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Abstrakt	Englisch	

In	order	to	adapt	to	the	surrounding	dynamic	environment	humans	must	be	able	to	frequently	

switch	between	tasks.	This	switching	requires	cognitive	control.	It	is	effortful	and	impairs	task	

performance	 which	 is	 reflected	 in	 behavioral	 switch	 costs.	 Task	 switching	 research	 has	

investigated	 the	 contributions	 of	 top-down	 and	 bottom-up	 processes	 on	 switch	 costs	 and	

there	is	an	ongoing	debate	about	the	composition	of	the	behavioral	performance	decrease	

present	in	switch	trials.	fMRI	studies	that	investigated	the	underlying	neural	processes	of	task	

switching	have	mostly	focused	on	regional	activation	differences.	Frontal	and	parietal	regions	

show	increased	activity	for	task	switches	and	task	repetitions,	but	investigation	of	activation	

differences	 yielded	 heterogeneous	 results.	 Recent	multivoxel	 pattern	 analysis	 enables	 the	

investigation	of	neural	 task	 representations	which	are	 located	 in	 frontal	and	parietal	brain	

regions.	The	question	arises	how	these	task	representations	might	be	subject	to	task	switching	

processes:	they	might	be	strengthened	by	increased	control	demands	during	switching	or	be	

degraded	by	interference	of	the	previous	task	set.	Alternatively,	task	representations	might	

not	be	affected	by	task	switching	processes	and	task	representation	might	generalize	across	

switched-to	and	repeated	tasks.	The	present	study	cued	participants	to	perform	one	of	two	

tasks	 (with	equally	 frequent	 task	 repetitions	and	 switches).	 It	 compares	 the	accuracy	with	

which	 a	 linear	 classifier	 is	 able	 to	 decode	 the	 currently	 performed	 task	 from	 patterns	 of	

participants’	brain	activity.	This	reflects	the	strength	of	a	task	representation.	As	expected,	

tasks	were	represented	in	frontal	and	parietal	cortex.	However,	there	was	no	difference	of	

decoding	accuracy	between	switch	and	repeat	 trials.	Moreover,	 tasks	are	represented	 in	a	

switching	 independent	 spatial	 pattern	 in	 these	 regions.	 There	 was	 no	 evidence	 for	 the	

decodable	strength	of	task	representations	to	account	for	the	performance	cost	associated	

with	task	switching.   
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Abstrakt	Deutsch	

Um	sich	an	die	umgebene	dynamische	Umwelt	anzupassen	müssen	Menschen	in	der	Lage	sein	

häufig	zwischen	Aufgaben	zu	wechseln.	Diese	Wechsel	erfordern	kognitive	Kontrolle.	Sie	sind	

aufwendig	 und	 beeinträchtigen	 die	 Ausführung	 der	 Aufgaben,	 was	 sich	 in	 behavioralen	

Wechselkosten	wiederspiegelt.	Bisherige	Forschung	zu	Aufgabenwechseln	hat	die	Mitwirkung	

von	Top-down	und	Bottom-up	Prozessen	an	Wechselkosten	untersucht	und	es	besteht	eine	

fortwährende	Debatte	 um	 die	 Zusammensetzung	 der	 behavioralen	 Leistungsminderung	 in	

Wechselaufgaben.	 fMRT	 Studien,	 welche	 die	 zugrundeliegenden	 neuralen	 Prozesse	

untersuchten,	 haben	 sich	 überwiegend	 auf	 die	 regionalen	 Aktivierungsunterschiede	

konzentriert.	 Frontale	 und	 parieteale	 Regionen	 zeigen	 verglichen	 mit	

Aufgabenwiederholungen	 eine	 erhöhte	 Aktivität	 während	 Aufgabenwechseln.	 Die	

Untersuchungen	 dieser	 Aktivitätsunterschiede	 ergeben	 jedoch	 heterogene	 Ergebnisse.	

Jüngste	 Multivoxel-Muster-Analysen	 ermöglichen	 die	 Untersuchung	 von	 neuralen	

Aufgabenrepräsentationen,	welche	in	frontalen	und	parietalen	Hirnregionen	lokalisiert	sind.	

Es	 stellt	 sich	 die	 Frage	 in	 welcher	 Form	 diese	 Aufgabenrepräsentationen	 von	

Aufgabenwechselprozessen	beansprucht	werden:	 sie	 könnten	 von	durch	Aufgabenwechsel	

erhöhte	 Kontrollanforderungen	 verstärkt	 oder	 von	 interferierenden	 vorangehenden	

Aufgabensets	geschwächt	werden.	Die	vorliegende	Studie	wies	Versuchsteilnehmer	an	eine	

von	 zwei	 Aufgaben	 auszuführen	 (mit	 insgesamt	 gleichfrequenten	 Aufgabenwechseln	 und	

Aufgabenwiederholungen).	 Sie	 vergleicht	 dabei	 die	 Genauigkeit	 mit	 welcher	 ein	 linearer	

Klassifikator	in	der	Lage	ist	die	aktuell	ausgeführte	Aufgabe	auf	Grundlage	der	Hirnaktivität	

des	Teilnehmers	zu	dekodieren.	Dies	reflektiert	die	Stärke	der	Aufgabenrepräsentation.	Wie	

zu	erwarten	waren	die	Aufgaben	im	frontalen	und	parietalen	Kortex	repräsentiert.	Allerdings	

gab	 es	 keinen	 Unterschied	 der	 Dekodierungsgenauigkeit	 zwischen	 Wechsel-	 und	

Wiederholungsaufgaben.	Darüber	hinaus	sind	die	Aufgaben	in	diesen	Regionen	durch	ein	vom	

Wechsel	unabhängiges	räumliches	Muster	repräsentiert.	Es	gibt	keine	Hinweise	dafür,	dass	

die	dekodierbare	Stärke	der	Aufgabenrepräsentationen	zu	den	Leistungseinbußen	beiträgt,	

welche	mit	Aufgabenwechsel	assoziiert	sind.	  
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Manteltext	

Task	switching	

Humans	 live	 in	 a	dynamically	 changing	multitask	environment,	 requiring	 frequent	 changes	

between	cognitive	tasks.	The	numerous	perceivable	stimuli	at	each	moment	in	time	provide	

an	even	greater	amount	of	possible	actions	to	be	performed	(Meiran,	2000).	When	sitting	in	

front	 of	 the	 computer	 to	 work	 on	 an	 important	manuscript	 the	 telephone	 starts	 to	 ring.	

Luckily,	we	are	able	to	ignore	some	stimuli	(the	ringing	telephone),	yet	still	have	to	choose	

between	other	possible	actions	(checking	the	news	on	the	internet	or	actually	start	writing).	

The	question	arises	as	to	how	humans	are	able	to	perform	tasks	in	a	goal-directed	manner	-	

how	 do	 we	 select	 and	 organize	 the	 required	 cognitive	 processes	 to	 ensure	 successful	

performance?	 Some	 form	 of	 top-down	 control	 is	 needed	 to	 select	 and	 execute	 the	 goal-

relevant	task	despite	competing	stimuli	and	action	possibilities	(Corbetta	&	Shulman,	2002;	

Kok,	Ridderinkhof,	&	Ullsperger	2006;	Cole	&	Schneider,	2007;	Sakai,	2008).		

The	task	switching	paradigm	has	been	used	to	study	this	form	of	cognitive	control	(Meiran,	

2010;	 Kiesel	 et	 al.,	 2010).	 A	 typical	 version,	 the	 cued	 task	 switching	 paradigm,	 presents	

participants	a	stimulus	(e.g.	a	geometrical	object)	and	a	cue	that	indicates	which	of	two	(or	

more)	possible	actions	is	to	be	performed	(e.g.	assessment	of	the	object’s	shape	or	judgement	

of	its	color).		

A	 well	 replicated	 finding	 in	 task	 switching	 research	 shows	 higher	 accuracy	 and	 faster	

responses	to	tasks	that	have	been	repeated	in	contrast	to	tasks	that	have	just	been	switched	

to	 (Jersild,	 1927).	 Such	 a	 performance	 decrease	 from	 sequences	 of	 repetition	 trials	 to	

sequences	of	switch	trials	(e.g.	AAAA	vs	ABAB;	Allport,	Styles,	&	Hsieh,	1994)	can	be	observed.	

These	mixing	costs	are	considered	to	reflect	“global”	costs	of	task	switches	compared	with	

single	task	blocks	(Los,	1996;	Hübner,	Futterer,	&	Steinhauser,	2001;	Rubin	&	Meiran,	2005).	
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Because	these	mixing	costs	do	not	necessarily	reflect	switching	processes	but	may	also	arise	

due	to	confounds,	such	as	higher	working	memory	 load	 in	mixed	tasks	 (Rogers	&	Monsell,	

1995;	 cf.	 Rubin	 &	 Meiran	 2005),	 most	 task	 switching	 research	 has	 focused	 on	 the	 also	

observed	 “local”	performance	decrease	 for	 switch	 trials	 compared	with	 repetition	 trials	 in	

mixed	task	sequences	(e.g.	AABABB;	Rogers	&	Monsell,	1995).	This	effect	has	been	termed	

switch	cost,	and	led	to	a	broad	discussion	on	the	underlying	mental	processes	(see	Kiesel	et	

al.,	2010	for	a	review).	While	the	decreased	accuracy	is	held	to	be	an	indicator	for	less	reliable	

task	 performance	 during	 switch	 trials	 the	 bulk	 of	 task	 switching	 research	 focusses	 on	 the	

switch	 cost	 of	 reaction	 time,	 thus	 slower	 responses	 on	 switch	 trials	 when	 compared	 to	

repetition	trials,	so	that	it	further	mentioning	of	switch	costs	will	refer	to	such.		

Theoretical	background	of	switch	costs	

It	has	been	postulated	that	the	switch	cost	reflects	the	time	needed	for	the	reconfiguration	of	

the	relevant	task	set,	removing	the	parameters	of	the	previous	task	set	to	replace	with	the	

task	 set	 at	 hand	 (Rogers	 &	Monsell,	 1995).	 The	 task	 set	 reconfiguration	 theory	 has	 been	

backed	by	the	finding	that	 increased	preparation	time	for	a	task	 leads	to	decreased	switch	

costs	(Monsell,	Sumner,	&	Waters,	2003),	although	even	with	increased	preparation	time	a	

residual	switch	cost	remains	present	(Rubinstein,	Meyer,	&	Evans,	2001).	

