
Chapter 3

Exploring molecular characteristics
of disease
— differential coexpression of groups of genes —

Synopsis: This chapter is on exploring molecular char-

acteristics of disease. I describe the dcoex algorithm de-

signed to highlight groups of differentially coexpressed

genes. That is it looks for groups of genes that are coher-

ently expressed in one (predefined) group of samples but

lose this coherence in another group. After motivating the

objective I develop the dcoex algorithm. Application to

childhood leukemia data yields biologically plausible re-

sults. Statistical significance, robustness and novelty are

assessed.

3.1 Motivation

Gene expression is a tightly regulated process, crucial for the proper functioning of a
cell. In microarray data, coregulation of genes is reflected by strong correlations be-
tween expression levels [45]. Molecular disease mechanisms typically constitute abnor-
malities in the (co)regulation of genes [55]. Resulting changes in expression profiles
help identifying disease related genes and in several cases facilitate improved diagnosis
and prognosis of disease outcome [65, 112, 128, 147, 151, 152, 157]. Alteration of gene
regulation often results in up or down regulated genes and common analysis strategies
look for these differentially expressed genes.

Not all relevant changes in gene expression need to be manifested by up or down regula-
tion of individual genes. It is well conceivable that changes in the coregulation structure
of genes lead to a diseased phenotype. While in healthy cells a group of genes may be
under a common regulatory control, this control might be lost for diseased cells. In that

45

Chapter 3 Exploring molecular characteristics of disease

ge
ne

s

control disease

ge
ne

s

control disease

Figure 3.1: Different types of structure in microarray data. The plots show simulated
heatmaps for two prototypical situations. We compare of a group of control patients
with a disease group. The plot on the left side shows single differentially expressed genes.
The right plot shows a group of differentially coexpressed genes, displaying a pattern as a
group. Both situations lead to characteristic but distinct patterns.

case, coexpression of the genes involved would disappear. We call such a group of genes
differentially coexpressed between the healthy and the disease phenotype. We do not
hypothesize that regulatory control as such is lost, but merely that the common regula-
tion of a group of genes breaks down.

We can expect that differential coexpression of a group of genes leads to characteris-
tic patterns in the expression data. To illustrate the patterns, we contrast differential
expression with differential coexpression in a simple simulation experiment: To simu-
late the differentially expressed genes, we sample each expression value from a normal
distribution with its mean dependent on the phenotype. For the differential coexpres-
sion pattern we employ an additive model regarding gene and patient effects, which is
described in detail in Section 3.2.

The result is shown in Figure 3.1, showing two heatmaps as a color representations of
the simulated expression matrices. Each column corresponds to a sample and each
row to a gene. Samples are ordered corresponding to membership in control or disease
group, while the genes are hierarchically clustered. The left plot displays differentially
expressed genes, which have a (significantly) different mean expression in each group.
The genes in right plot are differentially coexpressed: they display a coherent expression
pattern in the control group which is lost in the disease group. None of the genes in the
right plot is differentially expressed, the mean expression of all genes is almost identical
in both groups, control and disease.

From a more formal perspective, differential gene expression aims for genes with changes
in first order moments (mean expression). Our approach attempts to identify groups of

46

3.2 The dcoex algorithm

genes with different dependency structure in the two phenotypical groups: When the
genes are coregulated the expression values should be highly dependent, while they be-
come independent when the common regulation is lost. Assuming e.g. a normal model
for (generalized-log transformed [39, 68]) gene expression values, this translates to find-
ing gene groups with phenotype-conditional changes in the correlation structure (sec-
ond order moments).

In contrast to differential expression, differential coexpression cannot be analyzed gene
by gene. Since we are looking for groups of genes that exhibit changes in its members’
interplay, we need to take into account all possible groups. In typical microarray exper-
iments the number of genes is in the order of tens of thousands, implying about 210000

subsets. The challenge is to efficiently screen the astronomically large number of sub-
sets. In Section 3.2 we derive an algorithm for doing so. We start by defining a quantita-
tive concept of coexpression, leading to a score for differential coexpression that allows
for an efficient evaluation of candidate sets of differentially coexpressed genes. In Sec-
tion 3.3 we apply the algorithm to simulated and real data. We discuss the biological
plausibility as well as the robustness and novelty of our findings.

3.2 The dcoex algorithm

In this Section we introduce an algorithm for finding groups of differentially coexpressed
genes. Starting with quantifying the concept of differential coexpression, we take up a
score for the coexpression of genes previously suggested by Cheng et al. [24]. We adopt
it to our situation and generalize it to account for differential coexpression, where it en-
ables an efficient screening for candidate sets of differentially coexpressed genes. This
makes a local search heuristic feasible for large gene expression data sets.

3.2.1 Scoring differential coexpression

We now turn to deriving a score for differential coexpression of a set I of genes. We
start with quantifying the coexpression of a set of genes and discuss the resulting score.
Scoring differential coexpression will be a straight forward generalization of the coex-
pression case.

Scoring coexpression

The intention behind assigning a coexpression score to a group of genes is to single out
low scoring gene sets as candidates for coregulation. Coregulation cannot be directly
observed on (non-interventional) microarray data, and we take coexpressed groups as
candidates for coregulated groups. This is the same rationale as the one behind popular
clustering and biclustering approaches, e.g. [5, 45, 93]. While coexpression of two genes

47

Chapter 3 Exploring molecular characteristics of disease

may be quantified by e.g. the Pearson correlation coefficient, it is not clear how to gen-
eralize this to a group of genes. We choose to call a group of genes I to be coexpressed
across a group of samples J , if the expression values of all the genes in each sample are
highly dependent.

