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Summary 

Achievement and achievement motivation are two central constructs in educational 

psychology. The interplay between these constructs is a major element in prominent 

theoretical frameworks such as the Situated Expectancy Value Model (SEVT; e.g., Eccles 

& Wigfield, 2020). Given the topic’s relevance for individuals’ further educational 

trajectories and life courses, it is important to obtain particularly reliable and robust results. 

To achieve this aim in the present doctoral thesis, I applied innovative multilevel meta-

analytical approaches, using data from international large-scale assessments to investigate 

the interplay between achievement and achievement motivation. 

Using a Multilevel Individual Participant Data (IPD) Meta-Analysis, Study I 

examined gender differences in achievement, achievement profiles, and achievement 

motivation in mathematics, reading, and science in the group of top-performing math 

students (top 5%) across 82 countries. In addition, it was investigated to what extent 

gender differences in the top 5% in mathematics were moderated by cross-national 

variations in sociocultural factors (i.e., in specific gender equality indicators). To this end, 

I used data from 15-year-old students who participated in six PISA cycles. The results 

showed that there were on average more male than female students (40%) that scored in 

the top 5% in mathematics. In addition, mathematically top-performing female students’ 

achievement profiles were more balanced across domains, whereas mathematically top-

performing male students’ achievement profiles were more mathematics-oriented. 

Moreover, mathematically top-performing female students reported a higher interest in the 

verbal domain and in human biology than male students. On the contrary, mathematically 

top-performing male students reported a higher interest in physics-related topics than 

female students (i.e., physics, motion of forces, energy transformation). The results also 
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showed that specific gender equality indicators moderated the share of female students in 

the top 5% in mathematics and explained variability in achievement profiles. 

In Study II of this doctoral thesis, the functional relations between achievement and 

self-concept were systematically investigated using a Multilevel Integrative Data Analysis. 

The guiding research question was to examine the extent to which a nonlinear relation 

between achievement and self-concept can be generalized across domains, age groups, 

analytical approaches, and 13 countries. The analyses were based on eight cycles of PISA, 

TIMSS, and PIRLS. Quadratic and interrupted regression analyses showed nonlinear 

relations in secondary school students, demonstrating that the relations between 

achievement and corresponding self-concepts were weaker for lower achieving students 

than for higher achieving students. This suggests that lower achieving students might apply 

self-protective strategies to prevent negative self-evaluation. Nonlinear effects were also 

present in younger students, but the pattern of results was rather heterogeneous. 

The present doctoral thesis contributed to uncover the interplay between 

achievement and achievement motivation by using advanced multilevel meta-analytical 

approaches. Based on this work, future research is encouraged to apply such statistical 

tools to meta-analyze variance in individual participant data to enhance the reliability and 

robustness of the obtained empirical evidence on the interplay between achievement and 

achievement motivation. 
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Zusammenfassung 

Leistung und Leistungsmotivation sind zentrale Konstrukte in der pädagogisch-

psychologischen Forschung. Das Zusammenspiel von Leistung und Leistungsmotivation 

wird in prominenten theoretischen Rahmenmodellen wie der Erwartungs-Wert-Theorie 

(z.B. Eccles & Wigfield, 2020) untersucht. Aufgrund der zentralen Bedeutung dieses 

Themas für individuelle Bildungs- und Lebensverläufe, ist es wichtig reliable und robuste 

Ergebnisse zu gewinnen. Um dieses Ziel zu erreichen, wurden in der vorliegenden 

Dissertation innovative meta-analytische Ansätze und Daten internationaler 

Schulleistungsstudien verwendet, um das Zusammenspiel von Leistung und 

Leistungsmotivation zu untersuchen.  

Im Rahmen einer Multilevel Individual Participant Data (IPD) Meta-Analyse 

wurden in Teilstudie I Geschlechtsunterschiede in der Leistung, in Leistungsprofilen und 

in der Leistungsmotivation von mathematisch talentierten Schülerinnen und Schüler (Top 

5%) in Mathematik, im Lesen und in Naturwissenschaften in 82 Ländern analysiert. 

Zudem wurde untersucht, inwiefern die Variation in den Geschlechtsunterschieden 

zwischen Ländern auf Unterschiede in soziokulturellen Faktoren (d.h., in spezifischen 

Indikatoren der Geschlechtergleichstellung) zurückzuführen ist. Hierfür wurden die Daten 

von 15-jährigen Mädchen und Jungen aus sechs PISA-Zyklen verwendet. Es konnte 

gezeigt werden, dass insgesamt weniger Mädchen in der Gruppe der Spitzenleistenden in 

Mathematik (Top 5%) vertreten waren (Mädchenanteil 40%) sowie Mädchen in dieser 

Gruppe balanciertere Leistungsprofile aufwiesen, während Jungen eher zu mathematik-

orientierten Leistungsprofilen neigten. Weiterhin zeigte sich, dass mathematisch talentierte 

Mädchen eine höhere Motivation im verbalen Bereich sowie ein stärkeres Interesse an 

Humanbiologie als Jungen berichteten. Mathematisch talentierte Jungen berichteten 
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hingegen ein größeres Interesse an den Themenbereichen Physik, Bewegung und Kräfte 

und Energieumwandlung als Mädchen. Zudem konnte in Teilstudie I gezeigt werden, dass 

spezifische Gleichstellungsindikatoren den Anteil der Schülerinnen in den Top 5% in 

Mathematik moderierten und Variabilität in den Leistungsprofilen erklärten. 

 In Teilstudie II wurde der funktionale Zusammenhang zwischen Leistung und 

Selbstkonzept systematisch im Rahmen einer Multilevel Integrative Data Analysis 

untersucht. Die zentrale Forschungsfrage war, ob ein nicht-linearer Zusammenhang 

zwischen Leistung und Selbstkonzept über Inhaltsdomänen, Altersgruppen, 

Analysemethoden und 13 Länder hinweg generalisiert vorliegt. Die Analysen basierten auf 

acht Zyklen der PISA-, TIMSS- und PIRLS-Studien. Die Ergebnisse zeigten, dass nicht-

lineare Zusammenhänge zwischen Leistung und korrespondierenden Selbstkonzepten in 

Mathematik und im verbalen Bereich bei Schülerinnen und Schülern der Sekundarstufe 

vorlagen. Dabei deuten die Ergebnisse der quadratischen Regressionen und der Interrupted 

Regressions darauf hin, dass der Zusammenhang für leistungsschwächere Schülerinnen 

und Schüler schwächer war als für leistungsstärkere Schülerinnen und Schüler. Dies 

könnte in der Anwendung selbstwertdienlicher Strategien begründet sein. Nicht-lineare 

Zusammenhänge zeigten sich auch für jüngere Schülerinnen und Schüler, jedoch war die 

Befundlage für diese Altersgruppe über Länder und Analysemethoden hinweg heterogener. 

Die vorliegende Doktorarbeit trägt mit diesen Erkenntnissen dazu bei, das 

Zusammenspiel von Leistung und Leistungsmotivation unter Anwendung von IPD-Meta-

Analysen bzw. Integrativen Datenanalysen aufzuklären. Basierend auf dieser Arbeit wird 

die Bedeutung hervorgehoben, Daten auf der individuellen Personenebene zu meta-

analysieren, um die Reliabilität und Robustheit von Befunden zum Zusammenspiel von 

Leistung und Leistungsmotivation zu erhöhen.  
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1 Introduction and Theoretical Background 

There are numerous factors that influence individuals’ educational and occupational 

choices. Among them, students’ achievement and achievement motivation are of special 

importance (e.g., Eccles & Wigfield, 2020). International large-scale assessments, such as 

the Programme for International Student Assessment (PISA), have started to shift their 

attention from an exclusive focus on students’ achievement to an integrative view of 

students’ achievement and achievement motivation to be important for individuals’ 

successful participation in society (OECD, 2015).  

For example, two high school students, Toby and Tina, will very likely choose 

different college majors. Tina performs very well in all subjects, but is especially interested 

in biology and dreams of becoming a physician to be able to help people. On the other 

hand, Toby excels in mathematics and physics. Although he could do better in the other 

subjects at school, he is not much interested in them. He thinks of himself as a math person 

and wants to become an engineer and develop new technologies for energy transformations 

later in life. This example illustrates that there are different facets of achievement 

motivation (e.g., academic self-concepts and interest), that achievement and beliefs about 

one’s own academic abilities (i.e., academic self-concepts) are closely related, and that 

achievement and achievement motivation can differ depending on the content domain. 

Furthermore, the case of Toby and Tina indicates that achievement and achievement 

motivation might differ for female and male students. However, students do not develop in 

a vacuum, but in environments that provide them with opportunities and also set 

expectations. These expectations and opportunities vary for female and male students and 

likely influence their achievement and achievement motivation (e.g., Baker & Jones, 1993; 

Eccles, 1994; Else-Quest et al., 2010). 
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Importantly, scientific research is currently facing concerns about the replicability 

of results in many areas of psychology, education, and other fields (e.g., Ioannidis, 2005; 

Open Science Collaboration, 2015). One way to advance psychology as a field might be to 

apply research synthesis methods (Roisman & van IJzendoorn, 2018). Research syntheses 

summarize the results of single studies by using meta-analytical techniques. With these 

techniques, weighted average effect sizes, variations in effect sizes between studies, and 

factors that moderate the size of the effects can be estimated and investigated (Shadish et 

al., 2002). As a result, research synthesis fosters reproducible, rigorous, and transparent 

research (McNutt, 2014). Two relatively new forms of meta-analysis are individual 

participant data (IPD) meta-analyses and integrative data analyses that add the level of the 

participants to the analyses (e.g., Cooper & Patall, 2009; Curran & Hussong, 2009). These 

new forms have several advantages compared with traditional meta-analyses (e.g., Reily et 

al., 2010). 

In this doctoral thesis, I aim to investigate the interplay between achievement and 

achievement motivation in two studies by following two research strands that provide 

different angles on the interplay between achievement and achievement motivation. These 

research strands will be discussed within the framework of the Situated Expectancy–Value 

Theory (SEVT) of achievement performance and choice (e.g., Eccles et al., 1983; Eccles & 

Wigfield, 2020). In the first research strand, which I cover in Study I, I investigated the 

extent to which gender differences in top-performing math students’ achievement, 

achievement profiles, and achievement motivation in mathematics, reading, and science 

across countries exist (Research Question 1). Furthermore, I examined to what extent 

cross-national gender differences in the group of top-performing math students were 

related to sociocultural factors, or more specifically, to the level of gender equality in a 

country (Research Question 2). To do so, I performed a multilevel IPD meta-analysis that 
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synthesized gender differences in the top 5% in mathematics by using data from six cycles 

from the Programme for International Students Assessment (PISA 2000–2015, 15-year-

olds, 82 countries). Furthermore, I conducted multivariate moderator analyses using 

specific gender equality indicators by the United Nations (UN), the Organisation for 

Economic Co-operation and Development (OECD), the United Nations Educational, 

Scientific and Cultural Organisation (UNESCO), and the International Labour 

Organization (ILO).  

The second research strand, which I address in Study II, refers to the question of 

how achievement and academic self-concept––a central motivational construct in 

educational psychology––are functionally related (Research Question 3). To tackle this 

research question, I investigated whether nonlinear relations between these constructs can 

be generalized across domains (mathematics and the verbal domain), age groups 

(elementary and secondary school students), analytical methods (polynomial and 

interrupted regression), and 13 countries. To do so, I performed an integrative data analysis 

and synthesized data from eight cycles from the Trends in Mathematics and Science Study 

(TIMSS), the Progress in International Reading Literacy Study (PIRLS), and PISA. 

In the following chapters, I first present the theoretical background (Chapter 1) in which 

the definitions, measurement, and relevance of achievement and achievement motivation 

will be presented (Section 1.1). Then, I discuss how selected theories address the interplay 

between achievement and achievement motivation with an emphasis on the SEVT as the 

guiding theoretical framework of this thesis (Section 1.2.2). Based on these prior sections, 

I introduce the topic of the first research strand of the present thesis, which refers to gender 

differences in education and educational trajectories in top-performing math students; the 

terms gender and sex are terminologically defined in this dissertation, an overview is 

provided of research on gender differences in the general population and in top-performing 
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math students, and gender differences are explained in terms of the SEVT (Section 1.3.4). 

In the next section, I introduce the topic of the second research strand of this doctoral 

thesis, which refers to the relation of achievement and academic self-concept, and how this 

relation is stated within the SEVT (Section 1.4). Before describing the objectives of the 

present doctoral thesis (Section 1.6), the two methodological approaches are presented for 

studying the interplay between achievement and achievement motivation; they refer to 

approaches modelling intraindividual hierarchies of achievement and achievement 

motivation as well as research synthesis methods (Section 1.5).  

The theoretical background is followed by Study I (Chapter 2) and Study II (Chapter 

3) and the General Discussion (Chapter 4). In the General Discussion, the main results 

related to the research questions are briefly summarized and discussed in relation to the 

topics that were introduced in the theoretical background and beyond (Sections 4.1–4.3). 

Finally, strengths, limitations, and directions for further research (Section 4.4) as well as 

implications for (educational) policy and practice are discussed (Section 4.5).  

1.1 Achievement and Achievement Motivation: Definitions, Measurement, and 

Relevance 

Fostering students’ achievement and achievement motivation is a central educational goal 

in school curricula worldwide (OECD, 2015; World Economic Forum, 2015). There is a 

global consensus that a focus on both the skills and knowledge of students as well as their 

motivational tendencies is necessary to enable them to live fulfilled lives, meet challenges, 

and make the most of the opportunities available to them (Bertling et al., 2016; Schunk & 

Mullen, 2013). 

Student achievement is assumed to be the result of a long-term, cumulative, and 

domain-specific process of knowledge acquisition (Baumert et al., 2009). Achievement is 
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not only an outcome of learning, but also the result of prior achievement, which pays off in 

the speed, ease, and quality of continued learning (Baumert et al., 2009). Student 

achievement can be measured by grades provided by teachers or standardized tests. 

Compared to grades, standardized tests have the advantage to be an objective measure of 

student achievement. This renders student achievement to be directly comparable across 

classes, schools, and even across countries (Brookhart, 2015).  

Motivation is assumed to energize and direct individuals’ actions (Pintrich, 2003). 

In achievement-related contexts, motivation is related to motives that let students act in 

different situations, to beliefs why and how they are doing what they are doing, as well as 

to students’ decisions about how to direct their behaviors (Pintrich, 2003; Weiner, 1992; 

Wigfield et al., 2006, 2020). To this end, achievement motivation comprises different types 

and qualities of motivation, including needs, drives, goals, aspirations, interests, and 

affects (Lazowski & Hulleman, 2016). Similar to achievement, achievement motivation 

can be considered as an outcome of learning (e.g., students’ motivation increases or 

decreases as a consequence of learning successes or failures), but also as a prerequisite for 

future learning because motivated students are more persistent, learn more, and show a 

higher level of elaboration (Lazowski & Hulleman, 2016; Pintrich, 2003; Wigfield et al., 

2006). Student achievement motivation can be measured in several ways. Most frequently, 

they are assessed through self-reports, but also alternative approaches to the measurement 

of motivation exist, including phenomenological, neuropsychological, and behavioral 

approaches (Duckworth & Yeager, 2015; Fulmer & Frijters, 2009). 

Assessing both constructs in standardized ways across nations and age-groups is 

critical. International large-scale assessments in education provide representative, high-

quality data on students’ achievement and achievement motivation. The largest and most 

prominent international large-scale assessments are the PISA (conducted since 2000 by the 



INTRODUCTION AND THEORETICAL BACKGROUND 
 

 8 
 

OECD), TIMSS, and PIRLS (conducted since 1995 and 2001 by the International 

Association for the Evaluation of Educational Achievement [IEA]; Kirsch et al., 2012). In 

the present doctoral thesis, data from PISA, TIMSS, and PIRLS are used to investigate the 

interplay between achievement (as assessed by standardized tests) and achievement 

motivation (as measured by self-reports). 

1.2 Interplay Between Achievement and Achievement Motivation 

One of the major goals in educational psychology is to explain achievement-related 

performance and choices, specifically in educational and occupational contexts. To achieve 

this, prior work has largely studied the interplay of multiple achievement- and motivation-

related factors, such as basic cognitive abilities, domain-specific knowledge, interests, 

preferences, or personality traits. It is assumed that the interplay of achievement and 

achievement motivation plays a critical role in students’ learning (Bast & Reitsma, 1998), 

for example, in terms of the amount of knowledge or expertise accumulated in specific 

areas. 

1.2.1 General Theories 

Given the prominent interest in this research field, various theories have been developed 

that address the interplay between achievement and achievement motivation. Among many 

others, these include the (extended) Theory of Work Adjustment (Dawis & Lofquist, 1984; 

Lubinski & Benbow, 2006) and the PPIK Theory (intelligence-as-Process, Personality, 

Interests, and intelligence-as-Knowledge; Ackerman, 1996). For example, the (extended) 

Theory of Work Adjustment takes into account the interplay among individuals’ abilities, 

preferences, and interests as well as the ability requirements and rewards from the 

academic or occupational environments to explain educational commitment and 
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occupational tenure (Dawis & Lofquist, 1984; Lubinski & Benbow, 2006). Alternatively, 

the PPIK Theory concentrates on the interplay among basic cognitive skills, personality 

traits, interests, and domain-specific knowledge to explain individuals’ successful 

accumulation of knowledge or expertise in specific areas (Ackerman, 1996). Although 

many of these theories can be applied to explain achievement-related performance and 

choices in general, they are not specifically tailored to educational contexts and thus lack 

specificity to guide further theory development and empirical investigation in this specific 

field of research.  

Of more specific relevance is the Situated Expectancy–Value Theory of 

achievement performance and choice (SEVT; formerly expectancy–value theory of 

achievement-related choices; e.g., Eccles et al., 1983; Eccles & Wigfield, 2020). The 

SEVT specifically focusses on the interplay between educationally relevant aspects of 

achievement and achievement motivation (Eccles et al., 1983). To this end, I will present 

the SEVT in greater detail in the following section. 

1.2.2 Situated Expectancy–Value Theory (SEVT) 

Based on the SEVT, individuals’ achievement and achievement-choices are most closely 

related to individuals’ expectancies of success (i.e., confidence to succeed in a task) and 

individuals’ subjective task values (i.e., the perceived interest, usefulness, importance, and 

cost of a task; e.g., Eccles, 1983; Eccles & Wigfield, 2020; Wigfield & Eccles, 2020). For 

example, considering expectancies of success, a student with a low self-concept in 

mathematics likely believes not to be good in math-related tasks. This lets him or her 

expect to perform poorly in a specific math exam, which in turn negatively affects the 

student’s performance. Similarly, but related to individuals’ task values, there is a student 

with the intention to become a natural scientist; he or she ascribes mathematics a high 
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utility value and even a high interest–enjoyment value and therefore is strongly motivated 

to prepare for the math exam, which in turn positively affects the student’s performance. 

Together, individuals’ expectancies of success and subjective task values interact to 

explain individuals’ achievement and achievement-related choices (e.g., Eccles, 1983; 

Eccles & Wigfield, 2020; Wigfield & Eccles, 2020).  

In addition, these two most proximal motivational factors mediate the influence of 

other, more distal factors. As can be seen in Figure 1 (in the middle and on the left side), 

Eccles and colleagues consider various (motivational) factors that indirectly influence 

individuals’ choices and achievement-related performances through expectancies of 

success and subjective task values. For example, these factors include individuals’ 

socializers (e.g., parents, peers, and teachers), societal aspects (e.g., gender roles and 

stereotypes) but also achievement-related experiences and gender. Thus, the SEVT offers a 

comprehensive theoretical framework for studying both proximal psychological processes 

that operate over short-time frames and the long-term ontogeny of the beliefs and 

memories underlying individuals’ motivated achievement-related choices (Eccles & 

Wigfield, 2020). Note that the SEVT was initially developed by Eccles and colleagues 

(1983) to also explain the profound gender differences in achievement-related educational 

and occupational choices (Eccles & Wigfield, 2020). Given this specific focus and being 

one of the major guiding theoretical frameworks in this research field, the SEVT was 

chosen as the main conceptual starting point and theoretical framework for the present 

doctoral thesis. This was specifically the case in the first research strand in which gender 

differences in achievement, achievement profiles, and achievement motivation in top- 

performing math students and their relation to gender equality were examined (Study I).
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Figure 1. Eccles and Colleagues’ Situated Expectancy-Value Theory (SEVT) of Achievement Performance and Choice 

 
 

Note. Adapted from “35 years of research on students’ subjective task values and motivation: A look back and a look forward” by A. 
Wigfield and J. S. Eccles, 2020, in A. J. Elliot, Advances in Motivation Science, Vol. 7, p. 165 
(https://doi.org/10.1016/bs.adms.2019.05.002). Copyright 2020 by Elsevier. Reprinted with permission.
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However, also in the second research strand, the SEVT was influential in that the 

functional relation between achievement and one specific aspect of achievement 

motivation in the SEVT––the academic self-concept––were investigated (Study II). 

In sum, the SEVT is the major theoretical framework in my doctoral thesis that 

helps to explain the emergence of gender differences in achievement and achievement 

motivation (see Section 1.3.4) and relates these two constructs, particularly with regards to 

academic self-concepts (see Section 1.4). In the next chapter, I introduce the important 

topic of gender differences in education and educational trajectories, which presents the 

first research strand of my doctoral thesis on the interplay of achievement and achievement 

motivation. 

1.3 Gender Differences in Education and Educational Trajectories: The Role of 

Achievement and Achievement Motivation 

In the majority of psychological variables, men and women only differ to a small or 

negligible degree. However, there are specific domains that show vital differences that can 

be related to achievement and achievement motivation and have implications for 

individuals’ educational and occupational choices. In this section, I will first provide a 

terminological classification of the terms gender and sex and how these terms are used in 

this doctoral thesis in general (see Section 1.3.1). Then, I will present current research 

findings on gender differences in education and educational trajectories in the general 

population (see Section 1.3.2) and in top-performing math students (see Section 1.3.3). 

Finally, I attempt to elucidate the role of achievement and achievement motivation for 

gender differences in education and educational trajectories, specifically of the top 5% (see 

Section 1.3.4) in terms of the SEVT (e.g., Eccles, 1994; Eccles & Wigfield, 2020) and 

Social Role Theory (e.g., Eagly, 1987; Wood & Eagly, 2012). 
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1.3.1 Terminology for Comparisons of Men and Women 

The terminology for referring to comparisons of men and women is complex and lacks 

consensus in psychology (Eagly, 2013; Eagly & Wood, 2013). Some researchers have 

argued that sex should be used to refer to female and male biology and gender to refer to 

the sociocultural construction of male and female categories (e.g., Muehlenhard & 

Peterson, 2011; Unger, 1979; West & Zimmerman, 1987). However, nature and nurture are 

closely intertwined as causes of differences in the behavior of men and women. Thus, a 

clear terminological distinction between sociocultural and biological origins is not sensible 

(e.g., Berenbaum et al., 2011; Eagly & Wood, 2013; Miller & Halpern, 2014). To 

acknowledge this fact, some researchers have started to use the term sex/gender 

(Schellenberg & Kaiser, 2018) or gender/sex (Hyde et al., 2019; van Anders, 2015). Others 

have tried to end the separation between nature and nurture by using the terms sex and 

gender interchangeably (e.g., Hines, 2009; Maccoby, 1988). However, this approach 

violates the scientific principle of conceptual and terminological accuracy (Glasser & 

Smith, 2008). Eagly (2013) used the term sex in her approach by its common-language 

meaning of male and female as categories based on a biological distinction, but without 

causal implications in terms of the nature-nurture debate. The term gender is used to refer 

to the meanings that cultures and individuals ascribe to the male and female categories 

(e.g., gender stereotypes and gender roles). Finally, another approach (Lips, 2008) uses the 

term sex to discuss anatomy and the classification of individuals based on their anatomical 

category. In this approach, gender is used as a more inclusive term for the results of all 

female–male comparisons, regardless of any causal implications in terms of nature and 

nurture. Moreover, according to Lips (2008), the term gender refers to the societal 

expectations regarding feminine and masculine roles. In the present doctoral thesis, I adopt 
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the terminological use of gender sex and gender by Lips (2008). That is, gender is used as 

an umbrella term for comparisons between men and women and to describe societal 

expectations regarding female and male categories, whereas the term sex is only used for 

anatomy-related discussions. 

1.3.2 Gender Differences in Education and Educational Trajectories in the General 

Population 

In the past few decades, much research has been devoted to the study of gender differences 

in education and educational trajectories. Whereas early scientists attested women to be 

intellectually deficient compared to men and motivated mainly by maternal instinct 

(Shields, 1975), current psychological research suggests that women and men differ in 

only a few areas. In a seminal synthesis of 46 meta-analyses, Hyde (2005) showed that 

“males and females are alike on most—but not all—psychological variables” (Hyde, 2005, 

p. 590), including academic achievement and a range of motivational variables. Of 124 

studied effect sizes for gender differences, 78% were small or very close to 0 (d between 0 

and |0.35|). Based on this finding, Hyde (2005) put forward the gender similarities 

hypothesis, which contradicted popular media reports that emphasized differences between 

the genders. These findings have been extended and replicated in a more recent synthesis 

of 106 meta-analyses and 386 effect sizes for gender differences, resulting in 85% of small 

effect sizes or effect sizes very close to zero (Zell et al., 2015). 

Note that meta-analyses are particularly valuable for the estimation of gender 

differences because they evaluate the magnitude, consistency, replicability, and variability 

of findings, explore moderators that might contribute to the presence or absence of gender 

differences, and relate them to relevant psychological theories (e.g., Eagly, 2013; Hyde, 

2014). For example, results of a multitude of meta-analyses demonstrated that (in the 
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general population) differences in the achievement of males and females in mathematics 

are on average negligible (i.e., d between 0 and |0.10|; e.g., Baye & Monseur, 2016; Else-

Quest et al., 2010; Hyde, Fennema, & Lamon, 1990, 2008; Lindberg et al., 2010; Reilly et 

al., 2015, 2019), challenging the stereotype that mathematics is a male domain.  

Study I in this doctoral thesis provides a review of gender differences in 

achievement and achievement motivation in mathematics, reading, and science that were 

obtained from previous meta-analyses and large-scale studies (see Tables S1 and S2 in 

Supplemental Online Materials [SOM] of Study I). Table 1 displays the proportions of the 

reviewed effect sizes for gender differences in achievement and achievement motivation in 

mathematics, reading, and science that were categorized as negligible, small, moderate, 

large, or very large according to the benchmarks by Hyde (2005). The table shows that 

females and males seem to perform equally well in standardized tests in mathematics, 

reading, and science. The vast majority of gender differences in mathematics, reading, and 

science achievement in the general population were negligible or small (i.e., mathematics = 

100%, reading = 95%, science = 69%). Furthermore, males and females did not differ 

substantially in their achievement motivation in mathematics, reading, and science. Gender 

differences in mathematics motivation were in almost all reviewed studies (94% of all 

effect sizes) small or close to zero. Although about half of the gender differences in 

reading and science motivation were also negligible or small, 16% of the effect sizes for 

gender differences in science and 17% of the effect sizes for gender differences in reading 

fell into the large to very large range. Large to very large differences were found in 

females’ and males’ interest in engineering (d = 0.83 to 1.11;
1
 Su et al., 2009; Su & 

Rounds, 2015), in their interest in engineering technology (d = 0.89; Su & Rounds, 2015), 

 

1
 Positive values indicate an advantage of males, negative values an advantage of females. 
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in their interest in mechanics and electronics (d = 1.21; Su & Rounds, 2015), and in their 

enjoyment of reading (d = -0.67; OECD, 2010). 

Table 1. Proportion of Effect Sizes (in Percent) for Gender Differences in Achievement 
and Achievement Motivation in Mathematics, Reading, and Science That Are 
Negligible, Small, Moderate, Large, or Very Large 

 Achievement  Achievement motivation 

Magnitude  Math
a 

Reading
b 

Science
c 

 Math
d 

Reading
e 

Science
f 

Negligible 52 38 23  22 0 35 

Small 48 57 46  72 50 27 

Moderate 0 5 31  6 33 23 

Large 0 0 0  0 17 8 

Very large 0 0 0  0 0 8 

Note. Figures may not add up to 100% because of rounding. 

Negligible = 0.00 < |d| ≤ 0.10, small = 0.10 < |d| ≤ 0.35, moderate = 0.35 < |d| ≤ 0.65, 

very large = |d| > 1.00. k = Number of effect sizes, n = number of studies.  

a k = 1905, n = 13 

b k = 1008, n = 12 

c k = 1264, n = 7 

d k = 1258, n = 10 

e k = 201, n = 5 

f k = 847, n = 7 

 

The review of gender differences in achievement and achievement motivation in 

Study I also illustrates that the magnitude of the gender gaps varied across countries. There 

is evidence that these cross-national variations depend on the sociocultural context (for the 

theoretical foundations, see Section 1.3.4). For example, research shows that gender 

differences in students’ mathematics achievement were smaller in countries with higher 

levels of gender equality (e.g., Guiso et al., 2008) or a higher share of women in research 

positions (e.g., Else-Quest et al., 2010). However, other studies found that gender 

differences were actually more pronounced in more gender equal societies (e.g., Reilly, 

2012; Reilly et al., 2019; Stoet & Geary, 2018). Yet, these heterogenous findings might be 

related to the selection of different gender equality indicators (see also Section 4.2.3) and 
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varying analytical decisions between studies (see also Section 4.4.2.2 in the General 

Discussion). 

When it comes to school and university education, female students, on average, 

even appear to be more successful than male students. Indeed, recent research shows that 

female students have caught up with or even surpassed male students with regard to their 

performance on school-based assessments (Voyer & Voyer, 2014). Interestingly, studies 

that investigated gender differences in students’ achievement profiles
2
 showed that male 

students demonstrated stronger math achievement tilts than female students; however, 

female students demonstrated stronger verbal achievement tilts than their male 

counterparts in school subjects at the age of 16 (Dekhtyar et al., 2018) and in college 

entrance exams (Coyle et al., 2014, 2015). Overall, there are more women (59%) than men 

who graduate with a Bachelor’s degree across all member states of the European Union 

(Eurostat, 2020; for similar results in the U.S., see Meece & Askew, 2012).  

Importantly, STEM (Science, Technology, Engineering, and Mathematics) is an area in 

which substantial gender differences in tertiary education and later occupations are 

observed. STEM is given special attention because STEM professions are important to a 

country’s innovation and prosperity (BMBF, 2019; Halpern et al., 2007; National Science 

and Technology Council, 2018). In addition, new jobs are created at a faster pace in STEM 

than jobs in other occupations and wages in STEM are higher than wages in other sectors 

(Noonan, 2017). Despite its significance, women are still underrepresented in specific 

STEM domains. This is, for example, reflected in the percentage of male and female 

university graduates in different academic disciplines. In 2017, fewer women than men 

 

2
 Achievement profiles are composed of the pattern and structure of achievement in several domains within 

an individual. One way to create achievement profiles is to calculate achievement tilts by subtracting a 

student’s test score in one domain from the same student’s test score in another domain (see also Section 

1.5.1). 
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earned Bachelor’s degrees in engineering, computer sciences, and physics (20–29% 

women); on the contrary, more women than men obtained Bachelor’s degrees in education 

(84% women), biology (69% women), social sciences (68% women), biochemistry (65% 

women), and medicine (61% women) in the EU (Eurostat, 2020). Similar results were 

reported for the U.S. in 2016 (National Science Foundation, 2019). Notably, the proportion 

of women graduating with a Bachelor’s degree in computer science even decreased from 

36% in 1983 to 27% in 1997, and most recently to 19% in 2016 in the U.S. (National 

Science Board, 2006; National Science Foundation, 2019). 

In sum, females and males in the general population perform similarly in 

mathematics, reading, and science and show similar levels of achievement motivation in 

mathematics. Even though female students have caught up and to some extent even 

surpassed male students in school-related performance. Nevertheless, there are notable 

gender differences in female and male students’ achievement profiles and to some extent 

also in their reading and science motivation. Importantly, female and male students make 

different educational choices in that, for example, more male students choose physics, 

engineering, and computer science courses at university level. In the next chapter, I 

address potential gender differences in top-performing math students.  

1.3.3 Gender Differences in Education and Educational Trajectories in Top-

Performing Math Students 

Mathematics is a prominent content domain that is to some extent still considered as a 

male domain (e.g., Cvencek et al., 2014), even though the gender gap in mathematics 

achievement has almost vanished over the years in the general population (e.g., Lindberg 

et al., 2010). Special attention has been given to gender differences in the group of top-

performers in mathematics as they are most likely to enter STEM fields (Park et al., 2007), 
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and in fact women are still reported to be underrepresented in STEM (Eurostat, 2020; 

Halpern et al., 2007; National Science Foundation, 2019).  

As shown in the review of gender differences in achievement and achievement 

motivation in Study I (see Tables S1 and S2 in Appendix I), the systematic evidence base 

was weak for gender differences in top-performing math students. Meta-analyses that 

covered highly selective samples (Hyde, Fennema, & Lamon, 1990; Lindberg et al., 2010) 

and students in the top 5% in mathematics (Baye & Monseur, 2016) indicated that gender 

gaps in mathematics were in those samples somewhat larger (0.15 ≤ d ≤ 0.54) than in the 

general population (-0.05 ≤ d ≤ 0.31; see Tables S1). 

Furthermore, studies show a higher share of male students among top-performing 

math students in representative samples from the U.S. between 1960 and 1994 (female-to-

male ratio of 1:1.50 to 1:4.09; Hedges & Nowell, 1995; Nowell & Hedges, 1998). Studies 

that used more recent national and international representative samples from 1990 to 2011 

found somewhat more balanced female-to-male ratios in the top 5% in mathematics 

(1:1.09 to 1:2.13; Hyde et al., 2008; Machin & Pekkarinen, 2008; Reilly et al., 2015; Stoet 

& Geary, 2013). Similarly, talent search studies reported that the preponderance of male 

students in the highest levels of math achievement (top 0.5%) still exist, but that it rapidly 

declined from a female-to-male ratio of 1:2.61 in the early 1980s to a ratio of 1:1.37 in the 

early 2010s (Makel et al., 2016). Another talent search study by Olszewski-Kubilius and 

Lee (2011) reported slightly higher female-to-male ratios (1:2.5 to 1:3.7) for students in the 

top 2% in mathematics between 2000 and 2008. 

