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Abstract: Cholangiocarcinoma (CCA) comprises a heterogeneous group of primary liver tumors.
They emerge from different hepatic (progenitor) cell populations, typically via sporadic mutations.
Chronic biliary inflammation, as seen in primary sclerosing cholangitis (PSC), may trigger CCA
development. Although several efforts were made in the last decade to better understand the
complex processes of biliary carcinogenesis, it was only recently that new therapeutic advances
have been achieved. Animal models are a crucial bridge between in vitro findings on molecular or
genetic alterations, pathophysiological understanding, and new therapeutic strategies for the clinic.
Nevertheless, it is inherently difficult to recapitulate simultaneously the stromal microenvironment
(e.g., immune-competent cells, cholestasis, inflammation, PSC-like changes, fibrosis) and the tumor
biology (e.g., mutational burden, local growth, and metastatic spread) in an animal model, so that it
would reflect the full clinical reality of CCA. In this review, we highlight available data on animal
models for CCA. We discuss if and how these models reflect human disease and whether they can
serve as a tool for understanding the pathogenesis, or for predicting a treatment response in patients.
In addition, open issues for future developments will be discussed.
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1. Introduction

Cholangiocarcinoma (CCA) is an aggressive cancer of the intra- and extrahepatic bile ducts.
With an incidence of 2–3/100.000 in the western world, CCA is a rare disease and accounts for
approximately 3% of all gastrointestinal malignancies. However, in countries with a high prevalence
of liver fluke infections (e.g., Thailand), CCA represents up to 80% of primary liver tumors [1]. While
intrahepatic cholangiocarcinoma (iCCA) shows an increasing incidence in western countries, the
incidence of gallbladder carcinoma is declining [2–4].

Most cases of CCA are sporadic. Conditions that promote chronic biliary inflammation boost
the risk of carcinogenesis (e.g., primary sclerosing cholangitis, liver fluke infections, chronic hepatitis
infections, bile duct cysts, hepatolithiasis). CCA is a histologically diverse entity. Animal models and
lineage tracing studies indicate that multiple cell types, including hepatic progenitor cells, hepatocytes,
cholangiocytes, and peribiliary glands can transform and develop into CCA [1].

The prognosis of patients with advanced-stage CCA is poor. Surgery is the only curative treatment
option, but tumors are characterized by high recurrence and frequently by late-stage presentation,
where surgery is debarred. Low responsiveness to chemotherapy regimens challenges systemic therapy.
Rates of mortality remain high, and overall 5-year survival does not exceed 25–40% [5]. Most recently,
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promising results from targeted therapies and checkpoint inhibition have opened new pharmacologic
treatment options [6–9].

Animal models represent an important tool to gain better understanding of the molecular
pathogenesis of CCA. The establishment of xenograft models and genetically modified organisms
resulted in new insights for numerous malignant diseases [10]. However, this approach appears
somewhat limited for CCA, as xenografts are usually implanted into immune-compromised hosts
and genetical modification derogates the mutational burden. Immune activation, inflammation, and
genetic heterogenicity are important players in the development of CCA [1].

In this review, we summarize available data on mouse models for CCA. We will briefly recapitulate
the current treatment algorithms, discuss how the rodent models reflect tumor biology of human
disease, and whether these models could serve as a tool for disease modeling and pharmacosensitivity
assays, allowing prediction of treatment responses in humans.

2. Current and Emerging Therapeutic Options for CCA

The only curative treatment option for CCA is radical surgery. Liver transplantation is not
yet standard of care in CCA [11]. However, disease recurs in up to 70% within 26 months after
curative-intended surgery [5]. This high rate of recurrence contributes to a poor overall prognosis,
with a median overall survival (OS) of 40 months after liver resection [12,13]. As distant metastasis are
more frequently observed than local tumor relapse, adjuvant treatment might be beneficial, especially
in high-risk groups, such as patients with positive resection margins or nodal-positive patients [14].