We assume that for a group I of coexpressed genes all the expression levels of all the
genes are approximately the same for a fixed patient. Expression value estimates do
not come on an absolute scale [67], therefore we allow each gene its specific offset (on
the generalized-log transformed data). Further on the common expression level of the
genes may differ between patients, as the samples might be from patients in different
conditions and taken under different circumstances. Formalizing the above, we use the
following model: If C̃ is a p ×n expression matrix (e.g. of a control group of patients) on
generalized-log scale, we consider a group I of genes coexpressed in a group of samples
J , if

c̃i j = ai +b j +εi j for i ∈ I and j ∈ J (3.1)

with small residuals εi j . In Equation (3.1) the ai compensate for the gene specific scales,
while the b j adjust for the patient heterogeneity. How well this additive model fits the
data can be quantified by the mean squared residual 1

|I ||J |
∑

i∈I j∈J ε
2
i j . A small mean

squared residual corresponds to a coexpressed group of genes, while a large value im-
plies a group of not coexpressed genes.

In our case, the group of samples J is either the control or the disease group and prede-
termined by the data. We do not optimize over this parameter, as is the case in biclus-
tering settings [24, 93, 156]. Our focus is on the group of genes I alone. An estimate for
the gene specific scale factors ai in Equation (3.1) is given by the mean of the expres-
sion values across the samples. For this reason we consider the row centered expression
matrix C = (c (1), . . . ,c (p))T , with c (1), . . .c (p) ∈RnC . The mean squared residual score for a
group of genes is then defined by

SC (I) = 1

|I |nC

∑
i∈I ||c (i) −µC ||22

µC =µC (I) = 1

|I |
∑

i∈I c (i) ,
(3.2)

as was proposed before for biclustering [24]. This is the mean squared residual of the
additive model in Equation (3.1), where the parameters ai and b j have been estimated
by row and column means. If SC (I) is small, the genes in I are coexpressed. If it is large,
they are not. A low scoring gene set implies that expression values are well approximated
by their mean value in each sample. In fact, a group of genes with a small SC (I) corre-
sponds to a group of c (i), i ∈ I gathered tightly around their mean. The score is the same
as the mean squared Euclidean distance of the group members from their mean.

Relation of SC to ANOVA We shortly relate the coexpression score with the ANOVA

48

3.2 The dcoex algorithm

framework. For convenience, let C now denote the row-centered submatrix defined by
selecting the genes in I and the samples from the control group J . The model of Equa-
tion (3.1), leading to the coexpression score SC , is also used in the context of tow way
analysis of variance (ANOVA). There, one considers a random variable Yi j = µi j + εi j

with εi j ∼ N (0,σ2). For convenience, assume 1 ≤ i ≤ |I | and i ≤ j ≤ |J |. This model im-
plies the assumptions of independence, normality and homoscedasticity. In the case of
a single observation per cell, factor interactions cannot be identified and one tries to fit
a model of additive factor effects [89]:

µi j =µ+φi +θ j ,

where
∑

i φi = 0 and
∑

j θ j = 0 for identifiability. Maximum likelihood estimators of the
model components are known to be µ̂= Ȳ , φ̂i = Ȳi ·− Ȳ , θ̂ j = Ȳ· j − Ȳ . Identifying the Yi j

with the Ci j , we see that in our case µ̂ = 0 = φ̂i (for all i) and the θ̂ j equal the column-
means. Therefore, the coexpression score is related to the error sum of squares (SSE) of
a corresponding two way anova model:

SC = SSE

|I ||J | .

The ANOVA framework provides rigorous statistical tests to decide if one of the factor
effects, say φl or θm , are different from zero. The theoretical basis forms Cochran’s the-
orem, from which for example follows that SSE/σ2 ∼ χ2((|I |−1)(|J |−1)). We, on the
other hand, simply employ SC as a measure of coherence amongst the row-vectors of
C.

Relation of SC to the Pearson correlation coefficient Here we relate the coexpression
score SC to the Pearson correlation coefficient between the row-vectors (gene-vectors)
of C. As the correlation coefficient is scale invariant, we may assume the rows of C to be
scaled as well. That is, we have ||c (i)||22 = 1, with c (i) the i -th row-vector of C. In that case,
the correlation coefficient of the i -th and the k-th gene-vector, ri k = c (i)T c (k), equals
the cosine between the two row-vectors. Let us further define the group-size m := |I |,
the vector of column-means µC := ∑

i c (i)/m (as before) and the residual vectors ε(i) :=
c (i) −µC . This implies

∑
i ε

(i) = 0 and µC = c (k) −ε(k) for any 1 ≤ k ≤ m. As a measure of
coherence of the m gene-vectors in C, the average correlation r̄ := 1

m(m−1)

∑
i 6= j ri j may

be of interest. For this quantity we get:

∑
i , j c (i)T c (j) = m(m −1)r̄ +m

= m2µC TµC = m2(c (k) −ε(k)
)T (

c (k) −ε(k)
)

= m
∑

k

(||c (k)||22 +||ε(k)||22 −2||ε(k)||22 +0
)

= m2(1−|J |SC)

49

Chapter 3 Exploring molecular characteristics of disease

and therefore

r̄ = 1− m

m −1
|J |SC .

For the case of m = 2, where we have only two genes in the group I , it holds that r̄ = r
and

r = 1−2|J |SC .

In summary we have that in case the residuals are small, all the gene vectors c (i) are
highly correlated (on average). Also, this notion of coexpression accounts for hetero-
geneity amongst the patients: Genes can be highly expressed in one patient and less so
in another, still leading to a small score in case the expression varies coherently.

Further properties of SC Finding a group of coexpressed genes can now be done by
finding a group of genes with a low score SC . Note a few properties of SC :

- Single genes are perfectly coexpressed. This in in accordance with SC (I) = 0 for
all I with |I | = 1 and SC (I) > 0 for all I with |I | > 1 (assuming we have no identical
gene vectors c (i)).

- For every I we can take out a gene to decrease SC (I) [24]: For all I there exists a
gene m ∈ I such that S(I \ m) > S(I).

