
Chapter 2

Communicating molecular
characteristics of disease
— documentation of diagnostic signatures —

Synopsis: In this chapter I present methodology for the

unambiguous documentation of molecular signatures. Af-

ter an introduction to the preprocessing of microarray data

I develop the key point: The scale inferred by preprocessing

study data has to be documented along with the signature.

I alter two popular preprocessing schemes to implement

such a scale-conserving documentation. Using eight can-

cer data sets I am able to show that this kind of documen-

tation leads to significantly less ambiguity in subsequent

diagnoses as compared to standard approaches.

2.1 Motivation

Microarray based gene expression signatures have the potential to be powerful tools
for patient stratification, diagnosis of disease, prognosis of survival, assessment of risk
group and selection of treatment [112, 130, 152]. These signatures are computational
rules for deriving a diagnosis from a patient’s expression profile, as discussed in the pre-
vious chapter. Before gene expression signatures can impact clinical practice, they need
to be communicated to other health care centers with data for external evaluation [130],
and ultimately to practitioners for use in clinical routine. This requires unambiguous
documentation of the signature.

It has been observed that the reconstruction of published signatures can require an ex-
pert re-analysis of the study [141] or may not be possible at all [140]. Documenting a sig-
nature is conceptually different from reporting a list of genes contributing to the classifi-
cation rule; the latter does not determine how a patient should be diagnosed. Moreover,
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Chapter 2 Communicating molecular characteristics of disease

also the exact quantitative specification of the classification rule does not constitute a
ready-to-use signature. In addition, a procedure transforming raw expression data to a
signature-specific scale has to be provided.

To motivate such a scale adjusting transformation we sketch an analysis step character-
istic for studies involving microarray data: Preprocessing. Section 2.2 starts with an in-
troduction and continues with more details on the two popular preprocessing schemes
vsn and rma. In Section 2.3 we discuss why preprocessing the data implies the need
of a scale adjusting transformation prior to classifying previously unknown samples.
We provide such transformations for the preprocessing schemes discussed beforehand.
The results are applied to real life data in Section 2.4. We assess eight clinical microarray
studies [10, 12, 14, 65, 107, 118, 127, 153] and find that documenting signatures using
standard procedures leads to unstable diagnoses. An independently diagnosed patient
might well receive a diagnosis different from the one he would have received in the orig-
inal study. We are able to show that scale adjusting transformations greatly reduce such
ambiguity of diagnoses. In Section 2.5 we explore the possibility to utilize the vsn scale
adjusting transformation to assess patient compatibility to core data. We critically dis-
cuss our findings providing guidelines for signature documentation in Section 2.6.

2.2 Preprocessing of oligonucleotide microarrays

Raw microarray data is subject to noise. There is variation in the data that is not due
to biological signal, but rather to measurement error or experimental artifacts. Prior to
data analysis it is therefore common practice to perform data preprocessing. Prepro-
cessing of oligonucleotide microarrays generically encompasses three steps, although
some methods may summarize more than one step in a single procedure:

1. Background correction This step comprises the identification of and correction
for random signals that are not associated with mRNA abundance (background).
Examples include optical noise and unspecific (cross) hybridization as well as
other random sources of variation.

2. Normalization The normalization procedure aims to make measurements on
different arrays comparable, removing systematic biases. Biases might arise through
variations in amplification efficiency, signal quantification or human influences.

3. Probeset summary For oligonucleotide arrays, the background corrected and nor-
malized measurements for different probes have to be aggregated to yield esti-
mates of expression for the target sequences (genes).

Different methods exist for performing each of the three steps, while other methods ag-
gregate more than one step at a time. It is not our aim to give an overview of state of the
art approaches. Preprocessing of oligonucleotide microarrays is an active research field,
and readers interested in the topic are referred to recent literature [61, 75, 100, 154, 160]
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2.2 Preprocessing of oligonucleotide microarrays

and references therein. We note, though, that it is common practice to adopt a “plug-
in” approach. Methods are combined in various ways and subsequent analysis stays
conceptually decoupled from preprocessing. This has been reported to be suboptimal,
as subsequent results may depend on arbitrary choices regarding the preprocessing
scheme [61]. Recent works [63, 154] introduce a more principled approach combin-
ing preprocessing and certain subsequent analysis tasks in a model based approach. In
the following, we briefly review two popular preprocessing schemes, for which we will
derive a scale adjusting transformation later in Section 2.3.

2.2.1 Variance stabilization (vsn)

In this section we discuss a preprocessing strategy utilizing a variance stabilizing trans-
formation to normalize microarray data, originally introduced by Huber et al. [67, 68].
We refer to this preprocessing scheme as the vsn scheme. It combines background cor-
rection and normalization by specifying a stochastic model for gene expression values.
Methodology for robust estimation of the model parameters is implemented in the Bio-
conductor [54] package vsn.

The vsn model

Huber et al. [67] specify a model for the measured mRNA abundance xki of probe k in
sample i :

xki = αki + βki yki

= (ai +νki ) + (βiγk eηki )yki ,

where yki represents the true abundance. The measured abundance has been decom-
posed into an unspecific signal contribution αki and a term βki yki linearly dependent
on the true abundance. Further on, the unspecific term has been split up into a per-
sample offset ai and an additive noise component νki that does not depend on the
amount of mRNA present. The proportionality factor βki has been further split up into a
probe-specific affinity γk and a sample specific overall normalization factor βi . A mul-
tiplicative noise component eηki has been introduced as well. To make the model iden-
tifiable the constraints

∑p
k=1νki = 0,

∑n
i=1ηki = 0 and

∑p
k=1ηki = 0 are imposed on the

noise terms. This fixes the scales of βi and γk and it enables the interpretation of ai as a
chip-specific signal offset.

Expressing the mRNA abundance in probe specific units mki = γk yki and taking the νki

and ηki to be realizations of zero mean random variables implies the following model:

Xki −ai

βi
= mki eηki + νki

βi
.
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Chapter 2 Communicating molecular characteristics of disease

Assuming the random variables νki to be i i d with variance σ2
ν and the ηki to be i i d

with variance σ2
η the mean and variance of Xki turn out to be:

E[Xki ] =βi mkiE[eη]+ai

Var[Xki ] = (βi mki )2Var[eη]+β2
i σ

2
ν

= (E[Yki ]−ai )2 Var[eη]

E[eη]2
+β2

i σ
2
ν .

