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CHAPTER 1 ABSTRACT FOR THE WHOLE RESEARCH 
Yersinia (Y.) enterocolitica is a zoonotic enteropathogenic bacterium which can cause 
acute gastroenteritis and mesenteric inflammation. The life cycle of Y. enterocolitica 
comprises multiplication in mammalian hosts and survival outside the host. In natural 
environments, it is commonly found in animals, food and the aquatic and terrestrial 
environment. However, the reservoirs and transmission routes of this pathogen are still 
poorly understood. High prevalences have been reported in a variety of food products, 
but limited data is available for prevalences in retail food products, e.g. seafood, 
vegetables and other fresh products. The aim of this study was to determine the 
prevalence of Y. enterocolitica in seafood. Seafood samples were purchased randomly 
from retail shops in Berlin (Germany). The presence of Y. enterocolitica was examined 
with cold enrichment followed by cultivation on selective agar. Presumptive Y. 
enterocolitica isolates were analyzed by biotyping, serotyping and antimicrobial 
susceptibility testing. The total prevalence of Y. enterocolitica in seafood samples was 
2.7% (6/220): mussels (2/90), shrimp (1/89) and cephalopod (3/41). All isolates belonged 
to biotype 1A and three isolates were identified as serotype O:8, one isolate as O:5,27, 
while two samples did not belong to the investigated serotypes. And most isolates (4/6) 
contained the virulence-associated genes inv and ystB. Y. enterocolitica isolates were 
susceptible to cefotaxime, cefuroxime, chloramphenicol, ciprofloxacin, gentamicin, 
kanamycin, nalidixic acid, streptomycin, tetracycline and trimethoprim. Resistance was 
observed for cephalothin (83.3%), amoxicillin (83.3%) and ampicillin (50.0%). This study 
provides the first comprehensive analysis of Y. enterocolitica in retail seafood in 
Germany. Although the determined prevalence was not high, and all isolates belonged 
to biotype 1A, the study indicated that seafood might be a potential source of infection by 
Y. enterocolitica. 
 
Refrigeration temperature is widely used for food storage and production, especially on 
retail level. As an important foodborne pathogen, Y. enterocolitica is able to survive at 
low temperature. So that its psychrotrophic ability increases the risk of infection through 
contaminated food. Although the general cold response profiles are well described, the 
mechanisms of cold adaptation have not been fully investigated. In this study, isolates 
were collected from various matrices including humans, animals and food, covering 
different biogroups and serogroups. Growth profiles were tested and compared at 4 °C 
for selected isolates. Cold-response genes which differed in function were selected to 
study the association between cold response and gene expression. Global proteomic 
analysis was investigated with label-free quantification. In addition, the bacterial motility 
and membrane fluidity were investigated to demonstrate the relationship between 
membrane physiological changes and cold response. According to the results, strain 
specific cold response characteristics were detected. The expressional changes of cold-
response genes showed that the ability to survive in response to cold demands the 
capacity to adapt to cold. This cold adaptation on transcriptional level is generated by 
the repression of cold-shock genes and induction of the other cold-acclimation genes 
during prolonged growth.  Proteomic analysis identified cold-response proteins, in which 
the predominant functional categories are associated with protein synthesis, cell 
membrane parts and cell motility. Additionally, the physiological processes in cell fluidity 
and motility might be responsible for growth at low temperatures. Summarized, by 
combining different approaches, cold response was described systematically, providing 
a better understanding of the physiological processes of Y. enterocolitica in response to 
cold stress.   
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CHAPTER 2 INTRODUCTION 
2.1 Taxonomy, history and morphology of Yersinia  
Yersinia is a bacterial genus that constitutes of at least 18 recognized species: Y. pestis, 
Y. pseudotuberculosis, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii, Y. 
bercovieri, Y. mollaretii, Y. rohdei, Y. aldovae, Y. ruckeri. Y. aleksiciae, Y. bercovieri, Y. 
entomophaga, Y. massiliensis, Y. pekkanenii, Y. philomiragia and Y. similis [1-12].  
 
Y. pestis, as the first known species, was identified in 1894 by Alexandre Yersin, a Swiss 
bacteriologist [13]. In 1944, van Loghem reclassified the species P. pestis and P. 
rondentium into a new genus, Yersinia [14]. Following the introduction of the 
bacteriological code, it was accepted as valid in 1980 [15]. The first recognized reference 
to Y. enterocolitica was made in the United States in 1934 by McIver and Pike [16].  In 
1964, Frederiksen set the taxonomic stage of Y. enterocolitica by introducing it within the 
family Enterobacteriaceae [17]. 
 
Yersinia species are Gram-negative, facultative anaerobic and rod-shaped non-spore 
forming bacteria with a width of 0.5 to 0.8 μm and a length of 1.0 to 3.0 μm. They are 
oxidase-negative and can ferment glucose and reduce nitrates to nitrites [18]. Yersinia 
normally produces peritrich arranged flagella, which is probably synthesized in the same 
way as other peritrichously flagellated bacteria and has the ability to move [19-23]. 
 
2.2 Clinical relevance 
2.2.1 Pathogenicity 
Some members of the genus Yersinia are well-recognized as human and animal 
pathogens. Among them, only Y. pestis, Y. pseudotuberculosis and certain strains of Y. 
enterocolitica show pathogenicity and they are highly important as pathogens for 
humans and animals. The species and their pathogenicity are listed in Table 1. 
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Table 1: Yersinia species and pathogenicity [24-26]  

 
The plague caused by Y. pestis, is recognized as one of the most devastating bacterial 
diseases in the history of mankind. The bacterium was responsible for millions of human 
mortalities during multiple pandemics [27]. Yersiniosis caused by Y. enterocolitica and 
(to a lesser degree) Y. pseudotuberculosis is a typical self-limiting gastrointestinal 
disease, affecting human and animal populations.  
 
In the European Union, Y. enterocolitica is the third most common enteric bacterial 
pathogen after Campylobacter and Salmonella [28, 29]. And it is the fifth most common 
enteric bacterial cause of foodborne illness in the United States [30]. The infections of 
human with Y. enterocolitica are mainly caused by ingestion of contaminated food, e.g. 
by insufficiently heated or raw consumed pork and milk [31-33] or contaminated drinking 
water. Rarely, the infection spreads between humans [34]. 
  
The infection of Y. enterocolitica is usually characterized by a self-limiting acute infection 
at the beginning in the intestine and spreading to the mesenteric lymph nodes. However, 
more serious infections and chronic conditions can also occur, particularly in 
immunocompromised individuals [35]. According to the FDA, the medium infective dose 
of Y. enterocollitica for humans is generally estimated in the range of 104 – 106 
microorganisms [36]. The clinical presentation of symptoms may depend on bacterial 
strain specifics and host factors.  
 
2.2.2 Detection, transmission and medical treatment 
Yersiniosis as a noteworthy disease mainly caused by Y. enterocolitica, can affect all 
humans, especially the children under the age of 5 years, the elderly and people with 
reduced immunity. However, the infection of Y. enterocolitica is often resembling with 
nonspecific symptoms making many cases of Yersiniosis misdiagnosed [23]. 
  
Several phenotypic and genotypic methods have been developed to reliably detect Y. 
enterocolitica. However, cases of Yersiniosis were sometimes under-estimated due to 
the difficulty in detection [37-39]. Moreover, since Y. enterocolitica shares similarities 
with other enteric bacteria, it is difficult to detect this pathogen especially in food samples. 
Therefore, the methods suitable for in-situ detection and characterization developed. 
The current methods for detection of Y. enterocolitica are cultural methods, numerous 

Species Pathogenicity 
Y. enterocolitica 
Y. pseudotuberculosis Enteric Yersiniosis 

  
Y. pestis Plague 
  
Y. ruckeri Fish pathogen 
  
Y. aldovae, Y. aleksiciae, Y. bercovieri, 
Y. entomophaga, Y. frederiksenii, 
Y. intermedia, Y. kristensenii, 
Y. massiliensis, Y. mollaretii, Y. nurmii, 
Y. pekkanenii, Y. philomiragia, Y. rohdei, 
Y. similis 

Non-pathogenic 
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immunological and molecular techniques [40]. Based on the standardized reference 
methods designated by the International Standard Organization (ISO10273:2003), 
method for detection of presumptive pathogenic Y. enterocolitica in foods includes 
parallel use of the enrichment in PSB broth and secondary enrichment in ITC broth and 
plating on CIN or SSDC [41]. Meanwhile, the limitations of culture-based methods 
existed as they are time-consuming, tedious, and do not provide information to strain 
subtype and it can’t be used for high-throughput detection. So that the immunological 
and molecular methods have been adapted, providing rapid and more sensitive methods. 
For example, immunomagnetic separation (IMS) is used for the identification of 
pathogens and it eliminates the enrichment and reduces the detection time. Enzyme-
linked immunosorbent assay (ELISA) has also been developed for the detection of Y. 
enterocolitica from clinical, environmental, and food samples [42]. Lately, microarray has 
emerged as a sensitive and effective way for the detection of Y. enterocolitica in clinical, 
environmental and food samples [43] as a highly specific and sensitive method is most 
commonly used as the nucleic DNA-based technique for the diagnosis of foodborne 
pathogens [44]. MALDI-TOF-MS has been reported as a reliable technique for the rapid 
identification of Y. enterocolitica strains. It allows the subtyping of strains to the biotype 
level with high speed and easy applicability [45]. Molecular subtyping has also been 
studies in Y.  enterocolitica with a large number of subgroups according to biochemical 
characterization. Biotyping associated with pathogenicity and serotyping based on 
lipopolysaccharide surface O antigen have been described to determine the phenotypic 
characteristics [46]. Several techniques are available for Y. enterocolitica typing 
according to amplification-based and sequencing-based methods. ERIC-PCR has been 
applied for screening potential virulence, pathogenicity and genotyping of Y. 
enterocolitica strains according to virulence markers and geographical origin [47, 48]. 
Multilocus sequence typing (MLST) is applied by examining genetic relatedness among 
strains. The nucleotide sequences of multiple housekeeping genes were analyzed within 
a species and the resulted sequence types (STs) are compared for nucleotide 
substitution. MLST is effective in distinguishing isolates with a more recent genetic 
divergence [49]. In addition, Whole genome sequencing (WGS) also used to determine 
the relatedness of bacteria by performing interspecies genomic comparison between 
species [50]. Benefits of WGS include the possibility to perform highly discriminatory 
analyses and retrieving results for various genetic analyses. Therefore, numerous 
methods are available for epidemiological surveillance and phylogenetic studies of Y. 
enterocolitica meanwhile, the selection of the most appropriate typing approach should 
depends on the purpose. 
 
Infection by Y. enterocolitica often caused by eating contaminated food, such as 
contaminated vegetables and salad, raw pork intestines (chitterlings) and unpasteurized 
milk or untreated water. Occasionally, Y. enterocolitica infection occurs after contact with 
infected animals. On rare occasions, it can be transmitted as a result of the bacterium 
passing from the stools or soiled fingers of one person to the mouth of another person. 
This may happen when basic hygiene and hand washing habits are inadequate [23, 51].  
 
Normally, the majority of the gastrointestinal infections are self-limiting and antimicrobial 
therapy is usually not recommended of Y. enterocolitica in an immunocompetent host. 
However, immunocompromised patients need special attention and antibiotic treatment 
since the mortality of them can be as high as 50% in the hosts and patients with 
septicemia or invasive infection. Hence, special attention and antimicrobial therapies are 
warranted. According to WHO recommendations, the antibiotic therapy of Y. 
enterocolitica is tetracycline, chloramphenicol, gentamycin and cortimoxazole [149]. 
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Recently, the third generation cephalosporin and fluoroquinolones, which have excellent 
in vitro activity, have been considered as better alternatives [52]. They have led to a 
significant decrease of mortality due to septicemia and the use of fluoroquinolones 
particularly is associated with a higher cure rate of fever.  
 
Y. enterocolitica was reported to be highly susceptible to most antibiotics except 
penicillin, ampicillin, amoxicillin-clavulanic acid and the first-generation cephalosporins 
[53, 54]. However, the prevalence of drug-resistant Y. enterocolitica strains has 
increased in recent years, due to the overuse of antibiotics and bacteria or genes 
transmission among different species [55]. For example, resistance to aminoglycosides 
(gentamicin and tobramycin), fluoroquinolones (ciprofloxacin) and intermediate 
resistance to the third generation cephalosporins (cefatriaxone) was illustrated in in retail 
poultry meat and swine feces in China [56]. According to previous study, the third 
generation cephalosporins used to be the best therapeutic options warranted to treat 
enterocolitis in compromised hosts and in patients [57]. However, due to the novel drug-
resistance phenotype arising in Y. enterocolitica, it might lead to clinical failures when 
administering inappropriate antibiotic to treat Yersinia infections. In addition, increasing 
trend of streptomycin resistance was also reported in retail foods in China and pigs at 
slaughter in Italy [55, 58]. So that the problem on antimicrobial resistance of Y. 
enterocolitica has become more serious.  
 
2.3 Epidemiology of Yersinia enterocolitica 
2.3.1 Prevalence in animal 
Y. enterocolitica has been detected from diverse animal sources: farm animals, domestic 
pets and free-living livestock [28, 59]. In addition, in wild animals, Y. enterocolitica has 
also been isolated from the intestinal tract of many species especially wild boars [60, 61]. 
Various studies in Europe showed the prevalence of Y. enterocolitica (17% to 35%) in 
wild boars [60, 62, 63]. In addition, the prevalence of other animals has been 
investigated.  Y. enterocolitica in deer in Poland are 21.6% in red deer (63/291), 9.4% in 
roe deer (11/117) and 13.3% in fallow deer (2/15) [64]. In the year of 2003, Niskanen et 
al. (2003) found 26 (5.6%) wild birds harboring Y. enterocolitica in 468 examined 
Swedish birds [65]. It was found in the alpine accentor, one of the bird species in high 
mountain areas, 73% of the detected samples were positive for Y. enterocolitica in the 
Tatra Mountains in 2007 [66]. Y. enterocolitica was isolated from 15.7% (88/560) of wild 
rodents in Japan [67].  
 
According to the report of the German Federal Institute for Risk Assessment, the 
percentages of Y. enterocolitica positive records in animals between 2011 and 2016 are 
presented in Germany in Table 2. The main reservoir were bovines, pigs and goats. And 
it showed that very few Y. enterocolitica were detected in horses, cats or mice. Between 
2011 and 2016, there is mainly a decrease in the prevalence. However in the year of 
2014 and 2015, high percentage rates were detected in some animals, especially the 
prevalence in laying hens (18.18% in flock group and 13.33% in the individual animal 
group) in 2014 and the rates of the goats in herd group (15.38%) in 2015.  
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Table 2: Prevalence of Y. enterocolitica in animals (2011 – 2016) 
Animals 2011 [68] 2012 [69] 2013 [70] 2014 [71] 2015[72] 2016[73] 
Herd 

 
Meanwhile, in China, six strains were isolated from domestic dogs, which shared the 
same patterns as strains isolated from diarrhea patients. This indicated that the strains 
from domestic dogs have a close correlation with the strains causing human infections 

CHAPTER 2

Laying 
Hens 0% (0/65) 0% (0/56) NA 18.18% 

(4/22) 0% (0/10) 0% (0/10) 

Broilers NA 0% (0/32) NA 0% (0/18) NA 0% (0/2) 

Bovines 14.63% 
(30/205) 

1.91% 
(4/209) 

0.69%  
(6/625) 

4.27% 
(7/164) 

1.86% 
(3/161) 

1.14% 
(2/175) 

Pigs 12.17%(1
4/125) 

2.73% 
(3/110) 

0.58%  
(1/171) 

1.60% 
(2/125) 

5.7% 
(4/70) 

1.12% 
(1/89) 

Sheep 5.77%   
(3/52) 0% (0/50) 0% (0/50) 4.26% 

(2/47) 0% (0/30) 4.69% 
(3/64) 

Goats 14.29% 
(2/14) 

18.18%  
(2/11) 0% (0/20) 6.67% 

(1/15) 
15.38% 
(2/13) 0% (0/24) 

Horses 0% (0/32) 0% (0/24) 0% (0/44) 0% (0/17) 0% (0/11) 2.94%(1/34) 
Individual animals 

Chicken 0% 
(0/1042) 

0% 
(0/239) NA 0% 

(0/1027) 
0% 
(0/1421) 

0% 
(0/1574) 

Laying 
Hens 0% (0/92) 0% (0/89) 0% (0/55) 13.33% 

(4/30) 0% (0/25) 0% (0/42) 

Broilers NA 0% (0/70) 0% (0/12) 0% (0/58) NA 0% (0/10) 

Turkey 0% (0/25) 0% 
(0/465) 0% (0/16) 0% 

(0/206) 
0% 
(0/221) 0% (0/266) 

Poultry 5.26% 
(1/19) 

0% 
(0/114) 

0% 
(0/116) 

0% 
(0/544) 

0.35% 
(1/284) 0% (0/332) 

Bovines 1.91% 
(86/4512) 

1.20% 
(32/2670) 

1.33% 
(24/1811) 

3.16% 
(84/ 2660) 

1.60% 
(33/ 2063) 

0.13%  
(5/ 3964) 

Pigs 1.26% 
(32/2539) 

0.29% 
(6/2101) 

4.97%(54/
1086)

1.99% 
(44/2215)

3.83% 
(61/1593) 

0.67% 
(11/1639)

Sheep 1.29% 
(4/310) 

0% 
(0/416) 

1.21% 
(3/247) 

0.77% 
(3/389) 

0.73% 
(2/274) 

1.29% 
(5/388) 

Goats 3.73% 
(5/134) 

3.00% 
(3/100) 

0% 
(0/104) 

3.57% 
(4/112) 

2.59% 
(3/116) 

1.45% 
(2/138) 

Horses 0% 
(0/991) 

0% 
(0/1965) 

0% 
(0/116) 

0% 
(0/2067) 

0% 
(0/2146) 

0.13% 
(3/2379) 

Dogs 2.28 % 
(7/307) 

0.62% 
(10/1616) 

1.78% 
(3/169) 

0.90% 
(17/1898) 

1.25% 
(25/2007) 

0.95% 
(22/2315) 

Cats 0% 
(0/247)

0.1% 
(1/974) 

0% 
(0/109)

0.08% 
(1/1179)

0.27% 
(3/1103) 

0.08% 
(1/1287) 

Mice NA NA NA 0% 
(0/413) NA NA 

Wild 
animals 

0.90% 
(1/111) 

4.00% 
(3/75) NA 1.90% 

(4/210) 
4.76% 
(6/126) 0% (0/155) 

Other 
animals 

0.11% 
(3/2639) 

0.26% 
(7/2740) 

0.35% 
(4/1133) 

0.63% 
(21/3358) 

0.51% 
(13/2549) 

1.06% 
(31/2917) 
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[74]. Furthermore, Y. enterocolitica has also been isolated from flies in farm piggeries 
and kitchens [75], suggesting that insects can also act as vector.  
 