- SC (I) is a pseudo Boolean function [17]: SC (I) constitutes a mapping P (I) 7→ R+
from the power set of the set of all genes I into the positive reals.

From the first two properties we know that it does not suffice to look for a group of
coexpressed genes as I? = minI SC (I), as this will always be solved by any I with |I | = 1.
But we can look for groups of k coexpressed genes as I? = minI SC (I) subject to |I | = k.
We will have the same situation for the case of differential coexpression.

It is useful to discuss the effect of including or excluding a group M of genes from I has
on the resulting score. We can (see Appendix) express the new score in terms of the old
score and the old means µC via:

SC (I \ M) = k

k −|M |SC (I)− 1

nC (k −|M |)
∑

i∈M ||c (i) −µC ||22

− 1

nC (k −|M |)2

∑
i , j ∈M×M

(c (i) −µC)T (c (j) −µC)

SC (I ∪M) = k

k +|M |SC (I)+ 1

nC (k +|M |)
∑

i∈M ||c (i) −µC ||22

− 1

nC (k +|M |)2

∑
i , j ∈M×M

(c (i) −µC)T (c (j) −µC).

(3.3)

Note that the last of the terms on the right hand sides of Equation (3.3) will always re-
duce the score. This can be seen by considering the Matrix A = {ai j } with ai j = (c (i) −
µC)T (c (j)−µC). The last term is then proportional to 1T A1, with 1 a vector of all ones of

50

3.2 The dcoex algorithm

dimension |M |. As A is a Gram matrix [124] by construction it is positive semi-definite
and therefore 1T A1 ≥ 0. Keeping that in mind, Equation (3.3) provides a straight for-
ward criterion whether exclusion or inclusion of a gene m into I will decrease the score:
Inclusion will be beneficial if ||c (m)−µC ||22 < nC S(I), and exclusion when ||c (m)−µC ||22 >
nC S(I). The above derivation of these criteria is simpler than that in [24]. We will utilize
the results to derive corresponding criteria for the case of differential coexpression.

Scoring differential coexpression

In the previous section we introduced a scoring scheme for the coexpression of a group
of genes. In this section we utilize the results to score the differential coexpression of a
set of genes. Let SC (I) score the coexpression of the genes in I in the control group and
SD (I) in the diseased group. We define a score for differential coexpression via of the
genes in I (with respect to D and C):

S(I) := nD

nC

SC (I)

SD (I)
, (3.4)

where nC and nD code for the number of samples in the control and disease groups.
That is, we are simultaneously looking for good coexpression in one group and low co-
herence in the other group: Gene groups with a low score are coexpressed in the control
group, but in the disease group coherence is lost. This is illustrated in Figure 3.2. To find
the group of the k most differentially coexpressed genes we have to solve the problem

min
I

nD

nC

SC (I)

SD (I)
subject to |I | = k . (3.5)

At this point it is not obvious that we have to keep the constraint |I | = k, but in the next
section we see that we are in the same situation as before: We can always find a gene
in I which is favorable to exclude. Equation (3.5) is a binary (or 0-1) polynomial frac-
tional program [143]. Chang [23] provides a procedure to approach such problems by
transformation to a (linear) mixed integer program. Since such programs are generally
NP-hard, we resort to a heuristic search strategy.

3.2.2 A stochastic search algorithm for low scoring gene sets

Having formulated a score for differential coexpression, we are left with the objective to
find one (or possibly many) low-scoring groups of genes. That is, we set out to minimize
S(I) over all possible candidate groups I . Since there are usually tens of thousands of
genes involved in a microarray experiment, an exhaustive search is clearly infeasible.
Since rigorous minimization of S(I) is hard, we now describe a heuristic algorithm for
finding low scoring sets of genes.

51

Chapter 3 Exploring molecular characteristics of disease
(C

)
(B

)
(A

)

control disease
Figure 3.2: Expression profiles of
differentially coexpressed genes. We
show simulated expression values (y-
axis) versus patients (x-axis). In the
patients to the left (control group) the
genes are coexpressed, but not so in the
patients in the disease group. Plot (A)
shows the expression values, in Plot (B)
the genes have been centered. Plot (C)
shows the residuals εi j that make up
the score. One can see that the mean
squared residual is a measure of the co-
expression.

The general framework is that of a stochastic greedy downhill procedure. We begin by
equipping the set of all possible subsets of genes on the array with a neighborhood
structure. We define two sets of genes as neighbors, if and only if they can be converted
into each other via inclusion or exclusion of a single gene: N (I) := {Ĩ : |I4Ĩ | = 1}, where
4 denotes the symmetric difference operator: A4B = (A ∪B) \ (A ∩B). The strategy of
the downhill procedure is as follows: Starting with a random set of genes I , we move
to neighboring sets taking downhill directions. We include or exclude genes such that
the score decreases. This is continued until no more downhill directions are found or a
predefined number of iterations is exceeded. Two points need to be addressed: One is
related to computational efficiency, and a second one is related to the size of the target
gene sets I .

Efficient screening of candidate gene sets

Evaluating the score for a candidate gene set requires calculating means in the control
and disease group as well as the sum of the squared residuals. For data sets with tens of
thousands of genes this can be computationally demanding, rendering a naive imple-
mentation of the downhill procedure impractical.

