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1. A. Abstract 

Leishmania parasites are intracellular protiststhat cause various human 

diseases ranging from self-healing cutaneous to fatal visceral leishmaniasis. The host 

cells are phagocytes, primarily neutrophils and macrophages, where the parasites 

neutralize innate immune defenses, proliferate and finally infect other cells. Despite 

that Leishmania induce vigorous T cell responses, which require antigen presentation 

and stimulation by phagocytes, importantly dendritic cells. So far it is not clear how to 

align the blockade of phagocyte functions with the efficient immune stimulation. We 

found that, in contrast to other phagocytes, human dendritic cells digest the parasites 

through an apoptotic process, granzyme B and maybe granulysin manage this killing, 

and digestion of parasites is delayed in granzyme B inhibited cells. The digested 

parasites co-localise with components of the MHC class I and II antigen processing 

pathways. Furthermore, the infection leads to enhanced activation of dendritic cells 

triggered by inflammatory cytokines. 

The data presented herein emphasize the need to address the DCs when 

developing anti-Leishmania vaccines or immunotherapies in order to induce efficient 

CD4+ helper and CD8 effector T cell responses. They may explain why 

leishmanization, i.e. immunization with life parasites, is efficient whereas subunit 

vaccines are not. However, leishmanization induces immunity through deliberate 

infection with subsequent disease, which may come with severe adverse effects. 

Alternative strategies may consider TLR agonists or inflammatory cytokines for in situ 

vaccination and immunotherapy to activate parasite-bearing DCs and thereby induce 

parasitocidal CD8 effector T cell and innate immune reaction. 
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1. B. Zusammenfassung 

Leishmania-Parasiten sind intrazelluläre Protisten, die verschiedene humane 

Krankheiten verursachen, die von selbstheilenden kutanen Leishmaniosen bis hin zu 

tödlichen viszeralen Leishmaniosen reichen. Die Wirtszellen sind Phagozyten, 

hauptsächlich Neutrophile und Makrophagen, in denen sich die Parasiten der 

angeborenen Immunabwehr entziehen, sich vermehren und anschließend andere 

Zellen infizieren können. Trotzdem induzieren Leishmanien heftige T-Zell-Reaktionen, 

die eine Antigenpräsentation und Stimulierung durch Phagozyten erfordern, vor allem 

durch dendritische Zellen. Bisher ist jedoch nicht klar, wie die Blockierung der 

Phagozytenfunktionen mit der effizienten Immunstimulation in Einklang gebracht 

werden kann. Wir fanden heraus, dass im Gegensatz zu anderen Phagozyten humane 

dendritische Zellen die Parasiten durch einen apoptotischen Prozess verdauen 

können, wobei Granzym B und Granulysin essentiell fürdiese Abtötung sind und die 

Verdauung der Parasiten in Granzym B-inhibierten Zellen verzögert ist. Die verdauten 

Parasiten kolokalisieren mit Komponenten der MHC-Klasse I- und II-Antigen- 

Prozessierungswege. Darüber hinaus führt die Infektion zu einer verstärkten 

Aktivierung von dendritischen Zellen, die durch entzündliche Zytokine ausgelöst 

werden. 

Die hier präsentierten Daten unterstreichen die Notwendigkeit bei der 

Entwicklung von anti-Leishmania-Impfstoffe oder Immuntherapien, dendritische Zellen 

miteinzubeziehen, um so eine effiziente CD4+ Helfer- und CD8+ Effektor-T-Zell- 

Antwort zu induzieren. Dies könnte erklären, warum die Leishmanisierung, eine 

Immunisierung mit lebenden Parasiten, effizient ist, während das bei 

Untereinheitenimpfstoffe nicht der Fall ist. Allerdings kann die Leishmanisierung, die 

eine Immunität durch das Auslösen einer Infektion mit anschließender Erkrankung 

herbeiführt, schwerwiegende nachteilige Auswirkungen haben. Alternative Strategien 

könnten TLR-Agonisten oder inflammatorische Zytokine für eine in-situ-Impfung und 

einer Immuntherapie sein, um parasitentragende DCs zu aktivieren und dadurch 

parasitozidal CD8+ Effektor-T-Zellen und Reaktionen des angeborenen 

Immunsystems zu induzieren. 
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2. Introduction 

2.1. Background of leishmaniasis 

Leishmaniasis is a set of infectious diseases caused by single cellular protest 

parasites of the genus Leishmania. These parasites are transmitted to the vertebrate 

host as a result of the bites by infected sand flies. A variety of mammalian are 

permissive hosts for these parasites including dogs, rats, hamsters, gerbils and 

humans as well as other animal species. Of note, more than 70 animal species have 

been identified as natural reservoir hosts of Leishmania parasites [1]. Basically, the 

outcome of the infections depends on the species of both parasites and hosts. Human 

leishmaniasis has been split into three type: cutaneous leishmaniasis (CL), muco- 

cutaneous leishmaniasis (ML; also known as espundia), and visceral leishmaniasis 

(VL; also known as kala-azar). Moreover, in cutaneous leishmaniasis, the patients 

present with either dry or wet ulcers(s), or papules on the skin. 

Leishmaniasis is classified as disease causing among the highest rate of 

morbidity globally despite extensive investigations into the disease and preventive and 

therapeutic measures, and efforts to decrease the number of sandflies in recent years 

to control the spread of infection. However, it was not possible to reduce the epidemic 

level, on the contrary, in many endemic regions the numbers of cases are increasing. 

Statistically, VL is the form of leishmaniasis leading to the highest morbidity rate [2]. 

VL has a complication known as post-kala-azar dermal leishmaniasis (PKDL), 

which is a skin manifestation in individuals cured from VL. PKDL is believed to be 

reservoir for anthroponotic transmission of VL and difficult to cure, particularly in 

patients in East Africa who suffer from a severe form of PKDL [3, 4]. The time between 

treated VL and PKDL is 0–6 months in Sudan and 6 months to 3 years in India. Nodular 

lesions of PKDL contain high numbers of parasites and lead to highly transmittable 

infection [5]. 

Leishmaniasis is globally distributed in tropical, subtropical and adjacent 

regions. Even though it was estimated to cause the ninth largest disease burden 

among infectious diseases [6], leishmaniasis is largely ignored in discussions of 

tropical disease priorities. In addition, to date, more than 147 million people living in 

the South Asian region alone are at risk of being infected. The disease prevails among 

poor people in marginalized communities. According to WHO reports, unstable 

increase and decrease of the numbers of VL cases in South Asia show that the 
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infection rate of this disease is difficult manage (Figure 1) [7]. According to various 

recent studies between 98 and 102 countries and 3 territories on 5 continents have 

been designated endemic regions for Leishmania transmission. The formal case 

counts totals annually more than 58,000 new VL cases and 220,000 new CL cases [2]. 

However, the underreporting rate has been estimated to be up to four-fold due to lack 

of access to medical services and misdiagnosis. 

 
 
 
 

 
 

Figure1: The numbers of visceral leishmaniasis cases in the WHO South Asian 

region 2000−2014 [7]. 



5  

2.1.1. The clinical presentations of VL 

After an incubation time of between 2 and 6 months, VL patients develop a 

variety of symptoms including fever, fatigue, weakness, loss of appetite and weight 

loss. These manifestations are accompanied by enlarged lymph nodes, spleen and 

liver, which results from the parasitic invasion of blood and the reticulo-endothelial 

system, also known as phagocytic system, and infiltration of white blood cells, mainly 

granulocytes, into the lymphatic organs and liver. Fatigue and weakness are 

aggravated by anemia caused by the persistent inflammatory state [8] 

There are differences in the clinical manifestation of VL in different endemic 

areas. A good illustration here is that enlarged lymph nodes are infrequently in Indian 

VL patients but are frequent in Sudanese VL patients [9, 10]. Hyperpigmentation, which 

led to the name kala-azar (black fever), is common in India but not in Sudan. As the 

disease progresses, abdominal pain can occur and worsen along with splenomegaly 

and hepatomegaly. In addition, accompanying complications may result from bacterial 

co-infections such as diarrhea, pneumonia or tuberculosis, or Pseudomonas 

aeruginosa sepsis and can confuse the clinical picture at the time of initial diagnosis. 

The VL symptoms may persist for several months before the patients receive medical 

care or die from bacterial complications, massive bleeding or severe anemia. 

2.1.2. Life cycle of Leishmania parasites 

In the phlebotomine sandfly, the Leishmania parasite lives and propagates in 

the gut as flagellated promastigote form. Upon digest and excretion of the undigested 

remainders of the blood meal, the sandfly switches to sugar meals, which triggers the 

transformation of the Leishmania parasites to the highly mobile and highly infectious 

metacyclic promastigote form. This form is transmitted to the vertebrate host by the 

bite of female sandflies during a subsequent blood meal, which the sandfly requires for 

egg production. In the skin of the infected vertebrate host parasites are taken up by 

phagocytes (neutrophils, macrophages and dendritic cells) into phagolysosomes 

where they lose their flagella to transform to an amastigote form (Figure 2) [11]. Their 

survival and then propagation in phagolysosomes goes along with the transformation 

of the host organelle into parasitophorous vacuoles [12, 13]. The parasites spreads 

with its phagocytic host cells through the body of the patient via the lymphatic and 

vascular systems and infect other immune cells in the reticulo-endothelial system, 

resulting in infiltration of the bone marrow, spleen, liver and lymph nodes 

(lymphadenopathy). The life cycle is concluded by the bite of another sandlfy. 
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2.2. Immunology of leishmaniasis 
 

Frequently, Leishmania infections remain asymptomatic as no clinical 

symptoms are presented. Asymptomatic Leishmania infection may relate to a previous 

leishmaniasis and indicates immunity to the disease without prevention of the infection. 

Understanding the roles of Leishmania parasites in terms of its ability to evade the 

immune system on cellular and systemic levels, as well as the mechanisms of 

developing immunity of the host, is crucial for the development of prophylactic 

measures and immune-therapeutic approaches such as vaccines. Besides disease- 

induced immunity there might also be other factors that predispose some individuals 

to develop the disease or to control the infection such as genetics or nutritional status. 

The vector-born transmission and the intracellular existence and propagation of 

the parasites render antibody-based immune responses ineffective. Immunity against 

leishmaniasis is based on T cell-mediated immune responses leading to killing of the 

parasite inside the phagocytic host cells resulting in cure and cell-mediated immunity 

(CMI) to subsequent infections. In VL patients, the inability to control Leishmania 

donovani (L. donovani) infection is associated with a profound T cell unresponsiveness 

to L. donovani antigens [14]. 

In addition, the crucial role of CMI has been recognized by the increasing the 

risk of developing clinical illness in cases of malnutrition or concomitant 

immunosuppressive diseases such as HIV infection [15, 16]. Other risk factors 

implicated in progressing clinical illness have been identified to be reduction of IFN-ɣ 

production [17] and polymorphisms in the promoter of the TNF-α gene [18] as well as 

young age [19-21]. 
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Figure 2: Life cycle of Leishmania parasite [11]. 
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The host immune system can be tricked or exploited by Leishmania parasites. 

Immune evasion, immune suppression or a failure to mount immune response could 

be the cause of why people get leishmaniasis once they injected with Leishmania 

parasites. A thorough understanding of these mechanisms could lead to better 

strategies for effective management of Leishmania infections. 

The immunology and immunopathology in humans, dogs, and experimental 

rodent models in visceral infections have been extensively studied, with many points 

characterized and others still to be elucidated [22]. A consensus is that, despite 

differences in the course of infection in the different species, the outcome of the 

disease is critically influenced by the host immune response. Several studies have 

shown that susceptibility to human VL is related to an elevated titer of circulating 

antibodies and a reduction of type-1 T cell-mediated immunity, mainly with decreased 

production of interferon gamma (IFNɣ) and interleukin 12 (IL-12), plus a marked up- 

regulation of IL-10 and IL-4 cytokines [23, 24]. 

The innate immune response contributes to VL resistance, acting to control 

parasite growth during the early stages of infection. Macrophages, neutrophils and 

dendritic cells have a central role for host resistance or susceptibility to Leishmania 

infection [25]. As intracellular parasites, Leishmania parasites have developed many 

of sophisticated mechanisms to block leishmanicidal activities of macrophages and 

overcome the host innate immunity. Certainly, Leishmania parasites inhibit, upon 

infection, antigen presentation and other defense activities required for induction of 

efficient T cell responses. [26]. 

2.2.1. Neutrophils in leishmaniasis 
 

Studies of mouse models show that neutrophils travel to the site of infection 

soon after the sand fly bite, and are the early tissue infiltrating cells to phagocyte 

Leishmania major [27-29]. The interactions mediating this migration between 

endothelial cells involve adhesion molecules expressed on neutrophil surface 

membrane, which allow for binding and “rolling” prior to extravasation from vasculature 

[30] . Other papers show that neutrophils may influence adaptive immune responses 

by expressing chemokines which recruit other immune cell types that in turn participate 

in the response to infection [31, 32]. A partial list of neutrophil microbicidal responses 

includes  assembly  of  the  multi-protein  NADPH  oxidase  complex  with  resultant 
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production of reactive oxygen species, release of granule contents into intracellular 

microbial compartments, and release of defensins [30, 33]. 

The role of neutrophils in Leishmania spp. infection has been extensively 

investigated in murine models, and the outcomes have varied depending on either the 

resistant or susceptible genetic background of the mouse and the species of 

Leishmania used [34-36]. There are indications that a subset of L. donovani survive 

intracellularly in murine neutrophils [37]. Furthermore, neutrophils are also found to 

eliminate parasites as reported for an experimental model of Leishmania braziliensis 

infection, in which the infection induces activation of the neutrophils with increased 

ROS production leading to parasite clearance [38, 39]. 

Previous studies on human innate immune cells have suggested that these 

neutrophils could play an important role in human leishmaniasis. Neutrophils from 

healthy donors infected with Leishmania major produce a strong oxidative response 

that eliminates internalized parasites [40]. Infection with Leishmania amazonensis 

promotes neutrophils activation, degranulation and production of leukotriene B4 which 

promotes the killing of parasite [41]. Moreover, interactions between Leishmania- 

infected macrophages and healthy human neutrophils modulate the intracellular 

replication of both Leishmania amazonensis [42] and Leishmania braziliensis [43]. 