(2.1)

We have dropped the subscripts of the random variables ν and η, as they are same for
all probes k on all arrays i . Correspondingly, we are not interested in the effect of ση
on the mean of Xki and regard it as constant. Then Equation (2.1) describes a variance
to mean relation with a constant and with a quadratic contribution. This implies two
regimes. For highly expressed genes the quadratic term dominates and implies enlarged
variance. For weakly expressed genes with E[Xki ] close to ai , the constant term β2

i σ
2
ν

dominates. Its contribution can be viewed as the background noise level of sample i ,
which is present regardless of the magnitude of gene expression. These two regimes
are a direct consequence of the combination of an additive error term and independent
multiplicative one in the underlying model. This type of models has also been proposed
by Durbin et al. [38] and was more recently taken up by Wu et al. [155], as the quadratic
mean to variance relation agrees well with empirical evidence. We note, though, that a
slightly different variance to mean dependence (e.g. Kepeler et al. [82] propose a power
law with an exponent less than two) cannot be ruled out.

The variance stabilizing transformation

Analysis of the gene expression estimates can benefit from a constant variance func-
tion, and (approximately) variance stabilizing transformations have been proposed in
[39, 67, 71, 116, 117], among others. The idea starts with viewing expression estimates as
realizations of random variables with a mean depending on the magnitude of the (true)
expression. Then a smooth transformation h is derived, such that the transformed ran-
dom variable’s variance is independent of its mean. If the same transformation is ap-
plied to the expression estimates, one expects the sample variance to be independent of
the sample mean. The transformation h can be found by Taylor expansion:

Let Xu be a random variable with mean u, and h a smooth function. Then

Var[h(Xu)] ≈ Var
[
h(u)+h′(u)(Xu −u)

]
= h′(u)2 Var[Xu]︸ ︷︷ ︸

:=v(u)

. (2.2)

Setting the transformed variance to one yields h via
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2.2 Preprocessing of oligonucleotide microarrays

h′(u) = 1p
v(u)

or

h(y) =
∫ y

1/
√

v(u)du .

With a variance to mean dependence as in Equation (2.1) the integrand is of the type
1/
p

u2 +α and the integral is known to be the asinh function:

h(Xki ) = asinh
Xki −ai

bi

with bi = βiσν/c and c =
√

Var[eη]/E[eη]2. Correspondingly, the variance stabilized
model now reads:

asinh
Xki −ai

bi
=µki +εki , (2.3)

where µki = E[asinh Xki−ai
bi

] is the (transformed) expression estimate for gene k in sam-

ple i , and εki are i i d random variables with zero mean and constant variance σ2
ε = c2.

While the quality of the approximation of h (in Equation (2.2)) using Taylor expansion
depends on the concentration of Xu around u, empirical evidence suggests that the
method works well for microarray data.

Background correction and normalization

Huber et al. [67] provide an estimation procedure for the parameters {ai ,bi }n
i=1 in Equa-

tion (2.3), based on the assumption that the majority of probes are equally expressed in
all samples. It is based on the model of Equation (2.3):

asinh
Xki −ai

bi
=µk +εki , εki ∼ N (0,σ2

ε)

and parameter estimates {âi , b̂i }n
i=1 are obtained by the maximum likelihood method.

The additional unknownsµk andσ2
ε are treated in terms of a profile likelihood [101]. Ro-

bustness against the normal assumption is achieved in the tails by using a least trimmed
sum of squares [120, 121] approach, which also yields a set of approximately constant
genes K . The background corrected and normalized expression estimate of probe k in
sample i is given by:

xnor m
ki = ĥi (xrawki ) = asinh

(
(xrawki − âi )/b̂i

)
.
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Chapter 2 Communicating molecular characteristics of disease

Probeset summary

Let us collect the background corrected and normalized probe level expression esti-
mates in a p ×n matrix X . Different methods have been proposed to summarize the
probe level data to an expression measure per gene. There seems to be some evidence
favoring model based approaches [72, 88] over more heuristic concepts [73, 160]. We
use an additive model [72] with the following rationale: Each probe binds labelled tar-
get fragments with a certain efficiency. This is encoded in the vsn model, as we are
estimating the probe expression in probe specific units. These units can be assumed to
be the same across different arrays, but different for the various probes contributing to
the same probeset. When aggregating information of the different probes, this can be
taken into account by estimating these scales from the data at hand.

Denote by X (k) the submatrix of the probes (across all arrays) assigned to probeset tar-
geting sequence k. Then an additive model assumes

X (k)
i j = pki + gk j +ε ,

where pki is a probe specific effect encoding the probe specific units while gk j repre-
sents the abundance of mRNA of gene k in array j . That the scale pki is estimated by an
additive constant and not multiplicatively, arises from the fact that we have transformed
the data with the asinh function. Looking at the two regimes of highly and weakly ex-
pressed genes we find:

asinh(x) ≈ log(2)+ log(x) for x > 1

asinh(x) ≈sgn(x) · log(|x|+1) for |x| < 1 .
(2.4)

We show the above approximation in Figure 2.1. Since log(ax) = log(a)+log(x), the addi-
tive model for the scale comes naturally for well expressed genes. For weakly expressed
genes a fudge factor is effectively included, reducing the effect of inflated fold changes
in this regime. Estimates for the probe scales p̂ki and expression values ĝk j are obtained
via the median polish procedure [144]. Row and column medians are iteratively swept
out of X (k) until convergence; pki is estimated by the cumulative row medians, gk j by
the column medians. The ĝk j then make up the gene level vsn preprocessed expression
matrix.

2.2.2 Robust multichip average (rma)

The rma preprocessing protocol was proposed by Irizarry et al. [72]. It stands for a spe-
cific combination of methods for each of the three preprocessing steps of background
correction, normalization and probeset summary. We present enough detail to be able
to derive a scale adjusting transformation. Further information is available via the origi-
nal publication [72] and in the documentation of the Bioconductor [54] package affy.
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Figure 2.1: Approximation of the as-
inh function. We see that for large
values the asinh function can well be
approximated by the logarithm. For
smaller values a constant has to be
added (see Equation (2.4)). This mo-
tivates the use of an additive model for
probeset summary.

Background correction

For the background correction step the rma method uses the following model [72]. The
measurements xrawki (probe k, sample i ) are assumed to consist of a signal (ski ) as well
as of a noise contribution (bki ):

xrawki = bki + ski .

