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Notations

• ρ(M), the spectral radius of a square matrix M is the largest eigenvalue of
M .

• R+ or R≥0 denotes the set of non-negative real numbers.
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• R<0 denotes the set of negative real numbers.
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• Sp(M) the spectrum of matrix M .
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λ∈Sp(M)

Re(λ) where Re(λ) is the real part of the eigenvalue λ.

Let x = (xi)i∈{1,...,n} ∈ R
n be a vector:

• x > 0 if and only if xi ≥ 0 for all i;

• x≫ 0 if and only if xi > 0 for all i.

• Equivalently, we use < and ≪

Equivalently, we define the same inequalities for matrices A ∈ Mmn(R).
〈·|·〉 denotes the scalar product in R

n.
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Introduction

Tuberculosis (TB) is a preventable and curable disease caused by Mycobacterium
tuberculosis (MTB) that most often affects the lungs. To date, TB claims the
second largest number of victims due to a single infectious agent right after Human
Immunodeficiency Virus and Acquired Immune Deficiency Syndrome (HIV/AIDS)
[132]. In 2009, there were about 9.7 million orphan children as a result of TB deaths
among parents. In 2010, 8.8 million people were infected including 1.1 million cases
among people with HIV and 1.4 million died from it, including 350,000 people with
HIV, equal to 3,800 deaths a day. Over 95% of TB deaths occur in 22 low- and
middle-income countries mostly located in Sub-Saharan Africa and in South-east
Asia [132], and it is among the top three causes of death for women aged 15 to
44 (320,000 women died from TB in 2010). Young adults are mostly affected by
tuberculosis, in their most productive years. The estimated global incidence rate
dropped to 128 cases per 100,000 population in 2010, after peaking in 2002 at
141 cases per 100,000. An estimated half a million people emerge annually with
multidrug-resistant(MDR) [132]. In 2011, the largest number of new TB cases
occurred in Asia, accounting for 60% of new cases globally. However, Sub-Saharan
Africa carried the greatest proportion of new cases per population with over 260
cases per 100 000 population in 2011 [132].

Despite a widespread implementation of control measures including Bacillus
Calmette-Guérin (BCG) vaccination, the Directly Observed Treatment Strategy
(DOTS) of the Stop TB department of the World Health Organization (WHO)
which focuses on case finding and short-course chemotherapy, the global burden of
TB has increased over the past two decades [130]. This rise has been attributed to
the spread of HIV/AIDS, the collapse of public health programs and the emergence
of drug-resistant strains of MTB.

As the world is experiencing the devastating effects of HIV/AIDS epidemic, it
is now necessary to ask why we have failed so far to control TB and throw light on
the limits of the global TB control programs [138]. Currently, according to WHO,
nearly half of the people living with HIV are TB co-infected and three quarters of
all dually infected people live in Sub-Saharan Africa.

A preventive therapy of TB in HIV infected individuals is highly recommended
[130] and could dramatically reduce the impact of HIV on TB epidemiology, but
its implementation is limited in developing countries because of complex logistical
and practical difficulties [76]. The exogenous re-infection, where a latently-infected
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2 Introduction

individual acquires a new infection from another infected person [46, 70] is also
essential to the TB epidemiology. Another important issue is the diagnosis and
treatment of infectious who do not have access to hospitals and people who quit
treatment before the end and thus develop drug resistances.

Tuberculosis is an ancient and complex infectious disease on which a large num-
ber of theoretical studies have been carried out. MTB’s infection can remain latent,
become active, or it can progress from latent TB to active TB either by endoge-
nous re-activation and/or exogenous re-infection. Active TB is most of the time
acquired through co-infection of MTB with other diseases (diabetes, HIV/AIDS)
or some substance abuse such as alcohol and tobacco. The mathematical analysis
of biomedical and disease transmission models can significantly contribute to the
understanding of the mechanisms of those processes and to the design of potential
therapies [3, 4, 37, 86, 155].

History of mathematical modelling of tuberculosis. The advent of new
antibiotics changed the whole ethos of disease control. Just over 30 years ago, in
1978, the United Nations (UN) signed the ’health for all, 2000’ accord which set the
ambitious goal of the eradication of disease by the year 2000 [141]. However, the
reality of bacterial mutation is dramatically seen in New York city with tubercu-
losis. Control of the TB w-strain (a highly drug-resistant strain of Mycobacterium
tuberculosis), which first appeared in the city in 1990, resistant to every available
drug killing over half of its victims, has already cost more than $1 billion [119]. 30
years ago, TB has been predicted to be eradicated in the world by 2000. Diseases
(including heart disease and cancer) cause orders of magnitude more deaths in the
world than anything else, even wars and famines [119, 141]. The appearance of new
diseases, and resurgence of old ones, makes the interdisciplinary involvement even
more pressing.

The earliest mathematical models describing the TB dynamics have been built
by the statistician H. T. Waaler, chief of the Norwegian TB control services in 1960
[161]. The model focused on the prediction and control strategies using simulation
approaches. Waaler and coworkers [166, 165, 164, 163, 162, 170], and later Revelle
and coworkers [140, 139] and Ferebee [72] developed many other mathematical mod-
els with the same aim. Following them, modelers have made several different choices
depending on their focus. Waaler considered an exponential population dynamics
in the absence of TB [161]. However, this hypothesis for demography modelling
was partially limited since it appears not realistic for long term dynamics of a real
population. Waaler’s first linear model did not describe the mechanics of TB trans-
mission. He introduced a new model of 160 linear equations in [163], keeping the
same structure, but including BCG vaccinated and different recovered classes for 20
different age classes. Using the model of Brogger and Waaler as a template, Revelle
firstly introduced nonlinear systems of ODEs that model TB dynamics [140, 139].
Revelle explained why the infection rate depends linearly on the prevalence using
the probabilistic approach that is common today (homogeneous mixing). He devel-
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oped an optimization model and studied the minimal cost strategy against TB. It is
worth mentioning that Waaler also developed a model in 1970 that would minimize
the cost of alternative tuberculosis control measures.

Blower and colleagues discussed the persistence condition of tuberculosis inside
the population and determined the basic reproduction ratioR0 (the average number
of new infectious cases caused by a single infectious case in a fully susceptible
population over the course of the entire infectious period) [24, 27, 160, 58, 157, 23].
A sensitivity analysis of R0 has been performed by several authors [24, 23, 27].
However, the sensitivity analysis of parameters on R0 does not really illustrate
the impact of these parameters on the global trajectory of the system in the case
of backward bifurcation. Blower and colleagues found in their model that one
has 1 < R0 < 9, and the most important parameters are the infection rate, the
probability of fast progression, the re-activation rate, and the TB related death
rate. Chavez and colleagues developed a mathematical analysis of a TB model
without fast progression [40]. Thereafter, most publications include sophisticated
mathematical theories such as center manifold theory and Lyapunov functions, to
study the dynamics of tuberculosis [70, 41, 116, 5, 47, 115, 129, 64, 154].

Modelling TB latency and re-infection. Numerous TB models discuss the TB
latency and re-infection. In some cases, the progression probability is modeled as
a function of time since the first infection. This may be done either with explicit
age of infection and maturation structure [162, 159, 7], or the explicit inclusion of
variable latent periods in a delayed (delay ordinary differential equation) and/or
integro-differential equation [71, 36]. Several authors have found that including
re-infection or vaccination leads to backward bifurcation when there is coexistence
between an endemic equilibrium and the disease free equilibrium [18, 19, 22, 31,
34, 39, 64]. The mathematical analysis of these models is still a difficult task.
Bacaer et al. [10] and some other authors have shown that backward bifurcation
appears only for unrealistic re-infection parameter values. Nevertheless, including
exogenous re-infection is very common in epidemiological models since its impact
is still fundamental. Observations show that individuals may be infected by many
TB strains at different times of their life. Numerous models divided the latently
infection class into a fast progression class and a slow progression class [173, 65] with
different re-activation rates to infectious classes. Some others include differential
infectivity stages (see [115] and reference therein).

TB infectious classes. Another discussion is on the number of infectious classes.
Most authors included a single class of infectious [136], and sometimes, when taking
into account extra-pulmonary tuberculosis, they considered a class of non-infective
TB cases [27, 20, 19]. These hypotheses assumed that all infectious individuals
were diagnosed, and were following the treatment until the end. It is true when
everybody has access to treatment, but it is not always the case in many developing
countries where WHO estimated a large number of undiagnosed infectious. A class
of lost sight (people who quit the treatment before the end) has also therefore been
included in some models [33, 115]. The aspect of disease relapse have been included
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by Porco and Blower [136] into their model and they investigated the long term
trends of the disease.

Approach in this thesis. The challenge of TB control in developing countries
is due to the increase of TB incidence by a high level with undiagnosed infectious
and lost sight with respect to diagnosed infectious. Comparing to existing results
[41, 40, 17, 117, 116, 10, 5, 6, 27, 26, 47, 115, 129, 48, 70, 136, 24], our work differs
from these studies in that our model in addition to undiagnosed infectious and lost
sight, also considers the aspects of exogenous re-infections, disease relapse as well
as primary active TB cases, natural recovery and traditional medicine (practiced
in Sub-Saharan Africa). The purpose of the current study is to complement and
extend the aforementioned studies. To the best of the author’s knowledge, no model
in the literature takes into account all these aspects by combining both frequency-
dependent and density-dependent infection. We will design and qualitatively ana-
lyze a new and more comprehensive deterministic model for gaining insights into the
transmission dynamics and control of TB in a population in developing countries.
We will divide the infective class into three subgroups with different properties: i)
diagnosed infectious, ii) undiagnosed infectious and iii) lost sight. According to the
National Committee of Fight against TB of Cameroon (NCFT) [124], about 8% of
diagnosed infectious that begun their therapy treatment never returned to the hos-
pital for the rest of sputum examinations and treatment, and then become lost sight.
The parameters of the model are identified using the error-oriented Gauss-Newton
method [53] implemented in the software POEM 2.0 (Parameter Optimization and
Estimation Methods). Furthermore, an optimal control strategy will be studied
in order to eradicate TB using data of Cameroon. The optimal control schedule
to fight against tuberculosis in 10 and 20 years through education, treatment of
undiagnosed population and lost sight and chemoprophylaxis of latently infected
population will be implemented. This class of TB epidemiological models can be
extended to many classes of infective individuals and data for many other African
countries.

We point out that according to the DOTS strategy, applied in most developing
countries, a patient with a pulmonary tuberculosis must make three sputum ex-
aminations during the treatment and will be considered cured when the last result
of the sputum examination is negative. The quite high rate (5 to 17 %) of lost
sight individuals among the Cameroonian population raises a number of concerns.
Indeed, what is happening with the undiagnosed cases of active TB and lost sight?
How do these people affect the dynamics of TB in Sub-Saharan Africa? What are
the conditions for the diagnosed rate (the proportion of the diagnosed cases treated
under a DOTS program) that can ensure the eradication of TB, or at least mini-
mize its incidence? Are the undiagnosed cases undermining the efforts of the DOTS
strategy with respect to reducing the incidence of TB in Sub-Saharan Africa and
effecting proper and efficient treatment policy for patients with active tuberculosis?
What is the mathematical and the numerical consequence of adding such classes?

Outline. The thesis is organized as follows. Some theoretical background use-
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ful for mathematical modelling of infectious diseases in general and tuberculosis in
particular is introduced in Chapter 1. Several mathematical concepts and results
that are used throughout the thesis to qualitatively analyze and numerically im-
plement the model are presented: matrices, equilibria, Lyapunov stability, LaSalle
invariance principle, bifurcation theory, maximum principle, optimal control theory
and numerical implementation by the Forward Backward Sweep Method (FBSM).

In Chapter 2, the tuberculosis model is formulated and analyzed. The total
human population is divided into several virtual compartments, each containing a
number of people according to their epidemiological status (susceptible, latently
infected, undiagnosed infectious, lost sight, diagnosed infectious and natural recov-
ery). The model is shown to have positive trajectories, and to be in a compact
positively invariant subset of R6. The parameter identification is performed using
data of Cameroon. With the sensitivity analysis, most sensitive parameter values
among the set of unknown ones are estimated. Using artificial data, the impact of
some parameter change to reduce the burden of tuberculosis by 20% and 60 % is
investigated.

The mathematical analysis of the model is presented in Chapter 3. The basic
reproduction ratio is calculated and analyzed. The existence of bifurcations is
discussed and the consequence on the stability of the endemic equilibrium (EE)
and the disease free equilibrium (DFE) are discussed. Using the center manifold
theorem, the stability of the endemic equilibrium will be explored.

Chapter 4 of this work deals with the optimal control by education of the popu-
lation strategy and the chemoprophylaxis strategy of latently infected to reduce the
burden of tuberculosis. The existence of the optimal control pair is discussed. Us-
ing an adapted numerical technique for solving optimal control problems from For-
ward Backward Sweep Method, an optimal control schedule of tuberculosis through
education or/and chemoprophylaxis is solved. Chemoprophylaxis is a treatment
prevention strategy for latently infected which is not applied in Cameroon. Educa-
tion aims to reduce the number of undiagnosed infectious in the population. The
FBSM technique is one of the indirect methods in which the differential equations
from the Pontryagin Maximum Principle are solved numerically. Numerical simula-
tion is conducted to find the optimal schedule depending on the quantity of money
available.





Chapter 1

Mathematical Background

Mathematical models generally go through several versions before qualitative phe-
nomena can be explained or predicted with any degree of confidence. Great care
must be exercised before practical use is made of any epidemic model. However,
even simple models do frequently pose important questions with regard to the un-
derlying process and possible means of control of the disease or epidemic behavior.
The practical use of mathematical models must rely heavily on the realism put into
the models. Usually, inclusion of all possible effects is not possible, but rather the
incorporation in the model mechanisms, in a way as simple as possible, of what
appears to be the major components.

Childhood infections motivated the development of modern epidemiological the-
ory, most notably measles which was public health importance in the 19th and early
20th century [141]. An important early mathematical model by Bernoulli (1760),
involving a nonlinear ordinary differential equation, considered the effect of cow-
pox inoculation on the spread of smallpox (cf. [16]). This article includes some
important data on child mortality at that time. It is probably the first time that
a mathematical model was used to assess the practical advantages of a vaccination
control programme. However, Thucydides mentions immunity in connection with
the Athens plague and there is evidence of an even more ancient Chinese custom
where children were made to inhale powders made from the crusts of skin lesions
of people recovering from smallpox. In England during the 19th century, William
Farr initiated a sophisticated system of vital statistics, and data series relating to
several childhood infections became available that were both reliable enough and
long enough to generate hypotheses about the mechanisms underlying epidemic
spread. At this time, the notion that certain infections are caused by living organ-
isms multiplying within the host and capable of being transmitted between hosts
(theory of infection) became firmly established, due to the work of Pasteur and
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8 1 Mathematical Background

others [141, 119]. The regular cyclic behavior of measles epidemics was noticed first
by Arthur Ransome around 1880.

Epidemiological modelling led to the analysis of ordinary differential, discrete
(stochastic) or partial differential systems. Throughout this thesis, we will mostly
use non-linear ordinary differential systems. To raise this analysis, it is important to
revise some mathematical concepts relating to the analysis of nonlinear differential
systems. In this chapter we introduce some mathematical concepts, definitions and
theories needed especially for model analysis and also for numerical study. Some of
these results have already been given in [29, 99] and the most proofs can be found
in [15, 108, 113, 29, 153, 99].

1.1 Introduction to mathematical modelling of tuber-

culosis

Originally, there are five basic hypotheses for TB models:

• tuberculosis is transmissible from human to human (for simplicity, we neglect
the bovine tuberculosis);

• only few among the infected become a source of infection (and among them,
for simplicity, only those who are coughing and have bacilli in sputum are
considered);

• there is no vertical transmission (all new births are susceptible);

• all infected individuals remain infected throughout their lives; this is still a
simplification, since it seems that in the absence of reinfection, the initial
infection eventually fades after a number of years not yet well defined;

• the vaccination of susceptible does not prevent infection. It prevents a pro-
portion (variable with time) of infected to become infectious and contagious.

Based on those hypotheses, TB models thrived but share important structural sim-
ilarities, if sometimes subtle differences in the way that the natural history of the
disease and the transmission process are represented. In the literature, one can
group models by their structure: ordinary differential equations (ODE) and spa-
tially structured models. ODE models include SEIR (Figure 1.2) and SEI (Figure
1.1), SEIS and SEIRS-type models (where S denotes susceptible population, E de-
notes latently infected, I denotes infectious and R stands for recovered or removed
population), age-structured models, delayed models. Delay models are formed by
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discrete time compartmental and/or integro-differential equations according to the
means that delay is modeled. Age-structured models comprise partial differential
equations, discrete-time compartment models and spatially structured models de-
pending on whether the age of the population and the age of the infection is taken
into account. TB model assumptions are made in order to answer questions and
evaluate the impact of some specific phenomena. We will shortly describe within
each type the contributions found in the literature. For more details, a summary of
tuberculosis models may be found in [52, 133].

The disease transmission to susceptible population to the population is one of
the discussion focus while modelling TB. The models built by Waaler and many
others later are in the classical form























Ṡ = Λ− λ(I)S − µS,

Ė = (1− p)λ(I)S − (µ+ k)E,

İ = pλ(I)S + kE − (µ+ d+ r)I,

(1.1)

where Λ is the recruitment number in the population, λ(I) the force of infection, µ
the natural mortality rate, p the proportion of fast progression to TB (the proportion
of new infections that move directly into the infectious class), r the recovery rate,
k the reactivation rate and d the TB mortality rate. The transmission flowchart is
presented in Figure 1.1.

ES I

µ

kpλ

(1− p)λ

µ µ+ d

Λ

r

Figure 1.1: Flowchart for an SEI model of tuberculosis dynamics.

In [24, 28, 26, 51], using same hypotheses as in model(1.1), authors included
a class of recovered population. The flowchart of an example developed is give in
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Figure 1.2. Equations are defined by











































Ṡ = Λ− λ(I)S − µS,

Ė = (1− p)λ(I)S − (µ+ k)E,

İ = pλ(I)S + kE − (µ+ d+ r)I,

Ṙ = rI − µR

(1.2)

Some authors choose not to consider fast progression to tuberculosis (p = 0) for
various reasons [168, 169, 167, 40] and others considered the impact of HIV/AIDS
and immunodeficiency in general as a factor of fast progression to TB [24, 28, 26,
51, 67, 10]. Parameter λ(I) can be linear (λ(I) = β ∈ R) [161], density dependent
(λ(I) = βI) [25, 28, 30, 33] or frequency dependent (λ(I) = β I

N
) [29, 40, 70, 71].

ES I R

µ µ

rkpλ

(1− p)λ

µ µ+ d

Λ

Figure 1.2: A classic mathematical model of tuberculosis dynamics.

The choice of the force of infection had its origin in chemical reaction kinetics,
and remain fundamental to the modern theory of deterministic epidemic modelling
(mass action). The popularity of mass action is explained by its mathematical
convenience and the fact that at low population densities it is a reasonable ap-
proximation of a much more complex contact process. The contact rate is often
a function of population density, reflecting the fact that contacts take time and
saturation occurs. One can envisage situations where contacts could be approxi-
mately proportional to N (frequency-dependent or density-dependent mass action)
and other situations where contacts may be approximately constant. Hence terms
like λ(I) = βSI and λ(I) = βSI/N are frequently seen in the literature. In this
case, β is the transmission coefficient per time units.
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1.2 Non-negatives matrices

In dynamical systems, one finds matrices directly when the system is linear, or by
calculating the Jacobian matrix at any point when the system is non-linear. In
many epidemiology models, it is possible to separate the linear part of the system
from the nonlinear part. Stability analysis of a system of ODEs usually calls-back
the manipulation of matrices. In this section, we will recall some definition and
properties related to matrices, useful for the stability of a TB deterministic model.
We will also explore some link between dynamical systems and matrices. Following
results and standard definitions can be found in [15, 108, 113, 29, 153, 99]). Let
M = [Mij ] ∈ Mn(R) be a matrix.

Some definitions related to matrices

Definition 1.2.1. (Diagonally dominant matrix )

• M is column diagonally dominant if one has

|Mii | ≥

n
∑

j=1,j 6=i

|Mji | ∀i ∈ {1, · · · , n}.

• M is row diagonally dominant if one has

|Mjj | ≥

n
∑

i=1,i 6=j

|Mij | ∀j ∈ {1, · · · , n}.

• M is strictly column (respectively row) diagonally dominant if the previous
relative inequalities are strict.

Definition 1.2.2. (Metzler matrix )
The matrix M ∈ Mn(R) is called Metzler (or quasi-positive or essentially non-
negative) if all of its elements are non-negative except for those on the main diagonal,
which are unconstrained.

Definition 1.2.3. (M-matrix )
A matrix M is called an M-matrix if it can be written in the form A = µ ∗ In −N ,
where N ≥ 0 and µ > ρ(N).

Definition 1.2.4. (Compartmental matrix )

A matrixM is compartmental ifM is a Metzler matrix and is column diagonally
dominant.
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The compartmental matrix is associated to the notion of compartmental sys-
tems. A compartmental system is a system consisting of a finite number of sub-
systems, which are called compartments. Each compartment is kinetically homo-
geneous, i.e., any number of persons entering the compartment is instantaneously
mixed with other persons of the compartment. Compartmental systems are domi-
nated by the law of conservation of mass. They form also natural models for other
areas of applications that are subject to conservation laws. Another property of
compartmental systems is that the total flow out of a compartment over any time
interval cannot be larger than the amount that was initially present plus the amount
that flowed into the compartment during that interval.

Linearization

In this section, we will consider an autonomous system defined by

ẋ = f(x), x ∈ R
n, (1.3)

where the function f does not depend on the independent variable t. Here, the
dot represents differentiation w.r.t. time t. The following results are standard
definitions and theorems required to analyze the stability of an equilibrium point
of an autonomous system (see [134, 82, 91]).

Definition 1.2.5. (Equilibrium point)
Let x∗ ∈ R

n be a point such that f(x∗) = 0; x∗ is an equilibrium point or steady
state solution of (1.3). Further, an equilibrium point x∗ is a hyperbolic equilibrium
point of (1.3) if none of the eigenvalues of the matrix Df(x∗) have zero real part
where Df(x∗) is the Jacobian matrix of f at x∗.

Let x∗ ∈ R
n and consider the following equation

ẋ =Mx, x ∈ R
n, M = Df(x∗) (1.4)

with f defines in eqn. (1.3).

Definition 1.2.6. (Linearization)
The linear system (1.4) is the linearization of (1.3) at x∗.

Definition 1.2.7. (Sink, source and saddle equilibrium)
Let x∗ be an equilibrium of system (1.3).

• x∗ is a sink if all eigenvalues of the matrix Df(x∗) have negative real part;

• x∗ is a source if all eigenvalues of Df(x∗) have positive real part;
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• x∗ is a saddle if it is a hyperbolic equilibrium point and Df(x∗) has at least
one eigenvalue with a positive real part and at least one with negative real
part.

The following result is fundamental and used to prove the local stability of
autonomous dynamical systems.

Theorem 1.2.1. (Grobman and Hartman)

If x∗ is a hyperbolic equilibrium point of (1.3), then there is a neighborhood of
x∗ in which f is topologically equivalent to the linear system (1.4).

This result means that basic properties of system (1.3) are equivalent to basic
properties of (1.4) in a neighborhood of x∗. Let us now recall some results about
the notion of irreducible matrices.

Irreducible matrices. Let M ∈ Mn(R) be a square matrix.

Definition 1.2.8. (Irreducible matrices)
The matrix M is irreducible if any of the following equivalent properties holds.

i) M does not have non-trivial invariant subspaces. More explicitly, for any linear
subspace spanned by basis vectors ei1, ..., eik , n > k > 0, its image under the
action of M is not contained in the same subspace.

ii) For every pair of indexes i and j, there exists a natural number m such that
(Mm)ij is not equal to 0. M cannot be transformed into block upper triangular
form by a permutation matrix P :

PMP−1 6=

(

E F
0 G

)

,

where E and G are non-trivial square matrices.

iv) If M > 0, then one can associate with a matrix M a certain directed graph
GM . It has exactly n vertices, where n is the size of M , and there is an edge
from vertex i to vertex j precisely when Mij > 0. Then the matrix M is
irreducible if and only if its associated graph GM is strongly connected.

It is evident that if M ≫ 0, then M is irreducible. Now let us enunciate the
theorem of Perron-Frobenius which is a finite dimensional version of the theorem
of Krein-Rutman.
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Theorem 1.2.2. (Perron-Frobenius)
Suppose M ∈Mn(R) is a non-negative matrix, then

• The spectral radius ρ(M) of M is an eigenvalue of M and there exists an
associated eigenvector v > 0 ;

• If M is irreducible, the spectral radius is positive (ρ(M) ≥ 0) and v ≫ 0.
Moreover, ρ(M) is a simple eigenvalue and if u is another eigenvector of M
for ρ(M), then there exists k ∈ R>0 such that u = kv;

• If N is a matrix such that N ≫M then, ρ(N) > ρ(M) holds;

• If M ≫ 0, then for all other eigenvalues λ of M , one has |λ| < ρ(M).

See [15] for the proof and more explanations.

Metzler matrices. Let x∗ be an equilibrium of system (1.3), then if M =
Df(x∗) is irreducible, it is a Metzler matrix. We remark that the stability modulus
defined by α(M) = max{Re(λ), λ ∈ Sp(M)} determines the stability of the
equilibrium x∗. The following corollary is a consequence of theorem 1.2.2.

Corollary 1.2.1. Let M ∈ Mn(R) be a Metzler matrix.

• The stability modulus α(M) is an eigenvalue of M and there exists v > 0 such
that Mv = α(M)v. Moreover, Re(λ) < α(M) for all λ ∈ Sp(M) \ {α(M)}

• If M is irreducible, then

i- α(M) is a simple eigenvalue;

ii- v ≫ 0 and all other eigenvectors of M are multiples of v;

iii- If N is a matrix such that N > M then, α(N) > α(M);

iv- If α(M) < 0, then −M−1 ≫ 0

Proof : (see also [153]) Since M = [Mij ]1≤i,j≤n is a Metzler matrix, there
exists τ ≥ 0 such that M + τIn > 0 (it is sufficient to take τ = max{|Mii|}). Then
Theorem 1.2.2 of Perron-Frobenius can be applied to M + τIn. Since ρ(M + τIn)
is a positive eigenvalue of M + τIn, there exists an associated eigenvector v > 0.
Since Sp(M + τIn) = τ + Sp(M), one has

α(M + τIn) = ρ(M + τIn) = α(M) + τ.

