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Abstract

The vibrational characteristics of solids and interfaces are determined by the dynamics
of the underlying atomic structures. Via resonant interaction, optical fields allow access
to these fundamental low-energy excitations, and hence information about the inter-
atomic bonding and structural phases. As a vibrational and interface-sensitive probe,
sum-frequency generation (SFG) spectroscopy has emerged as valuable nonlinear optical
technique. Combined with the brilliance and spectral tunability of free-electron laser-
based infrared (IR) radiation, a variety of vibrational modes comes into reach.

In this thesis, an experimental infrared-visible SFG setup at an accelerator-driven free-
electron laser (FEL) has been implemented and applied. First, the characteristics of the
coherent radiation sources and their relative pulse timing are examined. Based on bal-
anced optical cross-correlation (BOC), the jitter between the synchronized fs table-top
and mid-IR FEL pulses is determined to be about 100 fs. Arrival time drifts are corre-
lated to the energy fluctuations of the accelerated electron bunches. The micro-/macro-
pulse structure of the FEL oscillator emission is studied in detail as function of the
cavity length detuning. In the limit-cycle regime, pronounced optical sub-pulses within
the picosecond-short FEL micro-pulse are observed. The experimental findings are in
line with theoretical calculations based on classical Maxwell-Lorentz electrodynamics.

Second, zone-center optical phonons in polar dielectric crystals with broken inversion
symmetry are investigated by SFG spectroscopy. Simultaneous IR and Raman activity of
the vibrational modes causes a resonant enhancement of the second-order susceptibility.
Linear optical effects (e.g. Reststrahlen bands) are found to strongly modify the sum-
frequency response. The phase mismatch of the interacting optical waves determines the
coherence length within the sample bulk, limiting SFG emission to a some micrometer
thin layer. Both for silicon carbide and α-quartz, SFG spectra are well described by an
analytical model taking into account all contributions. Symmetry properties of the χ(2)

tensor are revealed by polarization- and azimuth-dependent measurements.
Further, the possibility to modify the mid-IR response by localized phonon polari-

tons is explored in sub-diffractional dielectric nanostructures. Modifications of spectral
position and amplitude of the modes are observed in dependence on the geometry and
arrangement of the nanoresonator structures. A scanning-probe approach of tightly fo-
cused laser beams is used to spatially resolve the polariton-caused local electric field
enhancement, and thus increased SFG intensity, at different resonant IR frequencies. In
contrast to linear IR reflectance imaging, the second-oder response in SFG microscopy
provides improved lateral resolution with vibrational contrast.

Finally, the temporal resolution provided by the short IR and visible pulses is uti-
lized in time-domain SFG experiments, complementing the frequency-resolved spectra.
Taking advantage of the BOC-based timing correction, the free-induction decay of the
induced coherent IR polarization within a dielectric material is disclosed on a ps time
scale. Excitation close to an optical resonance revealed a pronounced slowdown of the
dephasing dynamics compared to the non-resonant case. Transient SFG spectra showed
a narrowing of the linewidth at increased pulse delays, enhancing the spectral sensitivity
to modes being close together in frequency.

The presented work lays the ground for FEL-based vibrational SFG spectro-microscopy,
ultimately reaching interface-sensitivity with lateral resolution below the IR diffraction
limit.





Kurzfassung

Die Schwingungseigenschaften von Festkörpern und Grenzflächen sind durch die Dy-
namik der zugrunde liegenden atomaren Struktur bestimmt. Mittels resonanter Wech-
selwirkung erlauben optische Felder Zugang zu diesen niederenergetischen Anregungen
und somit Aussagen über die chemische Bindung und strukturelle Phasen. Aufgrund der
Schwingungs- und Grenzflächen-Sensitivät ist die Summenfrequenzerzeugungs (SFG)-
Spektroskopie eine nützliche nichtlineare optische Methode. Kombiniert mit der Bril-
lanz und Abstimmbarkeit der Freie-Elektronen-Laser-basierten Infrarot (IR)-Strahlung
werden eine Vielzahl von Moden erfassbar.

In der vorliegenden Arbeit wurde ein experimenteller Infrarot-Sichtbar-SFG-Aufbau
an einem Beschleuniger-betriebenen Freie-Elektronen-Laser (FEL) implementiert und
angewendet. Zuerst wurden die Charakteristika der kohärenten Strahlungsquellen und
ihr relatives Puls-Timing untersucht. Basierend auf symmetrischer optischer Kreuzkor-
relation (BOC) wurde der Jitter zwischen den synchronisierten fs-Labor- und mittleren
Infrarot-FEL-Pulsen zu etwa 100 fs bestimmt. Zeitliche Drifts sind korreliert zu den
Energiefluktuationen der beschleunigten Elektronenpakete. Die Mikro-/Makro-Puls-
Struktur der FEL-Oszillator-Emission wird als Funktion der Kavitätslänge studiert. Im
Grenzzyklus-Regime wurden ausgeprägte Sub-Pulse beobachtet. Die experimentellen
Ergebnisse stimmen mit klassischen Elektrodynamik-Berechnungen überein.

Zweitens wurde optische Phononen in polaren Dielektrika mit gebrochener Inversions-
symmetrie mittels SFG-Spektroskopie untersucht. Bei gleichzeitiger IR- und Raman-
Aktivtät der Moden wird eine resonante Verstärkung der Suszeptibilität zweiter Ord-
nung beobachtet. Lineare optische Effekte (z.B. Reststrahlen-Bänder) modifizieren den
Summenfrequenz-Respons. Die Phasendifferenz der beteiligten optischen Wellen limi-
tiert die Kohärenzlänge innerhalb des Kristalls und somit die SFG-Emission auf eine
wenige Mikrometer-dünne Schicht. Sowohl für Siliziumkarbid als auch α-Quarz konnten
die SFG-Spektren durch ein analytisches Modell beschrieben werden. Die Symmetrie des
χ(2)-Tensors wurde durch polarisations- und azimutabhängige Messungen aufgedeckt.

Weiterhin wird gezeigt, dass lokalisierte Phonon-Polaritonen in subdiffraktionalen
dielektrischen Nanostrukturen den Respons im mittleren IR modifizieren. In Abhängig-
keit von Geometrie und Anordnung der Nanoresonatoren werden Änderungen der spek-
tralen Position und Amplitude der Moden beobachtet. Ein Rastersonden-Ansatz mit
fokussierten Laserstrahlen wird verwendet, um die Polariton-bedingte lokale elektrische
Feldverstärkung, resultierend in erhöhter SFG-Intensität, räumlich bei verschiedenen res-
onanten IR-Frequenzen aufzulösen. Im Gegensatz zur linearen IR-Reflektivität erlaubt
der Respons zweiter Ordnung in der SFG-Mikroskopie eine bessere laterale Auflösung
mit Schwingungskontrast.

Schließlich wird die kurze Dauer der IR- und VIS-Pulse in Zeitdomänen-SFG-Experi-
menten eingesetzt, ergänzend zu den frequenzaufgelösten Spektren. Unter Nutzung der
BOC-basierten Zeitversatz-Korrektur wird der freie Induktionszerfall der induzierten
kohärenten IR-Polarization im Dielektrikum auf der ps-Zeitskala gezeigt. Anregung
nahe einer optischen Resonanz ergab eine deutlich verlangsamte Dephasierungsdynamik
im Vergleich zum nicht-resonanten Fall. Transiente SFG-Spektren zeigten eine schmalere
Linienbreite bei großem Pulsversatz und erhöhen damit die Sensitivität für spektral nah
beieinander liegende Moden.

Diese Arbeit legt die Grundlage für FEL-basierte Schwingungs-Spektromikroskopie,
um Grenzflächen-Sensitivität mit lateraler Auflösung unterhalb des IR-Beugungslimits
zu erhalten.
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1 Introduction

Nowadays, research in the natural sciences is becoming increasingly interdisciplinary.
Among the branches of physics, condensed matter science has a prominent role and
multiple connenctions to neighboring fields, such as materials science, chemistry and
quantum physics. The practical application of the obtained fundamental understanding
enables new technologies and thus, new methods for experimental and theoretical in-
vestigations. Within the last decades, research on matter has been focused increasingly
on very short length and time scales, enabling nanotechnology and bringing this into
everyone’s life.

In a microscopic view, solid-state materials are not at rest at elevated temperatures.
Instead, finite vibrational motions at the atomic level give rise to several physical prop-
erties. Thus, insights into the appearance and behavior of lattice dynamical modes are
of crucial interest. Fundamental phenomena like thermal transport, phase transitions
and scattering processes of electrons and light waves are related to phonons [Bar01]. The
ongoing developments in optics and electronics towards nanoscale architectures entail al-
terations of the physical properties in reduced dimensions due to quantum confinement
effects for electronic [Ali96] as well as lattice excitations [Sch00]. Besides advances in
microscopic theory, experimental examinations are vital for proper understanding of the
vibrational characteristics and, hence, interatomic forces.

Due to the interaction of lattice vibrations with photons, taking into account cer-
tain selection rules, optical spectroscopies are a suitable way to probe these quantum
particles. On the other hand, the optical behavior of materials can be modified on
the basis of coupled light-matter excitations, so-called phonon polaritons [Hil02; Dai14].
There, the energy of an optical wave is exchanged with a electric dipole-carrying phonon.
Thus, user-defined nanostructures made of polar dielectric crystals have emerged as
promising tools for the manipulation of light on length scales smaller than the optical
wavelength [Li15]. Due to the characteristic energy of phonons of some tens of meV,
phonon-based nano-photonic devices are highly beneficial for the control and manipula-
tion of optical fields at IR and THz frequencies [Cal15]. Applications in e.g. molecular
sensing [Aut18], waveguiding [Dai15], thermal emitters [Gre02] and nano-optical anten-
nas [Tam18] show the potential of phonon polaritons.

A broad range of experimental optical techniques allows to gather information not only
about the energy and lifetimes of vibrational modes in solids, clusters and (bio-)molecules,
but also gives access to dielectric properties and nonlinear susceptibilities. In particular,
infrared (IR) - visible (VIS) sum-frequency generation (SFG) spectroscopy has emerged
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1 INTRODUCTION

as workhorse technique to identify vibrational dynamics in bulk media, at interfaces
and of molecular adsorbates [She89; Vid05]. Due to the inherent symmetry sensitivity,
interface-specific measurements are readily obtained, in contrast to linear optical tech-
niques. Concerning the increased surface-to-volume ratio in low-dimensional material
systems, the impact of interface states is particular relevant. Also, due to the selection
rules for the SFG activity of vibrational modes, complementary information to IR and
Raman experiments are revealed. Moreover, the characteristic fingerprint response of
molecular species allows for chemical sensitivity. Various fields have benefited from vi-
brational SFG spectroscopy, for instance heterogeneous catalysis [Fre11], environmental
science [Ric02] or electrochemistry [Liu14].

The enormous developments in laser-based coherent light sources facilitate today re-
liable spectroscopic studies in an extremely broad spectral range, reaching from hard
X-rays to long-wavelength THz radiation. Notably, free-electron lasers (FELs) provide
intense optical fields covering a wide, continuously tunable frequency region [McN10].
Regarding vibrational SFG spectroscopy, resonant mid- to far-IR photons from FELs
profit from the high peak brilliance, making them ideal candidates for nonlinear optical
experiments. Comparable table-top sources are still lacking in that frequency window.
In addition, short IR pulses of ps to fs duration can be created at FELs, corresponding
to few cycles of the electric field [Kni95]. Such light bursts allow for time-resolved in-
vestigations, such as ultrafast surface dynamics or chemical reactions.

Since free-electron lasers are accelerator-based facilities, profound knowledge about
the interaction of charged relativistic particles with electromagnetic radiation is re-
quired to deliver ultrashort and coherent light pulses. After demonstration of generat-
ing spontaneous synchrotron radiation from an electron beam in a magnetic undulator
field [Mad71], much technical work has been devoted to the development and optimiza-
tion of the collective electron bunching process [McN10], essential for the creation of
coherent optical fields [Dea77]. As fourth generation accelerator-driven light source,
FELs are nowadays able to provide highly brilliant radiation at wavelengths down to
1 Å and pulse durations of 10 fs [Ney18]. Such extreme time scales demand for precise
sychronization of the accelerator components and external laser systems when using
two-color spectroscopy. Hence, advanced techniques for a priori setting or a posteriori
determination of the pulse timing have to be employed, enabling e.g. single-shot X-ray
crystallography for structure exploration [Cha11] or ultrafast pump-probe spectroscopy
of non-equilibrium processes [Mit15].

This work wants to add a contribution by enabling nonlinear vibrational optical spec-
troscopy using FEL-based IR excitation and investigating the sum-frequency response
of optical phonons and phonon polaritons. To this end, the necessary experimental
techniques are implemented, in particular allowing for precise temporal tracking of the
accelerator-driven IR pulses. Further, the imprint of resonant lattice vibrations of polar
dielectric materials on spectrally, temporal and spatially resolved sum-frequency emis-
sion processes will be studied.
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1.0 Introduction

First, the theoretical and experimental fundamentals of the used ingredients are pre-
sented (Chap. 2), encompassing lattice dynamics, linear and nonlinear light-matter in-
teraction as well as the concepts of vibrational SFG spectroscopy and coherent radiation
emission from a free-electron laser. Next, details of the developed experimental system
are described (Chap. 3), in particular the characteristics of the employed IR free-electron
laser oscillator, the technique of pulse synchronization with a femtosecond table-top light
source and the SFG setup for FEL pulse characterization as well as phonon spectroscopy.

The relative timing between synchronized accelerator-based and external source op-
tical pulses is examined by the method of balanced optical cross-correlation. Based on
phase-matched SFG from a strongly nonlinear medium, direct conversion of the measured
observable to the desired timing information on a single-shot level is achieved. Thus,
statistical statements about short- and long-term temporal fluctuations are obtained
(Chap. 4). Moreover, pulse envelope and bandwidth of the ps-short FEL radiation have
been analyzed. Pronounced features of sub-pulse formation are experimentally observed,
corroborated by classical electrodynamics simulations. The consequential intensity os-
cillations are related to the combination of slippage and cavity detuning effects in the
IR FEL oscillator (Chap. 5).

Regarding the spectroscopic studies, the different contributions to the SFG response
from polar dielectric phonon systems are investigated at first. Besides the resonant en-
hancement of the nonlinear susceptibility, lattice vibrations are found to significantly
modulate the Fresnel behavior and coherence length of the SFG process within the bulk
material (Chap. 6). Further, localized surface phonon polaritons in sub-diffractional
nanostructures are explored to modulate the nonlinear behavior at solid interfaces. Mod-
ifications of the amplitude and spectral position of the sum-frequency emission due to
the polariton mode are found to depend on the geometry of the structures (Chap. 7).

Subsequently, the confinement of the optical field on the micron length scale is revealed
by means of SFG scanning probe imaging. Utilizing the advantage of nonlinear optical
microscopies to provide lateral resolution below the incident radiation free-space wave-
length, IR polaritonic resonances are mapped out in the far-field with spectral contrast
(Chap. 7). Finally, the dephasing dynamics of the FEL-induced polarization is probed in
the time-domain, providing insights into the free-induction decay of the IR polarization
(Chap. 8). Transient SFG spectra with different time delays after IR excitation reveal a
resonance narrowing, thus enhanced spectral sensitivity.
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2 Fundamentals

In the following, the basic concepts necessary for the optical spectroscopy of lattice vi-
brations in solid-state materials are introduced. Besides pure phonons in polar dielectric
crystals, polaritonic modes are discussed. Linear as well as nonlinear light-matter in-
teraction processes are described, relevant for the technique of vibrational IR-VIS sum-
frequency generation spectroscopy. Further, the underlying principle of a free-electron
laser oscillator will be presented.

2.1 Lattice Dynamics: Phonons

2.1.1 General Concept

For any solid material, the constituting components are the atoms, connected via chem-
ical bonds. Besides the atomic specifications, the nature of the binding mechanism –
for instance, ionic, van der Waals, or metallic interatomic forces – has a pronounced
impact on the physical properties of the solid. Typically, one cubic centimeter of solid-
state matter is made up of 1/a3 ∼ 1022 atoms, with an atomic spacing a being in the
range of a few angstroms [Kit05]. The periodic arrangement of the elemental atoms in
crystalline solids allows a rather strict mathematical treatment of the material’s micro-
scopic properties. Spatial symmetries are utilized to classify three-dimensional crystals
according to their static geometry in one of the seven lattice families or, more finely, in
one of the 230 existing crystallographic space groups. Thereby, the lattice is a reduction
of the real crystal structure – featuring certain defects and irregularities – to a perfect
mathematical construct.

The dynamics of the lattice is responsible for several fundamental effects of condensed
matter, such as thermal expansion, electrical resistance or superconductivity [Kit05].
By the term lattice dynamics one characterizes the small oscillatory displacement of
the bound atoms around their equilibrium positions [Bor98]. At room temperature,
the vibrational amplitudes are in the order of 0.1 Å [Rei73], i.e. smaller than a/10.
The first postulation of quantizied crystal vibrations has been given by A. Einstein in
1907 [Ein07]. Soon later, Born and von Kármán carried out a detailed description of
the dynamical lattice model [Bor12]. A modern and elegant treatment of the atomic-
scale crystal dynamics is given by the second quantization formalism in the quantum-
mechanical analysis [Rei73; Kit05]. The principal ansatz to find the vibrational modes of
a solid lies in the disentanglement of the lattice and electronic degrees of freedom. This
adiabatic or Born-Oppenheimer approximation allows to determine the atomic nuclei
dynamics while leaving the electron system in the ground state. Now, consider a three-
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2.1 Lattice Dynamics: Phonons

dimensional harmonic potential V(x2) governing the motion of each of pN atoms (mass
m) within the crystal. Then, the Hamiltonian reads

H = T + V =

pN∑
i=1

p̂2
i

2m
+

1

2
mω2x̂2

i , (2.1)

where x̂ denotes the real-space atomic displacement and p̂ its momentum. In recipro-
cal space, the normal-mode coordinates q̂q, p̂q are obtained by Fourier transformation.

Usage of the creation and annihilation operators, defined as â† =
√
mω/(2~)(q̂q −

ip̂q/(mω)) and â =
√
mω/(2~)(q̂q + ip̂q/(mω)), respectively, gives

H =
∑
q,p

~ωq

(
â†â+

1

2

)
. (2.2)

This form of the Hamiltonian is equivalent to a set of independent harmonic oscillators,
where the summation includes all wavevectors |q| = 2πm/Na with m = 0,±1, ...,±N/2
and branches p (see below). Then, the energy eigenvalues of the stationary problem
H |n〉 = E |n〉 are

E =
∑
q,p

~ωq,p

(
nq,p +

1

2

)
. (2.3)

Therefore, the energy of the collectively oscillating atoms is given in multiples of the
quantum ~ω: the phonon, which describes the particle-like nature of the lattice vibra-
tion. The discrete excitation of the crystal vibrational state |n〉 is characterized by
the quantum number n = 0, 1, 2, ... . Thus, even the ground-state level |0〉 possesses
a finite zero-point energy. In terms of the real-space dynamics, the larger the phonon
population of the mode ωq, the stronger is the mean-square displacement of the atoms,
〈x̂2〉 ∝ n [Rei73].

Of particular interest, the relation between wavevector and mode frequency, ω(q),
equivalent to momentum ~q versus energy ~ω, is described by the phonon dispersion.
Due to the translational crystal periodicity, consideration of only the first Brillouin zone
of the reciprocal lattice is sufficient to display all feasible modes of the vibrational spec-
trum [Kit05]. In general, the eigenvalues of the Hamiltonian Eq. (2.1) depend on the
form of the potential energy V(x2), or the strength of the interatomic force constant
f = ∂2V/∂x2, respectively. Depending on the number of atoms p per unit cell of the
crystal, 3p distinct dispersion branches exist; the pre-factor is due to the number of po-
larizations possible for an elastic wave within three-dimensional space (one longitudinal,
two transverse).

The three lowest-energetic modes constitute the acoustic phonons [Bor98], whose dis-
persion

ωac(q) = vg|q| (2.4)
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Fig. 2.1 Lattice vibrations of a diatomic cyrstal. (a) Real-space motion of the two different atom
types (masses) in the longitudinal and transversal optical phonon mode at the Γ point. (b) Typ-
ical dispersion relation of optical and acoustic phonon branches in momentum space, shown for
the entire first Brillouin zone of a simple diatomic cyrstal lattice. Longitudinal and transversal
optical (acoustic) modes are labeled as TO and LO (TA and LA), respectively. (c) Correspond-
ing phonon density of states (DOS), exhibiting van Hove singularities. Graphs are taken from
Ref. [Mad01], based on ab initio calculations [Gia91]. A visualization of the lattice vibrations
for other wavevectors and phonon modes of (b) can be found in Ref. [Per19a].

depend linearly on the wavevector close to the origin of the Brillouin zone. Furthermore,
the slope, being equal to the group velocity vg = dω/dq = a

√
f/m, is decisive for the

propagation speed of sound waves within solid material. For a diatomic basis (p = 2),
this one has the value vg = a

√
f/2(m1 +m2), with adjacent atoms oscillating in phase

in the long-wavelength limit [Kit05; Bor98].

The remaining 3p − 3 higher-frequency branches are called optical phonons, only
present for non-monoatomic unit cells. In the center of the reciprocal space q = 0,
denoted by the Γ point, the optical phonon dispersion is characterized by a constant
frequency, which is, for instance in the case p = 2, given by [Bor98]

ωop(q ' 0) =

√
2f

(
1

m1
+

1

m2

)
. (2.5)

In contrast to acoustic lattice vibrations, the non-vanishing energy arises due to the out-
of-phase motion of the atoms within the unit cell, see Fig. 2.1(a). The optical modes at
q → 0 have oscillation amplitudes of x1/x2 = −m2/m1, leading to a zero group velocity
of the center of mass. If the lattice atoms are charged, e.g. in the case of ionic crys-
tals, the oscillating dipoles can couple to an external electromagnetic field [Kit05; Bor98].

Figure 2.1(b) shows a typical behavior of the acoustic and optical phonon disper-
sion ω(q) over the entire first Brillouin zone, illustrated for a crystal with diatomic
basis, p = 2. Depending on the crystallographic symmetry of the potential V, a number
of longitudinal and transverse vibrational dispersion curves can coincide, resulting in
degenerated states. In addition, at certain frequencies between the acoustic and optical
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2.1 Lattice Dynamics: Phonons

branch, lattice vibrations can not propagate, leaving an energy gap. The width of the
forbidden spectral region depends on the mass difference of the unit cell atoms [Rei73;
Kit05].

In Fig. 2.1(c), a graph of the density of states D(ω) is given, defined as spectral distri-
bution of the lattice modes per unit volume in the momentum space. The density D(ω)
is an integral of the number of phonon states across the full Brillouin zone. The function
obeys the phonon band-structure via an inverse dependence on its slope, characterized
by the group velocity ∇qω(q),

D(ω) =
V

(2π)3

∫
S(ω)

dS

|∇qω(q)|
, (2.6)

where V is the crystal volume and dS an area element of constant vibrational energy in
reciprocal space [Kit05]. For the low-frequency acoustic phonons, the density of states is
in good approximation quadratic, D(ω) ∝ ω2. In case of high-energetic optical modes,
the distribution exhibits a characteristic structure in the spectral range of their occur-
rence. In sections where the slope of the dispersion tends towards zero, ∇qω(q)→ 0, the
mode density features van Hove singularities at critical points, implying a large number of
excitable states, e.g. close to the TO phonon energy level at the K point in Fig. 2.1(b,c).

Since the lattice-vibrational particles are classified as bosons [Rei73], the population
probability of a phonon state ωq,p of the material in thermal equilibrium at temperature
T is governed by Bose-Einstein statistics:

f(ω, T ) =
1

e
~ωq,p
kBT − 1

, (2.7)

where kB denotes Boltzmann’s constant. Importantly, the mean occupation number of
a vibrational mode is not limited, and the total number of phonon particles n is not
obliged to a conservation law, but strongly temperature-dependent. At room temper-
ature, kBT ∼ 25 meV, the acoustic vibration branches are usually highly populated
(f � 1), whereas the optical modes are less excited. In case of ~ωq,p << kBT , the equi-
librium distribution can be expressed as f(ω, T ) ∝ T , approaching the classical limit.

Consequently, by combination of the density of states D(ω) with the occupation prob-
ability f(ω, T ), the temperature-dependent number of vibrational excitations within a
solid is given according to the relation:

n(T ) =

∫
D(ω)f(ω, T ) dω. (2.8)

Phonons, besides e.g. plasmons or magnons, are elementary excitations of the crystalline
solid [Kit05]. Apart from the frequency ω, each vibrational mode is characterized by
a wavevector q, whose magnitude is inversely proportional to the wavelength. Thus,
phonon states near the origin of the first Brillouin zone, Γ, are considered as the long-
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2 FUNDAMENTALS

wavelength limit. The quantity ~q describes the quasi momentum of the vibration,
however, an elastic lattice wave does not carry a real physical momentum [Rei73]. In
case of the interaction of phonons with other wave-like particles, for instance photons or
electrons, one might has to invoke an additional contribution ~G, where G is a recip-
rocal lattice vector, from the crystal lattice to satisfy the law of momentum conservation.

Compared to the quantum harmonic oscillator model with V ∝ x2 in Eq. (2.1), a
realistic description of the crystal potential has to include higher-order terms, V(x) =
V0 + ax2 + bx3 + cx4 + ... . These anharmonic contributions allow an interaction of the
vibrational modes among themselves, i.e. phonon-phonon scattering. As a consequence,
phonons possess a finite lifetime, that manifests, for instance, as limited linewidth in
vibrational spectroscopy measurements. Moreover, the coupling between the lattice os-
cillations introduces a temperature dependence of the phonon frequencies, taken into
account by renormalized phonon energies [Rei73]. Also, phonon-phonon scattering pro-
cesses are responsible for non-equilibrium material properties like lattice expansion and
the conductivity of heat mediated by lattice vibrations, which presents the main trans-
port channel in dielectric crystals [Kit05].

Ab initio calculations of the phonon bandstructure and related properties like lifetimes
and interatomic force constants employ techniques such as density-functional perturba-
tion theory, a detailed description thereof can be found in, e.g., Ref. [Bar01].

2.1.2 Polar Dielectric Media

When dealing with dielectric, i.e. non-conducting, materials, the crystals often exhibt
an ionic, covalent or van der Waals chemical bonding structure. In the case of polar di-
electrics, elements with different degrees of electronegativity take part in the bond, cre-
ating a ’biased’ electron distribution among the crystal atoms instead of a symmetrically
shaped one. Therefore, the interatomic forces are mediated via electrostatic Coulomb
attraction of oppositely charged atomic ions. This is in analogy to polar molecules (e.g.
H2O), where the charge distribution is shifted to the atoms possessing higher electroneg-
ativity, resulting in a permanent dipole moment.

For a crystal unit cell with an at least diatomic basis, optical phonons are present
in the vibrational spectrum. In the case of polar crystals, the energy dispersion of the
longitudinal (LO) and transverse optical (TO) phonon branches differs. The LO/TO
splitting arises due to the different potentials V(x) being present along the certain crys-
tallographic directions. This is caused by long-range Coulomb forces associated with
the ionic charges [Bor98]. For the LO lattice vibrations, the eigenfrequency in the long-
wavelength limit is generally higher in comparison to both transverse modes,

ωLO,q→0 > ωTO,q→0. (2.9)

In order to understand the origin behind this, one has to consider the electric polarization

8



2.1 Lattice Dynamics: Phonons

for the different optical modes in the ionic crystal. The resulting contribution to the
local Coulomb field, termed depolarization field [Bor98; Bru82],

Epol = − 1

ε0

x · P
|x|2

x (2.10)

depends on the relative orientation of displacement vector x and polarization P =∑
i µi/V , with the microscopic dipole moment µi and crystal volume V . Thus, for

transversal lattice waves with x ⊥ P the field term vanishes, whereas it is Epol = −P /ε0
for the longitudinal mode since x � P . Consequently, the local electric field acts against
the atomic displacement in case of LO phonons, increasing the potential energy function
V(x) and thereby the eigenfrequency ωLO. For TO modes, on the other hand, the local
field supports the lattice vibration, hence softening the interatomic forces compared to
neutral, i.e. non-ionic, atoms [Bru82].

Considering, for example, the polar dielectric material 4H-silicon carbide, the energetic
difference between the LO and TO phonon branch at the Brillouin zone center accounts
for ∼ 21 meV or 170 cm=1 [Mut99]. The broad range originates from the strong polarity
of the atomic elements (electronegativity on Pauling scale of silicon χ = 1.90, carbon
χ = 2.55). Besides the LO/TO splitting, an energy gap ∆EOA between the optical and
acoustic branches is present in ionic crystals. Background is the mass difference of the
cationic and anionic unit cell atoms. Due to the distinct optical properties, the spec-
tral region between the LO and TO phonon frequencies is called Reststrahlen band (see
Sec. 2.2.2) [Bor98].

For the appearance of optical phonons in optical spectroscopy experiments, certain
selection rules have to be taken into account. Direct, i.e. resonant, excitation of a
lattice vibration by one-photon absorption requires, on the one hand, infrared (IR)
radiation equivalent to the phonon energy (in the order of λ ∼ 10 µm). Besides energy
conservation, the momentum during the interaction with the electromagnetic field needs
to be matched. Therefore, only vibrational modes near the Brillouin zone center q ' 0
are accessible by IR spectroscopy, due to the small wavevector |k| = 2π/λ of mid-
infrared (MIR) photons [Bru86]. Furthermore, the excitable lattice vibration must carry
an electric dipole moment µ which has to be spatially modulated during the interaction
with the light field E in order to be IR active. According to Fermi’s golden rule, the
probability for the creation of a phonon, i.e. the transition rate of the crystal from initial
vibrational state |n〉 to final state |n+ 1〉, is given by [Bru86]

Γ =
2π

~
|〈n+ 1|µ ·E|n〉|2 δ(En+1 − En − ~ω), (2.11)

with the matrix element 〈n+ 1|µ ·E|n〉. For the most probable transition, the dipole
moment should be aligned with the electric field polarization, µ � E0. Thus, transverse
optical phonon modes are predominately excited in near-normal incidence transmis-
sion or reflectivity measurements. This will become apparent in the expression of the
infrared dielectric function for the linear response in Sec. 2.2.1, where ωTO is the reso-
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nance frequency in the denominator. On the contrary, relevant absorption by LO lattice
vibrations can be observed under non-normal incidence conditions for thin films [Bru86].

Another spectroscopic technique to probe optical lattice vibrations, but e.g. also
magnons, is provided by the Raman effect [Rei73; Bru86]. There, the light is inelastically
scattered at a low-frequency excitation of the solid, leading to the following conservation
laws for energy and momentum, respectively:

~ω′ = ~ω ± ~ωq, k′ = k ± q, (2.12)

where the incident (scattered) photon is characterized by ~ω,k (~ω′,k′). Depending
on the sign of the frequency shift, either the creation of a phonon (Stokes process)
or an annihilation of a phonon (Anti-Stokes process) is taking place. As in the case
of IR spectroscopy, only optical phonons with |q| ' 0 can be probed, since k,k′ are
much smaller than the zone-boundary wavevector 2π/a. Additionally, the selection rule
necessitates the vibrational mode to modulate the electronic polarizability tensor α of
the crystal in order to be Raman active [Bru86]. Thus, a dipole moment µ = αE
oscillating at the frequencies given by Eq. (2.12) is induced by the incident light field
E. From a classical point of view, the derivative of the polarizability αij with respect
to the normal-mode coordinate qk, so-called (first-order) Raman tensor

Rijk =
∂αij
∂qk

, (2.13)

must have non-vanishing components. In a quantum-theoretical perturbation calculus,
the scattering probability is

Γ =
2π

~

∣∣∣∣∣∣
∑
α,β

〈0|Her(ω
′)|β〉 〈β|Hel(ωq)|α〉 〈α|Her(ω)|0〉
(~ω′ − Eβ)(~ω − Eα)

∣∣∣∣∣∣
2

δ(~ω − ~ω′ ± ~ωq), (2.14)

with the interaction of electron-radiation field Her = µ · E and electron-lattice vibra-
tion Hel. Here, the Raman effect is represented as three-step process of electron excita-
tion from ground state |0〉 to intermediate (virtual) level |α〉 by photon ~ω, then scatter-
ing into state |β〉 due to phonon creation/elimination, and finally returning to |0〉 while
emitting photon ~ω′. By the symmetry of the equilibrium polarizability and that of the
vibrational modes, the Raman tensorR reflects the crystal symmetry [Bru86]. Thus, the
selection rules can be obtained from a group-theoretical analysis of the real-space crys-
tal structure. As such, vibrational transitions can be classified as being dipole-allowed,
and/or Raman-active or neither of them (silent modes). In the case of solids (as well
as molecules) with a center of inversion, the rule of mutual exclusion holds, that is, a
phonon might be either IR- or Raman-active, but not both. In general, the irreducible
representation of the crystal point group is used to deduce the symmetry elements, and
thus, the activity of the normal modes [Bru86].