We present an algorithm that screens neighborhoods more efficiently. The key ingredi-
ent is an efficient to calculate criterion whether the inclusion or exclusion of a candidate
gene m will reduce S(I). Assume we are performing the downhill search and arrive at
a set I of genes. To address the question whether inclusion or exclusion of a gene is
beneficial, recall the definition of S:

S(I) = nD SC (I)

nC SD (I)
= nD

nC

∑
i∈I ||c (i) −µC ||22∑
i∈I ||d (i) −µD ||22

. (3.6)

Reshaping Equation (3.3) for the inclusion or exclusion of a group of genes of size one,
we arrive at:

52

3.2 The dcoex algorithm

SC (I \ m) = c1
− SC (I)− c2

− ||c (m) −µC ||22
SC (I ∪m′) = c1

+ SC (I)+ c2
+ ||c (m′) −µC ||22 ,

where the group I was of size k, c1+ = k/(k +1), c2+ = k/((k +1)2nC), c1− = k/(k −1) and
c2+ = k/((k −1)2nC). With that, we can write S(I \ m) in the following form:

S(I \ m) = c1 a − c2α

c1b − c2β

with appropriately substituted variables. For the inclusion of gene m′ we get an anal-
ogous representation with the plus sign exchanged to a minus sign. The criterion for a
reduced score we get from the following Lemma:

Lemma 1. Let s1 = a
b ,s2 = a+α

b+β and s3 = a−α
b−β with a, α, b and β all ∈R+. Then:

(i) α
β < s1 ⇔ s2 < s1

(ii) α
β > s1 ⇔ s3 < s1

Proof By rewriting:

(i) s2 < s1 implies a +α< a/b (b +β) hence we have α/β< a/b = s1

(i i) s2 > s1 implies a +α> a/b (b +β) hence we have α/β> a/b = s1

Re-substituting variables we arrive for the inclusion case at:

S(I \ m) < S(I) if and only if
||c (m) −µC ||22
||d (m) −µD ||22

> SC (I)

SD (I)
(3.7)

which makes a useful criterion when considering removing gene m. It is very fast to
evaluate, since all quantities have already been calculated to compute S(I). For the in-
clusion of gene m′ we arrive at:

S(I ∪m′) < S(I) if and only if
||c (m′) −µC ||22
||d (m′) −µD ||22

< SC (I)

SD (I)
. (3.8)

Using the criteria above, we can explore the neighborhood N (I) of I by looking up the
corresponding ||d (m) −µC ||22 and ||d (m) −µD ||22 and a simple division. This is faster than
calculating every S(Ĩ) for all Ĩ ∈ N (I), leading to the applicability of the algorithm to
large scale expression studies. Further speedup is achieved by going several steps at a
time. We collect all genes in the neighborhood of I that meet the criterion for a dimin-
ished score. From these genes we randomly choose a predefined fraction β and ex- or
include them at once. We will discuss the influence of β in more detail at the end of this
section. The randomization of both, the start set and the choice of downhill directions,

53

Chapter 3 Exploring molecular characteristics of disease

in principle results in different identified gene sets belonging to different local minima
of S. This feature is highly useful for exploratory analysis, since in large data sets we
expect more than one relevant pattern.

Tuning the size of the target set

In this Section we show that the differential coexpression score has the same property
as the coexpression score discussed before:

- There always exists a gene m ∈ I , such that S(I \ m) < S(I).

- There does not always exists a gene m ∉ I , such that S(I ∪m) < S(I).

These two properties imply that iterative application of the criteria for a reduced score
would eventually exclude all genes from the solution I . To see that we can always ex-
clude genes from I , write the score in the following form:

S(I) = nD

nC

∑
i αi∑
i βi

,

where we have written out the sums in Equation (3.6). Note that αi ≥ 0 and βi ≥ 0. For
a gene m which is beneficial to exclude, the criterion (3.7) reads in the above notation
αm/βm > S(I). There will always be a gene meeting this requirement:

Lemma 2. Let s = ∑n
i αi /

∑n
i βi with αi and βi ∈ R+. Then either there exists an m with

αm/βm > s (1 ≤ m ≤ n) or αi /βi = s for all 1 ≤ i ≤ n.

Proof Rewrite s as s =∑
i (αi /βi)βi /

∑
i βi and assume there exists no m with αm/βm >

s. Then we have s ≥ ∑
i sβi /

∑
i βi = s where equality holds if and only if αi /βi = s for all

1 ≤ i ≤ n.

The above argument shows that there will always be genes in I that can be excluded to
improve the score. That we do not necessarily find genes to include shows the follow-
ing consideration: Assume we arrive at the optimal solution I? of size k. Then we can
always reduce the score by excluding a suitable gene, as shown before. After excluding
a gene and reducing the score, no gene can fulfill the criterion for being included again,
because the current score (with I of size k−1) is lower than the optimal score for groups
of size k. The score will increase with every gene we include. For this reason, an iterative
application of the criteria for a reduced score would eventually exclude all genes from
the solution I .

To compensate, we utilize modified criteria: We exclude gene m from I only if

C−
m(α) = α

[||c (m) −µC ||22
||d (m) −µD ||22

−S(I)
]
− (1−α)

1

|I | > 0 , (3.9)

54

3.2 The dcoex algorithm

and we include gene m′ into I if

C+
m′(α) = α

[
S(I)− ||c (m′) −µC ||22

||d (m′) −µD ||22

]
+ (1−α)

1

|I | > 0 . (3.10)

In the criteria above we introduced a tuning parameter α in [0,1]. It weights a penalty
term for excluding too many genes and therefore influences the size of the final set of
genes. Larger values of α yield smaller groups of genes and vice versa.

The introduction of α can be viewed as modifying the original optimization problem
I? = argminI S(I) into:

I? = argmin
I

{
αS(I) − (1−α) log |I |} . (3.11)

The log-term in the objective function counteracts the property of S(I) to exclude too
many genes. This kind of penalty term also leads to the second terms in the right hand
side of Equations (3.9) and (3.10):

log(|I |+1)− log |I | = +1/|I |+O (1/|I |2)

log |I |− log(|I |+1) = −1/|I |+O (1/|I |2) .