Latest works show that circulating peripheral blood neutrophils from patients 

with CL were more activated, they expressed more elevated levels of reactive oxidants, 

and they produced more elevated amounts of the proinflammatory chemokines CXCL8 

and CXCL9 than neutrophils from healthy subjects [44]. 

Many results suggest that the failure to respond to Leishmania antigen 

stimulation observed in VL patients is not due to a defect in the ability to mount 

protective Th1 responses per se but rather to induction of suppressive factors, e.g. IL- 

10, resulting in unresponsiveness of infected macrophages to activation signals [45]. 

2.2.2. Macrophages in leishmaniasis 

Macrophages (MΦs) alongside neutrophils are the main host cells for the 

intracellular Leishmania parasite [46]. These cells have a vital role for parasite 

proliferation and disease consequences as well. However, the immunologic part of MΦ 

in human leishmaniasis is still largely elusive. It is well documented that the secretion 

of cytokines such as TNF-α and IL-1 and chemokines by these cells in response to 
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Leishmania parasite infection reflects their importance in inducing immune responses 

in line with the function of phagocytosis and presentation of antigens to T cells [47]. 

Some studies have revealed high expression of CCL2, CXCL9 and CXCL10 in 

lesions from CL patients. CCL2 and CCL3 are known to enhance the leishmanicidal 

capacity of human MΦ to the same level as IFN-ɣ [48]. On the other hand, expression 

of some molecules such as CXCL9, CXCL10 and TNF- at high level in the tissue of 

CL and ML patients can lead to tissue damage and chronic inflammatory reactions[49, 

50]. However, the mechanisms by which human MΦs are able to digest Leishmania 

parasite are still ambiguous. It was confirmed that once Leishmania parasites enter 

host MΦs and become intercellular; an oxidative burst occurs characterized by an 

increase in reactive oxygen species (ROS) and reactive nitrogen intermediates such 

as (NO). The production of NO participates in immune response against Leishmania 

parasites eliminating the pathogens particles in mice, yet the role of NO in humans is 

still not clear [51, 52]. Interestingly, due to the importance of MΦs in leishmaniasis 

further investigations are required to get deep insight into the function of MΦs during 

the invasion of humans Leishmania parasites 

The present study aims at exploring the fate of leishmania parasites when 

infecting human MΦ and dendritic cells (DCs) thus to bring new light on the interaction 

of macrophages and Leishmania parasite (Figure 3) [53]. 

2.2.3. Dendritic cells in leishmaniasis 

The ability of DC’s prime and trigger adaptive immune responses to foreign 

antigens is indisputable, and its role in the induction of tolerance to self-antigens is 

becoming ever more evident. 

Dendritic cells are the master cells for antigen presentation and have the 

dominant role in T cells priming [54]. They exist in all peripheral tissues in an immature 

state but are efficient in antigen uptake and processing. They evolve from 

hematopoietic bone marrow progenitor cells and are classified according to origin, 

function and site of resident in tissues. 

Three DC subpopulations have been identified in the human blood: (pDC) and 

two subsets of (mDC) expressing CD1c (BDCA1) and CD141 (BDCA3), respectively. 

pDCs are characterised by their specific expression of CD123, BDCA2, BDCA4 and 

ILT7 [55, 56]. After interaction with microorganisms or substances associated with 

infection or inflammation, DCs undergo a process of maturation and migrate to the T 
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cell areas of lymphoid organs. Subsequently, they present antigens to immature T cells 

and regulate their responses [57]. The maturation phase is associated with high 

expression of MHC and costimulatory molecules, such as CD40, CD80, CD86, and 

CD54 and enhanced cytokine secretion. At the same time antigen capture and 

phagocytic capacity are down-regulated and different patterns of chemokine receptors 

and chemokines are produced that permit DC migration and recruitment of multiple cell 

types [57, 58]. 

Antigens can be up taken by DCs via different groups of receptor families, such 

as Fc receptors, C- Type Lectin Receptors (CLRs), pattern recognition receptors 

(PRRs), and Toll-like receptors (TLRs) [59]. The engagement of the receptors by their 

cognate ligands enhances the capability of DCs to recognize a wide range of microbial 

stimuli [60]. The polarization of naïve CD4 T cells toward the Th1 subset and 

subsequent IFN-γ production depends on the production of IL-12 by the APCs. 

Leishmania-infected DCs secrete IL-12p70 which should push CD4 T cell development 

in that direction [61, 62]. 

More recently, the interaction of DCs and Leishmania-parasites has been 

investigated to address the roles of DCs in Leishmania parasite infection and 

leishmaniasis. Previous studies had demonstrated that MΦs and DCs are critical 

during leishmaniasis as they trigger the adaptive immune reactions [63]. Moreover and 

important for the development of an immunogenic vaccine against leishmaniasis, 

recent reports have led to the conclusion that highly potent DCs primed with 

Leishmania antigens can induce effector CTL activity against infected cells and the 

parasites [64]. As a part of this present study, the handling of L. donovani by DCs was 

studied as shown in the subsequent chapters. 

Upon contact, both MΦs and DCs engulf and phagocytose Leishmania 

parasites however with different functional outcomes. Infected DCs produce IL-12 [61], 

which is critical for the development of IFN-γ-producing CD4Th1 cells [65]. IFN-γ acts 

on the activation of MΦs (conventional activation) to up regulation of iNOS with 

production of nitric oxides and free oxygen radicals that are important for intracellular 

parasite killing and on CD8 T cells to induce their differentiation to effector cytotoxic 

cell [66]. In contrast, the production of IL- 4 by other cell types (including keratinocytes 

and CD4 T cells) supports CD4 Th2 cell development. Th2 cells produce IL-4 and IL- 

13, which leads to upregulation of arginase, alternative MΦ activation and the 



12  

production polyamines that promote intracellular parasite proliferation [67]. 

Furthermore, the infected MΦs also produce a variety of immune-regulatory cytokines 

including IL-10 and TGF-β, which further deactivate the killing function of infected cells 

towards intracellular parasite, thereby supporting parasite survival [68, 69]. 

Recently, DCs were found to express the serine protease granzyme B (GrB), 

previously only known as the apoptosis-inducing effector protease of natural killer cells 

and cytotoxic T lymphocytes [70]. 

 
 
 

 
 
 

 
Figure 3: Macrophages and dendritic cells control the outcome of Leishmania 

infection. 
 

The early interaction of Leishmania parasite with macrophages and dendritic cells and its influence on 
the host immune response adapted by [53]. 
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2.3. Antigen processing and presentation 

DC and MΦs are utilizing three major endocytotic cellular processes to 

internalize exogenous antigens as described in (Figure 4). These processes are 

phagocytosis, marcopinocytosis and pinocytosis and [71]. 

Phagocytosis has defined as the clathrin-independent manner by which cells 

internalize extensive particulate material such as apoptotic bodies, cellular debris or 

bacteria, which are typically anticipated to be degraded by lysosomal enzymes [72]. 

The phagosome is a membrane-bound organelle formed when a phagocytic cell 

ingested particulate material [73]. There are three stages of the phagocytic process: 

attachment of the particle to the outer cell surface facilitated by surface receptors; 

engulfment, characterized by the closure of the plasma membrane around the particle; 

and creation of the phagosome, which finally evolves into phagolysosome by fusion 

with lysosomes. Macropinocytosis is a manner whereby large vacuoles, named 

macropinosomes, generate at the plasma membrane that nonspecifically trap large 

capacities of the extracellular media. Macropinosomes are typically 200–500 nm in 

diameter and are thought to form at locations of membrane ruffling [74]. During 

pinocytosis, soluble antigen is taken up at the same time as extracellular fluid in areas 

around of budding endosome. Uptake of these vesicles can be both clathrin dependent 

and independent. 

Although both MΦs and DCs are phagocytes, there are differences in the 

evolution of the phagosomes. In the course of maturation, the phagosomes go through 

a cascade of gradually acidified membrane-bound states. In MΦs, acidification occurs 

comparatively early after phagocytosis, after which the cargo is degraded robustly [75]. 

In DCs, the phagosomal lumen alkalinizes the initial few hours after phagocytosis [76]. 

As effect, degradation of the endocytosed material occurs slowly, promoting the 

formation of antigenic peptides. Over time, the pH level declines with increasing 

lysosomal fusions resulting in cleavage of the MHC-II invariant chain (Ii) by cathepsins, 

producing a small peptide, named class II-associated Ii peptides (CLIP) that remains 

in the MHC-II peptide-binding groove. CLIP is then replaced by antigenic peptides, a 

process mediated by acidic pH and the chaperone HLA-DM. The MHC-II molecules 

loaded with antigenic peptides are then transported to the cell surface and presented 

to T cells of the adaptive immune system [77, 78]. 
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Figure 4: General pathways for the internalization of exogenous antigens by 

professional antigen presenting cells (pAPC). 

DC obtains exogenous antigens through four major paths. The nature of the antigen determines which 
internalization mode is involved. a) Large particulate antigens such as biologically inert particles, 
apoptotic cells and opsonized ⁄complement fixed bacteria, are internalized by phagocytosis. b) 
Pinocytosis defines the uptake of soluble antigens as portion of the extracellular fluid in the surrounding 
area of budding endosome. c) Small particulate antigens move in the cell by receptor-mediated 
endocytosis. d) Large fluid volumes are internalized by marcopinocytosis. Antigens from endocytic 
vesicles are either translocated into the cytosol for processing and presentation by MHC class I 
molecules and CD8 T cell stimulation or peptides generated inside the endosomes are loaded onto MHC 
class II molecules for presentation to and stimulation CD4 T cells. Adapted from Mellman I. Endocytosis 
and molecular sorting [71]. 
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2.4. Human Leukocyte Antigen System 

The major histocompatibility complex (MHC) genes code for related 

proteins identified as the human leukocyte antigens (HLA). In mammalians, the MHC 

comprises of 200 genes that in humans are situated on chromosome 6. These genes 

are categorized functionally into MHC class I, MHC class II and MHC class III genes, 

and encode for cell surface molecules dedicated to present antigenic peptides to T 

cells for recognition by the T-cell receptor (TCR) [79, 80]. The MHC class I, class II and 

class III molecules differ in their protein structures and membrane anchoring and cell 

type that express them. MHC class I and class II genes are highly polymorphic with, to 

date, more than 15,000 alleles identified for MHC class I and more than 5,000 for MHC 

class II. This polymorphism predominantly translates to amino acids in the peptide- 

binding groove and affects the peptide-binding specificity of the MHC molecules. 

 
2.4.1. MHC Class I molecules 

The MHC Class I are transmembrane glycoproteins at the cell surface of all but 

a few immune-privileged nucleated cells. Intact MHC class I molecules consist of the 

heavy alpha chain non-covalently associated with -2 microglobulin [81]. The α chain 

consists of α1, α2, and α3 domains, the transmembrane region and a short intracellular 

sequence rich in positively charge amino acids. The 1 and 2 domains form the 

peptide-binding groove that is closed at the ends and can bind peptides of 

predominantly nine amino acids. There are three loci coding for the heavy chains of 

MHC class I molecules: HLA-A, HLA-B, and HLA-C. They present antigenic peptides 

to T cells that express CD8 cell surface molecules that also bind HLA class I molecules 

to form the TCR signal transduction complex together with the TCR, CD3 and the 

transmembrane proteins on T cells [82]. Activated CD8 T cells have a cytolytic function 

and are able to specifically recognize infected or otherwise aberrant cells like tumor 

cells and kill them [83]. Every nucleated cell expressing MHC class I molecules canact 

as antigen-presenting cells for CD8 T cells [84]. 

MHC class III molecules or HLA-III in humans are structurally similar to HLA I 

but bind different ligands like main chain-acetylated peptides or lipids, and may have 

different function such as HLA-G, which or HLA-E, which presents specific peptides to 

their cognate receptors on natural killer [NK] cells [85]. 
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2.4.2. MHC Class II molecules 

The MCH class II molecules are expressed only at the surface of specialised 

antigen-presenting cells such as DCs, B cells, Langerhans cells, MΦs as well as thymic 

epithelium and in humans on some activated T cells. Some other nucleated cells can 

be triggered to express MHC class II molecules by specific cytokines such as interferon 

(IFN)-gamma [86]. Structurally, the MHC class II molecules consist of 2 polypeptides, 

alpha (α) and beta chains (β), each with two extracellular domains, of which the outer 

domains of both chains form the peptide-binding superdomain. Both chains are 

membrane anchored with a single strand transmembrane section and a short 

cytoplasmic tail [87]. The polypeptide  and  chains are encoded by genes located on 

chromosome 6 at the HLA-DR, -DQ and -DP loci [88]. In contrast to the MHC I 

molecule, the peptide binding groove of MHC II molecules are open at the ends so that 

longer peptides with eleven and above amino acids can bind. MHC class II molecules 

present antigenic peptides to CD4 T cells. 

 
2.4.3. Association of leishmaniasis and HLA 

Like most disease-HLA associations, the association of the HLA genetics with 

the capacity of patients to cope with Leishmania infection is still controversial and 

needs to be elaborated. Previous studies have reported correlations of specific HLA 

alleles or haplotypes with susceptibility for or resistance to leishmaniasis. However, 

due to the complex parasite-host relationship, and influence of various other genetic 

factors such as cytokine gene polymorphism or of non-genetic parameters such as 

infection history and general constitutional or nutritional states, the statistics of such 

correlations is poor [89]. A few studies have looked in monozygotic twins with 

segregation explorations for a possible impact of HLA genetics on the degree of 

susceptibility to leishmaniasis and found some indications for an association [89-91]. 

