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Introduction

In my thesis I present two methodological contributions to the field of microarray data
analysis. Microarrays are miniature devices built to simultaneously measure the abun-
dance of messenger ribonucleic acid (mRNA) for large numbers of genes. Such data char-
acterizes cells on a molecular level, offering new possibilities as well as challenges in
analysis and interpretation. In the following I motivate the use of microarrays in a clini-
cal setting, introduce the underlying technology and present an outline of the thesis.

Microarrays characterize disease

All cells in the human body contain the same genetic information, stored in the form of
deoxyribonucleic acid (DNA). The DNAmolecule consists of two long polymer chains, two
strands, that form a double-helix structure. Each strand is a sequence of nucleotides
containing one of the bases adenine (A), guanine (G), cytosine (C) or thymine (T). The
two strands are exactly complementary ; that is, the sequence of one strand is completely
determined by the other: A always pairs with T and G with C (see left picture in Figure
I.1).

Cells acquire different characteristics by utilizing different functional units of the DNA

(different genes). Distinct parts of the DNA are made accessible, transcribed to mRNA and
translated into protein (see Figure I.1). This leads to the different functionality and “be-
haviour” of the various types of cells. If a gene is transcribed to mRNA, we also say the
gene is expressed. Transcription is a necessary prerequisite for a gene, or rather its as-
sociated protein, to contribute to the attributes of a cell. The mRNA molecules are se-
quences of the same nucleotides making up the DNA, with the exception that thymine
(T) is replaced by uracil (U). Consequently, the pairings A–U and C–G are preferred. In
this way, the nucleotide sequence of an expressed gene is transferred to the mRNA (two
left pictures of Figure I.1) and determines the protein to be produced.

Microarrays measure the abundance of messenger RNA. Remarkably, the expression of
tens of thousands of genes is measured at a time, providing an almost comprehensive
picture of transcriptional activity. In case a disease is caused by abnormal “behaviour”
of cells, this is bound to be reflected on a transcriptional level. Microarrays can then
be used to find and classify such reflections. This kind of information can be used to
elucidate the biology of disease mechanisms and to improve diagnosis and prognosis of
disease.
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Introduction

Figure I.1: The central dogma of molecular biology: DNA makes RNA makes protein. In
the left picture DNA (green) is made accessible for transcription (the double strand is bro-
ken apart). In the middle picture a gene has been transcribed from DNA to RNA (purple);
we also say the gene is expressed. It is then transported to the ribosome and translated
into protein (right picture). Pictures have been reproduced from [1].

Microarray technology

While microarrays can be realized using different technical platforms, the general con-
cept remains similar. Specifically designed probes, short DNA strands, are placed on an
inert substrate. This makes up the microarray device. To measure gene expression, RNA
is extracted from the tissue of interest, amplified and fluorescence-labeled. Then the
RNA is washed over the array, where it hybridizes to complementary DNA probes (see also
Figure I.2). As the composition of the probes is known, so is the location on the array
where corresponding complementary RNA fragments will bind. Excess RNA is washed off
and fluorescence intensity is measured with a laser scanner. The signal strength is re-
lated to the number of labeled RNA fragments present and resembles gene expression.

In the following we take a closer look at Affymetrix® GeneChip® technology, because
data we analyze have been generated with this kind of microarray. GeneChips are oligo-
nucleotide microarrays. The probes on the substrate are short DNAmolecules (oligomers),
each consisting of 25 nucleotides. They are synthesized directly on the substrate using
a photolithographic process. The substrate is a 1.25 cm by 1.25 cm square, subdivided
into many smaller squares, the probe cells or features. The side-length of a feature can
be as small as five micron (5/1000 millimeter); each feature contains millions of copies
of a unique type of probe. The probes are chosen to be specific for a gene, that is only
one gene contains a nucleotide-sequence of length 25 perfectly matching the probe. Ad-
ditionally, several probes are combined to optimally represent an entire gene. Usually
about eleven probes are assigned to the same gene, and the corresponding features are
called a probe set. Designing good probes is non-trivial and known as the probe selection
problem [80, 109].

To measure gene expression RNA is extracted from a tissue sample. In a first processing
step the RNA is reverse transcribed to complementary DNA. This step is necessary, as the
following in-vitro-transcription produces biotin labeled RNA matching the original tem-
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Figure I.2: The principle of microarray technology. Biotin labeled RNA fragments (pur-
ple) are washed over the microarray (left picture). They preferentially hybridize to com-
plementary DNA probes (green, lower left corner of the right picture). After treatment with
fluorescent stain that sticks to the biotin molecule, RNA fragments binding to probes can
be recognized by a laser scanner. Intensity of the signal is related to the number of RNA
fragments and resembles gene expression. Pictures have been reproduced from [1].