Evidence from meta-analyses or large-scale studies on gender differences in top-

performing math students’ achievement motivation are scarce (see Table S2 in the SOM of 

Study I). Only one meta-analysis has investigated gender differences in math anxiety in 

highly selected samples, indicating that females in this group of students reported a slightly 
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lower math anxiety than female students in the general population (Hyde, Fennema, Ryan 

et al., 1990).  

Evidence on gender differences in top-performing math students’ achievement-

related and motivational profiles is only available from single studies or studies using data 

from talent search programs that are affected by selection effects. For example, the 

achievement of academically talented male students tilted more toward mathematics than 

the achievement of their female counterparts; in contrary, the achievement of academically 

talented female students tilted more toward verbal domains than the achievement of 

academically talented male students did. These gender differences in achievement tilts 

seemed to increase with students’ achievement level (i.e., from the top 5% to the top 1% to 

the top 0.01% of ability; Wai et al., 2018). A study by Wang et al. (2013) showed that 

female students with high math scores tended to also have high verbal scores, whereas 

male students with high math scores were less likely to have high verbal scores. 

In sum, prior studies revealed gender differences in the group of top-performers in 

mathematics, however, such evidence is weakening with time. There is still little 

generalizable knowledge about gender differences in top-performing math students’ 

achievement motivation and achievement profiles, specifically using meta-analytic 

analyses of international large-scale assessments. There is no study yet that has 

comprehensively and comparatively meta-analyzed gender differences in achievement, 

achievement motivation, and motivation profiles in this group of students. 

1.3.4 How Can We Explain Gender Differences? 

The SEVT assumes that gender stereotypes in a society (e.g., that mathematics is a male 

domain; e.g., Cvencek et al., 2011, 2014; Nosek et al., 2002) influence both directly and 

indirectly through socializers’ beliefs and behaviors, individuals’ perception of their 
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gender roles, characteristics and demands of activities, and possible activities for their own 

gender (boxes at the top left in Figure 1). More specifically, the SEVT suggests that these 

perceptions have an impact on individuals’ goals and self-schemata, which subsequently 

influence their expectancies of success (boxes at the top in the middle and right in Figure 

1) and subjective tasks values (box at the bottom right in Figure 1). For example, if the 

gender stereotype that mathematics is a male domain prevails in a society, parents may 

provide more math-related learning opportunities and experiences to their sons than to 

their daughters (e.g., Jacobs & Bleeker, 2004). Consequently, a girl learns that 

mathematics is not consistent with her gender role, which makes her less likely to value, 

engage, and feel competent in mathematics. This likely results in that the girl performs 

more poorly in mathematics. Ultimately, this girl is not likely to choose a math-related 

education or future career, but rather a field that she values and feels competent in (e.g., 

the humanities). Thus, according to the SEVT, the most important factor to explain gender 

differences in educational outcomes are not gender comparisons within a domain, but 

domain comparisons within individuals (Eccles, 1994). Yet, to the extent that female and 

male students systematically differ in their intraindividual hierarchies of expectancies of 

success and subjective task values, gender differences in their performance and educational 

and occupational choices should emerge.  

However, while the SEVT can single out the specific gender-specific socialization 

processes that influence students’ achievement and achievement motivation and 

consequently lead to gender differences in educational contexts, it lacks specification to 

explain how gender stereotypes––the central factor for gender differences in outcomes 

according to the SEVT––emerge. Note that the Social Role Theory (SRT; e.g., Eagly, 

1987; Wood & Eagly, 2012) in combination with the related Role Congruity Model 

(Diekman et al., 2010, 2011) may provide a complementary or alternative explanation for 
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gender differences. According to the SRT, people infer characteristics of men and women 

from the roles that men and women typically inhabit in a society. The historical division of 

labor between men (being the breadwinner) and women (bearing and nursing children) has 

led to the association of women to be warm, caring, and socially skilled and men to be 

assertive, dominant, and forceful. Gender role beliefs convey these attributes as generally 

desirable and admirable for each sex. They encourage children to acquire the skills, 

characteristics, and preferences that support their society’s division of labor through norms 

and socialization practices. To the extent that people internalize the roles related to their 

gender, they develop gender identities that let women perceive themselves as especially 

communal and men as especially agentic. These gender identities and related personal 

goals are supposed to regulate men’s and women’s engagement in tasks or occupations that 

offer opportunities to meet communal or agentic goals (Eagly, 1987; Sczesny et al., 2019; 

Wood & Eagly, 2012). Specifically based on the related role congruity model (Diekman et 

al., 2011), women, for example, tend to select and pursue role-congruent, communal goals 

(i.e., working with or helping others). Applied to the school context, female students 

should be more attracted to language-related subjects (e.g., native language or foreign 

language education) than male students because these subjects fulfill communal values 

(e.g., focus on communication with other people). Moreover, if women’s roles in a society 

do not comprise math-intensive tasks or occupations, we infer from these observations that 

mathematics, for example, is not for women, which becomes entrenched in gender 

stereotypes. In general, the SRT predicts that gender differences in a society (e.g., in 

mathematics achievement) should be smaller in more gender equal societies. As the SEVT 

states that socialization processes lead to gender differences in male and female students’ 

domain-specific achievement and motivation. As a consequence, socialization processes 
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that are less gender-typed should produce smaller gender differences in achievement and 

motivation (for further details, see Study I). 

Taken together, the SRT explains the psychological mechanisms that lead to gender 

stereotypes and how gender-typed roles influence gender differences in educational 

contexts; the SEVT is more focused on explaining how gender-typed roles influence 

gender differences in achievement and motivation. Note, however, the SEVT in its most 

recent edition includes gender and other social role systems as factors of the cultural milieu 

(see top left box in Figure 4); nonetheless, the specific role of gender for achievement-

related performance and choices awaits further elaboration. To this end, it may be 

reasonable for the SEVT to adopt the hypothesis of the role congruity model (Diekman et 

al., 2011) that women and men tend to select and pursue goals that are congruent to their 

gender-specific roles. 

1.4 The Relation Between Achievement and Corresponding Academic Self-

Concepts 

In the present doctoral thesis, I investigate a second research strand on the interplay 

between achievement and achievement motivation, with the latter including academic self-

concepts. Academic self-concepts are defined as a person’s mental representations of his or 

her own abilities in academic domains (Marsh & Craven, 1997). They are considered as 

one type of achievement motivation and as central mediating constructs in educational-

psychological research that affect various psychological and behavioral outcomes. Studies 

have shown that academic self-concepts are related to students’ educational attainment 

(Guay et al., 2004), course selection (Marsh & Yeung, 1997), interests (Marsh et al., 

2005), and learning processes (Byrne, 1996). The SEVT assumes a reciprocal relation 

between individuals’ achievement and their academic self-concepts. The theory suggests 
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that individuals’ achievement (box bottom left in Figure 1, “Previous achievement-related 

experiences”) influences their academic self-concepts (box top in the middle in Figure 1) 

via their interpretations of their achievement (box bottom in the middle in Figure 1). 

Academic self-concepts are both influenced by social cognitive processes (i.e., causal 

attribution processes; Is my success a consequence of high ability, hard work, luck, or a 

benevolent evaluation of the teacher?) and different sources of information. These sources 

of information include social comparisons (e.g., How did my classmates do on the 

assignment?), dimensional comparisons across domains (e.g., Do I perform better in 

mathematics than in English?), and temporal or internal comparisons across time (e.g., 

Have I improved my performance compared with the last exam?; Eccles & Wigfield, 2020; 

Wigfield et al., 2020). To make the relation between achievement and corresponding self-

concepts reciprocal, the SEVT further proposes that individuals’ academic self-concepts 

influence their future achievement (box on the right in Figure 1) through individuals’ 

expectancies of success (box top right in Figure 1). 

Research on academic self-concept formation is highly influenced by the 

scholarship of Marsh and colleagues. They developed several models and theories that 

focus on how various sources of information are integrated by individuals to form their 

academic self-concepts. Among them are the Internal/External Frame of Reference (I/E) 

Model (Marsh, 1986), the Reciprocal Effects Models (REM; Marsh & Martin, 2011), the 

Dimensional Comparison Theory (Möller & Marsh, 2013), and the Big Fish Little Pond 

Effect (BFLPE) Model (Marsh, 1987). Currently, efforts are being made to integrate the 

research lines around SEVT and self-concept formation (Eccles & Wigfield, 2020; 

Wigfield et al., 2020).  

Although research with children and adolescents has shown that academic 

achievement has a strong impact on students’ academic self-concepts (Möller et al., 2009; 
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2020), the SEVT (or any other model of self-concept formation) has not fully explicated 

the functional relation between students’ achievement and their corresponding academic 

self-concepts. Does the functional relation between achievement and academic self-

concepts matter? Figure 2 illustrates that different functional relations between 

achievement and corresponding self-concepts lead to fundamentally different predictions. 

 

Figure 2. Hypothetical Plots Show the Functional Relation Between Achievement and 
Corresponding Academic Self-Concepts in Different Statistical Models 

 

Note. Panel A shows a linear relation between achievement and self-concept, Panel B 

shows a quadratic relation, and Panel C shows an interrupted relation. 

 

In the linear model (Figure 2A), a constant amount of increase in achievement is 

associated with a constant increase in the corresponding self-concept across the entire 

achievement continuum. The linear model would predict that the better students perform 

in a domain, the higher their corresponding academic self-concept. Consequently, the 

worst performing student in a class would report the lowest academic self-concept and the 

best performing student the highest academic self-concept. This functional relation would 

be plausible if students solely used social comparisons to draw conclusions on their 

abilities (Festinger, 1954; Gerber et al., 2018).  
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In the quadratic model (Figure 2B), students’ academic self-concept does not (or 

barely) change up to a certain point, even though students’ performance increases; 

thereafter, students’ academic self-concept increases as their achievement increases. Thus, 

increments in achievement have different effects on students’ academic self-concepts 

depending on how well or badly they perform. The quadratic model would predict that the 

increase in students’ self-concept is weaker for lower achieving students than for higher 

achieving students.  

In an interrupted regression model (Figure 2C), the data is divided into k bins and 

for each of the k bins a category-specific linear model is simultaneously specified. For 

example, Figure 2C shows k = 2 bins. These linear models are continuous at k – 1 joint-

points, called knots. Hence, for different sections on the achievement continuum, different 

amounts of increase in achievement are associated with a different increase in the 

corresponding self-concept. For example, the interrupted regression model shown in 

Figure 2C would make the following prediction: Students’ achievement is not related to 

their self-concepts for lower achieving students, but the relation is positive for higher 

achieving students.  

One major reason for why the relations between achievement and self-concepts 

might vary as a function of individual student achievement (Figures 2B and 2C) is that 

being asked to evaluate one’s own abilities in self-concept questionnaires may trigger self-

protective strategies. Intuitively, we would expect that students with lower achievement in 

a specific domain should have lower evaluations of their abilities in this domain. However, 

a negative self-evaluation is a major threat to the self. To protect their self-worth, 

individuals with low achievement are likely to engage in self-protective strategies that 

result in more positive self-views (Alicke & Sedikides, 2009). 
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However, in a review presented in Study II, we showed that in all studies only linear 

relations between achievement and self-concept were analyzed and nonlinear relations 

were not considered (see Study II). It is important to examine also nonlinear relations 

between the constructs because linear models might not fully capture the relation between 

achievement and the corresponding self-concept for a large part of the student body. To 

this end, Study II aimed to systematically examine the form of the functional relation 

between achievement and corresponding self-concepts. As I will argue, the revealed 

functional form of the relation has implications for the assessment and interpretation of 

self-concepts and ultimately for models of self-concept formation.  

1.5 Current Methodological Approaches to Study the Interplay Between 

Achievement and Achievement Motivation 

In the previous Sections 1.3 and 1.4, I have outlined the two research strands of Studies I 

and II on examining the relationship between achievement and achievement motivation 

and relevant prior research. In this section, I introduce two current methodological 

approaches in psychological research that are relevant for the doctoral thesis: First, 

approaches are presented that enable us to model intraindividual hierarchies of 

achievement and achievement motivation; second, systematic research syntheses with 

individual participant data are presented that allow us to estimate the robustness and 

generalizability of results across studies.  

In this doctoral thesis, I combined both methodological approaches to study the 

(intraindividual) interplay between achievement and achievement motivation across 

samples and studies. 
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1.5.1 Modelling Intraindividual Hierarchies of Achievement and Achievement 

Motivation 

In the SEVT, it is assumed that intraindividual hierarchies in achievement and achievement 

motivation play an important role for individuals’ subsequent achievement and 

achievement-related choices (Eccles, 1994; Wigfield & Eccles, 2020). There are several 

approaches to assess these intraindividual hierarchies and to examine their relation to 

different educational outcomes statistically. The approaches can be grouped in person-

centered and variable-centered approaches as well as less and more complex approaches. 

In the following, I will first present person-centered approaches and subsequently variable-

centered approaches to model intraindividual hierarchies of achievement and achievement 

motivation. 

Person-centered approaches take into account that one sample may consist of 

several subpopulations for which different sets of estimates can be computed (Morin et al., 

2016). Thereby, both the actual and relative levels of one variable to another are 

considered to form homogeneous groups (Meece & Agger, 2018). Person-centered 

analyses can be performed with mixture models, including cluster analysis, latent profile 

analyses, latent class analyses, latent transition analyses, mixture regression, and growth 

mixture models—statistical analyses that have in common that they attempt to detect 

subgroups of individuals who are similar in a number of characteristics. Note that person-

centered approaches are increasingly used to model the complex interplay between abilities 

and achievement motivation (e.g., Conley, 2012; Lazarides et al., 2020; Musu-Gillette et 

al., 2015; Wang et al., 2013; Watt et al., 2019; but see also Bauer & Curran, 2003). For 

example, Wang et al. (2013) performed a latent profile analysis of math and verbal scores 
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and identified five 12th-grade competence profiles (e.g., a high-math/high-verbal profile) 

to predict the choice of a STEM occupation in each profile. 

In contrast, variable-centered approaches assume that all individuals from a sample 

originate from a single population for which averaged estimates can be calculated (Morin 

et al., 2016). A variable-centered approach that can capture the complex interplay between 

achievement and achievement motivation is the integrative trait-complex approach 

(Ackerman et al., 2013). Here trait complexes are identified in an exploratory factor 

analysis. As a first step, the underlying factors for a set of measured scales are determined. 

Then, unit-weighted z-score composites are calculated from the scales that have salient 

loading on the respective factors (e.g., Ackerman, 2003; Ackerman et al., 2013). These 

scores can be considered as profile scores. Thus, the integrative trait-complex approach 

can both model the interplay between achievement and achievement motivation as well as 

the intraindividual hierarchies between these trait complexes. For example, Ackerman et 

al. (2013) identified 5 trait complexes from 29 scales of which the first trait complex 

“math/science self-concept” included the scales math self-concept, spatial self-concept, 

science self-concept, self-estimates of math ability, and numerical preferences. 

Less complex approaches to assess intraindividual hierarchies in individuals’ 

achievement (i.e., achievement profiles) are, for example, the division into achievement 

groups (e.g., Lubinski et al., 2001) or the calculation of relative academic strengths (Coyle 

et al., 2014, 2015; Dekhtyar et al., 2018; Park et al., 2007; Stoet & Geary, 2018). To form 

achievement groups, Lubinski et al. (2001), for example, divided academically talented 

students into three different achievement groups based on their SAT profiles. High-verbal 

students had verbal SAT scores that exceeded their math SAT scores by more than one 

standard deviation, high-math students had math SAT scores that exceeded their verbal 

SAT scores by more than one standard deviation, and high-flat students had math and 
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verbal SAT scores that fell within one standard deviation of each other. Studies that 

analyzed relative academic strengths differ with regard to how the within-subject 

difference between different test scores is calculated (number of academic domains, 

standardized difference or not), and how balanced their achievement profiles are (e.g., 

equal or inequal numbers of numeric/science/technical and verbal domains; Coyle et al., 

2014, 2015; Dekhtyar et al., 2018; Park et al., 2007; Stoet & Geary, 2018). 

Another simple option to assess intraindividual hierarchies in individuals’ 

achievement motivation is to use “comparative” survey questions (also called forced-

choice formats) that ask individuals, for example, whether they value math or English 

more (e.g., by applying rank-ordering items). However, these items have so far scarcely 

been used to measure intraindividual hierarchies in students’ achievement motivation 

(Wigfield & Eccles, 2020).  

To conclude, there is a variety of person- and variable-centered approaches that can 

capture the intraindividual hierarchies in students’ achievement and achievement 

motivation. Depending on the level of (and complexity of) the research question, there is 

quite a wide range of assessment options available. In Study I, we chose a variable-

centered approach and created three achievement profiles (i.e., math–reading, science–

reading, math–science) by calculating students’ relative academic strengths in two 

different academic domains. 

1.5.2 Research Synthesis with Individual Participant Data 

A second recent development in psychological research is to consider the robustness and 

generalizability of research results in research syntheses. This is important as study results 

usually vary to different degrees. Scientific phenomena are typically examined in multiple 

studies to investigate their replicability and external validity (i.e., Do effects hold over 
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variations in persons, settings, treatments, and outcomes?; Cooper et al., 2019; Shadish et 

al., 2002). Of note, research results are rarely identical even in direct replication attempts 

with a high level of precision (Open Science Collaboration, 2015; Valentine et al., 2011) 

both in behavioral sciences and “harder” sciences such as physics (Hedges, 2019). The 

variation in study results (or the failure to replicate results) may be explained by 

differences in statistical power, sampling variation, measurement error, insufficient 

construct validity, and others (Cooper et al., 2019; Schmidt & Oh, 2016; Shrout & 

Rodgers, 2018). Yet, variation in study results becomes problematic if the variation is due 

to scientific misconduct (e.g., selective reporting of results, p-hacking; Simmons et al., 

2011). This lack of replicability through questionable research practices led to a 

proclamation of the so-called “replication crisis” and a public loss of confidence in many 

scientific fields, including psychology (Ioannidis, 2005; Pashler & Wagenmakers, 2012).  

Systematic research synthesis is one critical tool to investigate cross-study variation 

(or heterogeneity; Roisman & van IJzendoorn, 2018; Schmidt & Oh, 2016; Shrout & 

Rodgers, 2018; but see also Nelson et al., 2018). More specifically, research syntheses 

summarize the results of scientific (replication) studies to make generalizations, but also to 

explore the boundary conditions of generalizations (Cooper et al., 2019). Using meta-

analytical techniques, weighted average effect sizes, variations in effect sizes between 

studies, and factors that moderate the size of the effects can be examined and estimated.  

The use of quantitative techniques to integrate empirical studies dates back to the 

early 18th century, when the English mathematician Roger Cotes computed weighted 

averages of astronomical measurements that were assessed by different astronomers. Since 

then, such methods were rarely used until Glass (1976) introduced effect sizes as a 

common metric over studies and coined the term meta-analysis (Shadish et al., 2002). In 

traditional meta-analyses, data are synthesized on an aggregate study level obtained from 
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study publications or study authors (e.g., an effect size and a standard error or confidence 

interval; illustrated in grey in Figure 3A). 

More recently, the use of meta-analysis has been extended to individual participant 

data (IPD) synthesis (L. A. Stewart & Parmar, 1993), also called integrative data analysis 

(IDA; Curran & Hussong, 2009). Compared with traditional meta-analyses, IPD meta-

analysis adds data on the participant level to the analyses (Figure 3A; Riley et al., 2010). 

Thus, IPD meta-analysis involves obtaining and then synthesizing raw data for the 

individual participants. 

Although IPD meta-analysis has been described as a gold-standard method of meta-

analysis for quite some time in the biomedical sciences (L. A. Stewart & Tierney, 2002), it 

has only recently entered the field of psychology (Roisman & van IJzendoorn, 2018). IPD 

meta-analysis has several advantages over traditional meta-analyses. First, method 

heterogeneity between studies—a major biasing factor—is drastically reduced by applying 

the same inclusion and exclusion criteria across studies and synthesizing the data 

according to a standardized analysis protocol. By capitalizing on IPD in meta-analyses, it 

is also possible to disentangle subject-level and study-level sources of heterogeneity in 

effects (Lyman & Kuderer, 2005; van Walraven, 2010). Furthermore, the number of 

analytic options beyond the focal effect size under study is much larger in IPD meta-

analysis because of the access to the raw data and thus more appropriate or advanced 

methods can be applied when necessary (Cooper & Patall, 2009; Reily et al., 2010). 

Access to IPD may also help to improve data quality by accounting for missing data at the 

individual level (Pigott, 2019) as well as by calculating and incorporating results from  
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Figure 3. Schematic Overview of Traditional Meta-Analysis (Grey) Versus Individual 
Participant Data (IPD) Meta-Analysis (Transparent; Panel A). Panel B Displays the 
Design of the IPD Meta-Analysis/Integrative Data Analysis Used in Studies I and II in the 
Present Doctoral Thesis 

 

 

unpublished studies, which reduces publication bias (Reily et al., 2010). Finally, another 

potential benefit of IPD meta-analysis lies in statistical power. Modeling effects over 

participants instead of over studies potentially increases the power of moderator analyses 

(Cooper & Patall, 2009; Reily et al., 2010). 

IPD meta-analyses can be further divided into one-stage and two-stage IPD meta-

analyses. A one-stage IPD meta-analysis combines all IPD and analyzes them in a single 

step by using a multilevel structure to account for the variation within studies. In a two-

stage IPD meta-analysis, analyses are first performed for each study and then combined in 
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a second step using (multilevel) meta-analytical methods. Results from one-stage and two-

stage IPD meta-analyses often do not differ, however, one-stage IPD meta-analysis has the 

advantage of even greater flexibility and higher statistical power when sample sizes of 

single studies are small (G. B. Stewart et al., 2012). 

For IPD meta-analyses (or IDA) that draw on data from international large-scale 

assessments in education, a two-stage approach is required to account for methodological 

characteristics of each assessment cycle (e.g., different weights, numbers of plausible 

values, numbers of jackknife sampling zones). For instance, in this doctoral thesis, effect 

sizes are first calculated for each country in each assessment cycle separately. In a second 

step, the effect sizes are aggregated using multilevel meta-analytical methods (see Figure 

3B). Thus, it is possible to disentangle within-country level and between-country level 

sources of heterogeneity in effects. 

In sum, research synthesis allows us to systematically estimate the magnitude of the 

effect sizes and explain sources of cross-study variation. To this end, it fosters 

reproducible, rigorous, and transparent research (McNutt, 2014), and can in that regard be 

considered as one critical tool among others to address the issue of replicability and 

advance psychology as a field (Roisman & van IJzendoorn, 2018). 

1.6 Objectives of the Present Doctoral Thesis 

In this doctoral thesis, I aimed to investigate the interplay between achievement and 

achievement motivation. To address this topic, I have chosen two important strands of 

research that provide different angles on the interplay between achievement and 

achievement motivation within the framework of the SEVT. The presented research 

questions were examined by capitalizing on data from international large-scale 

assessments. 
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The first strand of research, which I covered in Study I, was the extent to which 

gender differences in top-performing math students’ achievement, achievement profiles, 

and achievement motivation exist. While prior studies have largely examined single, 

isolated domains and have had a strong focus on U.S. samples, a systematic, meta-

analytical analysis of these gender differences in the group of top-performing math 

students across countries is lacking. To this end, I aimed to tackle in Study I the following 

research question: 

Research Question 1: What is the extent of gender differences in top-performing 

math students’ achievement, achievement profiles, and achievement motivation in 

mathematics, reading, and science across countries? 

By applying a two-stage multilevel random-effects IPD meta-analysis of 

representative individual student data, the main goal was to provide reliable and widely 

generalizable empirical knowledge about the direction, size, and variability of these gender 

differences in top-performing math students’ achievement, achievement profiles, and 

achievement motivation in these three core academic domains for a large number of 

countries. To this end, these analyses were conducted in the group of top-performing math 

students (top 5%) by drawing on six cycles from PISA (2000–2015, N = 115,481, 15-year-

olds, 82 countries). 

Furthermore, it is unclear how gender differences in top-performing math students 

emerge. One potential reason for cross-national variability in gender differences in this 

group of students are varying sociocultural factors, such as the level of gender equality in a 

country. SEVT and SRT predict that gender differences should be smaller in more gender 

equal societies than in less gender equal societies. To this end, I tackled in Study I a second 

research question: 
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Research Question 2: To what extent are cross-national gender differences in the 

group of top-performing math students related to sociocultural factors, or more 

specifically, to the level of gender equality in a country? 

Using the same data as for Research Question 1, the goal was to examine the 

moderating role of different gender equality indicators for gender differences in top-

performing math students’ achievement, achievement profiles, and achievement 

motivation. Gender differences were synthesized in a two-stage multilevel mixed-effects 

IDP meta-analyses that examined the moderating effects of nation-level gender equality 

indicators in multivariate meta-regressions. Domain-specific gender equality indicators 

(i.e., primary, secondary, tertiary enrollment ratios and women’s share of higher positions 

and research positions) were selected from the ILO, the OECD, the UN, and UNESCO.  

The second research strand, which I tackled in Study II, refers to the question of 

how achievement and academic self-concept––a central motivational construct in 

educational psychology––are functionally related. The relationship between achievement 

and corresponding self-concepts is a critical aspect of the SEVT, but also of other 

prominent theories of self-concepts formation. Researchers implicitly assume the relation 

between achievement and corresponding self-concepts to be linear. Although assuming a 

nonlinear relation between achievement and corresponding self-concepts is highly 

plausible because of individuals’ use of self-protective strategies in self-evaluative 

situations, the functional relation between these constructs has not yet been systematically 

examined. To this end, I aimed to tackle the following research question in Study II: 

Research Question 3: Which functional relation exists between students’ academic 

achievement and corresponding academic self-concepts? 

The goal was to examine whether relations between achievement and 

corresponding self-concepts are nonlinear and to what extent the nonlinearity is 
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generalizable across different domains, age groups, countries, and analytical approaches in 

an integrative data analysis. An integrative data analysis investigates the robustness of 

results by applying the same analysis protocol to several data sets (here: eight cycles from 

PISA [2000 mathematics and verbal domain, 2003, 2012], TIMSS [2011, 2015], and 

PIRLS [2011, 2016]). The results were then synthesized in multilevel meta-analytic 

models. To further examine the generalizability of the results, the functional relation 

between achievement and corresponding self-concepts was analyzed across two domains 

(mathematics and the verbal domain), two age groups (elementary and secondary school 

students) across 13 countries using two analytical approaches (quadratic and interrupted 

regressions). 

Together, by combining both research strands and answering the above-mentioned 

research questions, this doctoral thesis aims to foster the understanding of the interplay 

between achievement and achievement motivation in new ways and to inform the SEVT. 

To do so, I applied state-of-the-art research synthesis methods on representative high-

quality student data, and adopted measures of intraindividual hierarchies in top-performing 

math students’ achievement. To provide an overview of the examined relationships 

assumed by the SEVT, I illustrated and color-coded them for each study in Figure 4 (Study 

I) and Figure 5 (Study II). In the figures, only those components of the SEVT are depicted 

that were covered in the respective studies (for the full model, see Figure 1). As shown in 

Figures 4 and 5, Study I covered a broad range of gender differences in top-performing 

math students’ achievement, achievement profiles, and achievement motivation related to 

the SEVT, whereas Study II focused more specifically on two components of the SEVT––

achievement and academic self-concepts. Figure 6 provides a combined overview of the 

examined relationships assumed by the SEVT for the doctoral thesis as a whole.



INTRODUCTION AND THEORETICAL BACKGROUND 
 

 38 

Figure 4. Overview of Components of the Situated Expectancy–Value Theory (SEVT) That Were Examined in Study I of the Present Doctoral 
Thesis.  

 

Note. Inner rectangle = Constructs assumed by the SEVT; Outer rectangle = Selected set of variables included in the analysis. 
Adapted from “35 years of research on students’ subjective task values and motivation: A look back and a look forward” by A. Wigfield and 
J. S. Eccles, 2020, in A. J. Elliot, Advances in Motivation Science, Vol. 7, p. 165 (https://doi.org/10.1016/bs.adms.2019.05.002). Copyright 
2020 by Elsevier. Reprinted with permission. 
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Figure 5. Overview of Components of the Situated Expectancy–Value Theory (SEVT) That Were Examined in Study II of the Present Doctoral 
Thesis.  

 

Note. Inner rectangle = Constructs assumed by the SEVT; Outer rectangle = Selected set of variables included in the analysis. 
Adapted from “35 years of research on students’ subjective task values and motivation: A look back and a look forward” by A. Wigfield and 
J. S. Eccles, 2020, in A. J. Elliot, Advances in Motivation Science, Vol. 7, p. 165 (https://doi.org/10.1016/bs.adms.2019.05.002). Copyright 
2020 by Elsevier. Reprinted with permission.
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Figure 6. Overview of Components of the Situated Expectancy–Value Theory (SEVT) of Achievement Performance and Choice That Were 
Studied in the Present Doctoral Thesis. The Inner Rectangle Represents the Constructs Assumed by SEVT, While the Outer Rectangle 
Represents the Selected Set of Constructs Included in Study I (Blue) and in Study II (Green) 

 

Note. Adapted from “35 years of research on students’ subjective task values and motivation: A look back and a look forward” by A. Wigfield and J. S. 
Eccles, 2020, in A. J. Elliot, Advances in Motivation Science, Vol. 7, p. 165 (https://doi.org/10.1016/bs.adms.2019.05.002). Copyright 2020 by Elsevier. 
Reprinted with permission.
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Top-Performing Math Students in 82 Countries: A Meta-Analysis 

of Gender Differences in Achievement, Achievement Profiles, and 

Achievement Motivation 
2 Study I: Top-Performing Math Students in 82 Countries 

 

Abstract 

This meta-analysis examined gender differences in achievement, achievement profiles, and 

achievement motivation in mathematics, reading, and science among 115,481 top-performing 

adolescent math students (top 5% in their respective countries). In the top 5% in mathematics, 

male students were overrepresented (female-to-male ratio 1:1.50). Furthermore, female 

students possessed better reading skills (d = -0.23) and more positive reading attitudes 

(-0.64 ≤ d ≤ -0.38). Male students had stronger math self-efficacy (d = 0.32) and 

demonstrated mathematics-oriented achievement profiles, whereas female students’ profiles 

were more balanced across domains. Female students were more interested in organic and 

medical fields (-0.44 ≤ d ≤ -0.30), whereas male students showed greater interest in physics-

related topics (0.39 ≤ d ≤ 0.54). Gender equality indicators moderated the proportion of 

female students in the top 5% in mathematics and explained variability in achievement 

profiles. Results are explained by social-role-theory and expectancy-value-theory; 

implications for women’s underrepresentation in STEM are discussed. 

Keywords: gender differences, achievement, achievement motivation, top-performers, 

meta-analysis   
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Top-Performing Math Students in 82 Countries: A Meta-Analysis of Gender Differences 

in Achievement, Achievement Profiles, and Achievement Motivation 

Understanding the underrepresentation of women in math-intensive fields such as science, 

technology, engineering, and mathematics (STEM) remains a concern of scientists and 

society (e.g., Halpern et al., 2007). For example, in 2016, across all member states of the 

European Union (Eurostat, n.d.), the percentage of male students was 74% among all students 

in the fields of engineering, manufacturing, and construction-related studies. By contrast, the 

percentage of female students was 71% among all students in fields related to health and 

welfare and 78% in the field of education. Similar results were reported in the U.S. (National 

Science Board, 2016).  

In their influential review, Ceci et al. (2014) concluded that future research should 

focus on the “barriers to women’s full participation in mathematically intensive academic 

science fields [that are] rooted in pre-college factors and the subsequent likelihood of 

majoring in these fields” (p. 76). Several pre-college factors contribute to women’s 

underrepresentation in STEM (e.g., Ceci et al., 2009; Wang & Degol, 2013, 2017). In 

particular, previous research showed that those most likely to major in and enter STEM fields 

are top-performing math students (Halpern et al., 2007; Lubinski & Benbow, 2006; Park et 

al., 2007). Thus, gender differences in the highest levels of achievement or in the right tail of 

the achievement distribution in math are vital for explaining gender disparities in STEM (Ceci 

et al., 2009, 2014; Halpern et al., 2007). Furthermore, educational and occupational choices 

are shaped by students’ achievement profiles (e.g., Park et al., 2007; Wang et al., 2013). 

Individuals whose specific strength is mathematics will accomplish more professionally in 

STEM fields than individuals with equivalent math skills but also high verbal skills (Park et 

al., 2007). Finally, students’ achievement motivation predicts their educational and 

occupational choices (e.g., Eccles, 1994; Halpern et al., 2007). Students most likely enroll in 
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courses and pick occupations that they think they can master and for which they experience a 

high task value (Eccles, 1994). To sum up, differences in (a) the proportions of top-

performing male and female students in mathematics but also gender differences in (b) their 

achievement, (c) achievement profiles, and (d) their domain-specific achievement motivation 

will most likely contribute to gender differences in STEM (Ceci et al., 2009; Halpern et al., 

2007; Wang & Degol, 2013, 2017). However, no meta-analysis has ever investigated these 

pre-college factors simultaneously in samples of top-performing math students. The 

overarching goal of the present study was therefore to provide a uniquely comprehensive 

meta-analysis that has been missing from the field of mathematical talent, gender, and STEM. 

First, previous research on gender differences in top-performing math students’ achievement, 

achievement profiles, and achievement motivation has focused on U.S. samples and used data 

from special programs with unknown representativeness for the full student population (e.g., 

Lubinski & Benbow, 2006). In our search for available databases appropriate for addressing 

our research objectives, we therefore focused on representative, unselective samples from 

well-defined populations, an approach considered the “gold standard” (Hedges & Nowell, 

1995; Reilly et al., 2019). Second, capitalizing on these data, we examined gender differences 

in achievement, achievement profiles, and achievement motivation3 in top-performing math 

students from 82 countries in three core academic domains: mathematics, reading, and 

science. Previous meta-analyses that investigated gender differences in top-performing math 

students focused on a single domain (mostly mathematics; e.g., Hyde, Fennema, & Lamon, 

1990; Lindberg et al., 2010), which precluded an examination of gender differences in 

achievement profiles across domains. Third, we investigated several possible moderator 

variables that may help explain why gender differences in top-performing math students are 

 
3 Unless otherwise indicated, we use the term “gender differences in top-performing math students” to indicate 
“gender differences in top-performing math students’ achievement, achievement profiles, and achievement 
motivation” for the remainder of the article. 
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larger in some countries than in others. In particular, drawing on social role theory (Wood & 

Eagly, 2012) and expectancy-value theory (Eccles et al., 1983), we examined the extent to 

which gender equality indicators are related to the cross-national heterogeneity of gender 

differences in top-performing math students. In sum, we provide an authoritative synthesis of 

gender differences in multiple key (pre-college) factors in top-performing math students that 

previous research has identified to explain gender differences in STEM. 

