome	

alignment.	Subsequently,	genome-aligned	reads	were	quantified	by	 featureCounts	(STAR	+	 feature-

Counts),	resulting	in	gene	counts,	whereas	transcriptome-aligned	reads	were	quantified	by	Salmon	in	

alignment-based	mode	(STAR	+	Salmon),	 resulting	 in	 transcript	counts.	 In	 the	 third	pipeline,	 reads	

were	 directly	 quantified	 by	 Salmon	 in	 quasi-mapping-based	mode	without	 a	 prior	 alignment	 step	

(Salmon).	R	packages	tximport	(Soneson	et	al.,	2015)	and	edgeR	(Robinson	et	al.,	2010)	were	used	to	

normalize	the	Salmon	transcript	counts	and	to	summarize	them	to	gene-level	abundances.	

The	average	mapping	rates	of	STAR	(81.7%	±	2.55)	and	Salmon	(87.1%	±	0.95)	were	comparable	and	

consistent	across	time	points	and	cell	lines	(Figure	S	9A).	An	expression	cutoff	of	at	least	0.5	CPM	per	

gene	on	average	over	all	time	points	resulted	in	13904	to	16478	expressed	genes	in	SW480	cells	and	

13495	to	15933	expressed	genes	in	SW620	cells,	depending	on	the	preprocessing	method	(Figure	S	

9B).	For	both	cell	lines,	STAR	+	featureCounts	yielded	the	highest	number	of	expressed	genes,	followed	

by	STAR	+	Salmon.	Independent	of	the	chosen	method,	the	number	of	expressed	genes	in	SW620	was	

lower	than	in	SW480	cells.	Analogously,	different	cutoffs	for	expressed	genes	were	compared	for	the	

microarray	data,	resulting	in	21798	expressed	genes	with	a	minimum	mean	log2	RMA-preprocessed	

intensity	value	of	3	across	all	time	points	in	SW480	cells	and	21764	genes	in	SW620	cells	(Figure	S	

9C).	Since	there	are	no	universal	cutoffs	to	exclude	genes	with	low	expression	values	either	for	micro-

array	intensity	values	or	RNA-seq	counts,	the	chosen	cutoffs	are	arbitrary	and	could	be	adjusted	to	gain	

expressed	gene	sets	of	comparable	sizes	for	the	different	platforms.	For	the	present	study,	this	is	not	

necessary	because	subsequent	correlation	and	rhythmicity	analyses	were	focused	on	genes	that	were	

found	to	be	commonly	expressed	across	platforms.	

After	the	preprocessing,	the	resulting	RNA-seq	expression	values	of	commonly	expressed	genes	were	

compared	to	each	other	and	to	the	microarray	expression	values	in	a	gene-wise	correlation	analysis.	

For	each	cell	line,	gene	expression	was	compared	in	a	pairwise	manner	for	samples	taken	at	identical	
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time	points,	considering	only	those	time	points	that	were	shared	between	all	methods	(12–24	h)	(Fig-

ure	3-9).	Expression	values	determined	by	the	three	RNA-seq	analysis	pipelines	had	high	mean	Pear-

son	correlation	coefficients	among	each	other	(>	0.9)	which	were	similar	across	cell	lines.	The	highest	

correlation	was	observed	between	STAR	+	Salmon	and	Salmon	for	both	cell	lines,	indicating	that	the	

alignment/quasi-mapping	step	had	a	smaller	impact	on	the	resulting	gene	expression	values	than	the	

subsequent	quantification	of	the	mapped	reads.	The	mean	correlation	coefficients	between	the	three	

RNA-seq	pipelines	and	the	microarray	data	were	very	similar	across	methods	and	cell	lines,	ranging	

from	0.72	to	0.74.	Thus,	it	can	be	concluded	that	the	choice	of	the	RNA-seq	analysis	pipeline	did	not	

have	a	large	influence	on	the	correlation	coefficients,	which	were	primarily	determined	by	the	chosen	

platform.	Nonetheless,	since	the	highest	correlation	of	the	three	pipelines	with	the	microarray	data	

was	observed	for	STAR	+	Salmon	for	both	cell	lines,	the	STAR	+	Salmon	gene	expression	data	was	con-

sidered	the	best	approximation	to	the	microarray	data	and	was	used	for	subsequent	analyses	(hereaf-

ter	denoted	as	“RNA-seq	data”).	

	

Figure	3-9:	Correlation	of	gene	expression	between	circadian	microarray	and	RNA-seq	data	of	human	CRC	cell	lines.	

Mean	Pearson	correlation	coefficients	between	expression	values	determined	by	different	platforms	and	different	down-

stream	methods	for	SW480	cells	(left	panel)	and	SW620	cells	(right	panel).	Expression	values	were	determined	based	

on	microarray	data	and	RNA-seq	data	(Salmon,	STAR	+	featureCounts,	STAR	+	Salmon).	Shown	are	the	mean	Pearson	

correlation	coefficients	between	gene	expression	values	determined	for	identical	time	points	(12-24	h	since	synchroni-

zation).	

3.2.2 Normalization and Cross-Platform Concatenation of Circadian Datasets 

Since	the	microarray	and	RNA-seq	datasets	contain	overlapping	but	not	identical	time-series,	a	concat-

enation	of	the	data	could	yield	a	longer	time-series	of	nearly	two	circadian	cycles	(42	h)	with	a	con-

sistent	sampling	resolution.	However,	independent	of	the	correlation	of	gene	expression,	the	range	of	

the	abundance	measure	of	the	two	methods	is	different:	While	microarrays	measure	fluorescence	in-

tensities	and	yielded	RMA-preprocessed	expression	values	in	a	log2-scaled	range	from	0	to	13.5,	RNA-

seq	quantified	gene	expression	in	CPM	in	a	greater	dynamic	log2-range	from	-8	to	15	(Figure	3-10A).	

To	circumvent	this	dataset	shift	and	make	expression	values	comparable	across	platforms,	TDM-nor-

malization	of	the	RNA-seq	data	was	applied	(Thompson	et	al.,	2016).	The	TDM	method	transforms	an	

RNA-seq	dataset	to	have	a	similar	distribution	as	a	microarray	dataset	while	keeping	inter-observation	
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dependencies	intact.	The	distribution	of	the	TDM-transformed	RNA-seq	expression	data	closely	resem-

bled	that	of	the	microarray	data	for	both	cell	lines	(Figure	3-10A).	However,	when	comparing	mean	

expression	levels	over	the	complete	time-series	of	individual	genes,	a	tendency	for	a	lower	mean	ex-

pression	for	lowly	expressed	genes	and	a	higher	mean	expression	for	highly	expressed	genes	was	ob-

served	for	the	RNA-seq	data	which	is	likely	due	to	its	higher	dynamic	range	(Figure	3-10B).	Nonethe-

less,	for	the	bulk	of	genes,	the	gene	expression	values	of	both	platforms	were	comparable	after	the	

TDM-transformation	of	the	RNA-seq	data,	thus	allowing	for	a	concatenation	of	the	datasets.	

	

Figure	3-10:	RNA-seq	expression	data	of	CRC	cell	lines	before	and	after	TDM-normalization.	Density	of	gene	expression	

values	in	SW480	cells	(left	panel)	and	SW620	cells	(right	panel)	of	microarray	data	(green	line),	and	RNA-seq	data	before	

(dashed	pink	line)	and	after	TDM-transformation	(solid	pink	line).	(B)	Scatterplots	comparing	mean	gene	expression	

across	all	time	points	between	the	microarray	(y-axis)	and	the	RNA-seq	dataset	(x-axis)	before	(respective	left	panel)	

and	after	TDM-transformation	(respective	right	panel)	for	SW480	cells	(two	leftmost	panels)	and	SW620	(two	rightmost	

panels).	The	pink	line	represents	the	linear	regression	fitted	to	the	data	and	the	blue	line	represents	the	ideal	regression.	

In	the	next	step,	24-h	rhythmic	gene	sets	for	all	three	datasets	were	identified	using	both	the	paramet-

ric	harmonic	regression	method	and	the	non-parametric	RAIN	algorithm	with	an	input	period	of	24	h	

(Figure	S	10).	For	the	concatenated	datasets,	shared	time	points	were	treated	as	replicate	measure-

ments	of	the	same	time-series.	For	a	q-value	cutoff	of	0.05	and	a	minimum	relative	amplitude	of	0.1,	

harmonic	regression	yielded	more	24-h	rhythmic	genes	than	RAIN	for	both	cell	lines	and	all	three	da-

tasets,	with	the	exception	of	the	SW620	microarray	dataset.	Using	RAIN,	a	higher	number	of	rhythmic	

genes	was	identified	based	on	the	microarray	data	than	based	on	the	concatenated	data,	whereas	the	

trend	was	reversed	when	using	harmonic	regression,	suggesting	that	the	latter	method	is	better	suited	
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for	the	detection	of	rhythmicity	in	the	concatenated	datasets.	For	this	reason,	only	the	rhythmic	gene	

sets	identified	by	harmonic	regression	were	used	for	further	analyses.	

When	comparing	the	overlaps	between	the	24-h	rhythmic	gene	sets	identified	for	either	of	the	two	

different	platforms	and	the	concatenation	of	both	time-series,	it	becomes	apparent	that	not	only	the	

number	but	also	the	identity	of	rhythmic	genes	and	their	circadian	parameters	differed	greatly	be-

tween	the	methods	(Figure	3-11).	The	intersection	of	all	three	datasets	only	amounted	to	110	(2.3%)	

genes	commonly	identified	as	24-h	rhythmic	in	SW480	cells	and	52	(1.5%)	in	SW620	cells	(Figure	

3-11A).	For	both	cell	lines,	only	very	few	genes	were	commonly	identified	as	rhythmic	by	the	micro-

array	and	RNA-seq	data	but	not	by	the	concatenated	data,	indicating	that	the	concatenation	of	the	two	

time-series	successfully	captured	the	circadian	transcriptome	identified	by	either	one	of	the	platforms.	

Additionally,	many	genes	were	identified	as	significantly	24-h	rhythmic	in	the	concatenated	data	that	

were	not	detected	in	either	one	of	the	two	shorter	time-series,	possibly	capturing	false	negative	circa-

dian	genes.	Contrary	to	expectations	and	previous	results	gained	from	the	microarray	data	(see	sub-

section	3.1.1),	more	24-h	rhythmic	genes	were	identified	for	SW620	cells	(728)	than	for	SW480	cells	

(564)	based	on	the	RNA-seq	data.	This	is	particularly	surprising	because	the	time-series	expression	of	

core	clock	genes	in	the	RNA-seq	data	closely	resembled	that	of	the	previously	analyzed	microarrays	

(Figure	3-1A).	Core	clock	genes	had	smaller	amplitudes	or	were	non-rhythmic	in	SW620	cells	com-

pared	to	SW480	cells	and	their	mean	expression	tended	to	be	lower,	with	the	exception	of	NPAS2	and	

PER2	(Figure	S	11).	Based	on	these	observations	which	indicate	a	dysregulated	core	clock	system	in	

the	metastasis-derived	cell	line,	one	would	expect	fewer	clock-controlled	genes	on	the	transcriptome-

level.	In	line	with	this	assumption,	a	higher	number	of	24-h	rhythmic	genes	were	detected	in	SW480	

(3426)	than	in	SW620	cells	(1892)	based	on	the	concatenated	dataset.	

The	comparison	of	the	phase	distributions	of	the	24-h	rhythmic	gene	sets	revealed	another	discrep-

ancy	 between	 the	microarray	 and	 the	 RNA-seq	 data:	While	 the	microarray	 data	 for	 SW480	 cells	

showed	a	bimodal	peak	distribution	with	one	phase	peak	at	~8	h	and	the	second	at	~21	h,	the	RNA-

seq	data	displayed	a	small	phase	peak	at	~1	h	and	a	large	peak	at	~16	h,	indicating	a	shift	of	~-5	h	in	

overall	circadian	transcription	measured	for	the	same	cell	line	using	two	different	platforms	(Figure	

3-11B).	Interestingly,	the	concatenation	of	the	data	led	to	phase	peaks	at	~10	h	and	~22	h,	which	re-

sembled	the	distribution	of	the	microarray	data	but	were	shifted	in	the	opposite	direction.	For	SW620	

cells,	the	RNA-seq	phase	peaks	were	likewise	shifted,	but	only	by	about	~-3	h	and	the	concatenation	of	

the	data	resulted	in	a	phase	distribution	that	resembled	a	superposition	of	both	distributions	(Figure	

3-11B).	The	distributions	of	the	relative	amplitudes	of	24-h	rhythmic	genes	detected	for	the	different	

platforms	and	cell	lines	were	similar,	though	there	were	small	but	significant	differences	between	all	

of	the	sets	of	each	cell	line	(p	<	0.05	determined	by	two-sided	Mann-Whitney	test	adjusted	for	multiple	

comparisons	using	the	BH	method)	(Figure	3-11C).	For	both	cell	lines,	the	RNA-seq	data	set	yielded	

slightly	higher	mean	relative	amplitudes	(SW480:	0.197,	SW620:	0.209)	than	the	microarray	(SW480:	

0.178,	SW620:	0.17)	or	the	concatenated	data	(SW480:	0.174,	SW620:	0.161),	which	can	probably	be	

ascribed	to	the	higher	dynamic	range	of	the	RNA-seq	data.		
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Figure	3-11:	Comparison	of	24-h	rhythmic	gene	sets	of	SW480	and	SW620	cells	identified	based	on	microarray	and	

RNA-seq	data.	(A)	Venn	diagrams	representing	the	intersections	between	the	24-h	rhythmic	gene	sets	identified	based	

on	microarray	data	(green),	RNA-seq	data	(pink)	and	the	concatenated	expression	of	both	platforms	(blue)	in	SW480	

cells	(left	panel)	and	SW620	cells	(right	panel).	(B)	Phase	distributions	of	the	24-h	rhythmic	genes	sets	identified	based	

on	microarray	data	(green),	RNA-seq	data	(pink)	and	the	concatenated	expression	of	both	platforms	(blue)	in	SW480	

cells	(left	panel)	and	SW620	cells	(right	panel).	(C)	Boxplots	of	the	relative	amplitudes	of	the	24-h	rhythmic	genes	sets	

identified	based	on	microarray	data	(green),	RNA-seq	data	(pink)	and	the	concatenated	expression	of	both	platforms	

(blue)	in	SW480	cells	(left	panel)	and	SW620	cells	(right	panel).	Significance	was	determined	by	a	two-sided	Mann-

Whitney	test	adjusted	for	multiple	comparisons	using	the	BH	method	(*:	p	<	0.05,	**:	p	<	0.01,	***:	p	<	0.001).	Rhythmic	

genes	and	their	parameters	were	determined	by	harmonic	regression	(q	<	0.05	and	relative	amplitude	≥	0.1).		

In	the	next	step,	circadian	parameters	were	compared	in	a	gene-wise	manner	for	all	genes	that	were	

identified	to	be	24-h	rhythmic	in	the	same	cell	line	in	at	least	two	of	the	datasets.	The	phases	estimated	

based	on	microarray	and	RNA-seq	data	of	SW620	cells	had	a	lower	absolute	circular	Pearson	correla-

tion	coefficient	(0.05)	than	those	estimated	for	SW480	cells	(0.26)	and	were	not	significantly	corre-

lated	(p	=	0.58)	(Figure	3-12A).	The	correlation	between	the	phases	estimated	based	on	the	concate-

nated	 data	 and	 the	 microarray	 data	 was	 much	 higher	 (circular	 Pearson	 correlation	 coefficient	

(r)	=	0.99	for	SW480	cells	and	0.85	for	SW620	cells)	and	significant	(p	<	0.05)	(Figure	3-12B),	as	was	

the	correlation	between	the	concatenated	phases	and	the	RNA-seq	phases	(circular	r	=	0.95	for	SW480	

cells	and	0.87	for	SW620	cells)	(Figure	3-12C).	The	gene-wise	correlation	of	relative	amplitude	values	

was	highest	between	the	microarray	and	the	concatenated	data	(r	=	0.83	for	SW480	cells	and	0.77	for	

SW620	cells)	(Figure	3-12D).	The	correlation	was	considerably	lower	between	RNA-seq	data	and	con-

catenated	data	(r	=	0.32	for	SW480	cells	and	0.48	for	SW620	cells),	where	a	trend	for	higher	amplitudes	

could	be	observed	for	the	RNA-seq	data	(Figure	3-12F).	The	lowest	correlation	was	observed	between	

amplitudes	of	the	RNA-seq	and	the	microarray	data	for	both	cell	lines	(r	=	0.28	for	SW480	cells	and	

0.20	for	SW620	cells)	(Figure	3-12E).	
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Figure	3-12:	Gene-wise	comparison	of	circadian	parameters	of	24-h	rhythmic	genes	identified	based	on	microarray	and	

RNA-seq	data	of	SW480	and	SW620	cells.	Scatterplots	and	circular	Pearson	correlation	coefficients	of	phases	estimated	

based	on	(A)	microarray	data	and	RNA-seq	data,	(B)	microarray	data	and	concatenated	data,	and	(C)	RNA-seq	and	con-

catenated	data	for	SW480	cells	(left	panels)	and	SW620	cells	(right	panels).	Scatterplots	and	Pearson	correlation	coeffi-

cients	of	amplitudes	estimated	based	on	(D)	microarray	data	and	RNA-seq	data,	(E)	microarray	data	and	concatenated	

data,	and	(F)	RNA-seq	and	concatenated	data	for	SW480	cells	(left	panels)	and	SW620	cells	(right	panels).	

The	preceding	comparisons	of	circadian	parameters	were	conducted	only	between	genes	that	were	

commonly	identified	as	24-h	rhythmic	between	the	different	methods.	In	particular	between	microar-

ray	and	RNA-seq	data,	these	gene	intersections	were	quite	small	(Figure	3-11A).	As	previously	ob-

served	when	comparing	differential	rhythmicity	between	SW480	and	SW620	cells	based	on	the	micro-

array	data,	genes	can	have	similar	oscillatory	expression	despite	not	being	identified	as	significantly	

rhythmic	in	one	of	the	conditions	(Figure	S	2C).	For	this	reason,	the	time-series	expression	of	all	genes	

identified	as	rhythmic	in	the	respective	other	platform	was	compared	by	expression	heatmaps	(Figure	

S	12).	While	many	of	the	genes	identified	to	be	24-h	rhythmic	in	SW480	cells	based	on	the	microarray	

data	had	similar	expression	patterns	in	the	RNA-seq	data	for	the	shared	time	points	(12–24	h),	they	

lacked	a	distinct	second	peak	or	trough	of	expression	in	later	time	points.	In	the	opposite	case	(micro-

array	expression	of	genes	identified	as	24-h	rhythmic	in	RNA-seq	data)	similar	expression	patterns	

could	again	be	observed	for	the	shared	time	points	for	SW480	cells,	whereas	earlier	time	points	dis-

played	a	disordered	pattern.	For	SW620	cells,	expression	patterns	of	rhythmic	gene	sets	were	even	
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more	dissimilar	between	platforms,	suggesting	that	many	of	the	genes	identified	as	24-h	rhythmic	for	

the	metastatic	cell	line	are	not	truly	circadian.	In	contrast,	the	expression	heatmaps	ordered	according	

to	the	phases	estimated	for	the	24-h	rhythmic	genes	of	the	concatenated	data	showed	circadian	pat-

terns	for	both	platforms	and	cell	lines.	Moreover,	five	out	of	the	ten	24-h	rhythmic	genes	with	the	low-

est	p-values	in	SW480	cells	identified	based	on	the	concatenated	data	were	core	clock	genes	(BMAL1,	

NR1D1,	NR1D2,	PER2,	and	PER3).	Overall,	core	clock	genes	displayed	robust	oscillations	with	similar	

phases	and	amplitudes	across	the	whole	time-series	(Figure	3-13),	indicating	that	the	normalization	

and	concatenation	of	the	data	is	a	suitable	method	for	the	detection	of	circadian	rhythms	in	transcrip-

tion	across	platforms.	

	

Figure	3-13:	Expression	of	core	clock	genes	in	the	concatenated	microarray	and	RNA-seq	time-series	of	SW480	and	

SW620	cells.	Mean-normalized	time-series	expression	of	core	clock	genes	in	SW480	cells	(top	row)	and	SW620	cells	

(bottom	row)	based	on	the	concatenated	data.	Microarray	expression	values	are	represented	by	green	lines	and	RNA-

seq	expression	values	by	pink	lines.	The	blue	area	marks	the	confidence	area	of	the	harmonic	regression	fitted	to	the	

concatenated	data	for	24-h	rhythmic	genes	(q	<	0.05	and	relative	amplitude	≥	0.1).	

3.2.3 Detection of Differentially Rhythmic Phase-shifted Splice Variants in CRC Cell Lines 

In	the	next	step,	the	RNA-seq	data	was	used	for	the	detection	of	putative	differentially	rhythmic	splice	

variants.	Transcript-level	expression	values	were	estimated	using	STAR	for	the	alignment	and	Salmon	

in	alignment-mode	for	the	quantification	as	previously	described	(STAR	+	Salmon).	In	the	following,	

splice	variants	detected	on	transcript-level	are	referred	to	as	‘transcripts’,	whereas	transcribed	genes	

detected	on	summarized	gene-level	are	referred	to	as	‘genes’.	Applying	a	RAIN	p-value	cutoff	of	0.05	

and	a	relative	amplitude	≥	0.1,	1,343	24-h	rhythmic	genes	and	6,003	24-h	rhythmic	transcripts	were	

identified	 in	 SW480	 cells	 and	 1,934	 24-h	 rhythmic	 genes	 and	 5,395	 24-h	 rhythmic	 transcripts	 in	

SW620	cells	(Figure	S	13A).	Interestingly,	the	ratio	of	rhythmic	transcripts	to	rhythmic	genes	was	

higher	for	SW480	cells,	indicating	that	despite	the	higher	number	of	genes	detected	as	rhythmic	in	

SW620,	 the	 number	 of	 splice	 variants	was	 higher	 in	 the	 primary	 tumor-derived	 cell	 line	 (Figure	

3-14A).	On	average,	a	24-h	rhythmic	gene	had	1.02	rhythmic	transcripts	in	SW480	cells	and	0.93	in	

SW620	cells.	In	both	cell	lines,	about	70%	of	24-h	rhythmic	genes	displayed	at	least	one	rhythmic	tran-

script	(Figure	S	13B).	However,	there	were	also	many	genes	identified	as	24-h	rhythmic	on	transcript-

level	only,	possibly	indicating	a	rhythmic	regulation	of	AS	that	leads	to	discrepancies	between	rhythmic	

features	identified	on	gene-	and	transcript-level.	
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Figure	3-14:	Differentially	24-h	rhythmic	phase-shifted	splice	variants	of	the	same	gene	in	human	CRC	cell	lines.	(A)	

Ratio	of	24-h	rhythmic	transcripts	and	genes	for	SW480	(blue)	and	SW620	(orange)	for	different	RAIN	p-value	cutoff	

levels.	(B)	Number	of	24-h	rhythmic	differentially	rhythmic	SVPs	in	the	CRC	cell	lines.	The	proportion	of	phase-shifted	

SVPs	is	marked	in	gray.	(C)	Phase-sorted	expression	heatmaps	of	phase-shifted	SVPs	in	SW480	(left	panel)	and	SW620	

(right	panel).	Each	row	represents	one	SVP	sorted	according	to	the	phases	of	splice	variant	1.	The	heatmaps	are	further	

subdivided	according	to	the	length	of	the	phase	shift	between	the	splice	variants	in	a	pair.	(D)	Phase	distribution	and	

pairwise	phase-difference	of	phase-shifted	differentially	24-h	rhythmic	SVPs	in	SW480	cells	(upper	panel,	blue)	and	

SW620	cells	(lower	panel,	orange).	(E)	Splice	variant	biotypes	of	24-h	phase-shifted	SVPs	in	percent.	(F)	Chord	diagrams	

representing	the	biotypes	of	SVPs	for	SW480	(left	panel)	and	SW620	(right	panel).	

An	analysis	pipeline	was	developed	to	identify	splice	variants	of	the	same	gene	that	displayed	phase-

shifted	rhythms	in	expression	on	the	transcript-level	in	the	same	cell	line	and	might	thus	represent	

distinct	splice	isoforms	that	are	produced	at	different	times	of	the	circadian	cycle.	To	detect	these	cases	

of	differential	rhythmicity,	the	DODR	method	was	applied.	Each	24-h	rhythmic	transcript	was	com-

pared	to	all	other	24-h	rhythmic	transcripts	of	the	same	gene	in	the	same	cell	line	in	a	pairwise	manner	

(see	subsection	2.3.7).	For	SW480	cells,	711	differentially	rhythmic	splice	variant	pairs	(SVPs)	were	

identified,	compared	to	277	pairs	in	SW620	cells	(Figure	3-14B).	Differential	rhythmicity	detected	by	

DODR	can	be	due	to	changes	in	either	amplitude	or	phase	of	the	rhythmic	features,	or	both.	Assuming	

that	the	observed	differences	in	splice	variants	of	the	same	gene	are	due	to	circadian-regulated	AS,	they	

should	be	shifted	in	phase	but	have	similar	amplitudes.	Accordingly,	the	differentially	rhythmic	SVPs	

were	filtered	for	pairs	with	an	amplitude	ratio	<	2	that	were	phase-shifted	by	at	least	4	h.	The	phase	

shift	between	two	variants	was	defined	as	the	smallest	difference	between	their	two	phases	(<	12	h).	
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The	filtering	resulted	in	387	phase-shifted	24-h	rhythmic	SVPs	(belonging	to	280	genes)	in	SW480	cells	

and	123	(belonging	to	100	genes)	in	SW620	cells	(External	data	file	1).	Of	these	SVPs,	more	than	two	

thirds	had	a	phase	shift	greater	than	8	h.	When	representing	the	expression	of	the	candidate	transcripts	

of	an	SVP	in	heatmaps	ordered	according	to	the	phase	of	one	of	the	splice	variants,	it	becomes	apparent	

that	the	expression	of	the	second	variant	tended	to	be	in	anti-phase	for	SVPs	with	phase	shift	greater	

than	8	h	(Figure	3-14C).	In	SW480	cells,	there	was	a	peak	of	expression	for	phase-shifted	splice	vari-

ants	at	~16	h	and	a	smaller	one	at	~3	h,	whereas	the	distribution	in	SW620	cells	was	bimodal	with	

peaks	at	~4	h	and	~16	h	(Figure	3-14D).	Only	six	genes	with	phase-shifted	SVPs	(ASPSCR1,	HDAC6,	

HNRNPH1,	LRRC75A-AS1,	NDUFV1,	and	PAX8-AS1)	were	shared	between	SW480	and	SW620	cells,	sug-

gesting	that	the	rhythmic	regulation	of	splice	variant	expression	might	be	cancer	stage-specific.	

About	44%	of	the	splice	variants	included	in	SVPs	in	SW480	cells	and	59%	in	SW620	cells	were	anno-

tated	as	protein-coding	(Figure	3-14E).	In	SW480	cells,	31.8%	of	the	SVPs	consisted	of	a	protein-cod-

ing	transcript	and	a	transcript	with	a	retained	intron,	followed	by	SVPs	of	two	protein-coding	tran-

scripts	(20.7%)	(Figure	3-14F).	In	SW620	cells,	the	largest	set	were	SVPs	of	two	protein-coding	tran-

scripts	(39%),	followed	by	SVPs	consisting	of	a	protein-coding	transcript	and	a	transcript	with	a	re-

tained	intron	(25.5%)	(Figure	3-14F).	For	many	human	alternative	splice	variants,	it	is	not	yet	known	

whether	they	are	functional	and	whether	their	putative	function	differs	from	that	of	the	canonical	iso-

form.	Accordingly,	most	gene	enrichment	and	functional	annotation	tools	are	currently	only	possible	

for	genes	and	not	for	individual	splice	variants.	For	this	reason,	a	GO	enrichment	analysis	was	con-

ducted	on	gene-level	for	all	candidate	genes	with	phase-shifted	SVPs	(Table	S	4).	Enriched	biological	

processes	in	SW620	cells	included	RNA	splicing,	post-transcriptional	regulation	of	gene-expression,	

and	the	regulation	of	translation	(BH-adjusted	p	<	0.05)	(Figure	3-15B).	For	SW480	cells,	the	analysis	

revealed	no	significantly	enriched	processes	when	applying	the	same	cutoff.	However,	for	a	more	re-

laxed	cutoff	of	p	<	0.002,	lipoprotein-related	processes,	the	regulation	of	the	androgen	receptor	path-

way,	and	RNA	splicing	were	 found	among	 the	biological	processes	enriched	 for	genes	with	phase-

shifted	SVPs	(Figure	3-15A).	Interestingly,	membrane	androgen	receptors	expressed	in	colon	cancer	

cells	have	been	reported	to	induce	strong	apoptotic	responses	via	inhibition	of	pro-survival	signals	and	

blocking	migration	(Gu	et	al.,	2011).	Constitutively	active	splice	variants	of	androgen	receptors	con-

tribute	the	development	of	resistance	to	androgen	deprivation	therapy	in	human	prostrate	tumors	(Liu	

et	al.,	2014).	
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Figure	3-15:	Phase-shifted	splice	variants	in	SW480	and	SW620	cells	are	linked	with	the	splicing	process.	Enriched	GO	

terms	(Biological	Process	–	BP)	for	the	sets	of	genes	that	exhibited	24-h	rhythmic	phase-shifted	SVPs	in	(A)	SW480	and	

(B)	in	SW620	cells.	For	visualization,	GO	terms	were	manually	curated	to	remove	redundant	categories.	The	complete	

lists	of	results	can	be	found	in	Table	S	4.	Median-normalized	expression	(in	a	range	from	-1	to	1)	of	24-h	rhythmic	phase-

shifted	SVPs	from	selected	splicing-related	genes	in	SW480	(blue)	and	SW620	(orange).	

The	prevalence	of	splicing	processes	for	both	cell	lines	suggest	that	splicing-related	genes	themselves	

might	be	spliced	in	a	time-of-day-dependent	way.	To	find	out	which	splicing-related	genes	could	be	

affected,	 the	previous	 list	 of	 254	 spliceosome	 components	 and	 splicing	 regulators	 (see	 subsection	

3.1.3)	was	joined	with	a	list	of	404	human	SF	genes	from	Seiler	et	al.	(2018),	resulting	in	an	extended	

list	of	426	human	splicing-related	genes	(Table	S	1).	23	genes	from	the	extended	list	were	among	the	

candidates	in	SW480	cells	(CLK4,	DDX39B,	DDX3X,	DDX5,	FMR1,	GRSF1,	HNRNPH1,	HNRNPK,	HNRNPL,	

INTS6L,	MOV10,	NONO,	NXF1,	PCBP2,	RBM3,	RBM39,	SRRT,	SRSF11,	TAF15,	TTC14,	U2AF2,	U2SURP,	and	

ZNF131)	and	nine	were	 found	 for	SW620	cells	 (CCAR2,	CELF1,	CIRBP,	DDX17,	HNRNPC,	HNRNPH1,	

PABPC1,	RBM4,	SRSF2)	(Figure	3-15C).	Only	four	of	the	splicing-related	genes	with	phase-shifted	SVPs	

in	SW480	cells	(RBM39,	SRRT,	SRSF11,	and	U2AF2)	(Figure	S	14A)	and	none	in	SW620	cells	were	found	

to	be	oscillating	on	gene-level	in	the	RNA-seq	data	(RAIN	p	<	0.05	and	relative	amplitude	≥	0.1)	(Figure	

S	14B).	Likewise,	none	of	them	were	found	to	24-h	rhythmic	in	the	concatenated	data	(harmonic	re-

gression	q	<	0.05	and	relative	amplitude	≥	0.1)	(Figure	S	14C),	indicating	that	their	rhythmic	expres-

sion	might	be	masked	by	the	phase-shifted	expression	of	their	individual	transcripts.	

In	the	next	step,	the	sets	of	genes	with	phase-shifted	SVPs	were	compared	to	the	set	of	candidate	genes	

with	circadian	AS	events	identified	based	on	the	microarray	data	(see	subsection	3.1.4).	Only	two	can-

didate	genes,	CAMK2G	and	PPP2R5C,	were	shared	across	platforms	and	analysis	methods	for	SW480	

cells	and	none	for	SW620	cells.	Alternatively	spliced	forms	of	CAMK2G	have	been	identified	in	patients	
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with	myotonic	dystrophy	(Perfetti	et	al.,	2014)	(Table	1).	Based	on	the	microarray	data,	CAMK2G	has	

previously	been	identified	as	a	candidate	gene	with	circadian	AS	events	for	both	SW480	and	SW620	

cells	but	with	phase-shifted	FIRMA	score	profiles	(see	subsection	3.1.4).	The	PPP2R5C	phosphatase	is	

involved	in	the	modulation	of	liver	metabolism	(Cheng	et	al.,	2015)	and	further	acts	as	a	tumor	sup-

pressor	via	dephosphorylation	of	p53	(Nobumori	et	al.,	2013).	Five	different	splice	variants	of	human	

PPP2R5C	have	been	detected	both	in	samples	from	healthy	individuals	and	from	leukemia	patients,	

though	not	much	is	known	concerning	their	individual	function	(Zheng	et	al.,	2011).	Another	gene,	

INTS11	(also	known	as	CPSF3L),	that	encodes	for	a	part	of	the	Integrator	complex,	was	found	to	be	a	

shared	 candidate	between	 the	 SW480	microarray	data	 and	 the	 SW620	RNA-seq	data.	 Conversely,	

SH3D19	was	identified	as	a	shared	candidate	between	the	SW620	microarray	data	and	the	SW480	

RNA-seq	data.	