2.3.2 Prevalence in environment 
Y. enterocolitica is ubiquitous in nature and can be routinely isolated from a broad range 
of terrestrial and freshwater ecosystems including soil, plants, lakes, rivers, wells and 
streams [76-80]. In Brazil, Y. enterocolitica was found distributed in oceans, waterfalls, 
polluted rivers, sewage and fresh water [76]. The frequency of the positive isolates 
collected in the upstream section of the Drwezca River in Poland is around 10.26% [78]. 
In the U.S., 8.25% of Y. enterocolitica (25/303) were detected in different origin of the 
catchment area of the Lower Chippewa River [81].  
 
In addition, there are dependencies between the season and the samples collection and 
the quantitative detection of Y. enterocolitica. In winter, more colony-forming samples 
were collected than in summer. This might due to the advantage Y. enterocolitica has 
compared with other microorganisms that can better assert itself in competition in 
different environments [82].  
 
2.3.3 Prevalence in food 
Evidence for the presence of Y. enterocolitica in a variety of foods including milk and 
milk products, raw meat (beef, pork, and lamb), poultry, eggs, vegetables, bean sprouts, 
tofu and seafood has been provided [83]. Pork is the main food reservoir of Y. 
enterocolitica [84-87]. According to the Federal Institute for Risk Assessment (BfR), high 
prevalence of Y. enterocolitica in pork was reported during the six years from 2011 to 
2016 (2011: 8.76 %, 2012: 7.95 %, 2013: 2.11 %, 2014: 1.43%, 2015: 10.48 % and 2016: 
30.14%). The prevalence of Y. enterocolitica in pork decreased by years during the first 
four years, but since 2015, the high prevalence in pork appeared and sustained over the 
following years. With the improvement of detection methods, the increased prevalence 
might be associated with the detected methods with higher accuracy and sensitivity. 
Nevertheless, the surveillance and the prevention of Y. enterocolitica must not be 
ignored. Table 3 shows the prevalence rates of the different pork and pork products 
during these years.  
 
Table 3: Prevalence of Y. enterocolitica in pork and pork products in Germany 
(2011 – 2016) 
Pork product 2011 

[68] 
2012 
[69] 

2013 
[70] 

2014 
[71] 

2015 
[72] 

2016 
[73] 

Pork 8.76% 
(12/137) 

7.95% 
(12/151) 

2.11% 
(4/190) 

1.43% 
(4/280) 

10.48% 
(11/105) 

30.14% 
(22/73) 

Raw pork 1.89%  
(1/53) 

20% 
(1/5) NA 9.09% 

(1/11) NA NA 

Minced pork 4.6% 
(4/87) 

0% 
(0/23) 

5.17% 
(9/174) 

3.26% 
(1/21) 

4.85% 
(5/103) 

13.45% 
(16/119) 

Processed 
minced pork 

3.36% 
(10/298) 

1.92% 
(1/52) 

0% 
(0/31) NA NA NA 

 
Additionally, the detection of Y. enterocolitica in different food types between 2011 and 
2016 are shown in Table 4. High prevalence in food in the latest two years 2015 and 
2016 occurred, especially the numbers of positive samples in meat (excluding poultry), 
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minced meat and some processed minced meat in 2015 (19.20%, 11.69% and 23.68%). 
In 2016, the number of positive samples in processed minced meat was still high, which 
was consistent with the high prevalence in pork and pork products since 2015.  
 
Table 4: Prevalence of Y. enterocolitica in food products in Germany (2011 – 2016) 
Examined 
food 2011[68] 2012[69] 2013[70] 2014[71] 2015[72] 2016[73] 

6.22% 
(13/209) 

7.33% 
(14/191) 

1.6% 
(4/250) 

1.08% 
(4/370) 

19.20% 
(24/125) 

6.63% 
(12/181) 

50% 
(1/2) 

20% 
(1/5) NA 6.25% 

(1/16) 
50% 
(1/2) NA 

0% 
(0/66) NA NA NA NA 0% 

(0/10) 
2.9% 
(4/138) 

3.45% 
(1/29) 

5.29%  
(11/208) 

3.70% 
(5/135) 

11.69% 
(18/154) 

4.29% 
(6/140) 

12.81%   
(47/367) 

6.35% 
(19/299) 

5.34% 
(15/281) 

7.33% 
(59/805) 

5.15% 
(14/272) 

12.13% 
(89/734) 

8.33% 
(1/12) NA NA NA NA NA 

16.67% 
(1/6) 

2.94% 
(1/34) 

1.33% 
(1/75) 

0% 
(0/72) 

1.45% 
(1/69) 

0% 
(0/115) 

NA NA 0% 
(0/16) 

0% 
(0/56) NA NA 

NA NA NA 0% 
(0/12) NA NA 

0% 
(0/33) 

0% 
(0/40) 

30.77% 
(4/13) 

0% 
(0/75) 

0% 
(0/27) 

0% 
(0/26) 

NA 7.14% 
(1/14) 

0% 
(0/19) 

9.09% 
(1/11) 

0% 
(0/12) 

7.14% 
(1/14) 

7.69% 
(2/26) 

8.33% 
(1/12) 

0% 
(0/11) 

20% 
(1/5) NA 3.45% 

(1/29) 
0% 
(0/30) 

0% 
(0/23)

0% 
(0/18)

2.78% 
(1/36)

0% 
(0/26) 

13.64% 
(3/22) 

NA NA 0% 
(0/59) NA NA NA 

NA 50% 
(1/2) NA NA 0% 

(0/36) NA 

NA 0% 
(0/15) NA NA 0% 

(0/14) NA 

NA 0.87% 
(1/115) NA NA NA NA 

NA 0% 
(0/38) NA 0% 

(0/15)
0% 
(0/20) 

0% 
(0/84) 

  NA NA NA 8.33% 
(1/12) NA NA 

 
In addition, during the slaughter and processing of meat, Y. enterocolitica may also be 
transferred from contaminated tissues onto other meat parts. The bacteria are notably 
contained in the tonsils, the lymph nodes and the intestine, while the meat from the 
areas close to the head and sternum is the most exposed [88, 89]. Hence, the 
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contamination from the infected parts to body intended for consumption should be 
avoided during the slaughtering process. In addition, the surface and equipment properly 
have the risk of cross-contamination with processing food product [23]. Due to the 
extensive spread of this bacterium, the prevention and surveillance should be built.  
 
2.3.4 Prevalence in human 
Various outbreaks of Y. enterocolitica are displayed in the past several years worldwide. 
These outbreaks were largely caused by consumption of contaminated food products. In 
Table 5, the main outbreaks were listed in the last few years since 1990. 
 
 
Table 5： Main outbreaks of Y. enterocolitica (1990-2019) 

Year Place Serotype Number 
of cases Infection roots 

1990 England O:10K,O:6,3
0 36 Pasteurized milk 

[90, 91] 

1995 Vermont and New 
Hampshire, USA O:8 10 Pasteurized milk 

[92] 
1997 Tamil Nadu India O:3 25 Buttermilk [93] 
1998 New York, USA unknown unknown Cold cuts [94] 
1999 Texas, USA unknown unknown Pork [94] 

2000-2001 Georgia, USA unknown unknown Pork [94] 
2002 New Mexico, USA unknown unknown Ham salad [94] 

2003-2004 Wisconsin and Georgia, 
USA unknown unknown Pig stomach [81] 

2005 Japan O:8 42 Mixed salad [95] 
2005-2006 Norway O:9/ O:3 15 Brawn [96] 

2011 Norway O:9 21 Packaged salad 
[97] 

2012 Japan O:8 39 Unknown[98] 

2013 Japan O:8 52 Vegetable salad 
[98] 

2014 Norway O:9 133 Radicchio Salad  
[99] 

2017-2018 Finland O:3 55 Unknown [100] 

2019 Sweden and Denmark O:3 57 Fresh spinach 
[101] 

 
There are several national networks that monitor Yersiniosis reporting the human cases, 
particularly in the EU and the US. Differences in reporting and isolation methods and 
availability of strain information greatly complicate comparison of results between 
different regions [35, 102]. According to the European Centre for Disease Prevention 
and Control, in the year from 2014 to 2018, confirmed cases of Yersiniosis were reported 
by EU/EEA countries in Table 6. During these years, Germany accounted for the highest 
number of cases, followed by France.  
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Table 6: Distribution of confirmed Yersiniosis cases and rates per 100000 
populations in EU/EEA (2014–2018) [100] 
 

Country 2014 2015 2016 2017 2018 
N  Rate N  Rate N  Rate N  Rate N  Rate 

107 1.3 118 1.4 86 1 95 1.1 136 1.5 
309 NA 350 3.1 355 3.1 317 2.8 392 3.4 
20 0.3 12 0.2 10 0.1 17 0.2 9 0.1
20 0.5 16 0.4 22 0.5 29 0.7 20 0.5 
0 0 0 0 0 0 0 0 0 0

557 5.3 678 6.4 608 5.8 611 5.8 622 5.9 
 250 4.4 273 4.8 278 4.9 206 3.6 282 4.9 

62 4.7 53 4 45 3.4 43 3.3 63 4.8 
579 10.6 582 10.6 407 7.4 423 7.7 529 9.6 
574 NA 624 NA 735 NA 738 NA 929 NA 

 2470 3.1 2741 3.4 2763 3.4 2580 3.1 1877 2.3 
43 0.4 41 0.4 70 0.7 30 0.3 36 0.4 
3 0.9 1 0.3 1 0.3 0 0 2 0.6 
5 0.1 13 0.3 3 0.1 6 0.1 8 0.2 
18 NA 7 NA 9 NA 8 NA 14 NA 
28 1.4 64 3.2 47 2.4 47 2.4 68 3.5 

 197 6.7 165 5.6 155 5.4 174 6.1 139 4.9 

 19 3.5 15 2.7 12 2.1 15 2.5 16 2.7
211 4.1 76 1.5 57 1.1 67 1.3 105 2 
212 0.6 172 0.5 167 0.4 191 0.5 170 0.4 

 32 0.2 25 0.1 40 0.2 36 0.2 22 0.1 
172 3.2 224 4.1 200 3.7 242 4.5 259 4.8 
19 0.9 10 0.5 31 1.5 18 0.9 32 1.5 

436 NA 432 NA 514 NA 585 NA 549 NA 
248 2.6 245 2.5 230 2.3 236 2.4 278 2.7 

58 0.1 44 0.1 87 0.1 142 0.2 198 0.3 
  6649 1.8 7005 1.9 6946 1.8 6891 1.8 6806 1.6 

 
Although, incidences have declined over the last 5 years in Germany, there is still some 
evidence to support the idea that high meat consumption, particularly pork resulted in 
the high infection in Germany compared to other European nations. According to the 
latest surveillance report from FoodNet in 2015, the percentage of incidence rate of 
Yersinia in 2015 decreased (59%, 18% and 10%) compared with average annual 
incidence rate of year 1996 – 1998, 2006 – 2008 and 2011 – 2014 respectively [103]. 
While, during 2018 in the US, based on the identification of FoodNet, the number of 
cases was 465 in Yersinia and the incidence of infection (per 100,000 population) was 
0.9. Compared with the years during 2015 to 2017, the incidence significantly increased 
(58%) [104]. The prevalence surveys of pathogenic Y. enterocolitica were also displayed 
in 10 regions of China in 7,304 patients <5 years of age with diarrhea. The average 
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prevalence of Y. enterocolitica was 0.59% (43/7,304) and the prevalence was at different 
levels in different province. And the prevalence calculated for southern China (0.80%) 
was slightly higher than that for northern China (0.53%) [105].  
 
Furthermore, the infection of Y. enterocolitca depends on the age and gender as well. In 
China, more infections occurred among children from the age of 0.5 to 2 years and more 
often in boys than in girls (1.63:1) [105]. The age and gender dependent infections have 
also been reported in the US. Among the total 139 incidence of Y. enterocolitca in 2015, 
the number of the incidence in the children younger than 5 years old was 22 and the 
incidence rate was 0.74, which has the highest incidence rate among all age groups 
[103].  Moreover, the number and the rate of incidence in female (87, 0.35) was higher 
than that in male (52, 0.22) in all the infection [103]. Similarly, the distribution of the 
Yersiniosis cases related to the age and gender was also investigated in EU/EEA. 
Among the 6 404 confirmed Yersiniosis cases in 2018, the male-to-female ratio was 
1.1:1. The highest notification rate per 100 000 population was detected in the age group 
0–4-years. This age group accounted for 23% of the total cases. In Fig 1, the distribution 
of confirmed Yersiniosis cases per 100 000 was presented.  
 

 
Fig 1: Distribution of confirmed Yersiniosis cases, by age and gender in EU/EEA 
(2016 and 2018) [100, 106] 
 
According to Fig 1, young people are more likely to have Yersiniosis especially under 
the age of 4. Under the age of 44, more infections occurred in the male people while 
older than 44, more female infected to this disease. The systematic reports in EU and 
China showed that, in general, female are more likely to get infection especially in the 
younger age. However, in the US, more female are likely to get infection to Yersiniosis 
during investigated years. Hence, the differences in immunological response might 
explain the different susceptibility to Yersiniosis. 
 
2.4 Yersinia enterocolitica characterization 
2.4.1 Serotype 
Y. enterocolitica has various groups of heterogeneous strains, which are traditionally 
classified on the basis of phenotypic characteristics. It has more than 57 O serogroups 
[61, 107-109]. Serotypes O:3, O:9, O:8 and O:5,27 are commonly associated with 
human Yersiniosis [28, 110]. Among these, serotypes O:3, O:5,27 and O:9 usually 
produce self-limiting gastroenteritis, whereas O:8 strains are more likely to cause 
systemic infections [28, 111, 112]. Most of the strains isolated from animal sources differ 
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serologically from strains isolated from humans [32]. Previous works indicated that pigs 
and pork products may be the major reservoirs of serotype O:3 [113-116]. Clinical Y. 
enterocolitica isolates from humans predominantly belong to the serotypes O:3 
(“European strain”), O:8 (“American strain”), O:9, and O:5,27, with a certain variability 
among different countries and continents [28, 109]. 
 
The serotype of Y. enterocolitca is always based on biochemical and genetic features 
(‘O’ or LPS). The LPS molecule is composed of two biosynthetic entities: the lipid A-core 
and the O-polysaccharide (O-antigen). O-antigen (O-ag) plays an important role in the 
innate immune system to host tissues and resisting to antimicrobial element [107]. Since 
the O-ags are highly variable and strongly immunogenic, several serotypes were 
established for Y. enterocolitica based on the variability [117]. Some studies also 
showed the development and validation of Y. enterocolitica serotyping by using PCR-
based method [118]. The location and genetic organization of the O-ag clusters of the 
analyzed serotypes (O:8, O:3, O:9 and O:5) are presented in Fig 2. The genes per, wzt, 
wbbU and wbcA can be the characteristic genes for the serogroups O:9, O:5, O:3 and 
O:8. 
 
 
 
 
 
 
 
 

 

Fig 2: A molecular scheme for Yersinia enterocolitica serotyping. 
 
Serotyping has been proved useful for characterization and surveillance of the bacteria. 
According to the several serotypes, Table 7 shows the frequencies of the serotypes 
causing yersinoses in Germany from 2001 to 2016. The numbers are the total infections 
of the respective years with the associated incidence ever 100,000 inhabitants. Fig 3 
shows the relative frequency of the main serotypes (O:3, O:9, O:8 and O:5,27) from 
2001 to 2016. 
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Fig 3: Relative frequency of Y. enterocolitica main serotypes (2001-2016) 
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Table 7: Frequency of Y. enterocolitica serotypes associated with human diseases in Germany [68-73]  
Serotype 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 
O:3 4304 5227 4826 4672 4306 3945 3935 3361 2906 2594 2440 1868 1711 1659 2092 2080 
O:9 279 325 269 325 282 256 264 277 209 163 211 201 136 164 275 277 
O:5,27 32 29 35 44 48 59 35 30 24 30 59 45 39 42 55 55 
O:8 1 0 0 5 14 16 8 18 21 30 40 37 22 17 28 28 
Others 175 342 432 185 149 155 118 145 111 70 83 103 142 168 NA NA 
Unknown 2404 1617 1015 953 829 730 628 523 460 481 564 451 540 431 NA NA 
 
Total 7195 7540 6577 6184 5628 5161 4988 4354 3731 3368 3397 2705 2590 2485 2752 2774 
Incidence 8.7 9.1 8 7.5 6.8 6.3 6.1 5.3 4.5 4.1 4.2 3.3 3.2 3.1 3.4 3.4 
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As demonstrated in Table 7, the total number of yersinoses cases and the incidence of 
Y. enterocolitca infections decreased over the entire period except for the year 2015 and 
2016. From the reports of frequencies of main serotypes in Table 7 and Fig 3, the 
infections caused by serotype O:3 strains decreased over the years. In contrast, 
infections by serotype O:8, O:9 and O:5,27 increased.  Since the O:3 strains are less 
virulent and the diagnosis method developed these years, less human infection caused 
by O:3 might be reported less frequently [119]. However, in recent years, the infections 
with isolates of this serotype also occurred in Germany [68-73].  
 