Thus, α(M) is an eigenvalue of M .
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If M is irreducible, then M + τIn is irreducible and non-negative. Applying
Theorem 1.2.2, it follows that (i), (ii) and (iii) are satisfied. On the other hand, it
follows from the equality −M−1 =

∫∞
0 eMtdt≫ 0 that (iv) is true. �

The following theorem gives some equivalent properties of the definition of Met-
zler stable matrices. Stability of matrix throughout this thesis refers to the stability
of the associated linear ODE.

Theorem 1.2.3. (Metzler stable matrices)
Let M ∈ Mn(R) be a Metzler stable matrix. Then, the following properties are
equivalent

1. M is asymptotically stable

2. −M−1 exists and is non-negative.

3. If P is a positive matrix, then the equation Mx+P = 0 has a positive solution
x ∈ R

n
>0.

4. There exists a positive vector q ≫ 0 such that Mq ≪ 0 is negative.

5. There is a diagonal matrix R ∈ R
n
>0 such that MR is row diagonally strictly

dominant ( RM is column diagonally strictly dominant respectively).

6. There is a diagonal positive matrix N such that −(MNT +NM) is symmetric
and Metzler stable.

The proof can be found in [153].

M-matrices. The following result on M-matrices will be useful for the next sec-
tion.

Theorem 1.2.4. [73, 15] LetM ∈ Mn(R), each of the following conditions (among
others) is equivalent to the statement “M is an M-matrix”

• All principal minors of M are nonnegative.

• Every real eigenvalue of M is nonnegative.

• The real part of each nonzero eigenvalue of M is positive, i.e., s(M) > 0.

Lemma 1.2.1. Let M be a non-singular M-matrix and suppose −N and −NM−1

are Metzler matrices. Then N is a non-singular M-matrix if and only if NM−1 is
a non-singular M-matrix.
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The proof of this Lemma can be found in [15], for the reverse implication this
is an exercise given in [88]. In general, this lemma does not hold if N a singular
M-matrix. It can be shown to hold if N is singular and irreducible. However, this
is not sufficient for our needs.

Lemma 1.2.2. Let M be a non-singular M-matrix and suppose P > 0. Then,

• M−P is a non-singular M-matrix if and only if (M−P )M−1 is a non-singular
M-matrix.

• M − P is a singular M-matrix if and only if (M − P )M−1 is a singular M-
matrix.

Proof :
Let M be a non-singular M matrix. Let N = M − P . Since P > 0, both N and
NH−1 = I −MH−1 are Metzler matrices. In fact, M is an M-matrix implies that
−M is a Metzler matrix; recall Theorem 1.2.3, one has −M−1 < 0. Hence, Lemma
1.2.2 implies the statement of the first proposition. A similar continuity argument
can be constructed for each implication in the singular case. �

Stability of an equilibrium

The notion of stability of an equilibrium point is of considerable theoretical and
practical importance, and it has been widely discussed in the literature. Some
books developed the theory of dynamical systems [80, 106, 109] and many others
focused on the applications [119, 120, 4, 35]. We have the following definition of
the stability.

Definition 1.2.9. (Stable equilibrium )
Let x∗ ∈ Ω be an equilibrium point of system (1.7)

• x∗ is said to be Lyapunov stable if for a given ε > 0, there exists δ(ε) > 0,
such that, for any x0 ∈ Ω for which ||x∗ − x0|| < δ(ε), the solution x(t, x0) of
(1.7) through x0 at 0 satisfies ||x(t, x0)− x∗|| < ε for all t ≥ 0.

• x∗ ∈ Ω is said to be unstable if it is not stable.

• x∗ ∈ Ω is said to be asymptotically stable if it is Lyapunov stable and, in
addition, there exists a constant c > 0 such that if ||x∗ − x0|| < c then
||x(t, x0)− x∗|| −→ 0 as t −→ ∞.

• x∗ ∈ Ω is said to be globally asymptotically stable if it is asymptotically stable
for all x0 ∈ Ω and every solution x(t, x0), x0 ∈ Ω of (1.7) possesses the
property ||x(t, x0)− x∗|| −→ 0 as t −→ ∞.
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Lyapunov functions are scalar functions that may be used to prove the stability
of an equilibrium for a giving ODE. Their existence is a necessary and sufficient
condition for stability. Whereas there is no general techniques for the construction
of Lyapunov functions for ODEs, in many specific cases they are known.

Definition 1.2.10. (Positive definite function)
Let Ω be a neighborhood of x∗. A function V : R× Ω −→ R is said to be positive
definite if the following three propositions are true.

i) V (t, x) > 0 for all x 6= x∗;

ii) V (t, x∗) = 0;

iii) V (t, x) −→ ∞ when x −→ ∞

Informally, a Lyapunov function takes positive values everywhere except at the
given equilibrium, and decreases along every trajectory of the ODE. The principal
advantage of Lyapunov function-based stability analysis of ODEs is that the solution
of the ODE is not required. The quantity

V̇ (t, x) =
∂V

∂t
+ 〈▽xV, f〉,

where f is defined as in (1.7) is the Lie derivative along the flow of system (1.7).
Function V can be interpreted as the energy function of the system.

Theorem 1.2.5. If there exists a positive definite function V such that V̇ < 0
outside Ω and V = 0 on Ω, where Ω is a set which contains no entire trajectories
apart from the point 0, then the equilibrium point 0 is asymptotically stable.

1.3 The basic reproduction number

In epidemiology, the basic reproduction number sometimes called basic reproductive
rate, basic reproductive ratio and denoted R0 of an infection is the expected number
of cases generates over the course of its infectious period by an infectious. In this
section, we will recall history of R0, we will give the biological interpretation and
the computation.

An introduction of the historical concept

The concept of the basic reproductive number denoted R0 is now unanimously
recognized as a key concept in mathematical modelling of infectious diseases. It is
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defined as the expected number of new cases caused by a typical infected person in
a population consisting entirely of susceptible subjects during its infectivity period.
Since more than twenty years, this concept has been discussed in most research
articles about mathematical modelling of infectious disease. The concept originates
from research in demography and ecology where R0 is the expected number of
offspring girls (or females) born to a woman (or a female) during her entire life.
The first person who has introduced the concept in 1886, is probably the director
of the statistics office of Berlin, Richard Böckh. Using a life table for women in
1879, he summed up the products of probability of survival by the birth rate of
girls. He concluded using the sex ratio, that on average 1.06 girls were born of a
woman. This would be defined as R0. In the demographic context, Dublin and
Lotka (1925) [112] and Kuczynski (1928) introduced, the concept and calculation
of R0. In an abstract in 1939, Lotka wrote “Net reproductivity R0, introduced by
Böckh, has more merit, because it gives in a essentially independent way a measure
of population distribution by age”. In fact, if P(a) is the probability for a women
to be alive at age a, and if F(a) is the probability to have a girl at age a, then

R0 =

∫ +∞

0
P(a)F(a)da. (1.5)

This approximation of the average number of girls that a woman will give birth
throughout her life was found by Böckh. We can also define moments of higher
order n by

Rn =

∫ +∞

0
anP(a)F(a)da. (1.6)

Obviously, R0 is the moment of order n = 0.

According to its definition, R0 is a multiplicative coefficient. The most intuitive
example is that for a population of n infected, after one time step, one will have
R0n infected, and after k time steps, one will have Rk

0n infected. This suggests
that for R0 > 1, there will be an increase in cases leading to an epidemic, and the
disease will disappear if R0 < 1.

Ross (Nobel prize of medicine 1902), discoverer of the malaria transmission by
mosquitoes, led at the beginning of the 20th century a difficult campaign and often
acrimonious to be accepted by the medical community, what he called his ”mosquito
theorem”. This theorem implies that the reduction of the anopheles population
would be a way to prevent malaria [144, 145, 146]. Ross identified the main factors
in malaria transmission and calculated the number of new infections arising per
month as the product of these factors, he deduced that there is a critical density of
mosquitoes, below which the malaria parasite can not be sustained. Kermack and
McKendrick continued the work of Ross, and extended the concept of threshold to
the transmission of diseases.
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In 1955 MacDonald gave an expression for the basic reproduction rate in terms of
ingredients identified by Ross by rewriting the resulting expression. He obtained the
critical level already derived by Ross. He started using symbol z0 for his quantity,
and he was the first who introduced the “basic reproduction rate” in epidemiology,
even if he did not see the connection with demography [84]. The concept of basic
reproduction ratio was rediscovered in epidemiology in 1974 (see [62, 85]) and defi-
nitely established in the Dahlem Workshop Proceedings [3]. Furthermore Diekmann
and Heesterbeek have given a precise mathematical definition of R0[59], extendable
to systems in any dimension.

1.3.1 The next generation method

The next-generation method, developed by Diekmann et al. [59], Diekmann and
Heesterbeek [58], and popularised by van den Driessche and Watmough [157], is a
generalisation of the Jacobian method, and was improved more recently in [60]. It
is significantly easier to use than Jacobian-based methods (e.g. based on Jacobian
matrices), since it only requires the infection states (such as the exposed class,
the infected class and the asymptomatically infected class) and ignores all other
states (such as susceptible and recovered individuals). This keeps the size of the
matrices in many cases relatively manageable. By definition, the basic reproduction
ratio concept is related to the possibility of the existence of a population entirely
constituted of susceptible individuals. This involves some specific structures for the
models. As a rule, several traits of individuals are epidemiologically relevant in an
infectious agent/host system, for example age, sex, species. Only the case where
these traits divide the population into a finite number of discrete categories is
considered. One can then define a matrix called the next-generation matrix (NGM)
denoted by K that relates the numbers of newly infected individuals in the various
categories in consecutive generations. We will make the following assumption: all
recruitments in the total population are made in the susceptibles classes. This
implies already the existence of susceptible and infected compartments, and also
the existence of a disease free equilibrium (DFE).

Let the variables x = (x1, ..., xn)
T represent the sizes of n population classes

based on their epidemiological status w.r.t. an infectious disease. xi could be the
prevalence of class i (percentage of person in the class), a density, or the number
of individuals w.r.t. an infectious disease. We assume that compartments are ar-
ranged in such a way that the first p are composed of individuals “not infected” or,
more precisely, do not carry or do not contribute to the transmission of the germ
(virus, protozoan, parasitic, ...). In these p classes, there are in fact all those who do
not progress to the disease without effective contact to a compartment of infectious
individuals or are not directly involved in the spread of the disease. There may be
susceptibles, vaccinated, quarantined people, without vertical and horizontal trans-
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mission (e.g. no transmission from mother to child). The n−p other compartments
consist of “infected” (latently infected, infectious, asymptomatic carrier, etc.).

The involved ODE is defined by

ẋ = f(x), f ∈ C1(Rn) (1.7)

We need the following result

Proposition 1.3.1. If f is a Ck function from R
n to R

m, such that f(x0) = 0, then
there exists a Ck−1 function M(x) from R

n to Mmn(R) such that for all x ∈ R
n,

we have
f(x) =M(x)(x− x0)

Proof : Let us consider the Ck function defined from R to R
m by

ψ(t) = f(x0 + t(x− x0)).

One has
f(x) = ψ(1) − ψ(0)

=
∫ 1
0 ψ

′(s)ds

=
∫ 1
0 Df(s, x)(x− x0)ds

=
(

∫ 1
0 Df(s, x)ds

)

(x− x0).

(1.8)

Thus M(x) =
∫ 1
0 Df(s, x)ds satisfies the claim. �

In the following we define the input and output of each compartment.

• Let Fi be the rate of appearance of new infections in compartment i, Fi ∈
C1(R);

• Vi(x) = V−
i (x)−V+

i (x), V+
i ,V

−
i ∈ C1(R) where V−

i denotes the transfer rates
of individuals out of compartment i (mortality, change in epidemiological
status, movement, etc.) and V+

i (x) is the transfer rate of individuals in the
compartment i (recovery, aging, movement, etc.). Vi(x) is the transfer rate
out and in the compartment i.

Using the previous notation, it follows that equation (1.7) can be written in the
form

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, ..., n. (1.9)
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Definition 1.3.1. (Disease free equilibrium) Let

Xs = {x ≥ 0|xi = 0; i = p+ 1, ..., n}

is the disease free equilibrium ( DFE) of the model 1.7 if f(Xs) = 0.

Corresponding to the nature of the epidemiological models, the following general
assumptions are introduced:

A1: x ≥ 0, Fi(x) ≥ 0, V+
i (x) ≥ 0 and V−

i (x) ≥ 0 for i = p + 1, ..., n. Each com-
ponent, represents a net outflow or inflow from compartment i and must be
positive whenever the compartment is empty. The functions Fi(x) represent
“new” infections and cannot be negative.

A2: If x = 0 , then V−
i = 0. If there is nothing inside a compartment, then there is

no outflow.

A3: If i ≤ p, Fi = 0. There is no new infection inside “non infective” classes.

A4: If x ∈ Xs i.e. xi = 0, i > p, then V+
i = 0. If there is no infection at all, there

are no inflows inside the infectious classes

A5: If F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts,
where Df(x0) is the Jacobian matrix evaluated at the DFE x0.

Generally, there may be several DFE (see [32] for an example). We are only inter-
ested in those that are stable in absence of the pathogen. One question which is
usually asked, is under which conditions a pathogen can invade a DFE.

Let x1 = (x1, ..., xp)
T be the “noninfected” population and x2 = (xp+1, ..., xn)

T

the “infected” population. Then, equation (1.7) can be write in the form







ẋ1 = f1(x1,x2),

ẋ2 = f2(x1,x2).
(1.10)

Then, one has x0 = (x0
1, 0) as the DFE of the model.

Lemma 1.3.1. If x0 = (x0
1, 0) is a DFE of (1.10) and fi(x) satisfies (A1)-(A5),

then the Jacobian matrix of the system at x0 is partitioned as

J =

[

Dx1
f1(x0) Dx2

f1(x0)
0 F − V

]
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where F =

[

∂Fi

∂xj
(x0)

]

and V =

[

∂Vi

∂xj
(x0)

]

for i = p + 1, ..., n. Further, F is non-

negative, V is a non-singular M-matrix and all eigenvalues of Dx1
f1(x0, 0) have

negative real part.

Proof : By the definition of x0, one has

f1(x
0
1, 0) = 0

and, using assumption (A3)-(A4), it follows for all x1 ∈ R
p that

f2(x
0
1, 0) = 0.

It follows that Dx1
f2(x0) = 0. Since for x = (x1,x2), f(x) is C

1, and applying
proposition 1.3.1, there existsM1(x) = [M11(x),M12(x)] and M2 =M22(x) with















f1(x) = M1

[

x1 − x0
1

x1

]

=M11(x)(x1 − x0
1) +M12(x)x2,

f2(x) = M2(x)x2 =M22(x)x2

Then, system (1.10) becomes






ẋ1 = M11(x)(x− x0
1) +M12(x)x2,

ẋ2 = M22(x)x2,
(1.11)

and the Jacobian at the DFE is given by

J = J(x0) =

[

M11(x0) M12(x0)
0 M22(x0)

]

=

[

Dx1
f1(x0) Dx2

f1(x0)
0 F − V

]

.

The non-negativity of F follows from (A1) and (A4). Let {ej} be the Euclidean
basis vectors, where ej is the jth column of the n × n identity matrix. Then, for
j ∈ p+ 1, ..., n

∂Vi

∂xj
(x0) = lim

h−→0

Vi(x0 + hei)− Vi(x0)

h

To show that V is a non-singular M-matrix, note that if x0 is a DFE, then by (A2)
and (A4), Vi(x0) = 0 for i = p + 1, ..., n, and if i 6= j, then the ith component of
x0 + hej = 0 and Vi(x0 + hej) = −V+

i (x0 + hej) ≤ 0, by (A1) and (A2). Hence,

∂Vi

∂xj
(x0) = lim

h−→0

Vi(x0 + hei)

h
≤ 0
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This show that off-diagonal elements of V are negative and therefore, V is a non
singular M-matrix. �

The assumed stability of the disease-free subsystem implies α(Dx1
f1(x0)) < 0.

Thus, the system is locally asymptotically stable if α(F − V ) < 0. The following
result is a consequence of the Varga Theorem [158].

Theorem 1.3.1. [157]

α(F − V ) < 0 if and only if ρ(F · V −1) < 1. Moreover, Consider the disease
transmission model given by (1.7) with f(x) satisfying conditions (A1)-(A5). If x0

is a DFE of the model, then x0 is locally asymptotically stable if ρ(F · V −1) < 1,
but unstable if ρ(F · V −1) > 1.

Slight modification of the proof can be find in [157]

Proof : Let M = F − V . If assuming that α(M) = α(F − V ) < 0, then
F − V is asymptotically stable. Applying Theorem 1.2.3, it follows that M−1 > 0.
Since matrices V = F −M and M are non-singular, one can write that −M is a
non-singular M-matrix once α(M) < 0. Since F · V −1 is non-negative, −MV −1 =
I −F ·V −1 is a Metzler matrix. Applying Lemma 1.2.1, it follows that I −F · V −1

is a non-singular M-matrix. Finally, since F · V −1 is non-negative, all eigenvalues
of F · V −1 have magnitude less than or equal to ρ(F · V −1). Thus, F · V −1 is a
non-singular M-matrix if and only if ρ(F · V −1) < 1.

Hence, α(F − V ) < 0 if and only if ρ(F · V −1) < 1. Similarly, it follows that
α(F−V ) = 0 if and only if I−F ·V −1 < 0 is a singular M-matrix. This is equivalent
to ρ(F ·V −1) = 1. The second equivalence follows from Lemma 1.2.2. The remainder
of the equivalences follow as in the non-singular case. Hence, α(F − V ) ≤ 0 if and
only if ρ(F · V −1) < 1. It follows that α(F − V ) > 0 if and only if ρ(F · V −1) > 1.
�

Definition 1.3.2. (The basic reproduction ratio)
If the transmission matrix V is a M-matrix, then the basic reproduction ratio is
defined by

R0 = ρ(F · V −1). (1.12)

This is the mathematical definition of the basic reproduction ratio. In the
following we also give the biological interpretation of R0.
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1.3.2 Biological interpretation of R0

We introduce a small number of infectious individuals in a entirely susceptible
population regarding an infectious disease. To determine the fate of a small number
of infected individuals, we consider the dynamical system with no reinfection, since
we are interested only in secondary cases. Because we want to analyze the behavior
after an infinitesimal time step, we consider the linearized system approaching an
equilibrium. f1 is near the equilibrium. The system behavior is approximated by
the linearized system (Grobman and Hartman, Theorem 1.2.1).

The linearized system without F is given by

ẋ =

[

Dx1
f1(x0) Dx2

f1(x0)
0 −V

]

x (1.13)

If (0,x0
2) is a small number of infected individuals introduced at the initial time,

then by integrating the linear system (1.13) w.r.t. time at t, the number of infectious
individuals will be

eV t · x0
2.

And for t→ ∞,
∫ ∞

0
(0, eV t · x0

2) = (0, V −1 · x0
2).

This set of infected cases will lead to further transmission. The number of new
cases will be

F · V −1 · x0
2

By linearization, we consider the transmission matrix given by the Jacobian
matrix F . Components of F · V −1 will have some interpretations. If one considers
an infected compartment j, then the entry (k, j) of F ·V −1 is the average time that
this individual will remain in the compartment k during its infectiousness period.
The entry (i, j) of F is the speed by which an individual in the compartment k
produces new infections in the compartment i. Therefore the entry (i, j) of F ·V −1

is the expected number of new infections of type i produced by an infected individual
of type j. If K = F · V −1 is called the “next generation matrix”, we have just seen
that Kij is the expected number of new infections of type i produced by an infected
individual of type j. The matrix K is a positive square matrix of the dimension
of the number of “types” (i.e., compartments) of infected. Approximately F · V −1

and x0, expressed in vectorial way, the “number” of new secondary cases. One is
led to consider, at the generation n, the quantity Knx0. By the Perron-Frobenius
theorem 1.2.2, the dominant mode ( mode is the term for engineers or physicists
designate eigenvalues) is just the spectral radius.
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1.4 Optimal control applied to epidemiological models

Optimal control theory is a mathematical optimization method for deriving control
policies. The method is largely due to the work of Lev Pontryagin and Richard
Bellman. Optimal control deals with the problem of finding a control law for a
given system such that a certain optimality criterion is achieved. A control problem
includes a cost functional which is a function of state and control variables. In the
1950’s, motivated especially by aerospace problems, engineers became interested in
the problem of controlling a system governed by a set of differential equations. It was
natural to want to control the problem such that a given performance index would
be minimized. Since some practical techniques were developed for the computation
and implementation of optimal controls, the use of this theory became common in
a large number of fields.

In epidemiology, large savings in cost could be obtained with a small improve-
ment of strategy to prevent disease or to cure, so that optimal control became very
important. An optimal control problem is a set of differential equations describing
the paths of the control variables that minimize the cost functional. The opti-
mal control can be derived using Pontryagin’s maximum principle [135, 143], or by
solving the Hamilton-Jacobi-Bellman equation which is a sufficient condition. In
population dynamic and epidemiology, many work has been done on the theory of
optimal control [111]. In this part of our work, we will call back necessary theory
for the control of epidemiological models. Before beginning, it is advantageous to
quickly review a few fundamental results. These results can be found in [111, 75].

1.4.1 Controlled dynamics

Let us considering an ODE having the form

{

ẏ = f(y(t), u(t)),
y(t0) = y0

(1.14)

where the function f : Rn × U −→ R
n, y : [t0,∞) −→ R

n, U ⊂ R
m and t > t0.

Here, the dot represents differentiation w.r.t. time t. We obtain the evolution of
our system when the parameter is constantly set to the value u(t). The trajectory
y(·) will be regard as the response of the system corresponding to the control u(t).
We introduce

U = {u : [t0,∞) −→ R
m | u measurable}

to denote the set of all admissible controls, when u(t) = (u1(t), u2(t), · · · , um(t))T .
Note that the solution y(t) of equation (1.14) depends upon u and the initial con-
dition. Consequently our notation would be more precise, but more complicated, if
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we were to write

y(t) = y(t, u(t), y0),

displaying the dependence of the response upon the control and the initial value.
We can consider the application u(t) 7→ y(t) = y(u)(t) to remind that y(t) is a
function of u(t). The optimal control problem consist of to determine what is the
“best” control for our system. For this we need to specify a specific objective (or
payoff ) criterion. Let us define the objective function

J(u) =

∫ tf

t0

g(t, y(t), u(t))dt + h(y(tf )) (1.15)

where y(t) is the solution of equation (1.14) for the control u ∈ U . Here g :
[t0,∞)×Rn×U −→ R and h : Rn −→ R are given, and we call g the running payoff
and h the terminal payoff. The terminal time tf > t0 is given as well, or can be
include in h. We want to find a control ū, which minimizes the objective function

J(y, ū) ≤ J(u) ∀u ∈ U .

In other words, our basic optimal control problem consist to finding a piecewise
continuous control function u(t) and the associated state variable y(t) such that

J(u) =

∫ tf

t0

g(t, y(t), u(t))dt + h(y(tf )) −→ min
u

(1.16)

subject to
{

ẏ = f(t, y(t), u(t)),
y(t0) = y0.

Such a control ū is called optimal and the state trajectory ȳ is called the cor-
responding optimal trajectory. The optimal value of the objective function will be
denoted as J(ȳ, ū, ) or J̄ . Problem (1.16) is said to be in the Bolza form [149].
Usually the control variable u will be constrained. Throughout this thesis, we shall
allow these constraints to depend on state variables. These are so-called mixed
inequality constraints and written as

c1(t, y(t), u(t)) ≥ 0, t ∈ [t0, tf ], (1.17)

where c1 : [t0,+∞) × R
n × R

m −→ R
p is a given function of u, t and possibly

y. There is another type of constraints involving only state variables. These are
written as

c2(t, y(t)) ≥ 0, t ∈ [t0, tf ] (1.18)

where c2 : [t0,+∞)×R
n −→ R

q is a given function of y and t. These are the most
difficult type of constraints to deal with, and are known as pure state inequality
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constraints. Finally, another type of constraints limit the values the terminal state
y(tf ) may be took. We denote this by choosing

y(tf ) ∈ Y,

where Y is called the reachable set of the state variable at time tf . Note that Y
depends on the initial value y0. Here Y is the set of possible terminal values that
can be reached when y(t) and u(t) obey imposed constraints.

Richard Bellman (1957) [14, 63, 13, 149] states in his book on dynamic pro-
gramming the principle of optimality as follows:

“An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision.”

That principle can be translate into the following theorem.

Theorem 1.4.1. (Bellman optimality principle)

If ū : [t0, tf ] −→ R+ is an optimal control of problem (1.16) over the interval
[t0, tf ], starting at state y(t0), then the restriction of ū over the time interval [t1, tf ]
denotes ū∗ : [t1, tf ] −→ R+ is necessarily optimal over the sub-interval [t1, tf ] for
any t1 such that t0 ≤ t1 ≤ tf .
Further, if ū is the unique optimal control for problem (1.16), then ū∗ is the unique
optimal control for problem (1.16) over [t1, tf ]

The proof of this theorem used simply the definition of the optimal control and
can be found in [149, 111, 54].
Intuitively this principle is obvious, for if we were to start in state y at time t
and did not follow an optimal path from there on, then there would exist (by
assumption) a better path from t to T , hence we could have followed. The basic
assumption underlying the Bellman’s principle of optimality is that the system can
be characterized by its state y(t0) at time t0, which completely summarizes the
effect of all inputs u(t) prior to time t.

1.4.2 Necessary condition

The previous section presented the optimal control problem. In this subsection, we
will study sufficient conditions to guarantee the existence (and the uniqueness) of
a finite objective optimal control and state.
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1.4.2.1 Existence of an optimal control pair

The questions of existence and uniqueness have been solved in [75].