For instance, HLA-Cw7 was reported to be associated with cutaneous leishmaniasis 

and was suggested as marker for susceptibility [92]. HLA-A26 was correlated with kala- 

azar in Iran [93]. From a Brazilian study, HLA-DQw3 was reported to be related with 

susceptibility, whereas HLA-DR2 is associated with greater resistance [94]. HLA-A11, 

-B5 and -B7 were suggested to be related to leishmaniasis in Egypt [95, 96]. One study 

in India using transcriptome array analyses has related abundant expression of HLA- 

DR with the initiation of effective T cell immune responses against the disease without 

breaking it down to specific HLA alleles or haplotypes [96]. 
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Other investigations have shown that infection of MΦs with L. donovani 

parasites leads to reduced MHCII expression or, in again another study, to reduced 

capacity of infected MΦs to stimulate CD4 T cells while not affecting expression levels, 

which was related to depletion of cholesterol from and higher fluidity of the cell 

membrane. This defect could be overcome by incubating the cells with liposomal 

cholesterol. These reports show thatthe parasites have developed a range of 

mechanism to interfere with effective T cell responses against infected host cells [97]. 

A recent study in our lab has shown that the infection of MΦs with L. donovani has 

profound effects on the self-peptide repertoire expressed by MHC class I molecules, 

which in parts can be explained with modifications in antigen processing including the 

composition of the proteasomes, and altered protein expression and turn-over in 

different cellular compartments [98]. 

2.5. Role of adaptive immunity in response to L. donovani 

In human, CD4 T cells and CD8 T cells interact in response to and in the 

depletion of Leishmania parasites, CD4 T cells as helper cells for CD8 T cell 

differentiation to effector CTL and for proliferation of the CD8 T cells. Effector CD8 T 

cells can kill the infected host cells and the parasites within whereby the killing of the 

parasites is faster than the induced lysis of the host. That way the parasites are killed 

before the host cells disintegrate. When stimulated, both T cell types will produce IFN 

acts on infected MΦs to triggers oxidative bursts, which contributes to the elimination 

of intracellular Leishmania parasites. In mouse models, the later mechanism, killing the 

parasites by triggering infected MΦs, is the main mode of action to eliminate the 

infection. The T-cellular immune responses can be very vigorous and cause tissue 

damage at the infection sites. In fact, much of the pathology in leishmaniasis is immune 

pathology as effects of strong anti-Leishmania immune responses. Recently, it was 

reported that granzyme expression by CD8 T cells is higher in lesions of CL patients 

than in patients in early phases of CL, and that the frequency with which CD8 T cells 

express granzyme is directly related to the intensity of the inflammatory reaction 

observed in CL lesions [99, 100]. 

Generally, individuals who had recovered from leishmaniasishave a strong 

immunity against the disease across different Leishmania species [101]. They will not 

get the same disease again and after VL some individuals may present with the much 

milder PKDL but nether with VL again. This is different from other parasitic infections 
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such as malaria. This observation strongly advocates the development of anti- 

leishmanial vaccines that could induce a long lasting immunity similar to that acquired 

naturally in healed individuals. 

A key immunologic feature of VL is the inability of the adaptive immune system 

to mount timely effective curative antigen specific immune responses [102, 103]. There 

appears to be no inherent defect in antigen-induced Th1 responsiveness. Cured 

individuals are resistant to reinfection, are leishmanin skin test positive, and their 

PBMC readily mount Leishmania antigen-specific IFN-γ responses ex vivo [104, 105]. 

Furthermore, even during the acute phase of the disease, elevated levels of IFN-γ 

mRNA have been found in lesional tissue, such as the spleen and bone marrow [106, 

107]. There are ample evidence for high anti-Leishmania immune reactions during the 

VL infection in acute and chronic phases of the disease. 

Extensive studies with experimental mouse models of leishmaniasis have 

shown that the outcome of the infection is critically dependent on the activation of one 

of the two subsets of CD4T cells, namely Th1 and Th2 cells. IFN-γ, secreted by Th1 

cells leads to host resistance to infection with Leishmania parasites [108], IL-4 secreted 

by Th2 cells is associated with the down-modulation of IFN-γ-mediated macrophage 

activation [109]. However, the Th1/Th2 paradigm could not be translated to human 

leishmaniasis where both Th1 and Th2 cytokine profiles mix in all stages of the disease. 

2.6. Granzymes, perforin and granulysin 

2.6.1. The Granzymes and perforin 
 

Granzymes are a family of serin proteases that have first been described 

present in the cytolytic granules of CTL [110]. They are cytolytic molecules that cleave 

members of the caspase cascades, in particular effector caspases, and trigger 

apoptosis of the affected cell. There are five human granzymes with a range of 

substrate specificities: granzyme A (GrA-tryptase), granzyme B (GrB-aspase), 

granzyme H (GrH-chymase), granzyme K (GrK-tryptase), and granzyme M (GrM- 

metase ) [111]. Granzyme B and granzyme A are the most abundant and most often 

expressed granzymes and are predominantly involved in immune-mediated killing of 

transformed, allogeneic, and/or pathogen-infected cells through a mechanism 

involving the membrane perforating molecule, perforin, that enables granzyme entry 

into the target cell leading to induction of cell death [112]. 
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Granzyme B is expressed mostly by NK, NKT cells and activated memory CD8 

CTL and some memory CD4 T cells during inflammations, anti-tumor immune 

responses and in infections. Other noncytotoxic leukocytes such as B cells, dendritic 

cells, macrophages, and mast cells can express granzyme B but rarely and mostly at 

lower levels [113-115]. Emerging evidence reported the role of granzyme B in 

mediating cellular apoptosis as well as acting as an extracellular protease. In memory 

and effector CD4 T cells, Treg, Th1, and Th17 cells, granzyme B is induced after TCR 

activation and by common γ-chain cytokines including IL2 and IL15, and by TLRLs 

[116, 117]. Generally, granzyme B is upregulated in CD8 T cells after CD3/TCR- 

triggered activation plus the same cytokines. Importantly, memory CD4 T cells kill 

virally-infected or tumor cells via granzyme B similarly to effector CD8 T cells [118, 

119]. 

 
One study has compared the expression and bioactivity of granzyme B in CD4 

and CD8 T cells, and CD8 T cells express more intracellular granzyme B. A comparison 

of extracellular granzyme B between CD4 and CD8T cells was not examined [120]. 

Other groups compared directly human memory CD4 and memory CD8 T cells by flow 

cytometry and they found that resting and activated memory CD8 T cells store 

significantly more granzyme B, whereas resting and activated memory CD4 T cells 

store little to no granzyme B intracellularly [121]. In a mouse model of LCMV infection, 

direct comparison of antigen-specific CD4 and CD8 CTLs by flow cytometry showed 

that CD8 T cells express more granzyme B and CD107a, a membrane protein of the 

inner leaflet of cytolytic granuals. However, in vivo CTL killing measurements in mice 

showed that CD4 T cells can eliminate target cells with comparable efficiency and 

magnitude as CD8 T cells [122, 123]. Hence, CD4 and CD8 T cells differ in granzyme 

B synthesis, storage and secretion. Other interesting work demonstrated that activated 

human pDCs express high levels of granzyme B that surpass the expression level in 

CTL [70]. 

 
They found in patients with juvenile idiopathic arthritis (JIA)not only significantly 

elevated amounts of granzyme B in fresh synovial fluid specimens but also high 

granzyme B expression in the corresponding synovia-derived pDCs compared with 

normal healthy controls. They investigated in healthy subjects how granzyme B 

production and secretion in pDCs is conducted by cytokines, TLR ligands, and 
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costimulatory signals. Moreover, they provided novel insights into how pDCs may 

regulate antiviral, autoimmune, and antitumor immune responses [70]. 

 
Perforin (PFN), a pore forming cytolytic protein also present in the lytic granules 

of very specific lymphoid cells, (NK) cells, (CTL), B-lymphocytes [117] and some other 

non-lymphoid cells which can secret granzyme B and with or without PFN [124]. 

Emerging evidence suggests that the human MΦs are not these protease-secreted 

cells. However, upon degranulation, perforin binds to the target cell's plasma 

membrane, and oligomerises in a Ca2+ dependent manner to develop pores on the 

target cell. The pore formed allows for the passive diffusion of a family of granzymes 

into the target cell [118]. There are different subtypes of DCs, which vary in the 

expression of these proteases. Peritumoral mDCs stained positive for perforin and 

granzyme B in patients with carcinoma after in vivo stimulation, whereas infiltrating 

pDCs expressed (TRAIL) and release granzyme B alone [124]. In addition, the 

essential role of both human granzyme B and PFN-secreting DCs in killing of 

leishmania parasite infected human cells has not addressed yet. Moreover, whether 

TCL contribute in leishmania parasite deletion or not still need more realization. 

2.6.2. The role of perforin and granzyme B in killing parasite infected cells 

Cytotoxic T lymphocytes as well as other perforin and granzymes producing 

cells have the ability to eliminate such target cells by interaction between FasL/Fas 

and extrinsic pathway interaction is the standard manner of CTL-induced 

apoptosis[125]. Conversely, these cells can apply their cytotoxic effects on virus- 

infected cells and tumour cells also by excretion of the transmembrane pore-forming 

molecule perforin with secretion of cytoplasmic granules through the pore and inside 

the target cell (Figure 5). 

Granzyme B can cleave proteins at aspartate residues followed by the activation 

of pro-caspase-10 cleaving many factors like (ICAD) to facilitate cell death [126]. 

Further evidence also supports that granzyme B can induce cell death by either 

activation of caspase 3 directly or by cleavage of Bid to tBid and that leads to activate 

the mitochondrial pathway [127, 128]. However, caspase-3 can be activated via 

granzyme B directly. Using this approach, the upstream signalling pathways are side 

stepped and execution phase of apoptosis will be activated directly. It is proposed that 

both direct activation of caspase-3 and intrinsic mitochondrial pathways are 

fundamental for granzyme B induced cell death [129] (Figure 5). 

https://en.wikipedia.org/wiki/Cytolysis
https://en.wikipedia.org/wiki/Degranulation
https://en.wikipedia.org/wiki/Plasma_membrane
https://en.wikipedia.org/wiki/Plasma_membrane
https://en.wikipedia.org/wiki/Granzyme
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However, there are many indications that granzyme B can also activate other 

pathways of cell death (particularly in the mitochondrion) [130]. 
 
 

 

 

Figure 5: The perforin/granzyme pathway of apoptosis cell death 

T-cell mediated cytotoxicity and perforin-granzyme dependent killing of the cell. The perforin/granzyme 
pathway can prompt apoptosis via either granzyme B or granzyme A. The extrinsic, intrinsic, and 
granzyme B pathways converge on the same terminal, or execution pathway. This pathway is initiated 
by the cleavage of caspase-3 and results degradation of cytoskeletal and nuclear proteins and DNA 
fragmentation that lead eventually to form apoptotic bodies, expression of ligands for phagocytic cell 
receptors and finally uptake by phagocytic cells. The granzyme A pathway activates a parallel, caspase- 
independent cell death pathway via single stranded DNA damage. Adapted from [131] 
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2.6.3. The cytolytic granulysin and its role during the infection 

Cytolytic granules in CTLs and NK cells of humans and some other mammals 

but not rodents , contain granulysin, a membrane destabilising protein of the saposin 

familiy that preferentially attacks cholesterol-low bacterial, fungal and parasite 

membranes [132]. Granulysin is a cytolytic and proinflammatory molecule expressed 

by NK cells and by CTLs 3–5 days after activation [133]. It is synthesized as a 15-kDa 

molecule that is cleaved at both the amino and the carboxyl termini to a 9-kDa form 

[134]. Perforin and granzymes do not kill intracellular parasites in intact host cells but 

in presence of granulysin granzymes does so [135].Incubation of extracellular bacteria 

with granulysin is cytolytic but only at high concentrations in the micromolar range or 

in highly hypotonic or acidic buffers [136]. It was therefore suggested granulysin acts 

against bacteria within acidic phagolysosomes or may together with other agents. 

Granzymes, especially granzyme B, and the granulysin are upregulated when T cells 

are incubated with bacteria [137]. Granulysin has been implicated in a range of human 

diseases, and expression of granulysin correlates with good clinical outcomes in 

cancer and infections [138-140]. Transcriptome analyses have shown that in addition 

to CTL and NK cells also DCs express granzyme B and granulysin [141] 

As to date, it is well established that the cytolytic effector molecules granzyme, 

perforin and granulysin in cytolytic granules combine to kill intracellular protozoan 

parasites that cause human disease. Perforin form pores in the membrane of the host 

cells, which allow granzyme and granulysin to enter the cell wheregranulysin 

disruptsthe parasite membranes and granzyme enters the intracellular parasites where 

it cleaves a large series of proteins including members of the respiratory chain to 

generate ROS and wreck the oxidative defenses of the parasite (figure 7) [142]. 

As reported previously, [143], NK cells lacking either granzyme B or perforin are 

defective in their ability to kill target cells. NK cells expressing granulysin but lacking 

perforin are unable to cytolysis target cells. NK cells that express granulysin but lack 

granzyme B are similarly efficient in killing target cells as wild-type (WT) NK cells. 

Recombinant 9-kDa granulysin can cause mitochondrial damage and activate the 

intrinsic apoptosis pathway leading to caspase-3 and/or caspase-9 activation, whereas 

granulysin delivered by NK cells does not activate these pathways. Also, granulysin 

delivered by NK cells triggered cellular processes that lead to activation of caspase-7 

and endoplasmic reticulum (ER) stress in the target cells, whereas recombinant 9-kDa 
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granulysin does not. Thus, recombinant and NK cell-delivered granulysin induce target 

cell death through separate mechanisms [144]. 

 
 
 

 

Figure 6: Model of apoptosis induced by granulysin and granzyme B. Recombinant 

9-kDa granulysin (left panel), cytotoxic cell-delivered granulysin (middle panel), and cytotoxic cell- 
delivered granzyme B (right panel) activating different apoptotic pathways. ( Ref. R. V. Saini, C. Wilson, 
M. W. Finn, T. Wang, A. M. Krensky, and C. Clayberger, “Granulysin delivered by cytotoxic cells 

damages endoplasmic reticulum and activates caspase-7 in target cells. Adapted by [144] 



24  

 
 
 
 
 
 

Figure 7: Model of combination of granulysin, perforin, and granzyme B to kill 

intercellular microbes in most mammalian cells. 



