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Abstract

The diagnosis of infective endocarditis (IE) remains a challenge. One of the rare bacterial

species recently associated with biofilms and negative cultures in infective endocarditis is

Aerococcus urinae. Whether the low number of reported cases might be due to lack of

awareness and misidentification, mainly as streptococci, is currently being discussed. To

verify the relevance and biofilm potential of Aerococcus in endocarditis, we used fluores-

cence in situ hybridization to visualize the microorganisms within the heart valve tissue. We

designed and optimized a specific FISH probe (AURI) for in situ visualization and identifica-

tion of A. urinae in sections of heart valves from two IE patients whose 16S rRNA gene

sequencing had deteced A. urinae. Both patients had a history of urinary tract infections.

FISH visualized impressive in vivo grown biofilms in IE, thus confirming the potential of A.

urinae as a biofilm pathogen. In both cases, FISH/PCR was the only method to unequivo-

cally identify A. urinae as the only causative pathogen for IE. The specific FISH assay for A.

urinae is now available for further application in research and diagnostics. A. urinae should

be considered in endocarditis patients with a history of urinary tract infections. These find-

ings support the biofilm potential of A. urinae as a virulence factor and are meant to raise the

awareness of this pathogen.

Introduction

Infective endocarditis (IE) is a life-threatening infection of the endocardium and is associated

with high morbidity and mortality [1]. Culture-negative endocarditis, where the causative

pathogens remain elusive in the routine microbiological diagnostic work-up, represents a seri-

ous risk for the patient. Any antibiotic therapy must remain empirical and unadjusted to the

microbial species or resistance patterns, which is associated with increased mortality [2].
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Culture-negative results in routine microbiology diagnostics may be caused by biofilm growth

of bacteria, prior antibiotic treatment of the patient, or by fastidious or slow-growing bacteria

[3]. In recent years molecular biological methods such as nucleic acid amplification techniques

(NAT) and fluorescence in situ hybridization (FISH) have helped detect microorganisms that

might otherwise be missed by routine culture methods [4]. The direct detection of microor-

ganisms in valve specimens by FISH enables the simultaneous visualization and identification

of the causative agent in situ, also in culture-negative cases [5]. FISH provides information not

only about the identity of the pathogen(s) present but also about their state of activity and spa-

tial organization as planktonic or biofilm microorganisms. One of the rare bacterial species

recently associated with culture-negative IE is Aerococcus urinae (A urinae) [6–10].

The genus Aerococcus was initially described in 1953 [11] and was first associated with IE in

1976 [12]. Subsequently, an Aerococcus-like organism emerged as a new urinary tract pathogen

that caused local or systemic urinary tract infections (UTI) [13] and was involved in fatal endo-

carditis [14]. In 1992, this species was described as A. urinae [15]. Furthermore, there have

been at least four additional Aerococcus species described in human infections, with A. urinae
remaining the most relevant pathogen: A. christensii [16], A. sanguicola [17], A. viridans [18],

and A. urinaehominis [19], which are involved in UTI, chorioamnionitis, endocarditis, and

pneumonia [20, 21].

A. urinae is a Gram-positive coccus that produces alpha-hemolytic colonies on blood agar

and is catalase-negative, and positive for leucine aminopeptidase. A. urinae may be misre-

ported as alpha-hemolytic streptococci because of their similar growth characteristics, bio-

chemical characteristics, and hemolysis pattern [8, 9]. Gram staining may further raise this

suspicion, since streptococci appear as chains or pairs, whereas A. urinae typically appears in

clusters or tetrads. Differentiation between these two genera is possible by hippurate hydrolysis

testing or sequencing of the 16S rRNA gene [5, 21, 22]. Since 2013, MALDI-TOF (matrix-

assisted laser desorption ionization time-of-flight mass spectrometry) has also played a major

role in the identification from clinical samples of A. urinae [23, 24].

Concerning the treatment of A. urinae endocarditis, a combination of penicillin plus an

aminoglycoside is recommended due to a described synergistic effect of the two drugs [21, 25,

26].