In	light	of	the	important	role	of	AS	in	cancer,	the	candidate	phase-shifted	SVPs	were	further	searched	

for	known	cancer-relevant	isoforms.	Interesting	candidates	were	found	for	ANKHD1	 in	SW480	and	

MYO1C	in	SW620	(Figure	3-16).	ANKHD1	is	an	ankyrin	repeat	and	KH	domain-containing	protein	for	

which	 two	 functional	 AS	 variants	 have	 been	 characterized:	 In	 contrast	 to	 the	 canonical	 isoform,	

VBARP-L	(11	exons)	and	VBARP-S	(9	exons)	both	contain	only	a	single	ankyrin	repeat	motif	and	lack	

the	signature	KH	domain.	(Miles	et	al.,	2005).	The	24-h	rhythmic	transcript	ANKHD1-205	in	SW480	

encodes	for	VBARP-L,	whereas	the	~10.5	h	phase-shifted	transcript	ANKHD1-210	consists	of	eight	ex-

ons	that	encode	for	the	KH	domain	and	do	not	overlap	with	the	exons	of	ANKHD1-205.	ANKHD1	is	

overexpressed	in	acute	leukemia	(Traina	et	al.,	2006)	and	the	VBARP	isoforms	have	been	reported	to	

have	an	anti-apoptotic	effect	and	to	play	a	role	in	cell	survival	pathways	(Miles	et	al.,	2005).	MYO1C	is	

a	member	of	the	unconventional	myosin	gene	family	and	produces	three	AS	isoforms	through	N-ter-

minal	splicing,	which	differ	in	their	functions	and	their	nucleo-cytoplasmic	partitioning	(Zattelman	et	

al.,	2017).	The	24-h	rhythmic	transcript	MYO1C-202	in	SW620	encodes	for	the	isoform	MYO1CC,	which	

localizes	predominantly	to	the	plasma-membrane	and	is	involved	in	cell	migration	and	signal	trans-

duction.	The	~7.4	h	phase-shifted	transcript	MYO1C-203	encodes	for	the	isoform	MYO1CB,	also	known	

as	nuclear	myosin	I	or	MYO1C16,	which	localizes	mostly	to	the	nucleus	where	it	is	involved	in	transcrip-

tion,	mRNA	maturation,	and	chromatin	remodeling	(Zattelman	et	al.,	2017).	Interestingly,	the	third	iso-

form	of	MYO1C,	MYO1CA,	is	involved	in	prostate	cancer	cell	migration	(Maly	et	al.,	2017)	and	it	has	

been	speculated	that	alterations	of	MYO1C	at	the	plasma	membrane	might	affect	the	metastatic	poten-

tial	of	tumor	cells	(Venit	et	al.,	2016).	Notably,	the	expression	patterns	of	ANKHD1	and	MYO1C	splice	

variants	differ	between	the	cell	lines	(Figure	3-16),	indicating	that	they	might	also	be	specific	for	dif-

ferent	stages	of	tumor	progression.	
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Figure	3-16:	Candidate	genes	with	phase-shifted	splice	variants	are	linked	with	apoptosis	and	migration.	Expression	

(log2	CPM)	and	visualization	of	the	genomic	structure	of	(A)	the	transcripts	ANKHD1-205	and	ANKHD1-210	and	(B)	

MYO1C-202	and	MYO1C	-203	in	SW480	(blue)	and	SW620	(orange).	Differences	in	the	exonic	composition	are	marked	

with	red	rectangles.	

Altogether,	the	search	for	phase	shifted	SVPs	has	revealed	several	candidate	genes	which	might	be	

alternatively	spliced	in	a	time-of-day-dependent	way	in	human	CRC	cell	lines,	some	of	which	are	asso-

ciated	with	cancer-relevant	processes,	such	as	apoptosis	and	migration.	Thus,	it	is	conceivable	that	a	

temporal	 regulation	 of	 functionally	 distinct	 isoforms	 might	 enable	 CRC	 cells	 to	 produce	 protein	

isoforms	at	specific	times	of	the	day	that	further	promote	their	malignant	transformation.	

3.3 Analysis of Rhythmic Splicing Events in Mammalian Tissues 

In	the	third	chapter,	potential	circadian	rhythms	in	AS	are	analyzed	in	healthy	mammalian	tissues	to	

find	out	whether	the	hypothesized	rhythmic	regulation	of	AS	is	conserved	across	species	and	to	further	

elucidate	its	biological	functions.	As	a	representative	model,	two	previously	published	mammalian	cir-

cadian	transcriptome	datasets	were	chosen:	A	microarray	dataset	of	twelve	organs	from	male	mice,	

sampled	every	2	h	for	two	circadian	cycles	(Zhang	et	al.,	2014)	and	an	RNA-seq	dataset	of	64	tissues	

and	brain	regions	from	olive	baboons	(Table	S	5),	sampled	every	2	h	for	one	circadian	cycle	(Mure	et	

al.,	2018).	The	higher	sampling	resolution	of	the	datasets	additionally	allows	for	the	analysis	of	ultra-

dian	rhythms	with	a	period	of	12	h	(see	subsection	1.1.4).	In	the	first	part	of	the	chapter,	12-h	and	24-h	

rhythms	in	gene	expression	and	putative	rhythmic	changes	in	AS	are	identified	for	murine	organs.	In	

the	second	and	third	part,	transcript-level	oscillations	in	expression	are	compared	to	gene-level	oscil-

lations,	followed	by	the	detection	of	phase-shifted	splice	variants	of	the	same	gene	in	baboon	tissues.	

In	the	last	part	of	the	chapter,	circadian	oscillations	in	the	expression	of	splicing-related	genes	are	com-

pared	between	the	two	species.	The	results	described	in	this	chapter	have	for	the	most	part	been	pub-

lished	in	El-Athman	et	al.	(2019).	Text	passages	and	figures	of	the	publication	have	been	updated	and	

adapted	for	this	thesis.	
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3.3.1 Identification of Putative Ultradian and Circadian AS Events in Murine Organs 

The	multi-organ	mouse	microarray	dataset	from	Zhang	et	al.	(2014)	was	re-analyzed	for	this	study,	

starting	with	preprocessing	of	the	raw	data	to	gain	expression	values	of	genes	for	all	individual	time	

points,	followed	by	an	analysis	of	rhythmicity	to	identify	rhythmic	features	and	their	rhythmic	param-

eters.	Gene-level	expression	values	for	the	murine	microarray	data	were	calculated	based	on	RMA-

preprocessed	intensity	values	for	transcript	clusters.	A	harmonic	regression	analysis	for	a	period	range	

of	5–30	h	and	a	significance	cutoff	p	<	0.01	revealed	not	only	clusters	of	rhythmic	genes	for	periods	of	

circadian	length	(~24	h)	but	also	for	ultradian	periods	at	the	second	harmonic	of	circadian	rhythmicity	

(~12	h)	for	the	murine	tissues	(Figure	S	15A).	The	latter	were	particularly	prominent	for	the	three	

types	of	muscle-related	tissue,	aorta	(AOR),	heart	(HEA),	and	skeletal	muscle	(MUS),	but	were	also	ob-

served	for	the	adrenal	gland	(ADG)	and	brown	and	white	adipose	tissue	(BAT	and	WAT).	The	RAIN	

algorithm	was	used	to	identify	rhythmic	features	with	24-h	or	12-h	periods	for	each	of	the	twelve	mu-

rine	tissues	separately.	Amplitudes	and	phases	of	rhythmic	genes	were	estimated	by	fitting	a	harmonic	

regression	with	the	same	period.	

	

Figure	3-17:	Re-analysis	of	the	circadian	transcriptome	of	twelve	murine	tissues	from	Zhang	et	al.	(2014)	(microarray	

data,	GSE54650).	(A)	Number	of	12-h	rhythmic	(light	blue)	and	24-h	rhythmic	(dark	blue)	genes	in	twelve	murine	tis-

sues.	See	Table	S	5	for	the	meaning	of	tissue	abbreviations.	Rhythmic	genes	were	determined	by	RAIN	(q	<	0.05	after	

filtering	for	genes	with	a	relative	amplitude	≥	0.1)	(B)	Number	of	genes	(left	panel)	and	gene	types	in	percent	(right	

panel)	for	the	total	sets	of	12-h	and	24-h	rhythmic	genes	across	all	murine	tissues	and	their	intersection.	

Given	an	FDR	of	5%	(after	pre-filtering	of	RAIN	p-values	for	genes	with	relative	amplitude	≥	0.1),	24-h	

and	to	a	lesser	extent	12-h	rhythmic	genes	were	identified	for	all	of	the	tissues	(Figure	3-17A	and	

Figure	S	16A).	As	already	reported	in	the	original	publication	(Zhang	et	al.,	2014),	the	number	of	cir-

cadian	genes	differs	between	the	organs,	with	the	highest	number	identified	in	the	liver	(LIV)	(3205	

genes)	and	the	lowest	in	the	cerebellum	(CER)	(220	genes).	In	total,	9,045	genes	were	identified	as	24	h	

rhythmic	and	4,140	genes	as	12-h	rhythmic	in	at	least	one	of	the	murine	tissues,	including	2673	genes	

with	both	24-h	and	12-h	rhythms,	depending	on	the	tissue	(Figure	3-17B).	The	complete	set	of	genes	

displaying	12-h	rhythmicity	in	at	least	one	murine	tissue	included	fewer	protein-coding	genes	than	the	

set	of	genes	detected	as	24-h	rhythmic	(Figure	3-17B).	 Interestingly,	not	only	the	number	of	24-h	

rhythmic	genes	but	also	the	prevalence	of	12-h	rhythmic	genes	varied	greatly	throughout	the	murine	
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tissues.	The	median	percentage	of	12-h	rhythmic	genes	in	the	collective	sets	of	 identified	rhythmic	

genes	(12-h	and	24-h	rhythmic)	was	8%	which	is	comparable	to	previous	studies	on	sub-circadian	

transcriptional	rhythms	in	mouse	liver	(Hughes	et	al.,	2009).	However,	MUS	(55%),	ADG	(31%),	WAT	

(32%),	 and	BAT	 (23%)	 constituted	 outliers	which	displayed	higher	 percentages	 of	 12-h	 rhythmic	

genes.	

	

Figure	3-18:	Analysis	of	whole-transcript	microarray	data	(GSE54650)	reveals	candidate	genes	with	24-h	and	12-h	

rhythmic	AS	events	in	murine	tissues.	(A)	Number	of	genes	with	24-h	rhythmic	(dark	blue)	and	12-h	(light	blue)	candi-

date	AS	events	in	the	twelve	murine	tissues	(RAIN	q	<	0.1	and	relative	amplitude	≥	0.1).	(B)	Exemplary	phase-sorted	

heatmaps	of	24-h	rhythmic	(left	panel)	and	12-h	rhythmic	(right	panel)	FIRMAGene	scores	in	BAT.	Phases	were	deter-

mined	by	RAIN.	(C)	Distribution	of	peak	times	of	12-h	and	24-h	rhythmic	FIRMAGene	scores	for	tissues	with	at	least	100	

genes	with	rhythmic	candidate	AS	events.	

While	the	design	of	whole-transcript	(or	“Gene”)	microarrays	(Figure	1-9)	does	not	allow	for	the	quan-

tification	of	transcript-	or	exon-level	expression,	it	can	nevertheless	be	used	to	identify	candidate	genes	

with	potentially	rhythmic	AS	events	by	applying	the	FIRMAGene	method.	FIRMAGene	scores	potential	

splicing	events	based	on	 the	persistence	of	probe-wise	residuals	 from	the	RMA	 fit	 (see	subsection	

1.2.4).	In	accordance	with	the	previous	analysis	of	rhythmic	splicing	in	microarray	data	(see	subsection	

3.1.4),	the	non-parametric	RAIN	algorithm	was	used	to	identify	genes	whose	FIRMAGene	scores	vary	

over	time	with	underlying	24-h	or	12-h	rhythms,	thus	indicating	a	circadian	or	ultradian	regulation	of	

AS.	Overall,	2,417	unique	genes	with	24-h	rhythmic	and	2,368	unique	genes	with	12-h	rhythmic	puta-

tive	AS	events	were	identified	across	all	murine	tissues	(RAIN	q	<	0.1	and	relative	amplitude	≥	0.1)	

(Figure	3-18A	and	External	data	file	2).	The	highest	number	of	genes	with	putative	rhythmic	AS	

events	was	identified	for	MUS	with	a	period	of	12	h	(943	genes),	followed	by	events	with	a	24-h	period	

in	BAT	(571	genes)	(Figure	3-18B)	and	the	hypothalamus	(HYP,	524	genes).	The	high	number	of	genes	

with	putative	circadian	AS	events	in	HYP	is	remarkable	because	only	few	genes	show	24-h	rhythms	in	
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transcription	in	the	same	tissue	(Figure	3-17A).	Surprisingly,	12-h	rhythmic	splicing	events	did	not	

only	make	up	a	large	proportion	of	all	identified	rhythmic	events	in	tissues	with	many	12-h	rhythmic	

genes	like	MUS	(87%),	and	BAT	(46%)	(Figure	3-18B),	but	also	in	HEA	(97%)	and	LIV	(49%)	where	

only	few	12-h	rhythmic	genes	have	been	identified	(Figure	3-17A).	In	adipose	tissues	as	well	as	in	LIV	

and	lung	(LUN),	the	24-h	rhythmic	FIRMAGene	scores	peaked	predominantly	at	the	transition	from	

the	light	to	the	dark	phase,	while	in	muscle	tissues,	they	peaked	in	the	middle	of	the	subjective	day,	and	

in	HYP,	there	was	a	strong	peak	in	the	middle	of	the	subjective	night	(Figure	3-18C).	Peak	times	for	

12-h	rhythmic	putative	AS	events	were	less	distinct	and	differed	even	between	tissues	of	a	similar	type,	

e.g.,	MUS	and	HEA.	

The	number	of	putative	AS	events	is	dependent	on	the	amplitude	cutoff	and	the	FDR.	For	an	FDR	of	

5%,	only	 few	genes	were	 found	 to	display	 candidate	AS	events	 in	more	 than	one	 tissue	 (data	not	

shown).	However,	it	seems	likely,	that	a	circadian	regulation	of	splicing	of	a	gene	is	not	unique	to	a	

single	tissue	but	also	occurs	in	other	tissues	of	a	similar	type.	Indeed,	identical	circadian	AS	events	have	

previously	been	detected	for	several	mammalian	tissues	(McGlincy	et	al.,	2012).	Thus,	a	gene	with	pu-

tative	rhythmic	AS	events	in	several	tissues	is	considered	a	better	candidate	than	a	gene	for	which	only	

a	single	AS	was	identified,	though	its	rhythmicity	q-value	might	be	lower.	For	an	FDR	cutoff	of	10%,	

putative	24-h	rhythmic	AS	events	were	detected	in	up	to	six	tissues	for	one	gene,	e.g.,	for	the	core-clock	

genes	Bmal2	(two	tissues)	and	Nr1d1	(six	tissues,	including	LIV),	the	clock-controlled	gene	Ciart	(two	

tissues),	and	for	the	SF	gene	Mbnl2	(two	tissues)	(Figure	S	17A).	Curiously,	the	set	of	genes	with	12-h	

rhythmic	FIRMAGene	scores	in	more	than	one	tissue	also	included	several	components	of	the	core-

clock	and	clock-controlled	genes,	such	as	Bmal1	(three	tissues),	Nr1d2	(two	tissues),	Npas2	(four	tis-

sues),	Dbp	(four	tissues)	and	Ciart	(three	tissues)	(Figure	S	17B).	The	putative	AS	event	of	Ciart	in	MUS	

was	identified	to	be	significantly	rhythmic	for	a	period	of	both	24-h	and	12-h	which	shows	that	it	can	

be	difficult	to	distinguish	between	circadian	rhythms	in	AS	and	their	second	harmonics,	i.e.,	ultradian	

12-h	rhythms.	A	12-h	rhythmic	putative	AS	event	was	also	identified	for	the	transcription	factor	gene	

Xbp1	in	murine	BAT.	Both	the	splicing	efficiency	of	Xbp1	and	the	abundance	of	the	spliced	isoform	12-h	

rhythmic	have	previously	been	found	to	be	12-h	rhythmic	in	vivo	and	in	vitro	(Cretenet	et	al.,	2010;	Zhu	

et	al.,	2017)	(see	subsection	1.1.4).	In	contrast,	the	SF	gene	U2af26/U2af1l4	whose	splicing	is	controlled	

via	circadian	body	temperature	cycles	 in	mouse	(Preußner	et	al.,	2017)	(see	subsections	1.3.2	and	

1.3.3)	was	neither	among	the	candidates	for	genes	with	24-h	or	12-h	rhythmic	AS	events.	Interestingly,	

another	 gene	with	 a	 temperature-responsive	 24-h	 rhythmic	AS	 event	 reported	by	Preußner	 et	 al.	

(2017),	Tbp,	had	a	candidate	12-h	rhythmic	AS	event	in	MUS.	

In	the	next	step,	the	results	derived	from	the	murine	microarray	data	were	further	compared	to	RNA-

seq	data	from	the	same	biological	material	(Zhang	et	al.,	2014).	The	RNA-seq	data	was	sampled	for	the	

same	time	range	of	two	circadian	cycles	but	with	a	large	sampling	resolution	of	6	h.	For	this	reason,	the	

RNA-seq	dataset	was	only	used	to	 identify	expressed	splice	variants	 instead	of	rhythmic	ones.	For	

many	genes	with	candidate	rhythmic	FIRMAGene	scores,	two	or	more	expressed	splice	variants	were	

identified	in	the	respective	tissue	(Figure	S	17C),	indicating	that	an	AS	event	does	indeed	take	place,	

though	it	does	not	have	to	be	rhythmic.	However,	depending	on	the	tissue,	for	~18–57%	of	the	genes	
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with	24-h	rhythmic	scores	and	~11–40%	of	the	genes	with	12-h	rhythmic	scores,	only	one	expressed	

splice	variant	was	identified	for	the	chosen	cutoff	in	the	respective	tissue.	Accordingly,	the	putative	

rhythmic	AS	events	gained	from	the	FIRMAGene	analysis	should	be	considered	with	reservations	be-

cause	they	are	likely	to	include	many	false	positives.	

	

Figure	3-19:	Enriched	processes	for	candidate	genes	with	rhythmic	AS	events	in	murine	tissues	(microarray	data).	En-

riched	GO	terms	(Biological	Process	–	BP)	for	the	sets	of	genes	with	(A)	24-h	rhythmic	and	(B)	12-h	rhythmic	candidate	

AS	 events	 in	 the	murine	 tissues	 (GSE54650)	 that	 had	 at	 least	 two	 expressed	 splice	 variants	 in	 the	 RNA-seq	 data	

(GSE54651).	GO	terms	were	manually	curated	to	remove	redundant	categories.	Only	the	first	ten	GO	terms	are	shown.	

The	complete	lists	of	results	can	be	found	in	Table	S	6.	

A	GO	enrichment	analysis	was	performed	only	for	the	sets	of	candidate	genes	with	two	or	more	ex-

pressed	splice	variants	(Table	S	6).	The	biological	processes	enriched	for	the	945	genes	with	24-h	

rhythmic	FIRMAGene	scores	(BH-adjusted	p	<	0.01)	include	developmental	cell	growth,	neuron	death,	

circadian	rhythm,	ribosome	biogenesis,	and	the	intrinsic	apoptotic	signaling	pathway	in	response	to	

DNA	damage	by	p53	class	mediator	(Figure	3-19A).	The	detection	of	circadian	rhythm	among	the	en-

riched	processes	further	reinforces	the	hypothesized	reciprocal	interplay	between	rhythmic	AS	and	

the	circadian	clock.	For	the	set	of	995	genes	with	12-h	rhythmic	FIRMAGene	scores,	protein	catabolic-

related	processes	and	metabolic	processes	were	found	to	be	enriched	(BH-adjusted	p	<	0.01),	in	addi-

tion	to	nuclear	and	nucleocytoplasmic	transport,	the	regulation	of	protein	stability,	cytoplasmic	trans-

lation,	and	cell-matrix	adhesion	(Figure	3-19B).	The	prevalence	of	metabolic	and	catabolic	processes	

suggests	that	12-h	rhythmic	AS	events	might	be	involved	in	the	hypothesized	metabolic	role	of	ultra-

dian	rhythmicity	in	mammals.	Still,	further	experiments	are	necessary	to	clarify	whether	12-h	rhythms	

in	isoform	expression	truly	exist	and	which	functional	role	they	might	play.	

3.3.2 Comparison of Transcript-level and Gene-level Expression in Baboon Tissues 

The	second	circadian	multi-organ	mammalian	dataset	used	in	this	study	consists	of	RNA-seq	reads	

from	64	different	tissues	resected	from	olive	baboons	for	one	circadian	day	(Mure	et	al.,	2018).	The	

dataset	was	re-analyzed	to	gain	expression	values	of	genes	and	transcripts	for	all	individual	time	points	

following	the	same	RNA-seq	preprocessing	pipeline	as	previously	described	for	the	human	CRC	cell	

line	data	(see	subsection	3.2.1).	A	harmonic	regression	analysis	for	a	period	range	of	6–26	h	and	a	sig-

nificance	cutoff	p	<	0.01	revealed	clusters	of	rhythmic	genes	for	periods	of	approximately	circadian	



	
3.3 Analysis of Rhythmic Splicing Events in Mammalian Tissues 75 

length	(~24	h)	for	the	majority	of	tissues,	as	well	as	for	shorter	periods	of	~12	h	for	some	tissues,	e.g.,	

for	the	prostate	(PRO),	the	smooth	muscle	(SMM),	and	bone	marrow	(BOM)	(Figure	S	15B).	Many	of	

the	period	distributions	in	baboon	tissues	did	not	center	exactly	around	24	h	but	slightly	earlier	which	

might	be	attributed	to	the	relatively	short	time-series	of	a	single	circadian	cycle.	Rhythmic	features	

with	24-h	or	12-h	periods	were	identified	using	the	RAIN	algorithm	and	amplitudes	and	phases	of	

rhythmic	features	were	estimated	by	fitting	a	harmonic	regression	with	the	same	period.	Instead	of	

correcting	the	RAIN	p-values	for	multiple	testing,	a	low	p-value	cutoff	was	chosen	to	get	rhythmic	fea-

tures	for	all	tissues	(Figure	S	16A).	Applying	the	criteria	RAIN	p	<	0.005	and	relative	amplitude	≥	0.1,	

both	24-h	and	12-h	rhythmic	genes	and	transcripts	could	be	detected	across	all	tissues	(Figure	3-20A).	

The	highest	number	of	24-h	rhythmic	genes	was	found	in	the	thyroid	(THY,	3807	genes),	followed	by	

the	kidney	cortex	(KIC,	3513),	the	stomach	fundus	(STF,	3357	genes),	and	omental	fat	(OMF,	3038	

genes).	These	number	are	comparable	to	those	identified	by	the	original	publication	where	THY	and	

STF	were	also	identified	as	the	tissues	with	the	highest	number	(>	3000)	of	genes	with	24-h	rhythms	

of	expression	(Mure	et	al.,	2018).		

	

Figure	3-20:	Re-analysis	of	the	circadian	transcriptome	of	64	olive	baboon	tissues	from	Mure	et	al.	(2018)	on	gene-	and	

transcript-level	(RNA-seq	data,	GSE98965).	(A)	Number	of	12-h	rhythmic	(light	blue)	and	24-h	rhythmic	(dark	blue)	

genes	(upper	panel)	and	transcripts	(lower	panel)	in	64	baboon	tissues	(GSE98965).	See	Table	S	5	for	the	meaning	of	

tissue	abbreviations.	Rhythmic	features	were	determined	by	RAIN	(p	<	0.005	and	relative	amplitude	≥	0.1)	(B)	Number	

of	rhythmic	genes	(x-axis)	versus	number	of	rhythmic	transcripts	(y-axis)	with	a	period	of	24	h	(left	panel)	and	12	h	

(right	panel)	for	each	tissue.	Tissues	are	color-coded	according	to	tissue	type.	(C)	Number	of	genes	(left	panel),	tran-

scripts	(center	panel)	and	gene	types	in	percent	(right	panel)	for	the	total	sets	of	12-h	and	24-h	rhythmic	features	across	

all	tissues	and	their	intersection.	
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In	addition,	several	tissues	also	displayed	large	proportions	of	12-h	rhythmic	genes:	While,	the	median	

percentage	of	12-h	rhythmic	genes	in	the	collective	sets	of	rhythmic	genes	was	11%,	there	were	some	

baboon	tissue	where	the	majority	of	rhythmic	genes	was	detected	to	be	12-h	rhythmic,	including	BOM	

(81%,	1001	genes),	mesenteric	white	adipose	tissue	(WAM,	67%,	579	genes),	PRO	(66%,	1568	genes),	

and	SMM	(65%,	1568	genes).	In	total,	14,881	genes	were	identified	as	24-h	rhythmic	and	8,763	genes	

as	12-h	rhythmic	in	at	least	one	of	the	baboon	tissues	(Figure	3-20C).	The	genes	detected	to	be	12-h	

rhythmic	included	fewer	protein-coding	genes	than	the	set	of	24-h	rhythmic	genes.	However,	as	al-

ready	observed	for	the	murine	multi-organ	dataset,	there	was	a	large	intersection	between	the	two	

sets	of	rhythmic	genes,	with	ca.	82%	of	the	12-h	rhythmic	genes	identified	as	24-h	rhythmic	in	at	least	

one	other	tissue.	Applying	the	same	criteria	for	the	transcript-level	counts	of	the	baboon	data,	21,379	

transcripts	were	identified	as	24-h	and	12,941	transcripts	as	12-h	rhythmic	(Figure	3-20C),	resulting	

in	a	roughly	linear	correlation	between	the	number	of	rhythmic	genes	and	the	number	of	rhythmic	

transcripts	(Figure	3-20B).	

	

Figure	3-21:	Discrepancies	between	time-series	expression	identified	on	gene-	and	transcript-level	in	baboon	tissues	

(RNA-seq	data,	GSE98965)	(A)	Frequency	barplot	of	the	number	of	expressed	transcripts	per	expressed	genes	in	all	

baboon	tissues.	(B)	Frequency	barplots	of	the	number	of	expressed	transcripts	per	24-h	rhythmic	gene	(dark	blue,	upper	

left	panel)	and	per	12-h	rhythmic	gene	(light	blue,	upper	right	panel),	and	of	the	number	of	24-h	rhythmic	transcripts	

per	24-h	rhythmic	gene	(dark	blue,	lower	left	panel)	and	of	12-h	rhythmic	transcripts	per	24-h	rhythmic	gene	(light	blue,	

lower	right	panel)	in	all	baboon	tissues.	(C)	Example	of	a	gene	(RABEP2)	detected	to	be	24-h	rhythmic	in	baboon	stomach	

fundus	(STF)	on	gene-level	but	not	on	transcript-level.	(D)	Example	of	a	gene	(TFG)	detected	to	be	24-h	rhythmic	in	the	

stomach	fundus	(STF)	on	transcript-level	but	not	on	gene-level.	

In	the	next	step,	the	identity	and	the	rhythmic	parameters	of	the	rhythmic	genes	detected	on	gene-	and	

on	transcript-level	were	compared	for	each	baboon	tissue.	Surprisingly,	the	intersection	of	the	two	

gene	sets	only	amounted	to	an	average	of	40%	of	the	set	union	for	the	24-h	rhythmic	genes	(Figure	S	

18A)	and	to	an	average	of	25%	of	the	set	union	for	the	12-h	rhythmic	genes	(Figure	S	18B).	Interest-

ingly,	the	tissue-wise	median	of	RAIN	p-values	of	genes	from	the	intersection	(identified	as	rhythmic	

on	both	transcript-	and	summarized	gene-level)	was	lower	than	the	p-value	median	of	the	genes	iden-

tified	as	rhythmic	on	gene-level	for	the	majority	of	tissues	(Figure	S	19A).	The	phase	distributions	of	
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rhythmic	features	were	similar	between	gene-	and	transcript-level,	but	differed	between	tissues,	in	

particular	for	features	with	12-h	rhythms	in	expression	(Figure	S	19B).	Both	24-h	and	12-h	rhythmic	

transcript	sets	tended	to	have	higher	relative	amplitudes	than	their	counterparts	on	gene-level	(Figure	

S	19C),	which	is	likely	due	to	the	transcript	counts	summarization	step	of	the	RNA-seq	preprocessing	

pipeline.	Across	all	baboon	tissues,	an	expressed	gene	had	an	average	of	1.7	expressed	transcripts.	

Some	 genes	 had	 up	 to	 18	 expressed	 transcripts	 (Figure	 3-21A),	 e.g.,	 EPB41L2,	 RACK1,	 and	 EN-

SPANG00000011737,	a	novel	orthologous	gene	to	human	gene	DHRS4.	A	similar	ratio	was	observed	for	

the	average	number	of	expressed	transcripts	per	rhythmic	gene	(24-h	rhythmic:	1.80;	12-h	rhythmic:	

1.68)	(Figure	3-21B).	The	average	number	of	rhythmic	transcripts	per	rhythmic	gene	was	lower	(24-

h	rhythmic:	0.71;	12-h	rhythmic:	0.60),	the	maximum	being	five	24-h	rhythmic	transcripts	for	MT3	and	

RACK1	(Figure	3-21B).	

For	genes	with	several	expressed	transcripts,	discrepancies	between	the	time-series	expression	of	the	

gene	and	the	time-series	expression	of	its	individual	transcripts	could	be	observed.	For	instance,	the	

gene	RABEP2	was	24-h	rhythmic	in	baboon	STF,	whereas	its	three	expressed	transcripts	were	not	(Fig-

ure	3-21C).	The	opposite	case	was	detected	for	the	gene	TFG:	Two	out	of	the	three	expressed	TFG	

transcripts	in	STF	were	identified	as	24-h	rhythmic,	albeit	with	different	phases,	while	the	summarized	

expression	on	gene-level	was	constant	(Figure	3-21C).	In	the	first	case,	the	summarization	of	tran-

script-level	counts	to	gene-level	count	estimates	led	to	the	gene	being	defined	as	rhythmic	despite	the	

individual	 transcripts	being	arrhythmic,	making	RABEP2	 a	 likely	 false	positive	 candidate	 circadian	

gene.	In	the	second	case,	the	summarization	led	to	a	masking	of	the	phase-shifted	rhythmicity	of	the	

two	24-h	rhythmic	transcripts,	making	TFG	a	likely	false	negative.	The	latter	case	could	be	the	result	of	

a	potential	circadian	regulation	of	AS:	Two	splice	variants	of	 the	same	gene	are	rhythmically	 tran-

scribed	with	their	expression	peaking	at	different	times	of	the	circadian	day.	Hence,	a	rhythmicity	anal-

ysis	on	transcript-level	is	likely	to	yield	new	results,	including	candidate	circadian	and/or	ultradian	

alternatively	spliced	genes,	that	would	be	overlooked	in	a	rhythmicity	analysis	conducted	on	gene-

level	only.	