As it becomes apparent in the IR or Raman spectra of lattice excitations, the reso-
nances feature a nonzero spectral width. Due to the anharmonic coupling among the
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phonons, the linewidth is limited by the lifetime τ(q) of the vibrational modes [Bar01].
In case of optical phonons in polar dielectrics, the dominant scattering mechanism is
provided by the interaction with two lower-frequency modes away from the Γ point, in
order to fulfill energy and momentum conservation:

ω1(q1) = ω2(q2)± ω3(q3), q1 = q2 ± q3 +G. (2.15)

Predominately, optically excited zone-center phonons decompose into two acoustic pho-
nons (OAA scattering) [Deb99]. Due to the energy gap ∆EOA between optic and acoustic
phonon branches present in polar crystals, the number of decay channels can be limited,
resulting in extended optical phonon lifetimes. This is the case for materials with a large
mass difference of the unit cell atoms. On the other hand, a strong LO/TO splitting in
solids enables the decay of an optical phonon into an acoustic mode and another lower-
energetic optic phonon (OOA scattering). Crystals with strong Coulomb forces between
the atomic ions have to be considered here. Therefore, lifetimes and linewidths of excited
optical lattice vibrations depend strongly on the phonon dispersion relations, and hence,
on the crystal structure. For ionic non-conducting materials, the intrinsic lifetimes of
bulk optic phonons near the zone-center are in the order of a few picoseconds [Deb99].

Besides the decay channels arising in a perfect crystal, extrinsic scattering partners
can further degradate the lifetime of the vibrational modes. There, scattering processes
due to differing masses of the atomic isotopes are relevant, as well as impurities within
the crystal bulk or lattice defects like domain boundaries and stacking faults [Kit05].
As consequence of the enhanced decay process, a broadening of the resonance linewidth
appears.

2.2 Light-Matter Interaction

In general, the dielectric response of a material to an incident optical field E(ω) is
described by a Taylor series of the induced electric polarization P [Boy08]:

P = ε0

[
χ(1) ·E(ω) + χ(2) : E(ω)E(ω) + χ(3) ...E(ω)E(ω)E(ω) + ...

]
. (2.16)

There, the medium’s optical properties are characterized by the n-th order electric sus-
ceptibilities χ(n), expressed as tensors of rank n+1, whereas ε0 denotes the permittivity
of free space. Depending on the strength of the applied field, the cases of linear optics –
determined only by the first term in Eq. (2.16) – and nonlinear optics – considering the
higher-order contributions – are separated. In the linear regime, optical processes like the
propagation velocity and attenuation of electromagnetic waves within a material system
are concerned, as well as the refraction and reflection on its interfaces (Sec. 2.2.1). Since
the nonlinear susceptibility values are several orders of magnitude smaller than unity,
intense light fields have to be employed in order to observe nonlinear optical phenomena,
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which can, for example, modify the frequency of the incident radiation by generating
additional spectral components (see Sec. 2.2.3).

2.2.1 Linear Dielectric Response

In linear electromagnetism, the proportionality between the applied optical field and
induced electric polarization of the medium is usually expressed in terms of the relative
permittivity, also called dielectric function:

ε(ω) = χ(1)(ω) + 1. (2.17)

The linear optical response of a material is, in general, characterized by a complex-
valued, frequency-dependent second-rank tensor ε(ω) [Bor99]. In case of an optically
isotropic medium, the permittivity reduces to a scalar quantity,

ε(ω) = ε′(ω) + iε′′(ω). (2.18)

Concerning the spectral dependence, a useful model for the dielectric function exhibit-
ing multiple resonances is given by a sum of Lorentz oscillators [Bru86; Bor99]. These
resonators might be electrons bound to positively charged atomic nuclei in metals (os-
cillating at UV/VIS frequencies), or optical phonons built of atomic ions in dielectrics
(vibrating in the IR spectral range), thereby constituting electric dipoles that interact
with an applied light field. Then, the dispersion relation is described by

ε(ω) = ε∞ +
∑
r

Ar
ω2
r − ω2 − iγrω

, (2.19)

where Ar represents the oscillator strength, ωr the resonance frequency and γr = 1/τr
the damping constant of mode r. The high-frequency term ε∞ characterizes a dielectric
contribution arising outside the investigated spectral range. A nonzero imaginary part
ε′′(ω) directly indicates the stimulation of absorption processes in the material at the
resonant frequencies. Outside these spectral regions, the dielectric function is purely
real, ε(ω) = ε′(ω), i.e. the optical wave does not experience an intensity loss while
propagating through the medium.

In optics, it is convenient to use the complex refractive index n∗ =
√
εµ instead. Since

the considered optical materials are electrically non-conducting and non-magnetic, i.e.
with a relative permeability µ = 1, the relation reduces to

n∗ = n+ iκ =
√
ε, (2.20)

with the real index of refraction n =
√

(|ε|+ ε′)/2 and the extinction coefficient κ =√
(|ε| − ε′)/2. Due to the causality of the dielectric material response with respect

to the incident electric field, real and imaginary part are connected via the Kramers-
Kronig relations [Bor99]. The refractive index n determines the phase velocity v of the
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electromagnetic wave propagating within the medium,

v =
c0

n
=
ω

k
, (2.21)

in relation to the speed of light in vacuum c0. If the spectral derivative dn/ dω is posi-
tive, the medium is called normal dispersive. Otherwise, it obeys anomalous dispersion,
which is the case close to a resonance frequency.

When dealing with optically anisotropic materials, the dielectric properties have to be
described by a second-rank tensor. For a uniaxial crystal (e.g., members of the hexagonal
crystallographic system), this one is of the form

ε(ω) =

ε⊥(ω) 0 0
0 ε⊥(ω) 0
0 0 ε‖(ω)

 =

n2
o(ω) 0 0
0 n2

o(ω) 0
0 0 n2

e(ω)

 , (2.22)

with the principal permittivities being on the main diagonal. The dielectric tensor can
be illustrated as index ellipsoid where the semi-axes correspond to the values no and
ne [Bor99]. Therefore, the velocity of light propagation inside the crystal is generally
dependent on both the wave polarization E and propagation direction k. In case of the
uniaxial anisotropic crystal, one single preferred optical axis exists, here chosen to coin-
cidence with the z direction. Then, the refraction along the principal axes of the crystal
is described by no and ne for the ordinary and extraordinary ray, whose polarization is
normal (o) to or within (e) the principal plane spanned by the z axis and the wavevector
k, respectively [Dmi99].

For an arbitrarily incidenting extraordinary beam with angle θ ∈ [0◦, 90◦] relative to
the optical axis, the refractive strength ne(θ) of the crystal has a value between no and
ne, as specified by

1

n2
e(θ, ω)

=
sin2 θ

n2
e(ω)

+
cos2 θ

n2
o(ω)

. (2.23)

This phenomenon of birefringence is routinely used to achieve the same propagation
speed of two light waves of different color in a nonlinear optical crystal by utilizing dif-
ferent polarization conditions (method of velocity or phase matching, see Sec. 2.2.3),
which is otherwise not possible in dispersive media [Boy08].

Another quantity has to be introduced to characterize the speed of energy transport,
defined as group velocity

vg =
∂ω

∂k
(2.24)

or vg = ∇k ω(k) in three-dimensional space. Depending on the dispersion relation ω(k),
the value might be different from the phase velocity v, Eq. (2.21). In case of anisotropic
crystals, the direction of wavefront propagation given by v ‖ k differs slightly from the
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way of energy flow represented by the Poynting vector S ‖ vg for beams with extraor-
dinary polarization [Bor99]. Thus, the resulting spatial walk-off might limit the usable
interaction length in frequency-conversion crystals [Boy08; Dmi99].

At the interface between different optical media, the light field is subject to reflection
and transmission. Therefore, the ratio of the electric field amplitudes relative to the
incident wave is given by the Fresnel equations. In case of the interface of a uniaxial
anisotropic crystal to vacuum (εI = 1, or air, approximately), with the optic axis z
being parallel to the surface normal, the following expressions hold for the amplitude
coefficients of s- and p-polarized electric fields, respectively [Dru87; Mos68]:

rs =
gI − gII

o

gI + gII
o

, ts =
2gI

gI + gII
o

rp =
ε⊥g

I − gII
e

ε⊥gI + gII
e

, tp =
2gI

ε⊥gI + gII
e

.

(2.25)

There, g = |kz| is the absolute component of the wave vector along the optic axis, defined

as gI = ω
c0

cos θ, gII
o = ω

c0

√
ε⊥ − sin2 θ and gII

e = ω
c0

√
ε⊥
ε‖

√
ε‖ − sin2 θ, with the angle of

incidence θ in medium I. For an isotropic medium (ε‖ = ε⊥ = εII), Eqs. (2.25) reduce to
the well-known usual Fresnel formulae [Bor99]. In any case, the intensity reflectivity of
the electromagnetic radiation at the material surface, i.e. the reflectance, is determined
according to Rs,p = |rs,p|2.

2.2.2 Phonon Polaritons

The particular properties of IR-active phonon modes in polar dielectrics have been dis-
cussed in Sec. 2.1.2. Now, the consequences on the linear optical response are consid-
ered. From a general derivation [Lyd41] it is found that the ratio of the longitudinal,
ωLO(q ' 0), and transverse optic, ωTO(q ' 0), lattice eigenfrequencies determines the
behavior of the dielectric function ε(ω), known as the Lyddane-Sachs-Teller (LST) rela-
tion for multiple modes r:

∏
r

(
ωLO,r

ωTO,r

)2

=
ε0

ε∞
. (2.26)

The value ε0 describes the static dielectric response (DC-field permittivity), whereas
ε∞ characterizes the dielectric medium in the high-frequency limit (ω � ωLO). Due
to the relation ωLO > ωTO, Eq. (2.9), the static permittivity exceeds the value in the
visible range, i.e. ε0 > ε∞. Since electromagnetic waves E(ω) are of transverse nature,
the excitation of longitudinal optical phonons in bulk crystals by light near normal
incidence is not possible. Therefore, the solid does not respond to an external field at
this frequency, ε(ωLO) = 0 in the absence of damping [Bru86]. Contrary, the polarization
component of TO vibrational modes can interact with photons. Thus, the resonances
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Fig. 2.2 Typical mid-infrared dispersion of the linear optical susceptibility and Reststrahlen
reflectivity of a polar dielectric, 4H-SiC. (a) Dielectric function ε⊥,‖(ν), exhibiting different res-
onance frequencies νTO and zero-crossings at νLO for the extraordinary (‖) and ordinary (⊥)
component of the uniaxial susceptibility tensor, Eq. (2.22), respectively. Inset shows a magnified
view of the spectral region close to the LO phonon. (b) Reflectance Rs,p(ν) for s- and p-polarized
light under oblique angle of incidence and normal irradiation, obtained from Eq. (2.25). The
Reststrahlen band is indicated by the gray-shaded area between TO and LO phonon mode.
Experimental values for 4H-SiC are taken from Ref. [Mut99].

in the dielectric function of Eq. (2.19) correspond to the transversal eigenfrequencies of
the polar ionic crystal in the long-wavelength limit, ωTO(q → 0). In case of diatomic
insulators, one obtains

ε(ω) = ε∞

(
1 +

ω2
LO − ω2

TO

ω2
TO − ω2 − iγTOω

)
. (2.27)

Exemplary, the real and imaginary part of the dispersion relation ε(ω) for the strongly
polar and anisotropic dielectric 4H-SiC are plotted in Fig. 2.2. The calculated reflectivity
R(ω), according to Eq. (2.25), is also depicted. At the infrared frequencies of interest,
contributions due to excitation of electronic transitions are neglectable. Depending on
the spectral position within the IR region, the optical behavior of insulators can be dif-
ferentiated in the following way: For ω � ωTO, normal dispersion is present, related with
finite transmittance of the material. Around ω = ωTO, strong optical absorption due to
ε′′ 6= 0 occurs, combined with anomalous dispersion of ε′(ω) in a range of width ∼ γTO.
Then, as the permittivity is negative, ε′ < 0, the reflectivity becomes significant until
the zero-crossing at ω = ωLO. At high frequencies, the dielectric function approaches ε∞.

The change from reflective to transmissive response of the dielectric at ωLO is similar
to the behavior of metals or electron-ion plasmas at their natural eigenfrequency. There,
the spectral point of ε(ωp) = 0 corresponds to the energy of a plasmon, the quantum
of the coherent longitudinal oscillation of the charge density [Kit05]. In case of polar
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dielectrics, the optical phonons take on the role of screening the external electromag-
netic field. Owing to the negative dielectric function, the light waves can not propagate
within the material, causing nearly perfect reflectivity. This material-specific frequency
range is termed Reststrahlen band [Rei73]. There, only an evanescent field Ee−κz at the
surface, attenuated by the extinction coefficient κ towards the bulk, is present.

Due to the energy of TO and LO phonons in the order of 100 meV, the Reststrahlen
effect is pronounced in the MIR spectral region, λ ∼ 10 µm − 30 µm. Electromagnetic
fields E(ω) with a frequency outside the forbidden gap, ω > ωLO or ω < ωTO, can
penetrate the medium, accompanied by the excitation of transverse lattice vibrations.
If the wavenumber of the photon within the material, |k| = 2πn/λ, is matched to
the phonon’s wavevector, q ' k, which is the case close to the Brillouin-zone center,
coupling of both modes occurs. As consequence of the interaction between optic phonon
and electromagnetic field, the formation of a phonon polariton emerges. This bosonic
quasiparticle is present in the momentum space where one would expect the intersection
of phonon and light dispersion. However, a mixed state appears instead, according to
the avoided crossing-principle. Inserting the material’s dielectric function Eq. (2.27) into

the linear photon dispersion, ω2 =
c20
ε(ω)k

2, the bulk polariton solution is given by [Bru86]

q2 =
ε∞
c2

0

ω2
LO − ω2

TO

ω2
TO − ω2 − iγTOω

ω2, (2.28)

which converges, under employment of the LST formula Eq. (2.26), to the relations

ω =
c
√
ε∞

q for ω � ωLO, (2.29)

ω =
c
√
ε0
q for ω � ωTO. (2.30)

The two (bulk) polariton dispersion curves, as determined by Eq. (2.28), are plotted
in Fig. 2.3, together with the derived limits. Depending on the region within the mo-
mentum space, each polariton branch, labelled as α and β, respectively, exhibits either a
more photonic, or phononic, or strongly coupled character. Considering, for example, the
polariton α, a nearly pure electromagnetic nature is present close to the Brillouin zone
origin, characterized by the linear dispersion Eq. (2.30). There, the mechanical displace-
ment of the oppositely charged atomic ions is small, whereas the energy is preferably
stored in the electromagnetic field [Bru86]. Towards larger momentum k, the weight of
the lattice vibrational character is increased, in trade-off for the reduced optical ampli-
tude. Consequently, the coupling is strongest at wavevectors around k ∼ 3× 105 m=1.
At larger values, the α-polariton dispersion is almost flat, approaching the uncoupled,
pure TO phonon frequency, ω ≈ ωTO. Note that the k-space relevant for the phonon-
photon interaction is still much smaller than the extent of the Brillouin zone with the
boundary at q ∼ 1 Å=1.
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Fig. 2.3 Dispersion relation for bulk (PhP) and surface (SPhP) phonon-polariton modes in 4H-
SiC. The two branches of the volume mode are labelled α and β, respectively. The photon
dispersion curves for light propagation in air (velocity c0) and within the dielectric material in
the low- (c0/

√
ε0) and high-frequency (c0/

√
ε∞) limit are given for comparison. Extraordinary

optical wave polarization has been used. The polariton dispersions are obtained from Eqs. (2.28)
and (2.31).

As mentioned, bulk phonon polariton modes are not supported within the Reststrahlen
band. There are, however, also optical surface vibrations present in polar dielectrics.
Due to the structural difference in the environment of bulk and interface atomic ions,
the potential V governing the lattice dynamics in Eq. (2.1) is affected as well, resulting in
modified vibrational frequencies at the surface. Such optical crystal excitations, whose
amplitudes are confined to the interface and decaying exponentially towards the bulk, are
also called Fuchs-Kliewer modes [Fuc65]. The mixing of these transverse polar vibrations
with light gives rise to surface phonon polaritons (SPhPs), with the dispersion [Bru86]

q2 =
ε(ω)

ε(ω) + 1

ω2

c2
0

. (2.31)

For the ease of understanding, insertion of the dielectric function Eq. (2.27) with zero
damping γ = 0 in Eq. (2.31) and using the relation Eq. (2.26), yields the SPhP frequency
at large wavevectors,

ωSPhP =

√
ε0 + 1

ε∞ + 1
ωTO. (2.32)

Because ε0 > ε∞, surface polaritons propagate within the spectral region of the Rest-
strahlenband, ωLO > ωSPhP > ωTO, where the bulk modes Eq. (2.28) are not allowed.
The SPhP dispersion relation is plotted in Fig. 2.3 as well.

The hybrid surface phonon-light excitations discussed so far are classified as propa-
gating modes, being free to expand along the crystal interface. As an example, two-
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dimensional polar dielectric van der Waals heterostructures allow to control the disper-
sion of such modes [Dai14]. In contrast, localized SPhPs are created by a specific design
of the material surface, e.g. via nanostructures [Cal15]. There, the coupled mode is spa-
tially confined in all three dimensions. The character of the polariton can be modified in
a way similar to propagating or localized surface plasmon polaritons, respectively, which
arise at metal/dielectric interfaces [Mai07]. Due to the general momentum mismatch
between the photon and propagating surface polariton dispersion (see also Fig. 2.3),
different methods can be employed to accomplish optical excitation, for instance, by the
near field of evanescent waves [Cal15; Mai07].

2.2.3 Nonlinear Optics

Nonlinear optical effects are nowadays routinely employed to produce radiation of specific
properties otherwise difficult to create as well as to probe light-induced processes in mat-
ter under advanced conditions. The observation of such phenomena is closely connected
with the availability of coherent laser light, as shown by the seminal work about optical
second-harmonic generation in the 1960s [Fra61]. Basically, the occurrence of nonlinear
optical processes in media is caused by the higher-order induced electric polarization
terms of Eq. (2.16),

PNL = ε0

[
χ(2) : E(ω)E(ω) + χ(3) ...E(ω)E(ω)E(ω) + ...

]
= P (2) + P (3) + ... .

(2.33)

These nonlinear polarization contributions PNL(r, t) act as radiation sources, as de-
scribed by the wave equation for the propagation of electromagnetic waves E(r, t) in a
nonlinear optical material, which can be derived from Maxwell’s equations [Boy08]:

∆E − ε(ω)

c2
0

∂2

∂t2
E =

1

ε0c2
0

∂2

∂t2
PNL. (2.34)

Consequently, light fields at new frequencies are generated. As an example, the irradi-
ation of two laser beams E1ei(k1r−ω1t) + c.c. and E2ei(k2r−ω2t) + c.c. of different color,
ω1 6= ω2, onto matter with a second-order optical nonlinearity χ(2) 6= 0 will be consid-
ered. The resulting nonlinear polarization fields P (ω3)ei(k3r−ω3t) are

P (2ω1) = ε0χ
(2) : E2

1, (2.35)

P (2ω2) = ε0χ
(2) : E2

2, (2.36)

P (ω1 + ω2) = 2ε0χ
(2) : E1E2, (2.37)

P (ω1 − ω2) = 2ε0χ
(2) : E1E

∗
2, (2.38)

P (0) = 2ε0χ
(2) : (E1E

∗
1 +E2E

∗
2) . (2.39)
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Therefore, electromagnetic waves at several frequencies ω3 arise due to the four frequency-
mixing processes of second-harmonic generation [SHG, Eqs. (2.35,2.36)], sum-frequency
generation [SFG, Eq. (2.37)], difference-frequency generation [DFG, Eq. (2.38)] and op-
tical rectification [OR, Eq. (2.39)]. The SHG and OR interaction can be seen as special
case of the SFG and DFG process, respectively, with ω1 = ω2. Also, the effects of optical
parametric oscillation (OPO) and amplification (OPA) belong to the class of three-wave
coupling caused by the second-order susceptibility χ(2) [Boy08].

In order to obtain efficient emission of optical radiation at frequency ω3 from bulk
media, the light wave E(ω3) is required to propagate at the phase velocity v = c0/n(ω3)
supporting constructive interference with the input fields E(ω1) and E(ω2), i.e. to
enable energy transfer between the fundamental and mixed frequencies over some spatial
distance. In terms of the wavevectors, this phase-matching condition takes [Boy08;
Dmi99]

k3 = k1 ± k2, (2.40)

where the plus (minus) sign is valid for the SFG (DFG) process and |kj | = ωj/v(ωj) =
ωjn(ωj)/c0. In case of a collinear input beam geometry (k1 ‖ k2), Eq. (2.40) reduces to a
scalar expression, ω3n(ω3) = ω1n(ω1)±ω2n(ω2), otherwise non-collinear phase-matching
is required. Due to the usually normal dispersion dn/dω > 0 of the dielectric function in
the spectral range where the material is optically transparent, the anisotropy of crystals
is utilized by differently polarized light fields (cf. Sec. 2.2.1) to satisfy the phase-matching
relation, Eq. (2.40). Depending on the polarization combinations, the cases of type I
phase-matching (same polarization of input fields) and type II phase-matching (orthog-
onal polarization of fundamental waves) are distinguished. The detailed polarization
states of the involved light beams are subject to the optical crystal symmetry and can
be found, e.g. for uniaxial media, in Ref. [Dmi99].

A common method to achieve phase-matching is provided by the angular dependence
of the extraordinary refractive index ne(θ) [Eq. (2.23)]. There, the orientation of the
crystal axis has to be adjusted with respect to the irradiating optical beams (angle
tuning or critical phase-matching) [Dmi99]. However, this application implies spatial
beam walk-off, restricting the conversion efficiency (cf. Sec. 2.2.1). Other techniques of
non-critical phase-matching exist, for example, by temperature tuning of the anisotropic
dielectric functions of the crystal [Boy08].

Similar to the linear optical properties given by χ(1), the second (third, ...)-order
electric susceptibilities are affected by the spatial symmetry of the medium. In general,
the complex-valued, frequency-dependent third-rank tensor χ(2) has 33 components, but
the number of nonzero independent values is reduced due to the symmetry restrictions.
Group theory provides a way to classify crystalline material according to their symmetry
elements (e.g. mirror planes, n-fold axes of rotation). The second-order optical proper-
ties are differentiated by the 32 crystallographic point groups [Boy08]. As a particular
symmetry operation, inversion symmetry implies that χ(2) = 0 (see proof in Sec. 2.3.1).
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The remaining 21 non-centrosymmetric point groups exhibit one or more non-vanishing
independent components, that are tabulated in, e.g., Ref. [Boy08]. For instance, crystals
with cubic lattice belonging to point group 4̄3m (Hermann-Mauguin notation), like zinc
selenide (ZnSe), possess only a single unique χ(2)-component.

In contrast, the third-order optical susceptibility does not vanish at all, χ(3) 6= 0,
being allowed for centrosymmetric media as well due to the odd-order nature of the con-
tributing force terms. However, the strength is several orders of magnitude smaller than
χ(2). Third-order processes include, e.g., the optical Kerr effect, leading to an intensity-
dependent index of refraction n = n(|E|2), two-photon absorption or four-wave mixing
within the material [Boy08]. Furthermore, if an additional static electric field E(0) is
applied to the medium, χ(3) gives rise to a contribution to the second-order polarizability
P (2)(ω3), Eqs. (2.35)-(2.39), also in case of an isotropic bulk. This effect, called field-
induced SHG/SFG/DFG, can be naturally present at charged gas-liquid or solid-liquid
interfaces, such as the α-quartz/water system [Ohn16].

The typical dispersion behavior of the second-order susceptibility χ(2)(ω3, ω1, ω2) can
be obtained from a classical model, the anharmonic Lorentz oscillator [Boy08], which
is an extension of the approach known from the dielectric function in linear optics [cf.
Eq. (2.19)]. This model does not account for the energy eigenstates of the atoms and
subsequent band structure formation in solids as revealed by quantum-mechanical cal-
culations. Nevertheless, it provides a correct description of the actual nonlinear optical
response of several materials, including dielectric media in the IR spectral range. The dy-
namics of a charged entity q situated in a non-parabolic potential V (x) = mω2

0x
2 + ax3

with additional damping γ responding to an electric field E(t) is determined by the
equation of motion [Boy08]

ẍ+ 2γẋ+ ω2
0x+ ax2 = qE/m. (2.41)

For an optical field consisting of two frequency components, E1e−iω1t + E2e−iω2t + c.c.,
the amplitude of the oscillating solution x(2)(ω1 + ω2)e−i(ω1+ω2)t reads

x(2)(ω1 + ω2) =
−2a(q/m)2E1E2

D(ω1 + ω2)D(ω1)D(ω2)
(2.42)

with the function D(ω) = ω2
0 − ω2 − iγω, whose inverse characterizes the resonance

behavior of a classical Lorentz oscillator, χ(1) ∝ 1/D(ω). Calculation of the nonlinear
polarization P (ω1 +ω2) = nqx(2), where n is the density of the oscillating particles, and
comparison with Eq. (2.37) yields the second-order susceptibility

χ(2)(ω1 + ω2, ω1, ω2) =
na(q3/m2)

ε0D(ω1 + ω2)D(ω1)D(ω2)
. (2.43)

Thus, the nonlinear susceptibility is essentially a product of the first-order susceptibilities
χ(1)(ω) at the corresponding frequencies [Boy08],
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χ(2)(ω1 + ω2, ω1, ω2) =
ε2

0ma

n2q3
χ(1)(ω1 + ω2)χ(1)(ω1)χ(1)(ω2). (2.44)

This behavior is known as Miller’s rule [Mil64]. The relationship allows to express the
magnitude and dispersion of the nonlinear optical coefficient in terms of known dielectric
constants ε(ω) [Bel72], indicating that a stronger nonlinearity is present for a larger
index of refraction. However, the condition is not valid near resonances [Fau66], i.e.
only if all frequencies are within the transmission region. An expression of the second-
order susceptibility derived from the quantum-mechanical analysis is given in the next
section, see Eq. (2.48).

2.3 Vibrational Sum-Frequency Generation Spectroscopy

As a second-order nonlinear optical process, SFG requires electromagnetic radiation with
strong field amplitudes, applied to a medium of non-vanishing χ(2)-tensor. Due to the

spectral dispersion of the susceptibility components χ
(2)
ijk(ω3, ω1, ω2) and the sensitivity of

the third-rank tensor to the symmetry of the investigated system, SFG spectroscopy is a
versatile method to probe resonant vibrational modes at interfaces, which have inherently
broken inversion symmetry, such as molecular adsorbates at surfaces, gas/liquid interfa-
cial layers, or buried interfaces [She89]. Applications extend to time-resolved studies of
(photo)chemical processes [Bon00; Bac05] and high-resolution nonlinear microscopy of
biological material [Ji06; Chu13].

2.3.1 Theoretical Background

The phenomenon of sum-frequency generation relies on the interaction of two optical
fields with amplitudes E(ω1) and E(ω2) and different (angular) frequencies ω1 and ω2

within a medium of finite χ(2)-susceptibility, Fig. 2.4(a). Consequently, a polarization
P (2)(ω3) of the medium oscillating at the sum-frequency ω3 = ω1 + ω2 is induced [cf.
Eq. (2.37)]:

P (2)(ω3) = ε0χ
(2)(ω3, ω1, ω2) : E(ω1)E(ω2). (2.45)

This electric polarization acts as radiation source for the emitted field E(ω3), whose
intensity I ∝ |E|2 is given by

I(ω3) ∝
∣∣∣P (2)(ω3)

∣∣∣2 ∝ ∣∣∣χ(2)
∣∣∣2 I(ω1)I(ω2). (2.46)

In general, the nonlinear susceptibility tensor components χ
(2)
ijk can be separated in terms

of non-resonant and resonant contributions [She16]:

χ(2)(ω) = χ
(2)
NR + χ

(2)
R = |χ(2)

NR|e
iφ +

∑
r

χ
(2)
r

ωr − ω − iΓr
. (2.47)
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Fig. 2.4 Principle of IR-VIS SFG. (a) Two optical waves at ωIR and ωVIS frequency are overlapped
in time and space on a nonlinear medium. Radiation at the sum-frequency ω3 = ω1 + ω2 is
generated. (b) Energy level diagram of the process. The IR radiation excites a vibrational mode
and is upconverted by the VIS field to a virtual state. The incident energy is released by photon
emission at frequency ω3.

Here, the resonance r is characterized by a Lorentz oscillator of amplitude χ
(2)
r , center

frequency ωr and damping constant Γr, whereas the non-resonant contribution is deter-

mined by the amplitude |χ(2)
NR| and relative phase φ. The non-resonant SFG arises due

to a collective electronic response from the polarized material.

In case of vibrational SFG spectroscopy, the technique utilizes the infrared spec-
tral dependence of the second-order susceptibility χ(2)(ω3, ω1, ω2) to probe vibrational
modes [She16]: While the frequency of one input field, ω2, is fixed, the other one, ω1, is
tuned to excite the vibration ωr of the investigated material system. The photon ener-
gies of both the constant frequency (ω2) and sum-frequency (ω3) radiation are usually
chosen to do not match other material resonances. Caused by the resonant enhancement
in χ(2)(ω1), the observed SFG spectra of Eq. (2.46), plotted as function of the variable
input frequency, ISFG(ω1), contain information about the activated vibrational modes,
which show up as Lorentzian-shaped lines. The derived information might be the oscil-

lator strength |χ(2)
r |, the frequency (shift) ωr, the orientation or the dephasing constant

Γr of the mode, each affected by the coupling among the vibrations and the chemical
composition of the environment [She16].

The energy levels of the involved vibrational modes and the incident as well as emitted
photons are depicted in Fig. 2.4(b). There, the ground, first and second excited vibra-
tional state of the system are denoted as |0〉, |1〉 and |2〉, respectively. The SFG process
involves the resonant excitation of the transition |0〉 → |1〉 by the photon ~ω1, while the
second incident radiation ~ω2 promotes the material to a virtual, i.e. non-eigenstate,
quantum level |virtual〉 [Vid05]. The transferred energy is released as a photon ~ω3 of
higher energy compared to the input, thereby bringing the system back to the vibra-
tional ground state. These processes occur simultaneously within the material. Due to
the conservation of total energy, ~ω3 = ~ω1 + ~ω2, SFG is a parametric process, also
termed parametric up-conversion since ω3 > ω1.
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2.3 Vibrational Sum-Frequency Generation Spectroscopy

An alternative description of the SFG process is provided by the following picture
[Mor18]: The pump radiation ω1 is absorbed by an IR-active transition to populate the
excited eigenstate |1〉. Subsequently, the photon ω2 interacts with the coherent state via
anti-Stokes Raman scattering, resulting in a blue-shift of the frequency towards ω3 > ω2.
Thus, the vibrational mode ωr is required to be IR- as well as Raman-active in order to
take part in SFG spectroscopy, see also Eq. (2.49).

The strength of the resonant contribution χ
(2)
R is related to the microscopic properties

of the molecular or crystalline normal modes, as described by the hyperpolarizability β.
Taking into account the coordinate transformation from the molecular (a, b, c) to the
laboratory (i, j, k) framework and weighting by the density n of vibrating units, the
relation reads [Vid05]

χ
(2)
ijk = n 〈βabc〉ijk . (2.48)

Then, in the quantum mechanical formalism, the hyperpolarizability is given by [Vid05]

βabc =
2

~

〈
0
∣∣∣∂µc∂q ∣∣∣ 1〉〈1

∣∣∣∂αab∂q

∣∣∣ 0〉
ω10 − ω − iΓ10

. (2.49)

There, ∂µc/∂q and ∂αab/∂q denote the derivatives of the electric dipole transition mo-
ment µ and the polarizability tensor α in the electronic ground state, respectively, with
regard to the normal mode coordinate q; ω10 and Γ10 being the frequency and damping
of the vibration. This indicates that, as discussed above, for a vibrational mode to be
observed in the SFG spectrum, it has to be IR active (∂µ/∂q 6= 0) as well as Raman
allowed (∂α/∂q 6= 0). The selection rule differs from other vibration-sensitive optical
techniques (IR spectroscopy, Raman scattering, cf. Sec. 2.1.2) and can be used to pro-
vide complementary information.

For a large number of bulk media, including liquids, amorphous solids (like glass) and
many crystals which are characterized as centrosymmetric, the second-order susceptibil-
ity vanishes, χ(2) = 0, within the electric dipole approximation [Boy08]. The reason is

the inherent inversion symmetry of these media (i.e. χ
(2)
ijk = χ

(2)
−i,−j,−k). This can be de-

rived from the condition that if the directions of the incident electric fields are reversed,
the induced polarization has to invert its sign as well, whereas χ(2) is invariant to the
inversion [Mor18]:

− P (2)(ω3) = ε0χ
(2) : (−E(ω1))(−E(ω2)). (2.50)

To satisfy both Eqs. (2.45) and (2.50), χ(2) must be zero. More generally, all even-
order susceptibilities of centrosymmetric media are parity-forbidden. In the case of
crystalline solids, a wide range of elemental metals and semiconductors are affected by
that [McG96]. Higher-order terms in the multipole expansion of the fields, however, can
give rise to electric quadrupole or magnetic dipole contributions to the bulk second-order
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nonlinear susceptibility. In general, these are neglegible in comparison to the SFG in-
tensity generated from the interface between two media. There, the inversion symmetry
is broken in any case, resulting in a nonzero quadratic susceptibility caused by electric
dipoles, χ(2) 6= 0, even if the adjacent materials are centrosymmetric. Therefore, SFG
spectroscopy is an intrinsically surface-sensitive technique when applied to media pos-
sessing inversion symmetry [She89].

The fact that centrosymmetric solids (or molecules) are not allowed to take part in
SFG (or DFG) processes is also directly obtained from the rule of mutual exclusion (cf.
Sec. 2.1.2). Since modes can not be both IR and Raman active there, the hyperpolariz-
ability contribution of Eq. (2.49) vanishes at all.

The information regarding the presence, strength and symmetry of vibrational modes
has to be obtained by a thorough quantitative analysis of the measured SFG spectra.
In the following, a brief description of the exact relation between emitted SFG intensity
and incident light fields will be given, considering several factors [Mor18].