Three recently published phase III studies explored the role of adjuvant chemotherapy compared
to surveillance alone after curative surgery [15–17]. The BILCAP study demonstrated a significant
benefit of capecitabine in this setting, with a median OS of 51.1 vs. 36.4 months (adjusted HR 0.75
(95% CI 0.58–0.97); p = 0.028). Nevertheless, subgroup analysis revealed that patients with hilar
CCA or tumor stage III did not benefit from adjuvant capecitabine, and both groups showed same
disease recurrence after 24 months. The PRODIGE study failed to demonstrate a benefit for adjuvant
gemcitabine/oxaliplatin (GEMOX). Interestingly, in case of tumor recurrence, patients that received
adjuvant GEMOX showed a trend towards worse median post-relapse OS when compared to those
without adjuvant therapy (8.0 vs. 15.2 months; HR 1.55 (95% CI 0.98–2.47); p = 0.06). In the BCAT study,
gemcitabine did not show a beneficial effect in the adjuvant setting. Additionally, when stratifying
according to resection margins or nodal positivity, no significant benefit could be observed. Although
these discrepant findings challenged straightforward conclusions regarding adjuvant treatment, current
practice has been changed and adjuvant capecitabine is considered standard of care [18].

At diagnosis, most patients already present with a locally advanced or metastatic stage. Thus,
a considerable number of patients are only eligible for palliative therapies. The pivotal phase III trials,
ABC-02 [19] and BT22 [20], established the current first-line systemic chemotherapy standard with
gemcitabine plus a platin derivate. A meta-analysis summarizing both study populations showed
the significant superiority of gemcitabine/cisplatin compared to gemcitabine alone in a first-line
palliative setting, with a median OS of 11.6 vs. 8.0 months (HR 0.65 (95% CI 0.54–0.78); p < 0.001) [21].
Other chemotherapy combinations, mainly with fluorouracil derivates or nab-paclitaxel, are being
investigated in ongoing phase II and III trials [22,23]. Promising observations from a phase Ib
trial using the gemcitabine pro-drug NUC-1031, designed to overcome tumor mechanisms of drug
resistance, could not be supported by efficacy testing using the cytidine deaminase (CDA)-high CCA
patient-derived xenograft (PDX) model [24,25].

While adjuvant and palliative therapeutic options were limited to conventional chemotherapy,
several molecular mechanisms involved in biliary carcinogenesis were described. These findings
opened the door for new personalized therapies in selected patients. The first phase III study
in this field confirmed the highly significant effectiveness of ivosidenib in patients with isocitrate
dehydrogenase 1 (IDH1) mutations, and promising results for pemigatinib in patients with fibroblast
growth factor receptor 2 (FGFR2) fusions were obtained [8,9]. Several oncogenic alterations have
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already been identified in cholangiocarcinoma cells. Nevertheless, it has to be remembered that
CCA are heterogenous tumors, requiring different therapeutic strategies depending on the variable
tumor biology. The tumor’s mutational burden and the occurrence of specific genetic alterations
(e.g., affecting tyrosine kinase signaling like FGFR, HER2, KRAS, FGFR2 fusions, or the IDH pathway,
as well as chromatin-remodeling genes like ARID1A) correlate with the CCA’s anatomic localization
within the biliary tract system. Thus, the testing of every patient upfront for genetic alterations might
be considered. However, the majority of patients with CCA are negative for biomarkers and new
actionable molecular targets are urgently needed.

3. Animal Models

Animal models of CCA include rodents that develop biliary cancer following exposure to
carcinogens, animals with xenograft tumors, or animals with genetic alterations that lead to CCA
formation (Figure 1). These models are a crucial bridge between in vitro findings (e.g., characterizing
genetic alterations) and pathophysiological understanding, as well as new therapeutic strategies.
The ideal animal model of CCA would develop from the biliary tract in an immunocompetent rodent
with a functional (and modifiable) microenvironment, recapitulating the biological, molecular, and
anatomic characteristics of human disease. Nevertheless, existing models have different limitations.
The strengths and weaknesses for the major types of animal models are summarized in Table 1.

Figure 1. Principles of animal models for cholangiocarcinoma. Some of the different models can
be combined. CCA—cholangiocarcinoma, DEN—diethylnitrosamine, DMN—dimethylnitrosamine,
TAA—thioacetamide, CCl4—carbon tetrachloride, KO—knockout, IDH—isocitrate dehydrogenase,
FGFR—fibroblast growth factor receptor.
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Table 1. Strengths and weaknesses of the main rodent models of cholangiocarcinoma.