Another	 popular	 theory	 about	 the	 underlying	 processes	 is	 that	 of	 task-set	 inertia.	 In	 this	

theory,	 task-set	 parameters	 of	 the	 previous,	 irrelevant	 task	 are	 still	 present	 and	 cause	

interference	that	needs	to	be	overcome	to	perform	the	now	relevant	task.	This	assumption	is	

supported	by	asymmetric	switch	costs:	switching	from	a	difficult	task	to	an	easy	task	creates	

greater	switch	cost	than	vice	versa	(Allport	et	al.,	1994;	Wylie	&	Allport,	2000).	The	time	to	

resolve	 the	 older,	 more	 difficult	 task-set	 interference	 is	 greater	 than	 overcoming	 the	

interference	of	the	easier	task	–	this	is	reflected	in	the	unequal	switch	cost.		
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By	utilizing	explicit	 cues	 for	each	 task,	 further	 research	was	able	 to	 show	that	both	of	 the	

above	stated	concepts	appear	to	be	reflected	in	the	switch	cost:	the	influence	of	time	between	

cue	(what	task	is	to	be	performed)	and	stimulus	(actual	performance)	on	switch	cost	reflects	

task	 specific	 reconfiguration	processes:	 longer	 preparation	 intervals	 leaving	more	 time	 for	

reconfiguration	which	in	turn	result	in	smaller	switch	costs	(Meiran,	1996).	The	effect	of	time	

between	stimulus	and	the	following	task	cue	on	switch	costs	is	an	indicator	that	task	set	inertia	

also	contributes	to	them:	longer	intervals	leaving	more	time	for	the	previous,	now	irrelevant	

task	set	activation	to	decay	result	in	less	switch	costs	(Meiran,	Chorev,	&	Sapir,	2000).	Cued	

task	switching	also	has	its	caveats,	e.g.	confounds	of	cue	switching	in	task	switching	(Logan	&	

Bundesen,	2003;	Mayr	&	Kliegl,	2003).	However,	 in	 line	with	these	findings	many	theorists	

argue	 that	 the	 above	 outlined	 concepts	 appear	 to	 be	 both	 reflected	 in	 switch	 costs:	 the	

cognitive	control	required	to	switch	to	performing	a	different	task	(e.g.,	loading	a	new	task-

set	 into	 working	 memory	 and	 reconfiguring	 stimulus-response	 rules)	 and	 the	 involuntary	

processes	such	as	proactive	interference	from	a	previous	task-set,	between-task	crosstalk,	and	

stimulus-driven	 retrieval	 of	 currently	 irrelevant	 task-sets	 (for	 reviews	 see	 Monsell,	 2003;	

Kiesel	et	al.,	2010;	Vandierendonck	Liefooghe,	Verbruggen,	2010).	

Task	switching	in	neuroimaging	

Neuroimaging	studies	have	used	functional	magnetic	resonance	imaging	(fMRI),	to	study	the	

neural	basis	of	cognitive	control	(Miller	&	Cohen	2001;	Bunge,	2004;	Poldrack,	2006;	Aron,	

2007).	 In	 line	 with	 the	 theoretical	 background	 from	 behavioral	 studies	 outlined	 above	

neuroimaging	has	been	used	to	find	evidence	for	and	against	top-down	and	bottom-up	related	

neural	 processes	 involved	with	 task	 switching	 (Wager,	 Jonides,	 &	 Reading,	 2004;	 Shallice,	

Stuss,	Picton,	Alexander,	&	Gillingham,	2008;	Richter	&	Yeung,	2014).	However,	one	has	to	

keep	 in	mind	 that	 while	 having	 a	 relatively	 high	 spatial	 resolution	 fMRI	 suffers	 from	 low	
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temporal	resolution.	The	localization	of	activity	is	in	most	cases	based	on	blood	oxygenation	

level	dependent	 (BOLD)	response	signals	which	unfolds	over	several	seconds,	as	 the	blood	

oxygenation	 level	 increases	 in	 active	 neural	 tissue	 (Logothetis	 &	 Wandell,	 2004).	 This	

limitation	appears	crucial	when	adapting	the	task	switching	paradigm	for	fMRI	research.	Its	

main	effect,	the	switch	cost,	is	mostly	based	on	relatively	small	reaction	time	differences	when	

compared	to	the	pacing	of	fMRI	scan	acquisition.	Timing	considerations	are	also	 important	

when	designing	a	task	switching	fMRI	experiment.	For	example:	with	inter-trial	intervals	that	

are	too	long	subjects	might	treat	each	trial	as	an	individual	event	or	restart	trial	(Allport	&	

Wylie,	2000),	with	little	incentive	for	the	establishment	of	a	stable	task	set	(Richter	&	Yeung,	

2014).	Thus,	observed	effects	in	data	based	on	BOLD	signal	of	fMRI	studies	might	always	be	

accounted	to	an	ill	chosen	design	compromise	between	slow	trial	pacing	to	acquire	separable	

BOLD	responses	and	faster	pacing	that	is	required	in	order	to	allow	the	creation	of	stable	task	

sets.	Bearing	this	in	mind	fMRI	can	be	used	to	understand	and	integrate	the	concepts	of	the	

presumed	top-down	and	bottom-up	processes	 involved	in	task	switching	(Richter	&	Yeung,	

2014).	It	should	be	noted	that	other	techniques,	such	as	electroencephalography	(EEG,	Brass,	

Ullsperger,	Knoesche,	von	Cramon,	&	Phillips,	2005;	Nicholson,	Karayanidis,	Bumak,	Poboka,	

&	Michie,	 2006;	 Jost,	Mayr,	&	Rösler,	 2008)	 or	 lesion	 studies	 (Aron,	Monsell,	 Sahakian,	&	

Robbins,	2004;	Mayr,	Diedrichsen,	 Ivry,	&	Keele,	2006;	Shallice,	Stuss,	Picton,	Alexander,	&	

Gillingham,	2008a,	2008b)	have	also	been	used	to	investigate	neural	mechanisms	under	task	

switching,	but	are	not	discussed	here.				

In	general,	most	previous	research	found	task	switching	related	activity	in	frontal	and	parietal	

regions	 (Dove,	 Pollmann,	 Schubert,	Wiggins,	 &	 von	 Cramon,	 2000;	 Sohn,	 Ursu,	 Anderson,	

Stenger,	&	Carter,	 2000;	 Braver,	 Reynolds	&	Donaldson,	 2003;	 Sakai	&	 Passingham,	 2003;	

Crone,	Donohue,	Honomichl,	Wendelken,	&	Bunge,	2006;	Gruber,	Karch,	Schlueter,	Falkai	&	
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Goschke,	2006;	Yeung,	Nystrom,	Aronson,	&	Cohen,	2006;	Jamadar,	Hughes,	Fulham,	Michie,	

&	Karayanidis,	2010;	see	Wager	et	al.,	2004;	Karayanidis	et	al.,	2010	for	meta	analyses).		

An	obvious	question	to	neuroimaging	would	be	whether	there	is	a	difference	in	neural	activity	

between	 switch	 and	 repeat	 trials.	 This	 could	 reflect	 the	 reconfiguration	 processes	 and/or	

increased	task	interference	during	task	switching.	However,	results	are	heterogeneous	and	do	

not	provide	unambiguous	support	towards	switch	specific	neural	activation	differences:	while	

many	studies	do	find	the	increased	neural	activity	during	task	switching	in	frontal	and	parietal	

regions	 to	 differ	 between	 switch	 and	 repeat	 trials	 (see	 Richter	&	 Yeung,	 2010	 for	 a	meta	

analysis),	some	studies	do	not	find	this	difference	(Brass	&	von	Cramon,	2002,	2004;	Bunge,	

Kahn,	Wallis,	Miller,	&	Wagner,	2003;	Luks,	Simpson,	Feiwell,	&	Miller,	2002;	Ruge	et	al.,	2005,	

Cavina-Pratesi	et	al.,	2006;	Gruber	et	al.	2006).	Some	null	results	can	be	explained	by	design	

decisions	-	some	of	which	are	fMRI	related,	as	explained	above.	Others	are	not	fMRI	specific,	

such	as	 the	use	of	high	 switch	probabilities,	which	 leads	 to	 lower	 switch	costs	 (Monsell	&	

Mizon,	2006)	and	possibly	weaker	activation	difference	(e.g.	Brass	&	von	Cramon,	2004;	Crone	

et	al.	2006).	Therefore,	it	can	be	stated	that	task	switching	might	generally	be	associated	with	

frontal	and	parietal	neural	activation,	but	there	are	many	exceptions	(also	see	Ruge,	Jamadar,	

Zimmermann,	&	Karayanidis,	2013	for	a	review).	The	fronto-parietal	network	is	typically	linked	

to	 executive	 function	 and	 attention	 (Aron,	 2007;	 Petersen	 &	 Posner,	 2012)	 and	 shows	

activation	increase	in	situations	of	high	cognitive	demand	(Duncan,	2010).	The	quantitative	

difference	 in	 these	 regions	 under	 task	 switching	 demands	 does	 provide	 support	 for	 the	

reconfiguration	theory,	because	it	assumes	that	task	switching	relies	on	top-down	processes.	

However,	such	activation	differences	can	also	be	explained	by	task	set	inertia,	as	the	increased	

activity	 might	 reflect	 the	 neural	 reaction	 to	 the	 raised	 between-task	 competition	 in	 task	

switches	(Ruge	et	al.,	2013).	Additionally,	such	differences	might	be	the	product	of	adaptation	
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processes,	 which	 have	 also	 been	 observed	 to	 gradually	 take	 place	 during	 consecutive	

repetitions	(De	Baene	&	Brass,	2011).	

A	more	unique	indicator	in	favor	of	the	task	reconfiguration	theory	would	be	a	switch	specific	

activation	as	opposed	to	the	mere	relative	activation	difference	described	above.	In	case	of	a	

qualitative	reconfiguration	process	to	take	place	during	switching	one	would	expect	activation	

of	regions	only	under	switch	conditions.	However,	such	explicit	switch	related	activation	has	

not	been	confirmed	(Ruge	et	al.,	2013)	and	the	areas	observed	to	be	active	under	switching	

are	also	activated	in	repetition	trials.	Such	quantitative	difference	of	neural	activity	is	found	

both	in	task	preparation	(Brass	&	von	Cramon,	2004)	and	task	execution	(Dove,	2000).	This	

has	led	to	the	conclusion	that	similar	processes	occur	under	switch	and	repeat	conditions,	only	

varying	quantitatively	in	the	amount	of	processing	required	(Kiesel	et	al.,	2010;	Ruge	et	al.,	

2013).	