3.3.3 Detection of Differentially Rhythmic Phase-shifted Splice Variants in Baboon Tissues 

Following	the	previously	described	analysis	pipeline	for	the	detection	of	putative	rhythmic	AS	in	circa-

dian	RNA-seq	data	(see	subsection	3.2.3),	differentially	rhythmic	SVPs	were	identified	in	21	and	16	

baboon	tissues,	respectively	(Figure	3-22A).	As	previously	described	for	the	human	RNA-seq	data	(see	

subsection	3.2.3),	the	differentially	rhythmic	SVPs	were	further	filtered	for	pairs	with	an	amplitude	

ratio	<	2	that	were	phase-shifted	by	at	least	a	sixth	of	their	period	length	in	the	same	tissue	(Figure	

3-22B).	This	filtering	step	resulted	in	a	total	of	2,278	(1,620	unique	SVPs	and	1,250	unique	genes)	and	

501	(483	unique	SVPs	and	443	unique	genes)	phase-shifted	SVPs	with	24-h	and	12-h	rhythms	in	ex-

pression,	respectively	(Figure	3-22C	and	External	data	file	3).	
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Figure	3-22:	Analysis	of	differentially	rhythmic	splice	variant	pairs	of	the	same	gene	in	the	same	baboon	tissue	(RNA-

seq	data,	GSE98965).	(A)	Distribution	of	the	number	of	genes	with	differentially	24-h	rhythmic	(upper	panel,	dark	blue)	

and	12-h	rhythmic	(lower	panel,	light	blue)	SVPs.	(B)	Amplitude	ratio	and	phase	difference	of	SVPs	found	to	be	differen-

tially	rhythmic	with	a	period	of	24	h	(left	panel)	and	12	h	(right	panel).	Phase-shifted	SVPs	(amplitude	ratio	<	2	and	

phase-shift	≥	period/6)	are	marked	by	black	rectangles.	(C)	Number	of	24-h	(dark	blue)	and	12-h	rhythmic	(light	blue)	

phase-shifted	SVPs	in	the	64	baboon	tissues.	(D)	Phase	distribution	and	pairwise	phase	difference	of	24-h	rhythmic	(up-

per	panel,	dark	blue)	and	12-h	rhythmic	(lower	panel,	light	blue)	phase-shifted	SVPs	for	all	baboon	tissues.	(E)	Chord	

diagrams	representing	the	relations	between	the	phases	of	24-h	rhythmic	(left	panel)	and	12-h	rhythmic	phase-shifted	

SVPs.	Peak-phases	are	clustered	in	bins	of	3	h	(left	panel)	and	2	h	(right	panel)	and	colored	according	to	the	type	of	tissue	

in	which	they	were	detected.	

An	analysis	of	the	phase	distribution	and	the	phase	differences	of	all	phase-shifted	24-h	rhythmic	splice	

variants	pairs	revealed	two	clusters	of	splice	variants	that	exhibited	a	phase-shift	greater	than	10	h	

with	two	peaks	of	expression:	one	between	ZT4–ZT10	and	the	other	between	ZT15–ZT21	(Figure	

3-22D).	When	further	comparing	the	relations	between	the	two	peak	times	of	phase-shifted	SVPs	in	

chord	diagrams,	it	becomes	apparent	that	the	majority	of	24-h	rhythmic	phase-shifted	SVPs	was	ex-

pressed	at	opposing	times	of	the	daily	cycle,	with	one	transcript	peaking	in	the	middle	of	the	subjective	
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day	and	the	other	in	the	middle	of	the	subjective	night	(Figure	3-22E).	For	the	smaller	set	of	12-h	

rhythmic	SVPs,	a	tendency	for	phase-shifts	greater	than	4	h	but	no	clear	peak	times	over	the	12-h	cycle	

were	observed	(Figure	3-22D	and	E).	364	(22.5%)	of	the	24-h	rhythmic	phase-shifted	SVPs	and	439	

(35.1%)	of	the	affected	genes	appeared	in	more	than	one	tissue,	suggesting	that	the	putative	circadian	

regulation	of	AS	is	prevalent	across	baboon	tissues	of	different	organ	types.	

To	learn	more	about	possible	physiological	functions	of	rhythmic	AS,	a	GO	enrichment	analysis	was	

conducted	on	gene-level	for	all	candidate	genes	with	phase-shifted	SVPs.	Biological	processes	enriched	

for	genes	with	24-h	rhythmic	SVPs	 included	RNA	processing,	RNA	splicing	processes,	Golgi	vesicle	

transport,	and	the	regulation	of	mRNA	metabolic	processes	(adjusted	p	<	0.05)	(Figure	3-23A	and	

Table	S	5).	The	prevalence	of	RNA	splicing-related	processes	among	the	enriched	terms	suggests	that	

splicing-related	genes	are	among	the	targets	of	the	putative	circadian	regulation	of	AS,	as	previously	

observed	for	the	human	CRC	cell	lines	SW480	and	SW620	(see	subsection	3.2.3).	No	significantly	en-

riched	processes	(BH-adjusted	p	<	0.05)	were	identified	for	the	smaller	set	of	genes	with	12-h	rhythmic	

phase-shifted	SVPs,	though	some	GO	terms	were	found	for	a	less	stringent	cutoff	(p	<	0.001),	including	

Golgi	vesicle,	cytosolic,	and	microtubule-based	transport	(Figure	3-23B	and	Table	S	5).	

	

Figure	3-23:	Enriched	biological	processes	 for	genes	with	rhythmic	phase-shifted	splice	variants	 in	baboon	tissues	

(RNA-seq	data,	GSE98965).	Enriched	GO	terms	(Biological	Process	–	BP)	for	the	sets	of	genes	that	exhibited	(A)	24-h	

rhythmic	and	(B)	12-h	rhythmic	phase-shifted	SVPs	in	at	least	on	baboon	tissue.	Shown	are	the	top	ten	enriched	pro-

cesses.	The	complete	lists	of	results	can	be	found	in	Table	S	5.	

Assuming	that	the	phase-shifted	SVPs	represent	true	rhythmic	splicing	events,	one	would	expect	some	

of	the	candidates	to	appear	with	similar	phases	in	more	than	one	tissue	of	the	same	or	possibly	even	

of	different	organ	types.	For	the	set	of	12-h	rhythmic	phase-shifted	splice	variants,	16	SVPs	were	de-

tected	in	two	tissues	(ATP13A1,	C2orf49, CTNNBL1, ENSPANG00000032468	(an	orthologous	gene	to	
human	PARL),	ENTPD1, GTDC1, KPNB1, NBAS, NDUFB2, PI4KB, PLEKHA7 TBC1D23,	TPM1,	UBAP1, 
VPS13A, and ZNF691)	and	a	single	SVP	in	three	tissues	(DNAJC13).	The	small	number	of	occurrences	
prevents	testing	for	phase	synchrony	of	the	individual	splice	variants	across	tissues. In	contrast,	there	
were	22	phase-shifted	24-h	rhythmic	SVPs	that	were	detected	in	six	or	more	baboon	tissues	and	there-

fore	constitute	good	candidates	for	robustly	circadian	AS	events	in	baboon	(Figure	3-24	and	Table	S	

8).	The	top	candidate	SVPs	included	43	different	splice	variants	that	originate	from	21	genes:	ADD1,	

CCNL2,	CPNE1,	DRG1,	EIF3H,	EXOC3,	HNRNPAB,	HSD17B4,	MCFD2,	MOB4,	NELFE,	PAF1,	PCBP2,	PEX6,	
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RPS3,	SERINC3,	TAF15,	ZNF207,	and	the	novel	genes	ENSPANG-00000010337	(also	known	as	NRDE-2),	

ENSPANG00000018784	(also	known	as	CSNK2A1),	and	ENSPANG00000023352	(an	orthologous	gene	

to	human	SEPHS1).	For	RPS3,	two	pairs	made	up	of	three	splice	variants	were	found.	All	pairs	displayed	

mean	phase	differences	between	9	and	12	h,	suggesting	that	they	were	transcribed	in	an	anti-phasic	

manner	at	opposing	times	of	the	daily	cycle.	For	each	of	the	43	splice	variants,	phases	across	tissues	

were	significantly	unimodally	distributed	(p	<	0.05	determined	by	Rayleigh	test).	Notably,	six	out	of	

the	21	candidates	were	splicing-related	genes	(CCNL2,	HNRNPAB,	NELFE,	PCBP2,	TAF15,	and	ZNF207),	

reinforcing	the	hypothesis	that	genes	involved	in	splicing	processes	are	to	some	degree	affected	by	

rhythmic	AS.		

	

Figure	 3-24:	 Phase	 distributions	 of	 top	 candidate	 phase-shifted	 splice	 variants	 in	 baboon	 tissues	 (RNA-seq	 data,	

GSE98965).	Peak	phases	of	the	22	phase-shifted	differentially	24-h	rhythmic	SVPs	that	were	identified	in	at	least	six	

baboon	tissues.	The	colors	represent	the	tissue	type	in	which	the	SVP	was	found.	
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For	the	majority	of	the	candidates,	not	much	is	known	concerning	the	expression	and/or	function	of	

alternative	splice	variants	in	mammals,	with	the	exception	of	CCNL2,	HSD17B4,	SEPHS1,	and	ZNF207.	

CCNL2	is	a	member	of	the	cyclin	family	that	has	been	found	to	be	involved	in	splicing	and	to	inhibit	

growth	and	induce	apoptosis	of	tumor	cells,	possibly	via	regulating	RNA	processing	of	apoptosis-re-

lated	factors	such	as	p53,	Bax,	and	Bcl-2	(Yang	et	al.,	2004).	Three	protein	isoforms	encoded	by	CCNL2	

have	been	reported	to	be	localized	in	distinct	cellular	compartments	and	to	bind	to	SR	proteins	(Berke	

et	al.,	2001;	Loyer	et	al.,	2008).	HSD17B4	encodes	for	a	member	of	the	HSD17B	family	of	hydroxylster-

oid	dehydrogenases	that	have	various	enzymatic	functions	in	steroidogenesis	and	steroid	metabolism.	

Five	protein-coding	splice	variants	of	HSD17B4	have	been	described	in	humans	and	the	loss	of	the	only	

androgen-inactivating	HSD17B4	splice	variant	has	been	found	to	promote	the	development	of	castra-

tion-resistant	prostate	cancer	(CRPC)	(Ko	et	al.,	2018).	Interestingly,	one	of	the	phase-shifted	SVPs	of	

HSD17B4	has	been	identified	in	baboon	PRO,	indicating	that	there	might	be	an	isoform-dependent	cir-

cadian	inactivation	of	androgen	in	the	prostrate.	Moreover,	a	second	member	of	the	HSD17B	family,	

HSD17B10,	displayed	phase-shifted	24-h	rhythmic	SVPs	in	five	different	baboon	tissues.	Higher	levels	

of	HSD17B10	mRNA	have	been	detected	in	CRPC	bone	metastases	compared	to	non-malignant	prostate	

and	primary	prostate	tumor	tissue	(Jernberg	et	al.,	2013).	The	protein	encoded	by	SEPHS1	plays	a	role	

in	maintaining	cellular	redox	homeostasis.	Disruption	of	murine	Sephs1	has	been	reported	to	lead	to	

an	inhibition	of	cell	proliferation	(Na	et	al.,	2018).	For	human	SEPHS1,	five	splice	variants	with	different	

subcellular	locations	and	expression	patterns	have	been	described	that	vary	depending	on	cell	cycle	

stage	(Kim	et	al.,	2010).	Two	isoforms	of	human	ZNF207	play	distinct	roles	during	cell	differentiation	

of	embryonic	stem	cells:	While	ZNF207	isoform	C	is	present	in	embryonic	stem	cells	where	it	controls	

the	transcription	of	genes	responsible	for	self-renewal	and	pluripotency,	ZNF207	isoform	B	can	be	

found	in	differentiated	cells	and	cancer	cells	where	it	regulates	mitotic	chromosome	alignment	(Fang	

et	al.,	2018).		

The	list	of	genes	with	candidate	differentially	rhythmic	SVPs	was	further	searched	for	genes	with	ex-

perimentally	validated	functionally	distinct	splice	isoforms	in	healthy	mammalian	tissues	(Bhuiyan	et	

al.,	2018).	Of	the	23	human	genes	meeting	the	criteria	of	Bhuiyan	and	colleagues,	ten	orthologous	olive	

baboon	genes	with	differentially	24-h	rhythmic	SVPs	in	at	least	one	tissue	were	found	(CFLAR,	EIF4G1	

and	EIF4G2,	KLF6,	MADD,	MST1R,	PML,	PRMT5,	STIM2,	and	SUN1).	Out	of	these,	phase-shifted	SVPs	

were	found	for	the	eukaryotic	initiation	factor	gene	EIF4G2	(three	tissues),	the	splicing	regulator	gene	

PRMT5	(two	tissues),	SUN1	(one	tissue)	and	for	the	tumor	suppressor	genes	KLF6	(one	tissue)	and	PML	

(two	tissues).	Human	SUN1	isoforms	differ	in	their	tissue	distribution	and	have	opposing	roles	in	the	

regulation	of	cell	migration	as	shown	by	 isoform-specific	knockdown	experiments	 (Nishioka	et	al.,	

2016).	AS	of	KLF6	can	result	in	the	dominant	negative	splice	isoform	KLF6-SV1,	which	has	been	iden-

tified	as	a	key	driver	of	breast	cancer	and	prostate	cancer	metastasis	in	humans	by	promoting	cell	sur-

vival,	migration,	and	invasion	(Hatami	et	al.,	2013;	Narla	et	al.,	2008).	

To	find	out	whether	genes	with	24-h	rhythmic	phase-shifted	SVPs	are	shared	across	species,	the	ba-

boon	candidates	were	compared	to	the	human	candidate	genes	identified	based	on	the	RNA-seq	da-

taset	of	the	CRC	cell	lines	SW480	and	SW620	(see	subsection	3.2.3),	revealing	74	shared	candidate	
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genes.	For	19.8%	of	the	human	candidates,	an	orthologous	candidate	gene	could	be	identified	in	at	least	

one	baboon	tissue,	suggesting	that	genes	affected	by	circadian	AS	are	at	least	partly	conserved	between	

diurnal	 primate	 species.	 The	 74	 candidates	 included	 eleven	 splicing-related	 genes	 (CIRBP,	DDX5,	

DDX17,	HNRNPH1,	MIR3064,	NONO,	NXF1,	PCBP2,	RBM3,	RBM39,	SRRT,	and	TAF15),	among	them	tu-

mor	suppressors	and	oncogenes.	The	cold-inducible	protein	CIRBP	is	known	as	a	mediator	of	cancer-

related	inflammation	and	has	been	reported	to	act	both	as	a	tumor	suppressor	and	a	tumor	promoter,	

depending	on	the	cell	type	and	cancer	stage	(Lujan	et	al.,	2018).	The	SF	RBM39,	also	known	as	CAPER-

a,	 has	been	 found	 to	 alter	 the	 ratio	of	VEGF	 isoforms	 in	breast	 cancer	and	Ewing’s	 sarcoma	cells,	

thereby	influencing	tumor	growth	and	vessel	density	(Dowhan	et	al.,	2005;	Huang	et	al.,	2012).	NONO	

constitutes	an	important	coupling	element	between	the	mammalian	circadian	clock	and	the	cell	cycle	

(see	subsection	1.1.3)	and	PCBP2	is	overexpressed	in	several	cancers	and	has	recently	been	described	

as	an	oncogenic	SF	(Guo	and	Jia,	2019).	Further	common	candidates	 include	the	genes	HDAC6	and	

PRMT2,	that	are	both	involved	in	the	regulation	of	the	androgen	receptor	signaling	pathway.	Together	

with	the	two	members	of	the	HSD17B	family	identified	among	the	top	candidates	with	phase-shifted	

SVPs	in	baboon	tissues,	this	finding	further	points	to	a	possible	role	of	mammalian	circadian	AS	in	an-

drogen	signaling.	Four	shared	candidate	genes	(ARFGAP1,	DCTN3,	GOSR2,	and	SPTAN1)	are	associated	

with	ER	to	Golgi	vesicle-mediated	transport,	a	process	that	was	found	to	be	enriched	for	genes	with	

phase-shifted	SVPs	in	baboon	tissues	(Figure	3-23A).	When	additionally	taking	the	candidate	genes	

with	rhythmic	AS	from	the	microarray	analysis	of	SW480	and	SW620	cells	into	account,	further	robust	

candidate	genes	emerged:	Five	genes	were	shared	between	baboon	tissues	and	SW480	cells	(CAMK2G,	

ILK,	MIR6727,	MSH6,	NBR1,	 PPP2R5C,	 and	UBR4)	 and	 four	 genes	 were	 shared	 with	 SW620	 cells	

(CAMK2G,	MFF,	NBR1,	and	ST5).	Both	CAMK2G	and	PPP2R5C	were	previously	identified	as	candidate	

genes	 for	SW480	cells	based	on	both	 the	microarray	and	 the	RNA-seq	data	 (see	subsection	3.2.3).	

Moreover,	CAMK2G	and	NBR1	were	the	only	candidate	genes	with	circadian	AS	events	that	were	found	

to	be	shared	across	cell	lines	in	the	microarray	data	(Figure	S	8).	The	fact	that	these	genes	were	likely	

also	alternatively	spliced	in	a	rhythmic	manner	in	baboon	tissues	further	reinforces	the	previous	find-

ings	for	the	CRC	cell	lines.	The	baboon	candidate	genes	were	also	compared	to	the	murine	candidate	

genes	with	putative	rhythmic	AS	events	(identified	based	on	microarray	data)	and	more	than	two	ex-

pressed	splice	variants	(identified	based	on	RNA-seq	data)	(see	subsection	3.1.1).	Prior	to	the	compar-

ison,	genes	of	both	species	were	mapped	to	orthologous	human	genes.	For	candidates	with	12-h	rhyth-

mic	AS	events,	50	genes	were	found	to	be	shared	between	mouse	and	baboon,	compared	to	99	candi-

date	genes	with	24-h	rhythmic	events.	The	intersection	of	24-h	rhythmic	candidate	genes	from	all	three	

different	species	independent	of	the	platform	revealed	a	total	of	five	common	candidates	between	mu-

rine	and	baboon	tissues	and	human	cell	lines,	including	two	SFs	(NONO	and	RBM39)	and	three	other	

genes	(DCTN3,	POLR2H	and	SMARCE1).	

Overall,	phase-shifted	differentially	24-h	and	to	a	lesser	extent	12-h	rhythmic	SVPs	were	identified	in	

a	variety	of	baboon	tissues,	suggesting	a	time-of-day	dependent	regulation	of	mRNA	splicing	in	diurnal	

primates.	Several	24-h	rhythmic	SVPs	were	detected	in	more	than	one	baboon	tissue,	making	them	

robust	candidates	for	circadian	AS	events.	Functional	annotation	of	the	candidates	revealed	splicing-
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related	processes	to	be	enriched,	indicating	a	reciprocal	interplay	between	circadian	AS	and	genes	in-

volved	in	splicing.	In	line	with	this	observation,	the	intersection	of	candidate	genes	derived	from	the	

human	CRC	cell	 lines	and	the	murine	tissues	 included	several	splicing-related	genes	that	are	 likely	

spliced	in	a	circadian	manner	in	different	mammalian	species.	However,	it	still	remains	to	be	elucidated	

whether	 the	 detected	 rhythmic	 splice	 variants	 have	 a	 functional	 effect	 and	 whether	 the	 specific	

isoforms	and	their	putative	distinct	functions	are	conserved	across	species.	

3.3.4 Conserved Rhythmicity of Splicing-related Genes across Mammalian Tissues 

Following	the	assumption	that	AS	is	to	some	extent	a	rhythmic	process,	one	would	expect	a	subset	of	

splicing-related	genes	to	be	consistently	rhythmic	across	tissues	and	possibly	also	across	species.	Os-

cillating	spliceosome	components	and	SFs	have	previously	been	identified	both	on	gene-	and	tran-

script-level	for	the	human	CRC	cell	line	pair	SW480	and	SW620	(see	subsections	3.1.3	and	3.2.3).	A	

search	was	conducted	for	splicing-related	genes	identified	as	either	12-h	or	24-h	rhythmic	in	at	least	a	

quarter	of	the	tissues	from	mouse	and	baboon	(three	out	of	twelve	tissues	in	mouse	and	16	out	of	64	

tissues	in	baboon)	(Figure	3-25A	and	B).	The	426	human	genes	from	the	extended	list	of	splicing-

related	genes	were	mapped	to	451	orthologous	murine	genes	and	to	429	orthologous	baboon	genes	of	

which	409	and	408	were	expressed	in	at	least	one	tissue,	respectively.	Of	the	expressed	splicing-related	

genes,	~38%	were	detected	to	be	either	12-h	or	24-h	rhythmic	in	at	least	one	of	the	murine	tissues	and	

~95%	were	detected	to	be	either	12-h	or	24-h	rhythmic	in	at	least	one	of	the	baboon	tissues.	As	ex-

pected,	most	of	the	genes	showed	24-h	oscillations	in	transcription	whereas	12-h	oscillations	consti-

tuted	an	exception.	In	mouse,	some	splicing-related	genes	were	detected	to	be	rhythmic	for	both	a	24-

h	and	a	12-h	period	which	might	be	attributed	to	the	difficulty	of	separating	true	ultradian	rhythms	

from	coexpressed	circadian	rhythms	and	their	harmonics	(van	der	Veen	and	Gerkema,	2016).		

The	 topmost	 five	 consistently	 rhythmic	 splicing-related	 genes	 in	mouse	 tissues	were	 the	 hnRNP-

encoding	genes	Cirbp	and	Fus,	and	the	heat	shock	protein	encoding	genes	Hspa1b,	Hspa5,	and	Hspb1	

(Figure	3-25B).	While	the	heat	shock	protein	encoding	genes	might	be	taken	as	an	indication	of	a	

regulation	via	diurnal	changes	in	body	temperature,	HSPA1B	and	HSPA5	have	also	been	found	to	be	

24-h	 rhythmic	 in	 the	 CRC	 cell	 lines	 that	were	 sampled	while	 being	 kept	 in	 constant	 temperature	

conditions	(Figure	S	14C).	Fus	is	a	neurodegeneration-associated	protein	that	binds	to	distinct	RNA	

sites	of	its	target	genes	to	regulate	the	inclusion	of	alternative	exons	and	has	recently	been	found	to	be	

transcriptionally	regulated	by	core-clock	component	Nr1d1	and	to	modulate	the	expression	of	core-

clock	genes	Per2	and	Cry1	(Jiang	et	al.,	2018;	Rogelj	et	al.,	2012).	FUS	was	also	detected	as	24-h	rhythmic	

in	 both	 SW480	 and	 SW620	 cells	 (Figure	 3-6C	 and	 D).	 In	 baboon,	 the	 topmost	 five	 consistently	

rhythmic	splicing-related	genes	were	the	hnRNP	encoding	gene	HNRNPDL,	ENSPANG00000032278	(a	

novel	orthologous	gene	to	murine	genes	Hspa1a	and	Hspa1b),	the	integrator	complex	subunit-coding	

gene	INTS1,	the	RBP	encoding	gene	RNF40,	and	the	SF	gene	XAB2	(Figure	3-25A).	HNRNPDL	and	XAB2	

have	also	been	identified	as	24-h	rhythmic	in	SW480	cells	(Figure	3-6C).	In	addition,	several	splicing-

related	genes	were	found	to	be	consistently	rhythmic	in	both	mouse	and	baboon	tissues,	 including	
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Hspa1a/Hspa1b/ENSPANG00000032278,	Hspb1/HSPB1,	Rbm45/RBM45,	and	Srsf5/SRSF5.	Hspb1	and	

Srsf5	 have	 previously	 been	 reported	 to	 be	 regulated	 via	 temperature	 variations:	 While	 Hspb1	

expression	has	been	associated	with	the	efficiency	of	splicing	recovery	after	heat	shock	(Arrigo	and	

Gibert,	2013),	transcript	and	protein	levels	of	the	splicing	factor	Srsf5	have	been	shown	to	be	cold-

inducible	in	mammalian	cells	cultured	at	32	°C	(Fujita	et	al.,	2017).	Interestingly,	human	SRSF5	also	

displayed	24-h	rhythms	in	transcription	in	SW480	cells	kept	under	constant	conditions,	indicating	that	

oscillations	of	the	gene	are	not	solely	due	to	changes	in	the	internal	body	temperature	of	animals.	With	

the	exception	of	HSPA5	 in	baboon	and	Hnrnpdl	 in	mouse,	the	phases	of	all	genes	were	significantly	

unimodally	distributed	across	tissues	in	both	species	(p	<	0.05	determined	by	Rayleigh	test)	(Table	2).	

	

Figure	3-25:	Conserved	24-h	rhythmicity	of	splicing-related	genes	in	mouse	and	baboon.	Categorical	heatmaps	for	splic-

ing-related	genes	detected	as	rhythmic	(24-h	rhythmic:	dark	blue;	12-h	rhythmic:	light	blue)	in	at	least	(A)	16	baboon	

tissues	and	(B)	three	murine	tissues.	The	respective	upper	panels	show	the	percentage	of	all	rhythmic	splicing-related	

genes	in	the	set	of	all	rhythmic	genes	per	tissue	and	the	respective	right	panels	show	the	number	of	tissues	where	the	

splicing-related	genes	were	detected	as	rhythmic.	The	topmost	 five	consistently	rhythmic	genes	of	each	species	are	

marked	by	a	colored	dot.	(C)	Peak	phases	of	consistently	24-h	rhythmic	splicing-related	genes	and	the	core	clock	genes	

Bmal1/BMAL1	and	Per1/PER1	in	mouse	tissues	(left	panel)	and	baboon	tissues	(right	panel).	
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The	comparison	of	circular	mean	phases	of	orthologous	splicing-related	genes	between	mouse	and	

baboon	revealed	most	of	them	to	be	phase-shifted	by	about	12	h	(Table	2),	as	expected	for	nocturnal	

and	diurnal	mammals	(Mure	et	al.,	2018).	A	notable	exception	to	the	observed	~12-h	shift	between	

species	were	the	genes	Rbm45/RBM45	and	Cirbp/CIRBP	whose	mean	circular	phases	were	only	shifted	

by	about	3	h.	In	mouse,	Cirbp	peaked	in	the	middle	of	the	subjective	day,	coinciding	with	a	trough	in	

the	core	body	temperature	of	male	C57Bl/6	mice	(Sanchez-Alavez	et	al.,	2011)	which	supports	the	

hypothesis	of	a	temperature-dependent	control	of	Cirbp	(Gotic	et	al.,	2016;	Gotic	and	Schibler,	2017).	

Yet,	the	morning	peak	of	expression	of	CIRBP	at	~ZT	3	in	baboon	overlapped	with	the	time	at	which	

the	body	temperature	of	the	animals	was	reported	to	reach	its	peak	(~37.8°C)	(Mure	et	al.,	2018),	in-

dicating	that	Cirbp/CIRBP	control	mechanisms	might	differ	between	diurnal	and	nocturnal	mammals.	

An	alternative	explanation	could	be	a	circadian	regulation	of	CIRBP	AS	that	results	in	the	phase-shifted	

expression	of	different	isoforms,	as	previously	detected	in	SW620	cells	(Figure	3-15C)	and	diverse	

baboon	tissues	(see	subsection	3.3.3).	

Table	2:	Topmost	consistently	24-h	rhythmic	splicing-related	genes	in	mouse	and	baboon	tissues.	

In	order	to	gain	a	broader	view	of	the	peak	phase	distribution	of	the	24-h	rhythmic	splicing-related	

genes	in	baboon,	the	candidate	set	was	extended	to	include	all	genes	detected	to	be	rhythmic	with	a	

circadian	period	in	at	least	ten	tissues.	The	resulting	83	genes	displayed	a	bimodal	distribution	of	peak	

phases:	The	first	cluster	contains	about	two	thirds	of	the	set	(54	genes)	and	peaks	during	the	subjective	

day	(ZT6.1	±	0.77)	and	the	second	cluster	contains	about	one	third	of	the	set	(29	genes)	and	peaks	

during	the	subjective	night	(ZT18.6	±	1.1)	of	 the	animals	(Figure	3-26A).	For	all	genes,	 the	phases	

across	tissues	were	significantly	unimodally	distributed	(p	<	0.05	determined	by	Rayleigh	test).	Since	

promoter	regions	of	clock-controlled	genes	are	known	to	be	GC-rich	(Bozek	et	al.,	2009),	the	GC	content	

of	the	promoter	sequences	(TSS	±	1,000	bp)	of	the	two	clusters	of	consistently	24-h	rhythmic	splicing-

related	genes	was	compared	to	that	of	the	18	arrhythmic	splicing-related	genes	not	detected	to	be	24-h	

rhythmic	in	any	baboon	tissue.	The	promoters	of	the	set	of	daytime-peaking	splicing-related	genes	

were	 found	 to	 be	 significantly	 more	 GC-rich	 than	 those	 of	 the	 arrhythmic	 splicing-related	 genes	

Gene	(mouse/baboon)	
Circular	mean	phase	 Rayleigh	test	p-value	 Phase	difference	

of	circular	mean	
phases	(CT-ZT)	mouse	

(CT)	
baboon	
(ZT)	 mouse	 baboon	

Cirbp/CIRBP	 6.41	 2.93	 0	 0.0032	 3.48	

Fus/FUS	 6.70	 20.16	 0	 1.25e-05	 13.46	

Hnrnpdl/HNRNPDL	 7.32	 19.74	 ---	 7.37e-12	 12.42	

Hspa1a/ENSPANG00000032278	 16.70	 6.34	 0.0110	 1.37e-10	 10.36	

Hspa1b/ENSPANG00000032278	 16.20	 6.34	 0.0012	 1.37e-10	 9.86	

Hspa5/HSPA5	 19.43	 7.61	 0.0023	 0.409	 11.82	

Hspb1/HSPB1	 19.26	 6.17	 0	 6.90e-08	 13.09	

Rbm45/RBM45	 21.52	 18.72	 0.0362	 7.11e-07	 2.80	

Srsf5/SRSF5	 17.54	 5.44	 3.97e-04	 3.05e-07	 12.10	
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(p	=	1.058e-06	determined	by	Wilcoxon	 rank	 sum	 test)	 and	 the	nighttime-peaking	 splicing-related	

genes	(p	=	0.002101	determined	by	Wilcoxon	rank	sum	test)	(Figure	3-26B).	An	enrichment	test	for	

clock	transcription	factor	binding	sites	in	the	promoter	regions	of	the	two	clusters	further	revealed	the	

D-box	motif	to	be	significantly	enriched	for	the	set	of	daytime-peaking	splicing-related	genes	(Bonfer-

roni-adjusted	p	=	0.0298).	The	observed	oscillations	might	thus	be	due	to	a	direct	regulation	via	first-

order	clock-controlled	transcription	factors	that	bind	to	D-boxes	in	a	phase-specific	manner,	such	as	

DBP	and	TEF	(Bozek	et	al.,	2009).	DBP	and	TEF	were	among	the	top	consistently	24-h	rhythmic	genes	

in	baboon	(24-h	rhythmic	in	25	and	26	tissues,	respectively),	suggesting	that	they	are	important	factors	

for	the	downstream	propagation	of	circadian	rhythms	in	baboon.	Thus,	they	might	contribute	to	the	

regulation	of	splicing	processes	by	binding	to	splicing-related	genes.	According	to	the	TRANSFAC	da-

tabase,	both	the	daytime-peaking	gene	DHX30	and	the	nighttime-peaking	gene	SYNCRIP	are	targets	of	

DBP	(Matys	et	al.,	2003;	Rouillard	et	al.,	2016).	In	contrast,	no	enrichment	for	clock	transcription	factor	

binding	sites	was	found	for	the	set	of	nighttime-peaking	splicing-related	genes.	This	could	be	due	to	

the	smaller	set	size	or	the	length	of	the	chosen	promoter	sequences.	Alternatively,	the	genes	might	be	

regulated	via	first-order	clock-controlled	genes,	e.g.,	by	circadian	transcription	factors	that	show	24-h	

rhythmic	expression	patterns	but	do	not	constitute	core-clock	components	themselves,	or	through	sec-

ondary	circadian	effects	such	as	diurnal	changes	in	core	body	temperature.	

	

Figure	3-26:	Phase	distribution	of	robustly	oscillating	splicing-related	genes	across	baboon	tissues.	(A)	Circular	box-

plots	of	peak	phases	of	splicing-related	genes	that	were	detected	as	24-h	rhythmic	in	at	least	10	baboon	tissues.	Circular	

boxplots	show	the	circular	median	and	inter‐quartile	range	(IQR).	IQR	is	extended	with	whiskers	to	the	largest	and	

smallest	value,	respectively,	and	can	cross	the	0/24	h	divide,	but	no	further	than	1.5x	IQR	from	hinges.	The	topmost	five	

consistently	rhythmic	genes	of	each	species	are	marked	by	a	colored	dot.	(B)	Promoter	GC	content	in	sets	of	arrhythmic,	

daytime-peaking	and	nighttime-peaking	24-h	rhythmic	splicing-related	genes	calculated	for	TSS	±	1,000	bp.	The	Wil-

coxon	rank	sum	was	used	to	check	for	significant	differences	(n.s.:	not	significant,	**:	p	<	0.01	***:	p	<	0.001).		