25  

2.7. Persistence of Parasites 

 

 
Mostly, regulatory agencies do not accept leishmanization because it is actually 

inducing disease and can be accompanied by complications and is problematic in 

immunocompromised recipients. In mice however, injection of live parasites together 

with CpG oligodeoxynucleotides as antigen-independent immune stimulator debilitates 

the severity of the following leishmanization [145]. Vaccination with live pathogens 

transgenic with a suicide cassettes making them susceptible to treatment certain 

prodrugs was tested successfully in mice as a safe live challenge. However, it has not 

been pursued further into clinical trials [146]. Leishmanization has been tested against 

cutaneous leishmaniasis using life Leishmania major or more recently with Leishmania 

tarentolae as vaccine. In analyses with human sera and cells, and in tests in mice, 

leishmanisation was found to be crossprotective between Leishmania species. 

Epidemiological investigation have shown that individuals from Sudan with a history of 

CL have lower incidence of VL [147]. Okwor and Uzonna argued that vaccination with 

life-parasite-based vaccines for CL would induce central memory and effector cells. 

The challenge will be to achieve attenuation of life parasites without losing efficacy. 

Observations in animal models indicate that antigen persistence may be as important 

as the specific protein or parasite component employed in a vaccine [148]. In the work 

presented herein, human innate immune cells have been incubated with both life and 

dead Leishmania parasite to test their suitability as vaccines. 
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3. Aims and hypothesis 

 

 
The aims of this present work was to figure out the different out comes from 

the Leishmania parasite infection on human dendritic cells comparing with the 

Leishmania human host cell (macrophage), to assess the role of granzyme B and 

granulysin during leishmania infection and to give more contributing scientific 

understanding for the strategies of Leishmaniazation. Vaccination for the Leishmania 

still need more optimistic future because the high potentiality of occurrence. 

Therefore, an increased understanding of host pathogen interactions is required 

for which have the hypothesis: 
 

“Processing of L. donovani by human dendritic cells is granzyme B and 

granulysin dependent, although both human macrophages and dendritic cells are 

monocyte-differentiated cells; they have different aspects during Leishmaniasis. 
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4. Materials and methods 

4.1. Subjects 

This study included 30 healthy donors. They are all from Berlin, Deutschland. 

All consent forms have been prepared and obtained by the Zentrum für 

Transfusionsmedizin und Zelltherapie Berlin. 

The filtered blood bags collected in appropriate conditions and send to our labs 

as fresh (within 2 hours) as possible. 

4.2. Parasites 

The wild-type Leishmania donovani MHOM/IN/02/BHU5 (BHU5) was isolated 

and established as a line from splenic aspirates from a patient with VL in Muzaffarpur, 

Bihar, India [149]. Fluorescent L. donovani were developed after transfection with 

integration plasmids containing yellow fluorescent protein (YFP). After transfection, the 

wild-type and transfected parasites were grown and maintained at 25°C in M199 

culture medium supplemented with 20% heat-inactivated fetal bovine serum. For the 

experiments, the parasites were harvested from end-log-phase cultures, centrifuged at 

2800 rpm, suspended in RPMI 1640 GlutaMax culture medium, counted in a Neubauer 

chamber after fixation with 4% paraformaldehyde, and adjusted to the required parasite 

densities for addition to the DC cultures at the ratio of 10:1 (parasites : DCs ratio). To 

kill the parasites in some experiments, they were killed by incubation in 4% 

paraformaldehyde for 15 min followed by extensive washing with PBS before they 

used. 
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4.3. Materials 

Table 1. Cell culture requirements 
 

Product Source 

Fetal Calf serum (FCS) Biochrom AG, Germany 

RPMI 1640 GlutaMax culture medium Invitrogen, Carlsbad, CA, USA 

Phosphate-Buffered Saline x10 (PBS) Thermo Fisher Scientific Inc, 

Germany 

Biocoll separating solution Biochrom GmbH, Berlin, 

Germany 

recombinant human Granulocyte Macrophage- 

Colony Stimulating Factor (rGM-CSF) 

Genzyme, Cambridge, MA, USA 

Interleukin-4 (IL-4) PromoCell GmbH, Germany 

monoclonal antibody mAB (OKT3) Produced in house from culture 

supernatant of OKT3 

hybridomas 

Rabbit complement MA CEDARLANE®.Ontario, 

Canada 

M199 culture medium Gibco Invitrogen, Germany 

Ionomycine Sigma-Aldrich Chemie GmbH, 

Germany 

Phorbol 12-Myristate 13-Acetate (PMA) Sigma-Aldrich Chemie GmbH, 

Germany 

Ac-IETD-CHO caspase-8/granzyme B inhibitor ENZO LIFE SCIENCES GmbH, 

NY, USA 

Z-IETD-AFC caspase-8/granzyme B substrate Biomol GmbH, Hamburg, 

Germany 

Brefeldin A Sigma-Aldrich Chemie GmbH, 

Germany 
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Table 2. The fluorescent dyes and antibodies 
 

Product Source 

Anti-human CD11c PerCP/Cy5.5 Ebioscince, Germany 

Anti-human CD11c Allophycocyanin (APC) Becton Dickinson,CA, USA 

Anti-human CD11b APC Thermo Fisher Scientific Inc, 

Germany 

Alexa Fluor® 647 Mouse Anti-Human Perforin Becton Dickinson,CA, USA 

Alexa Fluor® 647 Mouse Anti-Human Granzyme 
B 

Becton Dickinson,CA, USA 

Alexa Fluor® 647 Mouse Anti-Human Granulysin Becton Dickinson,CA, USA 

FITC Mouse Anti-Human CD3 Becton Dickinson,CA, USA 

PE Mouse Anti-Human CD8 Becton Dickinson,CA, USA 

DAPI(4',6-Diamidino-2-Phenylindole, 
Dihydrochloride) 

Thermo Fisher Scientific. MA, 

USA 

Calcein-AM Thermo Fisher Scientific Inc, 

Germany 

LysoTracker Red DND-99 Thermo Fisher Scientific Inc, 

Germany 

 

 
Table 3. Instruments 

 

The BD FACSCalibur™ Becton Dickinson, San Jose, CA, 

USA 

The centrifuge Beckman Coulter GmbH, Krefeld, 

Germany 

Heracell™ 240i CO2- Incubators Thermo Fisher Scientific Inc, 

Germany 

Single-& two-photon confocal microscopy Leica Microsystems, Germany 

Perkin Elmer LS-50B Luminescence 
Spectrophotometer 

Perkin Elmer Ltd, UK 
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UV/VIS spectrophotometer Lambada2 Perkin Elmer Ltd, UK 

Cytospin 2 Shandon, UK 

PTC-200 Peltier Thermal Cycler BIO-RAD, München, Germany 

Vilber Lourmat Super Bright transilluminators France 

 
 
 
 
 
 

Table 4. Software 
 

CellQuest software Becton Dickinson, Heidelberg, 

Germany 

WinMDi 2.9 Purdue University, USA 

FLOWJO v10 software Becton, Dickinson & Company 

 
 
 
 
 

Table 5. Reagents and other requirements 
 

Fix/Perm Diluent Ebioscince, Germany 

Fix/Perm concentrate Ebioscince, Germany 

10x Permeabilization Buffer Ebioscince, Germany 

paraformaldehyde powder Sigma-Aldrich Chemie GmbH, 

Germany 

Sodium Hydroxide 1N Sigma-Aldrich Chemie GmbH, 

Germany 

Hydrochloric acid Sigma-Aldrich Chemie GmbH, 

Germany 

superscript III reverse transcriptase kit Invitrogen, CA, USA 
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Nucleospin RNA II Purification Kit Macherey-Nagel, Duren, 

Germany 

Dream Taq DNA polymerase Thermoscientific, Darmstadt, 

Germany 

Dream Taq green buffer Thermoscientific, Darmstadt, 

Germany 

ethidium bromide Roth, Karlsruhe, Germany. 

Agarose SERVA 500g SERVA Electrophoresis GmbH, 

Heidelberg, Germany 

Cell culture flasks 25 cm2, 75 cm2 TPP Techno Plastic Products AG, 

Switzerland 

Cell culture plate 12-well TPP Techno Plastic Products AG, 

Switzerland 

Cell Scrapers Thermo Fisher Scientific Inc, 

Germany 

Falcon Round-Bottom Polystyrene Tubes, 5 

mL 

Thermo Fisher Scientific Inc, 

Germany 

Falcon™ 50mL and 15mL Conical Centrifuge 

Tubes 

Thermo Fisher Scientific Inc, 

Germany 

Pipette 2, 5, 10, 25, 50 ml Thermo Fisher Scientific Inc, 

Germany 

BD FACSFlow™ Sheath Fluid Thermo Fisher Scientific Inc, 

Germany 

Neubauer chamber BLAUBRAND, Germany 

Coverslips Thermo Fisher Scientific Inc, 

Germany 
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4.4. Methods 

4.4.1. Cell culture 

In purpose to work under sterile conditions, cell culture work was performed in 

a class II laminar airflow workbench under endotoxin free conditions. Human cells were 

cultivated in humidified incubators. 

 

 
4.4.2. Methods in parasitology 

4.4.2.1. Culturing Leishmania promastigotes 
 

The wild-type and YFP-transfected Leishmania donovani parasite strain BHU5 

(MHOM/IN/02/BHU5) [149] promastigotes were grown and maintained at 25°C in 

M199 culture medium with 20% heat-inactivated fetal bovine serum. For the 

experiments, the parasites were harvested from end-log-phase cultures, centrifuged at 

2800rpm, and then suspended in RPMI 1640 GlutaMax culture medium supplemented 

with 10% FCS. After undergoes throw extensive wash process 2 times with 1xPBS and 

last time with RPMI 1640 medium, the parasites counted in a Neubauer Chamber after 

fixation with 4% paraformaldehyde, and adjusted to the required parasite densities for 

addition to the human dendritic cells and macrophages cultures at a multiplicity of 

infection (MOI) of 1:10. 

In purpose to kill the parasite to use as positive control for the digesting and 

none digesting cells, they were killed by incubation in 4% paraformaldehyde for 15 min 

followed by extensive washing with PBS. 
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4.4.3. Methods regarding human cells 

4.4.3.1. Isolation of monocyte from peripheral blood mononuclear cells (PBMCs) 

and preparation of human monocyte differentiated dendritic cells (hMDDCs) and 

human monocyte differentiated macrophages (hMDMs) 

PBMCs were isolated from heparinized filtered blood using Biocoll separating 

solution at 2000rpm for 25min. Which then were collected in RPMI 1640 GlutaMax 

culture medium supplemented with 2% FCS and incubated for 1-2 hours at 37°C and 

8% CO2 (monocyte adherent step), in this time of incubation the monocyte adhere to 

the bottom of cell culture flask. Consecutively, the monocyte differentiation protocol will 

be onset. Non-adherent PBMCs were lifted and cultured in 75 cm2 cell culture flasks 

in RPMI 1640 GlutaMax culture medium supplemented with 10% FCS for other 

experiments, then the adhered cells washed gently 3 times with warmed 1xPBS to 

decontaminated the most of lymphocytes. These adhered cells then were cultured in 

RPMI 1640 GlutaMax culture medium supplemented with 10% FCS for different 

incubated times and treated with different cytokines depending on the cells of interest. 

The culture medium was supplemented on day 0 and 4 of culture with 50 µg/mL 

recombinant human GM-CSF and 50 µg/mL IL-4 to get an immature hMDDCs 

(ihMDDCs) on the day 5. The flask for hMDMs was supplemented with only 50 µg/mL 

recombinant human GM-CSF at day 0 and 4 and continue cultured for 7-8 days, the 

culture medium refreshed 2 times and every time the cytokine treatment was refreshed 

too. All flasks were maintained during all this time at 37°C in humanized atmosphere 

with 8% CO2. 

On the 5th day of differentiation, the ihMDDCs were washed then re-suspended in 

fresh medium. For the hMDMs they were washed 3-4 times with PBS in aim to discard 

most of lymphocytes and then the adherent cells were lifted with cell scraper in fresh 

medium. Then all human cells were used as describe later. 

 

4.4.3.2. Incubation of hMDDCs and hMDMs with L. donovani parasites 
 

In our experiments, we infected human cells separately with dead or live YFP- 

transfected L. donovani parasites or wild type non-transfected parasites, the cells were 

washed and re-suspended in the culture medium at 1x106 cell/ml. The parasites 

washed 2 times with 1x PBS and then washed with the RPMI 1640 GlutaMax culture 

medium supplemented with 10% FCS, then suspended in this culture medium. The 
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human cells then infected with parasite at MOI 1:10 (cell: parasites). The flasks keep 

during the infection time points at 37°C in humanized atmosphere with 8% CO2. 

 
 

4.4.3.3. In vitro activation of human CD8 T lymphocytes 
 

To address the positive and negative control for the CTL activation. None- 

adhered autologous T lymphocytes which lifted with the suspension were cultured in 

cell culture flask with RPMI 1640 GlutaMax culture medium supplemented with 10% 

FCS at 37°C in 8% CO2. The activation assay of lymphocytes was carried out by 

treatment with Ionomysin (500ng/ml) and PMA (5ng/ml) for 30min at RT, and for 30min 

at 37°C in a cell culture incubator with 8 % CO2. The cells then incubated for more 5h 

with Brefeldin A at final concentration of 10µg/ml. The cells then were washed with cell 

culture medium and prepared for cell surface and intercellular staining. Other 

autologous lymphocytes have been none-activated as a negative control. 

 

 
4.4.3.4. Depletion of human T lymphocyte with OKT3 monoclonal antibodies and 

rabbit complement 

To check the expression of granzyme B and granulysin genes in pure 

populations of ihMDDCs, mhMDDCs, and hMDMs, T lymphocytes depleted through a 

reaction of the complement with anti CD3 OKT3 monoclonal antibodies. Briefly, the 

cell suspension has been obtained of both hMDDCs and hMDMs, the suspension 

centrifuged and the cell pellets re-suspended with 2 ml fresh culture medium in sterile 

5ml falcon tube. This suspension has been incubated with OKT3 Anti-CD3 for 1h at 

4°C and shaken every 15min, the tubes then centrifuged and refreshed the cells pellets 

with culture medium and incubated with reconstituted working solution of Rabbit 

Complement at 1:4 dilution for 1h at 37°C and shaken every 15min. The tubes then 

centrifuged and the cells pellets were extensively washed with PBS X 3 times, the cells 

then re-suspended in 1-2ml of PBS and frozen for 24h at – 20°C. The purification of 

hMDDCs and MDMs population was carried out by flow cytometry. 