The Development of Gender Differences 

Various theoretical explanations for the emergence of gender differences have been offered 

while simultaneously acknowledging that biological, psychological, and environmental 

factors constantly interact in reciprocal feedback loops to shape individuals’ development 

(Miller & Halpern, 2014). In the following, we focus on the role of sociocultural factors for 

the development of gender differences. 

The Role of Sociocultural Factors in the Development of Gender Differences 

Social role theory (Eagly, 1987; Wood & Eagly, 2012) and expectancy-value theory (Eccles 

et al., 1983) provide prominent psychological models for explaining why sociocultural factors 

influence gender differences in the development of mathematical talent. Both theories propose 

that gender differences emerge because of differences in males’ and females’ roles in society. 

These differences in gender roles are based on gender stereotypes (Eccles, 1994; Wood & 

Eagly, 2012), that is, on beliefs about differences between females and males (Ashmore & 

Del Boca, 1979). Social role theory explains the psychological mechanisms that lead to 

gender stereotypes and how gender-typed roles influence gender differences in achievement 

and motivation, whereas expectancy-value theory is more focused on explaining the latter 

aspect. 

Social role theory (Eagly, 1987; Wood & Eagly, 2012) argues that gender stereotypes 

emerge because people infer that there is a correspondence between people’s external 
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behavior and their internal characteristics (Wood & Eagly, 2012). For example, because 

women tend to do domestic work and communally demanding jobs, people infer that women 

are warm, caring, and socially skilled. Similarly, because men tend to take on strength-

intensive roles and high-status roles, people infer that men are assertive, dominant, and 

forceful (Wood & Eagly, 2012). In addition to this descriptive aspect of gender roles, gender 

roles also have a prescriptive function. By considering these typical attributes as generally 

desirable and admirable for each sex, gender role beliefs promote norms and socialization 

practices (e.g., by parents, teachers, and peers) that encourage children to acquire the skills, 

characteristics, and preferences that support their society’s division of labor. Over time, 

gender roles tend to be internalized as gender identities and thus facilitate stereotype-

consistent behavior through self-regulatory processes (Eagly, 1987; Wood & Eagly, 2012). 

Empirical research supports that there is a direct link between gender stereotypes and the 

representation of men and women in social roles (Koenig & Eagly, 2014). In educational 

contexts, research indicated that a higher female enrollment in tertiary science education and 

the representation of women in the science workforce were related to weaker national gender–

science stereotypes (Miller et al., 2015). Further, if the gender roles that women are expected 

to fulfill within a society do not include math- or science-related activities, female students 

may encounter social barriers (e.g., mathematics and science are stereotyped as male 

domains) and perhaps even structural barriers (e.g., girls are disadvantaged in terms of formal 

access to [math or science] education). In turn, this can impair girls’ development of skills in 

mathematics or science. For example, a large-scale study by Nosek et al. (2009) demonstrated 

that gender differences in mathematics and science were larger in countries where residents 

hold stronger stereotypes that associate men with science. 

Expectancy-value theory (Eccles et al., 1983) proposes more specifically that gender 

differences in achievement and motivational aspects, such as domain-specific expectations for 
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success (e.g., self-efficacy beliefs, self-concepts) and values (e.g., interest, enjoyment, 

emotional costs such as anxiety), emerge through the processes by which children are 

socialized into gender roles. For example, the meta-analysis by Lytton and Romney (1991) 

found differential parental encouragement of gender-typed activities. Hence, parents’ 

socialization processes may differ for boys and girls with the consequence that parents 

provide different learning opportunities and experiences to boys and girls. For instance, 

mothers seem to provide more math-supportive environments for boys than for girls by 

buying more math-related toys for their sons than for their daughters (Jacobs et al., 2005). 

Ultimately, expectancy-value theory states that such socialization processes will result in 

gender differences in male and female students’ domain-specific achievement and motivation, 

which in turn lead to gender differences in educational and occupational preferences and 

choices.  

To conclude, both expectancy-value theory and social role theory emphasize that 

gender-typed socialization processes are sociocultural factors that influence the development 

of gender differences. According to both theories, gender differences should be smaller in 

societies that endorse gender-typed roles to a smaller extent and that have greater gender 

equality. More specifically, expectancy-value theory predicts that if a female student gender-

types a domain such as mathematics as masculine and not in line with her gender role values, 

she is less likely to value mathematics and less likely to put effort into math-related fields, 

especially if she does not expect to do well. Consequently, she is more likely to perform 

poorly in mathematics and to avoid choosing math-related studies and careers (Eccles, 1994; 

Meece et al., 1982). Thus, socialization processes that are more gender-typed produce larger 

gender differences in achievement and motivation.  

Several studies that have investigated the link between sociocultural factors and 

gender differences focused on gender equality as an important sociocultural factor. Prior 
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cross-national studies have primarily analyzed the role of gender equality for gender 

differences at the level of the general student population (Baker & Jones, 1993; Else-Quest et 

al., 2010; Guiso et al., 2008; Reilly, 2012; Riegle-Crumb, 2005; Stoet & Geary, 2013, 2015). 

Only a few studies have investigated the role of gender equality for gender differences at the 

right tail of the ability distribution. Using data from TIMSS 1995 (Penner, 2008) and PISA 

2003 (Guiso et al., 2008), two studies found that the proportion of female students in the top 

5% in mathematics increased as gender equality in a country increased. Similar to results on 

the population level, findings varied to some extent depending on the gender equality 

indicators used (Penner, 2008). Furthermore, Hyde and Mertz (2009) found that the 

percentage of female students on a country’s International Mathematical Olympiad team was 

significantly correlated with its Global Gender Gap Index (GGI). Thus, there is evidence that 

sociocultural factors may affect the development of mathematical talent: In countries with 

higher levels of gender equality, more female students score at the highest levels of math 

achievement. Yet, it is unknown whether sociocultural factors are also related to gender 

differences (e.g., in math, reading, or science achievement) within the group of top-

performing math students. 

Gender Differences in Achievement and Achievement Motivation 

The evidence on gender differences in achievement and achievement motivation can be 

divided into mean differences (at the midpoint of a distribution for the general student 

population) and differences in the right tail (e.g., the top 10%, 5%, and 1%; Ceci et al., 2009, 

2014; Halpern et al., 2007). The latter is typically considered to be more relevant for 

improving the understanding of gender disparities in STEM because students from the right 

tail are most likely to major in and enter STEM fields (Ceci et al., 2009, 2014; Halpern et al., 

2007). Nevertheless, results obtained for the general population are still valuable as they often 
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predict trends in the right tail (Ceci et al., 2009) and they offer a way to benchmark results as 

obtained for top-performing individuals. 

As evident from Figure 1 (see also Tables S1 in the Supplemental Online Material 

[SOM] of Study I), there are numerous meta-analyses and large-scale studies which provide 

strong empirical evidence on gender differences in students’ achievement in mathematics, 

reading, and science in the general population. Considerably fewer meta-analyses and large-

scale studies have examined gender differences in students’ achievement motivation in the 

general population (Figures 1 and 2; Table S2). Most importantly, Figures 1 and 2 show that 

the evidence base is particularly weak for gender differences in top-performing math students. 

Only three meta-analyses examined gender gaps in math performance in this group of 

students (Baye & Monseur, 2016; Hyde, Fennema, & Lamon, 1990; Lindberg et al., 2010). 

The results indicated that gender differences in favor of male students are somewhat larger in 

highly selected samples (e.g., the top 5%) than in the general population (0.15 ≤ d ≤ 0.54 as 

compared to -0.05 ≤ d ≤ 0.31 for the general population; see Table S1). However, some of 

these findings are at least partially based on data from talent search studies4 (Hyde, Fennema, 

& Lamon, 1990; Lindberg et al., 2010). A study that used representative data exclusively 

from unselected top-performing math students reported a smaller gender gap in math 

achievement (d = 0.15; Baye & Monseur, 2016). Notably, there is evidence that gender 

differences in math achievement in top-performing math students vary cross-nationally (Stoet 

& Geary, 2013).  

In addition, studies have revealed a substantial overrepresentation of male students 

among top-performers in mathematics. Two meta-analyses that analyzed representative data 

sets from the US reported a female-to-male ratio of 1:1.50 to 1:4.09 in the top 5% in 

 
4 Participants in talent search studies represent a selected student group, particularly in that they are aware of 
their ability because of their selection into the program. This awareness most likely influences their self-beliefs, 
motivation, and possibly also their performance. 
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mathematics (Hedges & Nowell, 1995; Nowell & Hedges, 1998). Studies that used more 

recent data sets from representative international large-scale assessments (Machin & 

Pekkarinen, 2008; Stoet & Geary, 2013) and state or national assessments from the US (Hyde 

et al., 2008; Reilly et al., 2015) also found a preponderance of male students in the top 5% in 

mathematics. However, the female-to-male ratios were comparatively low and varied across 

countries (1:1.09 to 1: 2.13). Research findings from talent search programs showed that the 

female-to-male ratio in the top 0.5% of math ability rapidly declined from the early 1980s 

(1:2.61) to the early 2010s (1:1.37; SMPY; Makel et al., 2016). Within the top 0.01% of math 

ability in the SMPY, the decline was even sharper (Makel et al., 2016; Table 2). Using a 

different U.S. talent search database, Olszewski-Kubilius and Lee (2011) reported slightly 

higher female-to-male ratios (1:2.5 to 1:3.7) for students in the top 2% in mathematics 

between 2000 and 2008 (compared with the results from Makel et al., 2016). 

Regarding top-performing math students’ achievement motivation, there is only one 

meta-analysis that covered gender differences in math motivation. The findings suggested that 

gender differences in math anxiety were negligible in highly selected samples (Hyde, 

Fennema, Ryan et al., 1990). As the overview in Figures 1 and 2 illustrates, for top-

performing math students, there are neither meta-analyses or large-scale studies that have 

examined gender differences in reading or science achievement nor in the achievement 

motivation in science or verbal domains. 

Gender Differences in Achievement Profiles 

Achievement profiles are comprised of the pattern and structure of achievement in multiple 

domains within an individual. One way to create achievement profiles is to calculate 

achievement tilts by subtracting a student’s test score in one domain from the same student’s 

test score in another domain (e.g., Wai et al., 2018). Previous research has demonstrated that 

achievement tilts in math and verbal domains at the age of 16 (Dekhtyar et al., 2018) and on 
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college entrance exams (Coyle et al., 2014, 2015; Wang et al., 2013, 2017) predicted career 

choices in adulthood in the general population. Math tilts were associated with STEM majors 

(e.g., science and math) and STEM careers, whereas verbal tilts were associated with 

humanities majors (e.g., English and history) and humanities careers (Coyle et al., 2014, 

2015; Dekhtyar et al., 2018; Wang et al., 2013, 2017). 

Female and male students in the general population have been found to differ in their 

achievement profiles such that male students were more likely to show math tilts (and STEM 

preferences), whereas female students were more likely to show verbal tilts (and humanities 

preferences; Coyle et al., 2014, 2015; Dekhtyar et al., 2018; Wang et al., 2013). Ability tilts 

seem to be larger in the right tail of the ability distribution than in the general population 

(Lohman et al., 2008). Similar to findings in the general population, achievement tilts in high-

ability students predicted their educational and career choices. Students in talent search 

samples who scored higher on math relative to verbal achievement at the age of 13 gravitated 

toward STEM occupations; however, students who scored higher on verbal relative to math 

achievement gravitated toward the humanities (Lubinski et al., 2001; Park et al., 2007). In 

addition, there is evidence of gender differences in achievement tilts in high-achieving 

students. Wai et al. (2018) examined gender differences in math and verbal achievement tilts 

in academically talented students in the US across 35 years and found that more male than 

female students showed positive math tilts and more female than male students showed 

positive verbal tilts. Furthermore, gender differences in achievement tilts increased with 

achievement level (i.e., from the top 5% to the top 1% to the top 0.01% of ability; Wai et al., 

2018). However, there are no meta-analyses or large-scale studies that have investigated 

gender differences in achievement profiles in the general population or in top-performing 

math students (see Figures 1 and 2). 
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The Present Study 

The present meta-analysis had two main research goals. The first goal was to provide reliable 

and widely generalizable empirical knowledge about gender differences in top-performing 

math students’ achievement, achievement profiles, and achievement motivation in three core 

academic domains: mathematics, reading, and science. Importantly, our meta-analysis 

focused on students in secondary school because educational and occupational choices 

leading to STEM careers are shaped by pre-college factors during adolescence (Ceci et al., 

2009, 2014; McDaniel, 2016). To this end, we capitalized on international, representative, and 

unselected individual participant data from well-defined populations of students at the end of 

compulsory education. In doing so, the present study is the first to meta-analyze important 

gender differences in top-performing math students’ reading and science achievement, 

achievement profiles (i.e., math–reading, science–reading, and math–science profiles), and 

achievement motivation related to mathematics, reading, and science. Furthermore, we 

significantly extended the findings on the proportion of female students in the group of top-

performing math students and on gender differences in math achievement in this group of 

students (e.g., Guiso et al., 2008; Penner, 2008) by using more recent data from a 

substantially larger number of countries. 

The second goal of this meta-analysis was to investigate the moderating roles of 

gender equality for gender differences in top-performing math students’ achievement, 

achievement profiles, and achievement motivation. Specifically, we used domain-specific 

gender equality indicators (e.g., the tertiary enrollment ratio or women’s share of research 

positions) to examine the specific processes that might lead to the observed gender gaps 

(Else-Quest & Grabe, 2012). According to social role theory and expectancy-value theory, we 

expected that gender differences in top-performing math students would decrease with 

increasing levels of gender equality. Furthermore, we predicted that the share of female 
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students in the top 5% in mathematics would increase with increasing levels of gender 

equality.  

Method 

Identification of International Large-Scale Assessments  

To meta-analyze gender differences in top-performing math students, we sought for 

individual participant data from international large-scale assessments rather than summarizing 

published results obtained from empirical studies (e.g., different national large-scale 

assessments). Our reasons for doing so were twofold. First, a key feature of international 

large-scale assessments is the applied standardization protocol for all phases of the study (e.g., 

applying the same set of standardized measures in all participating countries). Thus, using 

individual participant data from international large-scale assessment data allowed us to 

control for several sources of unwanted heterogeneity in effect sizes (for details see S1 in the 

SOM), which, in turn, substantively improved the reliability, precision, and statistical power 

of the meta-analytic syntheses (Valentine et al., 2010) and moderator analyses (Hempel et al., 

2013). Second, international large-scale assessments examine representative, unselected 

student samples in many different countries. Thus, these data naturally support the wide 

generalization of findings on gender differences in top-performing students within and across 

countries. 

To identify all potential international large-scale assessments we conducted a 

systematic search, which is described in detail in section S1 in the SOM. Figure 3 provides an 

overview of the selection process and the number of publications and unique international 

large-scale assessments identified in each step. After evaluation, only the Programme for 

International Student Assessment (PISA) met all the inclusion criteria. Thus, for the present 

meta-analysis, all available individual student data from six PISA cycles were used (i.e., 
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samples between 2000 and 2015). Protocols can be accessed via the Open Science Framework 

(OSF; Soderberg, 2018) at https://osf.io/jnxwm/. 

Description of the PISA Study and Study Participants 

PISA is a triennial international survey conducted by the Organisation for Economic Co-

operation and Development (OECD). It is aimed at evaluating education systems worldwide 

at the end of compulsory education by testing the skills and knowledge of 15-year-old 

students in the key domains of mathematics, reading, and science. PISA capitalizes on a two-

stage stratified sampling design to achieve representative probability samples (a detailed 

description of the sampling procedures can be found in section S2 in the SOM). 

Consequently, PISA results can be generalized to the larger population of 15-year-old 

students in all participating countries.5 Across all PISA cycles, a total of 2,280,502 students 

from 83 countries participated. In the present study, students who belonged to the top 5% in 

mathematics in their country in a certain PISA cycle were defined as top-performers in 

mathematics. Table S3 in the SOM presents the country-specific cut-off values for the top 5% 

in mathematics for each PISA cycle. 

Students from Liechtenstein were excluded from the present analyses due to the small 

number of students who scored among the top 5% in mathematics in all PISA cycles in 

Liechtenstein (n < 30). In the year 2000, nine students were excluded from the analyses 

because they were missing information on their gender. Of note, in PISA 2000, a mathematics 

achievement score was provided in the public use file for only 56% of the students (for an 

even smaller proportion of students, science achievement scores were available). This resulted 

in a smaller number of mathematically top-performing students compared with the other PISA 

cycles where a mathematics achievement score was provided for all students. The final 

 
5 Students from OECD and non-OECD countries or economic regions can participate in PISA. For ease of 
presentation, we refer to both “countries” and “economic regions” as “countries” in this article. 
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sample included data from 82 countries (Figure S1 in the SOM) and 115,481 top-performing 

math students (see Table 2 for the sample characteristics). 

Measures 

Achievement  

In PISA cycles 2003 to 2012, mathematical achievement was assessed in four categories: 

change and relationships, space and shape, quantity, and uncertainty and data. In PISA 2000, 

the assessment covered just two categories: (a) space and shape and (b) change and 

relationships. Reading literacy was assessed in three different categories: the abilities to 

access and retrieve information, integrate information and interpret texts, and reflect upon and 

evaluate texts. In 2006, reading literacy results were not reported for the US because of an 

error in the printing of the test booklets. Science literacy was assessed in the categories 

physical systems, living systems, earth and space systems, technology systems, scientific 

inquiry, and scientific explanations. See section S3 in the SOM for further details on the 

achievement measures. 

Achievement Motivation 

To assess students’ achievement motivation, students reported their motivation with respect to 

mathematics, reading, and science on 26 self-report scales measuring, for example, their self-

concept, self-efficacy beliefs, and instrumental and future-directed motivation, anxiety, 

interest, and enjoyment. Students gave their answers in a forced-choice format (for math 

intentions) and on 4-point rating scales (for the remaining 25 measures). Tables S4 to S7 in 

the SOM provide an overview of the scales, the corresponding items, the response options for 

the items, and the scale score reliabilities (i.e., internal consistencies).  

Gender Equality Indicators as Moderators 

We selected widely regarded specific measures of gender equality recommended by Else-

Quest and Grabe (2012) in the areas of education (i.e., gender ratios in primary, secondary, 
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and tertiary education enrollment) and higher positions (i.e., women’s share of higher 

positions and research positions in a country) that are theoretically relevant as moderators of 

girls’ and women’s engagement in mathematics. Gender equality in education reflects the 

valuation of female students’ education in a society, and gender equality in higher positions 

reflects the penetration of the glass ceiling (Else-Quest & Grabe, 2012). Table 2 lists and 

provides descriptions of the indicators used in the present study. In the moderator analyses, 

we only included data on the specific gender equality indicators that were assessed in the 

same assessment years as the PISA cycles (e.g., the primary enrollment ratio has been 

reported annually since 1970, but we only included the data from 2000, 2003, 2006, 2009, 

2012, and 2015 in the present study). To maximize the number of countries with data on 

women’s share of research positions, we combined data from the OECD and the United 

Nations Educational, Scientific, and Cultural Organization (UNESCO). When data were 

available from only one data set, we used that information. When data were available from 

two sources, we averaged them. Values for all moderators, their intercorrelations, and 

descriptive statistics are presented in Tables S8 and S9 in the SOM. The intercorrelations 

among moderators showed that all moderators contained unique information. 

Data Analysis  

General Procedure 

The present study is a meta-analysis of individual student data as provided in large-scale data 

sets (Cooper & Patall, 2009; see Hedges & Nowell, 1995, for an application) that we 

conducted in three steps in accordance with the analysis strategy proposed by Cheung and Jak 

(2016) for big data. In the first step, we computed effect sizes using the individual student 

data for each country and each PISA cycle. In the second step, we meta-analyzed the effect 

sizes to estimate (a) the average effect sizes for gender differences in achievement, 

achievement profiles, and achievement motivation and (b) the heterogeneity of effect sizes 
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within and between countries. In the third step, we examined the extent to which moderator 

variables may explain the observed heterogeneity in effect sizes. Analyses were conducted 

using the statistical software R (version 3.6.1; R Core Team, 2019). The R code for 

reproducing the results and figures from the present study can be found on the OSF. 

Step 1: Effect Size Computation. We analyzed the country-specific magnitude of 

gender differences in achievement and achievement motivation by computing the effect size d 

(Cohen, 1988). Cohen’s d is the effect size for the standardized mean difference between two 

groups on a continuous variable (e.g., the mean difference between male and female students 

on a continuous measure of mathematics achievement). Thus, country-specific d was 

computed, with d = (Mm – Mf)/SDOECD, Mm = the mean for male students, Mf = the mean for 

female students, and SDOECD = the standard deviation of the total student sample from the 

OECD countries. Hence, positive values indicated an advantage of male students and negative 

values an advantage of female students. In accordance with Hyde (2005), we defined five 

ranges of effect sizes: negligible (0.00 < |d| ≤ 0.10), small (0.10 < |d| ≤ 0.35), moderate 

(0.35 < |d| ≤ 0.65), large (0.65 < |d| ≤ 1.00), and very large (|d| > 1.00). 

To examine achievement profiles, we subtracted an individual student’s achievement 

score in one domain from this student’s achievement score in another domain, resulting in 

three different profiles: math–reading, science–reading, and math–science. Overall, we 

computed three effect sizes to capture gender differences in achievement profiles: country-

specific mean profile scores for male and female students, the gender-specific percentage of 

tilts within each profile score, and the percentage of nonoverlap in gender-specific profile 

distributions. Nonoverlaps of 8%/24%/41%/55% can be considered to represent 

small/medium/large/very large effects, respectively.  
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Further information on the calculation of effect sizes can be found in section S4, 

country-specific effect sizes for each outcome can be found in Tables S10 to S20 in the SOM, 

and standard errors for all unweighted effect sizes can be accessed via the OSF.  

Step 2: Meta-Analysis. To meta-analyze the effect sizes, we used the R package 

“metaSEM” (version 1.2.2; Cheung, 2015) that implements random-effects models with 

maximum likelihood estimation to allow the true effect to vary (Borenstein et al., 2009; 

Cheung, 2015). When effect sizes were available only for a single PISA cycle, we used two-

level random effects models. In the two-level random effects models, variance estimates for 

the various effect sizes (as obtained in Step 1) defined Level 1; Level 2 captured variability in 

effect sizes between countries. When effect sizes were available for several PISA cycles, we 

used three-level random effects models to account for the dependencies between the effect 

sizes (i.e., effect sizes obtained for several PISA cycles within countries). In the three-level 

random effects models, variance estimates for the various effect sizes (as obtained in Step 1) 

defined Level 1. Level 2 captured variability in effect sizes between PISA cycles within 

countries, and Level 3 captured variability in effect sizes between countries. We computed 

three statistics to assess the heterogeneity of effect sizes: T, I2, and Q (Borenstein et al., 2009). 

T is the standard deviation of the effect size parameters (Borenstein et al., 2009). I2 represents 

the proportion of observed heterogeneity that is real and not due to random noise and has a 

range of 0% to 100% (Higgins & Thompson, 2002). For the three-level models, we estimated 

T and I2 within countries (TL2, I2
L2), between countries (TL3, I2

L3), and in total (!"#"$% =

'!()) +	!(,) , I2
total = I2

L2 + I2
L3); for the two-level models, we estimated Ttotal and I2

total only. 

The Q test statistic (introduced by Cochran, 1954) is computed by summing the squared 

deviations of each individual effect size estimate from the corresponding average effect 

estimate where individual effect sizes are weighted by their sampling variance (Huedo-

Medina et al., 2006). A statistically significant value of Q is typically taken to indicate effect 
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size heterogeneity. We considered all three statistics to evaluate the variability of effect sizes 

and, consequently, to decide whether it would be appropriate to conduct further moderator 

analyses. Specifically, moderator analyses were performed if the Q statistic associated with a 

certain effect size was significant (Lipsey & Wilson, 2001) or if Ttotal or the I2
total indicated at 

least moderate heterogeneity. Whereas there are established guideline values for moderate I2 

values (I2 ≥ 30%, Higgins & Green, 2011), these guideline values are lacking for T. Hence, to 

assess which Ttotal value can be considered moderate, we computed empirical benchmark 

values using data on standardized mean differences (i.e., Cohen’s d and Hedges’ g) provided 

by van Erp et al. (2017). Cut-off scores were based on the approach presented by Hemphill 

(2003) and Bosco et al. (2014). Thus, Ttotal values in the middle third (.12 ≤  Ttotal < .28) could 

be considered to indicate a moderate level of heterogeneity.  

Step 3: Mixed-Effects Models and Moderator Analysis. The mixed-effects meta-

analysis extends the random-effects meta-analysis by explaining the heterogeneity of the 

effect sizes within and between countries by moderator variables (Borenstein et al., 2009; 

Cheung, 2015). We ran multivariate meta-regression models for each effect size (i.e., the 

dependent variable) using the following set of moderator variables (i.e., the independent 

variables): women’s share of higher positions, women’s share of research positions, and 

enrollment ratios in primary, secondary, and tertiary education.  

As in almost every meta-analysis, some data on moderator variables were missing 

(i.e., gender equality indicators were not available for all countries). We therefore followed 

the recommendations by Pigott (2019) and Tipton et al. (2019) and used multilevel multiple 

imputation (e.g., Grund et al., 2018) to estimate unreported values and to account for the 

clustered data structure (effect sizes nested in countries). To facilitate the interpretation of the 

results, moderator variables that represented ratios were log-transformed before multiple 

imputation and then used in the meta-regression. Subsequently, the regression coefficients 
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were divided by 100 such that a 1% increase in the moderator variable increased (or 

decreased) the dependent variable by coefficient/100 units. Further details on the data analysis 

are provided in section S4 in the SOM.  

Analysis for Possible Bias 

Meta-analyses using individual participant data (e.g., PISA public use files) are generally 

considered the most reliable approach for synthesizing data (e.g., Stewart & Tierney, 2002). 

Nevertheless, there remains a potential concern that data and results are affected by various 

sorts of bias (Ahmed et al., 2012) that¾if present¾could imply that the magnitude and 

heterogeneity of gender differences in top-performing math students may be under- or 

overestimated. We provide a detailed description of our analysis for possible bias in the 

section S5 in the SOM. We conclude that most sources of bias (reviewer selection bias, 

publication-related bias) are minimized in the present study. However, the reach of this study 

is limited because of restrictions of the country sample (not all countries worldwide 

participate in PISA; see also the Discussion section and section S5 in the SOM). 

Results 

Proportions of Male and Female Students in the Top 5% in Mathematics 

The overall percentage of female students in the top 5% in mathematics, averaged across all 

studies, was 40% (Table 3), corresponding to a female-to-male student ratio of 1:1.50. Figure 

4 shows the distribution of the percentages of female students. Given the heterogeneity in the 

effect sizes (Table 3), we conducted analyses for moderator variables to explain the 

heterogeneity in effect sizes. Tertiary enrollment ratios positively predicted the proportion of 

female students in the top 5% in mathematics (b = 0.04), indicating that a rise in the tertiary 

enrollment ratio by 1% was associated with an increase in the percentage of female students 

in the top 5% in mathematics by 0.04% (under control the other gender equality indicators; 

Table 4). That is, the larger the percentage of female students enrolled in a university 
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compared with the percentage of male students enrolled, the larger the proportion of female 

students in the group of top-performing math students. 

Gender Differences in Achievement 

The overall weighted mean effect size of the gender difference in mathematics achievement 

was d = 0.05 (Table 3), representing a negligible gender difference in top-performing math 

students. Figure 5A shows that the range of effect sizes was narrow and that gender 

differences were negligible in almost all countries. Because effect sizes were homogenous 

(Table 3), moderator analyses were not performed. 

The overall weighted mean effect size of the gender difference in reading achievement 

was d = -0.23 (Table 3), indicating that, on average, female students had better reading 

performance than male students did. Figure 5A shows that the magnitude of effect sizes 

varied across studies with the vast majority of effect sizes indicating that female students 

outperformed their male counterparts in reading. The heterogeneity measures showed that 

gender differences in reading achievement were heterogeneous (Table 3). We therefore 

conducted further moderator analyses, but the gender equality indicators did not significantly 

explain the variation in effect sizes (Table 4). 

The overall weighted mean effect size of the gender difference in science achievement 

was d = 0.01 (Table 3), showing that male and female students performed similarly in 

science. Figure 5A displays the distribution of gender differences in science and displays that 

almost all effect sizes were negligible or small. Because the heterogeneity measures indicated 

that the effect sizes were heterogeneous, moderator analyses were conducted. Yet, none of the 

moderator variables significantly predicted variability in effect sizes (Table 4). 

Gender Differences in Achievement Profiles 

In the math–reading profile, mathematically top-performing male students’ math achievement 

clearly exceeded their reading achievement by, on average, 57.65 points (Table 5). Although 
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female students’ math achievement also exceeded their reading achievement, on average, by 

22.71 points, the difference between mathematics and reading achievement was less 

pronounced for female students than it was for male students. This pattern is also displayed in 

Figure 6A, showing that male students gravitated toward a strongly mathematics-oriented 

profile, whereas female students’ achievement profiles were somewhat more evenly 

distributed across the math–reading dimension. Female and male students’ math–reading 

profile distributions had, on average, a nonoverlap of 44%, representing a large effect (Table 

5; see Figure 6B for the distribution of effect sizes). Of all male students, 87% scored higher 

in mathematics than in reading (i.e., 87% demonstrated a math tiltM-R), whereas 66% of all 

female students showed stronger achievement tilts in mathematics than in reading (i.e., 66% 

demonstrated a math tiltM-R; Table 5).  

In the science–reading profile, mathematically top-performing male students 

performed better in science than in reading, showing a profile score difference of, on average, 

32.20 points in favor of science (Table 5), whereas female students performed almost as well 

in reading as in science, demonstrating a profile score difference of, on average, 2.08 points in 

favor of science. Figure 6A shows that male students gravitated toward a strongly science-

oriented profile, whereas female students’ achievement profiles were more evenly distributed 

over the science–reading dimension. Female and male students’ science–reading profile 

distributions showed a mean nonoverlap of 42%, representing a large effect (Table 5; see 

Figure 6B for the distribution of effect sizes). Of all mathematically top-performing male 

students, 76% showed better achievement in science than in reading (i.e., 76% demonstrated a 

science tiltS-R), and 48% of all mathematically top-performing female students demonstrated 

higher achievement in science than in reading (i.e., 48% demonstrated a science tiltS-R; Table 

5).  
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In the math–science profile, both male and female students performed better in 

mathematics than in science, demonstrating profile score differences of, on average, 24.55 

and 19.87 points, respectively (Table 5). Figure 6A shows that male and female students’ 

achievement profiles were somewhat tilted toward mathematics. Female and male students’ 

math–science profile distributions had a nonoverlap of 18% (Table 5; see Figure 6B for the 

distribution of effect sizes), and thus, gender differences in the math–science profile were 

small. For 69% of all male students, mathematics was their strongest skill compared with 

science (i.e., 69% demonstrated a math tiltM-S). Similarly, 65% of all female students scored 

higher in mathematics than in science (i.e., they demonstrated a math tiltM-S; Table 5).  

Moderator analyses were performed to investigate whether the heterogeneity in female 

and male students’ profile scores, the percentage of nonoverlap between their distributions of 

profile scores, and the percentage of female and male students demonstrating a certain tilt in 

their profile scores (Table 5) could be predicted by gender equality indicators. The results in 

Table 6 show that enrollment ratios in tertiary education were associated with female and 

male students’ math–reading profile scores (bfemale = -0.15, bmale = -0.12) and female students’ 

science–reading profile scores (bfemale = -0.10). The findings indicate that when the percentage 

of female students enrolled in tertiary education compared with the percentage of male 

students enrolled in tertiary education is higher, (a) the difference between math and reading 

scores is smaller for female and male math top-performers and (b) the difference between 

science and reading scores is smaller for female math top-performers. Furthermore, women’s 

share of research positions predicted the variation in female students’ math–science profile 

scores. That is, the higher women’s share of research positions, the smaller the difference 

between students’ math and science scores (bfemale = -0.98). 
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Gender Differences in Achievement Motivation 

With regard to top-performing math students’ math motivation, male students reported higher 

math self-efficacy than female students did. That is, compared with female students, male 

students reported feeling more confident about solving a specific math task (d = 0.32; Table 

3). Similarly, male students reported higher intentions to focus on math than female students 

did (i.e., male students reported a higher intention to choose additional math courses in school 

and beyond compared with additional language or science courses; d = 0.27). Furthermore, 

male students reported, on average, higher instrumental math motivation (d = 0.16), higher 

math self-concept (d = 0.15), and greater interest in math (d = 0.10) than female students did. 

Female students reported higher self-responsibility for failure in mathematics (d = -0.13), 

higher math anxiety (d = -0.15), and a higher math work ethic (e.g., preparing thoroughly, 

paying attention in class, positive learning behavior; d = -0.16) than male students did. 

However, the magnitude of all gender differences in math motivation was small to negligible. 

The distribution of effect sizes is depicted in Figure 5B. A heterogeneity analysis revealed 

that for six out of nine math motivation domains effect sizes were significantly heterogeneous 

(Table 3). However, gender equality indicators did not account for the variation in effect sizes 

(Table 4). 

Regarding the verbal motivation of top-performing math students, female students’ 

reports of their reading enjoyment (d = -0.64), their interest in reading (d = -0.50), and their 

verbal self-concept (d = -0.38; Table 3) were higher than their male counterparts’ reports (all 

moderate effects). Importantly, across all (or almost all) countries, female students reported a 

higher verbal motivation (Figure 5C). Because effect sizes were heterogeneous for the 

enjoyment of reading (Table 3), we performed a moderator analysis for this outcome. As 

shown in Table 4, gender equality indicators did not account for significant variation in effect 

sizes. 
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Table 3 also shows the weighted average effect sizes of seven components of top-

performing math students’ science achievement motivation: self-concept, general value, 

enjoyment, self-efficacy, future-oriented motivation, personal value, and instrumental 

motivation. The distribution of effect sizes is depicted in Figure 5D. Overall, in five out of 

seven science achievement motivation domains, gender differences were on average 

negligible, indicating that among top-performing math students, male and female students’ 

science motivation is more similar than different. Male students reported a higher science 

self-concept (d = 0.19, small effect) and a higher general value of science (d = 0.12, small 

effect) than female students did. 