Theorem 1.4.2. (Existence of the optimal control pair [75])

Suppose f is continuous; Moreover, there exist positive constants C1, C2, C3, C4

such that for all t ∈ R+, y ∈ R
n and u ∈ U ⊂ R

m

A : ‖f(t, y, u)‖ ≤ C1(1 + ‖u‖+‖y‖);

B : ‖f(t, y1, u)− f(t, y, u)‖ ≤ C2‖y1 − y‖(1+‖u‖);

C : U is closed;

D : U is convex; f(t, y, u) = α(t, y) + β(t, y)u, where α and β are functions;

E : g(t, y, ·) is convex on U

F : g(t, y, u) ≥ C3‖u‖
γ−C4; γ > 0.

Then, the optimal control pair (ū, ȳ) exists.

The proof of this theorem comes from the general case of the existence of an
optimal control solution with payoff function showed by W. Fleming and Rishel (see
[75]). The principle technique to solve such optimal control problem is to solve a
set of necessary conditions satisfying the optimal control function. The necessary
conditions derive here come from Pontryagyn and co-workers [135]. Pontryagin
introduced the idea of adjoint function in other to append the differential equation
to the objective functional.

Considering the existence of a piecewise optimal control for problem (1.16), the
following proposition shows importance and origin of optimality condition, tranver-
sality condition and the adjoint equation. The following result has been shown in
dimension one by Lehnart and Workman (cf. [111]).

Proposition 1.4.1. Considering the optimal control problem (1.16), let (ȳ(t), ū(t)) ∈
R
n × R

m be a pair of optimal control, with ȳ corresponding to the state, then there
exists a piecewise function λ(t) ∈ R

n such that

(Dug(t, ȳ(t), ū(t)))
T + λT ·Duf(t, ȳ(t), ū(t)) = 0, (optimality condition)

dλ

dt
= −(Dyg

T +Dyf
Tλ) (adjoint equation),

λ(tf ) = Dyh(tf ) (transversality condition),
(1.19)
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where Duf , Dug, Dyf , Dyg and Dyh denote the Jacobian matrix of f , g and h.

In [111], authors showed that the proposition 1.4.1 is true in dimension one in
the absence of constraints on the terminate state. The following proof is adapted
from the one dimensional proof in [111].

Proof :
Let (ȳ, ū) be the pair of optimal control, with ȳ corresponding to the state. Thus,
one has for all (y, u) that −∞ < J(ū) < J(u). Let γ(t) : [t0,+∞) −→ R

m be a
piecewise continuous variation function and ε ∈ R. Then,

uε = ū(t) + εγ(t)

is another piecewise continuous control, and let yε be the state corresponding to
the control function uε, namely, yε satisfies

dyε
dt

= f(t, yε, uε).

It is easy to see that yε −→ ȳ when ε −→ 0 and the derivative

(

dyε
dε

(t)

)

ε=0

exists

for each t. The objective functional corresponding to uε is

J(uε) =

∫ tf

t0

g(t, yε(t), uε(t))dt+ h(y(tf )).

Let λ(t) : Rn −→ R
n be a piecewise differentiable function on [t0, tf ] to be deter-

mined. By the fundamental theorem of calculus,

∫ tf

t0

d

dt
[λT · yε](t)dt = λT (tf ) · yε(tf )− λT (t0) · yε(t0).

This relation implies that

∫ tf

t0

d

dt
[λT · yε](t)dt + λT (t0) · yε(t0)− λT (tf ) · yε(tf ) = 0.

Adding this zero expression to J(uε), one has

J(uε) =

∫ tf

t0

[

g(t, yε(t), uε(t)) +
d

dt
[λT · yε](t)

]

dt+ λT (t0) · y0 − λT (tf ) · yε(tf ) + h(yε(tf ))

=

∫ tf

t0

[

g(t, yε(t), uε(t)) +

(

dλ

dt
(t)

)T

· yε(t) + λ(t)T · f(t, yε(t), uε(t))

]

dt (1.20)

+ λT (t0) · y0 − λT (tf ) · yε(tf ) + h(yε(tf )).
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Since the maximum of J w.r.t. the control u occurs at ū, the derivative of J(uε)
w.r.t. ε is zero, e.g.

lim
ε−→0

J(uε)− J(ū)

ε
= 0.

Since the interval [t0, tf ] is compact, and the integrand term is piecewise differen-
tiable, applying the Lebesgue dominated convergence theorem allows us to move
the limit and then the derivative inside the integral. Therefore,

(

d

dε
J(uε)

)

ε=0

= lim
ε−→0

J(uε)− J(ū)

ε

=

∫ tf

t0

(

∂

∂ε

[

g(t, yε(t), uε(t)) +

(

dλ

dt
(t)

)T

· yε(t) + λT (t) · f(t, yε(t), uε(t))

]

dt

)

ε=0

− λT (tf ) ·

(

dyε
dε

(tf )

)

ε=0

+ (Dyh(yε(tf )))
T ·

(

dyε
dε

(tf )

)

ε=0

,

=

∫ tf

t0

([

(Dyg)
T ·

dyε
dε

+ (Dug)
T ·

duε
dε

+

(

dλ

dt

)T

·
dyε
dε

]

(t)

)

ε=0

dt

+

∫ tf

t0

([

λT ·

(

Dyf ·
dyε
dε

+Duf ·
duε
dε

)]

(t)

)

ε=0

dt

− λT (tf )

(

dyε
dε

(tf )

)

ε=0

+ (Dyh(y(tf )))
T ·

(

dyε
dε

(tf )

)

ε=0

.

(1.21)
Finally, from equation (1.21) one has

(

d

dε
J(uε)

)

ε=0

= lim
ε−→0

J(uε)− J(ū)

ε

=

∫ tf

t0

[(

Dyg +
dλ

dt

T

+ λT ·Dyf

)

·

(

dyε
dε

(t)

)

ε=0

+ ((Dug)
T + λT ·Duf) · γ(t)

]

dt

−
(

λT (tf )− (Dyh(ȳ(tf )))
T
)

·

(

dyε
dε

(tf )

)

ε=0

,

(1.22)
where Duf , Dug, Dyf and Dyg denote the Jacobian matrix of f and g, evaluated
in (t, ȳ(t), ū(t)). The adjoint function has to be chosen in order to simplify equation
(1.22) by making the coefficient of

(

dyε
dε

(t)

)

ε=0
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equal to zero. Thus, we choose the adjoint function λ(t) such that

dλ

dt
= −((Dyg)

T + (Dyf)
T · λ) (adjoint equation) (1.23)

and the transversality condition

λ(tf ) = Dyh(ȳ(tf )).

Therefore, equation (1.22) is reduced to

0 =

∫ tf

t0

(

(Dug(t, ȳ(t), ū(t)) + λT ·Duf(t, ȳ(t), ū(t))) · γ(t)
)

dt. (1.24)

Since γ(t) have been chosen arbitrarily, its specially holds also for

γ(t) = (Dug(t, ȳ(t), ū(t)) + λT ·Duf(t, ȳ(t), ū(t))).

In this case,

0 =

∫ tf

t0

(

(Dug(t, ȳ(t), ū(t)) + λT ·Duf(t, ȳ(t), ū(t)))
)2
dt, (1.25)

Which implies the optimality condition

Dug(t, ȳ(t), ū(t)) + λTDu · f(t, ȳ(t), ū(t)) = 0. (1.26)

This ends our proof �

In practical cases, one does not need to re-derive the above equation in the way
developed in proposition 1.4.1 for a particular problem. In fact, we can generate
the necessary conditions from the Hamiltonian H defined as follows:

H(t, y, u, λ) = g(t, y, u) + 〈λ | f(t, y, u)〉
= (integrand) + (adjoint) × (RHS of the ODE),

(1.27)

where RHS denotes the right hand side of the ODE. The definition of the adjoint
function comes from the result.

1.4.2.2 Pontryagin Principle

The following result is quite long and difficult to prove, and come from the original
result of Pontryagin, Boltyankii and Mitshchenko result [135].



32 1 Mathematical Background

Theorem 1.4.3. (Pontryagin Principle)

Let ū(t) and the corresponding state ȳ(t) be optimal for problem (1.16). Then
there exists a piecewise differentiable adjoint variable λ(t) such that

H(t, ȳ, u, λ) ≤ H(t, ȳ, ū, λ)

for all controls ū at each time t, where the Hamiltonian is defined by

H(t, y, u, λ) = g(t, y, u) + 〈λ | f(t, y, u)〉,

and
dλ

dt
= −DyH(t, ȳ, ū, λ)T

λ(tf ) = 0.

One has following results.

Theorem 1.4.4. Let us consider the Hamiltonian of problem (1.16) defines by

H(t, y, u, λ) = g(t, y, u) + 〈λ | f(t, y, u)〉.

1. H is Lipschitz continuous w.r.t. t on the optimal path.

2. If problem (1.16) is autonomous, then H is a constant function of time along
the optimal path.

The proofs of results in theorem 1.4.4 use the mean value theorem for the first
part, the differentiability ofH and the maximum principle for the second part. They
can be found in [111]. Considering problem (1.16) mixed inequality constraints
(1.17), the Lagrangian function

L : [t0,+∞)× R
n × R

m × R
n × R

p −→ R

as
L(t, y, u, λ, µ) := H(t, y, u, λ) + 〈µ | c2(t, y, u)〉,

where µ ∈ R
p is a row vector, whose components are called Lagrange multipliers.

Lagrange multipliers satisfy the complimentary slackness conditions

µ ≥ 0, µ · c2(t, y, u) = 0.

The adjoint vector satisfies the differential equation

d

dt
λ(t) = −DyL(t, y, u, λ, µ).
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1.5 Forward backward sweep method (FBSM)

Considering an optimal control problem, it is often difficult to find a solution at-
tributable to the non-linearity of the RHS of the equation. Numerical techniques
for optimal control problems may often be classified as either direct or indirect.
For a direct method, the differential equation and the integral are discretized and
the problem is converted into a nonlinear programming problem. Many choices are
available for discretizing the integral, the differential equation, and for solving the
nonlinear programming problem resulting in several different numerical methods.
Indirect methods approximate solutions to optimal control problems by numerically
solving the boundary value problem for the differential-algebraic system generated
by the maximum principle. In their book [111], Lenhart and Workman presented
a simple numerical scheme called FBSM, that can produce a numerical approxima-
tion to solutions for some problems. The FBSM runs quickly. In their paper (cf.
[114]), McAssey and colleagues proved two convergence theorems for a basic type
of optimal control problem. The first theorem showed that recursively solving the
system of differential equations will produce a sequence of iterates converging to
the solution of the system and the second theorem shows that a discretized imple-
mentation of the continuous system also converges as the iteration and number of
sub-intervals increases. The FBSM method is designed to solve the differential al-
gebraic system generated by the maximum principle that characterizes the solution.
Let us consider the following optimization problem:

J(u) =

∫ tf

t0

g(t, y(t), u(t))dt −→ min (1.28)

Subject to

ẏ = f(t, y(t), u(t))
y(t0) = y0,

(1.29)

where f and g are continuously differentiable in all three variables. The maximum
principle says that there is an adjoint variable λ(t), such that an optimal state y(t),
and optimal control u(t) must necessarily satisfy the state equation,

ẏ(t) = f(t, y(t), u(t)), (1.30)

y(t0) = y0, (1.31)

The adjoint equation
λ̇ = DyH, λ(tf ) = 0; (1.32)

with
H(t, y, u, λ) = g(t, y, u) + λ(t)f(t, y, u)

and minimize the Hamiltonian H(t, y, u, λ), considered as a function of the control
u(t). The FBSM first solves the state equation (1.30) with a Runge-Kutta routine,
then solves the adjoint equation (1.32 ) backwards in time with the Runge-Kutta
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solver, and then updates the control [111, 114]. This produces a new approximation
of the state, adjoint and control (y, λ, u). The method continues by using these new
updates and calculating new Runge-Kutta approximations and control updates with
the goal of finding a “fixed point” (y, λ, u). The method terminates when there is
sufficient agreement between the states, costates, and controls of two passes through
the approximation loop.

Remark 1.5.1. As H is non-linearly dependent on u, one could determine u from
Hu = 0. Then one has u = c3(y, λ) , and one could replace in system (1.22) and
(1.30). However, in our example, one has a positivity constraint for the control
function (see equation (4.16 and 4.17) below).

The rough outline of the algorithm presented by Lenhart and Workman [111] is
given by :

1. Give an initial value to u over the interval and store the initial guess u.

2. Using the initial condition y(0) = y0 and the store value of u, solve y according
to its differential equation in the optimality system.

3. Using the transversal condition λ(tf ) = 0, solve backward the adjoint equation
according to its differential equation in the optimality system.

4. Update the control by introducing the new y and λ into the characterization
of u.

5. Check convergence by looking if values of variables in the iteration are negli-
gibly small and output the solution. If it is not small, then go back to 2.

A specified value δ is requiring as a stopping criteria to find the relative errors
for the state, the adjoint and the control. The desired relative error for the state
variable, for example, is

‖y − yold‖

‖y‖
< δ

where ‖.‖ is the l1-norm ‖y‖ =
m
∑

i=1
|yi|, yold the old value of y.

Convergence of the FBSM

For the sake of simplicity, problem (1.28) will be rewritten using the maximum
principle in the following form:
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Find (y(t);λ(t);u(t)) such that

ẏ = f(t, y(t), u(t)), y(t0) = y0, (1.33)

λ̇ = g1(t, y(t), u(t)) + λg2(t, y(t), u(t)), λ(tf ) = 0, (1.34)

u(t) = c(t, y(t), λ(t)), (1.35)

where g1, g1 and c are given functions satisfying the continuity properties so that
the system (1.33)-(1.35) has a unique solution. The FBSM is given by the following
algorithm.

Algorithm 1.5.1. Initialization: choose an initial control u0 = u0(t);
Iteration: for n ≥ 0, solve

dyn+1

dt
= f(t, yn+1(t), un(t)), yn+1(t0) = y0 (1.36)

dλn+1

dt
= g1(t, y

n+1(t), un(t)) + λn+1g2(t, y
n+1(t), un(t)),

λn+1(tf ) = Dyh(y
n+1(tf )), (1.37)

un+1(t) = c(t, yn+1(t), λn+1(t)). (1.38)

We make the following assumptions.

Assumption 1.5.1. The functions g1, g2 and c are Lipschitz continuous with re-
spect to their second and third arguments, with Lipschitz constants kg1, kg2 and kc.
Moreover, κ = ‖λ‖∞ <∞ and ζ = ‖g2‖∞<∞.

The following theorem discusses convergence of the FBSM.

Theorem 1.5.1. Under the assumptions (1.5.1), if

α0 ≡ kc

{

[

ekf (t1−t0) − 1
]

+ (kg1 + κkg2)
1

ζ

[

eζ(t1−t0) − 1
] [

ekf (t1−t0) + 1
]

}

< 1

(1.39)
then

lim
n→∞

max
t0≤t≤tf

|y(t)− yn(t)|+ max
t0≤t≤tf

|λ(t)−λn(t)|+ max
t0≤t≤tf

|u(t)−un(t)| = 0. (1.40)

The proof of this theorem, using a consequence of Gronwall’s lemma, can be
found in [114]. The essence is to find bounds for the errors in y and λ in terms
of the error in u and then to show that this last error can be made small. The
following theorem shows the convergence of the numerical approximations of the
solutions at discrete points in the interval when the Lipschitz constants are small
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enough or the time interval is short enough. Since the FBSM solves forward the
state equation and backward the costate equation, we use the following notation:

∆iy = yi − yi−1; δiy = yi−1 − yi, i = 1, · · · , N.

Consider a discrete approximation to a general initial value problem, the FBSM
is given by the following algorithm.

Algorithm 1.5.2. Initialization: Choose an initial control value u0i = u0(ti), i =
1, · · · , N ;
Iteration: for n ≥ 0 and i = 1, · · · , N , solve

∆iy
n+1 = hNF (ti, y

n+1
i , uni ), y

n+1
0 = y0 (1.41)

δi−1λ
n+1 = hNG(ti, y

n+1, un, λn+1), λn+1
N = Dyh(y

n+1
N ), (1.42)

un+1
i = c(ti, y

n+1
i , λn+1

i ), (1.43)

where hN = 1/N , F and G are chosen according to a discretization scheme (Euler,
Runge-Kutta).

The following theorem and its proof can be found in [114].

Theorem 1.5.2. Under the assumptions (1.5.1), supposing that either the Lipschitz
constants are small or tf is small for all ε > 0, there exist nε, Nε ∈ N such that

max
i=1,··· ,N

{|y(ti)− yni |+ |λ(ti)− λni |+ |u(ti)− uni |} < ε, (1.44)

when N > Nε and i ≥ nε.

The idea of the proof includes the discrete Gronwall inequalities. The proof
follows the general outline of the proof of the continuous approximation. The essence
is to find bounds for the errors in y and λ in terms of the error in u and then to
show that this last error can be made small. For that, one takes into account an
average approximation error on yni and λni .

Adapted Forward-Backward Sweep Method

The FBSM previously presented is somewhat limited w.r.t. the optimal control
problems that can solve. For example, the method is not appropriate to problems
with a fixed state endpoint. Other optimal control problems are solved using an
adapted method from the FBSM. Bounded control problems, when a ≤ u(t) ≤ b
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run quickly with the adapted FBSM. In the same way, problem system (1.16) can
run very quickly with the adapted FBSM. It could be solved by expressing u from

u(t) = c3(t, y(t), u(t))

in equation (1.28) to

u(t) = min(b,max(a, c3(t, y(t))(t))).

The Adapted FBSM is used when there is box constraints on the optimal control.





Chapter 2

Tuberculosis Transmission
Model

2.1 Tuberculosis biology

Tuberculosis is an infection, primarily in the lungs (a pneumonia), mostly caused
by bacteria called Mycobacterium tuberculosis. TB is spread usually from person
to person by breathing infected air during close contact. The life cycle of MTB is
presented in Figure 2.1.

The infection can remain in an inactive (dormant) state for years without caus-
ing symptoms or spreading to other people. When a patient immune system with
dormant TB is weakened, the TB can become active (reactivate) and cause infec-
tion in the lungs or other parts of the body. The risk factors for acquiring TB
include close-contact situations, alcohol and drug abuse, and certain diseases (such
as diabetes, cancer, and HIV) and occupations (such as health-care workers). The
most common symptoms and signs of TB are fatigue, fever, weight loss, cough,
and night sweat. The diagnosis of TB involves skin tests, chest X-rays, sputum
analysis (smear and culture), and Polymerase Chain Reaction (PCR) tests to de-
tect the genetic material of the causative bacteria. Antibiotics such as isoniazid
(INH) maybe used to treat inactive (dormant) TB to prevent the TB infection from
becoming active [131]. Combining INH with one or more of several drugs, includ-
ing rifampin (Rifadin), ethambutol (Myambutol), pyrazinamide, and streptomycin
can usually successfully treat active TB. Drug-resistant TB is a serious, as yet un-
solved, public-health problem, especially in south-east Asia, the countries of the
former Soviet Union, Africa, and in prison populations. Poor patient compliance,
lack of detection of resistant strains, and unavailable therapy are key reasons for in-

39



40 2 Tuberculosis Transmission Model

Figure 2.1: Life cycle of Mycobacterium tuberculosis. Illustrations from [101, 142].

creasing drug-resistance to TB. Furthermore, HIV occurrence has been responsible
for an increased frequency of tuberculosis. Control of HIV in the future, however,
should substantially decrease the incidence of TB.

In the following, we construct a mathematical model for the spread of tubercu-
losis incorporating constant recruitment, slow and fast progression, effective chemo-
prophylaxis, diagnosis and treatment of infectious, exogenous reinfections and tra-
ditional medicine, in sub-Saharan Africa. Based on epidemiological status, the
simplest models include classes of susceptible, infected, infective and recovered in-
dividuals and hence are known as SEIR (Susceptible-Infected-Infective-Recovered)
models [3, 4, 37]. Parameter identification using the software POEM/BioParkin
will be computed and the impact of any parameter change on the TB dynamics will
be discussed.
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Mycobacterium tuberculosis life cycle

When MTB reach human lungs, they are usually engulfed and destroyed by the
macrophage cells of the immune system. But MTB have developed mechanisms to
survive these assaults. The life cycle of MTB is as follows.

• First, MTB bacilli are inhaled by their victim and phagocytosed by resident
alveolar macrophages in the lung, e.g. through exhaled droplets.

• Next, the infected cells invade the subtending epithelium. This recruits mono-
cytes from the blood circulation, leads to neovascularization, and the forma-
tion of granulomas.

• Many of the granulomas persist in a balanced state, whereas progression to-
wards disease is characterized by the loss of vascularisation and the increase
of necrosis.

• Finally, infectious bacilli are released into the airways after the cavitation of
the granulomas and its collapse into the lungs.

This life cycle has been published by many authors (cf. [100]).

2.2 Suggested model

Data availability and the study objectives generally determine the modelling ap-
proach to be used. Following, the mathematical model formulation and the data
characteristics are presented.

Data characteristics

The key characteristics of data stored by the TB service of WHO can be classified
into two major groups corresponding to the TB countries burden (estimations) and
TB countries notification.

The notification group includes data of DOTS strategy for TB. It consists of
diagnosing cases, treating patients for 6-8 months with drugs, information about
the issue of the treatment and about the promotion adherence to the relatively
difficult treatment regimen. We can therefore find the number of new cases, re-
treatment cases, smear positive cases, smear negative cases and their HIV/AIDS
status according to the DOTS strategy.
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Parameters Symbol

Class of susceptible population S
Class of latently infected population E
Class of diagnosed infectious population I
Class of undiagnosed infectious population J
Class of lost sight population L
Class of recovered population R
Total human population N

Table 2.1: States variables for the TB model

The TB data burden group contains information about the TB estimations.
One can find estimated information such as the case detection rate, the number of
incident cases, the mortality of TB cases, the total population size, the prevalence
of non HIV infected cases and of HIV/AIDS cases. Unstructured data sets and
data values that change frequently are not stored by WHO. Using those two types
of data, some parameters and state values could be estimated.

Modelling approach

We consider a finite total population at time t, denoted by N(t), sub-divided into
following mutually exclusive sub-populations: infectious, susceptible, recovered and
latently infected.

The infectious class is divided into three sub-classes with different properties:
diagnosed infectious (I), undiagnosed infectious (J) and lost sight (L). At any
given time, an individual is in one of the following states: susceptible, latently
infected (exposed to TB but not infectious) (E), diagnosed infectious (has active
TB confirmed after a sputum examination in the hospital), undiagnosed infectious
(i.e., never been to the hospital for diagnosis and have active for confirmation by
a sputum examination in hospital), lost sight (people who have been diagnosed
from an active TB , begun their treatment and quit before the end, and the health
personal do not know their epidemiological status) and recovered people (cured
after a therapy of treatment in the hospital) and we will denote these states by S,
E, I, J , L and R respectively. We summarize these definition in the following Table
2.2.

In fact, a definitive diagnosis of tuberculosis can only be made by culturing MTB
organisms from a specimen taken from the patient (most often sputum, but may also
include pus, Cerebro-Spinal Fluid (CSF), biopsied tissue, etc.). A diagnosis made
therefore other than by culture may only be classified as ”probable” or ”presumed”.
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For TB diagnosis, most protocols require that two separated cultures both are tested
negative [105]. Many countries still rely on a long-used method called sputum
smear microscopy to diagnose TB. Trained laboratory technicians look at sputum
samples under a microscope to see if TB bacteria are present. With three such
tests, diagnosis can be made within a day, but this test does not detect numerous
cases of less infectious forms of TB [131]. So, the model is based on the following
assumptions.

Assumption 2.2.1. 1. TB transmission from diagnosed infectious detected in
the hospital to susceptible population obeyed to the standard mass action or
frequency-dependent.

2. TB transmission from undiagnosed infectious to susceptible population is density-
dependent.

This argument abides on account of the fact that diagnosed infectious people
are not inside the residence in most cases (since their are hospitalize for at least 2
months) or are advised to lessen their infectiousness in their residing neighbourhood.
We can then consider that their distribution in the population is not necessarily
homogeneous. Since undiagnosed infectious remain inside the population, there is
an unlimited possibility of contacts with the susceptible population. We concluded
a density dependent force of infection for this inmate [12].

All recruitment is into the susceptible class and occurs at an average scale Λ.
The fixed survey for non-disease related death is µ, thus, 1/µ is the average life-
time. Diagnosed infectious, undiagnosed infectious and lost sight have the addi-
tional constant death rates due to the disease defined by d1, d2 and d3, respectively.
Transmission of MTB occurs due to adequate contacts among susceptible, diag-
nosed and undiagnosed infectious, and lost sight populations. Thus, susceptible
individuals acquire TB infection from individuals with active TB and lost sight at
a rate ν(I, J, L) given by

ν(I, J, L) = β1
I

N
+ β2

L

N
+ β3J, (2.1)

where βi, i = 1, 2, 3 are respectively the effective contact rate of diagnosed, lost
sight and undiagnosed infectious sufficient to transmit infection to susceptible. An
effective contact can be defined as any kind of contact between two individuals
such that, if one individual is infectious and the other susceptible, then the first
individual infects the second. Whether or not a particular kind of contact will be
effective depends on the infectious agent and its route of transmission. The effective
contact rates βi in a given population for tuberculosis measured in effective contacts
per unit time. This may be expressed as the product of the total contact rate per
unit time (ηi) by the risk of infection, given contact between an infectious and a
susceptible individual (φi). This risk is called the transmission risk. Thus, βi = ηiφi.
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Further to adequate contacts with active TB, a susceptible individual becomes
first infected but not yet infectious. A proportion p of the latently-infected individ-
uals develop fast active TB and the remainder (1− p) develop latent TB and enter
the latent class E. Among latently-infected individuals developing active TB, a
fraction f is assumed to undergo a fast progression directly to the diagnosed infec-
tious class I, while the remainder (1− f) enters the undiagnosed infectious class J .
We set p1 = pf and p2 = p(1− f). Once latently infected with MTB, an individual
will remains so for life unless reactivation occurs. Latently infected individuals are
assumed to acquire some immunity as a result of infection, which reduces the risk
of subsequent infection but does not fully prevent it.