In the other experiments, the cells pellet re-suspended with fresh culture 

medium and incubated at 37°C and with 8 % CO2. 
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4.4.4. Flow cytometry 

To assess several aspects, such as surface and transcription factor expression 

on human cells, proliferation of PBMCs, phenotypical characterization of cells, 

lysosomal acidification, etc. flow cytometry analysis was performed. For experiments 

a FACSCalibur was used and data analysis was carried out with FlowJoTM software. 

 

 
4.4.5. Preparation of human cells for cell surface and intracellular staining 

For measurement of perforin, granzyme B and granulysin produced by either 

hMDDCs or MDMs before and after they infected, the intracellular staining for these 

cells has performed and normalized properly. Briefly, cells pellets were harvested and 

suspended in PBS, the cells were stained with different CD markers for phenotyping 

and after incubation; they washed 1-3 times with 1xPBS. The cells pellets were fixed 

for 30min in dark at RT with a Fixation Solution (Fix/Perm Diluent + Fix/Perm 

Concentrate), the 1x Permeabilization Solution was added. This suspension has been 

gently shaken and centrifuged. The cells have re-suspended in 1x Permeabilization 

Solution and were incubated for 45min with antibodies for intracellular staining at RT 

in dark. Ultimately, the cells were washed with Permeabilization Solution one time then 

washed with 1xPBS for 2 times and suspended with FACS buffer and the 

measurement was done with FACScalipur. 

 

 
4.4.6. Laser Scanning Confocal Microscopy (LSCM) 

The uptake and routing of L. donovani parasites a in hMDDCs were monitored 

by LSCM. To investigate the merge of YPF-transfected intercellular phagocytized 

parasites with intercellular proteins of hMDDCs, and combine of the fluoresced 

parasites with the intercellular granzyme B, cells were harvested at different time points 

depending on the experiment. The cells were stained for CD marker with anti CD11c, 

for hMDDCs and CD11b for MΦs, they then have been washed with 1xPBS and the 

cells pellets fixed with Fix/Perm buffer for 30 min at RT in dark, 1x permeabilization 

buffer solution was added and gently shaken, the suspension then centrifuged for 5 

min at 1200 rpm and re-suspended in 1x permeabilization buffer solution and then 

incubated the pellet with Alexa Fluor 647-labeled anti- granzyme B Ab for another 30- 

45min. the pellets then incubated for 10min with 4% PFA, the suspension then 
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centrifuged with cytospin at 80rpm for 8min. Then the spots mounted before covered 

with cover slip. The slide then kept in dark at 4-6C°. 

The slides for intracellular localization and routing of intercellular parasites in 

hMDDCs were analyzed with laser scanning confocal microscopy (Leica TCS SP2). 

The images were processed with the Leica Confocal Software Version 2.5 Build 1227. 

 
 

4.4.7. Evaluation of granzyme B activity 

To investigate the activity of granzyme B in none-infected hMDDCs. The 

isolated hMDDCs were incubated with/without granzyme B inhibitor for 20min before 

infected with L. donovani parasites as previous described in this chapter and then at 

determined times of infection 24h, 48h, and 96h, the suspensions were incubated with 

granzyme B substrate for one hour then the samples measured with LS-50B 

Luminescence Spectrophotometer at recommended wavelength. For detection the 

granzyme B activity in samples on microscopic slides with LSCM, the samples were 

prepared as previously described above. 

 
 

4.4.8. Preparation of 4% paraformaldehyde 

We added 400 mL of 1X PBS to a glass beaker on a stir plate in a ventilated 

hood. Heat while stirring to approximately 60°C. 20 g of paraformaldehyde powder was 

added to the heated PBS solution. In aim to dissolve the powder. The pH was slowly 

raised by added 1 N NaOH dropwise from a pipette until the solution was cleared. Once 

the paraformaldehyde was dissolved, the solution was cooled and filtered. We adjusted 

the volume of the solution to 500 mL with 1X PBS. The pH was adjusted with small 

amounts of dilute HCl to approximately 6.9. At the end, the solution stored at 2- 8 °C. 

 
 

4.4.9. Total RNA isolation and cDNA synthesis 

Cells obtained from siRNA knockdown experiments were harvested. Total RNA 

was extracted using Nucleospin RNA II Purification Kit as the manufacturer’s 

instructions. Briefly, 1x106 cells were put in 2ml eppendorf tubes and lysed with 350μl 

lysis buffer. Samples were centrifuged and the supernatant was mixed with 350μl 

(70%) ethanol and centrifuged through a nuceospin RNA column, to bind the RNA to 

the silica gel membrane. Traces of DNA were removed by DNAse treatment. DNAse 
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and any contaminant were washed away with wash buffer and RNA was eluted in 

RNase-free water. RNA concentration was measured at room temperature with a 

UV/VIS spectrophotometer according to manufacturer’s instruction with 1μl of the RNA 

sample diluted 50 times with RNase-free water. cDNAs were synthesized from 500 ng 

each of the DNase-treated total RNA using superscript III reverse transcriptase kit as 

the manufacturer’s instructions. cDNA-3’ Primer (AAG CTG TGG TAA CAA CGC AGA 

GTC GAC TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT VN) was used in a cDNA 

synthesis mixture containing (20μl) 5x First strand Buffer, (4 μl) 0.1M DTT, 200U 

superscript III reverse transcriptase enzyme, 20 pmol cDNA-3’ primer, 10mM dNTP 

mix and 500ng RNA. The cycling condition comprised of denaturation at 65°C for 5 

minutes, annealing and cDNA synthesis at 50°C for 60 minutes and termination at 72°C 

for 15 minutes. 

The samples were put on ice for further use or frozen at -80°C for a later use. 

For measuring RNA concentrations (duplicates), a NanoDrop2000c was used. RNA 

was verified to be DNA-free by a test-PCR. 

 
 

4.4.10. GrB and GNLY gene expression in hMDDCs and hMDMs 

The expression of GrB and GNLY gene by hMDDCs and hMDMs was 

determined by semi-quantitative RT-PCR as described previously [98]. Briefly, RT- 

PCR was carried out with 500ng of hiMDDCs, hmMDDCs, and hMDM of each cDNA 

using the following constitutive (GrB and GNLY, and β-actin -sequence specific forward 

and reverse primers). GrB: CTTCTGCTGCCTTCCTCC, 

GACTTGGCTCCAGAGAAGGT   (799   bp;   004131.6,   NM_001346011.2);  GNLY: 

AGGGTGTGAAGGCATCTCA, AAGGACTACACAGCTCACCC (725 bp; 006433.5, 

NM_ 001302758.2); β-actin CTTGATGTCACGGACGATTT, 

CACGGCATTGTCACCAACT (500bp; NM_002046.2, NM_017008.2). Each RT PCR 

setup contained (5μl) 10x Dream Taq green buffer, (2μl) 2.5 mM dNTP mix, (0.5 μl) of 

each 30 pmol/μl β-actin -sequence specific forward and reverse primers, (1μl) of each 

100 pmol/μl constitutive or immunoproteasome subunits sequence specific forward 

and reverse primer, 500ng cDNA,15,875μl PCR grade water and 0.125 μl Dream Taq 

DNA polymerase. PTC-200 Peltier Thermal Cycler was used and thermo-cycling 

conditions were denaturation at 96°C for 2 min, 35 cycles of denaturation at 95°C for 

40 sec, primer annealing at 55°C to 68°C for 1 min, primer extension at 72 °C for 40 
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sec and a final cycle of extension at 72°C for 10 min. then the sample tubes keep in 

4°C. The amplified DNA fragments were analyzed by electrophoresis using 1% 

agarose gels in 1x TBE buffer with 0,006 % ethidium bromide. The gel read was done 

with Vilber Lourmat Super Bright transilluminators. 
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5. Results 

 
 
5.1. Uptake of L. donovani by hMDDCs and hMDMs 

 

The impact of the first interaction of innate immune cells with the protozoa 

parasites have a large impact on the infection progression [64] . In the Leishmania 

endemic areas, the infection during the rainy season can be managed, not all exposed 

people got the infection [150]. In order to figure out the phagocytic capabilities and 

weather the intercellular phagocytized parasites are proliferated or digested in the 

phagocyte cells; therefore, the experimental work was accomplished to estimate the 

proliferation and the killing rate via the expression of the fluorescent signal 

amplification. To achieve this, the uptake of L. donovani promastigotes by both 

hMDDCs and hMDMs was analyzed by infecting the cells with YFP-transfected 

parasites. The differentiated ihMDDCs of adhered isolated monocytes were prepared 

as previously described in the chapter 4. On the day 5 of differentiation, the human 

cells were either infected with dead YFP-transfected L. donovani parasites (Figure 

8A), or with live YFP-transfected L. donovani parasites (Figure 8B) at MOI of 1:10. For 

the hMDMs, the cells were detached with cells scraper at the day 8 of differentiation 

from the PBMCs as described previously in the chapter 4, they are infected as well 

with either dead YFP-transfected L. donovania parasites (figure 8D) or with live YFP- 

transfected L. donovania parasites (figure 8E) at MOI of 1:10. The cell suspensions 

for both cells were collected at different time points 2, 6, 24, 48, 72, and 96 hours (h) 

as detailed in (Figure 8). Subsequently, the cells were washed one-time with 1x10 

PBS and stained for 25min with Allophycocyanin (APC) labeled anti-human CD11c for 

the DCs, and APC labeled anti-human CD11b for the MΦs. The flow cytometry was 

measured with FACSCalibur. The uptake percentages were measured by overlapping 

the fluorescent signal expression on FL-1 and FL-4 for both hMDDCs and hMDMs, and 

this population indicates to either YFP positive hMDDCs or YFP positive hMDMs. The 

acquired data was analyzed using FLOWJO v10 software. The results showed that, 

the live parasites were gradually taken up by hMDDCs, and responded on the time 

points manner, and that was manifestly through the population of hMDDC positive YFP 

up to 24h of the incubation then the ratios have descended, thus indicating the YFP 

signal was decreased due to the destruction of parasites. The dead parasites were 

taken up very fast by both hMDDC and MDM, and the YFP positive population in both 
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hMDDC and hMDM was drooping gaily with the time, while the ratios of uptake of viable 

parasites by hMDM started with increasing the YFP positive population ratios, these 

ratios showed unstable up take capability as they were decreased and increased in 

response to the determined time points were preformed (figure 8). 
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Figure 8: The uptake of dead and live L. donovani parasites by hMDDCs and 

hMDMs 

On the 5th Day, ihMDDCs were incubated with either dead or live YFP- L. donovani parasites, harvested 
at the indicated time points, stained with fluorochrome-labeled anti-CD11c. on the day 8, detached 
hMDMs were infected with either dead and live YFP- L. donovani parasites, harvested at the same 
indicated time points of infected hMDDCs, the infected cells then stained with the fluorochrome-labeled 
anti-CD11b. both infected hMDDCs and hMDMs then analyzed by flow cytometry. Data displayed in (A, 
B, D and E) are representative of three independent experiments performed with cells from three 
different donors. The cells after stained were measured with FACSCalibur. The data were processed 
with the CellQuest software and analyzed with FLOWJO v10. A) The infection of hMDDCs with dead 
parasites. B) Infected hMDDCs with the live parasites. C) As depicted, the hMDDCs positive YFP 
fluorescent percentage of both dead and live parasites were plotted against the time of detection. D) 
The infection of hMDMs with dead parasites. E) The infection of hMDMs with live parasites. F) hMDMs 
positive YFP fluorescent percentage of both dead and live parasites were plotted against the time of 
detection. The determined incubation time points were shown in the lift side of graphs. The number of 
the independent samples was 3 in all experiments. 
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5.2. Impact of L. donovani infection on viability of hMDDCs and hMDMs 
 

During the Leishmania infection, the parasites attempt to evade the killer 

immune cells, they distinguished by their antigens, which enhance the taken up them 

by phagocytes [151] . To complete their live cycle, the parasites start to differentiate 

and proliferate inside their host cells, which cause at the end rapture the membrane of 

host cells, thus losing cell membrane integrity. In this current study, we aimed to 

evaluate the viability of the hMDDCs and hMDMs upon infection with wild type L. 

donovani parasites at different time points 24, 48, 72, and 96h, as indicated in (Figure 

9 A, B). The cells were harvested at determined time points in flow cytometry tubes, 

washed tow times with x1 PBS and stained for max. 25min with none-fluorescent cell- 

permeable Calcein-AM, which is metabolized in the cytoplasm of live cells into the 

green fluorescent calcein, and APC labeled anti-CD11c for hMDDCs, and anti-CD11b 

for hMDMs. After staining, the cells were washed one time with x1 PBS, and then the 

samples were reconstituted in FACSFlow Sheath Fluid. The sample were measured 

with FACSCalibur and the data were acquired using the CellQuest software and 

analyzed with the FLOWJO v10. The graphs showed that no significant effect of 

infection was detected on the viability of hMDDCs and MDMs compared with non- 

infected cells (Figure 9). 
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Figure 9: The effect of L. donovani infection on viability of hMDDCs and hMDMs 
 

ihMDDCs and hMDMs were infected with wild-type L. donovani for different time points as indicated. 
Consequently, the cells were harvested, washed and stained with both Calcein-AM and fluorochrome- 
labeled monoclonal antibodies against-CD11c and anti-CD11b for both hMDDCs and hMDMs, 
respectively. After they were washed, the samples were measured using flow cytometry. A) Represent 
non-infected hMDDCs left and infected hMDDCs represented on right. B) Shown non-infected hMDMs, 
lift and represent infected hMDMs, right. These results illustrative one of 3 independent experiments. 