The criteria (3.9) and (3.10) trade-off two opposing contributions to an objective func-
tion. To be able to perform such a comparison, we should in principle characterize
the effect of including or excluding a gene on the residual score S(I) quantitatively. As
it is, S(I)− ||c (m′) −µC ||22/||d (m′) −µD ||22 is only proportional to the benefit of including
gene m′. This flaw can be fixed by considering the proportionality constant, namely
cm′/(SD (I)+ cm′) with cm′ = ||d (m′) −µD ||22. For the exclusion case there is a similar con-
stant, cm/(SD (I)−cm), which can be shown to be positive. This also complies with intu-
ition, as we expect a gene closer to the mean than the group average (cm < SD (I)) in the
samples where we are looking for decoherence to be beneficial to exclude. But overall,
we found the criteria (3.9) and (3.10) to work well in practice as they are. Algorithm 1
(Figure 3.3) summarizes the overall procedure.

Runtime experiment

We now briefly examine how the algorithm performs with respect to a naive implemen-
tation of a downhill search. Naive in the sense that for each candidate set the complete
score is calculated in contrast to considering the criteria 3.7) and (3.8). We generate ran-
dom data (i i d ∼ N (0,1)) for a variable number of genes and run both downhill searches.
Setting α= 1 fixes the size of the final group to one. In this experiment β is disregarded
and we in- or exclude only one gene per downhill step. Results are shown in the left
plot of Figure 3.4. We show the quotient of the naive and our running time, and im-
provements can be seen to be substantial. The naive running time is shown below the

55

Chapter 3 Exploring molecular characteristics of disease

ALGORITHM 1

indent=2em

initialize I randomly
G ←;
while counter < maxiter do

for all Ĩ ∈N (I) do {screen neighborhood }
m ← Ĩ4 I
if C (+,−)

m (α) > 0 then {select favorable genes}
G ←G ∪ {m}

end if
end for
if G =; then {exit for a locally optimal solution}

return I
else

n ← max{b β · |G| c , 1}
g ← uniform sample of size n from G {select a subset of favorable genes}
I ← I4g {update I }

end if
counter ← counter + 1

end while
return I

Figure 3.3: A greedy downhill approach for finding local minima of the score S. A
random starting point I is chosen. The neighborhood N (I) is explored using the criteria
C (+,−)

m (α) defined in Equations (3.9) and (3.10). Downhill steps are taken, possibly several
at a time, before S(I) is recalculated. This is repeated until no further downhill directions
are found, or until a predefined number of iterations is exceeded. The operator 4 denotes
the symmetric difference of two sets: A4B = (A∪B) \ (A∩B).

speedup factor; we see that the naive algorithm needs about 21 minutes for 1000 genes
whereas the improved version finishes in less than one minute.

The right plot of Figure 3.4 shows the effect of β on the running time. The data are again
random, and α has been fixed to 1/2. The running time improves with increasing β.
As increasing β also increases the chance of missing high quality minima, we choose
β= 0.01, making computations with several thousands of genes feasible.

3.3 Application to data

In this section we describe the application of the algorithm to two types of data, simu-
lated and real. By applying the algorithm to simulated data we are able to objectively

56

3.3 Application to data

●

●

●

●

●

●

●

●

●

●

200 400 600 800 1000

5
10

15
20

25
30

35
40

#genes

sp
ee

du
p

fa
ct

or

1

2

3
5

8
11

17
21● speedup

x naive running time [min]

●

●

●

●

●

●

●

●

●

●

200 400 600 800 1000

0
2

4
6

8
10

12
14

#genes

tim
e

[s
]

 β = 1/256

● ● ● ●
● ● ● ● ● ● β = 1/2

● ●
●

●
● ● ●

● ●
● β = 1/8

●
●

●
●

●
●

●

●

●
● β = 1/16

●
●

●
●

●

●
●

●
●

● β = 1/32

●

●

●

●

●

●

●

●

●

● β = 1/64

●

●

●

●

●

●

●

●

●

● β = 1/128

Figure 3.4: Accelerating the downhill search. The left plot shows the speedup achieved
by implementing Equations (3.7) and (3.8) compared to naively exploring neighbor-
hoods. The naive running-time is shown below the speedup factor. Improvements are
substantial, even when considering only about thousand genes. The right plot shows the
influence of β on the running time. The running time improves with increasing β. Since
increasing β also increases the possibility of overlooking high quality minima, we choose
β = 0.01, making computations with several thousands of genes feasible. The runtime
experiments were performed on an AMD Athlon(tm) 64 Processor running at 2000
MHz (QuantispeedRating: 3200+) and on random data (see text).

evaluate its performance and study the influence of the tuning parameter α. While the
application to real life clinical data is straight forward, interpretation of results is not.
We give an example of a group of differentially coexpressed genes we find in childhood
leukemia. Further on, we assess the possibility that our finding is a chance artifact, its
robustness to variation of the starting point of the search procedure and the sensitivity
to perturbation of the input data.

3.3.1 Simulated data

To test the algorithm we choose a supervised setting where the truth is known. We simu-
late data to generate a control group of nC = 10 “samples” and a disease group of another
nD = 10 “samples” for p = 120 genes. For the control group, we draw 20 coexpressed
genes directly from the additive model:

ci j = ai +b j +εi j .

We take ai ∼ N (0,σ), bi ∼ N (0,σ) and εi j ∼ N (0,σ/s), and multiply the ci j by a fac-

tor of
√
σ2(2+1/s2) to ensure an expected standard deviation of σ. For the remaining

100 genes we use ci j = N (0,σ). Concerning the disease group we sample data only via
di j ∼ N (0,σ). We choose σ = 1 and use s to tune the signal to noise ratio. This simple
simulation experiment cannot be expected to resemble real data, but we use it to eval-
uate the algorithm in a controlled setting. We run it on the simulated data and check

57

Chapter 3 Exploring molecular characteristics of disease

how many of the 20 differentially coexpressed genes we recover. We do this for different
values for the signal to noise ratio: s = 0.5,1,1.5,2,3 and 7. We choose different α be-
tween zero and one to observe the effect on the solution. To guard for sampling effects
we repeat the procedure 1000 times and report the median performance. Results are
shown in Figure 3.5. The upper plot shows the median number of genes in the pattern
the algorithm retrieved. The lower plot reports the true positive rate, i.e. the fraction
of the genes in the pattern made up from the 20 differentially simulated genes. Lighter
gray values correspond to a lower s, darker gray values stand for a more clear signal.