Due to endogenous reactivation, a fraction 1− r1 of latently infected individuals
who did not received effective chemoprophylaxis become infectious with a constant
rate k, and reinfect after effective contact with individuals in the active TB classes
or lost sight at a rate λe = σ1ν(I, J, L), where σ1 is the factor reducing the risk of
infection as a result of acquiring immunity for latently infected individuals. Among
latently infected individuals who become infectious, the fraction h is diagnosed and
treated under the ”Stop TB” program, while the remaining 1− h is not diagnosed
and becomes undiagnosed infectious J . We assume that after some time suffering
from TB, some undiagnosed infectious decide to go to hospital with a rate θ. Also,
we assume that among diagnosed infectious who had begun their treatment therapy,
a fraction r2 of I have taken all the dose and have made all the sputum examina-
tions and will declared cured of the disease. Some diagnosed infectious who have
not finished their dose of drugs and sputum examinations or whose treatment was
unsuccessful, will not return to the hospital for the rest of sputum examinations
and check-up. They will enter the class of lost sight L at a constant rate α. Lost
sight can return to the hospital at a constant rate δ.

As suggested by Murray et al. [118], recovered individuals can only have partial
immunity. Hence, they can undergo a MTB reactivation or relapse with a constant
rate γ. The remainder can be reinfected (exogenously) after an effective contact with
individuals in the active TB classes and lost sight at a rate λr = σ2ν(I, J, L), where
σ2 is the factor reducing the risk of infection as a result of acquiring partial immunity
for recovered individuals. Due to their own immunity, traditional medicine, natural
recovery and drugs bought in the street (practised in sub-Saharan Africa), a fraction
remainder lost sight and undiagnosed infectious can spontaneously recovered at
constant rates ρ and ω, respectively and enter the latent class E and recovery class
R respectively. A desciption of the parameters of model (2.2) are summarize in
Table 2.2. The whole model flow diagram is shown in Figure 2.2.
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Figure 2.2: Transfer diagram for a transmission dynamics of tuberculosis.

The flow diagram Figure 2.2 yields the following differential equations:




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


















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











































Ṡ = Λ− ν(I, J, L)S − µS,

Ė = (1− p1 − p2)ν(I, J, L)S + ρJ + σ2ν(I, J, L)R − σ1(1− r1)ν(I, J, L)E −A1E,

İ = p1ν(I, J, L)S + δL+ θJ + γR+ h(1− r1)(k + σ1λT )E −A2I,

J̇ = p2ν(I, J, L)S + (1− h)(1 − r1)(k + σ1ν(I, J, L))E −A3J,

L̇ = αI −A4L,

Ṙ = r2I + ωL− σ2ν(I, J, L)R −A5R,
(2.2)

where

A1 = µ+ k(1− r1), A2 = µ+ d1 + r2 + α,

A3 = µ+ d2 + θ + ρ, A4 = µ+ d3 + δ + ω and A5 = γ + µ.

2.3 Basic properties of the model

The model (2.2) monitors a human population and then, all its associated param-
eters and state variables are assumed to be non-negative for all t ≤ 0 and do not
go to infinity. Before analyzing the model, it is instructive to show that the state
variables of the model remain non-negative for all non-negative initial conditions.
In this section, we show that the model is mathematically well-posed and epidemi-
ologically reasonable [86]. The model Eq. (2.2) can be written in the following
compact form:







ẋ = ϕ(x) − ν(I, J, L)x,

ẏ = ν(I, J, L)[B1x+B2〈e1 | y〉+B3〈e5 | y〉] +Ay,
(2.3)
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where x = S ∈ R≥0 is a state representing the compartment of non transmitting
individuals (susceptible), y = (y1, y2, y3, y4, y5) = (E, I, J, L,R)T ∈ R

5
≥0 is the vec-

tor representing the state compartment of different infected individuals (latently
infected, diagnosed and undiagnosed infectious, lost sight, and recovered individu-

als), ϕ(x) = Λ−µx is a function that depends of x, ν(I, J, L) =
〈e1 | y〉

N
+ 〈e2 | y〉 is

the force of infection, N = x+y1+y2+y3+y4+y5 is the size of the total population,
e1 = (0, β1, β2, 0, 0) ∈ R

5, e2 = (0, 0, 0, β3 , 0) ∈ R
5, e3 = (1, 0, 0, 0, 0) ∈ R

5, e4 =
(0, 0, 0, 0, 1) ∈ R

5, B1 = (1− p1 − p2, p1, p2, 0, 0)
T ∈ R

5, B2 = (−σ1(1− r1), hσ1(1−
r1), σ1(1− h)(1− r1), 0, 0)

T ∈ R
5, B3 = (−σ2(1− γ), 0, 0, 0, σ2(1− γ))T ∈ R

5, 〈. | .〉
is the usual scalar product and A is the constant matrix:

A =













−A1 0 ρ 0 0
kh(1 − r1) −A2 θ δ γ

k(1− h)(1 − r1) 0 −A3 0 0
0 α 0 −A4 0
0 r2 0 ω −A5













,

with A1, A2, A3, A4 and A5 defined as in Eq. (2.2).

It should be pointed out that A is a Metzler matrix because all its off-diagonal
entries are non-negative. A is also non-singular because it is column diagonally
dominant. Using the fact thatA is a non-singular Metzler matrix, we can deduce
therefore that the matrix−A−1 is non-negative [15, 152]. This property is very
useful for the positivity of eigenvalues and the positivity of the basic reproduction
ratio number.

Positivity of the solution

The following theorem shows that state variables are non-negative and dissipative.

Lemma 2.3.1. Let the initial values be S(0) > 0, E(0) > 0, I(0) > 0, J(0),
L(0) > 0 and R(0) > 0 then, solutions (S,E, I, J, L,R) of model system (2.2) are
positive for all t > 0. Furthermore,

lim sup
t−→∞

N(t) ≤
Λ

µ
,

with N(t) = S(t) + E(t) + I(t) + J(t) + L(t) +R(t).

Proof:

Assume that t̄ = sup{t > 0 : S > 0, E > 0, I > 0, J > 0, L > 0, R > 0} ∈
[0, t]. Thus, t̄ > 0 and it follows from the first equation of model system (2.2), that

dS

dt
= Λ− (µ+ ν(I, J, L))S,
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where ν(I, J, L) is defined as in Eq.(2.1). The above equation can be rewritten as,

d

dt

[

S(t) exp

{

µt+

∫ t

0
ν(I, J, L)(s)ds

}]

= Λexp

{

µt+

∫ t

0
ν(I, J, L)(s)ds

}

.

Hence,

S(t̄) exp

{

µt̄+

∫ t̄

0
ν(I, J, L)(s)ds

}

−S(0) =

∫ t̄

0
Λexp

{

µu+

∫ u

0
ν(I, J, L)(w)dw

}

du,

so that

S(t̄) = S(0) exp
{

−
(

µt̄+
∫ t̄

0 ν(I, J, L)(s)ds
)}

+ exp
{

−
(

µt̄+
∫ t̄

0 ν(I, J, L)(s)ds
)}

·
∫ t̄

0 Λexp
{

µu+
∫ u

0 ν(I, J, L)(w)dw
}

du > 0.

Similarly, it can be shown that E(t) ≥ 0, I(t) ≥ 0, J(t) ≥ 0 L(t) ≥ 0 and R(t) ≥ 0
for all t > 0. Now, adding all equations in the differential system (2.2), one gets

Ṅ = Λ− µN(t)− d1 I(t)− d2J(t)− d3L(t). (2.4)

Thus, we can deduce from equation (2.4) that

Λ− µN(t)− (d1 + d2 + d3)N(t) ≤ Ṅ ≤ Λ− µN(t).

In particular, it follows by the standard comparison theorem [21, 106, 89] that

N(t) ≤ N(0)e−µt +
Λ

µ
(1− e−µt) and thus,

Λ

µ+ d1 + d2 + d3
≤ lim inf

t−→∞
N(t) ≤ lim sup

t−→∞
N(t) ≤

Λ

µ
,

so that

lim sup
t−→∞

N(t) ≤
Λ

µ
.

This completes the proof. �

Invariant Region

The following steps established the positive invariance of the set

Ωρ =

{

(S,E, I, J, L,R) ∈ R
6
≥0, N(t) ≤

Λ

µ
+ ρ

}

, ρ > 0 (2.5)

i.e., that solutions remain in Ωρ for all t ≥ 0.
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From equation (2.4), it follows by the standard comparison theorem [21, 106, 89]

that lim
t→+∞

N(t) ≤
Λ

µ
.

This implies that the trajectories of model system (2.2) are bounded. On the
other hand, integrating the differential inequality Ṅ ≤ Λ − µN yields N(t) ≤

N(0)e−µt +
Λ

µ
(1 − e−µt). In particular N(t) ≤

Λ

µ
if N(0) ≤

Λ

µ
. In other hand, if

N(0) ≥
Λ

µ
, then Λ− µN(0) ≤ 0, since

Ṅ ≤ Λ− µN(t) ≤ 0,

the total population N(t) will decrease until

N(t) ≤
Λ

µ
.

Then, the simplex Ωρ is a compact forward invariant set for model system (2.2),
and for ρ > 0, this set is absorbing. So, we limit our study to this simplex for ρ > 0.

The prevalent existence, uniqueness and continuation results hold for model
system (2.2) in Ωρ. Thus, the total population is asymptotically constant. The well-
posedness of the model follows from a straight forward application of the classical
theory [134]. Hence, model system (2.2) is mathematically and epidemiologically
well-posed and it is enough to observe the dynamics of the flow generated by model
(2.2) in Ωρ.

2.4 Sensitivity analysis

Sensitivity analysis generates essential information for parameter estimation, opti-
mization, control, model simplification and experimental design. Model (2.2) stud-
ies the dynamical evolution of TB within a well-defined, biology-related context. For
TB for example, models described many interactions among differential infectivity
of TB in a population with lack of information on some classes.

Through sensitivity analysis, the systematic study of the effects of parame-
ter values on the predictions of mathematical models is a valuable tool for model
evaluation and validation as well as for quantifying the effect of parametric uncer-
tainly and variability [103, 156, 87, 57, 137]. This mathematical enable as major
topic in systems biology, enables to identify the most sensitive parameters used for
parameter identification, optimal control strategy, and for the model validation.
Much research has been performed on the sensibility of ODEs (See for example
[103, 156, 87, 57, 137, 53] ).
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Sensitivity equations for ODE systems

A parameter dependent initial value problem (IVP) for ODEs can be written as











d

dt
y(t, p) = f(t, y, p), t ≥ 0,

y(0, p) = y0,

(2.6)

where p is the vector of parameters, the right-hand side, f , denotes dependency of
the change in the states vector, y0, on both the states, y ∈ R

n, and the parameter
vector, p ∈ R

q. The initial condition vector, y0, has the same dimension as the
states vector y. The TB model equation(2.2) can be written in the form equation
(2.2) where y(t, p) = (S(t, p), E(t, p), I(t, p), J(t, p), L(t, p), R(t, p)) ∈ R

6 and p =
(Λ, β, · · · , µ) ∈ R

23.

Sensitivity here describes the influence of changes in the parameter vector p
on the solution vector y. A parameter is called sensitive if small changes in its
value lead to large changes in the solution [54, 56]. The parameter vector p may
include initial conditions y0, although y0 does not enter explicitly in f . We can next
introduce the variable

Sij :=
∂yi
∂pj

(t), i = 1, · · · , n, j = 1, · · · , q. (2.7)

This variable will be found as the solution of a new set of differential equations,
which we derive below. The system of differential equation (2.7) will be solved
simultaneously with the system (2.6). Applying the chain rule for differentiation
and the rule to interchanging the order of differentiation for certain mixed partials,
we have

Ṡij =
d

dt
(Sij) =

d

dt

∂yi
∂pj

=
∂

∂pj

dyi
dt

=
∂fi(t, y(t, p), p)

∂pj

or finally

Ṡij =
∂fi
∂pj

+

n
∑

k=1

∂fi
∂yk

Skj, i = 1, · · · , n, j = 1, · · · , q. (2.8)

The term ∂fi
∂yk

is recognized to be an element of the Jacobian matrix of f . Matrix
S can be written also as solution to the variational equation

S′ = fy(y, p)S + fp(y, p), S(t0) = 0. (2.9)

It should be noted that if the parameter pj does not appear explicitly in the fi, then

equatio (2.8) will be write in the form Ṡij =
n
∑

k=1

∂fi
∂yk

Skj, i = 1, · · · , n, j = 1, · · · , q.
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This may be the case, for example for the initial values of the system. Generally,
the dependence of the solution, y(t, p), on the parameters p, is characterized by the
sensitivity (n,m)-matrix, S = S(t) [53].

Solving sensitivity systems

The sensitivities in this dissertation are valued for all components of the system in
order to perform parameter identification. However, only the elements for which
experimental data are available are considered in the subsequent analysis. The
sensitivities must then be calculated at the measure time points [53].

Parameters are only simultaneously identifiable if the systems sensitivity with
respect to these parameters is high enough compared to the most sensitive one.
In order to be able to compare the different sensitivities, the condition, or more
precisely the sub-condition has to be computed. Parameters that are not sensitive
with respect to the remaining parameters do not significantly influence the system
at a giving state, thus a change in their values can be considered as negligible for
the solution. However, it is important not to set their values to zero. Sensitivities
are calculated for all elements of the system and for all parameters that should
be estimated. The solution is given for all grid points in a defined time interval.
Sensitivities holds only in a vicinity of the state determined by y and p. The
sensitivity analysis of a parameter is therefore local. The term local refers to the
fact that these sensitivities describe the system around a given set of values for the
parameters pi. The system is considered to respond linearly for small perturbations,
if the measures of the ratio between the ∆yi (absolute variation of the output yi) and
the cause ∆pj (absolute variation of the input pj) denoted Sij is big enough with
respect to the biggest sensitivity parameter pjmax ,j 6= j′. It is straightforward to
extend the solution algorithm developed for system (2.6) to the variational problem
(2.6). By solving the variational problem, one can find solutions giving the dynamics
of the sensitivities for all time points.

In a more practical way, in this thesis, sensitivity is computed for parameter
identification and optimal control. The sensitivity must be considered at a measured
time point. Let ny be the number of components for which data are available. If data
are available for all states, then set ny = n. Let (tk)k=0,··· ,M be the discretization

grid on the considered time interval [t0; tf ], where tf = tM and T j = {tjk, k =

1, · · · ,Mj}, where t
j
k < tjk+1 for all k = 1, · · · ,mj

d − 1 the set of time points where

experimental data are available for the element j ≤ ny and mj
d the number of data

point for state j. we set M =
ny
∑

l=1

ml
d the number of data point available. If the

measure time points are the same for all states, set M =M j as the number of data
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for each states. The sensitivities are therefore defined point by point, corresponding
to the data availability and the given time point. For sake of simplicity, one assumes
the notation Mj = M for all time points and for all components. In the following,
we define the special, the normalized and the relative sensitivities for a given jth

element at a given tk time point. The following definitions can be found in [54].

Definition 2.4.1. (sensitivity)

• The sensitivity of the ith chosen element and the kth chosen time-point with
respect to the jth chosen parameter is given by

Sikj := Sij(t
i
k, p), (2.10)

k = 1, · · · ,M, i = 1, · · · , ny, j = 1, · · · , q.

• The normalized sensitivity of the ith chosen element and the kth chosen
time-point with respect to the jth chosen parameter is given by

Snorm
ikj

:= Sij(t
i
k, p)

|pj|

‖yi‖
, (2.11)

k = 1, · · · ,M, i = 1, · · · , ny, j = 1, · · · , q.

where ‖yi‖ = ‖(yi(t1), · · · , yi(tM i))‖l2

• Let ptrsh and ytrsh been threshold values for parameters p and y respectively.
The relative sensitivity of the ith chosen element and the kth chosen time-
point with respect to the jth chosen parameter is given by

S∗
ij := Sij(tk, p)

max(|pj |, p
trsh
j )

max(‖yi‖, ytrshi )
, (2.12)

k = 1, · · · ,M, i = 1, · · · , ny, j = 1, · · · , q.

where ‖yi‖ = ‖(yi(t1), · · · , yi(tni
d
))‖l2

The sensitivity vectors Sj(tk) := (s1j(tk), · · · , SMj(tk))
T , M ≤ ny ·

ny
∑

l=1

result in

the columns of the sensitivity matrix S := (S∗
ij)i=1,··· ,N,j=1,··· ,md

. This matrix must
be computed in order to determine which parameters are sensitive. The column
sum norm for a parameter pj is given by the l2 norm of the column vector Sj (see
[53]).
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Analysis of the sensitivity matrix

The sensitivity matrix S can be linearly column dependent, then it is singular or
numerically singular. Then, some parameters influence the solution in a comparable
manner and cannot be estimated simultaneously. In order to detect linear depen-
dencies, a more detailed analysis most be performed. The following result and its
proof can be found in [55].

Theorem 2.4.1. Let S ∈ MNq(R) be an arbitrary and real matrix. There exists
two orthogonal matrices U ∈ MN (R) and V ∈ Mq(R) such that

S = UΣV T , (2.13)

where Σ = diag(σ1, · · · , σmin(q,N)) ∈ MNn(R) with σmin(m,N) ≤ · · · ≤ σ1 ≤ 0.

σi are called the singular values of S and we call the factorization (2.13) the
singular value decomposition (SVD) of S. In the special but common case in which
S ∈ Mq(R) is a square matrix with with real numbers and positive determinant,
then U, V T , and Σ are elements of Mq(R) as well. Σ can be regarded as a scaling
matrix, and U and V T can be viewed as rotation matrices. If the above-mentioned
conditions are met, the expression UΣV T can thus be intuitively interpreted as a
composition of three geometrical transformations: a rotation, a scaling, and another
rotation.

The condition number for an invertible matrix M ∈ Mq(R) with respect to a
matrix norm is defined by

κ(M) = ‖M‖ ·
∥

∥M−1
∥

∥ . (2.14)

If M is non-singular, and κ(M) := +∞ if M is singular. For non square matrices
as S, a more general definition of the condition number (cf. [55]) states that

κ(S) :=

max
‖x‖=1

‖Sx‖

min
‖x‖=1

‖Sx‖
∈ [0,∞].

The condition number is a measure of stability or sensitivity of a matrix (or the
linear system it represents) to numerical operations. It has the advantage of been
well-defined for non-invertible and rectangular matrices as well. The condition
numbers of matrix has the following properties:

(i) κ(S) ≥ 1;

(ii) κ(αS) = κ(S) for all α ∈ R, α 6= 0;
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(iii) S 6= 0 is singular if and only if κ(S) = ∞.

Matrices with condition numbers near 1 are said to be well-conditioned. Matrices
with condition numbers much greater than one are said to be ill-conditioned (cf.
[45]). Properties ((i) and (iii)) favours condition numbers rather than determinants
for characterizing the solvability of a linear system because condition numbers are
invariant under multiplication.

In the following, we will use only the Euclidian matrix norm or L2−norm:

‖M‖ = ‖M‖2 = max
‖x‖2=1

‖Mx‖2
‖x‖2

.

Lemma 2.4.1. Let M ∈ Mm(R), the condition number of M is the ratio of the
biggest and the smallest singular value

κ(M) =
σ1
σm

This result follows from the SVD decomposition of M and the orthogonality
of U and V . In fact, since M = UΣV T , with ‖Σ‖ = maxσi = σ1, and ‖Σ−1‖ =
max σ−1

i = σ−1
q then,

κ(M) = ‖UΣV T ‖ · ‖(UΣV T )−1‖ =
σ1
σm

.

The condition number of the sensitivity matrix S is a measure for the estima-
bility of the parameter vector p. It can be defined as the condition number of the
non-singular part of matrix Σ, which results from the SVD decomposition of S.
The computation of the condition number is theoretically more satisfactory, but
computationally expensive since it requires the calculation of the singular values
[53]. A more advantageous method using QR decomposition have therefore been
developed to solve the problem of parameters estimability.

Theorem 2.4.2. (QR decomposition)

Let S ∈ MNq(R), with N ≤ q, as the product of an N × N unitary matrix Q
and an N × q upper triangular matrix R. As the bottom (N − q) rows of an N × q
upper triangular matrix consist entirely of zeros, it is often useful to partition R,
or both R and Q:

S = QR = Q

[

R1

0

]

=
[

Q1, Q2

]

[

R1

0

]

= Q1R1,

where R1 ∈ Mq(R) upper triangular matrix, Q1 ∈ MN (R), Q2 ∈ MN(N−q)(R),
and Q1 and Q2 both have orthogonal columns. For the sake of simplicity, let us set
R1 = R and Q1 = Q.
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Using a suitable transformation, a column permutation strategy (cf. [53]) with
a permutation matrix Π, the diagonal elements of the matrix R can be arranged
such that |r11| ≥ · · · ≥ |rqq| and

SΠ = QR

Let ε denotes some reasonable input accuracy, then a numerical rank q may be
defined by the maximum index such that

ε|r11| < |rqq|.

the so-called sub-condition number

sc(S) :=
r11
rqq

can be conveniently computed (see [53] ). It has been proved in [55] that sc(S) ≤
κ(S). The sub-condition depends on the number of parameters that must be iden-
tified and on the number of components and measure time points.

2.5 Parameter identification from Cameroon’s data

In this section, we present the numerical estimation of the most sensitive param-
eters of model (2.2) using Gauss-Newton iterations. Parameter identification have
been computed using the software POEM/BioParkin. The program NLSCON in-
cluded in this software, is a global unconstrained Gauss- Newton method with error
oriented convergence criterion and adaptive trust region strategies (cf. [53]) used
to solve least-square problems. Since some specific parameter values such as demo-
graphic data from Cameroon are well-known from the literature, we have estimated
unknown data in order to keep the model more realistic.

Least-squares problem

Let us considered a set of experimental measurement data (τj, zj), j = 1, · · · ,M
where τj are different time point and zj are state variables of the model equatio.
(2.2). The goal consists of adjusting the parameters of a model function to best fit
the data set. The model function has the form f(t, y, p) as defined at (2.6), where
the m adjustable parameters are held in the vector p. The least-squares method
finds its optimum by minimizing the sum of squared residuals

g(p) =
1

M

M
∑

j=1

‖ D−1
j (y(τj , p)− zj) ‖

2
2 (2.15)
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with diagonal weighting

Dj := diag((δzj )1, . . . , (δzj)n) ∈ Mn(R), j = 1, · · · ,M, (2.16)

where δzj additionally denotes the statistical tolerance of the jth measurement or
the standard deviation of zj . Data points may consist of more than one independent
variable. Note that zj are available for a specific measurement time point τj, the
missing data in the least squares formulation is simply replaced by the computable
model value, therefore effectively neglecting the corresponding contribution in the
sum (2.15) [55]. The minimization problem (2.15) can be written in an equivalent
least squares minimization problem defined by

g(p) := F (p)T · F (p) → min
p

(2.17)

where F (p) = (F1(p), . . . , FM (p)) is a vector of length M with entries defined by

F (p) =







D−1
1 · (y(τ1, p)− z1)

...

D−1
M · (y(τM , p)− zM )






. (2.18)

F : Rq −→ R
N for N = nyM is a non-linear mapping and structured as a stacked

vector. If not all components of a measurement zj are given, the number q is
accordingly made smaller q < nM . The goal is to minimize the relative deviation
between data and the model (2.2) at the measurement time points τj.

2.5.1 Gauss-Newton method

The minimization problem such as problem (2.17) is usually non-linear in the un-
known parameter vector p and can be solved by affine covariant Gauss-Newton
iterations [55, 53]. The iterative Gauss-Newton procedure indeed converges to a
solution vector p∗ ∈ R

m. The linearized model, taken at the solution points, readily
enables a posteriori analysis. Sufficient conditions for a local minimum p∗ where

g(p∗) = min
p
g(p)

are g′(p∗) = 0 and g′′(p∗) ∈ Mq(R) positive definite.

Since
g′(p) = 2F (p)T · F (p)

holds, the problem can be formulated as finding the solution of the following system
of M non-linear equations

G(p) := F ′(p) · F (p) = 0. (2.19)
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The Newton iteration scheme for this system of equations is

G′(pk)∆pk = −G(xk), k = 0, 1, 2, · · · (2.20)

where the Jacobian matrix G′(p) is defined by

G′(p) = F ′(p)T · F ′(p) + F ′′(p)T · F (p)

is positive definite, so invertible in the neighbourhood of p∗. When the model and
data fully agree at p∗, one has

F (p∗) = 0, and G′(p∗) = F ′(p∗)T · F ′(p∗).

These are exactly the normal equations of the linear least-squares problem

‖ F ′(pj) · pj + F (pj) ‖22= min, pj+1 = pj + λj∆pj, j = 0, 1, 2, . . .

for an initial guess p0. A closer look of the expression of F ′(p) reveals that

d

dp
F (p) =

(

1

δzj

)

S

where
S = (S(t1), · · · , S(tk))

where S∗
ij is defined in equation (2.10). Every row of the Jacobian (M × m)-

matrix F ′(p) represent the sensitivity analysis of the solution y with respect to the
parameter p at the time point measurements. Estimable parameters are those with
larger sensitivity. Some of the parameters might be linearly dependent, which leads
to nearly identical columns in F ′(p). F ′(p) will be singular or, from a numerical
point of view, nearly singular.

2.5.2 Numerical results

In this subsection, we present numerical results from the Gauss-Newton method for
parameter identification. Some important parameters of the TB model are well-
known because of their specificity to each population. We fixed these parameters
and estimated those which are unknown.