2.4.2 Biotype 
According to the essential factor based on pathogenicity, Y. enterocolitica can be 
characterized in six biotypes (1 A, 1B, 2, 3, 4, and 5) [120]. Biotype 1A used to be 
reported as the non-virulent type. However, the pathogenic potential of Biotype 1A 
isolates is still under debate [121, 122]. Biotype 1A strains have been repeatedly isolated 
from patients with gastrointestinal symptoms though biotype 1A strains lack the pYV 
virulence plasmid [123]. In contrast, the biotypes 1B and 2-5 possess the Yersinia 
virulence plasmid (pYV) [124, 125].  
 
Various biotypes and even more numbers of serotypes and bio/serotypes have been 
found according to their characteristics. Based on epidemiological reports, there is a 
mutual relationship between biotypes and serotypes. Table 8 shows the combinations of 
biotypes and serotypes. 
 
Table 8: Combinations between biotypes and serotypes [126] 
Biotype Serotype Major Hosts Human

1A 
O:4; O:5; O:6,30, O:6,31; O:7,8; O:7,13; O:10; 
O:14; O:16; O:18; O:21; O:22; O:25; O:37; 
O:41,42; O:46; O:47; O:57; NT 

Pork - 

1B O:4,32; O:8; O:13a/b; O:16; O:18; O:20; O:21; 
O:25; O:41,42; NT Pork (O:8) + 

2 O:5,27, O:9, O:27 Pork (O:9) + 
3 O:1,2,3, O:3, O:5,27 Pork (O:5,27) + 
4 O:3 Pork + 
5 O:2,3 Rabbit + 
 
Among all the common Y. enterocolitica, strains with the highest relevance to humans 
are O: 5,27, O: 8, O: 9 and O: 3. Most clinical isolates belong to bioserotypes (e.g., 4/O:3, 
3/O:9 and 1B/O:8), which are also frequently isolated from food and animals [127]. In 
addition, bioserotypes are generally considered distributed according to different 
geography. For example, strain 1B/O:8 has been the predominant version of pathogenic 
Y. enterocolitica in the U.S. [128]; strain 3/O:9 is the common cause of Yersiniosis in 
China and Europe [129, 130]. Bioserotype 4/O:3 is the most important human pathogen 
in European countries and it is the predominant pathogenic bioserotype in slaughter pigs 
in Finland and Germany [131, 132]. Recently, bioserotyp 4/O:3 has also emerged as an 
important cause of Yersiniosis in the US.[133]. 
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2.4.3 Virulence 
Y. enterocolitica is an intracellular pathogen. It invades and survives within macrophages 
and may persist and grow within lymph nodes and other lymphoid tissue (in animals and 
in humans). Adherence, invasion and survival in lymphoid tissue depend on the 
chromosome virulence plasmid (pYV). A range of virulence factors are encoded by pYV: 
Ail (the attachment-invasion locus), YadA (Yersinia adhesion A) and lipopolysaccharides 
[23]. The changes in environmental and/or host conditions (including changes in 
temperature) can result in gene expressional changes, which are related to virulence. It 
was reported that Y. enterocolitica strains show a temperature responsive adaptation 
which aids the transition from environmental adaptation to within-host survival and host 
infection. This process determines the clinical outcome and the incubation period [28]. 
Thus, regulation of virulence plays a key role in the successful infection. 
 
2.5 Yersinia enterocolitica at low temperature  
2.5.1 Survival at cold temperature 
As a psychrotrophic bacterium, Y. enterocolitica is able to survive both outside and 
inside hosts under varying temperatures [134-137]. They are capable of growing at 
temperatures approaching and even below 0 °C [129, 134, 138]. Therefore, refrigeration 
temperatures (0 – 4 °C) do not kill Yersinia strains and even ensure a significant rise of 
bacteria growth. At temperatures for food storage, several researchers have reported 
growth of Y. enterocolitica. Y. enterocolitica are able to multiply at refrigeration 
temperatures (0 °C and 2 – 4 °C) on e.g. raw bovine meat in certain cases with 2 log 
CFU/ml within 4 days [129]. In pasteurized milk held at 4 °C, Y. enterocolitica growth 
increased and reached levels of log 5.0 to 7.0 CFU/ml after 7 d [139]. The survival of this 
bacteria was reported in oysters stored at 0 - 2 °C for 14 - 21 d and at 5 - 7 °C for 2-10 d 
[140]. The highest prevalence of Y. enterocolitica in wild boars were observed during 
winter and spring time at the low temperature [82]. Similarly, in pigs slaughtered in China, 
the incidence of Y. enterocolitica was higher in cold than in warm areas [141].  
 
2.5.2 Regulation of cold-induced protein  
Bacteria respond to a rapid temperature downshift by triggering a physiological process 
to cope with stress and adapting to unfavorable conditions. The cold response leads to a 
growth acclimation and overall adjustment of translation. However, there is a set of 
specific proteins induced to tune cell metabolism and readjust it to the new conditions 
[142, 143]. They are cold-induced proteins (Cips). The increased production of Cips is 
related to the severity of the cold shock [144-146]. Most research on Clps is done in E. 
coli and numerous Cip related units have been identified so far, including the cold shock 
protein (Csp) family [147], RNA helicase [148] exoribonucleases PNPase and RNaseR 
[149] [150], initiation factors 2α, 2β, NusA  and RecA [151-153]. Table 9 focuses on the 
essential genes encoding Cips and their functions.  
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Table 9: Functions of the cold-induce genes 
Gene Function in cold shock References
aceE Pyruvate dehydrogenase, decarboxylase [153] 
aceF Pyruvate dehydrogenase, dihydrolipoamide acetyltransferase [153] 

cspA Cold-inducible RNA chaperone and anti-terminator; 
transcriptional enhancer [153] 

cspB Cold shock-inducible; function unknown [153] 
cspE RNA chaperone; transcriptional antitermination [153] 
cspG Cold shock protein homologue, cold-inducible; function unknown [153] 
cspI Cold shock protein, cold shock-inducible; function unknown [153] 

csdA Cold-shock RNA helicase, related to the biogenesis of 50S 
ribosomal subunit [148] 

deaD ATP-dependent RNA helicase, facilitates translation of mRNAs [154, 155] 

dnaA DNA binding and replication initiator, global transcription 
regulator [153] 

gyrA DNA gyrase, subunit A; DNA binding/cleaving/rejoining subunit 
of gyrase [153] 

hns Nucleoid protein, transcriptional repressor, repressor 
supercoiling [153] 

hscA DnaK-like chaperone [156] 
hscB DnaJ-like co-chaperone for HscA [156] 
hupB Nucleoid protein, DNA supercoiling [157] 
infA Protein chain initiation factor IF1, translation initiation [153] 

infB Protein chain initiation factor IF2, translation initiation, fMet-tRNA 
binding, protein chaperone [153] 

infC Protein chain initiation factor IF3, translation initiation, stimulates 
mRNA translation [153] 

lpxP Lipid A synthesis; cold-inducible [158, 159] 
nusA Transcription termination/antitermination/elongation L factor [151] 

otsA Trehalose phosphate synthase; cold- and heat-induced, critical 
for viability at low temperatures [160] 

otsB Trehalose phosphate phosphatase; cold- and heat-induced, 
critical for viability at low [160] 

pnp 
exoribonuclease; component of RNA degradosome; cold shock 
protein required 
for growth at low temperatures 

[149] 

rnr exonucleases; increases 10-fold in cold shock [150] 

rbfA Ribosome-binding factor required for efficient processing of 16S 
rRNA; cold shock adaptation protein [153] 

recA General recombination and DNA repair; induction of the SOS 
response [152, 153] 

tig Protein-folding chaperone, multiple stress protein, ribosome-
binding [160, 161] 

ves Cold- and stress-inducible protein, function unknown [162] 

yfiA Protein Y, associated with 30S ribosomal subunit, inhibits 
translation [152] 
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As a kind of critical Cip, Cold shock proteins (Csp) play a decisive role in response to 
cold. They have been found in psychrophilic, mesophilic, thermophilic and even hyper 
thermophilic bacteria [145, 163]. The classification and the function of cold shock 
proteins have been mostly reported in E. coli. Within this protein family, CspA was the 
major cold shock protein firstly described in E. coli. It is the first protein that is induced 
after a downshift in temperature account for the 13% of the total protein synthesis [164]. 
In addition to CspA, nine homologous proteins sharing 46–91% amino acid sequence 
similarity were identified in E. coli [165]. Only CspA, CspB, CspE, CspG and CspI of E. 
coli are induced by cold [166-170]. According to the published genome sequences of 
Yersinia spp, 10 csp genes were identified in Y. enterocolitica strain 8081 [171], 10 csp 
genes in Y. pseudotuberculosis strain IP32953 [172] and 8 csp genes in Y. 
pseudotuberculosis strain IP31758 [173]. According to other reports, only cspA1 and 
cspA2 of Y. enterocolitica have been well investigated [174, 175]. However, no 
information exists on the indispensability or role of individual csp genes or on their 
regulation in enteropathogenic Yersinia.  
 
RNase E and PNPase are proposed to cleave csp transcripts endonucleolytically within 
CSC boxes [176]. Accordingly, PNPase is essential for Y. enterocolitica and E. coli, and 
it contributes to selective degradation of Csp mRNAs [176-179]. As we mentioned before, 
during the cold response, the synthesis of Cips can help the cells adapt to lower 
temperatures. However, research on the exact function of Cips is still rare.  
 
2.6 General information on proteomic analysis  
Many scientists around the world improved the methods of sequencing and analyzed 
many genomes in order to know the organization of life and the regulatory networks.  
The basic knowledge and methodologies to elucidate functional regulatory networks on 
protein level are more important than DNA-based discovery tools. This was mainly due 
to the fact that proteins have universal functions not only in amino acid sequences but 
also in their various shapes, sizes and physical and chemical properties. In addition, 
structure, function and the respective stability of proteins of a biological system allow the 
organism adaptation to any environment [180].  
 
Over the last ten years, proteomic technology for microorganisms developed and was 
used in biotechnological products and processes. For instance, sodium dodecyl sulfate 
polyacrylamide protein electrophoresis (SDS-PAGE) is the common gel-based methods 
used with the strong detergents allowing the solubilization of most proteins. Proteins are 
separated according to their size and can be identified by mass spectrometry (MS). The 
method is inexpensive and well suited for preliminary and general research. Meanwhile, 
the low resolution capability of SDS-PAGE is the major shortcoming, which limits the 
confident protein identification [181-183]. Now, 2-DE (2-dimensional polyacrylamide gel 
electrophoresis) combined with mass spectrometry are more widely used in the protein 
quantification. Recently, peptide mass fingerprinting and tandem mass spectrometry 
(MS/MS) are relied on making such identification fairly easier [184, 185]. Methods have 
been developed, such as multidimensional liquid chromatography (LC) for protein 
separation and MS for protein identification and the LC-MS approaches have become 
proteomics procedures relying on more-sophisticated equipment [186]. ‘ 
 
  

CHAPTER 2



 

19 

Rapid development of the gel-free methods with the lower amount of sample and less 
complex of peptide mixture and bioinformatics technologies provides an essential 
approach to investigate whole variations in protein expression. Especially in the aspect 
of high-throughput comparative proteomics, it enables the parsing of various potential 
mechanisms and regulatory networks in bacteria [187]. As the most popular isotope 
labeling methods, iTRAQ (isobaric tag for relative and absolute quantitation) present 
different isobaric tags that bond to N-terminus, lysine residues and side chain amine 
peptides [188]. Recently, the application of iTRAQ in various stress response networks 
and functional mechanisms has been applied in many bacteria. Label-free methods arise 
from the necessity to overcome some prime limitations of labeling methods. Besides, it 
requires a smaller amount of sample and allows multiproteome analysis within the same 
experiment [187]. This method has also been used for multiple stress response in 
bacteria. It was reported that this quantitative analysis of Brucella abortus revealed 
metabolic adaptation to various environmental stresses including nutrient limitation, low 
pH, antimicrobial defenses, and reactive oxygen species (ROS) via the host immune 
response [189]. In Y. ruckeri, the label-free proteomic analysis was settled under iron-
limited conditions. Sixty‑one differentially expressed proteins were identified involved in 
processes including iron ion capture and transport and enzymatic metabolism [190].  
 
During the development of proteomics overtime, cold response in protein level was 
deeply investigated in many organism and with various methods. Comparative antigenic 
proteins and proteomics were compared in Y. enterocolitica under different temperatures 
[191]. However, to our knowledge, no study has been carried out on the global 
proteomic profile of Y. enterocolitica induced by low temperature. Therefore, label-free 
quantitative proteomic analysis was applied to investigate the proteomic changes in 
response to cold of Y. enterocolitica in this study. In order to explain the biological 
mechanism of the cold response and resistance of Y. enterocolitica, the global proteomic 
analysis and the cold differential phenotypes were detected in isolates to achieve an in-
depth understanding of stress responses. It will be helpful to predict microbial fate when 
they encounter cold temperatures and to design and develop more effective strategies to 
control pathogens in food for ensuring food safety. 
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Yersinia enterocolitica, a zoonotic foodborne pathogen, is able to withstand low
temperatures. This psychrotrophic ability allows it to multiply in food stored in
refrigerators. However, little is known about the Y. enterocolitica cold response. In this
study, isolate-specific behavior at 4◦C was demonstrated and the cold response was
investigated by examining changes in phenotype, gene expression, and the proteome.
Altered expression of cold-responsive genes showed that the ability to survive at low
temperature depends on the capacity to acclimate and adapt to cold stress. This
cold acclimation at the transcriptional level involves the transient induction and effective
repression of cold-shock protein (Csp) genes. Moreover, the resumption of expression
of genes encoding other non-Csp is essential during prolonged adaptation. Based on
proteomic analyses, the predominant functional categories of cold-responsive proteins
are associated with protein synthesis, cell membrane structure, and cell motility. In
addition, changes in membrane fluidity and motility were shown to be important in
the cold response of Y. enterocolitica. Isolate-specific differences in the transcription of
membrane fluidity- and motility-related genes provided evidence to classify strains within
a spectrum of cold response. The combination of different approaches has permitted
the systematic description of the Y. enterocolitica cold response and gives a better
understanding of the physiological processes underlying this phenomenon.

Keywords: Yersinia enterocolitica, cold response, proteome, isolates specific, motility, fluidity

INTRODUCTION

Yersinia enterocolitica, the third most commonly reported foodborne zoonotic pathogen in the
European Union, can cause serious diseases, including gastroenteritis, mesenteric lymphadenitis,
reactive arthritis, erythema nodosum, and pseudoappendicitis (Ostroff et al., 1994; Horisaka
et al., 2004; European Food Safety Authority and European Centre for Disease Prevention and
Control, 2016). It occurs ubiquitously in the natural environment and is widespread in animal
populations (Benembarek, 1994; Robins-Browne, 2013). Furthermore, it can be isolated frequently
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from a variety of foods, including milk and milk products, pork,
poultry, eggs, and produce (Bari et al., 2011).

Yersinia enterocolitica is capable of growing at temperatures
approaching and even below 0◦C (Tudor et al., 2008; Divya and
Varadaraj, 2013). Therefore, even refrigeration temperatures (0–
4◦C) can allow significant bacterial growth over time. Several
studies have reported growth of Y. enterocolitica in food products
stored at refrigeration temperatures: e.g., on raw beef, with
increased cell counts of up to 2 log CFU/ml within 4 days (Tudor
et al., 2008) and in pasteurized milk, reaching levels of 5–7 log
CFU/ml after 7 days (with an initial inoculum of 1–3 log CFU/ml)
(Amin and Draughon, 1987).

One of the most prominent cold responses is the induction
of cold-shock proteins (Csps) in all psychrotrophs, mesophiles,
and thermophiles (Polissi et al., 2003; Phadtare, 2004). As model
systems, Escherichia coli and Bacillus subtilis have been studied
in detail regarding cold response and Csps (Phadtare et al., 1999;
Ermolenko and Makhatadze, 2002; Weber and Marahiel, 2003).
The role of polynucleotide phosphorylase (PNPase, encoded
by the pnp gene) in regulating cold response is also well
described (Goverde et al., 1998; Yamanaka and Inouye, 2001;
Cordin et al., 2006; Matos et al., 2009; Phadtare, 2011). This
enzyme with the 3’- to 5’-exonucleolytic activities involved
mostly in mRNA decay and ribosomes release (Coburn and
Mackie, 1998; Polissi et al., 2003) is used to help repress the
generation of Csps and relieve growth arrest (Neuhaus et al.,
2003; Zhao et al., 2016). Meanwhile, in psychrotrophic bacteria
such as Arthrobacter globiformis and Pseudomonas fragi, some
cold-responsive proteins are synthesized at relatively moderate
levels and prolonged in response to continuous growth at low
temperatures (Berger et al., 1996; Michel et al., 1997). These
proteins are of particular importance since they differentiate
psychrotrophs from mesophiles, and they are probably one of
the key determinants that allow survival at low temperature
(Hébraud and Potier, 1999). Additionally, the ability to cope with
temperature downshift must be accompanied by a number of
changes in response to alterations of physical and biochemical
parameters, including solubility, membrane fluidity, protein
conformation and stability, and changes in gene expression
(Hébraud and Potier, 1999; Vorachek-Warren et al., 2002;
Albanesi et al., 2004; Phadtare, 2004; Cao-Hoang et al., 2010;
Barria et al., 2013). Therefore, the biochemical and physiological
effects allowing bacteria to adapt to temperature changes are
likely to be complex, involving a number of cellular processes.