We observe that for reasonable signal strength (s > 1) the algorithm recovers the major-
ity of the 20 genes. Further on, α can be used to tune the size of the pattern recovered.
Finally, the influence of α on the size of the solution is less prominent for a clear signal
(large β) as compared to noisy signals (small s). This implies that for a clear signal the
algorithm is less sensitive towards the effects of the user-tunable parameter.

●

●
● ● ● ● ● ● ●

● ● ● ●
●

●

●
●

●

●

●

0
10

20
30

40 ●

●

●

●

●

●
●

●
●

●
●

● ● ●
● ●

● ● ●

●

●

●

●

●
●

●
●

●
● ●

●
● ●

● ●
● ● ●

●

●

●

●
●

●
●

●
●

●
● ●

●
●

● ●
● ●

●

●

●

●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●

●

● ●
● ●

●
●

● ●
●

●
●

●

●
●

●
●

●

●

●

●
● ● ● ● ● ● ●

● ● ● ●
●

●

●
●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ●

●

●
●

●
●

● ● ● ●
● ● ● ●

●
● ● ● ● ●

●

●

●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

α

TP
/|I

|
|I|

Figure 3.5: Performance of the algo-
rithm on simulated data. The upper
plot shows the group size k of the so-
lution depending on tuning parameter
α. The lower plot shows the accord-
ing true positive rate, i.e. the fraction
of genes in the solution made up from
the twenty hidden genes. The different
gray shades represent different signal
to noise ratios from s = 1/2 (lightest) to
s = 7 (darkest). See text for a more de-
tailed description of the setup.

3.3.2 Clinical data

The data set

As a real world application we choose a dataset from a study on acute lymphoblastic
leukemia [157]. Affymetrix HG-U95Av2 chips were used to measure the gene expression
levels in bone marrow from children with acute leukemia. The data set consists of 327
samples, which are divided into several subgroups according to characteristic cytoge-
netic aberrations. This includes a normal group of leukemia patients where no such
aberrations are found. We compare all cytogenetic positive groups (disease groups) to
leukemia without cytogenetic alterations (control).

58

3.3 Application to data

Results

First, we normalize and variance stabilize [68] the expression data. For computational
efficiency, we calculate the absolute deviation from the median for all genes and discard
the lower 50% of them. Note that the score S is not scale invariant. We rescale the genes
separately for each phenotypical group to standard deviation one. Otherwise, the algo-
rithm fails to detect differential coexpression patterns; instead high scoring gene sets
show differential variance of single genes.

We found patterns reflecting differential coexpression in almost all analyses of cyto-
genetically characterized leukemia. A particularly nice example showed up compar-
ing Philadelphia positive (t(9;22)+, BCR–ABL+) leukemia to the cytogenetically normal
group, choosing α= 0.5. A prominent local minimum of S is shown in Figure 3.6.

The left plot shows a heatmap of the expression matrix. It clearly identifies the stripe-
pattern we expect for differentially coexpressed genes (compare Figure 3.1). The right
plot depicts the expression profiles of the genes as lines. We see the genes are more
coherently coexpressed in the control group, as we expect for differentially coexpressed
genes (compare Figure 3.2). One can see in all the plots that we have found a group of
genes displaying the characteristic pattern we are looking for.

normal phil. positive normal phil. positive

Figure 3.6: A group of differentially coexpressed genes in Philadelphia positive
leukemia. The left plot shows a heatmap of the expression matrix. It clearly identifies the
stripe-pattern we expect for differentially coexpressed genes (compare Figure 3.1). The
right plot depicts the expression profiles of the genes as lines. We see the genes are more
coherently coexpressed in the control group, as we expect for differentially coexpressed
genes (compare Figure 3.2).

Excluding the genes that form our pattern from the data and applying the algorithm
again, we end up with a cluster of genes reflecting a different local minimum. The list of
genes corresponding to the two patterns is shown in Table 3.1.

59

Chapter 3 Exploring molecular characteristics of disease

Pattern 1 (34 genes)

HINT1 (3094) PSMA2 (5683) PSMB1 (5689) FNTA (2339)
CG018 (90634) RHEB (6009) ARHGDIB (397) NCL (4691)
EXO70 (23265) KARS (3735) KIAA1579 (55225) SRP19 (6728)
RNF4 (6047) HCP15 (157317) HNRPA2B1 (3181) RNP24 (10959)
ECHS1 (1892) C9orf10 (23196) REA (11331) UGP2 (7360)
GNAS (2778) GNAS (2778) OTOR (56914) COPE (11316)
ATP5A1 (498) ATP5J2 (9551) PTOV1 (53635) YWHAQ (10971)

CBFB (865) HLA-Z (267017) COX6A1 (1337) STARD7 (56910)
CALM2 (805) PPP2R1A (5518)

Pattern 2 (21 genes)

PSMB2 (5690) UBC (7316) ARHA (387) PSMA4 (5685)
ARPC2 (10109) ACTB (60) ENG (2022) GG2-1 (25816)
ACTR3 (10096) PITPNB (23760) CAPNS1 (826) PFN1 (5216)
SF3B2 (10992) GNAI2 (2771) ARHA (387) PPP1CC (5501)
PSMC5 (5705) ARPC5 (10092) MRLC2 (103910) AES (166)
GDI2 (2665)

Table 3.1: List of differentially coexpressed genes in philadelphia positive leukemia.
In brackets we give the LocusLink ID. Genes that are underlined are either annotated
to be members of the proteasome-ubiquitin pathway (PSMB1, PSMA2, PSMB2, PSMA4,
PSMC5 and UBC), are known to interact with it (YWHAQ), or they are associated with
protein transport / cellular location (SRP19, RNP24, COPE, FNTA and GDI2).