POEM/BioParkin

In the software POEM/BioParkin, the ODE systems are solved numerically with
LIMEX, a linearly implicit Euler method with extrapolation [54, 53]. To test the
suitability of the model equation (2.2) in order to effectively enable the assessment
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of targeted public health education strategies and chemoprophylaxis against TB
spread in a population, the model is fitted using data of Cameroon [131]. The main
difficulty is not to simulate the system, i.e. to solve the differential equations, but
to identify the unknown parameters. We will briefly describe the mathematical
techniques using for parameter identification in the software POEM/BioParkin.
Let us considered the entry Dj as defined in equation(2.15) for 1 ≤ j ≤ m. If a
component of given error tolerance, δzj , or even the whole vector, is set to zero, this
contribution to the sum (2.15) is also taken out, and considered as a (non-linear)
equality constraint to the least squares formulation instead. In NLSCON included
in the software POEM/BioParkin, the measurement tolerances are computed as

(δzj) = max{max
i

(zi)k, tresh(zj)k},

with some user specified threshold mapping, tresh(·). The solution for the k-th
step results then in

∆pk = F ′(pk)+ · F (pk),

pk+1 = pk +∆pk; (2.21)

where F ′(pk)+ denotes the pseudo-inverse of F ′(pk). In the global case it would be

pk+1 = pk + λk∆p
k; 0 < λk ≤ 1.

The step length 0 < λk < 1, can be computed successively in each iteration. By a
suitable permutation of the matrix columns of J(p), the diagonal elements of the
upper triangular matrix R can be ordered in the form r11 ≥ r22 ≥ · · · ≥ rqq.

The sub-condition of parameter pj is given by

scj =
r11
rjj

.

Using the QR decomposition of the matrix J(p) ≃ F ′(p), equation

F ′(pk) ·∆pk = F (pk)

is solved.

Thus, the permutation of matrix columns corresponds to a new ordering of
parameters according to increasing sub-condition. The sub-condition indicates
whether a parameter can be estimated from the given data or not. Only those
parameters can be estimated for which

scj ≤ 1/ε

where ε is the relative precision of the Jacobian J(p) [61]. The above described
method for solving a non-linear least squares problem were implemented in the
software packages NLSCON [61, 122]. A renewed matlab-based version of this
software, named POEM 2.0, which is especially adapted to parameter identification
in ordinary differential equation models, has been used throughout the study.
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Parameters Symbol Estimate Source

Recruitment rate of susceptible Λ 679685/yr Fixed, [125]
Transmission rate β1, β2 1, 4 Fixed [27]
Transmission rate β3 6.05681 · 10−06 Estimated
Fast route to infectious class p1 9.36432 · 10−04 Estimated
Fast route to diagnosed p2 2.43736 · 10−02/yr Estimated
infectious class
Reinfection parameter of latently σ1 2.38390 · 10−04 Estimated
infected individuals
Reinfection parameter σ2 0.7 ∗ (p1 + p2) Fixed, [10]
of recovered individuals
Slow route to active TB k 3.31390 · 10−04/yr Estimated
Natural mortality µ 1/53.6/yr Fixed, [27, 125]
TB mortality of diagnosed infectious d1 0.139/yr Fixed,[27]
TB mortality of undiagnosed infectious d2 0.413/yr Estimated
TB mortality of lost sight d3 0.20/yr Estimated
Chemoprophylaxis of latently r1 0/yr Fixed, [123]
infected individuals
Detection rate of active TB h 0.828248/yr Estimated
Recovery rate of diagnosed infectious r2 0.758821/yr Fixed, [123]
Recovery rate of lost sight ω 0.5/yr Estimated
Recovery rate of undiagnosed infectious ρ 0.131140/yr [27]
Relapse of recovered individuals γ 8.51257 · 10−02/yr [27]
Diagnosed infectious route α 0.216682/yr Estimated
to the lost sight class
Lost sight route δ 0.39/yr Estimated
to the diagnosed infectious class
Diagnosed rate θ 0.495896/yr Estimated

Table 2.2: Estimated numerical values of the TB model parameters

Parameters values of the model

Numerical values of all parameters are given in Table 2.2.

We subdivided the data by type and present the well-known and specific data
of Cameroon. Using the method above, we fixed some parameters valued and
estimated other using the software POEM. Table 2.2 below comprises the parameter
values. As denoted in the last column some parameters have fixed values national
institute of statistic of Cameroon, (NIS), [27, 10] and some were estimated using
the software POEM/BioParkin.

Figure 2.3 shows the column norm of the sensitivity matrix with respect to the
the parameter values. Obviously, parameters with the largest column norm are γ,
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p2 and ρ respectively. Parameters β1, β2 and σ2 have the largest column norm.
Identifiable parameters are those with smallest column norm with respect to the
biggest column norm.
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Figure 2.3: Column norm of all parameters of model 2.2.

Figure 2.4 shows the sub-condition of the sensitivity matrix with respect to the
parameter values. One can see that parameters with largest sub-conditions are σ1,
σ2, ω, p1, β1 and β2 respectively. All other parameters have smaller sub-conditions.
Figure 2.4 shows the sub-condition of the estimated parameters.

The sensitivity analysis reveals that 9 of 16 parameters are estimable. Since all
parameters was not estimable simultaneously, we proceed by steps, using estimated
values to identify others.

Demographic parameters

Most demographic parameters are well-known for a given population. In the fol-
lowing, we will give some of them and their values from Cameroon’s data.

The natural mortality µ: The natural mortality is postulated to be equal to the
inverse of the life expectancy at birth, which is now about 54.1 years in Cameroon
[8, 125, 1, 126], i.e., µ = 1/53.6 per year.
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Figure 2.4: Sub-condition of all parameters of model (2.2).

The recruitment Λ : The recruitment parameter Λ is estimated taking into
account the world population and migration and can be chosen to attain the total
population. According to the Cameroonian national institute of statistics (NIS)
[125, 126], the average recruitment in the Cameroonian population during the last
fifteen year is an Λ = 679685 per year.

TB mortality d1, d2 and d3 of undiagnosed infectious and lost sight: Per capita
TB-induced mortality rate varies from country to country. It is 0.193 per year in
developed countries, but could be as high as 0.45 per year in some African coun-
tries [26]. An intermediate value of 0.193 per year can be applied to most developed
and developing countries [26]. We set the TB-induced mortality rates d1 = 0.193,
d2 = 0.413 and d3 = 0.20 per year for undiagnosed infectious and lost sight, respec-
tively.

Progression rate to active TB parameters

M. tuberculosis transmission rate βi, i = 1, 2, 3. Estimating parameters βi is the
most difficult task. Usually, this parameter can be estimated using a known value
of the basic reproduction ratio R0. Blower et al. (cf. [26]) estimated the contact
rate βi ∈ (1, 4) in the case of a frequency dependent force of infection. In our case,
we chose β1 = 1, β2 = 4 according to data of Blower et al. and we estimated
β3 = 6.05681 · 10−06 using the software POEM/BioParkin.
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Parameters p1, p2 and k modelling the progression to active TB. The progression
rate to active TB is a decreasing function of the time since infection. For HIV
negative TB people, Bacaer et al. (cf. [10, 44]) estimated that people in a South
Africa township have 11% annual risk of developing primary TB disease during five
years following the first MTB infection and a 0.03% annual risk of reactivation after
five years. For HIV positive people, the numbers were 30% and 22.5% per year.
In Cameroon, the estimated average TB prevalence all forms in HIV positive is
about 431 per 100,000 per year. Hence, we estimated that p1 = 9.36432 · 10−04,
p2 = 2.43736 × 10−02 and k = 3.31390 · 10−04 per year.

Factors σ1 and σ2 are reducing risk of infection as a result of acquired immunity
to a previous infection of latently infected and recovered individuals. Sutherland
et al. [152] estimated that a previous MTB infection reduced the risk of disease
after reinfection by 63% for HIV negative males and by 80% for HIV negative
females. Vynnycky and Fine [160] found a reduction of the risk by 16% among HIV
negative adolescents and by 41% among HIV negative adults. We estimate that
σ1 = 2.38390 · 10−04 and we use the data from [10] σ2 = 0.7 ∗ (p1 + p2).

Detection rate h. The average percentage of new diagnosed smear positive cases
that have been latently infected and which go immediately to the hospital after
developing the disease is in the interval 50− 90% per year according to WHO data.
Using POEM, it have been estimated to h = 8.28248 · 10−01 per year.

Other parameters

Rate θ at which undiagnosed infectious go to the hospital: Parameter θ is un-
known due to the number of undiagnosed infectious TB cases. WHO estimated
θ ∈ (0.30, 0.60) per years. The result giving by POEM shows that the model is
largely sensitive to θ.

Proportions r1 and r2 of successful treatments of latently infected individuals and
diagnosed infectious. The proportion of successful treatment of diagnosed infectious
is about 74.72% per year. This Figure is insufficient compared with the WHO target
for developing countries like Cameroon, which is at least 85% successful cure rate.
Since the chemoprophylaxis is not practiced in Cameroon, we take r1 = 0 per year.

Rate α at which diagnosed infectious become lost sight: The average percent
of diagnosed infectious that begun their treatment and have not completed their
sputum examination and check up is is also not well known. It have been estimated
using POEM.
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Rate δ at which lost sight return to the hospital: According to the data of TB in
Cameroon, the average percent of lost sight who return to the hospital with disease
after that they disappeared in the hospital is δ = 39% per year.

Recovery rate ρ of undetected infectious: We assume that the rate at undiag-
nosed infectious who recover naturally or who have drugs by self-medication or
traditional medicine, become latently infected correspond to the natural recovery
rate of infectious. In [10], the authors estimated that the natural recovery for HIV
negative TB and HIV positive TB cases are respectively, 0.139 and 0.24 per year.
Herein, we take the average of these values and get ρ = 0.245 per year.

Recovery rate ω of lost sight: Since lost sight can take traditional medicine and
self-medication in Cameroon, or we assume that the recovery rates of lost sight and
undiagnosed infectious is the double of the natural recovery rate of infectious, that
is, ω = 0.5 per year.

Relapse rate of recovered individuals: The average relapse rate of recovered
individuals is γ = 0.01 per year.

TB mortality d1 of diagnosed infectious: According to data of TB in Cameroon,
the average death of diagnosed infectious is d = 0.0575 per year.

2.6 Comparison to measurement data

In order to illustrate the theoretical results of the foregoing analysis, numerical sim-
ulations of model system (2.2) are carried out using a fourth order Runge-Kutta
scheme in the software Matlab, version R2009. The comparison to measurement
data allows to test the suitability of the model (2.2) to effectively enable the assess-
ment of targeted public health education and chemoprophylaxis strategies against
TB spread in a population. The model is fitted using data from Cameroon as fol-
lows. Parameters are giving in Table 2.2. The total population of Cameroon, as of
1994, is given by N = 13240337 [126]. The initial conditions used were set as in
the following Table. Using the aforementioned data, the model (2.2) gives a very
good fit of the Cameroonian data for the period 1994-2010 [132], as depicted in Fig-
ure 2.5. Hence, model (2.2) can be used to gain realistic insight into tuberculosis
transmission dynamics at least for a relatively period.



2.6 Comparison to measurement data 63

Symbol Initial value Source

S 5576135 Estimated
E 8357382 Estimated
I 3092 WHO
J 1037 Estimated
L 251 Estimated
R 2140 Estimated
N 13240337 [126]

Table 2.3: Initial values of state variables of the TB model.
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In Figure 2.5, (I) and (N) show the comparison between the data and the esti-
mated trajectories; there are no obvious discrepancies (note that data are available
only on I and N).

In Figure 2.6 we look more closely at how well the fitted model captures the
variation in disease incidence, by re-plotting the data using the Runge-Kutta fourth
other scheme and comparing this with model solutions and an increase of step size.
Fig. 2.6 (S), (E), (L) and (R) show the time evolution of the estimated trajectories
of model ( 2.2) at each time point. Here, while the agreement is not perfect, there
are no evident consistent patterns in the discrepancy. The estimated trend in the
number of susceptible population (top panel of Fig. 2.6 (S)), is due to the estimated
linear trend βi, i = 1, 2, 3, in the transmission parameter. The rate of change is
about 1% per year (1% per year decrease in S, 1% per year increase in the mean of
βi). However, there is very high uncertainty regarding the trend in βi (e.g., a tenfold
smaller trend is within two standard errors of the point estimate), so we cannot be
confident that the estimated trends in S and βi are real, even if those values remain
in the right intervals. Forward solutions of the deterministic model follow fairly well
the observed TB pattern of incidence. With the estimated transmission parameters,
the deterministic model appears to capture all of the qualitative properties of the
observed pattern.
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Figure 2.6: Time series of model (2.2) showing the estimated state trajectories
of susceptible, latently infected, diagnosed infectious, undiagnosed infectious, lost
sight, recovered and total population classes. The dot plots represent the year-by-
year trend and variability in yearly case reports over the period 1994-2010. Param-
eter values are defined in Table 2.2 and initial values are presented in Table 2.3.
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2.7 Effects of increased access to treatment

Herein, we investigate the impact of the variation of some specific parameters on
the dynamics of model (2.2) by doing simulations of the model using parameters
in Table 2.2, initial values in Table 2.3, and estimated states as artificial data for
POEM. These results were reduced by 20% and 60% for classes of lost sight (L),
diagnosed infectious, and undiagnosed infectious to find artificial data. Some model
parameters have been considered as time dependent variable to reflect their possible
change within time. However, the variation is assumed to be slow over the time.
These parameters are assumed to be control functions for the dynamics of TB.
Thus, the model (2.2) becomes a non-autonomous controlled system.

Effects of increase the access to TB treatment as a result of infrastructures and
education are explored in Figure 2.7 by taking into account following expression of
models parameters.

θ(t) = θ +
(1− θ)t

θδ + t
,

δ(t) = δ +
(1− δ)t

δδ + t
,

p1(t) = p1 +
p2t

pδ + t
,

p2(t) = p2 −
p2t

pδ + t
.

(2.22)

Herein, θδ, δδ and pδ are positive constant to be estimated.

The increase (or decrease) in these parameters can be interpreted as the result of
change on treatment access, diagnosed campaign or large scale education via social
networks, TV, radio etc. Then, we estimated parameter values of θδ, δδ and pδ using
POEM as previously. The results presented in Figure 2.7 show that tuberculosis can
be reduced by 20 % in five years if some efforts are make to increase the treatment
access for rural population. We also observe that the number of diagnosed infectious
increases at the beginning, but decreases after few years prior to the beginning of
the controls strategies which allows increasing the treatment access.
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Figure 2.7: Time series of model (2.2) showing the impact of a slow change on pa-
rameter values θ, δ, p1 and p2 with respect to time in order to reduce the TB burden
by 20% in 5 years. Blue lines present the model predictions for TB dynamics using
parameter values of Table 2.2 and the black lines present the estimated trajectories
for parameters θ, δ, p1 and p2 set as in equation 2.22. Simulation with POEM gave
pδ = 8.56660e + 07, θδ = 37.1301e + 03, δδ = 37.1301 from artificial data reduced
by 20% with respect to model predictions. All other parameters are defined as in
Table (2.2).
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Using artificial data reduced by 20% from the predicted states of model (2.2),
with respect to parameters in Table 2.2, parameter identification with POEM gave
pδ = 8.56660e + 07, θδ = 37.1301e + 03, δδ = 37.1301. In Figure 2.7, time series
of model (2.2) showing the impact of a slow changed on parameter values θ, δ, p1
and p2 with respect to time on the dynamics of TB. Blue lines present the model
predictions for TB dynamics using parameter values of Table 2.2 and the black lines
present the estimated trajectories for parameters θ(t), δ(t), p1(t) and p2(t) set as
in equation (2.22). All other parameters are kept as in Table 2.2.

The numerical results in Figures 2.7 illustrate that a small increase of the access
to TB treatment could generally result in an increase in the number of TB diagnosed
infectious, a decrease in the number of lost sight, latently infected and undiagnosed
infectious individuals. The Figure shows also a positive change in the access to
treatment will significantly affect the long term progression of the disease, through
classes of susceptible and recovered.

Using again POEM 2.0 to estimate parameters θδ, δδ and pδ, it follows that
TB undiagnosed infectious and lost sight can be reduced by 60 % in fifteen years
if some large and continuous efforts are made to increase the treatment access for
rural population, and TB prevention for fast and immuno-compromised people.
Using POEM 2.0, parameter values pδ = 85.6660, θδ = 81.3256, δδ = 37.1301 have
been estimated in other to see the evolution of θ(t), δ(t), p1(t) and p2(t) which are
necessary for the objective of 60% reduction in 15 years for undiagnosed and lost
sight infectious.

Figure 2.8 shows for pδ = 85.6660, θδ = 81.3256, δδ = 37.1301 the dynamic of
Tb inside the population in the presence (black curves) and absence (blue curves)
of continuous effort to diagnose the population.
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Figure 2.8: Time series of model (2.2) showing the impact of a slow change on pa-
rameter values θ, δ, p1 and p2 with respect to time in order to reduce the TB burden
by 60% in 5 years. Blue lines present the model predictions for TB dynamics using
parameter values of Table 2.2 and the black lines present the estimated trajectories
for parameters θ, δ, p1 and p2 set as in equation (2.22). Simulation with POEM
gave pδ = 85.6660, θδ = 81.3256, δδ = 37.1301 from artificial data reduced by 60%
with respect to model predictions. All other parameters are defined as in Table
(2.2).
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The numerical results in Figure. 2.8 illustrate that a relative small increase
of the access to TB treatment in general and education about TB for immune-
compromised people will result in an increase in the number of susceptible, a de-
crease in a number of infectious, lost sight, latently infected and undiagnosed in-
fectious individuals by 60% in fifteen years. The Figure shows also that a positive
change in the access to treatment will significantly affect the long term progression
of the disease even if it would not died out.



Chapter 3

Mathematical Analysis of the
TB Model

For many epidemiological models, a threshold condition that indicates whether an
infection introduced into a population will be eliminated or become endemic have
been defined [35]. The basic reproduction number R0 is defined as the average
number of secondary infections produced by an infected individual in a completely
susceptible population [86]. In models with only two steady states and a transcritical
bifurcation, R0 > 1 implies that the endemic state is stable (e.g. the infection
persists), and R0 ≤ 1 implies that the uninfected state is stable (e.g. the infection
will die out). The co-existence of disease-free equilibrium and endemic equilibria
when the basic reproduction number (R0) is less than unity is typically associated
with the backward or subcritical bifurcation. This phenomenon has been found in
many epidemiological settings (see for instance, [68, 81, 104, 151] and references
therein). The epidemiological implication of is that the classical requirement of
having the associated reproduction number less than unity, while necessary is not
a sufficient condition for disease control. Results show that a threshold level of
reinfection exists in all cases of the model. Beyond this threshold, the dynamics of
the model are described by a backward bifurcation. However, uncertainty analysis
of the parameters shows that this threshold is too high to be attained in a realistic
epidemic [151]. In particular, when reinfection is present the basic reproductive
number, R0, does not accurately describe the severity of an epidemic. In this
chapter, we determine the basic reproduction ratio, and discuss the existence and
the stability of the endemic equilibrium and the disease free equilibrium (DFE).
The TB persistence condition will therefore been deduced.

71
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3.1 Basic reproduction number

The global behavior of the TB model crucially depends on the basic reproduction
number, i.e., an average number of secondary cases produced by a single infective
individual, who is introduced into an entirely susceptible population. Model system
(2.3) has an evident equilibrium Q0 = (x0, 0) with x0 = Λ/µ when there is no
disease in the population. This equilibrium point is the disease-free equilibrium,
obtained by setting the right hand sides of equations in model system (2.3) to zero.
We calculate the basic reproduction number R0, using the next generation method
developed in [157]. For that purpose, let us write system (2.3) in the form







ẋ = ϕ(x)− ν(I, J, L)(t)x,

ẏ = F(x, y) − V(x, y),
(3.1)

where

F(x, y) = ν(I, J, L)B1x and V(x, y) = ν(I, J, L)[B2〈e1 | y〉+B3〈e5 | y〉] +Ay.(3.2)

Then, one has

F =
∂F

∂y
(Q0) and V =

∂V

∂y
(Q0)

where F(x, y) and V(x, y) are Jacobian matrices at the DFE. Using the same no-
tations as in [157], the matrices F and V , for the new infection terms and the
remaining transfer terms respectively, the basic reproduction number, which is the
spectral radius of FV −1 is giving by

R0 = ρ(FV −1). (3.3)

For model (3.1), one has

F = B1

(

e1 +
Λ

µ
e2

)

and V = −A.

Then, using the matrix transformation of [98, 92, 93, 94], the basic reproduction
ratio is given by

R0 =

〈

e1 +
Λ

µ
e2 | (−A

−1)B1

〉

. (3.4)

We use the expression (−A−1) to emphasize that (−A−1) ≥ 0 because the matrix
A is Metzler stable.

The following result is established (from Theorem 1.3.1):

Lemma 3.1.1. : The disease-free equilibrium Q0 of model system (2.3) is locally
asymptotically stable whenever R0 < 1, and instable if R0 > 1.
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From a biological point of view, Lemma 3.1.1 implies that TB can be eliminated
from the community (when R0 ≤ 1) if the initial sizes of the population are in the
basin of attraction of Q0. But if R0 > 1 the infection will be able to spread in a
population. Generally, the larger the value of R0, the harder it is to control the
epidemic.

3.2 Bifurcation analysis

Herein, the number of equilibrium solutions of model (2.3) is investigated. Let
Q∗ = (x∗, y∗) be any arbitrary equilibrium of model system (2.3). To find existence
conditions for an endemic equilibrium of tuberculosis in the population (steady state
with y∗ non zero), the equations in model equation (2.3) are set at zero, i.e.,







ϕ(x∗)− x∗ν∗〉 = 0,

ν∗[x∗B1 + 〈e3 | y∗〉B2 + 〈e4 | y∗〉B3] +Ay∗ = 0,
(3.5)

with

ν∗ =
〈e1 | y

∗〉

N∗
+ 〈e2 | y

∗〉, (3.6)

is the force of infection at the steady state. For the sake of simplicity, we sets
ν∗ = ν∗ throughout this Section.

Multiplying the second equation of equation (3.5) by −A−1, one obtains

y∗ = ν∗[x∗(−A−1)B1 + 〈e3 | y∗〉(−A−1)B2 + 〈e4 | y∗〉(−A−1)B3]. (3.7)

Then, one can deduce that

〈e1 | y∗〉 = ν∗[x∗R01 + a1〈e3 | y
∗〉+ a2〈e4 | y

∗〉],

〈e2 | y∗〉 = ν∗[x∗R02 + a3〈e3 | y
∗〉+ a4〈e4 | y

∗〉],

〈e3 | y∗〉 = ν∗[x∗a5 + a6〈e3 | y∗〉+ a7〈e4 | y∗〉],

〈e4 | y∗〉 = ν∗[x∗a8 + a9〈e3 | y∗〉+ a10〈e4 | y
∗〉],

(3.8)
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where

R01 = 〈e1 | (−A
−1)B1〉, R02 = 〈e2 | (−A

−1)B1〉, a1 = 〈e1 | (−A−1)B2〉,

a2 = 〈e1 | (−A
−1)B3〉, a3 = 〈e2 | (−A

−1)B2〉, a4 = 〈e2 | (−A−1)B3〉,

a5 = 〈e3 | (−A
−1)B1〉, a6 = 〈e3 | (−A

−1)B2〉, a7 = 〈e3 | (−A−1)B3〉,

a8 = 〈e4 | (−A−1)B1〉, a9 = 〈e4 | (−A−1)B2〉 and a10 = 〈e4 | (−A−1)B3〉.

Using the two last equation of equation (3.8), one can deduce that

〈e3 | y∗〉 =
ν∗x∗[a5 + (a7a8 − a5a10)ν

∗]

−a7a9(ν∗)2 + (1− a6ν(I, J, L)∗)(1− a10ν∗)
,

〈e4 | y∗〉 =
ν∗x∗[a8 + (a5a9 − a6a8)ν

∗]

−a7a9(ν∗)2 + (1− a6ν∗)(1− a10ν∗)
.

(3.9)

From the first equation of equation (3.5), one obtains

x∗ =
Λ

µ+ ν∗
(3.10)

Combining equations (3.6), (3.8), (3.9) and (3.10), one can deduce that the total
population size at the steady state is defined by

N∗ =
Λ
(

F2(ν
∗)2 + F1ν

∗ +R01

)

H3(ν∗)3 − (µH3 − ΛC2 − (a6 + a10))(ν∗)2 + (1− µ(a6 + a10)− ΛC1)ν∗ + µ− µR02
,

(3.11)
where

F2 = R01(a10a6 − a7a9) + a1(a7a8 − a5a10) + a2(a5a9 − a8a6),

F1 = −R01(a6 + a10) + a1a5 + a2a8,

C2 = R02(a10a6 − a7a9) + a3(a7a8 − a5a10) + a4(a5a9 − a8a6),

C1 = R02(a6 + a10) + a3a5 + a4a8,

H3 = (a6a10 − a7a9).

Let w1 = (0, 1, 0, 0, 0)T , w2 = (0, 0, 1, 0, 0)T and w3 = (0, 0, 0, 1, 0)T . Then, from
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equation (3.7), one can deduce that

I∗ = 〈w1 | y
∗〉 = ν∗[x∗〈w1 | (−A

−1)B1〉+ 〈w1 | (−A
−1)B2〉〈e3 | y

∗〉

+ 〈w1 | (−A
−1)B3〉〈e4 | y

∗〉],

J∗ = 〈w2 | y
∗〉 = ν∗[x∗〈w2 | (−A

−1)B1〉+ 〈w2 | (−A
−1)B2〉〈e3 | y

∗〉

+ 〈w2 | (−A
−1)B3〉〈e4 | y

∗〉],

L∗ = 〈w3 | y
∗〉 = ν∗[x∗〈w3 | (−A

−1)B1〉+ 〈w3 | (−A
−1)B2〉〈e3 | y

∗〉

+ 〈w3 | (−A
−1)B3〉〈e4 | y

∗〉].

(3.12)

Now, using equation (2.4) at the steady state, one has

N∗ =
Λ

µ
−
d1
µ
I∗ −

d2
µ
J∗ −

d3
µ
L∗. (3.13)

Combining equations (3.9), (3.12) and (3.13) gives

N∗ =
Λ

µ

(ν∗)3(H3 −D2) + (ν∗)2(µH3 −D1 − (a6 + a10)) + ν∗(1− µ(a6 + a10)− g0) + µ

H3(ν∗)3 + (H3µ− (a6 + a10))(ν∗)2 + (1− µ(a6 + a10))ν∗ + µ
,

(3.14)
where

g0 = d1〈w1 | (−A
−1)B1〉+ d2〈w2 | (−A

−1)B1〉+ d3〈w3 | (−A
−1)B1〉,

g1 = d1〈w1 | (−A
−1)B2〉+ d2〈w2 | (−A

−1)B2〉+ d3〈w3 | (−A
−1)B2〉,

g2 = d1〈w1 | (−A
−1)B3〉+ d2〈w2 | (−A

−1)B3〉+ d3〈w3 | (−A
−1)B3〉,

D1 = −g0(a6 + a10) + a5g1 + a8g2,

D2 = g2(a9a5 − a6a8) + g1(a7a8 − a5a10) + g0(a6a10 − a7a9).