In contrast to top-performing math students’ general motivation in science, we found 

gender differences in students’ interest in specific science topics. Specifically, female students 

were more interested in human biology (d = -0.44, moderate effect; Table 3) and in learning 

more about diseases (d = -0.30, small effect) and plant biology (d = -0.30, small effect) than 

their male counterparts were. Male students were more interested in the topics motion and 

forces (d = 0.54), physics (d = 0.40), and energy transformation (d = 0.39); these gender 

differences were all moderate in size. Figure 5E depicts the distribution of effect sizes. A 

heterogeneity analysis revealed that the effect sizes for science self-concept, general value of 

science, science self-efficacy, future-oriented science motivation, enjoyment of science, 

instrumental science motivation, and interest in physics were heterogeneous (Table 3). 

However, the magnitudes of the gender differences did not depend on gender equality 

indicators (Table 4). 

Discussion 

For the group of top-performing math students, there is only little reliable and widely 

generalizable knowledge on gender differences in pre-college factors related to STEM, 

including adolescents’ achievement and achievement motivation. To address this research 
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gap, we meta-analyzed representative individual participant data of 15-year-olds in 82 

countries (PISA 2000–2015). The first goal of the present meta-analysis was to examine 

gender differences in top-performing math students’ achievement, achievement profiles, and 

achievement motivation in three core academic domains—mathematics, reading, and science. 

The second goal was to investigate the moderating role of gender equality indicators for 

gender differences in this group of students. 

Gender Differences in Achievement, Achievement Profiles, and Achievement Motivation 

Female and male students in the top 5% in mathematics were similar in their achievement in 

mathematics, reading, and science and in 23 out of 30 motivational characteristics. However, 

the present meta-analysis provided strong empirical evidence that there are important gender 

differences in top-performing math students’ achievement profiles, verbal motivation, and 

specific science interests as well as in the proportion of female students in the top 5% in 

mathematics. In the following, we will discuss the observed gender differences. 

Gender Differences in Achievement Profiles 

The present study is the first to systematically examine gender differences in achievement 

profiles in top-performing math students. We found that among students in the top 5% in 

mathematics, male students showed more distinct achievement profiles than female students 

did: Male students’ strongest skill was more often mathematics or science than reading, 

whereas female students’ achievement profiles were more evenly distributed across all 

achievement domains, especially in the math–reading and science–reading profiles. 

Importantly, female and male students’ math–reading and science–reading profiles did not 

overlap much. This large lack of overlap underscores the distinctiveness of male and female 

students’ achievement profiles in the group of top-performing math students. Similar gender 

differences have been found for math–verbal achievement profiles in the general population 

(Coyle et al., 2014, 2015; Dekhtyar et al., 2018). 
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Gender Differences in Verbal Motivation and Science Interests 

Regarding gender differences in students’ verbal motivation, we found that across (almost) all 

countries, mathematically top-performing female students reported higher reading enjoyment, 

interest, and verbal self-concept than male students. These gender gaps are similar to those 

found in the general population (Brunner et al., 2009; OECD, 2003, 2010; Wilgenbusch & 

Merell, 1999; see Figure 1 and Table S2). 

Moreover, regarding top-performing math students’ interest in specific science topics, 

female students reported greater interest in human biology, diseases, and plant biology, 

whereas male students were more interested in physics- and engineering-related topics, such 

as motion and forces, physics, and energy transformations. These results are consistent with 

gender differences in specific science domains found in the general population, such as in 

physics (d = 0.56), mechanics and electronics (d = 1.21), engineering (d = 0.83), and medical 

services (d = -0.40; Su & Rounds, 2015; Figure 2 and Table S2). Our results suggest that 

gender differences on the “things–people” dimension (i.e., that men prefer working with 

things or inorganic topics, and women prefer working with people or organic topics, d = 0.93, 

Su et al., 2009; see also Morris, 2016 and Su & Rounds, 2015) also apply for students 

performing at the highest levels of mathematics. Notably, this is the first time that gender 

differences in science motivation have been examined meta-analytically for the group of top-

performing math students. Furthermore, effect sizes were mostly homogenous across PISA 

cycles and countries. This suggests that gender differences in interest in specific science 

topics are a rather universal phenomenon.  

One possible explanation for female students’ tilt toward biological and health 

interests is provided by the goal congruity model (Diekman et al., 2011). According to this 

model, women tend to select and pursue communal goals (i.e., working with or helping 

others), a tendency that is rooted in broad cultural expectations (i.e., gender roles) that are 
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internalized due to the rewards and punishments associated with role congruity and 

incongruity (Diekman et al., 2011). For example, a recent meta-analysis by Eagly et al. (2020) 

that investigated nationally representative U.S. public opinion polls between 1946 and 2018 

showed that, on average, 85% of the respondents ascribed communal traits more to women 

than men and that this attribution has risen over time. Accordingly, when female students in 

the group of top-performing math students pursue their stronger interests in biological and 

health sciences, this might suggest that they perceive a better match between these areas and 

communal goals than they perceive for areas such as the physical sciences and engineering-

related sciences (Diekman et al., 2010). 

The Proportion of Female Students in the Group of Top-Performing Math Students 

The present study significantly expanded the evidence base on the proportion of female 

students in the group of top-performing math students by meta-analyzing this proportion with 

a more comprehensive set of data and a considerably larger number of countries compared 

with previous research (i.e., Guiso et al., 2008; Penner, 2008). We found that, on average, 

female students were underrepresented in the top 5% in mathematics: Two out of five 

students (female-to-male ratio of 1:1.50) in the group of top-performing math students were 

female. Thus, our results fall within the range of previous studies that reported female-to-male 

ratios between 1:1.09 and 1:2.13 (Hyde et al., 2008; Machin & Pekkarinen, 2008; Reilly et al., 

2015; Stoet & Geary, 2013). Importantly, the female-to-male ratio varied substantially across 

countries.  

The Role of Gender Equality for Gender Differences in Top-Performing Math Students  

Guided by social role theory and expectancy-value theory, the second goal of this meta-

analysis was to investigate the moderating role of gender equality indicators for gender 

differences in top-performing math students. Both theories predict that gender differences 

should be smaller in societies that endorse gender-typed roles to a smaller extent and thus 
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have greater gender equality. Furthermore, differences in students’ achievement scores 

between different (gender-typed) achievement domains should be smaller in countries that 

have greater gender equality. We were able to explain some of the heterogeneity in effect 

sizes with domain-specific gender equality indicators as moderators. Our results suggested 

that tertiary enrollment ratios predicted the proportion of female students in the top 5% in 

mathematics. That is, the proportion of female students was higher when the share of female 

students enrolled in tertiary education was higher. Relative to previous studies (Guiso et al., 

2008; Hyde & Metz, 2009; Penner, 2008) using composite gender equality indicators (e.g., 

the Global Gender Gap Index) that aggregate multiple domains of gender equality into one 

value, our results point to specific domains of gender equality that may be directly or 

indirectly responsible for the development of mathematical talent in female students. 

Furthermore, tertiary enrollment ratios and women’s share of research positions in a country 

predicted mathematically top-performing female and male students’ profile scores. For female 

students, math–reading and science–reading profile scores became less pronounced (i.e., the 

achievement scores in two domains differed less) when the share of female students enrolled 

in tertiary education was higher. For male students, this relation was found for their math–

reading profile scores. Moreover, female students’ scores in mathematics and science differed 

less when the proportion of women in research positions in a country was higher. 

However, gender gaps in achievement and achievement motivation in math, reading, 

and science in the group of top-performing math students were not related to domain-specific 

gender equality indicators. The most likely explanation for this is that the effect sizes did not 

vary much within or between countries as indicated by standard deviations of zero or close to 

zero within countries or at the country level. This restriction of range may have hampered the 

ability to detect moderating relations between gender equality indicators on the one hand and 
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gender differences in achievement and achievement motivation in top-performing students on 

the other.  

Overall, our results suggest that in societies that value higher education for women, 

more female students score in the top 5% in mathematics. In addition, achievement 

differences in different domains are smaller for female students (and partially also for male 

students), the more women study at universities and the more women hold research positions. 

Thus, the (realistic) perspective of attending a university and entering research positions for 

female students might (a) motivate female students to develop mathematical talent and (b) 

motivate female and male students to develop skills in several areas at a more similar level. 

Thus, our results (at least partially) support the predictions of expectancy-value theory (Eccles 

et al., 1983) and social role theory (Eagly, 1987). 

Practical Implications 

STEM professions are important to a country’s competitiveness and economic well-being 

(Halpern et al., 2007). Thus, successfully recruiting talented future professionals in this field 

is one major concern of modern societies. However, women are still underrepresented in 

STEM careers, especially in the fields of engineering, physics, and computer science. In 2013, 

women made up only 29% of the science and engineering workforce but accounted for half of 

the total college-educated workforce in the US (National Science Board, 2016). Hence, 

making fuller use of the female talent pool could play a vital role in addressing workforce 

shortages (e.g., Bureau of Labor Statistics, 2019). Furthermore, working in STEM fields also 

provides positive benefits for women and men: STEM fields usually offer better earning 

opportunities and better working conditions compared with non-STEM fields (National 

Science Board, 2016).  

In consideration of expectancy-value theory’s assumption that gender differences in 

students’ values and expectancies for success are vital factors for later gender differences in 
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their occupational choices (Eccles, 1994), gender differences in top-performing math students 

can have implications for women’s underrepresentation in STEM fields. Based on the 

findings from the present meta-analysis, we provide the following presumptions. 

The still existing preponderance of male students in the talent pool for STEM careers 

(i.e., in the right tail of the distribution of math achievement), also found in this meta-analysis, 

may partly explain women’s underrepresentation in STEM. Another potentially contributing 

factor might be male students’ more mathematics-oriented achievement profiles. Having one 

dominant academic strength is likely to promote higher self-concept in that domain and a 

clear goal to invest time, effort, and energy into pursuing mathematics-related fields in one’s 

future career. This lines up with our finding that male students reported on average slightly 

higher math self-concept, self-efficacy, and stronger intentions to choose additional math 

courses in school and beyond compared with female students. By contrast, having multiple 

academic strengths is likely to result in more ambiguous expectancies and self-concepts and, 

consequently, less specific career goals, which is more likely true for mathematically top-

performing female students as they had more balanced achievement profiles and stronger 

verbal motivation than male students (Valla & Ceci, 2014). In other words: “Those who can 

only do mathematics, do mathematics, but those with multiple extreme talents may choose to 

do something else” (Ceci et al., 2009, p. S3). Finally, even if mathematically top-performing 

female students enter STEM careers, given their specific interests in organic sciences, they 

would be more likely to work in medical fields or biological sciences than in inorganic 

sciences. By contrast, top-performing male students would be more likely to enter inorganic 

STEM fields, such as physics or engineering, given their respective science interests. 

Strengths, Limitations, and Future Research Directions 

The findings of the present meta-analysis represent especially strong scientific evidence 

because they are based on (a) individual student data (Stewart & Tierney, 2002) from (b) 
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representative, unselective samples of top-performing math students from well-defined 

populations, namely 15-year-olds in PISA (Hedges & Nowell, 1995; Reilly et al., 2019). 

Furthermore, we applied state-of-the-art methods in meta-analyses (i.e., accounting for the 

dependencies between effect sizes in random-effects models, multiple imputation of 

moderating variables, multivariate meta-regressions; Tipton et al., 2019). Despite these 

strengths, the present study has several limitations that should be addressed in future research. 

First, according to expectancy-value theory, educational and occupational choices are 

assumed to be influenced by intraindividual hierarchies of achievement and motivation in 

different domains (Eccles, 1994). Within each PISA cycle, achievement measures in several 

domains are available, whereas the assessment of achievement motivation was focused on a 

single domain. Consequently, we were able to analyze gender differences in top-performing 

math students’ achievement profiles but not in their motivational profiles. Gender differences 

in top-performing math students’ motivational profiles should be investigated in future 

studies. In addition, longitudinal research could investigate whether the interplay between 

cognitive and motivational profiles predicts top-performing math students’ career choices 

(i.e., STEM vs. non-STEM fields; specific STEM fields). 

Another limitation is that PISA employs a cross-sectional design across countries. By 

using these data, we could not explore the impact of the gender differences found in the 

present study for top-performing math students’ future educational and occupational STEM-

related choices. Rather, any predictions we made in the present study were based on 

theoretical assumptions (Eccles, 1994; Wood & Eagly, 2012) and empirical evidence 

provided by previous longitudinal research. 

Because PISA data are obtained from standardized testing, a further limitation is that 

we cannot completely rule out that our results are affected by stereotype threat effects. 

Stereotype threat theory predicts that members of a negatively stereotyped group will 
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underperform on standardized tests when (a) that stereotype is made salient or relevant for the 

task at hand, and (b) they are concerned about being judged or treated negatively on the basis 

of this stereotype (Spencer et al., 2016). To trigger stereotype threat, “simply sitting down to 

write a test in a negatively stereotyped domain is enough […].” (Spencer et al., 2016, p. 418). 

Because math and science are stereotypically male domains and reading is stereotypically a 

female domain, we could not preclude the possibility that stereotype threat impaired female 

students’ performance in math and science or male students’ performance in reading (e.g., 

Hartley & Sutton, 2013; Pansu et al., 2016; Picho et al., 2013). However, if these effects were 

present in the PISA assessments, they were probably very small because the typical threat 

scenarios were not activated (e.g., no verbal or written statement that male students are 

superior to female students on the test, no priming of female identity; e.g., OECD, 1999, 

2005a). Instead, PISA is designed in such a way that student achievement is assessed first and 

then students are asked to indicate their gender on a subsequent student questionnaire (OECD, 

2002, 2005b, 2009, 2012, 2013, 2017b). Moreover, it should be noted that recent research on 

stereotype threat in secondary education has shown divergent findings and that the literature 

seems to be distorted by publication bias (Flore et al., 2018; Flore & Wicherts, 2015; 

Shewach et al., 2019; Wei, 2012).  

Another limitation is that although the present meta-analysis covered a large number 

of countries representing about 90% of the world economy (Schleicher, 2007), data were not 

available for all countries around the world. Participation rates in PISA are especially low in 

low- and lower-middle-income countries, mainly because participation in PISA is associated 

with high costs and high demands on the assessment infrastructure of a country (Lockheed et 

al., 2015). Nevertheless, a more diverse sample of countries would be desirable to draw even 

more generalizable conclusions. For example, we show in Table S21 that female students 

have on average less access to formal schooling at the primary, secondary, and tertiary levels 
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of education in countries that did not participate in PISA than in countries that participated. 

Thus, it is likely that gender differences would be larger in a more diverse sample.  

Conclusions 

Capitalizing on representative individual student data for top-performing math 

students from 82 countries, the present meta-analysis makes four major contributions. First, 

we showed that, on average, two out of five adolescent students in the top 5% in mathematics 

are female. Second, we found that mathematically top-performing female and male students 

were similar with regard to their achievement in mathematics, reading, and science and in 

most characteristics that are related to achievement motivation in mathematics and science. 

Third, we provided strong empirical evidence that male students tended to have mathematics-

oriented achievement profiles, whereas female students’ achievement profile scores were 

more balanced. Additionally, female students had stronger motivation levels in reading than 

male students. Furthermore, we found important gender differences in top-performing math 

students’ specific science interests: Whereas male students were more interested in learning 

about physics- and engineering-related topics, female students expressed greater interest in 

health- and biology-related domains. Fourth, tertiary enrollment ratios and women’s share of 

research positions were related to the proportion of female students in the top 5% in 

mathematics and students’ achievement profiles. To conclude, the results of the present meta-

analysis demonstrate that there are important gender differences in top-performing math-

students’ achievement profiles and verbal and science motivation at the end of compulsory 

education.
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Table 1. Number of Participating Countries, Sample Sizes, and Mean 

Percentages of Female Students (%F) in the Full PISA Sample and in 
the Sample used in the Present Study (Top-Performing Math Students) 

per Cycle and in Total 

 Full PISA sample  Top 5% in mathematics 
PISA Countries N %F  Countries N %F 
2000 43 127,388 50  42 6,314 39 
2003 41 276,165 50  40 13,752 37 
2006 57 398,750 51  56 19,920 39 
2009 73 515,958 51  72 25,781 40 
2012 65 480,174 50  64 23,994 39 
2015 69 482,067 50  69 25,720 41 
Total 83 2,280,502 50  82 115,481 40 

Note. PISA = Programme for International Student Assessment. In 
PISA 2015, data from Argentina, Malaysia, and Kazakhstan were not 
included because either their population or construct were 
inadequately covered (OECD, 2017a). Spain additionally assessed its 
17 adjudicated regions in PISA 2015. These data were not included in 
the present study or in this table. Furthermore, the US additionally 
assessed a subsample of federal states (in PISA 2012 and 2015) and 
Puerto Rico (PISA 2015), which were not analyzed due to data 
policies designed to protect the confidentiality of individually 
identifiable information. 
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Table 2. Indicators of Gender Equality Used in the Present Study 

Indicator  Description Cycles 
Women’s 
share of 
higher 
positionsa,b 

Women’s share of employment in senior and 
middle management (%), i.e., in decision-
making and management roles in 
government, large enterprises and 
institutions 

ILO: 2006, 2009, 2012, 
2015 

UN: 2000, 2012, 2015 

Women’s 
share of 
research 
positionsc,d 

Percentage of research positions held by 
women 

OECD: 2000, 2003, 
2006, 2009, 2012, 2015 

UNESCO: 2000, 2003, 
2006, 2009, 2012, 2015 

Primary 
enrollment 
ratioc 

Ratio of the percentages of female (numerator) 
and male students (denominator) in the 
population of official school-age students 
enrolled in primary education 

2000, 2003, 2006, 
2009, 2012, 2015 

Secondary 
enrollment 
ratioc 

Ratio of the percentages of female (numerator) 
and male students (denominator) in the 
population of official school-age students 
enrolled in secondary education 

2000, 2003, 2006, 
2009, 2012, 2015 

Tertiary 
enrollment 
ratioc 

Ratio of the percentages of female (numerator) 
and male students (denominator) in the 
population of official school-age students 
enrolled in tertiary education 

2000, 2003, 2006, 
2009, 2012, 2015 

Note. For all indicators, higher values indicate greater gender equality; ILO = 
International Labour Organization; UN = United Nations; OECD = Organisation for 
Economic Co-operation and Development. 
aAvailable from https://hdr.undp.org/  
bAvailable from https://ilostat.ilo.org/data/  
cAvailable from https://data.uis.unesco.org  
dAvailable from https://stats.oecd.org  
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Table 3. Meta-Analytic Results on Gender Differences in Achievement and Achievement Motivation in Top-Performing Math Students (Top 
5%) 

Outcome ES Meanw 95% CI NCNT k Q Ttotal  TLevel2 TLevel3 I2total  I2Level2 I2Level3 MA 
Percentage of female students 
in the top 5% in mathematics 

% 40.10 [38.93, 41.27] 82 343 5402.80 *** 5.90  3.24 4.93 95  29 66 � 

Gender differences in achievement 
Math  d 0.05 [0.03, 0.06] 82 343 29.41  0.00  0.00 0.00 0  0 0  
Reading  d -0.23 [-0.25, -0.21] 82 342 610.64 *** 0.12  0.12 0.00 46 † 46 0 � 
Science  d 0.01 [-0.01, 0.02] 82 343 104.65  0.00  0.00 0.00 0  50 50 � 

Gender differences in math motivation 
Self-efficacy d 0.32 [0.28, 0.35] 65 104 159.18 *** 0.10  0.00 0.10 39 † 0 39 � 

Intention d 0.27 [0.23, 0.31] 64 64 96.11 ** 0.09  – – 35 † – – � 
Instrumental motivation d 0.16 [0.13, 0.19] 66 137 164.40 * 0.08  0.00 0.08 22  0 22 � 
Self-concept d 0.15 [0.12, 0.18] 66 137 175.72 * 0.08  0.00 0.08 28  0 28 � 
Interest d 0.10 [0.07, 0.13] 66 137 163.21  0.08  0.00 0.08 24  0 24  
Subjective norms d 0.01 [-0.03, 0.04] 64 64 89.00 * 0.08  – – 29  – – � 
Attribution of failure d -0.13 [-0.16, -0.09] 64 64 66.33  0.05  – – 17  – –  
Anxiety d -0.15 [-0.18, -0.12] 65 104 141.87 ** 0.09  0.03 0.08 34 † 4 31 � 

Work ethic d -0.16 [-0.20, -0.12] 64 64 80.00  0.08  – – 26  – –  
Gender differences in reading motivation 

Verbal self-concept d -0.38 [-0.46, -0.30] 33 33 35.49  0.09  – – 14  – –  
Interest d -0.50 [-0.57, -0.44] 33 33 29.93  0.02  – – 1  – –  
Enjoyment d -0.64 [-0.69, -0.60] 73 114 248.75 *** 0.15 † 0.00 0.15 58 † 0 58 � 

Gender differences in science motivation 
Self-concept d 0.19 [0.14, 0.23] 56 56 110.00 *** 0.11  – – 50 † – – � 
General value d 0.12 [0.08, 0.16] 56 56 75.13 * 0.08  – – 29  15 15 � 
Self-efficacy d 0.07 [0.04, 0.11] 72 124 232.95 *** 0.12 † 0.00 0.12 51 † 0 51 � 

Future-oriented motivation d 0.05 [0.00, 0.11] 56 56 111.08 *** 0.13 † – – 50 † – – � 
Enjoyment d 0.07 [0.03, 0.10] 72 124 193.50 *** 0.10  0.00 0.10 43 † 0 43 � 

(table continues) 
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Table 3 (Continued) 

Outcome ES Meanw 95% CI NCNT k Q Ttotal  TLevel2 TLevel3 I2total  I2Level2 I2Level3 MA 
Gender differences in science motivation 

Personal value d 0.05 [0.01, 0.08] 56 56 62.45  0.05  – – 14  – –  
Instrumental motivation d 0.00 [-0.02, 0.03] 72 124 155.36 * 0.07  0.04 0.06 26  7 20 � 

Gender differences in science interest 
Motion and forces d 0.54 [0.50, 0.58] 55 55 69.06  0.07  – – 22  – –  
Physics d 0.40 [0.35, 0.44] 56 56 88.81 ** 0.11  – – 37 † – – � 
Energy transformation d 0.39 [0.36, 0.43] 55 55 65.66  0.05  – – 15  – –  
History of the universe d 0.14 [0.10, 0.17] 55 55 47.36  0.00  – – 0  – –  
Chemistry d 0.06 [0.02, 0.10] 56 56 67.02  0.06  – – 17  – –  
Geology d 0.04 [0.01, 0.08] 56 56 32.44  0.00  – – 0  – –  
Astronomy d -0.04 [-0.08, -0.01] 56 56 40.81  0.00  – – 0  – –  
Biosphere d -0.11 [-0.15, -0.08] 55 55 38.03  0.00  – – 0  – –  
Plant biology d -0.30 [-0.34, -0.25] 56 56 55.45  0.06  – – 13  – –  
Disease d -0.30 [-0.34, -0.27] 55 55 54.19  0.01  – – 1  – –  
Human biology d -0.44 [-0.48, -0.40] 56 56 69.15  0.08  – – 26  – –  
Note. ES = Type of effect size (percentage or Cohen’s d); Meanw = Weighted mean effect size; 95% CI = 95% confidence interval;  NCNT  = 
Number of countries; k = number of effect sizes, Q = Total homogeneity statistic; TLevel2 = Within-countries standard deviation of effect 
sizes, TLevel3 = Between-countries standard deviation of effect sizes; I2Level2 = Percentage of the variability in effect sizes that is due to 
heterogeneity within countries rather than sampling error; I2Level3 = Percentage of the variability in effect sizes that is due to heterogeneity 
between countries rather than sampling error. A dash in the columns TLevel2/TLevel3 and I2Level2 /I2Level3 indicates that a two-level random 
effects model was used to analyze a single PISA cycle. MA = Was a moderator analysis conducted (based on heterogeneity measures)? � = 
Yes. 
* p < .05, ** p < .01, *** p < .001 
† Moderate heterogeneity (i.e., T ≥ 0.12 for standardized mean differences or I2 ≥ 30%) 
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Table 4. Meta-Regression Models for Explaining Heterogeneity in Gender Differences in the 
Group of Top-Performing Math Students (Top 5%) 

Outcome Moderator b 95% CI p NCNT k Q R2 R2
L2 R2

L3 
Percent female 
students in the 
top 5% in 
mathematics 

hp 0.117 [-0.302, 0.536] .584 82 343 5402.8 – 4 12 
wr -0.060 [-0.501, 0.380] .788       
per 0.034 [-0.084, 0.153] .570       
ser 0.011 [-0.068, 0.090] .789       
ter 0.041 [0.009, 0.073] .012       

           
Reading 
achievement 

hp 0.001 [-0.059, 0.062] .964 82 342 610.64 – 2 0 
wr -0.001 [-0.075, 0.072] .969       
per 0.000 [-0.011, 0.011] .997       
ser 0.000 [-0.007, 0.007] .953       
ter 0.000 [-0.004, 0.004] .989       

           
Science 
achievement 

hp 0.000 [-0.054, 0.053] .990 82 343 104.65 – 99 95 
wr 0.000 [-0.062, 0.062] 1       
per 0.000 [-0.009, 0.009] .985       
ser 0.000 [-0.006, 0.006] .907       
ter 0.000 [-0.003, 0.003] .981       

           
Math self-
efficacy 

hp -0.004 [-0.082, 0.073] .915 65 104 159.18 – 0 25 
wr 0.003 [-0.093, 0.099] .952       
per 0.001 [-0.014, 0.015] .930       
ser -0.001 [-0.010, 0.009] .910       
ter 0.000 [-0.005, 0.004] .921       

           
Math intention hp 0.000 [-0.087, 0.086] .992 64 64 96.11 34 – – 

wr 0.005 [-0.102, 0.112] .926       
per -0.002 [-0.024, 0.021] .872       
ser -0.002 [-0.013, 0.010] .792       
ter 0.000 [-0.005, 0.005] .995       

           
Instrumental  
math 
motivation 

hp -0.001 [-0.077, 0.075] .973 66 137 164.40 – 0 14 
wr 0.001 [-0.091, 0.093] .982       
per 0.001 [-0.014, 0.016] .867       
ser 0.001 [-0.008, 0.009] .898       
ter 0.000 [-0.005, 0.004] .866       

           
Math self-
concept 

hp -0.004 [-0.077, 0.069] .918 66 137 175.72 – 0 44 
wr 0.001 [-0.086, 0.089] .977       
per 0.002 [-0.013, 0.017] .821       
ser 0.001 [-0.008, 0.009] .908       
ter 0.000 [-0.005, 0.004] .897       

  (table continues) 
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Table 4 (Continued) 

Outcome Moderator b 95% CI p NCNT k Q R2 R2
L2 R2

L3 
Subjective 
math norms 

hp -0.003 [-0.085, 0.080] .952 64 64 89.00 – – 17 
wr 0.001 [-0.104, 0.107] .981       
per -0.006 [-0.028, 0.017] .630       
ser -0.001 [-0.012, 0.010] .878       
ter 0.000 [-0.005, 0.005] .966       

           
Math anxiety hp 0.003 [-0.074, 0.079] .944 65 104 141.87 – 99 26 

wr -0.004 [-0.098, 0.089] .925       
per -0.002 [-0.016, 0.012] .789       
ser -0.002 [-0.011, 0.007] .717       
ter 0.001 [-0.004, 0.006] .791       

           
Enjoyment of 
reading 

hp 0.001 [-0.080, 0.082] .981 73 114 248.75 – 0 43 
wr -0.007 [-0.105, 0.090] .880       
per 0.002 [-0.016, 0.019] .861       
ser 0.002 [-0.009, 0.013] .720       
ter -0.002 [-0.007, 0.003] .455       

           
Science self-
concept 

hp -0.008 [-0.105, 0.089] .873 56 56 110.00 – – 54 
wr 0.006 [-0.099, 0.112] .908       
per 0.001 [-0.022, 0.024] .919       
ser -0.002 [-0.013, 0.010] .758       
ter -0.001 [-0.007, 0.005] .711       

           
General value 
of science 

hp -0.004 [-0.105, 0.096] .936 56 56 75.13 – – 31 
wr 0.004 [-0.102, 0.110] .943       
per 0.000 [-0.021, 0.020] .983       
ser -0.003 [-0.015, 0.008] .578       
ter 0.000 [-0.006, 0.007] .908       

           
Science self-
efficacy 

hp -0.004 [-0.090, 0.082] .928 72 124 232.95 – 0 21 
wr 0.004 [-0.093, 0.100] .940       
per 0.001 [-0.013, 0.015] .896       
ser -0.001 [-0.010, 0.009] .881       
ter 0.001 [-0.005, 0.006] .834       

           
Future-oriented 
motivation 

hp -0.007 [-0.112, 0.097] .892 56 56 111.08 – – 46 
wr 0.004 [-0.111, 0.119] .946       
per 0.007 [-0.017, 0.031] .556       
ser -0.005 [-0,018, 0.008] .437       
ter 0.000 [-0.007, 0.007] .977       

  (table continues) 
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Table 4 (Continued) 

Outcome Moderator b 95% CI p NCNT k Q R2 R2
L2 R2

L3 
Enjoyment of 
science 

hp -0.007 [-0.084, 0.071] .869 72 124 193.50 – 0 50 
wr 0.002 [-0.085, 0.090] .959       
per 0.003 [-0.010, 0.017] .624       
ser -0.001 [-0.010, 0.008] .833       
ter 0.000 [-0.005, 0.004] .880       

           
Instrumental 
science 
motivation 

hp -0.005 [-0.078, 0.068] .896 72 124 155.36 – 70 90 
wr 0.003 [-0.081, 0.086] .952       
per 0.001 [-0.012, 0.015] .862       
ser -0.002 [-0.010, 0.007] .677       
ter 0.000 [-0.004, 0.004] .956       

           
Interest in 
physics 

hp -0.006 [-0.107, 0.094] .900 56 56 88.81 94 – – 
wr 0.011 [-0.100, 0.121] .851       
per 0.004 [-0.021, 0.030] .753       
ser -0.005 [-0.017, 0.008] .474       
ter 0.000 [-0.006, 0.007] .939       

Note. NCNT  = Number of countries; R2 = Variance explained in %;  R2
L2 = Variance explained 

within countries in %; R2
L3 = Variance explained between countries in %; hp = Women’s share 

of higher positions (i.e., legislators, senior officials, managers) in percent; rp = Women’s share 
of research positions in percent; per = Log-transformed ratio of female to male students 
enrolled in primary education; ser = Log-transformed ratio of female to male students enrolled 
in secondary education; ter = Log-transformed ratio of female to male students enrolled in 
tertiary education; Bold values indicate significant results (p < .05). 
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Table 5. Meta-Analytic Results on Achievement Profiles in the Group of Top-Performing Math Students (Top 5%) 
Domain ES 95% CI NCNT k Q Ttotal TLevel2 TLevel3 I2

total I2
Level2 I2

Level3 MA 
Mean differences in individual profile scores among male and female students 

Male students               
 Math-reading tilt 57.65 [52.09, 63.22] 82 342 7040.22 *** 28.29 15.74 23.51 96 † 30 66 � 
 Science-reading tilt 32.20 [29.05, 35.36] 82 342 4353.32 *** 19.31 15.68 11.26 93 † 61 32 � 
 Math-science tilt 24.55 [20.32, 28.78] 82 343 4853.94 *** 21.19 11.62 17.72 93 † 28 65 � 
Female students               
 Math-reading tilt 22.71 [16.61, 28.81] 82 342 5092.31 *** 30.24 15.35 26.06 95 † 24 70 � 
 Science-reading tilt 2.08 [-1.02, 5.18] 82 342 2783.15 *** 18.12 14.12 11.35 89 † 54 35 � 
 Math-science tilt 19.87 [15.10, 24.65] 82 343 4268.07 *** 22.91 10.27 20.48 92 † 18 73 � 

Nonoverlap between male and female students’ distributions of individual profile scores (in %) 
Math-reading profile 44 [42, 45] 82 342 654.69 *** 7.04 5.53 4.35 50 † 31 19 � 
Science-reading profile 42 [40, 44] 82 342 505.73 *** 6.41 2.49 5.91 43 † 6 36 � 
Math-science profile 18 [17, 19] 82 343 204.46  2.19 0.00 2.19 8  0 8  

Percentages of male and female students demonstrating a certain tilt in their individual profile scores (in %) 
Male students               
 Math–reading profile: math tiltM-R 87 [85, 89] 82 342 5722.47 *** 1.01 0.63 0.78 96 † 38 58 � 

 Science–reading profile: science tiltS-R 76 [74, 79] 82 342 5395.50 *** 0.78 0.58 0.52 95 † 53 43 � 

 Math–science profile: math tiltM-S 69 [66, 72] 82 343 5616.37 *** 0.75 0.48 0.58 96 † 38 58 � 

Female students               
 Math–reading profile: math tiltM-R 66 [62, 70] 82 342 4785.42 *** 0.96 0.54 0.80 96 † 30 66 � 

 Science–reading profile: science tiltS-R 52 [49, 55] 82 342 3631.24 *** 0.66 0.50 0.43 92 † 53 39 � 

 Math–science profile: math tiltM-S 65 [62, 68] 82 343 3987.47 *** 0.75 0.43 0.62 94 † 30 63 � 
Note. ES = Effect size; NCNT = Number of countries; Q = Total homogeneity statistic; TLevel2 = Within-countries SD of effect sizes; TLevel3 = 
Between-countries SD of effect sizes; I2

Level2 = Percentage of the variability in effect sizes that is due to heterogeneity within countries 
rather than sampling error; I2