In	conclusion,	many	splicing-related	genes	showed	coordinated	24-h	rhythms	in	expression	across	di-

verse	tissues	from	both	mouse	and	baboon,	suggesting	a	circadian	control	of	the	spliceosome	machin-

ery,	possibly	via	core	clock	genes	and	circadian	transcription	factors.	When	comparing	peak	phases	of	

the	most	frequently	oscillating	splicing-related	genes,	a	~12-h	phase-shift	between	diurnal	and	noc-

turnal	animals	could	be	observed	for	most	genes,	indicating	that	the	putative	circadian	regulation	of	

mRNA	splicing	is	conserved	in	mammals.
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4 Discussion 

4.1 A CRC Cell Line Model Reveals Disruption of Clock Genes during Tumor 

Progression 

Cancer	cell	lines	display	a	variety	of	circadian	phenotypes,	ranging	from	strong	oscillators	with	robust	

circadian	rhythms	of	core	clock	genes	to	weak	oscillators	with	a	near-complete	loss	of	rhythmicity	

(Relógio	et	al.,	2014).	To	investigate	a	possible	link	between	the	circadian	clock	and	AS	in	a	cancer	

context,	the	CRC	cell	line	pair	SW480/SW620	was	chosen	as	a	model	system	of	human	tumor	progres-

sion.	Both	cell	lines	were	derived	from	the	same	male	CRC	patient,	with	SW480	established	from	a	

primary	colorectal	carcinoma	(classified	as	Dukes'	type	B)	and	SW620	established	from	a	lymph	node	

metastasis	(classified	as	Dukes'	type	C).	The	cell	lines	display	identical	mutations	in	the	CRC-critical	

genes	p53	and	KRAS,	and	have	been	classified	as	being	microsatellite	stable	and	having	a	negative	CpG	

island	methylator	phenotype	(Berg	et	al.,	2017).	Alterations	in	AS	during	CRC	development	are	com-

mon	(Bisognin	et	al.,	2014)	and	a	differential	isoform	usage	between	SW480	and	SW620	cells	has	pre-

viously	been	reported	(Huerta	et	al.,	2001).	The	circadian	phenotypes	of	both	cell	lines	have	been	de-

termined	by	 time-series	bioluminescence	measurements	of	 the	promoter	activity	of	 the	core	clock	

genes	BMAL1	and	PER2,	revealing	SW480	to	be	a	robustly	oscillating	cell	line	with	a	circadian	period	

of	~23.8–24.6	h,	whereas	SW620	displays	only	weak	oscillations	(Fuhr	et	al.,	2018).	Hence,	the	cell	

lines	were	considered	as	a	suitable	in	vitro	model	for	studying	differences	in	the	circadian	transcrip-

tome	and	in	AS	during	tumor	progression.	

To	get	a	comprehensive	view	of	changes	in	clock	phenotypes	during	CRC	progression,	the	circadian	

transcriptome	of	both	cell	lines	was	profiled	twice	for	at	least	one	day,	using	both	microarrays	and	

RNA-seq.	The	results	of	both	platforms	revealed	stable	oscillations	with	a	period	of	~24	h	in	the	ex-

pression	of	core	clock	genes	in	SW480	cells,	with	antiphasic	rhythms	detected	between	BMAL1	and	

several	of	its	target	genes.	In	contrast,	core	clock	genes	in	SW620	showed	either	diminished	oscillations	

with	lower	amplitudes	or	arrhythmic	expression	patterns	with	little	variation	over	time.	These	find-

ings	are	in	line	with	previous	reports	of	core	clock	gene	phenotypes	observed	in	SW480	and	SW620	

cells,	as	determined	by	measurements	of	promoter	activity	by	bioluminescence	and	gene	expression	

by	time-series	qPCR	(Fuhr	et	al.,	2018;	Relógio	et	al.,	2014).	Accordingly,	it	can	be	concluded	that	the	

circadian	transcription	of	core	clock	genes	is	disrupted	in	SW620	cells	in	comparison	to	SW480	cells.	

While	the	robust	oscillations	in	SW480	cells	can	be	taken	as	an	indication	for	a	functioning	core	clock	
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system	in	the	primary	tumor-derived	cell	line,	this	needs	to	be	further	validated	by	a	comparison	to	

healthy	reference	data.	Recent	studies	have	shown	that	the	co-expression	of	core-clock	genes	is	per-

turbed	in	many	solid	human	cancers	when	compared	to	signatures	of	normal	tissues	of	the	same	organ	

type	(Shilts	et	al.,	2018).	To	date,	there	is	no	healthy	circadian	transcriptome	data	of	human	colon	cells	

available.	However,	due	to	the	high	conservation	of	components	of	the	circadian	systems	in	mammals,	

the	co-expression	of	core	clock	genes	in	the	CRC	cell	lines	can	instead	be	compared	to	that	of	healthy	

cells	from	another	species.	The	correlation	signature	of	core	clock	genes	in	SW480	cells	closely	resem-

bled	a	reference	signature	derived	from	healthy	mouse	organs	(Zhang	et	al.,	2014),	whereas	the	signa-

ture	for	SW620	cells	differed	from	both.	Hence,	it	can	be	inferred	that	SW480	cells	are	in	possession	of	

a	functioning	core	clock	system	that	is	comparable	to	that	of	healthy	cells	in	terms	of	core	clock	gene	

co-expression.	With	further	progression	of	the	cancer,	the	circadian	clock	appears	to	get	dysregulated,	

as	evidenced	by	the	diminished	or	lost	rhythmicity	in	the	expression	of	its	core	components	in	the	

metastatic	cell	line	SW620.	Similar	findings	concerning	the	disruption	of	core	clock	gene	rhythmicity	

have	recently	been	made	for	the	breast	cancer	cell	line	MCF7	in	comparison	to	the	non-tumorigenic	

breast	epithelial	cell	line	MCF10A	(Ye	et	al.,	2018).	These	results	support	the	hypothesis	of	the	circa-

dian	clock	acting	as	a	tumor	suppressor	(Fu	and	Lee,	2003)	and	dysregulated	circadian	rhythmicity	as	

a	potential	hallmark	of	cancer	(El-Athman	and	Relógio,	2018).	

4.2 Circadian Rhythmicity Differs between Primary Tumor- and Metastasis-

derived Cells 

In	recent	years,	the	advent	of	NGS	techniques	such	as	RNA-seq	has	gradually	replaced	microarrays	as	

the	method	of	choice	for	gene	expression	profiling,	including	the	transcriptional	profiling	of	circadian	

rhythms	(Li	et	al.,	2015).	RNA-seq	offers	several	advantages	in	comparison	to	microarrays,	including	a	

higher	dynamic	range	of	expression	and	the	ability	to	measure	alternative	splice	variants	and	other	

forms	of	RNA	processing	(Ozsolak	and	Milos,	2011).	Nonetheless,	the	wealth	of	published	microarray	

data	in	the	circadian	domain	is	still	valuable	for	various	meta-analysis	studies,	e.g.,	for	benchmarking	

new	algorithms	for	rhythm	detection	(Hutchison	et	al.,	2018)	or	as	training	data	for	machine	learning	

approaches	(Hughey	et	al.,	2016).	Accordingly,	comparative	studies	for	different	methods	of	gene	ex-

pression	profiling	are	common,	however,	they	usually	compare	gene	expression	values,	differentially	

expressed	 genes,	 and	 enriched	 pathways	 across	 platforms	 for	matched	 single-time	 point	 datasets	

(Nookaew	et	al.,	2012;	Wolff	et	al.,	2018;	Zhao	et	al.,	2014b)	and	do	not	consider	circadian	datasets.	

In	mammalian	cells,	oscillations	of	the	core	clock	system	are	propagated	to	the	expression	of	hundreds	

to	thousands	of	clock-controlled	target	genes	in	a	tissue-specific	manner.	A	transcriptome-wide	analy-

sis	of	circadian	rhythmicity	in	the	CRC	cell	lines	revealed	that	rhythmic	gene	sets	and	associated	rhyth-

mic	parameters	were	highly	dependent	on	the	underlying	platform	used	for	profiling	gene	expression.	

Independent	of	using	a	parametric	or	a	non-parametric	algorithm	for	the	detection	of	rhythmicity,	con-

siderably	smaller	sets	of	24-h	rhythmic	genes	were	identified	based	on	the	RNA-seq	data	in	compari-

son	to	the	microarray	data.	Based	on	the	microarray	data,	a	higher	number	of	24-h	rhythmic	genes	was	
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detected	for	SW480	cells	than	for	SW620	cells,	as	expected	from	the	diminished	oscillations	in	core	

clock	gene	expression	in	the	metastatic	cell	line.	Surprisingly,	the	opposite	case	was	observed	for	the	

RNA-seq	data,	where	more	rhythmic	genes	were	detected	in	SW620	cells,	despite	the	perturbed	oscil-

lations	of	core	clock	genes	in	this	cell	line.	Moreover,	the	intersections	between	24-h	rhythmic	gene	

sets	identified	for	the	same	cell	line	based	on	the	different	platforms	were	very	small.	When	comparing	

circadian	 parameters	 of	 24-h	 rhythmic	 gene	 sets,	 further	 discrepancies	 between	 the	 platforms	

emerged.	Even	for	genes	that	were	commonly	identified	as	rhythmic	based	on	expression	values	of	

both	platforms,	the	correlation	between	estimated	amplitudes	and	phases	was	low,	in	particular	for	

rhythmic	genes	detected	in	SW620	cells.	The	reasons	for	these	discrepancies	are	currently	unknown.	

A	possible	explanation	could	be	the	fact	that	the	microarray	and	the	RNA-seq	datasets	were	not	sam-

pled	during	the	same	time	frame.	The	microarray	data	was	sampled	immediately	after	synchronization	

of	the	cells	for	one	circadian	cycle,	whereas	sampling	for	the	RNA-seq	data	started	12	h	later	for	1.25	

circadian	cycles.	For	many	genes	that	were	identified	as	rhythmic	based	on	the	microarray	data,	the	

expression	at	the	overlapping	time	points	of	both	datasets	was	similar,	yet	no	second	peak	or	trough	

was	observed	for	later	time	points	in	the	RNA-seq	data.	It	is	conceivable	that	the	microarray	sets	con-

tain	true	circadian	genes	whose	amplitudes	decrease	dependent	on	how	much	time	has	passed	since	

synchronization	of	the	cells.	Accordingly,	a	second	peak	or	trough	would	not	be	as	obvious	as	the	first	

and	could	erroneously	be	perceived	as	constant	expression.	Bioluminescence	measurements	of	BMAL1	

promoter	activity	in	SW480	cells	have	shown	that	amplitudes	of	oscillations	decrease	over	time	due	to	

a	loss	of	synchronicity	between	cultured	cells,	but	that	rhythmicity	is	nonetheless	robust	for	at	least	

five	days	(Fuhr	et	al.,	2018).	In	line	with	this	observation,	the	oscillations	of	core	clock	genes	as	deter-

mined	by	RNA-seq	data	are	robust	for	the	whole	time-series.	Alternatively,	the	24-h	rhythmic	micro-

array	gene	sets	could	also	contain	false	positive	circadian	genes	that	show	transient	effects	upon	me-

dium	change,	i.a.,	burst	and	decay	in	the	expression	of	immediate	early	genes.	Such	transient	effects	

can	resemble	circadian	oscillations	during	the	first	24	h	but	do	not	persist	in	a	rhythmic	manner	when	

the	synchronizing	stimulus	is	absent	(Hughes	et	al.,	2017).	It	is	also	possible	that	both	time-series	taken	

individually	are	too	short	for	the	reliable	identification	of	24-h	rhythmic	genes.	Simulations	with	syn-

thetic	time-series	have	shown	that	sampling	periods	shorter	that	two	full	circadian	cycles	make	the	

analysis	sensitive	to	outliers	in	the	data	and	can	lead	to	an	increase	of	false	negatives	(Hughes	et	al.,	

2017).	In	order	to	gain	more	robust	results	that	take	the	information	from	both	microarray	and	RNA-

seq	measurements	into	account,	the	circadian	datasets	were	normalized	and	concatenated	across	plat-

forms,	yielding	a	longer	time-series	with	two	replicate	measurements	for	overlapping	time	points.	For	

both	cell	lines,	rhythmicity	analysis	of	the	concatenated	dataset	resulted	in	a	greater	number	of	24-h	

rhythmic	genes	than	for	either	of	the	platforms	separately.	Rhythmic	parameters	estimated	based	on	

the	concatenated	time-series	were	well	correlated	with	parameters	identified	based	either	on	the	mi-

croarray	or	the	RNA-seq	data.	It	follows,	that	the	normalization	and	concatenation	of	time-series	gene	

expression	data	from	two	different	platforms	might	prove	a	viable	method	for	gaining	robustly	circa-

dian	genes.	
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In	addition	to	the	cross-platform	analysis,	rhythmic	genes	were	also	compared	in	detail	between	the	

two	cell	lines	(based	on	the	microarray	data)	to	uncover	changes	in	the	circadian	transcriptome	upon	

tumor	progression.	SW480	and	SW620	cells	displayed	distinct	sets	of	24-h	rhythmic	genes	that	were	

comparable	in	size	but	had	only	a	small	intersection.	Moreover,	the	bimodal	phase	distribution	of	24-h	

rhythmic	genes	differed	between	the	cell	lines,	with	slightly	earlier	peak	times	observed	in	SW620	cells	

compared	to	SW480	cells.	Apparently,	the	observed	disruption	of	the	core	clock	system	in	SW620	cells	

led	to	a	change	in	the	identity	and	timing	of	clock-controlled	target	genes.	However,	it	has	to	be	taken	

into	account	that	the	comparison	of	sets	of	rhythmic	features	via	set	operations	can	be	misleading	due	

to	an	overstatement	of	the	differences	between	the	sets	(Hughes	et	al.,	2017).	In	line	with	this	obser-

vation,	it	was	shown	that	despite	only	having	been	identified	as	rhythmic	in	one	of	the	CRC	cell	lines,	

many	genes	displayed	similar	variations	in	gene	expression	over	time	in	the	respective	other	cell	line.	

To	detect	significant	changes	in	the	circadian	transcriptome,	a	statistical	analysis	of	differential	rhyth-

micity	was	conducted	between	the	two	cell	lines	that	directly	compared	the	expression	of	24-h	rhyth-

mic	genes	detected	in	either	SW480	or	SW620	cells,	or	both.	For	both	cell	lines,	genes	with	a	loss	or	

gain	of	oscillations	were	 identified,	as	well	as	commonly	rhythmic	genes	whose	peak	phases	were	

shifted	between	SW480	and	SW620	cells.	Interestingly,	genes	with	significantly	differentially	rhythmic	

expression	patterns	between	the	two	cancer	stages	were	enriched	for	biological	processes	that	are	

important	for	enhancing	the	metastatic	potential	of	tumor	cells,	such	as	the	regulation	of	smooth	mus-

cle	cell	proliferation	and	cell	adhesion	properties	(Li	et	al.,	2017;	Okegawa	et	al.,	2004).	A	phase-set	

enrichment	analysis	for	24-h	rhythmic	genes	sets	revealed	additional	cancer-associated	pathways	to	

be	temporally	coordinated,	some	of	which	displayed	phase-shifts	between	SW480	and	SW620	cells.	In	

view	of	these	findings,	it	can	be	assumed	that	tumor	cells	in	different	progression	stages	benefit	from	

a	dysregulated	circadian	system	via	the	phase-shifted	activation	of	cancer-relevant	rhythmic	pathways	

that	might	help	them	to,	e.g.,	evade	circadian	immune	surveillance	(Sulli	et	al.,	2019).	However,	due	to	

the	relatively	low	resolution	of	the	sampling	time,	no	definite	conclusion	concerning	the	effect	of	small	

phase-shifts	in	the	timing	of	rhythmic	biological	pathways	in	tumor	and	metastatic	cells	can	be	drawn	

at	this	point.	

4.3 Rhythmic AS Events in CRC are likely Regulated by Circadian Splicing 

Genes 

Aberrant	splicing	events	are	a	common	characteristic	of	carcinogenesis	and	tumor	progression.	Vari-

ous	alternatively	spliced	isoforms	detected	in	tumor	cells	constitute	drivers	of	cancer	hallmarks,	such	

as	resisting	apoptosis,	inducing	invasion	and	metastasis,	and	regulating	angiogenesis	(El	Marabti	and	

Younis,	2018).	Many	of	these	cancer-specific	alterations	in	splicing	can	be	traced	back	to	malfunctions	

in	the	splicing	machinery	and	splicing	regulatory	networks	(David	and	Manley,	2010;	Grosso	et	al.,	

2008b).	 Interestingly,	 the	spliceosome	was	among	the	temporally	coordinated	biological	pathways	

found	to	be	enriched	for	genes	with	a	subtle	but	significant	phase-shift	between	the	CRC	cell	lines.	In	
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view	of	the	differences	of	the	circadian	transcriptome	observed	between	SW480	and	SW620	cells,	the	

changes	in	rhythmicity	of	the	spliceosome	pathway	might	be	the	result	of	a	malfunctioning	clock.	

Based	on	time-series	microarray	and	RNA-seq	data	as	well	as	a	concatenation	of	both	datasets,	robust	

24-h	rhythms	were	detected	in	the	expression	of	genes	encoding	for	diverse	spliceosomal	components	

and	SFs,	including	hnRNPs,	SR	proteins,	and	RBM	proteins.	Circadian	rhythms	in	the	expression	of	15	

SF	genes	have	previously	been	identified	in	murine	liver	(McGlincy	et	al.,	2012).	Some	of	the	candidate	

circadian	SFs	from	McGlincy	et	al.	(2012)	were	also	found	to	be	rhythmic	in	the	CRC	cell	lines,	including	

DDX46,	DHX9,	HNRNPDL,	KHDRBS1,	SF3B1,	SRSF3,	and	SRSF5,	suggesting	that	a	circadian	regulation	of	

splicing	might	be	conserved	between	different	mammalian	species.	While	some	of	the	splicing-related	

genes	were	only	rhythmically	expressed	in	one	of	the	CRC	cell	lines,	others	were	oscillating	in	both,	but	

displayed	changes	in	amplitude	and	phase.	For	instance,	the	SF	encoding	genes	ESRP1,	FUS,	and	SF3A3	

tended	to	peak	2-3	h	earlier	in	SW620	cells	compared	to	SW480	cells.	However,	due	to	the	relatively	

low	resolution	of	the	time-series,	these	subtle	differences	in	phase	were	hard	to	quantify	statistically.	

An	experimental	validation	of	their	rhythmic	transcription	in	SW480	and	SW620	cells	via	high-resolu-

tion	time-series	qPCR	could	shed	further	light	on	putative	differences	in	the	circadian	expression	of	

splicing-related	genes	in	CRC	progression.	

Changes	in	the	expression	levels	of	SFs	have	been	observed	in	various	human	cancers	and	can	influence	

the	outcome	of	AS,	even	in	the	absence	of	mutations	(Anczuków	and	Krainer,	2016).	Thus,	it	seems	

likely	that	changes	in	the	rhythmic	expression	of	splicing-related	genes	in	cancer	might	likewise	be	

responsible	for	altering	the	AS	outcome	of	their	target	genes.	The	majority	of	alterations	of	splicing	

events	during	CRC	development	and	progression	occur	during	the	transition	from	normal	to	tumor	

cells,	while	other	changes	take	place	during	the	progression	from	primary	tumor	to	metastatic	cells	

(Bisognin	et	al.,	2014).	In	the	absence	of	healthy	human	reference	data,	the	CRC	cell	line	model	aimed	

at	the	detection	of	the	latter	set	of	AS	events.	A	differential	splicing	analysis	of	the	transcriptome	arrays	

revealed	over	 two	hundred	genes	with	candidate	differentially	 spliced	exons	between	SW480	and	

SW620	cells.	Many	of	the	predicted	AS	events	were	involved	in	processes	relevant	to	tumor	progres-

sion,	migration,	and	invasion.	Prominent	candidates	included	the	neural	cell	adhesion	molecule-encod-

ing	gene	NCAM1	and	the	EMT-associated	genes	CD44	and	FGFR2.	Differential	NCAM1	isoform	usage	

has	previously	been	reported	for	SW480	and	SW620	cells,	and	is	linked	to	clinically	aggressive	CRC	

(Huerta	et	al.,	2001).	Defective	AS	events	in	malignant	CRC	are	hypothesized	to	lead	to	impaired	intra-

cellular	 adhesion	between	 colonocytes	 that	 enable	 the	 tumor	 to	 evolve	 to	more	 aggressive	 stages	

(Huerta	et	al.,	2001).	AS	of	both	CD44	and	FGFR2	is	regulated	by	the	epithelial	SFs	ESRP1	and	ESRP2	

and	has	been	associated	with	cell	proliferation	and	invasion	via	EMT	(Warzecha	et	al.,	2009).	As	previ-

ously	stated,	rhythmic	ESRP1	expression	displayed	a	shift	in	phase	between	SW480	and	SW620	cells.	

A	similar	shift	of	peak	expression	between	cell	lines	was	observed	for	ESPR2,	which	was	additionally	

expressed	in	antiphase	to	ESRP1.	It	is	conceivable	that	the	temporal	shift	in	the	peak	expression	of	

ESRP1	and	ESRP2	during	tumor	progression	leads	to	changes	in	AS	of	their	target	genes	and	subse-

quently	to	the	production	of	isoforms	that	promote	malignant	transformation	by	enabling	EMT. How-
ever,	the	overall	expression	of	both	ESRP1	and	ESRP2	was	higher	in	SW620	compared	to	SW480	cells	
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which	makes	it	difficult	to	discriminate	between	effects	that	are	caused	by	circadian	phase	shifts	and	

those	caused	by	increased	expression	levels. 

In	addition	to	the	above	described	differential	splicing	events	between	different	tumor	stages,	the	time-

series	data	of	the	CRC	cell	lines	was	also	probed	for	24-h	rhythmic	changes	in	AS.	For	the	transcriptome	

array	data,	candidate	exons	with	oscillating	FIRMA	scores	were	identified	for	each	cell	line	separately.	

A	similar	analysis	based	on	time-series	exon	arrays	has	previously	been	conducted	to	detect	putative	

circadian	AS	in	murine	liver	(McGlincy	et	al.,	2012).	In	contrast	to	microarrays,	RNA-seq	allows	for	the	

quantification	of	expression	at	the	resolution	of	individual	splice	variants	(Wang	et	al.,	2009).	Follow-

ing	the	assumption	that	circadian	AS	results	in	at	least	two	different	isoforms	that	are	expressed	at	

different	times	of	the	day,	the	analysis	aimed	at	the	detection	of	differentially	rhythmic	pairs	of	splice	

variants	of	the	same	gene	that	do	not	oscillate	with	the	same	phase.	Both	methods	yielded	a	higher	

number	of	putative	rhythmic	AS	events	for	SW480	cells	with	only	a	small	number	of	candidate	genes	

shared	between	the	CRC	cell	lines.	This	might	be	taken	as	an	indication	that	the	circadian	regulation	of	

AS	is	altered	in	human	tumor	progression.	Most	exons	that	exhibited	circadian	rhythms	in	splicing	in	

SW480	cells	based	on	the	microarray	data,	such	as	ABCC1,	PER2,	and	VEGFA,	lost	them	in	the	metasta-

sis-derived	cell	line.	Alternatively	spliced	isoforms	of	ABCC1	play	an	important	role	in	conferring	drug	

resistance	(He	et	al.,	2004),	while	VEGFA	isoforms	can	act	as	either	pro-	or	anti-angiogenic	factors,	thus	

regulating	the	growth	and	metastatic	ability	of	 tumor	cells	(Kaida	et	al.,	2012).	A	disruption	 in	the	

rhythmic	regulation	of	AS	of	these	genes	might	enable	tumor	cells	to	constitutively	express	isoforms	

that	 favor	 the	 progression	 of	 cancer	 cells	 to	 a	more	malignant	 state.	 In	 contrast,	 the	 alternatively	

spliced	candidate	exon	of	the	SF	gene	SF3B1,	started	to	exhibit	rhythmic	splicing	behavior	in	SW620	

cells,	suggesting	a	change	in	the	regulation	of	SF	expression	levels	during	tumor	progression	via	AS.	In	

line	with	this	finding,	the	differential	rhythmicity	analysis	of	the	RNA-seq	data	revealed	many	phase-

shifted	pairs	of	splice	variants	for	splicing-related	genes	in	both	cell	lines.	This	opens	up	interesting	

possibilities	for	the	mechanistic	control	of	circadian	regulated	splicing	in	mammalian	cells.	Under	the	

assumption	that	the	circadian	expression	of	splicing-related	genes	is	translated	to	the	protein	level,	

circadian	rhythms	in	the	abundance	of	spliceosomal	components	and	splicing	factors	might	be	respon-

sible	for	the	subsequent	rhythmic	AS	of	their	own	pre-mRNA	in	a	self-regulatory	system.	Many	SFs,	

hnRNPs,	and	core	spliceosome	components	are	known	to	autoregulate	their	own	expression	via	AS	

and	NMD	pathways	(McGlincy	and	Smith,	2008;	Pervouchine	et	al.,	2019).	For	instance,	conserved	se-

quences	in	SR	genes	that	contain	premature	stop	codons	cause	the	production	of	mRNAs	that	are	de-

graded	by	NMD	in	a	process	termed	unproductive	splicing	(Lareau	et	al.,	2007).	The	functional	im-

portance	of	alternative	and	unproductive	splicing	of	SFs	in	cancer	has	been	shown	for	the	SR	gene	

SRSF1	which	is	involved	in	the	regulation	of	EMT	in	SW480	cells	via	the	production	of	a	constitutively	

active	splice	variant	of	the	proto-oncogene	RON	(Valacca	et	al.,	2010).	While	SRSF1	was	among	the	ro-

bustly	24-h	rhythmic	genes	in	SW480	cells	(with	a	decreased	amplitude	in	SW620	cells),	it	was	not	

among	the	candidates	with	phase-shifted	splice	variants.	The	observed	fine-tuned	changes	in	the	ex-

pression	levels	of	SFs	and	spliceosome	components	might	in	turn	be	required	for	the	correct	produc-

tion	of	isoforms	at	a	specific	time-of-day.	A	similar	downstream	regulation	of	daytime-dependent	AS	
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has	previously	been	suggested	based	on	rhythmic	splicing	events	of	splicing	regulators	observed	in	

Drosophila	neurons	(Wang	et	al.,	2018).	Changes	in	the	system,	e.g.,	loss	of	oscillations	or	shifts	in	phase	

in	the	expression	of	SFs,	might	lead	to	the	loss	of	isoforms	that	prevent	and	the	gain	of	isoforms	that	

favor	the	malignant	development	of	cells.	In	line	with	this	hypothesis,	several	interesting	cancer-rele-

vant	 phase-shifted	 isoforms	 were	 identified	 in	 the	 CRC	 cell	 lines,	 including	 transcripts	 from	

ANKHD1	and	MYO1C.	Alternatively	spliced	isoforms	of	both	genes	are	associated	with	cancer-related	

biological	processes,	namely	cell	survival	and	migration	(Maly	et	al.,	2017;	Miles	et	al.,	2005),	again	

hinting	at	a	possible	role	of	rhythmic	AS	in	CRC	tumor	progression.	The	daytime-specific	production	of	

cancer-relevant	isoforms	might	enable	cancer	cells	to	avoid	circadian	immune	system	control.	Isoform-

specific	knockdown	or	knockout	experiments	of	selected	candidate	genes	are	likely	to	reveal	more	

about	the	functional	role	of	rhythmic	AS	in	cancer.	

Only	two	genes	with	candidate	circadian	AS	events	were	identified	for	the	same	cell	line	by	both	plat-

forms:	CAMK2G	and	PPP2R5C.	The	surprisingly	small	number	of	common	candidate	genes	might	in	

part	be	ascribed	 to	 inherent	differences	of	 the	 technologies	and	 the	subsequent	analysis	methods.	

While	the	transcriptome	array	used	for	profiling	gene	expression	of	the	CRC	cell	lines	is	splicing-sensi-

tive	and	has	been	designed	for	the	detection	of	different	types	of	AS,	the	FIRMA	algorithm	only	allows	

for	the	detection	of	cassette-type	AS	events	(Purdom	et	al.,	2008).	Thus,	it	is	possible	that	the	analysis	

of	the	RNA-seq	data	has	revealed	more	complex	types	of	circadian	AS	events	that	were	missed	by	the	

microarray	analysis.	Moreover,	thresholds	of	statistical	significance	for	circadian	AS	events	are	not	di-

rectly	comparable	between	methods,	which	might	explain	why	so	few	microarray	candidates	were	

validated	by	the	RNA-seq	analysis.	Nonetheless,	the	small	number	of	shared	candidate	genes	between	

the	two	platforms	underlines	the	need	for	 future	validation	experiments	of	candidate	circadian	AS	

events.	To	date,	not	much	is	known	concerning	possibly	distinct	 isoform	functions	of	CAMK2G	and	

PPP2R5C,	though	alternatively	spliced	forms	of	CAMK2G	have	been	identified	in	patients	with	myo-

tonic	dystrophy	(Perfetti	et	al.,	2014).	Interestingly,	CAMK2G	was	also	one	of	two	genes	for	which	a	

candidate	circadian	AS	event	was	detected	for	both	SW480	and	SW620	cells,	making	it	a	robust	candi-

date	for	circadian	AS	in	human	colon	tissues.	Since	PPP2R5C	is	known	to	act	as	a	tumor	suppressor	via	

dephosphorylation	of	p53	(Nobumori	et	al.,	2013),	it	can	be	surmised	that	an	alternatively	spliced	iso-

form	might	function	as	a	dominant	negative	inhibitor	of	the	normally	spliced	transcript	and	thus	play	

a	role	in	tumor	progression.		

Taken	together,	the	analysis	of	circadian	microarray	and	RNA-seq	data	revealed	robust	24-h	rhythms	

in	the	expression	of	genes	encoding	for	spliceosome	components	and	SF	in	an	in	vitro	model	of	CRC	

progression.	Differences	in	rhythmicity	between	the	two	tumor	stages	were	associated	with	changes	

in	static	and	possibly	circadian	AS	of	target	genes.	The	production	of	different	isoforms	at	specific	times	

of	the	daily	cycle	might	in	turn	be	responsible	for	the	gain	of	oncogenic	properties	during	tumor	pro-

gression.	
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4.4 Rhythmic Splicing Genes and AS Events are Widespread in Mammalian 

Tissues 

The	previously	discussed	studies	have	revealed	24-h	rhythms	 in	 the	expression	of	splicing-related	

genes	as	well	as	in	candidate	AS	events	of	human	CRC	cell	lines,	pointing	at	a	circadian	regulation	of	

splicing	that	is	altered	during	cancer	progression.	Following	the	analysis	of	circadian	AS	events	in	an	

in	vitro	model	of	a	matched	primary	tumor/metastasis	cell	line	pair,	it	was	of	interest	to	investigate	

whether	a	rhythmic	regulation	of	splicing	can	also	be	observed	in	vivo	in	healthy	tissues	from	other	

mammalian	species.	For	this	reason,	a	meta-analysis	of	two	multi-organ	circadian	datasets	from	mouse	

(Zhang	et	al.,	2014)	and	baboon	(Mure	et	al.,	2018)	was	conducted.	The	chosen	datasets	represent	the	

most	comprehensive	circadian	transcriptome	datasets	from	diurnal	and	nocturnal	mammals	currently	

available.	 Since	 both	 time-series	 feature	 a	 relatively	 high	 sampling	 resolution	 (2	h),	 an	 additional	

search	was	conducted	for	putative	ultradian	rhythms	in	gene	expression	and	AS	with	a	period	of	12	h.	

For	both	species,	circadian	and	to	a	lesser	extent	ultradian	rhythms	in	gene	expression	were	detected	

across	tissues	from	all	organ	types.	On	average,	~8%	of	the	identified	oscillating	genes	per	tissue	in	

mice	and	11%	in	baboon	had	a	period	of	12	h,	which	is	a	slightly	higher	percentage	than	reported	for	

murine	liver	(Hughes	et	al.,	2009).	Conversely,	in	some	tissues,	12-h	rhythms	in	transcription	were	

dominating,	e.g.,	in	murine	adrenal	gland,	adipose	and	skeletal	muscle	tissues	and	baboon	bone	mar-

row,	smooth	muscle,	adipose	and	genital	tissues.	These	findings	indicate	that	the	prevalence	of	12-h	

rhythms	in	transcription	is	heterogeneous	across	tissue	types,	and	that	ultradian	rhythms	might	even	

be	more	prevalent	than	circadian	rhythms	in	some	mammalian	organs.	Since	ultradian	rhythms	in	

gene	expression	were	not	the	focus	of	this	thesis,	functional	implications	of	the	associated	gene	sets	

were	not	further	investigated.	