The components bki and ski are treated as i i d instances of two independent random
variables. For each array the background distribution is assumed to be normally dis-
tributed (bki ∼ N (µi ,σi )), while the signal contribution is assumed to come from an
exponential distribution (ski ∼ E xp(λi )). To avoid the possibility of negative values, the
background distribution is truncated at zero. This yields for the expected signal, condi-
tional on the observed measurement [52, 72]:

E[ski |xrawki ] = aki +σi

(
φ(

aki

σi
)−φ(

xrawki −aki

σi
)
)

/
(
Φ(

aki

σi
)+Φ(

xrawki −aki

σi
)−1

)
with aki = xrawki −µi −σ2

i λi , and φ, Φ are the density and distribution function of the

normal distribution, respectively. Estimates µ̂i , σ̂i and λ̂i are obtained from a per-chip
kernel density estimate of the raw expression values. E[ski |xrawki ] is used as a background
corrected estimate of the expression values at probe level.

This background model was originally published with the rma method [72], and we
choose to work with it because its application is frequently encountered in practice.
More recent work on background correction / signal identification can be found for in-
stance in [155], where probe composition is taken into account.

Normalization

For normalization rma employs quantile normalization [16]. The procedure is not
model based, and the idea is the following. The distribution function of expression
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Chapter 2 Communicating molecular characteristics of disease

measurements is assumed to be the same for each array. On a population scale, the
expression values do not change from sample to sample. This is not encountered in
practice, and as a correction to systematic biases the empirical distribution functions of
expression values on each array are made to be the same.

In more detail it works like this: Denote by X the p×n rma background corrected probe-
level expression matrix on log scale. That is, X = {

log(E[ski |xrawki ] )
}
. Let Π be the per-

mutation sorting the columns of X and Π−1 its inverse. Then the quantile normalized
version of X is obtained via:

X̃ =Π−1((ΠX )1) ,

where 1 is a n × p matrix with all elements equal to 1/n. The empirical distribution
function on all arrays is then the same. All probes with the same rank have the same
expression estimate on all arrays, namely the mean (across the arrays) of all estimates
of probes with this rank.

Probeset summary

For probeset summary the same additive model as discussed in the vsn case is used.
Expression estimates on gene level are then also provided by the ĝk j .

2.3 Documentation of signatures

After having introduced two preprocessing schemes, we investigate the effect of pre-
processing on documentation requirements for diagnostic signatures. Such signatures
are quantitative computational rules, deriving a diagnosis from a patient’s expression
profile. Generally, signatures are derived from example data by statistical learning tech-
niques, as described in the first chapter. The point we make is the following: As sig-
natures are inferred from preprocessed data, crucial information on the preprocessing
is not encoded in a quantitative description alone. A properly documented signature
provides a scale adjusting transformation for future data by aggregating preprocessing
information.

We continue discussing how preprocessing implies the need for a scale adjusting trans-
formation and derive two such transformations for the preprocessing schemes vsn and
rma discussed in Section 2.2.

2.3.1 Preprocessing implies a scale adjusting transformation

Microarray data is not measured on an absolute scale; it is prone to heteroscedastic
noise and systematic biases. Therefore it is common practice to preprocess the data
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prior to analyses such as signature derivation, as discussed in Section 2.2. The prepro-
cessing step can be viewed as a procedure that finds a common scale and transforms
all arrays in a data set. This enables meaningful comparison of expression estimates
between the arrays. Generally, the preprocessed expression estimate xki of gene k in
array i is inferred from the arrays A in a data set D = {A1, . . . , An} with a preprocessing
scheme, say prep. Typically preprocessing algorithms additionally depend on user ad-
justable parameters p. In summary we can write this as:

xki = xD
ki = prep(xrawki ) = prep(xrawki ; A1, . . . , Ai , . . . , An ,p) ,

where we should actually write {xrawl i }l∈K with K the set of probes coding for target se-
quence k. As this is rather cumbersome we prefer to overload k, as the meaning is usu-
ally clear from the context.

Now consider a generic situation in molecular diagnostics: Derivation and application
of a molecular signature. Given a core data set we hope to infer a signature, using a
learning algorithm. We plan to apply the signature to other (new) data to determine
disease type or predict disease outcome. The learning algorithm is applied to prepro-
cessed core data to infer the signature. The resulting classifier is tuned to the scale of
the input data; this scale, in turn, has been determined by the preprocessing scheme.
To classify a new sample A(n+1), this sample has to be transformed to the same scale.
To be applicable, the signature cD therefore has to be accompanied by a transformation
fprep,D such that fprep,D(A(n+1)) is comparable to the samples in D; then we can classify
the new patient via cD( fprep,D(A(n+1))). This implies a properly documented signature
consists not only of a quantitative description of the classification rule, but also includes
a transformation enabling its straight forward application to new raw data.

Two kinds of preprocessing schemes

As mentioned, the scale adjusting transformation fprep,D depends on the preprocessing
scheme used. Conceptually we distinguish two cases. If a preprocessing scheme does
not share information across the arrays, the samples can be processed independent of
each other:

xk(n+1) = prep(xrawk(n+1) ; A1, . . . , A(n+1),p) = prep(xrawk(n+1) ; A(n+1),p) .

In that case, we can choose the scale adjusting transformation via fprep,D = prep. We can
preprocess a new array with exactly the same algorithm we used for the original arrays.
Only the parameters p should be the same and need to be documented.

The second case comprises preprocessing schemes pooling information across arrays
to estimate a common scale. For such procedures, the scale adjusting transformation
depends on original data D as well on the preprocessing scheme. The reason is, that an
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expression estimate for a gene on one array depends on the raw data of the other arrays.
Adding a new chip to the data set changes the expression estimate:

xD+
ki := prep(xrawki ; A1, . . . , A(n+1),p) 6= prep(xrawki ; A1, . . . , A(n),p) =: xD

ki , (2.5)

where D+ =D∪A(n+1) and i ≤ n. In case the original data is available, one may consider
the approach fprep,D(·) = prep( · ; A1, . . . , A(n+1),p) for the scale adjusting transformation.
The assumption then is that adding a single array to D does not significantly alter the
results of the preprocessing. The preprocessing algorithm is assumed to be robust with
respect to changes to the input data, assuming near equality in Equation (2.5). This
seems plausible for large data sets, but we are unaware of any systematic or empirical
work on this topic. In the following we present a short analysis.

Perturbing the input data

Taking a data set on childhood Leukemia [153], we analyze empirically how addition
of an extra array affects expression estimates of the “original” arrays. As preprocessing
schemes we consider rma and vsn. To visualize this inclusion-effect, we plot histograms
of (xD+

ki −xD
ki )/( 1

2 (xD+
ki +xD

ki )) for i ≤ n.