Model Strengths Weaknesses

Toxic and Surgery Early stage assessment of carcinogenesis
inflammatory background

slow tumor development
procedures mainly adapted to rats

Genetically Engineered Mice

recapitulation of most common
genetic alterations

early stage assessment of carcinogenesis
immune-competent animals allow the study

stroma–immune–tumor interactions

expensive/technically challenging
no inflammatory background

Implantation

Syngeneic fully functional immune system
preservation of tumor microenvironment

incomplete mimicry of genetic
heterogeneity of human CCA

PDX

preservation of histopathologic,
transcriptomic, and genomic characteristics

of a patient’s CCA
testing of chemotherapeutic drug

response/personalized precision medicine

absence of tumor
microenvironment

immunodeficient host

4. Chemotoxic-Induced Models

Diethylnitrosamine (DEN), dimethylnitrosamine (DMN), furan, thioacetamide (TAA), or carbon
tetrachloride (CCl4) [26–31] have been associated with CCA, inducing genotoxic effects and enhancing
tumor formation via the expansion of pre-neoplastic cells.

4.1. Furan Model

The furan-induced model is widely used and regular exposure induces cholangiofibrosis
progressing into CCA after 9 to 15 months in rats [31]. Its carcinogenic effect is mainly based
on molecular mechanisms of chronic inflammation, such as oxidative deoxyribonucleotide acid (DNA)
damage, DNA methylation, and modulation of microribonucleic acids (miRNAs), combined with
persistent cell proliferation (e.g., due to loss of connexin 32) [32,33]. The exact genotoxic mechanisms
are unclear and controversially discussed. However, some authors described mutations of KRAS and
p53 [34–38]. From a molecular point of view, bile ducts display positivity for the hepatocyte growth
factor, c-Met, TGF1, and ErbB2, which is similar to the human [39], highlighting the role of this model
for examining CCA, though limited to rats [40].

4.2. Thioacetamide Model

Oral feeding of rats with thioacetamide (TAA) causes multifocal bile duct proliferation after
9 weeks, followed by microfoci of cancerous cells after 12 weeks, and CCA in all animals after
22 weeks [29,30,41]. TAA is a potent hepatotoxic agent, inducing hepatic fibrosis and cirrhosis
upon oxidative bioactivation [42]. Similar to the previous model, the TAA model is also used in
almost all cases in rats. Of note, very different strains have been tested, including Lewis, Wistar,
Sprague-Dawley, and Zucker fatty rats [29,43]. TAA provokes a severe inflammatory response of
the bile tract, coming along with an intense desmoplastic reaction, making this a valuable model
to assess cholangio-carcinogenesis in vivo [44]. Although the exact molecular mechanisms leading
to CCA are unclear, it seems likely that the bioactivation of TAA produces reactive oxygen species
(ROS) and promotes liver toxicity via interference with ribosomal activity [27,42,45]. TAA-induced
CCA shares same traits with the human disease. In detail, tumors were immunopositive for different
receptor tyrosine kinases, including c-Met and ErbB2, and feature upregulation of the epidermal
growth factor, MUC-1, metalloproteinases as well as different estrogen receptors [40]. In summary, this
model represents an easy and reproducible toll for CCA research, despite it being standardized only in
rats (it is used as a standard hepatic fibrosis model in mice).
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4.3. Diethylnitrosamine-Left Median Bile Duct Ligation Model

Chemical agents like DEN or DMN are used in combination with cholestatic liver injury models
(e.g., left and median bile duct ligations, LMBDL) or liver-flukes infection [46] in order to induce CCA.
Whereas DEN is known to cause DNA adducts leading to cancer development, mice receiving either
DMN or LMBDL alone do not develop CCA. Induction of chronic cholestasis accelerates progression
of CCA, which goes along with the downregulation of miRNA-34a, the upregulation of miRNA-210,
and the replacement of Mnt by c-Myc in binding to cyclin D1 [47]. Although this combination model is
complex due to the necessity of surgical intervention and long-term feeding, carcinogenesis is relatively
fast (28 weeks).