As a psychrotrophic bacterium, Y. enterocolitica has two
well reported csp homolog genes (cspA and cspB), which are
strongly expressed during the cold response. The cold-shock
exoribonuclease PNPase and pnp gene have also been reported
(Goverde et al., 1998; Phadtare, 2011). Additionally, a previous
study has reported that genes involved in various functions
(regulation, motility, virulence, and metabolism) are upregulated
after a temperature downshift from optimal (30◦C) to suboptimal
(10◦C) conditions in Y. enterocolitica (Bresolin et al., 2006).
However, the effects of these genes and the cold response on
protein expressional levels are not clarified in Y. enterocolitica.

Recently, advances in proteomics and bioinformatics
technologies provide clear information on protein expression

in response to cold and other stresses. High-throughput
comparative proteomics with label-free quantification
enabled the parsing of various potential mechanisms and
regulatory networks of stress response in E. coli, B. subtilis,
Pseudomonas putida, and Yersinia ruckeri (Delumeau et al., 2011;
Stefanopoulou et al., 2011; Herbst et al., 2015; Kumar et al., 2016).

However, to our knowledge, the global proteomic profiles of
Y. enterocolitica under the influence of low temperature have not
been reported. Considerable research on Y. enterocolitica cold
response has been limited to few proteins or genes and to single
time points. The aim of this study is to describe the physiological
processes of cold response in Y. enterocolitica via comparisons of
growth ability, expression of cold-responsive genes and proteins,
as well as cell motility and membrane fluidity of selected strains
upon exposure to cold conditions.

MATERIALS AND METHODS

Growth Profile at Low Temperature
In order to test the growth ability of Y. enterocolitica at low
temperatures (4◦C), 55 isolates were collected from different
matrices, representing different serotypes and biotypes (details
are given in Table 1). Isolates were incubated on Plate Count
agar (PC agar, Merck, Darmstadt, Germany) at 28◦C for 24 h.
Single colonies were transferred to 3 ml of Brucella broth (BB,
BD Franklin Lakes, NJ, United States) and incubated at 28◦C
for 20 h. Enriched cultures were serially diluted 1:106 in BB
to reach a cell concentration of about 101–102 CFU/ml as the
initial value. Growth abilities of 55 strains were tested based on
cell concentration in BB after incubating at 4◦C for 168 h. For
growth profile investigation, cell concentration of the selected
isolates (II7D, 8081, and 44B) was measured under cold stress
for 0, 24, 48, 72, 144, and 168 h respectively. The experiment
was carried out in six biological replicates (with two technical
duplicates each).

RNA Extraction Under Cold Stress
Yersinia enterocolitica isolates were selected for RNA extraction.
Pre-culture was prepared in 12 ml BB at 28◦C (as incubation
temperature) for 24 h. The suspension was diluted in BB to
0.05 OD600 value and then incubated at 28◦C for 2 h to reach
an OD600 value between 0.1 and 0.2. After centrifugation, the
bacteria were suspended into 10 ml cooled BB and incubated at
4◦C for different time periods (5 min, 30 min, 2 h, 4 h, 24 h,
and 48 h). The pellet suspended in BB at room temperature was
used as control. Cold-shock stop mix solution (5% Roti-Aqua-
phenol, 95% ethanol, Carl Roth, Karlsruhe, Germany) was added
and samples were processed as described elsewhere (Blomberg
et al., 1990). All samples were frozen at−80◦C until further use.

RNA was extracted with Roti-Aqua-Phenol (Carl Roth). RNA
quality of samples was tested by gel electrophoresis. The ratio
of absorbance A260/A280 and A260/A230 were used to assess the
purity of RNA photometrically with NanoDropTM 2000/2000c
Spectrophotometers (Thermo Fisher Scientific). A ratio of ∼2.0
is generally accepted of A260/A280 and the expected A260/A230
values are set in the range of 2.0–2.2. Reverse transcription
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TABLE 1 | Characteristics and growth ability of Y. enterocolitica strains at 4◦C for
168 h.

Isolates Median Median norm. Serotype Biotype Matrix

44B 1.86E + 03 2.86E + 02 O:5,27 1A Food

IP566/82 4.60E + 03 8.85E + 02 O:8 n. a. n. a.

4780 5.90E + 05 5.98E + 04 O:8 1B Human

96/10 1.50E + 05 1.01E + 05 O:8 1B n. a.

39/91 5.00E + 06 2.87E + 05 O:8 1 Human

21/08 4.20E + 07 3.41E + 06 O:8 1A n. a.

8081 2.70E + 07 6.85E + 06 O:8 1B Human

78/90 1.07E + 08 7.96E + 06 O:8 1B Human

25 Ia 1.25E + 08 1.22E + 07 O:3 4 Food

96B 2.60E + 08 2.23E + 07 O:5,27 3 Animal

177B 2.40E + 08 2.37E + 07 O:5,27 2 Human

207 IIa 3.60E + 08 2.64E + 07 O:9 3 Animal

207 Ia 3.40E + 08 3.56E + 07 O:9 3 Animal

25/13 8.10E + 08 4.60E + 07 O:5 1A Food

56/14 5.90E + 08 4.66E + 07 O:5 1A Food

57/14 7.40E + 08 4.76E + 07 O:9 2 Food

54/13 6.45E + 08 4.93E + 07 O:8 1A Food

28/07 1.00E + 09 5.03E + 07 O:9 3 Animal

04/13 4.90E + 08 5.05E + 07 O:5 1A Food

32/07 4.30E + 08 5.77E + 07 O:3 4 Animal

05/13 5.80E + 08 5.79E + 07 O:5 1A Food

44/07 1.14E + 09 5.92E + 07 O:3 4 Food

III15D 7.00E + 08 5.93E + 07 O:5 1A Food

24/14 4.50E + 08 5.97E + 07 O:5 1A Food

29/07 8.30E + 08 5.99E + 07 O:9 3 Animal

09/11 1.37E + 09 6.12E + 07 O:9 2 Food

37/12 5.40E + 08 6.18E + 07 O:5 1A Food

65/14 1.03E + 09 6.29E + 07 O:5 1A Food

47/13 5.50E + 08 6.31E + 07 O:5 1A Food

77/14 6.40E + 08 6.46E + 07 O:9 2 Food

I15C 6.80E + 08 6.92E + 07 O:3 3 Animal

20/07 1.42E + 09 7.17E + 07 O:9 3 Human

11/07 1.07E + 09 7.32E + 07 O:3 4 Human

38/12 5.60E + 08 7.35E + 07 O:5 1A Food

58/07 1.13E + 09 7.73E + 07 O:3 4 Animal

31/13 7.60E + 08 7.86E + 07 O:5,27 2 food

45/14 1.21E + 09 7.97E + 07 O:5,27 2 Food

03/13 7.00E + 08 8.01E + 07 O:8 1A Food

387/09 8.20E + 08 8.06E + 07 O:9 n. a. Animal

06/13 4.30E + 08 8.36E + 07 O:8 1B Food

18/07 1.30E + 09 8.45E + 07 O:9 3 Human

15/12 9.40E + 08 8.92E + 07 O:5,27 2 Food

19/07 1.07E + 09 9.62E + 07 O:3 4 Human

61/07 1.12E + 09 1.00E + 08 O:3 4 Animal

13/14 1.12E + 09 1.01E + 08 O:3 4 Food

12/07 8.80E + 08 1.02E + 08 O:3 4 Human

30/14 9.50E + 08 1.04E + 08 O:5,27 2 Food

33/07 4.50E + 08 1.09E + 08 O:3 4 Animal

25/14 8.80E + 08 1.12E + 08 O:5,27 2 Food

11/09 1.07E + 09 1.14E + 08 O:5,27 2 Food

14/07 1.45E + 09 1.15E + 08 O:3 4 Human

46/14 1.56E + 09 1.21E + 08 O:5,27 2 Food

89/14 1.42E + 09 1.27E + 08 O:3 4 Food

17/07 9.70E + 08 1.27E + 08 O:9 3 Human

II7D 1.02E + 09 1.27E + 08 O:5 1A Food

Median norm.: relative median value normalized with the initial concentration,
respectively.

was performed with Maxima H Minus First Strand cDNA
Synthesis Kit (Fermentas, St. Leon-Rot, Germany). The cDNA
samples were diluted 1: 5 with nuclease-free water for RT-
qPCR investigation.

Expressional Analysis of
Cold-Responsive Genes
Real-time quantitative PCR (RT-qPCR) was used to test the
transcription level of cold-responsive genes of Y. enterocolitica.
Eight genes, which were reported to have enhanced at
transcriptional levels at 10◦C (Bresolin et al., 2006), were tested
in this study. These genes cover the functions of regulation,
metabolism, and motility (Supplementary Table S2 lists target
genes and used primers). The SsoFast EvaGreen Supermix
(SYBR-green, Bio-Rad, Munich, Germany) was used for RT-
qPCR assays. The expression of the genes was normalized to the
reference gene polA (DNA polymerase I) (Townsend et al., 2008).
The results of RT-qPCR were visualized and evaluated by CFX
software (Bio-Rad).

Whole Cell Protein Extraction
Three isolates (Y. enterocolitica strains II7D, 8081, and 44B) were
subjected to incubation at 4◦C for 0, 5 min, 2 h, and 24 h. The cells
were harvested and the pellet was washed with PBS. Cell pellets
were reconstituted with 300 µl distilled water and inactivated
by addition of 900 µl ethanol. After the centrifugation and
evaporation, the final pellet was reconstituted with 250 µl 20 mM
HEPES (pH 7.4) and subjected to sonication for 1 min (cycle,
1.0; amplitude, 100%) with a sonicator (UP100H; Hielscher
Ultrasound Technology, Teltow, Germany). Supernatants were
collected and the concentration was measured using modified
Bradford’s method with Coomassie PlusTM Protein Assays
(Thermo Fisher Scientific, Rockford, IL, United States) and the
samples were stored at -20◦C for further analysis. Each strain was
tested six times independently.

In-Solution Trypsin Digestion
The in-solution trypsin digestion of proteins was performed as
described previously (Wareth et al., 2016). Briefly, 10 µg protein
was used for acetone precipitation. The resultant peptides were
then reconstituted with 20 µl denaturation buffer containing
6 M urea/2 M thiourea in 10 mM HEPES (pH 8.0) and
reduced with 10 mM dithiothreitol in 50 mM of ammonium
bicarbonate (ABC, Sigma, Germany). The alkylation was carried
out with 55 mM iodacemtamide and subsequently 0.5 µg/µl LysC
solution was added. The urea concentration was decreased by
0.5 µg/µl trypsin and the trypsin digestion was stopped by 5%
acetonitrile/3% trifluoroacetic acid.

Liquid Chromatography-Electrospray
Ionization-Tandem Mass Spectrometry
(LC-ESI-MS/MS) Measurements
Liquid chromatography-electrospray ionization-mass
spectrometry (LC-ESI-MS/MS) measurements were carried out
as described elsewhere (Wareth et al., 2016). Resultant peptides
of trypsin digestion were desalted by solid phase extraction
and the peptides were separated using Dionex Ultimate 3000
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nanoLC (Dionex/Thermo Fisher Scientific, Idstein, Germany) on
fritless silica micro-columns with an inner diameter of 100 µm.
Mass spectrometry measurements were carried out using LTQ
Orbitrap Velos mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany). The LTQ-Orbitrap was operated in the
positive mode to simultaneously measure full scan MS spectra
in the range of m/z 300–1700 in the Orbitrap analyzer at a
resolution of R = 60,000. After that, isolation and fragmentation
of the 20 most intense ions in the LTQ part were carried out by
collision-induced dissociation.

The raw mass spectra were processed using label-free
quantification algorithm of the MaxQuant version 1.3.0.5
(Max Planck Institute of Biochemistry, Martinsried, Germany)
(Tyanova et al., 2016) and protein identification was carried
out by searching against protein sequence FASTA file of
Y. enterocolitica strain YE02/02 (Proteome ID: UP000069750,
protein count: 4760) with a wide range of homologous
strains downloaded from UniProt database. The following
parameters were set for protein identification: Initial maximum
precursor—7 ppm, fragment mass deviations—0.5 Da; variable
modification—methionine oxidation/acetylation of peptide
N-termini; fixed modification—carbamidomethylation;
enzymes—LysC and trypsin, both with a maximum of two
missed cleavages; minimum peptide length—seven amino acids,
and target-decoy-based false discovery rate (FDR) for peptide
and protein identification—1%.

The statistical analysis was performed using the Perseus
software version 1.4.1.3 (Max Planck Institute of Biochemistry,
Martinsried, Germany) (Rudolph and Cox, 2019). The LFQ
intensities of proteins were imported and transformed to
logarithmic scale with base two. The Student’s t-test and
Benjamini–Hochberg procedure FDR corrections of the
significant p-values (p < 0.05) were applied for identification of
differentially expressed proteins.

Motility Assay
Motility was tested as described for Y. enterocolitica (Bresolin
et al., 2008). Three strains II7D, 8081, and 44B were assessed
by measuring diameters of migration zone at 4◦C with motility
agar plates (0.3% agar, 0.5% NaCl, and 1% tryptone). Strains
were incubated on PC agar plates overnight at 28◦C. Single
colonies were transferred onto motility agar plates and incubated
initially at 37◦C for 2 h to start the assay with non-motile
bacteria. Plates were subsequently incubated at 28◦C (for 21 h)
and 4◦C (for 44 h).

Fluidity Assay
Membrane fluidity of Y. enterocolitica was measured by a
fluorescence polarization or anisotropy value, which corresponds
to the reaction to polarized light of a fluorescent probe inside the
membrane (Zaritsky et al., 1985; Aricha et al., 2004; Mykytczuk
et al., 2007). Briefly, three isolates (Y. enterocolitica strains II7D,
8081, and 44B) were prepared and incubated at 4◦C for 0, 2, 24,
and 48 h with the method described above. Cultured cells were
harvested and washed twice with PBS (10 mM, pH 7.4, Merck)
and then incubated with 5 µM 1,6-diphenyl-1,3,5-hexatriene
(DPH, Sigma–Aldrich, St. Louis, MO, United States) at 37◦C

for 1 h. Unlabeled cells were used as a scattering reference. The
fluorescence polarization was measured using a Cary Eclipse
Fluorescence spectrophotometer with Manual Polarizer (Agilent,
Santa Clara, CA, United States) at 360 nm excitation and 430 nm
emission. Fluorescence anisotropy was calculated by the formula
A = [IVV − IVH (IHV/IHH)]/[IVV + 2IVH (IHV/IHH)], where
I is the corrected fluorescence intensity, and the subscripts V
and H indicate the values obtained with vertical or horizontal
orientations, respectively. The emission polarized filter was set
either in the vertical (IVV) or horizontal (IVH) position. Decrease
in fluorescence anisotropy reflected increases in the fluidity of
the lipid bilayer, which controls or alters the mobility of DPH
in the membrane.

Bioinformatics and Statistical Analysis
Cell counts of the growth assays were expressed as the median
with range for all the isolates (CFU/ml) and other quantitative
data were expressed as the mean with the standard error of the
mean. Paired sample t-tests were applied to determine differences
in growth profile, gene expression, and fluidity. GraphPad Prism
6 was used to carry out the analyses cited above.

The Gene Ontology (GO) database1 and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database2

were used to classify proteins and related pathways of proteins
(Kanehisa et al., 2016). The Clusters of Orthologous Groups
(COGs) functional categories of differentially expressed
proteins were assigned by BLAST and searched with the COG
database3 referring to other research (Tatusov et al., 2001;
Galperin et al., 2014).

RESULTS AND DISCUSSION

Growth Profiles of Isolates at Low
Temperatures
Altogether, 55 isolates of Y. enterocolitica collected from food,
humans, and animals were tested for their growth profiles at 4◦C
after 168 h (end-point analysis). Diverse growth abilities at 4◦C
among the isolates were observed. Most of the isolates displayed
enhanced growth rates at 4◦C over 168 h, up to 108 CFU/ml
(23.63%) and 107 CFU/ml (61.81%), while a minority of strains
(14.6%) showed a slighter increase, up to 102–106 CFU/ml
(Table 1). More than 85% of tested strains exhibited enhanced
growth rates, which indicated a general survival and growth
ability of Y. enterocolitica at low temperatures. This result is
consistent with the observations of high levels of this bacterium
in food products; e.g., meat, milk, cheese, and oysters (Peixotto
et al., 1979; Greenwood et al., 1985; Amin and Draughon,
1987; Wang et al., 2009), and natural environmental conditions;
e.g., soil and aqueous at low temperature (Asadishad et al.,
2013). However, significant differences in growth ability among
the tested isolates were observed at 4◦C, which demonstrates
the growth specificity of isolates at low temperature. Similar

1http://www.geneontology.org
2http://www.genome.jp/kegg/pathway.html
3http://www.ncbi.nlm.nih.gov/COG/
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observations (specific behavior of strains under low temperature)
were found in Y. enterocolitica previously. For example, strains
with various serotypes survived differently at 4◦C in soil
and river water (Tashiro et al., 1991). The impact of low
temperatures on the survival of Y. enterocolitica strains differs
when inoculated on raw pork samples at 4 and−20◦C for 90 days
(Iliev and Najdenski, 2008).

To investigate the cold response of Y. enterocolitica,
three isolates [44B (1A/O:5,27), 8081 (1B/O:8), and II7D
(1A/O:5)] representing low, medium, and high growth
ability at 4◦C, respectively, were selected for further analysis
(Supplementary Table S1).