We take n = 20 random arrays from the data set and exclude each chip once to form
instances of D and D+; results are shown in Figure 2.2. The effect is about the same for
both, rma and vsn, and not necessarily negligible. Further on, we examine the depen-
dency of this inclusion-effect on the size of the original data set. In Figure 2.2 we took
twenty arrays as the base-set. In Figure 2.3 we start with three samples as the base set
and increase the size to 41 samples. As a measure of the overall effect for each base-set
size (a summary of the histogram in Figure 2.2) we choose the inter quartile range (IQR).
In Figure 2.3 we plot the IQRs in dependence of the base-set size. The solid lines corre-
spond to a fit of f (n) = α/n, which seems to describe the size dependency adequately.
We hypothesize that choosing fprep,D(·) to be prep(·; A1, . . . , A(n+1),p) is reasonable for
large data sets, but not optimal. Also, empirically looking at one data set is clearly not
enough evidence for a general rule.

To recapitulate, we have discussed why preprocessing implies the need of a scale ad-
justing transformation. We briefly assessed the effect of re-processing the concatenated
data set as a substitute for a scale adjusting transformation. In the following we give
advantages of a direct approach to fprep,D :

- A direct approach addresses the correct question. In the scenario described, we
are not interested in estimating a new scale for more arrays, but to transform an
array to an already existing scale.

- Arrays can be added to existing data sets without affecting expression estimates.
This ensures consistency between preliminary and final analyses in studies where
data keeps being added.
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Figure 2.2: Effects of inter-array
dependencies in two preprocessing
schemes. For the two preprocessing
schemes vsn and rma we show a his-
togram of the (xD+
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(see text). This demonstrates how the
addition of an extra array to a data set
affects the expression estimates of the
original arrays via preprocessing (see
text). We take twenty random arrays
from a microarray data set [153] and
exclude each chip once to form an in-
stance of D and D+. The effect is about
the same for both schemes, and this ex-
periment shows that effects of each sin-
gle array on all others of a data set are
not necessarily negligible.
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- While the computational benefits in detail depend on the preprocessing schemes,
our experience suggests they can be substantial in terms of memory requirements
as well as in computation time.

- Defining a scale by the entire raw study data and a reference to a preprocessing
protocol is clearly suboptimal. Providing an independent fprep,D allows an easy
and meaningful exchange of signatures between scientists. This is beneficial to
speed up the independent evaluation of molecular signatures, a crucial step on
their way to clinical practice.

In the following we provide fprep,D directly for the rma and vsn preprocessing schemes.

2.3.2 A scale adjusting transformation for vsn preprocessed
signatures

In Section 2.2 we described the preprocessing procedure vsn, based on a variance sta-
bilizing transformation [67] in conjunction with an additive-multiplicative error model.
In the following we derive the associated scale adjusting transformation fvsn,D .

Recall, that the vsnprocedure consists of two sequential steps. The inference of the vari-
ance stabilizing transformation (normalization on probe level) is followed by the probe-
set summary. Accordingly, fvsn,D will be a two step procedure: fvsn,D = f sum

vsn,D ◦ f nor m
vsn,D .

The first step will be analogous to the inference of the variance stabilizing transforma-
tion, the second to the probeset summary.

Deriving the normalizing transformation

In the vsn preprocessing scheme a normalizing transformation for all the arrays in a
data set is inferred from a stochastic model (Equation (2.3)). The underlying assump-
tions are that for the majority of genes expression remains unchanged across arrays;
and that the constant genes, after a variance stabilizing transformation, scatter around
some common mean value µk :

xki = ĥi (xrawki ) = asinh
(
(xrawki − âi )/b̂i

)=µk +εki , εki ∼ N (0,σ2
ε) (2.6)

Equation (2.6) describes the expression estimate of probe k on array i . Heteroscedas-
ticity of the raw data has been absorbed into the asinh transformation. The estimates
{âi , b̂i }n

i=1 are inferred by a maximum likelihood approach. The fitting procedure em-
ployed is robust against deviations from the normal assumption in the tails of the dis-
tribution governing the residuals εki .

To derive the normalization step of fvsn,D , we start with a vsn normalized data set com-
prising n patients. From the procedure of Huber et al. [68] we are not only equipped
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with parameter estimates, but also with a set of nearly constant genes K . Further on,
estimates of the means (µ̂k ) and the variance (σ̂2

ε) in Equation (2.6) are also at hand:

µ̂k = 1

n

n∑
i=1

xki and σ̂2
ε = 1

n|K |
∑

k∈K

n∑
i=1

(xki − µ̂k )2 .

These estimates are used internally in the vsn fitting routine to calculate a profile likeli-
hood. We utilize them to rewrite Equation (2.6) into a stochastic model for the expres-
sion values of an additional (external) patient:

xk(n+1) = hn+1(xrawk(n+1)) = µ̂k +εk , εk ∼ N (0, σ̂2
ε) for k ∈K . (2.7)

The likelihood corresponding to the model is of the form

L (An+1|an+1,bn+1) = ∑
k∈K

(h(xrawk(n+1))− µ̂k )2

2σ̂2
ε

− ∑
k∈K

log(∂xh(xrawk(n+1))) , (2.8)

where the dependence on the parameters an+1 and bn+1 is through h. Maximum like-
lihood estimates (ân+1, b̂n+1) = argmax(a,b) L (An+1|a,b) can be obtained numerically
and define a normalizing transformation for the (n +1)-th array:

f nor m
vsn,D (xrawk(n+1)) = asinh

(
(xrawk(n+1) − ân+1)/b̂n+1

)
.

To be able to derive this normalizing transformation we only need information to cal-
culate ân+1 and b̂n+1. That is, for a given data set D, the parameters K , ĉ2 and the µ̂k

define the scale adjusting transformation and should be documented.

Defining the probeset summary

As discussed in Section 2.2, the vsn preprocessing scheme uses an additive model to
summarize probe level data. If X (k)

i j denotes f nor m
vsn,D (xrawi j ), the normalized expression es-

timate of the i -th probe of probeset k on the j -th array, this model assumes (see Section
2.2):

X (k)
i j ≈ pki + gk j .

The probe effects pki and the array effects gk j are estimated by the median polish pro-
cedure and are available from the original data. The array effects are the reported es-
timates of the expression value of the target sequence k, while the probe effects p̂ki

represent a probe-dependent scale. In compliance with the original additive model, we
calculate the expression value of the k-th gene on the (n +1)-th array as
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Chapter 2 Communicating molecular characteristics of disease

xk(n+1) = median
(

f nor m
vsn,D (xrawi (n+1))− p̂ki

)
,

where the median is taken over all probes i belonging to probeset k. With this, we have
available the probeset summary part of fvsn,D . To define this part of the scale adjusting
transformation, we need the probe effects p̂ki estimated from the original data set.