Equaling equations (3.11) and (3.14), it can be shown that the non-zero equilibria
of model system (2.3) satisfies the following equation in term of ν∗:

E6(ν
∗)6 +E5(ν

∗)5 + E4(ν
∗)4 + E3(ν

∗)3 + E2(ν
∗)2 + E1(ν

∗) + E0 = 0, (3.15)
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where

E6 = H3(H3 −D2),

E5 = H3(µH3 −D1 − (a6 + a10)) + (H3 −D2)(µH3 − (a6 + a10)− ΛC2)− µF2H3,

E4 = H3(1− µ(a6 + a10)− g0) + (µH3 − (a6 + a10)− ΛC2)(µH3 − (a6 + a10)−D1)

+ (H3 −D2)(1− (a6 + a10)− ΛC1)− µF2(µH3 − (a6 + a10)− ΛC2)− µF1H3,

E3 = µH3 + (1− µ(a6 + a10)− g0)(µH3 − (a6 + a10)− ΛC2) + (H3 −D2)(µ − ΛR02)

− µF2(1− µ(a6 + a10)− ΛC1)− µF1(µH3 − (a6 + a10)− ΛC2),

E2 = (1− (a6 + a10)− ΛC1)(1− µ(a6 + a10)− g0) + (µ− ΛR02)(µH3 − (a6 + a10)−D1)

− µ2F2 + µ(µH3 − (a6 + a10)− ΛC2)− µF1(1− (a6 + a10)− ΛC1)

− µR01(µH3 − (a6 + a10)− ΛC2),

E1 = µ(1− (a6 + a10)− ΛC1) + (µ− ΛR02)(1− µ(a6 + a10)− g0)− µ2F2

− (1− (a6 + a10)− ΛC1)µR01,

E0 = µ2(1−R0).

The positive endemic equilibria Q∗ are obtained by finding ν∗ from the polyno-
mial equation (3.15) and substituting the numerical results (positive values of ν∗)
into the expressions of the state variables at the steady state. Clearly, the coeffi-
cient E0 of equation (3.15) is positive or negative whenever R0 is less or greater
than unity, respectively. Thus, the number of possible real roots of the polynomial
equation (3.15) depends on the signs of E6, E5, E4, E3, E2, E1 and E0. This can
be analyzed using the Descartes Rule of Signs on the function f(ν∗) = E6(ν

∗)6 +
E5(ν(I, J, L)

∗)5+E4(ν(I, J, L)
∗)4+E3(ν(I, J, L)

∗)3+E2(ν(I, J, L)
∗)2+E1(ν

∗)+E0

given in equation (3.15). We claim the following result.

Lemma 3.2.1. The TB model (2.2)

(i) could have a unique endemic equilibrium wherever R0 > 1;

(ii) could have more than one endemic equilibrium wherever R0 > 1;

(iii) could have a unique endemic equilibrium wherever R0 < 1;

(iv) could have one or more endemic equilibria wherever R0 < 1.
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The existence of multiple endemic equilibria when R0 < 1 suggests the possibil-
ity of a backward bifurcation (see, [34, 9, 68] and references therein), where a stable
disease-free equilibrium co-exists with a stable endemic equilibrium when the basic
reproduction number is less than unity. This is explored below via numerical sim-
ulations. The function roots of Matlab is used to find the root of the polynomial
3.15.
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Figure 3.1: Bifurcation diagram for model system (2.2). The diagram shows the
values of the force of the infection generating forward bifurcation as well as multiple
supercritical endemic equilibria for σ1 = 0.015 plotted for the parameters in Table
2.2 (except for β3, which vary) and the value of the disease reinfection rate (σ1).
For the parameter values in Table 2.2, there are three equilibrium points in ωρ:
a locally asymptotically stable disease-free equilibrium point on the boundary of
the positive orthant of R6, and two endemic equilibrium points inside the positive
orthant. Linear stability analysis shows that the “larger” endemic equilibrium point
is locally asymptotically stable, while the “smaller” point is unstable. Further linear
analysis with an increased value of β3, (with R0 > 1.155) shows that the DFE is
unstable, and there is one locally asymptotically stable endemic equilibrium point.
The notation EE stands for endemic equilibrium point.
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Figure 3.2: Bifurcation diagram for model system (2.2) showing the values of the
force of the infection generating a transcritical bifurcation for σ1 = 2.38390E−04.

The backward bifurcation phenomenon is illustrated by simulating model system
(2.2) with the parameters of Table 2.2, and different values of β3. The associated
backward bifurcation diagram is depicted in Figure 3.1. compute Q∗(j). Else,
ν(I, J, L)∗(j) = 0

The epidemiological significance of the phenomenon of backward bifurcation is
that the classical requirement of R0 < 1 is, although necessary, no longer sufficient
for disease eradication. In such a scenario, disease elimination would depend on
the initial sizes of the population (state variables) of the model. The presence of
backward bifurcation in TB transmission model (2.2) suggests that the feasibility
of controlling TB when R0 < 1 could be dependent on the initial sizes of the
population. Further, as a consequence, it is instructive to try to determine the
”cause” of the backward bifurcation phenomenon in model system (2.2). The role
of reinfection on backward bifurcation will be investigated.
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3.3 Role of exogenous reinfections

Let us consider the case where there is no exogenous reinfection in the population.
Then, σ1 = σ2 = 0, B2 = B3 = 0 and model system (2.3) means







ẋ = ϕ(x) − ν(I, J, L)(t)x,

ẏ = ν(I, J, L)(t)B1x+Ay,
(3.16)

where ϕ(x), B1, ν(I, J, L) and A are defined as in equation (2.3).

Non-existence of endemic equilibria for R0 ≤ 1

The above model has the same disease-free equilibrium Q0. Apart this equilibrium
state, the model can also have a unique positive endemic equilibrium state. In the
absence of exogenous reinfection σ1 = σ2 = 0 (i.e, B2 = B3 = 0), the coefficients
E0, E1, E2, E3, E4, E5 and E5 in equation (3.15) reduce to

E6 = E5 = E4 = E3 = 0, E2 = 1− g0, E1 = µ+ (µ(1−R01)− ΛR02)(1− g0),
E0 = µ2(1−R0).

In this case, the force of infection at the steady state satisfies the quadratic equation

E2(ν
∗)2 + E1ν

∗ + E0 = 0. (3.17)

It is worth noting that the coefficient E0 is positive if R0 is less than unity, and
negative if R0 is greater than unity. Thus, the number of possible real roots of
equation (3.17) depends on the signs of E2, E1 and E0. This can be analysed using
again the Descartes Rule of Signs on the polynomial g(ν∗) = E2(ν

∗)2 +E1ν
∗ +E0.

From the equality ν(I, J, L) = β1
I

N
+ β2

L

N
+ β3J , one can deduce that

0 ≤ ν∗ ≤

(

β1 + β2 + β3
Λ

µ

)

.

On other side,

g(0) = E0 = µ2(1−R0),

g
(

β1 + β2 + β3
Λ
µ

)

= µ2(1−R0)

+
(

β1 + β2 + β3
Λ
µ

)(

(1− g0)
(

β1 + β2 + β3
Λ
µ

)

+ µ(1−R01) + (µ− ΛR02)(1− g0)
)

.
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A long but simple calculation proves that 1− g0 > 0, µ−ΛR02 > 0 and 1−R01 > 0

when R0 ≤ 1, and then g

(

β1 + β2 + β3
Λ

µ

)

> 0. It is straightforward to see that

g(0) < 0 when R0 > 1.

The existence of the endemic equilibrium follows from the intermediate value
theorem. Since g(ν∗) is monotone increasing , then g(ν∗) = 0 has only one positive

root in the interval

[

0, β1 + β2 + β3
Λ

µ

]

. Hence, when σ1 = σ2 = 0, no endemic

equilibrium exists whenever R0 ≤ 1. It follows then that, owing to the absence of
multiple endemic equilibria for model system (2.2) with σ1 = σ2 = 0 and R0 ≤ 1, a
backward bifurcation is unlikely model system (2.2) with σ1 = σ2 = 0 and R0 ≤ 1.
The absence of multiple endemic equilibria suggests that the disease-free equilibrium
of model system (2.2) is globally asymptotically stable when R0 < 1.

Global stability of the disease-free equilibrium

We claim the following result about the global stability of the DFE of model
(2.3) whenever σ1 = σ2 = 0.

Theorem 3.3.1. Consider model system (2.2) with σ1 = σ2 = 0. Then, the DFE
is globally asymptotically stable in Ωρ whenever R0 ≤ 1.

Proof: The local stability of Q0 is classic by the result of van den Driessche and
Watmough [157]. Since we are interested in the global asymptotic behavior of model
system (2.3), we will show that there exists T > 0 such that, if R0 < 1, the solutions
of model system (2.3) tend to the DFE Q0 = (S0, 0, 0, 0, 0) when t → ∞, ∀t > T .
Indeed, from the first equation of model system (2.3), one has

Ṡ ≤ Λ− µS. (3.18)

This suggests the linear comparison system:

Ṡ = Λ− µS. (3.19)

The linear comparison system (3.19) has a unique positive equilibrium S0 which is
globally asymptotically stable. By the comparison theorem for cooperative systems,
one has that

lim sup
t→∞

S(t) ≤ lim
t→∞

S(t) = S0. (3.20)

Thus, for any σ > 0, there exists a sufficiently large T > 0 such that S(t) ≤ S0 +σ,
for all t > T .
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Since R0 depend of S0, we set F = F (S0), S
σ
0 = S0 + σ and Fσ = F (Sσ

0 ) =
F (S0+σ) = [F1+(S0+σ)F2]B. Since the spectral radius of FσV

−1 is a continuous
function of σ, we can choose σ as small as possible such that if ρ(FV −1) < 1, so
ρ(FσV

−1) < 1.

Now, since S(t) ≤ S0 + σ for all t > T and
S(t)

N(t)
≤ 1, replacing S(t) by S0 + σ

in model system (2.3), we have the following comparison linear system in E, I, J ,
L and R :


























































Ė = (1− p1 − p2)(β1I + β2L+ β3J(S0 + σ)) + ρJ −A1E,

İ = p1(β1I + β2L+ β3J(S0 + σ)) + δL+ θJ + γR+ h(1 − r1)k −A2I,

J̇ = p2(β1I + β2L+ β3J(S0 + σ)) + (1− h)(1 − r1)k −A3J,

L̇ = αI −A4L,

Ṙ = r2I + ωL−A5R,
(3.21)

Model (3.21) can be written in the following compact form:

ẏ = (Fσ − V ) y, (3.22)

where y is defined as in equation (2.3). Note that y = (0, 0, 0, 0, 0) is the unique
equilibrium of the linear comparison system (3.22) which is globally asymptotically
stable, since it is well known that if s(Fσ−V ) is the stability modulus of the matrix
(Fσ −V ) defined as the maximal real part of the eigenvalues of (Fσ −V ), then from
[157], s(Fσ − V ) < 0 is equivalent to ρ(FσV

−1) < 1. Therefore, all solutions of the
linear comparison system (3.22) converge to the trivial solution y = (0, 0, 0, 0, 0)
when t → ∞, with t > T . It is obvious to see that Fσ − V as the Jacobian
of model system (3.22) is a M-matrix and irreducible. Thus, by the comparison
theorem for monotone dynamical systems [21], we can conclude that the E, I, J,R
components of model system (2.3) also converge to zero when t → ∞, with t > T .
Putting this last zero solution into the first equation of model system (2.3) gives the
linear system (3.19) which admits a unique positive equilibrium S0 which is globally
asymptotically stable. Finally, by the asymptotically autonomous systems theory
[43], we can conclude that the S-component of the solution of system (2.3) converges
to S0. This proves the global asymptotic stability of the DFE Q0 = (S0, 0, 0, 0, 0, 0)
when R0 < 1, and this completes the proof. �

Using various initial conditions and the parameter values as in Table 2.2 , we
performed numerical simulations in order to analyze the stability of the endemic
equilibrium. Figure 3.3 is showing the dynamics of (S) Susceptible population, (E)
Latently infected population, (I) Diagnosed infectious population, (J) Undiagnosed
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infectious population, (L) Lost Sight population and (R) Recovered population.
Figure 3.3 shows simulation results converging to the disease free equilibrium of the
model when R0 ≤ 1. All other parameters are as in Table 2.2.
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Figure 3.3: Simulation results of model system (2.2) showing the global asymptotic
stability of the DFE when β3 = 0.2605681 × 10−6 (so that R0 = 0.4424) using
various initial conditions. One can see that after long time of decreasing, TB will
die out in the absence of exogenous reinfection.
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Local stability of the endemic equilibrium

In order to analyze the stability of the endemic equilibrium point, we make use of the
Centre Manifold theory as described by Theorem 4.1 of Castillo-Chavez and Song
[42], stated below (Theorem 3.3.2 for convenience), to establish the local asymptotic
stability of the TB endemic equilibrium in the absence of reinfection.

Theorem 3.3.2. [42]: Consider the following general system of ordinary differen-
tial equations with a parameter φ:

dz

dt
= f(z, φ), f : Rn × R → R and f ∈ C2(Rn,R), (3.23)

where 0 is an equilibrium point of the system (that is, f(0, φ) ≡ 0 for all φ) and
assume

1. A = Dzf(0, 0) =

(

∂fi
∂zj

(0, 0)

)

is the linearization matrix of system (3.23)

around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of
A and other eigenvalues of A have negative real parts;

2. Matrix A has a right eigen-vector u and a left eigen-vector v (each correspond-
ing to the zero eigenvalue).

Let fk be the kth component of f and

a =
n
∑

k,i,j=1

vkuiuj
∂2fk
∂zi∂zj

(0, 0),

b =
n
∑

k,i=1

vkui
∂2fk
∂zi∂φ

(0, 0),

then, the local dynamics of the system around the equilibrium point 0 is totally
determined by the signs of a and b.

1. a > 0, b > 0. When φ < 0 with |φ| ≪ 1, 0 is locally asymptotically stable and
there exists a positive unstable equilibrium; when 0 < φ ≪ 0, 0 is unstable
and there exists a negative, locally asymptotically stable equilibrium;

2. a < 0, b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable; when 0 < φ ≪ 1, 0 is
locally asymptotically stable equilibrium, and there exists a positive unstable
equilibrium;
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3. a > 0, b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable, and there exists a
locally asymptotically stable negative equilibrium; when 0 < φ≪ 1, 0 is stable,
and a positive unstable equilibrium appears;

4. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stabil-
ity from stable to unstable. Correspondingly a negative unstable equilibrium
becomes positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.

Let us first make the following simplification and change of variables. Let x1 =
S, x2 = E, x3 = I, x4 = J , x5 = L and x6 = R so thatN = x1+x2+x3+x4+x5+x6.
Further, by using vector notation x = (x1, x2, x3, x4, x5, x6)

T , the TB model (2.2)
can be written in the form ẋ = f(x), with f = (f1, f2, f3, f4, f5, f6)

T , as follows:











































































x′1 = f1 = Λ− (µ+ ν(I, J, L))x1,

x′2 = f2 = (1− p1 − p2)ν(I, J, L)x1 + ρJ −A1x2,

x′3 = f3 = p1ν(I, J, L)x1 + h(1 − r1)kx2 + δx5 + γx6 −A2x3,

x′4 = f4 = p2ν(I, J, L)x1 + (1− h)(1 − r1)kx2 −A3x4,

x′5 = f5 = αx3 −A4x5,

x′6 = r2x3 + ωx5 −A5x6,

(3.24)

where ν(I, J, L) =
β1x3 + β2x5

x1 + x2 + x3 + x4 + x5 + x6
+β3x4, with A1, A2, A3, A4 and A5

defined as in equation (2.2).

The Jacobian of the system (2.2), at the DFE Q0, for all β
∗
3 is given by

Jβ∗

3
(Q0) =

















−µ 0 −β1 −β̃3 −β2 0

0 −A1 β1(1− p1 − p2) (1− p1 − p2)β̃3 + ρ (1− p1 − p2)β2 0

0 hk(1− r1) p1β1 −A2 p1β̃3 + θ β2p1 + δ γ

0 (1 − h)k(1− r1) p2β1 p2β̃3 −A3 β2p2 0
0 0 α 0 −A4 0
0 0 r2 0 ω −A5

















.

with β̃3 = β3N0.

The reproduction number of the transformed (linearized) model system (3.24)
is the same as that of the original model given by (3.4). Therefore, choosing β3 as
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a bifurcation parameter and solving equation in β3 when R0 = 1, we obtain

β3 = β∗3 =
1−

〈

e1 | (−A
−1)B1

〉

〈N0e′2 | (−A
−1)B1〉

.

where e′2 = (0, 0, 0, 1, 0). It follows that the Jacobian J(Q0) of system (3.24) at the
DFE Q0, with β3 = β∗3 , denoted by Jβ∗

3
has a simple zero eigenvalue (with all other

eigenvalues having negative real parts). Hence, the Centre Manifold theory [38] can
be used to analyse the dynamics of the model (3.24). Now, the theorem 3.3.2 (cf.
[42], can be used to show that the unique endemic equilibrium of the model (3.24)
(or, equivalently, (2.2)) is locally asymptotically stable for R0 near 1.

Eigenvectors of Jβ∗

3
: For the case when R0 = 1, it can be shown that the

Jacobian of system (3.24) at β3 = β∗3 (denoted by Jβ∗

3
) has a right eigenvector

(corresponding to the zero eigenvalue), given by U = (u1, u2, u3, u4, u5, u6)
T , where,

u1 = −
1

µ

((

β1 + β2
B4

C4

)

u3 + β̃3u4

)

< 0,

u2 =
1

A1

(

(1− p1 − p2)

(

β1 +
β2α

A4

)

+ (β̃3(1− p1 − p2) + ρ)
B4

C4

)

u3 > 0, u3 = u3 > 0,

u4 =
B4

C4
u3 > 0, u5 =

α

A4
u3 > 0, and u6 =

r2A4 + ωα

A4A5
u3 > 0

(3.25)

with B4 =

[

p2 + (1− p1 − p2)
(1− h)k(1 − r1)

A1

](

β1 +
β2α

A4

)

and C4 = A3 −

(

β̃3p2 +
β̃3(1− p1 − p2) + ρ

A1
(1− h)(1 − r1)k

)

.

Similarly, the components of the left eigenvectors of Jβ∗ (corresponding to the
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zero eigenvalue), denoted by V = (v1, v2, v3, v4, v5, v6)
T , are given by,

v1 = 0, v2 =
h(1 − r1)k

A1
v3 +

(1− h)(1 − r1)k

A1
v4, v3 = v3 > 0,

v4 =
(θ + β̃3p1)A1 + h(1− r1)k(ρ+ β̃3(1− p1 − p2))

β̃3((1− h)(1 − r1)k((1 − p1 − p2) + ρ) + p2A1) +A1A3

v3 > 0,

v5 =

(

(1− p1 − p2)
β2
A4

h(1− r1)k

A1
+
β2p1N0 + δ

A4

)

v3

+

(

β2(1− p1 − p2)

A4

(1− h)(1 − r1)k

A1
+
β2p2
A4

)

v4 > 0,

and v6 =
γ

A5
v3 > 0

(3.26)

Computation of b: For the sign of b, it can be shown that the associated
non-vanishing partial derivatives of f are

∂2f1
∂x4∂β

∗
3

= −N0,
∂2f2
∂x4∂β

∗
3

= (1− p1 − p2)N0,
∂2f3
∂x4∂β

∗
3

= p1N0,
∂2f3
∂x4∂β

∗
3

= p2N0

Substituting the respective partial derivatives into the expression

b = v2

6
∑

i=1

ui
∂2f2
∂xiβ∗

+ v3

6
∑

i=1

ui
∂2f3
∂xiβ∗

+ v4

6
∑

i=1

ui
∂2f4
∂xiβ∗

,

gives

b = u4N0(v2(1− p1 − p2) + v3p1 + v4p2) > 0. (3.27)

Computation of a: For the system (3.24), the associated non-zero partial deriva-
tives of f (at the DFE Q0) are given by

∂2f1
∂x3∂x1

= −
β1
N2

0

,
∂2f1
∂x4∂x1

= −β3,
∂2f1
∂x5∂x1

= −
β2
N2

0

,

∂2f2
∂x3∂x2

= −(1− p1 − p2)
β1
N0

,
∂2f2
∂x5∂x2

= −(1− p1 − p2)
β2
N0

,

∂2f3
∂x2∂x3

= −p1
β1
N0

,
∂2f3
∂x23

= −2p1
β1
N2

0

,
∂2f3
∂x4∂x3

= −p1
β1
N0

,
∂2f3
∂x5∂x3

= −(β1 + β2)
p1
N0

,

∂2f3
∂x6∂x3

= −p1
β1
N0

,
∂2f4
∂x1∂x4

= β3p2,
∂2f4
∂x3∂x4

= −β1p2
1

N0
,

∂2f4
∂x5∂x4

= −β2p2
1

N0
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Then, it follows that

a = −2

(

v2u2(1− p1 − p2)
1

N0
(u3β1 + u5β2)

)

− 2

(

v3u3p1
1

N0

[

(u2 +
u3
N0

+ u4 + u5 + u6)β1 + β2u5

])

− 2v4u4p2 [−u1β3 + β1u3 + β2u5] ;

so that the bifurcation coefficient a < 0 since u1 < 0. Thus, we have a < 0 and
b > 0. All conditions of Theorem 3.3.2 are satisfied and it should be noted that
we use β∗3 as the bifurcation parameter, in place of φ in Theorem 3.3.2). Thus, it
follows that the endemic equilibrium is locally asymptotically stable.

Figure 3.4 shows time series of (S) susceptible individuals, (E) latently infected
individuals, (I) diagnosed infectious, (J) undiagnosed infectious, (L) lost sight and
(R) recovered individuals using various initial values when all parameters are defined
as in Table 2.2 and β3 = 1.2633563E−06 (so that R0 = 1.6079). In figure 3.4, we
used various initial states to see numerically the impact of varying initial values on
the stability of the endemic equilibrium. The results obtained illustrate the local
stability of the endemic equilibrium as presented in Theorem 3.3.2. The backward
bifurcation appears when there is coexistence of a disease free equilibrium and
an endemic equilibrium when R0 is less than unity. Analysis of the backward
bifurcation shows that with data from Cameroon, as estimated in the previous
chapter, there is not backward bifurcation. Through numerical analysis, we have
also observed that reach a disease free equilibrium, will take more decades than meet
the endemic equilibrium point, because some latently infected individuals might not
develop the disease over their life time.
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Figure 3.4: Time series of model system (2.2) presenting the local stability of the
endemic equilibrium for various initial conditions when β3 = 1.2633563 × 10−06,
σ1 = σ2 = 0 (so that R0 = 1.6079).



Chapter 4

Impact of Education

Despite the development of many effective treatments over the past half century,
TB remains one of the most destructive diseases. Identifying strategies of fighting
TB abides a global task which involves all levels of government and public health
officials around the world.

Mathematical analysis can provide valuable information about how to control
infectious disease outbreaks best. One issue of really practical concern, for which
mathematical modelling may provide promising insights, is in determining the best
distribution of limited resources during an outbreak. Commonly, in preparation for
an outbreak, a fixed amount of vaccine and other drugs are stockpiled, besides the
allocation of a certain amount of funds for other control measures such as isolation,
quarantine or education. Once the epidemic starts, the goal is then to optimally
administer these resources given that their supply is limited.

Some past models of TB have discussed control of the disease by looking at the
role of disease transmission parameters for time dependent control strategies. The
time dependent control strategies have been applied for the studies of HIV models
[74, 102], two strain tuberculosis models (see [96]), a TB model with lost sight class
to reduce the rate by what people become lost sight [69], and SARS model with
quarantine (cf. [172]). Some authors (see [83, 128]) discussed the optimal control
on a model with reinfection. A tuberculosis model which incorporates treatment of
infectives and chemoprophylaxis is considered together with time dependent optimal
controls on treatment, chemoprophylaxis and disease relapses are incorporated to
reduce the latently infected and actively infected individual populations (cf. [2]). In
their recent article, Silva and Torres [150] studied the time optimal way to fight TB
in Angola. Approaches of studying control strategies produce valuable theoretical
results which suggest or design epidemic control programs. Depending on a chosen

89
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goal, various objective criteria may be adopted.

As we studied in the previous chapters the key role of undiagnosed infectious
and lost sight infectious populations on the disease transmission, our goal here is to
minimize the number of people who are undiagnosed infectious, lost sight, thus also
the number of people who die due to the infection. The number of TB new-cases,
even if the success rate of treatment remains the same will decrease implicitly. In
this chapter, we find out the optimal way to minimize the cost of TB on the model,
calibrated with Cameroonian parameters. By cost of TB, one means the expenses
needed by the government to fight TB compared to expenses of the government
without strategy of fight TB when it remains a public health problem. Two con-
trol strategies will therefore be studied. The first one consists of education of the
population about TB symptoms and large scale diagnosis campaigns. Through ed-
ucation, one can reduce the number of undiagnosed infectious people inside the
population. Using the combined effect of education and free of charge treatment,
one can first reduce the number of people infected in the population, make return
people who have forsaken the treatment to the hospital and accelerate the detection
of infected people who would stay to be treated naturally or through self-medication
and traditional medicine. A proportion of them will die without good treatment.
According to FAO, less than 73% of the Cameroonian population goes to the hos-
pital after first disease symptoms. Because of the inaccessibility of certain regions
of the country, access to health facilities is often difficult. Besides treatment fa-
cilities, some rural and even urban population prefer sometimes to use traditional
medicine or self-medication for which the efficiency has not been established yet for
TB. An increase in the treatment access should help to reduce the lost sight and
undiagnosed classes. The immediate consequence will be a reduction in the number
of infectious and then, on the number of diagnosed infectious.