First, the second-order polarization P (2)(ω3) is induced by the electric fields according
to Eq. (2.45). However, the field E(ω1,2) inside the material differs from the incident
radiation due to Fresnel reflections at the sample surfaces. Thus, Fresnel factors F (ω, θ)
have to be included, deduced from the field amplitude transmission coefficients and de-
pending on wavelength ω and angle of incidence θ. Due to the boundary conditions valid
for an electromagnetic field at the interface between two optically different media, the
F (ω, θ) factor is polarization-dependent. A derivation of the Fresnel factors, summarized
by the diagonal tensor F(ω) = diag(Fxx, Fyy, Fzz), can be found in Ref. [Mor18]. The
modified equation for the induced polarization reads

P (2)(ω3) = ε0

(
χ(2) : F(ω1)êI(ω1) F(ω2)êI(ω2)

)
EI(ω1)EI(ω2), (2.51)

with the unit vector of the electric field polarization ê(ω) = E(ω)/|E(ω)| and the su-
perscript indicating the surrounding linear optical medium I.

Second, the nonlinear susceptibility is composed of two contributions, χ(2) = χ
(2)
S +

χ
(2)
B , originating from the surface (S) and the bulk (B) of the sample. Depending on the

medium, one of them might be dominant. In general, the emitted sum-frequency field
EI(ω3) outside the sample is given by [She16]

êI(ω3)EI(ω3) ∝
(
F(ω3)êI(ω3) · χ(2)

eff : F(ω1)êI(ω1) F(ω2)êI(ω2)
)
EI(ω1)EI(ω2) (2.52)

with

χ
(2)
eff = χ

(2)
S +

ei∆kzl − 1

i∆kz
χ

(2)
B . (2.53)

There, the phase mismatch ∆kz of the propagating waves inside the sample of length l
has been taken into account [She16].
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Finally, the intensity of the SFG radiation I(ω3) can be determined from the field

amplitude. According to the general relation, I(ω) = n(ω)c0ε0
2 |E(ω)|2, and assuming air

as surrounding medium, the measured observable is

II(ω3) ∝
∣∣∣F(ω3)êI(ω3) · χ(2)

eff : F(ω1)êI(ω1) F(ω2)êI(ω2)
∣∣∣2 II(ω1)II(ω2). (2.54)

Thus, the sum-frequency response is modified by dispersive linear optical properties,
entering via the Fresnel tensor F(ω) and, in case of bulk-dominated SFG, additionally
via the wavevector mismatch ∆k(ω). If an optical anisotropy is present in the nonlinear
medium, the involved dielectric function ε(ω) depends on the polarization state of the
light waves.

The relevant quantity of interest in SFG spectroscopy is, however, the second-order
susceptibility tensor χ(2)(ω3, ω1, ω2). The sensitivity to the incident frequency ω1 pro-
vides the spectral contrast necessary for the identification of the vibrational mode. In-
formation regarding the symmetry of the tensor, and thus of the material system, is
acquired by a particular geometry selection. This includes the chosen combination of
polarizationsE(ω) (s or p) for input and output electric fields at the frequencies ω1, ω2, ω3

as well as the angles of incidence θ1, θ2. By taking multiple SFG spectra under different

experimental conditions, the individual χ
(2)
ijk components are disentangled [Mor18].

Due to the coherence of the SFG process, the generated signal possesses a well-defined
directionality. The direction of the sum-frequency emission is determined by the conser-
vation law of photon momentum. In case of a reflection geometry, the angle of propa-
gation of the generated sum-frequency light θ3 is set by the wave vector components of
the incident fields parallel to the interface,

k‖(ω3) = k‖(ω1) + k‖(ω2)

⇒ n(ω3)ω3 sin θ3 = n(ω1)ω1 sin θ1 + n(ω2)ω2 sin θ2,
(2.55)

with the angle of incidence θ1 (θ2) of the input field at frequency ω1 (ω2) and the
refractive index n of the nonlinear medium. Thus, besides the geometric arrangement
of the electromagnetic waves, their frequencies determine the SFG emission direction as
well.

2.3.2 Experimental Methods

When using sum-frequency generation to probe vibrational modes at interfaces, of ad-
sorbates or bulk materials, various experimental approaches have been developed. Usu-
ally, IR-VIS SFG spectroscopy is applied to analyze resonances in the so-called finger-
print region. On the one hand, MIR radiation with a photon energy in the order of
~ω1 ∼ 50 meV − 100 meV resonantly excites the vibrational mode ωr. On the other
hand, light at a fixed VIS frequency ω2 � ω1 is used for up-conversion, generating
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Fig. 2.5 Reflection geometry of beam propagation in IR-VIS SFG spectroscopy. (a) Co-
propagation scheme: The input beams ω1 and ω2 are incident from the same side relative to
the surface normal (dashed). (b) Counter-propagation arrangement: The IR and VIS beam have
nearly the same angle of incidence θ1 and θ2, but propagate from opposite directions. The emis-
sion angle θ3 of the SFG light has to obey the condition k(ω3) sin θ3 = k(ω2) sin θ2±k(ω1) sin θ1,
where the positive sign is valid for co-propagation, the negative one for counter-propagation.

easily measurable SF radiation ω3 ≈ ω2, in contrast to the more difficult to detect IR
range [Boy08].

The critical component in IR-VIS spectroscopy is the source of the MIR radiation ω1.
For that, either table-top optical parametric amplifier (OPA) systems [GS87] or accelera-
tor-based free-electron lasers (FEL) [Bar94] are available. While OPA systems need ad-
ditional stages of frequency conversion (like DFG) in nonlinear optical crystals to obtain
a sufficient spectral tuning range, the FEL output can be directly employed. However,
FEL facilities require a larger infrastructure (see Sec. 2.4).

Depending on the bandwidth of the applied IR radiation, two approaches to collect
the vibrational spectra can be differentiated [She16]: If narrowband radiation (∆λ/λ <
0.5 %) is utilized, the center frequency ω1 is continuously scanned over the spectral range
of the modes ωr. In contrast, broadband fs light sources (∆ω > 250 cm=1) covering mul-
tiple resonances at once are used in connection with a multi-channel spectrometer for
faster spectra acquisition. In case of scanning-type SFG spectroscopy, the spectral res-
olution is limited in general by the bandwidth ∆ω1 and hence by the duration τ of the
IR pulse, according to the uncertainty principle, ∆ω τ ≥ 1/2. Since short pulses are pre-
ferred for a higher efficiency of the SFG process, a trade-off has to be found. Commonly,
pulses of 1 ps FWHM are employed, providing 5 cm=1 spectral resolution [She16]. For
broadband IR measurements, the resolution is set by the light source with the smallest
bandwidth. Thus, narrowband VIS radiation (∆ω2 ∼ 5 cm=1) is advised to obtain a
good spectral resolution.

In order to access vibrational spectra of surfaces, the SFG signal is usually probed
in reflection geometry, see Fig. 2.5. There, two types of beam arrangements can be
distinguished: On the one hand, IR and VIS beams are incident onto the sample from
the same quadrant spanned by the surface and its normal, Fig. 2.5(a), the so-called
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co-propagating geometry. Otherwise, in the counter-propagating scheme, the two input
beams are directed from opposite quadrants, Fig. 2.5(b). Depending on the polariza-
tions, this can enhance the coupling of electric field and dipole moment, and hence the
sensitivity to certain vibrational modes [Din09]. Also, spatial separation of the SFG
beam from the fundamental reflections is simplified, increasing the detectable dynamic
range. However, some effort is required to identify the propagation direction of the
weak sum-frequency light given by momentum conservation. Thus, the co-propagation
arrangement is commonly preferred.

A measurement of the SFG intensity, given by Eq. (2.54), just contains information
about the absolute value of the complex quadratic susceptibility, |χ(2)|. However, knowl-
edge about the spectral phase arg(χ2) provides additional insights into the material re-
sponse. For example, the absolute out-of-plane orientation of the adsorbed molecule on
the surface can be directly determined from the sign of Im(χ(2)) of the resonant contri-
bution. A sign change, or equivalently, a phase shift of arg(χ(2)) by π, then corresponds
to a flip-flop re-orientation of the molecule [Nih09]. Such investigations are enabled by
phase-sensitive SFG spectroscopy. For that, it is necessary to interfere the sum-frequency
wave with a reference field, the local oscillator [Tha18]. Thus, the technique is based on
heterodyne detection, in contrast to the phase-insensitive homodyne scheme described
above.

2.4 Free-Electron Laser Radiation
Since its invention in the 1970s [Mad71; Dea77], free-electron laser radiation has en-
abled a variety of new experimental investigations, such as protein crystallography in
biology [Cha11], ultrafast carrier dynamics in condensed matter physics [Mit15], or the
imaging of excited states in complex materials [Wan12]. Due to the ability to generate
coherent, intense and ultrafast light pulses at any desired optical wavelength, the free-
electron laser (FEL) enables optical spectroscopy and imaging at high spectral, spatial
and temporal resolution scales. The general advantage of the FEL concept is based on
the continuous tunability of the emitted photon energy, ranging from the low-frequency
terahertz and infrared region to the ultraviolet and X-ray regime with sub-Angstrom
wavelengths. The technical realization of the FEL differentiates for the long- and short-
wavelength region due to physical restrictions of having highly reflective cavity mirrors
available for the desired wavelength [Sch14]. In the infrared, FEL oscillators are used,
whereas UV/X-ray FELs are built as single-pass amplifiers. In the following, the oper-
ation principle of the FEL oscillator is detailed and the characteristics of the emitted
electromagnetic radiation are discussed.

2.4.1 FEL Oscillator: Principle of Operation

In contrast to a conventional quantum laser, the FEL does not employ electronic transi-
tions between discrete energy levels of atomic or molecular states as in condensed matter
or gases. Instead, highly energetic unbound electrons propagating in a magnetostatic
field are utilized, therefore the name free-electron laser [Sch14].
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Fig. 2.6 Setup of a free-electron laser oscillator. The kinetic energy of the relativistic electron
beam generated in a linear accelerator is transferred into electromagnetic energy due to the
wiggling motion in the undulator magnet. The radiation is captured within an optical resonator
and amplified by multiple passes.

The setup of an FEL oscillator is sketched in Fig. 2.6. The light source consists of a
relativistic electron beam, an undulator and an optical cavity. The electron beam acts
simultaneously as pump source and gain medium, which is supplied by a linear accel-
erator (linac). To operate an infrared FEL, the required kinetic energy γmec

2
0 of the

accelerated electrons is a few tens of MeV [Col90]. Consequently, the velocity is close to
the speed of light and the particle dynamics has to be treated relativistically (Lorentz
factor γ ∼ 10). The undulator consists of a magnetic structure of periodically alter-
nating poles with amplitude B0 and period length λU. Due to the Lorentz force acting
transversely, electrons undergo a sinusoidal motion along the longitudinal undulator axis
(named z-axis hereafter). Thus, the charged particles emit incoherent electromagnetic
radiation (synchrotron light), which is captured within the optical cavity.

The interaction of the generated optical wave and the co-propagating electrons results
in an energy transfer which can amplify the optical field while decelerating the elec-
trons, depending on their relative phases. Thus, a density modulation of the electron
beam evolves, called micro-bunching [Sch14]. Optical waves emitted from the charged
micro-bunches overlap in phase, consequently generating coherent FEL radiation. By
performing multiple round trips of the light field within the cavity and overlapping with
the electron bunches at the resonant wavelength, the radiation intensity is successively
amplified by a small gain. Finally, a fraction of the intra-cavity optical power is ex-
tracted through a hole in one resonator mirror, whereas the electrons are collected by a
beam dump after passing the undulator.

The center wavelength λ of the fundamental FEL radiation is determined by the
kinetic energy of the electrons as well as the strength and period of the undulator field.
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The so-called resonance condition is given by [Col90; Sch14]

λ =
λU

2γ2

(
1 +

K2

2

)
, (2.56)

where the undulator parameter is

K =
eB0λU

2πmec0
. (2.57)

A deviation of the relation can be found in Ref. [Col90]. From a qualitative point of
view, on the one hand, the undulator period λU is shortened for the highly relativistic
electrons to λU/γ due to Lorentz contraction. On the other hand, the emitted light
is observed in the laboratory framework, inserting a second Lorentz factor due to the
relativistic Doppler shift of the optical wavelength, λ/2γ. The emitted wavelength λ can
be changed either by tuning the Lorentz factor γ in Eq. (2.56) via the linac’s electron
energy or by varying the undulator parameter K via the magnetic field strength, which
is usually done by adjusting the gap size between the two magnet banks. Typical values
for the undulator parameter are 0.5 . K . 3 [Col90].

In most cases, the linac operates at radio frequencies (RF) [Sch14], producing a beam
of electron pulses separated by the repetition period 1/frep. Since the electron beam pro-
vides the gain medium, the FEL output consists of light pulses with the same repetition
frequency. Therefore, the length of the cavity L has to be chosen to be of a round-trip
time corresponding to (a multiple of) the electron bunch spacing, 2L = c0/frep. However,
exact temporal synchronism between the electron bunches and the generated FEL light
pulses does not allow a steady-state laser oscillation [Col90; Jar93]. This effect, called
’laser lethargy’, is caused by the slippage of the electron bunches while transversing the
undulator. Due to the slower velocity of the particles, they fall behind with respect to
the optical wave. As a result, the optical pulse experiences gain only at the rear end
and does not grow in intensity. In order to reach efficient optical energy extraction, the
light pulse has to be shifted towards the peak of the electron pulse. This is realized by
the cavity detuning ∆L as an additional degree of freedom, enabling a shortening of the
cavity length to L = L0−∆L. By means of ∆L, the pulse shape and spectral bandwidth
of the FEL radiation can be altered [Col90].

2.4.2 Classical FEL Theory

The theory describing the motion of the electrons in the undulator magnetic field and
the evolution of the optical field within the resonator has been developed shortly after
invention of the FEL [Mad71; Col77]. For an accurate description, it is sufficient to con-
sider classical electrodynamics within the relativistic regime [Col77; Col90]. Quantum
effects like discrete electron momentum recoil can be neglected in most cases [Kli15].
The deviation of the classical FEL theory starts from the Lorentz force equation gov-
erning the electrons’ trajectories within the undulator. The accelerated charges give
rise to electromagnetic fields; both mutually interact via the Maxwell’s equations. A
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complete description is provided in Ref. [Col90]. Rigoros calculus under the assumption
of a slowly varying envelope of the optical field reduces the problem to a set of fairly
simple differential equations, the universal FEL equations [Col90; McN10]: First, the
pendulum equation,

ζ̈ = |a| cos(ζ + ϕ), (2.58)

governing the motion of each electron particle with phase ζ and phase velocity ν = ζ̇
inside the bunch, and secondly, the wave equation,

ȧ = −j
〈

e−iζ
〉
, (2.59)

describing the complex optical field a = |a|eiϕ with amplitude |a| and phase ϕ. For each
electron, a seperate pendulum equation (2.58) has to be solved. The optical wave in
Eq. (2.59) is driven by the electron beam current j, thus the average 〈...〉 goes over all
sampled electrons. The set of equations is valid for both weak and well as strong optical
fields and constitutes the basis of the Maxwell-Lorentz theory of the FEL [Col90]. A
closer look at the nonlinear differential equation Eq. (2.58) resembles that it is similar
to the physical pendulum equation without small-angle approximation. Consequently,
nonlinear electron dynamics is expected to occur. From inspection of Eq. (2.59) it is clear
that there is only amplification of the optical intensity I = |a|2 if there is a change in the
initially randomly distributed electron phases, meaning that the average value

〈
e−iζ

〉
has to become nonzero. This bunching process of the electron particles is depicted in
Fig. 2.7(a) for a typical set of FEL oscillator parameters. The electron bunch evolves
after some time τ of interaction with the radiation field towards the end of the undulator
(τ = 1). Thus, the gain during one pass increases, as defined by

g(τ) =
∆I

I0
=
|a(τ)|2 − |a0|2

|a0|2
=

I

I0
− 1. (2.60)

A plot of g(τ) is shown in Fig. 2.7(b). Usually, FELs for IR generation are operated
as small-gain oscillators. Therefore, multiple passes through the undulator embedded
within the resonator cavity are necessary to extract a powerful optical beam (typically
∼ 500 round trips).

2.4.3 Radiation Characteristics and Applications

Free-electron laser facilities are in increasing demand due to the unique properties of the
emitted electromagnetic radiation [Sch14; Mur09]:

• Coherence: A narrow spectral linewidth and tight spatial focusing of the light onto
the sample can be obtained.

• Spectral tunability: Due to the construction of the FEL and its classical physical
operation principle, the optical wavelength λ can be continuously changed. Most
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Fig. 2.7 Micro-bunching of electrons in phase space and FEL gain development. (a) The trajec-
tories show the temporal development of each electron’s phase ζ and velocity ν while transversing
the undulator (start τ = 0, end τ = 1). Initially, the phases are randomly distributed in the
range of 2π and the velocity ν0 6= 0. During the interaction with the light waves, the charge
density is modulated to bunch at phase φ = π. Some electrons experience an increase in energy,
but the major part slows down (ν < ν0) and loses energy to the optical field. (b) Exponential
growth of the optical gain g(τ) [Eq. (2.60)] towards the end of the undulator where bunching is
significant.

importantly, spectral regions not accessible by other light sources can be addressed
(e.g. far-IR or X-ray photon energies).

• Brightness: Highly energetic pulses together with the short pulse duration create an
optical beam of high peak intensity. Nonlinear processes of light-matter interaction
or strong-field phenomena are therefore easily probed.

• Ultrashort pulses: Near-transform-limited pulses with durations τp in the order
of picoseconds (for IR) to some femtoseconds (for x-rays) are directly generated,
corresponding to few cycles of the optical field. This is advantageous for the
investigation of ultrafast dynamics. In the case of the FEL oscillator, it can be
manipulated also by the length L of the resonator.

• Narrowband radiation: The width of the fundamental FEL line is essentially de-
termined by the gain bandwidth to be ∆λ/λ ≈ 1/NU, where NU is the number
of undulator periods [Sch14]. In the case of an FEL oscillator, the cavity detun-
ing parameter ∆L controls the spectral bandwidth as well. Near-monochromatic
radiation can be obtained (relative bandwidth down to ∆λ/λ < 0.3 %).

• Polarization: The polarization state of the generated light is defined by the un-
dulator geometry. In the case of infrared FEL oscillators, usually equipped with
a planar undulator, linearly polarized optical output is delivered. For a helical
undulator design circular polarization is created [Col90].
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• Higher harmonics: A detailed FEL analysis gives a modified resonance condition
λn = λ/n with λ from Eq. (2.56) and n = 1, 2, 3, ... . However, only the odd
frequency components (n = 1, 3, 5, ...) are emitted in direction of the z-axis in case
of a planar undulator [Sch14].

• Repetition rate: FELs are capable of delivering energetic optical pulses with rep-
etition frequencies in the MHz range up to 1 GHz, which is comparable to mode-
locked solid-state lasers. This is beneficial for a high photon flux and efficient data
acquisition due to the higher duty cycle.

In contrast to previous advanced photon sources (synchrotrons), FELs are classified as
fourth generation accelerator-based light sources. In the first generation, synchrotron ra-
diation (SR) generated as by-product at electron storage rings has been used. Later, SR
from dedicated storage ring facilities was employed. In the 1990s, pure optical emission
user facilities have been built (3rd gen). There, the synchrotron radiation is produced
by undulators reaching a peak brightness in the order of 1024 photons per (s mrad2 mm2

0.1 % bandwidth) [Sch14]. Nowadays, FELs are capable of delivering peak intensity val-
ues up to 1033. Besides the much higher brilliance, the radiation emitted from FELs is
coherent, whereas SR is incoherent due to the absence of micro-bunching.

As a current topic in the development of the FEL technology, X-ray FELs are reach-
ing new records in terms of smaller wavelengths (down to λ = 1 Å), shorter pulses
(τ ∼ 100 fs) and higher intensities (e.g., European XFEL, SwissFEL) [McN10]. At
the other end of the optical spectrum, THz FELs are emerging (e.g., TELBE with
λ = 300 µm − 3000 µm [Kov17]). For wavelengths in betweeen, the possibility of two-
color operation of an FEL has been demonstrated [Jar94]. An overview of the currently
active large-scale FEL facilities, including the FHI FEL, can be found in Ref. [Ney18].

The mentioned characteristics of FEL radiation facilitate a variety of applications in
different areas of scientific research, like structural biology, chemistry or condensed mat-
ter physics. X-ray FELs provide the potential for imaging the structure and dynamics of
crystals or protein structures on the atomic length and time scales [Cha11]. On the other
side, narrrow-band and tunable radiation can be utilized for selective excitation of quan-
tum states in solid-state material, for example low-energetic, THz-frequency phonons,
magnons or Landau level transitions [Mit15]. Additionally, the synchronization of the
ultrafast FEL pulses with external lasers enables time-resolved two-color studies in a
pump-probe fashion.

32



3 Experimental Methods

In order to perform sum-frequency generation spectroscopy experiments of crystalline ma-
terials, a wavelength-tunable free-electron laser is chosen, covering the full MIR spectral
region for resonant excitation of lattice vibrations. After a description of the technology
and key parameters of the used FEL, the implemented sub-ps precision synchronization
system and optical spectroscopy setup is outlined. Here, a table-top fiber oscillator is
employed for upconversion of the FEL radiation, enabling two-color IR-VIS SFG spec-
troscopy in the frequency- and time-domain at ambient conditions.

3.1 FHI Infrared Free-Electron Laser

The free-electron laser at the FHI is an RF-based low-gain FEL oscillator-type source of
coherent radiation, generating ps-short optical pulses in the MIR spectral region. The
design is similar to other FEL oscillator facilities like FELIX (Netherlands) [Oep95] or
CLIO (France) [Jar94]. The technical description of the FHI FEL system in the following
details the electron source and linear accelerator (linac) section, the magnetic undulator
within the optical cavity and the beamline part. A sketch of the FHI FEL system is
depicted in Fig. 3.1. Further information is given in Ref. [Sch15a].

3.1.1 Accelerator Section

As it has been deduced from the resonance condition in Sec. 2.4.1, relativistic elec-
trons with an energy in the range of a few tens of MeV are necessary to obtain IR
FEL radiation. In a first step, electron bunches are emitted from a thermionic cathode
(’electron gun’) made of a tungsten metal filament alloyed with rhenium to lower the
work function. Due to an electric current of 7.8 A, the cathode reaches temperatures
of 1100 ◦C − 1200 ◦C. The charge carriers are extracted into an ultra-high vacuum
tube of 10× 10=9 mbar, where an electric potential difference of 38 kV accelerates the
particles to the anode. In order to be accelerated efficiently, the electron bunch has to
be compressed in time by a buncher cavity from around some hundreds of ps down to a
few ps.

The RF master oscillator (MO) serving as clock for all FEL system components oper-
ates at a frequency of fMO = 2.998 GHz. It is composed of an 100 MHz quartz oscillator
and an electronic unit for upconversion. The electron source is operated at the third
sub-harmonic of the RF MO, fMO/3 ∼ 1 GHz. This has been chosen due to the limited
performance of a metal cathode at high frequencies, whereas the length requirement of
the linac is reduced at higher frequencies, i.e. smaller RF wavelengths.
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Fig. 3.1 Overview of the IR free-electron laser at the FHI. (a) FEL setup consisting of source
and acceleration part for MeV electrons and undulator and cavity section for MIR radiation.
(b) Temporal structure of generated coherent radiation. Macro-pulses of 10 µs duration, repeating
at 10 Hz, are made up of ps-short micro-pulses with a repetition rate of 1 GHz (normal operation)
or 55 MHz (low-repetition mode), matched to the table-top laser pulse frequency.

The electron accelerator section consists of two normal-conducting copper linacs oper-
ating at fMO. The first one is used to accelerate the charged particles to a fixed energy
of 20 MeV, whereas the second one decelerates or accelerates the electron bunches to
the desired energy between 15 MeV − 50 MeV. The energy spread of the final elec-
tron beam is less than 0.3 %. The particle beam consists of micro-bunches with around
200 pC charge each, repeated at the rate of fMO/3 within a macro-bunch time window
(so-called shot) of usually 10 µs duration and 10 Hz repetition frequency. The macro-
bunch structure is due to the necessity to fade out the Joule heating of the copper-made
accelerators, which is in contrast to the continuous (cw) operation of a superconducting
electron linac [Bha11]. The microwave power for the accelerators (∼ 12 MW/10 µs) is
delivered by klystrons via RF waveguides. A magnetic chicane in the accelerator section
is available to shorten the electron bunch length even further, however, it has not been
used throughout this work.

Besides the standard 1 GHz mode of the electron micro-bunch rate, sub-harmonics
can be deduced from the RF MO to drive the electron gun at the lower frequencies
of 27.8 MHz and 55.5 MHz, respectively. This corresponds to a micro-bunch spacing of
36 ns (or 18 ns) and has been chosen to match the round-trip time of an optical pulse
within the FEL cavity, thus enabling single-bunch (or double-bunch) operation. The re-
duced repetition rates are delivered by a custom-made pulse generator providing voltage
pulses of 160 V amplitude and ∼ 500 ps length to the gridded electron gun. The MHz
pulse rates are useful to investigate FEL-induced dynamics in matter exceeding beyond
the 1 ns relaxation time scale, as well as for the synchronization of the FEL with external
table-top lasers operating at MHz repetition rates.
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3.1 FHI Infrared Free-Electron Laser

The path of the accelerated electron beam within the evacuted tube system towards
the undulator is steered by quadrupole and dipole (electro-)magnets, see Fig. 3.1(a).
While the quadrupoles are primarily used for (re-)collimation of the particle bunches,
the dipoles are employed to bend the beam. For the 90◦ bending magnets, isochronous
achromats are used. In principle, these allow a deflection of the electron bunches inde-
pendent of the energy of the particles and do not affect the temporal bunch profile.

3.1.2 Undulator and Cavity

The undulator employed at the FHI FEL to generate IR radiation from the relativistic
particles is of a planar type, thus producing linearly polarized light. The hybrid-magnet
design of the undulator consists of N = 50 periods with λU = 40 mm wavelength.
Radiation-resistant NdFeB permanent magnets arranged in an alternating order are em-
ployed in the undulator. By adjusting the gap between the magnet banks, the magnetic
field B0 and thus the undulator parameter K, cf. Eq. (2.57), can be varied between 0.5
and 1.6. The typical magnetic flux density is in the order of 0.3 T. For a minimum gap
size of 17 mm, the maximum value K = 1.6 is reached.

To capture the emitted IR waves and amplify them via multiple passes through the
undulator, the optical cavity is formed by gold-plated concave spherical mirrors. At
one end of the L0 = 5.4 m long resonator, the out-coupling of the laser radiation is
accomplished by a 2.5 mm diameter hole within the mirror, set concentrically with the
undulator axis. Although different hole sizes are available for efficient FEL power ex-
traction depending on the optical wavelength, they are rarely changed. An essential
degree of freedom is the length L of the cavity, which can be altered with a 1 µm step
size via a translation stage. Conveniently, the cavity detuning ∆L is given in terms of
the IR wavelength. The FHI FEL parameters of the accelerator, undulator and cavity
are summarized in Tab. 3.1.

The temporal arrangement of the optical FEL pulses is determined by the sequence
of the gain-providing electron bunches. Thus, IR micro-pulses of 1 GHz, 55.5 MHz or
27.8 MHz repetition frequency are emitted within a 10 µs long macro-pulse repeated at
a 10 Hz rate, see Fig. 3.1(b).

The spectral range of the FHI FEL fundamental radiation, as given by Eq. (2.56),
covers the entire MIR region, i.e. the wavelength of λ = 3 µm – 50 µm, corresponding to
a wavenumber ν = 200 cm=1 – 3333 cm=1 or a photon energy of 25 meV – 400 meV. The
extracted optical power depends on the emitted wavelength and the cavity detuning. In
the 1 GHz mode, macro-pulse energies of several tens of mJ are available, corresponding
to several µJ for each micro-pulse. At the low-repetition rates, the typical energy per
macro-pulse is about 5 mJ.
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Tab. 3.1 Parameters of electron accelerator, undulator and cavity of the FHI free-electron laser.

Parameter Value

Electron kinetic energy Ekin 15 MeV - 50 MeV
Electron energy spread < 50 keV
Electron bunch charge ∼ 200 pC
Electron bunch length σz 1 ps - 5 ps
Normalized rms transverse emittance < 20 π mm mrad
Lorentz factor γ 30 - 100
Undulator length LU 2.0 m
Undulator periods NU 50
Undulator wavelength λU 40.0 mm
Undulator parameter K 0.5 - 1.6
Cavity length L0 5.4 m
Out-coupling hole diameter 2.5 mm
Optical wavelength λ 3 µm - 50 µm

Depending on the cavity detuning, the micro-pulse duration can be as short as 420 fs
(FWHM) and increases up to several picoseconds, as it has been determined by second-
order auto-correlation measurements [Sch15a]. The expected linear polarization of the
generated light has been confirmed experimentally [Sch15a]. Intrinsically generated
higher harmonics of the fundamental FEL radiation wavelength λ are observed up to
the 11th order.

Prior to the delivery of the IR beam to the user labs, a diagnostic station is used to
monitor the FEL macro-pulse energy as well as the spectral profile using a Czerny-Turner
grating spectrometer combined with a pyroelectric array detector. For a variation of the
IR intensity, a set of five free-standing metal wire-grid attenuators with discrete power
transmission levels (50 %, 33 %, 14.5 %, 13 %, 12 %) is available. A visible helium-neon
laser can be used to align the IR beam path from the FEL cavity to the user setup. The
radiation is transported to the lab via gold-coated mirrors in an evacuated beamline of
approx. 50 m length. The out-coupling of the FEL light to the experimental setup is
accomplished by a window made up of thallium bromo-iodide (KRS-5) material, which
is transparent in the MIR range of 0.6 µm − 40 µm.

3.2 Femtosecond Table-Top Laser – FEL Synchronization

To perform sum-frequency generation spectroscopy, the MIR FEL radiation is combined
with NIR or VIS light provided by a table-top laser. Here, we employ a fiber-based
Terbium-doped high-power femtosecond oscillator1, operating at the center wavelength

1Origami HP, Onefive GmbH, Switzerland (now part of NKT Photonics A/S, Denmark)
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Fig. 3.2 Setup of RF electronics for laser synchronization. Provided by the master oscillator
(MO) of the free-electron laser (FEL), the 3 GHz reference signal is transmitted via optical fibers
to the experimental lab. Using the 54th harmonic of the optical output of the table-top laser,
synchronization is achieved by a phase-locked loop. The actual pulse repetition rate of both light
sources of 55 MHz is matched by an electronic phase shifter.

of λ = 1052 nm and delivering transform-limited sech2-pulses of τp = 100 fs duration
(FWHM) and ∼ 50 nJ energy at a repetition rate of fFO = 55.5 MHz [One15]. Passive
mode-locking is achieved by a saturable absorber (SESAM). The benefit of using a fiber
laser is the extremely low phase noise [Cox10], resulting in a free running timing jitter
< 50 fs rms (1 kHz − 10 MHz) [One15], which is advantageous for the synchronized op-
eration.

The synchronization of the table-top laser pulses and the FEL micro-pulses, emitted
at a reduced repetition rate of 55.5 MHz or 27.8 MHz, is accomplished by an electronic
phase-locking technique (Fig. 3.2). In order to achieve a precise synchronization, the
high-frequency signal fMO of the master oscillator is used. This one is distributed from
the FEL vault to the user lab via a timing-stabilized RF-over-fiber connection (approx.
100 m length). The commercial clock transfer system2 features a very low phase noise
(< 6 fs rms [10 Hz-10 MHz]) and low drift (< 40 fs/day) [Ins15]. This is realized by two
optical fiber links to compensate for phase drifts within the cable due to environmental
fluctuations (temperature, humidity) of up to 400 ps [Zor15]. For a later relocation of
the synchronization setup, two fiber cables, each consisting of six single-mode fibers3,
have been installed between the basement of the FEL facility and the user lab in the
neighboring building.

In order to phase lock the fiber oscillator (FO) to the RF MO signal, the 54th harmonic
of the table-top laser output, received by a fast photodiode, is supplied to a custom-made
synchronization module4. Comparison of the phase of both signals yields the input for a
PID controller of the phase-lock loop (PLL) to manipulate the length of the FO cavity

2Libera Sync 3, Instrumentation Technologies d.d., Slovenia
3OS2, optical carrier wavelength λ = 1550 nm, Corning Inc., USA
4S. Hunziker et al., Timing and Synchronization Group, Paul Scherrer Institut (PSI), Switzerland
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accordingly for synchronized operation at 55.5 MHz. This is realized in two ways: On
the one hand, a piezoelectric drive is used to adjust the repetition rate (capture range
> 250 Hz). On the other hand, a coarse tuner is employed to keep the FO frequency
within the piezo locking range, realized via a temperature control of the table-top laser
cage (capture width 2.5 kHz).

For the temporal overlap of the repetition rate-matched FEL micro-pulses and the FO
pulses in the experimental setup, the MO signal phase can be varied via an electronic
phase-shifter4 prior to feed-in to the synchronization module. The phase variation is
based on an RF vector modulator [Sch16], allowing a time delay change from 80 fs up to
several tens of nanoseconds. Since the MO frequency fMO used for the synchronization
is a multiple of the actual optical pulse rate fFO, the reduced-repetition rate signal of
the FEL micro-pulses is also transferred to the user lab via a separate, non-stabilized
RF-over-fiber link5 [MIT15]. In principle, this allows for additional superperiod syn-
chronization with the FO, providing a perfect overlap of FEL and FO pulses. However,
the unreliable performance of the built-in function has been replaced by a manual phase
adjustment.