plate. The biotin molecules later serve as docking points for fluorescent molecules and
enable the quantification of RNA on the array. Then the labelled RNA is fragmented to
smaller pieces and washed over the chip to hybridize. This is shown in the left picture
of Figure I.2. The labelled RNA fragments (purple) preferentially hybridize to comple-
mentary probes on the respective feature. The number of fragments hybridizing to a
feature resembles the abundance of this type of RNA. After excess fragments are washed
off, a fluorescent molecule that binds to the biotin is used to mark the hybridized RNA.
A confocal laser scanner is used to read out the information (right picture of Figure I.2);
features with many bound RNA fragments produce high signal intensities while features
with few fragments give a weak signal . For each feature, the corresponding intensity
resembles the amount of associated RNA present in the tissue sample. Intensity values
are digitized and form the basis of subsequent analysis. Since each feature produces
its own signal and resembles a unique probe, this data is also called probe level data.
To reliably quantify the expression of a gene, information from the different features of
each probeset is aggregated. This process is called probeset summary and it is part of
a preprocessing step generally applied to the raw probe level data; more details can be
found in Chapter 2. The aggregated data is also called gene level data.

Thesis outline

Microarray data data characterizes cells on the transcriptional level. Prominent appli-
cations of microarray technology in a clinical setting are the molecular diagnosis of pa-
tients and the discovery of disease subtypes by patient stratification (clustering). Lists
of differentially expressed genes are often used to guide biological intuition. In general,
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Introduction

the data can be utilized to infer novel biological hypotheses by means of pattern min-
ing and to refine or confirm existing knowledge. This thesis contains methodological
contributions to both settings. It is composed of three chapters.

The first chapter describes statistical learning techniques, which are frequently applied
to microarray data with the goal of obtaining rules for molecular diagnosis. The focus
lies on characteristics arising from the specific nature of high dimensional microarray
data. This chapter concisely integrates concepts, algorithms and practical aspects of mi-
croarray data analysis that are usually found in distinct fields of the literature. It provides
the theoretical foundation of the other chapters.

The second chapter is concerned with the unambiguous documentation of a diagnos-
tic molecular signature or, equivalently, with the unequivocal characterization of dis-
ease or subtype of disease. The motivation to address documentation and communica-
tion of molecular signatures is a practical one: Microarray based gene expression signa-
tures have the potential to be powerful tools for patient stratification and diagnosis of
disease. But before they can affect clinical practice they need to be communicated to
other health care centers with data for independent validation [130].

External validation of a signature can only be meaningful if the new data is transformed
to a scale compatible with the original one the signature is tuned to. This scale, in
turn, depends on the initial preprocessing applied in the signature deriving study. It
needs to be communicated alongside with the signature. Chapter two formalizes this
requirement and contains scale adjusting transformations for two popular preprocess-
ing schemes, rma [72] and vsn [67, 68]. In both cases data dependent parameters that
determine the scale are identified and algorithms to adjust external data are provided.
Using eight clinical microarray data sets I am able to show significantly increased con-
sistency and stability of molecular diagnoses as compared to standard documentation
procedures. This underlines the key point of the chapter: Data preprocessing has to be
taken into account when documenting molecular characteristics of disease. In case of
vsn the scale adjusting algorithm comprises a maximum likelihood estimation of tans-
formation parameters; the usefulness of the per-chip likelihood score as an indicator for
the compatibility of external data to the core study is also assessed.

The third chapter introduces the dcoex algorithm, a method designed to utilize mi-
croarray data to reveal groups of genes losing coregulation between two phenotypes.
Information about differentially coregulated genes can not only provide a molecular
characterization of the phenotypes; it also provides focused information which is useful
to generate hypotheses about biological mechanisms underlying the phenotypical dif-
ferentiation. This chapter introduces the concept, implements an algorithm for detec-
tion and demonstrates the biological plausibility of differentially coexpressed genes.

Since coregulation cannot be measured on microarray data, the objective is to find
groups of genes coexpressed in one type of samples that lose their coexpression for a
second phenotype. That is, genes with pronounced differences in their dependency
structure (conditional on the phenotype) are sought. The dcoex algorithm identifies
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such groups of genes by minimizing a differential coexpression score S. The objective is
stated as a binary polynomial fractional program [23], which we approach heuristically
by a stochastic descent algorithm. By exploiting S in deriving efficiently computable cri-
teria for score reduction we are able to quickly identify downhill steps. We demonstrate
the the improvement over a naive descent strategy and apply the algorithm to simulated
and real data. In a data set on childhood leukemia [157] we find a biologically plausible
group of genes differentially coexpressed between cytogenetically normal children and
children bearing a Philadelphia chromosome. After assessing robustness and statisti-
cal significance of our findings we conclude that dcoex constitutes a new analysis tool
enabling the exploration of differential coexpression patterns.
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