Several	consistently	24-h	rhythmic	splicing-related	genes	were	identified	in	both	murine	and	baboon	

tissues.	As	expected,	rhythms	between	diurnal	and	nocturnal	species	were	shifted	by	approximately	

12	h.	Conserved	24-h	rhythmic	splicing-related	genes	included	FUS	and	SRSF5,	that	both	peaked	during	

the	respective	active	phase	of	 the	animals,	as	well	as	several	heat	shock	protein-coding	genes	that	

peaked	in	the	respective	rest	phase.	While	FUS	has	previously	been	reported	to	be	transcriptionally	

regulated	by	the	core	clock	protein	NR1D1	(Jiang	et	al.,	2018;	Rogelj	et	al.,	2012),	expression	of	SRSF5	

is	cold-inducible	 (Fujita	et	al.,	2017),	 suggesting	a	body	 temperature-dependent	control	of	splicing	

(Preußner	et	al.,	2017).	However,	SRSF5	and	several	heat	shock	protein-coding	genes	also	displayed	

24-h	rhythmic	patterns	in	transcription	in	the	human	CRC	cells	kept	under	constant	temperature	con-

ditions,	indicating	that	its	oscillations	are	not	solely	due	to	temperature	changes.	Based	on	the	baboon	

data,	a	set	of	more	than	80	consistently	24-h	rhythmic	splicing-related	genes	was	identified	that	dis-

played	oscillations	in	expression	with	unimodally	distributed	phases	in	at	least	ten	tissues.	For	all	con-

sistently	rhythmic	splicing-related	genes	taken	together,	a	bimodal	distribution	of	peak	phases	was	

observed,	with	two	thirds	of	the	genes	peaking	during	the	subjective	daytime	and	one	third	of	the	genes	

peaking	during	subjective	nighttime.	These	findings	are	in	line	with	previous	results	of	McGlincy	et	al.	
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(2012)	who	also	reported	two	clear	clusters	of	peak	phases	for	murine	circadian	SFs	during	the	sub-

jective	day	and	night	of	the	animals.	Promoter	regions	of	the	set	of	daytime-peaking	splicing-related	

baboon	genes	were	not	only	significantly	more	GC-rich	than	those	of	arrhythmic	splicing-related	genes,	

but	also	enriched	for	the	D-box	motif,	a	clock	transcription	factor	binding	site.	GC-rich	motifs	have	pre-

viously	been	reported	to	be	overrepresented	in	promoter	regions	of	clock-controlled	genes	(Bozek	et	

al.,	2009),	pointing	to	a	possible	regulation	of	the	daytime-peaking	splicing-related	genes	via	first-or-

der	D-box	binding	clock-controlled	transcription	factors	such	as	DBP	and	TEF.	

The	whole-transcript	arrays	used	by	Zhang	et	al.	(2014)	for	profiling	the	circadian	transcriptome	in	

murine	organs	are	not	splicing-sensitive	and	thus	only	allow	for	the	identification	of	putative	AS	events	

at	gene-	and	not	at	exon-level.	While	the	study	by	Zhang	et	al.	(2014)	also	contains	matched	RNA-seq	

data	for	the	same	organs,	the	low	sampling	resolution	of	6	h	does	not	suffice	to	identify	12-h	or	24-h	

rhythmic	features	with	confidence	and	was	therefore	only	used	to	determine	the	number	of	expressed	

splice	variants	per	candidate	gene.	Several	core	clock	and	clock-controlled	genes	were	among	the	can-

didates	for	which	potential	24-h	rhythmic	AS	events	were	detected	in	more	than	one	murine	tissue,	

including	Bmal2,	Nr1d1,	and	Ciart.	A	circadian	regulation	of	splicing	of	an	Nr1d1	exon	has	previously	

been	reported	and	experimentally	validated	in	murine	liver	(McGlincy	et	al.,	2012).	The	prevalence	of	

clock-related	genes	among	the	candidates	further	supports	the	hypothesis	of	a	reciprocal	interplay	be-

tween	the	circadian	clock	and	AS	in	mammals.	Genes	with	putative	12-h	rhythmic	AS	events	likewise	

included	several	clock-related	genes,	as	well	as	Xbp1,	a	previously	reported	case	for	ultradian	isoform	

production	(Cretenet	et	al.,	2010;	Zhu	et	al.,	2017).	The	detection	of	several	known	targets	of	rhythmi-

cally	regulated	AS	among	the	candidate	genes	suggests	that	microarray	analysis	might	be	of	use	for	the	

identification	of	putative	AS	events	in	the	absence	of	better	data.	However,	it	has	to	be	considered	that	

the	candidates	detected	by	applying	the	FIRMAGene	method	do	not	always	represent	true	AS	events	

but	can	also	be	due	to	technical	reasons,	such	as	cross-hybridizing	probes	or	probes	having	different	

intensity	ranges	(Robinson	and	Speed,	2009).	Accordingly,	candidate	genes	with	rhythmic	AS	events	

identified	based	on	the	murine	microarray	data	should	be	considered	with	reservations	and	must	be	

independently	validated	in	future	studies.	

In	 contrast	 to	 whole-transcript	 arrays,	 RNA-seq	 data	 allows	 for	 the	 quantification	 of	 individual	

isoforms	(Zhang	et	al.,	2017).	Interesting	discoveries	were	made	when	comparing	the	results	of	the	

rhythmicity	analysis	made	on	gene-	and	on	transcript-level	for	the	baboon	tissues.	While	the	correla-

tion	between	the	number	of	rhythmic	genes	and	the	number	of	rhythmic	transcripts	per	tissue	was	

roughly	linear,	the	identity	of	rhythmic	features	differed	depending	on	whether	they	were	identified	

based	on	transcript	counts	or	based	on	summarized	gene	counts.	Some	genes	were	classified	as	rhyth-

mic	without	any	of	their	expressed	splice	variants	being	likewise	identified	as	rhythmic.	Conversely,	

some	genes	were	not	defined	as	rhythmic,	despite	having	oscillating	splice	variants.	Overall,	genes	

identified	as	rhythmic	on	both	transcript-	and	gene-level	had	lower	p-values	according	to	non-para-

metric	rhythmicity	analysis	than	genes	identified	on	gene-level	only.	Moreover,	the	sets	of	rhythmic	

transcripts	displayed	higher	estimated	amplitudes	than	the	sets	of	rhythmic	genes.	Therefore,	a	rhyth-

micity	analysis	that	takes	transcript-level	information	into	account	could	not	only	be	of	use	for	the	
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detection	of	differentially	rhythmic	isoforms	but	also	for	the	detection	of	robustly	oscillating	genes.	

The	transcript-level	rhythmicity	analysis	of	the	baboon	RNA-seq	data	revealed	a	multitude	of	genes	

with	differentially	24-h	 rhythmic	pairs	of	 splice	variants	 that	had	 similar	 amplitudes	but	different	

phases.	The	majority	of	pairs	peaked	at	opposing	times	of	the	daily	cycle	with	a	phase	difference	of	

more	than	8	h,	either	in	the	middle	of	the	subjective	day	or	the	middle	of	the	subjective	night.	The	ob-

served	bimodal	distribution	of	splice	variant	phases	indicates	a	possibly	distinct	functional	role	of	the	

involved	isoforms	that	depends	on	their	expression	level	at	a	specific	time-of-day.	In	contrast,	genes	

with	12-h	rhythmic	phase	shifted	splice	variants	were	far	less	prevalent	and	displayed	no	clear	phase	

distribution	across	baboon	tissues.	Hence,	it	remains	unclear	whether	they	represent	true	rhythmically	

regulated	AS	events	or	whether	they	are	simply	the	result	of	arrhythmic	variations	in	transcription.	In	

line	with	the	results	gained	from	the	analysis	of	 the	CRC	cell	 lines,	splicing-related	processes	were	

found	to	be	significantly	enriched	for	genes	with	24-h	rhythmic	phase-shifted	splice	variants.	A	subset	

of	genes	displayed	identical	pairs	of	phase-shifted	splice	variants	across	several	baboon	tissues.	Phases	

of	the	individual	splice	variants	were	unimodally	distributed	across	tissues	of	different	organ	types,	

pointing	to	a	tightly	controlled	regulation	of	rhythmic	isoform	expression.	Among	the	most	frequently	

identified	pairs	of	splice	variants,	there	were	various	splicing-related	genes,	as	well	as	two	genes	asso-

ciated	with	functions	in	androgen	activation,	suggesting	a	possible	role	of	circadian	AS	in	steroid	me-

tabolism.	Interestingly,	androgen-receptor	signaling	was	also	one	of	the	processes	that	was	found	to	

be	enriched	for	24-h	rhythmic	candidate	AS	events	in	SW480	cells.	Several	of	the	identified	candidate	

genes	with	phase-shifted	splice	variants	in	baboon	tissues	are	known	to	produce	functionally	distinct	

isoforms	in	human	cells,	some	of	which	are	associated	with	cancer-relevant	processes	such	as	cell	sur-

vival,	migration,	and	invasion.	However,	it	still	remains	to	be	elucidated	whether	the	specific	isoforms	

and	their	functions	are	conserved	between	human	and	baboon.		

In	conclusion,	phase-shifted	splice	variants	of	the	same	gene	with	a	period	of	approximately	24	h	are	

widespread	across	healthy	mammalian	tissues,	supporting	the	hypothesis	of	a	circadian	regulation	of	

AS	that	contributes	to	the	temporal	diversification	of	the	proteome.	Several	of	the	candidate	alterna-

tively	spliced	genes	encode	for	functionally	distinct	protein	isoforms	that	might	influence	cellular	pro-

cesses	in	a	time-of-day-dependent	way,	including	the	splicing	process	itself.	

4.5 Limitations of the Study 

The	computational	analyses	conducted	in	the	framework	of	this	thesis	provide	solid	evidence	for	a	

circadian	regulation	of	mammalian	splicing	in	both	health	and	disease.	Nevertheless,	there	are	several	

limitations	to	the	results	and	their	extrapolation	to	other	systems,	which	dictate	caution	in	the	biolog-

ical	interpretation	and	underline	the	need	for	further	experimental	validation.	

In	vitro	cell	line	models	are	essential	for	the	understanding	of	tumor	biology	and	the	development	of	

possible	treatment	strategies.	Large	parts	of	the	computational	analyses	performed	in	this	study	are	

based	on	experimental	measurements	of	gene	expression	in	two	human	CRC	cell	lines	that	were	orig-

inally	derived	from	the	same	patient.	Due	to	their	shared	genetic	background	and	their	different	tumor	
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stages,	the	cell	lines	SW480	and	SW620	are	a	commonly	used	model	system	for	the	investigation	of	

primary	tumor	and	metastatic	behavior	and	CRC	progression	(Chen	et	al.,	2014a;	Ma	et	al.,	2014;	Yeh	

et	al.,	2008).	Yet,	the	cell	line	pair	represents	only	the	characteristics	of	the	tumor	and	metastasis	of	

one	type	of	cancer	of	a	single	male	patient.	This	is	of	particular	importance	in	view	of	the	strong	sex-

dependency	of	optimal	treatment	schedules	observed	for	the	chronomodulated	delivery	of	chemother-

apy	in	CRC	patients	(Giacchetti	et	al.,	2006).	Moreover,	immortalized	cancer	cell	lines	that	have	been	

established	several	decades	ago,	have	often	accumulated	additional	genetic	and	epigenetic	changes	

during	cultivation	passages	(Boot	et	al.,	2016;	Lange	et	al.,	2014).	Accordingly,	the	observations	made	

in	the	model	system	do	not	necessarily	translate	to	general	characteristics	of	CRC	tumor	progression	

in	humans.		

The	interpretation	of	the	differential	rhythmicity	observed	between	SW480	cells	and	SW620	cells	is	

based	on	the	assumption	that	the	cell	populations	respond	equally	well	to	synchronizing	cues.	It	is	

conceivable	that	instead	of	harboring	a	disrupted	core	clock,	SW620	cells	simply	differ	in	their	ability	

to	be	entrained	via	medium	change.	Preliminary	results	of	clock	protein	measurements	conducted	in	

the	group	indicate	that	variations	in	the	circadian	phenotype	also	persist	on	single-cell	level,	suggesting	

that	the	observed	differences	in	the	circadian	transcriptome	are	indeed	due	to	inherent	differences	in	

the	molecular	core	clock	(El-Athman	et	al.,	2018).	However,	further	single-cell	measurements	are	nec-

essary	to	exclude	the	alternative.	It	would	also	be	of	interest	to	investigate	how	an	entrainment	of	the	

cells	by	rhythmic	temperature	changes	would	influence	the	circadian	transcriptome.	Further	limita-

tions	of	the	study	can	be	traced	back	to	the	sampling	schemes	of	the	experimental	data.	Hughes	et	al.	

(2017)	propose	a	sampling	resolution	of	2	h	for	two	circadian	cycles	in	order	to	identify	robustly	cir-

cadian	genes	with	at	least	two	peaks	and/or	troughs	in	expression.	Due	to	financial	limitations,	the	CRC	

cell	lines	were	sampled	with	a	resolution	of	3	h	for	one	full	circadian	cycle	(microarray	data)	and	for	

1.25	circadian	cycles	(RNA-seq	data).	Discrepancies	in	the	circadian	transcriptomes	assayed	by	micro-

arrays	and	RNA-seq	have	already	been	discussed	in	detail	(see	subsection	4.2)	and	could	partially	be	

mitigated	 by	 the	merging	 of	 both	 datasets.	Nonetheless,	 a	 longer	 time-series	 profiled	 by	RNA-seq	

would	likely	further	reduce	the	false	negative	and	false	positive	rates.	The	same	problem	also	affects	

the	analysis	of	candidate	circadian	features	in	the	baboon	tissues	that	were	sampled	for	24	h.	Moreo-

ver,	the	sacrificed	baboons	were	not	of	the	same	lineage,	making	it	likely	that	many	of	the	observed	

variations	in	gene	expression	are	due	to	inter-individual	differences,	thereby	masking	true	circadian	

genes.	

Technical	 aspects	of	 the	platforms	and	 the	associated	 computational	 analysis	 likewise	 introduce	a	

number	of	challenges	to	the	study.	Platform-specific	limitations	concerning	the	detection	of	AS	events	

based	on	different	types	of	microarrays	have	already	been	discussed	(see	subsection	4.3	and	4.4).	In	

the	last	years,	RNA-seq	has	largely	replaced	microarrays	as	the	method	of	choice	for	the	detection	of	

AS.	Nevertheless,	the	accurate	detection	and	quantification	of	alternative	splice	variants	in	RNA-seq	

data	remains	a	hard	problem	that	requires	a	combination	of	sufficiently	long	reads,	a	high	read	cover-

age,	and	an	appropriate	number	of	replicates	per	condition.	Simulation	experiments	have	shown	that	

the	identification	of	the	correct	isoform	becomes	the	more	difficult,	the	higher	the	number	of	possible	
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alternative	splice	variants	of	a	gene	(Hayer	et	al.,	2015).	The	design	of	high-throughput	circadian	tran-

scriptome	studies	usually	does	not	include	replicates	of	the	same	time	points	(Sefer	et	al.,	2016),	mak-

ing	the	detection	of	rhythmic	splice	variants	a	particularly	challenging	problem	(Li	et	al.,	2015).	While	

the	CRC	cell	line	RNA-seq	data	produced	for	this	thesis	has	a	relatively	high	coverage	(average	of	~75	

million	reads	per	sample),	the	coverage	of	the	baboon	data	is	rather	low	(average	of	~20	million	reads	

per	sample).	For	the	baboon	data,	this	problem	was	partially	mitigated	by	focusing	on	candidate	genes	

for	which	phase-shifted	isoform	pairs	were	identified	in	more	than	one	tissue.	The	repeated	occur-

rence	of	the	same	rhythmic	splice	variants	increases	the	confidence	in	the	validity	of	the	candidate	

circadian	AS	event.	However,	AS	is	known	to	be	tissue-specific	(Baralle	and	Giudice,	2017),	a	fact	that	

is	likely	also	true	for	circadian	AS	(McGlincy	et	al.,	2012).	Thus,	the	experimental	design	of	future	tran-

scriptome	studies	on	circadian	AS	events	should	implement	further	measures	for	the	accurate	detec-

tion	of	alternative	splice	isoforms,	e.g.,	by	including	additional	time	point	replicates	and	increasing	cov-

erage	and/or	RNA-seq	read	length	(Li	et	al.,	2015).	Alternatively,	one	could	aim	to	identify	circadian	

AS	on	exon-level	only,	without	considering	the	detection	of	specific	splice	variants	(Wang	et	al.,	2018).	

Further	ambiguities	concerning	the	validity	of	the	results	are	due	to	the	nature	of	the	statistical	tests	

and	filtering	steps	that	have	been	conducted	as	part	of	the	downstream	computational	analyses.	As	

true	for	most	bioinformatics	analyses,	the	choice	of	algorithms,	FDRs,	and	other	cutoffs	has	a	decisive	

influence	on	the	ultimate	results	of	the	studies,	e.g.,	on	the	number	of	candidate	circadian	genes,	po-

tential	AS	events,	and	enriched	pathways.	Accordingly,	candidate	rhythmic	AS	events	should	be	exper-

imentally	validated	in	follow-up	time-series	studies,	e.g.,	by	isoform-specific	RT-qPCR	(Londoño	and	

Philipp,	2016)	or	Western	blot	analysis	with	isoform-specific	antibodies.	Even	if	the	existence	of	a	can-

didate	circadian	AS	event	has	been	verified	using	independent	technical	approaches,	information	con-

cerning	the	functional	impact	of	specific	splice	variants	is	still	sparse	to	date	(Li	et	al.,	2016).	This	is	

especially	true	for	less-extensively	studied	model	organisms	such	as	the	olive	baboon,	thus	preventing	

a	functional	annotation	on	isoform-level.	Future	experimental	studies	that	aim	at	targeted	isoform	de-

pletion	of	candidate	circadian	splice	variants	might	yield	more	information	concerning	the	functional	

effects	of	rhythmic	AS.
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5 Conclusion and Outlook 

The	circadian	clock	controls	the	daily	timing	of	a	multitude	of	biological	processes	via	transcriptional,	

posttranscriptional,	translational,	and	posttranslational	mechanisms	that	induce	24-h	rhythms	in	the	

abundance	of	gene	products.	A	circadian	regulation	of	mRNA	splicing	has	previously	been	postulated	

for	several	organisms,	including	mammals	(McGlincy	et	al.,	2012;	Wang	et	al.,	2018).	Since	both	dysreg-

ulations	of	the	circadian	clock	and	aberrant	splicing	are	implicated	in	cancer	development	and	pro-

gression,	it	is	conceivable	that	the	hypothesized	circadian	control	of	AS	events	likewise	plays	a	role	in	

cancer-relevant	processes.	

This	thesis	provides	novel	evidence	for	a	widespread	circadian	regulation	of	AS	in	human	cancer	cell	

lines	and	healthy	mammalian	tissues.	A	computational	analysis	of	circadian	transcriptome	data	was	

conducted	based	on	an	in	vitro	model	system	of	a	matched	tumor/metastasis-derived	pair	of	human	

CRC	cell	lines	as	well	as	previously	published	reference	datasets	from	healthy	mammalian	tissues.	The	

study	revealed	differences	in	the	circadian	system	between	the	CRC	cell	lines,	both	for	the	core	clock	

and	the	overall	circadian	transcriptome.	While	the	primary	tumor-derived	cell	line	SW480	displayed	

robust	circadian	rhythms	in	the	expression	of	core	clock	genes,	oscillations	were	diminished	or	lost	in	

the	metastasis-derived	cell	line	SW620,	suggesting	a	perturbation	of	the	clock	that	is	associated	with	

tumor	progression.	On	transcriptome	level,	circadian	gene	sets	and	parameters	likewise	differed	be-

tween	both	cell	lines.	A	functional	enrichment	analysis	of	circadian	gene	sets	revealed	changes	in	the	

identity	and	timing	of	rhythmically	regulated	biological	pathways	between	the	cell	lines,	including	sev-

eral	cancer-relevant	processes,	as	well	as	the	spliceosome	pathway.	Across	both	CRC	cell	lines	as	well	

as	in	the	reference	mammalian	tissues,	24-h	rhythms	were	detected	in	the	expression	of	genes	encod-

ing	for	a	variety	of	spliceosome	components,	SFs,	and	other	splicing-related	proteins.	Several	of	the	

candidate	circadian	regulated	splicing-related	genes	were	not	only	identified	as	robustly	oscillating	

with	similar	phases	across	tissues	of	the	same	organism	but	were	also	found	to	be	conserved	across	

species,	with	an	approximate	phase	shift	of	12	h	between	nocturnal	and	diurnal	mammals.	In	the	CRC	

progression	model,	oscillations	of	splicing-related	genes	differed	between	primary	tumor-	and	metas-

tasis-derived	cells,	suggesting	a	subtle	but	significant	phase	shift	in	the	postulated	rhythmic	activity	of	

the	spliceosome	pathway.	

In	view	of	these	findings	and	the	known	importance	of	SF	expression	patterns	for	splicing	decisions,	it	

seems	likely	that	oscillations	of	splicing-related	genes	might	be	propagated	to	the	protein-level	and	

ultimately	result	 in	a	rhythmic	regulation	of	AS.	Candidate	24-h	rhythmic	AS	events	were	detected	

across	all	mammalian	tissues	and	cell	lines,	providing	further	evidence	for	a	circadian	regulation	of	AS.	
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While	there	were	some	indications	for	ultradian	splicing	events	with	a	period	of	12	h	in	mammalian	

tissues,	the	sampling	resolution	of	the	experiments	made	it	difficult	to	determine	whether	they	truly	

exist	or	whether	they	are	simply	a	result	of	biological	and	technical	noise.	Interestingly,	for	both	the	

set	of	healthy	primate	tissues	and	the	CRC	cell	lines,	many	of	the	candidate	24-h	rhythmic	AS	events	

were	identified	for	splicing-related	genes.	This	finding	suggests	a	partially	autoregulatory	mechanism	

behind	the	postulated	circadian	regulation	of	AS:	Components	of	the	core	clock	and	circadian	tran-

scription	factors	could	be	responsible	for	oscillations	in	the	expression	of	clock-controlled	splicing-

related	genes.	Oscillating	SFs	could	in	turn	regulate	rhythmic	AS	events	of	their	own	mRNAs,	as	well	as	

of	other	splicing-related	genes,	resulting	in	the	production	of	functionally	distinct	SF	isoforms	that	in-

fluence	the	daytime-dependent	splicing	of	downstream	target	genes.	The	functional	implications	of	a	

temporal	regulation	of	AS	are	manifold.	Functionally	distinct	isoforms	of	the	same	gene	could	be	pro-

duced	at	different	times	of	the	circadian	cycle,	localize	in	different	cellular	compartments,	and	partici-

pate	in	different	biological	pathways.	Rhythmic	AS	that	results	in	unproductive	splicing	at	one	time	of	

the	day	could	control	the	circadian	expression	of	a	protein-coding	variant	of	the	same	gene,	independ-

ent	of	circadian	transcription.	The	anti-phasic	production	of	truncated	isoforms	might,	e.g.,	be	respon-

sible	for	occupying	binding	partners	of	canonical	isoforms	and	thus	interfere	with	complex	formation	

in	a	circadian	manner,	acting	as	a	time-dependent	negative	regulator.	In	addition	to	an	independent	

experimental	validation	of	the	candidate	circadian	AS	events,	it	still	remains	to	ascertain	whether	the	

affected	splice	variants	are	indeed	functionally	relevant	and	thus	contribute	to	the	postulated	temporal	

diversity	of	the	proteome.	Both	in	the	CRC	cell	lines	and	the	primate	mammalian	tissues,	candidate	

circadian	AS	events	were	identified	for	a	number	of	genes	whose	isoforms	are	associated	with	cancer-

relevant	processes,	 such	as	angiogenesis,	migration,	 and	cell	 survival,	but	also	androgen	signaling.	

From	a	translational	perspective,	the	observed	circadian	regulation	of	AS	in	cancer	opens	up	interest-

ing	possibilities	concerning	new	strategies	of	cancer	treatment	that	combine	chronotherapeutical	ap-

proaches	with	therapies	that	target	cancer-specific	splicing	isoforms	as	potential	drug	targets.	

Nevertheless,	several	open	questions	remain,	before	the	initial	hypothesis	of	a	cancer-relevant	circa-

dian	regulation	of	AS	can	be	confirmed	or	rejected.	Are	circadian	AS	events	characteristic	to	specific	

cancer	types	and	stages?	Do	the	produced	isoforms	have	a	functional	effect	or	are	they	simply	the	by-

product	of	an	increasingly	disrupted	circadian	system	during	cancer	progression	that	leads	to	defects	

in	splicing	control?	Further	experiments	in	other	human	cancer	cell	lines	could	reveal	whether	the	as-

sociation	between	oscillating	splicing	genes	and	potentially	cancer-relevant	rhythmic	AS	events	hold	

true	for	other	in	vitro	model	systems	as	well.	Possible	experimental	models	for	such	experiments	are	

the	human	CRC	cell	line	HCT116	which	displays	robust	circadian	oscillations	in	the	promoter	activity	

of	BMAL1	(Relógio	et	al.,	2014),	or	the	matched	primary-metastasis	triplet	consisting	of	the	cell	lines	

Isreco1,	Isreco2,	and	Isreco3	that	are	derived	from	a	primary	colon	carcinoma	and	its	corresponding	

liver	and	peritoneal	metastases,	respectively	(Cojot	et	al.,	1997).	When	following	up	the	hypothesis	

that	circadian	regulated	AS	might	be	involved	in	androgen	signaling,	the	prostate	cell	lines	RC-77N/E	

and	RC-77T/E,	a	matched	pair	of	non-malignant	and	malignant	tumor-derived	cell	lines	from	the	same	

patient	(Theodore	et	al.,	2010),	could	prove	a	useful	model	system	for	future	studies.	
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The	proposed	mechanism	of	circadian	regulated	AS	likewise	needs	to	be	further	explored.	In	order	to	

determine	whether	clock	components	or	circadian	transcription	factors	are	truly	responsible	for	the	

observed	rhythms	in	the	expression	of	splicing-related	genes	and	AS	events,	knockdown	or	knockout	

experiments	of	clock	or	clock-controlled	genes	are	required.	It	would	also	be	of	interest	to	find	out	

more	about	the	downstream	regulation	driving	circadian	AS.	A	computational	analysis	of	splicing-re-

lated	RBP	target	genes	using	publicly	available	data	from	cross-linking	immunoprecipitation	experi-

ments	(Van	Nostrand	et	al.,	2018)	could	reveal	whether	the	expression	of	circadian	RBPs	and	the	AS	

patterns	of	their	target	genes	are	correlated.	In	this	way,	candidate	circadian	regulated	SFs	could	be	

linked	to	potential	target	genes.	It	also	has	to	be	considered	that	the	results	gained	in	this	thesis	are	

based	on	data	that	was	produced	in	bulk	experiments	of	synchronized	cell	populations	and	thus	pre-

cludes	the	ability	to	analyze	transcription	at	the	level	of	single	cells.	Hence,	it	would	be	of	interest	to	

investigate	whether	different	splice	variants	of	the	same	gene	are	expressed	at	different	times	of	the	

day	in	the	same	cell	or	whether	the	observed	candidate	circadian	AS	events	are	due	to	heterogeneity	

among	 cells.	 Technologically,	 single-cell	 RNA-seq	 for	 the	 detection	 of	 individual	 splice	 variants	 is	

hardly	feasible	at	the	moment	(Arzalluz-Luque	and	Conesa,	2018),	in	particular	when	considering	the	

additional	challenge	of	reconstructing	cycling	pseudo-time-series	patterns	(Liu	et	al.,	2017b).	How-

ever,	future	developments	in	single-cell	sequencing	techniques	and	algorithms	might	make	it	possible	

to	tackle	this	challenging	problem.	

In	conclusion,	this	thesis	provides	novel	and	compelling	evidence	for	a	circadian	regulation	of	alterna-

tive	mRNA	splicing	in	mammals	via	clock-controlled	oscillations	of	splicing	regulatory	factors.	It	fur-

ther	highlights	the	potential	implications	of	this	temporal	diversification	of	the	transcriptome	for	the	

daytime-dependent	control	of	biological	pathways	and	illustrates	how	failures	in	the	system	might	en-

able	cells	to	acquire	oncogenic	properties	that	contribute	to	the	development	and	progression	of	can-

cer.
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7 Appendix 

7.1 Supplementary Material 

7.1.1 Supplementary Figures 

	

Figure	S	1:	Time-series	expression	of	core	clock	genes	and	circadian	transcription	factors	in	SW480	and	SW620	cells	

(microarray	data).	RMA-preprocessed	time-series	expression	(log2)	is	shown	for	the	primary	tumor-derived	SW480	

cells	(blue)	and	the	metastasis-derived	SW620	cells	(orange).	

	

Figure	S	2:	Comparison	of	the	circadian	transcriptome	between	SW480	and	SW620	cells	(microarray	data).	(A)	Number	

of	24-h	rhythmic	genes	in	SW480	cells	(blue)	and	SW620	cells	(orange)	for	different	RAIN	q-value	cutoffs	after	filtering	

for	genes	with	a	FC	amplitude	>	1.15.	The	gray	rectangle	marks	the	cutoff	chosen	to	identify	24-h	rhythmic	genes	for	

subsequent	analyses.	(B)	Venn	diagram	of	the	intersection	between	24-h	rhythmic	genes	identified	in	SW480	cells	(blue)	

and	SW620	cells	(orange).	(C)	Median-normalized,	phase-ordered	expression	heatmaps	of	genes	that	were	identified	as	

24-h	rhythmic	in	the	respective	other	cell	line	for	SW480	(left)	and	SW620	cells	(right).	Each	row	represents	one	gene.	

The	phase-ordering	is	based	on	the	phase	estimated	for	the	respective	other	cell	line.	
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Figure	S	3:	Functional	annotation	for	the	sets	of	differentially	rhythmic	genes	between	SW480	and	SW620	cells	(micro-

array	data).	Enriched	GO	terms	for	the	set	of	24-h	rhythmic	genes	with	a	higher	amplitude	in	SW480	cells	(blue),	a	higher	

amplitude	in	SW620	cells	(orange)	and	with	a	pure	phase-shift	(gray).	
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Figure	S	4:	Functional	annotation	of	clusters	of	24-h	rhythmic	genes	in	SW480	cells	(microarray	data).	(A)	Temporal	

expression	clusters	of	24-h	rhythmic	genes	in	SW480	cells.	Each	colored	line	represents	the	expression	(transformed	to	

the	standard	normal	distribution)	of	a	gene.	The	line	colors	indicate	gradual	membership	values	reflecting	the	strength	

of	a	gene's	association	with	the	cluster	(red:	high	membership	value,	blue:	low	membership	value).	The	black	line	indi-

cates	the	cluster	center.	(B)	Annotation	clusters	of	enriched	GO	terms	and	KEGG	pathways	for	the	four	clusters	of	24-h	

rhythmic	genes	in	SW480	cells.	Shown	are	up	to	four	highest	ranking	terms	with	p	<	0.05	for	all	annotation	clusters	with	

an	enrichment	score	≥	1.3.	
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Figure	S	5:	Functional	annotation	of	clusters	of	24-h	rhythmic	genes	in	SW620	cells	(microarray	data).	(A)	Temporal	

expression	clusters	of	24-h	rhythmic	genes	in	SW620	cells.	Each	colored	line	represents	the	expression	(transformed	to	

the	standard	normal	distribution)	of	a	gene.	The	line	colors	indicate	gradual	membership	values	reflecting	the	strength	

of	a	gene's	association	with	the	cluster	(red:	high	membership	value,	blue:	low	membership	value).	The	black	line	indi-

cates	the	cluster	center.	(B)	Annotation	clusters	of	enriched	GO	terms	and	KEGG	pathways	for	the	four	clusters	of	24-h	

rhythmic	genes	in	SW620	cells.	Shown	are	up	to	four	highest	ranking	terms	with	p	<	0.05	for	all	annotation	clusters	with	

an	enrichment	score	≥	1.3.	
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Figure	S	6:	Time-series	expression	of	24-h	rhythmic	splicing-related	genes	in	CRC	cell	lines	(microarray	data).	Shown	

are	64	splicing-related	genes	that	were	identified	to	be	rhythmic	in	SW480	cells	(blue)	and/or	SW620	cells	(orange).	
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Figure	S	7:	Differential	AS	events	in	NCAM1	and	the	EMT-associated	genes	CD44	and	FGFR2	(microarray	data).	Exon-

level	expression	(upper	panel),	FIRMA	scores	(middle	panel),	and	genomic	representation	(lower	panel)	of	the	candidate	

genes	(A)	NCAM1,	(B)	CD44	(B),	and	(C)	FGFR2.	Vertical	lines	separate	the	individual	probesets	covering	the	genes.	Gray	

diagonal	lines	indicate	the	localization	of	the	probesets	within	the	genome.	For	each	probeset,	the	exon-level	expression	

and	the	FIRMA	scores	of	the	individual	time	points	are	depicted	by	a	dotted	line	and	the	respective	mean	values	are	

depicted	by	a	solid	line	for	SW480	(blue)	and	SW620	(orange),	respectively.	The	mean	log2	FC	of	the	FIRMA	score	be-

tween	cell	lines	(SW480-SW620)	is	represented	by	a	green	line.		
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Figure	S	8:	Candidate	circadian	AS	events	in	SW480	and	SW620	cells	(microarray	data).	Phase-ordered	heatmaps	of	

exons	with	24-h	rhythmic	FIRMA	scores	in	(A)	SW480	and	(B)	SW620	cells.	Exons	displaying	oscillating	AS	events	in	

both	cell	lines	are	marked	by	an	asterisk.	The	respective	genes	are	marked	with	an	oscillatory	curve	if	they	show	24-h	

transcriptional	rhythms	in	SW480	(blue)	or	SW620	cells	(orange).	
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Figure	S	9:	RNA-seq	mapping	rates	and	number	of	expressed	genes	in	the	microarray	and	RNA-seq	datasets	for	different	

analysis	methods	and	cutoffs.	(A)	Mapping	rates	of	RNA-seq	reads	for	time	point	samples	from	SW480	cells	(left	panel)	

and	SW620	cells	(right	panel)	using	Salmon	(percentage	of	mapped	reads)	and	STAR	(percentage	of	uniquely	mapped	

reads).	(B)	Number	of	expressed	genes	for	RNA-seq	samples	of	SW480	cells	(left	panel)	and	SW620	cells	(right	panel)	

for	different	expression	cutoffs	and	methods	(Salmon,	STAR	+	featureCounts,	STAR	+	Salmon).	The	gray	rectangle	marks	

the	cutoff	that	was	chosen	to	identify	expressed	gene	for	subsequent	analyses.	(C)	Number	of	expressed	genes	for	mi-

croarray	samples	of	SW480	cells	(left	panel)	and	SW620	cells	(right	panel)	for	different	expression	cutoffs.	The	gray	

rectangle	marks	the	cutoff	chosen	to	determine	expressed	gene	for	subsequent	analyses.	