Level3 = Percentage of the variability in effect sizes that is due to heterogeneity between countries rather than 
sampling error. MA = Was a moderator analysis conducted?;† Moderate heterogeneity (i.e., I2 ≥ 30%).  
*** p < .001 
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Table 6. Meta-Regression Models for Explaining Heterogeneity in Gender Differences in 

Achievement Profiles in the Group of Top-Performing Math Students (Top 5%) 

Outcome Moderator b 95% CI p NCNT k Q R2L2 R2L3 

Achievement profile scores 
Math–reading 
profile score 
female students 

hp -0.539 [-1.495, 0.417] .270 82 342 5092.31 7 22 
wr -0.623 [-1.714, 0.469] .263      
per -0.375 [-1.167, 0.417] .356      
ser -0.033 [-0.386, 0.320] .856      
ter -0.153 [-0.271, -0.034] .012      

          
Math–reading 
profile score 
male students 

hp -0.642 [-1.569, 0.286] .175 82 342 7040.22 7 18 
wr -0.435 [-1.478, 0.608] .414      
per -0.331 [-1.138, 0.475] .423      
ser -0.019 [-0.338, 0.299] .906      
ter -0.123 [-0.239, -0.006] .041      

          
Science–reading 
profile score 
female students 

hp -0.285 [-1.020, 0.451] .448 82 342 2783.15 3 12 
wr 0.278 [-0.605, 1.160] .538      
per -0.048 [-0.591, 0.495] .863      
ser -0.211 [-0.591, 0.169] .280      
ter -0.097 [-0.182, -0.012] .027      

          
Science–reading 
profile score 
male students 

hp -0.378 [-1.126, 0.370] .322 82 342 4353.32 3 16 
wr 0.407 [-0.472, 1.285] .364      
per 0.050 [-0.622, 0.723| .884      
ser -0.250 [-0.626, 0.125] .194      
ter -0.050 [-0.140, 0.041] .282      

          
Math–science 
profile score 
female students 

hp -0.208 [-1.092, 0.676] .645 82 343 4268.07 14 14 
wr -0.984 [-1.904, -0.064] .036      
per -0.200 [-0.712, 0.312] .446      
ser 0.136 [-0.359, 0.630] .592      
ter -0.013 [-0.121, 0.094] .806      

          
Math–science 
profile score 
male students 

hp -0.186 [-1.021, 0.648] .662 82 343 4853.94 10 20 
wr -0.828 [-1.740, 0.083] .075      
per -0.248 [-0.778, 0.281] .360      
ser 0.160 [-0.289, 0.609] .486      
ter -0.071 [-0.175, 0.034] .187      

(table continues) 
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Table 6 (Continued) 
Outcome Moderator b 95% CI p NCNT k Q R2L2 R2L3 

Nonoverlap between male and female students’ distributions of individual profile scores 
Nonoverlap 
math–reading 
profile 

hp 0.001 [-0.050, 0.053] .955 82 342 654.69 08 20 
wr -0.003 [-0.062, 0.056] .918      
per 0.000 [-0.009, 0.008] .918      
ser 0.000 [-0.006, 0.006] .910      
ter 0.000 [-0.003, 0.003] .923      

          
Nonoverlap 
science–reading 
profile 

hp 0.002 [-0.051, 0.055] .948 82 342 505.73 6 21 
wr -0.002 [-0.062, 0.057] .936      
per -0.001 [-0.009, 0.008] .905      
ser 0.000 [-0.006, 0.006] .965      
ter 0.000 [-0.004, 0.003] .791      

          
Nonoverlap 
math–science 
profile 

hp 0.001 [-0,052, 0,053] .976 82 343 204.46 0 98 
wr 0.000 [-0,055, 0,056] .986      
per 0.000 [-0,007, 0,008] .951      
ser 0.000 ]-0,005, 0,005] .983      
ter 0.000 [-0,003, 0,003] .973      

% of male and female students demonstrating a certain tilt in their individual profile scores 
Math–reading 
profile math tilt 
female students 

hp -0.015 [-0.190, 0.159] .862 82 342 4785.42 4 18 
wr -0.019 [-0.192, 0.155] .832      
per -0.009 [-0.043, 0.024] .583      
ser -0.002 [-0.022, 0.019] .861      
ter -0.004 [-0.015, 0.007] .440      

          
Math–reading 
profile math tilt 
male students 

hp -0.025 [-0.204, 0.153] .780 82 342 5722.47 3 15 
wr -0.004 [-0.188, 0.180] .968      
per -0.008 [-0.046, 0.030] .681      
ser -0.002 [-0.024, 0.020] .853      
ter -0.004 [-0.015, 0.008] .510      

          
Science–reading 
profile science 
tilt female 
students 

hp -0.011 [-0.147, 0.125] .879 82 342 3631.24 3 9 
wr 0.009 [-0.145, 0.163] .906      
per -0.002 [-0.029, 0.024] .856      
ser -0.008 [-0.028, 0.013] .446      
ter -0.002 [-0.012, 0.007] .598      

          
Science–reading 
profile science 
tilt male students 

hp -0.017 [-0.163, 0.128] .814 82 342 5395.50 5 17 
wr 0.024 [-0.139, 0.186] .775      
per 0.002 [-0.031, 0.034] .911      
ser -0.011 [-0.032, 0.010] .314      
ter 0.000 [-0.010, 0.009] .925      

(table continues) 
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Table 6 (Continued) 
Outcome Moderator b 95% CI p NCNT k Q R2L2 R2L3 

% of male and female students demonstrating a certain tilt in their individual profile scores 
Math–science 
profile math tilt 
female students 

hp -0.008 [-0.164, 0.148] .920 82 343 3987.47 11 10 
wr -0.030 [-0.187, 0.128] .713      
per -0.005 [-0.031, 0.022] .730      
ser 0.003 [-0.015, 0.022] .725      
ter -0.001 [-0.011, 0.009] .819      

          
Math–science 
profile score 
male students 

hp -0.186 [-1.021, 0.648] .662 82 343 4853.94 10 20 
wr -0.828 [-1.740, 0.083] .075           
per -0.248 [-0.778, 0.281] .360           
ser 0.160 [-0.289, 0.609] .486           
ter -0.071 [-0.175, 0.034] .187           

Note. NCNT = Number of countries; R2L2 = Variance explained within countries in %; R2L3 = 
Variance explained between countries in %; hp = Women’s share of higher positions (i.e., 
legislators, senior officials, managers) in percent; rp = Women’s share of research positions in 
percent; per = Log-transformed ratio of female to male students enrolled in primary education; 
ser = Log-transformed ratio of female to male students enrolled in secondary education; ter = 
Log-transformed ratio of female to male students enrolled in tertiary education; Bold values 
indicate significant results (p < .05). 
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Figure 1. Overview of Meta-Analyses and Large-Scale Assessments (LSA) on Gender 

Differences in Math, Reading, and Science Achievement and Math and Verbal Achievement 

Motivation  

  

Note. Negative values indicate an advantage of female students, positive values an advantage 
of male students. See Tables S1 and S2 for more details on all included studies and results on 
gender ratios. 
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Figure 2. Overview of Meta-Analyses and Large-Scale Assessments (LSA) on Gender 

Differences in Science Achievement Motivation  

 

Note. Negative values indicate an advantage of female students, positive values an advantage 
of male students. See Tables S1 and S2 for more details on all included studies. 
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Figure 3. PRISMA Flow Diagram  

 

Note. Superscripts indicate which inclusion criterion led to the exclusion of the respective 
international large-scale assessment. 
 

  

PRISMA Flow Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Note. Superscripts indicate which inclusion criterion led to the exclusion of the respective 

international large-scale assessment. 
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Figure 4. Distribution of the Average Percentages of Female Students Belonging to the Top 

5% in Mathematics Across 82 Countries (k =343) 

 

Note. Each dot represents one effect size. The vertical dashed line indicates gender parity.
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Figure 5. Distributions of Gender Differences (Cohen’s d) in Top-Performing Math Students 

 

Note. Panel A: Achievement. Panel B: Math motivation. Panel C: Verbal motivation. Panel D: Science motivation. Panel E: Science interests. 
Boxplots comprise the median value of d (solid line in box), the 25th percentile (line below box), and the 75th percentile (line above box) of the d 
distribution. Negative values indicate an advantage of female students, positive values an advantage of male students.
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Figure 6. Distributions of Gender Differences in Achievement Profiles 

 

Note. Panel A: Distributions of achievement profile scores by gender in top-performing math 

students. N = 115,481. The figure is based on individual student data and the respective first 

plausible value. Panel B: Percentages of nonoverlap between female and male students’ 

distributions of profile scores.
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3   Study II 

Nonlinear Relations Between Achievement and Academic Self-

Concepts in Elementary and Secondary School: An Integrative 

Data Analysis Across 13 Countries 

3 Study II: Nonlinear Relations 

 

Abstract 

It is well-documented that academic achievement is associated with students’ self-perceptions 

of their academic abilities, that is, their academic self-concepts. However, low-achieving 

students may apply self-protective strategies to maintain a favorable academic self-concept 

when evaluating their academic abilities. Consequently, the relation between achievement and 

academic self-concept might not be linear across the entire achievement continuum. 

Capitalizing on representative data from three large-scale assessments (i.e., TIMSS, PIRLS, 

PISA; N = 470,804), we conducted an integrative data analysis to address nonlinear trends in 

the relations between achievement and the corresponding self-concepts in mathematics and 

the verbal domain across 13 countries and two age groups (i.e., elementary and secondary 

school students). Polynomial and interrupted regression analyses showed nonlinear relations 

in secondary school students, demonstrating that the relations between achievement and the 

corresponding self-concepts were weaker for lower achieving students than for higher 

achieving students. Nonlinear effects were also present in younger students, but the pattern of 

results was rather heterogeneous. We discuss implications for theory as well as for the 

assessment and interpretation of self-concept. 

Keywords: academic achievement, academic self-concept, mathematics, reading, 

nonlinear relations
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Educational Impact and Implications Statement 

The present study significantly advances the understanding of how performance on a 

standardized achievement test in a certain academic domain is related to students’ 

corresponding academic self-concept. In representative student samples, we show that the 

relations between achievement and self-concepts in mathematics and the verbal domain can 

be better approximated by nonlinear relations, demonstrating weaker relations for lower 

achieving students than for higher achieving students in secondary school (and to some extent 

also in elementary school). Practitioners should be aware that there is no general linear trend 

between students’ achievement and their corresponding academic self-concepts and should 

take this into consideration when assessing and interpreting students’ academic self-concepts 

in counseling contexts.  
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Nonlinear Relations Between Achievement and Academic Self-Concepts in Elementary 

and Secondary School: An Integrative Data Analysis Across 13 Countries 

Students’ academic achievement is a major determinant of their academic self-concepts6 (e.g., 

Harter, 2012; Marsh, 1986; Marsh & Craven, 2006; Möller et al., 2009; Shavelson et al., 

1976; Trautwein & Möller, 2016). Typically, researchers implicitly assume linear relations 

between achievement and self-concepts (e.g., Huang, 2011; Marsh, 1986; Marsh & Hau, 

2004; Möller et al., 2009, 2014; Skaalvik & Rankin, 1992). Linear relations between 

achievement and self-concepts imply that some constant amount of increase in achievement 

(e.g., an increase of one standard deviation) is associated with a constant increase in the 

corresponding self-concept (e.g., an increase of .30 standard deviations) across the entire 

achievement continuum. However, negative performance feedback can constitute a major 

threat to the self, which in turn may motivate lower achieving students to engage in self-

protective strategies (Alicke & Sedikides, 2009). These self-protective strategies may weaken 

the potentially damaging effects of negative feedback on lower achieving students’ self-

concepts (Leary, 2007). Thus, it is likely that lower achieving students have more strongly 

inflated self-concepts than higher achieving students do. Consequently, linear models might 

not fully capture the relation between achievement and the corresponding self-concept for a 

large part of the student body. Rather, the relations between achievement and self-concepts 

may be better approximated by a nonlinear function that assumes weaker relations for lower 

achieving students and stronger positive relations for higher achieving students. Although 

nonlinear relations between achievement and self-concepts seem highly plausible, such 

relations have rarely been studied empirically. Therefore, the major aim of the present cross-

national integrative data analysis was to substantially expand the body of knowledge on the 

 
6Unless otherwise indicated, the term “achievement” will be used to indicate “academic achievement” and the 

term “self-concept” to indicate “academic self-concept” for the remainder of the article. 
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forms of the functional relations between achievement and self-concepts. As a major strength 

of this study, we tested the generalizability of our hypothesis across domains (i.e., 

mathematical and verbal), age groups (i.e., elementary and secondary school students), and 

countries. In addition, we replicated our results in different data sets. To this end, we drew on 

representative student samples from several cycles of international large-scale assessments: 

the Trends in International Mathematics and Science Study (TIMSS), the Progress in 

International Reading Literacy Study (PIRLS), and the Programme for International Student 

Assessment (PISA). In doing so, the present results allowed us to draw reliable conclusions 

concerning theory (e.g., for models of self-concept formation) and the assessment and 

interpretation of self-concepts. 

Integrative Data Analysis: A Tool for Enhancing the Robustness and Generalizability of 

Results 

Scientific research is currently facing critical concerns about the replicability of results in 

many areas of psychology, education, and other fields (e.g., Ioannidis, 2005; Open Science 

Collaboration, 2015). Because any single study’s results are influenced by that study’s design, 

sample, measurement, and quantification of key constructs, we conducted a coordinated 

analysis to examine consistency in the findings across multiple data sets (Hofer & Piccinin, 

2009). In a coordinated analysis––a form of integrative data analysis––several data sets that 

differ in samples and measures but assess similar constructs are first analyzed by applying an 

identical analysis protocol. Then, effect sizes are summarized across data sets using meta-

analytic techniques to answer a specific research question (see also Graham et al., 2017). 

Similar to other tools that are used to synthesize research (e.g., meta-analysis or systematic 

literature reviews), coordinated analysis meets the need for a cumulative approach to 

scientific inquiry (Curran, 2009; Hunter & Schmidt, 1996; Meehl, 1978). Finally, the 

particular advantage of a coordinated analysis is that it can be used to obtain multiple 
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replications from independent data sets to thereby strengthen the confidence, robustness, and 

generalizability of findings.  

Specifically, for the current investigation, we identified eight cycles from three 

international large-scale assessments that assessed both student achievement and students’ 

self-concepts in mathematics and the verbal domain (i.e., TIMSS, PIRLS, and PISA) to 

examine the generalizability of nonlinear relations between achievement and the 

corresponding self-concepts across countries and time. In doing so, we took advantage of 

having access to individual participant data from representative probability samples of 

students. This allowed us to examine relations between achievement and self-concepts across 

the entire range of students’ achievement and self-concepts because the data were not affected 

by range restrictions or selection bias. The present study involves the first integrative data 

analysis to use representative student data in the areas of student achievement and 

achievement motivation. 

From Tools to Theories: Linear and Nonlinear Relations between Achievement and Self-

Concepts 

Theories are the starting point of scientific discoveries. Theory informs and guides scientific 

practices, such as the choice of methods that are applied to investigate a research question. 

However, theory is also shaped by scientific methods (tools-to-theories heuristic; Gigerenzer, 

1991). This is exemplified in an allegory from Eddington (1939; see Cacioppo & Bernston, 

1994) in which a hypothetical scientist attempted to determine the size of fish in the sea by 

sampling catches from a 2-inch net. After extensive fishing, the scientist did not find any fish 

smaller than 2 inches and therefore concluded that there were no fish smaller than 2 inches in 

the sea. 

How is this allegory aligned with research on the relation between achievement and 

self-concept? Conducting a literature search in the data bases PsycINFO and ERIC for the 
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term “academic achievement” in combination with “academic self concept” resulted in a total 

of 1,229 peer-reviewed academic articles in PsycINFO and 1,005 peer-reviewed academic 

articles in ERIC published between 2009 and 2019, thus illustrating the large amount of 

research interest in this topic. Typically, researchers implicitly assume linear relations 

between achievement and self-concepts across the entire achievement continuum (e.g., 

Huang, 2011; Marsh, 1986; Marsh & Hau, 2004; Möller et al., 2009, 2014; Skaalvik & 

Rankin, 1992). In other words, most researchers have applied the “linear net” to study the 

relations between achievement and self-concepts. For example, a review of all studies (N = 

667) that were included in the two most recent meta-analyses on the relations between 

achievement and self-concept by Huang (2011) and Möller et al. (2009) revealed that all of 

these studies analyzed only linear relations between achievement and self-concept. Findings 

from the vast majority of these studies indicated positive relations between domain-specific 

achievement tests and corresponding self-concepts. The meta-analysis by Möller et al. (2009) 

reported a mean path coefficient for the relations between achievement on mathematics tests 

and mathematics self-concept of r = .57, and for the relations between achievement on verbal 

tests and verbal self-concept of r = .47. In the meta-analysis by Huang (2011), the 

longitudinal correlation between prior achievement (as measured with standardized tests) and 

subsequent self-concepts ranged from r = .19 to .23. 

Only a few published studies have used the “nonlinear net” when examining the 

relation between achievement and self-concept. These studies can be grouped by the analytic 

strategy they applied. The first group of studies examined mean-level differences in self-

concepts in relation to achievement differences by splitting the achievement continuum into 

discrete groups (i.e., low-, average-, and high-achieving students) using planned contrasts, 

 
7The coding scheme and the results of the review can be accessed via the Open Science Framework (Soderberg, 

2018) at https://osf.io/9cgzm/. Of note, one dissertation included in the meta-analysis by Huang (2011) could not 

be found and was therefore not included in our review. 
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ANOVAs, or multigroup comparisons in structural equation models (Möller & Pohlmann, 

2010; Prast et al., 2018; Schurtz et al., 2014; Van der Beek et al., 2017). The second group of 

studies investigated the relation between achievement and self-concept by using polynomial 

regression analyses (Marsh, 2004; Marsh & Rowe, 1996). 

A series of studies by Möller and Pohlmann (2010) and Schurtz et al. (2014) examined 

the relation between achievement and self-concept in the verbal domain (Möller & Pohlmann, 

2010; Schurtz et al., 2014) and in mathematics (Schurtz et al., 2014) by comparing groups of 

low-, average-, and high-achieving students. Their results provided initial evidence that the 

strength of the relation between achievement and self-concept varies with students’ level of 

achievement with stronger relations for higher achieving students and lower relations for 

lower achieving students in German (native language education; Möller & Pohlmann, 2010; 

Schurtz et al., 2014). However, the findings were heterogeneous for English as a foreign 

language and for mathematics (Schurtz et al., 2014). 

It is important to note that estimates of the strength of a relation between two variables 

are biased when a continuous variable, such as student achievement, is split into discrete 

groups (MacCallum et al., 2002; Preacher et al., 2005). This limitation was overcome in the 

second group of studies that (a) tackled the achievement continuum as a whole and (b) 

integrated polynomial components into their analyses of the relation between the two 

constructs (Marsh, 2004; Marsh & Rowe, 1996). In a study that drew on a representative U.S. 

sample of male students in Grade 10, Marsh and Rowe (1996) found a positive quadratic 

relation (" = 0.274) between students’ ability (as measured with an ability test) and their 

general academic self-concept. This indicated that increments in achievement were more 

strongly related to the self-concept of students with higher ability than to the self-concept of 

students with lower ability (Marsh & Rowe, 1996). In a representative Australian sample of 

15-year-old students, Marsh (2004) found a positive quadratic relation (" = 0.061) between 
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general academic achievement (as measured with an achievement test) and general academic 

self-concept. This finding again implied that the relation between achievement and self-

concept was stronger for higher achieving students and weaker for lower achieving students 

(Marsh, 2004). In the following section, we will present a possible mechanism that may 

underlie nonlinear relations between achievement and the corresponding self-concepts.  

Self-Protection 

One major reason for why the relations between achievement and self-concepts might vary as 

a function of individual student achievement is that being asked to evaluate one’s own 

abilities in self-concept questionnaires may trigger self-protective strategies. When students 

are asked to evaluate their abilities with items such as “I learn quickly in mathematics” or 

“Reading is easy for me,” they infer their abilities from achievement indicators, such as 

grades, tests, or other achievement-related feedback (Duckworth & Yeager, 2015; Marsh & 

Craven, 2006; Möller et al., 2009, 2014), and from social comparisons with their peers 

(Festinger, 1954; Huguet et al., 2009; Suls et al., 2002; Wheeler & Suls, 2005). Intuitively, 

one can expect that students with lower achievement in a specific domain should have lower 

evaluations of their abilities in this domain. However, a negative self-evaluation constitutes a 

major threat to the self. To protect their self-worth, low-achieving students are likely to 

engage in self-protective strategies that lead to more positive self-evaluations (Alicke & 

Sedikides, 2009). Self-protection originates from the assumption that people want to feel good 

or want to avoid feeling bad about themselves (Alicke & Sedikides, 2011). Self-protective 

strategies are aimed at avoiding, minimizing, and compensating for negative self-views 

(Hepper et al., 2010). For example, by changing the comparison group (i.e., comparing 

oneself with groups that have worse performances in the relevant dimensions; Tajfel & 

Turner, 1979), having poorer recall of self-threatening feedback than non-self-threatening 

feedback (Green & Sedikides, 2004), or downplaying the importance of a negative event 



STUDY II: NONLINEAR RELATIONS 

 

 135 

(Alicke & Sedikides, 2009), students can weaken the negative effect of their low achievement 

on their corresponding self-concept. 

Empirical research has supported these theoretical propositions: In a study by Hacker, 

Bol, Horgan, and Rakow (2000), university students repeatedly took exams in a course and 

rated how well they thought they would perform before and after each test. Better performing 

students were able to increase the accuracy of their predictions as the semester proceeded, 

whereas poorly performing students showed no increase in their predictions despite the 

feedback the students received on their exam results (Hacker et al., 2000). Another study 

compared university students’ self-reported grades from the previous semester with their 

actual grades and found that students with poorer grades overestimated their grades more than 

students with better grades did (Gramzow et al., 2003).  

Furthermore, there is evidence that from the ages of 8 to 10, children already use self-

protective strategies and that the need to use these strategies increases with students’ 

(cognitive) development and life experience: In middle to late childhood, children develop 

many cognitive skills that enable them to integrate positive and negative information into 

their self-views (Harter, 2012). At about this age, most children have gathered experience 

with comparative grading practices and consequently with absolute failure or comparative 

performance feedback (Stipek & Daniels, 1988). However, achievement-related feedback 

becomes stricter and more varied in adolescence (Eccles et al., 1984). In addition, children’s 

ability to draw social comparisons improves in middle to late childhood (Frey & Ruble, 1990; 

Harter, 2012; Ruble & Frey, 1990). Moreover, research has suggested that students at higher 

levels of cognitive maturation should show greater variability in their use of self-protective 

strategies (e.g., Alicke & Sedikides, 2011; Harter, 2012). In contrast to children, adolescents 

possess the cognitive skills that enable them to engage in attributional biases, such as 

attributing their successes to internal, stable characteristics (e.g., intelligence) and their 
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failures to external factors (e.g., the difficulty of a test; Harter, 2012). Furthermore, 

adolescents are able to protect their positive self-views by viewing their positive attributes as 

central and important and their negative characteristics as unimportant to their selves (Harter, 

2012). 

The Present Study 

The overarching goal of the present study was to examine whether relations between 

achievement and corresponding self-concepts are nonlinear and to what extent the 

nonlinearity is generalizable across different domains, age groups, and countries. On the basis 

of theoretical considerations regarding strategies that support a positive self-view (e.g., Alicke 

& Sedikides, 2009), we expected that the relations between achievement and the 

corresponding self-concepts would be weaker for lower achieving students and stronger and 

positive for higher achieving students in the mathematical and verbal domains.  

There are a few studies that have empirically supported this prediction to some extent 

(Marsh, 2004; Marsh & Rowe, 1996; Möller & Pohlmann, 2010; Schurtz et al., 2014). 

However, these studies have embodied several limitations. First, some of the studies used an 

analytical approach that can result in biased estimates (i.e., splitting the achievement 

continuum into discrete groups; Möller & Pohlmann, 2010; Schurtz et al., 2014). We 

capitalized on two analytical approaches that did not entail this limitation (i.e., quadratic and 

interrupted regressions). Second, other previous studies examined only general academic 

achievement and general academic self-concept (Marsh, 2004; Marsh & Rowe, 1996). 

However, self-concepts are highly domain-specific (e.g., Gogol et al., 2017). Therefore, we 

examined relations between achievement and self-concepts in mathematics and the verbal 

domain. Third, previous research has only investigated the relation between achievement and 

self-concept in secondary school students (Marsh, 2004; Marsh & Rowe, 1996). Yet, self-

evaluations and the use of self-protective strategies are subject to age-related changes (e.g., 
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Eccles et al.,1984; Guay et al., 2003; Harter, 2012; Marsh, 1989, 1990a; Wigfield & Eccles, 

2002). Consequently, we examined the functional forms of the relations between achievement 

and self-concepts in different age groups (i.e., elementary and secondary school students). 

Fourth, a lesson learned from cross-cultural research is that “universality can never be 

assumed in advance” (Segall & Lonner, 1988, p. 1103; see also Henrich et al., 2010). It is not 

clear to what extent the findings from Australia (Marsh & Rowe, 1996) or the United States 

(Marsh, 2004) can be transferred to other countries. Thus, in the present study, we set out to 

examine the relations between achievement and self-concepts across 13 different countries. 

Fifth, given the current concerns about replicability (e.g., Ioannidis, 2005), we conducted an 

integrative data analysis (Curran & Hussong, 2009; Hofer & Piccinin, 2009) in which we 

applied the same analysis protocol to representative high-quality individual student data from 

three major large-scale assessments. This approach offered the advantage that we did not rely 

on findings based on a single study but rather integrated results across studies (Open Science 

Collaboration, 2015). To sum up, the results of the present study will significantly expand the 

body of knowledge on the functional forms of the relations between achievement and self-

concepts in (a) different domains (i.e., mathematical and verbal), (b) age groups (i.e., 

elementary and secondary school students), and (c) countries.  

Method 

Samples 

We used individual student data from three international large-scale assessments. The TIMSS, 

PIRLS, and PISA studies are designed and conducted to compare education systems 

worldwide and to provide policy makers, educators, researchers, and practitioners with 

reliable information about trends in mathematics, science, and/or reading achievement and 

learning contexts over time (Mullis, Martin, Kennedy, et al., 2009; Mullis, Martin, Ruddock, 

et al., 2009; Organisation for Economic Co-Operation and Development [OECD], 2013). In 
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TIMSS, students’ skills and knowledge in mathematics and science are assessed every 4th 

year in Grades 4 and 8 (Mullis, Martin, Ruddock, et al., 2009). The PIRLS studies assess 

students’ reading skills in Grade 4 every 5th year (Mullis, Martin, Kennedy, et al., 2009), and 

PISA assesses students’ skills and knowledge in the core domains mathematics, reading, and 

science at the age of 15 every 3rd year (OECD, 2013). In every TIMSS, PIRLS, and PISA 

cycle, the school staff, students, and parents were informed about the nature of the test and the 

test date, and parental permission was secured if requested by the school or education system 

(Martin & Mullis, 2012; OECD, 2002). 

Besides assessing students’ skills and knowledge, several TIMSS, PIRLS, and PISA 

cycles measured students’ domain-specific self-concepts. In stark contrast to other cycles 

from these large-scale assessments, the data on achievement and self-concepts in both the 

mathematical and verbal domains were collected from the same students in TIMSS/PIRLS 

2011 (fourth-graders) and in PISA 2000 (15-year-olds). In other words, each student provided 

both mathematical and verbal data. Using the same samples of students when analyzing the 

domain-specificity of the relation between achievement and the corresponding self-concept 

measure ensured that the respective relations could only be influenced by the domain 

(mathematical or verbal) because other potentially confounding, person-related factors (e.g., 

socioeconomic background, cognitive ability, cohort membership) were controlled for. Given 

this strength of the data, we selected the countries that participated in the TIMSS/PIRLS 2011 

cycle and the PISA 2000 cycle for our analyses (see Table 1). On the basis of this selection 

criterion, Romania would also have been included in the present analyses. However, 

preliminary analyses indicated severe problems with the PISA 2000 data such that there was a 

highly implausible relation between mathematics achievement and mathematics self-concept 

in Romania of r = .00. We therefore excluded the data from Romania from the present 

analyses.  
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To replicate our results, we additionally included the following assessment cycles in 

which both achievement and self-concept were measured in either mathematics or the verbal 

domain. We added cycle 2015 for TIMSS, cycle 2016 for PIRLS, and cycles 2003 and 2012 

for PISA (covering the mathematics domain) to our analyses. In PISA 2000, a mathematics 

achievement score was provided for (a random subsample of) 56% of the students in the 

public use file. This resulted in a smaller number of students compared with the other PISA 

cycles where a mathematics achievement score was provided for all students. Only eight (out 

of 13) countries participated in the TIMSS assessment for Grade 8 in 2011 and 2015 (see 

Table 1). Austria did not participate in the TIMSS 2015 Grade 4 assessment. Because PISA 

assessed students’ self-concept in the verbal domain in the year 2000 cycle only, it was not 

possible to replicate these results. Finally, some information on students’ gender was missing. 

In sum, 328 students were excluded from the analyses because information on their gender 

was missing (most of these cases came from PISA 2000 from which 239 students were 

excluded).  

TIMSS, PIRLS, and PISA capitalize on a two-stage stratified sampling design to 

achieve representative probability samples (a detailed description of the sampling procedures 

can be found in the supplemental online materials [SOM], which can be accessed via the 

Open Science Framework (Soderberg, 2018) at https://osf.io/9cgzm/). All in all, our analyses 

were based on representative student samples comprising data from a total of 470,804 

students in 23,307 classes or schools in which 50% of the students were female, and the mean 

age ranged from 10.30 years (TIMSS/PIRLS 2011, Grade 4) to 15.78 years (PISA 2003; see 

Table 1). Sample sizes, percentages of female students, and numbers of participating schools 

and classes for each assessment cycle and each country can be found in Tables S1 and S2 in 

the SOM. Students’ mean age in every assessment cycle is shown in Tables S3 to S10 in the 

SOM. 
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Measures 

Achievement. Student achievement in mathematics and reading was measured with 

the standardized tests used in the respective TIMSS, PIRLS, and PISA assessments. In Grade 

4, the TIMSS mathematics assessment contained the content domains number, geometric 

shapes and measure, and data display; in Grade 8, the assessment covered the domains 

number, algebra, geometry, and data and chance (Mullis, Martin, Ruddock, et al., 2009; 

Mullis & Martin, 2013). The PIRLS assessment framework focused on the two overarching 

purposes for reading in Grade 4: literary experience, and acquiring and using information 

(Mullis & Martin, 2015; Mullis, Martin, Kennedy, et al., 2009). In PISA cycles 2003 and 

2012, mathematical content knowledge was assessed in four categories: change and 

relationships, space and shape, quantity, and uncertainty and data (OECD, 2003, 2013). In 

PISA 2000, the assessment covered just two categories: space and shape, and change and 

relationships. Reading literacy was assessed in three different categories in PISA: the abilities 

to access and retrieve information, integrate information and interpret texts, and reflect upon 

and evaluate texts (OECD, 2000). 

The achievement assessments in TIMSS, PIRLS, and PISA were designed to pursue 

different goals: Whereas the TIMSS and PIRLS assessments are classroom- and curriculum-

based, PISA focuses on literacy concepts, that is, students’ abilities to apply their skills and 

knowledge in mathematics and reading to everyday life problems. Thus, at least for 

mathematics, for which secondary school students are tested in both PISA and TIMSS (Grade 

8), PISA is considered a more challenging assessment (e.g., Else-Quest et al., 2010). 

In all TIMSS, PIRLS, and PISA assessments, the achievement scores for mathematics 

and reading were scaled to have an international mean of 500 points and a standard deviation 

of 100 points (Martin et al., 2016, 2017; OECD, 2014). All achievement scales underwent 

extensive field testing before being implemented in the respective assessments (Martin et al., 
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2016, 2017; OECD, 2014). Means and standard deviations for the achievement measures 

from all countries and assessments are reported in Tables S3 to S10 in the SOM. Table 2 

shows the median reliability of mathematics and reading achievement and self-concept scales 

in each assessment. The reliabilities were satisfactory in all assessment cycles in all 

participating countries. The reliabilities of the achievement and self-concept scales in each 

country can be found in Tables S11 to S14 in the SOM. 

To estimate students’ achievement scores, TIMSS, PIRLS, and PISA used plausible 

values. Plausible values are representations of the range of abilities a student may reasonably 

have. Hence, TIMSS, PIRLS, and PISA estimated probability distributions for each student’s 

true achievement score. Applying plausible values offers the methodological advantage of 

unbiased estimates of population parameters (e.g., means and standard deviations). Overall, 

TIMSS, PIRLS, and PISA provided five plausible values for each achievement scale.  

Academic self-concept. To assess students’ self-concepts in mathematics (TIMSS, 

PISA) and reading (PIRLS) or the verbal domain (PISA), students used 4-point rating scales 

to provide answers in all assessments with higher scores indicating a higher self-concept in 

the respective domain. The mathematics and verbal self-concept items used in the TIMSS, 

PIRLS, and PISA assessments rely on established items whose wordings were identical or 

similar to well-established and researched questionnaires such as the Self-Description 

Questionnaire (SDQ; e.g., Marsh, 1990b; Byrne, 1996, 2002; Marsh et al., 2006): e.g., “I 

learn quickly in [domain]” (used in the SDQ II), “I get good marks in [domain],” “I learn 

[domain] quickly” (used in PISA 2000, 2003, 2012), or “I usually do well in [domain]” (used 

in PIRLS 2011, 2016; TIMSS 2011, 2015). All self-concept scales underwent extensive field 

testing before being implemented in the respective assessments (Martin et al., 2016, 2017; 

OECD, 2014). To create scale scores, the ratings for the single self-concept items were 

averaged. The reliabilities for all the TIMSS, PIRLS, and PISA self-concept scales were 
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consistently satisfactory in all cycles and across all participating countries (see Tables S11 to 

S14). Means, standard deviations (Tables S3 to S10), item wording, and response scales 

(Tables S15 to S18) can be found in the SOM.  