4.4. p53 Knockout-Carbon Tetrachloride (CCl4) Model

In many types of tumors, the gene coding for p53 is mutated. In some, but not all, tumors, the
protein appears to act as a tumor suppressor. p53 plays a role in the regulation of the cell cycle,
where it slows down the activity of a number of genes. In human CCA, the TP53 gene mutations
occur at a rate of 3–45% [48]. CCl4 is a hepatotoxin that is associated with the release of reactive
oxygen species [49,50]. Thus, the p53−/CCl4 model combines the characteristics of a toxic model with
those of a genetic model for the induction of cancer. Farazi et al. treated p53+/+, p53+/−, and p53−/−

C57BL/6-mice with CCl4 [51]. Invasive CCA occurred in about 55% of p53−/− mice and 20% of p53+/−

mice. Metastases represented a rather rare event. On a molecular level, CCA from the p53 knockout
CCl4 model resemble that of human CCA. Most importantly, activation of c-Met, overexpression of
ErbB2, downregulation of E-cadherin, and overexpression of cyclooxygenase (COX)-2 are observed in
both human and murine tumors [51]. Important limitations consist of the late tumor development and
the relatively low number of mice developing CCA.

4.5. Opisthorchis viverrini Model

Opisthorchis viverrini (O. viverrini) is a trematode parasite that has been associated with CCA
development via mechanical damage of the biliary epithelium, as well as immunopathologic reactions
to the liver fluke’s antigens. Moreover, liver fluke-induced changes in the biliary tract microbiome
are assumed to play an important role in carcinogenesis [52]. In this context, a correlation between
high levels of circulating interleukin 6 (IL-6) with the degree of advanced periductal fibrosis in chronic
O. viverrini infection is described [53,54]. When hamsters were fed with O. viverrini followed by oral
administration of a subcarcinogenic dose of DMN, 100% of the hamsters developed CCA % [46].

A new monoclonal antibody was generated that specifically detects the so-called S121 antigen
in patient tissue and sera, which is highly increased in CCA patients. A time course experiment,
in which CCA was induced by a combination of O. viverrini and N-nitrosodimethamine in hamsters,
suggested that S121 antibody could serve as an early detection marker for CCA [55]. The same hamster
model was used to discover upregulation of oxysterol-binding proteins (OSBPs) in O. viverrini-induced
CCA [56]. OSBP2 and 7 were remarkably expressed in tumor tissue of CCA patients compared to
healthy control tissue, which could serve as a future marker for CCA metastasis [57].

5. Genetically Engineered Models

Genetically engineered mice (GEM) are an important tool in cancer investigation for analysis
of oncogenes, tumor suppressor genes, and complex biological pathways [58,59]. As tumors can
arise spontaneously in fully immunocompetent GEM, these models mimic human CCA quite well,
particularly CCA subtypes with a specific mutational pattern, and allow the study of stroma-associated
responses towards tumor development at early or advanced stages.

These models allow study of the importance of immune modulation, which either induces repair
mechanisms or promotes carcinogenesis. The induction of the IL-33/ILC2/IL-13 circuit promotes biliary
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epithelial repair. However, when stimulated in mice with activated AKT and YAP signaling, two
transcriptional coactivators involved in cell proliferation and survival, metastatic CCA is induced [60].

From the model of CCl4 administration to p53-knockout mice, we know that p53 deficiency
along with chronic bile duct injury and extracellular matrix changes have a major impact on tumor
development [51]. In human CCA, different types of p53 mutations were described and their incidence
was reported to be 21% [61]. Smad4 is a tumor suppressor gene that was found to be frequently altered
in CCA [62], inducing the activation of the proproliferative and antiapoptotic PI3K pathway [63]. Most
recently, the identification of IDH1 mutations and FGFR2 fusions resulted in a clinical breakthrough,
implementing personalized therapies in these patients [8,9].

5.1. Liver-Specific Deletion of Smad4 and Pten

Smad4 and Pten belong to the most frequently mutated tumor suppressor genes in CCA. In 2006,
Xu et al. described a murine model for CCA, which is based on the liver-specific deletion of both, Smad4
and Pten, by crossing mice carrying conditional Pten and Smad4 alleles with mice overexpressing
a Cre recombinase controlled by an endogenous albumin promoter [64]. Since AlbCre recombines
loxP sites in precursor cells that might differentiate in both hepatocytes and cholangiocytes, Smad4
and Pten deletions occur in both of these cell types. In these mice, conditional knock-out of Smad4
and Pten is associated with significant hyperplasia of the bile ducts already at 8 weeks of age. These
degenerate into dysplasia and finally invasive CCA, occurring with high penetrance at 4–7 months
of age. The Smad4/Pten model resembles human CCA on both the histological and molecular level of
the tumors. Nevertheless, it is important to note that unlike human CCA, tumors develop in normal
livers in the absence of liver injury or inflammation. Moreover, these knock-out mice do not develop
metastases, limiting their use as a model for studying advanced CCA of the human.