In summary, for the vsn preprocessing scheme a scale adjusting transformation fvsn,D

can be defined. It is dependent on aggregated information of the original data set: A set
of not differentially expressed probes (K ) and means µ̂k around which they fluctuate
with variance σ̂2

ε. For the probeset summary we need probe specific scales p̂i k to weigh
each probe’s contribution to the expression estimate.

2.3.3 A scale adjusting transformation for rma preprocessed
signatures

In the following we present a scale adjusting transformation for rma preprocessed data.
For more details of the preprocessing algorithms see Section 2.2. As the rma preprocess-
ing procedure is a three step algorithm, the scale adjusting transformation frma,D will be
of the form frma,D = f sum

rma,D ◦ f nor m
rma,D ◦ f back

rma,D . Since the background correction step em-
ployed by rma considers arrays independently, we could employ the same background
correction as the original algorithm. In fact, we will see that we do not need any back-
ground correction at all. As a summary method rma employs the same additive model
we discussed before. Consequently, f sum

rma,D is the same as for the vsn case. This leaves
the normalization part to be defined.

Deriving the normalizing transformation

The rma procedure utilizes a method called quantile normalization [16]. The normaliza-
tion procedure ranks all the genes on each array. Then it assigns each gene of a certain
rank the mean expression value of all genes of this rank (see Section 2.2). Let µ̂ be a
vector collecting all those mean values and let Π denote the permutation sorting the
background corrected expression estimates on the (n +1)-th array. Then quantile nor-
malized expression values can be obtained via

f nor m
rma,D ◦ f back

rma,D(xrawk(n+1)) = (Π−1µ̂)k , (2.9)

where Π−1 is the inverse of Π. Note though, that we do not need the background cor-
rected (unnormalized) expression values to get hold of the permutation Π−1. Since the
rma background correction is a global (strictly) monotonous transformation, we can de-
riveΠ−1 directly from the raw data. Therefore the scale adjusting transformation for rma
preprocessed data is given by f sum

rma,D ◦ f nor m
rma,D , andΠ−1 in Equation (2.9) can be derived by
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sorting the raw data. To define a rma scale adjusting transformation, we therefore need
the mean expression values over the sorted arrays (µ̂) as well as the probe specific scales
(p̂i k ) for all probes i and all probesets k.

2.4 Application to data

In this section we assess the benefits of the use of a scale adjusting transformation in
signature documentation. We start with describing two measures of a signature’s per-
formance and continue by reporting results on eight clinical data sets [10, 12, 14, 65,
107, 118, 127, 153].

2.4.1 Consistency and stability of diagnosis

To contrast the performance of a signature accompanied by a scale adjusting transfor-
mation to that of a signature without such a transformation we choose a resampling
based approach. The repeated splitting of a data set into a signature deriving part and an
external part, to which the signature is applied, mimics real life independent evaluation.
Repeating such a process a large number of times brings into play sample variation. In
the following, we introduce two performance measures utilizing diagnoses on external
patients. Consistency focuses on the agreement of diagnoses to a reference, while sta-
bility compares diagnoses for the same patient derived from signatures inferred from
different core data sets.

Consistency We randomly split each of the eight data sets into two parts, which we
call the internal and the external set. To ensure comparability of results across studies,
the size of the internal sets was fixed to 20 arrays for all data. We then derive a signature
using only the internal set and apply it to a random sample of the external set. In case
a scale adjusting transformation is present, it is utilized before classifying the external
sample. This mimics the process of communicating signatures between health care cen-
ters. For evaluation of consistency we determined the diagnosis a patient would have
received if analyzed in the context of the original study (reference diagnosis). To this
end, we concatenated the external case with the 20 internal arrays, renormalized this
complete data set of 21 cases and applied the signature. In the terminology of the last
section, let D denote the internal set. Then we write for a diagnosis with scale adjusting
transformation:

d+ := cD( fprep,D(An+1) ) ,

for a diagnosis without scale adjusting transformation:

d; := cD(prep(An+1|;) ) ,
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Chapter 2 Communicating molecular characteristics of disease

and for the reference diagnosis

d? := cD(prep(An+1|D) ) .

We re-run the complete procedure 1000 times using different random partitions of the
data into internal and external sets. Assume there are n patients in the study and each
is predicted at least m times. For patients predicted more often, a random subsample
of size m is taken. Let d ∈ Rnm be the vector of predictions (either d+ or d;)and d? the
reference predictions. Then consistency is defined as

c̄ = 1

nm

nm∑
i
I(d i = d?i )︸ ︷︷ ︸

c i

. (2.10)

Consistency is therefore proportional to the percentage of agreement between a given
number of diagnoses and the corresponding reference diagnoses. A consistency of one
corresponds to the situation where all diagnoses were identical to the reference. A con-
sistency of zero implies that all diagnoses were different from the reference.

If the entries in c , defined in Equation (2.10), arise from i i d Bernoulli variables with
success-parameter p, then nm · c̄ is distributed binomially with parameters p and N =
nm. Estimates for c̄ and confidence intervals follow directly from the binomial distribu-
tion. As we are interested in comparing the consistency of signatures with scale adjust-
ing transformation to signatures without scale adjusting transformation, we also look at
the quantity ∆c̄ := c̄+− c̄;. The subscripts denote whether a scale adjusting transforma-
tion was used. Assuming the same model, nm ·∆c̄ is the difference of two binomially
distributed random variables and for the parameters we assume nm, c̄+ and c̄;, respec-
tively. Performing the convolution numerically yields confidence intervals.

Note that we calculated the confidence intervals assuming independent Bernoulli vari-
ables. It is clear that this assumption does not strictly comply with reality: There are
dependencies between the diagnoses stemming from the fact that samples are re-used
in the internal sets as well as from predicting the same external patient various times.

Correction for class bias In case the classes underlying different diagnoses are not
equally frequent, high consistency can be obtained by chance. The κ-coefficient [29] is
a measure of agreement which corrects for such chance artifacts. It is defined as

κ= P (O)−P (E)

1−P (E)
,

where P (O) is the observed agreement (fraction of coinciding diagnoses) and P (E) is the
fraction of coinciding diagnoses expected by chance. The expected percentage agree-
ment is calculated from a contingency table by multiplication of the marginal diagnosis-
frequencies. This implies assuming independence between the two methods of obtain-
ing diagnoses, e.g. “reference” versus “scale adjusted”. We show the κ-coefficient along
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2.4 Application to data

with consistency in our results. But as it is non-trivial to interpret [90–92] we focus on
consistency in the discussions. In general, consistency and κ-coefficient support the
same conclusions we draw from the results we present.