The intensity of the FEL radiation is usually measured by home-built pyroelectric
detectors. If it is required to resolve the individual micro-pulses a fast (τ < 1 ns) IR-
sensitive uncooled photoelectromagnetic (HgCd)Te-based detector6 is applied. This is
used in connection with a broadband oscilloscope for a rough determination of the rel-
ative timing of the MIR FEL and FO pulses, giving a temporal resolution of about
100 ps. In the final step, the FEL – table-top laser pulse timing can be adjusted within
a 1 ns-range using a high-precision delay stage (minimum increment 0.1 µm =̂ 0.7 fs).

3.3 SFG Spectroscopy Setup

The sum-frequency generation experiments are possible in either transmission or reflec-
tion geometry. A schematic arrangement of the incident and emitted optical beams for
both methods is shown in Fig. 3.3. In the SFG transmission scheme, Fig. 3.3(a), the
wavelength-tunable MIR FEL and fundamental NIR FO radiation are incident onto the
sample in a non-collinear geometry. Due to momentum conservation, Eq. (2.55), the cre-
ated sum-frequency light is emitted close to the propagation direction of the refracted
table-top laser radiation. Both the polar (θ) and azimuthal (ϕ) angle of the sample can
be varied without changing the SFG emission direction. The difference in the angles of
incidence of the input beams is held constant, chosen to be 15◦. In case of the reflection
geometry, Fig. 3.3(b), both input beams are non-collinearly arranged as well. There,
the FEL radiation is incident under oblique incidence to increase the out-of-plane com-
ponent of the MIR electric field (for p-polarization). For upconversion, VIS radiation
derived from the FO by frequency doubling in a nonlinear crystal is employed in order

5Fiber Optic Link, RF frequency range 50 kHz to 4.5 GHz, MITEQ Inc., USA
6IR Photoelectromagnetic Detector PEM-10.6, VIGO Systems S.A., Poland
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Fig. 3.3 Schematic sum-frequency generation geometries. (a) SFG transmission geometry. A
non-collinear beam propagation arrangement (angle γ = 15◦) of the temporally (τ) and spatially
overlapped mid-infrared FEL and near-infrared (λ = 1052 nm) FO pulses is used together with
an adjustable polar (θ) and azimuthal (ϕ) orientation of the sample (χ(2) 6= 0). Spectral and
polarization filtering prior SFG intensity detection is used. (b) SFG reflection geometry. After
frequency doubling (SHG) in a nonlinear crystal, the visible table-top (λ = 526 nm) and FEL
radiation are focused onto the sample with an angle of incidence of θVIS = 30◦ and θIR = 55◦

relative to the sample surface normal, respectively.

to utilize more sensitive SFG light detectors available in the VIS spectral range. The
angle of incidence of the FEL radiation is 55◦, whereas the table-top light is incident
under θ = 30◦. Then, the SFG radiation can be probed near the propagation direction
of the reflected VIS FO beam. The azimuthal sample orientation is adjustable, whereas
the polar angle is fixed by the experimental geometry. Thus, the transmission geome-
try (a) is preferred for the phase-matched SFG at fixed wavelengths λIR and λVIS to find
the temporal overlap of FEL and FO pulses. On the other hand, the vibrational SFG
spectroscopy is performed in the reflection setup (b).

An overview of the implemented experimental setup for the various SFG measure-
ments is given in Fig. 3.4. The collimated MIR radiation supplied by the FEL, having
a beam diameter of several millimeter, is focused by gold-coated off-axis parabolic mir-
rors (reflected focal lengths 388 mm and 191 mm) onto the sample to about 400 µm and
200 µm FWHM spot sizes (at λ = 10 µm) in the transmission and reflection geometry,
respectively. A combination of two holographic wire-grid polarizers can be used as po-
larization rotator of the FEL light, set 45◦ and 90◦ relative to the linear p-polarization
of the FEL beam, respectively, if s-polarized MIR radiation is required. Longpass filters
(cut-off λ = 7 µm) are usually employed to restrict the FEL beam to the fundamental
wavelength. To normalize the measured SFG signal to the incident FEL intensity, a
caesium iodide (CsI) broadband beamsplitter (reflectance ∼ 7 %) is used to separate an
FEL reference detector signal. Since the transmission and reflection SFG geometries,
Fig. 3.3(a) and Fig. 3.3(b), are realized in separate setups in order to be able to use them
in parallel, another beamsplitter made of thallium bromo-iodide (KRS-5) is employed to
distribute the FEL power (∼ 15 % used for the phase-matched SFG transmission setup).
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Fig. 3.4 Experimental SFG spectroscopy setup. The optical output of the FO is manipulated
to provide the fundamental NIR (λ = 1052 nm) and also VIS (λ = 526 nm) radiation after
frequency-doubling in a BBO crystal (bottom part). Half-wave plates are used to set the po-
larization state of the table-top beam; an SF11 crystal can be used to stretch the VIS pulse for
increased temporal pulse overlap. The experimental setup for the SFG spectroscopy in trans-
mission geometry (right part) is usually used for the balanced optical cross-correlation. The
reflection-type SFG measurements are performed in a separate setup (left part), where the MIR
reflectivity response of the sample can be captured as well. The FEL radiation is splitted by
a KRS-5 window (15/85) for the two setups, while a CsI crystal (7/93) is used to separate an
FEL beam for reference power detection. DM: dichroic mirror, DBS: dichroic beamsplitter, SF:
spectral filter, DS: delay stage. Parts of the optical components used in the layout are from
Ref. [Fra06].
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3.3 SFG Spectroscopy Setup

The table-top FO is employed to provide NIR light (λ = 1052 nm) and VIS radiation
(λ = 526 nm) via frequency doubling. There, a custom-cut β-barium borate (BBO)
crystal (thickness 1 mm) is used for type I phase-matched second harmonic generation.
Anti-reflective coatings on both crystal sides are used to minimize optical losses. Due
to the strong focusing by a f = 5 cm lens, a conversion efficiency up to 30 % has been
achieved. Residual NIR radiation is removed by a dichroic mirror, being highly reflec-
tive only at the VIS wavelength. Afterwards, the VIS pulse can be stretched in time
by a strongly dispersive medium of SF11 glass (length 10 cm, group velocity dispersion
(GVD) ∼ 400 fs2/mm) from τp ∼ 120 fs to about 1 ps (FWHM) duration. Thus, the
temporal overlap of MIR and VIS pulses is increased, beneficial to reduce the sensitivity
of the SFG signal to timing drifts during frequency-resolved spectroscopy scans. The
spectral resolution in the IR frequency-scanning SFG approach is limited by the FEL
linewidth. The linear polarization of NIR and VIS beam can be adjusted by the respec-
tive half-wave plate. After passing a delay stage to vary the arrival time τ relative to
the FEL pulses, the NIR/VIS radiation is focused by transmissive optics (focal length
f = 20 cm) onto the sample (60 µm FWHM of NIR spot, 80 µm size of VIS spot).

Subsequently, the created SFG radiation is re-collimated. Due to conservation of mo-
mentum, cf. Eq. (2.55), the angle of the SFG emission θSFG depends on the frequency of
the input beams. The angular variation for the used MIR wavelengths is below 1◦. Thus,
the position of the SFG beam focused on the detector (lens focal length f = 5 cm) is
nearly identical when scanning the FEL frequency ωIR. Due to the similar propagation
angle of reflected FO and SFG radiation, spatial separation is not possible. There-
fore, to block the spectrally nearby table-top laser wavelength, two shortpass [cut-off
λ = 1000 nm, Fig. 3.3(a)] or bandpass [FWHM range λ = 500± 5 nm, Fig. 3.3(b)] filters
are placed in front of the SFG light detector, providing a total suppression level of optical
density (OD) 10. The particular sum-frequency electric field polarization being probed
can be selected by a Glan-Thompson calcite prism polarizer. Depending on the intensity
of the generated NIR or VIS sum-frequency light, either a silicon photodiode7, silicon
avalanche photodetector8 or bialkali photomultiplier tube9, the most photon-sensitive
device, is employed. The whole setup can be flooded with nitrogen gas to avoid absorp-
tion of the MIR radiation by the water vapor contained in ambient air. Measurements
are performed on samples held at room temperature.

During a certain beamtime (one day), the kinetic energy Ekin of the FEL machine
is fixed to a value suitable for the desired wavelength range. The wavenumber-resolved
spectroscopy measurements are performed by scanning the undulator gap size. During
such a wavelength sweep, the length of the cavity is adjusted accordingly to retain a
constant detuning ratio ∆L/λ, and thus a fixed relative bandwidth and spectral resolu-
tion. The cavity detuning can be set to a value in between ∆L = (0.5 ... 5)λ.

7DET10A/M, Thorlabs Inc., USA
8APD410A/M, Thorlabs Inc., USA
9H11901P-210, Hamamatsu Photonics K.K., Japan
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3 EXPERIMENTAL METHODS

(a) (b)

Fig. 3.5 Phase-matched sum-frequency generation in GaSe. (a) Experimental and calculated
phase-matching angle θpm for mixing the MIR FEL radiation λ1 with the NIR table-top light at
λ2 = 1.06 µm. (b) Azimuthal dependence of normalized SFG intensity ISFG(ϕ) for type I and
type II phase-matching (see text for analytical expressions). Measurement values are obtained
with a 1 mm thick z-cut crystal; the theoretical result are based on Refs. [Dmi99; Abd75].

The FHI FEL parameters are controlled and monitored via an EPICS software inter-
face. All detector signals are captured via a 4 GHz bandwidth oscilloscope, triggered
by the FEL macro-pulse frequency signal. The experimental setup (control and readout
of delay stage positions, FEL parameters, oscilloscope data) is operated via a LabView
program. Subsequent analysis of the GB-sized data (due to single-shot storage of macro-
pulse time-domain traces and FEL radiation spectra) is performed with Matlab.

Phase-matched sum-frequency mixing

Prior to the spectroscopy measurements, the actual temporal overlap of FEL and FO
pulses is identified by non-resonant sum-frequency generation in a nonlinear optical
crystal. For that, phase-matched SFG in gallium selenide (GaSe) [Kai99], a layered
semiconductor, can be used in the wavelength range of λ = 0.6 µm − 18 µm. Due
to the large nonlinearity (

∣∣χ(2)(10 µm)
∣∣ > 100 pm/V [Dmi99]), the material provides a

strong SFG intensity. Depending on the polarization of both input beams, type I and
II phase-matching can be realized by angle tuning of the anisotropic crystal. In case
of non-collinear type I phase-matching in the negative uniaxial crystal (ne < no), the
following equation holds for the polar angle θpm [Dmi99]:

tan2 θpm =
1− (k2

o1 + k2
o2 + 2ko1ko2 cos γ)/k2

o3

(k2
o1 + k2

o2 + 2ko1ko2 cos γ)/k2
e3 − 1

, (3.1)

where ko1 = no(λ1)/λ1, ko2 = no(λ2)/λ2, ko3 = no(λ3)/λ3 and ke3 = ne(λ3)/λ3 with

the angle γ between the wave vectors k1 and k2. A similar expression can be found
for type II phase-matching [Dmi99]. Dispersion relations of the refractive indices of
the ordinary beam no(λ) and the extraordinary beam ne(θ, λ) of the birefringent GaSe

42



3.3 SFG Spectroscopy Setup

are taken from Ref. [Abd75]. The calculated phase-matching angles θpm are shown in
Fig. 3.5(a), together with the measured values obtained from a 1 mm thick z-cut crystal.
In Fig. 3.5(b), the azimuthal dependence ISFG(ϕ) is depicted, which affects the efficiency
of the upconversion process as well. A good agreement between experiment and the-
ory is found for type I and II phase-matching. Due to the threefold crystal symmetry,

ISFG ∝
∣∣χ(2) cos θ sin 3ϕ

∣∣2 in the case of type I, whereas ISFG ∝
∣∣χ(2) cos2 θ cos 3ϕ

∣∣2 for
type II velocity-matched sum-frequency generation [Dmi99].

In case of sum-frequency generation with the VIS table-top laser radiation, zinc
selenide (ZnSe) has been used due to the larger band gap (transparency range λ =
0.4 µm − 20 µm), but without the phase-matching possibility. For the long-wavelength
region of the FEL (λ > 20 µm), silicon carbide (SiC) might be a suitable material, as
phase-matched DFG has been demonstrated by this [Fis17].
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4 Timing Stability of the FEL
Synchronization

In order to perform two-color FEL–table-top laser spectroscopy experiments, whether
nonlinear or pump-probe, the stability of the relative pulse timing is a crucial issue.
Therefore, the short-term fluctuations, i.e. jitter, as well as long-term variations, i.e.
drift, of the pulse arrival time have to be known. Here, the method of balanced optical
cross-correlation is used for the timing characterization. Implications of the experimen-
tal results are discussed.

Parts of this Chapter have been published in Ref. [Kie18].

4.1 Balanced Optical Cross-Correlation

In general, the intensity cross-correlation of two different, synchronized optical pulses
reveals a convolution function in dependence of the relative pulse delay. Whenever the
relative temporal delay of the input pulses jitters, the amplitude of the cross-correlation
signal is changed. However, the relation between intensity change and time difference is
not unambiguous. Therefore, the intensity cross-correlation can be performed a second
time, after insertion of a small temporal offset between both pulses. After normaliza-
tion, the substracted cross-correlation values obey a linear relationship with regard to
the pulse delay. Thus, a reliable method to track the development of the relative timing
of two synchronized lasers is obtained.

The principle setup of the balanced optical cross-correlator is depicted in Fig. 4.1.
There, the spatial and temporal overlap of two input pulses in an appropriate nonlinear
crystal generates a third optical beam at the sum frequency. The intensity of this
first SFG signal, XC(τ), is measured after blocking the fundamentals. Then, the two
input pulses transmitted through the crystal are directed back to the nonlinear medium
after introducing a fixed time delay ∆t between them. The created second SFG signal
XC(τ + ∆t) is collected as well. By scanning the relative time delay τ of the two
input pulses, the whole cross-correlation functions XC(τ) and XC(τ + ∆t) are sampled.
Normalizing each to its maximum and subsequent calculation of the difference gives the
balanced optical cross-correlation function BOC(τ,∆t):

BOC(τ,∆t) =
XC(τ)

max [XC(τ)]
− XC(τ + ∆t)

max [XC(τ + ∆t)]
. (4.1)
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4.1 Balanced Optical Cross-Correlation
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Fig. 4.1 Scheme of balanced optical cross-correlation (BOC). (a) Sketch of experimental setup.
Optical pulses of FEL (red, 1) and table-top laser (green, 2) with relative delay τ are mixed
within a single nonlinear crystal (χ(2) 6= 0). Sum-frequency radiation (blue) is generated twice:
in forward direction [XC(τ)], and in backward direction [XC(τ + ∆t)] after inserting a small,
fixed time delay ∆t between the transmitted input pulses. (b) Illustration of the normalized
cross-correlation signals XC(τ) and XC(τ + ∆t) as well as of the BOC function BOC(τ,∆t)
calculated according to Eq. (4.1).

Close to time zero, |τ | . ∆t/2, the BOC profile can be approximated by a linear function,

BOC(τ,∆t) ≈ c τ. (4.2)

The calibration coefficient c is revealed by a linear fit to the experimental data. When
using the calibrated cross-correlator for a measurement of timing jitter or drift, the
variable time delay τ is set to a constant value close to zero. Now, fluctuations of the
relative arrival time of both input pulses transform in nonzero BOC values. Using the
calibration coefficient, these values can be converted into the desired timing information.
Then, the timing jitter δt is calculated as root-mean square (rms) value of the timing
fluctuations within a certain real-time window (here, 3 min), whereas the drift is given
as peak-to-peak variation during a long period of time (here, 15 min).

To obtain a maximum temporal range where the BOC function is almost linear, an
optimum value for the fixed time delay ∆t exists, depending on the duration of the two
input pulses. It can be derived analytically, and is given by

∆topt = ±
√

1

2 ln 2

(
τ2

1 + τ2
2

)
, (4.3)

where τ1 and τ2 are the FWHM durations of the input pulses, assuming Gaussian pulse
profiles.

Besides a characterization of the timing stability by itself, the BOC tool can be used to
measure the timing variations ∆τ in parallel to an FEL pump – table-top probe exper-
iment. Then, a post-correction of the transient signal can be performed, improving the
temporal resolution of the experiment due to the elimination of timing drifts. To that
end, the measured observable is re-arranged over the actual time delay τ + ∆τ instead
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4 TIMING STABILITY OF THE FEL SYNCHRONIZATION

of the time delay τ set. As another approach, the timing drift during the time-resolved
study can be eliminated in real time by applying an adequate feedback to the delay stage
of the measurement setup.

The first BOC has been demonstrated in the synchronization of two mode-locked
table-top lasers, yielding a timing jitter of δt = 300 as by supplying active feedback to
the control loop [Sch03]. At accelerator-based light sources, the BOC can be applied to
stabilize the timing of all accelerator components as well as of the table-top laser to a
master oscillator clock. This has been proven, for example, at the X-ray FEL FLASH,
where all-optical synchronization yields a timing jitter of δt = 30 fs using 90 fs short
FEL light pulses [Sch15b]. Due to the inherent linearity of the measured observable to
absolute timing conversion, the BOC technique is preferable over a simple SFG cross-
correlator, which has been used so far at other IR FELs [Per93; Eli95].

The balanced optical cross-correlator of FEL and table-top laser pulses has been im-
plemented using SFG in transmission geometry, cf. Fig. 3.3(a). For the BOC measure-
ments, the s-polarized fundamental NIR wavelength of the table-top laser is mixed with
the p-polarized MIR FEL radiation at wavelength λ = 10 µm and detuning ∆L = 3λ.
Both beams are focused into a z-cut GaSe crystal (thickness 1 mm) adjusted for type II
phase-matching. The angle between the incident beams is 15◦. The transmitted FEL ra-
diation is refocused by a concave spherical mirror, whereas the NIR radiation is reflected
back by a plane mirror behind a collimation/refocusing lens. Spectral separation of the
nearly co-propagating fundamental NIR and SFG light is realized by dichroic mirrors.
The relative delay τ as well as the fixed time delay ∆t can be varied via motorized stages.
The SFG intensities XC(τ) and XC(τ + ∆t) are detected by photodiodes.

4.2 Jitter and Drift of FEL Pulse Timing

By using the balanced optical cross-correlation method, the jitter as well as drift of the
FEL pulse arrival time has been measured relative to the synchronized table-top FO.

In Fig. 4.2(a), the measured BOC function is shown, obtained for 100 FEL shots
at each delay point. Concerning the dynamic range of the timing tool, i.e. the delay
window with a linear relationship, a range of about 3 ps can be captured. A histogram
of the BOC values close to the delay τ = 0 is depicted in Fig. 4.2(b). The extracted
timing jitter, corresponding to the standard deviation σ of a Gaussian fit, is δt = 103 fs
in the low-repetition FEL mode (27 MHz). In case of the standard micro-pulse rate of
1 GHz, a higher timing jitter of δt = 200 fs − 300 fs has been measured. A dependence
of the jitter on the FEL wavelength, i.e. undulator gap size, for a given accelerator
electron energy or on the cavity detuning (i.e. mirror translation) has not been found,
see Fig. 4.3. The larger jitter value in case of the standard repetition rate might be due
to the higher overall beam-load of the linacs. Another source is probably the different
electronic device used for the generation of the high-voltage pulses and applied to the
electron grid in the 1 GHz mode (cf. Sec. 3.1.1).
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4.2 Jitter and Drift of FEL Pulse Timing

(a) (b)
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Fig. 4.2 FEL pulse jitter determination by balanced optical cross-correlation. (a) Record of the
BOC value according to Eq. (4.1) as function of the relative time delay τ between FEL and
table-top pulse. For each delay step, 100 subsequent macro-pulses (shots) have been captured.
Calculation of the mean BOC function reveals a linear relationship between the BOC value and
the delay around time τ = 0. There, the dynamic range is about 3 ps. (b) Histogram of the FEL
micro-pulse timing. The extracted jitter value is σ = 103 fs, derived as standard deviation of the
Gaussian distribution.

The long-term fluctuations of the FEL pulse arrival time are depicted in Fig. 4.4. Simul-
taneously, the shift of the FEL center wavelength and the mean energy of the electron
bunches have been recorded. For the latter, the kinetic energy of the charged parti-
cles is captured by a horizontal beam-position monitor placed behind a beam bending
magnet downstream the two linacs. Thus, energy differences of the electrons transform
into different spatial positions on the screen. The peak-to-peak timing fluctuations are
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Fig. 4.3 Dependence of FEL pulse jitter on repetition rate and radiation wavelength. The short-
time fluctuations of the FEL micro-pulse arrival time has been determined for the standard
repetition rate (frep = 1 GHz, black line) and reduced frequency (27 MHz, other colors) at
various cavity lengths. Different lasing wavelengths have been used in the low-rate mode by
varying the undulator gap (fixed electron energy).
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Fig. 4.4 Drift of FEL pulse timing. (a) Variation of the FEL pulse arrival time δt with respect
to the table-top pulse during a 30 min time range. The data are obtained from a calibrated BOC
measurement. (b) Kinetic energy fluctuations ∆Ekin of the electron bunches after traversing
both linear accelerators. This has been determined by a beam position monitor behind a bend of
the electron beam. (c) Wavelength variation measured by the FEL spectrometer. In each graph,
a moving average with half-minute window is displayed (black line).
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Fig. 4.5 Correlation of optical pulse timing and accelerator behavior of the FEL. The long-term
fluctuations of the (a) FEL pulse arrival time and (b) center wavelength of the FEL radiation
are plotted against the variations of the kinetic energy ∆Ekin of the accelerated electrons. Data
density of the scatter plots is indicated by color (blue low, yellow high). A strong linear correlation
is present in both cases, expressed by the Pearson coefficients ρ = 0.78 and 0.98, respectively.

3 ps over a period of 30 min, Fig. 4.4(a). Obviously, there is a clear correlation with the
energy variations of the electrons generating the light pulse, Fig. 4.4(b). The measured
energy fluctuations ∆Ekin of the electron bunches are in the same order of magnitude
as the energy spread of the accelerated electrons (cf. Tab. 3.1). This is accompanied
by shifts of the center wavelength λ0 of the optical radiation, Fig. 4.4(c). The behavior
can be directly explained by means of the resonance condition Eq. (2.56): Due to the
unchanged magnetic undulator field during the experiment, the K parameter is fixed.
Thus, variations in the kinetic electron energy are imprinted on the optical wavelength.

A calculation of the Pearson correlation coefficient ρ for the linear relationship gives a
value of ρ = 0.78 in the case of the micro-pulse timing vs. electron energy, Fig. 4.5(a), and
ρ = 0.92 between FEL wavelength and electron energy, Fig. 4.5(b), respectively. Thus,
the accelerator system is seen as the main source of the timing fluctuations. In detail,
these can be amplitude and/or phase instabilities in the RF fields of the thermoelectric
electron injection, the buncher cavity, or the two linac modules. As a consequence of
dispersive effects along the electron beam path, bunch energy differences result in timing
variations. Other sources of pulse arrival time changes might be the thermal expansion of
the beamline or mechanical vibrations due to mounting on the building. As a rough esti-
mate, for a 100 m long stainless steel beamline, the arrival time difference for ∆T = 1 K
is in the order of 3 ps. However, this would occur at a time scale of hours instead of the
30 min period depicted in Fig. 4.4(a). The contribution from the RF distribution system
is of minor impact since the fiber-based clock transfer employed exhibits a high timing
stability. Also, the table-top fiber oscillator exhibits a low phase noise (cf. Sec. 3.2).
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4 TIMING STABILITY OF THE FEL SYNCHRONIZATION

Taking into account that the synchronization relies solely on radio frequency-based
phase-locking, a high stability of the table-top pulse timing is achieved. Compared to
other FEL facilities, the jitter value of about 100 fs is the lowest reported so far [Kni98;
Bha11; Wan12]. This is also the lower limit which can be reached by means of con-
ventional electronic phase-locking techniques [Grg12; Azi09]. The implemented experi-
mental setup is suited for sub-ps-resolved FEL – table-top experiments, since the timing
jitter is one order of magnitude smaller than the FEL pulse duration. In principle, the
information about the clear relationship between electron energy and timing drift can
be used to eleminate the temporal variations by applying an appropriate feedback to
the accelerator components. In this work, the way chosen to compensate for timing
variations in time-resolved measurements is done via post-correction of the time delay,
similar to other accelerator-based systems [Kov17].

Conclusion

In summary, a robust method for the precise timing determination of IR FEL-based
pulses with respect to an external laser has been established. Based on balancing of two
slightly time-shifted optical SFG cross-correlation signals, a linear relationship between
measured observable and pulse timing is provided by an all-optical technique. This
extends the possibilities for experimental investigations with the FEL radiation to two-
color spectroscopy studies. Due to the low timing jitter of about 100 fs of the electronic
phase-locking architecture, nonlinear frequency-resolved spectroscopy of materials can
be performed right off. In case of time-resolved measurements, recording of the actual
relative pulse delay in parallel to the pump-probe study improves the time resolution
on the femtosecond scale. Thus, the post-correction approach mitigates the requirement
for a strict synchronization of table-top and accelerated-based light source.

The observation of a strong correlation between the temporal pulse drift and the
electron energy fluctuations provides a way to reduce the timing shifts. For that, an
active feedback might be applied to the amplitudes and phases of the accelerator RF
fields. Besides the timing aspect, this would be beneficial for the spectral stability of the
emitted FEL radiation.
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5 Temporal and Spectral Structure of the
FEL Radiation

The linewidth of the IR FEL radiation is a critical parameter for the spectral resolution
of the measurements, requiring narrowband radiation. Besides that, knowledge about the
temporal structure of the FEL radiation is essential when combined with optical pulses
from other laser light sources to perform two-color spectroscopy. In the following, the
temporal and spectral characteristics of the FHI FEL pulses are investigated in detail.
Due to the oscillator configuration of the FEL, the length of the resonator provides a way
to manipulate the pulse shape and spectrum. In particular, the formation of sub-pulses
within a single FEL micro-pulse could be observed. This result will be explained as a
consequence of the nonlinear electron-photon interaction in the free-electron laser.

Parts of this Chapter have been published in Ref. [Kie18].

5.1 Pulse Profile and Bandwidth

For a measurement of the time-domain profile of the FEL pulse IFEL(τ), the SFG cross-
correlation method introduced in Sec. 4.1 has been employed. Therefore, the MIR
FEL radiation at λ = 10 µm is mixed with the NIR table-top laser pulses in a phase-
matched GaSe crystal. Since the reference pulse Iref(t) used from the FO laser is at
least one order of magnitude shorter than the FEL micro-pulse, the measured convolu-
tion trace

∫
IFEL(τ)Iref(τ − t)dτ represents in good approximation the actual FEL pulse

shape IFEL(τ).

In Fig. 5.1(a), the dependence of the FEL micro-pulse profile I(τ) on the cavity detun-
ing ∆L is displayed. The depicted profile is acquired by integration of the SFG signal
over the whole macro-pulse. In the following diagrams, the leading edge of the FEL
micro-pulse is placed at negative delay times. In case of zero detuning, ∆L = 0, no
stable lasing can be observed (not shown). This is a consequence of the laser lethargy
(cf. Sec. 2.4). At small cavity detuning, 0 < ∆L . 1λ, an FEL pulse of Gaussian-shaped
intensity envelope is emitted. The integrated micro-pulse duration (FWHM) determined
from the cross-correlation is about 1.5 ps, see inset of Fig. 5.1(a). By further shortening
of the FEL cavity, the pulse length is increased up to 4 ps at ∆L = 5λ. At the same
time, an asymmetric pulse profile evolves with an exponential rising edge. In Fig. 5.1(b),
the corresponding spectral signature of the generated FEL light is displayed. Whereas
for a short detuning value, the relative bandwidth ∆λ/λ amounts to a few percent, see
inset of Fig. 5.1(b), narrowband radiation down to ∆λ/λ = 0.3 % can be produced at
large cavity detunings (∆L ∼ 5λ).

51



5 TEMPORAL AND SPECTRAL STRUCTURE OF THE FEL RADIATION

(a) (b)

Fig. 5.1 Pulse profile and spectral bandwidth of the FEL radiation. (a) Intensity profile I(τ)
of the micro-pulse determined by SFG cross-correlation with integration over the full macro-
pulse time. The inset displays the pulse duration (FWHM) as function of the cavity detuning
∆L. (b) Spectral structure of the FEL light normalized to the center wavelength λ0. The
relative bandwidth (FWHM) is depicted in the inset. Narrowband IR radiation of 0.3 % relative
bandwidth can be generated.

The change of the pulse profile as function of the detuning is a result of the varying
temporal overlap between the ps-short electron bunches and the generated optical field:
Whereas the repetition rate of the electron pulses is fixed by the accelerator frequency,
the round-trip time of the light waves within the resonator is determined by the short-
ened cavity length L = L0−∆L. Consequently, the optical pulses are advanced relative
to the gain-providing free-electron medium, stretching the micro-pulse duration. Due to
the lack of contact with the electron bunches, the intensity of the light pulse at the front
is attenuated by cavity losses. Thus, the exponential form of the leading pulse edge is
governed by the cavity Q factor.

In the frequency domain, the broadening of the pulse duration is accompanied by a
narrowing of the spectral linewidth. Calculation of the time-bandwidth product gives
τ ∆ω = 0.78 in the case of ∆L = 0.5λ and τ ∆ω = 0.42 at ∆L = 5λ. For a Gaussian-
shaped transform-limited pulse, the time-bandwidth product is τ ∆ω = 0.44. Thus, the
experimental value at small detuning is about a factor of two larger than required for the
transform limit. Studies at other IR FEL oscillators have proven that Fourier transform-
limited pulses are reasonable (Stanford FEL [Dlo91], FELIX [Kni99]). The difference
might arise due to a change of the micro-pulse timing during the macro-pulse, i.e. an
effective chirp. This means that the temporal profile, in this setting, has a significant
inhomogeneous broadening, arising due to averaging of the micro-pulses with different
timing across the macro-pulse.

A close look at the spectrum at small detunings ∆L reveals an asymmetry, i.e. devi-
ation from a perfect Gaussian. The detailed investigation of the micro-pulse structure
within the macro-pulse, explaining this behavior, will be given in the next section.
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5.2 Sub-Pulse Formation and Limit-Cycle Oscillations

In the following, a detailed study of the evolution of the micro-pulse intensity profile
within a single macro-pulse will be presented. As it turns out, there is a strong de-
pendence on the cavity detuning, so that a non-constant amplitude and temporal shape
can occur. On the one hand, these observations allow a better understanding of the
underlying FEL physics, on the other hand, the particular optical characteristics have
to be taken into account for the spectroscopic experiments.

5.2.1 Experimental Results

The two-dimensional plot in Fig. 5.2(a) shows the development of the FEL micro-pulse
intensity envelope I(τ) (vertical axis) as function of the temporal position t within
the macro-pulse (horizontal axis), measured by SFG cross-correlation. In the case of
∆L = 1.75λ, a strong modulation of the micro-pulse shape appears, with a periodic rep-
etition. This can also be clearly seen in the cross-sections of Fig. 5.2(b) and Fig. 5.2(c).
In contrast to the macro-pulse integrated data, Fig. 5.1(a) and Fig. 5.2(b) (gray line),
equally-spaced sub-pulses within the micro-pulse are resolved. Along the macro-pulse
time axis, Fig. 5.2(c) (blue line), an oscillation period of the FEL power of T = 1.1 µs can
be extracted. The strength of the intensity modulation is up to 50 % in the delay-specific
macro-pulse trace, whereas it is hardly seen in the delay-integrated data, Fig. 5.2(c) (gray
line).

To rationalize these observations, one has to consider the interplay of gain, provided
by the free-electron medium, and the resonator losses within the cavity. The emission
of light pulses from the FEL starts as soon as the gain exceeds the lasing threshold, i.e.
at around 1 µs in Fig. 5.2(a). Due to the detuned cavity length, the peak position of the
micro-pulse shifts to earlier delay times in the subsequent cavity round-trips. As a result,
the contact to the gain medium is lost. However, after further passes of the optical wave
through the undulator, a second so-called sub-pulse arises at the trailing edge (τ > 0).
Apparently, net gain is provided again to the electromagnetic field. This peculiar behav-
ior can be explained by means of an analytical model, see Sec. 5.2.2. The generation and
shifting of the sub-pulses occurs repeatingly by the aforementioned mechanism. Most
importantly, the temporal arrangement, i.e. distance, of the sub-pulses does not change
during the move ’through’ the micro-pulse. Finally, at the leading edge (τ < 0), the
intensity decays exponentially due to cavity losses, now exceeding the FEL gain. Thus,
the oscillation pattern of the emitted FEL power within one macro-pulse arises due to
the regular occurrence of sub-pulses.

The dependence of the pulse formation dynamics on the length of the cavity is re-
vealed by a series of 2D cross-correlation measurements as shown in Fig. 5.3. At small
cavity detuning, ∆L = 1λ in Fig. 5.3(a), a short micro-pulse is observed, in agreement
with the previous results of Fig. 5.1. The build-up and decay of optical sub-pulses can
be clearly identified. In comparison with the case of ∆L = 1.75λ in Fig. 5.2, a longer
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Fig. 5.2 Two-dimensional cross-correlation measurements of the FEL output in the case of sub-
pulse formation and limit-cycle oscillations. (a) Evolution of the FEL micro-pulse shape I(τ)
(vertical axis) during the macro-pulse of 10 µs duration (horizontal axis). Cross-sections from
the 2D plot along a constant time of t = 8µs and a constant delay of τ = −3 ps are plotted in
(b) and (c), respectively. In contrast to the time- or delay-integrated intensity envelopes (grey
areas), the equally spaced sub-pulses (b, black arrows) and regular limit-cycle power oscillations
(c) are clearly resolved. The temporal separation of the sub-pulses is 2.7 ps; the oscillation period
T is indicated in (a). Cavity detuning has been ∆L = 1.75λ.

power oscillation period is present. Further shortening of the FEL cavity results in a
reduction of the period T as well as of the strength of the modulation. Consequently,
at ∆L = 3λ in Fig. 5.3(d), oscillations of the micro-pulse intensity can no longer be
resolved. Instead, a single-peaked micro-pulse is observed, featuring a nearly constant
amplitude during the whole macro-pulse.