5.2. Liver-Specific Activation of KRAS and Deletion of Pten

Mutations activating the oncogene KRAS are frequent in human CCA [65,66]. Since they are
associated with an unfavorable outcome, there is a high clinical need for experimental models allowing
this mutation to be specifically addressed. Ikenoue provided a murine model for CCA relying on
the simultaneous Alb-Cre-driven activation of mutant KRAS and deletion of Pten [67]. These mice
demonstrated an early but stepwise occurrence of intrahepatic malignant lesions that displayed
important histological characteristics of CCA. Despite the tumors remaining non-metastatic, mice
succumbed to death at a median age of 46 weeks, displaying clinical symptoms frequently observed
in human CCA patients, including hemorrhagic ascites, jaundice, and weight loss. Notably, further
studies using tamoxifen-regulatable promotors specific for hepatocytes or cholangiocytes revealed
that in the described mutant KRAS/Pten mice, CCA originates from biliary cells [67,68]. Similar to the
Smad4/Pten model, this model also recapitulates several molecular and histological findings similar to
human CCA, but tumors occur in the absence of chronic liver injury and do not metastasize.

5.3. Liver-Specific Activation of KRAS and Deletion of Tp53

The tumor suppressor p53, which is encoded by the Tp53 gene, is a phosphoprotein inducing
apoptosis or cell cycle arrest when DNA damage occurs. Mutations of p53 have been identified as
a frequent event in human CCA. In this context, O’Dell and colleagues generated mice harboring a
conditionally activated KRAS mutation and Tp53 deletion to reflect iCCA. Homozygous mutant mice
developed tumors already after 9 weeks and died after a median survival time of about 20 weeks.
Interestingly, besides CCA, a mixed histological appearance of CCA and hepatocellular carcinoma
(HCC) and only HCC developed in about 17% of each case. Within this model, different premalignant
lesions (ductular hyperplasia, dysplasia) occur along and frequently adjacent to CCA lesions. A pivotal
feature of this model is the very comprehensive formation of metastasis [69].

The specific deletion of adult hepatocytes using an adeno-associated vector under the
hepatic-specific thyroid-binding globulin promoter (AAV8-TBG-Cre) revealed that mature hepatocytes
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do not undergo malignant transformation in the lack of an additional hepatic injury. Strikingly, when
these mice were fed with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet, a feeding model
that causes inflammation, ductular reaction, and fibrosis, CCA developed. These findings indicate
that hepatocytes are sensitive to KRAS-Tp53-dependent carcinogenesis and can undergo a phenotypic
switch to induce CCA development.

5.4. Liver-Specific Activation of KRAS and IDH2

Isocitrate dehydrogenase (IDH) is an NADP+-dependent metabolic enzyme that catalyzes the
oxidative decarboxylation of isocitrate to α-ketoglutarate. Mutant IDH1/2 occurs in about 20% of
human CCA, blocking hepatocyte differentiation from progenitor cells [70]. The mutant IDH1 inhibitor
ivosidenib (approved for the treatment of AML patients with a susceptible IDH1 mutation) recently
demonstrated efficacy in advanced CCA patients with an IDH1 mutation [71]. Saha et al. demonstrated
that mice simultaneously bearing a mutant IDH2 and activating KRAS mutation develop CK19-positive
liver lesions with a high prevalence [70]. Mice demonstrated peritoneal metastases. Although
tumors occurred at a rather later age, this model might be used to study the important subset of
IDH-mutated CCA.

5.5. ErbB-2A Overexpression

ErbB2 is a receptor tyrosine kinase regulating key tumor cell characteristics, which induces
survival, proliferation, and migration [72]. Overexpression of ErbB2 has been described in about 5–7%
of human CCA, with much higher rates in gallbladder carcinoma [72]. In line with these data from
human, mice overexpressing ArbB2 using the BK5 promoter developed gallbladder carcinoma in
about 85% of cases at an extremely young age of 2–3 weeks [73]. At an age of 16 weeks, tumors in
other parts of the biliary tract occurred with a lower prevalence. At the molecular level, BK-ErbB-2A
demonstrated increased COX-2 levels and an increased activation of the MAPK pathway, which is
also observed in human lesions. Thus, BK-ErbB-2A mice represent a model allowing the study of
gallbladder adenocarcinoma rather than other types of CCA.