Stability The assessment of stability of diagnoses is based on the same resampling
experiment as consistency. But while consistency refers to a comparison of an exter-
nal diagnosis to a reference, stability compares several external diagnoses for the same
patient. For a given patient, we determined the most frequent diagnosis across all re-
sampling-runs. The diagnoses for the same patient may differ, as the corresponding
classifiers have been derived from different internal data sets. Let l denote the number
of the most frequent diagnosis for a patient. Then s = 1−(1000−l )/l is reported as a sta-
bility index. A stability of one corresponds to the situation where the patient was always
assigned to the same class. A stability of zero implies that assignments to either class
were equally frequent.

More formally, let d (i ) be the vector of predictions for patient i . As before, we consider
m predictions for each patient. In case there are only two types of predictions let c 0

i :=∑m
j I(d (i )

j = 0) the number of times patient i was predicted to belong to class zero and

c 1
i := ∑m

j I(d (i )
j = 1) the number of times patient i was predicted to class one. Then the

vector of stability scores s is defined by

si = 1− min(c 0
i ,c 1

i )

max(c 0
i ,c 1

i )
.

If the entries in d (i ) arise from m i i d Bernoulli variable with parameter p, then the den-
sity of min(c 0

i ,c 1
i ) is of the form:

P (min(c 0
i ,c 1

i ) = x) =


(m

x

)
px(1−p)m−x + ( m

m−x

)
pm−x(1−p)x if x < m/2( m

m/2

)
pm/2(1−p)m/2 if x = m/2

0 else

and max(c 0
i ,c 1

i ) = m −min(c 0
i ,c 1

i ). This we use to calculate confidence intervals for the
si . Random stability curves (gray lines in Figure 2.5) were obtained by simulation, as-
suming p = 1/2 for all patients.

2.4.2 Data and results

We studied the impact of a scale adjusting transformation on eight clinical microarray
studies [10, 12, 14, 65, 107, 118, 127, 153], involving different disease types and repre-
senting diagnostic as well as prognostic classification problems. The issue of specifying
a scale adjusting transformation we also call the signature documentation problem. The
data is summarized in Table 2.1, where we also report on the difficulty of the underlying
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classification problem and on the gain in consistency when providing a scale adjusting
transformation via proper documentation.

We used the two preprocessing schemes vsn and rma we discussed in Sections 2.2 and
2.3, and compared performance with and without fprep,D . For stability assessment we
only considered signatures accompanied by a scale adjusting transformation. To dis-
tinguish between using and not using fprep,D , we also use the term documentation by
value and documentation by reference . Documentation by value implies supplying
quantitative information ( fprep,D) that depends on the original signature deriving data
set. Documentation by reference refers to the practice of mentioning the preprocessing
scheme used for signature derivation, but the lack of additional information. For the
vsn preprocessed data we used documentation by reference exclusively, as the model in
Equation (2.3) is not identifiable for a single array.

Results on consistency Results comparing the consistency of signatures documented
by value to signatures documented by reference are summarized in Table 2.4. We ob-
serve in the study by Beer et al. [10] that documentation by reference can lead to dis-
crepancies between external and internal diagnosis being as frequent as 27%. The me-
dian consistency across all studies using documentation by reference was 83.5%, cor-
responding to a median discrepancy of diagnoses as high as 16.5%. This demonstrates
the existence and importance of a documentation problem: Diagnoses are unstable and
external researchers will generally not obtain the same results as the investigators of the
original study. More importantly, we observed that the documentation strategy matters.
Documenting signatures by value leads to substantially more consistent results than
documentation by reference. We observed the biggest effect for the prognostic study by
Beer et al., where consistency improved from 73% to 97%. This corresponds to a con-
sistency gain between 22% and 26% (95% CI). The smallest consistency gain (between
3% and 4%, 95% CI) was observed for the diagnostic study of Willenbrock et al. [153],
which poses the most easy classification problem. The median minimal gain in consis-
tency obtained from documenting signatures by value (at 97.5% CI) was 15%. On most
data sets consistency of rma and vsn preprocessing were comparable; the differences
were small. Exceptions are the data sets of Huang et al. [65] and Ross et al. [118], where
consistencies obtained with rma were larger. Overall, signatures documented by value
display high consistency, most of them larger than 95%. Documentation by reference
was found to be significantly less consistent (about 15% median consistency loss).

Results on stability Results are summarized in Figure 2.5. To the two preprocessing
procedures we discussed before (vsn and rma) we added the standard preprocessing of
the Affymetrix Microarray Suite (mas). The mas scheme treats arrays independently and
does not require a scale adjusting transformation. We assessed the stability of diagnoses
(as defined in the previous Section). To display results, we sorted the patients in each
study by stability. Values were plotted together with a 75% CI for each patient. For the
most difficult classification problems (Beer et al., Bhattacharjee et al. [12], Ross et al.),
stability curves increase slowly compared to the curve of the relatively easy diagnostic
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Study Disease Problem # Cases Difficulty Doc. gain

Beer et al. Adenocarcinoma Prognostic 84 difficult 22%
Bhattacharjee et al. Adenocarcinoma Prognostic 125 difficult 16%
Huang et al. Breast cancer Prognostic 52 medium 14%
Pomeroy et al. Medullablastoma Prognostic 60 difficult 16%
Willenbrock et al. Childhood ALL Diagnostic 45 easy 3%
Ross et al. Childhood ALL Risk Group 87 difficult 16%
Shipp et al. DLBCL Prognostic 58 difficult 11%
Bild et al. Ovarian cancer Prognostic 133 difficult 12%

Table 2.1: Summary of microarray studies. Overview of the eight studies used to inves-
tigate the signature documentation problem. “Difficult” implies a typical cross-validated
success rate of derived signatures of less than 60%, whereas “easy” studies reach a success
rate of more than 90%. Documentation gain denotes the increase in consistency when
using documentation by value instead of documentation by reference (see text).

problem from the study by Willenbrock et al.. This indicates a stable diagnosis for al-
most all patients in the study of Willenbrock et al., whereas in the studies of Beer et al.,
Bhattacharjee et al., Ross et al., and Bild et al. [14] external diagnoses can vary for a large
group of patients. Still, the vast majority of diagnoses are more stable than what is ex-
pected by random guessing (gray lines). In the study of Huang et al. the stability curves
of rma and vsn are clearly outperforming mas. Note that vsn is slightly more stable than
rma, even though for the same data set consistency was significantly worse. Other stud-
ies hinting at differences in stability are Shipp et al. [127], Bild et al. and Pomeroy et
al. [107]. All of them see rma and vsn superior to mas. None of the studies provides
evidence of the opposite.