	

Figure	S	10:	Rhythmic	gene	sets	identified	in	SW480	and	SW620	cells	(microarray	and	RNA-seq	data).	Number	of	24-h	

rhythmic	genes	in	SW480	cells	(left)	and	SW620	cells	(right)	for	the	three	different	datasets	(microarray:	green;	RNA-

seq:	pink;	concatenated:	blue)	and	different	q-value	cutoffs	determined	either	by	harmonic	regression	(upper	panels)	or	

RAIN	(lower	panels).	Additionally,	24-h	rhythmic	genes	have	a	relative	amplitude	cutoff	of	0.1,	as	estimated	by	harmonic	

regression.	RAIN	p-values	were	corrected	after	filtering	for	genes	with	a	relative	amplitude	≥	0.1.	The	gray	rectangle	

marks	the	cutoff	chosen	to	determine	24-h	rhythmic	genes	for	subsequent	analyses.	
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Figure	S	11:	Time-series	expression	data	of	core	clock	genes	and	circadian	transcription	factors	in	SW480	and	SW620	

cells	(RNA-seq	data).	The	upper	panel	shows	log2	CPM	normalized	to	the	mean	of	all	time	points	and	the	lower	panel	

shows	the	log2	CPM	for	SW480	cells	(blue	line)	and	SW620	cells	(orange	line).	

	

Figure	S	12:	Expression	heatmaps	of	24-h	rhythmic	genes	in	SW480	and	SW620	cells	(microarray	and	RNA-seq	data).	

Range-normalized,	phase-ordered	microarray	(respective	left	panel)	and	RNA-seq	expression	(respective	right	panel)	

heatmaps	of	genes	that	were	identified	as	24-h	rhythmic	(q	<	0.05	and	relative	amplitude	≥	0.1	determined	by	harmonic	

regression)	in	(A)	SW480	and	(B)	SW620	cells	in	the	microarray	data	(green,	top	panel),	the	RNA-seq	data	(pink,	middle	

panel),	and	the	concatenated	data	(blue,	bottom	panel).	Each	row	represents	one	gene.	Phases	were	estimated	based	on	

the	dataset	in	which	the	24-h	rhythmic	genes	were	identified.	Black	rectangles	mark	the	shared	time	points	between	the	

microarray	and	the	RNA-seq	data.	
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Figure	S	13:	Rhythmic	gene	and	transcript	sets	identified	in	SW480	and	SW620	cells	(RNA-seq	data).	(A)	24-h	rhythmic	

genes	(left	panel)	and	transcripts	(right	panel)	in	SW480	cells	(blue)	and	SW620	cells	(orange)	for	different	RAIN	p-value	

cutoffs.	Additionally,	24-h	rhythmic	genes	were	required	to	have	a	relative	amplitude	≥	0.1.	(B)	Venn	diagrams	of	gene	

sets	identified	as	24-h	rhythmic	on	gene-	and	on	transcript-level	for	SW480	cells	(left	panel)	and	SW620	cells	(right	

panel).	
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Figure	S	14:	Expression	of	24-h	rhythmic	splicing-related	genes	in	CRC	cell	lines	(microarray	and	RNA-seq	data).	Range-

normalized,	phase-ordered	heatmaps	of	splicing-related	genes	that	were	identified	as	24-h	rhythmic	(RAIN	p	<	0.05	and	

relative	amplitude	≥	0.1)	in	(A)	SW480	and	(B)	SW620	cells.	The	respective	right	panels	show	the	expression	in	the	other	

cell	line.	(C)	Mean-normalized	time-series	expression	of	splicing-related	genes	found	to	be	24-h	rhythmic	with	high	am-

plitudes	(harmonic	regression	q	<	0.05	and	relative	amplitude	≥	0.2)	in	SW480	cells	or	in	SW620	cells	based	on	the	con-

catenated	data.	Microarray	expression	values	are	represented	by	green	lines	and	RNA-seq	expression	values	by	pink	

lines.	The	blue	area	marks	the	confidence	area	of	the	harmonic	regression	fitted	to	the	concatenated	data	for	24-h	rhyth-

mic	genes.	
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Figure	S	15:	Period	distribution	of	rhythmic	genes	in	mouse	(microarray	data,	GSE54650)	and	baboon	tissues	(RNA-

seq	data,	GSE98965).	(A)	Histograms	of	the	period	distributions	of	rhythmic	genes	in	twelve	murine	tissues.	Rhythmic	

genes	were	determined	based	on	RMA-preprocessed	microarray	intensity	values	for	a	period	range	of	5–30	h	and	incre-

ments	of	0.1	h	by	fitting	a	harmonic	regression	curve	(p	<	0.01).	For	each	rhythmic	gene,	only	the	period	with	the	lowest	

p-value	is	shown.	Periods	at	the	extreme	ends	of	the	range	(5	h	and	30	h)	were	excluded.	(B)	Histograms	of	the	period	

distributions	of	rhythmic	genes	in	64	baboon	tissues.	Rhythmic	genes	were	determined	based	on	CPM	values	for	a	period	

range	of	6–26	h	and	increments	of	0.1	h	by	fitting	a	harmonic	regression	curve	(p	<	0.01).	For	each	gene,	only	the	period	

with	the	lowest	p-value	is	shown.	Periods	at	the	extreme	ends	of	the	range	(6	h	and	26	h)	were	excluded.	
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Figure	S	16:	Number	of	12-h	and	24-h	rhythmic	genes	in	mouse	(microarray	data,	GSE54650)	and	baboon	tissues	(RNA-

seq	data,	GSE98965)	for	different	cutoffs.	(A)	Number	of	12-h	rhythmic	genes	(upper	panel)	and	24-h	rhythmic	genes	

(upper	panel)	in	twelve	murine	tissues	for	different	RAIN	q-value	cutoffs	after	filtering	for	genes	with	a	relative	ampli-

tude	≥	0.1.	(B)	Number	of	12-h	rhythmic	genes	(upper	panel)	and	24-h	rhythmic	genes	(upper	panel)	in	64	baboon	tis-

sues	for	different	RAIN	p-value	cutoffs	and	filtering	for	genes	with	a	relative	amplitude	≥	0.1.	The	gray	rectangle	marks	

the	cutoffs	chosen	to	identify	rhythmic	genes	for	subsequent	analyses.	
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Figure	S	17:	Murine	candidate	genes	with	putative	rhythmic	AS	events	(microarray	data,	GSE54650).	UpsetR	plots	to	

visualize	the	intersections	between	tissues	for	genes	with	(A)	24-h	rhythmic	and	(B)	12-h	rhythmic	FIRMAGene	scores	

that	are	detected	in	at	least	two	tissues.	(C)	Tissue-wise	percentage	of	the	number	expressed	splice	variants	(one	variant:	

white,	two	variants:	light	gray,	three	or	more	variants:	dark	gray)	in	the	RNA-seq	data	(GSE54651)	for	candidate	genes	

with	24-h	rhythmic	(left	panel)	and	12-h	rhythmic	FIRMAGene	scores	(right	panel).	
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Figure	S	18:	Intersections	between	the	sets	of	genes	identified	as	rhythmic	on	the	gene-	and	on	the	transcript-level	in	

baboon	tissues	(RNA-seq	data,	GSE98965).	Tissue-wise	area-proportional	Venn	diagrams	of	the	sets	of	genes	that	were	

identified	as	(A)	24-h	rhythmic	and	(B)	12-h	rhythmic	on	gene-level	(24-h	rhythmic:	dark	blue;	12-h	rhythmic:	light	blue)	

or	on	transcript-level	(dark	gray)	for	the	baboon	data.	The	intersection	of	the	two	sets	is	represented	in	light	gray.		
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Figure	S	19:	Comparison	of	rhythmic	parameters	between	gene-	and	transcript-level	in	baboon	tissues	(RNA-seq	data,	

GSE98965).	(A)	Boxplots	comparing	the	RAIN	p-value	distributions	of	genes	from	the	reverse	complement	(24-h	rhyth-

mic:	dark	blue;	12-h	rhythmic:	light	blue)	and	from	the	intersection	(light	gray)	of	24-h	rhythmic	genes	on	gene-	and	

transcript-level	(left	panel)	and	the	intersection	(light	gray)	of	12-h	rhythmic	genes	on	gene-	and	transcript-level	(right	

panel)	identified	for	each	baboon	tissue.	(B)	Distribution	of	peak	phases	of	24-h	rhythmic	genes	(dark	blue)	and	tran-

scripts	(dark	orange)	and	12-h	rhythmic	genes	(light	blue)	and	transcripts	(light	orange)	of	all	baboon	tissues.	(C)	Box-

plots	of	the	relative	amplitudes	of	24-h	rhythmic	genes	(dark	blue)	and	transcripts	(dark	orange)	and	12-h	rhythmic	

genes	(light	blue)	and	transcripts	(light	orange)	of	all	baboon	tissues.	
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Figure	S	20:	Time-series	expression	of	24-h	rhythmic	splicing-related	genes	in	mouse	(GSE54650)	and	baboon	tissues	

(GSE98965).	Median-normalized	expression	(from	-1	to	1)	of	the	topmost	five	consistently	24-h	rhythmic	splicing-re-

lated	genes	in	(A)	murine	and	(B)	baboon	tissues.	Additionally,	splicing-related	orthologous	genes	found	to	be	24-h	

rhythmic	in	both	species	are	shown	(marked	with	an	asterisk).	Gene	expression	for	tissues	from	the	same	tissue	type	is	

represented	with	the	same	color	and	in	the	same	panel.	
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7.1.2 Supplementary Tables 

Table	S	1:	Lists	of	human	splicing-related	genes.	

Gene Ensembl ID Class List 

ACIN1 ENSG00000100813 EJC/mRNP List 1 & 2 

AFF2 ENSG00000155966 linked to splicing and other regulators List 1 & 2 

ALYREF ENSG00000183684 EJC/mRNP List 1 & 2 

AQR ENSG00000021776 PRP19 complex and PRP19 related List 1 & 2 

BCAS2 ENSG00000116752 PRP19 complex and PRP19 related List 1 & 2 

BUD13 ENSG00000137656 RES complex List 1 & 2 

BUD31 ENSG00000106245 PRP19 complex and PRP19 related List 1 & 2 

C9orf78 ENSG00000136819 Recruited at C complex List 1 & 2 

CACTIN ENSG00000105298 Recruited at C complex List 1 & 2 

CASC3 ENSG00000108349 EJC/mRNP List 1 & 2 

CCAR1 ENSG00000060339 Recruited at A complex List 1 & 2 

CCDC12 ENSG00000160799 Recruited at Bact complex List 1 & 2 

CCDC94 ENSG00000105248 Recruited at Bact complex List 1 & 2 

CD2BP2 ENSG00000169217 U5 snRNP List 1 & 2 

CDC40 ENSG00000168438 Second step factors List 1 & 2 

CDC5L ENSG00000096401 PRP19 complex and PRP19 related List 1 & 2 

CDK10 ENSG00000185324 Recruited at C complex List 1 & 2 

CDK5 ENSG00000164885 linked to splicing and other regulators List 1 & 2 

CELF1 ENSG00000149187 alternative splicing factor List 1 & 2 

CELF2 ENSG00000048740 alternative splicing factor List 1 & 2 

CHERP ENSG00000085872 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

CLASRP ENSG00000104859 SR protein and SR related List 1 & 2 

CLK1 ENSG00000013441 SR protein and SR related List 1 & 2 

CLK2 ENSG00000176444 SR protein and SR related List 1 & 2 

CLK3 ENSG00000179335 SR protein and SR related List 1 & 2 

CLK4 ENSG00000113240 linked to splicing and other regulators List 1 & 2 

CRNKL1 ENSG00000101343 PRP19 complex and PRP19 related List 1 & 2 

CTNNBL1 ENSG00000132792 PRP19 complex and PRP19 related List 1 & 2 

CWC15 ENSG00000150316 PRP19 complex and PRP19 related List 1 & 2 

CWC22 ENSG00000163510 Recruited at Bact complex List 1 & 2 

CWC25 ENSG00000273559 Recruited at Bact complex List 1 & 2 

CWC27 ENSG00000153015 Recruited at Bact complex List 1 & 2 

CXorf56 ENSG00000018610 Recruited at C complex List 1 & 2 

DAZAP1 ENSG00000071626 linked to splicing and other regulators List 1 & 2 

DBR1 ENSG00000138231 linked to splicing and other regulators List 1 & 2 

DDX23 ENSG00000174243 U5 snRNP List 1 & 2 

DDX41 ENSG00000183258 Recruited at C complex List 1 & 2 

DDX42 ENSG00000198231 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

DDX46 ENSG00000145833 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 
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DGCR14 ENSG00000100056 Recruited at C complex List 1 & 2 

DHX15 ENSG00000109606 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

DHX16 ENSG00000204560 Recruited at Bact complex List 1 & 2 

DHX35 ENSG00000101452 Recruited at C complex List 1 & 2 

DHX38 ENSG00000140829 Second step factors List 1 & 2 

DHX8 ENSG00000067596 Second step factors List 1 & 2 

EFTUD2 ENSG00000108883 U5 snRNP List 1 & 2 

EIF4A3 ENSG00000141543 EJC/mRNP List 1 & 2 

ELAVL1 ENSG00000066044 alternative splicing factor List 1 & 2 

ELAVL2 ENSG00000107105 linked to splicing and other regulators List 1 & 2 

ELAVL3 ENSG00000196361 linked to splicing and other regulators List 1 & 2 

ELAVL4 ENSG00000162374 linked to splicing and other regulators List 1 & 2 

ESRP1 ENSG00000104413 alternative splicing factor List 1 & 2 

ESRP2 ENSG00000103067 linked to splicing and other regulators List 1 & 2 

FAM32A ENSG00000105058 Recruited at C complex List 1 & 2 

FAM50A ENSG00000071859 Recruited at C complex List 1 & 2 

FMR1 ENSG00000102081 linked to splicing and other regulators List 1 & 2 

FRA10AC1 ENSG00000148690 Recruited at C complex List 1 & 2 

FUBP1 ENSG00000162613 alternative splicing factor List 1 & 2 

FUS ENSG00000089280 hnRNP List 1 & 2 

FXR1 ENSG00000114416 linked to splicing and other regulators List 1 & 2 

GPATCH1 ENSG00000076650 Recruited at Bact complex List 1 & 2 

GPKOW ENSG00000068394 Recruited at Bact complex List 1 & 2 

HNRNPA0 ENSG00000177733 hnRNP List 1 & 2 

HNRNPA1 ENSG00000135486 hnRNP List 1 & 2 

HNRNPA2B1 ENSG00000122566 hnRNP List 1 & 2 

HNRNPA3 ENSG00000170144 hnRNP List 1 & 2 

HNRNPAB ENSG00000197451 hnRNP List 1 & 2 

HNRNPC ENSG00000092199 hnRNP List 1 & 2 

HNRNPCL1 ENSG00000179172 hnRNP List 1 & 2 

HNRNPD ENSG00000138668 hnRNP List 1 & 2 

HNRNPDL ENSG00000152795 hnRNP List 1 & 2 

HNRNPF ENSG00000169813 hnRNP List 1 & 2 

HNRNPH1 ENSG00000169045 hnRNP List 1 & 2 

HNRNPH2 ENSG00000126945 hnRNP List 1 & 2 

HNRNPH3 ENSG00000096746 hnRNP List 1 & 2 

HNRNPK ENSG00000165119 hnRNP List 1 & 2 

HNRNPL ENSG00000104824 hnRNP List 1 & 2 

HNRNPLL ENSG00000143889 hnRNP List 1 & 2 

HNRNPM ENSG00000099783 hnRNP List 1 & 2 

HNRNPR ENSG00000125944 hnRNP List 1 & 2 

HNRNPU ENSG00000153187 hnRNP List 1 & 2 
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HNRNPUL1 ENSG00000105323 hnRNP List 1 & 2 

HNRNPUL2 ENSG00000214753 hnRNP List 1 & 2 

HRH1 ENSG00000196639 SR protein and SR related List 1 & 2 

HSPA8 ENSG00000109971 PRP19 complex and PRP19 related List 1 & 2 

HTATSF1 ENSG00000102241 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

IK ENSG00000113141 Recruited at B complex List 1 & 2 

ISY1 ENSG00000240682 PRP19 complex and PRP19 related List 1 & 2 

KHDRBS1 ENSG00000121774 linked to splicing and other regulators List 1 & 2 

KHDRBS2 ENSG00000112232 linked to splicing and other regulators List 1 & 2 

KHDRBS3 ENSG00000131773 linked to splicing and other regulators List 1 & 2 

KHSRP ENSG00000088247 alternative splicing factor List 1 & 2 

LENG1 ENSG00000105617 Recruited at C complex List 1 & 2 

LSM1 ENSG00000175324 Sm/LSm List 1 & 2 

LSM2 ENSG00000204392 Sm/LSm List 1 & 2 

LSM3 ENSG00000170860 Sm/LSm List 1 & 2 

LSM4 ENSG00000130520 Sm/LSm List 1 & 2 

LSM5 ENSG00000106355 Sm/LSm List 1 & 2 

LSM6 ENSG00000164167 Sm/LSm List 1 & 2 

LSM7 ENSG00000130332 Sm/LSm List 1 & 2 

LSM8 ENSG00000128534 Sm/LSm List 1 & 2 

LUC7L ENSG00000007392 U1 snRNP List 1 & 2 

MAGOH ENSG00000162385 EJC/mRNP List 1 & 2 

MBNL1 ENSG00000152601 alternative splicing factor List 1 & 2 

MBNL2 ENSG00000139793 alternative splicing factor List 1 & 2 

MBNL3 ENSG00000076770 alternative splicing factor List 1 & 2 

MFAP1 ENSG00000140259 Recruited at B complex List 1 & 2 

MIP ENSG00000135517 hnRNP List 1 & 2 

NONO ENSG00000147140 linked to splicing and other regulators List 1 & 2 

NOSIP ENSG00000142546 Recruited at C complex List 1 & 2 

NOVA1 ENSG00000139910 linked to splicing and other regulators List 1 & 2 

NOVA2 ENSG00000104967 linked to splicing and other regulators List 1 & 2 

NUFIP1 ENSG00000083635 linked to splicing and other regulators List 1 & 2 

NXF1 ENSG00000162231 EJC/mRNP List 1 & 2 

NXT1 ENSG00000132661 EJC/mRNP List 1 & 2 

PCBP1 ENSG00000169564 hnRNP List 1 & 2 

PCBP2 ENSG00000197111 hnRNP List 1 & 2 

PHF5A ENSG00000100410 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

PLRG1 ENSG00000171566 PRP19 complex and PRP19 related List 1 & 2 

PNN ENSG00000100941 EJC/mRNP List 1 & 2 

PPIE ENSG00000084072 PRP19 complex and PRP19 related List 1 & 2 

PPIG ENSG00000138398 Recruited at C complex List 1 & 2 

PPIH ENSG00000171960 U4/U6 snRNP List 1 & 2 
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PPIL1 ENSG00000137168 PRP19 complex and PRP19 related List 1 & 2 

PPIL2 ENSG00000100023 Recruited at Bact complex List 1 & 2 

PPIL3 ENSG00000240344 Recruited at C complex List 1 & 2 

PPIL4 ENSG00000131013 linked to splicing and other regulators List 1 & 2 

PPWD1 ENSG00000113593 Recruited at C complex List 1 & 2 

PQBP1 ENSG00000102103 PRP19 complex and PRP19 related List 1 & 2 

PRCC ENSG00000143294 Recruited at Bact complex List 1 & 2 

PRPF18 ENSG00000165630 Second step factors List 1 & 2 

PRPF19 ENSG00000110107 PRP19 complex and PRP19 related List 1 & 2 

PRPF3 ENSG00000117360 U4/U6 snRNP List 1 & 2 

PRPF31 ENSG00000105618 U4/U6 snRNP List 1 & 2 

PRPF38A ENSG00000134748 Recruited at B complex List 1 & 2 

PRPF4 ENSG00000136875 U4/U6 snRNP List 1 & 2 

PRPF40A ENSG00000196504 Recruited at A complex List 1 & 2 

PRPF4B ENSG00000112739 Recruited at B complex List 1 & 2 

PRPF6 ENSG00000101161 U5 snRNP List 1 & 2 

PRPF8 ENSG00000174231 U5 snRNP List 1 & 2 

PTBP1 ENSG00000011304 alternative splicing factor List 1 & 2 

PTBP2 ENSG00000117569 alternative splicing factor List 1 & 2 

PUF60 ENSG00000179950 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

QKI ENSG00000112531 alternative splicing factor List 1 & 2 

RALY ENSG00000125970 hnRNP List 1 & 2 

RALYL ENSG00000184672 hnRNP List 1 & 2 

RAVER1 ENSG00000161847 alternative splicing factor List 1 & 2 

RAVER2 ENSG00000162437 alternative splicing factor List 1 & 2 

RBFOX1 ENSG00000078328 linked to splicing and other regulators List 1 & 2 

RBFOX2 ENSG00000100320 alternative splicing factor List 1 & 2 

RBM10 ENSG00000182872 Recruited at A complex List 1 & 2 

RBM17 ENSG00000134453 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

RBM22 ENSG00000086589 PRP19 complex and PRP19 related List 1 & 2 

RBM25 ENSG00000119707 Recruited at A complex List 1 & 2 

RBM39 ENSG00000131051 SR protein and SR related List 1 & 2 

RBM4 ENSG00000173933 linked to splicing and other regulators List 1 & 2 

RBM5 ENSG00000003756 Recruited at A complex List 1 & 2 

RBM8A ENSG00000265241 EJC/mRNP List 1 & 2 

RBMX ENSG00000147274 hnRNP List 1 & 2 

RBMX2 ENSG00000134597 RES complex List 1 & 2 

RBMXL2 ENSG00000170748 hnRNP List 1 & 2 

RNF113A ENSG00000125352 Recruited at Bact complex List 1 & 2 

RNPC3 ENSG00000185946 U11/U12 snRNP List 1 & 2 

RNPS1 ENSG00000205937 EJC/mRNP List 1 & 2 

RNU1-1 ENSG00000206652 U1 snRNP List 1 & 2 
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RNU2-1 ENSG00000274585 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

RNU2-65P ENSG00000222094 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

RNU4-1 ENSG00000200795 U4/U6 snRNP List 1 & 2 

RNU5A-1 ENSG00000199568 U5 snRNP List 1 & 2 

RNU6-1 ENSG00000206625 U4/U6 snRNP List 1 & 2 

SAP18 ENSG00000150459 EJC/mRNP List 1 & 2 

SART1 ENSG00000175467 tri-snRNP List 1 & 2 

SART3 ENSG00000075856 U4/U6 recycling List 1 & 2 

SDE2 ENSG00000143751 Recruited at C complex List 1 & 2 

SF1 ENSG00000168066 Recruited at A complex List 1 & 2 

SF3A1 ENSG00000099995 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

SF3A2 ENSG00000104897 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

SF3A3 ENSG00000183431 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

SF3B1 ENSG00000115524 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

SF3B2 ENSG00000087365 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

SF3B3 ENSG00000189091 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

SF3B4 ENSG00000143368 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

SF3B5 ENSG00000169976 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

SF3B6 ENSG00000115128 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

SFPQ ENSG00000116560 linked to splicing and other regulators List 1 & 2 

SFSWAP ENSG00000061936 SR protein and SR related List 1 & 2 

SLU7 ENSG00000164609 Second step factors List 1 & 2 

SMNDC1 ENSG00000119953 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

SMU1 ENSG00000122692 Recruited at B complex List 1 & 2 

SNIP1 ENSG00000163877 RES complex List 1 & 2 

SNRNP200 ENSG00000144028 U5 snRNP List 1 & 2 

SNRNP25 ENSG00000161981 U11/U12 snRNP List 1 & 2 

SNRNP35 ENSG00000184209 U11/U12 snRNP List 1 & 2 

SNRNP40 ENSG00000060688 U5 snRNP List 1 & 2 

SNRNP48 ENSG00000168566 U11/U12 snRNP List 1 & 2 

SNRNP70 ENSG00000104852 U1 snRNP List 1 & 2 

SNRPA ENSG00000077312 U1 snRNP List 1 & 2 

SNRPA1 ENSG00000131876 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

SNRPB ENSG00000125835 Sm/LSm List 1 & 2 

SNRPB2 ENSG00000125870 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

SNRPC ENSG00000124562 U1 snRNP List 1 & 2 

SNRPD1 ENSG00000167088 Sm/LSm List 1 & 2 

SNRPD2 ENSG00000125743 Sm/LSm List 1 & 2 

SNRPD3 ENSG00000100028 Sm/LSm List 1 & 2 

SNRPE ENSG00000182004 Sm/LSm List 1 & 2 

SNRPF ENSG00000139343 Sm/LSm List 1 & 2 

SNRPG ENSG00000143977 Sm/LSm List 1 & 2 
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SNU13 ENSG00000100138 U4/U6 snRNP List 1 & 2 

SNW1 ENSG00000100603 PRP19 complex and PRP19 related List 1 & 2 

SREK1 ENSG00000153914 SR protein and SR related List 1 & 2 

SRPK1 ENSG00000096063 SR protein and SR related List 1 & 2 

SRPK2 ENSG00000135250 SR protein and SR related List 1 & 2 

SRRM1 ENSG00000133226 SR protein and SR related List 1 & 2 

SRRM2 ENSG00000167978 SR protein and SR related List 1 & 2 

SRSF1 ENSG00000136450 SR protein and SR related List 1 & 2 

SRSF10 ENSG00000188529 SR protein and SR related List 1 & 2 

SRSF11 ENSG00000116754 SR protein and SR related List 1 & 2 

SRSF12 ENSG00000154548 SR protein and SR related List 1 & 2 

SRSF2 ENSG00000161547 SR protein and SR related List 1 & 2 

SRSF3 ENSG00000112081 SR protein and SR related List 1 & 2 

SRSF4 ENSG00000116350 SR protein and SR related List 1 & 2 

SRSF5 ENSG00000100650 SR protein and SR related List 1 & 2 

SRSF6 ENSG00000124193 SR protein and SR related List 1 & 2 

SRSF7 ENSG00000115875 SR protein and SR related List 1 & 2 

SRSF8 ENSG00000263465 SR protein and SR related List 1 & 2 

SRSF9 ENSG00000111786 SR protein and SR related List 1 & 2 

SUGP1 ENSG00000105705 Recruited at A complex List 1 & 2 

SYF2 ENSG00000117614 Recruited at C complex List 1 & 2 

SYNCRIP ENSG00000135316 hnRNP List 1 & 2 

TARDBP ENSG00000120948 linked to splicing and other regulators List 1 & 2 

TDRD9 ENSG00000156414 linked to splicing and other regulators List 1 & 2 

TFIP11 ENSG00000100109 Recruited at B complex List 1 & 2 

THRAP3 ENSG00000054118 Recruited at A complex List 1 & 2 

TIA1 ENSG00000116001 linked to splicing and other regulators List 1 & 2 

TIAL1 ENSG00000151923 linked to splicing and other regulators List 1 & 2 

TOP1 ENSG00000198900 linked to splicing and other regulators List 1 & 2 

TOPORS ENSG00000197579 linked to splicing and other regulators List 1 & 2 

TRA2A ENSG00000164548 SR protein and SR related List 1 & 2 

TRA2B ENSG00000136527 SR protein and SR related List 1 & 2 

TXNL4A ENSG00000141759 U5 snRNP List 1 & 2 

U2AF1 ENSG00000160201 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

U2AF2 ENSG00000063244 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

U2SURP ENSG00000163714 17S U2 snRNP and 17S U2 snRNP associated List 1 & 2 

UPF1 ENSG00000005007 EJC/mRNP List 1 & 2 

USP39 ENSG00000168883 tri-snRNP List 1 & 2 

WBP11 ENSG00000084463 PRP19 complex and PRP19 related List 1 & 2 

WBP4 ENSG00000120688 Recruited at B complex List 1 & 2 

WDR83 ENSG00000123154 Recruited at C complex List 1 & 2 

XAB2 ENSG00000076924 PRP19 complex and PRP19 related List 1 & 2 
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YBX1 ENSG00000065978 linked to splicing and other regulators List 1 & 2 

ZMAT2 ENSG00000146007 Recruited at B complex List 1 & 2 

ZNF830 ENSG00000198783 Recruited at Bact complex List 1 & 2 

ZRANB2 ENSG00000132485 linked to splicing and other regulators List 1 & 2 

ZRSR2 ENSG00000169249 U11/U12 snRNP List 1 & 2 

AGGF1 ENSG00000164252 NA List 2 

ARGLU1 ENSG00000134884 NA List 2 

BAG2 ENSG00000112208 NA List 2 

BCAS1 ENSG00000064787 NA List 2 

BUB3 ENSG00000154473 NA List 2 

C17orf85 ENSG00000074356 NA List 2 

C19orf43 ENSG00000123144 NA List 2 

C1QBP ENSG00000108561 NA List 2 

CCDC130 ENSG00000104957 NA List 2 

CCDC75 ENSG00000152133 NA List 2 

CDK11A ENSG00000008128 NA List 2 

CDK12 ENSG00000167258 NA List 2 

CELF3 ENSG00000159409 NA List 2 

CELF4 ENSG00000101489 NA List 2 

CELF5 ENSG00000161082 NA List 2 

CELF6 ENSG00000140488 NA List 2 

CFAP20 ENSG00000070761 NA List 2 

CIRBP ENSG00000099622 NA List 2 

CLNS1A ENSG00000074201 NA List 2 

CPSF6 ENSG00000111605 NA List 2 

CSN3 ENSG00000171209 NA List 2 

DDX1 ENSG00000079785 NA List 2 

DDX17 ENSG00000100201 NA List 2 

DDX18 ENSG00000088205 NA List 2 

DDX19A ENSG00000168872 NA List 2 

DDX19B ENSG00000157349 NA List 2 

DDX20 ENSG00000064703 NA List 2 

DDX21 ENSG00000165732 NA List 2 

DDX26B ENSG00000165359 NA List 2 

DDX27 ENSG00000124228 NA List 2 

DDX39A ENSG00000123136 NA List 2 

DDX39B ENSG00000198563 NA List 2 

DDX3X ENSG00000215301 NA List 2 

DDX3Y ENSG00000067048 NA List 2 

DDX5 ENSG00000108654 NA List 2 

DDX50 ENSG00000107625 NA List 2 

DDX6 ENSG00000110367 NA List 2 
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DHX30 ENSG00000132153 NA List 2 

DHX34 ENSG00000134815 NA List 2 

DHX36 ENSG00000174953 NA List 2 

DHX40 ENSG00000108406 NA List 2 

DHX57 ENSG00000163214 NA List 2 

DHX9 ENSG00000135829 NA List 2 

DNAJC6 ENSG00000116675 NA List 2 

DNAJC8 ENSG00000126698 NA List 2 

EEF1A1 ENSG00000156508 NA List 2 

EIF2S2 ENSG00000125977 NA List 2 

EIF3A ENSG00000107581 NA List 2 

FAM50B ENSG00000145945 NA List 2 

FAM58A ENSG00000262919 NA List 2 

FRG1 ENSG00000109536 NA List 2 

FUBP3 ENSG00000107164 NA List 2 

GEMIN2 ENSG00000092208 NA List 2 

GEMIN5 ENSG00000082516 NA List 2 

GNB2L1 ENSG00000204628 NA List 2 

GPATCH3 ENSG00000198746 NA List 2 

GPATCH8 ENSG00000186566 NA List 2 

GRSF1 ENSG00000132463 NA List 2 

HNRNPCL3 ENSG00000277058 NA List 2 

HSPA1A ENSG00000204389 NA List 2 

HSPA1B ENSG00000204388 NA List 2 

HSPA5 ENSG00000044574 NA List 2 

HSPB1 ENSG00000106211 NA List 2 

IGF2BP3 ENSG00000136231 NA List 2 

ILF2 ENSG00000143621 NA List 2 

ILF3 ENSG00000129351 NA List 2 

INTS1 ENSG00000164880 NA List 2 

INTS3 ENSG00000143624 NA List 2 

INTS4 ENSG00000149262 NA List 2 

INTS5 ENSG00000185085 NA List 2 

INTS6 ENSG00000102786 NA List 2 

INTS7 ENSG00000143493 NA List 2 

JUP ENSG00000173801 NA List 2 

KIAA1429 ENSG00000164944 NA List 2 

KIAA1967 ENSG00000158941 NA List 2 

KIN ENSG00000151657 NA List 2 

LSM10 ENSG00000181817 NA List 2 

LSMD1 ENSG00000183011 NA List 2 

LUC7L2 ENSG00000146963 NA List 2 
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LUC7L3 ENSG00000108848 NA List 2 