Data Analysis 

As to be expected in any (large-scale) study, there were some missing data. Specifically, 4% 

to 8% of the self-concept data were missing in each sample, with one exception of 37% 

missing from PISA 2012 because students’ responses were missing by design in this cycle 

(OECD, 2014). The country-specific percentage of missing information in each assessment 

and cycle can be found in Tables S3 to S10 in the SOM. Missing data in students’ self-

concepts were handled by applying nested multiple imputation (e.g., Weirich et al., 2014) 

using the R package “miceadds” (version 2.14-26; Robitzsch et al., 2018). For each plausible 

value representing students’ achievement, we imputed the missing self-concept data five 

times, yielding 25 nested imputations for every data set. We imputed the missing data in 

students’ self-concepts separately for female and male students because research has shown 

that female students typically report higher self-concepts in the verbal domain but lower self-

concepts in mathematics in comparison with their male counterparts (e.g., Jacobs et al., 2002; 

Marsh & Yeung, 1998; Skaalvik, & Skaalvik, 2004). All analyses on the relation between 

achievement and self-concept in this study were computed 25 times, and then the results were 

integrated using standard procedures to obtain an average estimate as well as corresponding 

standard errors (Martin et al., 2016, 2017; OECD, 2014).  

We conducted an integrative data analysis (see Curran & Hussong, 2009; Hofer & 

Piccinin, 2009) where we applied the same analysis protocol to investigate the functional 

forms of the relations between achievement and self-concept in mathematics and the verbal 

domain. Specifically, we proceeded in two ways. First, we ran domain-specific regression 

models for every country in every assessment and every cycle with achievement in 
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mathematics or reading as the predictor variable and mathematics or reading/verbal self-

concept as the outcome variable. The linear model specified a linear relation between 

achievement and self-concept; the quadratic model specified a nonlinear relation and included 

a linear term and a quadratic term. To analyze the regression models, we used the statistical 

software R (version 3.5.1; R Core Team, 2018) and the R package “BIFIEsurvey” (version 

2.18-6; BIFIE, 2018). Before computing the regression models, we standardized (M = 0.00, 

SD = 1.00) students’ achievement and self-concept scores around each country mean in every 

TIMSS, PIRLS, and PISA cycle, respectively. In doing so, we (a) facilitated the comparison 

of regression parameters between achievement and self-concept scales across assessments and 

(b) removed nonessential multicollinearity, that is, the multicollinearity between a variable 

and the higher order function of the same variable (here: achievement) that exists merely 

because of the scaling (nonzero mean) of the variable (Cohen et al., 2003). To evaluate the 

significance of the linear and quadratic regression coefficients, we computed 95% confidence 

intervals (CIs). If the 95% CI did not contain 0, the changes in achievement were interpreted 

as significantly related to changes in the corresponding self-concept (Cohen et al., 2003). The 

regression coefficients for single countries and cycles can be found in Tables S19 to S23 in 

the SOM. 

Second, we ran interrupted regressions using the two-lines test (Simonsohn, 2018) 

with the R packages “mgcv” (version 1.8-24; Wood, 2017) and “survey” (version 3.34; 

Lumley, 2004) for every assessment and cycle. We used the interrupted regressions to explore 

other possible nonlinear trends apart from quadratic effects between students’ domain-specific 

achievement and the corresponding self-concept. In the two-lines test, an interrupted 

regression for low and high achievement scores is estimated by dividing the achievement 

continuum into two segments (Figure 1a). The breakpoint between segments is determined by 

the so-called Robin Hood algorithm, which maximizes the precision with which the 
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regression parameters β1 and β2 are estimated. β1 and β2 describe the linear relation between 

achievement and self-concept within each segment, respectively. To this end, the algorithm 

allocates the observations between the two segments such that the standard errors of the 

regression parameters β1 and β2 are minimized without changing the values of β1 and β2 too 

much (Simonsohn, 2018). If β1 and β2 are equal, this would argue for a linear relation between 

achievement and the corresponding self-concept. Consequently, if β1 and β2 are not equal 

(e.g., β1 is notably smaller than β2), this would argue for a nonlinear relation between the two 

constructs. The breakpoint is particularly important for the latter case. Because the 

distribution of students’ achievement can be well-approximated by a (standard) normal 

distribution within each country (Figure 1a), we can estimate the proportion of students for 

which a single linear regression coefficient does not fully capture the relation between 

achievement and the corresponding self-concept. To provide a conservative estimate, we 

computed the proportion such that it represented the students whose achievement scores were 

located in the segment with fewer observations below or above the breakpoint, respectively. 

To this end, we computed the proportion of students under a standard normal distribution who 

had achievement scores below the breakpoint if the breakpoint was less than or equal to 0. For 

example, a breakpoint of z = -1.04 (as depicted in Figure 1a) suggests that for about 15% of 

the students, the relation between achievement and self-concept was not accurately 

represented by a single linear regression coefficient. If the breakpoint was greater than 0, we 

computed the proportion of students under a standard normal distribution who had 

achievement scores above the breakpoint.  

For both analytic strategies, we used meta-analytic techniques to integrate the results 

across 13 countries and several cycles for each domain and student group (i.e., Grade 4, 

Grade 8, 15-year-olds), respectively. In accordance with the analysis strategy proposed by 

Cheung and Jak (2016) for big data, we proceeded in two steps. First, we analyzed the 
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individual student data according to the detailed TIMSS, PIRLS, and PISA guidelines for 

statistical analyses on how to apply population weights, compute standard errors, and 

compute regression coefficients with plausible values as achievement indicators (Martin & 

Mullis, 2012; OECD, 2014). Second, to obtain a single estimator within each student group 

(Grade 4, Grade 8, 15-year-olds), we computed weighted mean regression coefficients across 

countries (see Tables S19 to S23 and S29 to S33 in the SOM). To this end, we used three-

level random-effects models with maximum likelihood estimation to account for the 

dependencies between regression coefficients when the regression coefficients were obtained 

for several cycles within countries (i.e., in TIMSS, PIRLS, PISA mathematics). Because 

verbal self-concepts were only measured in one PISA cycle (PISA 2000), there was no 

dependency in regression coefficients within countries. Thus, we conducted a two-level 

random-effects model with maximum likelihood estimation in this case. We applied random-

effects models to allow the true effect to vary between (and within) countries (Borenstein et 

al., 2009; Cheung, 2015). For the three-level random-effects models, estimates of the 

variability in the regression coefficients defined Level 1. Level 2 captured variability in 

regression coefficients between assessment cycles within countries, and Level 3 captured 

variability in regression coefficients between countries. For the two-level random-effects 

model, Level 1 captured the estimates of the variability in the regression coefficients, and 

Level 2 captured the variability in regression coefficients between countries. We used the R 

package “metaSEM” (version 1.2.2; Cheung, 2015) to analyze the two- and three-level 

random-effects models.  

We computed three statistics to assess the heterogeneity of the effect sizes: I2, #, and Q 

(Borenstein et al., 2009). Higgins and Thompson’s (2002) measure of heterogeneity I2 

represents the proportion of observed heterogeneity that is real and not due to random noise. 

I2 has a range of 0% to 100%, such that 30% to 60% may represent moderate heterogeneity, 
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50% to 90% may represent substantial heterogeneity, and 75% to 100% may represent 

considerable heterogeneity (Higgins & Green, 2011; Higgins & Thompson, 2002). In our 

study, I2
Level2 captured the heterogeneity between cycles within countries, I2

Level3 captured the 

heterogeneity between countries, and I2
total captured the total heterogeneity (i.e., the sum of 

I2
Level2 and I2

Level3). We also report the standard deviation of the regression coefficients # (see 

Borenstein et al., 2009) to estimate heterogeneity in regression coefficients between cycles 

within countries (#Level2) and between countries (#Level3) plus the total heterogeneity (#total; 

#$%$&' = )#*+,+'-- +	#*+,+'0- ). Finally, the Q test statistic (introduced by Cochran, 1954) is 

computed by summing the squared deviations of each individual effect size estimate from the 

corresponding overall (average) effect estimate where individual effect sizes are weighted by 

their sampling variance (Huedo-Medina et al., 2006). A statistically significant Q value 

indicates effect size heterogeneity (Borenstein et al., 2009). 

All figures were produced using the R package “ggplot2” (version 3.1.0; Wickham, 

2009). The R code for reproducing the results and figures from the present study can be 

accessed via the Open Science Framework (Soderberg, 2018) at https://osf.io/9cgzm/. 

Results 

Linear and Quadratic Regressions 

Mathematics. Figure 2 displays the standardized linear and quadratic relations 

between mathematics achievement and mathematics self-concept. The results obtained for the 

linear model indicated that math achievement and self-concept were positively related for 

students in Grades 4 and 8 and for students at age 15: The higher students’ achievement, the 

higher their corresponding self-concept.8  

 
8 In line with previous research (e.g., Marsh, 1986), in almost all countries, male students reported a higher self-

concept in mathematics than female students did, whereas female students reported a higher self-concept in the 

verbal domain than male students did. The addition of students’ gender as a predictor of their domain-specific 

self-concept did not change the functional forms of the relations between achievement and the corresponding 
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The results obtained for the quadratic model showed significant quadratic relations 

between achievement and self-concept in mathematics across countries. As shown in Figure 

2, we observed positive quadratic relations in the group of 15-year-old students (mean β = 

0.12, 95% CI [0.10, 0.14]) and Grade 8 students (mean β = 0.12, 95% CI [0.08, 0.15]), 

implying that the increase in students’ mathematics self-concept was weaker for lower 

achieving students than for higher achieving students. Importantly, these quadratic relations 

were found across cycles and countries with very few exceptions (1 in 39 cases ns for PISA 

and 2 in 16 ns for TIMSS; Figures 2 and 3). The linear and quadratic terms demonstrated 

significant heterogeneity (Tables 3).  

In younger students, the mean quadratic relation between mathematics achievement 

and mathematics self-concept was positive (mean β = 0.04, 95% CI [0.03, 0.06]). Similar to 

the group of older students, this indicated that the increase in students’ mathematics self-

concept in Grade 4 was lower for lower achieving students than it was for higher achieving 

students. However, across countries, positive quadratic relations were found less consistently 

for younger students than for older students; in 13 out of 25 cases, the quadratic relations 

were significant (see Table S19 in the SOM). Heterogeneity analyses indicated significant 

heterogeneity in the linear and quadratic relations for students in Grade 4 (Table 3). 

Verbal domain. Figure 4 shows the standardized linear and quadratic relations 

between reading achievement and reading self-concept for students in Grade 4 and between 

reading achievement and verbal self-concept in 15-year-olds. The direction of the quadratic 

relations differed between younger and older students. Whereas the average quadratic relation 

between reading achievement and verbal self-concept was significantly positive in the group 

of 15-year-olds (mean β = 0.05, 95% CI [0.03, 0.07], Figure 4), it was significantly negative 

in Grade 4 (mean β = -0.02, 95% CI [-0.03, -0.01]). For 15-year-old students, reading 

 
self-concepts. Results of the linear and quadratic regression models when controlling for students’ gender are 

presented in Tables S24 to S28 in the SOM. 
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achievement was more strongly related to verbal self-concept for higher achieving students 

than for lower achieving students. The negative quadratic relation found in younger students 

implied that reading achievement and self-concept were to some extent more strongly related 

for lower achieving students than for higher achieving students. 

Across countries, in the group of 15-year-olds, 6 out of 13 quadratic relations were 

significant. For fourth-graders, 5 out of 26 quadratic relations were significant (Figures 4 and 

5, and Tables S22 and S23 in the SOM). For both fourth-graders and 15-year-olds, we 

observed significant heterogeneity in the linear and quadratic relations (Table 4). 

Interrupted Regressions and Two-Lines Tests 

Mathematics. The results from the interrupted regression models for 15-year-olds 

revealed that mathematics achievement was not significantly related to mathematics self-

concept for lower achieving students, but the relation was significantly positive for higher 

achieving students (mean β1 = 0.03, 95% CI [-0.01, 0.07]; mean β2 = 0.47, 95% CI [0.41, 

0.53]; Figure 1b). This finding held for the vast majority of countries across three assessment 

cycles (Figure 1b). We observed significant heterogeneity in both regression coefficients (i.e., 

β1 and β2; Table 5). The mean percentage of students for whom a common linear model did 

not accurately describe the relation between achievement and self-concept in mathematics 

was 16%. 

For students in Grade 8, the relation between achievement and self-concept in 

mathematics was stronger for higher achieving students than for lower achieving students 

(mean β1 = 0.25, 95% CI [0.08, 0.42]; mean β2 = 0.58, 95% CI [0.50, 0.66]; Figure 1b). We 

observed significant heterogeneity in both regression coefficients (i.e., β1 and β2; Table 5). In 

about half of the countries, β1 (as obtained for lower achieving students) and β2 (as obtained 

for higher achieving students) were both positive; in the other half of the countries, β1 was 

close to zero, but β2 was positive. The mean percentage of students for whom a single linear 
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regression coefficient did not fully capture the relation between achievement and self-concept 

in mathematics was 12%. 

For Grade 4, the achievement-related increase in mathematics self-concept was on 

average almost identical in magnitude for higher and lower achieving students (mean β1 = 

0.32, 95% CI [0.26, 0.39]; mean β2 = 0.34, 95% CI [0.29, 0.38]; Figure 1b). This implied that 

the achievement-related increase in self-concept did not vary across the achievement 

distribution for students in Grade 4. Both regression coefficients exhibited significant 

heterogeneity that was entirely located between assessment cycles within countries (Table 5). 

There were three countries (i.e., Australia, Portugal, and Sweden in TIMSS 2011) in which 

the relation between mathematics achievement and mathematics self-concept was close to 

zero for lower achieving students but positive for higher achieving students. For an average of 

17% of the students, a common linear model did not accurately describe the relation between 

achievement and self-concept in mathematics. 

Verbal domain. The achievement-related increase in verbal self-concept in 15-year-

olds was somewhat stronger for higher than for lower achieving students (mean β1 = 0.20, 

95% CI [0.14, 0.26]; mean β2 = 0.32, 95% CI [0.25, 0.39]; Figure 1b). For some countries, the 

relation between reading achievement and verbal self-concept was close to zero for lower 

achieving students but positive for higher achieving students, whereas in other countries, the 

relation was positive for both lower and higher achieving students (Figure 1b). Heterogeneity 

measures showed that the magnitudes of the regression coefficients varied significantly 

(Table 6). The mean percentage of students for whom a single linear regression coefficient 

did not fully capture the relation between reading achievement and verbal self-concept was 

22%. 

The relation between achievement and self-concept in reading was stronger for lower 

achieving students than for higher achieving students in Grade 4 (mean β1 = 0.45, 95% CI 
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[0.42, 0.48]; mean β2 = 0.27, 95% CI [0.22, 0.31]; Figure 1b). Heterogeneity measures 

showed that the magnitudes of β1 varied significantly, whereas the magnitudes of β2 did not 

(Table 6). For an average of 13% of the students, a common linear model did not describe the 

relation between achievement and self-concept in reading very well. The results for single 

countries and cycles can be found in Tables S29 to S33 in the SOM. 

Discussion 

The major aim of the present integrative data analysis was to investigate whether the relations 

between achievement and self-concept are nonlinear and to what extent the nonlinearity can 

be generalized across (a) different domains (i.e., mathematics and verbal), (b) different age 

groups (i.e., elementary and secondary school students), and (c) 13 different countries. Most 

previous research applied a “linear net” to capture relations between achievement and self-

concept measures. Yet, this approach fails to capture potential nonlinear relations between the 

two constructs and thus might not accurately describe the relations between achievement and 

self-concepts for a considerable proportion of the student body. In the present integrative data 

analysis, we capitalized on representative individual student data from eight assessment 

cycles of three major educational large-scale studies (i.e., TIMMS, PIRLS, PISA) and applied 

polynomial and interrupted regression analyses as “nonlinear nets.” Our findings provided 

strong evidence of nonlinear relations between achievement and self-concepts for students in 

secondary schools in mathematical and verbal domains. Nonlinear effects were also present in 

younger students, but the result patterns were rather heterogeneous across countries and 

applied methods. 

Implications for Theories of Self-Concept Formation 

For secondary school students, the relations between achievement and the corresponding self-

concepts in mathematics and the verbal domain were weaker for lower achieving students 

than for higher achieving students. This conclusion was supported by the quadratic and 
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interrupted regression analyses. For 15-year-olds in mathematics, the relation between 

mathematics achievement and mathematics self-concept was even close to zero for lower 

achieving students but positive for higher achieving students. Importantly, we replicated the 

positive quadratic relation between achievement and self-concept in mathematics in 

secondary school students over three (PISA) and two (TIMSS) assessment cycles, 

underpinning the robustness of our findings (achievement and self-concept in the verbal 

domain were only assessed once in PISA 2000, and therefore, it was not possible to replicate 

the effect). Similar nonlinear findings have been reported for the association between global 

achievement and global academic self-concept for students in Grade 10 and 15-year-olds 

(Marsh, 2004; Marsh & Rowe, 1996). 

One plausible explanation for the finding that lower achieving students’ self-concepts 

in mathematics and the verbal domain were only weakly related to their corresponding 

achievement is that lower achieving students are more likely to apply self-protective strategies 

to prevent the damaging effects of negative performance feedback on their self-views as has 

been shown, for example, in studies by Gramzow et al. (2003) and Hacker et al. (2000). 

Besides self-protective motives, students’ self-enhancing motives might also contribute to the 

nonlinearity between achievement and the corresponding self-concepts to some extent. For 

instance, self-enhancing motives might motivate better performing students to increase the 

positivity of their self-concepts in response to positive performance feedback. However, there 

is evidence that lower achieving students are more inclined to apply self-serving strategies 

compared with higher achieving students (e.g., Baumeister et al., 2001; Gramzow et al., 2003; 

Hacker et al., 2000). This underscores the plausibility of self-protection as one driving 

mechanism that leads to nonlinear relations between achievement and self-concepts. 

Nonlinear effects were also present in younger students, but the result patterns were 

rather heterogeneous. On average, we found a positive quadratic relation between 
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achievement and self-concept in mathematics. However, in more than half of the countries, 

the quadratic regression coefficient was not significant. Further, the interrupted regression 

analyses indicated that the relations between achievement and self-concept in mathematics 

were positive and almost identical in magnitude for lower and higher achieving students.  

In the verbal domain, we found a negative quadratic relation, indicating that reading 

achievement and reading self-concept were less strongly related for higher achieving students 

in elementary school than for lower achieving students. The results from the interrupted 

regressions confirmed these findings. On the one hand, these findings could support the 

assumption that there are age differences in nonlinear relations. On the other hand, the 

nonlinear effects in the verbal domain could differ for younger and older students because 

younger students were asked to rate their reading self-concept in PIRLS, whereas older 

students rated their national language class self-concept in PISA. Typically, students do not 

receive specific grades for their reading performance, but instead they receive a global 

assessment of their performance in diverse areas of their national language class (e.g., writing, 

reading, grammar). Because grades are usually the most salient source of performance 

feedback for students, younger students have probably gained less comparative feedback 

experience that they can take into account when evaluating their reading performance. 

Consequently, we cannot distinguish whether the differences between younger and older 

students occurred for developmental reasons or due to differences in the assessed constructs 

(reading vs. verbal self-concept). More research and data in which verbal self-concepts are 

measured consistently across age groups are needed to answer this question. 

In sum, the present results support two major conclusions. First, the results of the 

present study indicated that a linear regression model could not fully capture the relations 

between achievement and the corresponding self-concepts in mathematics and the verbal 

domain for a substantial proportion of the student body in secondary school. Considering the 
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country-specific breakpoints from the interrupted regression analyses, the “substantial 

proportion” ranged from, on average, 12% (TIMSS, Grade 8) to 22% (PISA, verbal domain) 

of the students (see Tables S29 to S33). Consequently, it would be advisable to refine current 

models of self-concept formation that assume that the relations between achievement and self-

concepts are solely linear. For example, the internal/external frame of reference model 

(Marsh, 1986) states that students’ self-concepts are formed by two processes: (a) an external 

(social) comparison process in which students compare their own achievement in a domain 

with their classmates’ achievement in the same domain and (b) an internal comparison 

process in which students compare their own achievement in different domains. For example, 

to better capture the relation between achievement and self-concept in this model, a quadratic 

term could be included in the regression of self-concept on achievement in the same domain 

when modeling the external comparison process.  

Second, the findings of the present cross-sectional study were mixed regarding age 

differences in nonlinear relations between achievement and self-concepts in mathematics and 

the verbal domain. Given the great heterogeneity in results as observed for elementary school 

students, we strongly recommend that nonlinear models also be specified for this student 

group. By using the “nonlinear net,” researchers will avoid missing any nonlinear relations 

between achievement and self-concept. Doing so will also improve current theories on self-

concept formation because this approach will eventually help to identify the boundary 

conditions and moderating factors that lead to linear relations for elementary school students 

in some countries and nonlinear relations in others. 

Implications for the Assessment of Self-Concepts 

In addition to research contexts, self-concepts are also assessed in guidance and 

counseling contexts. Our findings showed that lower achieving secondary school students 

tended to overestimate their academic abilities in mathematics and the verbal domain relative 
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to higher achieving students in these domains. The tendency to overestimate one’s own 

abilities can introduce a systematic bias when lower achieving students seek guidance or 

counseling, and school counselors, school psychologists, or teachers make recommendations 

for their further educational or occupational pathways on the basis of students’ scores on self-

concept measures.  

In the following, we suggest three methodological approaches that can be applied in 

practice to derive more nuanced interpretations of students’ scores on self-concept scales. One 

approach could be to compare a student’s self-reported self-concept with this student’s actual 

performance (e.g., the student’s grades or his or her achievement of performance benchmarks 

on tests). Another way could be to estimate students’ tendency to engage in self-protection. 

This could be done, for example, by measuring how strongly the self-view of a (low-

achieving) student diverges from others’ (e.g., classmates’) assessments of this student’s 

academic abilities in a particular domain (e.g., Krueger & Wright, 2011). A self-protective 

tendency would be apparent when students evaluated their own abilities more positively than 

others did. Finally, students’ self-protective tendency could also be measured by using self-

report scales that directly assess students’ application of self-protective strategies as 

suggested, for instance, by Hepper et al. (2010). These self-protection parameters could then 

be included when interpreting students’ observed scores on self-concept scales. 

Limitations and Outlook 

Although this integrative data analysis significantly expands the body of knowledge on 

nonlinear relations between achievement and self-concepts in different domains, age groups, 

and countries, we see three limitations that should be addressed in future research. 

Causal mechanisms. We drew on self-protection as the theoretical basis (e.g., Alicke 

& Sedikides, 2009) for expecting nonlinear relations between achievement and the 

corresponding self-concepts. However, given the limitations of our study design, we could not 
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conclude that self-protective strategies caused the nonlinear relations found in this study. 

Other research designs would be needed to do so. If self-protective strategies caused the 

nonlinear relation between achievement and self-concept, we would expect that 

experimentally enhancing students’ motives to apply these strategies would lead to a stronger 

degree of nonlinearity between achievement and self-concept. For example, performance 

feedback is known to activate the motive to apply self-protective strategies (Alike & 

Sedikides, 2009). Hence, using experimental manipulations, students could be randomly 

assigned to groups that either receive feedback or do not receive feedback on their actual 

performance on a standardized achievement test before they evaluate their self-concepts. We 

would expect the degree of nonlinearity between achievement and self-concepts (as expressed 

in the quadratic or interrupted regression models) to increase for students in the feedback 

group because the experimental manipulation has direct consequences for how students 

evaluate their achievement (e.g., performance feedback [vs. no performance feedback] should 

intensify the threat to the self for lower achieving students). Another nonexperimental study 

design that could be applied to approximate the causal mechanism is to examine how 

(individual) differences in the application of self-protective strategies as measured with 

questionnaires (see Hepper et al., 2010) may moderate the functional form between 

achievement and self-concept. 

Further influences on the functional form. By investigating students’ self-concepts 

with data from TIMSS, PIRLS, and PISA, we were bound to the 4-point rating scales that 

were applied in these large-scale assessments. If a broader rating scale (e.g., a 6- or 7-point 

rating scale) had been used to measure the self-concepts, it may have been possible to find 

additional inflection points (e.g., at the high end of the achievement continuum). One possible 

reason for this is that the number of response categories seems to influence individuals’ 

response behavior (Weijters et al., 2010). For example, Weijters et al. (2010) found that the 
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tendency to choose extreme anchor points on rating scales was reduced when more response 

categories were added to a rating scale. Future research should investigate the extent to which 

response format influences the functional form of relations between achievement and 

corresponding self-concepts. In addition, future studies should take into account possible 

response styles. For example, a study by Buckley (2009) provided initial evidence that 

adjusting for students’ response biases (acquiescence, disacquiescence, extreme response 

styles, noncontingent responding) tended to result in stronger nonlinear relations between 

science achievement and science attitude scales in PISA 2006. Moreover, the anchoring 

vignette approach is a promising way to control for response style effects (Bolt et al., 2014; 

He et al., 2017) and was first applied in PISA 2012 (Kyllonen & Bertling, 2014; OECD, 

2014). However, the anchoring vignette approach for self-concept scales still needs to be 

refined (e.g., He et al., 2017). 

Heterogeneity in effects. Heterogeneity analyses revealed considerable 

heterogeneity in the linear and quadratic relations as well as in almost all interrupted 

regression coefficients in all domains and especially in older students. In particular, even the 

magnitudes of the linear relations were subject to variation. This may have (at least) two 

probable reasons. One explanation could be that relations between achievement and self-

concept are stronger for some countries (and/or successive student cohorts within countries) 

than for others because the curriculum in mathematics or the verbal domain better matches the 

conceptual frameworks defined and measured in PISA, TIMSS, or PIRLS. Another 

explanation could be that the culture of feedback in the classroom varies across countries 

(and/or successive student cohorts within countries). For example, countries might differ in 

the extent to which they emphasize social comparisons versus individualized performance 

feedback (Lüdtke & Köller, 2002; Lüdtke et al., 2005) or in how common it is to apply 

differentiated instruction (i.e., individually altering students’ expectations and goals, varying 
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the complexity of tasks; Roy et al., 2015). In countries in which teachers provide 

individualized performance feedback and differentiated instruction, students’ achievement 

and their corresponding self-concepts should be less strongly related than in countries in 

which teachers foster social comparisons and no differentiated instruction. Until now, little 

has been known about these cross-cultural variations (or variations within countries that 

differently affect successive student cohorts), and thus, this topic is an area for future 

research. 

Conclusion 

The present study makes three main contributions. First, given the size and representativeness 

of the applied data and our rigorous integrative data analysis, our results provide strong 

support for the generalizability of nonlinear relations between achievement and corresponding 

self-concepts in mathematics and the verbal domain across 13 countries at the secondary 

school level. Second, in light of the current focus on the replication and reproducibility of 

research results (e.g., Ioannidis, 2005), we used several PISA, TIMSS, and PIRLS cycles to 

replicate our findings. This is of particular importance at this point in time, given the lack of 

findings that have been replicated in many areas of psychology, educational science, and 

other fields. Third, the present study advances the current theory in self-concept research. 

Nonlinear effects between achievement and domain-specific self-concepts have mostly been 

neglected in previous research (but see Marsh, 2004; Marsh & Rowe, 1996). From a 

theoretical point of view, the results of the present investigation suggest that models on self-

concept formation may be refined by integrating nonlinear effects (e.g., quadratic effects) to 

better approximate empirical relations between achievement and corresponding self-concepts 

for all students. 
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Table 1. Number of Examined Countries, Sample Sizes, Percentage of Female 

Students (%F), Number of Participating Classes or Schools, and Students’ Mean 

Age for Individual Assessments and in Total 

Assessment Ncountries N %F Nclasses/schools Agemean 

Elementary school students 

TIMSS/PIRLS 2011 (Grade 4) 13a 56,868 49 3,159 10.30 

TIMSS 2015 (Grade 4) 12b 55,642 49 3,104 10.38 

PIRLS 2016 (Grade 4) 13a 59,586 49 3,305 10.36 

Secondary school students 

TIMSS 2011 (Grade 8) 8c 39,317 49 1,990 14.35 

TIMSS 2015 (Grade 8) 8d 42,120 50 2,108 14.42 

PISA 2000 (15-year-olds) 13a 35,024 51 2,412 15.71 

PISA 2003 (15-year-olds) 13a 77,910 50 2,868 15.78 

PISA 2012 (15-year-olds) 13a 104,337 49 4,361 15.76 

Total 13a 470,804 50 23,307  

Note. In TIMSS and PIRLS, one or more intact classes of students were randomly 

sampled within randomly selected schools, whereas in PISA, students were 

randomly sampled within randomly selected schools. 
a Australia, Austria, Czech Republic, Finland, Germany, Hong Kong, Hungary, 

Ireland, Italy, Norway, Portugal, Russian Federation, Sweden. 
b Austria did not participate. 
c Australia, Czech Republic, Finland, Germany, Hong Kong, Hungary, Ireland, Italy, 

Norway, Portugal, Russian Federation, Sweden. 
d Australia, Hong Kong, Hungary, Ireland, Italy, Norway, Russian Federation, 

Sweden. 
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Table 2. Median Reliabilities (and Range) for Mathematics and Reading Achievement and Self-Concept 

Scales across the Examined Countries 
 Achievementa  Self-conceptb 

Assessment Mathematics Reading  Mathematics Verbal/reading 
Elementary school students 

TIMSS/PIRLS 2011(Grade 4) .82  (.79-.87) .87  (.81-.89)  .87  (.85-.90) .72  (.64-.77) 
TIMSS 2015 (Grade 4) .83  (.81-.88) –  .87  (.84-.89) – 
PIRLS 2016 (Grade 4) – .88  (.85-.91)  – .80  (.72-.82) 

Secondary school students 
TIMSS 2011 (Grade 8) .89  (.83-.91) –  .91  (.90-.93) – 
TIMSS 2015 (Grade 8) .89  (.83-.91) –  .91  (.89-.92) – 
PISA 2000 (15-year-olds) .81  .89   .87  (.84-.93) .76  (.66-.82) 
PISA 2003 (15-year-olds) .91  (.88-.93) –  .89  (.81-.92) – 
PISA 2012 (15-year-olds) .93  (.91-.94) –  .89  (.82-.92) – 
Note. In PISA 2000, only averaged reliabilities were reported for the international PISA scales.  
a Reliability estimates were based on item response theory. 
b Reliability was measured as Cronbach’s alpha. 
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Table 3. Meta-Analytic Results for Mathematics: Average Regression Coefficients and Corresponding 

Heterogeneity Measures (with 95% Confidence Intervals) from the Linear and Quadratic Regression Models 

for TIMSS and PISA 

  Linear model  Quadratic model 
  Linear term  Linear term Quadratic term 

  Estimate  95% CI  Estimate  95% CI Estimate  95% CI 
Elementary school students  

TIMSS 2011 & 2015 (Grade 4) 
βmean  0. 38  [0.35, 0.42]  0. 39  [0.36, 0.42] 0. 04  [0.03, 0.06] 
Q  567. 092 ***   635. 405 ***  79. 804 ***  
I2total  95. 45 †††   95. 80 †††  68. 37 ††  
 I2Level2 95. 45 †††   95. 80 †††  62. 10 ††  
 I2Level3 0.     0.    6. 27   
!total  0. 08    0. 08   0. 03   
 !Level2 0. 08    0. 08   0. 03   
 !Level3 0.     0.    0. 01   
k  25.     25.    25.    

Secondary school students  
TIMSS 2011 & 2015 (Grade 8) 
βmean  0. 53  [0.48, 0.58]  0. 56  [0.52, 0.61] 0. 12  [0.08, 0.15] 
Q  374. 899 ***   275. 647 ***  97. 126 ***  
I2total  96. 24 †††   94. 69 †††  86. 04 †††  
 I2Level2 0.     0.    20. 99   
 I2Level3 96. 24 †††   94. 69 †††  65. 05 ††  
!total  0. 08    0. 06   0. 05   
 !Level2 0.     0.    0. 03   
 !Level3 0. 08    0. 06   0. 05   
k  16.     16.    16.    

(table continues) 
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Table 3 (Continued) 

  Linear model  Quadratic model 
  Linear term  Linear term Quadratic term 
  Estimate  95% CI  Estimate  95% CI Estimate  95% CI 
PISA 2000, 2003, & 2012 (15-year-olds) 
βmean  0. 37  [0.32, 0.42]  0. 38  [0.33, 0.43] 0. 12  [0.10, 0.14] 
Q  1627. 021 ***   1573. 419 ***  154. 829 ***  
I2total  97. 63 †††   97. 60 †††  75. 82 †††  
 I2Level2 46. 65 †   42. 60 †  18. 44   
 I2Level3 50. 99 ††   55. 00 ††  57. 38 ††  
!total  0. 11    0. 10   0. 03   
 !Level2 0. 07    0. 07   0. 02   
 !Level3 0. 08    0. 08   0. 03   
k  39.     39.    39.    
Note. βmean = Average regression coefficient, Q = Cochran’s measure of homogeneity (Cochran, 1954), I2total = 
Higgins and Thompson’s (2002) measure of (total) heterogeneity, I2Level2 = Percentage of the variability in 
regression coefficients that is due to heterogeneity within countries rather than sampling error; I2Level3 = 
Percentage of the variability in regression coefficients that is due to heterogeneity between countries rather than 
sampling error, !total	= Total standard deviation of regression coefficients, !Level2 = Within-country standard 
deviation of regression coefficients, !Level3 = Between-country standard deviation of regression coefficients, k = 
number of countries. 
† Moderate heterogeneity (I2 > 30%), †† Substantial heterogeneity (I2 > 50%), ††† Considerable heterogeneity (I2 

> 75%). 
*** p < .001. 
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Table 4. Meta-Analytic Results for the Verbal Domain: Average Regression Coefficients and 

Corresponding Heterogeneity Measures (with 95% Confidence Intervals) from the Linear and 

Quadratic Regression Models for PIRLS and PISA 
  Linear model  Quadratic model 
  Linear term  Linear term Quadratic term 
  Estimate  95% CI  Estimate  95% CI Estimate  95% CI 

Elementary school students 
PIRLS 2011 & 2016 (Grade 4) 
βmean  0. 44  [0.41, 0.46]      0. 43  [0.41, 0.46] -0. 02  [-0.03, -0.01] 
Q  248. 447 ***   244. 134 ***  57. 989 ***  
I2total  88. 41 †††   88. 62 †††  54. 48 ††  
 I2Level2 14. 29    12. 34   46. 42 †  
 I2Level3 74. 12 ††   76. 28 †††  8. 06   
!total  0. 05    0. 05   0. 02   
 !Level2 0. 02    0. 02   0. 02   
 !Level3 0. 04    0. 04   0. 01   
k  26.     26.    26.    