The start of the coherent light emission from the FEL depends on the cavity detuning,
cf. Fig. 5.3. This is a consequence of the gain development required to overcome the
lasing threshold. For a larger detuning, the optical power generation is established at
earlier time t, meaning that the gain growth is faster, compared to the case of ∆L close
to zero. Also, the saturation of the FEL power is reached sooner. In contrast to the
begin of the optical macro-pulse, its temporal end is taking place mainly independent
of the cavity detuning at around t = 10 µs. This is determined by the switch off of the
train of electron bunches. Thus, a clear edge of the saturated intensity appears in the
2D plots of Fig. 5.3(a)-(d). The final decay of the FEL power is governed by the cavity
Q factor.
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Fig. 5.3 Dependence of the FEL oscillator pulse development on the cavity detuning ∆L. The
data for ∆L = 1λ−3λ are obtained by SFG cross-correlation (linear intensity scale). Limit-cycle
oscillations of the FEL power are clearly resolved in the cases of (a) – (c).

Various experimental and theoretical work has been concerned with the FEL power
oscillations [Col82; Jar93; Hah93; Bak94]. The behavior is observed for FEL oscillators
driven by short electron pulses. In the case of IR FELs, bunch durations in the ps range
are required to create optical sub-pulses. The emerging FEL intensity modulation has
been recognized as limit-cycle oscillation (LCO) [Col82].

The dependence of the oscillation period T on the detuning parameter ∆L is summa-
rized in Fig. 5.4. The values are extracted from the measurements shown in Figs. 5.2
and 5.3. A clear trend of a decreasing LCO period for a shorter cavity length can be
observed. In Ref. [Jar93], a simple analytic expression has been derived for the period T
in a small-gain FEL oscillator. For this, the group velocity vg of the light pulses has to
be considered, which is determined by the gain-providing free-electron medium traveling
at relativistic speeds. Thus, vg is below c0. When the FEL intensity begins to saturate,
vg is getting closer to the vacuum value c0 [Bak94; Kni95]. At the same time, the mod-
ulation of the energy of the electrons is increasing. Finally, the charges are trapped by
the strong optical field, performing synchrotron oscillations. During such an oscillation,
the electrons are shifted back relative to the light pulse by one slippage length s = Nλ.
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Fig. 5.4 Limit-cycle oscillation period T as function of the cavity detuning. The experimental
values are extracted from the data shown in Figs. 5.2 and 5.3. The analytic model function is
according to Eq. (5.1) and described in the text. Simulation results are from 4D Maxwell-Lorentz
theory calculations for different electron pulse durations σz as described in Sec. 5.2.2.

Due to the particles’ reabsorption of energy from the optical field, the gain is reduced
to below the threshold. So, the previous group velocity of the light pulse recovers. In the
end, the repeated variation of the group velocity causes the equally spaced sub-pulses.
Thus, the LCO period of the FEL power within the macro-pulse is determined by the
time a sub-pulse needs to propagate the slippage distance s [Jar93]:

T =
s

∆L

L0

c0
. (5.1)

The experimental results of the oscillation period T are in qualitative agreement with
the analytical trend. However, there is a quantitative deviation of about a factor two.
As known from literature [Col90], the FEL pulse formation is very sensitive to the po-
sition and angle of the electron beam injection into the undulator. This is supported
by our measurements at different beamtimes, where variations of the pulse shapes have
been identified (not shown). However, the condition of the electron beam is usually not
monitored at the FHI FEL facility. Thus, we assign the deviation to the specific align-
ment of the particle beam relative to the undulator axis. Nevertheless, the conclusions
concerning the fundamental physical process are the same.

The results of the FHI FEL pulse development are in agreement with other FEL
oscillators [Jar93; Kni95]. However, in contrast to the auto-correlation experiments
performed there, the cross-correlation measurements presented here resolve the evolution
of the actual pulse shape, thus providing deeper insight into the FEL physics.
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5.2.2 FEL Dynamics Simulations

The observed LCO pattern can be a characteristic feature of nonlinear dynamical sys-
tems without external perturbation. To this end, the theory introduced in Sec. 2.4.2
has been applied to describe the lasing behavior of an FEL oscillator operating with ps-
short electron bunches [Col90]. There, the critical parameters are the bunch length σz,
the slippage s = Nλ, composed of the number of undulator periods N and the optical
wavelength λ, and the detuning value ∆L. In the following, calculations of the optical
intensity development within one macro-pulse will be presented for various cavity de-
tunings. Thus, the simulated FEL micro-pulse profiles can be directly compared to the
experimental observations.

The classical relativistic theory used to describe the temporal and spectral structure
of the FEL emission is based on coupled Maxwell-Lorentz equations. The system of
nonlinear differential equations is given by Eqs. (2.58) and (2.59). In order to simulate
the temporal development of the pulse profile, at least two dimensions have to be included
in the simulations: the time t and the longitudinal coordinate z along the undulator axis.
For a complete description of the effects taking place in the FEL oscillator, e.g. optical
wavefront distortion, also the transverse directions x, y have to be taken into account.
Whereas 2D calculations are solvable on an office computer, the 4D simulations require
dedicated hardware [Bla15].

2D FEL Dynamics Simulations

Method Due to the electron-photon interaction, energy is transferred from the gain
medium to the electromagnetic field and vice versa. For the low-current electron pulses

a Gaussian-shaped temporal profile j(z) = j0 exp
(
− z2

2σ2
z

)
of width σz = 3.3 ps has been

assumed. Note that the z-axis in the calculations is equivalent to the delay axis τ in the
experiments. Each undulator pass, the slower electron bunches, consisting of N sample
electrons, slip back relative to the light pulse by one slippage length s. Multiple (n)
round trips of the optical pulse within the cavity (of time tpass = 2L0/c0) are followed,
giving the time axis t = n tpass of the macro-pulse. The resonator losses are considered by
a cavity Q factor, reducing the field intensity each pass, |an|2 = |an−1|2 e−Q. Shortening
of the cavity length due to detuning is included by advancing the optical pulse every
round trip by the length ∆L. To start the growth of the light pulse from spontenous
emission, noise is added to the phase of the electrons, creating a random distribution
of ζ ∈ [−π/2, 3/2π[ in phase space. Initially, each particle enters the undulator with
velocity ν0. The coupled differential equations for the particles, Eq. (2.58), and the
optical envelope a(z), Eq. (2.59), are solved numerically for each pass, see Appendix A.2.

Results The dependence of the calculated optical pulse shape I(z, t) = |a(z, t)|2 on
the cavity detuning ∆L is depicted in Fig. 5.5. Consistent with the experimental obser-
vations (cf. Fig. 5.3), sub-pulses and LCOs of the FEL power occur for a limited range
of cavity lengths. Close to zero detuning, short but intense single-peaked optical pulses
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Fig. 5.5 Simulation of the optical emission based on 2D FEL theory. In the 2D images, the
development of the micro-pulse intensity profile I(z) is shown at various detuning values, ∆L =
0.5λ, 1λ, 2λ and 4λ, (a)-(d). The intensities are normalized for each plot; the ratio reads as
7.5:6:3:1 from (a) to (d). The pulse profile at the end of the macro-pulse, equivalent to t = 10µs,
is depicted in the normalized line graphs. Note the different time scale of the vertical axes, due
to the longer micro-pulse duration at larger cavity detunings. The formation of sub-pulses and
the variation of the limit-cycle oscillation period is clearly present.

are generated. With a further advancement of the light pulses with respect to the elec-
tron bunches, a modulation of the gain during the pulse growth leads to the occurrence
of sub-pulses within the micro-pulse. At large detuning (∆L & 4λ), the FEL intensity
saturates at a lower level. Consequently, the sub-pule formation sets in earlier and the
modulation depth is smaller. Many sub-pulses arrange into a single-peaked, temporally
long micro-pulse. Since the electric field amplitude is calculated, the maximum intensity
at the different detuning settings can be compared, given in the legend to Fig. 5.5. It
is found that the strongest FEL pulses are generated at around ∆L = 0.5λ, which is in
agreement with the experimental observations.

A further aspect revealed from comparison of the simulation data with the measured
pulse shapes in Figs. 5.2 and 5.3 is related to the sharpness of the intensity peaks.
Whereas the calculated FEL power oscillations along the macro-pulse time axis are
rather clear, the experimental results show blurring. This is actuallly due to the mea-
surement procedure of acquiring multiple shots and subsequent averaging. Hence, the
individual FEL macro-pulses exhibit slightly different starting times due to gain fluctu-
ations.
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Fig. 5.6 Nonlinear dynamics of a van der Pol oscillator. (a) Temporal development of the system
displayed in phase-space (x, ẋ). The trajectory shows a limit-cycle solution as time approaches
infinity, t→∞ (light gray to black). (b) Plot of the corresponding limit-cycle oscillation x(t) of
the system observable in the time domain.

The generation of sub-pulses in an FEL oscillator has been first predicted by Colson
using this theoretical model [Col82]. Due to the nonlinear equation of motion governing
the dynamics of the electrons in the light field, Eq. (2.58), the coupled optical amplitude
can be strongly modulated. As another exemplary nonlinear system, the van der Pol
oscillator, present in mechanical and electrical problems [Man72], exhibits a limit-cycle
solution as well. There, the time evolution is determined by a nonlinear damping term
(µ 6= 0):

ẍ− µ(1− x2)ẋ+ x = 0. (5.2)

The solution of the differential equation is displayed in Fig. 5.6. In Fig. 5.6(a), the
temporal development of the oscillator in the phase space (x, ẋ) is shown. As time evolves
towards t→∞, a closed trajectory occurs, the ’limit cycle’. The temporal evolution of
the position x(t) is depicted in Fig. 5.6(b), where pronounced oscillations with a fixed
period T are observed. This can be seen as analogon to the behavior of the optical
amplitude of the FEL emission, hence giving reason to the term limit-cycle oscillation.

4D FEL Dynamics Simulations

In order to obtain a detailed calculation of the complex optical field amplitude a(x, y, z, t),
the two-dimensional simulations are extended in the transverse dimensions. Thus, the
diffraction of the light wave within the cavity, the actual overlap of electron beam and
optical mode as well as the finite-size hole out-coupling are included. For efficient energy
extraction, the photon beam cross-section πw2

0 should be similar to the electron beam
size πr2

e , and the Rayleigh range πw2
0/λ in the order of the undulator length LU [Col90].
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Method For the four-dimensional optical field simulations, the general Maxwell-Lorentz
equations are used instead of the reduced equations (2.58) and (2.59), yielding [Col90]

dγ

dt
=
ωK(J0(ξ)− J1(ξ))KR

γ
cos(ξ + φ) (5.3)

(
∂

∂z
+

1

c

∂

∂t

)
Eeiφ = −2

√
2πeK(J0(ξ)− J1(ξ))ne(z − βzct)〈

1

γ
e−iξ〉(z−βzct) (5.4)

Here, KR = eEλ/2πmc2 is the optical potential, Eeiφ the complex optical field, ne(z −
βzct) describes the electron bunch traveling at speed βz, 〈...〉 indicates the average over
the electrons and J0(ξ) and J1(ξ) are Bessel functions. This set of equations is routinely
used for the design of FEL facilities [Bla15], allowing to study the influence of, e.g., the
angle and position of the electron beam injection into the undulator, the energy spread
of the particles and higher order optical modes. The self-consistent solution of Eqs. (5.3)
and (5.4) using the FHI FEL parameters given in Tab. 3.1 and generation of the plots
in Figs. 5.7 and 5.8 has been performed by collaborator William B. Colson10.

Results The optical intensity I(z, t) at different cavity detunings is depicted in Fig. 5.7.
Obviously, the pulse shape evolution agrees qualitateively with the results of the 2D sim-
ulations (Fig. 5.5) as well as with the experimental data (Figs. 5.2, 5.3). This means
that pronounced sub-pulses of 1 ps − 2 ps duration (FWHM) are present at intermedi-
ate detuning values (0.5λ . ∆L . 2λ), see Fig. 5.7(a)-(c). In contrast, a single-peaked
micro-pulse is emitted for a strongly shortened FEL cavity, Fig. 5.7(d). This can be
directly seen in the line graphs [right side of Fig. 5.7(a)-(d)], representing the optical
micro-pulse shape I(z) that has been developed towards the end of the macro-pulse, i.e.
at t = 10 µs. The observed temporal shift of the optical intensity peak relative to the
driving Gaussian-shaped current pulse j(z) is caused by the pulse slippage as well as the
detuning mechanism.

The LCO period T extracted from the 4D simulations is shown in Fig. 5.4 for com-
parison with the measurement. The trend of decreasing T values for a stronger cavity
detuning ∆L is clearly present. Also, the simulation results are in good agreement with
the simple analytical expression of Eq. (5.1). Nevertheless, there is a significant quani-
tative deviation from the experimental data. To check whether this might arise due to
the value assumed for the electron bunch length σz, calculations for different current
pulse durations have been performed (Fig. 5.4). However, the impact on the limit-cycle
period is negligible. Therefore, the reason for the deviation might be the previously
mentioned non-perfect electron beam alignment. Simulations dedicated to this aspect
have not been conducted. A further issue is the uncertainty in the experimental cavity
detuning ∆L, which amounts to ±0.5λ.

10Compass Scientific Engineering, Fremont, California, USA
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Fig. 5.7 FEL emission simulation based on 4D FEL theory. Depicted is the evolution of the
optical intensity of the micro-pulse I(z) (vertical axis) during a macro-pulse (horizontal axis),
showing sub-pulse formation. The different detuning cases ∆L investigated are (a) 0.5λ, (b) 1.0λ,
(c) 1.5λ, and (d) 2.0λ, respectively. The line graphs show the optical micro-pulse profile
I(z) (blue) and the electron bunch j(z) (red) after passing the undulator.

The spectral structure I(λ) of the FEL pulse is obtained by Fourier-transformation
of the time-domain envelope I(z). In Fig. 5.8, the development of the spectrum over
successive cavity round trips at different detuning values ∆L is displayed. In the case of
small cavity detuning, an additional frequency component λ1 about 0.2 µm adjacent to
the fundamental wavelength λ0 appears in the FEL spectrum. This sideband arises due
to the sub-pulse formation in the strong optical fields. Actually, the spectral separation
is determined by the undulator geometry, λ1 − λ0 = λ0/N [Jar93]. Compared to the
measured spectra in Fig. 5.1(b), which are integrated over the whole macro-pulse time,
this sideband can be examined in the asymmetric spectral line shape at short cavity
detuning ∆L. Moreover, a shift of the center wavelength λ0 within the macro-pulse can
be seen in the simulations (marked by arrows in the line graphs of Fig. 5.8). The larger
the detuning, the stronger is the center wavelength shift. Since the FEL spectrum has
not been measured time-resolved during the macro-pulse, a comparison is difficult. Con-
cerning the spectral bandwidth of the FEL radiation, a narrowing is predicted by theory
if the cavity length is shortened. This is in line with the experimental observations, cf.
Fig. 5.1(b).

Overall, the full 4D simulations of the time-domain structure of the FEL oscillator
radiation are in reasonable agreement with the 2D calculation results, justifying the
complexity reduction for reproduction of the LCOs and sub-pulses. The benefit of the
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Fig. 5.8 Simulated FEL spectrum. The development of the spectral amplitude I(λ) over the
macro-pulse time is shown at different detunings, (a) 0.5λ, (b) 1.0λ, (c) 1.5λ, and (d) 2.0λ.
The line graphs display the spectral structure at t = 10µs. In the case of (a) and (b), sidebands
at ∆λ = 0.2µm away from the fundamental wavelength λ0 = 10µm are present due to the
occurence of sub-pulses in the time-domain (cf. Fig. 5.7).

4D model, being sensitive to, e.g., electron beam alignment and energy spread, might
be used in further investigations to clarify the discrepancy with the experimental LCO
period and, moreover, to optimize the performance of the FHI FEL with respect to short,
single-peaked optical pulses or a small linewidth in single-band spectral emission.

Conclusion

In summary, the experimentally and theoretically investigated pulse dynamics of an IR
FEL oscillator on the ps scale provides a deep insight into the underlying FEL physics.
Under certain conditions, the complex interaction between the relativistic, charged par-
ticles and the buildup of the optical field manifests in the generation of sub-ps short
sub-pulses and regular power oscillations. In the spectral domain, the appearance of
sidebands is observed, diminishing the resolution in spectroscopic applications of the
FEL light. Thus, larger detuning values are preferred in that case, delivering narrow-
band radiation. In contrast, if ultrafast optical pulses are desired for time-resolved
measurements, a short cavity detuning has to be applied. Then, however, the occurence
of multiple sub-pulses with shifting temporal positions during the macro-pulse has to be
accepted.
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6 Sum-Frequency Generation in Polar
Dielectrics

Coherent radiation in the MIR spectral region is particular useful in condensed matter
physics for the resonant stimulation of low-frequency excitations, such as lattice vibra-
tions. Here, the second-order nonlinear optical response of polar dielectric materials is
probed in the vicinity of optical phonon resonances. By means of IR-VIS SFG spec-
troscopy, the dispersion of the quadratic susceptibility tensor components is revealed.
SFG spectra are found to be strongly influenced by linear optical effects.

Parts of this Chapter have been published in Ref. [Kie19].

6.1 Motivation

Sum-frequency generation spectroscopy is a valuable tool to obtain interface-specific in-
formation about vibrational resonances, adsorbate orientations and surface structures.
Besides this, relevant properties of symmetry and phonon modes of bulk crystalline
media can be accessed as well, provided that the solid material has an electric dipole-
allowed second-order nonlinear response (cf. Sec. 2.3). Thus, bulk SFG/SHG studies are
applied to reveal, e.g., structural phase transitions [She16], the domain orientation and
boundaries of transition metal dichalcogenides [Li13; Li16], magnetic ordering of ferroic
systems [Fie00] or lattice vibrational frequencies and forces within polar crystals [Dek03;
Win18].

Due to the selection rules valid for SFG phenomena, only a subset of all bulk phonons
can be probed at the Brillouin zone center. This might be advantageous to identify
lattice modes of crystals with complex vibrational spectra. Moreover, SFG spectroscopy
provides complementary information compared to other phonon-sensitive optical tech-
niques, such as IR absorption and Raman scattering. In IR-VIS sum-frequency studies,
the incident wavelength-tunable low-energy photon is in the same energy range as the
lattice oscillations. Thus, if the IR frequency ω1 is in resonance with an SFG-allowed
phonon mode ω(q ≈ 0), the nonlinear susceptibility χ(2)(ω3, ω1, ω2) exhibits a sharp
enhancement. Depending on the behavior of the linear optical properties, the vibra-
tional modes can be directly extracted from the SFG response. In addition, azimuthal
measurements at the resonant frequencies inform about the symmetry character of the
particular modes.
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6 SUM-FREQUENCY GENERATION IN POLAR DIELECTRICS

One should be aware that any medium possesses electric-quadrupole and magnetic-
dipole contributions to the second-order susceptibility χ(2). Hence, the SFG signal from
the bulk of centrosymmetric solids might reveal useful information [Zha19], however, it
is usually weak and potentially dominated by the sum-frequency radiation generated at
the surface. Here, polar dielectric crystals without inversion symmetry are explored in
nonlinear second-order spectroscopy in order to identify bulk phonon modes.

6.2 Theoretical Model

When using nonlinear bulk media with electric dipole-allowed sum-frequency generation,
the contribution from the surface can be neglected in good approximation. Hence, the
measured response in spectroscopy experiments is given by, following Eq. (2.54),

I(ω3) ∝
∣∣∣F(ω3)ê(ω3) · χ(2)

B : F(ω1)ê(ω1) F(ω2)ê(ω2)
∣∣∣2 /∆k2, (6.1)

after normalization to the input intensities, with the bulk second-order susceptibility

tensor χ
(2)
B (ω3, ω1, ω2) and the wavevector mismatch ∆k = |k(ω3) − k(ω2) − k(ω1)| in-

side the investigated material. Due to the conservation of momentum parallel to the
interface, cf. Eq. (2.55), the mismatch yields ∆k = ∆kz. In general, the wavevector is a
complex quantity, reducing to |k| = ωn/c0 only for non-absorbing media. Depending on
the setup geometry used, the wavevector component kz(ω3) might be antiparallel (reflec-
tion type, backward propagating) or parallel (transmission type, forward propagating)
to the input beams. The physical consequence of the wavevector mismatch is the lim-
ited volume part of the bulk contributing to the SFG signal, i.e. the region enclosed by
the coherence length Lc ∼ 1/∆k, strongly influenced by the dispersion of the dielectric
function of the material.

The Fresnel tensors in Eq. (6.1) relate the actual field strength inside the nonlinear
material to the incident electric field component of the optical waves. Besides the spectral
dispersion, the optical symmetry of the crystal is relevant. In the case of an uniaxial
anisotropic material (labeled II) interfacing with an isotropic medium (I) and the surface
normal of the c-cut crystal being parallel to the z-axis, i.e. c ‖ z, the diagonal Fresnel
factors are [Mor18; Paa15]

Fxx =
2εIgII

e

εII
⊥g

I + εIgII
e

,

Fyy =
2gI

gI + gII
o

,

Fzz =
εII
⊥
εII
‖

2εIgI

εII
⊥g

I + εIgII
e

.

(6.2)

There, the dispersion functions are part of the dielectric tensor with εxx(ω), εyy(ω) =
ε⊥(ω) and εzz(ω) = ε‖(ω). The relevant z-components of the wavevector g ≡ kz read
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6.3 Theoretical Model

gI(ω, θ) =
ω

c0

√
εI(ω) cos θ,

gII
o (ω, θ) =

ω

c0

√
εII
⊥(ω)− sin2 θ,

gII
e (ω, θ) =

ω

c0

√√√√εII
⊥(ω)

εII
‖ (ω)

√
εII
‖ (ω)− sin2 θ,

(6.3)

with the angle of incidence θ relative to the surface normal. Due to the birefringence of
the crystal, the wavevector of the radiation propagating inside medium II is subject to
the polarization of the electric field. Thus, ordinary and extraordinary beam are distin-
guished, denoted as o and e, respectively.

The dispersion of the second-order susceptibility tensor components χ
(2)
ijk(ω3, ω1, ω2)

can be approximated by the sum of a non-resonant contribution and a Lorentz-oscillator
term for each resonance, cf. Eq. (2.47). For the crystalline materials under study,
the resonances arise due to phonons in the IR spectral region, whereas the medium is
transparent for the VIS and upconverted optical fields. Thus, the spectral χ(2)-behavior
can be modeled by an IR frequency dependence of the form [Fau66]

χ
(2)
ijk(ω3, ω1, ω2) = χ

(2)
ijk∞

(
1 +

∑
r

Ar,ijk
ω2
r − ω2

1 − iΓrω1

)
. (6.4)

Due to the spatial symmetry of the material, only a subset of the χ(2)-tensor compo-
nents has a finite value and is independent. The number of non-vanishing components
is governed by the point group of the crystal (cf. Sec. 2.2.3). In order to use the
material-specific second-order tensor in accordance with the experimental arrangement,
a transformation from the crystallographic framework (i, j, k) ∈ (a, b, c) with the princi-
pal axes a, b and c to the laboratory coordinate system (l,m, n) ∈ (x, y, z) is necessary.
The change of the basis is specified by the definition

χ
(2)
lmn =

∑
ijk

χ
(2)
ijk(el · ei)(em · ej)(en · ek). (6.5)

With the experimental geometry as depicted in Fig. 3.3(a), where the surface normal of
the c-cut sample is parallel to the z-axis and x-z describing the plane of incidence, one
yields the basis vectors ea = cosϕex + sinϕey, eb = − sinϕex + cosϕey and ec = ez
with the azimuthal angle ϕ.

The actual polarizations of the incident and detected electric fields E(ω) are ac-
counted for in the nonlinear response function Eq. (6.1) by the unit vectors êp(ωi) =
(cos θi, 0, sin θi) and ês(ωi) = (0, 1, 0) for p- and s-polarized light, respectively. The angle
of incidence/emission of beam ωi relative to the surface normal is denoted by θi.
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6 SUM-FREQUENCY GENERATION IN POLAR DIELECTRICS

6.3 4H-Silicon Carbide

6.3.1 Material

Silicon carbide (SiC) appears in nature in a variety of more than 200 different crys-
tal polytypes. One of the commonly encountered structure exhibits a hexagonal lat-
tice with the repeating stacking sequence ABCB, termed 4H-SiC. The wurtzite crystal
structure of this wide-gap semiconductor (Eg = 3.23 eV, indirect), belonging to point
group 6mm [Per19b], is depicted in Fig. 6.1(a). The unit cell constants are a = 3.1 Å
and c = 10.1 Å [Par98], with the stacking of the alternating cubic and hexagonal
character-type Si-C bilayers along the c-axis. Also shown are the vibrational proper-
ties, Fig. 6.1(b), as obtained by ab initio calculations of the phonon dispersion based on
density-functional perturbation theory [Pet18]. Owing to the number of atoms within
the unit cell, p = 2 · 4 = 8, multiple modes exist within the optical phonon branch.
The characteristics of the important modes are given in Tab. 6.1. Besides the optical
absorption in the MIR due to the vibrational resonances, the material is transparent in
two windows of λ = 0.4 µm − 6 µm and 16 µm − 300 µm [Fis17].
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Fig. 6.1 Structure and lattice dynamics of 4H-SiC. (a) Hexgonal crystal structure consisting of
Si (red) and carbon (black) atoms. Stacking order of Si-C bilayers is ABCB, lattice constants are
a = 3.1 Å and c = 10.1 Å. (b) Phonon dispersion in momentum space, together with the density
of states, calculated by density-functional perturbation theory [Pet18]. Image (a) is taken from
Ref. [Fis17], (b) from Ref. [Per19b].

4H-SiC possesses a number of promising mechanical and electronic properties, among
them a high electric breakdown field, large thermal conductivity and strong Mohs hard-
ness (9) [Par98], owing to the tight covalent Si-C bond. Therefore, it is suited for
high-temperature, high-pressure and high-power applications in IR/THz optics and elec-
tronics. In particular, silicon carbide has a great technological importance due to the
possibility to utilize the SiC surface for the well-ordered epitaxial growth of graphene
mono- and multi-layer samples [Ber06; Has08]. Moreover, 4H-SiC can be synthesized in
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6.3 4H-Silicon Carbide

Tab. 6.1 Optical phonon frequencies of 4H-SiC at the Brillouin zone center in the Reststrahlen
band. The values of phonon energy and damping are extracted from a fit of the SFG spectra
using Eq. (6.1). Symmetry properties are taken from Ref. [Hof94]. Planar modes (⊥) are IR
active in the ordinary ray, axial modes (‖) are excited with the extraordinary ray.

Mode Symmetry ν (cm−1) γ (cm−1) IR activity Raman activity

TO‖ A1 787.2 3.8 x x
LO‖ A1 962.3 x
TO⊥ E1 797.6 5.0 x x
LO⊥ E1 968.5 x

high quality as large-size single-phase crystals. Due to the hexagonal crystal structure,
4H-SiC exhibits birefringence regarding the linear optical properties. The point group
symmetry allows for a nonzero electric dipole contribution to the second-order suscepti-
bility [Boy08].

The investigated sample has been a semi-insulating, c-cut substrate made of monocrys-
talline 4H-SiC. The thickness is about 350 µm. U.S. Naval Research Laboratory, Wash-
ington, D.C., USA, provided the crystal. Measurements are performed in air atmosphere
at room temperature. The experimental details for the acquisition of the SFG spectra
of SiC using the reflection geometry and mixing of the IR FEL radiation with the VIS
table-top laser light are described in Sec. 3.3.

6.3.2 Experimental Results

SFG spectra obtained from the 4H-SiC sample under different linear polarization com-
binations of input and output light fields are shown in Fig. 6.2(a). Note that the spectra
are plotted as function of the incident IR wavenumber νIR = 750 cm=1 − 1050 cm=1.
The SFG intensity displayed is obtained after normalization of the measured value to
the incident IR power I(ω1 = ωIR) in order to remove the frequency-dependent variation
of the FEL radiation intensity. The VIS power is held constant.

In case of PPP and SSP polarization, strong SFG emission is observed if the IR
wavenumber is close to the LO phonon frequency at νLO ‖ = 962 cm=1. No significant
intensity is measured at all under SPP, PSP and PPS conditions. The TO phonon
(νTO ‖ = 787 cm=1) can not be identified in the SFG response. These experimental find-
ings might be surprising at first sight since the TO mode is SFG active, i.e. IR- and
Raman-allowed [Nak97], whereas the LO vibration does not absorb the IR radiation and
thus does not contribute to a resonant enhancement of the second-order susceptibility.
Also, there the SFG response is observed as a double peak, potentially pointing towards
a linear optical effect where the crystallographic anisotropy of the hexagonal structure
comes into play.
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νIR = 964 cm-1
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Fig. 6.2 Experimental SFG spectra and fluence dependence of 4H-SiC. (a) Polarization depen-
dence of the nonlinear response around TO and LO phonon. (b) IR fluence dependence of the
SFG intensity at νIR = 964 cm=1 for constant VIS power and PPP polarization. The linear
behavior is in accordance with a second-order SFG process.

The fluence dependence of the detected SFG intensity on the energy of the IR pulses
has been tested in Fig. 6.2(b). Spectrally selective light detection is realized by a band-
pass filter centered around the expected sum-frequency wavelength of λSFG ∼ 500 nm.
The observed linear relation is in agreement with Eq. (2.54), valid for a second-order
nonlinear optical process. Thus, the spectra shown originate from sum-frequency genera-
tion. Note that the angle of the sum-frequency emission is close to the intense, specularly
reflected VIS radiation (θ(ω3)− θ(ω2) ∼ 1◦), thus, an effective suppression of the upcon-
version light is achieved by the spectral filter.

6.3.3 Theoretical Analysis

In order to understand and model the sum-frequency behavior of 4H-SiC according to
Eq. (6.1), information about the dielectric dispersion and character of the nonlinear
susceptibility tensor is required. For the linear optical function, a one-phonon term
Lorentz oscillator of the form Eq. (2.19) is used within the Reststrahlen region [Mut99],

ε⊥,‖(ω) = ε⊥,‖∞

(
1 +

ω2
LO⊥,‖ − ω

2
TO⊥,‖

ω2
TO⊥,‖ − ω2 − iγTO⊥,‖ω

)
(6.6)

with the high-frequency dielectric constant ε∞, resonance frequency ωTO and damp-
ing γTO for the phonon mode in the basal plane of SiC (⊥) and parallel to the crystal c
axis (‖), respectively. The parameters at room temperature are taken from Ref. [Mut99].
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Fig. 6.3 Theoretical SFG spectra of 4H-SiC. Using the parameters of model Eq. (6.1) fitted to
the PPP measurement (Fig. 6.2), the spectral response is calculated for different polarization
configurations. The Reststrahlen band between the TO||/TO⊥ and LO||/LO⊥ phonon modes is
indicated (gray area).

Due to the varying documented numerical values and to account for the specific crystal
quality, the phonon-related properties are adjusted to fit the experimental results. In the
transparent VIS/NIR region, Sellmeier equations for ε⊥(ω) = n2

o(λ) and ε‖(ω) = n2
e(λ)

are employed [Wan13].

The second-order susceptibility tensor χ(2) of the hexagonal crystal 4H-SiC of point
group 6mm has the following non-vanishing components, given in Cartesian coordi-
nates [Boy08]:

χ(2)
zzz, χ

(2)
zxx = χ(2)

zyy, χ
(2)
xzx = χ(2)

yzy, χ
(2)
xxz = χ(2)

yyz. (6.7)

Due to the crystal symmetry, just four independent components are present. Using
the spectral dispersion of the nonlinear susceptibility according to Eq. (6.4), the only
resonant contribution arises due to the TO phonon mode. Within the basal plane,
the vibrational mode ωTO,⊥ at the Γ point obeys E1 symmetry, whereas the lattice
oscillation ωTO,‖ polarized in the direction of the optic axis of the crystal is A1 sym-
metric [Mut99]. The appropriate phonon frequencies have to be used in the resonant

term of the χ
(2)
lmn(ω3, ω1, ω2) component for the IR field polarization E(ω1) parallel or

perpendicular to the z-axis.
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For the instructive case of PPP polarization, where a non-vanishing second-order signal
is expected, the SFG response function obtained according to Eq. (6.1) reads:

IPPP(ω3) ∝|(Fxx(ω3) cos θ3 χ
(2)
xxz Fxx(ω2) cos θ2 Fzz(ω1) sin θ1

+ Fxx(ω3) cos θ3 χ
(2)
xzx Fzz(ω2) sin θ2 Fxx(ω1) cos θ1)2

+ (Fzz(ω3) sin θ3 χ
(2)
zxx Fxx(ω2) cos θ2 Fxx(ω1) cos θ1

+ Fzz(ω3) sin θ3 χ
(2)
zzz Fzz(ω2) sin θ2 Fzz(ω1) sin θ1)2|/∆k2

PPP.

(6.8)

The curve fitted to the experimental data is shown in Fig. 6.4(a). The free parameters
are the phonon center frequency ωr and linewidth γr, entering into both the dielectric

function and the second-order susceptibility, as well as the non-resonant constants χ
(2)
ijk∞

and resonance amplitudes Ar,ijk contained in the nonlinear susceptibility. The obtained
fit result is in good agreement with the measurement, allowing for disentanglement of
the several contributions to the SFG spectrum as listed in Sec. 6.2.