Theories	 of	 task	 set	 inertia	 have	 been	 tested	 in	 neuroimaging	 studies	 using	 a	 different	

approach:	 subjects	 perform	 tasks	 that	 evoke	activity	 in	different	brain	 regions,	 thus	being	

dissociable	 in	univariate	analysis.	A	persistent	activity	of	 the	previous	 task	during	 the	new	

(switched	to	and	now	relevant)	task	would	be	an	indicator	for	the	previous	(now	irrelevant)	

task	set	to	remain	active.	Such	persistent	activity	has	been	observed	(Wylie,	Javitt,	&	Foxe,	

2006).	 It	has	also	been	shown	that	 its	strength	predicts	 the	size	of	behavioral	switch	costs	

(Yeung,	Nystrom,	Aronson,	&	Cohen,	2006),	lending	further	support	to	the	idea	of	between	

task	competition	as	a	bottom-up	source	of	performance	costs	in	task	switching.	It	is	important	

to	note,	that	in	this	theoretical	context	of	bottom-up	influence	on	the	switch	cost	some	form	

of	higher	cognitive	control	is	still	required	to	select	the	relevant	and	suppress	the	irrelevant	

task	set	(Monsell,	2003),	so	that	it	doesn’t	rule	out	such	processes	to	also	contribute	to	switch	

costs.	
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MVPA	and	task	sets	

Most	previous	fMRI	research	on	the	topic	of	task	switching	has	investigated	neural	substrates	

of	 the	 underlying	 processes	 by	 contrasting	 overall	 BOLD	 signal	 differences	 of	 the	 various	

switch	conditions.	This	univariate	approach	applies	spatial	smoothing	and	normalization	to	

the	acquired	data.	Statistical	analyses	is	then	performed	with	a	general	linear	model	for	each	

individual	voxel	(Friston	et	al.,	1995).	Mass-univariate	studies	consider	differences	between	

great	quantities	of	voxels	but	consider	each	individual	voxel	separately,	focusing	on	regional	

differences	 (Haynes	&	Rees,	2006).	Applied	 to	 task	 switching,	univariate	approaches	allow	

assumptions	 about	 the	 brain	 regions	 that	 mediate	 possible	 conflicts	 or	 reconfigure	

parameters	 of	 tasks	 during	 task	 switching.	 However,	 the	 question	 on	 how	 task	 switching	

related	 processes	 affect	 the	 encoding	 and	 transformation	 of	 tasks	 in	 the	 brain	 cannot	

sufficiently	be	answered	by	univariate	studies.		

Recent	multivoxel	pattern	analysis	(MVPA;	Kriegeskorte,	Goebel,	&	Bandettini,	2006;	Haynes	

&	Rees	2006;	Haynes,	2015)	has	been	used	to	investigate	neural	task	representations.	MVPA	

considers	 information	 that	 might	 be	 present	 in	 patterns	 of	 multiple	 voxels.	 The	 concept	

provides	 a	 link	 between	 mental	 task	 representation	 and	 the	 corresponding	 fMRI	 activity	

patterns.	This	method	of	content-selective	spatial	patterning	derives	concepts	 from	neural	

representation	 theories	 that	 involve	 population	 codes,	 where	 each	 content	 involves	 the	

distributed	activation	of	more	than	one	representational	unit	(Pouget,	Dayan,	&	Zemel,	2000).	

It	is	important	bear	in	mind	that	voxel	population	is	different	from	the	neural	population:	each	

voxel	 reflects	 a	population	 receptive	 field,	 thus	 the	 summed	activity	of	 large	quantities	of	

neurons.	The	relationship	between	the	acquired	BOLD	signal	and	the	underlying	activity	are	

complex	and	can	be	indirect	(Logothesis	&	Pfeuffer,	2004).	

Using	MVPA,	brain	activity	is	analyzed	at	the	level	of	patterns	consisting	of	a	set	of	spatially	

conjoined	voxels	(e.g.	selected	in	form	of	a	sphere).	These	samples	of	brain	activity	are	then	
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assigned	 labels	 indicating	 the	 experimental	 condition	 under	 which	 they	 were	 acquired.	 A	

classification	algorithm	is	then	trained	on	part	of	the	samples.	The	remaining	samples,	that	

constitute	the	test	dataset,	are	then	used	to	assess	whether	the	classifier	is	able	to	correctly	

assign	 the	 labels	 with	 the	 information	 learned	 in	 the	 training	 dataset.	 The	 proportion	 of	

correctly	assigned	labels	is	then	compared	against	the	proportion	of	samples	that	would	have	

been	labeled	correctly	based	on	guessing	alone.	If	the	classifier	is	able	to	do	classify	the	new	

test	 set	 into	 the	 correct	 labels	 with	 statistically	 significant	 above-chance	 accuracy,	 it	 is	

presumed	to	have	extracted	and	generalized	information	from	the	training	data	set	(for	more	

information	see	Haynes,	2015).		

Regarding	task	representations,	classifiers	are	able	to	extract	information	about	tasks	in	sets	

of	voxels	(Haynes,	Sakai,	Rees,	Gilbert,	Frith	&	Passingham,	2007)		located	in	parietal	(Bode	

and	 Haynes,	 2009;	Woolgar,	 Hampshire,	 Thompson,	 &	 Duncan,	 2011;	Waskom,	 Kumaran,	

Gordon,	Rissman,	&	Wagner,	2014;	Wisniewski,	Reverberi,	Momennejad,	Kahnt,	&	Haynes,	

2015;	Etzel,	Cole,	Zacks,	Kay,	&	Braver,	2015),	medial	(Gilbert,	2011;	Momennejad	&	Haynes,	

2013),	and	lateral	prefrontal	cortex	(Cole,	Etzel,	Zacks,	Schneider,	&	Braver,	2011;	Reverberi,	

Görgen,	&	Haynes,	2012).	Note,	that	these	regions	are	also	associated	with	task	switching	and	

the	increased	cognitive	demands,	as	described	above.	The	present	study	was	able	to	replicate	

these	findings	of	parietal	and	prefrontal	locations	to	encode	tasks.		

Task	 representations	 have	 been	 subject	 to	 further	 research.	 The	 neural	 task	 code	 can	 be	

compositional	 (Reverberi	 et	 al.,	 2012)	 and	 its	 representational	 strength,	measured	 by	 the	

decoding	accuracy	of	the	classifier,	is	altered	by	rule	complexity	(Woolgar,	Afshar,	Williams,	&	

Rich,	2015)	and	skill	acquisition	(Jimura	,	Cazalis,	Stover,	&	Poldrack,	2014).	On	the	other	hand,	

their	coding	can	also	be	robust	and	the	task	representation	remains	unaffected	by	whether	
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tasks	 were	 novel	 or	 were	 performed	 routinely	 (Cole	 et	 al.,	 2011)	 or	 whether	 tasks	 were	

externally	cued	or	chosen	freely	(Wisniewski.	Goschke,	&	Haynes,	2016).		

Essential	new	findings:	Task	sets	in	task	switching	

In	 face	 of	 the	 previously	 outlined	 discussion	 about	 task	 switching	 theories	 and	 the	

reconfiguration	 or	 cross-talk	 of	 task-sets	 the	 question	 appears	 immanent	 as	 to	 how	 task	

representations	are	affected	by	task	switching.	With	the	capability	of	MVPA	to	investigate	task	

representations	two	questions	regarding	this	topic	are	answered	in	the	present	study:	

(1)	How	do	different	control	demands	on	task	switch	versus	repeat	trials	affect	the	strength	

of	neural	task	representations?		

(2)	Is	the	neural	code	of	task	representations	independent	of	task	switching?		

The	 first	 question	 can	 be	more	 accurately	 phrased	 for	 the	MVPA	method	 used:	 does	 the	

decoding	accuracy	with	which	the	classifier	can	decode	tasks	from	neural	activation	patterns	

differ	between	task-switch	and	task-repeat	 trials?	The	present	study’s	 results	 indicate	 that	

task	decoding	does	not	differ	between	task	switching	and	task	repetition	(see	below).	One	

might	have	expected	that	the	decoding	accuracy	does	differ	with	the	assumption	of	proactive	

interference	due	to	task	set	inertia	(Allport	et	al.,	1994)	or	inhibition	by	previousy	established	

task	sets	(Goschke,	2000;	Mayr	&	Keele,	2000).	These	processes	are	plausible	candidates	to	

modulate	task	representations	because	they	presumably	result	in	task	representations	that	

are	less	distinct	on	switch	trials	compared	with	repeat	trials	due	to	a	transient	increase	in	the	

recently	performed	task	activation	(Yeung	&	Monsell,	2003).	In	contrast	to	less	discriminable	

switch-trial	 task	 representations	 as	 a	 result	 of	 such	 bottom-up	 processes	 it	 has	 also	 been	

postulated	 that	 higher	 cognitive	 control	 demands	 in	 switch	 trials	 might	 sharpen	 the	

representations	 of	 relevant	 variables	 needed	 for	 current	 task	 performance.	 A	 greater	

discriminability	would	 lead	to	enhanced	 lower-level	processing	of	 the	relevant	 information	
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enabling	 selective	 gating	 of	 information	 that	 is	 processed	 in	 decision	 making	 and	 action	

selection	(Waskom	et	al.,	2014).	As	a	consequence	of	these	considerations	a	difference	in	task	

set	distinctness	could	show	in	a	difference	of	task	decoding	accuracy.	The	absence	of	such	an	

effect	does	not	rule	out	the	effect	of	task	inertia,	inhibition	or	top-down	control	processes.	

The	present	results	did	not	 find	evidence	for	a	significant	difference	 in	 task	decoding.	This	

suggests	 that	 the	 aforementioned	 well	 supported	 theoretical	 processes	 take	 place	 at	 a	

different	stage	of	task	processing	but	not	on	the	level	of	task	representations.	Moreover,	the	

implication	of	cognitive	control	needed	to	select	the	relevant	task	set	does	not	require	that	

the	neural	representation	of	the	different	tasks	 is	altered.	 It	 is	sufficient	that	the	system	is	

capable	 of	 rapidly	 deactivating	 an	 old	 and	 retrieving	 or	 implementing	 a	 new	 task	 set.	 For	

instance,	a	connectionist	network	that	relies	on	task	representations	as	sustained	activation	

patterns	is	flexible	to	the	degree	that	it	is	able	to	easily	switch	from	one	to	another	attractor	

state	representing	different	tasks	without	interference	of	other	tasks.	This	would	not	require	

activation	patterns	representing	tasks	to	change.	This	idea	is	similar	to	the	interpretation	of	

findings	 of	 context-independent	 rule	 representations	 that	 are	 considered	 to	 allow	 robust	

selective	attention	to	the	information	relevant	to	the	current	task	(Zhang,	Kriegeskorte,	Carlin,	

&	Rowe,	2013).		