 
 

5.3. Intracellular routing of the intercellular parasites in hMDDCs 

It has been widely reported that utmost of investigations on the Leishmania 

infection were involved animal model [161], in vivo studies the phagocytic capacity and 

the faith of the taken up parasites by different human immune cells needs to be more 

elaborated. This experiment aimed to detect the subcellular localisation of intracellular 

parasite with the antigen processing compartments, the hMDDCs incubated for 

different time points 2h and 24h with live/dead YFP-transfected L. donovani parasites 

at MOI 1:10, and the infection process was achieved in culture plate 12-well and 

incubated as mentioned above. After the incubation time, the cells were harvested, 

washed and then stained intracellularly with fluorochrome-labeled antibodies against 

different intercellular proteins. Including HLA class I and class II, the antigen presenting 

molecules for CD8 and CD4 T lymphocytes, respectively. The cells stained also with 

the invariant chain CD74, which is associated with newly biosynthesized, but not 

degraded. HLA class II to stabilize the molecule and protect the peptide-binding 

groove, and calnexin, a membrane protein in the ER that acts as chaperon for nascent 

HLA class I. Already 2h after addition to the cultures the dead parasites were found in 

these compartments; in the case of the live parasites, the translocation into these 

compartments appears to be slower. After 24h of incubation, the live parasite 

intercellular infected cells appear aggregated with the different intercellular 

compartments of interest (Figure 10). 



49  

 
 

Figure 10: The intracellular localization of the phagocytized parasites in hMDDCs 
 

On the 5th Day ihMDDCs were incubated with dead or live YFP- L. donovani parasites (green 
fluorescence), harvested at the indicated time points, fixed, permeabilized and stained for MHC class I, 
MHC class II, CD74 and calnexin (red fluorescence), and counterstained with DAPI (blue fluorescence). 
After staining the cells were imaged by confocal microscopy. Images were deconvolved using ImageJ 
software Scale bar= 5µm. 
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5.4. Determination of granzyme B in L. donovani infected and none-infected 

hMDDCs and hMDMs 

To evaluate the expression of granzyme B in hMDMs and hMDDCs in response 

to infection with L. donovani. The ihMDDCs at day 5 of differentiation were incubated 

with wild type L. donovani in 12 well cell culture plate at MOI 1:10 for 48 h at 37 °C and 

8% CO2. The cells then washed with PBS and stained for cell surface with APC labeled 

anti-CD11c, fixed, permeabilized and incubated with Fluorescein (FITC) labeled anti- 

human granzyme B. To determine the expression of these proteins in hMDMs, the cells 

were incubated for 48h at a MOI 1:10 as described previously, the cells then washed, 

stained with FITC labeled anti-CD11b, fixed, permeabilized and incubated with Alexa 

flour 647 labeled anti-human granzyme B for 30-40min in dark. The samples were 

splitted, and then measured with FACSCalibur. Other samples were incubated for 

10min with 4% PFA in dark and then were centrifuged on microscope slide, fixed, 

mounted, and covered with coverslip. The images of these samples on microscope 

slides got by confocal microscopy. Depending on the mean MFI, the expression of 

granzyme B was high in none infected hiMDDCs, this expression up-regulated after 

48hr of infection with the parasite, in contrast, the expression of granzyme B was very 

low in none infected hMDMs and no significant change after infection (Figure 11). 
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Figure 11: Granzyme B expression in L. donovani infected and none-infected 

hMDDCs and hMDMs. 

The hMDDCs and the MDMs incubated with/without wild type L. donovani at MOI 1:10 for 48h. The cells 
then washed and stained with APC anti CD11c for the hMDDCs (red fluorescent) and for the hMDMs 
stained with APC anti CD11b (red fluorescent), after that the cells incubated with fixation buffer for 30min 
before they permeabilized with permabilization buffer and combined with FITC anti human granzyme B 
( green fluorescent) for 30-40min for both hMDDCs and hMDMs. A) The granzyme B expression in 
none- infected hMDDcs left, and infected hMDDCs right. B) The granzyme B expression in none infected 
hMDMs, left, and infected hMDMs, right. C) Show the mean MFI of granzyme B expression in none 
infected both DCs, red line and hMDMs, blue line. D) Show the mean MFI of granzyme B expression in 
infected both hMDDCs, red line and hMDM, blue line. E) Show the localization of granzyme B inside the 
infected hMDDCs, left and infected hMDM, right. F) Show the data analysis, these results got from 3 
different samples, ** = p<0.01; comparing the mean of MFI of granzyme B expression obtained from 
none infected and infected cells. 

Obtained and processed images was done with the Leica Confocal Software Version 2.5 Build 1227. 
Scale bar= 5µm. 
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5.5. Detection of granulysin in L. donovani infected and none-infected hMDDCs 

and hMDMs 

To evaluate the granulysin expression in L. donovani infected and none-infected 

both hMDMs and hMDDCs. The non-infected and infected cells were processed as 

previously prescribed but stained to detect CD markers precisely; PerCP/Cy5.5 anti- 

human CD11c and CD11b for hMDDC and MDM, respectively. Then the cells were 

stained intracellularly with Alexa flour 647 labeled anti-human granulysin. The 

expression was low in aforementioned cells as exhibited in (Figure12). hMDDCs 

showed no effect of infection on the granulysin expression, but the granulysin 

expression was significantly increased in hMDMs after became infected. 
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Figure 12: The expression of granulysin in L. donovani infected and none- 

infected hMDDCs and hMDM. 

The ihMDDCs and the hMDM incubated with/without wild type L. donovani at 1:10 cell to parasites ratio 
for 48h, the cells then washed and stained with PerCp/Cy5.5 anti CD11c and CD11b for hMDDCs and 
MDMs, respectively. After that, the cells incubated with fixation buffer for 30min before they 
permeabilized with permabilization buffer and combined with Alexa flour anti-human granulysin for 30- 
40min for both hMDDCs and MDM, the cells then measured with FACSCalibor. A) Show the MFI of 
granulysin expression in both none infected hMDDCs, red line and hMDM, blue line. B) Show the MFI 
of granulysin expression in both infected hMDDCs, red line and hMDM, blue line. C) Represent the 
analysis of data of 3 different samples, * = p<0.05; ** = p<0.01; comparing the mean of MFI of granulysin 
expression obtained from none infected and infected cells. 
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5.6. Detection of GrB and GNLY mRNA in ihMDDCs, mhMDDCs, and hMDMs 

Following assessment of the granzym B and granulysin expression, the 

expression of granzyme B and granulysin has been shown by fluorescent intercellular 

staining only in hMDDCs, while granulysin only was detected also in hMDMs. The 

detection of the proteins expression level in these cells was aimed to provide a better 

sympathetic into the role of granzyme B and or granulysin-secreting hMDDCs and 

hMDMs, and the importance of their action on the immune response during 

leishmaniasis. Thus, to confirm our flow cytometry data, the gene expression of GrB 

and GNLY in ihMDDCs, mhMDDCs, and hMDMs, was detected by semi-quantitative 

RT-PCR, and was carried out as detailed in section 4.4.9. For this present experiment, 

ihMDDCs, mhMDDCs and hMDMs were obtained after the T Lymphocytes were 

depleted, then the cells were washed extensively with PBS and the purification of cell 

populations were determined with flow cytometry. Immature and mature MDDCs 

expressed both GrB and GNLY genes (Figure 13 A, B). The Findings showed that 

both gene bands expression was thicker after maturation, whereas, hMDMs were 

expressed GNLY gene only (Figure 13 C). As a positive control for genes expression 

of GrB and GNLY, the expression was detected in cDNA obtained from PHA activated 

PBMCs (Figure 13 D). 
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Figure 13: GrB and GNLY mRNA expression in ihMDDCs, mhMDDCs, and 

hMDMs. 

A) Agarose gel electrophoresis of RT-PCR of the GrB (799bp)and GNLY (725bp) expressed by 
ihMDDCs B) Agarose gel electrophoresis of RT-PCR of the GrB (399bp)and GNLY (558bp) expressed 
by mhMDDCs C) Agarose gel electrophoresis of RT-PCR of the GrB (399bp)and GNLY (558bp) 
expressed by hMDMs. D) Gene expression of GrB and GNLY in PHA activated PBMCs sample. 
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5.7. Evaluation of granzyme B activity in L. donovani infected hMDDCs 

Granzyme B is an apoptosis-inducing protease their expression by hMDDCs 

was determined and confirmed in this present study. The activity of granzyme B inside 

infected phagocytic cells still needs to be evaluated. In this experiment, we aimed to 

evaluate the granzyme B activity and test the effectiveness of granzyme B inhibitor for 

the coming experiment, hiMDDcs were treated with/without granzyme B inhibitor 20min 

before they were incubated with wild type L. donovani and at different time points as 

indicated. The supernatants were collected and incubated with the fluorogenic 

granzyme B substrate for one hour, and then the samples were measured with LS-50B 

Luminescence Spectrophotometer. The results showed that the granzyme B was in 

active form after 24h of infection and its activity was increased 16-fold, the effect of 

granzyme B inhibitor was evident, granzyme B activity was decreased to the same 

non-stained sample. After 96h, the activity of granzyme B inhibitor was significantly 

decreased (Figure 14 A). In addition, to show the activity of granzyme B inside the 

Leishmnaia infected hMDDCs and beside that co-localized with the intercellular 

parasites. Therefore, the ihMDDCs were incubated with YFP-transfected L. donovani 

combined with/without the fluorogenic granzyme B substrate, then, at 24h, the infected 

cells were washed, and stained with APC anti-human CD11c. after 25min, the cells 

fixed and mounted on a slide to examine by confocal microscopy. The pictures show 

the activity of granzyme B inside and outside the infected cells in comparison with a 

negative control, and the active granzyme B combined with intercellular parasites 

(Figure 14 B, C). 
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Figure 14: Granzyme B activity in L. donovani infected ihMDDCs. 
 

On the 5th Day, ihMDCs cells were treated with/without granzyme B inhibitor for 20min before they 
incubated with wild type L. donovani for different time points, as indicated, the supernatants were 
collected at that determined time points and incubated with the fluorogenic granzyme B substrate. The 
granzyme B substrate signal was detected using Perkin Elmer LS-50B Luminescence 
Spectrophotometer. In addition, to show the activity and localization of active granzyme B protein inside 
the infected cells, the ihMDDCs incubated at the same time with YFP- transfected. L. donovani (green 
fluorescent) and the fluorogenic granzyme B substrate (blue fluorescent) for 24h before they stained 
with APC anti-human CD11c (red fluorescent). The cells then were analysed using confocal microscopy. 
Images were deconvolved using ImageJ software. A) Presents the intensity of granzyme B activity with 
time points of infection, the data analysed from 3 different samples. B) The infected cells incubated 
without granzyme B substrate, lift, the infected cells incubated with granzyme B substrate, right. C) 
Shown is a sequence of detailed images, the blue fluorescent express the active granzyme B co- 
localized with the green fluorescent from the parasite (indicated by white arrow) inside the red 
fluorescent infected cell, right, while the none-treated sample with granzyme B substrate presented 
without the blue fluorescent (pointed out by white arrow) as a negative control, left. The laser scanning 
confocal microscopy was operated to examine the slides. In addition, the images processed with the 
Leica Confocal Software Version 2.5 Build 1227. Scale Bar=5µm. 
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5.8. Detection the Co-localisation of granzyme B with digested L. donovani 

inside hMDDCs 
 

Granzyme B has the most robust apoptotic activity of all granzymes, as a result 

of its caspase-like ability to cleave substrates at key aspartic acid residues [118]. To 

get our data together, we design this experiment to detect the granzyme B protein 

integrated with the intercellular parasite at a determined time point of infection. In this 

purpose, ihMDDCs were incubated with YFP-transfected L. donovani for 48h in flask, 

and then the cells lifted, washed, and fixed with the fixation buffer for 30min and after 

that, incubated with permeabilized with permeabilization buffer combined with Alex 

flour 647 anti-humans granzyme B for 30-40min before they washed, fixed and 

centrifuged on the slide to detect with confocal microscopy. Images were deconvolved 

using ImageJ software. The pictures show visibly the overlap of the green fluorescent 

from the parasite with the granzyme B (red fluorescent) inside the infected cells. The 

yellow fluorescent shown the parasite digested inside the hMDDC (Figure 15). 
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Figure 15: Co-localization of granzyme B with the digested L. donovani inside 

hMDDCs 

ihMDDCs were incubated at day 5 of differentiation with YFP- transfected L. donovani for 48h, before 
they washed and stained intercellular for the produced granzyme B with Alexa flour 647 anti-human 
granzyme B. The cells then fixed and centrifuged on slid and detected under the confocal microscopy, 
the pictures shown clearly the overlap, which is displayed in (yellow fluorescent) of degraded parasites 
(green fluorescent) inside the DCs with the secreted granzyme B protein (red fluorescent). The images 
processed with the Leica Confocal Software Version 2.5 Build 1227. Scale bar= 5µm. 
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5.9. Evaluation of granzyme B role in the digestion process of Leishmania 

parasite inside Leishmania infected hMDDCs 
 

To define the role of granzyme B produced in hDCs, the ihMDDCs differentiated 

at day 5, they incubated with granzyme B inhibitor at the concentration of 100µM/ml 

for 20min before they incubated with YFP transfected L. donovani for 24h and 48h, the 

cells then washed and stained with anti-human CD11c. The cells were prepared for 

flow cytometry for detecting the signal of hMDDCs positive YFP, this fluorescent signal 

rate shows the killing of the intercellular parasite, the cells were measured with 

FACSCalibur, and the result analyzed with FLOWJO single cells analysis software v10. 