IE may be associated with microbial biofilms on the heart valves–microorganisms in sessile

communities, which are more tolerant towards antibiotic treatment than their free-living,

planktonic counterparts [27]. A. urinae isolated from human blood was shown in vitro to form

biofilms and to trigger human platelet activation and aggregation. This may explain the poten-

tial virulence mechanisms of this pathogen, which may contribute to the ability of A. urinae to

cause IE [6].

There are no direct data thus far on whether biofilm formation of A. urinae is relevant in
vivo.

To further elucidate the biofilm formation of A. urinae in vivo we designed and optimized a

species-specific FISH probe (AURI) to visualize and identify the pathogen in heart valves sec-

tions from two IE patients.

Methods

Specimen processing and fluorescence in situ hybridization (FISH)

Heart valve specimens from two patients were obtained during surgery at Charité–Universi-

tätsmedizin and sent for FISH/PCR according to our standard routine diagnostics.

The tissue specimens were fixed intraoperatively with 3.7% formaldehyde in phosphate-

buffered saline (pH 7.4) containing 50% ethanol at 4˚C for 24 h, subsequently embedded in
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cold polymerizing resin and sectioned as previously described [28]. For hybridization, a pre-

heated hybridization solution (20 μL) was mixed with 5 pmol of the respective oligonucleotide

probe and the nucleic-acid-specific stain 4’,6-diamidino-2-phenylindole (DAPI) and carefully

applied to the tissue sections. Probes were 5´-end-labeled with either fluorescein 5-isothiocya-

nate (FITC) (EUB338) or indocarbocyanine Cy3 (AURI) and Cy5 (NONEUB338) (Biomers,

Ulm, Germany).

After incubation for 2 h in a dark humid chamber at 50˚C, the slides were rinsed with

water, air-dried, and mounted with a mounting medium to prevent fading of the fluorescence

signal (Vectashield, Vector Laboratories, California, USA).

For microscopy, an epifluorescence microscope (Axioplan2; Carl Zeiss, Jena, Germany)

equipped with narrow-band filter sets (AHF-Analysentechnik, Tübingen, Germany) was used.

The analysis was performed in accordance with the ethical guidelines of the 1964 Declara-

tion of Helsinki and approved by the Ethics committee of the Charité–Universitätsmedizin

Berlin (E82/018/18). Since the study was performed as part of the routine diagnostic work-up,

the need for informed consent was waived as per the ethics committee approval.

Oligonucleotide probes

The probe EUB338 (5´-GCTGCCTCCCGTAGGAGT-3´) [29], which is complementary to a

section of the 16S rRNA gene conserved in most microorganisms of the domain bacteria, was

used to screen for bacterial colonization.

The probe NONEUB338, which is the antisense probe of EUB338, was used to exclude

unspecific probe binding. In addition, a panel of FISH-probes for the detection of the species

most prevalent in IE was applied as described [5]. To specifically detect A. urinae, we designed

and optimized a 16S rRNA-directed FISH probe (AURI) (5´-AAGGCCATCGATAAGTGA-
CAGCAA-3´). We compared the sequence of AURI with those of all 16S rRNA entries in the

EMBL and GenBank databases to assess its specificity, and found 100% similarity only with

the A. urinae 16S rRNA gene (November 2019).

Bacterial strains

An A. urinae blood culture isolate from a patient not related to the cases presented here served

as a positive control. A. sanguinicola (DSM 15633), the nearest phylogenetic neighbor with

three mismatches in the probe binding site, was used as a negative control to optimize specific

FISH conditions for AURI. Bacterial strains for the positive and negative controls were fixed

as described elsewhere [30] and were included in each FISH experiment to control the probe

specificity and sensitivity. In addition, we screened different Gram-positive cocci frequently

associated with IE, all of which contained more than four mismatches at the probe-binding

site of AURI (Staphylococcus aureus ATCC 25923, S. epidermidis PIA 8400 clinical isolate,

Streptococcus pyogenes ATCC 19615, Streptococcus pneumoniae ATCC 6303; Enterococcus fae-
calis ATCC 29212, E. faecium ATCC 19434). The identity of all strains was confirmed by 16S

rRNA gene sequencing.