The nonlinear origin of the emitted radiation is captured by the dispersive χ(2)(ω1)

tensor, whose absolute components |χ(2)
ijk|

2 are plotted in Fig. 6.4(b). Since the spectral
variation of the upconverted radiation is rather small (λ3 = 498.5 nm − 506.0 nm), only
the IR frequency dependence of the second-order susceptibility is taken into account.
Further, no electronic resonances of the material are expected as ~ω2, ~ω3 . 2.5 eV,
being well below the band gap. In case of the PPP combination, all independent tensor
components contribute to the detected SFG signal. Owing to the dispersion Eq. (6.4)
with the SFG-active TO‖,⊥ phonon mode, a resonant enhancement of the nonlinear

susceptibility χ
(2)
ijk(ω1) of about two orders of magnitude is observed in the model calcu-

lation. Depending on the relevant tensor component, the peak occurs at the IR photon
energy ~ω1 matching either the axial (ωTO,‖) or planar (ωTO,⊥) TO vibration.

In order to explain the apparent discrepancy of the peak positions in the second-order
susceptibilities with the measured spectrum, linear optical effects have to be invoked. On
the one hand, these modify the actual field strength being present in the bulk material.
The Fresnel factors, Eq. (6.2), calculated for the IR radiation |Fll(ω1, θ1)|2 under the
used experimental geometry are depicted in Fig. 6.4(c). For a p-polarized field E(ω),
only Fxx and Fzz are relevant. Close to the TO phonon wavenumber, reduced transmis-
sion of the IR radiation occurs due to the strong absorption of the crystal. Still within
the Reststrahlen band, the Fresnel factor is increased towards the LO vibration due
to a diminishing real part of the permittivity (Fig. 2.2). Remarkably, the out-of-plane
component FzzEz of the electric field varies by three orders of magnitude. Due to the
optical anisotropy of the 4H-SiC crystal, both ωLO ‖ and ωLO⊥ enter as singularities into
Fzz, Eq. (6.2), giving rise to two spectrally narrow peaks in the local field function. This
effect is absent in the case of normal incidence (θ1 = 0), as shown for illustration in
Fig. 6.4(c) as well, essentially recovering an isotropic linear response.
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Fig. 6.4 Sum-frequency generation in the Reststrahlen region of 4H-SiC. Shown are the (a) the
total intensity as measured and fitted with the model Eq. (6.1), (b) the IR dispersion of the
quadratic susceptibility tensor components, (c) the Fresnel factors |Fll|2 governing the trans-
mission of the IR field at the air/SiC interface and (d) the phase mismatch between IR, VIS
and SFG wave inside the nonlinear medium. Depending on the propagation direction of the
SFG radiation inside the crystal (forward, backward), the mismatch and hence the amplitude
and spectral behavior of the emitted light are affected. The broad-range Reststrahlen band is
marked (gray area). Data are for PPP configuration.

71



6 SUM-FREQUENCY GENERATION IN POLAR DIELECTRICS

LO||TO⊥TO|| LO⊥

Forw.
Backw.

C
oh

er
en

ce
 L

en
gt

h 
L c

 (
µm

)

0.01

0.1

1

IR Wavenumber νIR (cm-1) 
750 800 850 900 950 1000 1050

Fig. 6.5 Coherence length for SFG emission in 4H-SiC. The interaction depth of IR-VIS sum-
frequency mixing is calculated for for- and backward propagation direction in PPP polarization.

On the other hand, the dielectric dispersion affects the length of the complex wavevec-
tor kz(ω1) inside the nonlinear medium and, hence, the mismatch of the spatial electric
field phases eikz(ω)z. The inverse square of the phase difference, 1/∆k2, decisive for
the sum-frequency intensity according to Eq. (6.1), is depicted in Fig. 6.4(d) for the
PPP case. When considering the forward propagation of the SFG radiation through
the transparent crystal, the wavevector mismatch ∆kz is rather small, compared to the
backtraveling sum-frequency field, being antiparallel to the incident waves. Thus, the
forward contribution of the SFG intensity dominates by about three orders of magnitude
in the measured signal [Fig. 6.4(a)] due to reflection at the optically flat sample backside
(reflectance at SiC/air interface |rp|2 = 0.16). The IR dispersion is less prominent in the
backward-type phase-mismatch due to the large ∆kz ≈ 2kz(ω2) and |kz(ω1)| � |kz(ω2)|.

In total, the consequence of the frequency-dependent permittivity is a strong modi-
fication of the nonlinear spectrum. The resonant enhancement in χ(2)(ω1) at the TO
phonon frequency is even more suppressed by the linear optical effects than at any other
IR wavelength. Instead, a (double) peak in the SFG behavior at the LO mode is induced,
mainly caused by the increased Fresnel transmission and, to a lesser extent, due to the
smaller phase mismatch. As seen in Fig. 6.4(a), the variation in the SFG intensity is
at least two orders of magnitude across the whole IR spectral range, strongly influenced
by the dispersion of the out-of-plane component of the electric field FzzEz inside the
material.

The coherence length Lc, describing the effective bulk volume for the frequency mix-
ing, is shown in Fig. 6.5. Whereas the interaction depth amounts to about one VIS
wavelength in forward direction, Lc ∼ λ2, the backward-type SFG emission is concen-
trated to a smaller, largely wavelength-independent region of Lc ∼ 15 nm. Considering
the lattice constant c along the z direction, the latter case corresponds to a length
of about 15 crystal unit cell. If one investigates nonlinear material being opaque to
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the VIS/SFG wavelength, absorption would reduce the interaction volume even further.
Then, in reflection-type SFG measurements, the coherent SFG process is sensitive to a
thin volume close to the interface, typically tens of nanometers [Hor19], although the
bulk response is probed.

Regarding the fitted nonlinear susceptibility coefficients χ
(2)
ijk, a stronger |χ(2)

zzz| com-
ponent is observed compared to the other tensor elements, cf. Fig. 6.4(b). However,
one should be aware that a reliable extraction of the second-order optical constants
from the measured SFG intensity is difficult. This is due to the currently low signal-
to-noise ratio in the order of 102 whereas the variation just in the linear response of
the investigated system amounts to ∼ 104. For comparison, reported experimental val-
ues of the quadratic optical coefficients for 4H-SiC in the NIR region give a ratio of
χ2

zzz/χ
2
zxx = −4.5 [Nie99] and show a similar value for χ2

zxx ≈ χ2
xzx ≈ 6.5 pm/V [Sat09],

in reasonable agreement with the measurement. Calculated second-order susceptibilities
based on density functional theory support the reported experimental values [Che94;
Ado00; Hue11]. Moreover, it has been found that the optical nonlinearity is stronger for
SiC polytypes of reduced lattice hexagonality (e.g. 6H, 3C), possessing also a smaller
band gap [Nie99].

6.4 α-Quartz

6.4.1 Material

Quartz, chemical formula SiO2, is one of the most common minerals on earth, due to the
abundant nature of its constituents silicon and oxygen. Besides the amorphous form, also
known as fused silica or glass, quartz can crystallize in a variety of polytypes. Among
the different crystal structures, α-quartz, see Fig. 6.6(a), belongs to point group 32 with
a trigonal lattice structure [Per19c]. A prominent feature of quartz is the strong piezo-
electric effect [Har09], establishing its daily usage as crystal oscillator in quartz clocks.
Intrinsically related to the occurence of piezoelectricity, the crystal does not exhibit a
center of inversion. Hence, second-order nonlinear optical processes are dipole-allowed.
Actually, quartz was used in the first demonstration of harmonic frequency conversion
by nonlinear optics [Fra61]. The birefringent properties of quartz, owing to the positive
uniaxial crystal structure, are of great technological importance, e.g. for optical wave
retarders and polarizers.

The mineral α-quartz is characterized by a large electronic band gap, 5.7 eV (in-
direct) [Per19c], making it an excellent dielectric material. This is accompanied by
a large transparency window, ranging from λ = 3.5 µm down to the UV region at
λ ∼ 200 nm [Dmi99]. Also, the crystal is transparent for wavenumbers below the phonon
absorption band. The IR response of α-quartz is determined by its vast number of
phonon branches, giving rise to several absorption lines [Spi61; Ger75]. Due to nine
atoms per unit cell, three acoustic and 24 optical phonon modes are present, Fig. 6.6(b).
Parameters of the relevant vibrational modes are shown in Tab. 6.2.
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Fig. 6.6 Crystal structure and vibrational dynamics of α-quartz. (a) Arrangement of silicon
(blue) and oxygen (red) atoms in the trigonal lattice with the unit cell parameters a = 4.9 Å and
c = 5.4 Å. (b) Phonon spectra as function of the wavevector, together with the density of states,
obtained by ab initio calculations [Pet18; Per19c].

The sample used for the SFG spectroscopy experiment has been a monocrystalline,
8 mm thick, c-cut crystal of α-quartz, i.e. terminated with a (0001) oriented surface. It
is mounted on a stage to allow for rotation about the surface normal, coinciding with the
crystal c axis, in order to investigate the azimuthal dependence of the nonlinear response
in reflection geometry. Besides the usual spectral and polarization filtering prior SFG
light detection, a spatial filter has been applied to restrict the measurement to the sum-
frequency field originating from the bulk in forward propagation direction, blocking the
backward propagation.

6.4.2 Experimental Results

The SFG spectra of α-quartz taken by IR excitation in the wavenumber range of νIR =
680 cm=1 − 1300 cm=1 are depicted in Fig. 6.7. Different polarization conditions have
been investigated, whereby a considerable SFG response is observed under SPP and PSP
combinations. The expected transversal optical phonon resonances of the quadratic sus-
ceptibility are denoted in Fig. 6.7 as well, marked by the frequency of the in-plane lattice
oscillations (TO⊥5, TO⊥6, ...). However, the measured SFG peak positions possess ei-
ther a spectral shift closeby (e.g. at TO⊥6) or resonant enhancement seems to be absent
at all (TO⊥7). For a detailed analysis of the spectra, linear Fresnel effects and wavevec-
tor mismatch have to be considered, see Sec. 6.4.3.

Since SFG spectroscopy is sensitive to the spatial symmetry of the investigated system,
an azimuth-dependent measurement has been carried out at the νIR = 830 cm=1 signal
peak. The result for SPP configuration is plotted in Fig. 6.8. A threefold rotational
symmetry in the (0001) plane is observed. The discussion relating the measurement to
the symmetry of the χ(2)-tensor is performed in the next section.
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6.4 α-Quartz

Tab. 6.2 Optical phonon zone-center frequencies of α-quartz. The phonon energies and damp-
ings of the SFG-active modes are used as fit parameters in Eq. (6.1). Other values are from
Ref. [Ger75]. A2 modes are IR active in the extraordinary ray, E modes in the ordinary one.

Mode Symmetry ν (cm−1) γ (cm−1) IR activity Raman activity

E modes
TO5 E 692.3 5.0 x x
TO6 E 790.6 4.2 x x
TO7 E 1060.2 2.0 x x
TO8 E 1150.0 2.1 x x
LO5 E 697.6 13 x
LO6 E 810 6.9 x
LO7 E 1226 12.5 x
LO8 E 1155 9.3 x

A2 modes
TO1 A2 363.5 4.8 x
TO2 A2 495 5.2 x
TO3 A2 777 6.7 x
TO4 A2 1071 6.8 x
LO1 A2 386.7 4.8
LO2 A2 551.5 5.8
LO3 A2 790 6.7
LO4 A2 1229 12
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Fig. 6.7 SFG spectra of α-quartz under different polarization conditions. SFG-active transversal
optical phonon modes are indicated.
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Fig. 6.8 Azimuthal dependence of the SFG response of α-quartz. The experimental (points) and
calculated (line) normalized SFG intensities are shown for IR excitation at νIR = 835 cm=1. A
threefold symmetry is present for the case of SPP polarization.

6.4.3 Theoretical Analysis

For the analytical model of the IR-VIS sum-frequency emission originating from the bulk
of α-quartz according to Eq. (6.1), the linear optical properties in the respective spectral
regions are required. Since the quartz crystal exhibits multiple IR-active resonances
due to polar lattice vibrations, several contributing terms to the dielectric function are
relevant. In contrast to the single-Lorentz oscillator dispersion of SiC considering the
distinct frequencies of TO and LO phonon, but only a single damping constant γTO

(cf. Sec. 6.3.3), a more detailed approach is applied to quartz, where separate broadening
quantities γTO⊥,‖ and γLO⊥,‖ are included for each branch r:

ε⊥,‖(ω) = ε⊥,‖∞
∏
r

ω2
LO⊥,‖r − ω

2 − iωγLO⊥,‖r

ω2
TO⊥,‖r − ω2 − iωγTO⊥,‖r

. (6.9)

Thus, the factorized dielectric function, also called four-parameter model, enables a bet-
ter description of the dispersion behavior for multi-mode phonon crystals, in particular
of the zero-crossing near the LO phonon frequencies [Sch00]. The reasoning for different
damping rates γ of TO and LO modes even within the same phonon branch is due to
the anharmonic coupling of the lattice vibrations, which is naturally more pronounced
in crystals of complex vibrational properties [Ger74]. In this way, the classical model of
the dielectric function incorporates the essential effects observed in quantum-mechanical
calculations [Bar01]. The phonon parameters and dielectric constants for ordinary and
extraordinary radiation rays in α quartz at room temperature are taken from Ref. [Ger75]
in case of the IR spectral region and from Ref. [Gho99] for the VIS response.
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6.4 α-Quartz

The quadratic susceptibility tensor χ(2) of α-quartz contains, identical to other ma-
terials of point group 32, four independent components. Within the crystal framework,
the nonvanishing elements are [Boy08]

χ(2)
aaa = −χ(2)

abb = −χ(2)
bba = −χ(2)

bab, χ
(2)
abc = −χ(2)

bac, χ
(2)
acb = −χ(2)

bca, χ
(2)
cab = −χ(2)

cba. (6.10)

Application of the crystal to laboratory coordinate transformation of Eq. (6.5) with
ea = cosϕex + sinϕey, eb = − sinϕex + cosϕey and ec = ez, where φ denotes the
azimuthal angle within in the surface plane, yields

χ(2)
xxx = −χ(2)

xyy = −χ(2)
yxy = −χ(2)

yyx = χ(2)
aaa cos 3ϕ, (6.11)

χ(2)
xxy = −χ(2)

xyx = −χ(2)
yxx = −χ(2)

yyy = χ(2)
aaa sin 3ϕ, (6.12)

χ(2)
xyz = −χ(2)

yxz = χ
(2)
abc, (6.13)

χ(2)
xzy = −χ(2)

yzx = χ
(2)
acb, (6.14)

χ(2)
zxy = −χ(2)

zyx = χ
(2)
cab. (6.15)

The IR dispersion of the second-order nonlinear susceptibility as described by Eq. (6.4)
takes into account the SFG-active vibrational modes of crystalline silica. Among the 24
fundamental optical phonons in α-quartz, only those belonging to the E-type symmetry
class can take part in both Raman scattering and IR absorption if the incident elec-
tric field polarization is perpendicular to the optic axis of the crystal [Sak40]. Due to
the selection rules, the number of zone-center modes observable in the SFG spectrum
reduces to eight doubly degenerated vibrations, which can be accessed by IR radiation
with ordinary polarization. From those, four TO modes are relevant in the investigated
frequency range [Ger75]. As consequence of the symmetry restrictions, no resonant con-

tribution is present in the χ
(2)
abc component. Further, the resonant amplitudes Ar,acb and

Ar,cab as well as the accompanying non-resonant parts χ
(2)
NR are assumed to be of the

same order [Liu08a].

The center frequencies ωr and damping values γr of the SFG-active lattice vibrations

are free parameters in the dispersion of the nonlinear χ
(2)
ijk(ωIR) and linear response

ε(ωIR). Further, the resonance amplitudes Ar,ijk, high-frequency constants χ
(2)
ijk∞ and

the azimuthal angle ϕ entering the second-order susceptibility tensor are fitted, giving a
total number of 20 parameters for the SFG response function according to Eq. (6.1).

Results of the fit with the analytical model for the different polarization conditions
are displayed in Fig. 6.9. The position of the TO and LO phonon modes for the ordi-
nary polarized IR radiation is also indicated. Obviously, the resonant lattice vibrations
do not dominate the SFG response. Instead, the strongest sum-frequency emission is
observed around νIR ∼ 830 cm=1 for SPP and PSP polarization. Also in the cases of
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Fig. 6.9 Fitted polarization dependence of the SFG response of α-quartz. The different configu-
rations are calculated from the model using the coefficients fitted for the SPP case. Forward SFG
propagation is assumed. The IR frequencies of TO and LO phonons, appearing in the dielectric
function for the ordinary radiation, are indicated, giving rise to several Reststrahlen bands (gray
shaded).

PPP and SSP, an SFG response is allowed regarding the relevant tensor component χ
(2)
aaa

in Eq. (6.11), however just a comparatively small signal peak is observed. Since the fit
results are in good agreement with the experimental findings (cf. Fig. 6.7), a further
analysis of the different contributions to the SFG response can be carried out.

The relevant contributions in the emission of sum-frequency radiation from the bulk
of α-quartz are separated in Fig. 6.10(a)-(d) for the case of SPP. The signal yield is given
by

ISPP(ω3) ∝|Fyy(ω3)χ(2)
aaa sin 3ϕ Fxx(ω2) cos θ2 Fxx(ω1) cos θ1

− Fyy(ω3)χ
(2)
abc Fxx(ω2) cos θ2 Fzz(ω1) sin θ1

− Fyy(ω3)χ
(2)
acb Fzz(ω2) sin θ2 Fxx(ω1) cos θ1|2/∆k2

SPP.

(6.16)

There, the nonlinear contribution originates from the tensor components χ
(2)
yxx, χ

(2)
yxz and

χ
(2)
yzx in the laboratory framework, consequently three of the four independent second-

order susceptibility elements (χ
(2)
aaa,χ

(2)
abc and χ

(2)
acb) are involved in the SFG process. Reso-

nant enhancement at the E-type TO phonon modes is allowed and observed for χ
(2)
aaa(ωIR)

and χ
(2)
acb(ωIR), whereas χ

(2)
abc is dispersionless, i.e. only possessing a small, non-resonant

part, see Fig. 6.10(b). Apparently, the resonant enhancement in the second-order sus-
ceptibility, which amounts up to two orders of magnitude in |χ(2)|, is hardly seen in the
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Fig. 6.10 Disentanglement of linear and nonlinear contributions to the SFG response of α-quartz.
(a) Experimental and fitted SFG intensity using model Eq. (6.1). Forward and backward traveling
SFG radiation are distinguished. (b) Dispersion of second-order susceptibility tensor components

χ
(2)
ijk(ωIR) regarding the crystal framework. Displayed is the absolute value squared, entering into

the SFG intensity. Resonant enhancement occurs at the SFG-active vibrational modes, i.e. at
the TO phonons. (c) Fresnel tensor components |Fll|2 for the coupling of the IR field into the
material. (d) Wavevector mismatch 1/∆k2 as function of the IR wavenumber νIR. Different
magnitudes for forward and backward propagating radiation cause the varying SFG intensities
in (a). SPP polarization configuration is used.
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Fig. 6.11 SFG wavevector mismatch in a transparent medium. Incident IR, kI(ω1), and

VIS radiation, kI(ω2), are mixed within the bulk of the nonlinear crystal (εII, χ
(2)
B ), gener-

ating sum-frequency light in forward, kII
forw.(ω3), and backward, kII

backw.(ω3), propagating di-
rection, respectively. The coherence length Lc = 1/|∆kII| is determined by the wavefront
phase difference inside the material, with ∆kII = kII(ω3) − kII(ω2) − kII(ω1) in forward and
∆kII = kII(ω3) + kII(ω2) + kII(ω1) in backward propagation, respectively.

SFG spectrum for forward propagation, Fig. 6.10(a). Thus, the linear optical effects
have to be invoked. On the one hand, the Fresnel factors F (ω) modify the electric field
strengths being present in the nonlinear material for frequency-mixing. Particularly for
SPP, the Fxx(ωIR) component is relevant, leading to a slight reduction of the IR field
at each TO resonance, Fig. 6.10(c). On the other hand, the phase-matching condi-
tion, necessary for the coherent SFG emission, is strongly affected by the dispersion of
the dielectric constant in the Reststrahlen region. Therefore, the change in the factor
1/∆k2(ωIR) of about five orders of magnitude in the forward direction, see Fig. 6.10(d),
dominates the SFG spectrum, cf. Fig. 6.10(a). As a result, the main peak emerges
around νIR ∼ 835 cm=1, whereas the vibrational resonances at the high-frequency side
are almost completely suppressed.

Due to the experimental geometry, the measured SFG signal is generated by forward
propagation of NIR, VIS and SFG radiation within the α-quartz crystal (i.e. in trans-
mission direction), subsequently back-reflected at the quartz/air interface and detected
along a beam path parallel to the VIS radiation specularly reflected at the first air/quartz
interface, see Fig. 6.11. Similar to the experiment on SiC, the material is transparent
for the SFG wavelength, allowing a significant nonlinear signal to be generated. The ex-
pected SFG emission in backward direction, in contrast, originating from a thin layer at
the air/quartz interface, is also shown in Fig. 6.10(a). There, the TO phonon modes are
clearly resolved as peaks in the SFG spectrum. This is due to the much less pronunced
variation in the 1/∆k2 term, appearing almost flat in the IR range, see Fig. 6.10(d).
However, the reduced effective source volume of the nonlinear signal entails a lower SFG
intensity level compared to the forward propagation, difficult to acquire with the current
signal-to-noise ratio.
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Fig. 6.12 Coherence length for SFG emission in α-quartz. Calculated interaction depths Lc for
forward and backward propagating SFG radiation are plotted for the case of SPP configuration.

The depth of the crystal volume contributing to the generation of the SFG intensity is
plotted in Fig. 6.12. In forward direction, a large coherence length of up to Lc ∼ 20 µm
is present, allowing for a strong bulk SFG signal. In contrast, the width of the crystal
layer close to the air/quartz interface responsible for the backward propagation sig-
nal is only about 30 nm. This is in agreement with previous SFG measurements of
α-quartz [Liu08a]. There, the SFG-allowed vibrational modes could be clearly resolved,
owing to the backward propagation sensitivity. However, the analysis in Ref. [Liu08a]
apparently neglects the anisotropy of crystalline quartz, which enters into the Fresnel
tensor and the dielectric function of the system, questioning to some extent the derived
nonlinear properties there. Spatial blocking of the forward-propagating bulk SFG in our
setup has yielded no detectable light, due to the small backward SFG intensity.

An extraction of the quadratic suscpetibility coefficients is beyond the realms of pos-
sibility because of the limited signal-to-noise ratio in the present setup, compared to the
order of magnitude variation in the linear optical effects. Absolute nonlinear suscepti-

bilites χ
(2)
ijk of α-quartz in the MIR spectral region have been obtained experimentally in

Ref. [Hor04] and by theory in Ref. [Zho93; Hua94].

The symmetry sensitivity of SFG spectroscopy is demonstrated on c-cut α-quartz by
azimuth-dependent experiments. A polar plot of the measured nonlinear response at a
fixed non-resonant frequency in SPP configuration is shown in Fig. 6.8. The threefold
symmetry can be well described by the analytical model, Eq. (6.16). Due to the involved
tensor components, the angle dependence is of the form ISFG(ϕ) ∝ |const. + sin 3ϕ|2.
Observations at other polarization combinations can be derived in an analogous way.
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Symmetry-related studies are particular important when investigating adsorbates on
surfaces, revealing their orientation and structure. Due to the usually distinct point
groups of bulk and surface, the different origins of the second-order susceptibility can
be distinguished or, moreover, allow a suppression of the bulk contribution at certain
azimuthal angles [Liu08b].

6.5 Summary

The investigated anisotropic polar dielectric materials, 4H-SiC and α-quartz, have shown
a pronounced spectral dependence of the sum-frequency generation response due to the
excitation of bulk lattice vibrations within the Reststrahlen region. A strong modi-
fication of the IR-VIS sum-frequency spectra by linear optical effects (Fresnel factor)
can obscure the resonant enhancement of the second-order susceptibility at SFG-active
phonons, which indicate the zone-center frequency of vibrational modes being both IR
and Raman active. Depending on the geometry of the interacting optical fields and the
crystal, the symmetry of the third-rank χ(2) tensor and hence the point group can be de-
termined. It is found that the phase-matching condition limits the probing depth of the
frequency-mixing process to some micrometer distance from the surface at maximum,
even for bulk-originating SFG radiation, as settled by the coherence length.
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7 Resonant Enhancement of the
Sum-Frequency Response by
Localized Surface Phonon Polaritons

Vibrational, and thus chemical selective, contrast allows not just for spectroscopic infor-
mation, but also for spatial imaging. Using surface phonon polaritons in nanoresonator
structures, customizable MIR resonance frequencies can be created and observed in SFG
spectroscopy. The underlying polaritonic field enhancement is employed in coherent non-
linear microscopy, demonstrating vibrational SFG contrast with increased spatial resolu-
tion compared to the linear IR absorption counterpart.

Parts of this Chapter have been published in Ref. [Kie19].

7.1 Motivation

The manipulation of the amplitude and frequency of resonant sum-frequency genera-
tion processes is of interest for, e.g., improved frequency conversion devices or vibra-
tional molecule sensing applications. Within the last decades, free-electron excitations
at metallic surfaces, known as surface plasmons, have emerged as a viable approach to
guide light on the nanoscale, enabeling local electric field enhancements [Kau12]. An-
other way to achieve sub-diffractional light confinement, resulting in the enhancement
of nonlinear optical effects, is provided by surface phonon polaritons (SPhPs). There,
IR photons are coupled to transverse optical lattice vibrations in polar dielectrics, see
Sec. 2.2.2. Localized SPhPs (LSPhPs) are excited on sub-wavelength-scale nanostruc-
tured surfaces of dielectric crystals, where the planar air/material interface is broken up.
Thus, in contrast to propagating SPhPs, LSPhPs can be directly created by the incident
light without the necessity of grating or prism coupling [Mai07; Cal15].

Due to the exploitation of optical phonons in non-conducting substrates, scatter-
ing processes involving charge carriers are almost completely suppressed. Thus, (bulk)
phonon lifetimes in the order of some ps up to some tens of ps are routinely achieved in
low-defect materials [Deb99; Cal15]. The actual lifetime of a SPhP, including scattering
events on surface roughnesses created by the nanostructuring, is at maximum one order
of magnitude lower than that of the bulk vibration [Cal15]. Due to the small imaginary
contribution to the dielectric function, optical absorption losses are rather low, espe-
cially in comparison with plasmonic structures. Therefore, LSPhP spectral linewidth
down to 2Γ ∼ 5 cm=1 have been realized, combined with resonance (ω0) tuning via the
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nanostructure geometry, covering a large part of the MIR region [Che14]. When the elec-
tromagnetic energy is stored in a volume smaller than the resonant wavelength, V < λ3

0,
a strong enhancement of the incident IR field E(ω1) can be achieved. Thus, linear and
nonlinear optical processes at the surface are intensified, being beneficial for, e.g., en-
hanced IR spectroscopy [And03] or the creation of nano-dipole antennas in nanophotonic
devices [Tam18].

Different nanostructure designs with sub-IR-diffractional dimensions have been tested
so far to realize LSPhP. A promising geometry, exhibiting a large quality factor Q =
ω0/2Γ up to ∼ 300, is given by high aspect ratio cylindrical nanoresonators, also called
nanopillars [Cal13; Che14]. There, different localized SPhP resonances are observed
within the Reststrahlen region of the underlying substrate. A knowledge about the
spatial confinement of the electromagnetic field is desirable for a control of the enhance-
ment at the nanoscale. To this end, optical imaging of LSPhPs should rely on the
mode-selective enhancement of the response. IR-VIS SFG microscopy has emerged as a
valuable tool providing the vibrational contrast. Since the nonlinear response at the sum-
frequency is probed, a spatial resolution below the diffraction limit of the IR-excitation
wavelength can be reached, superior to conventional IR microscopy [Lab07]. Further,
nonlinear optical imaging provides stronger signal contrast and access to higher-order
material symmetries. Besides applications in the field of nanophotonics, investigations of
biological specimens, electrochemical interfaces or surface-bound molecules on catalysts
benefit from coherent nonlinear microscopy with vibrational sensitivity [Chu13].

In the following, the MIR resonances of LSPhP modes are analyzed in sub-wavelength
geometries made from hexagonal silicon carbide material, possessing a high second-order
nonlinearity χ(2). SFG spectroscopy is applied to reveal a resonant enhancement of the
response at the phonon-polariton frequencies. Further, the localized resonances are used
as model system for the demonstration of scanning-probe SFG microscopy using long-
wave IR radiation.

7.2 Experimental Details

Setup The sum-frequency generation in the sample is induced by the IR FEL radia-
tion and VIS frequency-doubled table-top laser source as described in Sec. 3.3, using the
reflection geometry depicted in Fig. 3.3(b) to capture the SFG light emitted from the
nanostructured front-surface of the sample.

For the mapping of the resonances a spatial scan of the input beams across the sam-
ple will be performed. To this end, the material is mounted on a stage movable in two
dimensions (x, y), orthogonal to the surface normal (z). Keeping the position and di-
rection of the incident radiation fixed ensures a constant size and overlap of both FEL
and table-top laser foci on the sample. The minimum incremental motion of the step-
per motor actuators is 0.1 µm. For the chosen step size of 8 µm in Fig. 7.7, the image
acquisition takes about 45 min time.
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(a) (b)

500 nm1 µm

Fig. 7.1 SiC nanoresonator geometry and arrangement. Scanning electron microscopy images at
different resolution levels are shown (tilted view angle of 15◦).

The spatial resolution of the two-dimensional SFG sample imaging is increased by tightly
focusing the incoming light beams. Thus, the off-axis parabolic mirror used for the IR
FEL radiation is replaced by a potassium bromide (KBr) lens of shorter focal length
(f = 10 cm), providing a FWHM spot diameter of ∼ 80 µm. The VIS focal size is
narrowed by inserting a Galilean beam expander in the frequency-doubled beam path,
consisting of one concave (f = −5 cm) and one convex (f = 20 cm) lens placed 15 cm
apart, ahead of the focusing lens (f = 20 cm). The resulting spot size at the sample
position is about 20 µm FWHM. Fluences of IR and VIS radiation applied to the sample
are 19 mJ/cm2 and 4 mJ/cm2 at maximum, respectively.

All spectroscopic measurements shown in this chapter are taken at an FEL cavity
detuning of ∆L = 5λ, resulting in a relative FEL linewdith of 0.3 % to obtain the best
spectral resolution of the LSPhP modes. The emitted SFG intensity is collected by a
photomultiplier. Additionally, the specularly reflected power of the (usually p-polarized)
FEL radiation is measured by the photoelectromagnetic IR detector without polarization
discrimination.

Samples For the excitation of LSPhPs two different samples, each made of semi-
insulating c-cut 4H-SiC wafers (thickness 350 µm) with varying nanostructure arrays,
have been investigated. One sample features nine 200 x 200 µm2 large square arrays
of periodically arranged 1 µm high cylindrical nanopillars (same material as substrate)
with systematically changing pillar diameters (d = 450, 500, 550 nm) and interpillar dis-
tances (pitch p = 1000, 1100, 1200 nm). The other sample possesses multiple arrays of
smaller size (50 x 50 µm2) with pillar parameters of d = 200, 300, 500, 750, 1000 nm and
p = 0.4, 0.7, 1, 1.5, 2, 5, 8 µm.

The nanostructures are fabricated by reactive-ion etching in an SF6 / O2 environment.
Prior to this process step, an etch mask coating is applied, subsequently structured by
means of electron beam lithography. A typical scanning electron microscopy (SEM)
image of the sample surface carrying the nanopillar structures is shown in Fig. 7.1. Note
that, due to an additional H2 etching process to remove the remaining surface-bound
fluorine, the nanopillars exhibit a curved top.
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Fig. 7.2 SFG spectra of localized surface phonon polariton in SiC. The dependence of the nanores-
onator array response on the polarization of incident and detected IR-VIS SFG radiation is shown.
The monopolar mode of the resonator due to the localized surface phonon polariton (LSPhP) is
situated in the Reststrahlen band of 4H-SiC, restricted by the TO and LO vibrations. LSPhP
SFG intensity is strongly enhanced, compared to the bare substrate response. Pillar parameters
are p = 1100 nm and d = 450 nm.

Samples have been prepared by Alex J. Giles and Joshua D. Caldwell at U.S. Naval
Research Laboratory. Fourier-transform infrared (FTIR) reflectance characterization
of the various pillar arrays has been provided to identify the spectral position of the
nanoresonator LSPhP modes. Further details on the fabrication process can be found
in the supplementary information of Ref. [Cal13].

7.3 Results

In the first part, the modification of the amplitude and spectral behavior of the nonlinear
response obtained with the excitation of LSPhP in SiC is investigated. Then, the spatial
localization of the electromagnetic field enhancement is examined by SFG imaging.

7.3.1 Spectroscopy

The IR-VIS SFG spectra of a periodic array of nanopillars, are shown in Fig. 7.2, taken
under various polarization conditions. The investigated nanostructures have diameter
d = 450 nm and pitch p = 1100 nm. In the plots, the transversal (TO) and longtidudinal
bulk optical phonon (LO) frequencies are indicated as guide to the eyes. In comparison
to the substrate response, discussed in the previous section (cf. Fig. 6.2), additional
resonances within the broad Reststrahlen band of SiC are observed.

86



7.3 Results

(a) (b)

Fig. 7.3 Nonlinear and linear response of localized surface phonon polariton. (a) SFG spectra at
different polarization configurations, (b) IR reflectance of the resonator array, characterized by
p = 1000 nm and d = 200 nm. Monopolar and dipolar modes within the Reststrahlen band are
observed both in SFG and IR response. Reflectance data are measured by FTIR spectroscopy.