Transcriptional Changes of
Cold-Responsive Genes at Low
Temperature
In order to better understand the cold response in
Y. enterocolitica, the correlation between growth ability and
transcriptional changes was investigated in the three isolates.
It has been mentioned that pnp gene played an indispensable
role in the cold response of Y. enterocolitica (Goverde et al.,
1998) and other bacteria (Mathy et al., 2001; Hu et al., 2014;
Briani et al., 2016). In our study, during a cold response, an
increased expression of pnp gene was detected (Figure 1A).
When exposed to 4◦C for 5 min to 2 h, the pnp expression
of the three isolates exhibited no significant difference. After
4 h of exposure at 4◦C, the expression of pnp in 44B increased
continuously and significantly exceeded that of II7D and 8081.
The results indicated that different changes of pnp expression
were found among tested isolates with various growth ability,
which verified the essentiality of the pnp gene in cold adaptation.
The continuous high expression of pnp gene implies the higher
demand of PNPase and pnp in 44B.

Based on the role of PNPase (encoded by the pnp gene) in
repressing the generation of Csps and relieving growth arrest
(Neuhaus et al., 2003; Zhao et al., 2016), the changes in related
genes were investigated. RT-qPCR was performed with eight
genes, which were reported to have increasing peaks or steady
enhancement in gene expression after temperature downshift
(Bresolin et al., 2006). The RNA used for this analysis was
extracted from isolate cultures kept at 4◦C from 5 min to 48 h
and the related genes in response to cold with various functions
are listed in Supplementary Table S2 accordingly.

As Figure 1B shown, the expression of the genes cspA, cspB,
gltP, and uhpC increased rapidly after a cold stimulation and
then decreased over time, which is consistent with the result
from previous study regarding changes of the cold-shock genes
(Bresolin et al., 2006; Horn et al., 2007). Based on the expression
of these cold-shock genes, the expression decreased rapidly in
strains II7D and 8081 after the transcriptional peak. However, in
strain 44B, the expression of these genes decreased slowly and the
relative expression of cspB, gltP, and uhpC was higher than that of
II7D and 8081 at the end of 4 h after cold stress. Since the function
of PNPase was RNA degradation and the higher expression of
pnp was observed in 44B (Figure 1A), the repression of Csp
generation might not be accomplished in 44B.

As reported previously, after the repression of Csp production,
the growth reinitiated at the end of the acclimation phase
(Yamanaka and Inouye, 2001). Therefore, the RNA degradation
of Csps by PNPase was indispensable for cold acclimation and
growth resumption. Similar cold acclimation was also found in
E. coli, in which the synthesis of Csps transiently increases and
the control of mRNA stability and translatability plays a major
role in the adaptive response to cold temperature (Phadtare et al.,
1999; Briani et al., 2016).

A different cold response was detected on transcriptional
levels of YE1436, fleC, fliS, and YE2848, which did not show
increased peaks but mostly increased under cold stress over
prolonged growth. According to the expression of genes YE1436
and YE2848, the transcriptional levels increased over time and
the upward tendencies in II7D and 8081 are more obvious
than that in 44B (even no obvious uptrend of YE1436 gene
expression). After 48 h of cold stress, the relative expression of
YE1436 and YE2848 was significantly lower in 44B compared
with II7D and 8081. Considering the worse growth ability of
44B at low temperature, the transcriptional regulation of gene
YE1436 and YE2848 might be necessary for cold response. As
it was mentioned in other studies, one of the psychrotrophic
abilities in bacteria was to produce several non-Csps and allow
growth during prolonged low temperatures in cold adaptation
(Berger et al., 1996; Hébraud and Potier, 1999; Wouters et al.,
2000; Phadtare, 2004). After the cold acclimation, the expression
of non-cold shock genes has not been resumed in 44B, arresting
the transition from acclimation to cell growth.

In addition, after 48 h of cold stress, the expression of fleC and
fliS genes increased in 44B while their expression did not increase
until 24 h in II7D and 8081. Since the genes fleC and fliS are
associated with bacterial motility, the regulation of motility might
contribute to cold adaptation as well.

Consequently, the transcriptional changes in cold-responsive
genes play an important role in both cold acclimation and
prolonged adaptation. The isolate-specific ability to survive
under cold stress depends on the capacity of enabling transient
induction and effective repression of cold-shock gene in cold
acclimation. Meanwhile, the resumption of the non-cold shock
gene expression was also required in prolonged cold adaptation.

Global Proteomic Analysis of the
Cold-Responsive Proteins at Low
Temperature
Three isolates (II7D, 8081, and 44B) with various growth abilities
were used for the proteomic analysis to further investigate the
underlying processes of cold response. A total of 1526 proteins
were identified using label-free quantification analysis in six
biological replicates. Among these, 809 proteins which expressed
differentially under cold stress (at 4 versus 28◦C) for 5 min, 2 h,
and 24 h in three strains were identified. Functional classification
and annotation indicated that 715 and 790 uniproteins were
assigned to 30 GO annotations and 138 KEGG functional
pathways, respectively.

The proteins assigned to GO functional groups were
classified into three categories: “biological process,” “molecular
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FIGURE 1 | Expressional changes of the cold-responsive genes in II7D, 44B, and 8081. Three Y. enterocolitica strains were incubated at 4◦C over time (from 5 min
to 48 h) to show the expressional changes in cold response. Gene expression was normalized to the reference genes polA. (A) Expressional changes of pnp gene of
three isolates at 4◦C. Specific values are shown as the means ± SEM of the relative expression in four independent experiments. (B) Expressional changes of cspA,
cspB, gltP, uhpC, YE1436, fliS, fleC, and YE284 genes at 4◦C in three isolates. Specific values of relative gene expression are shown in log10 as the means ± SEM
of four independent experiments. Statistically significant difference compared with the control according to multiple comparisons (∗p < 0.05). The line parallel to the
x-axis represents a biologically relevant induction at 2 (fold-change) and 0.3 (log10 fold-change).
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function,” and “cellular component” (Figure 2). Various
biological processes were involved in cold response. The most
predominant processes were cellular and metabolic process;
other major process categories were biological regulation,
localization, and cellular component organization or biogenesis.
These results indicated that the effects of cold response on
protein level in Y. enterocolitica were involved in multiple
processes. Furthermore, the predominant molecular functions
of expressed proteins were associated with catalytic activity
and binding; molecular functions of transporter and structural
molecule activity were also involved in. Additionally, the
most predominant cellular components were located cell and
membrane parts. These results implied that the metabolism of
the bacteria changed severely after cold response and it might
lead to the alterations of cell and membrane components.
Considerable groups of temperature-associated proteins were
also reported previously in many other studies. For example,
the periplasmic proteins associated with cellular component
organization are strongly altered in Yersinia pestis in response
to temperature changes (Pieper et al., 2008). The proteins
involved in metabolic processes highly expressed at 4◦C in
Listeria monocytogenes (Cacace et al., 2010). During an abrupt
temperature downshift in E. coli, expressional alterations
occurred in the proteins associated with transport and binding
(Kocharunchitt et al., 2014).

For further investigation, the KEGG database was used
and the expressed proteins were identified in four categories:
“metabolism,” “genetic information processing,” “environmental

information processing,” and “cellular processes” (Figure 3).
It displayed that “Metabolism” with seven subcategories was
the most enriched, which verified the active metabolic changes
after a cold response. Among these subcategories, more proteins
were enriched in metabolic related pathways: carbohydrate
metabolism, nucleotide metabolism, amino acid biosynthesis,
and translation. Similar pathways involved in cold response were
also described in L. monocytogenes and E. coli (Cacace et al., 2010;
Kocharunchitt et al., 2014).

Analysis of Differentially Expressed
Proteins at Low Temperature
To investigate the alteration of metabolism related to growth
profile under cold temperature over time, differentially expressed
proteins were investigated at different time points in two isolates,
44B and II7D (with low and high growth ability at 4◦C).
Differentially expressed proteins of 44B and II7D under cold
stress for 2 h (early stage, T1) and 24 h (late stage, T2) were
compared (Figure 4).

Differentially expressed proteins were classified into 20
COGs functional groups with a relative fold change [log2
(FC) > 1.2 and log2 (FC) < -0.8, p < 0.05]. The expressed
protein response to the early stage of the cold response
(T1) was enriched into 17 functional clusters. Of these, the
most predominant categories were “amino acid transport and
metabolism,” “translation, ribosomal structure, and biogenesis,”
“carbohydrate transport and metabolism,” “cell motility,” and also

FIGURE 2 | Gene Ontology classification of the total assembled uniproteins.
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FIGURE 3 | KEGG pathway clusters of assembled uniproteins. Metabolic pathways in different functional groups involved in cold response were classified with
KEGG database in four related categories (protein numbers of each group higher than 10): “metabolism” in red, “genetic information processing” in green,
“environmental information processing” in blue, and the “cellular processes” in yellow. The subcategory titles were also represented.

“transcription.” For the late stage of the cold response (T2), a high
abundance of proteins was observed for categories of “amino acid
transport and metabolism,” “translation, ribosomal structure,
and biogenesis,” “cell wall/membrane/envelope biogenesis,”
and “carbohydrate transport and metabolism.” In addition,
a high abundance of the proteins belonging to “general
function prediction only” was also found in both stages

(Figures 4A,B). Throughout the whole testing course (T1–
T2), proteins in specific functions of amino acid transport
and metabolism (E), translation, ribosomal structure and
biogenesis (J), carbohydrate transport and metabolism (G), and
energy production and conversion (C) had higher enrichment
in both T1 and T2. Hence, the proteins are involved
mostly in metabolism in response to cold. Similarly, the
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FIGURE 4 | Functional category distribution of proteins identified from Y. enterocolitica cells at low temperature. (A) The number of identified proteins belong to each
functional category is shown under cold stress after 2 h (T1). (B) The number of identified proteins belong to each functional category is shown under cold stress
after 24 h (T2). (C) The percentage of differential expressed proteins that belong to each functional category in II7D and 44B is shown under cold stress in two time
(T1 and T2). COG categories are as follows: C: energy production and conversion; D: cell division and chromosome partitioning; E: amino acid transport and
metabolism; F: nucleotide transport and metabolism; G: carbohydrate transport and metabolism; H: coenzyme metabolism; I: lipid metabolism; J: translation,
ribosomal structure and biogenesis, K: transcription; L: DNA replication, recombination and repair; M: cell wall/membrane/envelope biogenesis; N: cell motility; O:
post translational modification, protein turnover, chaperones; P: inorganic ion transport and metabolism; Q: secondary metabolites biosynthesis, transport and
catabolism; R: general function prediction only; S: function unknown; T: signal transduction mechanisms; U: intracellular trafficking, secretion, and vesicular
transport; V: defense mechanisms.

high abundances of proteins regarding metabolism-related
pathways and metabolic process were also investigated in
the KEGG and GO analysis. Hence, we assume that the
major cold-responsive proteins participate in the metabolic
regulation of cells.

However, differences in protein abundance were observed
between T1 and T2. Especially, protein abundance existed
mostly in the clusters of cell motility (N) and transcription (K)
in T1 while cell wall/membrane/envelope biogenesis (M) and
post-translational modification, protein turnover, chaperones
(O) in T2. This result indicates that the effects of the cold
response on protein levels differ in the early and late stages.
The time-dependent differences in protein categories were also
found in E. coli in response to temperature and water-activity
changes and were closely related to the cultivability after the
temperature downshift (King et al., 2016). Different phases
including adaptation and re-growth phases could be divided
based on clustering analyses. Additionally, various protein
categories were involved such as energy metabolism, DNA repair
system, amino acid biosynthetic pathways, and carbohydrate
catabolism (King et al., 2016).

According to the COG classification, eight protein clusters
with the most protein abundance in T1 or T2 were chosen
to compare the differences between strain 44B and II7D
(Figure 4C). Compared with the protein abundance in the
other three pie charts, protein clusters of (K), (O), (J), and

(N) were undetectable in the early stage of 44B (T1) and
the proportions of these proteins in all selected proteins
in 44B (T2) were lower than those in II7D (T1) and
II7D (T2). This result demonstrates that the biogenesis of
responding proteins in 44B lags behind II7D under cold
stress. Meanwhile, the proteins in clusters of (K), (O), and
(J) represent key processes of protein biosynthesis. Hence,
lower abundances of these proteins in 44B (T1) and 44B
(T2) suggested that synthesis of general proteins might be
inhibited in 44B compared to strain II7D. As was shown in
many bacteria (e.g., E. coli), the arrest of cell growth upon
temperature downshift is caused by the severe inhibition of
general protein synthesis (Phadtare, 2004). The inhibition of
general proteins in 44B (both in T1 and T2) might be the
reason for low growth ability at low temperature. Considering
the expressional repression of cold acclimation genes in 44B
(Figure 1B), the inhibition might be involved in synthesis of
cold acclimation proteins, which are essential for cold adaptation
during prolonged growth.

In addition, a lower abundance of protein cluster (N)
related to the “cell motility” was also mentioned in 44B.
Base on the proteomic results, some cold-responsive proteins
related to flagella and chemotaxis were detected in II7D but
not in 44B (data not shown). For example, the Flg family,
used for flagellar assembly and motility, are temperature-
dependent in E. coli and other bacteria (Phadtare, 2012;
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Osterman et al., 2015). The chemotaxis protein, Che family is
essential for motility and cold response (Burkart et al., 1998;
Liu et al., 2014). According to the transcriptional analysis
in Figure 1B, the correlation between motility and growth
ability was demonstrated due to the different expressional
changes of motility-related genes fleC (homologous to fliC and
encoding Flagellin), fliS (putative cytoplasmic chaperone), and
YE2848 (putative chemotaxis methyl-accepting transducer) in
three isolates. Meanwhile, the Flagellin was detectable only
in II7D but not in 44B in proteomic analysis (other related
genes were not found). Since it is critical in motility and cold
response in Salmonella enterica (Elhadad et al., 2015; Michaux
et al., 2017), the involvement of motility in cold response
might be confirmed.

On the other hand, the percentages of clusters of energy
production and conversion (C), carbohydrate transport and
metabolism (G), and cell wall/membrane/envelope biogenesis
(M) in 44B (T1) are higher than those in 44B (T2), II7D (T1), and
II7D (T2). Considering the high abundance of proteins related
to carbohydrate metabolism and cell wall/membrane/envelope
biogenesis, but low enrichment of proteins related to functional
protein synthesis in strain 44B (T1), we might assume that 44B
uses a high rate of energy for the cell wall structure, instead
of initial growth at cold response. As an important protective
structure against adverse environmental conditions, the cell
membrane plays an important role in stress response. Previously,
it was extensively discussed that membrane lipopolysaccharide,
cell membrane, and the membrane fluidity contribute to
temperature adaptation in bacteria (Carty et al., 1999; Phadtare,
2004; Storz and Hengge, 2010).

Motility at Low Temperature
To investigate the physiological changes in cold response,
motility assays at low temperatures were performed on three
isolates (44B, 8081, and II7D) with different growth profiles
at low temperatures. All three strains showed motility at
28◦C; however, at the temperature of 4◦C, only II7D was
motile (Figure 5).

As shown in our transcriptional analysis, the expression of
motility-related genes (fliS and fleC) increased under cold stress
at 4◦C and their expression was increased earlier in strain 44B
than in the other two strains (Figure 1B). Meanwhile, a lower
abundance of proteins was present in the “cell motility” group
in 44B, which was consistent with the lower growth ability
in 44B than II7D. Moreover, the differential growth ability
correlates with motility in the three strains (only the strain
with high growth ability was motile) at low temperature. Based
on the results from transcriptional and proteomic analysis, the
different induction of the motility-related genes and proteins
among isolates with different growth behaviors indicated the
close link between cell motility and growth ability, which has
been described previously in Y. enterocolitica (Kapatral et al.,
1996). However, due to the wide range of factors with complex
mechanisms in regulating motility, how cell motility was affected
by or contributed to the growth ability after cold response
remains unclear (Young et al., 1999; Mukherjee et al., 2013;
Xu et al., 2014).

FIGURE 5 | Motility of Y. enterocolitica strains at low temperature. Motility was
tested on motility agar plate. Single colonies were stabbed on to motility agar
plates and incubated initially for 2 h at 37◦C to start the assay with non-motile
bacteria. The plates were subsequently incubated at 28◦C (for 21 h) and 4◦C
(for 44 h). The motility was assessed by measuring the diameters of migration
zone of strains. Values of the migration zone diameters (means ± SEM) in
each strains were tested of six independent experiments: 24.92 ± 0.239 cm
(44B at 28◦C), 11.58 ± 0.201 cm (8081 at 28◦C), 49.00 ± 0.966 cm (II7D at
28◦C), and 17.83 ± 0.105 cm (II7D at 4◦C). No migration zone was
detectable in 44B or 8081 at 4◦C.

Cell Membrane and Fluidity at Low
Temperature
To test other factors corresponding to membrane activity in
cold response, fluidity assays were performed at 4◦C on three
isolates (44B, 8081, and II7D). All three tested strains showed
stable fluidity under the temperature of 28◦C in 48 h, while
the membrane fluidity of 44B increased significantly at 4◦C
at 2 h and decreased to the normal level at 4◦C after 24 h
(Figure 6A). According to the results of fluidity, the membrane
fluidity maintained at the normal level in both strains 8081
and II7D, but not in 44B. These results indicated that the
balance of the membrane fluidity was changed in response to
cold stress in 44B at 2 h. This finding might be correlated to
the high protein abundance in the functional cluster of cell
wall/membrane/envelope biogenesis in 44B at T1. Therefore,
the differences in growth abilities at low temperature might be
related to the maintenance of cell fluidity. The similar roles of
membrane fluidity have been demonstrated in cold and other
stresses in many bacteria (Yoon et al., 2015; Eberlein et al., 2018).
However, the fluidities are regulated by various mechanisms in
different bacteria; e.g., E. coli (Carty et al., 1999), B. subtilis
(Aguilar et al., 2001), and Salmonella (Wollenweber et al., 1983;
Ricke et al., 2018).