MATR3 ENSG00000015479 NA List 2 

MFSD11 ENSG00000092931 NA List 2 

MOV10 ENSG00000155363 NA List 2 

MSI1 ENSG00000135097 NA List 2 

MSI2 ENSG00000153944 NA List 2 

MYEF2 ENSG00000104177 NA List 2 

NCBP1 ENSG00000136937 NA List 2 

NCBP2 ENSG00000114503 NA List 2 

NELFE ENSG00000204356 NA List 2 

NKAP ENSG00000101882 NA List 2 

NRIP2 ENSG00000053702 NA List 2 

NSRP1 ENSG00000126653 NA List 2 

NUDT21 ENSG00000167005 NA List 2 

NUMA1 ENSG00000137497 NA List 2 

PABPC1 ENSG00000070756 NA List 2 

PAXBP1 ENSG00000159086 NA List 2 

PCBP3 ENSG00000183570 NA List 2 

PCBP4 ENSG00000090097 NA List 2 

PDCD7 ENSG00000090470 NA List 2 

PPM1G ENSG00000115241 NA List 2 

PPP1CA ENSG00000172531 NA List 2 

PPP1R8 ENSG00000117751 NA List 2 

PRMT5 ENSG00000100462 NA List 2 

PRPF38B ENSG00000134186 NA List 2 

PRPF39 ENSG00000185246 NA List 2 

PRPF40B ENSG00000110844 NA List 2 

PSEN1 ENSG00000080815 NA List 2 

PSIP1 ENSG00000164985 NA List 2 

PTBP3 ENSG00000119314 NA List 2 

RBBP6 ENSG00000122257 NA List 2 

RBM14 ENSG00000239306 NA List 2 

RBM15 ENSG00000162775 NA List 2 

RBM15B ENSG00000259956 NA List 2 

RBM23 ENSG00000100461 NA List 2 

RBM26 ENSG00000139746 NA List 2 

RBM27 ENSG00000091009 NA List 2 

RBM3 ENSG00000102317 NA List 2 

RBM42 ENSG00000126254 NA List 2 

RBM45 ENSG00000155636 NA List 2 

RBM47 ENSG00000163694 NA List 2 

RBM4B ENSG00000173914 NA List 2 
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RBM7 ENSG00000076053 NA List 2 

RBMS1 ENSG00000153250 NA List 2 

RBMXL1 ENSG00000213516 NA List 2 

RNF20 ENSG00000155827 NA List 2 

RNF213 ENSG00000173821 NA List 2 

RNF34 ENSG00000170633 NA List 2 

RNF40 ENSG00000103549 NA List 2 

SAP30BP ENSG00000161526 NA List 2 

SEC31B ENSG00000075826 NA List 2 

SKIV2L2 ENSG00000039123 NA List 2 

SMN1 ENSG00000172062 NA List 2 

SNRNP27 ENSG00000124380 NA List 2 

SNRPN ENSG00000128739 NA List 2 

SNURF ENSG00000273173 NA List 2 

SPEN ENSG00000065526 NA List 2 

SRPK3 ENSG00000184343 NA List 2 

SRRT ENSG00000087087 NA List 2 

SSB ENSG00000138385 NA List 2 

TAF15 ENSG00000270647 NA List 2 

TCERG1 ENSG00000113649 NA List 2 

THOC1 ENSG00000079134 NA List 2 

THOC2 ENSG00000125676 NA List 2 

THOC3 ENSG00000051596 NA List 2 

THOC5 ENSG00000100296 NA List 2 

THOC6 ENSG00000131652 NA List 2 

THOC7 ENSG00000163634 NA List 2 

TNPO1 ENSG00000083312 NA List 2 

TOE1 ENSG00000132773 NA List 2 

TOP1MT ENSG00000184428 NA List 2 

TRIM24 ENSG00000122779 NA List 2 

TTC14 ENSG00000163728 NA List 2 

U2AF1L4 ENSG00000161265 NA List 2 

UBL5 ENSG00000198258 NA List 2 

WDR77 ENSG00000116455 NA List 2 

WTAP ENSG00000146457 NA List 2 

YBX3 ENSG00000060138 NA List 2 

ZC3H11A ENSG00000058673 NA List 2 

ZC3H13 ENSG00000123200 NA List 2 

ZC3H18 ENSG00000158545 NA List 2 

ZC3H4 ENSG00000130749 NA List 2 

ZC3HAV1 ENSG00000105939 NA List 2 

ZCCHC10 ENSG00000155329 NA List 2 
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ZCCHC8 ENSG00000033030 NA List 2 

ZCRB1 ENSG00000139168 NA List 2 

ZFR ENSG00000056097 NA List 2 

ZMAT5 ENSG00000100319 NA List 2 

ZMYM3 ENSG00000147130 NA List 2 

ZNF131 ENSG00000172262 NA List 2 

ZNF207 ENSG00000010244 NA List 2 

ZNF326 ENSG00000162664 NA List 2 

ZNF346 ENSG00000113761 NA List 2 

ZRSR2P1 ENSG00000212643 NA List 2 
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Gene Ensembl gene ID Ensembl exon ID mean FIRMA score 
log2 FC (SW480-SW620) 

ABHD6 ENSG00000163686 ENSE00001905638 -1.27 

ABLIM1 ENSG00000099204 ENSE00001000257 1.17 

AC098864.1 ENSG00000177822 ENSE00002042142 1.11 

AC244153.1 ENSG00000276170 ENSE00003733044 -1.03 

ACD ENSG00000102977 ENSE00003326886 1.47 

ACP6 ENSG00000162836 ENSE00002685668 -1.09 

ACSF2 ENSG00000167107 ENSE00002018997 1.47 

ACSF2 ENSG00000167107 ENSE00002062313 1.00 

ACSS1 ENSG00000154930 ENSE00001018478 1.24 

ACSS2 ENSG00000131069 ENSE00003499545 1.16 

ACTN4 ENSG00000130402 ENSE00001234718 1.02 

ACTN4 ENSG00000130402 ENSE00003479194 1.09 

ACTR1B ENSG00000115073 ENSE00001750306 1.06 

ACTR1B ENSG00000115073 ENSE00002463641 1.09 

ADM ENSG00000148926 ENSE00000988124 1.01 

AGPAT3 ENSG00000160216 ENSE00001137610 1.05 

AHI1 ENSG00000135541 ENSE00002149823 -1.15 

AIG1 ENSG00000146416 ENSE00001760143 -1.13 

AK4 ENSG00000162433 ENSE00002341856 -1.32 

AKNAD1 ENSG00000162641 ENSE00002035173 1.25 

AKR1B1 ENSG00000085662 ENSE00001734693 1.04 

AKR1B1 ENSG00000085662 ENSE00001846312 -1.21 

AKR1B1 ENSG00000085662 ENSE00003526531 -1.61 

AKR1B1 ENSG00000085662 ENSE00003572588 -1.31 

AKR1C3 ENSG00000187134 ENSE00003472155 -1.29 

AL365277.1 ENSG00000182109 ENSE00001801843 1.02 

ALDH18A1 ENSG00000059573 ENSE00000987354 -1.10 

ALDH1A3 ENSG00000184254 ENSE00002555275 1.35 

AMPD2 ENSG00000116337 ENSE00001889927 1.01 

AMPD3 ENSG00000133805 ENSE00002173290 -1.30 

ANO7 ENSG00000146205 ENSE00001740295 -1.33 

ANXA1 ENSG00000135046 ENSE00001650954 -1.00 

ANXA6 ENSG00000197043 ENSE00002118867 -1.14 

ANXA6 ENSG00000197043 ENSE00003625652 1.24 

AOC1 ENSG00000002726 ENSE00003716442 1.23 

AQP3 ENSG00000165272 ENSE00003321062 -1.01 

AQP3 ENSG00000165272 ENSE00003467346 -1.12 

ARHGAP45 ENSG00000180448 ENSE00003741889 1.33 

ARHGAP8 ENSG00000241484 ENSE00001900438 1.26 

ARMCX6 ENSG00000198960 ENSE00001941545 -1.13 

ASAP1 ENSG00000153317 ENSE00003519417 1.08 
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ATP1A3 ENSG00000105409 ENSE00003625885 1.00 

ATP5SL ENSG00000105341 ENSE00003044100 1.16 

ATP9B ENSG00000166377 ENSE00002763592 -1.00 

AUTS2 ENSG00000158321 ENSE00001943467 1.11 

BCL11A ENSG00000119866 ENSE00001945539 -1.04 

BMP7 ENSG00000101144 ENSE00001607441 1.22 

BTBD11 ENSG00000151136 ENSE00002363193 1.35 

BTBD6 ENSG00000184887 ENSE00001296252 1.01 

C3orf55 ENSG00000174899 ENSE00001907830 1.16 

C3orf58 ENSG00000181744 ENSE00003506084 1.06 

C9orf152 ENSG00000188959 ENSE00001905392 -1.15 

CAB39L ENSG00000102547 ENSE00001900877 1.10 

CADM1 ENSG00000182985 ENSE00002217285 -1.10 

CADM1 ENSG00000182985 ENSE00002256764 1.45 

CADPS2 ENSG00000081803 ENSE00001776365 -1.03 

CALB1 ENSG00000104327 ENSE00000699388 -1.15 

CALB1 ENSG00000104327 ENSE00001087859 -1.05 

CAMK2D ENSG00000145349 ENSE00002462786 -1.72 

CASP4 ENSG00000196954 ENSE00003732892 -1.10 

CAV1 ENSG00000105974 ENSE00001515426 -1.10 

CAV1 ENSG00000105974 ENSE00001708326 1.10 

CBLB ENSG00000114423 ENSE00000774844 -1.11 

CCND2 ENSG00000118971 ENSE00002239432 1.01 

CCNI ENSG00000118816 ENSE00002086195 1.05 

CD22 ENSG00000012124 ENSE00002995594 1.19 

CD4 ENSG00000010610 ENSE00002219192 -1.24 

CD4 ENSG00000010610 ENSE00002308039 -1.25 

CD4 ENSG00000010610 ENSE00003482311 -1.21 

CD44 ENSG00000026508 ENSE00002157331 1.44 

CD74 ENSG00000019582 ENSE00000841201 1.01 

CDH23 ENSG00000107736 ENSE00003738810 1.23 

CDHR3 ENSG00000128536 ENSE00001835091 1.02 

CHST10 ENSG00000115526 ENSE00001788866 -1.16 

CHST11 ENSG00000171310 ENSE00002423376 -1.41 

CHTF18 ENSG00000127586 ENSE00001643670 -1.10 

CIB2 ENSG00000136425 ENSE00002549216 1.07 

CKLF-CMTM1 ENSG00000217555 ENSE00002169715 -1.12 

CKMT2 ENSG00000131730 ENSE00002024702 -1.01 

CKMT2 ENSG00000131730 ENSE00002047544 1.12 

CMTM3 ENSG00000140931 ENSE00003461182 -1.03 

COL9A3 ENSG00000092758 ENSE00001952511 -1.40 

COL9A3 ENSG00000092758 ENSE00003594174 1.07 

CRABP2 ENSG00000143320 ENSE00001446611 1.57 
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CSK ENSG00000103653 ENSE00002624329 1.13 

CTNND1 ENSG00000198561 ENSE00001189241 1.10 

CUTA ENSG00000112514 ENSE00002178771 -1.07 

CXorf57 ENSG00000147231 ENSE00001458047 -1.36 

CYBRD1 ENSG00000071967 ENSE00001895114 1.52 

DCLK1 ENSG00000133083 ENSE00001482836 1.14 

DDX39B ENSG00000198563 ENSE00001663180 1.05 

DFNB31 ENSG00000095397 ENSE00001141441 -1.10 

DGKA ENSG00000065357 ENSE00002340730 -1.10 

DNAH14 ENSG00000185842 ENSE00002268510 -1.26 

DPEP1 ENSG00000015413 ENSE00002603136 -1.85 

DPP10 ENSG00000175497 ENSE00001881737 1.01 

DPYSL3 ENSG00000113657 ENSE00002076325 1.18 

EDAR ENSG00000135960 ENSE00000804459 1.52 

EFEMP2 ENSG00000172638 ENSE00002144397 -1.03 

EFEMP2 ENSG00000172638 ENSE00002169361 -1.38 

EGFR ENSG00000146648 ENSE00001879915 -1.01 

EPAS1 ENSG00000116016 ENSE00001826981 1.19 

EPAS1 ENSG00000116016 ENSE00001886817 -1.11 

EPB41L4A ENSG00000129595 ENSE00002084379 -1.11 

EPHB4 ENSG00000196411 ENSE00001893555 1.20 

EPHB4 ENSG00000196411 ENSE00001925508 -1.20 

ERBB3 ENSG00000065361 ENSE00002427203 -1.01 

ETV1 ENSG00000006468 ENSE00001824366 -1.14 

FABP3 ENSG00000121769 ENSE00003503829 1.21 

FAM129A ENSG00000135842 ENSE00001602351 1.03 

FAM73B ENSG00000148343 ENSE00001685159 -1.04 

FAM96B ENSG00000166595 ENSE00001621441 -1.13 

FAM96B ENSG00000166595 ENSE00002610746 -1.27 

FGFBP2 ENSG00000007062 ENSE00002056170 1.28 

FGFR2 ENSG00000066468 ENSE00001350377 1.07 

FGFR2 ENSG00000066468 ENSE00001643296 -1.13 

FILIP1L ENSG00000168386 ENSE00001822993 1.32 

FN1 ENSG00000115414 ENSE00001342442 1.29 

FOS ENSG00000170345 ENSE00002530715 1.23 

FOXP1 ENSG00000114861 ENSE00003529965 -1.05 

FOXP2 ENSG00000128573 ENSE00001352900 -1.03 

FOXP2 ENSG00000128573 ENSE00001515531 1.25 

FOXP2 ENSG00000128573 ENSE00001709005 1.20 

FXYD3 ENSG00000089356 ENSE00001114491 -1.19 

GABARAPL1 ENSG00000139112 ENSE00002283585 -1.09 

GALNT6 ENSG00000139629 ENSE00003552051 1.44 

GALNT6 ENSG00000139629 ENSE00003565920 1.35 
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GALNT7 ENSG00000109586 ENSE00003486021 -1.23 

GBP3 ENSG00000117226 ENSE00002587109 1.16 

GLI3 ENSG00000106571 ENSE00001748702 -1.12 

GPR64 ENSG00000173698 ENSE00001313815 1.37 

GRIK2 ENSG00000164418 ENSE00001609672 -1.05 

GSTM4 ENSG00000168765 ENSE00001451016 1.20 

GULP1 ENSG00000144366 ENSE00001891195 -1.17 

GYG2 ENSG00000056998 ENSE00002101522 -1.17 

GYLTL1B ENSG00000165905 ENSE00003547214 1.28 

HDX ENSG00000165259 ENSE00001838765 -1.28 

HGD ENSG00000113924 ENSE00001821570 -1.02 

HMGN5 ENSG00000198157 ENSE00001704577 -1.19 

HNF1A ENSG00000135100 ENSE00002538985 -1.13 

HNF4A ENSG00000101076 ENSE00001723444 -1.30 

HOXB-AS3 ENSG00000233101 ENSE00001838904 1.48 

IGF2BP3 ENSG00000136231 ENSE00001923655 1.02 

IGFBP3 ENSG00000146674 ENSE00001487458 1.10 

IGSF9B ENSG00000080854 ENSE00002198977 1.17 

IKBKB ENSG00000104365 ENSE00002127600 1.02 

INPP4B ENSG00000109452 ENSE00002023798 -1.29 

IQCH ENSG00000103599 ENSE00002541845 -1.65 

IQGAP2 ENSG00000145703 ENSE00000971762 1.13 

KCNAB2 ENSG00000069424 ENSE00001476230 -1.22 

KCNAB2 ENSG00000069424 ENSE00001476313 1.04 

KCNAB2 ENSG00000069424 ENSE00001738518 1.10 

KCNAB2 ENSG00000069424 ENSE00001843042 -1.15 

KCNIP3 ENSG00000115041 ENSE00002497162 1.28 

KCNN4 ENSG00000104783 ENSE00003017464 -1.02 

KHDRBS3 ENSG00000131773 ENSE00002096283 1.05 

KHDRBS3 ENSG00000131773 ENSE00002114635 -1.33 

KIAA0895L ENSG00000196123 ENSE00002610565 -1.06 

KIAA1217 ENSG00000120549 ENSE00001904791 1.19 

KIF21A ENSG00000139116 ENSE00000936431 -1.11 

KLF7 ENSG00000118263 ENSE00001635125 1.29 

KLK7 ENSG00000169035 ENSE00001509794 -1.24 

LAMB2 ENSG00000172037 ENSE00001906755 -1.03 

LCK ENSG00000182866 ENSE00001292351 -1.04 

LGR5 ENSG00000139292 ENSE00000937407 -1.23 

LIMCH1 ENSG00000064042 ENSE00002081817 -1.12 

LMNA ENSG00000160789 ENSE00003744694 1.17 

LOXL2 ENSG00000134013 ENSE00002106382 1.12 

LPCAT2 ENSG00000087253 ENSE00003750395 1.24 

LRRTM1 ENSG00000162951 ENSE00001589302 -1.22 
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MAD1L1 ENSG00000002822 ENSE00001603752 1.12 

MAPKAPK5 ENSG00000089022 ENSE00002340933 -1.03 

METTL9 ENSG00000197006 ENSE00003716685 1.07 

MFNG ENSG00000100060 ENSE00001712318 -1.24 

MFNG ENSG00000100060 ENSE00001776020 1.05 

MGC32805 ENSG00000250328 ENSE00002060565 1.01 

MIB2 ENSG00000197530 ENSE00002081549 -1.05 

MKRN1 ENSG00000133606 ENSE00003488289 1.06 

MLPH ENSG00000115648 ENSE00001652650 1.16 

MLPH ENSG00000115648 ENSE00001809540 1.16 

MME ENSG00000196549 ENSE00001019489 -1.13 

MT1F ENSG00000198417 ENSE00002268058 1.18 

MT1F ENSG00000198417 ENSE00002598869 1.01 

MTUS1 ENSG00000129422 ENSE00002113270 -1.07 

MYB ENSG00000118513 ENSE00003462536 -1.30 

NAE1 ENSG00000159593 ENSE00002602570 -1.14 

NCAM1 ENSG00000149294 ENSE00002187646 1.37 

NDRG1 ENSG00000104419 ENSE00002097689 1.34 

NELL2 ENSG00000184613 ENSE00001357932 -1.24 

NOS2 ENSG00000007171 ENSE00003726980 -1.38 

NR2F1-AS1 ENSG00000237187 ENSE00003702267 -1.40 

NR4A2 ENSG00000153234 ENSE00001782418 -1.06 

NRG2 ENSG00000158458 ENSE00002136061 1.13 

NRP2 ENSG00000118257 ENSE00001709065 -1.32 

NSMF ENSG00000165802 ENSE00001455299 -1.34 

NT5DC4 ENSG00000144130 ENSE00001922295 -1.04 

NTM ENSG00000182667 ENSE00001660288 1.09 

OSBP2 ENSG00000184792 ENSE00001671961 -1.09 

P2RX4 ENSG00000135124 ENSE00002217721 -1.13 

PAX6 ENSG00000007372 ENSE00002193571 -1.07 

PCBP1-AS1 ENSG00000179818 ENSE00001741475 -1.02 

PCDH19 ENSG00000165194 ENSE00001901871 1.38 

PCMT1 ENSG00000120265 ENSE00001909320 -1.19 

PDLIM3 ENSG00000154553 ENSE00002067040 1.02 

PDS5A ENSG00000121892 ENSE00002039370 -1.10 

PEG10 ENSG00000242265 ENSE00003713547 -1.09 

PEG10 ENSG00000242265 ENSE00003729218 1.24 

PEG10 ENSG00000242265 ENSE00001882092 1.19 

PEG10 ENSG00000242265 ENSE00001904124 -1.20 

PFAS ENSG00000178921 ENSE00001233786 -1.01 

PHLDB2 ENSG00000144824 ENSE00003613895 1.10 

PIR ENSG00000087842 ENSE00001833467 1.17 

PLAUR ENSG00000011422 ENSE00003197652 1.10 
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PLOD2 ENSG00000152952 ENSE00001008040 -1.27 

PMP22 ENSG00000109099 ENSE00002264261 1.22 

PPP1R2 ENSG00000184203 ENSE00001662037 1.11 

PROM1 ENSG00000007062 ENSE00002075061 1.41 

PROM1 ENSG00000007062 ENSE00002077095 -1.04 

PSMB9 ENSG00000240065 ENSE00001727868 1.13 

PSMD2 ENSG00000145191 ENSE00001902565 1.32 

PTCH1 ENSG00000185920 ENSE00002339685 1.07 

PTGR1 ENSG00000106853 ENSE00003678205 1.37 

PTK2B ENSG00000120899 ENSE00000818668 1.02 

PVT1 ENSG00000249859 ENSE00001565023 1.18 

PYCR2 ENSG00000143811 ENSE00003733914 1.17 

RAB43 ENSG00000172780 ENSE00001514780 1.12 

RAB6B ENSG00000154917 ENSE00001833196 -1.14 

RAB6B ENSG00000154917 ENSE00001909702 1.05 

RAC2 ENSG00000128340 ENSE00001674760 1.08 

RAPGEF3 ENSG00000079337 ENSE00002213124 -1.01 

RBP1 ENSG00000114115 ENSE00003723860 -1.21 

RCC2 ENSG00000179051 ENSE00001881805 1.02 

RHCE ENSG00000188672 ENSE00003720314 -1.14 

RHOH ENSG00000168421 ENSE00002023424 1.03 

RIN3 ENSG00000100599 ENSE00003729398 1.11 

RNF167 ENSG00000108523 ENSE00002649106 -1.10 

RNF8 ENSG00000112130 ENSE00001932563 -1.32 

ROBO1 ENSG00000169855 ENSE00001829480 -1.15 

S100A6 ENSG00000197956 ENSE00003451566 -1.06 

SATB2 ENSG00000119042 ENSE00001831321 1.14 

SDCBP2 ENSG00000125775 ENSE00003748885 -1.39 

SDK1 ENSG00000146555 ENSE00001594392 1.03 

SELPLG ENSG00000110876 ENSE00001504513 1.55 

SEPT4 ENSG00000108387 ENSE00003480007 1.05 

SGK2 ENSG00000101049 ENSE00001848773 1.01 

SGK2 ENSG00000101049 ENSE00002216908 1.19 

SLC12A9 ENSG00000146828 ENSE00001889752 1.07 

SLC43A3 ENSG00000134802 ENSE00002156079 -1.10 

SLC4A8 ENSG00000050438 ENSE00002359374 -1.47 

SLC7A8 ENSG00000092068 ENSE00003745230 -1.03 

SLIT1 ENSG00000187122 ENSE00003677425 1.06 

SNHG1 ENSG00000255717 ENSE00001438744 1.09 

SORBS1 ENSG00000095637 ENSE00001516977 -1.15 

SOX5 ENSG00000134532 ENSE00002304701 1.09 

SPARC ENSG00000113140 ENSE00002104832 1.01 

SPATS2L ENSG00000196141 ENSE00001782729 -1.11 
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SPON2 ENSG00000159674 ENSE00002048781 1.15 

SPON2 ENSG00000159674 ENSE00002062829 1.17 

SSBP2 ENSG00000145687 ENSE00002048000 1.01 

ST3GAL1 ENSG00000008513 ENSE00002127000 1.12 

ST6GALNAC2 ENSG00000070731 ENSE00002763003 1.38 

STON2 ENSG00000140022 ENSE00002307945 -1.00 

STXBP1 ENSG00000136854 ENSE00001941811 3.49 

SWI5 ENSG00000175854 ENSE00001221456 1.03 

TAF9B ENSG00000187325 ENSE00001627287 -1.12 

TAF9B ENSG00000187325 ENSE00001650044 -1.04 

TBC1D4 ENSG00000136111 ENSE00001863280 -1.06 

TCF7 ENSG00000081059 ENSE00002118128 1.13 

TCF7 ENSG00000081059 ENSE00002129213 1.04 

TEX261 ENSG00000144043 ENSE00001696853 1.16 

THNSL2 ENSG00000144115 ENSE00001915486 -1.17 

TIMP2 ENSG00000035862 ENSE00002898727 -1.25 

TJP1 ENSG00000104067 ENSE00001493913 1.06 

TLE4 ENSG00000106829 ENSE00001912243 1.03 

TMC4 ENSG00000167608 ENSE00003735786 1.62 

TNFRSF9 ENSG00000049249 ENSE00001831101 -1.13 

TP53I11 ENSG00000175274 ENSE00002141764 1.23 

TP53I11 ENSG00000175274 ENSE00002186776 -1.38 

TRIP6 ENSG00000087077 ENSE00001593746 -1.13 

TTC7A ENSG00000068724 ENSE00001839658 -1.12 

TWF2 ENSG00000173366 ENSE00001926724 1.11 

UBE2V2 ENSG00000169139 ENSE00001539502 -1.09 

UGT1A6 ENSG00000167165 ENSE00003703903 -1.12 

USH1C ENSG00000006611 ENSE00002182900 -1.22 

VIPR1 ENSG00000114812 ENSE00003654465 -1.33 

VSIG1 ENSG00000101842 ENSE00001339621 -1.06 

WDR59 ENSG00000103091 ENSE00002506691 -1.27 

WDR59 ENSG00000103091 ENSE00002595213 1.32 

WFDC3 ENSG00000124116 ENSE00001911737 1.05 

WIPF1 ENSG00000115935 ENSE00001730565 1.19 

ZAP70 ENSG00000115085 ENSE00001892068 1.24 

ZAP70 ENSG00000115085 ENSE00003503894 1.46 

ZBED3 ENSG00000132846 ENSE00002051415 1.10 

ZDHHC1 ENSG00000159714 ENSE00002579019 -1.21 

ZDHHC20 ENSG00000180776 ENSE00001773330 1.06 

ZMYND11 ENSG00000015171 ENSE00003552044 1.18 

ZNF385A ENSG00000161642 ENSE00002344606 1.03 

ZNF462 ENSG00000148143 ENSE00001023580 1.41 

ZNF706 ENSG00000120963 ENSE00002109851 1.17 
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Table	S	3:	GO	terms	(biological	processes)	enriched	for	candidate	genes	with	differential	AS	events	between	SW480	and	

SW620	cells	(microarray	data).	

GO term ID Description p-value 

GO:0007411 axon guidance 5.946E-05 

GO:0042127 regulation of cell proliferation 0.0002085 

GO:0001666 response to hypoxia 0.000548 

GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 0.0018831 

GO:0042493 response to drug 0.0028185 

GO:0007155 cell adhesion 0.0038242 

GO:0007165 signal transduction 0.0038418 

GO:0014066 regulation of phosphatidylinositol 3-kinase signaling 0.004021 

GO:0050900 leukocyte migration 0.006161 

GO:0008285 negative regulation of cell proliferation 0.0075429 

GO:0051592 response to calcium ion 0.0076838 

GO:0042981 regulation of apoptotic process 0.0083246 

GO:0048661 positive regulation of smooth muscle cell proliferation 0.0086498 

GO:0043066 negative regulation of apoptotic process 0.0088472 

GO:0000165 MAPK cascade 0.0092649 

GO:0060395 SMAD protein signal transduction 0.009692 

GO:0018108 peptidyl-tyrosine phosphorylation 0.017505 

GO:0030324 lung development 0.0192872 

GO:0006816 calcium ion transport 0.0192872 

GO:0007156 homophilic cell adhesion via plasma membrane adhesion molecules 0.0201788 

GO:0006805 xenobiotic metabolic process 0.0210066 

GO:0042060 wound healing 0.0228173 

GO:0034220 ion transmembrane transport 0.023802 

GO:0045944 positive regulation of transcription from RNA polymerase II promoter 0.0240901 

GO:0008152 metabolic process 0.026306 

GO:0007626 locomotory behavior 0.0267163 

GO:0046777 protein autophosphorylation 0.0293044 

GO:0070374 positive regulation of ERK1 and ERK2 cascade 0.0315391 

GO:0001525 angiogenesis 0.0315918 

GO:0043524 negative regulation of neuron apoptotic process 0.0330745 

GO:0007507 heart development 0.0376352 

GO:0046854 phosphatidylinositol phosphorylation 0.0381169 

GO:0007420 brain development 0.0438346 

GO:0050852 T cell receptor signaling pathway 0.0499184 
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Table	S	4:	GO	terms	(biological	processes)	enriched	for	genes	with	24-h	rhythmic	phase-shifted	SVPs	in	SW480	and	

SW620	cells	(RNA-seq	data).	

Cell line GO term ID Description p-value p.adjust 

SW480 GO:0032799 low-density lipoprotein receptor particle metabolic process 8.14E-04 4.40E-01 

SW480 GO:0002695 negative regulation of leukocyte activation 1.24E-03 4.40E-01 

SW480 GO:0045727 positive regulation of translation 1.24E-03 4.40E-01 

SW480 GO:0010870 positive regulation of receptor biosynthetic process 1.28E-03 4.40E-01 

SW480 GO:0010988 regulation of low-density lipoprotein particle clearance 1.28E-03 4.40E-01 

SW480 GO:0060765 regulation of androgen receptor signaling pathway 1.38E-03 4.40E-01 

SW480 GO:0008380 RNA splicing 1.47E-03 4.40E-01 

SW480 GO:0042130 negative regulation of T cell proliferation 1.67E-03 4.40E-01 

SW480 GO:0000377 RNA splicing, via transesterification reactions with bulged 
adenosine as nucleophile 1.91E-03 4.40E-01 

SW480 GO:0000398 mRNA splicing, via spliceosome 1.91E-03 4.40E-01 

SW480 GO:0000375 RNA splicing, via transesterification reactions 2.10E-03 4.40E-01 

SW480 GO:0006491 N-glycan processing 2.15E-03 4.40E-01 

SW480 GO:0033143 regulation of intracellular steroid hormone receptor signaling 
pathway 2.39E-03 4.40E-01 

SW480 GO:2001242 regulation of intrinsic apoptotic signaling pathway 2.41E-03 4.40E-01 

SW480 GO:0048012 hepatocyte growth factor receptor signaling pathway 2.70E-03 4.40E-01 

SW480 GO:2001224 positive regulation of neuron migration 2.70E-03 4.40E-01 

SW480 GO:0051250 negative regulation of lymphocyte activation 2.78E-03 4.40E-01 

SW480 GO:0006397 mRNA processing 2.81E-03 4.40E-01 

SW480 GO:0043484 regulation of RNA splicing 2.81E-03 4.40E-01 

SW480 GO:0050866 negative regulation of cell activation 2.81E-03 4.40E-01 

SW480 GO:0032945 negative regulation of mononuclear cell proliferation 3.03E-03 4.40E-01 

SW480 GO:0050672 negative regulation of lymphocyte proliferation 3.03E-03 4.40E-01 

SW480 GO:0034383 low-density lipoprotein particle clearance 3.22E-03 4.47E-01 

SW480 GO:0070664 negative regulation of leukocyte proliferation 3.63E-03 4.55E-01 

SW480 GO:0034250 positive regulation of cellular amide metabolic process 3.65E-03 4.55E-01 

SW480 GO:0048013 ephrin receptor signaling pathway 3.71E-03 4.55E-01 

SW480 GO:0006744 ubiquinone biosynthetic process 4.03E-03 4.57E-01 

SW480 GO:1901663 quinone biosynthetic process 4.03E-03 4.57E-01 

SW480 GO:0050868 negative regulation of T cell activation 4.25E-03 4.57E-01 

SW480 GO:0030522 intracellular receptor signaling pathway 4.30E-03 4.57E-01 

SW480 GO:0006743 ubiquinone metabolic process 4.81E-03 4.80E-01 

SW480 GO:0010984 regulation of lipoprotein particle clearance 4.81E-03 4.80E-01 

SW620 GO:0008380 RNA splicing 2.24E-06 3.75E-03 

SW620 GO:0010608 posttranscriptional regulation of gene expression 1.29E-05 7.30E-03 

SW620 GO:0034248 regulation of cellular amide metabolic process 1.49E-05 7.30E-03 

SW620 GO:0006417 regulation of translation 1.99E-05 7.30E-03 

SW620 GO:0000377 RNA splicing, via transesterification reactions with bulged 
adenosine as nucleophile 2.79E-05 7.30E-03 

SW620 GO:0000398 mRNA splicing, via spliceosome 2.79E-05 7.30E-03 

SW620 GO:0000375 RNA splicing, via transesterification reactions 3.05E-05 7.30E-03 
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Cell line GO term ID Description p-value p.adjust 

SW620 GO:0006397 mRNA processing 4.99E-05 1.04E-02 

SW620 GO:0031047 gene silencing by RNA 6.68E-05 1.24E-02 

SW620 GO:0006337 nucleosome disassembly 2.93E-04 4.10E-02 

SW620 GO:0062033 positive regulation of mitotic sister chromatid segregation 2.93E-04 4.10E-02 

SW620 GO:0043484 regulation of RNA splicing 2.94E-04 4.10E-02 

SW620 GO:0034250 positive regulation of cellular amide metabolic process 3.69E-04 4.61E-02 

SW620 GO:0031498 chromatin disassembly 4.13E-04 4.61E-02 

SW620 GO:0032986 protein-DNA complex disassembly 4.13E-04 4.61E-02 

SW620 GO:0048024 regulation of mRNA splicing, via spliceosome 4.51E-04 4.71E-02 

SW620 GO:0035308 negative regulation of protein dephosphorylation 4.88E-04 4.71E-02 

SW620 GO:0035305 negative regulation of dephosphorylation 5.32E-04 4.71E-02 

SW620 GO:1903311 regulation of mRNA metabolic process 5.35E-04 4.71E-02 
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Table	S	5:	Tissues	in	the	murine	and	baboon	multi-organ	circadian	transcriptome	datasets.	