DNA processing and sequencing

DNA was extracted from sections of the embedded heart valve tissues and was then submitted

to pan-bacterial amplification of part of the 16S rRNA gene using the primers TPU1 and

RTU3, as previously described [28]. Amplicons were sequenced using a commercial sequenc-

ing facility (LGC Genomics, Berlin, Germany) and compared with all currently available

sequences from the public databases (EMBL and GenBank) using BLAST and FastA of the
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sequence analysis program Husar 4.1 (Deutsches Krebsforschungszentrum, Heidelberg, Ger-

many) and the commercial SmartGene program (SmartGene, Lausanne, Switzerland).

Patient description

We analyzed heart valve samples from two IE patients. The first patient, a 67-year-old man,

was admitted to the Charité–Universitätsmedizin Berlin with the diagnosis of acute dyspnea

and suspected urosepsis. The anamnesis revealed that the patient had undergone empiric cip-

rofloxacin antibiotic treatment in his nursing home two months before due to acute cystitis.

During this treatment, a urinary catheter was placed.

On admission, a systolic murmur compatible with mitral insufficiency was noted. Because

of purulence in the urinary catheter and suspected urosepsis, empiric meropenem and cipro-

floxacin antibiotic therapy was initiated immediately. A urine culture revealed growth of

Escherichia coli.
The day after admission, a multiplane transesophageal echocardiogram (TEE) showed

severe mitral insufficiency and a vegetation measuring 26 mm x 10 mm on the posterior leaflet,

and the antibiotic therapy was escalated to vancomycin and gentamicin in addition to merope-

nem and ciprofloxacin. Because of his clinical deterioration, the patient underwent immediate

mitral valve replacement surgery.

Two sets of blood cultures taken on the day before the surgery showed Staphylococcus epi-
dermidis after one day of incubation. A third set of blood cultures taken on the day of the sur-

gery revealed growth of A. urinae after two days of incubation. On the day of the actual

surgery, three additional blood culture sets were taken, all of which again exhibited growth of

A. urinae. The antibiogram of A. urinae from the blood cultures showed susceptibility to peni-

cillin with an MIC of 0.004 mg/L. Antibiotic therapy was tailored to ampicillin and

gentamicin.

A conventional routine diagnostic microbiology of the heart valve performed one week

post-operatively confirmed A. urinae with susceptibility to ampicillin and penicillin (MIC val-

ues of 0.032 mg/L and 0.004 mg/L, respectively). After two weeks, treatment was switched to

monotherapy with ampicillin. The postoperative course was uneventful.

The second patient, an 86-year-old woman, was transferred to Charité–Universitätsmedizin

Berlin for aortic valve replacement after TEE in a geriatric hospital had revealed left ventricular

enlargement and severe aortic insufficiency with a vegetation measuring 20 mm x 10 mm on

the non-coronary cusp. In addition, she had been diagnosed with a UTI due to Enterobacter
cloacae. Calculated antibiotic therapy with ampicillin, gentamicin and ceftriaxone was initiated

four days before the surgery and tailored to ampicillin and gentamicin one day before the sur-

gery after four sets of blood cultures indicated alpha-hemolytic streptococci. Aortic valve spec-

imens were sent for conventional routine diagnostic microbiology, which showed Gram-

positive cocci in the microscopic analysis but no growth in the culture.

Four days after the surgery, the bacteria from the preoperative blood cultures were identi-

fied as A. urinae and therapy was switched to penicillin and gentamicin for two days and was

then further tailored to monotherapy with penicillin. The strain was susceptible to penicillin

and cefotaxime (MIC values of 0.004 mg/L for both antibiotics) and resistant to gentamicin

(MIC of 12 mg/L). The patient had an uneventful postoperative course.

Results

Both heart valves were embedded and analyzed by FISH using the pan-bacterial probe

EUB338 in order to screen for bacterial colonization including yet uncultivated or fastidious

bacterial species. We found extensive areas with bacterial colonization and formation of
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microorganisms resembling structured biofilms, which were in part FISH-positive. None of

the specific FISH probes for the species most commonly associated with IE identified the

EUB338-positive bacteria. Therefore, Staphylococcus spp., Streptococcus spp., Enterococcus
spp., as well as Granulicatella, Tropheryma whipplei, and Bartonella were excluded as infec-

tious agents.