5.6. Notch1 Overexpression

Notch is a major regulator of cell development, differentiation, and proliferation. A role for Notch
in the embryogenesis of the biliary tree was suggested [74], and aberrations in the Notch pathway
were described in many patients with CCA. Especially, Notch 1 and 3 receptors were overexpressed
in human CCA tissue. Zender et al. developed a transgenic murine model with constitutive Notch
overexpression in albumin-expressing cells (Notch1C:AlbCre) to demonstrate that aberrant Notch
activity in hepatic progenitor cells promotes differentiation of these cells towards a biliary lineage,
contributing to malignant transformation [75]. Interestingly, both human CCA tissues as well as
tumors derived from Notch-overexpressing mice showed significantly increased levels of the cell cycle
regulator protein cyclin E. Nonetheless, tumors derived from these models additionally displayed
characteristics of HCC or a mixed CCA/HCC phenotype, which together with the high complexity of
the model might be seen as an important limitation. Most interestingly, a conversion from differentiated
hepatocytes into biliary epithelial cells was observed in mice with overexpression of the Notch pathway.
Fan and colleagues demonstrated that iCCA can develop from mature hepatocytes when Notch and
AKT signaling are activated [76].

5.7. Sleeping Beauty Transposons

As a further development, genetically modified CCA models based on the sleeping beauty
(SB) transposon system were described. Transposons represent non-viral vectors for gene delivery.
Yamada et al. published a model based on bile duct ligation in C57BL/6 mice that were injected with
SB carrying plasmids with active AKT and YAP [77]. Mice developed Sox9+/HepPar1− intrahepatic
tumors, providing a proof of concept that such models are feasible in mice for the induction of CCA.
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Similarly, the group of Kühnel and colleagues described an elegant model for the induction of a
single CCA lesion in mice [78]. In brief, they injected a transposon plasmid encoding for mutant
KRas-G12V into p53-knock-out mice (p53fl/fl mice and co-delivery of a plasmid for Cre-recombinase)
directly into the liver. Subsequent electroporation led to CCA development in all animals within
3–5 weeks, demonstrating the oncogenic potential of KRas-G12V on the background of genetic p53
knock-out. If the tumor was left in place, lung metastases occurred, finally leading to the death of
the mice. If the tumor was resected, recurrences of the original tumor occurred, both in the form of
local recurrences in the liver and in the form of lung metastases in many mice. These led to lethality
of the mice, which occurred between 30 and 61 days after resection, depending on the initial tumor
size. The model is therefore suited to investigate different clinical scenarios of CCA and to analyze the
influence of different molecules by modulating gene expression. The group of Kühnel and colleagues
analyzed the efficacy of adjuvant therapy in CCA, providing a proof of concept how the model can be
used to directly answer clinical questions in rodent models.

6. Implantation Models

6.1. Xenograft Models

Xenograft models use human tumor cells or human tissue inserted into immunocompromised
mice. Due to the unique condition of the liver (dual vascularization, immunologic microenvironment),
orthotopic rather than heterotopic models are considered more suitable to mimic human CCA.

Hudd and colleagues were the first to use an ectopic xenograft model, in which human metastatic
CCA cells were subcutaneously injected to immunocompromised mice, leading to CCA formation in
26 of 30 mice [79]. Being reproducible and time effective, xenotransplantation models were frequently
used to assess the efficacy of novel therapeutic compounds in vivo. These studies have investigated,
for instance, γ-aminobutyric acid (GABA) [80], combinations of salubrinal and rapamycin [81], SC-43
(sorafenib derivate) [82], and the bromodain inhibitor JQ1 [83]. Further, different regulators in signaling
pathways, such as SOX17, WTAP, or IL-6, as well as miRNA regulation pathways were described [84–88].
In this context, decreased growth of CCA cells was associated with miRNA-494 upregulation, while an
increased tumor growth was observed when miRNA-26a, miRNA-17, miRNA-92, and miRNA-320
were upregulated [89–92].

Xenograft models may lose genetic heterogeneity due to selection pressure, presence of
culture-specific mutations, or gene silencing. A procedure known as patient-derived xenograft
(PDX) preserves histopathological and genomic characteristics of a patient’s CCA by transplanting
freshly resected tumor pieces. Most recently, it was described that CCA PDXs have highly similar
genetic profiles and histology characteristics when compared to primary tumors [93]. This may bring
substantial improvements towards a personalized precision medicine and can be used for preclinical
testing of antitumor treatment response. Nevertheless, the fact that PDX models can only be used in
immunodeficient animals is an important disadvantage, as it prevents the elucidation of the crosstalk
between tumor and immune cells.