Along	this	idea	the	present	study	also	answered	a	second	question:	Is	the	neural	code	of	task	

representations	 independent	 of	 task	 switching?	More	 specifically,	 is	 the	 classifier	 able	 to	

extract	spatial	activation	patterns	from	switch	trials	and	generalize	them	to	correctly	classify	

patterns	of	repeat	trials	of	the	same	task?		

The	 present	 study’s	 findings	 of	 switch	 independent	 task	 representations	 have,	 to	 our	

knowledge,	not	been	demonstrated	before.	It	adds	to	the	findings	of	previous	research	that	

demonstrate	 generalization	 of	 task	 sets	 across	 varying	 experimental	 conditions	 such	 as	
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novelty	(Cole	et	al.,	2011),	difficulty	(Wisniewski	et	al.,	2015)	or	being	freely	chosen/externally	

cued	(Wisniewski	et	al,	2016).	Such	robust	encoding	of	tasks	under	different	contexts	appears	

beneficial	as	it	allows	fast	retrieval	and	access	to	task	sets	and	thus	permits	efficient	flexibility	

in	a	dynamic	environment	(Zhang	et	al.,	2013).		

It	should	be	noted,	that	further	research	on	this	topic	appears	to	yield	diverging	results.	While	

Waskom	et	al.,	2014	did	observe	different	decoding	accuracies	of	rules	regarding	perceptual	

discriminations	for	switch	and	repeat	trials,	they	did	not	observe	behavioral	switch	costs.	This	

complicates	assumptions	made	about	task	switching	related	processes,	as	switch	costs	are	the	

basic	principle	task	switching	research	is	based	upon.	Qiao	et	al.	2017	observed	behavioral	

switch	costs	and	higher	task	decoding	accuracies	in	repeat	compared	to	switch	trials.	This	is	

complemented	 with	 the	 finding	 of	 increased	 neural	 representational	 pattern	 dissimilarity	

across	consecutive	trials	for	switch	trials	compared	with	repeat	trials	(Qiao,	Zhang,	Chen,	&	

Egner,	2017).	However,	another	study	has	failed	to	observe	task	decoding	accuracies	to	differ	

between	 switch	 and	 repeat	 trials	 (Long	 &	 Kuhl,	 2018).	 These	 divergent	 findings	 on	 the	

influence	 of	 switching	 on	 task	 representations	 suggest	 that	 further	 research	 is	 needed	 to	

clarify	 the	 role	 of	 task	 domain	 specific	 effects	 and	 attentional	 processes	 regarding	 task	

representations	(Liu	&	Hou,	2013).	

Further	questions	for	future	research	

Because	decoding	accuracies	 in	 the	present	study	did	not	 turn	out	 to	be	a	 function	of	 the	

behavioral	 switch	 cost	 further	 neuroimaging	 research	 is	 needed	 to	 understand	 the	

composition	of	neural	processes	responsible	for	the	performance	cost.	The	present	study’s	

paradigm	was	not	designed	to	decide	between	suggested	top-down	or	bottom-up	theories,	

but	indicates	that	these	processes	might	take	place	at	a	different	level	of	task	processing	and	
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not	at	the	level	of	task	representation.	Future	task	switching	MVPA	designs	might	target	the	

temporal	dynamics	of	task	set	retrieval	in	switch	and	repeat	trials.		

Furthermore,	 the	 present	 study	 decoded	 task	 sets	 from	 an	 execution	 phase	 and	 did	 not	

dissociate	task	preparation	and	actual	task	performance	due	to	the	temporal	 limitations	of	

the	highly	optimized	MVPA	design	for	fMRI.	The	preparation	phase	of	tasks	has	received	a	

great	deal	of	attention	by	univariate	fMRI	studies	(see	Ruge	et	al.,	2013	for	a	review)	because	

longer	 task	preparation	phases	 lower	 the	behavioral	 switch	 costs	 and	are	 thus	 thought	 to	

contain	a	large	portion	of	the	task	related	processes	responsible	for	the	performance	cost.	It	

is	thus	feasible	to	further	investigate	this	phase	and	the	modifiable	factors	(e.g.	cue-stimulus	

interval;	stimulus-cue-interval)	by	observing	its	effects	on	task	representations.		

As	mentioned	above,	recent	research	(Qiao	et	al.,	2017)	has	already	used	representational	

similarity	analysis	(RSA;	Kriegeskorte	et	al.,	2008)	in	order	to	assess	the	similarity	of	task	sets	

between	switching	conditions.	This	approach	appears	promising	for	further	investigation	of	

task	sets	in	the	different	phases	of	preparation	and	execution.		

The	divergent	results	of	switch	dependent	(Waskom	et	al.	2014;	Qiao	et	al.,	2017)	and	switch	

independent	(Long	&	Kuhl,	2018)	task	representations	also	call	for	further	research	in	order	

to	identify	the	factors	that	influence	the	modulation	of	task	decoding.	It	appears	that	future	

studies	regarding	these	factors	should	target	the	actual	content	of	tasks	(Qiao	et	al,	2017)	and	

attentional	features	thereof	(Liu	&	Hou,	2013).		

The	concepts	of	MVPA	task	decoding	might	also	be	seminal	when	used	on	designs	with	three	

or	more	 tasks.	 This	 setting	 of	 task	 switching	 should	 allow	 further	 disentanglement	 of	 the	

interference	of	previous	task	sets	(Mayr	and	Keele,	2000).	
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In	conclusion	the	present	study	provides	novel	insights	into	the	effects	of	task	switching	on	

neural	task	representations.	The	decoding	of	task	revealed	no	reliable	differences	between	

switch	and	repeat	trials.	Task	is	encoded	independent	of	the	switch	and	repeat	condition	in	

frontal	and	parietal	regions.	These	findings	suggest	that	the	underlying	neural	processes	of	

task	 switching	 take	place	at	a	different	 stage	of	 task	processing	–	not	on	 the	 level	of	 task	

representations.		
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Switch-Independent Task Representations in Frontal and
Parietal Cortex

X Lasse S. Loose,1,2* X David Wisniewski,1,2,3* Marco Rusconi,1 Thomas Goschke, 2 and John-Dylan Haynes1,2,4,5

1Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, 10115 Berlin,
Germany, 2Department of Psychology and Collaborative Research Center Volition and Cognitive Control, Technische Universität Dresden, 01069 Dresden,
Germany, 3Department of Experimental Psychology, Ghent University, Ghent, Belgium, 4Cluster of Excellence NeuroCure, Charité, and 5Humboldt-
Universität zu Berlin, Berlin School of Mind and Brain and Institute of Psychology, 10099 Berlin, Germany

Alternating between two tasks is effortful and impairs performance. Previous fMRI studies have found increased activity in frontoparietal
cortex when task switching is required. One possibility is that the additional control demands for switch trials are met by strengthening
task representations in the human brain. Alternatively, on switch trials, the residual representation of the previous task might impede the
buildup of a neural task representation. This would predict weaker task representations on switch trials, thus also explaining the
performance costs. To test this, male and female participants were cued to perform one of two similar tasks, with the task being repeated
or switched between successive trials. Multivoxel pattern analysis was used to test which regions encode the tasks and whether this
encoding differs between switch and repeat trials. As expected, we found information about task representations in frontal and parietal
cortex, but there was no difference in the decoding accuracy of task-related information between switch and repeat trials. Using cross-
classification, we found that the frontoparietal cortex encodes tasks using a generalizable spatial pattern in switch and repeat trials.
Therefore, task representations in frontal and parietal cortex are largely switch independent. We found no evidence that neural informa-
tion about task representations in these regions can explain behavioral costs usually associated with task switching.

Key words: cognitive control; fMRI; MVPA; parietal cortex; task switching; task set

Introduction
To reach desired goals, humans are often required to switch be-
tween different tasks. This important aspect of cognitive control

allows flexible adjustment of behavior to changing circumstances
(Kok et al., 2006). Such adjustments are often investigated using
the task-switching paradigm, requiring subjects to switch fre-
quently between two or more tasks (Meiran, 2010). Typically,
participants react more slowly and perform less accurately on
tasks that they just switched to compared with tasks that were
repeated multiple times (Jersild, 1927; Spector and Biederman,
1976). These switch costs (Rogers and Monsell, 1995) reflect cog-
nitive control processes (Goschke, 2000) that affect task process-
ing and the implementation of tasks (Monsell, 2003), as well as
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Significance Statement

Alternating between two tasks is effortful and slows down performance. One possible explanation is that the representations in the
human brain need time to build up and are thus weaker on switch trials, explaining performance costs. Alternatively, task
representations might even be enhanced to overcome the previous task. Here, we used a combination of fMRI and a brain classifier
to test whether the additional control demands under switching conditions lead to an increased or decreased strength of task
representations in frontoparietal brain regions. We found that task representations are not modulated significantly by switching
processes and generalize across switching conditions. Therefore, task representations in the human brain cannot account for the
performance costs associated with alternating between tasks.
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proactive interference and between-task crosstalk (Allport et al.,
1994; Yeung et al., 2006). However, the exact sources of switch
costs are still under debate (Kiesel et al., 2010).

Previous fMRI studies investigated the neural basis of prepa-
ratory processes in task switching using univariate methods
(Ruge et al., 2013). Although many results implicate the prefron-
tal and parietal cortical regions in task switching (Dove et al.,
2000; Gruber et al., 2006; Jamadar et al., 2010), this finding is not
always consistent (Ruge et al., 2013). Previous task-switching re-
search mostly focused on neural correlates of task-switching pro-
cesses in terms of BOLD signal differences between switch and
repeat trials. Recently, multivoxel pattern analysis (MVPA) (Haynes,
2015) has been used to investigate neural task representations.
Such representations are encoded in local spatial activation pat-
terns in the lateral prefrontal, dorsal anterior cingulate, and pos-
terior parietal cortex (Bode and Haynes, 2009; Gilbert, 2011;
Woolgar et al., 2011; Wisniewski et al., 2015).