Secondary school students 
PISA 2000 (15-year-olds) 
βmean  0. 27  [0.23, 0.31]  0. 28  [0.24, 0.32] 0. 05  [0.03, 0.07] 
Q  154. 299 ***   169. 885 ***  28. 171 **  
I2total  91. 99 †††   92. 67 †††  53. 65 ††  
!total  0. 07    0. 08   0. 03   
k  13.     13.    13.    
Note. βmean = Average regression coefficient, Q = Cochran’s measure of homogeneity (Cochran, 
1954), I2total = Higgins and Thompson’s (2002) measure of (total) heterogeneity, I2Level2 = Percentage 
of the variability in regression coefficients that is due to heterogeneity within countries rather than 
sampling error; I2Level3 = Percentage of the variability in regression coefficients that is due to 
heterogeneity between countries rather than sampling error, !total	= Total standard deviation of 
regression coefficients, !Level2 = Within-country standard deviation of regression coefficients, !Level3 = 
Between-country standard deviation of regression coefficients, k = number of countries. 
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† Moderate heterogeneity (I2 > 30%), †† Substantial heterogeneity (I2 > 50%), ††† Considerable 
heterogeneity (I2 > 75%). 
** p < .01. *** p < .001. 
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Table 5. Meta-Analytic Results for Mathematics: Average Regression Coefficients and 
Corresponding Heterogeneity Measures (with 95% Confidence Intervals) from the Interrupted 
Regressions for TIMSS and PISA 

 	 β1  β2 
  Estimate  95% CI  Estimate  95% CI 

Elementary school 
TIMSS 2011 & 2015 (Grade 4) 
βmean       0. 32  [0.26, 0.39]  0. 34  [0.29, 0.38] 
Q  160. 911 ***   37. 352 *  
I2total  92. 14 †††   41. 16 †  
 I2Level2 92. 14 †††   41. 16 †  
 I2Level3 0.     0.    
"total  0. 14    0. 05   
 "Level2 0. 14    0. 05   
 "Level3 0.     0.    
k  25.     25.    

Secondary school 
TIMSS 2011 & 2015 (Grade 8) 
βmean  0. 25  [0.08, 0.42]  0. 58  [0.50, 0.66] 
Q  294. 514 ***   107. 031 ***  
I2total  98. 24 †††   89. 41 †††  
 I2Level2 46. 29 †   67. 39 ††  
 I2Level3 51. 94 ††   22. 03   
"total  0. 28    0. 12   
 "Level2 0. 19    0. 11   
 "Level3 0. 20    0. 06   
k  16.     16.    
PISA 2000, 2003, & 2012 (15-year-olds) 
βmean  0. 03  [-0.01, 0.07]  0. 47  [0.41, 0.53] 
Q  84. 347 ***   1281. 493 ***  
I2total  52. 68 ††   97. 22 †††  
 I2Level2 49. 29 †   22. 84   
 I2Level3 3. 40    74. 39 ††  
"total  0. 08    0. 12   
 "Level2 0. 08    0. 06   
 "Level3 0. 02    0. 10   
k  39.     39.    
Note.  βmean = Average regression coefficient, Q = Cochran’s measure of homogeneity 
(Cochran, 1954),  I2total = Higgins and Thompson’s (2002) measure of (total) heterogeneity, 
I2Level2 = Percentage of the variability in regression coefficients that is due to heterogeneity 
within countries rather than sampling error; I2Level3 = Percentage of the variability in regression 
coefficients that is due to heterogeneity between countries rather than sampling error, "total	= 
Total standard deviation of regression coefficients, "Level2 = Within-country standard deviation 
of regression coefficients, "Level3 = Between-country standard deviation of regression 
coefficients, k = number of countries. 
† Moderate heterogeneity (I2 > 30%), †† Substantial heterogeneity (I2 > 50%), ††† Considerable 
heterogeneity (I2 > 75%). 
* p < .05. *** p < .001. 



STUDY II: NONLINEAR RELATIONS 
 

 178 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Meta-Analytic Results for the Verbal Domain: Average 
Regression Coefficients and Corresponding Heterogeneity Measures 
(with 95% Confidence Intervals) from the Interrupted Regressions for 
PIRLS and PISA 
 	 β1  β2 
  Estimate  95% CI  Estimate  95% CI 

Elementary school 
PIRLS 2011 & 2016 (Grade 4) 
βmean  0. 45  [0.42, 0.48]  0. 27  [0.22, 0.31] 
Q  130. 861 ***   6. 737   
I2total  77. 01 †††   0.    
 I2Level2 11. 84    0.    
 I2Level3 65. 16 ††   0.    
"total	  0. 05    0.    
 "Level2 0. 02    0.    
	 "Level3 0. 05    0.    
k  26.     26.    

Secondary school 
PISA 2000 (15-year-olds) 
βmean  0. 20  [0.14, 0.26]  0. 32  [0.25, 0.39] 
Q  40. 103 ***   23. 551 *  
I2total  84. 03 †††   51. 64 ††  
"total  0. 08    0. 05   
k  13.     13.    
Note.	 βmean = Average regression coefficient, Q = Cochran’s measure of 
homogeneity (Cochran, 1954), I2total = Higgins and Thompson’s (2002) 
measure of (total) heterogeneity, I2Level2 = Percentage of the variability 
in regression coefficients that is due to heterogeneity within countries 
rather than sampling error; I2Level3 = Percentage of the variability in 
regression coefficients that is due to heterogeneity between countries 
rather than sampling error, "total	= Total standard deviation of regression 
coefficients, "Level2 = Within-country standard deviation of regression 
coefficients, "Level3 = Between-country standard deviation of regression 
coefficients, k = number of countries. 
†† Substantial heterogeneity (I2 > 50%), ††† Considerable heterogeneity 
(I2 > 75%). 
* p < .05. *** p < .001. 
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Figure 1. Domain-Specific Pattern of Slopes as Obtained from the Interrupted Regressions: 
(A) Example Graph for a Single Country (Australia in PISA 2000) 

 

Note.	The density plot shows the math achievement distribution for the first plausible value. 
(B) Summary of results depicted separately for mathematics (TIMSS and PISA) and the 
verbal domain (PIRLS and PISA) and for elementary school students (TIMSS and PIRLS) 
and secondary school students (TIMSS and PISA). β1 represents the regression coefficient to 
the left of the breakpoint (i.e., relatively lower achieving students), β2 the regression 
coefficient to the right of the breakpoint (i.e., relatively higher achieving students). Symbols 
above the diagonal indicate that the relation between achievement and self-concept was 
weaker for lower achieving students than for higher achieving students in a certain country or 
assessment. Mean values are depicted in black, country-specific values in grey.
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Figure 2. Country-Specific Relations Between Mathematics Achievement and Mathematics Self-Concept for Different Age Groups (Left: TIMSS 
2011/2015 Grade 4, Middle: TIMSS 2011/2015 Grade 8, Right: PISA 2000/2003/2012) 

Note.	AUS = Australia, AUT = Austria, CZE = Czech Republic, FIN = Finland, DEU = Germany, HKG = Hong Kong, HUN = Hungary, 
IRL = Ireland, ITA = Italy, NOR = Norway, PRT = Portugal, RUS = Russian Federation, SWE = Sweden, M = weighted mean. 
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Figure 3. Country-specific Quadratic Regression Lines for the Mathematics Domain (TIMSS 

and PISA Assessments) 

 

Note.	Significant quadratic effects are depicted as solid lines, nonsignificant quadratic effects 
as dashed lines.
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Figure 4. Country-Specific Relations Between Reading Achievement and Reading Self-Concept (Left: PIRLS 2011/2016) or Verbal Self-Concept 
(Right: PISA 2000) 

Note. AUS = Australia, AUT = Austria, CZE = Czech Republic, FIN = Finland, DEU = Germany, HKG = Hong Kong, HUN = 
Hungary, IRL = Ireland, ITA = Italy, NOR = Norway, PRT = Portugal, RUS = Russian Federation, SWE = Sweden, M = weighted 
mean. 
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Figure 5. Country-Specific Quadratic Regression Lines for the Verbal Domain (PIRLS and 

PISA Assessments) 

 

Note. Significant quadratic effects are depicted as solid lines, nonsignificant quadratic 
effects as dashed lines. 
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4 General Discussion 

The aim of this doctoral thesis was to study the interplay between achievement and 

achievement motivation within the Situated Expectancy–Value Theory (SEVT) 

framework. In two empirical studies, I examined gender differences in top-performing 

math students’ achievement, achievement profiles, and achievement motivation in 

mathematics, reading, and science and their relation to gender equality as well as the 

functional relation between academic achievement and corresponding self-concepts. A 

major strength of this dissertation is that the results of both studies are highly robust and 

generalizable due to the use of research synthesis methods (i.e., performing a multilevel 

integrative data analysis and a multilevel meta-analysis) and representative individual 

student data from international large-scale assessments (PISA, TIMSS, PIRLS). Based on 

the results of these studies, I will answer the research questions of this doctoral thesis: 

(1) What is the extent of gender differences in top-performing math students’ 

achievement, achievement profiles, and achievement motivation in mathematics, 

reading, and science across countries? 

(2) To what extent are cross-national gender differences in the group of top-

performing math students related to sociocultural factors, or more specifically, to 

the level of gender equality in a country? 

(3) Which functional relation exists between students’ academic achievement and 

corresponding academic self-concepts? 

 

In the following sections, I will briefly summarize und discuss the main findings 

from the two studies along these research questions on the interplay between achievement 
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and achievement motivation. Subsequently, I will outline general limitations as well as 

directions for future research and practice before concluding with the final remarks. 

4.1 Research Question I: What Is the Extent of Gender Differences in Top-

Performing Math Students Achievement, Achievement Profiles, and 

Achievement Motivation Across Countries? 

Study I meta-analyzed gender differences in top-performing math students’ achievement, 

achievement profiles, and achievement motivation in mathematics, reading, and science. 

To capture the interplay of achievement and achievement motivation, achievement, 

achievement profiles, and achievement motivation were analyzed together in the 

population of 15-year-old students who scored in the top 5% in mathematics. Capitalizing 

on data from six PISA cycles (PISA 2000–2015), we calculated 55 standardized mean 

effect sizes for gender differences across 82 countries.  

4.1.1 Results From Study 1 

Our results showed that there were on average more male than female students (40%) that 

scored in the top 5% in mathematics. Furthermore, we found moderate gender differences 

in top-performing math students’ interest in specific science topics and their verbal 

motivation. Male students reported higher interest in physics-related topics than female 

students (i.e., physics, motion of forces, energy transformation), whereas female students 

were more interested in human biology than their male counterparts. Furthermore, female 

students reported a higher interest in reading, they enjoyed reading more, and had a higher 

verbal self-concept than male students. Importantly, mathematically top-performing male 

students’ achievement profiles were on average more mathematics-oriented; on the 

contrary, mathematically top-performing female students’ achievement profiles were more 
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balanced across domains. Gender differences in top-performing math students’ 

achievement in mathematics, reading, and science as well as in their mathematics 

motivation and in most aspects of their science motivation were negligible to small. 

Overall, the pattern of gender differences in the group of top-performing math students 

was similar to the pattern of gender differences found for the general population (reviewed 

in Chapter 1; for a systematic comparison, see Table 1).  

Gender differences in the group of top-performing math students are important 

antecedents of gender differences in STEM choices (e.g., Ceci et al., 2014; Eccles, 1994). 

Study I provided strong evidence that there were (1) less female students in the group of 

top-performing math students and (2) important gender differences in top-performing math 

students’ specific science interests, motivation in the verbal domain, and achievement 

profiles. This overall pattern of more balanced achievement profiles in mathematics, 

reading, and science as well as a stronger verbal motivation might give the average 

mathematically talented female student broader career options than the average 

mathematically talented male student, which might contribute to women’s 

underrepresentation in STEM. 
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Table 1. Comparison of Proportions of Effect Sizes (in Percent) for Gender Differences Achievement, Achievement Motivation, and Profile 

Nonoverlap in Mathematics, Reading, and Science That Were Negligible, Small, Moderate, Large, or Very Large in the Group of Top-

Performing Math Students’ (Study I) and in the General Population 

 Achievement  Achievement motivation  Profile nonoverlap 
 Math Reading Science  Math Reading Science  M–R S–R M–S 
Magnitude  Top 5a GPb Top 5c GPd Top 5a GPe  Top 5f GPg Top 5h GPi Top 5j GPk  Top 5c Top 5c Top 5a 
Negligible x 52  38 x 23  22 22 0 0 44 35     
Small  48 x 57  46  78 72 0 50 33 27    x 
Moderate  0  5  31  0 6 100 33 22 23     
Large  0  0  0  0 0 0 17 0 8  x x  
Very large  0  0  0  0 0 0 0 0 8     
Note. Top 5 = Students in the top 5% in mathematics; GP = General population; M–R = Math–reading profile; S–R = Science–reading profile; 
M–S = Math–science profile; x = Only one effect size available. Figures may not add up to 100% due to rounding. For achievement and 
achievement motivation: Negligible = 0.00 ≤ |d| ≤ 0.10, small = 0.10 < |d| ≤ 0.35, moderate = 0.35 < |d| ≤ 0.65, large = 0.65 < |d| ≤ 1.00, very 
large = |d| > 1.00. k = Number of effect sizes, nTOP5 = Number of countries, nGP = Number of studies. For profile nonoverlap: 
Negligible = 0 % ≤ nonoverlap ≤ 8%, small = 8% < nonoverlap ≤ 24%, moderate = 24% < nonoverlap ≤ 41%, large = 41% < 
nonoverlap ≤ 55%, very large = nonoverlap > 55%. 
a k = 343, nTOP5 = 82 
b k = 1905, nGP = 13 
c k = 342, nTOP5 = 82 
d k = 1008, nGP = 12 
e k = 1264, nGP = 7 
f k = 875, nTOP5 = 65 
g k = 1258, nGP = 10 
h k = 180, nTOP5 = 73 
i k = 201, nGP = 5 
j k = 1207, nTOP5 = 72 
k k = 847, nGP = 7 
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4.1.2 Gender Differences in Interests in Specific Science Topics: Are Female 

Students Just Not Interested in These Areas? 

Among the largest gender differences we found in Study I involved that mathematically 

top-performing male student had greater interest in physics-related topics and 

mathematically top-performing female students had greater interest in human biology. This 

results pattern is consistent with previous meta-analyses that examined occupational 

interests in adults in the general population (Su et al., 2009; Su & Rounds, 2015). Can we 

thus conclude that female students who excel in mathematics are simply less interested in 

physics or engineering? Should society accept it as a fact and not encourage female 

students to pursue these domains? On the contrary, it should be investigated how and why 

these gender differences in interests in specific science topics develop. 

Research shows that interest in STEM is not only stimulated through school 

education, but also through informal contact in extracurricular activities or science 

competitions (e.g., Dabney et al., 2012; Maltese & Tai, 2010; Sahin et al, 2015; Simpkins 

et al., 2005). Importantly, female students are less likely to report out-of-school science 

activities, such as reading about or watching programs about science or extracurricular 

experiences with batteries, electric toys, fuses, microscopes, or pulleys (Dabney et al., 

2012; Jones et al., 2000; Maltese & Tai, 2010). Socialization practices seem to play an 

important role in whether or to what extent girls and boys are exposed to science activities 

or tasks early in life. For example, a study that investigated naturally occurring family 

conversations at a science museum found that parents were three times more likely to 

explain interactive science exhibits to their sons than to their daughters (aged 1 to 8), 

although boys and girls were equally interested in the exhibits (Crowley et al., 2001). 

Furthermore, parents at home and caregivers in kindergarten read books about life science 
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more often to young boys than to young girls, regardless of the children’s interest 

(Mantzicopoulos & Patrick, 2010). Moreover, parents were more likely to buy math and 

science toys for boys than for girls in all investigated grade levels (1 to 6; Jacobs & 

Bleeker, 2004). In addition, during a physics teaching activity, fathers tended to use more 

scientific vocabulary, asked more conceptual questions, and discussed causal explanations 

for observations more with sons than with daughters (Tenenbaum & Leaper, 2003). These 

findings suggest that boys may have greater opportunities than girls to learn about science 

and practice science skills and consequently to develop interest in specific science topics 

throughout their childhood. Overall, it is not clear how gender differences in STEM-related 

interests develop from childhood to young adulthood (e.g., Oppermann et al., 2020). Thus, 

longitudinal studies that cover the period from kindergarten to high school and beyond are 

highly desirable. 

As discussed in Study I, the answer to the question why mathematically talented 

male and female students are interested in different STEM domains is likely related to the 

gender-specific socialization processes. According to the SEVT, they influence students’ 

achievement and achievement motivation and consequently lead to differences between 

male and female students in educational contexts. As a complement or as an alternative to 

SEVT, the gender-specific interests in STEM domains may be related to women’s and 

men’s goal (communal vs. agentic) orientations that are congruent with their gender roles 

(e.g., Diekman et al., 2011; Eagly et al., 2020). According to the SRT (Eagly, 1987; 

Sczesny et al., 2019; Wood & Eagly, 2012) and specifically the related role congruity 

model (Diekman et al., 2010, 2011), mathematically talented female students might 

perceive a better match between studying human biology and their communal goals (e.g., 

to help people) than studying physical and engineering-related sciences. As a result, they 

select and pursue goals that are congruent to their gender-specific communal roles. 
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Practical measures to increase women’s representation in STEM are discussed in the 

Practical Implications section. 

4.1.3 Comparison of Gender Gaps in Mathematics Achievement 

In Study I, we found negligible gender differences in top-performing math students’ 

mathematics achievement (d = 0.05). As shown in the Introduction section, there are very 

few other meta-analyses (or large-scale studies) that focused on gender differences in top-

performing math students. Among them, one study investigated gender gaps in 

mathematics achievement in the top 5% in mathematics using TIMSS and PISA samples 

and found a small gender gap in favor of male students (d = 0.15; Baye & Monseur, 2016). 

Two other studies meta-analyzed gender gaps in mathematics achievement in academically 

talented students drawing (at least in part) on data from talent search programs and found 

moderate gender differences in favor of males (0.40 ≤ d ≤ 0.54; Hyde et al., 1990; 

Lindberg et al., 2010). Overall, these gender differences were larger than those reported in 

Study I. There could be two reasons for this, one relating to the samples included (Hyde et 

al., 1990; Lindberg et al., 2010) and the other to the analytical approach used (Baye & 

Monseur, 2016).  

The gender gap in mathematics achievement in Study I might be smaller than the 

gender gaps in mathematics achievement reported in the studies by Hyde et al. (1990) and 

Lindberg et al. (2010) because they included more highly selected samples from talent 

search programs (e.g., the Study of Mathematically Precocious Youth). Talent search 

programs that use off-level tests to identify academically talented students (e.g., 12-year-

olds are tested with college entrance exams, such as the SAT) show that the variability in 

test scores is high at the highest level of achievement (e.g., Achter et al., 1996). However, 

large-scale assessments such as PISA are not designed to differentiate abilities of top-
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performers. Thus, in these assessments, gender differences might be somewhat 

underestimated in top-performing students. However, PISA is considered more challenging 

than other mathematics assessments (e.g., NAEP or TIMSS; Else-Quest et al., 2010; Hyde 

et al., 2008). Furthermore, samples from talent search programs have the major 

disadvantage that they represent a selected student group, particularly in that students are 

aware of their ability because of their selection into the program. This awareness most 

likely influences their self-beliefs, motivation, and possibly also their performance. In 

contrast, data from PISA are representative. 

Furthermore, the gender gap in mathematics achievement in Study I might be 

smaller than the gender gap reported by Baye and Monseur (2016) because of a different 

analytical approach. Whereas Baye and Monseur (2016) calculated one standardized mean 

effect size per country and TIMSS and PIRLS cycle and then simply averaged all results to 

receive one single effect size, we used more sophisticated multilevel random-effects meta-

analytic methods. In addition, it is unclear how Baye and Monseur (2016) standardized 

their effect sizes. If they used the standard deviation of the top 5% for standardization, 

effect sizes are larger because scores vary less within the top 5% than in the general 

population. In Study I, we used the standard deviation of the full student population to 

calculate standardized effect sizes, which is the preferred analytical approach (Cumming & 

Calin-Jageman, 2016).  

4.1.4 How Big Is Small? On the Practice of Benchmarking Effect Sizes 

To facilitate the comparison of gender differences in top-performing math students’ 

achievement, achievement motivation, and achievement profiles with the results from 

other studies, we calculated standardized effect sizes (Cohen’s d) in Study I. However, 

because standardized effect sizes are measured on an abstract scale (i.e., standard deviation 
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units of the outcome measure), their magnitudes are hard to interpret (Baird & Pane, 2019). 

The standard approach to evaluating the magnitude of effect sizes is to apply effect size 

benchmarks suggested by Cohen (1969; small = 0.2 < |d| ≤ 0.5, moderate = 0.5 < |d| ≤ 0.8, 

large = |d| < 0.8). Although these benchmarks are widely used, a generalized application is 

not advisable as they are based on the results of a few social-psychological laboratory 

studies (Kraft, 2020). Cohen (1988) himself proposed that his benchmarks were 

“recommended for use only when no better basis for estimating the [effect size] index is 

available” (p. 25). Therefore, to evaluate the magnitude of gender differences in Study I, 

we used effect size benchmarks by Hyde (2005) that set thresholds for negligible 

(0.00 ≤ |d| ≤ 0.10), small (0.10 < |d| ≤ 0.35), moderate (0.35 < |d| ≤ 0.65), large 

(0.65 < |d| ≤ 1.00), and very large (|d| > 1.00) effects. Hyde (2005) derived these 

benchmarks from the results of an overview of 128 meta-analytical effects representing 

gender differences in a variety of psychological variables.  

Based on these benchmarks, we considered many gender differences in top-

performing students’ achievement and achievement motivation in Study I to be negligible 

or small. However, it is important to note that also small effect sizes can have practical 

importance. Small effects can have considerable influence when gender differences persist 

across time and situations (Eagly, 2013). As noted by Abelson (1985, p. 133), “small 

variance contributions of independent variables in single-shot studies grossly understate 

the variance contribution in the long run” (see Abelson, 1985 and Rosenthal, 1990 for 

examples of small effects with large practical importance). Especially for intervention 

studies, efforts have recently been made to improve the evaluation of the practical 

importance of effects by translating research results into new metrics, such as the 

percentile growth (i.e., the change in percentile rank that would have been experienced by 

the median student in the control group, if the student had received the intervention; Baird 
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& Pane, 2019). In the past, it has been quite popular to express the practical importance of 

differences in PISA scores in units of years of learning (e.g., if female students 

outperformed male students in reading by 20 points, this would translate into an advantage 

in reading for female students of half a year of schooling; Schleicher, 2019). However, the 

review of Baird and Pane (2019) advises against this translation for several methodological 

reasons, with an important argument being that the years-of-learning metric ignores the 

statistical uncertainty of effects even though the translation often substantially increases 

uncertainty. For example, the authors found that confidence intervals ranged between one 

quarter of a year and 5,000 years (Baird & Pane, 2019). 

Eagly (2013) argues that for the further theoretical development, not the 

classification into small, medium, and large gender differences is essential, but the 

investigation and explanation of the variation in gender differences. The following section 

examines one possible explanation for the cross-national variation of gender differences in 

top-performing math students. 

4.2 Research Question II: To What Extent Are Cross-National Gender Differences 

in the Group of Top-Performing Math Students Related to the Level of Gender 

Equality in a Country? 

The results of the meta-analysis presented in the preceding section further indicated that 

many of the gender differences in top-performing math students’ achievement, 

achievement profiles, and achievement motivation varied across countries (Study I). 

According to the SEVT (e.g., Eccles, 1994) and the SRT (e.g., Wood & Eagly, 2012), 

gender differences should be smaller in countries with higher levels of gender equality (see 

Chapter 1 and Study I). Thus, to examine whether the heterogeneity in effect sizes was 

related to the level of gender equality in a country, we conducted multivariate moderator 
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analyses. We selected domain-specific gender equality indicators in the areas of education 

(i.e., gender ratios in primary, secondary, and tertiary education enrollment) and higher 

positions (i.e., women’s share of higher positions and research positions in a country) that 

are theoretically relevant as moderators of girls’ and women’s engagement in education 

and in particular in mathematics (Else-Quest & Grabe, 2012). 

4.2.1 Results From Study I 

The moderator analyses revealed that a higher share of female students in tertiary 

education was positively related to the share of female students in the top 5% in 

mathematics. Moreover, a higher share of female students in tertiary education and a 

higher share of women in research positions predicted smaller differences in female (and 

male) students’ achievement profile scores. However, gender gaps in top-performing 

students’ achievement and achievement motivation in math, reading, and science were not 

substantively related to the level of gender equality in a country. Thus, the prediction of the 

SEVT (e.g., Eccles, 1994) and the SRT (e.g., Wood & Eagly, 2012) that gender differences 

should be smaller in more gender equal societies was not univocally but at least partially 

confirmed for the group of top-performing math students.  

4.2.2 Alternative Explanations 

The fact that cross-national variation in the level of gender equality did not fully explain 

the variation in gender differences in the group of top-performing math students indicates 

that there might be further explanatory factors. In the following, I will discuss three 

possible factors.  

As mentioned in Study I, one explanation could be that the effect sizes between and 

within countries probably varied too little (see Tau values in Tables 3 and 5 in Study I) to 
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detect moderating relations between the gender equality indicators and gender differences 

in top-performing math students’ achievement and achievement motivation. However, this 

is true for some, but not all identified gender differences. Hence, another explanation could 

be that the domain-specific gender equality indicators that we chose were not exhaustive to 

represent all facets of gender equality. The available gender equality indicators that we 

selected reflect the gendered access to opportunity structures and the cultural value of 

women in a society (gender ratios in primary, secondary, and tertiary education 

enrollment) and the permeation of the so-called glass ceiling (women’s share of higher 

positions and research positions). Thus, they indicate whether it is (a) possible for women 

to engage in education, and (b) whether it is worth it (Else-Quest & Grabe, 2012). It is 

highly plausible that variations in these factors contribute to gender differences in 

educational outcomes across countries. 

However, another likely explanation for gender differences in students’ domain-

specific achievement and achievement motivation could be the varying endorsement of 

gender stereotypes related to education across countries. Our findings suggest that the 

average gender differences were consistent with prevailing gender stereotypes (i.e., math + 

physics = male, verbal domain + human biology = female). Thus, it would be plausible that 

the perceived importance of specific educational domains (such as mathematics, 

reading/native language education, and science) for girls/women and boys/men moderated 

gender differences in these domains. For example, this could be measured by items such as 

“Education in mathematics/native language/science is more important for a boy than for a 

girl.” Such a measure would assess gendered stereotypes about mathematics, reading, and 

science at country level and would thus allow to test central predictions of the SEVT and 

the SRT. 
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Furthermore, it is possible that other factors than gender equality influence the 

presence or absence of gender differences in the group of top-performing math students 

across countries. For instance, studies by Baye and Monseur (2016) and Gray et al. (2019) 

showed that male students’ mathematics achievement scores varied more than female 

students’ scores across a large range of countries. The greater variability of male students’ 

math scores in the general population could be related to the preponderance of male 

students in the top 5% in mathematics (e.g., Hedges & Friedman, 1993). Reasons for male 

students’ greater variability are mostly unknown (Gray et al., 2019). However, the finding 

that the variability varied across countries (Baye & Monseur, 2016; Gray et al., 2019) 

provides first evidence for the influence of further moderating factors. Gray et al. (2019) 

showed that the variability is to some extent related to the level of gender equality in a 

country. To this end, a move toward an intersectional perspective that considers the 

interaction between different social identities (e.g., race, social class, and sexual 

orientation) simultaneously when studying gender differences will most likely expand our 

understanding of gender differences––in the general population, but also in the top 5% in 

mathematics (e.g., Cole, 2009; Hyde, 2014; Parker et al., 2019). 

4.2.3 Gender Equality Indicators: Challenges in the Field 

Gender equality indicators are an important resource for researchers interested in gender 

disparities. To improve the status of girls and women across multiple domains, the UN 

decided in 1995 to expand the data base on women and their status in relation to economic, 

social, political, cultural, and health-related development (Else-Quest & Hamilton, 2018). 

Since then, an assortment of composite and domain-specific gender equality indicators 

have been developed or made accessible (for reviews, see Else-Quest & Grabe, 2012; Else-

Quest & Hamilton, 2018; Hawken & Munk, 2013).  
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Among the most prominent composite indicators are the World Economic Forum’s 

Global Gender Gap Index (GGGI), the UNDP’s Gender Empowerment Measure (GEM), 

the UNDP’s Gender Equality Index (GEQ), the UNDP’s Gender Inequality Index (GII), 

Social Watch’s Gender Equity Index (GEI), and the OECD’s Social Institutions and 

Gender Index (SIGI). Composite indicators aggregate multiple domains of gender equality 

(e.g., health, education, politics, and economic participation) into one score. They differ 

with respect to the domains they include, the domain-specific indicators they choose to 

represent the domains, and the weighting of the domain-specific indicators to aggregate the 

composite score (Else-Quest et al., 2010; Hawken & Munk, 2013).  

Composite indicators have been and are still widely used to investigate, for 

example, whether different levels of gender equality across countries moderate gender 

differences in educational outcomes (e.g., Else-Quest et al., 2010; Gray et al., 2019; Guiso 

et al., 2008; Hyde & Mertz, 2009; Machin & Pekkarinen, 2008; Reilly, 2012; Stoet & 

Geary, 2013, 2015, 2018, 2020a; notably, Else-Quest et al., 2010; Reilly, 2012; Reilly et 

al., 2019; and Stoet & Geary, 2015 also included domain-specific indicators). From a 

psychometric perspective, however, the use of composite indicators in correlational 

research designs is highly problematic for several reasons. Most importantly, gender 

equality is a multidimensional construct. As such, measuring it by one measure cannot 

achieve any real construct validity (Else-Quest & Hamilton, 2018). A systematic analysis 

of the measurement methodology of five of the aforementioned composite scores by 

Hawken and Munk (2013) casts doubts on the psychometric quality of these indicators. For 

example, the authors found that the considered composite indicators often lack a clear 

theoretical foundation, including one of the most popular composite gender equality 

indicators, the GGGI. Furthermore, all indicators share the weaknesses that the set of 

indicators do not fully cover the meaning of the concept or domain being measured, or 
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comprise redundant or irrelevant indicators; there was no justification given for various 

decisions made in the aggregation process; and no sensitivity analyses were carried out to 

validate the measures (Hawken & Munk, 2013). 

Instead, gender equality should be measured by domain-specific indicators that are 

theoretically relevant and (better) reflect the mechanism under investigation (for examples, 

see Study I; Else-Quest & Grabe, 2012; Else-Quest & Hamilton, 2018). The advantages of 

domain-specific indicators are illustrated by the following example: Two nations can 

achieve the same value on the GGGI, but show variation within and between countries on 

different domain-specific indicators. I will illustrate this with the example of Argentina and 

Moldova that both achieve a GGGI score of 0.773 (Table 2). However, Argentina scores 

relatively high on gender equality in the political domain, but relatively low on gender 

equality in the economic domain. On the contrary, Moldova scores relatively high on 

gender equality in the economic domain, but relatively low on gender equality in the 

political domain. On the between-country level, Argentina scores higher on gender 

equality in the political domain than Moldova, but lower in the health and economic 

domains. The example of Argentina and Moldova shows that composite indicators cannot 

indicate which domains are relevant and, thus, they neither provide empirical evidence for 

theory development and evaluation, nor for how a country can improve the equality 

between men and women (Else-Quest & Hamilton, 2018). Domain-specific indicators, by 

contrast, offer all these possibilities (Else-Quest & Hamilton, 2018) and have been applied 

in a range of studies to explain which factors moderate cross-national gender gaps in 

mathematics achievement (Baker & Jones, 1993; Else-Quest et al., 2010; Penner, 2008; 

Reilly, 2012; Riegel-Crumb, 2005). 
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Table 2. Comparison of Domain-Specific Indicators Based on the Example of Two 

Countries With the Same Value on the GGGI 

Indicators Argentina Moldova 
GGGI valuea 0. 733 0. 733 
GGGI ranka 36.  35.  
Adolescent birth rate (per 1,000 women ages 15–49 years)b 62. 80 22. 40 
Female-to-mal ratio in labor force participationc 0. 70 0. 89 
Share of seats in parliament (%)b 39. 50 22. 80 
a Retrieved from http://www3.weforum.org/docs/WEF_GGGR_2018.pdf  
b Retrieved from http://hdr.undp.org/en/data  
c Retrieved from https://data.worldbank.org/indicator/SL.TLF.CACT.FM.ZS  
 

 To conclude, due to the low psychometric quality of composite gender equality 

indicators (Hawken & Munk, 2013), these indicators should not be used to examine the 

influence of gender equality on any outcomes (Else-Quest & Grabe, 2012; Else-Quest & 

Hamilton, 2018). Instead, a large number of specific gender equality indicators are 

available that allow a theory-driven investigation of the relation between specific aspects 

of gender equality and a specific outcome (see Else-Quest & Grabe, 2012; Else-Quest & 

Hamilton, 2018). For example, researchers are advised to select gender equality indicators 

related to education (e.g., enrollment ratios, literacy rates, women’s share of higher 

positions, or women’s share of research positions) when examining gender gaps in 

educational outcomes rather than composite gender equality indicators (such as the GGGI). 

This will result in more meaningful results and ultimately a higher validity of the body of 

knowledge on the impact of gender equality in the literature.   

4.3 Research Question III: Which Functional Relation Exists Between Students’ 

Academic Achievement and Corresponding Academic Self-Concepts? 

Study II examined the functional relation between academic achievement and 

corresponding academic self-concepts across (a) different domains (i.e., mathematics and 

verbal), (b) different age groups (i.e., elementary and secondary school students), and (c) 



GENERAL DISCUSSION 
 

 203 

13 different countries. To this end, we drew on representative individual student data from 

eight assessment cycles of three major educational large-scale studies (i.e., TIMSS, PIRLS, 

PISA; N = 470,804) and applied quadratic and interrupted regression analyses. We 

combined the results from each country and cycle in an integrative data analysis to 

examine their generalizability and robustness (see Curran & Hussong, 2009; Hofer & 

Piccinin, 2009). 