To investigate the regulatory factors of membrane fluidity
in Y. enterocolitica, groups of genes regarding outer membrane
proteins and lipid A biosynthesis were selected according to
previous studies (Dekker, 2000; Nikaido, 2003; Barria et al., 2013;
Hussain and Bernstein, 2018; Robinson, 2019). Transcriptional
changes in these genes were investigated under cold stress for
2 h in three isolates with the primers listed in Supplementary
Table S3. In strain 44B, significantly higher expression of yaeT,
yfgL, dapX, and pldA and lower expression of yfiO and lpxP
was observed compared to the other isolates (Figure 6B). The
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FIGURE 6 | Membrane fluidity and transcriptional changes of membrane-related genes in Y. enterocolitica strains at low temperature. (A) Fluidity assays in II7D, 44B,
and 8081 under cold stress for 2, 24, and 48 h. Anisotropy value represented the membrane fluidity (higher anisotropy means lower fluidity). (B) Expressional
changes of the membrane related genes were detected using RT-qPCR and were normalized to the reference gene polA. Specific values of relative gene expression
are shown as the means ± SEM of four independent experiments. The line parallel to the x-axis represents a biologically relevant induction at 2 (fold-change).
Statistically significant difference compared with the control according to multiple comparisons (∗p < 0.05).

four outer membrane protein assembly factors (encoded by yaeT,
yfgL, dapX, and yfiO) were found in proteomic analysis, in
which, BamC encoded by dapX was upregulated significantly
in 44B. The differential expression of these genes and proteins
might be involved in fluidity regulation in response to cold.
Similar functions of the outer membrane protein YaeT, DapX,
and YfgL (homologous to insert β-barrel proteins in E. coli)
were shown in previous research in response to cold (Macintyre
and Henning, 1990; Onufryk et al., 2005; Wu et al., 2005; Begic
and Worobec, 2006; Sklar et al., 2007; Rollauer et al., 2015).
Outer membrane phospholipase A (encoded by pldA), which
is activated under various stress conditions, presents in the
outer membrane of Gram-negative bacteria. Its possible role is
maintaining the cell envelope integrity and permeabilization,
which is related to temperature (Dekker, 2000; Belosludtsev
et al., 2014). The different expressions of pldA gene and protein
among isolates suggested the possible involvement of outer
membrane phospholipase A in fluidity maintenance under cold
stress. However, their functions in cold response still remain to
be elucidated in Y. enterocolitica.

Des and LpxP (encoded by des and lpxP genes) are two
fluidity-generated enzymes in B. subtilis and E. coli. In B. subtilis,
upon a drop in temperature, the Des protein is synthesized
and desaturates the acyl chains of membrane phospholipids to
increase the membrane fluidity (Aguilar et al., 2001; Albanesi
et al., 2004). Furthermore, in E. coli, cold-induced acyltransferase
LpxP helps to attach more unsaturated fatty acids (palmitoleate
instead of laurate attached at normal temperature by LpxL)
to lipid A, thus increasing membrane fluidity and lowering
its phase transition temperature, counteracting the effect of
low temperature (Vorachek-Warren et al., 2002). In our
study, no significant difference in the expression of des gene
was observed among the three isolates and the Des protein
did not induced, which implied that the regulation of Des
in Y. enterocolitica might not be as important as that in
B. subtilis. Meanwhile, expression of the cold induced gene
lpxP was significantly lower in 44B and the related protein
were induced differently between II7D and 44B according
to proteomic analysis (Supplementary Table S4). Therefore,
membrane fluidity related to growth ability in Y. enterocolitica
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might be regulated by LpxP in cold adaptation, which is
identical to E. coli.

Proteomic Overview of the Cold
Response in Y. enterocolitica
Cold response involved a series of complex and significant
changes in the abundance of proteins in many processes
and pathways rather than a simple increase or decrease in
a specific category. To present an overview of the cold
response of Y. enterocolitica, the upregulated proteins under
cold stress were selected according to the main COG functional
categories mentioned in this study. These particular proteins
probably represented the key determinants that allow life at
low temperature. Top KEGG pathways (including the BRITE
hierarchies) were selected according to the proteins in COG
categories (listed in Supplementary Table S4). Proteomic

overview and the predicted regulation in cold response are
presented in Figure 7.

First, a high abundance of proteins was observed associated
with protein biosynthetic processes, such as transcriptional,
translational, and ribosomal, and post-translational processes
(related COG categories are shown in yellow boxes). These
proteins were involved predominate in transcription factors,
RNA degradation, peptidases and inhibitors, ribosome
biogenesis, and aminoacyl-tRNA biosynthesis. Numbers of
proteins related ribosome biogenesis [such as the transcription
termination/anti-termination protein NusA, ribosome-
associated inhibitor A (encoded by raiA), and ribosomal
RNA small subunit methyltransferase B (encoded by rsmB)]
were induced in response to cold. These related protein
associated with cold stress was also reported in E. coli and
other bacteria (Burakovsky et al., 2012; Di Pietro et al., 2013).
Meanwhile, functions of the proteins induced in this study

FIGURE 7 | Overview of the cold response of Y. enterocolitica at proteomic level. Proteins were selected in the main COG functional categories and distinguished.
Boxes with colored border represented the related pathways (including KEGG BRITE hierarchies). The main KEGG pathways reported in each category were
presented: transcription factors, RNA degradation, ribosome biogenesis, peptidases and inhibitor, and aminoacyl-tRNA biosynthesis (in yellow); glycine, serine, and
threonine metabolism and valine, leucine, and isoleucine biosynthesis (in red); lipopolysaccharide biosynthesis, peptidoglycan biosynthesis, and bacterial chemotaxis
(in gray), glycolysis/gluconeogenesis, pyruvate metabolism, and propanoate metabolism (in purple). The related COG categories were marked with the same colors
in boxes accordingly. The proteins were displayed in blue boxes representing the involvement in the related functional categories and pathways in this study. The
green boxes were used for the proteins also clarified in cold response in other researches. Detailed information is listed in Supplementary Table S4.
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like ribosomal silencing factor RsfS, GTPase HflX, and
ribosome-binding ATPase YchF under cold stress have not
been clarified previously. Since some of them are involved
in other stress response like heat, oxidative, and nutrient
stress (Starosta et al., 2014; Hannemann et al., 2016; Dey
et al., 2018), their potential roles under cold stress should
be investigated. The proteins associated with peptidases and
inhibitor such as LexA repressor, lipoprotein (encoded by
yggG), and Protein HflK were induced under cold stress in
this study. The cold-responsive function of these proteins
was also found previously in other research (Phadtare and
Inouye, 2004; Burakovsky et al., 2012; Jian et al., 2015). Besides,
some transcription factors (encoded by nhaR, oxyR, fadR,
cysB, and rfaH) were also involved in regulation of cold
response. Since the essential cold-responsive roles of these
transcription factors (encoded by nhaR, oxyR, and fadR) were
investigated in E. coli (White-Ziegler et al., 2008), Vibrio
vulnificus (Limthammahisorn et al., 2008), and Moraxella
catarrhalis (Spaniol et al., 2013), transcription factors should also
be focused on in Y. enterocolitica cold response.

A number of proteins involved in specific amino acids
biosynthesis may reflect their importance in mediating survival
under cold stress. In our research, the induced proteins
participated in biosynthesis of various amino acids under cold
stress (related COG categories shown in red boxes). These
proteins are associated with the biosynthesis and metabolism
of glycine, serine, and threonine (encoded by trpB, gcvP, ilvA,
tdh, etc.), and valine, leucine, and isoleucine (encoded by leuA,
leuB, leuC, leuD, budB, etc.). Similar amino acids have been
demonstrated in previous studies to aid tolerance under cold
stress conditions in many other bacteria (Fonseca et al., 2011;
King et al., 2016).

Second, proteins associated with cell membrane and
motility were identified (related COG categories shown in
gray boxes). Certain proteins were identified in pathways, such
as lipopolysaccharide biosynthesis (encoded by lpxA/B/P/M
and rfaC/Q), peptidoglycan biosynthesis (encoded by murC/E,
ddl, dacB, etc.), and bacterial chemotaxis (encoded by trg and
cheB/D/Z). The cold-responsive functions have been reported
previously in many proteins mentioned in Supplementary
Table S4. However, although the genes related to motility (fliS
and YE2848) were detected in our transcriptional, the induction
of them cannot be detected in our proteomic results. According
to the proteomic data, almost all the proteins related to flagellar
assembly were downregulated. The cold-responsive effect of
flagella on cell motility at the protein level is unknown.

Meanwhile, valine, leucine, and isoleucine, as the branched-
chain amino acids and the precursors for biosynthesis of iso-
and anteiso-branched-chain fatty acids, were utilized to regulate
the membrane fluidity in response to cold in certain bacteria
(Grau and de Mendoza, 1993; Annous et al., 1997; Klein et al.,
1999). Levels of isoleucine and leucine significantly increase
under cold stress in E. coli (Jozefczuk et al., 2010), and the
expression of related genes (leuA/B/C/D and ilvB/C/D/E/H)
was also elevated in Thermoanaerobacter tengcongensis (Liu
et al., 2014). Based on our proteomic results, the induction of
leuA/B/C/D encoding proteins was only detected in 44B, which

implied the indispensable regulation of these branched-chain
amino acids. However, the growth ability under cold stress of
44B was detected worse than II7D, which suggested that multiple
pathways related to motility might be applied in cold response.

The considerable involvement of proteins has been detected
and the transcriptional and physiological investigation associated
with motility and fluidity contributes to our understanding of
cold-response regulation of motility and membrane fluidity.

Additionally, certain pathways in energy production and
conversion and carbohydrate transport and metabolism were
also involved in this study (listed in Supplementary Table
S4). The complex processes and pathways in cold response of
Y. enterocolitica and the specific functions of other individual
proteins predicted in the proteomic results are required to be
investigated during cold adaptation.

This study demonstrates the strain-specific cold response
of Y. enterocolitica at 4◦C, which is time-dependent, including
cold acclimation and adaptation. The transcriptional analysis
revealed the importance of the induction and repression of
cold-shock genes in cold acclimation as well as the resumption
of the non-cold shock genes in prolonged cold adaptation.
Meanwhile, the time-dependent response at protein level
was also found and the cold-responsive proteins identified in
proteomic analysis were closely related to protein synthesis,
cell membrane parts and cell motility. Additionally, the
physiological processes in cell fluidity and motility might be
responsible for differential growth abilities at low temperatures.
By combining different approaches, cold response was described
systematically, providing a better understanding of the
significant physiological processes involved in cold stress
of Y. enterocolitica.
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CHAPTER 5 DISCUSSION 
5.1 Prevalence and the predicted transmission routes of Y. enterocolitica in 

seafood 
Y. enterocolitica is ubiquitous in nature and routinely isolated from a broad range of 
environment, animals and food products. In this study, the prevalence of Y. enterocolitica 
in seafood samples from retail markets in Berlin (Germany) was investigated. The total 
prevalence in seafood samples was 2.7% (6 of 220 samples). A similar prevalence was 
also found in other studies, e.g. 1% prevalence of Y. enterocolitica in frozen crustaceans 
or mollusks samples in Italy [192], 2.7% (1/37) in shrimp sample in Thailand [193] and 
oysters, mussels and other seafood [194, 195] [196]. However, some studies found 
higher prevalences in fresh seafood samples: e,g, in shrimps (13%) and blue crabs (21% 
prevalence) in the US and raw seafood in Malaysia (45.5% prevalence)  [197, 198]. 
Differences might be explained by different detecting methods and sampling areas. In 
our study, 220 samples were collected and multiple detecting methods were used and 
combined.  
 
In this study, all Y. enterocolitica isolates belong to biotype 1A, which lacks the pYV 
virulence plasmid. However, the pathogenic potential of 1A isolates is still under debate 
[121, 122]. Although most chromosomal virulence genes occurred in the other Y. 
enterocolitica biotypes, biotype 1A strains have been repeatedly isolated from patients 
with gastrointestinal symptoms [123]. Moreover, at least two outbreaks of Yersiniosis 
have been reported to be caused by biotype 1A [199, 200]. Combining that information, 
although no highly virulent strains were detected in seafood, seafood may -nonetheless- 
pose a risk for consumer’s health.  
Although the transmission routes of seafood are still poorly understood, the assumption 
for the presence of Y. enterocolitica in seafood within the food chain can be proposed. 
Many opportunities for Yersinia to enter food from aquatic habitats, which present the 
possibility of the contamination in seafood. For example, the presence of Y. 
enterocolitica in soil, freshwater ecosystems and birds have been provided previously. In 
addition, contamination by human or animal feces and post-harvest handling and 
processing may also pose a risk of seafood contamination [201].  
 
5.2 Network of cold shock response 
5.2.1 Cold acclimation and long-term adaptation in Y. enterocolitica 
Usually, gene expression induction has been studied immediately after sudden 
environmental changes, e.g., cold shock, acid shock or heat shock while much less effort 
has been dedicated to analyzing gene expression during prolonged growth under a 
specific environmental stress. Our work focused not only on the short term of the cold 
response but also further investigated the long-term cold adaptation. The transcriptional 
and translational analysis at low temperature were investigated in related genes and 
proteins with a wide range of functions. Among these, cold-shock proteins, PNPase, 
non-cold-shock proteins, and other complex metabolic processes were involved. 
 
5.2.1.1 Cold-shock proteins 
According to the sequencing and annotation of Y. enterocolitica genomes, cspA and 
cspB are the most studied and strongly expressed genes during the cold response [174, 
175, 202]. In this research, the gene expression of cspA and cspB increased up to 
thousand fold after temperature down shift and subsequently decreased under cold 
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stress at around 4 h. This result confirmed the essential role of cold-shock proteins in Y. 
enterocolitica under cold stress. Although their general characteristic as cold-response 
proteins was confirmed, further studies should be carried out on the function of these 
proteins. In addition, in isolates with low growth abilities at low temperatures, the 
expression of cspB genes decreased slowly and the relative expression was higher than 
in other isolates (with higher growth abilities) after cold stress. Hence, different 
transcriptional levels of cspB in isolates might be associated with specific growth abilities 
at low temperatures. Similarly, from a previous research, CspB is reported be able to 
protect cells from damage caused by low temperatures and it is required for cell viability 
at low temperatures in e.g. B. subtilis, S. aureus and S. cerevisiae [203-205]. However, 
the role of cspB in cold response has not been clarified yet. According to a previous 
study, under cold stress, the stabilization of secondary structures of RNA and DNA was 
firstly affected and it makes difficulties in translation, transcription and replication [175, 
206, 207]. Cold-shock proteins are involved in activating transcription and unwinding or 
masking RNA molecules [208-210]. It was shown that cspA and cspB act as a 
transcriptional activator and a chaperone of both DNA and RNA. It can facilitate proper 
transcription and replication of DNA and help translation by preventing the formation of 
stable secondary structures in mRNAs under cold stress in E. coli, Pasteurella multocida, 
Burkholderia thailandensis and B. subtilis [211-214]. Some Csps were also reported to 
be involved in various cellular processes to promote normal growth and stress 
adaptation responses [142]. Therefore, Csps seem to have a wider role in stress 
tolerance of bacteria than previously assumed. In B. subtilis, the csp gene is essential for 
viability and needed during non-shock growth [215]. During NaCl, pH, and ethanol stress 
response in C. botulinum, the cspA and cspC also affect motility and flagella formation 
[216]. Enteropathogenic Yersinia encode several csps which show a high homology to 
those of E. coli. However, it is not known what the role of other csp genes in stress 
response of enteropathogenic Yersinia is.  
 
In addition, two other genes (gltP and uhpC) were also induced at low temperature in 
this study. The expression of these two genes increased rapidly after a cold stimulation 
and then decreased over time (similar to the csp gene). Glutamate-aspartate symport 
protein (encoding by gltP) is an amino acid transport protein involved in the accumulation 
of stabilizing organic compounds under different stress conditions [217, 218]. Recently, 
the effect of aspartic acid and glutamate on metabolism and acid stress resistance 
of Acetobacter pasteurianus has been reported. It shows that aspartic acid 
and glutamate have an essential impact on stress response [219]. In L. monocytogenes 
and B. subtilis, the role of glycine betaine were also characterized in cold-protective 
effects [218, 220]. In this study, gltP showed great influence on cold-acclimation in Y. 
enterocolitica. Similar studies have been carried out on the amino transporter system 
especially glutamate transport system in E. coli and some other bacteria like Pyrococcus 
horikoshii and Rhodobacter sphaeroides [221-223]. However, it is still unknown how gltP 
participates in amino acid transport system regulating cold response in low temperature 
in Y. enterocolitica. UhpC as sensing regulation gene, encodes a kind of hexose 
phosphate transport system regulatory protein [224]. In our research and others, uhpC 
was induced significantly during cold shock. The function of uhpC in cold adaptation may 
depend on this hexose phosphate transport system regulatory protein. In the Uhp 
system of E. coli, signaling is initiated through sensing of extracellular glucose 6-
phosphate by membrane-bound UhpC, which in turn modulates the histidine-protein 
kinase UhpB. Together with the cytoplasmic response regulator UhpA, they constitute a 
typical two-component regulatory system based on His-to-Asp phosphoryl transfer [225]. 
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In this study, uhpC was mentioned but no further clarification has been made after cold 
stimulation.  
 
5.2.1.2 Polynucleotide phosphorylase (PNPase) 
Before bacterial cells start to resume growth after cold shock, other proteins need to be 
produced. PNPase, encoded by pnp gene, is involved in RNA decay, which is required 
for the production of these proteins. In our study, the expression of pnp gene was 
induced, which indicated that pnp is required for the cold response in Y. enterocolitica. 
During a cold response, different induction of pnp expression was found in specific 
isolates with various growth ability. This results verified the essentiality of the pnp gene 
in cold adaptation and the continuous higher expression of pnp gene implies the higher 
demand of PNPase and pnp in isolates with low growth ability at low temperatures. 
According to a previous study, the indispensable role of pnp in the cold response of Y. 
enterocolitica has already been demonstrated [226]. It was reported, that pnp has an 
upstream promotor region with the ATTGG temperature dependent motif in Y. 
enterocolitcia, which regulates gene expression by selectively degrading Csp mRNAs 
and thereby to enable growth to resume at low temperature [149, 227] [177]. 
 