Before we discuss our results in Section 2.6, we explore for the vsn case whether we can
utilize the scale adjusting transformation to assess if comparing an external patient to a
core data set is meaningful.

2.5 Compatibility of external patients to core data

Motivation and method The question of whether an external patient is “compatible”
to data of a specific core-study has two aspects. Firstly, as stratification of tumor patients
is subject of current research and in some cases under discussion [4, 69, 127], there
are cases where it is not known a priori if a certain sample fits the context of a study.
Secondly, confusion of array labels can lead to improper data being compared to a core
study. In both cases it is advantageous to flag such a situation.

Conceptually the question whether an external patient is comparable to a core data set
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cons. κ cons. κ
Dataset

ref val ref val gain gain

rma 73 ↑74
↓71 97 ↑97

↓96 45 ↑44
↓43 94 ↑94

↓93Beer
vsn — 98 ↑98

↓98 — 96 ↑97
↓98

24 ↑26
↓22 49 ↑51

↓47

rma 81 ↑82
↓79 98 ↑99

↓98 62 ↑63
↓60 97 ↑97

↓96Bhattacharjee
vsn — 97 ↑97

↓96 — 94 ↑94
↓93

17 ↑19
↓16 35 ↑36

↓34

rma 86 ↑87
↓85 98 ↑99

↓98 71 ↑72
↓70 97 ↑97

↓97Bild
vsn — 98 ↑99

↓98 — 97 ↑97
↓97

13 ↑14
↓12 26 ↑27

↓25

rma 87 ↑87
↓86 99 ↑99

↓99 72 ↑73
↓71 98 ↑98

↓97Huang
vsn — 89 ↑90

↓89 — 77 ↑77
↓76

12 ↑13
↓11 25 ↑27

↓24

rma 81 ↑82
↓89 98 ↑99

↓98 61 ↑63
↓60 96 ↑97

↓96Pomeroy
vsn — 96 ↑97

↓95 — 92 ↑93
↓91

17 ↑19
↓16 35 ↑36

↓33

rma 80 ↑82
↓79 98 ↑99

↓98 61 ↑62
↓59 96 ↑97

↓96Ross
vsn — 92 ↑94

↓91 — 85 ↑86
↓84

18 ↑20
↓16 36 ↑38

↓34

rma 87 ↑88
↓86 99 ↑99

↓99 73 ↑72
↓74 98 ↑98

↓98Shipp
vsn — 99 ↑99

↓98 — 97 ↑97
↓97

12 ↑13
↓11 25 ↑26

↓23

rma 96 ↑97
↓96 00 ↑00

↓99 92 ↑93
↓92 99 ↑99

↓99Willenbrock
vsn — 00 ↑00

↓99 — 99 ↑99
↓99

3 ↑4
↓3 7 ↑7

↓6

Figure 2.4: Documentation
by value increases consis-
tency. Each row contains
results on consistency and
the κ-coefficient for one of
the eight clinical microarray
studies. For the prepro-
cessing schemes rma and
vsn, we report consistency
indices and κ-coefficients
for signatures documented
by reference (left columns)
and signatures documented
by value (right columns),
respectively. The last two
columns show the improve-
ment achieved through
documentation by value.
The sub-and superscripts
denote 95% confidence in-
tervals. Documentation by
value significantly increases
consistency and κ-coefficient
in all studies.

38



2.5 Compatibility of external patients to core data

Beer et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

normalized rank

st
ab

ili
ty

mas
rma
vsn

Bhattacharjee et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

normalized rank

st
ab

ili
ty

mas
rma
vsn

Huang et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

normalized rank

st
ab

ili
ty

mas
rma
vsn

Pomeroy et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

normalized rank

st
ab

ili
ty

mas
rma
vsn

Willenbrock et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

normalized rank

st
ab

ili
ty

mas
rma
vsn

Ross et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

normalized rank

st
ab

ili
ty

mas
rma
vsn

Shipp et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

normalized rank

st
ab

ili
ty

mas
rma
vsn

Bild et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

normalized rank

st
ab

ili
ty

mas
rma
vsn

Figure 2.5: The stability of signatures depends on the preprocessing scheme. Each plot
shows the stability of fully documented signatures in a clinical microarray study. For
three preprocessing schemes: mas (red), rma (blue) and vsn (green), we show stability
indices on the y-axis. All indices are sorted, such that the x-axis holds ranks, and the
curves are guaranteed to increase. The shaded areas show 75% confidence intervals while
the gray line corresponds to expected stability indices obtained from random guessing.
Stability depends on the preprocessing scheme, with rma and vsn outperforming mas (see
text).

can be viewed as an outlier detection problem: Are the core data set and the new patient
samples of the same distribution (disease population)? Outlier detection problems also
arise in many other applied settings including network intrusion, fraud detection, fault
detection (in manufacturing processes), marketing and customer segmentation [7]. It is
an active field of research [7, 120] with recent methodological advances [2, 9, 86].

We briefly explore the possibility of utilizing the probabilistic model of Equation (2.7)
to decide whether comparing an external patient to a vsn normalized data set seems
reasonable. While this might be suboptimal compared to utilizing one of the generic
methods available for outlier detection, its is appealing because it neatly integrates into
the vsn preprocessing framework and comes with no additional computational cost.

Motivating the scale adjusting transformation for vsn preprocessed data we introduced
the following model (see Equation (2.7)) for expression values xk(n+1) of an external pa-
tient:

xk(n+1) = hn+1(xrawk(n+1)) = µ̂k +εk , εk ∼ N (0, σ̂2
ε) for k ∈K .

Here we have used the notation from Section 2.2 and consider the data only up to probe
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level. We now ask if the likelihood (corresponding to the above model, see Equation
(2.8)) of the new patient data indicates whether this patient might be compared to the
core data set in a meaningful way. To explore this empirically we compiled a list of eleven
cancer data sets [8, 10, 14, 25, 26, 56, 65, 104, 125, 131, 157], all utilizing (at least par-
tially) the same Affymetrix GeneChip (version HGU95AV2). From each data set we then
randomly chose a core data set and vsn normalized it to set the scale. Subsequently
we transformed each of the remaining patients to this scale, keeping track of the likeli-
hood.