The data analyzed with Excel 2016. The cells during the measurement were gated on 

the positive CD11c in combination with the positive YFP and evaluated the histogram 

of YFP in this gated population. The YFP signal in the granzyme B inhibitor-treated 

infected hMDDCs showed slightly more mean fluorescent intensity MFI after 24h 

comparing with none treated infected hMDDCs. However, after 48h of infection, which 

is that time point of processing of intercellular pathogens as we showed before, the 

granzyme B inhibitor-treated infected hMDDCs had a more than two folds YFP signal 

comparing with none treated cells, they displayed highly decreased in the YFP signal 

(Figure 16). 
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Figure 16: The role of granzyme B in digestion of phagocytized parasite in 

hMDDCs 

The hMDDCs were differentiated for 5 days from adhered monocytes, they were treated with/ without 
granzyme B inhibitor before the infected for 24h and 48h with YFP-transfected L. dononvani. The mean 
fluorescent intensity (MFI) was measured by using the FLOWJO single cells analysis software v10. The 
none-stained cells for events gating (A) left, the gated events none stained cells. Gated stained infected 
cells with APC anti- CD11c, middle, the infected cells gated for + CD11c and +YFP (A) right. (B) The 
flow cytometry histograms show the MFI of YFP signal of infected cells for 24h treated cells, left, and of 
none-treated cells, right. The MFI signal after 48h of the cells infection showed in (C) treated cells, left, 
and the none-treated cells, right. (D) Histograms and data, presented as mean ± SEM, are 
representative for 3 independent experiments (**: p < 0.01). 
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5.10. The impact of granzyme B inhibitor on hMDDCs viability 
 

In order to confirm the outcome of treatment of hMDDCs with the human 

granzyme B inhibitor, the ihMDDCs were obtained as previously described, and they 

incubated with/ without human granzyme B inhibitor (100µM/ml) for 24h. The cells were 

then harvested, washed one time with PBS and stained with the nonfluorescent cell- 

permeable calcein-AM, which is metabolised in the cytoplasm of live cells into the 

green fluorescent calcein, and propidium iodide (PI), which only enters cells with 

perforated cell membranes and binds nucleic acids, staining the cells red. After 

staining, the cells were measured with FACSCalibur, and the data were analysed with 

FLOWJO single cells analysis software v10. To prepare the dead and live cells as a 

positive control for both, the cells incubated with/ without paraformaldehyde (PFA) for 

15min and stained separately with (PI) and Calcein-AM, respectively. The graphs 

showed there was no significant effect of the treatment with the granzyme B inhibitor 

with a recommended concentration on the viability of hMDDCs (Figure 17). 
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Figure 17: Impact of granzyme B inhibitor on hMDDCs viability 
 

The hMDDCs incubated for 24h with/without granzyme B inhibitor incubated (100µM/ml), the cells then 
washed and stained with the nonfluorescent cell-permeable calcein-AM, which is metabolized in the 
cytoplasm of live cells into the green fluorescent calcein, and propidium iodide (PI), which only enters 
cells with perforated cell membranes and binds nucleic acids, staining the cells red. The histograms 
showed no effect of the granzyme B inhibitor on the viability of DCs. A) The none-stained cells. B) 
Positive control for dead cells. C) Positive control for viable cells. D) The cells incubated without 
granzyme B inhibitor and stained for both (PI) and Calcein-AM. E) The 24h incubated cells with 
granzyme B inhibitor. 

 
 

5.11. Impact of L. donovani infection on hMDDCs activation 

In the immune response against different infections, including parasitic 

infections, DCs comprise a complex array of cell populations that play a leading role. 

In an immature state, they can sense and phagocyte the antigens. Due to up taking 

antigens, they become activated, mature and prime naïve T lymphocytes within lymph 

nodes. It is essential to evaluate the activation of DCs during Leishmania infection. 

hMDDCs were obtained from filtered blood samples from healthy donors, ihMDDCs at 

day 5 of differentiation were infected with wild-type L. donovani promastigotes for 48h 

in the presence or absence of a cocktail of cytokines IL-1β (10 ng/mL), IL-6 (25 ng/mL) 

and TNF-α (10 ng/mL), the cells incubated with these cocktail 2h after the infection and 

then continued for 48h. In addition, as a positive control, none infected hMDDCs were 

incubated with LPS for 48h. The cells then lifted, washed and incubated for 25min with 

fluorescent labeled specific activation markers for the hMDDCs, they included anti- 

CD1a, anti-CD40, anti-CD58, anti-CD83, anti CD80, anti-CD86, anti-HLA-DR and anti- 
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HLA-ABS. The stained cells were washed and the fluorescent signals determined with 

FACSCalibor, and the results were analyzed with the WinMDi 2.9. The data showed a 

slightly up-regulation of most of the activation markers; this up-regulation was 

significant in those infected cells and treated with the cocktail of cytokines. The positive 

control of activated DCs showed downregulation of CD1a; this is also was decreased 

in the infected cells and treated with the cocktail of activating cytokines (Figure 18). 

 
 
 

 
Figure 18: The impact of L. donovani infection on the activation of hMDDCs 

hMDDCs were infected with L. donovani parasites for 48h with/without treated with a cocktail of 
cytokines, which added after 2h of infection. The positive control were cells treated with even LPS or a 
cocktail of activation cytokines for 48h. The samples washed, stained, and measured with FACSCalibur. 
The data obtained from 11 independent experiments done with different samples and analyzed with 
WinMDi 2.9. 
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5.12. Determination of granzyme B role in priming autologous cytotoxic T 

lymphocyte by L. donovani infected hMDDCs 

Not all granzyme B-expressing cells are co-express perforin, providing further 

support to the notion that granzyme B also exerts functions that are independent of its 

cytotoxic effects. The role of granzyme B expressed in hMDDCs in activation of naïve 

T lymphocytes need to be addressed. In this present experiment, the PBMCs were 

isolated as described previously, the PBMCs were incubated for 2hours at 37°C in 8% 

CO2, the nonstick lymphocytes were lifted with the suspension were culture in 

refreshed cell culture medium in cell culture flask and maintained at 37°C in 8% CO2, 

the medium was refreshed 2-3 days. The adhered monocytes differentiated to DCs as 

previously described, the ihMDDCs differentiated at day 5, they were counted and 

incubated with/without granzyme B inhibitor at the concentration of 100µM/ml for 20min 

before they incubated with/without wild type L. donovani for 48h. The cells then were 

co-cultured then with the autologous lymphocytes in an effector: target ratio of 10:1 in 

the presence of Brefeldin A for 6hours at 37°C in 8% CO2. As a positive control for the 

activation, the cytotoxic T cells were incubated with PMA and Ionomycin for 6hous in 

the presence of Brefeldin A. All the samples then were stained intracellularly with anti- 

human IFN-γ Antibody after they were stained with anti-human CD8 Antibody and fixed 

for 30min, as a negative control, the cells stained only with human CD8 Antibody. The 

samples were then washed and measured with FACSCalibur the data were analyzed 

with FLOWJO single cells analysis software v10. 
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Figure 19: The role of granzyme B on priming of T lymphocytes by hMDDCs 

during leishmanaiasis 

The autologous T lymphocytes were cultivated in RPMI 1640 GlutaMax culture medium supplemented 
with 10% FCS at 37°C in 8% CO2 and refresh twice, the autologous hMDDCs and hMDMs were 
infected as mentioned before and then co-cultured with their autologous T lymphocytes for 6h in the 
presence of Brefeldin A. The cells then washed and stained for the surface CD markers with anti-CD8 
AB, and intercellular with anti-INF gamma AB. The samples were measured with FACSCalibur. The 
results show no significant effects of inhibited granzyme B protein on the activation of T lymphocytes, 
the positive control of T lymphocyte activation was carried out with treated cell with a combination of 
Ionomysin and PMA for 6h in the presence of Brefeldin A. A) None stained lymphocytes, B) 
lymphocytes stained only with anti-CD8, C) Gated on CD8+ cells without Anti-IFNγ, D) Co-culture of 
none-infected DCs with autologous CD8 T lymphocytes, E) Leishmania infected hMDDCs without 
granzyme B inhibitor co-cultured with autologous lymphocytes, F) Leishmania infected hMDDCs with 
granzyme B inhibitor co-cultured with autologous lymphocytes, G) The positive control of CTL 
activation, H) diagram show the percentages of CTL positive IFNγ of 3 independent samples. 
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6. Discussion 
 

6.1. Intercellular Leishmania parasites are digested inside the 

hMDDCs but not hMDMs 

During life, our body is exposed to various threats including infectious agents 

like bacteria, viruses or protozoal parasites. For protection against such agents, 

several mechanisms of immune defence have evolved. By gaining more insight into 

host-pathogen interactions, a better understanding arose of how infections occur and 

what protective and curative immune responses are that led to new prophylactic and 

intervention strategies. 

In the presented project, we focused on the interaction of human innate immune 

cells with L. donovani. As widely known, the monocyte-derived macrophage are host 

cells for Leishmania parasite. We tested the different interactions between human 

monocyte-derived dendritic cells as antigen presenting cells and human monocyte- 

derived macrophages with the L. donovani with special attention to Leishmania- 

dendritic cell interaction. We hypothesised that that processing of Leishmania 

parasites by human dendritic cells is dependent on the cytolytic molecules granzyme 

B and granulysin, and that both proteins have an essential role in the antigen 

processing mechanism for induction of Leishmania-specific T cell responses. 

Upon infection of hMDM and hMDDCs with Leishmania parasites, we observed 

macrophages to be permissive for intracellular Leishmania parasite survival and 

propagation whereas dendritic cells digest the intracellular parasites. Furthermore, 

killing of the parasites induce hMDDCs suitable for priming Leishmania-specific T cell 

lymphocytes. This ability increased upon maturation of the Leishmania infected DCs. 

The hMDDCs had been identified before as granzyme B expressing cells [70, 

117, 118]. We established expression of both granzyme B and granulysin by hMDDCs 

and hMDMs. In addition, we established the essential role of granzyme B and maybe 

also granulysin in the process of parasite digestion by hMDDCs. As the expression of 

granzyme B was only found in hMDDCs but not in human macrophages, our data 

suggest that this expression difference could explain why hMDDCs in contrast to 

hMDMs can kill the intercellular parasites. 
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Most of the leishmaniasis studies in humans were done with macrophages as 

they are their main host cells [152-155]. Also in murine models of leishmaniasis, 

macrophages were the focus of the investigations [156-165]. Only few studies were 

done on the response of human dendritic cells to Leishmania infection. Although 

Leishmania parasites infect and interact with a variety of phagocytic host immune cell 

types, macrophages and dendritic cells (DCs) are the most important ones for the 

outcome of the infection. After promastigotes are taken up by macrophages into the 

phagosomes, subsequent fusion with lysosomes occurs [166, 167] . Although this is 

the most deadly environment for most pathogens, Leishmania are among the few that 

can survive and proliferate in such condition [167, 168]. To control and eliminate the 

parasites efficiently, the macrophages must be activated, which is usually induces by 

cytokines such as INF- or TNF- being produced by DC-primed helper CD4 and 

cytolytic CD8 T, and NK cells [169]. In our study, human macrophages were infected 

with live promastigotes of YFP-transfected L. donovani parasites that were compared 

to dead parasites as a positive control for phagocytosis and digestion. The destruction 

of phagocytised parasites was monitored by the YFP fluorescence. We saw that the 

parasites proliferate inside hMDMs even when treated with GM-CSF. Live parasites 

are taken up at a slower rate than dead parasites, and our data showed no decrease 

of YFP fluorescence in live parasite-infected hMDMs. In contrast, in case of dead 

parasites, the YFP vanished over time. These findings confirm that the hMDMs cannot 

digest the L. donovani parasites, nor could GM-CSF activated hMDMs. Leishmania 

parasites may be destroyed in macrophages by a granulysin/granzyme B-dependent 

mechanism delivered by CD8 cytotoxic T cells. However, these effector cells have to 

be induced first, which requires prior processing and presentation of leishmanial 

antigens by antigen presenting cells, most importantly DCs [170]. Handling of the 

parasites was found to be different in dendritic cells. Considering the pivotal role of 

DCs in the induction of adaptive immune response and their capacity to take up and 

destroy Leishmania parasites [53], they must express special killing mechanisms. In 

concordance it has been demonstrated that granulysin/granzyme B-dependent 

processes are essential for clearance of the parasites in human leishmaniasis, for cure 

from the disease and for immunity against subsequent infections [170, 171]. This 

mechanism cannot play a role in mice as mice do not have granulysin [172], which 

makes it difficult to draw conclusions from murine models of leishmaniasis. 
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6.2. Both hMDDCs and hMDMs do not lose viability after Leishmania 

infection 
 

The proliferation of amastigotes inside their infected host cells, together with 

their evading immune cell-killing mechanisms, and their regular infection of other cells 

augments the infection and, thus, the severity of the disease [172, 173]. The 

mechanism that intercellular amastigotes use to leave macrophages to infect 

neighbouring cells is unknown. It has been postulated, usually based on static images 

only, that unrestricted proliferation of the amastigotes causes host cell rupture 

[174,175] or that amastigotes are released by exocytosis with membrane shrivelling 

but without cell rupture [176]. In addition, there is a major role of Leishmania-specific 

cytotoxic T lymphocytes in destroying the infected target cells. Cross-presentation of 

Leishmania antigens via MHC class I during in vivo infections may result from several 

internalisation pathways, such as direct infection, receptor-mediated uptake [177], or 

the internalisation of apoptotic vesicles of infected cells [178]. After activation, antigen- 

specific CD8 T cells differentiate into activated effector cells and acquire the capacity 

to kill target cells, and produce several cytokines and chemokines [179]. The precise 

mechanism underlying CTL killing of microbes is still under investigation. For viability 

assay in our work, we stained the infected and none-infected cells with non‐fluorescent 

calcein-AM dye, which passes easily through cell membranes into live cells and is 

hydrolysed by cellular esterases to give calcein, which is fluorescent and retained in 

the cytoplasm. The intensity of calcein dye measured with a fluorimeter is directly 

proportional to the activity of cellular esterases, which in turn is proportional to viable 

cells. Here, we found that both hMDDCs and hMDMs were not dead after in vitro 

infection with L. donvania parasites. We have checked the viability of infected and 

compared to none-infected cells. The time points of infection and MOI were the same 

used for uptake and processing experiment before. These factors could affect the 

viability of the infected cells. We found that the viability of L. donovani infected cells 

declined with higher number of infecting parasites. The data are not shown in this work. 
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6.3. The phagocytised parasites inside hMDDCs co-localise with 

components of antigen processing and presentation 

The plasticity in both type and magnitude of the immune responses is a basic 

feature of the immune reactions induced by various microbial infections [180]. The type 

and magnitude of this response is determined by the interaction between 

phenotypically and functionally heterogeneous antigen-presenting DCs and naïve or 

previously primed T cells in spleen and lymph nodes. In murine models of 

leishmaniasis, this interaction determines the disease manifestations depending on 

whether it leads to differentiation of a host-protective Th1 and CTL or a disease- 

exacerbating Th2 type of T lymphocyte cells. Some studies found that the parasites 

are localised in intracellular compartments containing MHC class II, Lamp1, and 

cystatin C, which supports the notion that the infected DCs should be able to present 

parasite antigens to T cells [181, 182]. In our present work, the cells were stained with 

anti-MHC-II, these glycoproteins are synthesised in the endoplasmic reticulum (ER) 

where they associate with MHC-II-associated invariant-chain (Ii or CD74), a chaperone 

that forms a nonameric complex. Our data showed that the phagocytised YFP- 

transfected L. donovani parasites co-localise with MHC class II and CD74. These 

stained compartments overlayed with the YFP fluorescence in dead Leishmania- 

infected hMDDCs at 24h of infection when the YFP fluorescence of dead parasites was 

disappearing as by flow cytometric results. While the co-localisation was clear in live 

parasite infected hMDDCs, the merge was weak generally at the time point of 2h, which 

suggests that at this time point of infection, the process of phagocytosis was still on 

going and the intercellular parasites were being transported within vacuoles. 