Different cognitive processes such as rule complexity (Wool-
gar et al., 2015) or skill acquisition (Jimura et al., 2014) have been
shown to alter representations of tasks. However, whether and
how task switching (and its associated cognitive control de-
mands) influences task representations is still largely unknown.
Behavioral switch costs in task switching reflect both the cogni-
tive control processes required to switch to performing a different
task, as well as involuntary processes such as proactive interfer-
ence from a previous task set (Kiesel et al., 2010; Vandierendonck
et al., 2010). Possibly, this also affects the representation of these
tasks (Waskom et al., 2014). In other cases, task representations
remain unaffected by whether tasks were chosen freely or were
externally cued (Wisniewski et al., 2016) or if tasks were novel or
were performed routinely (Cole et al., 2011). This suggests that
tasks can also be represented independently of current cognitive
control demands (Zhang et al., 2013). However, it has remained
open whether and how task-switch related control demands and
between-task crosstalk in task-switching contexts affect the neu-
ral representation of tasks.

To investigate the influence of task switching on task repre-
sentations, two main questions are addressed in this study. First,
do different cognitive control demands on task-switch versus
task-repeat trials affect the strength of neural tasks representa-
tions? More specifically, does the accuracy with which tasks can
be decoded from neural activation patterns differ between task-
switch and task-repeat trials? Second, is the neural code in which

tasks are represented independent of control demands? There-
fore, are tasks encoded using generalizable spatial activation pat-
terns in switch and repeat trials?

To address these questions, subjects were instructed to per-
form one of two simple stimulus–response (S–R) mapping tasks
while brain activity was measured with fMRI. We identified brain
networks involved in representing tasks and then assessed task
information in these regions for switch versus repeat trials sepa-
rately. Furthermore, we tested whether brain regions encode
tasks invariant to switch and repeat condition. Results indicated
that tasks are represented generalizably in a frontoparietal net-
work, suggesting that switch-related cognitive control demands
exert no strong effect on neural task representations.

Materials and Methods
Participants
Forty-two right-handed subjects (21 females, 21 males, mean age: 25.2
years, range 20 –30 years) with normal or corrected-to-normal vision
participated in the study. We obtained written informed consent from
each subject and the local ethics committee approved the experiment.
Subjects received 30€ for their participation. No subject had a self-
reported history of neurological or psychiatric disorders. We only invited
subjects to the fMRI session whose accuracy in performing the tasks after
training was !90%. Therefore, we had to discard one subject after the
training session because of poor behavioral performance (see experimen-
tal paradigm). We discarded two further subjects because of technical
problems during scanning and one subject due to excessive head move-
ment during scanning. To ensure reliable behavioral performance, all
subjects took part in a training session 1–3 d before the scanning. Overall,
the fMRI data of 38 subjects (20 females, mean age: 25, age range 20 –29
years) were used for our analyses.

Task and experimental paradigm
Subjects were cued to apply one of two S–R mappings (tasks) to a visual
stimulus in each trial of the experiment. In half of the trials, the task was
identical to the previous trial (repeat trials); in the other half of the trials,
the task differed from the previous trial (switch trials). We instructed
subjects to respond as quickly and accurately as possible.

The experiment was programmed using MATLAB version 7.11.0 (The
MathWorks, RRID: SCR_001622) and the Cogent Toolbox (http://www.
vislab.ucl.ac.uk/cogent.php). On each trial, we first presented a task
screen for 3000 ms that simultaneously displayed a task cue, a target
stimulus, and four colored circles used for the response-mapping assign-
ment (Fig. 1 and see below). Subjects were allowed to respond in the same
3000 ms time window. The task screen was followed by an intertrial

A B l

Figure 1. Experimental paradigm. A, Trial structure. Each trial consisted of a target stimulus at fixation, a cue stimulus above, and four possible response options below. Each task screen was
presented for 3000 ms, during which time participants could indicate a response using the left and right index and middle fingers. Each trial was followed by a fixation cross with a variable ITI
(4000 –10,000 ms, mean " 5525 ms). Responses were indicated by pressing the button corresponding to the mapped color on screen on a 2 # 2 button box with their index and middle fingers of
both hands. Subjects were cued to perform one of two tasks, switching between tasks or repeating a task up to three consecutive times. B, S–R associations and task cues. The two tasks consisted
of similar stimulus response mappings, associating stimulus shapes (in two possible orientations) with colors. Each task was indicated by one of two possible abstract cues.
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interval (ITI) during which a fixation cross was presented centrally on the
screen. ITIs varied among 4000, 6000, 8000, and 10,000 ms and were
distributed pseudologarithmically to decorrelate trials in time. The mean
ITI was 5525 ms.

Tasks were cued using abstract visual symbols presented at the top of
the screen. They were free of semantic meaning to avoid a priori semantic
associations (Fig. 1; Reverberi et al., 2012a; Wisniewski et al., 2015). Over
the experiment, two different cues were associated with each task to allow
for cue-independent task decoding (see below for details; also see Rever-
beri et al., 2012a, b). The cue–task associations were counterbalanced
across subjects. The target stimuli consisted of three geometric objects
(Fig. 1, T-shape, L-shape, Z-shape), each appearing in two possible ori-
entations (0 and 90 degrees) and presented in the middle of the screen.
Stimuli and their orientations were pseudorandomized to control for the
influence of low-level visual features. The two tasks consisted of different
S–R mappings that associated stimulus shapes with colors that in turn
specified which response key had to be pressed. In task one, the T-shaped
stimulus was associated with magenta, the Z-shaped stimulus with cyan,
and the L-shaped stimulus with yellow. In task two, the T-shaped stim-
ulus was associated with cyan, the Z-shaped stimulus with yellow, and the
L-shaped stimulus with magenta. The S–R mappings were chosen to be
similar to control for possible confounds due to difficulty differences
between tasks (Todd et al., 2013). Furthermore, switch costs can also be
affected by task difficulty (Arbuthnott, 2008). Below the target stimulus,
four colored circles were presented that mapped colors to response but-
tons. The position of the each colored circle was pseudorandomized
across trials, avoiding motor preparation of responses as well as balanc-
ing left-hand and right-hand button presses throughout the experiment.
Subjects used index and middle fingers of both hands to indicate their
response by pressing the button corresponding to the color on screen on
a 2 # 2 button box (Current Designs). Three of the circles were relevant
for the task (cyan, magenta, and yellow) and one was a dummy (white)
that was not relevant in any trial. This was done to balance left and right
button presses.

Each run contained 80 trials, which were ordered so that 50% ap-
peared in a sequence length of 1 (e.g., task1), 37.5% in a sequence length
of 2 (e.g., task 1 $ task 1), and 12.5% in a sequence length of 3 (e.g., task
1 $ task 1 $ task 1). This resulted in 50% switch trials and 50% repeat
trials overall. In 50% of the trials, subjects performed task 1 and, in the
other 50%, they performed task 2. Tasks and switch conditions were
orthogonalized. Within each brief sequence of identical tasks, we only
used one of the two possible cues; that is, in each of the subsequent
repetitions of a task, the same cue was used (cue repetition). Please note
that such cue repetitions might confound the measured switch cost be-
cause it might be composed in parts of or simply reflect cue–switch cost
only. Given that we focused our analyses on the representation of task,
not on the switch processes directly, this does not affect the interpreta-
tion of our main results (Mayr and Kliegl, 2003; but see Altmann, 2006,
2007). Furthermore, cues were counterbalanced with stimuli and ITIs to
avoid possible confounds.

Following each completed run, the percentage of correct answered
trials was presented and subjects were offered a short resting break of
self-determined length. Subjects performed five runs in total. The exper-
iment lasted %75 min in total. A sixth run, in which subjects performed
the tasks in a different sequential order, was not analyzed and is not
included here.

One to 3 d before the scanning session, subjects performed a 90 min
training session, during which they learned the S–R mappings. At the end
of the training session, they performed two runs of the task as they would
be presented in the scanner. Only if the accuracy during these runs was
!90% were subjects invited to the scanning session. This was done to
avoid possible learning effects during the MRI session.

Image acquisition
Functional imaging was conducted on a 3 T Siemens Trio scanner
equipped with a 12-channel head coil. For each of the five relevant scan-
ning sessions, we acquired 347 T2*-weighted (TR " 2000 ms; TE, 30 ms;
flip angle, 90°) gradient-echo echoplanar images (EPI). Imaging param-
eters were as follows: TR, 2000 ms; TE, 30 ms; and flip angle, 90°. Each

volume contained 33 slices (thickness: 3 mm) separated by gaps of 0.75
mm. Matrix size was 64 # 64, the field of view (FOV) was 192 mm, and
the in-plane voxel resolution was set to 3 mm 2 with a voxel size of 3 #
3 # 3 mm. A T1-weighted structural dataset was also collected. The
parameters were as follows: TR, 1900 ms; TE, 2.52 ms; matrix size, 256 #
256; FOV, 256 mm; 192 slices (1 mmt thick); flip angle, 9°.

Statistical analysis
In all analyses, only trials with correct responses and preceded by
correct trials (no misses/errors) were included to avoid post-error
slowing effects (Dudschig and Jentzsch, 2009). We analyzed behav-
ioral and fMRI data using MATLAB version 2013a (The MathWorks).
For the multivariate analyses, we used The Decoding Toolbox (TDT;
Hebart et al., 2016). Unthresholded group-level parametric maps of all
analyses can be found at NeuroVault (Gorgolewski et al., 2016, RRID:
SCR_003806; http://neurovault.org/collections/2011/).

Behavior
For each subject, we assessed task performance by calculating the mean
reaction time (RT) and mean accuracy (i.e., the percentage of trials that
were correctly answered in time) across all runs. It has been reported
previously that switching between tasks leads to increased RT and de-
creased accuracy in switch trials compared with repeat trials (Monsell,
2003). We tested these so-called switch costs by comparing switch and
repeat trials in terms of mean RT and accuracy using paired-sample,
one-sided t tests. To control for possible influences of task difficulty, we
also assessed the influence of the two tasks and the four cues on RTs and
accuracies using paired t tests and one-way repeated-measures ANOVAs,
respectively. We expected task switches to have an effect on both accuracy
and RT (switch cost), but did not expect the other variables to affect
them.