Many other studies have been done to indicate the function of PNP verifying its 
regulation role in cold response. The same function of PNPase was also found in many 
bacteria including: E. coli [228], Salmonella enterica [229], Campylobacter jejuni [230] 
and B. subtilis [231]. Combining this information, the expression of pnp is temperature-
dependent and the cold shock leads to an increase in PNPase levels [232-234] [177]. So 
that it might explain the result in our study that pnp gene expression increased after 
temperature down-shift but in different levels among isolates: the repression of Csp 
generation might be not accomplished in isolate with lower growth ability at low 
temperatures.  In addition, as it was reported previously, after the repression of Csp 
production, the growth reinitiated at the end of the acclimation phase [235]. Therefore, 
the RNA degradation of Csps by PNPase was indispensable for cold acclimation and 
growth resumption. PNPase is also reported of having other functions in stress response 
in many bacteria. In E. coli, PNPase and RNase II are the major 3’-exonucleases 
involved in RNA degradation and are involved in biofilm formation [236-238]. 
Furthermore, the activity of PNPase is modulated by a number of small molecule 
effectors including ATP, cyclic di-GMP, citrate and some other metabolites [239-242].  
 
5.2.1.3 Non-cold-shock proteins 
The induction of cold-shock proteins (Csps) exists in all psychrotrophs, mesophiles and 
thermophiles [145, 243]. Meanwhile, in psychrotrophic bacteria such as Arthrobactor 
globiformis and Pseudomonas fragi, some cold-response proteins are synthesized at 
relatively moderate levels and the induction of these proteins can prolong in response to 
continuous growth at low temperatures [244, 245]. These proteins are of particular 
importance since they differentiate psychrotrophs from mesophiles, and this group of 
non-cold-shock proteins is probably one of the key determinants that allow bacterial 
survival at low temperature [146]. As it was reported previously, after the repression of 
Csp production, the growth reinitiated at the end of the acclimation phase [235]. In our 
study, differences in cold response were detected on transcriptional levels by genes 
YE1436, fleC, fliS and YE2848. According to the expressional investigation, slighter 
increase in expression of these genes was detected in the isolate with low growth ability 
at low temperature. Regarding the growth ability, the isolate with low growth ability might 
not be able to produce several non-cold shock proteins and allow growth during 
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prolonged low temperatures in cold adaptation [145, 146, 245, 246]. After the cold 
acclimation, the expression of non-cold shock genes has not been resumed in this 
isolate, arresting the transition from acclimation to cell growth.  
 
Notably, the regulation of these non-cold-shock proteins and other general proteins at 
proteomic level were also investigated in our research. A high abundance of proteins 
was observed associated with protein biosynthetic processes based on the COG and 
KEGG annotation. These proteins are related to transcriptional, translational and 
ribosomal, and post-translational processes. These proteins were involved in 
transcription factors, RNA degradation, peptidases and inhibitors, ribosome biogenesis 
and aminoacyl-tRNA biosynthesis. For example, transcription termination/anti-
termination protein NusA, ribosome-associated inhibitor A (encoded by raiA) and 
ribosomal RNA small subunit methyltransferase B (encoded by rsmB) were induced in 
response. These proteins associated with cold stress were also reported in E. coli and 
other bacteria [247, 248]. The proteins associated with peptidases and inhibitors such as 
LexA repressor, lipoprotein (encoded by yggG) and protein HflK were induced under 
cold stress in this study. The cold-response function of these proteins was also found 
previously in other studies [247, 249, 250]. Besides, some transcription factors (encoded 
by nhaR, oxyR, fadR, cysB and rfaH) were also involved in regulation of cold response 
and    similar cold-response roles of these transcription factors were investigated in E. 
coli [251], Vibrio vulnificus [252] and Moraxella catarrhalis [253]. All these reflected the 
need for protein biosynthesis under cold stress. Previously, proteomic studies have 
compared the relative abundance of protein synthesized in P. haloplanktis, 30 % of the 
upregulated proteins at 4°C were found to be directly related to protein synthesis and it 
was concluded that protein synthesis may be a limiting step for growth in the cold [254]. 
The proteomic response of the psychrophilic Colwellia psychrerythraea at -10 °C 
resulted in an increase in the abundance of translation processes and protein synthesis 
[255].  
 
Consequently, the cold response of Y. enterocolitica includes both, cold acclimation and 
prolonged adaptation. The isolate-specific ability to survive under cold stress depends 
on the capacity of enabling transient induction and effective repression of cold-shock 
gene in cold acclimation. Meanwhile, the resumption of the non-cold shock gene 
expression was also required in prolonged cold adaptation. So the pronounced 
separation between cold response and long-term adaptation may be a general feature of 
bacteria induced by environmental stress.  

 
5.2.2 Regulation of membrane fluidity in response to cold 
The ability to cope with temperature downshift must be accompanied by a number of 
changes in response to physical and biochemical alterations, including solubility, 
membrane fluidity, protein conformation and stability, and changes in gene expression 
[145, 146, 256-259]. In this study, under the cold stress, the balance of the membrane 
fluidity was changed, the membrane related genes were detected and high protein 
abundance was found in the functional cluster of proteins regarding cell 
wall/membrane/envelope biogenesis. The differences in growth abilities of strains at low 
temperatures might be related to corresponding differences in enabling maintenance of 
cell fluidity.  
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5.2.2.1 Maintenance of membrane fluidity 
As it was mentioned previously, the physical state of lipid bilayers is susceptible to the 
changes of temperature [260]. An abrupt temperature downshift leads to an increased 
proportion of unsaturated fatty-acid residues in microbial lipids, which results in a 
lowering of the melting point of the lipids and membrane fluidity [261, 262]. In our 
research, differences in membrane fluidity were shown in isolates with different growth 
abilities at low temperature. The membrane fluidity was maintained at the normal level in 
the isolates with higher growth abilities at low temperatures, but not in the isolate with 
lower abilities. Similar roles of membrane fluidity have been demonstrated in cold and 
other stresses in many bacteria [263, 264]. However, the fluidities are regulated by 
various mechanisms in different bacteria; e.g., E. coli [159], B. subtilis [265] and 
Salmonella [266, 267] 
 
5.2.2.2 Regulation of lipid biosynthesis  
As it was mentioned previously, in order to maintain membrane fluidity and functionality 
at low temperatures, bacteria modify their membrane physical properties by changing 
lipid composition [77].  The simplest way is to regulate the proportion of unsaturated fatty 
acids (UFAs) and saturated fatty acids (SFAs) in phospholipids [260, 268]. In many 
bacteria, temperature signals are processed to adjust enzyme activities or to activate 
genes to adapt the membranes to the new temperature. Among these, Des and LpxP 
are two fluidity-related enzymes mostly reported in response to cold. In B. subtilis, upon 
a drop in temperature, the Des protein is synthesized and desaturates the acyl chains of 
membrane phospholipids to increase the membrane fluidity [259, 265]. Furthermore, in E. 
coli, cold-induced acyltransferase LpxP helps to attach more unsaturated fatty acids 
(palmitoleate instead of laurate attached at normal temperature by LpxL) to lipid A, thus 
increasing membrane fluidity and lowering its phase transition temperature [258]. In our 
study, although slightly higher expression of des was found, induction of Des protein was 
not observed, which implies that the regulation function of Des in Y. enterocolitica might 
not be as important as in B. subtilis. Meanwhile, in our study, the expression of gene 
lpxP was significantly different in three isolates and the related proteins were induced in 
proteomic analysis. Therefore, membrane fluidity related to growth abilities in Y. 
enterocolitica was regulated by LpxM and LpxP in cold adaptation, which is similar to E. 
coli.  
 
Our study implied the essential link between cold adaptation and membrane fluidity. The 
different regulation mechanism of fluidity have been investigated in other bacteria. In L. 
monocytogenes, the adaptation strategy relies on an increased amount of anteiso-form 
fatty acids and a reduction of the corresponding isoforms [269]. Accordingly, cold 
adaptation induced an up-regulation of the key enzyme in the biosynthesis of precursors 
of branched-chain fatty acids, and subsequent elongation steps of the fatty acid chain. 
These data clearly indicate an activation of lipid biosynthetic pathways [77]. The effect of 
low temperature on membrane lipid saturation has also been investigated in the 
cyanobacterium Streptomyces platensis. Total cellular lipids were analyzed and the 
different levels of membrane fatty acid unsaturation at 18 °C were compared with those 
at 22 °C. This result suggested that this bacteria has capacity to regulate its saturated 
fatty acid content, which could be a major factor in adaptability to low temperatures [270]. 
Therefore, membrane remodeling as one of the most common adaptations observed 
under cold stress has been seen in numerous psychrotrophs [271-274]. However, the 
modifications of fatty acid and membrane biosynthesis are various in different organisms 
to overcome decreased membrane fluidity at lower temperatures even in the bacteria in 
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very close species. For example, the differences were detected in low-temperature 
adaptation between B. pertussis and B. bronchiseptica by controlling plasticity of the 
membranes [275]. Alterations in membrane fatty acid composition in response to cold 
have also been documented in Y. enterocolitica and Y. pseudotuberculosis as well [276]. 
In Y. pseudotuberculosis, more total lipids and phospholipids are present in cells grown 
at 8°C than in cells grown at 37°C [277]. Saturated and cyclopropane fatty acids 
substantially increased and the unsaturated ones decreased when cultivation 
temperature was lowered in response to lower temperature in Y. enterocolitica [278]. 
However, the mechanism of cell membrane fluidity regulation and the relationship 
between cell membrane fluidity and growth ability at low temperatures remains unclear. 
 
5.2.2.3 Regulation of outer membrane proteins 
While exposed to the cold temperature, the membrane (as the selective barrier between 
living cells and their environment) plays a key role in cell viability. Based on our result, 
many membrane related genes were induced and expressed differently in response to 
cold. Firstly, four outer membrane protein assembly factors (encoded by yaeT, yfgL, 
dapX and yfiO) were detected. Significantly higher expression of yaeT, yfgL and dapX, 
and lower expression of yfiO were observed in isolates with low growth ability under cold 
stress. The related proteins were also found in proteomic analysis. The differential 
expression of these genes and proteins might be involved in fluidity regulation in 
response to cold. Similar functions of the outer membrane protein YaeT, DapX and YfgL 
were shown in E. coli and other bacteria according to previous researches in response to 
cold [279-284]. Moreover, the outer membrane phospholipase A (encoded by pldA), 
which is activated under various stress conditions and maintains the cell envelope 
integrity and permeabilization in response to temperature [285, 286]. The differential 
expressions of pldA gene was also detected in our research among isolates. This result 
suggested the possible involvement of outer membrane phospholipase A in fluidity 
maintenance under cold stress. Many other studies have shown the relationship 
between cold response and outer membrane regulation. For example, changes in these 
major outer membrane protein OmpA has been reported being affected by hha gene, 
which acts as a temperature-dependent modulator in E. coli [287]. In Yersinia, ymoA 
which is homologous to hha gene, was reported to serve the same function [288]. The 
impact of OmpR, OmpX, OmpF and OmpA of Y. enterocolitica associated with 
temperature changes has been demonstrated [137] [289].  
 
In addition, according to the proteomic results, high protein abundance was detected in 
the functional cluster cell wall/membrane/envelope biogenesis in COG analysis. 
Therefore, it proved the function of fluidity in cold response and the mechanism involved 
in lipid biosynthesis and outer membrane regulation. However, their functions in cold 
response still remain to be elucidated in Y. enterocolitica. 
 
5.2.2.4 Regulation of amino acid biosynthesis 
According to previous study, activation of the amino acid biosynthetic pathways (i.e. 
histidine, valine, isoleucine, and tryptophan) was reported during growth under cold 
stress, which proved that the intracellular content of amino acids were part of the 
adaptive response enabling survival in bacteria under cold conditions [290-292]. In our 
research, the induced proteins participated in amino acid biosynthesis contribute to the 
regulation of membrane fluidity. Valine, leucine and isoleucine, as the branched-chain 
amino acids and the precursors for biosynthesis of iso- and anteiso-branched-chain fatty 
acids, were utilized to regulate the membrane fluidity in response to cold in certain 
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bacteria [293-295]. According to the proteomic results in this study, the induction of 
LeuA/B/C/D proteins was only detected in isolate with low growth ability under cold 
stress, which implied the indispensable regulation of these branched-chain amino acids. 
Similarly, the association between isoleucine and leucine biosynthesis and cold 
response was also found in E. coli [296] and Thermoanaerobacter tengcongensis [297].  
 
5.2.3 Regulation of cell motility in response to cold 
Bacteria employs different strategies and mechanisms to withstand adverse 
environmental conditions. One of the most effective ways is to adjust its own movement. 
The diversity of motility mechanisms in response to stimuli allows them to migrate to 
optimal environments, incl.  favorable temperatures [298].  

5.2.3.1 Relationship between motility and cold response 
Y. enterocolitica shows the highest motility at 25 °C and becomes non-motile at 37 °C 
due to the transcription prohibition of the main regulator of the filament assembly [299, 
300]. In our study the motility of different isolates differed. All three tested strains showed 
motility at 28°C; however, at the temperature of 4°C, only the isolate with high growth 
ability at low temperatures was motile. This showed the effect of different temperature on 
motility. The influence of cold stress on motility was also reported in other bacteria, such 
as B. subtilis [301] and V. cholerae [302]. The effect of temperature on cell of motility is 
reported in relation with the transition between growth outside and inside the host in 
various pathogenic bacteria, such as L. monocytogenes [303], B. bronchiseptica [304], 
Legionella pneumophila [305] and Actinobacillus pleuropneumoniae [306]. Furthermore, 
the thermo-regulation of swarming motility has been reported in several bacteria 
including deep-sea bacterium Shewanella piezotolerans [307], plant pathogen 
Pseudomonas syringae and Proteus [308]. Moreover, the most common and best 
studied of all prokaryotic motility structures is the bacterial flagellum [309, 310]. The 
regulation of motility in some flagellated bacteria has been investigated and the related 
proteins have been reported sensing environment [311]. Furthermore, the physiological 
changes of flagella can be affected by the temperature. In E. coli, the flagella proteins 
are transiently induced following heat shock, salt, and acid stress or limitation of glucose 
[312] and the flagella biosynthesis and motility system were highly induced after a 
temperature downshift [313]. In Campylobacter, the expression of flagella genes is also 
known to be modulated by temperature [314]. Therefore, temperature is essential for cell 
motility. 

5.2.3.2 Regulation of motility related proteins 
According to the transcriptional analysis, the correlation between motility and growth 
ability was demonstrated in three isolates due to the different transcriptional changes of 
motility-related genes fleC (homologous to fliC and encoding Flagellin), fliS (putative 
cytoplasmic chaperone) and YE2848 (putative chemotaxis methyl-accepting transducer). 
The expression of motility-related genes (fliS and fleC) increased under cold stress at 
4°C and the abundance of proteins was present differently in the “cell motility” group in 
isolates, which was consistent with the lower growth ability. Moreover, the proteins 
associated with motility and bacterial chemotaxis were identified and some cold-
response proteins were only detected in isolates with high growth ability. For example, 
the Flg family, used for flagellar assembly and motility, are temperature- dependent in E. 
coli and other bacteria [315, 316]. The chemotaxis protein, Che family is essential for 
motility and cold response [297, 317]. Meanwhile, the Flagellin was detectable only in 
II7D but not in 44B in proteomic analysis (other related genes were not found). Since it is 
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also critical in motility and cold response in Salmonella enterica [318, 319], the 
involvement of motility in cold response might be demonstrated. Based on the results 
from transcriptional and proteomic analysis, the different induction of the motility-related 
genes and proteins among isolates with different growth behaviors indicated the close 
link between cell motility and growth ability in Y. enterocolitica [299]. However, a wide 
range of factors with complex mechanisms have been reported in regulating motility [19, 
320, 321]. For example, the physiology of motility was reported to be changed via the 
chemotaxis system and the function of flagella in E. coli and S. Typhimurium in response 
to environmental signals [19, 322]. Based on comparative analysis of flagella regulatory 
cascades in Enterobacteriaceae family in terms of motility gene regulation by 
environmental factors are composed. As the members of Enterobacteriaceae family, Y. 
enterocolitica and E. coli meet the similarities of the flagella hierarchy including the 
identification of FlhD/FlhC as the master regulator [323], FliA as the sigma factor [324] 
and the genes within each operon [325]. However, there are also many specific 
mechanisms of flagella in Y. enterocolitica. For example, the arrangement of the operons 
along the chromosome and the environmental control of flagella regulon differs in Y. 
enterocolitica [326] and not all Y. enterocolitica flagella genes respond to the same 
environmental stimuli [326, 327]. Due to the complex regulation system of flagella, it is 
difficult to point out one single factor that generate cell motility. Therefore, how cell 
motility was affected by or contributed to the growth ability after cold response remains 
unclear. 
 
5.2.4 Predicted cold-response regulation of Y. enterocolitica 
According to the proteomic analysis in this study, a series of complex responses and 
processes changed rather than a simple increase or decrease happened at protein 
levels. Under cold stress, large changes were observed in protein synthesis, energy 
production and convention and carbohydrate transport and metabolism and also cell 
membrane parts and cell motility. In addition, proteins belonging to two-component 
system and ABC transporters were detected in cold response. The role of them in stress 
response has been reported in many bacteria [328, 329], they can be studied in detail to 
understand Y. enterocolitica response to low temperatures.  
 