DNA was isolated from consecutive sections of embedded tissue and submitted to pan-bac-

terial PCR amplification. Sequencing of the PCR products resulted for the first patient in an

847-base pair fragment with the highest homology (99.6% identity) to the A. urinae 16S rRNA

gene (accession number U64458). Similarly, for the second patient a 465-base pair fragment

was obtained with the highest homology (100%) to the A urinae 16S rRNA gene (accession

number CP002512).

For direct in situ identification of the microorganisms, an AURI FISH probe specific for A.

urinae was designed. The specificity and sensitivity of the probe were evaluated in silico against

all sequences available in the databases. The in vitro specificity and sensitivity were evaluated

using a clinical isolate strain of A. urinae (positive control) and the nearest phylogenetic neigh-

bor A. sanguinicola (three mismatches at the probe binding site, negative control). In addition,

no false positive signal with AURI was obtained from a panel of Gram-positive cocci fre-

quently associated with IE. The stringency of probe binding was adjusted by raising the form-

amide concentration in the hybridization buffer. AURI showed specific and strong

hybridization signals at a formamide concentration in the range of 10-40% (v/v), clearly dis-

criminating A. urinae from all other species tested (Fig 1).

Discussion

The chances of survival of a patient in the ICU setting are 2.5 times higher when the correct

antibiotic therapy is initiated as compared to empiric, broad-spectrum antibiotic therapy [2].

This makes species identification of the infectious agent highly desirable; however, this is not

always successful. Reasons for culture-negative results may include biofilm growth, previous

antibiotic treatment and/or rare or slow-growing bacterial species that are missed by routine

culture methods.

We analyzed heart valve samples from two IE patients in whom routine culture methods

did not immediately correctly identify the key causative pathogen.

In the first patient, culture revealed the presence of other bacteria such as S. epidermidis in

the blood culture and E. coli in a urine sample. In addition, later on, a blood culture yielded A.

urinae. In this case, PCR immediately identified A. urinae from the valve tissue and FISH con-

firmed A. urinae as the only causative agent (monospecies infection), revealing extensive struc-

tures consistent with microbial biofilms.

In the second case, E. cloacae was detected in the urine and the presence of alpha-hemolytic

streptococci were suspected in blood culture. A blood culture later confirmed A. urinae.
Again, FISH and PCR of the heart valve tissue immediately correctly identified the causative

agent of the IE as A. urinae. Culture of the heart valve remained negative.

In both cases, FISH/PCR was the only method to unequivocally identify A. urinae as the

only causative pathogen of IE, since all bacteria detected by the pan-bacterial probe were also

positive with the specific AURI probe.

With the newly developed fluorescently labeled probe AURI specific for A. urinae described

in this paper, we now have at our disposal a test system for further research and diagnostics for

culture-negative heart valves that enables rapid and specific species identification and targeted

antibiotic therapy.
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Shannon et al. showed in vitro that blood culture isolates of A. urinae from IE patients form

biofilms [6].

Here we show, to our knowledge for the first time, that impressive communities of A. uri-
nae also exist in ex vivo material. A biofilm is determined by the arrangement of bacterial com-

munities and the matrix in which they are embedded. While this matrix is composed of only

bacterial products in vitro, in biofilm-associated infections it is also formed by the host’s own

substances such as fibrin, blood components, and tissue components [27]. Although FISH is

unable to analyze the matrix in which the bacteria are located, it is still able to visualize the typ-

ical biofilm property of structural organization of the bacteria: the fluorescence signal intensity

of FISH correlates with the bacterial ribosome content and therefore demonstrates activity of

the bacteria [31, 32]. The cases presented here display areas with a higher ribosome content