The second TB control approach is the chemoprophylaxis treatment. According
to the National Committee of Fight against TB (NCFT), the chemoprophylaxis is
not practiced in Cameroon. The number of latently infected individuals that may
develop an active TB will decrease if the chemoprophylaxis is practiced. We will
see the impact of both strategies on the dynamics of TB. We intend to determine
optimal control strategies that minimize not only undiagnosed infectious but also
lost-sight and diagnosed infectious individuals which are the source of TB spread.
We completely characterize the optimal controls and compute a numerical solution
of the optimality system via analytic continuation.
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4.1 Economic impact of tuberculosis

Adult mortality has a significant effect on national economies, through both the
direct loss of productivity among those of working age and by altering fertility,
incentives for risk-taking behavior, and investment in human and physical capital
[110]. TB is the most important cause of adult death due to infectious disease
after HIV/AIDS. TB has its greatest impact on adults between the ages of 15
and 59 [130]. So, the social and economic burden of TB is great because the
most economically productive persons in society, parents on whom development
and survival of children depend, are affected. TB places an extraordinary burden
on those afflicted by the disease, their families, communities and on government
budgets. In fact, the greatest burden of TB falls on productive adults who, once
infected, are weakened and often unable to work. The burden of taking care of
sick individuals usually falls to other family members and, besides putting them at
greater risk of infection, can lower their productivity [110]. Diagnosed individuals
with TB are often medically quarantined for a period of time, which can affect
their financial well-being. The infected population have an economic impact on
their families and in turn their countries’ national economies through their inability
to contribute financially, as they are often unable to be productive workers. Along
with loss of productivity, the TB treatment charge can be significant. Average
household spending on TB can account for as much as 8 − 20 percent of annual
household income, varying by region [66, 147].

Tuberculosis is most prevalent in developing nations and often coincides with
malaria prevalence and HIV/AIDS. As an opportunistic disease, TB easily seats
itself in carriers with weakened immune systems. These correlations of infection
translate into weaker economic systems for those countries with a dense population
of infected individuals. Taking into account some national characteristics Grimard
and Harling [79] found that countries with a lower TB burden grew faster than
those which were more heavily afflicted. Although tests of robustness suggest that
some of this effect may be due to reverse causality, there remains a persistent effect
of between 0.2 and 0.4 percent lower growth for every 10 percent higher incidence of
tuberculosis. This corresponds to an annual loss of between US$ 1.4 and 2.8 billion
in economic growth worldwide.

Few studies have looked at gender differentials in duration of incapacity from
tuberculosis, quality of care given to TB patients, or the impact of tuberculosis on
domestic work, social activities and personal life [90]. The economical influence of
mortality of the population in their most productive age have been focused in some
publication.

Yamano and Jayne (see [171]) found that an adult death and associated funeral
expenses reduce purchases of agricultural inputs, such as farm animals and fertilizer,
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and jeopardize agricultural production. Larson et al. [107] carried out a study of the
effects of adult mortality on small farmers engaged in cotton and maize production
in Zambia and found that an adult death resulted in a decline in crop output of
roughly 15 percent. In addition, some other studies found that the effect of adult
mortality is greatest on households that were relatively poor, in part because they
are less able to cope with unanticipated events [11]. Besides these studies, some
others have shown that adult mortality has a deterrent effect on the acquisition of
human capital (cf. [97]). Individuals may be less willing to get a higher education
or make investments that pay off in the longer term, especially those that cannot
be transferred to future generations in the same way as financial investments, if
there is a greater risk that they may not be around to enjoy the returns of that
investment (see, [110]).

4.2 Modelling intervention methods

TB is spread through the air from an infectious person to a susceptible person. Two
kinds of tests are used to determine if a person has been infected with TB bacteria:
the tuberculin skin test and TB blood analysis. A positive TB skin test or TB blood
test only tells that a person has been infected with TB bacteria and does not tell
whether the person has latent TB infection or has progressed to TB disease [127].
Other tests, such as a chest X-ray and a sample of sputum, are needed to see whether
the person has TB disease. Several TB treatment and prevention options are carried
out in some rural and urban hospitals in Cameroon. Thus, the treatment of mild
infections, classified as latent infections in our model, is not effective in Cameroon.
On the other hand, infective individuals classed as infectious in our model, require
a hard treatment of six months in the hospital. As preventive measures, population
can be diagnosed, and latent TB infections can be treated to reduce the bacterial
load in their body. This approach largely truncates the risk that TB infection will
progress to TB disease. Certain groups are at very high risk of developing TB
disease once infected. Every effort should be made to begin appropriate treatment
and to ensure completion of the entire course of treatment for latent TB infection
(cf. [127]). Controls are represented as functions of time and assigned reasonable
upper and lower bounds. First, u(t) represents the effort on education which allows
people to go to the hospital, to be diagnosed fast and treated from the disease (to
reduce the number of individuals that may be undiagnosed infectious). Second, v(t)
measures the rate of treatment of TB latent infections in each time period. The
whole model flow diagram with control is shown in Figure 4.1.

The flow diagram Figure 4.1 yields the following differential equations: Using the
same parameter and class names as in the model (2.2), we suggested the following
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ρ
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Figure 4.1: Transfer diagram for a transmission dynamics of tuberculosis.

ODEs system (4.1) describing the model with controls.
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Ṡ = Λ− ν(I, J, L)S − µS,

Ė = (1− p1 − p2)ν(I, J, L)S + ρJ + σ2ν(I, J, L)R

− σ1(1− r1 − v(t))ν(I, J, L)E −A1E,

İ = (p1 + p2u(t))ν(I, J, L)S + (1 + u(t))δL + (1 + u(t))θJ + γR

+ h(1 − r1 − v(t))(k + σ1λT )E −A2(t)I,

J̇ = p2(1− u(t))ν(I, J, L)S + (1− h)(1 − r1 − v(t))(k + σ1λT )E −A3J,

L̇ = α(1 − u(t))I −A4L,

Ṙ = r2I + ωL− σ2ν(I, J, L)R −A5R,
(4.1)

where

A1(t) = µ+ k(1− r1 − v(t)), A2 = µ+ d1 + r2 + α(1 − u(t)),

A3(t) = µ+ d2 + θ(1 + u(t)) + ρ, A4 = µ+ d3 + δ(1 + u(t)) and A5 = γ + µ.

subject to the initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, J(0) = J0, L(0) = L0 R(0) = R0.
(4.2)

The control functions u(t) and v(t) have to be bounded and Lebesgue integrable
functions. u(t) represents supplementary time dependent efforts of education cam-
paigns, applied during a time interval [0, T ] to the whole population. The control
function v(t) measures the time dependent efforts on the preventive treatment of
latently infected individuals to reduce the number of individuals that may be in-
fectious. This control will have an impact on the output flow of people from the
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latently infected class to infectious classes. The coefficient 1 − u(t) is a decreasing
factor for fast route flow to undiagnosed as result of education. This factor aims to
reduce the number of people becoming fast undiagnosed infectious and developing
cavitation. The coefficient v(t) represents the effort that prevents the inflow to
the undiagnosed infectious classes to reduce the number of undiagnosed individu-
als developing cavitation. Our control problem involves the number of individuals
with latent and active tuberculosis infections and the cost of applying chemopro-
phylaxis education and treatment controls u(t) and v(t) to be minimized subject to
the differential Eqs. (4.1).

Note that in equation (4.1) the control u(t) moves infectious individuals from
classes J and L to class I and decreases the evolution to J and L classes. However,
the control v(t) reduces the progression rate from the latently infected class to the
infectious classes. Since treatment effectively decreases the number of infectious
individuals in the population, the control functions may provide a model of the
impact of education and chemoprophylaxis in addition to medical treatments of
TB.

4.3 Analysis of the optimal control problem

A successful TB mitigation strategy is one which reduces TB-related deaths with
minimal cost. This performance specification involves the numbers of individuals
with latent and active infections respectively, as well as the cost for applying educa-
tion control (u) and chemoprophylaxis control (v) in individuals with tuberculosis.
Thus, our goal is to solve the following problem: given initial population sizes of
all six classes, S0, E0, I0, J0, L0 and R0 find the best strategy in terms of efforts
of education or chemoprophylaxis or both, that would minimize the number of peo-
ple who die from the infection while at the same time minimizing the cost of the
strategy. There are various ways of expressing such a goal mathematically.

Formulation

In this work, for a fixed terminal time T , we consider the following objective. Thus,
we seek to minimize the objective functional
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Parameters Value Source

B1 3000.00 USD per human death [121]
B2 563.00 USD per person treatment [78]
C1 200000 USD per proportion of effort Assumed

to educated people
C2 200000 USD per logarithmic of the proportion of Assumed

people to educate
D1 250000 USD per proportion of people Assumed

treated by chemoprophylaxis
D2 250000 USD per logarithmic of level of Assumed

chemoprophylaxis to implement
D3 5 per unity of distance between y(T ) and E0 Assumed

Table 4.1: Numerical values for the cost functional parameters.

J(u, v) =

∫ T

0
{B1(d1I(t) + d2J(t) + d3L(t)) +B2I(t) + C1u(t) +D1v(t)

(4.3)

− C2 log(1− u(t))−D2 log(1− v(t))}dt +D3‖y1(T )− y∗‖22.

The constants B1, B2, C1, C2, D1, D2 and D3 have dual roles.On one hand, they
are adjusting coefficients converting the dimension from population number into
cost (in dollars) expended over a finite time period of T years. For the number of
infectious individuals from the model (4.1) are more than hundreds, while u and
v will necessarily lie between 0 and 1, in numerical simulations these constants
are used to place stronger importance on the parameters involving the educational
and chemoprophylaxis efforts. The first sum, multiplied by B1 is the cost of a
death due to TB. The expression multiplied by B2 represents the treatment cost
for diagnosed infectious. The expressions multiplied by C1, C2, D1 and D2 are the
costs of implementation of both controls. In the objective functional, we intend to
minimize also the distance between values at time T of infective classes and the DFE.
D3 is therefore a coefficient which aims to estimate the cost of this supplementary
operation, and the norm is the distance between the steady state and the value of
infective classes at time T . y1(t) = (I(t), J(t), L(t)) is defined as in the general
form (2.3) and y∗ = (0, 0, 0). All other final values are supposed to be unrestricted.
Parameter values and description are inventoried in Table 4.1.

Parameters values C1, C2, D1 and D2 are cost to apply a strategy on the whole
population. It has to be proportional to the total population when parameters B1

and B2 are only the cost for one person person.

The logarithmic expressions of the controls are included to model the poten-
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tially non-linear costs at high educational and chemoprophylaxis levels. (See also
[95, 96, 148, 121]). Education about TB, diagnosis campaigns and chemoprophylaxis
are viewed as a nonlinear function since the implementation of any public health
intervention does not have a linear cost, but rather there are increasing costs with
reaching higher fractions of the population. The logarithm is a concave nonlinear
function and therefore is used for education and chemoprophylaxis controls. Since
the proportion of educated people will hardly achieve 1, the cost function is pre-
sumed to go to infinity when u and v are close to 1. While including the logarithmic
expression, the upper-bound is more needed for the control functions. The remain-
ing term in our objective functional seeks to increase the expenses of education
when most of the population has already been educated or received chemoprophy-
laxis. The motivation of the logarithm is the fact that in a practical point of view,
it is not possible to reach 100% of the population educated. The set of admissible
controls is defined as follows.

Γ =
{

u, v ∈ L1(0, T )|(u(t), v(t)) ∈ [0, um]× [0, vm] ∀t ∈ [0, T ]
}

(4.4)

Thus, we seek an optimal control pair (u∗, v∗) such that

J(u∗, v∗) = min
Γ
J(u, v). (4.5)

4.3.1 Existence of an optimal control solution

Let us consider an optimal control problem having the form

J(u, v) =

∫ T

0
g(t, y(t), u(t), v(t))dt + ‖y(T )− y∗‖ −→ min

(u,v)
(4.6)

subject to
{

ẏ = f(t, y(t), u(t), v(t)),
y(t0) = y0.

where y = (S,E, I, J, L,R) and f is the right hand side of system (4.1). We analyze
sufficient conditions for the existence of a solution to the optimal control problem
(4.6).

Theorem 4.3.1. There exists an optimal control pair (u∗(t), v∗(t)), and corre-
sponding solution S∗, E∗, I∗, J∗, L∗, R∗ to the state initial value problem (2.2)
that minimizes J(u, v) over Γ.

Proof : We refer to the conditions in Theorem III.4.1 and its corresponding
corollary in [75]. The requirements there on the set of admissible controls and on
the set of end conditions presented in Theorem 1.4.2 are clearly met here. The
following nontrivial requirements from Fleming and Rishel’s theorem are listed and
verified below:
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A- The set of all solutions to system (4.1) with corresponding control functions in
Γ (as given in equation (4.4)) is nonempty.

B- The state system can be written as a linear function of the control variables
with coefficients dependent on time and the state variables.

C- The integrand g in equation (4.6) is convex with respect to parameters u and v
and additionally fulfills

g(t, S,E, I, J, L,R, u, v) ≥ c1 | (u, v) |
τ −c2,

where c1 > 0 and τ > 1.

In order to establish condition A, we refer to Theorem 3.1 by Picard-Lindelöf (cf.
[50, 54]). If the solutions of the state equations are a priori bounded and if the
state equations are continuous and Lipschitz-continuous in the state variables, then
there is a unique solution corresponding to every admissible control pair in Γ.

With the bounds in equation (2.5), it follows that the state system is continuous
and bounded. It is also straightforward to show the boundedness of the partial
derivatives with respect to the state variables in the state system, which establishes
that the system is Lipschitz-continuous with respect to the state variables (see [49],
page 248). This completes the proof, thus condition A holds.

Condition B is verified by observing the linear dependence of the state equations
on controls u and v as presented in theorem 1.4.2.

Finally, to verify condition C we note that the integrand g of the objective
functional is clearly convex in the controls. To prove the bound on g we note that
by the definition of u and v, we have C1u

2 ≤ C1u ≤ C1, and thus, C1u
2 − C1 ≤

C1u− C1 ≤ 0; therefore,

g(t, S,E, I, J, L,R, u, v) = B1(d1I(t) + d2J(t) + d3L(t)) +B2I(t) + C1u(t) +D1v(t)

− C2 log(1− u(t))−D2 log(1− v(t))

≥ min(C1,D1)(u+ v)− C1

≥ min(C1,D1)(u
2 + v2)− C1

This completes the proof. �
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4.3.2 Characterization of optimal controls

Let us consider an optimal control problem having the form

J(u, v) =

∫ T

0
g(t, y(t), u(t), v(t))dt + ‖y(T )− y∗‖ −→ min

(u,v)
(4.7)

subject to
{

ẏ = f(t, y(t), u(t), v(t)),
y(t0) = y0,

and constraints

u(t) ≥ 0,

v(t) ≥ 0.

We apply Pontryagin’s Maximum Principle [135] which enables us utilizing costate
functions to transform the optimization problem to the problem of determining the
pointwise minimum relative to u∗ and v∗ of the Hamiltonian. First, we build the
Hamiltonian from the cost functional (4.3) and the controlling dynamics (4.1) to
derive the optimality conditions.

H(t, S,E, I, J, L,R, u, v) = B1(d1I(t) + d2L(t) + d3J(t)) +B2I(t) +C1u(t)

−C2 log(1− u(t)) +D1v(t)−D2 log(1− v(t)) + λ1 (Λ− ν(I, J, L)S − µS)

+λ2 ((1− p1 − p2)ν(I, J, L)S + ρJ + σ2ν(I, J, L)R − σ1(1− r1 − v(t))ν(I, J, L)E −A1E)

+λ3 ((p1 + p2u(t))ν(I, J, L)S + (1 + u(t))δL + (1 + u(t))θJ + γR)

+λ3 (h(1 − r1 − v(t))(k + σ1λT )E −A2(t)I)

+λ4 (p2(1− u(t))ν(I, J, L)S + (1− h)(1− r1 − v(t))(k + σ1λT )E −A3J, )

+λ5 (α(1 − u(t))I −A4L) + λ6 (r2I + ωL− σ2ν(I, J, L)R −A5R)
(4.8)

where the λi, i = 1, · · · , 6 are the associated adjoints for the states S, E, I, J, L
and R. The optimality system of equations is found by taking the appropriate par-
tial derivatives of the Hamiltonian (4.8) with respect to the associated state variable.

The following theorem follows from the maximum principle.

Theorem 4.3.2. Given an optimal control pair (u∗, v∗) and corresponding solutions
to the state system S∗, E∗, I∗, J∗, L∗, R∗, that minimize the objective functional



4.3 Analysis of the optimal control problem 99

(4.3), there exist adjoint variables λ1, λ2, λ3, λ4, λ5, and λ6, satisfying

dλ1
dt

= µλ1 −

(

(β1I + β2L)
N − S

N2
+ β3J

)

× (−λ1 + (1− p1 − p2)λ2 + (p1 + p2u(t))λ3 + p2(1− u(t))λ4) (4.9)

+ (β1I + β2L)
1

N2
[σ1(1− r1 − v(t))E (−λ2 + hλ3 + (1− h)λ4) + σ2R (λ2 − λ6)]

dλ2
dt

= (β1I + β2L)
S

N2
(−λ1 + (1− p1 − p2)λ2 + (p1 + p2u(t))λ3 + p2(1− u(t))λ4)

+ (β1I + β2L)
R

N2
σ2(λ2 − λ6) + µλ2 (4.10)

− (1− r1 − v(t))

[(

(β1I + β2L)
N − E

N2
+ β3J

)

σ1 + k

]

(−λ2 + hλ3 + (1− h)λ4)

dλ3
dt

= −

(

S
β1N − (β1I + β2L)

N2

)

(−λ1 + (1 − p1 − p2)λ2 + (p1 + p2u(t))λ3 + p2(1− u(t))λ4)

−

(

β1N − (β1I + β2L)

N2

)

[σ1(1− r1 − v(t))E (−λ2 + hλ3 + (1− h)λ4) + σ2R (λ2 − λ6)]

+ (µ+ d1)λ3 − r2(λ6 − λ3)− α(1− u)(λ5 − λ3)−B1d1 −B2 (4.11)

dλ4
dt

= −B1d2 −R

(

−
β1I + β2L

N2
+ β3

)

σ2(λ2 − λ6) (4.12)

− S

(

−
(β1I + β2L)

N2
+ β3

)

(−λ1 + (1− p1 − p2)λ2 + (p1 + p2u(t))λ3 + p2(1− u(t))λ4)

−

(

−(β1I + β2L)

N2
+ β3

)

Eσ1(1 − r1 − v(t))(−λ2 + hλ3 + (1− h)λ4)

− ρ(λ2 − λ4) + (µ+ d2)λ4 − θ(1 + u(t))(λ3 − λ4)

dλ5
dt

= −

(

S
β2N − (β1I + β2L)

N2

)

(−λ1 + (1 − p1 − p2)λ2 + (p1 + p2u(t))λ3 + p2(1− u(t))λ4)

−

(

β2N − (β1I + β2L)

N2

)

[σ1(1− r1 − v(t))E (−λ2 + hλ3 + (1− h)λ4) + σ2R (λ2 − λ6)]

+ (µ+ d3)λ5 − δ(1 + u(t))(λ3 − λ5)− ω(λ6 − λ5)−B1d3 (4.13)

dλ6
dt

=
S(β1I + β2L)

N2
(−λ1 + (1− p1 − p2)λ2 + (p1 + p2u(t))λ3 + p2(1− u(t))λ4)

−

(

(β1I + β2L)
N −R

N2
+ β3J

)

σ2(λ2 − λ6) + µλ6 − γ(λ3 − λ6) (4.14)

+
E(β1I + β2L)

N2
σ1(1− r1 − v(t))(−λ2 + hλ3 + (1− h)λ4)
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with terminal conditions

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 2D3(I(T )− I0),

λ4(T ) = 2D3(J(T )− J0), λ5(T ) = 2D3(L(T )− L0), λ6(T ) = 0.
(4.15)

Furthermore, we may characterize the optimal pair by the piecewise continuous
functions

u∗ = max

(

0, 1 +
C2

C1 + (ν(I, J, L)Sp2 + θJ)(λ3 − λ4) + (δL+ αI)(λ3 − λ5)

)

,

v∗ = max

(

0, 1 +
D2

D1 − (σ1ν(I, J, L) + k)E(−λ2 + hλ3 + (1− h)λ4)

)

. (4.16)

Proof : The result follows from a direct application of a version of Pontryagin’s
Maximum Principle for bounded controls (cf. [111]). The differential equations
governing the adjoint variables are obtained by differentiation of the Hamiltonian
function (4.8), evaluated at the optimal control. Then the adjoint system can be
written as dictated by the Maximum Principle, by the equations

dλ1
dt

= −
∂H

∂S
, λ1(T ) = 0,

dλ2
dt

= −
∂H

∂E
, λ2(T ) = 0,

dλ3
dt

= −
∂H

∂I
, λ3(T ) = 2D3(I(T ) − I0),

dλ4
dt

= −
∂H

∂J
, λ4(T ) = 2D3(J(T ) − J0),

dλ5
dt

= −
∂H

∂L
, λ5(T ) = 2D3(L(T )− L0),

dλ6
dt

= −
∂H

∂R
, λ6(T ) = 0,

evaluated at the optimal control pair (u∗, v∗) and corresponding states. This results
in the stated adjoint system (4.9)-(4.14).

Finally, the optimality conditions dictate that,

∂H

∂u
=
∂H

∂v
= 0, (4.17)

for the optimal pair (u∗, v∗), on the interior of the control set, and this condi-
tion is simplified in equations (4.16) with special attention on control arguments
involving the bounds on the controls as defined with Γ in equation (4.4).

Note that as a result of the terminal condition, the optimal education and treat-
ment will not necessarily be zero at the end time. �
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One observes that by the characterization of the controls given in (4.16), the
controls are not necessarily time C1. The optimality system is defined as the com-
bination of the state equations (4.1), the initial conditions, the adjoint equations
(4.9-4.14), and the terminal conditions, with the optimality equations (4.16) sub-
stituted into the state and adjoint equations.

A restriction on the length of the interval may guarantee the uniqueness of the
optimality system. Next, we will discuss the numerical solutions of the optimality
system and the corresponding best control pairs, the parameter choices, and the
interpretations for various cases.

4.4 Numerical simulation of optimal controls

In this section, we study numerically an optimal educational and chemoprophylaxis
treatment strategies of our TB model. The optimal educational and chemoprophy-
laxis strategies are obtained by solving the optimality system, consisting of 12 ODEs
from the state and adjoint equations above. An iterative method is used for solving
the optimality system. We start solving the state equations with a guess for the
controls over the simulated time using a forward Runge-Kutta scheme. The state
system with an initial guess is solved forward in time and then the adjoint system is
solved backward by a backward Runge-Kutta scheme, using the the transversality
conditions (1.31). Note that, since the model is not stiff, a number of numeri-
cal scheme for ODEs in the literature may solve forward as well as backward the
optimality problem. From model (4.1), we generated the state values of different
epidemiological classes for the year 2015 using data in Tables 2.2 and 4.1. The initial
values are thus defined as S0 = 4950585, E0 = 15594821, I0 = 21392, J0 = 13009,
L0 = 3723, R0 = 139455 and N0 = 20722985. These initial population sizes will be
used throughout the rest of this chapter. Throughout the iterations, a lower bound
u = 0 will be keep for the control through a projection of u and v on the interval
[0, um]× [0, vm] where um = vm = 1.

Step size. A good ODE integrator as well as a good optimal control update
should exert some adaptive control over its own progress, making frequent changes
in its step-size. Usually the purpose of this adaptive step-size control is to achieve
some predetermined accuracy in the solution with minimum computational effort.
Implementation of adaptive step-size control requires that the stepping algorithm
return information about its performance, most important, an estimate of its trun-
cation error. Obviously, the calculation of this information will add to the com-
putational overhead, but the investment will generally be repaid. In this work, an
adaptive step-size implemented in the software Dopri5 will be used to solve forward
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the states equations and backward the adjoint equations. The control at the end
of each iteration have been chosen to be updated through a convex combination

uk = (uk−1+u∗)
2 of the previous control uk−1 and the value from the characteri-

zations u∗ in equation (4.16). The same type of convex combination is used for

the second control function v update (vk = (vk−1+v∗)
2 ). This convex combination

have been used several time in the literature to implement the FBSM [114, 111].
This choice does not make the program faster, but it have been made because the
convergence to the optimal solution for this model, happened fast (after less than
2 minutes of computation). For the control update presented above, it is possi-
ble to include an adaptive step-size. However, for the sake of simplicity and and
because the convergence of the FBSM is relatively fast, we chose a fixed control
update. However, time points chosen by adaptive step-size control generally do not
agree with discretization points of the controls. This problem make the accuracy
very fragile. To solve, we use an integrator with dense output. It constructs an
interpolation polynomial based on the available solution such that accuracy is not
destroyed. Dopri5 includes a dense output.

Stopping criteria. The optimal control iterations continue until convergence
is achieved. Convergence is achieved when the relative errors between all of the
state variables, the adjoint functions or the control functions are less than a defined
value δ. One should have

min
i

‖xki − xk−1
i ‖

‖xki ‖
< δ

where xi is either a state variable, the adjoint function or the control. The value
δ = 0.0001 will be considered in this numerical simulation.

In the following Paragraph, the optimal educational schedule will be first de-
termined, then the chemoprophylaxis only will be simulated, a numerical schedule
for both strategies will be computed, and finally, the sensitivity of the optimal con-
trol will be analyzed with respect to some model and cost functional parameters.
Parameter values are defined in Table 2.2 and data in Table 4.1 will be divided by
10000 in order to have good values for the adjoint Hamiltonian.