Interestingly these data suggest that the Leishmania infection generates signals 

leading to activation of CD4 T cell lymphocytes. 

Cross-presentation by MHC-I is a distinctive process in which antigens from 

phagocytosed particles or soluble proteins internalised by other routes are assembled 

with MHC-I. This process is largely restricted to specific DC subsets in vivo [105, 183]. 

In addition, transfer of the trimmed peptides from TAP onto folding MHC-I is promoted 

by a loading complex composed of dedicated chaperones, tapasin and a series of 

generic membrane-bound and soluble chaperones including calnexin, ERP57 and 

calreticulin [184]. We stained the Leishmania-infected cells for both MCH-I and 

calnexin. Interestingly, here we found at 24h of infection an overlay of life YFP- 



77  

transfected L. donovani inside hMDDCs with intercellular MHC-I and calnexin. This 

data suggests a role of DCs in priming CTL during leishmaniasis, which will contribute 

significantly to the development of vaccines against leishmaniasis. 

 

 
6.4. Leishmania-infected hMDDCs but not hMDMs express granzyme 

B, but both granulysin 

The basic components of the cytotoxic granules of NK cells and CTLs are 

granzymes, closely related serine proteases. In general, our understanding of the 

functions of granzymes is still limited, perhaps with the exception of granzyme B, which 

is the most extensively studied member of the family. Granzyme B is expressed not 

only by cytotoxic cells such as CTLs and NK cells but recently many studies have 

shown the expression of granzyme B by a variety of normally non-cytotoxic cell types 

including CD34+ hematopoietic stem cells [185], pDCs [70], B cells [186, 187], 

basophils [188], mast cells [189] and neutrophils [190]. 
 

Interestingly, EBV enhanced granzyme B production and secretion by pDCs 

[70]. Concordantly to our data that show that Leishmania infection boosts high 

expression of granzyme B in infected hMDDCs. The expression of granzyme B was 

already detected in ihMDDCs. 

The other important cytolytic protein, granulysin, is a saposin-like pore-forming 

protein. Granulysin preferentially disrupts cholesterol-poor bacterial, fungal and 

parasitic membranes [144]. The expression of granulysin was very low in the none- 

infected hMDDCs and slightly up-regulated after Leishmania infection. We confirmed 

our flow cytometry findings with the results of confocal microscopy and detection of the 

RNA coding for these products via PCR. Our study showed the expression of 

granzyme B and granulysin by ihMDDCs and mhMDDCs and the increase of the 

expression levels upon Leishmania infection. 

On the other hand, we found that the expression of granulysin in hMDM was at 

the same level as in hMDDCs, but no granzyme B expression was detected. These 

findings were confirmed by the PCR. Our findings showed for the first time the 

expression of granzyme B in human myeloid DCs inside intracellular vesicles, also in 

L. donovani infected hMDDCs. In addition, this for the first time visualised the 

expression of granzyme B inside hMDDCs. 
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These findings open new insights into a novel role of hMDDCs during Leishmania 

infection. 
 

Because of the low-level expression of granulysin in both hMDDCs and hMDMs, 

we could not see this expression by confocal microscopy. 

Translating these findings into our model for the differential handling of 

intracellular Leishmania parasites, we can hypothesize that granzyme B in hMDDCs 

might have a role in processing of phagocytised intercellular parasites. The role of 

granulysin in both hMDDCs and hMDMs was not clear and is the focus of our following 

work. 

 

 
6.5. Granzyme B is up-regulated in hMDDCs upon L. donovani 

infection 
 

It is commonly accepted that during cytolysis of target cells by CTL and NK cells, 

granzyme B, following entry into the cytosol of the target cell, induces apoptosis by 

activating caspases, prominently effector caspases like caspase 3 [191, 192]. In 

addition, granzyme B has been found to cleave key caspase substrates [193] such as 

the BH3-only protein Bid [194, 195] and ICAD (inhibitor of the caspase-activated 

DNAse) [196, 197]. Due to its cytotoxic nature, it is expressed as an inactive prepro- 

enzyme in the expressing effector cells. Granzyme B becomes functional by the 

removal of the pro-peptide dipeptide Gly-Glu from its N-terminus by lysosomal 

dipeptidyl peptidase I/cathepsin C [198]. It is not clear yet if granzyme B expressed by 

dendritic cells is active or not. After we demonstrated the expression of granzyme B in 

hMDDCs before and after infection with L. donovani we aimed to test whether it is 

proteolytically active. To this end, we incubated L. donovani-infected hMDDCs with a 

selective granzyme B inhibitor and a fluorogenic granzyme B substrate. Our respective 

data suggest that the granzyme B expressed by Leishmania-infected and non-infected 

hMDDCs is proteolytically active. During infection, the activity of granzyme B 

increased. The granzyme B inhibitor showed maximal effect on the activity of the 

enzyme on Leishmania parasites after around 24h of infection/incubation. At this time 

point, we had observed before the onset of the process of parasite digestion inside the 

infected hMDDCs. These data also showed for the first time enhanced activity of 

granzyme B with an extended time of infection; the granzyme B inhibitor we used lost 
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its activity when it was incubating for longer time than recommended by the 

manufactories. Confocal microscopy images showed for the first time active granzyme 

B co-localised with digested L. donovani parasites inside hMDDCs. Moreover, our 

confocal microscopy analyses showed for the first time the co-localisation of YFP 

fluorescence from digested L. donovani parasites with fluorescent granzyme B enzyme 

product. These findings suggest that granzyme B contributes to apoptosis of 

intercellular Leishmania parasite. 

 

 
6.6. The inhibition of granzyme B suppresses digestion of 

intracellular L. donovani parasite by hMDDCs 

Generally, granzymes act on different primary substrates and are able to cleave 

various cellular protein substrates to induce apoptosis [199]. In vitro studies have 

suggested that granzyme B induces target cell death through two essential pathways, 

one triggering outer mitochondrial membrane permeabilisation via cleavage of the 

proapoptotic protein BH3-interaction domain death agonist (Bid), and the other 

involving direct proteolytic activation of caspases ultimately leading to DNA damage 

[200]. The absence of granzyme B during apoptosis of most, but not all, cell types 

delayed target cell DNA fragmentation [201, 202]. However, gene deletion mice 

deficient in granzyme B show diminish levels of CD8 T cell-mediated cytotoxicity and 

have increased susceptibility to some viral infections. Despite the residual ability of 

CD8 T cells from granzyme B−/− mice to kill target cells, they were unable to induce 

DNA fragmentation [203]. There are several ways to delete the GrB gene in mice cells, 

which is impractical in primary human cells. For this reason, the cells in our work were 

incubated with granzyme B inhibitor. In accordance with the results from other works 

in animal model, we found that the inhibition of granzyme B delayed destruction of 

intracellular phagosytised L. donovani by hMDDCs, the YFP fluorescence signal in 

infected hMDDCs increased compared with non-treated infected MDDCs. Depending 

on the suggested killing time point after 24h of infection, we detected the effect of 

granzyme B inhibitor between 24h to 48h. A greater effect occurred at 48h; the killing 

process was reduced by around 60%, up from 30% at 24h. The finding that in the 

presence of granzyme B inhibitor still some degree of destruction was observed 

suggests that other intercellular elements could contribute to the process of 
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Leishmania parasite digestion by hMDDCs. Besides cathepsins, endosomal 

proteases, granulysin, which we detected in DCs, could contribute to the processing. 

 

 
6.7. Effect of L. donovani infection on hMDDCs activation 

 
Since the destruction by DCs follows an initial intracellular proliferation of the 

parasites, it appears that the parasitocidal capacity is induced by live Leishmania 

parasites; not so by dead parasites, which may be processed like other particulate 

antigens. While this implies some degree of activation of the DCs, this activation does 

not extend to the well-established indicators of DC activation, CD83, the co-stimulatory 

molecules CD40, CD80 and CD86, and the cytokine IL-12. This, again, is surprising as 

components of Leishmania parasites have been reported to address innate pathogen-

associated molecular pattern (PAMP) recognition receptors (PRRs), such as Toll-like 

receptors (TLRs), which does result in the induction or up-regulation of said activation 

markers [204]. It may be conjectured that immunostimulatory leishmanial factors do 

not get access to the respective PRRs or that these receptors are not expressed by 

iDCs. However, in the presence of proinflammatory cytokines, activation of Leishmania-

bearing DCs is strongly enhanced beyond what can be observed with the cytokines 

alone, which is reminiscent of recently published observations with TLR agonists [205]. 

Some reports indicated that Leishmania alter DC maturation but the data are 

controversial as some studies show the induction of maturation by some species of 

Leishmania while others show impairment of DC maturation [206, 207]. However, in 

the experiments that showed impairment of DC function, far higher MOI than in our 

experiments were used. Obviously, when comparing different studies on the 

immunology of leishmaniasis, careful attention needs to be paid to the detailed design 

of the different studies. In particular, it needs to be acknowledged that there are 

significant differences between different Leishmania species and the immune 

constitution of different host species. 

Antigen presentation by DCs is critical for the generation of memory and effector 

T cells from primary naïve T cells in vivo. Activated DCs express costimulatory 

receptors and the cytokines necessary for the initiation of functional and memory T cell 

responses. The responses of T cells induce and regulate T cell expansion, the 

generation of effector functions and T cell survival. The exact contribution of each 

component alone and in combination in mediating these processes is still not fully 
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clear. Some studies on MDDCs in murine models of leishmaniasis have been 

published. It has been concluded that Leishmania-infected DCs upregulate the levels 

of costimulatory molecules such as CD40, CD80, and CD86 as well as of MHC II, and 

of the adhesion molecule CD54. Such activated and matured DC are able to trigger 

the activation of T lymphocytes [208]. Other authors have reported that during the 

course of chronic infection of C57BL/6 mice with L. major the inflammatory DC are the 

main producers of iNOS and are recruited in a CCR2-dependent manner. The 

induction of iNOS depends on the development of a local Th1-dominated 

microenvironment and could contribute to the clearance of the parasites [209]. 

According to another work, infection of hDCs with L. major promastigote does not 

inhibit the process of maturation. Production of high amounts of IL-12 is reported to 

require CD40-CD40L interaction, although infected DC are able to produce some low 

level IL-12 without that. [210]. However, other authors found that L. major parasites in 

a mouse model produce and secrete a soluble factor that binds to the macrophage 

inducible Ca2+-dependent lectin receptor (Mincle), a C-type lectin, of DCs, which 

inhibits their maturation. They report that Mincle deficiency leads to stronger DC 

activation represented by a higher expression of costimulatory molecules, migration to 

draining lymph nodes (dLNs) and priming of Th1 responses. Mice deficient in Mincle 

are capable of controlling parasite replication and have smaller lesions [211]. To 

translate these conclusions to human leishmaniasis, the different human dendritic cell 

(hDC) types and their differentiation, functional and activation states need to be 

characterised in leishmaniasis patients. Such information will help understand how the 

whole macrophage/DC system works in the disease situation and may open new 

opportunities for therapeutic immune interventions [212]. 

From this PhD work we can conclude that the hDCs should address when 

developing anti-Leishmania vaccines or immunotherapies in order to induce efficient 

CD4+ helper and CD8+ effector T cell responses. They may explain why 

leishmanization is efficient whereas subunit vaccines are not. However, 

leishmanization induces immunity through deliberate infection with subsequent 

disease, which may come with severe adverse effects. Alternative strategies may 

consider TLR agonists or inflammatory cytokines for in situ vaccination and 

immunotherapy to activate parasite-bearing DCs and thereby induce parasitocidal 

CD8+ effectorT cell and innate immune reaction. 
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Figure 20: Parasite transformation occurs more efficiently in hMDDCs compared 
to hMDMs. 

During in vitro infection with L. donovani, the human myeloid cells, hMDDCs and hMDMs 
differently treated their intracellular phagocytised parasites. The hMDMs couldn’t digest these parasites, 
while the hMDDCs can process them. The role of granzyme B expressed in hDCs was completely 
figured out in the hMDDCs, although the role of granulysin still not clear in both myeloid cells. 
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7. Appendix 

7.1. Supplementary figure: 

hMDMs activation during Leishmania infection, hMDM infected with wild-type L. 

donovani for 48h and as a positive control of maturation and activation, the cells were 

incubated with LPS for 48h. After incubation time the cells were washed and incubated 

for 25min with fluorescent antibodies against CD11b, CD40, CD58, CD83, CD86, 

CD80, HLA-DR and HLA-ABC. During flow cytometry is measured, we gated on 

population of CD11b+ cells and determine the expression of mentioned markers. 
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7.2 Supplementary figure: T Lymphocytes depletion from PBMCS, hMDDCs 

contaminated T lymphocyte were incubated with OKT3 Anti-DC3 and Rabbit 

Complement, the cells were washed and stained for the viability. They incubated for 

25min with Calcein AM and fluorescent antibodies against CD8, CD11b and CD11c 

compared with none-treated cells. The cells stained with specific anti-CD11c and 

Calcein AM for viability. A) Show the effects of T cell depletion assay on hMDDCs 

viability. B) Show the of depletion percentage T lymphocytes before and after 

treatment. C) Show the impact of treatment with the OKT3 and the rabbit complement 

on the hMDMs viability. 
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