Fig 1. Specific identification of Aerococcus urinae by FISH. Fixed cultures of Aerococcus sanguinicola and A. urinae, as well as heart valve

tissue were simultaneously hybridized with the probes EUB338 (FITC), AURI (Cy3) and NONEUB (Cy5). DAPI was used to stain nucleic

acids. Each row shows an identical microscopic field with filter sets for FITC, Cy3, Cy5 and DAPI, respectively. AURI only detected A. urinae
in the culture and the heart valve section, thus demonstrating specific hybridization. Scale bar 10 μm. Subsequently, the novel FISH probe

AURI (Cy3-labeled) was applied to new sections of the heart valve samples simultaneously with the EUB338 (FITC-labeled); thus confirming

A. urinae as the infectious agent of the IE in situ and demonstrating the biofilm potential of these bacteria (Figs 2 and 3).

https://doi.org/10.1371/journal.pone.0231827.g001
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correlated to more active areas, which indicates a spatial organization of the bacteria in the so-

called mushroom formations (Fig 2 and to a lesser extent Fig 3).

Therefore, these images show in vivo grown A. urinae biofilms in situ in IE and confirm A.

urinae as the biofilm pathogen. This is a relevant finding, as bacteria grown as a biofilm exhibit

a greater recalcitrance to antibiotic treatment than free-living, planktonic microorganisms

Fig 2. FISH reveals impressive biofilms on the mitral heart valve from the first patient, identifying the infectious

agent as Aerococcus urinae. FISH on sections of the mitral valve tissue simultaneously using the probes AURI

(Cy3-labeled), EUB338 (FITC-labeled), NONEUB (Cy5), and the nucleic acid stain DAPI (blue) identified the

infectious agent in situ as A. urinae. We found impressive monospecies bacterial biofilms that were partly FISH-

positive (yellow) and partly visible only with the nucleic acid stain DAPI (blue). The FISH signal corresponds to a high

ribosome content and indicates bacterial activity at the time of surgery. A. Overview of the mitral valve tissue specimen

showing impressive structures consistent with bacterial biofilms on the surface of the heart valve. B. Magnification of

the inset marked in A shows distinct cells positive for the probes EUB338 and AURI, thus identifying the infectious

agent in situ as A. urinae.

https://doi.org/10.1371/journal.pone.0231827.g002
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[27]. This might be particularly important for beta-lactam antibiotics, which act on cell wall

synthesis and therefore are not as active on dormant cells which might rest in the less active

parts of the biofilms. This hypothesis supports the data of Skov et al. (2001) who recommend

the addition of gentamicin in IE based on time-kill curves in vitro [25]. Therefore, we think

that diagnostic biofilm staging (Specific clinical guidelines for the antibiotic treatment of bio-

film-associated infections, however, still need to be further developed [27]. planktonic cells,

microcolonies, nascent or mature biofilms) is necessary to correlate therapeutic efficacy to the

biofilm state and consequently to improve antibiotic algorithms.

Fig 3. FISH reveals Aerococcus urinae infiltrating the aortic heart valve from the second patient. FISH of the aortic

valve using the universal probe EUB338 (FITC), AURI (Cy3), NONEUB (Cy5), and the nucleic acid stain DAPI

identifies A. urinae in situ. A. Overview of the aortic valve tissue specimen displaying large areas consistent with

bacterial biofilms. (B) Magnification of the inset marked in A shows FISH-positive cells for the probes EUB338 and

AURI (yellow) as well as DAPI-only positive cells (blue) within the heart valve tissue. Note the destructive growth of A.

urinae in the heart valve tissue.

https://doi.org/10.1371/journal.pone.0231827.g003
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Limitations

Unfortunately, this study is limited to a mere two cases; however, we hope to analyze more

cases now that the FISH-probe is ready available. One limitation of FISH as a diagnostic tool is

its application in the post-surgical setting only. Awareness of thorough documentation of the

patient history including UTI must be raised, and respective sampling must be initiated in

order to diagnose a possible Aerococcus involvement more timely.

Conclusions

In conclusion, A. urinae should be considered in IE patients with a history of UTI. Clearly, the

biofilm potency of A. urinae as a virulence factor must be taken into account and awareness of

A. urinae as a relevant pathogen in UTI and its association with IE must be raised.
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