First, the spectrum acquired under PPP condition is analyzed. The strongest SFG re-
sponse occurs at ν0 = 898 cm=1 (FWHM 20 cm=1), possessing a higher intensity than the
double-peak feature in the vicinity of the LO phonon mode (ν = 965 cm=1) originating
from the bare substrate. Moreover, two smaller peaks appear at the high-frequency side
of the 898 cm=1 mode, placed approximately 20 cm=1 and 30 cm=1 apart. Considering
the different polarization combinations used to probe the nanostructure modes, Fig. 7.2,
a similar sum-frequency response (number of appearing peaks, spectral position) is ob-
served for the case of SSP. There, the SFG intensity at ν0 = 898 cm=1 is increased by
a factor of about 1.6 relative to the PPP spectrum. For SPP and PSP, only a weak
nonlinear response at ν0 is observed. No sum-frequency radiation is detected under PPS
configuration.

The polarization conditions required to observe an SFG response of the nanopillars
are identical with that of the pure substrate, cf. Fig. 6.2. Due to the nanostructuring,
a modulation of the linear optical properties is induced. To corroborate this, another
nanopillar array is investigated by SFG spectroscopy, complemented by IR reflectance
measurements obtained from the sample provider. For the bare substrate near perfect
reflectivity would be expected in the Reststrahlen region, cf. Fig. 2.2(b). In Fig. 7.3,
the SFG and linear IR response of nanopillars with parameters d = 200 nm and p =
700 µm are shown. Again, the strongest SFG intensity is located below the LO phonon
frequency within the Reststrahlen band, Fig. 7.3(a), now at around 948 cm=1 (FWHM
21 cm=1). Compared with the reflectivity spectrum in Fig. 7.3(b), the mode matches
approximately the frequency of the largest IR reflectivity reduction. Moreover, the side-
peak located towards the lower photon energy is in correspondence with the smaller dip
in the reflectivity spectrum at ν0 = 905 cm=1. Thus, the modification of the local electric
field at certain resonance frequencies of the periodic nanostructure is the reason for the
appearance of these modes in the nonlinear spectra.
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Within the Reststrahlen band, the decrease of the reflectance is equivalent to en-
hanced optical energy absorption, due to the zero transmittance. Hence, the array of
SiC nanopillars causes an extinction of the reflected IR field due to the strong light
confinement. This local field enhancement is associated with the excitation of localized
surface phonon polaritons in the nanoresonators, as it has been shown by finite-element
method simulations of the electric near-field distribution [Cal13]. In detail, several res-
onant modes can be distinguished. On the one hand, the monopolar mode, resulting
from the oscillation of the charged lattice atoms along the pillar axis, requires an out-of-
plane polarized IR field for stimulation. In contrast, the occurence of multiple transverse
dipolar LSPhP modes, where positive and negative charges are distributed across the
nanopillar diameter, necessitates an in-plane component of the exciting electric field, i.e.
parallel to the substrate surface. The simulations [Cal13] also revealed that the dipole
resonances are of higher frequency than the monopole modes.

The SFG measurements of Figs. 7.2 and 7.3(a) are performed under non-normal inci-
dence of the IR radiation so that both in-plane and out-of-plane eletric field components
are present in case of p-polarization. Therefore, the monopole as well as dipole modes
can be observed in the PPP and SSP spectra. For a s-polarized IR field in the PPS
experiment, one can expect the excitation of the tranverse dipolar mode, however, the
relevant component of the χ(2) tensor vanishes, hence, no sum-frequency light is emitted
in this polarization combination. Due to the same reason, no SFG radiation is expected
in case of the SPP and PSP spectra. However, some small contribution is experimentally
observed in Figs. 7.2 and 7.3, which might arise due to similar reasons as for the bare
substrate response, cf. Fig. 6.2, where residual SFG light has been measured in SPP
configuration.

The peak in the SFG spectra of both samples occuring at ν0 (898 cm=1 and 905 cm=1,
respectively) is assinged to the monopole mode of the LSPhP resonators. Due to the
angle of incidence of the IR radiation, determined by the experimental geometry, the
out-of-plane component of the electric field Ez is slightly larger than the in-plane field
Ex, favoring the monopolar resonance. The SFG peaks at frequencies larger than ν0 cor-
respond to the dipolar modes. Since the local electric field distribution of each resonator
mode depends on the size and spacing of the nanopillars [Che14], the SFG amplitudes
vary for the investigated arrays. In case of the first sample, Fig. 7.2, the field en-
hancement is stronger for the monopole mode, whereas for the other sample the dipole
resonances appear more intense, Fig. 7.3.

In Fig. 7.4, the spectral dependence of the localized modes as function of the interpillar
distance is shown. The diameter of the nanoresonators is fixed at d = 300 nm, while the
pitch size has been varied between p = 1 µm and 2 µm. At first, the transversal dipole
mode, located around νIR = 940 cm=1, exhibits a spectral shift as well as amplitude
changes. Whereas the increase in the wavenumber is about 5 cm=1 and 8 cm=1 for the
arrays of p = 1.5 µm and 2 µm, compared to the case of 1 µm, the magnitude of the
nonlinear response is reduced by a factor of 1.7 and 2.8, respectively. For the monopole
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Fig. 7.4 SFG spectra of nanoresonator arrays with varying spacings. The nonlinear response
is shown for the 4H-SiC substrate and pillars of pitch p = 1 µm, 1.5 µm and 2µm with d =
300 nm. Monopolar (M, νIR ≈ 890 cm=1) and transverse dipolar modes (TD, νIR ≈ 930 cm=1)
are observed, in addition to the reduced amplitude of the substrate double peak near the LO
vibration (νIR ≈ 965 cm=1) and the TO phonon-resonant SFG (νIR = 810 cm=1). Polarization is
chosen as PPP.

LSPhP mode, the situation is less clear from the measured data. Depending on the pillar
distance, a modification of the SFG intensity is observed. Finally, a third contribution
in the spectra of the nanostructures occurs at νIR = 800 cm=1. This can be assigned to
the substrate TO phonon due to the spectral position.

To understand the spectral shift behavior of the different modes, one has to consider
the associated electric near-field distributions [Che14]. For the transverse dipolar reso-
nance, the change in the charge density from positive to negative sign occurs across the
nanopillar diameter. Thus, an expansion of the interpillar gap results in a decrease of the
Coulomb attraction of the neighboring oscillating dipoles, raising the eigenfrequency. Be-
sides the blue shift of the spectral position, a reduction of the IR field enhancement and
hence SFG amplitude is caused by the lowered coupling of adjacent resonators. These
characteristics are in line with FTIR reflectance measurements of similarly structured
nanoarrays [Che14]. In case of the monopole resonance, the opposite spectral behav-
ior would be expected since the single-signed charge of the nanopillar entails a strong
electric repulsion, decaying for increased pitch size and thus red-shifting the mode fre-
quency. The experimental data of Fig. 7.4, however, do not provide a conclusive proof
of that trend.

7.3.2 Spectro-Microscopy

Besides the spectral position and amplitude of the LSPhP modes, the spatial extent
and homogeneity of the field enhancement is of relevance as well. Therefore, in order to
acquire SFG information with lateral resolution, the spectroscopy method is combined
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(a) (b)

Fig. 7.5 Nonlinear and linear optical response across the nanoresonator array. (a) SFG intensity
and (b) IR reflectivity measurements for resonant excitation at the monopole mode (νIR =
890 cm=1) or the LO phonon frequency (νIR = 964 cm=1). The SFG signal at λSFG ∼ 500 nm
provides a higher spatial resolution than the linear optical detection at λIR ∼ 10 µm.

with a scanning probe approach. Imaging contrast is provided by the IR excitation
frequency if tuned to the LSPhP mode. Strongly focused laser beams are utilized to
improve the spatial resolution of the far-field microscopy technique [Boy86].

The SFG response and IR reflectivity obtained during a lateral scan across a nanores-
onator array of 200 µm size is depicted in Fig. 7.5. There, both the on-resonance and
off-resonance cases are investigated, with the monopole mode of this nanostructure being
located at νIR = 890 cm=1. When the LSPhP is resonantly excited, the SFG intensity is
amplified by a factor of ∼ 2 relative to the surrounding SiC substrate, Fig. 7.5(a). At the
same time, the reflectance of the IR radiation is decreased by about 33 %, Fig. 7.5(b),
due to the capture of the electromagnetic energy in the LSPhP mode. For off-resonant
IR excitation at νIR = 964 cm=1, close to the bulk LO phonon, the nonlinear optical be-
havior is inverted, Fig. 7.5(a). That is, the SFG power is suppressed on the array with a
ratio 1:4 in comparison to the strong signal originating from the bare substrate. On the
contrary, the IR reflectance is much less sensitive to the nanopillar area, nevertheless, a
small reduction is observed, Fig. 7.5(b), probably caused by Rayleigh scattering of the
light on the nanostructures.

Tab. 7.1 Spatial resolution of IR and SFG imaging. The given values (2σ) are extracted from
Fig. 7.5 using the fit function Eq. (7.1). Resonant excitation of the LSPhP mode of the nanores-
onator is at νIR = 890 cm=1, the off-resonance at νIR = 964 cm=1.

on-resonance off-resonance

IR 70.7 µm 95.1 µm
SFG 55.4 µm 46.5 µm
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(a) (b)

Fig. 7.6 Spatial sensitivity of SFG and IR reflectivity across the nanostructure. Spectra of
(a) SFG intensity and (b) IR reflectivity are normalized to the response at νIR = 960 cm=1. The
nanostructured surface is sampled from the center (0) towards the substrate (200µm), crossing
the edge at 100 µm. The resonator-covered area (pillars of p = 1100 nm and d = 500 nm) exhibits
a strong SFG resonance at the monopole mode around νIR = 890 cm=1.

To quantify the spatial resolution of the SFG and IR imaging, the response at the
edges of the pillar array has been fitted by a cumulative normal distribution function,

I(x) =
1

2

(
1 + erf

(
x− µ√

2σ

))
. (7.1)

The edge widths extracted from Fig. 7.5 for the on- and off-resonant excitation are sum-
marized in Tab. 7.1. There, the width is given as 2σ value, describing the lateral region
enclosed between 1/e2 ≈ 14 % and 86 % of the maximum intensity. The FWHM equiv-
alent is 2

√
2 ln 2σ. The spatial resolution of the used scanning probe method is at best

2σ ∼ 70 µm in the linear IR imaging and ∼ 45 µm for the SFG microscopy. Thus, the
nonlinear approach provides a better lateral sensitivity, effectively limited by the focal
profile of the VIS upconversion radiation. In principle, sub-IR wavelength resolution can
be realized by using an appropriate objective lens [Rag11].

Spatially resolved measurements of the SFG and IR spectra are plotted in Fig. 7.6
to see the development of the LSPhP mode amplitude across the nanoresonator array.
The strongest sum-frequency enhancement of the monopole resonance relative to the
LO phonon peak is observed in the center of the nanostructured area. Moving towards
the edge at 100 µm, the local field amplification decreases, until the nonlinear substrate
response is the only dominating contribution, Fig. 7.6(a). In case of the IR reflectivity,
excitation of the LSPhP modes within the Restrahlen band is identified by a reduction
of the reflected IR intensity, strongest in the center of the array, Fig. 7.6(b). However,
in contrast to the FTIR measurements, cf. Fig. 7.3, the clarity of the indiviual peaks is
diminished. One reason might be the larger FEL focal spot size (80 µm FWHM com-
pared to 50 µm for FTIR), being less sensitive to the restricted nanopillar area. On the
other hand, the spectral resolution of the applied FEL radiation is about a factor 10
lower compared to the FTIR spectrometer.
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Fig. 7.7 Nonlinear and linear microscopy of phonon polariton resonances. (a)-(c) SFG intensity
and (d)-(f) IR reflectivity are acquired by sampling with 8 µm step size. Exciting IR frequency
has been selected to match the nanoresonator modes at νIR = 888 cm=1 (a,d) and νIR = 935 cm=1

(b,e) or the strongest substrate response at νIR = 985 cm=1 (c,f). The 50 x 50µm2 areas of the
nanostructured surface are indicated by dashed squares. P-polarization of incident and detected
optical fields is used.

An illustrative application of the spectro-microscopy is a map out of the SFG response of
a heterogeneously nanostructured surface. Figure 7.7 provides SFG images of 50x50 µm2-
sized arrays at three different IR frequencies, together with the simultaneously measured
IR reflectivity maps. In case of νIR = 888 cm=1, the excitation frequency is resonant
with the monopolar mode of the array in the bottom left (pillar parameter d = 300 nm,
p = 1.5 µm). This is recognized by the enhancement of the SFG intensity (factor ∼ 2) in
Fig. 7.7(a), which is limited to the nanopillar area. The intensity of the SFG radiation
from the other arrays is hardly different compared to the substrate response. Switching
the FEL wavenumber to νIR = 935 cm=1, matching the dipolar LSPhP mode of the
p = 1 µm nanoresonator ensembles, causes an SFG enhancement in other sample areas
as seen in Fig. 7.7(b), which is less sensitive to the pillar parameter d. The observed
inhomogeneity of the SFG response across the arrays is probably due to a laser-induced
modification of the nanopillar shape, and hence the resonance frequency, as discussed
below. Finally, an inversion of the SFG intensity ratio of substrate versus nanostructure
area is observed in the case of νIR = 985 cm=1, close to the bulk LO phonon frequency,
see Fig. 7.7(c). There, the SFG intensity is suppressed at the structured domains, pro-
viding a clear imaging contrast for all arrays independent of the resonator geometries.

The corresponding IR reflectivity maps of the sample are shown in Fig. 7.7(d)-(f). At
first sight, the nanopillar arrays are hardly identified at all investigated excitation fre-
quencies. This can be anticipated from the fact that the lateral IR resolution of at best
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Fig. 7.8 Lateral SFG imaging resolution of nanostructures. (a) Vertical scan across nanopillar
arrays with increasing nanopillar diameter from d = 500 nm (left), 750 nm (center) to 1000 nm
(right) and p = 2 µm. (b) Horizontal SFG intensity measurement of nanostructures with d =
1000 nm and varying pitch size of p = 5µm (left) and 8 µm (right). The edge positions of the
50 µm wide arrays are marked by dashed lines. A fit of Eq. (7.1) to extract the resolved edge
width is indicated in (a). Due to IR excitation at νIR = 968 cm=1, the LO phonon frequency of
the substrate, a reduction of the SFG intensity at the nanopillar arrays is observed.

70 µm (cf. Tab. 7.1) is not sufficient to distinguish the arrays of 50 µm size placed 50 µm
apart. Further, the variation of the reflected IR intensity is small across the probed
surfaces. This is in line with the modest contrast measured at various positions within
the array, Fig. 7.6(b). Therefore, SFG microscopy is a viable tool to map the vibrational
resonances of the sub-diffractional structures with IR radiation.

Optimization of the VIS beam to a minimal focal spot on the sample surface, described
in Sec. 7.2, is used to figure out the best achievable lateral resolution, see Fig. 7.8. There,
an one-dimensional probe scan in the vertical, Fig. 7.8(a), and horizontal direction,
Fig. 7.8(b), has been performed. Depending on the nanoresonator dimensions, a varying
SFG intensity contrast is observed compared to the substrate. The extracted edge
widths, using the fit function Eq. (7.1), are summarized in Tab. 7.2. One reason for
the different resolution values in the two directions might be the oblique incidence of
the VIS beam, maintaining the focal size on the sample in the vertical direction, but
stretching the diameter in the horizontal. Using the angle of incidence for an estimation,
a horizontal value of 10 µm/ cos(30◦) = 11.5 µm would be expected. Thus, the focused
beam cross-section might be asymmetric. Comparable far-field SFG microscopy studies
achieved a similar (∼ 10 µm) [Cim06] or better resolution [Rag11].

Tab. 7.2 Best spatial resolution of SFG imaging obtained with scanning-probe approach. The
edge width 2σ is extracted from a fit to Fig. 7.8.

horizontal vertical

SFG 20.7± 0.9 µm 9.6± 0.5 µm
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Fig. 7.9 Laser-induced changes of the nanoresonator shape. (a) Optical microscope image of
the sample surface measured in Fig. 7.7. (b) SEM picture of individual nanopillars exhibiting
structural modifications.

The inhomogeneities observed in the SFG images of the nanopillar arrays in Fig. 7.7(b)
are probably caused by structural changes of the individual nanoresonators. An optical
microscope and SEM image taken of the sample surface after the SFG experiment are
shown in Fig. 7.9. For the used focal sizes and power levels of the laser beams, structural
modifications of the nanopillar shape are present. The strong focusing results in a
damage of the nanostructures, which is induced only if both IR and VIS radiation
are applied. Due to the excitation resonant to the monopole mode, the strong energy
absorption likely results in a melting and recrystallization of the material. In addition,
the small volume of the nanoresonators restricts the heat transport in spite of the efficient
thermal conductivity of SiC (cf. Sec. 6.3). The alterations of the pillar shape on the
nanoscale influence the LSPhP resonance frequency ωSPhP and, hence, the SFG emission
intensity at the original IR excitation wavenumber νIR. However, this might prevent the
complete destruction of the array due to a self-limitation of the IR absorption. As
consequence of the damage, a trade-off between focusing size and pulse energy of the
applied IR and VIS radiation has to be found in the scanning-probe microscopy approach.
Alternatively, wide-field SFG imaging allows for capturing a large area of the specimen
at once, avoiding the strong focusing [Hof02].

7.4 Summary

Localized surface phonon polaritons represent a versatile and efficient approach to en-
hance the local electric field at surfaces. Here, the consequences of the resonant IR
excitation for the sum-frequency yield of such modes in nanoresonators on top of a non-
centrosymmetric substrate are demonstrated. Spectral and spatial measurements show
the occurrence of monopolar and dipolar modes to due strong light confinement within
an array of identical nanopillars in contrast to the surrounding pristine substrate. SFG
intensity enhancement relative to the bulk phonon resonance is obtained. Scanning of
the IR-VIS probe across the sample with lateral SFG resolution of ∼ 10 µm allows to
identify the extent of the field enhancement and imaging of the nanophotonic structures
due to the vibrational contrast.
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7.4 Summary

The study shows that IR-resonant phonon polaritons constitute an alternative to VIS-
resonant plasmon polaritons in IR-VIS SFG enhancement [Ham99]. Applications of
localized field enhancements might be beneficial for more sensitive IR absorption spec-
troscopy studies of molecular species at surfaces [Aut18] or amplified nonlinear optical
conversion processes [Raz16]. The coherent nonlinear SFG microscopy can be used to
resolve not only solid-state nanostructures, but also molecular adsorbates on surfaces or
biological specimen [Lab07].

95



8 Polarization Dephasing in Time-Domain
SFG Spectroscopy

Besides the investigation of vibrational transitions in solids via the nonlinear optical
response in frequency-domain spectroscopy, the induced coherent polarization can also be
probed in a time-resolved way. There, the observed dephasing dynamics is linked to the
vibrational line profile. In this chapter, IR excitation of a polar dielectric by the FEL
radiation followed by fs-short upconversion pulses is used to analyze the free-induction
decay in the resonant and non-resonant case. Taking advantage of the timing correction
method, the resolution of the transient signal is clearly improved. At nonzero time delays,
a spectral narrowing of the resonance is found.

8.1 Motivation

While spectral and structural information about interface and bulk vibrations can be
obtained by static IR-VIS SFG spectroscopy, time-domain experiments enable the study
of ultrafast vibrational dynamics. This is in particular attractive for an understanding of
energy transfer and the competition between different relaxation channels during chem-
ical reactions and transient processes at surfaces, both of fundamental and technological
importance, e.g. in catalysis [Bon00]. Depending on the arrangement of IR and VIS
pulses, either the decay of the excited vibrational state’s population ∆ρ(τ) [GS90] or the
dynamics of the optically induced linear polarization P (1)(τ) [GS91] is revealed. In the
case of two time-delayed IR and VIS pulses, the dephasing of the dielectric polarization
can be measured, i.e. the loss of phase coherence among the dipole oscillators. The
extracted time constant T2 is connected to the spectral linewidth of the normal mode
in the frequency domain, being usually a Lorentzian function [Ueb97]. In contrast, to
probe the vibrational population lifetime T1 via SFG, an additional pump excitation is
required before the simultaneously arriving IR and VIS pulses. This IR pump – SFG
probe approach also allows the recording of complete SFG spectra to discover, e.g., mode
frequency shifts during desorption processes on surfaces [Bon00; Hes02].

The time-domain measurement of the dephasing is beneficial where ultrashort IR and
VIS laser pulses are available: Scanning the time delay between the IR and a short upcon-
version pulse (i.e. duration at least one order of magnitude smaller than the dephasing
time) to obtain the full dynamics and subsequent Fourier transformation yields the SFG
spectrum. The same information would be obtained from a frequency-resolved SFG
measurement, employing, in contrast, narrowband upconversion radiation. However,
the time-domain acquisition of spectra can provide certain advantages [Rok03; Laa11]:
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8.3 Experimental Details

In reality, frequency narrowing of the VIS pulse is limited and entails loss of radiation
power and SFG signal strength. Moreover, the resolution of the SFG spectrum can be
easily scaled by the time range measured before Fourier transform [Laa11]. The increased
spectral resolution facilitates more detailed line shape information, whether Gaussian or
Lorentzian, and thus allows determination if inhomogeneous broadening contributions
are present [Rok03]. Note that the actual SFG spectrum is only obtained by heterodyne
detection of the time-domain electric field, whereas the homodyne-measured intensity
trace only informs about the temporal free-induction decay.

The decoherence time T2 of lattice vibrations can also be directly measured by other
optical techniques, e.g. time-resolved coherent anti-Stokes Raman scattering (tr-CARS) or
four-wave mixing experiments, as demonstrated on gallium phosphide polaritons [Juh89]
and localized modes in fluorite [Wel00], respectively. Time-domain SFG measurements
so far have concentrated on the vibrational dynamics of surfaces and adsorbates [GS91;
Bon00; Arn10]. In the following, the free-induction decay of the IR polarization close to
a bulk phonon mode in a polar 4H-SiC crystal is studied.

8.2 Experimental Details

For a time-domain SFG spectroscopy measurement of the polarization dephasing con-
stant T2, the two-pulse scheme has to be applied. There, the coherent optical polarization
of the material is induced by the ps-short IR FEL pulse, subsequently probed by the
frequency-doubled VIS table-top upconversion radiation. Variation of the time delay τ
between both pulses yields the dynamics of the background-free SFG intensity. Whereas
the time-domain SFG intensity traces and spectra have been aquired using the original
τp ∼ 120 fs short VIS pulse, the static SFG spectrum is recorded by means of the ∼ 1 ps
stretched VIS pulse. The arrangement of the incident beams, focal spot sizes and VIS
fluence are the same as in the previous measurements (cf. Fig. 3.3(b) and Sec. 7.2).
However, the sample is mounted with its surface normal parallel to the VIS wavevector,
the FEL fluence is about 35 mJ/cm2 and the transmitted SFG radiation is detected.

In parallel to the time-domain SFG setup (Fig. 3.4, left part), the balanced optical
cross-correlator (right part of Fig. 3.4) has been used to monitor and correct for the
actual FEL – table-top laser pulse timing on a single-shot basis. For that, a part of the
NIR output (50 %) of the fiber oscillator is separated before frequency-doubling of the
remaining laser light. Thus, phase-matched sum-frequency mixing with a portion (15 %)
of the FEL power is achieved in the GaSe crystal. All SFG intensities shown in this
chapter are acquired under PPP polarization configuration.

The investigated sample is a 350 µm thin semi-insulating 4H-SiC crystal, which has
been previously studied by static SFG spectroscopy (cf. Sec. 6.3). There, a single SFG-
active phonon mode is present in the relevant IR frequency range.
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8 POLARIZATION DEPHASING IN TIME-DOMAIN SFG SPECTROSCOPY

8.3 Results

For the time resolution of the accelerator-based optical spectroscopy, the actual delay
between FEL and table-top laser pulse is critical. Thus, the impact of the timing cor-
rection technique on the signal quality of the measured SFG dynamics will be analyzed
first. Then, the dephasing constant of the polarization at different excitation frequencies
is revealed from the free-induction decay data. Together with an analytical model, the
transient SFG spectra at distinct temporal delays are dicussed, explaining the observed
resonance narrowing.

8.3.1 Time Delay Correction

The ability of the implemented balanced optical cross-correlator to characterize the rela-
tive timing jitter and drift between FEL and table-top laser pulses has been demonstrated
in Sec. 4.2. Here, this tool is used to adjust the delay τ set in the time-domain SFG
measurement to the real temporal distance of the pulses. For that, the BOC-obtained
relative timing value is added to the delay stage setting, τ+δτ , for each FEL macro-pulse,
and the SFG intensity at the original delay points I(τ) is retrieved by linear interpola-
tion. Subsequent averaging over multiple (∼ 20) macro-pulses per delay coordinate is
used to improve the statistics.

The results of the timing correction are illustrated in Fig. 8.1. Due to the occurence
of multiple sub-pulses within an FEL micro-pulse and varying temporal peak positions
during the real-time length of the macro-pulse, cf. Fig. 5.2(a) and Sec. 5.2, all time-
domain SFG traces are displayed for a fixed real-time value t before the onset of the
second sub-pulse. Otherwise, the real-time-integrated SFG data would hide the specific
material response and diminish the delay resolution, cf. Fig. 5.2(b). The uncorrected
measurement is shown in Fig. 8.1(a), whereas the more accurate BOC-readjusted SFG
dynamics is plotted in Fig. 8.1(c). In order to quantify the ’smoothness’ of the delay
traces, a convolution integral of the Gaussian sub-pulse profile with an exponentially
decaying material response is fitted to the corrected data. The ex-Gaussian convolution
function reads

I(τ) = I0 exp

(
σ2

2κ2
− τ − τ0

κ

)(
1− erf

(
σ2 − κ(τ − τ0)√

2σκ

))
, (8.1)

with the pulse width σ and decay constant κ. A comparison of the uncorrected and
BOC-corrected experimental data with the reference model function yields a root-mean-
square error (RMSE) of 9.6× 10=3 and 6.5× 10=3, respectively, demonstrating the im-
provement of the signal quality due to the actual pulse delay recording. In addition, the
electron beam-position monitoring (BPM) of the FEL has been tested for timing correc-
tion, see Fig. 8.1(b), due to the known correlation between kinetic electron energy and
pulse arrival time (cf. Fig. 4.5). With a correlation coefficient of ρ = 0.65 for the relation
of energy vs. timing, the BPM-corrected delay trace results in a RMSE of 8.2× 10=3.
Thus, the adjustment of the synchronized FEL pulse timing solely by the accelerator-
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Fig. 8.1 Post-correction of FEL pulse timing. The time-domain SFG intensity trace is shown in
the upper panel as measured (a) and after application of the delay correction using the kinetic
electron energy monitoring (b) or the balanced optical cross-correlation (c), respectively. Cor-
rections are done on a single-shot level, yielding the displayed delay traces after shot-averaging.
The quality of the results is determined by comparison with the best-fit function to the BOC-
corrected SFG transient (gray line) from (c), repeated in (a) and (b). Intensity differences are
depicted in the lower panel.

based diagnostics might be an alternative method if the SFG cross-correlation is difficult
to obtain (e.g., due to the used IR wavelength). However, the precision is reduced com-
pared to the all-optical pulse timing monitoring.

8.3.2 Free-Induction Decay of IR Polarization

The dephasing dynamics of the induced dielectric polarization in SiC has been studied by
IR excitation close to the LO phonon mode, νLO,‖ = 962 cm=1. Although this vibration
is not SFG-active, the measured SFG intensity, and thus the induced linear polarization
P (1), is strongest there within the accessible spectral range, as discussed previously (cf.
Sec. 6.3). The peak originates actually from the zero-crossing of the real part of the di-
electric function of SiC, increasing the Fresnel factor by several orders of magnitude. For
excitation of the first-order polarization P (1), the length of the IR FEL (sub-)pulse has
been chosen as short as possible by setting a small FEL cavity detuning, ∆L = 1λ. The
measured SFG transients ISFG(τ) after BOC correction are plotted in Fig. 8.2. Depend-
ing on the wavenumber νIR of the exciting IR field, different polarization dynamics are
observed. Whereas the spectral dependence of the SFG amplitude is explained in terms
of the Fresnel factor, i.e. linear optical effects (cf. Sec. 6.3), the excitation frequency-
sensitive dephasing manifests itself in different temporal peak positions as well as decay
times. With the chosen delay increment of ∆τ = 200 fs, a slight temporal shift of the
SFG peak position for νIR = 960 cm=1 by about 400 fs towards positive delay times is
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Fig. 8.2 IR polarization dynamics in 4H-SiC. Induced by a ps-short MIR pulse, the sum-frequency
light is generated by the VIS upconversion pulse, delayed by time τ relative to the excitation.
Different IR wavenumbers νIR close to the LO phonon mode are applied. The model fit of
Eq. (8.1) to the SFG response is shown (gray lines). A semilogarithmic plot of the normalized
data is given in Fig. 8.4(c).

detected, compared to the trace at νIR = 900 cm=1. The free-induction decay of the
SFG intensity can be fitted by the ex-Gaussian function of Eq. (8.1), see Fig. 8.2. The
extraction of the decay constants κ is described below.

The polarization dephasing is also apparent in the 2D plots of Fig. 8.3. There, the
BOC-corrected SFG intensity ISFG(τ) is shown during the whole FEL macro-pulse time t.
The dependence of the dynamics on the excitation wavenumber νIR can be directly
identified on basis of the intensity contrast within the delay range between the FEL sub-
pulses, being more pronounced for the case νIR = 900 cm=1, Fig. 8.3(a), due to the faster
decay. Note that the SFG traces shown in Fig. 8.2 are extracted at a time t where a single
sub-pulse is present. The decay constants κ for the different excitation wavenumbers are
revealed from the 2D plots. To this end, a non-resonant SFG measurement is shown in
Fig. 8.3(d), obtained by phase-matched frequency-mixing of MIR FEL (νIR = 900 cm=1)
and NIR table-top laser pulses in the GaSe crystal in transmission geometry [Fig. 3.3(a)].
A cross-correlation between FEL and VIS pulses in a ZnSe crystal or Au surface did not
yield a useful signal. The SFG intensity decay times κ are obtained from a fit of the
convolution of the reference FEL pulse shape with a step-like exponential function

f(τ) = H(τ) e−τ/κ, (8.2)

where H(τ) is the Heaviside distribution. An overview of the time constant fit results is
given in Fig. 8.5. For the case of detuning ∆L = 1λ, resonant excitation in the vicinity
of the LO phonon reveals a slower free-induction decay of κ = 1.66± 0.01 ps, compared
to the spectrally offset case at νIR = 900 cm=1 with κ = 0.15± 0.01 ps. A simulation of
the free-induction decay with the fitted time constant for excitation at νIR = 960 cm=1

is shown in Fig. 8.3(e), comparing well with the measurement in Fig. 8.3(c).
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Fig. 8.3 Two-dimensional graphs of the near-resonance and non-resonant SFG response. The
delay-resolved polarization dephasing is tracked during the macro-pulse real-time t at different
IR photon energies, (a) νIR = 900 cm=1, (b) 930 cm=1 and (c) 960 cm=1. The position shift of the
IR sub-pulses is closely followed by the decay dynamics of the induced polarization. Excitation
fluences are similar in all cases. The traces isolated at t = 3.5µs are depicted in Fig. 8.2. (d) Non-
resonant reference SFG revealed by intensity cross-correlation of the FEL macro-pulse and NIR
table-top laser pulse in GaSe. (e) Simulation of the material response by convolution of the FEL
pulse envelope (d) along the delay axis with the exponential function Eq. (8.2) for the fitted
decay constant κ = 1.66 ps of νIR = 960 cm=1. In all cases, short IR micro-pulses generated at
cavity detuning ∆L = 1λ are used.

For completeness, time-domain SFG intensity decays have been measured with tempo-
rally longer FEL pulses (i.e. larger cavity detuning), see the semilogarithmic traces in
Fig. 8.4. The convolution fitting analysis of the 2D data with the corresponding refer-
ence cross-correlation yields the decay constants κ shown in Fig. 8.5. All the extracted
experimental values support the trend of an increased polarization dephasing time T2

close to the LO phonon frequency. The dependence of the decay time κ on the FEL
pulse duration at a certain IR center wavelength νIR might reflect the influence of the
excitation bandwidth: For smaller FEL cavity detuning ∆L, i.e. larger IR bandwidth [cf.
Fig. 5.1(b)], additional spectrally offset polarization contributions with an asymmetric
frequency distribution are excited [see Fig. 8.6(a)].

The dephasing time of the IR polarization P (1) is related to the SFG intensity decay
ISFG via T2 = 2κ, since I ∝ |P (2)|2 and P (2) ∝ P (1) [Hes02]. Thus, the constant
of the free-induction decay in bulk 4H-SiC varies between T2 = 3.32 ± 0.02 ps (LO
phonon resonant) and T2 = 0.30 ± 0.02 ps (off-resonant) in case of short IR excitation
pulses. Comparable values in literature for the dephasing time in solids are found to be
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Fig. 8.4 Time-domain SFG spectroscopy. The polarization dynamics is induced with various
IR pulse lengths, adjusted via the FEL cavity detuning: (a) ∆L = 4λ, (b) ∆L = 2λ and
(c) ∆L = 1λ. The used IR excitation wavenumbers are νIR = 960 cm=1, 930 cm=1 and 900 cm=1.
All transients are normalized for intensity and zero delay at maximum. The traces are extracted
from the corresponding 2D plots like in Fig. 8.3 at a certain time t approximately 1 µs apart
from the beginning of the macro-pulse, in order to obtain the response initiated by a single IR
(sub-)pulse.