Biological plausibility

Our method is exploratory in the sense that we can neither guarantee to find the opti-
mal scoring set of genes, nor can we derive rigorous statistical tests for the significance
of score levels. This is due to the fact that the scores on the randomized data also re-
sult from a heuristic search. Nevertheless, our procedure can be used as a tool for the
exploratory analysis of microarray data, complementing the frequently used clustering
procedures. Its purpose is hypothesis generation, not hypothesis verification.

Any interpretation of exploratory analyses is speculative, and further biological experi-
ments are needed for verification. In our analysis of Philadelphia positive leukemia, we
detected two differential coexpression patterns, containing several genes of the prot-
easome-ubiquitin pathway, namely PSMB1, PSMA2, PSMB2, PSMA4, PSMC5 and UBC.
The proteasome plays a central role in regulation of proteins that control cell-cycle pro-
gression and apoptosis [3]. For various cancer types it has been shown that inhibition
of proteasome activity results in programmed cell death, and it has therefore become
an important target for anti cancer therapy [3]. Particularly, a study on chronic lym-
phoblastic leukemia (CLL) shows, that CLL derived lymphocytes are hyper sensitive to
proteasome inhibition (by lactacystin) as compared to normal human lymphocytes [95–
97]. Another interesting gene in the pattern is YWHAQ, coding for a 14-3-3 theta protein.
Fujita et al. [50, 81] show that the protein Akt phosphorylates p27, a prognostic tumor
marker, and thereby promotes binding of 14-3-3 theta allowing degradation of p27 by

60

3.3 Application to data

the proteasome. Increased degradation of p27 is associated to decreased overall sur-
vival in mantle cell lymphoma, another B-cell malignancy [27].

Recalling our method, it is important to note that genes in differential coexpression pat-
terns can only be interpreted in the context of the other genes in the set that form the
pattern. In our case, one functional group of genes is associated to intracellular pro-
tein transport and cellular localization, including SRP19, RNP24, COPE, FNTA and GDI2.
This group of genes is functionally more heterogeneous than the proteasome associated
proteins. But altogether one expects protein synthesis, protein transport and protein
degradation to be highly coordinated processes.

3.3.3 Significance, robustness and novelty of results

Significance Naturally, the question arises whether our findings are artifacts of the
high dimensionality of the data. To asses this question, we apply a permutation proce-
dure: We repeatedly shuffle patient labels (a) for all genes at once and (b) for each gene
separately. We run the algorithm on the permuted data and the frequency of scores
smaller than or equal to the biological score then yields an empirical p-value. While (a)
assesses the impact of non-phenotype related grouping, it might be prone to the effect
of confounding variables. Version (b) is less conservative by removing all correlation
structure from the null hypothesis.

Figure 3.7 displays the results for the pattern from the leukemia example. The x-axis
denotes the score S, the y-axis the group size |I | of the retrieved patterns. The dashed
lines represent a constant value of S(I)− log (|I |), as motivated by Equation (3.11). We
see that in both sampling schemes the leukemia result is unlikely to appear by chance.
We only observe one random instance of S(I)− log (I) smaller than the biological result
using sampling scheme (a). This corresponds to an empirical p-value of 0.001. Utiliz-
ing sampling scheme (b), the realization of the original result becomes even less likely.
Hence, it is unlikely that the observed differential coexpression is a chance artifact.

Robustness To assess the stability of the patterns, we consider two sources of variation
on the data. First, we explore how varying the starting point of the search influences
the result. After that we assess how subsampling the two groups affects the patterns
found.

Assessment of sensitivity with regard to the startingpoint: We start the algorithm from
10,000 different random points and compare the output. The random starting points
are calculated by flipping a coin for each gene and including it with probability 0.3 into
a start pattern. Doing so, we discover six different local minima, all made up of different
subsets of the same 41 genes. Three of the minima are prominent, as they make up
the vast majority of all the 10,000 runs (see Figure 3.8). Only two of the 41 genes are
not present in one of the three minima. The barplot on the right of Figure 3.8 displays
the frequency how often a gene contribute to a minimum. Genes present in patten 1 of

61

Chapter 3 Exploring molecular characteristics of disease

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

5
10

15
20

25
30

35
40

patient−wise shuffling

score

gr
ou

p
si

ze

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●

●

●● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●●● ●●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

● ●●

●● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

● ●

●

●●●

●

●

●

●●

● ●

●

●

●

●

●

● ●

●

●

●

●
●● ●

●

●

●

●●

●

●

●●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●● ●

●

●

●●

● ● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

5
10

15
20

25
30

35
40

gene−wise shuffling

score

gr
ou

p
si

ze

●

Figure 3.7: Permutation based significance assessment. The figure displays the results
of repeatedly (1000 times) shuffling the patient labels and running the algorithm. The
x-axis denotes the differential coexpression score S, the y-axis the group size |I | of the
patterns to which we added jitter. In the left plot the labels are shuffled “by patient”,
whereas in the right plot they are shuffled for each gene separately. The dashed lines
denote a constant value of S(I)− log (|I |), as motivated by Equation (3.11). The red dot
corresponds to the leukemia example. We see that in both sampling schemes the original
result is unlikely to appear by chance.

Table 3.1 are in gray, the others are in white. Most genes contribute to all six minima,
and all of them are contained in our previous results. This, combined with the fact that
only 41 different genes were found contributing to minima, hints at remarkable stability
of our algorithm with respect to variation of the starting point.