4.3.1 Results From Study II 

The findings provided strong evidence of nonlinear relations between achievement and 

self-concepts for students in secondary school in mathematics and the verbal domain. For 

secondary school students, the results from the quadratic regression analyses and 

interrupted regression analyses implied that the increase in students’ self-concept was 

weaker for lower achieving students than for higher achieving students in both domains. 

For 15-year-old students, the interrupted regression analysis even revealed that 

mathematics achievement was not significantly related to self-concept of mathematics for 

lower achieving students, but the relation was significantly positive for higher achieving 

students. 

 Nonlinear effects were also present in elementary school students, but the pattern of 

results was rather heterogeneous across countries and applied methods. On average, the 

findings from the quadratic regression analyses indicated that––similar to the results for 

older students––the increase in students’ mathematics self-concept in Grade 4 was lower 

for lower achieving students than it was for higher achieving students. However, the 

interrupted regression analyses showed that the relation between mathematics achievement 

and mathematics self-concept differed not much for higher and lower achieving students. 

A different results pattern emerged for the verbal domain, where the quadratic regression 



GENERAL DISCUSSION 
 

 204 
 

analyses indicated that reading achievement and reading self-concept were to some extent 

more strongly related for lower achieving students than for higher achieving students in 

Grade 4. The interrupted regression analyses confirmed this result. Thus, the findings of 

the study were mixed regarding age differences in nonlinear relations between 

achievement and self-concepts in mathematics and the verbal domain (see also the 

Discussion section in Study II).  

To conclude, Study II shows that a linear regression model could not fully capture 

the relations between achievement and the corresponding self-concepts in mathematics and 

the verbal domain for a substantial proportion of the student body in secondary school. As 

indicated by the interrupted regression models, this “substantial proportion” ranged from, 

on average, 12% (TIMSS, Grade 8) to 22% (PISA, verbal domain) of the students. Given 

the heterogeneity in the results as observed for elementary school students, we recommend 

that nonlinear models not only be specified for secondary school students but also for 

elementary school students. 

4.3.2 From Tools to Theories: How Do Statistical Models Influence Our Scientific 

Knowledge Gain? 

In his tools-to-theories heuristic, Gigerenzer (1991) argues that scientific tools (i.e., 

methods and instruments) inspire researchers to new theoretical metaphors. For instance, in 

the 19th century, Faraday’s instruments for recording electric currents influenced the 

understanding of electrophysiological processes, which is reflected in concepts such as 

“muscle current” and “nerve current” (Lenoir, 1986). According to Gigerenzer (1991), an 

example for the influence of scientific methods on theory development is the 

institutionalization of inferential statistics in the 1960s. The introduction of inferential 

statistics into cognitive psychology led to a reinterpretation of many cognitive processes 
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suggesting that the mind is an “intuitive statistician.” For example, Kelley (1967) assumed 

in his causal attribution theory that the mind attributes a cause to an effect by conducting 

an ANOVA and testing null hypotheses (Gigerenzer, 1991). However, Gigerenzer (1991) 

also stresses that the fact that our scientific instruments and statistical models shape 

scientific theory development should also make us aware of the limitations of current 

theories and research programs and for limitations in the further development of 

alternatives and new possibilities. Gigerenzer’s conclusions can also be applied to other 

research areas, such as the research on academic self-concepts. Similar to the “ANOVA 

mind,” there might be a “linear regression mind” in researchers studying academic self-

concepts and its formation. As demonstrated in the Introduction section in Study II, the 

implicit assumption of a linear relation between academic achievement and corresponding 

self-concepts is prevalent in educational psychology. However, the results in Study II show 

that assuming a nonlinear relation between achievement and corresponding self-concepts is 

highly plausible and might better capture the relation between those two constructs, at least 

for secondary school students. An adherence to the “linear regression mind” might hamper 

theory development in the long run.  

4.3.3 Improving the Testability of Theories by Specifying Functional Relations  

According to Popper (2002), the higher the probability with which a theory can be 

falsified, the higher its scientific quality and value. Popper calls this probability of 

falsification the informative content of a theory. Thus, the higher the informative content of 

a theory, the higher its scientific quality and value, as it offers more possibilities for 

testability and falsification. Indeed, Meehl (1967) criticized the lack of informative content 

of psychological theories as an obstacle to progress in psychological research. 
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The form of the functional relation between academic achievement and 

corresponding self-concepts is usually not specified in theories that involve these 

constructs such as the SEVT (e.g. Eccles & Wigfield, 2020), or the I/E Model (Marsh, 

1986), the REM Model (Marsh & Martin, 2011), the Dimensional Comparison Theory 

(Möller & Marsh, 2013), or the BFLPE Model (Marsh, 1987). However, specifying 

assumptions on the functional relation between academic achievement and corresponding 

self-concepts would increase the informative content of these theories (or models) and 

would consequently enhance their scientific quality. 

4.3.4 Measuring the Influence of Response Styles on Academic Self-Concepts by 

Using Vignette Formats 

As previously defined, academic self-concepts represent a person’s mental representations 

of his or her own abilities in academic domains (Marsh & Craven, 1997). As a result, they 

are only accessible through introspection and are assessed by self-reports. The assessment 

of academic self-concepts relies on Likert items, which present students with statements to 

which they respond to by ticking a box on a scale (e.g., strongly disagree, disagree, agree, 

strongly agree). These items, while convenient, efficient, and highly predictive of key life 

outcomes (Duckworth & Yeager, 2015), have a variety of response biases that can impact 

the validity of scores obtained (Shadish et al., 2002). As briefly discussed in Study II, 

response styles bias how individuals respond to Likert items and can consequently 

influence the functional relations between achievement and corresponding self-concepts. 

Response styles refer to the tendency to agree with most items, regardless of their content 

(acquiescence), to disagree with most items, regardless of their content (disacquiescence), 

to use the endpoints of a scale (extreme response style), and to carelessly of randomly 

answer items (noncontingent responding; Buckley, 2009; Kyllonen, 2016). Buckley (2009) 
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showed that adjusting for students’ response biases tended to result in 2 out of 3 studied 

countries in weak negative nonlinear relations between science achievement and a self-

constructed global science attitude scale in PISA 2006.  

A promising way to control for response style effects is to rescale items based on an 

anchoring vignettes approach (e.g., Bolt et al., 2014; He et al., 2017; King et al., 2003; 

King & Wand, 2007). In this approach, individuals are asked to rate so-called vignettes 

that, for example, describe low, medium, and high levels of teacher support behavior on a 

categorical rating scale (OECD, 2014; Table 3).  

 

Table 3. Anchoring Vignettes Based on Teacher Support Behaviors in PISA 2012 

Level of TS Description 
Low level Ms. <name> sets mathematics homework once a week. She never gets 

the answers back to students before examinations. 
Medium level Mr. <name> sets mathematics homework once a week. He always gets 

the answers back to students before examinations. 
High level Ms. <name> sets mathematics homework every other day. She always 

gets the answers back to students before examinations. 
Note. TS = Teacher support. 4-point rating scale (strongly disagree to strongly agree). 
OECD (2014), p. 52. 

 

It is supposed that systematic differences in individuals’ ratings of the same vignette 

mainly reflect differences in response styles, whereas individuals’ ratings of the target item 

are a combination of response style distortion and the true trait level. Thus, to obtain a 

response-style-free estimate of the actual level of the target trait, individuals’ ratings of the 

vignettes are in the next step used as personal standards by which responses to the target 

items are rescaled (He et al., 2017). In previous studies, the vignette format has been 

successfully applied to reduce the influence of response styles on variables measured with 

Likert items (e.g., He et al., 2017; Mõttus et al., 2012; Primi et al., 2016). The vignette 

format was also applied in PISA 2012 on teacher support and classroom management 
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scales (OECD, 2014). Thus, this technique could be used to examine the robustness of part 

of the findings from Study II against the influence of response styles (i.e., the nonlinear 

relations between achievement and self-concept in mathematics in PISA 2012). Some 

researchers propose that for reasons of efficiency the same set of anchoring vignettes can 

be applied to different constructs of the same response format because the response styles 

to different constructs remain the same (e.g., Kyllonen & Bertling, 2014). However, other 

researchers assume that individuals’ personal standards depend on the specific target 

construct and would therefore advise against this proposal and recommend to use vignettes 

closely related to the construct of interest (e.g., He et al., 2017; Vonkova et al., 2017). To 

conclude, using the teacher support and classroom management vignettes to rescale 

students’ self-concept responses could be a first, but maybe not yet perfect, attempt to test 

the robustness of the nonlinear effects against response style bias. 

4.4 Strengths, Limitations, and Directions for Future Research 

Study-specific strengths and limitations are discussed in the Discussion section of each 

study (see Chapters 2 and 3). In the following, strengths and limitations of the doctoral 

thesis as a whole will be highlighted and, subsequently, directions for future research will 

be discussed. 

4.4.1 Strengths and Limitations 

The present doctoral thesis comprises both strengths and limitations.  

A first strength is that I was able to use international large-scale assessment that 

provide high quality data. The data quality is characterized by the fact that TIMSS, PIRLS, 

and PISA provide student data from defined populations (i.e., students in Grade 4 and 8 in 

TIMSS, students in Grade 4 in PIRLS, and 15-year-olds in PISA) that were 
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representatively sampled. Furthermore, measuring instruments in these assessments are 

rigorously tested in field studies to ensure high psychometric quality. Most importantly, 

the exclusive use of data from international large-scale assessments considerably reduced 

the heterogeneity of effect sizes in both studies due to greater methodological homogeneity 

(e.g., applying the same measures across cycles). Thus, using data from international large-

scale assessments in Study I and II provided the strongest data basis to answer the three 

research questions.  

Second, following the principles of critical multiplicism (Shadish, 1993), the 

functional relations between achievement and self-concepts in Study II were examined 

with different analytical methods, in different populations, countries, and domains, in order 

to minimize bias.  

Third, and as one focus of this thesis, state-of-the-arts methods of data analyses 

were used in both studies to examine the interplay of achievement and achievement 

motivation. For example, research synthesis methods, such as individual participant data 

meta-analysis and integrative data analysis, as well as multiple imputation techniques to 

impute missing data (Study I: missing data on moderator variables, Study II: missing data 

on self-concepts) were used. Especially the use of research synthesis methods that 

synthesized effect sizes across multiple countries and cycles of PISA, TIMSS, and PIRLS 

yielded strong (i.e., robust and generalizable) evidence for gender differences in top-

performing math students, moderating influences of specific gender equality indicators, 

and nonlinear relations between achievement and corresponding self-concepts. 

Fourth, and specifically related to Study I, many facets of gender differences in 

achievement, achievement profiles, and motivation were systematically investigated 

together for the first time in a representative sample of top-performing math students. 

These can be considered as antecedents of gender differences in educational and 
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occupational STEM choices. Thus, Study I provided a comprehensive contribution to the 

field of gender and STEM.  

Taken together, both Studies I and II as well as the doctoral thesis in general 

provide strong empirical evidence on the interplay of achievement and achievement 

motivation. 

Despite its strengths, the present doctoral thesis is not without general limitations, 

which I will discuss in the following. One limitation might be that large-scale assessments 

cannot explain why outcomes in individual countries are as they are because their design 

warrants no causal conclusions. For example, they cannot provide any concrete guidelines 

on how to ensure greater gender equality in education for specific countries (Study I), or 

inform us why the functional relations between achievement and self-concept varied across 

countries (Study II). Additional information needs to be collected in these cases (e.g., 

interviews with education experts or politicians about characteristics of national education 

systems). Furthermore, despite the many advantages that come with using data from 

international large-scale assessments (see above), another limitation might be that the 

exclusive use of data from international large-scale assessments entails the risk that 

specific characteristics of large-scale assessments could systematically influence the results 

of the study; these characteristics might include low-stakes testing (i.e., assessments have 

no influence on students’ course grades), which might influence students’ motivation in 

these assessments; different conceptual frameworks may be involved (e.g., focus on 

literacy in PISA vs. on the curriculum in TIMSS and PIRLS might yield different relations 

between achievement and motivational variables); and the introduction of computer-based 

assessment in PISA 2015 potentially induce mode effects (i.e., items are systematically 

easier or harder when delivered on computer as compared to the paper-based assessment) 

that might differ between male and female students (Jerrim et al., 2018). 
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Nonetheless, the aforementioned advantages of large-scale assessments outweigh their 

disadvantages by far.  

4.4.2 Directions for Future Research 

In the next sections, I will outline four research avenues for rendering analyses in the area 

of the present doctoral thesis more multiverse, robust, and specific. 

4.4.2.1 Context-Sensitive Profiles in Achievement and Achievement Motivation 

As argued before, scientific findings are shaped by the statistical models we apply in our 

research. Something similar could be observed in research that uses achievement and 

achievement motivation profiles. In the Introduction of this doctoral thesis, I presented 

several approaches on how profiles in achievement and achievement motivation can be 

operationalized (Section 1.5.1). These approaches differed in their focus (variable-centered 

vs. person-centered), in their breadth (profiles of two or more constructs), and how the 

criteria for the profile formation were determined (content-related or data driven). The way 

profiles are operationalized likely affects the results of a study. 

As intraindividual hierarchies in achievement and achievement motivation play an 

important role in the SEVT for predicting individuals’ future achievement and 

achievement-related choices (Eccles, 1994; Wigfield & Eccles, 2020), a systematic 

overview of profiles in achievement and achievement motivation would be highly 

desirable. This overview could cover definitions of profiles and develop a taxonomy that 

defines in which contexts for which research purposes which profiles should be used. 
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4.4.2.2 Robust Analyses of Nation-Level Gender Equality 

Researchers interested in examining the influence of gender equality on gender differences 

in educational outcomes are faced with a range of analytical decisions that will likely 

affect the results of their study. These include, for example, from which period of time the 

gender equality indicators should be included, how the mapping between nation-level 

indicators and countries or economic regions is done, whether or not different data sets of 

the same indicator are combined to increase the available information on countries, 

whether or not several data sets from international large-scale assessments are combined to 

increase the sample of countries, and whether or not missing data on the indicators are 

imputed. In the following, I will briefly describe typical analytic decisions in this field. 

There are at least two possible approaches to the question of the period of time for 

which the indicators should be included. One approach is to match the indicator with the 

year in which the target variables were collected (e.g., Penner, 2008; Stoet & Geary, 2018) 

or to choose the year closest in time to the collection of the target variables if data from the 

same year were not available (e.g., Else-Quest et al., 2010; Guiso et al., 2008; Machin & 

Pekkarinen, 2008; Reilly, 2012; Riegle-Crumb, 2005; Stoet & Geary, 2015). For example, 

Riegle-Crumb (2005) drew on data from TIMSS 1995 and chose gender equality indicators 

from “the early 1990s” (p. 231) to be “representative of the extent of stratification that 

existed at approximately the same time that the TIMSS survey were being administered to 

students” (pp. 241–242). Another approach is to use indicators from previous years (e.g., 

Baker & Jones, 1993). For example, Baker and Jones (1993) drew on data from the Second 

International Mathematics Study (SIMS) from 1982 and gender equality indicators from 

the years 1970 to 1975 because “these indicators show the stratification of opportunity 
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before the collection of the SIMS data or the adult opportunity structure evident to students 

in the SIMS study” (p. 95; Baker & Jones, 1993).  

Another analytical decision is the mapping between nation-level indicators and the 

countries or economic regions that participated in the large-scale assessments. Whereas 

domain-specific gender equality indicators are usually only available at the nation level, 

large-scale assessments (such as PISA) also collect data from students in specific 

economic regions (e.g., Beijing, Shanghai, Jiangsu, and Guangdong in China, PISA 2015). 

It is up to the researchers to decide whether to exclude the economic regions from the 

analyses (e.g., Stoet & Geary, 2020b), whether the characteristics of the economic regions 

and associated nations are similar enough to replace the missing regional values with the 

national value (e.g., Study I), or to treat the data as missing and apply a missing data 

imputation technique (e.g., multiple imputation).  

Furthermore, different organizations provide different data on the same gender 

equality indicators (different ranges of countries and different time periods). For example, 

women’s share of research positions is both documented by the UNESCO and the OECD. 

Thus, researchers may choose to combine these data in different ways. They can (1) treat 

data sets equally by aggregating all available information (e.g., Stoet & Geary, 2015; Study 

I), (2) relying on information from one data set and filling only the gaps with data from the 

other data set, or (3) just use data from one of the data sets (e.g., Else-Quest et al., 2010). 

In addition, some researchers analyzed single cycles from international large-scale 

assessments to answer their research questions (e.g., Else-Quest et al., 2010; Guiso et al., 

2008; Machin & Pekkarinen, 2008) or treated several cycles separately (Stoet & Geary, 

2013, 2015, 2018), whereas other researchers (Study I) aggregated several cycles from 

international large-scale assessments. The aggregation increases the number of countries in 
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the sample and thus may enhance the statistical power and precision to estimate the 

relation between gender differences and gender equality indicators. 

Finally, results might vary depending on whether missing data on gender equality 

indicators were imputed (e.g., Study I) or not (e.g., Else-Quest et al., 2010; Guiso et al., 

2008; Machin & Pekkarinen, 2008; Penner, 2008; Stoet & Geary, 2013, 2015, 2018). 

Imputing missing data may also increase the statistical power and precision as well as 

mitigate bias when estimating the relation between gender differences and gender equality 

indicators. 

Given the different analytical approaches that can be found in the literature on the 

relation between gender equality and gender differences in educational outcomes, it would 

be interesting to conduct a specification curve analysis (Simonsohn et al., 2015) or 

multiverse analysis (Steegen et al., 2016). Both specification curve analysis and multiverse 

analysis assess the robustness of findings by performing and combining all theoretically 

justified, statistically valid, and non-redundant analyses across all alternative data sets. 

4.4.2.3 From Nation-Level Gender Equality to Specific Regional-Level Gender 

Equality 

Study I investigated the moderating effects of several domain-specific gender equality 

indicators on the share of female students in the top 5% in mathematics and gender 

differences within this group of students. It was found that tertiary enrollment ratios 

predicted the proportion of female students in the top 5% in mathematics, and tertiary 

enrollment ratios and women’s share of research positions in a country predicted 

mathematically top-performing female and male students’ achievement profile scores. 

However, these patterns tell us little about the causal relationships between nation-level 

gender equality indicators and gender differences in this group of students. A longitudinal 



GENERAL DISCUSSION 
 

 215 

research design that tracks gender equality indicators and gender differences in (top-

performing math) students’ achievement (and possibly their achievement profiles and 

achievement motivation) over time might better approximate the estimation of causal 

relationships. Since the available PISA data basis is continuously expanded by one cycle 

every three years (e.g., students’ mathematics achievement can currently be linked across a 

period of 15 years [PISA 2003–2018]), this would be an interesting research endeavor.  

In addition, most research on the influence of gender equality on gender differences in 

educational outcomes has been conducted at the international level. However, gender 

equality also differs regionally (e.g., Bundesministerium für Familie, Senioren, Frauen und 

Jugend [BMFSFJ], 2017). How children and adolescents experience gender equality in 

their more immediate environment is likely to have a greater impact on their development 

than the average gender equality at national level. To advance gender equality within a 

country, it would be useful to examine the relation between gender equality and gender 

differences in educational outcomes of female and male students also at the regional level. 

The results of such a study could be used to support evidence-based policy making. For 

example for Germany, a multilevel (longitudinal) study could be conducted by matching 

data on students’ educational outcomes from national assessment studies (e.g., the IQB’s 

National Assessment Study and IQB Trend in Student Achievement) and gender equality 

indicators (such as women’s share of higher positions, women’s share of elected officials 

in municipal representations, part-time employment rate for women, employment rate of 

mothers with young children, father’s share of parental benefit) available for the years 

2008, 2011, and 2015 (BMFSFJ, 2010, 2013, 2017) at the state level.  
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4.4.2.4 Gender as Nonbinary Variable in Psychological and Educational Research 

In the data that I used in the present doctoral thesis, gender was conceptualized as binary. 

That is, answering the student questionnaire in TIMSS, PIRLS, and PISA, students could 

categorize themselves into just two categories: female or male. This approach is based on 

what is referred to as the gender binary. Psychologists have justified this dichotomization 

by the fact that men and women could be characterized by separate sets of brain features, 

hormones, psychological characteristics, and gender identities. This practice has been 

considered as natural and inevitable for decades (Hyde et al., 2019). However, different 

forces challenge psychology’s assumption of the gender binary, ranging from the 

transgender activist movement (e.g., Stryker, 2008), the intersex activist movement (e.g., 

Reis, 2007) to recent research findings. For example, evidence from neuroscience and 

behavioral endocrinology refutes the gender dimorphism of the human brain (e.g., Joel et 

al., 2015) and the hormonal systems (e.g., Gillies & McArthur, 2010); findings from 

psychology emphasize the similarities between women and men (e.g., Zell et al., 2015); 

developmental research stresses the social-cognitive mechanisms with which we learn that 

gender is a culturally meaningful category as children (e.g., Bigler, 2013); and 

psychological research documents transgender and nonbinary individuals’ identities and 

experiences (e.g., Tate et al., 2014; for reviews, see Hyde et al., 2019; Schellenberg & 

Kaiser, 2018). As a result, more and more countries adopt laws to accommodate nonbinary 

gender identities (Schmidt & Fox, 2018). 

To study this rich complexity of gender in adolescents and adults, researchers need 

to assess individuals’ gender in nonbinary ways. In the following, two methods are 

presented to do so. One method is to provide individuals with several options to choose 

from when assessing their gender. These options could include “female,” “male,” 
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“transgender female,” “transgender male,” “genderqueer,” and “other (specify).” 

Alternatively, researchers can ask individuals to self-identify by using open-ended 

questions (e.g., “What is your gender?” or “How do you currently identify?”). 

Furthermore, researchers might assess birth-assigned and self-assigned gender identities 

separately (Hyde et al., 2019; Lindqvist et al., 2020). 

A second method to assess individuals’ gender in a nonbinary way is to treat gender 

as a multidimensional, continuous construct. One means to do this is to use inventories, 

such as the Bem Sex-Role Inventory (BSRI; Bem, 1974), the Personal Attributes 

Questionnaire (PAQ; Spence & Helmreich, 1978), or the Multi-Gender Identity 

Questionnaire (Multi-GIQ; Joel et al., 2014). The BSRI assesses femininity and 

masculinity as two independent dimensions on which an individual can score low or high 

on both dimensions or high on one dimension and low on the other (but see also Hoffman 

& Borders, 2001). The PAQ measures the degree to which a person can be classified 

according to masculine (agentic) or feminine (communal) adjectives and consists of three 

scales: the instrumentality scale (masculinity), the expressivity scale (femininity), and the 

androgyny scale (masculinity–femininity; Spence & Helmreich, 1978). The Multi-Gender 

Identity Questionnaire (Multi-GIQ; Joel et al., 2014) assesses individuals’ self-

identification with femininity and masculinity on levels related to gender identity, gender 

expression, legal gender, and bodily aspects (for reviews, see Lindqvist et al., 2020; Wood 

& Eagly, 2015). The most comprehensive approach to measuring gender is proposed by 

Schellenberg and Kaiser (2018) who suggest six gender dimensions (gender expression, 

gender identification, gender attitudes, gender traits, [recalled] gender socialization, and 

gender role behavior). 

Future research on gender differences in adolescents should strive for a more 

nuanced view on gender. Assessing gender in a nonbinary way and incorporating 
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dimensional gender measures, not only contributes to a more inclusive society, but also 

expands our understanding of the underlying mechanisms that produce or moderate gender 

differences (e.g., hormone levels, gender role expectations, etc.). There are already some 

examples of studies that take a more nuanced approach. For example, a study by Reilly et 

al. (2016) investigated whether gender role identity mediates the relationship between 

gender and gender-typed cognitive abilities. However, to date, research rarely assesses 

individuals’ gender in a nonbinary way. Incorporating nonbinary measures for gender into 

large-scale studies, such as TIMSS or PISA, could make an important contribution, since 

large-scale studies often have much larger sample sizes than individual studies and are 

usually drawn on a representative basis. 

4.5 Implications for (Educational) Policy and Practice 

In the following sections, I will discuss selected practical implications that arise from the 

results of the present doctoral thesis. These implications address (1) how to increase 

women’s representation in STEM, and (2) what nonlinear relations between achievement 

and corresponding self-concepts imply for achievement-based interventions.  

4.5.1 How to Increase Women’s Representation in STEM? 

The results of Study I showed that very many mathematically able female students do 

exist. Although the female-to-male ratio in the top 5% in mathematics was not perfectly 

balanced (female-to-male ratio 1:1.50), the study supports the conclusion that there is a 

considerable number of women in the STEM pool in almost all countries. Thus, what can 

be done to increase women’s representation in STEM careers, especially in the fields of 

engineering, physics, and computer sciences that are characterized by the most extreme 

gender disparities?  
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From a historical perspective, programming, for example, has not always been 

considered a male domain. In the early 1940s, the world’s first computer programmers 

who worked on the ENIAC––the first large, general-purpose electronic computer––were 

women (Morell, 1996). In 1967, in an article titled “The Computer Girls” even the women 

fashion and entertainment magazine Cosmopolitan advertised programming as an ideal job 

for women and described the profession as offering better job opportunities for women 

than many other professional careers. However, already since the 1950s, computer 

programming was increasingly “made masculine” as the field was beginning to acquire 

new status. One reason why women were driven out of this field was, for example, the 

development of the notion that programmers typically show no interest in people. 

Consequently, “disinterest in people” had been taken into account as a criterion in 

personality tests for personnel selection by the majority of companies in the mid-1960s, 

which resulted in an increasing male dominance of the field (Ensmenger, 2010).  

As noted before, the SEVT assumes that women are less likely to enter STEM 

fields than men because they have lower expectancies for success and lower subjective 

task values with regard to STEM as compared to other fields (e.g., the humanities; Eccles, 

1994). According to Diekman et al.’s (2011) goal congruity model, there are less women in 

STEM because STEM careers are not perceived as the best choice for fulfilling the 

communal goals that are especially valued by women (e.g., working with or helping 

others). This perceived mismatch between women’s communal goals and their belief that 

STEM careers do not embody such values may ultimately result in female students’ 

particular disinterest in STEM fields (Diekman et al., 2011). Based on the SEVT (Eccles & 

Wigfield, 2020; Wigfield & Eccles, 2020) and the goal congruity model (Diekman et al., 

2011), four strategies will be presented that might help to (re)recruit women into STEM: 

(1) change STEM culture by changing STEM stereotypes, (2) enhance students’ 
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expectancies for success and values regarding STEM, (3) align STEM activities with 

students’ values, and (4) reduce the perceived importance of brilliance in STEM (see also 

Diekman et al., 2019). 

4.5.1.1 Change STEM Culture by Changing STEM Stereotypes 

Especially in the fields of computer science, engineering, and physics, the stereotypical 

perceptions are that the people working in these fields are male, socially awkward, and 

focused on technology (Cheryan et al., 2015, 2017). Thus, women who enter these 

contexts may be less likely to be considered as belonging to STEM, which is also reflected 

in their experiences (Diekman et al., 2019). These stereotypes can be challenged by 

knowing people in the field who do not confirm these stereotypes (e.g., Cheryan et al., 

2013). For example, available female role models and mentors can have positive effects on 

female students’ STEM engagement (Downing et al., 2005). Female role models can be 

STEM practitioners whose work is highlighted in courses or who visit the school or the 

university, or teachers or faculty within schools or STEM departments. 

4.5.1.2 Enhance Students’ Expectancies for Success and Values Regarding STEM 

Drawing on the SEVT, a plethora of studies have shown that utility value interventions and 

also cost interventions can increase students’ interest, performance, and attainment in 

STEM at high school and university level in the short and long term (e.g., Gaspard et al., 

2015; Hecht et al., 2019; Hulleman & Harackiewicz, 2009; Rosenzweig et al., 2020; Rozek 

et al., 2015). Furthermore, it has been shown that utility value interventions can also 

positively influence other motivational beliefs and values (Hecht et al., 2019). These 

interventions mostly consist of students writing an essay on the relevance of specific 

STEM fields to their personal lives (utility value intervention) or on how they could 
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perceive the challenges of their physics course as less psychologically costly (cost 

intervention; Gaspard et al., 2015; Hecht et al., 2019; Hulleman & Harackiewicz, 2009; 

Rosenzweig et al., 2020). Hence, these findings suggest that it might be useful to integrate 

essays on the relevance of STEM for students’ own lives into (e.g., the STEM) curricula at 

school and university to foster female students’, but also male students’, STEM 

participation. Importantly, an intervention that targeted parents’ utility value beliefs about 

math and science led to an increased course-taking by high-achieving female students 

(Rozek et al., 2015). Thus, informing high-achieving adolescent girls’ parents about the 

usefulness of mathematics and science for adolescents seems also to be an effective tool 

for increasing female students’ STEM engagement. 

4.5.1.3 Align STEM Activities With Students’ Values 

From the communal goal congruity perspective, another way to make STEM fields more 

attractive to girls and women could be to frame STEM fields as affording a wider range of 

goals, especially communal goals (Diekman et al., 2019). For example, research shows that 

information or experiences that convey how STEM can fulfill communal goals can have 

beneficial effects on STEM motivation and positivity for individuals who value communal 

goals, irrespective of their gender. Already brief exposures to scientist exemplars engaged 

in communal work (e.g., collaborating with colleagues) fostered beliefs that STEM could 

meet communal goals and positive attitudes toward pursuing STEM careers in women 

(Clark et al., 2016; Diekman et al., 2011; Diekman & Fuesting, 2018). Furthermore, a 

hypothetical lab experience with communal opportunities (i.e., opportunities for face-to-

face connection and mentoring) cued anticipated belonging and interest in joining the lab 

in undergraduate STEM majors (Belanger et al., 2020). Thus, designing STEM courses at 

school or university that provide communal experiences by integrating collaborative work 
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among students, by conducting projects that help others (e.g., developing online systems 

for medical or psychological counseling), or by inviting or visiting scientists who highlight 

in which ways their work is communal would be a means to increase female students’ 

engagement in STEM. These experiences are important because they dispel beliefs (with a 

kernel of truth) that STEM fields are solitary and competitive (Diekman et al., 2019). 

4.5.1.4 Reduce the Perceived Importance of Brilliance in STEM 

From the early decades of computing, programming, for example, was seen as a “black 

art” that requires an innate aptitude (Ensmenger, 2010). Recent research on field-specific 

ability beliefs suggests that women are underrepresented in fields whose members believe 

that raw, innate talent is the main requirement for success, because women are stereotyped 

as not possessing such talent (Bian et al., 2018; Leslie et al., 2015; Meyer et al., 2015; 

Storage et al., 2016, 2020). There is evidence that children at elementary school level 

already associate brilliance more strongly with boys than with girls (Bian et al., 2017). 

Importantly, messages about the significance of brilliance to success in a field, rather than 

dedication, reduced women’s, but not men’s, interest (Bian et al., 2018).  

To reduce the perceived importance of brilliance in STEM, a first step might be to 

minimize the talk of genius or brilliance with students to make a field more welcoming. 

Furthermore, teachers and faculty could encourage a growth perspective in students, as 

opposed to a fixed-trait mindset (Cimpian & Leslie, 2017; see Dweck, 1999, 2006). 

Research shows that describing a novel STEM field as focused on effort increased 

women’s feelings of belonging and future motivation (Smith et al., 2013). Furthermore, 

perceiving others in a calculus class at university level to have a growth mindset about 

math ability allowed female students to maintain a high sense of belonging in math and the 

intention to pursue math in the future. On the contrary, a fixed mindset about math ability 
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reduced female students’, but not male students’, sense of belonging and future math 

intentions, especially if they also perceived others to endorse negative stereotypes about 

women’s math abilities (Good et al., 2012). A growth mindset could be fostered, for 

example, by more advanced students, teachers, faculty, visiting scientists, or STEM 

practitioners sharing personal experiences. This may be especially effective when they 

struggled in STEM and share how they overcame these obstacles emphasizing that such 

struggles are inherent to challenging work and not to a lack of talent (Aronson et al., 2002; 

Diekman et al., 2019). 

To conclude, the most promising way to increase women’s representation in STEM 

careers seems to be to change the STEM culture (Cheryan et al., 2017; Cimipian et al., 

2020). Broadening the representation of the people who work in STEM, broadening the 

work itself, establishing a growth mindset, and expanding the environments in which 

STEM professionals work may change the stereotypes associated with STEM fields and 

might further increase girls’ and women’s sense of belonging and interest in STEM 

(Cheryan et al., 2015, 2017; Diekman et al., 2019). 

4.5.2 Implications for Achievement-Related Interventions 

The findings in Study II indicated that the relation between academic achievement and 

corresponding self-concepts was not linear across the whole achievement distribution. For 

example, for 15-year-old students, mathematics achievement and mathematics self-

concepts were not related in lower achieving students (i.e., on average for 16% of 15-year-

olds at the lower end of the achievement distribution). However, for higher achieving 

students, mathematics achievement and mathematics self-concept were positively related. 

This nonlinear relation could potentially have implications for interventions aimed at 

improving the skills of children and adolescents at risk.  



GENERAL DISCUSSION 
 

 224 
 

A typical problem of interventions is that so-called fade-out effects occur 

(Abenavoli, 2019; Bailey et al., 2017; Protzko, 2015). This means that the effect of the 

intervention disappears after some time. An important question for intervention researchers 

is therefore how sustainable effects of interventions can be achieved. Based on the results 

in Study II, it could be speculated that intervention effects are not sustained for lower 

achieving students, because their self-assessment might be disconnected from their 

achievement (e.g., due to self-protection strategies). If students’ achievement is not linked 

to their self-assessment, this can have negative consequences, for example, for successful 

self-regulated learning processes, which in turn might have negative effects on their 

achievement in the long term (e.g., Sticca et al., 2017). Consequently, the positive 

intervention effects might not be sustainable. This is problematic because it means that 

achievement-related interventions may not work for those students who need them most. 

To reconnect lower achieving students’ achievement and corresponding self-concepts, one 

approach might be to also target their self-concepts in achievement-related interventions. 

This could be done, for example, by incorporating appropriate praise and/or feedback 

strategies into the intervention. These strategies should be contingent upon performance 

that is attributional in nature (i.e., students should learn to attribute success internally and 

failure externally) and goal-relevant (O’Mara et al., 2006). 
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