Results and conclusion The results are displayed in Figure 2.6. From the datasets
with the gray background (a breastcancer and two leukemia data sets) 40 samples (30
samples in the lowermost plot) were taken as core data. All remaining patients from all
data sets were vsn background-corrected and normalized to fit the core data. For each
core data set we decided on a cutoff for the likelihood; patients with sufficiently high
likelihood are considered similar. Our criterion for the cutoff choice was the correct as-
signment of roughly 95% of the external patients taken from the same data set as the
core data. The percentage of similar patients for each data set is is marked on top of
the plots. With a carcinoma core data set (the breast cancer data of Huang et al. [65]),
the log-likelihood separates patients with carcinoma from patients with leukemia (up-
permost plot). Also, the only other breast cancer data set [14] is the one with the most
similar patients. The converse does not really hold, as we can see from the lower plots.
In the middle plot the majority patients from all data sets, except from the mixed-lineage
leukemia (MLL) data set of Armstrong et al. [8], appear similar to the leukemia data from
Cheok et al. [25]. For the lowermost plot we used the MLL data as core data set; sur-
prisingly two carcinoma data sets [10, 131] and one glioma data set [104] appear most
similar. Overall, the experiment suggests that a low likelihood can be a good rejection
criterion, but this does not necessarily have to be the case.

2.6 Discussion and chapter summary

To the best of our knowledge, the problem of documenting diagnostic expression signa-
tures has not been pointed out and studied before. The reason might be that analyses
are often conducted in a homogeneous study environment and do not face the docu-
mentation problem. Documentation of a signature comes fully into play only by in-
dependent evaluation of a given classification rule. We were able to demonstrate that
common documentation standards are insufficient for unambiguously determining di-
agnosis. We observe low average consistency values for the documentation by refer-
ence strategy. We have shown that the consistency of diagnostic signatures can be im-
proved substantially by documenting data-dependent preprocessing information. To
do so, we have proposed the documentation by value strategy providing a scale adjust-
ing transformation in addition to the signature. We observed a trade-off between the
performance of preprocessing protocols as reported in [30, 75] and the effort required
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Figure 2.6: The log-likelihood
as a compatibility criterion. In
the plots on the left we show the
negative log-likelihood (Equation
(2.8)) for external patients of
eleven different cancer data sets
([8, 10, 14, 25, 26, 56, 65, 104, 125,
131, 157], from left to right). From
the datasets with the gray back-
ground 40 samples (30 samples in
the lowermost plot) were taken as
core data; all patients were back-
ground corrected and normalized
to this scale. For each plot we
decided on a similarity thresh-
old based on high sensitivity (see
text). The percentage of patients
similar to the core data is marked
on top. With a carcinoma core
data set the log-likelihood sep-
arates carcinoma from leukemia
(uppermost plot). The converse
does not really hold, as we can
see from the lower plots on the
left. Overall, the experiment sug-
gests that a low likelihood can be
a good rejection criterion, but this
does not necessarily have to be the
case.
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Chapter 2 Communicating molecular characteristics of disease

for documenting them. While it is known that preprocessing schemes sharing infor-
mation across arrays can enhance precision and accuracy of estimated expression dif-
ferences [30, 75], improved normalization performance comes at a price: The already
normalized expression values for a fixed microarray change when additional arrays are
added to the study (see Section 2.3). This is a problem for applying a signature to exter-
nal data; the original data needs to be included in the normalization of external arrays.
The re-normalization of the complete data set changes the original expression values,
affecting the signature and the molecular diagnosis of patients in the original study.

To circumvent this problem, we have altered the widely used preprocessing methods
vsn [68] and rma [72] to provide an “add-on” mode. This mode allows to process a core
data set deriving a scale adjusting transformation. This transformation can then be uti-
lized to add data from additional arrays without changing the normalized core data.

As a summary of our findings we propose the following (general) guidelines for deriving
and documenting a diagnostic gene expression signature:

1. Preprocessing Preprocess the data using a protocol that allows for later inclusion
of arrays without changing the original expression values. For example, prepro-
cess arrays independently of each other, or by providing a scale adjusting trans-
formation.

2. Building the classification rule Derive a classification rule using software that
provides a complete quantitative specification of the signature for documentation
purposes. For example, use the nearest shrunken centroid procedure [139] we
employed.

3. Documentation by value Document the full quantitative specification of the
classification rule. In addition, document preprocessing. For example, use the
software we provide and document it in form of a scale adjusting transformation.
Ideally, publish both parts as an integrated open source computer program that
can readily be used to diagnose new patients.

4. Diagnosing an external patient Bring the raw data to a signature consistent scale.
Apply the documented classification rule to diagnose the new patient.

These guidelines suggest methods we have found to work well in practice, but we do
not claim them to be optimal in any sense. Given the heterogeneity of clinical data
as well as the diversity of array platforms, it can safely be assumed that there is data
where other methods are more appropriate. However, we believe that in these situations
the documentation problem still exists, and a similar documentation by value strategy
should be developed for the methodology in use.

In our simulation setup, the data we call external are actually arrays from the same study.
With real external data, additional problems occur. It has been shown that even when
using the same technology and experimental protocols, the resulting data for the same
tissue sample varies between different health care centers [74]. While this effect is not
directly linked to documentation, we believe that the benefits of documenting signa-
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2.6 Discussion and chapter summary

tures by value are enhanced in situations where external and internal data are more
heterogeneous. Documentation of signatures is significantly easier for preprocessing
methods treating arrays independently of each other, as is the case for the Affymetrix
Microarray Suite (mas). However, we do not recommend these methods due to inferior
normalization performance and the reduced stability of signatures we observed.

While microarray based diagnostic signatures hold great promise to improve diagnosis
and prognosis of disease, evaluation of a signature’s predictive performance is difficult
and subject to much current research and argument [13, 99, 114, 141, 150]. It is impor-
tant to prove that a signature holds independent complementary information to exist-
ing prognostic markers. No gene expression signature has reached this status [41, 130].
While sharing candidate signatures within the research community can accelerate the
process of evaluation, this does not allow for any ambiguity of signatures. We believe
that our documentation by value strategy removes this obstacle and greatly facilitates
this endeavor. The additional effort required is small. There are certainly several ways
to implement documentation by value. We have shown one of them.
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