Neuroimaging
First-level GLM analysis
In a first step, we analyzed functional data using SPM8 (http://www.fil.
ion.ucl.ac.uk/spm, RRID: SCR_007037). The functional volumes were
unwarped, realigned, and slice time corrected. No spatial smoothing and
no spatial normalization was applied at this point to preserve fine-
grained patterns of voxel activations (Haynes and Rees, 2006).

The preprocessed data were used to estimate a voxelwise general linear
model (GLM; Friston et al., 1994). Twelve regressors of interest were used
in the GLM. First, regressors for the eight conditions of the experimental
design: two (tasks) # two (cue-sets) # two (switch/repeat) were added.
Second, four separate regressors of no interest were added, modeling the
four possible button presses to control for possible motor confounds in
the data. Third, movement parameters were added to the GLM as regres-
sors of no interest to account for possible head movement during scan-
ning. Regressors were time locked to the onset of the task screen and
convolved with a canonical hemodynamic response function as imple-
mented in SPM.

To account for the possible influence of task difficulty on MVPA re-
sults (Todd et al., 2013), we first calculated the mean RT for task 1 and
task 2 for each subjects individually. We then set the duration of each
regressor to the mean task RT of the current trial (mean RT task 1 for
trials with task 1 and mean RT task 2 for trials with task 2, as suggested by
Woolgar et al., 2014). This accounts for task-specific RT-related effects in
the data during GLM estimation, but does not remove task-switch-
related variance from the data (Vandierendonck et al., 2010; for recent
reviews about switch cost, see Kiesel et al., 2010).

Multivariate searchlight decoding
Analysis 1: Differences in task coding in switch and repeat trials. To test for
possible differences of task representations in switch and repeat trials, we
first identified regions that code for tasks and, in the following steps,
assessed the differences of task-decoding in switch and repeat trials sep-
arately in these regions. Our analyses were designed to test whether task
information is encoded similarly in switch and repeat trials. Put differ-
ently, can task information be read out in a similar way in switch and
repeat trials? This type of question can be very well addressed using linear
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classifiers (Kriegeskorte, 2011), which we used in every decoding analysis
presented here.

Analysis 1A: Task information across all trials. In the first analysis, we
used “searchlight” MVPA (Kriegeskorte et al., 2006; Norman et al., 2006)
as implemented in TDT (Hebart et al., 2016) on the maps of GLM
parameter estimates for each individual subject. For each voxel V in the
volume, the searchlight classifier distinguishes between the two classes
(here: tasks) based on the multivariate pattern formed by the local fMRI
activity patterns in a small spherical cluster with the radius of 3 voxels
surrounding V. We used a support vector classifier (SVC) with a linear
kernel and a fixed regularization parameter (C " 1) as implemented in
LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm). As a result, search-
light decoding produces a whole-brain accuracy map representing which
searchlights contained information about the two classes entered into
the analysis. To identify which brain regions contain information about
tasks, we performed this first searchlight decoding analysis, classifying
task 1 versus task 2 and using data from both switch and repeat trials
combined. Trials were collapsed across switch and repeat condition to
increase power to identify regions of interests (ROIs) that contain infor-
mation about tasks. To control for the effect of visual cue information, we
performed cross-classification across visual cues. More specifically, we
trained the SVC to discriminate “task 1 with cue 1” and “task 2 with cue
2” and tested its performance on trials from “task 1 with cue 3” and “task
2 with cue 4.” Only brain regions that use similar activation patterns to
encode the same tasks with different cues will be visible in this analysis.
Therefore, this analysis controls for effects that are merely due to the
visual features of the cues used. There are a total of four different com-
binations of task and visual cues as a training and test dataset, so that we
repeated this analysis three more times, once for every combination. To
address the problem of overfitting (Kriegeskorte et al., 2009), we per-
formed a fivefold leave-one-run-out cross-validation. Therefore, every
run was the test dataset once. The results of the combinations of cross-
validation and cross-classification were averaged for each subject.

The average accuracy maps were then spatially normalized to a stan-
dard brain (Montreal Neurological Institute EPI template of SPM8) to
account for individual differences in brain structure. Accuracy maps
were then smoothed with a Gaussian kernel (6 mm full-width at half-
maximum) to account for differences in localization. At the group level,
a random-effects analysis was performed using voxelwise one-sample
t tests against chance level (50%). Results were initially thresholded at
voxel level with p & 0.001, corrected for multiple comparisons at the
cluster level for familywise error (FWE) ( p & 0.05). Note that these
threshold values are not problematic for cluster-level inference regarding
the inflated FEW rates that have been discovered recently by Eklund et al.
(2016).

Analysis 1B: Differences in task decoding for switch and repeat trials. In a
second step, we performed two additional searchlight decoding analyses
that were highly similar to Analysis 1A described above. This time, we
performed two independent analyses for switch trials only and repeat
trials only. We first entered only the data of switch trials into a SVC
that was trained to classify task 1 versus task 2. We again applied cross-
classification across cues and leave-one-run-out cross-validation and av-
eraged across them. We also smoothed and normalized the resulting
decoding accuracy maps, as described above. The same procedure was
repeated for repeat trials only. This yielded a task-decoding accuracy map
for switch trials and for repeat trials for each individual subject. To com-
pare the task-decoding accuracies in switch and repeat trials, we created
ROIs from the clusters that we defined in task decoding Analysis 1A. To
avoid circular analysis (Kriegeskorte et al., 2009), we used a leave-one-
subject-out ROI analysis (Esterman et al., 2010). For this, we excluded
one subject and performed a group-level analysis as described above
(Analysis 1A). The results were then thresholded at voxel level with p &
0.001 (corrected for multiple comparisons at the cluster level, FWE, p &
0.05). We extracted the resulting significant clusters from this analysis
and created a ROI from each cluster (based only on the training subjects).
For each ROI thus defined, we extracted the mean decoding accuracy for
the left-out subject. The ROI should resemble the group level results of
Analysis 1A, but ensure an independent dataset for extracting decoding
accuracies. Accuracy values were extracted for the decoding of task in

switch trials only, repeat trials only, and all trials together (Analysis 1A).
We repeated this procedure until every subject was left out once. This
ensures independence of the data used to define the ROIs from the data
used for statistical assessment of the accuracy values inside these ROIs.
The mean decoding accuracies from all three analyses and all ROIs were
then entered into a two-factorial repeated-measures ANOVA (factor 1: 3
analyses; factor 2: ROIs) to identify possible differences between task
coding in switch and repeat trials in each ROI. Furthermore, to assess
whether decoding accuracies were significantly above chance in each
analysis and ROI, planned one-tailed t test against chance level were
performed. Results from these tests were Bonferroni corrected for the
three analyses performed in each ROI.

To complement results of the traditional t tests, we also calculated
Bayes factors (BFs) using R (RStudio version 1.0.136; RRID: SCR_001905,
package: BayesFactor). Classical null hypothesis significance testing
comes with several limitations, one of them being that these tests do not
provide evidence for the null hypothesis (Wagenmakers, 2007; Dienes,
2014). Following these methods, the absence of a significant effect does
not provide information whether there was an absence of an effect in the
data or if the data were inconclusive in this regard. Bayesian hypothesis
testing enables us to quantify evidence in favor for the null hypothesis
(Rouder et al., 2009; Mertens and De Houwer, 2016). Following Jeffreys
(1961), we considered BFs between 1/3 and 1 to represent anecdotal and
thus inconclusive evidence and BFs smaller than 1/3 and 1/10 to indicate
substantial and strong evidence for the absence of an effect, respectively.
BFs larger than 1 were considered to represent substantial and BFs larger
than 3 to represent strong evidence for the presence of an effect.

Analysis 2: Generalization of task coding between switch and repeat trials.
Please note that the abovementioned analysis (1B) merely tests whether
brain regions that encode tasks have different accuracies in switch and in
repeat trials. If a given ROI indeed has a higher accuracy in one or the
other condition, this would indicate a specialized role for task coding in
either switch or repeat trials. If, however, no difference were to be found,
this would not show directly that the ROI has a similar role in switch and
repeat trials. To assess directly whether any brain regions encode tasks
switching independently in these two conditions, a different type of
analysis is necessary. Therefore, in Analysis 2, we aimed to identify brain
regions that encode task information in the same way independently of
whether subjects were repeating or switching between tasks, again using
cross-classification (Reverberi et al., 2012a; Kaplan et al., 2015; Wis-
niewski et al., 2016). Similar to Analysis 1A, we first trained a searchlight
classifier to distinguish between tasks in switch trials only and tested it on
repeat trials only. We then trained a classifier on repeat trials only and
tested it on switch trials only. Again, in both cases, we used leave-one-
run-out cross-validation to avoid the problem of overfitting. Results
from both analyses were first averaged for both cross-classification direc-
tions and then smoothed and normalized as in the previous analyses.

Please note that, in contrast to the Analysis 1, this analysis does not
control for the effect of visual features of the task cues and results might
reflect these. We also performed an exploratory task-decoding analysis
with cross-classification across visual cue and across switch/repeat con-
ditions at the same time. Specifically, we trained the classifier on “task 1
switch trials with cue 1” versus “task 2 switch trials with cue 3” and tested
on “task 1 repeat trials with cue 2” versus “task 2 repeat trials with cue 4.”
Such combined cross-classification should reveal task representations
that are independent of switch and not confounded by visual cue infor-
mation. This additional division of training data allows for 12 possible
combinations of training and testing datasets. Therefore, we repeated
this analysis for each combination and also applied cross-validation as
described in the analyses above. The resulting decoding maps were aver-
aged for each subject. However, because the trial number used to train
the classifier in each decoding is again split in half compared with the
previous cross-classifications, data are now divided across the cue and
switch condition. That reduces the power of this analysis considerably,
likely leading to reduced decoding accuracies.

To still control for the effect of visual cue information, we again used
the ROIs defined in Analysis 1A using the leave-one-subject-out method.
Within these clusters, we now extracted the mean task-decoding accura-
cies from Analysis 2, where we cross-classified across switch and repeat
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trials. Please note that this is similar to a conjunction analysis and only
voxels that show significant above-chance information in both task
decoding cross-classified across visual cues and task decoding cross-
classified across the switch and repeat conditions are interpreted. If tasks
are encoded generalizably in these regions, then the mean decoding ac-
curacies of task in both analyses should be significantly above chance. We
tested this by applying a t test (against chance level, 50%) on the mean
decoding accuracies for each cluster.