To assess the effect of perturbing the data, we subsample from the BCR–ABL+ and the
normal group. We generate about 100 such subsampled data sets, randomly excluding
two of the patients from each group. This corresponds to discarding more than 10% of
the available data. Then we run the algorithm 100 times on each data set with differ-
ent starting points chosen in the same manner as before. We find 468 unique patterns,
consisting of different subsets on 329 genes. In spite of the seemingly large number of
patterns found, the low number of genes involved supports the robustness of our algo-
rithm. Averaging over all runs, each of the 329 genes is present in more than 900 result-
ing gene sets. Also, some genes contribute to more of the 468 patterns than others. This
is illustrated in Figure 3.9 which shows an histogram of the frequencies with which the
329 genes contribute to a differential coexpression pattern (DCEP). We find that only
few genes contribute to many of the DCEPs. We also notice that the genes contributing
to the DCEPs in the complete data set are all high frequency genes. This is indicated by
the black bars in the figure which mark bins containing at least one of these 41 genes.
That is, we find the structure of the patterns of the full data set conserved in the results
obtained on the subsampled data sets. In this sense the algorithm exhibits robustness

62

3.3 Application to data

min 1

min 2

min 3
rest

M
D

H
1

C
A

P
N

S
1

S
F

3B
2

N
C

L

U
G

P
2

P
S

M
B

1

H
N

R
P

A
2B

1

C
9o

rf
10

C
O

P
S

5

G
N

A
S

D
N

C
I2

H
N

R
P

C

A
T

P
5A

1

G
N

A
S

E
C

H
S

1

G
N

A
S

C
G

01
8

R
N

P
24

C
A

LM
2

H
IN

T
1

P
S

M
A

2

F
N

T
A

R
H

E
B

A
R

H
G

D
IB

E
X

O
C

7

K
A

R
S

K
IA

A
15

79

S
R

P
19

R
N

F
4

P
LX

N
B

3

P
H

B
2

S
N

R
P

B
2

C
O

P
E

A
T

P
5J

2

P
T

O
V

1

Y
W

H
A

Q

C
B

F
B

P
S

M
B

8

C
O

X
6A

1

S
T

A
R

D
7

P
P

P
2R

1A

F
re

qu
en

cy

0.
0

0.
5

1.
0

Figure 3.8: Varying the starting point of the downhill search. On the left side a pie-
chart shows the number of times each minimum was recovered in 10,000 runs with ran-
dom starting points. We see that three of the six minima we encounter are dominant,
whereas others appear rarely. The bar plot on the right side shows for each gene the fre-
quency of contributing to a minimum. Many genes contribute to all minima. Genes
present in Pattern 1 of Table 3.1 are in gray, the others are in white.

against data perturbation.

Number of genes in minimum

D
en

si
ty

20 25 30 35 40 45

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Frequency of contribution to a minimum

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

++ +
+++ ++ + +++++++ + ++ ++ + +

Figure 3.9: Perturbing the data through subsampling. The left histogram shows the
distribution of the size of minima we recover from 100 random starting points on 100
subsampled data sets (see text). The right histogram is on the frequency with which a
gene contributes to a minimum. We find only 329 genes contributing to all the 10,000
minima, and some of them with high frequency. Bins of the histogram containing genes
from Pattern 1 of Table 3.1 are marked in black. Most of them are high frequency genes.

Novelty Next, we show that our algorithm is complementary to established analysis
tools. It aims for specific structure in microarray data that other methods fail to iden-
tify. Of course, the literature on microarray data analysis is huge and we cannot dis-
cuss all of it. We confine ourselves to showing that the most widely used approaches,
namely screening for differential expression and hierarchical clustering, do not identify
differential coexpression structure. To address differential expression we sort all genes
according to their individual t-scores. This shows the genes from our first pattern to be
ranked from 106 to 6114 with a mean of 2340. Clearly, this list would not draw attention
to the genes in the pattern.

63

Chapter 3 Exploring molecular characteristics of disease

We also calculate a hierarchical clustering of the expression data using Euclidean dis-
tance and average linkage [45] and Euclidean distance. The complete results are too
complex to display. Therefore, we aggregate genes in a first clustering step choosing
100 representatives for clusters. These we cluster again hierarchically resulting in Fig-
ure 3.10. The black dots indicate clusters that contain genes from Pattern 1 in Table
3.1. The right plot shows the results for unscaled data, the left plot for scaled data. In
both cases, one can clearly see how the genes are distributed all over the first half of the
dendrogram. Hierarchical clustering would not have identified Pattern 1.

Figure 3.10: Comparison to hierarchical clustering. We applied hierarchical clustering
to unscaled (left) and scaled data (right). Leaves which represent clusters that contain at
least one of the genes from Pattern 1 in Table 3.1 are marked with a black dot. We see that
hierarchical clustering does not identify the differential coexpression pattern we found.

3.4 Discussion and chapter summary

In this chapter we introduced the concept of differential coexpression of groups of genes.
We motivate our approach and develop the dcoex algorithm designed to find groups of
differentially coexpressed genes. As a proof of concept we apply the algorithm to simu-
lated data. We also present results on a data set on childhood leukemia, finding a group
of differentially coexpressed genes in which ubiquitin- ubiquitylation- and proteasome-
associated genes are overrepresented. We discuss biological plausibility, statistical sig-
nificance, robustness and novelty of our findings.

While, to the best of our knowledge, we are the first to propose this type of analysis
strategy the approach has been taken up by other researchers, e.g. [108]. The dcoex al-
gorithm is an exploratory analysis tool, and its results are meant to complement those of
other such tools like clustering or biclustering in order to help generate new hypotheses
concerning e.g. the biology of neoplasms. This chapter also includes several improve-
ments over our original publication [85], most notably a thorough derivation and dis-
cussion of the gene-inclusion and -exclusion criteria that enable a fast neighborhood

64

3.4 Discussion and chapter summary

search (Equations (3.10) and (3.9)). A runtime experiment has been added, compar-
ing our algorithm to a naive approach. Along with adding a section on robustness the
assessment of significance has been extended.

Overall, this chapter introduces the concept of differential coexpression of groups of
genes—a useful concept that complements clustering and biclustering in exploring the
molecular characteristics of disease. We provide the dcoex algorithm in form of an R-
language [70] add-on package that we briefly describe in the Appendix.

65