5.2.4.1 Two-component system 
Two-component regulatory signaling system (TCS) is one of the major systems for 
bacteria in stress response. A TCS is constituted of a transmembrane sensor histidine 
kinase (HK) and a cytoplasmic response regulator (RR). The sensor domain of the HK 
accepts the signal of the specific stimulus or stress factor in the environment and the 
cognate RRs then catalyze the transfer of the phosphoryl group in response to the 
environmental stimulus [330-332]. In addition, TCSs have been reported to be involved 
in cold response of many bacteria. In this study, Che family was induced in response to 
cold and CheA/CheY working as the TCS was also found to be induced at low 
temperature in Y. pseudotuberculosis [333]. Moreover, the membrane phospholipid 
desaturase gene des was mentioned to be associated with membrane fluidity in this 
study. In B. subtilis, following cold shock, the transcription of des gene is induced by the 
TCS, DesK/DesR [334, 335]. However, to our knowledge, no DesK/DesR or casK/R 
homologue have been found in Y. enterocolitica [336-338]. Moreover, other TCSs has 
been found in cold response of many other foodborne pathogenic bacteria in L. 
monocytogenes (yycG/lisK) [336], B. cereus (CasK/R) [339], L. monocytogenes 
(LisK/LisR) [340, 341] and Stenotrophomonas maltophilia (LotS/LotR) [342].  
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According to the proteomic analysis, several predicted TCS related proteins were 
identified (listed in Table 10). However, the specific function of them has not been fully 
demonstrated. Thus, by concentrating the essential function of TCSs in stress 
experiments, relevant information may be unheeded in the further study. 
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Table 10: TCS related proteins identified in proteomic analysis 

Protein Entry Gene 
names Protein names Functional definition 

A0A0E1NDU5 arcA DNA-binding response regulator Response regulators consisting of a CheY-like receiver 
domain and a winged-helix DNA-binding domain 

A0A0U1HEG5 arnB 
UDP-4-amino-4-deoxy-L-
arabinose-oxoglutarate 

aminotransferase 

Predicted pyridoxal phosphate-dependent enzyme 
apparently involved in regulation of cell wall biogenesis 

A0A0E1NCT9 b4153 Succinate dehydrogenase iron-
sulfur subunit 

Succinate dehydrogenase/fumarate reductase,  
Fe-S protein subunit 

A0A0E8MQY1 bvgA Putative two-component 
response regulator 

Response regulator containing a CheY-like receiver 
domain and an HTH DNA-binding domain 

A0A0E1NK07 cheB Chemotaxis response regulator 
protein-glutamate methylesterase

Chemotaxis response regulator containing a CheY-like 
receiver domain and a methylesterase domain 

A0A0E8LV00 cheD Methyl-accepting chemotaxis 
protein Methyl-accepting chemotaxis protein 

A0A0E1NG03 cheY Chemotaxis regulatory protein 
CheY CheY-like receiver 

A0A0U1HH06 citE Putative citrate lyase beta chain Citrate lyase beta subunit 

Q79RU4 crp Cyclic AMP receptor protein cAMP-binding proteins - catabolite gene activator and 
regulatory subunit of cAMP-dependent protein kinases 

A0A0E8LXM1 cydA Cytochrome D ubiquinol oxidase 
subunit I Cytochrome bd-type quinol oxidase, subunit 1 

A0A0F6ZK31 degP Periplasmic serine endoprotease 
DegP-like 

Trypsin-like serine proteases, typically periplasmic,  
contain C-terminal PDZ domain 

A0A0U1HK63 dnaA Chromosomal replication initiator 
protein DnaA ATPase involved in DNA replication initiation 

A0A0F6ZK28 flgM Anti-sigma-28 factor FlgM Negative regulator of flagellin synthesis  
(anti-sigma28 factor) 

A0A0U1HI17 fliC1 Flagellin Flagellin and related hook-associated proteins 
A0A0U1HM52 fliC2 Flagellin Flagellin and related hook-associated proteins 

A0A0U1HFJ9 frdA Fumarate reductase flavoprotein 
subunit

Succinate dehydrogenase/fumarate reductase, 
flavoprotein subunit
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A0A0E8M398 glnA Glutamine synthetase Glutamine synthetase 

A0A0E1NFB9 glnB Nitrogen regulatory protein P-II 1 
(Transcriptional regulator) Nitrogen regulatory protein PII 

A0A0N9KNE5 glnF RNA polymerase sigma-54 factor DNA-directed RNA polymerase specialized sigma subunit, 
sigma 54 homolog

A0A0U1HGN2 gltI Glutamate Aspartate periplasmic 
binding protein GltI 

ABC-type amino acid transport/signal transduction 
systems, periplasmic component/domain 

A0A0E8LZT5 gltL 
Putative glutamate/aspartate 
ABC transporter ATP-binding 

protein

ABC-type polar amino acid transport system,  
ATPase component 

A0A0F6WYJ2 mdtE Multidrug resistance protein 
MdtA Membrane-fusion protein 

A0A0U1HJG4 meoA2 Outer membrane porin protein C Outer membrane protein (porin) 
A0A0U1HJT3 meoA3 Outer membrane porin protein C Outer membrane protein (porin) 

A0A0F6WYX5 ompF Putative outer membrane porin F 
protein Outer membrane protein (porin) 

A0A0E1NA84 ompR DNA-binding response regulator Response regulators consisting of a CheY-like receiver 
domain and a winged-helix DNA-binding domain 

A0A0E1NCS5 phoP DNA-binding transcriptional 
regulator PhoP 

Response regulators consisting of a CheY-like receiver 
domain and a winged-helix DNA-binding domain 

A0A0T9S2Z7 phoS Phosphate-binding protein PstS ABC-type phosphate transport system,  
periplasmic component 

A0A0U1HBU6 qseF Two-component system 
response regulator 

Response regulator containing CheY-like receiver,  
AAA-type ATPase, and DNA-binding domains 

A0A0E8IYW6 tolC Outer membrane channel protein Outer membrane protein 

A0A0U1H7P4 torC Cytochrome c-type protein Nitrate/TMAO reductases, membrane-bound tetraheme 
cytochrome c subunit 

A0A0U1HGP8 trg Putative methyl-accepting 
chemotaxis protein Methyl-accepting chemotaxis protein 

A0A0E8KNA6 uvrY Response regulator Response regulator containing a CheY-like receiver 
domain and an HTH DNA-binding domain 



 

56 

5.2.4.2 ABC transporter 
Bacterial cells need a kind of membrane barrier when exposed to external environments 
keeping the level of certain ions, metabolic intermediates and macromolecules. 
Therefore, during environmental adaptation, efficient transport systems have been 
developed to allow essential ions and metabolites enter the cell and other compounds 
leave it. The ATP-binding cassette (ABC) transporters, which constitute ATP-powered 
transporters, have a large of members in all organism. For example, it has 79 ABC 
transporters in Escherichia coli and 29 in Saccharomyces cerevisiae [343, 344]. In our 
research, 32 ABC transporters were found based on the proteomic analysis under cold 
stress (listed in Table 11), which implied the essential role of ABC transporters in cold 
response. The ABC transporters have been investigated in temperature-dependent 
situation in many other bacteria. For example, TliDEF, from P. fluorescens SIK W1, 
mediates the secretion of its cognate lipase in a temperature-dependent secretion 
manner [345]. The transcriptome data in V. parahaemolyticus revealed that the 
expression of the ABC transporter genes were significantly altered when it was grown at 
10 °C [346]. In Y. pseudotuberculosis, the strong connection between the genes 
involved in ABC transporters and the cold response was mentioned in Y. 
pseudotuberculosis in controlling its growth during cold storage in food [347]. Hence, 
ABC transporters have received considerable attention recently because they are 
associated with many important biological processes. In contrast to the situation in other 
organisms, studies of Y. enterocolitica ABC proteins are still at an early stage. Although 
the general organization of the ABC gene family of Y. enterocolitica and its association 
with cold response haven’t been well proved, the large variety of multiple physiological 
roles makes ABC transporters at the center of interest for stress response. According to 
our proteomic analysis, the predicted ABC transporters were observed.  
 
One of the most studied ABC exporters in bacteria is the lipid flippase MsbA [348, 349]. 
MsbA is located in the inner membrane of Gram-negative bacteria, where it transports 
lipid A from the inner to the outer leaflet [349, 350]. As an important ABC exporter in 
bacteria, it proved the potential function of ABC transporter in cold response. In E. coli, 
this function has been well demonstrated and the msbA gene is essential for bacterial 
viability at all temperatures. In addition, the msbA gene was identified together with htrB 
gene, which affected growth and viability at high temperature [351-353]. According to our 
observation, the lipid A biosynthesis is essential for the membrane regulation in cold 
response in Y. enterocoiltica and the acyltransferase belong to LpxL/LpxM/LpxP family 
were found.  
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Table 11: ABC- transporter related proteins identified in proteomic analysis 

Protein Entry Gene 
names Protein names Functional definition 

A0A0U1HFQ6 argT Amino acid-binding periplasmic 
protein 

ABC-type amino acid transport/signal transduction 
systems, periplasmic component/domain 

A0A0E8HU69 artJ periplasmic arginine-binding protein  ABC-type amino acid transport/signal transduction 
systems, periplasmic component/domain 

A0A0U1H7W1 artP Arginine transporter ATP-binding 
subunit 

ABC-type arginine transport system, ATPase 
component 

A0A0F6ZGJ8 cysP Thiosulfate transporter subunit ABC-type sulfate transport system, periplasmic 
component 

A0A0E1NH39 dppA Dipeptide transport protein ABC-type dipeptide transport system, periplasmic 
component 

A0A0U1HB05 fepB Iron-enterobactin transporter 
periplasmic binding protein

ABC-type Fe2+-enterobactin transport system, 
periplasmic component

A0A0U1HJR7 fliY Cystine transporter subunit ABC-type amino acid transport/signal transduction 
systems, periplasmic component/domain 

A0A0E1NKJ4 glnH Glutamine ABC transporter 
periplasmic protein 

ABC-type amino acid transport/signal transduction 
systems, periplasmic component/domain 

A0A0E8JUV2 glnQ Glutamine ABC transporter  
ATP-binding protein 

ABC-type polar amino acid transport system, ATPase 
component 

A0A0U1HGN2 gltI Glutamate Aspartate periplasmic 
binding protein 

ABC-type amino acid transport/signal transduction 
systems, periplasmic component/domain 

A0A0E8LZT5 gltL Putative glutamate/aspartate ABC 
transporter ATP-binding protein

ABC-type polar amino acid transport system, ATPase 
component

A0A0E1NFM5 hisJ Histidine-binding periplasmic protein ABC-type amino acid transport/signal transduction 
systems, periplasmic component/domain 

A0A0E8GLB0 lptG Lipopolysaccharide ABC transporter 
permease ABC-type permeases 

A0A0U1H7V7 macB Macrolide export ATP-
binding/permease protein MacB 

ABC-type antimicrobial peptide transport system, 
permease component 

A0A0U1HK35 malK Maltose/maltodextrin import ATP-
binding protein MalK 

ABC-type sugar transport systems, ATPase 
components 

A0A0U1HA52 metN Methionine import ATP-binding 
protein MetN

ABC-type metal ion transport system, ATPase 
component

A0A0E1NIJ4 metQ Lipoprotein ABC-type metal ion transport system, periplasmic 
component/surface antigen 
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A0A0U1HDP9 mglB Galactose-binding protein ABC-type sugar transport system, periplasmic 
component 

A0A0U1HE62 modA Molybdate transporter periplasmic 
protein 

ABC-type molybdate transport system, periplasmic 
component 

A0A0U1HFV5 mppA Putative periplasmic murein peptide-
binding protein 

ABC-type oligopeptide transport system, 
periplasmic component 

A0A0E8JAK7 peb1A periplasmic solute-binding protein ABC-type amino acid transport/signal transduction 
systems, periplasmic component/domain 

A0A0T9S2Z7 phoS Phosphate-binding protein PstS ABC-type phosphate transport system, periplasmic 
component 

A0A0F6SWD0 potF Putrescine-binding periplasmic protein ABC-type Spermidine/putrescine-binding 
periplasmic protein 

A0A0E8MBN4 proV2 Glycine betaine/L-proline transport 
ATP-binding protein 

ABC-type proline/glycine betaine transport system, 
ATPase component 

A0A0T9S1I3 proX Glycine betaine transporter periplasmic 
subunit 

ABC-type proline/glycine betaine transport systems, 
periplasmic components 

A0A0U1HMA3 rbsB D-ribose transporter subunit RbsB ABC-type sugar transport system, periplasmic 
component 

A0A0U1H9P3 thiB Thiamine transporter substrate binding 
subunit 

ABC-type thiamine transport system, periplasmic 
component 

Q692K7 wzt Lipopolysaccharide transport system 
ATP-binding protein 

ABC-type polysaccharide/polyol phosphate 
transport system, ATPase component 

A0A0U1HB62 yclQ Putative iron transport protein ABC-type enterochelin transport system, 
periplasmic component 

A0A0E8KGP9 yesO Putative sugar-binding protein ABC-type sugar transport system, periplasmic 
component 

A0A0E1NC09 yhbG Putative ABC transporter ATP-binding 
protein YhbG 

ABC-type (unclassified) transport system, ATPase 
component 

A0A0F6ZJ75 znuA High-affinity zinc transporter 
periplasmic protein 

ABC-type Zn2+ transport system, periplasmic 
component/surface adhesion 
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CHAPTER 6 SUMMARY 
The first part of the thesis determined the prevalence of Y. enterocolitica in seafood. The 
presumptive Y. enterocolitica isolates were analyzed by biotyping, serotyping and 
antimicrobial susceptibility testing. The total prevalence of Y. enterocolitica in seafood 
samples was 2.7% (6/220). All isolates belonged to biotype 1A and three isolates were 
identified as serotype O:8, one isolate as O:5,27, while two samples did not belong to 
the investigated serotypes. Most isolates contained the virulence-associated genes ail, 
inv and ystB and the isolates were resistant to cephalothin (83.3%), amoxicillin (83.3%) 
and ampicillin (50.0%). The results indicate that seafood might be a potential source of 
infection by Y. enterocolitica. 
 
Since Y. enterocolitica (as psychrotrophic bacterium) is able to multiply at low 
temperatures, information about the underlying mechanisms is needed. However, 
information about Y. enterocolitica cold response is still scarce. In this study, strain 
specific growth profiles at 4°C were found and the cold response was investigated by 
combining phenotypic, gene expressional and proteomic approaches. The expressional 
changes of the cold-response genes showed that the ability to survive under cold stress 
depends on the transient induction and effective repression of cold-shock genes and the 
resumption of gene expression in other non-cold shock genes. Global proteomic analysis 
with label free quantification was firstly used in Y. enterocolitica cold response to indicate 
general cold response and resistance mechanism. Additionally, the isolate specific 
differences at transcriptional levels in motility- and fluidity- related genes contribute to 
our understanding of cold response regulated by motility and fluidity in Y. enterocolitica. 
By combining different approaches, cold response was described systematically, 
providing a better understanding of the physiological processes of Y. enterocolitica in 
response to cold stress.  
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CHAPTER 7   ZUSAMMENFASSUNG 

Die Prävalenz von Y. enterocolitica in Meeresfrüchten ist in den ersten Teil der Arbeit 
bestimmt. Die mutmaßlichen Y. enterocolitica-Isolate wurden durch Biotypisierung, 
Serotypisierung und antimikrobielle Empfindlichkeitstests analysiert. Die 
Gesamtprävalenz von Y. enterocolitica in Meeresfrüchteproben betrug 2,7% (6/220). Alle 
Isolate gehörten zum Biotyp 1A und drei Isolate wurden als Serotyp O: 8 identifiziert, ein 
Isolat als O: 5,27 identifiziert, jedoch gehörten zwei Proben nicht zu den untersuchten 
Serotypen. Die meisten Isolate enthielten die Virulenz-assoziierten Gene ail, inv und 
ystB und die Isolate waren resistent gegen Cephalothin (83,3%), Amoxicillin (83,3%) und 
Ampicillin (50,0%). Die Ergebnisse zeigen, dass Meeresfrüchte eine potenzielle 
Infektionsquelle für Y. enterocolitica sein könnten. 
 
Aus dem Grund, dass sich Y. enterocolitica (als psychotropes Bakterium) bei niedrigen 
Temperaturen vermehren kann, sind Informationen über die zugrunde liegenden 
Mechanismen erforderlich. Allerdings sind die Informationen über die Erkältungsreaktion 
von Y. enterocolitica noch nicht gut verstanden. In dieser Studie wurden 
stammspezifische Wachstumsprofile bei 4 ° C gefunden und die Kälteantwort durch die 
Kombinationen von phänotypischen, Genexpressions- und proteomischen Ansätzen 
untersucht. Die Expressionsänderungen der Kaltantwortgene zeigen, dass die Fähigkeit, 
unter Kältestress zu überleben, von der folgenden Faktoren abhängt, wie die 
vorübergehenden Induktion und wirksamen Unterdrückung der Kälteschockgenen und 
der Wiederaufnahme der Genexpression in anderen Nicht-Kälteschockgenen. Die 
globale Proteomanalyse mit markierungsfreier Quantifizierung wurde zuerst bei der 
Kälteantwort von Y. enterocolitica verwendet, um die allgemeine Kälteantwort und den 
Resistenzmechanismus anzuzeigen. Darüber hinaus tragen die isolatspezifischen 
Unterschiede auf Transkriptionsebene in Motilitäts- und Fluiditätsgenen zu unserem 
Verständnis über die Kälteantwort in Y. enterocolitica, die durch Motilität und Fluidität 
reguliert werden kann. Durch die Kombination verschiedener Ansätze wurde die 
Kälteantwort systematisch beschrieben, wodurch wir die physiologischen Prozesse von 
Y. enterocolitica als Reaktion auf Kältestress besser verstehen können. 
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