Results
Behavior
The mean RT across all correct trials was 1681 ms (SE " 30 ms).
After removing trials following error trials, the mean RT changed
significantly to 1664 ms (SE " 27 ms; paired t test: t(37) " 3.69;
p & 0.001; BF " 42). This effect could reflect post-error slowing
(Dudschig and Jentzsch, 2009). All fMRI and RT analyses are
based only on correct trials also following a correct trial. On
average, subjects were correct and fast enough in 95.5% (SE "
0.6%) of the trials. In 2.9% of the trials (SE " 0.3%) subjects
pressed the wrong button and, in 1.6% (SE " 0.3%), they did not
respond within the 3000 ms response window. The mean RT did
not differ significantly between the two tasks (paired t test, t(37) "
$0.30, p " 0.76; BF " 0.18), nor did the accuracy of both tasks.
Furthermore, there was no significant effect of cue on RTs, as
tested using a one-way repeated measures ANOVA (F(3,37) " 0.31,
p " 0.81; BF " 0.05). No effects of tasks (paired t test, t(37) " 0.47,
p " 0.74; BF " 0.22) or cues (ANOVA, F(3,37) " 1.17, p " 0.32; BF "
0.13) were found in accuracy rates. The average RT in switch trials
was 1699 ms (SE " 32 ms). The average RT in repetition trials was
1656 ms (SE " 30 ms). The difference between these switch and
repeat trials (switch cost) was significant (paired t test, t(37) "
5.04; p & 0.001; BF " 1645). Average accuracy in switch trials was
94.59% (SE " 0.68%) and, in repeat trials, 96.36% (SE " 0.5%).
This difference was also significant (paired t test, t(37) " $4.44;
p & 0.001; BF " 308). These results replicate previous findings of
switch cost in RT and accuracy values (Monsell, 2003).

Multivariate searchlight decoding
Analysis 1: Differences in task coding in switch and repeat trials
Analysis 1A: Task information across all trials. First, we identified
regions that encode tasks using data from both switch and repeat
trials combined. Using cross-classification, we ensured that the
visual features of the task cues cannot explain the results. Signif-
icant above-chance classification of task could be observed in
three clusters (p & 0.05, FWE corrected at the cluster level, initial
voxel threshold p & 0.001; Fig. 2A, Table 1). The first cluster is
located in left inferior and superior parietal cortex spanning
across angular gyrus, the second in right superior parietal cortex
spanning across angular gyrus, and the third in left prefrontal
cortex (PFC).

Analysis 1B: Differences in task decoding for switch and repeat
trials. To compare the task-decoding accuracies in switch-only
and repeat-only trials, we used a leave-one-subject-out approach
to create the ROIs from the clusters identified in Analysis 1A. This
procedure avoids the problem of double dipping (Kriegeskorte et
al., 2009). We then extracted the task-decoding accuracy values in
switch-only and repeat-only conditions. Figure 2B shows an
overlay of all leave-one-subject-out-ROIs that were created. As
expected, they closely resemble task-decoding results across all
subjects in Analysis 1A. A two-factorial repeated-measures
ANOVA on the mean task-decoding accuracies in these ROIs
showed no significant main effect of the decoding analysis (all/
switch-only/repeat-only task decodings, F(2,74) " 0.06, p " 0.94;
BF & 0.001), no significant main effect of the ROI (F(2,74) " 0.59,

p " 0.55; BF & 0.001), and no interaction effect between ROI and
the decoding analysis (F(4,148) " 1.08, p " 0.36; BF " 0.06). This
indicates that there are no strong differences in the task-decoding
accuracies between switch and repeat trials in task-related brain
regions. We thus have strong evidence for the absence of an effect
in this analysis.

Average task decoding in the left parietal cortex in all trials was
52.44% (SE " 0.64%), which was significantly above chance level
(50%, t test: t(37) " 3.82; p & 0.001; BF " 60). In switch trials only,
the average decoding accuracy was 52.46% (SE " 0.79%) and, in
repeat trials only, it was 51.83% (SE " 0.89%). In right parietal
cortex, the task-decoding accuracy in all trials was 52.1% (SE "
0.54%) and was significantly above chance level (t test: t(37) "
3.87; p & 0.001; BF " 66). In switch trials only, it was 52.05%
(SE " 0.69%) and, in repeat trials only, it was 51.75% (SE "
0.76). In left lateral PFC, the task-decoding accuracy in all trials
was 51.85% (SE " 0.5%) and was significantly above chance level
(t test: t(37) " 3.733; p & 0.001; BF " 46). In switch trials only, it
was 51.35% (SE " 0.6%) and, in repeat trials only, it was 52.18%
(SE " 0.83%).

Please note that, due to the physical limitations of fMRI, we
cannot exclude that additional information is present at finer
spatial scales. The absence of differences between task-decoding
accuracies in switch and repeat trials is thus limited by the spatial
resolution of fMRI.

Although this is not the focus of our study, we also performed
a univariate contrast of switch—repeat and repeat—switch trials
and a multivariate decoding of switch versus repeat trials. Neither
the univariate contrasts nor the multivariate decoding of switch
versus repeat yielded significant results at p & 0.05 FWE cluster
correction and initial voxel threshold of p & 0.001. The univariate
results are consistent with previous research (Cavina-Pratesi et
al., 2006; Gruber et al., 2006), although results on this topic have
been heterogeneous (Ruge et al., 2013).

Analysis 2: Generalization of task coding between switch and
repeat trials
In Analysis 1, we did not find evidence for a difference in task
coding between switch and repeat trials. In a next step, we as-
sessed directly whether regions that encode task do so invariant to
switch and repeat condition. We thus performed a task-decoding
analysis, training on switch trials and testing on repeat trials. To
ensure an independent test dataset, we again used the ROIs
extracted from Analysis 1A using a leave-one-subject-out ap-
proach. We extracted the mean decoding accuracy in these ROIs
from the task-decoding analysis cross-classified across the switch/
repeat conditions. Mean decoding of task was significantly above
chance level (50%) in the left parietal (t test: t(37) " 4.84; p &
0.001; BF " 940), right parietal (t test: t(37) " 5.05; p & 0.001;
BF " 1719), and left prefrontal (t test: t(37) " 2.83; p & 0.001;
BF " 5.31) regions. We thus have strong evidence for the pres-
ence of an effect in this analysis. This finding indicates that all
identified task-related brain regions encode tasks generalizably
regardless of the current switch/repeat condition.

To assess whether any other regions outside of the ROIs in-
vestigated above also encode tasks similarly invariant to switch
and repeat conditions, we performed an additional explorative
whole-brain analysis of the task decoding using cross-classification
across switch/repeat trials.

Results were thresholded at voxel level with p & 0.001, cor-
rected for multiple comparisons at the cluster level (FWE, p &
0.05). Task information was found in bilateral inferior and supe-
rior parietal cortex, bilateral precuneus, right angular gyrus, and
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Figure 2. Task decoding. A, Task decoding across cues in all trials and all subjects. Tasks were encoded in bilateral superior parietal cortex, left inferior parietal cortex, and left lateral PFC
( p & 0.05, FWE corrected at the cluster level, initial voxel threshold p & 0.001). B, Overlay of all 38 leave-one-subject-out ROIs. All ROIs were created leaving out one subject at the
group-level statistic ( p & 0.05, FWE corrected at the cluster level, initial voxel threshold p & 0.001) and later used for extraction of mean decoding accuracy values in that subject.
C, Mean task-decoding accuracies extracted from the ROIs depicted in B. We extracted values from four different decodings: task across cues in all trials (red), task across cues in switch
trials only (blue), task across cues in repeat trials only (violet), and task across switch (green). Chance level in these plots is 50%. The distribution of mean decoding accuracies across
subjects is shown in the histograms below.
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bilateral occipital cortex spanning into bilateral cerebellum (Fig.
3, green). Please note that, in contrast to Analysis 1, this analysis
does not control for the effect of visual features of the task cues
and results might reflect these. We therefore performed a con-
junction analysis with the regions identified in Analysis 1A. This
analysis explicitly controls for the influence of visual cue features
on task decoding results. Voxels found in both Analysis 1A and
Analysis 2 thus encode tasks in a generalizable format invariant to
different visual cues and different switch/repeat conditions. This
conjunction analysis identified the bilateral parietal cortex (Fig.
3, yellow). In contrast to Analysis 1A, we did not find a prefrontal
cluster. Please note that this whole-brain analysis is less sensitive
than our leave-one-subject-out ROI approach, potentially ex-
plaining the absence of prefrontal findings. This analysis suggests
that the task information in parietal cortex generalizes across
multiple different contexts.

To further test whether tasks are encoded in a switch-
independent fashion, we compared the accuracies of task decod-
ing within and across switching conditions directly. If a task
representation is encoded independently of the switch/repeat
condition, then it should yield comparable decoding accuracies
in decoding in which the classifier is trained on switch and also
tested on switch trials and the classifier is trained on switch but
tested on repeat trials. For this comparison, we averaged the in-
dividual subjects’ task-across-cue-decodings for switch only and
repeat only trials from Analysis 1B and compared them with the
task decoding across cue and across switch conditions simultane-
ously. Please note that the number of trials used to train the
classifier for all of these analyses is the same in both analyses.
Decoding accuracies did not differ significantly in left parietal
(paired t test: t(37) " $0.8730, p " 0.3883, BF " 0.25), right
parietal (paired t test: t(37) " $0.9427, p " 0.3520, BF " 0.26), or
left prefrontal (paired t test: t(37) " $1.1629, p " 0.2523, BF "
0.32) cortex.

The task decoding across cue and across switch condition si-
multaneously did not yield any significant results at FEW-
corrected cluster level p & 0.05 with initial voxel threshold p &
0.001. This is likely due to the reduced number of trials that were
used to train the classifier.

To further corroborate our findings, we repeated all analyses
using correlation-based classifiers as implemented in TDT (Hebart
et al., 2016). We compared the whole-brain results of the analyses
above (linear SVC) with respective exploratory correlation-based
classifier results using a post hoc paired t test as implemented in
SPM8. Results did not differ significantly on a whole-brain level

(initial voxel threshold p & 0.001, FWE-corrected FWE cluster
level p & 0.05). To test whether the classifier type had an influence
on the results identified in more sensitive ROI analyses, we per-
formed an additional ANOVA on the ROI results. We repeated
the ANOVA described above, including the factors ROI (left pa-
rietal, right parietal, left prefrontal) and decoding analysis (task
across cue for all trials, switch only trials, and repeat only trials).
We added a third factor, classifier type, to this ANOVA (linear
support vector classification, correlation-based classification).
Results indicated that the main effect of classifier type did not
reach significance (F(1,37) " 1.95, p " 0.17, BF & 0.001).This
ANOVA was designed to be as similar as possible to the original
ANOVA performed in Analysis 1B. Because this did not include
the decodings under Analysis 2, we assessed the influence of clas-
sifier on these analyses with two separate ANOVA, including the
factors of classifier type and ROI (as described above). However,
we found no significant effect of classifier type in either of the
remaining analyses: task across switch condition (F(1,37) " 0.14,
p " 0.71, BF & 0.001) and task across cue and switch condition
(F(1,37) " 1.62, p " 0.21, BF & 0.001). Overall, we have strong
evidence for the absence of any differences between the two clas-
sification algorithms used here, showing that our results are not
specific to the method that we used.