6.2. Syngeneic Models

Syngeneic models have the advantage of inserting rodent CCA cell lines into an animal of the
same species with a fully functional immune system. More than a decade ago, Sirica and colleagues
injected two rat CCA cell lines directly into the biliary tract of syngeneic Fisher 344 rats. While BDEneu
inoculation led, in all animals, to rapid tumor growth with cholestatic disease and peritoneal metastasis,
BDEsp injection resulted in a less aggressive non-metastatic iCCA [94]. BDEneu cells, with a mutation
of the rat neu oncogene, have similar characteristics compared to human disease, e.g., expression of
tumor necrosis factor-related apoptosis-inducing ligand, polo-like kinase 2, and hedgehog pathway
activation [94,95]. In this model, CCA develops rapidly and consistently, overcoming the immune and
stromal limitations of other xenograft approaches. It mimics a vast desmoplastic reaction characteristic
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for human disease and has been used to analyze the features responsible for tumor progression [95].
It is frequently used to investigate novel pharmacological therapies. Rizvi and collogues described
seven mouse CCA cell lines (SB1–7) that can be injected into mouse livers [96]. Subsequent orthotopic
tumors recapitulate histopathologic features of human disease, like desmoplasia, malignant glands,
and the expression of CK-19 and SRY box 9. This model enables genetic manipulation of cells prior to
insertion and may be utilized to get deeper insights into the tumor–stroma crosstalk and investigate
future therapeutic strategies.

7. Conclusions

CCAs are a heterogeneous tumor entity, both at the intertumoural and intratumoural levels.
They poorly respond to common chemotherapeutic strategies but promise to benefit from personalized
therapies. Up to 50% of CCAs have targetable mutations, amplifications, or fusions [97]. This opens
new therapeutic opportunities that require intense basic and clinical research.

The thorough molecular characterization of CCA has identified novel molecular subtypes that
might explain the different clinical characteristics of CCA, their distinct sensitivities to treatment, and
the variable prognosis of patients. Transferring this novel knowledge into animal models might help
to assess the relevance of different mutations and genetic alterations for the pathophysiology of human
disease. However, only few rodent models were able to be demonstrated to clinically and genetically
reflect human disease. Even less models answer the urgent need for preclinical intervention trials.
Innovative and molecularly well-defined models of CCA are therefore required to translate novel
molecular profiles into diagnostic and therapeutic advances in humans. Immunocompetent rodent
cancer models have the advantage over cell-based models (e.g., organoids) to allow characterization
of stroma and immune responses as well as immune-oncological therapies, while they may not
accurately reflect all mutational patterns observed in human patients. Complementary to animal
models, recapitulating CCA in patient-derived culture systems and xenografts could provide new
platforms, enabling us to reconstruct the oncogenic steps leading to tumor development. Moreover,
such models might help to test the sensitivity of individual tumors to distinct treatments and thereby
open the door to personalized therapy for each individual patient.
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Abbreviations

CCA cholangiocarcinoma
CCl4 carbon tetrachloride
CDA cytidine deaminase
CI confidence interval
COX cyclooxygenase
DDC 3,5-diethoxycarbonyl-1,4-dihydrocollidine
DEN diethylnitrosamine
DMN dimethylnitrosamine
DNA deoxyribonucleotide acid
FGFR fibroblast growth factor receptor
GABA γ-aminobutyric acid
GEM genetically engineered mice
GEMOX gemcitabine/oxaliplatin
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HCC hepatocellular carcinoma
HR hazard ratio
iCCA intrahepatic cholangiocarcinoma
IDH isocitrate dehydrogenase
IL interleukin
LMBDL left and median bile duct ligations
miRNA micro ribonuleic acid
MPP metalloproteinase
O. viverrini Opisthorchis viverrini
OS overall survival
OSBP oxysterol binding protein
PDX patient-derived xenograft
Pten phosphatase and tensin homolog deleted chromosome 10
ROS reactive oxygen species
SB sleeping beauty
TAA thioacetamide
TGF transforming growth factor
TKI tyrosine-kinase inhibitors
VEGFR vascular endothelial growth factor
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