Abbreviation Tissue Tissue type Species Dataset 

ADG Adrenal gland Secretory Mouse GSE54650 

AOR Aorta Muscle Mouse GSE54650 

BAT Brown fat Adipose Mouse GSE54650 

BST Brainstem Brain Mouse GSE54650 

CER Cerebellum Brain Mouse GSE54650 

HEA Heart Muscle Mouse GSE54650 

HYP Hypothalamus Brain Mouse GSE54650 

KID Kidney Excretory Mouse GSE54650 

LIV Liver Liver Mouse GSE54650 

LUN Lung Lung Mouse GSE54650 

MUS Skeletal muscle Muscle Mouse GSE54650 

WAT White fat Adipose Mouse GSE54650 

ADC Adrenal cortex Secretory Olive baboon GSE98965 

ADM Adrenal medulla Secretory Olive baboon GSE98965 

AMY Amygdala Brain Olive baboon GSE98965 

ANT Antrum Digestive Olive baboon GSE98965 

AOR Aorta Muscle Olive baboon GSE98965 

ARC Arcuate nucleus Brain Olive baboon GSE98965 

ASC Ascending colon Digestive Olive baboon GSE98965 

AXL Axillary lymphonodes Immune Olive baboon GSE98965 

BLA Bladder Excretory Olive baboon GSE98965 

BOM Bone marrow Immune Olive baboon GSE98965 

CEC Cecum Digestive Olive baboon GSE98965 

CER Cerebellum Brain Olive baboon GSE98965 

COR Cornea Eye Olive baboon GSE98965 

DEC Descending colon Digestive Olive baboon GSE98965 

DMH Dorsomedial hypothalamus Brain Olive baboon GSE98965 

DUO Duodenum Digestive Olive baboon GSE98965 

HAB Habenula Brain Olive baboon GSE98965 

HEA Heart Muscle Olive baboon GSE98965 

HIP Hippocampus Brain Olive baboon GSE98965 

ILE Ileum Digestive Olive baboon GSE98965 

IRI Iris Eye Olive baboon GSE98965 

KIC Kidney cortex Excretory Olive baboon GSE98965 

KIM Kidney medulla Excretory Olive baboon GSE98965 

LGP Lateral globus pallidus Brain Olive baboon GSE98965 

LH Lateral hypothalamus Brain Olive baboon GSE98965 

LIV Liver Liver Olive baboon GSE98965 

LUN Lungs Lung Olive baboon GSE98965 

MEL Mesenteric lymphonodes Immune Olive baboon GSE98965 

MGP Medial globus pallidus Brain Olive baboon GSE98965 

MMB Mammilliary body Brain Olive baboon GSE98965 
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Abbreviation Tissue Tissue type Species Dataset 

MUA Muscle abdominal Muscle Olive baboon GSE98965 

MUG Muscle gastrocnemian Muscle Olive baboon GSE98965 

OES Oesophagus Digestive Olive baboon GSE98965 

OLB Olfactory bulb Brain Olive baboon GSE98965 

OMF Omental fat Adipose Olive baboon GSE98965 

ONH Optic nerve head Eye Olive baboon GSE98965 

PAN Pancreas Pancreas Olive baboon GSE98965 

PIN Pineal gland Secretory Olive baboon GSE98965 

PIT Pituitary Secretory Olive baboon GSE98965 

PON Pons Brain Olive baboon GSE98965 

PRA Preoptic area Brain Olive baboon GSE98965 

PRC Prefrontal cortex Brain Olive baboon GSE98965 

PRO Prostate Genital Olive baboon GSE98965 

PUT Putamen Brain Olive baboon GSE98965 

PVN Paraventricular nuclei Brain Olive baboon GSE98965 

RET Retina Eye Olive baboon GSE98965 

RPE Retinal pigment epithelium Eye Olive baboon GSE98965 

SCN Suprachiasmatic nuclei Brain Olive baboon GSE98965 

SKI Skin Skin Olive baboon GSE98965 

SMM Smooth muscle Digestive Olive baboon GSE98965 

SON Supraoptic nucleus Brain Olive baboon GSE98965 

SPL Spleen Immune Olive baboon GSE98965 

STF Stomach fundus Digestive Olive baboon GSE98965 

SUN Substantia nigra Brain Olive baboon GSE98965 

TES Testicles Genital Olive baboon GSE98965 

THA Thalamus Brain Olive baboon GSE98965 

THR Thyroid Secretory Olive baboon GSE98965 

VIC Visual cortex Brain Olive baboon GSE98965 

VMH Ventromedial hypothalamus Brain Olive baboon GSE98965 

WAM White adipose mesenteric Adipose Olive baboon GSE98965 

WAP White adipose pericardial Adipose Olive baboon GSE98965 

WAR White adipose perirenal Adipose Olive baboon GSE98965 

WAS White adipose subcutaneous Adipose Olive baboon GSE98965 

WAT White adipose retroperitoneal Adipose Olive baboon GSE98965 
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Table	S	6:	GO	terms	(biological	processes)	enriched	for	genes	with	rhythmic	FIRMAGene	scores	and	more	than	one	

expressed	splice	variant	in	murine	tissues.	

Period ID Description pvalue p.adjust 

24 h GO:0048588 developmental cell growth 1.01E-08 5.06E-05 

24 h GO:0070997 neuron death 5.11E-07 1.08E-03 

24 h GO:1901214 regulation of neuron death 6.49E-07 1.08E-03 

24 h GO:0007623 circadian rhythm 1.37E-06 1.38E-03 

24 h GO:0022613 ribonucleoprotein complex biogenesis 1.37E-06 1.38E-03 

24 h GO:0007409 Axonogenesis 3.20E-06 2.41E-03 

24 h GO:0042254 ribosome biogenesis 3.57E-06 2.41E-03 

24 h GO:1990138 neuron projection extension 3.85E-06 2.41E-03 

24 h GO:0060560 developmental growth involved in morphogenesis 7.02E-06 3.62E-03 

24 h GO:0008630 intrinsic apoptotic signaling pathway in response to DNA dam-
age 7.23E-06 3.62E-03 

24 h GO:0010498 proteasomal protein catabolic process 8.70E-06 3.83E-03 

24 h GO:1903828 negative regulation of cellular protein localization 9.17E-06 3.83E-03 

24 h GO:0042771 intrinsic apoptotic signaling pathway in response to DNA dam-
age by p53 class mediator 1.06E-05 4.09E-03 

24 h GO:1902165 regulation of intrinsic apoptotic signaling pathway in response to 
DNA damage by p53 class mediator 2.20E-05 7.88E-03 

24 h GO:0031647 regulation of protein stability 2.36E-05 7.88E-03 

24 h GO:0048675 axon extension 2.59E-05 8.13E-03 

24 h GO:0032922 circadian regulation of gene expression 2.87E-05 8.14E-03 

24 h GO:0010721 negative regulation of cell development 3.04E-05 8.14E-03 

24 h GO:1902229 regulation of intrinsic apoptotic signaling pathway in response to 
DNA damage 3.14E-05 8.14E-03 

24 h GO:0048511 rhythmic process 3.25E-05 8.14E-03 

24 h GO:0051402 neuron apoptotic process 3.68E-05 8.78E-03 

24 h GO:0010769 regulation of cell morphogenesis involved in differentiation 4.06E-05 9.26E-03 

24 h GO:0051146 striated muscle cell differentiation 4.58E-05 9.99E-03 

12 h GO:0010498 proteasomal protein catabolic process 2.21E-10 1.13E-06 

12 h GO:0043161 proteasome-mediated ubiquitin-dependent protein catabolic pro-
cess 5.34E-09 1.36E-05 

12 h GO:0061136 regulation of proteasomal protein catabolic process 9.04E-07 1.40E-03 

12 h GO:1903364 positive regulation of cellular protein catabolic process 1.10E-06 1.40E-03 

12 h GO:1903362 regulation of cellular protein catabolic process 2.60E-06 2.48E-03 

12 h GO:0031647 regulation of protein stability 3.93E-06 2.48E-03 

12 h GO:0032436 positive regulation of proteasomal ubiquitin-dependent protein 
catabolic process 4.74E-06 2.48E-03 

12 h GO:0045732 positive regulation of protein catabolic process 4.77E-06 2.48E-03 

12 h GO:2000060 positive regulation of ubiquitin-dependent protein catabolic pro-
cess 5.19E-06 2.48E-03 

12 h GO:1903050 regulation of proteolysis involved in cellular protein catabolic 
process 5.20E-06 2.48E-03 

12 h GO:1901800 positive regulation of proteasomal protein catabolic process 5.37E-06 2.48E-03 
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Period ID Description pvalue p.adjust 

12 h GO:1903052 positive regulation of proteolysis involved in cellular protein cat-
abolic process 6.81E-06 2.86E-03 

12 h GO:0007160 cell-matrix adhesion 7.31E-06 2.86E-03 

12 h GO:0006644 phospholipid metabolic process 1.47E-05 4.54E-03 

12 h GO:0006913 nucleocytoplasmic transport 1.52E-05 4.54E-03 

12 h GO:0051169 nuclear transport 1.52E-05 4.54E-03 

12 h GO:0022613 ribonucleoprotein complex biogenesis 1.52E-05 4.54E-03 

12 h GO:0042176 regulation of protein catabolic process 1.61E-05 4.54E-03 

12 h GO:1903311 regulation of mRNA metabolic process 2.15E-05 5.64E-03 

12 h GO:0002181 cytoplasmic translation 2.22E-05 5.64E-03 

12 h GO:0006397 mRNA processing 2.68E-05 6.49E-03 

12 h GO:0060999 positive regulation of dendritic spine development 2.85E-05 6.59E-03 

12 h GO:0008380 RNA splicing 3.34E-05 6.88E-03 

12 h GO:0035304 regulation of protein dephosphorylation 3.35E-05 6.88E-03 

12 h GO:0033119 negative regulation of RNA splicing 3.38E-05 6.88E-03 

12 h GO:0009896 positive regulation of catabolic process 3.60E-05 7.05E-03 

12 h GO:0031589 cell-substrate adhesion 4.65E-05 8.22E-03 

12 h GO:0034660 ncRNA metabolic process 4.86E-05 8.22E-03 

12 h GO:0006405 RNA export from nucleus 4.92E-05 8.22E-03 

12 h GO:0031570 DNA integrity checkpoint 4.98E-05 8.22E-03 

12 h GO:0032434 regulation of proteasomal ubiquitin-dependent protein catabolic 
process 5.01E-05 8.22E-03 

12 h GO:0006650 glycerophospholipid metabolic process 5.29E-05 8.31E-03 

12 h GO:0046486 glycerolipid metabolic process 5.47E-05 8.31E-03 

12 h GO:1903008 organelle disassembly 5.63E-05 8.31E-03 

12 h GO:0031331 positive regulation of cellular catabolic process 5.83E-05 8.31E-03 

12 h GO:0060560 developmental growth involved in morphogenesis 5.94E-05 8.31E-03 

12 h GO:0000077 DNA damage checkpoint 6.04E-05 8.31E-03 

12 h GO:0051056 regulation of small GTPase mediated signal transduction 6.47E-05 8.66E-03 

12 h GO:0006914 autophagy 7.07E-05 8.87E-03 

12 h GO:0061919 process utilizing autophagic mechanism 7.07E-05 8.87E-03 

12 h GO:0048025 negative regulation of mRNA splicing, via spliceosome 7.14E-05 8.87E-03 
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Table	S	7:	GO	terms	(biological	processes)	enriched	for	genes	with	rhythmic	phase-shifted	SVPs	in	baboon	tissues.	

Period ID Description p-value p.adjust 

24 h GO:0008380 RNA splicing 7.81E-14 3.97E-10 

24 h GO:0000375 RNA splicing, via transesterification reactions 5.54E-13 1.18E-09 

24 h GO:0000377 RNA splicing, via transesterification reactions with bulged adeno-
sine as nucleophile 1.14E-12 1.18E-09 

24 h GO:0000398 mRNA splicing, via spliceosome 1.14E-12 1.18E-09 

24 h GO:0006397 mRNA processing 1.16E-12 1.18E-09 

24 h GO:1903311 regulation of mRNA metabolic process 3.86E-12 3.27E-09 

24 h GO:0050684 regulation of mRNA processing 3.71E-11 2.70E-08 

24 h GO:0048024 regulation of mRNA splicing, via spliceosome 1.15E-09 7.29E-07 

24 h GO:0043484 regulation of RNA splicing 1.70E-09 9.60E-07 

24 h GO:0048193 Golgi vesicle transport 2.63E-08 1.34E-05 

24 h GO:0016482 cytosolic transport 4.30E-08 1.99E-05 

24 h GO:0000381 regulation of alternative mRNA splicing, via spliceosome 1.07E-06 4.52E-04 

24 h GO:0000380 alternative mRNA splicing, via spliceosome 2.55E-06 9.98E-04 

24 h GO:0010608 posttranscriptional regulation of gene expression 5.26E-06 1.91E-03 

24 h GO:0032469 endoplasmic reticulum calcium ion homeostasis 6.32E-06 2.14E-03 

24 h GO:0006403 RNA localization 9.28E-06 2.95E-03 

24 h GO:0016569 covalent chromatin modification 1.33E-05 3.99E-03 

24 h GO:0016570 histone modification 1.52E-05 4.29E-03 

24 h GO:0034248 regulation of cellular amide metabolic process 1.79E-05 4.79E-03 

24 h GO:0006890 retrograde vesicle-mediated transport, Golgi to ER 2.37E-05 5.75E-03 

24 h GO:0009896 positive regulation of catabolic process 2.38E-05 5.75E-03 

24 h GO:0006417 regulation of translation 3.47E-05 8.01E-03 

24 h GO:2001233 regulation of apoptotic signaling pathway 4.33E-05 9.57E-03 

24 h GO:0006997 nucleus organization 5.31E-05 9.98E-03 

24 h GO:1903362 regulation of cellular protein catabolic process 5.38E-05 9.98E-03 

24 h GO:0050657 nucleic acid transport 5.39E-05 9.98E-03 

24 h GO:0050658 RNA transport 5.39E-05 9.98E-03 

24 h GO:0022029 telencephalon cell migration 5.50E-05 9.98E-03 

24 h GO:0021795 cerebral cortex cell migration 5.81E-05 1.02E-02 

24 h GO:0015931 nucleobase-containing compound transport 7.19E-05 1.20E-02 

24 h GO:0051236 establishment of RNA localization 7.32E-05 1.20E-02 

24 h GO:0042176 regulation of protein catabolic process 7.97E-05 1.24E-02 

24 h GO:0033120 positive regulation of RNA splicing 8.39E-05 1.24E-02 

24 h GO:0006986 response to unfolded protein 8.52E-05 1.24E-02 

24 h GO:0007005 mitochondrion organization 8.53E-05 1.24E-02 

24 h GO:0031331 positive regulation of cellular catabolic process 9.50E-05 1.31E-02 

24 h GO:0043547 positive regulation of GTPase activity 9.80E-05 1.31E-02 

24 h GO:0034620 cellular response to unfolded protein 9.82E-05 1.31E-02 

24 h GO:0021885 forebrain cell migration 1.02E-04 1.32E-02 

24 h GO:0006405 RNA export from nucleus 1.41E-04 1.70E-02 

24 h GO:0034249 negative regulation of cellular amide metabolic process 1.41E-04 1.70E-02 
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Period ID Description p-value p.adjust 

24 h GO:0043488 regulation of mRNA stability 1.41E-04 1.70E-02 

24 h GO:0016049 cell growth 1.54E-04 1.80E-02 

24 h GO:0017148 negative regulation of translation 1.55E-04 1.80E-02 

24 h GO:1903313 positive regulation of mRNA metabolic process 1.68E-04 1.88E-02 

24 h GO:0051656 establishment of organelle localization 1.70E-04 1.88E-02 

24 h GO:0031116 positive regulation of microtubule polymerization 1.88E-04 2.03E-02 

24 h GO:0043087 regulation of GTPase activity 2.02E-04 2.11E-02 

24 h GO:0036109 alpha-linolenic acid metabolic process 2.03E-04 2.11E-02 

24 h GO:0031330 negative regulation of cellular catabolic process 2.11E-04 2.12E-02 

24 h GO:0000086 G2/M transition of mitotic cell cycle 2.13E-04 2.12E-02 

24 h GO:0034976 response to endoplasmic reticulum stress 2.20E-04 2.15E-02 

24 h GO:0035966 response to topologically incorrect protein 2.36E-04 2.24E-02 

24 h GO:0061013 regulation of mRNA catabolic process 2.38E-04 2.24E-02 

24 h GO:0035967 cellular response to topologically incorrect protein 2.56E-04 2.36E-02 

24 h GO:0031334 positive regulation of protein complex assembly 2.81E-04 2.55E-02 

24 h GO:0043254 regulation of protein complex assembly 2.96E-04 2.64E-02 

24 h GO:1902905 positive regulation of supramolecular fiber organization 3.12E-04 2.73E-02 

24 h GO:0045732 positive regulation of protein catabolic process 3.25E-04 2.80E-02 

24 h GO:2001252 positive regulation of chromosome organization 3.51E-04 2.98E-02 

24 h GO:0090169 regulation of spindle assembly 3.61E-04 3.01E-02 

24 h GO:0043487 regulation of RNA stability 3.83E-04 3.14E-02 

24 h GO:0010822 positive regulation of mitochondrion organization 4.05E-04 3.27E-02 

24 h GO:0006616 SRP-dependent cotranslational protein targeting to membrane, 
translocation 4.56E-04 3.51E-02 

24 h GO:0051973 positive regulation of telomerase activity 4.59E-04 3.51E-02 

24 h GO:1903364 positive regulation of cellular protein catabolic process 4.62E-04 3.51E-02 

24 h GO:0006914 autophagy 4.69E-04 3.51E-02 

24 h GO:0061919 process utilizing autophagic mechanism 4.69E-04 3.51E-02 

24 h GO:0040001 establishment of mitotic spindle localization 4.88E-04 3.53E-02 

24 h GO:1901987 regulation of cell cycle phase transition 4.90E-04 3.53E-02 

24 h GO:0044839 cell cycle G2/M phase transition 4.95E-04 3.53E-02 

24 h GO:0090224 regulation of spindle organization 5.07E-04 3.53E-02 

24 h GO:1903146 regulation of autophagy of mitochondrion 5.07E-04 3.53E-02 

24 h GO:0022411 cellular component disassembly 5.45E-04 3.70E-02 

24 h GO:0071826 ribonucleoprotein complex subunit organization 5.47E-04 3.70E-02 

24 h GO:0097711 ciliary basal body-plasma membrane docking 5.68E-04 3.79E-02 

24 h GO:0010389 regulation of G2/M transition of mitotic cell cycle 5.74E-04 3.79E-02 

24 h GO:0042147 retrograde transport, endosome to Golgi 5.89E-04 3.84E-02 

24 h GO:0016197 endosomal transport 6.28E-04 4.04E-02 

24 h GO:0031112 positive regulation of microtubule polymerization or depolymeri-
zation 6.47E-04 4.07E-02 

24 h GO:0036498 IRE1-mediated unfolded protein response 6.49E-04 4.07E-02 

24 h GO:0010948 negative regulation of cell cycle process 7.53E-04 4.67E-02 
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Period ID Description p-value p.adjust 

24 h GO:0044089 positive regulation of cellular component biogenesis 7.72E-04 4.73E-02 

12 h GO:0030705 cytoskeleton-dependent intracellular transport 1.97E-05 6.26E-02 

12 h GO:0016482 cytosolic transport 3.35E-05 6.26E-02 

12 h GO:0006892 post-Golgi vesicle-mediated transport 4.74E-05 6.26E-02 

12 h GO:0042118 endothelial cell activation 8.72E-05 8.64E-02 

12 h GO:0099518 vesicle cytoskeletal trafficking 1.82E-04 1.44E-01 

12 h GO:0051656 establishment of organelle localization 2.24E-04 1.48E-01 

12 h GO:0048193 Golgi vesicle transport 2.70E-04 1.53E-01 

12 h GO:0010970 transport along microtubule 3.48E-04 1.53E-01 

12 h GO:0099111 microtubule-based transport 3.48E-04 1.53E-01 

12 h GO:0035735 intraciliary transport involved in cilium assembly 4.98E-04 1.69E-01 

12 h GO:0019080 viral gene expression 5.03E-04 1.69E-01 

12 h GO:0048675 axon extension 5.94E-04 1.69E-01 

12 h GO:0051648 vesicle localization 6.09E-04 1.69E-01 

12 h GO:0072384 organelle transport along microtubule 6.43E-04 1.69E-01 

12 h GO:2000651 positive regulation of sodium ion transmembrane transporter ac-
tivity 6.67E-04 1.69E-01 

12 h GO:0010611 regulation of cardiac muscle hypertrophy 7.02E-04 1.69E-01 

12 h GO:0031503 protein-containing complex localization 7.25E-04 1.69E-01 

12 h GO:0014743 regulation of muscle hypertrophy 8.66E-04 1.91E-01 

12 h GO:0051650 establishment of vesicle localization 9.27E-04 1.94E-01 
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Table	S	8:	Overview	of	24-h	rhythmic	phase-shifted	SVPs	detected	in	at	least	six	baboon	tissues.	

Gene	 SVPs	 Tissues	
Circular	

mean	phase	
±	SD	(CT)	

Rayleigh	test	
p-value	

Mean	phase	
difference		
±	SD	(h)	

ADD1 
ADD1-201 COR, HEA, ILE, KIM, 

STF, THR, VIC 
7.21	±	0.42 0.00048 

10.18	±	2.65 
ADD1-205 20.08	±	0.89 0.03497 

CCNL2 
CCNL2-202 ADC, ADM, ASC, HEA, 

ILE, KIC, OMF, SPL, 
STF 

5.52	±	0.27 0 
10.51	±	1.16 

CCNL2-205 18.51	±	0.41 0 

CPNE1 
CPNE1-203 BLA, CER, COR, ILE, 

OMF, SKI, THR 
19.43	±	0.88 0.03391 

10.45	±	0.59 
CPNE1-204 8.36	±	0.92 0.04269 

CSNK2A1 
ENSPANT00000043774 HEA, KIC, LUN, OMF, 

PRO, THR 
6.19	±	0.17 0.00012 

10.86	±	0.78 
ENSPANT00000055451 18.53	±	0.44 0.00235 

DRG1 
DRG1-201 ADM, AXL, DUO, ILE, 

LUN, STF, WAT 
6.06	±	0.37 0.00023 

10.63	±	0.85 
DRG1-202 17.40	±	0.41 0.00040 

EIF3H 
EIF3H-201 DUO, HEA, SKI, STF, 

TES, THA, THR 
5.31	±	0.44 0.00061 

10.75	±	1.85 
EIF3H-203 17.45	±	0.32 8.61E-05 

EXOC3 
EXOC3-201 ADC, ADM, ASC, CEC, 

MGP, MMB, MUA 
6.24	±	0.43 0.00055 

11.30	±	0.67 
EXOC3-204 17.78	±	0.29 3.04E-05 

HNRNPAB 
HNRNPAB-201 ANT, ASC, COR, DEC, 

KIM, MGP, MUA, OMF, 
PIT 

6.49	±	0.45 2.34E-05 
10.34	±	1.42 

HNRNPAB-202 19.07	±	0.37 0 

HSD17B4 
HSD17B4-201 BLA, CEC, DMH, MUG, 

PRO, SUN 
8.61	±	0.20 0.00017 

9.96	±	1.94 
HSD17B4-203 19.17	±	0.41 0.00186 

MCFD2 
MCFD2-201 ADC, ADM, BLA, COR, 

KIC, LUN, THR 
18.52	±	0.39 0.00032 

9.72	±	1.78 
MCFD2-202 5.07	±	0.33 0.00011 

MOB4 
MOB4-201 ADC, HEA, LUN, OMF, 

SKI, STF, WAT 
5.16	±	0.81 0.01936 

10.47	±	1.83 
MOB4-202 17.47	±	0.46 0.00078 

NELFE 
NELFE-201 ADC, ADM, ASC, MUA, 

OMF, PRC, SPL, WAP 
7.00	±	0.46 0.00019 

10.75	±	0.82 
NELFE-202 17.82	±	0.47 0.00024 

NRDE-2 
ENSPANT00000019601 ADM, KIM, MGP, MMB, 

RPE, SPL, WAP 
18.28	±	0.42 0.00049 

11.66	±	0.22 
ENSPANT00000021732 6.44	±	0.36 0.00019 

PAF1 
PAF1-201 ADC, ADM, ASC, BLA, 

KIC, WAP 
18.07	±	0.51 0.00402 

11.27	±	0.56 
PAF1-203 6.02	±	0.45 0.00249 

PCBP2 
PCBP2-201 DEC, DMH, MMB, 

MUG, PRA, PRC 
7.15	±	0.52 0.00466 

10.90	±	0.67 
PCBP2-204 20.06	±	0.35 0.00098 

PEX6 
PEX6-202 ADC, BLA, CEC, DMH, 

KIM, PON, SUN 
15.91	±	0.72 0.01000 

10.32	±	1.25 
PEX6-203 5.49	±	0.49 0.00111 

RPS3 
RPS3-201 KIM, MMB, MUG, PRC, 

SKI, THA  
7.03	±	0.43 0.00207 

10.74	±	0.59 
RPS3-203 18.93	±	0.34 0.00090 

RPS3 RPS3-202 7.29	±	0.41 0.00177 10.74	±	0.59 
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Gene	 SVPs	 Tissues	
Circular	

mean	phase	
±	SD	(CT)	

Rayleigh	test	
p-value	

Mean	phase	
difference		
±	SD	(h)	

RPS3-203 KIM, LUN, MUG, OLB, 
STF, THA 16.86	±	0.48 0.00334 

SEPHS1 
ENSPANT00000021592 ADM, LUN, MUG, PRO, 

SPL, STF, THR 
6.90	±	0.40 0.00034 

11.30	±	0.39 
ENSPANT00000040491 18.61	±	0.44 0.00059 

SERINC3 
SERINC3-201 ADC, ANT, HAB, LIV, 

LUN, THR 
6.31	±	0.55 0.00600 

11.18	±	0.80 
SERINC3-202 18.45	±	0.49 0.00360 

TAF15 
TAF15-201 ADM, KIC, LIV, LUN, 

PRO, THR 
5.62	±	0.43 0.00211 

11.16	±	0.60 
TAF15-202 17.75	±	0.36 0.00117 

ZNF207 
ZNF207-205 ADM, COR, KIM, LUN, 

SKI, THR 
18.12	±	0.35 0.00100 

11.56	±	0.51 
ZNF207-208 6.22	±	0.31 0.00067 
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7.1.3 External Data Files 

External	data	file	1:	Phase-shifted	24-h	rhythmic	SVPs	in	SW480	cells	and	SW620	cells.	

External	data	file	2:	Genes	with	candidate	24-h	and	12-h	rhythmic	AS	events	in	murine	tissues.	

External	data	file	3:	Phase-shifted	24-h	and	12-h	rhythmic	SVPs	in	olive	baboon	tissues.	
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7.2 Zusammenfassung 

Im	Körper	zahlreicher	Organismen	regelt	eine	innere	Uhr	den	Ablauf	physiologischer	Prozesse	im	Ein-

klang	mit	dem	Tagesrhythmus	der	Umwelt.	Auf	zellulärer	Ebene	entsteht	die	sogenannte	circadiane	

Rhythmik	durch	ein	Zusammenspiel	von	Uhrgenen	und	-proteinen,	welche	durch	negative	Rückkopp-

lungsschleifen	miteinander	interagieren	und	Oszillationen	mit	einer	24-Stunden-Periodik	in	der	Ex-

pression	zahlreicher	Zielgene	auslösen.	Die	hieraus	resultierenden	Rhythmen	in	der	Verfügbarkeit	von	

Proteinen	und	anderen	biologischen	Molekülen	sind	wiederum	für	die	zeitliche	Organisation	einer	

Vielzahl	biologischer	Prozesse	verantwortlich,	darunter	möglicherweise	alternatives	Spleißen.	Alter-

natives	Spleißen	beschreibt	einen	Mechanismus	der	Genregulation,	bei	dem	aus	einem	einzigen	Gen	

durch	 variable	Kombination	 von	RNA-Teilabschnitten	mehrere	 verschiedene	Proteinvarianten	mit	

zum	Teil	unterschiedlichen	Eigenschaften	erstellt	werden	können.	Sowohl	Störungen	der	circadianen	

Uhr	als	auch	anomales	Spleißen	werden	mit	der	Entstehung	und	Weiterentwicklung	von	Krebserkran-

kungen	in	Verbindung	gebracht.	

Die	vorliegende	Dissertation	geht	der	Frage	nach,	inwieweit	eine	circadiane	Regulation	von	alternati-

vem	Spleißen	in	Säugerzellen	vorliegt	und	ob	diese	sich	für	Krebszellen	unterschiedlicher	Tumorsta-

dien	unterscheiden.	Im	Besonderen	wird	die	Hypothese	untersucht,	ob	Veränderungen	von	circadian	

regulierten	Spleiß-Ereignissen	zur	Produktion	von	Proteinvarianten	führen	könnten,	die	zur	bösarti-

gen	Entwicklung	von	Krebszellen	beitragen.	Die	der	Arbeit	zugrundeliegenden	Daten	stammen	von	

zwei	menschlichen	Darmkrebszelllinien,	SW480	und	SW620,	welche	ursprünglich	von	einem	Primär-

tumor	und	einer	Metastase	desselben	Patienten	etabliert	wurden	und	als	in	vitro-Modell	der	kolorek-

talen	Tumorprogression	dienen.	Basierend	auf	Zeitreihendaten	der	Genexpression	in	den	beiden	Zell-

linien	wurde	eine	 computergestützte	Analyse	durchgeführt,	 bei	der	24-Stunden-rhythmische	Gene	

und	 alternative	 Spleiß-Ereignisse	 auf	 Transkriptomebene	 identifiziert	wurden.	 Als	 Vergleichsbasis	

wurden	bereits	publizierte	Zeitreihendaten	zahlreicher	gesunder	Gewebesorten	analysiert,	die	von	

Maus-	und	Pavianorganen	stammen.	

Die	Analyse	offenbarte	Unterschiede	 im	circadianen	Phänotyp	zwischen	den	beiden	Zelllinien,	und	

eine	stärker	deregulierte	circadiane	Rhythmik	der	Metastasen-Zelllinie.	Es	konnte	zudem	gezeigt	wer-

den,	dass	am	Spleißvorgang	beteiligte	Gene	sowie	mutmaßliche	Spleißereignisse	24-Stunden-Rhyth-

men	aufweisen,	die	sich	ebenfalls	zwischen	den	Krebsstadien	unterscheiden.	Sowohl	in	gesunden	als	

auch	in	Krebszellen	waren	viele	jener	Gene	rhythmisch	gespleißt,	die	selbst	am	Spleißvorgang	beteiligt	

sind,	was	auf	eine	Autoregulierung	des	Prozesses	schließen	lässt.	Mehrere	der	gespleißten	Kandida-

tengene	codieren	zudem	für	Proteinvarianten,	die	an	Prozessen	beteiligt	sind,	welche	eine	Weiterent-

wicklung	des	Tumors	begünstigen,	darunter	Zellmigration	und	Angiogenese.	Insgesamt	legen	die	Be-

obachtungen	eine	circadiane	Regulation	von	alternativem	Spleißen	in	Säugerzellen	nah,	welche	einen	

Einfluss	auf	die	Krebsentwicklung	hat.
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