T2 = 4.2± 0.4 ps for the LO phonon [Val94] and T2 = 2.9± 0.3 ps for the TO phonon in
a semiconducting polar GaAs crystal [Gan97] or T2 = 5.8 ± 0.6 ps for the TO mode in
insulating diamond [Lau71] using tr-CARS at room temperature.

In general, the dynamics observed in time-resolved vibrational spectroscopies is de-
termined by two contributions: On the one hand, the rate T1 at which the popula-
tion or energy of the excited vibrational mode relaxes back to equilibrium and, on

1λ
2λ
4λ

D
ec

ay
 T

im
e 
κ 

(p
s)

0

1

2

3

4

IR Wavenumber νIR (cm-1)
900 930 960

Fig. 8.5 Dephasing time at different IR excitation wavenumbers. The decay constant κ is ex-
tracted from a convolution fit of Eq. (8.2) with the reference pulse shape to the SFG SiC traces,
see e.g. Fig. 8.3. Different FEL cavity detunings ∆L are applied at each IR wavenumber νIR.
The dephasing time is related via T2 = 2κ.
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Fig. 8.6 Static and transient SFG spectra of 4H-SiC. (a) Static spectra obtained with different
IR pulse bandwidths, varied via the FEL cavity detuning ∆L. (b) Normalized transient SFG
spectra measured at distinct time delays τ with narrowband IR FEL radiation (∆L = 4λ).

the other hand, the pure dephasing or coherence loss of the vibrational polarization,
characterized by the time constant T ∗2 [Ueb97]. Since SFG is a coherent probing tech-
nique, the measured polarization dephasing in the time domain incorporates both mech-
anisms via 2/T2 = 1/T1 + 2/T ∗2 . In the absence of inhomogeneous broadening, resulting
in a Gaussian spectral lineshape, the dephasing time T2 is related to the bandwidth
(FWHM, cm−1) of a homogeneously broadened, Lorentzian-shaped spectral line via
2Γ = 1/πc0T2 [Lau78]. Thus, from the dephasing constant at νIR = 960 cm=1 excita-
tion, T2 = 3.3 ps, one would expect a FWHM linewidth of 2Γ = 3.2 cm=1. Spectra for
comparison with the time-domain data are provided in the next section. Actually, the
experimental data in Fig. 8.2 can not sufficiently well described by an exponential decay
at large positive delays. The cause of the non-Lorentzian line shape is explained below.

8.3.3 Transient SFG Spectra

In order to further characterize the polarization dephasing, static and transient IR-VIS
SFG spectra have been acquired, see Fig. 8.6. There, the wavenumber νIR of the IR
excitation is scanned while keeping the time delay τ relative to the upconversion pulse
constant. For the static spectra taken at maximum pulse overlap (τ = 0) in Fig. 8.6(a),
different FEL pulse lengths are used in combination with the stretched VIS pulse. Note
that the timing correction can not be applied to the frequency-domain measurements.
A comparison with the SFG spectrum measured in the reflection geometry under PPP
configuration, cf. Fig. 6.2, reveals that just a single resonance peak at νIR = 960 cm=1

is observed for the smallest FEL bandwidth. This fact is due to the smaller angle
of incidence of the IR field (∼ 25◦) used in the SFG transmission geometry, modify-
ing the angle-dependent Fresnel factor F (νIR, θIR), as illustrated for normal incidence in
Fig. 6.4(c). At shorter IR pulses, i.e. smaller FEL cavity detuning, a side-peak∼ 15 cm=1

apart emerges in Fig. 8.6(a). This might be due to the presence of sub-pulses within the
FEL radiation, causing spectral sidebands as discussed in Sec. 5.2.2 and seen in Fig. 5.8,
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Tab. 8.1 Temporal development of center frequency νIR and bandwidth ∆ν of the SFG resonance.
The values are extracted from the transient spectra shown in Fig. 8.6(b).

Delay τ 0 ps 3 ps 6 ps

Peak Frequency νIR (cm−1) 959.3± 0.2 959.3± 0.1 958.9± 0.1
FWHM ∆ν (cm−1) 21.8± 0.7 18.1± 0.5 13.1± 0.3

thus being not related to the material response. The linewidth (FWHM) extracted from
the static spectrum taken at ∆L = 4λ amounts to 21.8± 0.7 cm=1. This is much larger
than expected for a vibrational lineshape from the time-domain data (3.2 cm=1). Also,
the observed resonance has an asymmetric, non-Lorentzian form. Actually, as discussed
in Sec. 6.3.3, the peak in the SFG spectrum around νIR ∼ 960 cm=1 is not related to a
vibrationally enhanced contribution to the resonant part of the second-order suscepti-
bility χ(2)(νIR), giving a Lorentzian shape, but due to a resonance in the Fresnel factor
F (νIR), i.e. linear optical effects, of the bulk material. Therefore, the nonlinear response
has a frequency-dependent modulation.

The time-resolved SFG spectra are summarized in Fig. 8.6(b), obtained with the nar-
rowband FEL radiation (∆L = 4λ). Comparing the width of the normalized spectra, a
narrowing of the spectral lineshape is observed at larger time delays τ between IR ex-
citation and VIS upconversion pulse. The extracted FWHM and center wavenumber of
the resonance are displayed in Tab. 8.1. Whereas the center wavenumber stays constant,
the linewidth has nearly halved at time delay τ = 6 ps. In addition, the spectral shape
of the resonance undergoes a transition from an asymmetric to a symmetric function.
The change in the resonance profile is linked to the wavenumber-dependent dephas-
ing constants T2 observed in the time-domain SFG measurements, cf. Fig. 8.4. Faster
off-resonant decay of the induced polarization entails an effective spectral narrowing at
larger delays.

8.3.4 Model of Time-Domain SFG

To corroborate the experimentally observed behavior of the SFG intensity in the time
domain, an analytical model has been used to simulate the nonlinear response, following
Ref. [Bor05]. The involved components of the SFG process are illustrated in Fig. 8.7.
Starting in the frequency-domain, a Gaussian-shaped IR pulse of center wavenumber νIR

and fixed width σν = 0.441/2
√

2 ln 2τIR, derived from the pulse duration τIR,

EIR(ν) = Êe
− (ν−νIR)2

2σ2ν , (8.3)

has been considered and multiplied with the Fresnel tensor F (ν, θ) to account for the
occurrence of the resonance near the LO phonon mode. The absolute value of the
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Fig. 8.7 SFG response of a vibrational resonance. (a) Process in the time-domain. Due to an

IR pulse, EIR(t) = ÊIRe−i2πνIRt, resonant with a vibration ν0, a linear polarization P (1) ∝
e−i2πν0t−Γt is induced, whose envelope dephases with decay rate Γ. For upconversion, a VIS
pulse EVIS(t, τ) = ÊVISe−i2πνVIS(t−τ) is applied to create the nonlinear polarization P (2)(t, τ) =

P̂
(2)

e−i2πνSFG(t−τ , generating the SFG radiation ISFG(τ). (b) In the frequency-domain, the
free-induction decay entails a finite spectral linewidth 2Γ of the vibration ν0.

resulting linear IR polarization

P (1)(ν) ∝ |F (ν)EIR(ν)| (8.4)

is subsequently Fourier-transformed to obtain the time-domain free-induction decay

P (1)(t) = F(P (1)(ν)). (8.5)

The upconversion with the short time-delayed VIS pulse is assumed to be instantaneous,
i.e. the convolution is taken as a product, yielding the second-order polarization

P (2)(t, τ) ≈ EVIS(t− τ)P (1)(t). (8.6)

Finally, the SFG intensity is received by

ISFG(τ) ∝
∫

dt|P (2)(t, τ)|2. (8.7)

The spectral dependence ISFG(τ, νIR) on the excitation frequency is obtained via tuning
the IR wavenumber νIR in Eq. (8.3).
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Fig. 8.8 Simulation of time-domain SFG response of a single (a,b) and two resonances (c,d).
(a,c) Two-dimensional plot of the SFG intensity ISFG(τ, νIR) showing the decay due to polariza-
tion dephasing for a single resonance. (b,d) Transient normalized SFG spectra ISFG(ν) extracted
at certain time delays τ . The single resonance at ν0 = 962 cm=1 (a,b) is obtained for IR incidence
under θIR = 25◦, whereas the double peak occurs at the angle of incidence θIR = 55◦ (c,d).

Theoretical results of the time- and frequency-domain SFG intensity for two different
angles of incidence of the IR field are shown in Fig. 8.8. For the case of close to nor-
mal incidence IR excitation under θIR = 25◦ with τIR = 2 ps and PPP configuration,
corresponding to the measurement conditions, the 2D plot of ISFG(τ, νIR) is given in
Fig. 8.8(a). A single resonance, located around νIR = 962 cm=1, is present, decaying
on a ps-time scale. Cross-sectional normalized SFG spectra ISFG(νIR) at certain time
delays τ are plotted in Fig. 8.8(b). A narrowing of the spectral linewidth is observed,
e.g. to 32 % of the original FWHM after τ = 4 ps. These findings are in qualitative
agreement with the measured behavior, Fig. 8.6.

If the IR field is incident with the angle θIR = 55◦, the simulations result in SFG spec-
tra as depicted in Fig. 8.8(c,d). There, the Fresnel factor gives rise to two resonances
in the vicinity of the LO phonon mode. Each resonance decays on a ps time scale,
Fig. 8.8(c). However, the noticeable observation is a clear distinction of the spectrally
narrowed resonance peaks at nonzero time delay, Fig. 8.8(d). Thus, SFG with a pair
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Fig. 8.9 Resonant and non-resonant free-induction decay. The time-domain SFG intensity
ISFG(τ) is depicted for different IR excitation wavenumbers νIR in the single resonance case
[Fig. 8.8(a,b)]. An exponential fit to the trace at ν0 = 962 cm=1 is also shown (gray line).
A similar result is obtained for the case of two SFG resonances [Fig. 8.8(c,d)].

of time-delayed IR and VIS pulses seem to provide a better spectral resolution than for
the case of τ = 0. Actually, time-domain SFG spectroscopy experiments have shown
that they provide a higher sensitivity to the resonant contribution in the SFG process
if IR and VIS pulses are not temporally overlapping, avoiding the non-resonant, instan-
taneous part [Rok03; Lag07]. Then, after Fourier transformation, the line shape in the
frequency-domain is determined by the resonance dephasing. However, one should note
that spectral distortions might occur caused by phase shifts [Laa11].

The SFG intensity ISFG(τ) depicted in Fig. 8.9 reflects the free-induction decay of
the induced linear polarization P (1). Obviously, off-resoantn IR exciatuon results in a
faster polariatuion depahsing than in the resonnat case. For the excitation at the LO
phonon wavenumber, νIR = 962 cm=1, a decay time of 0.7 ps might be extracted from
an exponential fit. However, the calculated SFG trace deviates from the exponential
form, see Fig. 8.9. This is in accordance with the non-Lorentzian spectral lineshape,
Fig. 8.8(b). Also, the experimentally measured SFG time-domain traces in Fig. 8.4 ex-
hibit a non-exponential decay.

8.4 Summary

In conclusion, the dephasing dynamics of the induced dielectric polarization in SiC has
been probed in the time-domain, using the established pulse timing correction scheme.
Resonant IR excitation close to a non-SFG-active vibrational mode reveals a slower
free-induction decay of the polarization (total dephasing time T2 = 3.3 ps) than with a
spectrally offset excitation. The time-domain trace deviates from an exponential func-
tion, in accordance with the non-Lorentzian lineshape in the measured spectra, due to
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the frequency-dependent Fresnel factor responsible for the SFG resonance. The transient
spectral response exhibits a linewidth narrowing for temporal delays of the upconversion
pulse far from the IR excitation. The observed dynamics is attributed to the development
of the polarization decoherence. Results from an analytical model of the time-domain
SFG response are in qualitative agreement with the experimental data. Thus, time-
delayed IR-VIS pulses might be an opportunity to increase the spectral resolution of
closeby peaks in SFG spectrum measurements. Finally, the study demonstrates the
ability to perform time-resolved measurements with the accelerator-based light source
at the sub-ps scale.
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9 Summary and Perspectives

This thesis has focused on free-electron laser-based vibrational sum-frequency generation
spectroscopy and its application to lattice vibrations in solid-state materials and nano-
structures. To this end, a synchronized two-color optical setup was implemented using a
femtosecond table-top oscillator in combination with the FHI FEL. By means of balanced
optical cross-correlation, the low-jitter and low-drift pulse timing has been chracterized
and verified. A study of the pulse dynamics within the long-wavelength FEL oscillator
revealed the formation of sub-pulses and the occurrence of regular limit-cycle power os-
cillations, as corroborated by numerical simulations based on Maxwell-Lorentz theory.
The second-order nonlinear response has been investigated in polar dielectric bulk media
within the optical phonon spectral region. Supported by an analytical model, several dis-
persive and resonant contributions to the observed sum-frequceny spectra are identified.
Revealing that the local electric field is crucial for the SFG intensity, localized surface
phonon polaritons in nanostructures are examined as a way to modify the nonlinear
optical response in the MIR range. Based on coherent second-order optical microscopy,
the vibrational contrast imaging of sub-IR diffractional geometries is demonstrated with
MIR radiation. Finally, the free-induction decay of the photoinduced electric polariza-
tion is studied in the time domain, revealing dephasing dynamics on the ps scale and
resonance narrowing. In conclusion, the IR-VIS nonlinear light-matter interaction within
dielectric media has been probed with spectral, temporal and spatial resolution.

The experimental investigations are performed with a newly established IR-VIS spec-
troscopy setup. While the intense, wavelength-tunable and narrowband MIR light is
obtained from an accelerator-based light source, the upconversion radiation is provided
by a separate laser. Crucial for nonlinear and time-resolved spectroscopy studies is the
stability of the temporal pulse overlap. Thus, for monitoring of the pulse synchroniza-
tion, the concept of balanced optical cross-correlation has been extended to the MIR
region and applied to the FHI FEL. A timing jtter down to 100 fs has been revealed,
with a pulse drift in the order of 3 ps per 30 min. The latter was found to be corre-
lated with the fluctuations of the kinetic electron energy behind the linear accelerators.
Application of the timing tool simultaneously to a time-resolved experiment allows for
post-correction of the timing drift, improving the temporal resolution on the fs scale.

The pulse arrival time monitoring mitigates the requirement for a tight active synchro-
nization, as it is implemented at other accelerator-based lasers [Sch15b]. Instead, the
demonstrated balanced cross-correlation method extends the timing diagnostics avail-
able at fourth generation light sources [Cav05; Gah08; Har13; Kov17] and expands the
spectroscopic possibilities at the FHI FEL to the time domain.
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Prior to the SFG studies, the emitted FEL radiation has been characterized. Based on
cross-correlation measurements, the detuning ∆L of the FEL cavity length L is found
as critical parameter for the control of FEL pulse shape and bandwidth. The intensity
envelope changes from a short Gaussian pulse close to zero detuning to a long asymmet-
ric form at a strongly detuned resonator. In consequence, the relative bandwidth of the
MIR radiation can be set as low as 0.3 %. Distinct oscillations of the FEL power during
a macro-pulse have been observed at intermediate detuning values. This behavior is
attributed to the nonlinear electron-light interaction in the FEL oscillator, modulating
the gain provided by the free-electron medium, and thus resulting in the formation of
regularly spaced sub-pulses within the ps-short FEL micro-pulse.

On the one hand, the measured characteristics are in line with observations at previous
IR FELs [Col82; Jar93] and have to be taken into account in time-resolved experiments.
Note that a single-pass X-ray FEL working without resonator [McN10] does not provide
this tuning option. On the other hand, the performed Maxwell-Lorentz simulations of
the emitted optical field, confirming the sub-pulse occurence and power oscillations, shed
light on the fundamental interactions within the free-electron laser [Col90]. Known from
other nonlinear dynamical systems [Man72], the self-sustained oscillations represent a
limit-cycle solution of the differential equations.

Benchmarking of the homodyne IR-VIS SFG spectroscopy has been performed on
polar dielectric materials providing strong second-order optical susceptibilities χ(2). In
the case of 4H-SiC, a spectrally broad Reststrahlen band was observed in the IR reflec-
tivity, enclosed by the transverse and longitudinal optical phonon. Whereas resonant
enhancement of the SFG is expected at vibrational modes possessing both IR and Ra-
man activity, the strongest intensity in the spectra has been observed in the vicinity of
the dipole-forbidden lattice vibration. The results were rationalized in terms of contribu-
tions from nonlinear and linear optical effects, yielding that the dispersive Fresnel factor
as well as the phase mismatch between incident and generated optical waves strongly
modify the SFG spectra. Similarly, the multi-phonon crystal of α-quartz showed a bulk-
originating SFG response.

The results emphasize the different factors in the vibrational SFG signal when us-
ing non-centrosymmetric crystals. In this case, the resonant enhancement at certain
phonon modes might be obscured due to the dominating linear optical properties of
the medium [Bar94; Liu08a]. Moreover, the coherent nature of the SFG process limits
the probed material volume, as a coherence length of at maximum 20 µm has been de-
termined. Thus, even bulk-allowed SFG is restricted to a region close to the surface.
Azimuth- and polarization-dependent measurements proved to be a reliable method to
determine the symmetry of the crystal’s quadratic susceptibility tensor. Applications
might include the identification of structural or magnetic phase transitions in van der
Waals heterostructures or ferroic crystals [Fie00; Li16].
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9.0 Summary and Perspectives

Surface phonon modes hybridizing with the incident electromagnetic wave, i.e. phonon
polaritons, have emerged as a way to manipulate the local electric field [Cal15], which is
promising to enhance nonlinear optical effects in the MIR range. Employing polariton
modes confined in sub-diffractional nanostructures of a polar dielectric material, manip-
ulation of the SFG response at distinct frequencies has been observed, corresponding to
the monopolar and dipolar modes of the nanoresonators. Further, the spectral sensitiv-
ity of the polaritonic field enhancement on the nanostructure geometry has been used
in far-field SFG microscopy. In contrast to linear IR reflectivity images, an enhanced
lateral resolution in the nonlinear SFG maps was achieved.

In a first attempt, the presented imaging of the nanophotonic structures extends the
SFG microscopy beyond the IR wavelength λ = 3.85 µm [Han19] to the long-wave regime
owing to the FEL IR source. While the applied scanning-probe approach of tightly fo-
cused beams has been capable of at best 10 µm resolution, the envionised method of wide-
field microscopy will allow for spatial detection below the IR diffraction limit [Hof02;
Chu13]. Then, studies might resolve e.g. molecular adsorbate structures [Nak09] or
electrochemical interfaces [Liu14] with vibrational contrast.

Finally, the non-equilibrium dynamics of the IR-induced electric polarization of the
material, leading to sum-frequency emission after upconversion with the VIS radiation,
has been probed in time-domain SFG spectroscopy. There, the free-induction decay
of the polarization is caused by a lost of the coherence. Depending on the excitation
frequency, a faster dephasing was observed off-resonance (T2 = 0.3 ps) compared to the
resonant case, with a factor ∼ 10 in the time constants. Further, a narrowing of the
resonance in the transient SFG spectra has been revealed at large time delays. Although
the measured resonance has been due to the Fresnel factor, closely spaced vibrational
modes in general might be better resolved in SFG spectroscopy when IR and VIS pulse
are time-delayed, suppressing the non-resonant χ(2)-contribution.

The implemented timing post-correction demonstrated an increase of the temporal
resolution on the sub-ps time scale. Further, time-domain SFG spectroscopy, although
complementary to the frequency-domain measurements, can provide more detailed in-
formation about the lineshapes, comprising contributions from vibrational population
decay and pure dephasing [GS91], when appropriate laser parameters are used [Rok03;
Bor05].

In perspective, the implemented IR-VIS frequency-mixing setup allows for vibrational
SFG spectroscopy with high spectral and temporal resolution, covering the entire molec-
ular fingerprint region and extending down to low-energy phonon modes at 25 meV.
Utilizing forthcoming higher power levels of the VIS radiation will allow for a better
signal-to-noise ratio, enabling surface-sensitive vibrational spectroscopy. Thus, besides
solid-state systems, molecules adsorbed on surfaces, the interfacial structure of liquids, or
the electrochemistry of catalysts becomes accessible for all-optical investigations. Also,
the dynamics of adsorption/desorption processes or chemical reactions could be studied
with the provided correct time-delay information.
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Appendix

A.1 Application of Group Theory to 4H-SiC

The symmetry properties of the lattice vibrations are classified by the point group of
the crystal. Besides the identification of the lattice modes, the IR and Raman activity
of the individual modes can be derived from a group theoretical analysis. Here, the
case of uniaxial 4H-SiC is considered. The character table for the corresponding point
group 6mm (Hermann-Mauguin) or C6v (Schoenflies notation), respectively, is given in
Tab. A.1.

Tab. A.1 Character table of point group 6mm. Symmetry operations are stated in the first row,
the irreducible representations are listed in the first column. Linear and quadratic basis functions
are also given. Taken from Ref. [Dre08].

linear functions, quadratic
E C2 2C3 2C6 3σv 3σd rotations functions

A1 1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 1 −1 −1 Rz
B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 −2 −1 1 0 0 (x, y)(Rx, Ry) (xz, yz)
E2 2 2 −1 −1 0 0 (x2y2, xy)

The lattice vibrations of 4H-SiC obey the irreducible representations 4(A1 +B2 +E1 +
E2) [Pat68]. The IR activity of a certain phonon mode requires a permanent electric
dipole moment, which changes under transition from the ground to the excited state.
Thus, only the symmetry classes with a nonzero linear function are active in IR ab-
sorption, in this case, A1 and E1. Whereas the polarization of the E1 modes is within
the basal plane, the A1 modes are polarized parallel to the optic axis. According to
Ref. [Pat68], six IR-active lines are expected, with 2A1 + 4E1.

The selection rule for the (first-order) Raman effect asks for a change in the (second-
order) polarizability tensor. Therefore, irreducible representations with a quadratic func-
tion are relevant, being A1, E1 and E2. The Raman-active modes are 3A1 + 3E1 +
4E2 [Fel68].

To observe vibrational modes in an SFG spectrum, both IR and Raman activity are
requried. Hence, only A1 and E1-type lattice vibrations of 4H-SiC can contribute to a
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resonant enhancement of the second-order susceptibility χ(2). The necessary polarization
conditions are obtained from the involved basis functions in the character table [Dre08].

A.2 Calculation of Electron and Optical Pulse Dynamics in
an FEL Oscillator

The motion of the accelerated charges and the evolution of the optical power within
the FEL oscillator are determined by the relativistic Maxwell-Lorentz equations of
Eqs. (2.58) and (2.59) in Sec. 2.4, i.e.

ζ̈k = |a| cos(ζk + ϕ), (A.1)

ȧ = −j
〈

e−iζk
〉
. (A.2)

These are valid for weak and strong optical fields a = |a|eiϕ and couple the dynamics of
the electron particles, each with phase ζk and velocity νk = ζ̇k, with the development of
the electromagnetic field via a nonlinear interaction. The theory has been developed by
Colson at Stanford University [Col77] after the first experimental demonstration of the
FEL in the 1970s and is described in detail in Ref. [Col90], including the assumptions
made. To obtain the emitted optical pulse structure, see Fig. 5.5, and the electron phase
space diagram, Fig. 2.7, the set of ordinary differential equations (ODEs) Eqs. (A.1) and
(A.2) for the 2D FEL simulations is solved by numerical integration. All parameters are
dimensionless and explained in Sec. 5.2.2. A script for calculation with Julia is given
below. The Julia language [Bez17] has proven to be (about a factor of 10) faster in the
performance than Matlab due to the demanding computation of the ODEs.

# ODE func t i on
func t i on f e l (dy , y , p , t )

nZ = Int (p [ 1 ] ) ;
N = Int (p [ 2 ] ) ;
j = p [ 3 : end ] ;

dy [ 1 : nZ∗N] = y [ nZ∗N+1:2∗nZ∗N ] ; # ODE f o r zeta
dy [ nZ∗N+1:2∗nZ∗N] = kron ( y [2∗nZ∗N+1:2∗nZ∗N+nZ ] , ones (N, 1 ) ) .∗ cos . ( y [ 1 : nZ∗N

]+kron ( y [2∗nZ∗N+nZ+1:2∗nZ∗N+2∗nZ ] , ones (N, 1 ) ) ) ; # ODE f o r nu

f o r zInd = 1 : nZ
indRange = (1+( zInd−1)∗N) : (N+(zInd−1)∗N) ; # i n d i c e s o f e l e c t r o n s per

z po int
dy [2∗nZ∗N+zInd ] = −j [ zInd ]∗mean( cos . ( y [ indRange ] .+ y [2∗nZ∗N+nZ+zInd ] ) )

; # ODE f o r a
dy [2∗nZ∗N+nZ+zInd ] = j [ zInd ] / y [2∗nZ∗N+zInd ]∗mean( s i n . ( y [ indRange ] .+ y

[2∗nZ∗N+nZ+zInd ] ) ) ; # ODE f o r phi
end

end
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A.2 Calculation of Electron and Optical Pulse Dynamics in an FEL Oscillator

# neces sa ry packages
import Pkg
Pkg . add (” Plot s ”)
Pkg . add (” S t a t i s t i c s ”)
Pkg . add (” D i f f e r e n t i a l E q u a t i o n s ”)
us ing Plot s
us ing S t a t i s t i c s
us ing D i f f e r e n t i a l E q u a t i o n s

# d e f i n i t i o n s
N = 50 ; # number o f sample e l e c t r o n s per z po int
zeta0 = range(−pi /2 ,3/2∗ pi , l ength = N) ’ ; # i n i t i a l phase zeta o f e l e c t r o n s
zetaSigma = 1e−4; # random phase no i s e
nu0 = 2 . 6 ; # i n i t i a l v e l o c i t y nu o f e l e c t r o n s
a0 = 1e−4; # i n i t i a l amplitude a o f o p t i c a l f i e l d
phi0 = 0 ; # i n i t a l phase phi o f o p t i c a l f i e l d
j 0 = 5 ; # e l e c t r o n cur rent
jSigma = 2 ; # width o f cur rent p r o f i l e
n = 500 ; # number o f undulator pas s e s
Q = 20 ; # cav i ty q u a l i t y f a c t o r
W = 4 ; # width o f z a x i s

tauStep = 0 . 0 5 ; # i n t e g r a t i o n time step per undulator pass
tau = 0 : tauStep : 1 ; # i n t e g r a t i o n a x i s
nTimes = length ( tau )−1;

zResFac = 5 ;
zStep = timeStep /zResFac ; # z a x i s s tep
z = −W/2: zStep : (W/2−t imeStep ) ; # z a x i s
zTimes = length ( z ) ;
z0 = 0 . 5 ; # peak p o s i t i o n
d = 0 . 0 1 ; # cav i ty detuning
dInt = Int (d/ zStep ) ; # detuning i n t e g e r
j = j0 ∗exp .(−( z .−z0 ) . ˆ2/(2∗ jSigma ˆ2) ) ; # Gaussian e l e c t r o n bunch p r o f i l e
j [ j .<0] .= 0 ;

# p r e a l l o c a t i o n s
# v a r i a b l e s dur ing an undulator pass
zetaStep = ze ro s ( nTimes+1,zTimes∗N) ;
nuStep = ze ro s ( nTimes+1,zTimes∗N) ;
aStep = ze ro s ( nTimes+1,zTimes ) ;
phiStep = ze ro s ( nTimes+1,zTimes ) ;
tStep = ze ro s ( nTimes+1 ,1) ;

# v a r i a b l e s over mu l t ip l e undulator pas s e s
a = ze ro s (n+1,zTimes ) ;
phi = ze ro s (n+1,zTimes ) ;
P = ze ro s (n+1,zTimes ) ; # o p t i c a l power

# i n i t i a l i z a t i o n
aStep [ 1 , : ] = a0∗ ones (1 , zTimes ) ;
phiStep [ 1 , : ] = phi0 ∗ ones (1 , zTimes ) ;

a [ 1 , : ] = aStep [ 1 , : ] ;
phi [ 1 , : ] = phiStep [ 1 , : ] ;
P [ 1 , : ] = a [ 1 , : ] . ˆ 2 ;

# c a l c u l a t i o n
f o r nInd = 2 : n+1 # mul t ip l e undulator pas s e s
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zetaStep [ 1 , : ] = repeat ( zeta0 , 1 , zTimes ) + zetaSigma∗ randn (1 , zTimes∗N) ;
nuStep [ 1 , : ] = nu0∗ ones (1 , zTimes∗N) ;

aTemp = a [ nInd − 1 , : ] ;
phiTemp = phi [ nInd − 1 , : ] ;
i f nInd > 2

aTemp = c i r c s h i f t (aTemp , dInt ) ; # detuning o f o p t i c a l f i e l d
phiTemp = c i r c s h i f t (phiTemp , dInt ) ;

end

aStep [ 1 , : ] = aTemp ;
phiStep [ 1 , : ] = phiTemp ;

f o r tInd = 2 : nTimes+1 # i n t e g r a t i o n s t ep s during an undulator pass
zetaInitTemp = zetaStep [ tInd − 1 , : ] ;
nuInitTemp = nuStep [ tInd − 1 , : ] ;
i f t Ind > 2

zetaInitTemp = c i r c s h i f t ( zetaInitTemp ,−N∗zResFac ∗1) ; # s l i p p a g e o f
e l e c t r o n s

nuInitTemp = c i r c s h i f t ( nuInitTemp ,−N∗zResFac ∗1) ;
end
z e t a I n i t = zetaInitTemp ;
nuIn i t = nuInitTemp ;

a I n i t = aStep [ tInd − 1 , : ] ;
p h i I n i t = phiStep [ tInd − 1 , : ] ;
jS tep = c i r c s h i f t ( j ,−1∗zResFac ∗( tInd−2) ) ;

# s e t ODE problem
y0 = vcat ( z e t a I n i t , nuInit , a In i t , p h i I n i t ) ;
tspan = ( tau [ tInd −1] , tau [ tInd ] ) ;
p = vcat ( zTimes , N, jStep ) ;
prob = ODEProblem( f e l , y0 , tspan , p) ;
a l g = DP5( ) ; # e x p l i c i t Runge−Kutta formula

# s o l v e ODE problem
s o l = s o l v e ( prob , a l g )
y = s o l . u [ end ] ;
t = s o l . t [ end ] ;

# a l l o c a t i o n o f s o l u t i o n
zetaTemp = y [ 1 : zTimes∗N ] ;
zetaTemp [ zetaTemp.>3/2∗ pi ] = zetaTemp [ zetaTemp.>3/2∗ pi ] .− 2∗ pi ; #

r e s t r i c t phase to [−pi /2 , 3/2∗ pi ] range
zetaTemp [ zetaTemp.<−1/2∗pi ] = zetaTemp [ zetaTemp.<−1/2∗pi ] .+ 2∗ pi ;
zetaStep [ tInd , : ] = zetaTemp ;
nuStep [ tInd , : ] = y [ ( zTimes∗N+1) : ( 2∗ zTimes∗N) ] ;
aStep [ tInd , : ] = y [ ( 2∗ zTimes∗N+1) : ( 2∗ zTimes∗N+zTimes ) ] ;
phiStep [ tInd , : ] = y [ ( 2∗ zTimes∗N+zTimes+1) : ( 2∗ zTimes∗N+2∗zTimes ) ] ;
tStep [ tInd ] = t ;

end

aTemp = aStep [ nTimes + 1 , : ] ;
pTemp = aTemp.ˆ2∗ exp(−1/Q) ;
a [ nInd , : ] = s q r t . ( pTemp) ;
phi [ nInd , : ] = phiStep [ nTimes + 1 , : ] ;
P [ nInd , : ] = pTemp ;

116



A.3 Abbreviations

p r i n t l n (”n=”, nInd−1)
end

# phase space p l o t ( evo lu t i on o f e l e c t r o n bunching during pass )
C( g : : ColorGradient ) = RGB[ g [ z ] f o r z=range (0 , 1 , l ength = nTimes+1) ] ; #

c r e a t e c o l o r g rad i en t
g = : plasma r ; # colormap
c o l = cgrad ( g ) |> C;
zSe l = Int ( zTimes /2) ; # s e l e c t e d z po int
p = p lo t ( )
f o r i = 1 : nTimes+1

p lo t ! ( zetaStep [ i , ( zSe l −1)∗N+1:( zSe l −1)∗N+N] , nuStep [ i , ( zSe l −1)∗N+1:( zSe l
−1)∗N+N] , c o l o r = c o l [ i ] , markershape = : c i r c l e , markers i ze = 4 ,
marke r s t rokeco lo r = f a l s e , l i n e c o l o r = f a l s e , x l ims = (−pi /2 , 3/2∗ pi
) , x l a b e l = ”\\ zeta ” , y l a b e l = ”\\nu” , t i t l e = ”Phase Space ”)

end
d i s p l ay (p)

# o p t i c a l power p l o t ( evo lu t i on o f subpu l s e s over mu l t ip l e pas s e s )
heatmap ( z , 1 : n+1,P)
t i t l e ! ( ” Opt ica l Power ”)
x l a b e l ! ( ” z ”) , y l a b e l ! ( ” n”)

A.3 Abbreviations
BOC balanced optical cross-correlation
FEL free-electron laser
FO fiber oscillator
IR infrared
NIR near-infrared (ISO: λ = 0.78 µm − 3 µm)
MIR mid-infrared (ISO: λ = 3 µm − 50 µm)
FIR far-infrared (ISO: λ = 50 µm − 1000 µm)
linac linear accelerator
PID proportional - integral - derivative
PLL phase-locked loop
PMT photo-multiplier tube
RF radio frequency
SFG sum-frequency generation
VIS visible
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