4.4.1 Optimal educational strategy

Let us first focus on the optimal educational strategy for the population of Cameroon.
We performed numerical simulations using the FBSM, D1 = D2 = 0 without v.
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Then, the optimal control problem is defined by

J(u, v) =

∫ T

0
g(t, y(t), u(t))dt + ‖y(T )− y∗‖ −→ min

u
(4.18)

subject to
{

ẏ = f(t, y(t), u(t)),
y(t0) = y0.

where y = (S,E, I, J, L,R),

g(t, y, u) = B1(d1I(t) + d2J(t) + d3L(t)) +B2I(t) + C1u(t)− C2 log(1− u(t))

and f the right hand side of system (4.1).

Graphs in Figure 4.2 show a time optimal educational schedule for T = 10 years.
In that Figure (S), (E), (I), (J), and (R) stand for susceptible, latently infected,
diagnosed infectious, undiagnosed infectious, lost sight and recovered population
when (u) is the effort in educating the population. It appears that the disease
burden will indeed decrease due to the influence of education u. A closer look
on Figure 4.2 (J), (E) and (L) reveals that the number of undiagnosed infectious,
latently infected and lost sight will plummet as soon as the education campaign will
be applied. Obviously, education strategy only can help to reduce the the number
of undiagnosed infectious (J), lost sight (L), and latently infected (E) in 10 years.

Figure 4.2 (I) reveals an increase of the number of diagnosed infectious (I) for
one year as result of the campaign. After one year, the number of undiagnosed
infectious will drop and be less than the expected number after 3 years for an
effort of 95% in education. As a result of the decrease of the number of infectious,
the susceptible population will increase and the recovered population will decrease
(Figure 4.2 (S) and (R)) . The control function in Figure 4.2 (u) is continuous and
decreasing with respect to time.

Figure 4.3 illustrates the convergence of the FBSM throughout the iterations
when only education is applied in the population. From the Figure, one can see
that at the end of the iterations, the norm of the Hamiltonian’s gradient goes very
close to 0.
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Figure 4.2: Simulations of the TB model (4.1) showing the effect of optimal ed-
ucational and treatment rates against constant chemoprophylaxis and treatment
rates on the infected population. In this Figure (S), (E), (I), (J), and (R) stand
for susceptible, latently infected, diagnosed infectious, undiagnosed infectious, lost
sight and recovered population when (u) is the effort in educating the population.
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Figure 4.3: Evolution of the norm of the Hamiltonian’s gradient throughout itera-
tions corresponding to the educational only optimal strategy.

4.4.2 Optimal chemoprophylaxis strategy

In this Section, we consider the case where only chemoprophylaxis strategy is carried
out on the population, without any educational strategy. Numerical simulations of
the optimality problem have been performed to find the optimal chemoprophylaxis
schedule when there is not upper-bound for control functions In fact, the upper-
bound is regulated by the logarithm included in the objective functional. In Figure
4.2, model parameters are defined as in Table 2.2. We set C1 = C2 = 0 and we set
u = 0 in system 4.1. The corresponding cost function is defined by

Jv(v) =

∫ T

0
{B1(d1I(t) + d2J(t) + d3L(t)) +B2I(t) +D1v(t)−D2 log(1− v(t))}dt

(4.19)

+ D3‖y(T )− y∗‖2.
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Figure 4.4 presents the numerical results of a chemoprophylaxis optimal control on
the dynamics of tuberculosis in T = 10 years.

Figure 4.4, reveals that the population of infectious will drop for five years, but
then, increase again. The reverse effect will be observed for the susceptible popu-
lation. It increases for five years, then decreases again. The results in Figure 4.4
reveal that chemoprophylaxis of latently infected population will delay the prop-
agation of TB, but cannot eradicate the disease. The chemoprophylaxis strategy
will downgrade the number of infected population by more than 30 percent during
the 10 years of optimal control. The fact is that chemoprophylaxis does not refine
the contact between infectious and susceptible population, but only minimizes the
evolution to the disease for the latently infected population. In the presence of fast
progression, this strategy obviously can not lead to a satisfactory way for reducing
TB if applied without further efforts.

Similarly to Figure 4.3, an analysis of the Hamiltonian can reveal the conver-
gence of the FBSM. This analysis can be performed in a similar way to Figure 4.3,
to illustrate how the norm of the Hamiltonian’s gradient goes to 0 with respect to
iterations.

4.4.3 Optimal education and chemoprophylaxis

Let us find now the optimal schedule for both education and chemoprophylaxis on
the population using data from Cameroon. In this case, we use parameter values
of Table 4.1. For the Figures presented here, we assume that the weight factor C1

associated with control u is smaller than D1 which is associated with control v. This
assumption is based on following facts: the cost associated with chemoprophylaxis
v will include the cost of screening and treatment programs, and the cost associated
with u including those of educating people about the TB diagnosis in the hospital
or sending people to watch the patients to finish their treatment. Treating an
infectious TB individual takes longer (by several months) than treating a latent TB
individual [96]. In the subsequent, we used the objective functional

J1(u, v) =

∫ T

0
{B1(d1I(t) + d2J(t) + d3L(t)) +B2I(t)}dt +D3‖y(T )− y∗‖2

(4.20)

+

T
∫

0

C1u(t)− C2 log(1− u(t)) +D1v(t)−D2 log(1− v(t)).

One can generate several educational and diagnosed schedules for various time pe-
riods. In Figure 4.5, we illustrate a case for a T = 10-years treatment schedule.
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Figure 4.4: Simulations of the TB model (4.1) showing the effect of optimal chemo-
prophylaxis and treatment rates against constant education and treatment rates on
the infected population. In this Figure (S), (E), (I), (J), and (R) stand for suscep-
tible, latently infected, diagnosed infectious, undiagnosed infectious, lost sight and
recovered population when (v) is the time dependent effort in chemoprophylaxis.
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In this Figure (S), (E), (I), (J), and (R) stand for susceptible, latently infected,
diagnosed infectious, undiagnosed infectious, lost sight and recovered population
and (v) is the time dependent effort in chemoprophylaxis. To minimize the total
number of TB induced death, the optimal control u decreases during the T = 10
years and v is also decreasing from the upper bound, while the steadily decreasing
value for u is applied over the most of the simulated time, T = 10 years. The
initial conditions used in this case are extracted from numerical simulations of the
model corresponding to year 2015. We can also observe that the model controls are
not differentiable in some points. Combining chemoprophylaxis and education, the
burden of TB can obviously be reduced by 80% in 10 years

The convergence of the FBSM throughout the iterations when both control
strategies are applied have been checked through the Hamiltonian gradient’s norm.
As in Figure 4.3, one have observed that at the end of the iterations, the norm
of the Hamiltonian’s gradient goes is closed to 0. The program stopped after 22
iterations when both control are applied.

4.4.4 Analysis of the optimal control

Impact of the objective functional parameters. The sensitivity of the opti-
mal control with respect to constants such as C1, C2, D1 and D2 is a well known
and recurrent question. In this Paragraph, we compute the optimal control so-
lutions for several values of C1, C2, D1, and D2. Figures 4.6 and 4.6 illustrates
how the optimal control strategies depend on the parameter C1, C2,D1, and D2,
which are the coefficients of the logarithmic and the linear part of the objective
functional defined in equation (4.20). Coefficients D1, and D2 show the influence
of the logarithmic non-linear term on other control parameters. These parameters
values may vary from place to place depending on many factors including living
conditions, culture and amount of money available for the control. In Figure 4.8
the controls u and v are plotted as a function of time for the 6 different values
of C1 = C2 ∈ {1, 21, 41, 61, 81, 101} and D1 = D2 ∈ {1, 21, 41, 61, 81, 101}. Other
parameters are presented in Tables 2.2 and 4.1. Figure 4.6 and 4.7 shows that the
coefficients play a decreasing role on the control while states values remains almost
the same as C1 = C2 = D1 = D2 increases. The values C1 = C2 and D1 = D2

have been chosen to express the particular case where the amount of money for
educational and chemoprophylaxis campaigns are available in different proportion.
Other situations may be computed in the same way.

Figure 4.8 illustrates the convergence of the FBSM throughout the iterations.
One can see that at the end of the iterations, the norm of the Hamiltonian’s gradient
is very close to 0. It comes that that the Hamiltonian is close the minimum. From
Figure 4.8 , it can also be seen that the number of iteration to reach the optimal
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Figure 4.5: Time series of model (4.1) result from optimal education and chemo-
prophylaxis strategies, blue lines, compared with that of no education and chemo-
prophylaxis control strategies (red lines). Susceptible (S), latently infected (E),
diagnosed infectives (I), undiagnosed infectives (J), lost sight (L) and recovered (R)
are pictured. Without education and chemoprophylaxis, the number of infectious
increases little and the number of susceptible decreases little. In the presence of
education and chemoprophylaxis, the opposite effect is observed.
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Figure 4.6: Evolution of model (4.1) result from optimal education and chemo-
prophylaxis strategies, blue lines, compared with that of no education and chemo-
prophylaxis control strategies (red lines). Susceptible (S), latently infected (E),
diagnosed infectives (I), undiagnosed infectives (J), lost sight (L) and recovered (R)
are pictured for C1 = C2 ∈ {1, 11, 21, 31, 41, 51, 61, 71, 81, 91}. Other parameters
are presented in Tables 2.2 and 4.1. One observed a large change on v and v with
the constants.
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Figure 4.7: Evolution of model (4.1) result from optimal education and chemo-
prophylaxis strategies, blue lines, compared with that of no education and chemo-
prophylaxis control strategies (red lines). Susceptible (S), latently infected (E),
diagnosed infectives (I), undiagnosed infectives (J), lost sight (L) and recovered (R)
are pictured for D1 = D2 ∈ {1, 11, 21, 31, 41, 51, 61, 71, 81, 91}. Other parameters
are presented in Tables 2.2 and 4.1. One observed a large change on v and v with
the constants.
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solution changes with the values of the constants.

Impact of the contact rate. In this paragraph, the sensitivity of the opti-
mal control with respect to contact rate β3 is analyzed numerically by comput-
ing the corresponding values of the control function for different values of β3.
In fact, β3 can change resulting from change in ventilation or climate from one
area to others. The purpose of the study is to analyze the impact of the change
of β3 on the optimal control solution. The optimal control solutions for sev-
eral values of β3 is presented in Figure 4.9 for β3 ∈ {1.33563 · 10−6, 11.33563 ·
10−6, 21.33563 × 10−6, 31.33563 · 10−6, 41.33563 · 10−6, 51.33563 · 10−6, 61.33563 ·
10−6, 71.33563 · 10−6, 81.33563 · 10−6, 91.33563 · 10−6, 10.133563 · 10−5}. It appears
that the educational control is highly sensitive to the model parameters for an op-
timal fight of TB in all cases. The chemoprophylaxis control increase slightly with
increasing value of β3.

The convergence of the FBSM throughout the iterations when both control
strategies are applied can be checked through the Hamiltonian gradient’s norm as
in Figure 4.8. The change on β3 does not influence the convergence of the FBSM.

Effect of the initial population size. We analyzed numerically in this Para-
graph, the sensitivity of the optimal control with respect to total initial population
sizes N0 by computing the corresponding values of the control functions for different
values of N0.

The optimal control solutions for several values of N0 are presented in Figure
4.10 for values of N0 presented in 4.1 multiplied by k ∈ {0.5, 1, 1.5, 2, 2.5, 3}. It
appears that the educational control is sensitive to the initial population. The
chemoprophylaxis control increase slightly with increasing value of The initial pop-
ulation size. It appears that the educational optimal control last longer with an
increasing population size. The chemoprophylaxis optimal control doe not change
a lot with the population size.

The convergence of the FBSM throughout the iterations can be checked through
the Hamiltonian gradient’s norm as in Figure 4.8 for different population sizes. The
change on N0 has not influence on the convergence of the FBSM. The number of
iterations to reach the optimal solution does not change with the values of N0.
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Figure 4.8: Evolution of the norm of the Hamiltonian’s gradient with respect to
iterations.
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Figure 4.9: Evolution of model (4.1) result from optimal education and chemo-
prophylaxis strategies, blue lines, compared with that of no education and chemo-
prophylaxis control strategies (red lines). Susceptible (S), latently infected (E),
diagnosed infectives (I), undiagnosed infectives (J), lost sight (L) and recovered (R)
are pictured for β3 ∈ {1.33563 · 10−6, 11.33563 · 10−6, 21.33563 · 10−6, 31.33563 ·
10−6, 41.33563 · 10−6, 51.33563 · 10−6, 61.33563 · 10−6, 71.33563 · 10−6, 81.33563 ·
10−6, 91.33563 · 10−6, 10.133563 · 10−5}. Other parameters are presented in Tables
2.2 and 4.1. One observed a large change on u and v with the constants.
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Figure 4.10: Time series of model (4.1) result from optimal education and chemo-
prophylaxis strategies, blue lines, compared with that of no education and chemo-
prophylaxis control strategies (red lines). Susceptible (S), latently infected (E),
diagnosed infectives (I), undiagnosed infectives (J), lost sight (L) and recovered (R)
are pictured for values of N0 presented in 4.1 multiplied by k ∈ {0.5, 1, 1.5, 2, 2.5, 3}.
Other parameters are presented in Tables 2.2 and 4.1.





Conclusion

This dissertation has presented mathematical and epidemiological insights about the
control of TB in Sub-Saharan Africa countries, concentrating on data of Cameroon.
The present study was designed to examine following questions:

• What is happening with the undiagnosed cases of active TB and lost sight?

• How do these people affect the dynamics of TB in Sub-Saharan Africa?

• Which conditions on the diagnosed rate can ensure the eradication of TB, or
at least minimize its incidence?

• Are the undiagnosed TB-cases undermining the efforts of the DOTS strategy?

• What should be the impact of chemoprophylaxis of TB latently infected on
TB dynamics in Sub-Saharan Africa?

• What is the mathematical and the numerical consequence of adding such
classes?

• What is the optimal chemoprophylaxis and educational strategies to eradicate
TB in Sub-Saharan Africa?

A deterministic mathematical model for the transmission dynamics of TB in the
context of low- and middle-income countries has been built to answer these ques-
tions. Model parameters have been identified in Chapter 2 using the software
POEM/BioParkin. The model has been rigorously analyzed to gain insight into
its qualitative dynamics. Using data from WHO, parameters of the model have
been identified and the model is shown to describe TB dynamic in Cameroon from
1994 to 2010. Many identified parameters of the model are close to values given in
the literature [24, 10]. Using artificial data generated from the model, it is shown
that the number of TB diagnosed, undiagnosed and lost sight dynamics can be re-
duced by 20% and 60% if a small but continuous effort to improve the diagnose rate
and the detection of lost sight infectious is implemented. Optimal control strategies
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based on education of population and chemoprophylaxis of latently infected have
been studied. We have computed and compared two optimal control strategies
for several scenarios. Control programs that follow these strategies can effectively
reduce the number of TB-latent and TB-infectious cases. The optimal control sim-
ulations have shown that education and treatment of TB can plummet the disease
incidence inside the population.

The results of this research support the idea that in sub-Saharan Africa people
must be strongly encouraged to go for TB diagnosis, and the rate of successful
treatment should be correlated with the population of diagnosed infectious. Then,
the population of diagnosed infectious and the numbers of TB-related death-cases
will decrease. The present study, however makes several contributions to TB control
and the role of undiagnosed population and lost sight infectious on the public heath
problem.

A number of caveats need to be noted regarding the present study. The model
developed in this thesis may include in a better way the co-infection between TB
and HIV, TB and malaria, TB and diabetes, impact of some behavior such as al-
cohol and tobacco abuse, and resistances to TB chemotherapy treatment. In fact,
the impact of diseases such as HIV/AIDS and diabetes on TB have been model in
the literature using a different class of co-infected individuals. This allows to study
more precisely the impact of these diseases on the TB dynamics. A new aspect
to improve the study in this thesis may be to develop and analyze a TB model
including HIV/AIDS, diabetes, alcohol and/or tobacco abuse. The mathematical
tools on the controllability and observability theory of non-linear models describing
infectious diseases remain an actual problem, since models for infectious diseases
includes non-linear ODEs. As biologists turn to mathematics to provide a frame-
work for understanding more and more complicated phenomena, it is important
to have as many modelling techniques as possible available for use. Exploring the
mathematical tool behind seasonal behavior of the TB in most countries remains a
challenge. One can also explore how short-term variations in climatic conditions and
extreme weather events can exert direct effects on health response against MTB,
HIV/AIDS and many other diseases (cf. [77]). These results can be used to de-
velop targeted interventions aimed at disease eradication, source of poverty in many
developing countries.
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thesis, Université de Metz, 2003.
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2004.

[80] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields. Applied Mathematical Sciences, Springer-
Verlag, 2002.

[81] K. P. Hadeler and P. van den Driessche. Backward bifurcation in epidemic
control. Math. Biosci., 146:15–35, 1997.

[82] J. K. Hale and H. Kocak. Dynamics and Bifucations. Springer-Verlag New
York, Inc., 1991.

[83] K. Hattaf, M. Rachik, S. Saadi, Y. Tabit, and N. Yousfi. Optimal control
of tuberculosis with exogenous reinfection. Applied Mathematical Sciences,
3(5):231–240, 2009.

[84] J. A. P. Heesterbeek. A brief history of r0 and a recipe for its calculation.
Acta Biotheorica, 50:189–204, 2002.

[85] H. W. Hethcote. Mathematical models for the spread of infectious diseases.
In D. Ludwig and K. L. Cooke, editors, Epidemiology, pages 121–131. SIAM,
Philadephia, 1975.

[86] Herbert W. Hethcote. The mathematics of infectious diseases. SIAM Review,
42:599–653, 2000.

[87] S. Hildebrandt, N. Bagheri, R. Gunawan, H. Mirsky, J. Shoemaker, S. Taylor,
L. Petzold, and F. J. Doyle III. Chapter 10 - systems analysis for systems
biology. pages 249 – 272, 2010.

[88] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge Uni-
versity, Cambridge, 1991.

[89] P.-F. Hsieh and Y. Sibuya. Basic Theory of Ordinary Differential Equations.
Springer-Verlag, New York Inc., 1999.

[90] P. Hudelson. Gender differentials in tuberculosis: The role of socio-economic
and cultural factors. Tubercle and Lung Disease, 77(5):391 – 400, 1996.



126 BIBLIOGRAPHY

[91] N. Hussaini. Mathematical Modelling and Analysis of HIV Transmission Dy-
namics. PhD thesis, Brunel University, West London, 2010.

[92] A. Iggidr, J. C. Kamgang, G. Sallet, and J. J. Tewa. Global analysis of new
malaria intrahost models with a competitive exclusion principle. SIAM J.
App. Math., 1:260–278, 2007.

[93] A. Iggidr, J. Mbang, and G. Sallet. Stability analysis of within-host parasite
models with delays. Math. Biosci., 209:51–75, 2007.

[94] A. Iggidr, J. Mbang, G. Sallet, and J. J. Tewa. Multi-compartment models.
Discrete Contin. Dyn. Syst. Ser. B, 1:506–519, 2007.

[95] H. R. Joshi. Optimal control of an hiv immunology model. Optimal Control
Applications & Methods, 23:199–213, 2002.

[96] E. Jung, S. Lenhart, and Z. Feng. Optimal control of treatments in a two-
strain tuberculosis. Discrete and Continuous Dynamical Systems. Series B,
164:183–201, 2002.

[97] S. Kalemli-Ozcan, H. Ryder, and D. N. Weil. Mortality decline, human capital
investment and economic growth. Journal of Development Economics, 62:1–
23, 2000.

[98] J. C. Kamgang and G. Sallet. Computation of threshold conditions for epi-
demiological models and global stability of the disease-free equilibrium (DFE).
Math Biosci, 213(1):1–12, May 2008.
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Summary

This thesis firstly presents a nonlinear extended deterministic model for the trans-
mission dynamics of tuberculosis, based on realistic assumptions and data collected
from the WHO. This model enables a comprehensive qualitative analysis of various
aspects in the outbreak and control of tuberculosis in Sub-Saharan Africa countries
and successfully reproduces the epidemiology of tuberculosis in Cameroon for the
past (from 1994-2010). Some particular properties of the model and its solution
have been presented using the comparison theorem applied to the theory of differ-
ential equations. The existence and the stability of a disease free equilibrium has
been discussed using the Perron-Frobenius theorem and Metzler stable matrices.

Furthermore, we computed the basic reproduction number, i.e. the number of
cases that one case generates on average over the course of its infectious period. Rig-
orous qualitative analysis of the model reveals that, in contrast to the model without
reinfections, the full model with reinfection exhibits the phenomenon of backward
bifurcation, where a stable disease-free equilibrium coexists with a stable endemic
equilibrium when a certain threshold quantity, known as the basic reproduction
ratio (R0), is less than unity. The global stability of the disease-free equilibrium
has been discussed using the concepts of Lyapunov stability and bifurcation theory.

For a theoretical bifurcation analysis, rather than numerical computations, we
have analyzed some polynomials using the Descartes sign rule. All these theoretical
tools were successfully used within the study of endemic equilibria also besides the
center manifold theory. The models incorporate the critical roles of health care
workers, transmission heterogeneity and super-spreading events.

With the help of a sensitivity analysis using data of Cameroon, we identified the
relevant parameters which play a key role for the transmission and the control of
the disease. This was possible applying sophisticated numerical methods (POEM)
developed at ZIB. Using advanced approaches for optimal control considering the
costs for chemoprophylaxis, treatment and educational campaigns should provide a
framework for designing realistic cost effective strategies with different intervention
methods. The forward-backward sweep method has been used to solve the numerical

133



134 Summary

optimal control problem. The numerical result of the optimal control problem
reveals that combined effort in education and chemoprophylaxis may lead to a
reduction of 80% in the number of infected people in 10 years. The mathematical
and numerical approaches developed in this thesis could be similarly applied in
many other Sub-Saharan countries where TB is a public health problem.



Zusammenfassung

In der vorliegendenen Arbeit wird ein nichtlineares deterministisches Modell für die
Übertragungsdynamik der Tuberkulose basierend auf epidemiologischen Konzepten
und Daten der Weltgesundheitsorganisation (WHO) entwickelt. Das Modell ermöglicht
eine detaillierte qualitative Analyse des Ausbruchs, der Ausbreitung und der Kon-
trolle von Tuberkulose in subsaharischen afrikanischen Ländern und reproduziert
den Verlauf der Tuberkulose-Epidemie in Kamerun von 1994 bis 2010.

Spezielle Eigenschaften des Modells und seiner Lösungen werden mithilfe von
Vergleichssätzen für Differentialgleichungen abgeleitet; Existenz und Stabilität eines
krankheitsfreien Gleichgewichts werden unter Verwendung des Satzes von Perron-
Frobenius und den Eigenschaften von Metzler-Matrizen analysiert. Die globale Sta-
bilität des krankheitsfreien Gleichgewichts wird mittels der Konzepte der Lyapunov-
Stabilität und der Bifurkationstheorie diskutiert.

Die für das Studium des Verlaufs von Infektionsepidemien grundlegende Kennz-
iffer ist die Basisreproduktionszahl, d.h. die Zahl von weiteren Infektionen, die im
Mittel von einem Infizierten während seiner infektiösen Periode verursacht wird.
Die Analyse des Modells zeigt, dass die Berücksichtigung von Reinfektionen zu
einer rückwärtsgerichteten Bifurkation führt, d.h. ein stabiles krankheitsfreies Gle-
ichgewicht koexistiert mit einem stabilen endemischen Gleichgewicht, in dem die
Basisreproduktionszahl kleiner als eins ist.

Die theoretischen Methoden werden zur Untersuchung endemischer Gleichgewicht-
szustände verwendet, ebenso wie die Theorie der Zentrumsmannigfaltigkeiten. Die
Modelle berücksichtigen auch die kritische Rolle des Gesundheitspersonals, die Übertra-
gungsheterogenität und sogenannte âsuper-spreading Eventsâ.

Durch eine Sensitivitätsanalyse mit Hilfe von am ZIB entwickelter Verfahren
(POEM/BioParkin) anhand realer Daten aus Kamerun lassen sich die Modellpa-
rameter identifizieren, die eine Schlüsselrolle für die Übertragung und Kontrolle der
Tuberkulose innehaben.
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136 Summary

Für die Entwicklung wirksamer und kosteneffektiver Strategien zur Bekämp-
fung der Tuberkulose werden Methoden des Optimalsteuerung verwendet. Hier-
bei werden Kosten für Chemoprophylaxe, Behandlung und Aufklärungskampag-
nen berücksichtigt. Zur Lösung der Optimalsteuerungsprobleme wird ein Forward-
Backward-Sweep-Ansatz eingesetzt. Die numerischen Ergebnisse zeigen, dass eine
kombinierte Strategie in Aufklärung und Chemoprophylaxe zu einer Reduktion der
Zahl infizierter Personen um 80% in 10 Jahren führen könnte.

Die mathematischen und numerischen Ansätze, die im Rahmen dieser Arbeit en-
twickelt wurden, könnten auf viele andere subsaharische Länder übertragen werden,
in denen Tuberkulose eines der gröÃten Gesundheitsproblem darstellt.
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Derick, Clarisse, Eric. I am indebted to them for their love and support throughout
the period of my studies.


	List of abbreviations
	Notations
	Introduction
	Mathematical Background
	Introduction to mathematical modelling of tuberculosis
	Non-negatives matrices
	The basic reproduction number
	The next generation method
	Biological interpretation of R0

	Optimal control applied to epidemiological models
	Controlled dynamics
	Necessary condition

	Forward backward sweep method (FBSM)

	Tuberculosis Transmission Model
	Tuberculosis biology
	Suggested model
	Basic properties of the model
	Sensitivity analysis
	Parameter identification from Cameroon's data
	Gauss-Newton method
	Numerical results

	Comparison to measurement data
	Effects of increased access to treatment

	Mathematical Analysis of the TB Model
	Basic reproduction number
	Bifurcation analysis
	Role of exogenous reinfections

	Impact of Education
	Economic impact of tuberculosis
	Modelling intervention methods
	Analysis of the optimal control problem
	Existence of an optimal control solution
	Characterization of optimal controls

	Numerical simulation of optimal controls
	Optimal educational strategy
	Optimal chemoprophylaxis strategy
	Optimal education and chemoprophylaxis
	Analysis of the optimal control


	Conclusion
	Bibliography
	Summary
	Zusammenfassung
	Acknowledgment