Discussion
Summary
Effective goal-directed behavior requires humans to switch fre-
quently between different tasks. To direct this behavior, cognitive
control is required (Kok et al., 2006). Much previous research
used task-switching paradigms to examine the role of cognitive
control when changing between tasks (Monsell, 2003; Kiesel et
al., 2010). Results show that performance is modulated by switch-
ing and switch costs are observed in both RT and accuracy (Jersild,
1927; Allport et al., 1994). However, the cognitive mechanisms
and neuronal correlates of this behavioral switch cost are still
under debate (Kiesel et al., 2010). Most previous fMRI research
has focused on the neural correlates of task-switching processes
(Ruge et al., 2013) and task-switching-related processes have
been associated with a frontoparietal control network (Sohn et
al., 2000; Braver et al., 2003; Brass et al., 2005; Crone et al., 2006).
However, most of this research focused on the processes required
to reconfigure the cognitive system from performing one task to
performing a different task. Presumably, this includes changes to
the neural representations of tasks, but effects on neural task
representations have rarely been investigated (but see Waskom et
al., 2014). However, task representations have been shown to be
context dependent in some cases (Woolgar et al., 2015) and to
remain context independent in others (Wisniewski et al., 2016).
Here, we investigated the influence of cognitive control processes
related to task switching on the neural representations of tasks.

In the current study, subjects were cued to perform one of two
simple tasks, with the task being repeated or switched between
successive trials. Behavioral results indicate that subjects showed
switch costs (Rogers and Monsell, 1995), which suggests that
cognitive control demands differed between switch and repeat
trials. We first compared task-decoding accuracies in switch and
repeat trials in these regions. Our results show that tasks were
represented in bilateral parietal cortex and left lateral PFC. How-
ever, we found no differences in task-decoding accuracies be-
tween switch and repeat trials. Therefore, our data yielded no
evidence that tasks are represented differently for either switch or
repeat trials in the regions that we identified previously to main-
tain task information (but see Waskom et al., 2014). We also

Table 1. Results of analysis

Brain region Side
Cluster
size

MNI coordinates
(peak voxels)

t score
peakx y z

Task across cues in all trialsa

Parietal lobe Left 383 $51 $52 49 4.75
Parietal lobe Right 293 36 $61 64 4.87
Prefrontal lobe Right 261 $39 35 $2 5.51

Task across switch in all trialsb

Parietal lobe Left 1053 $48 $55 49 5.17
Parietal lobe Right 597 27 $64 46 5.71
Occipital lobe Left 440 $21 $91 $2 4.69
Cerebellum Left 173 $39 $64 $23 5.34
Occipital lobe, cerebellum Right 135 45 $64 $11 4.8

a Brain regions where tasks could be decoded in an analysis collapsed across switch and stay trials independently of
visual cue.
bBrain regions where classifiers trained on switch trials could be used to decode the task in repeat trials and vice
versa.
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tested for generalization of task coding across switch and repeat
trials using cross-classification. Results indicate that the fronto-
parietal cortex represents tasks regardless of the current cognitive
control demands in task switching and suggests that tasks are
coded in a robust, switching-independent pattern.

Task representations in frontoparietal cortex
Recent MVPA research investigating the neural representations
of tasks directly has shown that parietal (Bode and Haynes, 2009;
Woolgar et al., 2011; Waskom et al., 2014; Etzel et al., 2016;
Wisniewski et al., 2015), medial (Gilbert, 2011; Momennejad and
Haynes, 2013), and lateral PFC (Cole et al., 2011; Reverberi et al.,
2012b) hold information about tasks. We provide further evi-
dence for these findings because we were able to discriminate
between the two highly similar tasks in bilateral parietal and left
lateral PFC. This is consistent with previous results highlighting
the important role of these regions in task processing during task
retrieval and maintenance (Bunge et al., 2003; Sakai and Passing-
ham, 2003; Gilbert, 2011), processing rule and task composition-
ality (Woolgar et al., 2011; Reverberi et al., 2012a), adaptively
coding tasks under different conditions (Woolgar et al., 2011),
and their engagement over the course of development (Wen-
delken et al., 2012).

Influence of switching on task representation in
frontoparietal cortex
Recent studies suggest that task representations can be modu-
lated by different contextual variables: task representations have
been observed to be modulated by rule complexity (Woolgar
et al., 2015), rewards (Etzel et al., 2016), and skill acquisition
(Jimura et al., 2014). This illustrates how higher cognitive func-
tions might change flexibly the way task are processed in the
brain, possibly reflecting adaptation of neuronal populations to
different environmental demands (Duncan, 2010, 2013). How-
ever, other studies suggest that task representations also remain
unaffected by experimental manipulation, such as task novelty
(Cole et al., 2011), task difficulty (Wisniewski et al., 2015), or
whether they are freely chosen or externally cued (Zhang et al.,
2013; Wisniewski et al., 2016). It remains an open question

whether and how cognitive control processes modulate task rep-
resentations. In a previous study, Waskom et al. (2014) found
task information in the inferior frontal and intraparietal sulcus,
as well as the occipitotemporal cortex. They found representa-
tions of rules regarding perceptual discriminations to be modu-
lated by task switching because they had the highest decoding
accuracy after a task switch. Such effects on context information
might be driven by attentional processes (Liu and Hou, 2013).
Also note that Waskom et al. (2014) did not observe behavioral
switch costs. It thus remains unclear whether cognitive control
demands differed between switch and repeat trials and if these
neuroimaging results in fact reflect control-related processes. In
contrast, our subjects did show switch costs, indicating different
control demands between switch and repeat trials. Importantly,
because we presented task cues simultaneously with the task
stimuli, participants could not prepare in advance for the new
task on switch trials. Therefore, switch costs presumably reflect
both effects of task set inertia and proactive interference, as well
as increased control demands due to the requirement to retrieve
and implement the new task set and to reconfigure S–R accord-
ingly. Nevertheless, our results suggest that control demands do
not modulate task representations. Together, these findings indicate
that tasks are represented using a general, context-independent neu-
ral code. At first glance, this finding might be taken to imply that
these brain regions do not support flexible adaptation of behavior
because they do not change flexibly under varying environmental
conditions. It has been argued previously that frontal and parietal
brain regions support flexible adaptation through flexible task
representations that change under varying external demands
(Duncan, 2001; Waskom et al., 2014; Woolgar et al., 2015). How-
ever, generalized coding under different conditions might also
support adaptive behavior: invariant coding allows robust access
to task information even if we are confronted with novel situa-
tions. This might enable fast transfer of abstract rules (Cole et al.,
2011) and stable selective attention toward task-relevant infor-
mation (Zhang et al., 2013). Stable task representations have also
been observed under varying attentional loads (Chan et al.,
2015), further highlighting the context-independent coding of
tasks. Therefore, our findings of such invariant neural represen-

Figure 3. Task decoding in all subjects for the decoding of task across cues (red, Analysis 1A) and the decoding of task across switch/repeat (green, Analysis 2). Both regions overlap Note that task
decoding across switch/repeat does not control for the visual information contained in task cues (which might explain occipital task information) and is also less sensitive than the leave-one-subject-
ROI approach, which might account for no prefrontal cluster surviving cluster correction (for both analyses: p & 0.05, FWE corrected at the cluster level, voxel threshold p & 0.001).
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tations do not rule out a dynamic adjustment of task-specific
neurons, as the adaptive coding hypothesis suggests (Duncan,
2001, 2010; Waskom et al., 2014). Flexible top-down signals may
be reflected in different levels of task processing that merely ac-
cess the robust context-independent representation without
modulating it. In addition, we found no significant results in the
analysis testing for context-dependent task coding. Although we
used a highly sensitive ROI approach, this null finding cannot
rule out in principle that there might also be neurons that do code
tasks differently for different cognitive control demands.

Role of task switch processes
Although this study focused on differences and generalizations of
neural task representations during switching, we also observed
behavioral switch costs. Our paradigm was not designed to deter-
mine the source of the underlying processes, but switch costs
might arise for a number of reasons, including proactive interfer-
ence due to task set inertia (Allport et al., 1994), the inhibition of
previously executed task sets (Goschke, 2000; Mayr and Keele,
2000), and processes of rule retrieval (goal setting) and rule im-
plementation (Rubinstein et al., 2001). Models of task switching
that assume that part of the switch cost reflects proactive inter-
ference from previous and/or crosstalk from concurrently active
but currently irrelevant task sets would presumably result in task
representations that are degraded and less distinct on switch
compared with repeat trials. Such an effect should show up in a
reduced accuracy with which task representation can be decoded
from spatial patterns of brain activity. However, the present find-
ings of task representations that are independent of current
switch demands do not suggest such a modulation from which-
ever source. Neurons in the frontoparietal cortex are able to en-
code tasks context invariantly under various different conditions
such as high- and low-control demands (see also Wisniewski et
al., 2016). Switch costs might then arise at a different stage, when
task information from the parietal cortex is further processed by
brain regions more closely associated with implementing cogni-
tive control (Badre, 2008).

Conclusion
In summary, our results provide novel insights into the effects
of task switching on the distributed neuronal representations of
tasks. We did not find reliable differences in task coding between
switch and repeat trials. However, task representations in bilat-
eral parietal and left PFC generalized under conditions of
high- and low-cognitive-control demands. These results provide
further insight into the important function of the frontoparietal
network for task representation. Control-independent task cod-
ing might enable robust access to task-relevant information
under different environmental conditions to support flexible ad-
justment of behavior.

Notes
Supplemental material for this article is available at http://neurovault.
org/collections/2011/. Included are unthresholded group-level whole-
brain maps (spmT) that are presented in the manuscript. This material
has not been peer reviewed.
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