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Abstract

Moduli spaces arise in classification problem in algebraic geometry; typically when we try to

classify geometric objects we find that they have discrete invariants but these are not sufficient to

classify them. Thus we would like to be able to construct moduli spaces whose points correspond

to equivalence classes of the objects to be classified (with fixed discrete invariants) and whose

geometry reflects the way they can vary in families.

This thesis studies moduli problems for homomorphisms of sheaves over a fixed projective

variety X indexed by a quiver; that is, we are looking at representations of a quiver in the category

of coherent sheaves over X where the sheaves indexed by the vertices of the quiver are fixed

and it is only the homomorphisms between them indexed by the arrows of the quiver which

vary. More precisely, we define a the moduli functor for homomorphisms of sheaves over a fixed

projective variety X and show that the construction of a moduli space for homomorphisms of

sheaves over X indexed by a quiver Q can be reduced to the construction of quotients for actions

of the product of the automorphism groups of the sheaves over X labelled by the vertices of Q

on affine varieties. Additionally we show that the automorphism groups of the sheaves over X

are linear algebraic groups. In the case that these are reductive groups, such quotients can be

constructed and studied using Mumford’s classical geometric invariant theory (GIT). However in

general these automorphism groups are not reductive, so a significant part of this thesis studies

ways in which Mumford’s GIT can be extended to actions of non-reductive linear algebraic groups

on an affine variety, before applying them to representations of quivers in homomorphisms of

semisimple sheaves over X.





Abstract

Modulräume entstehen bei der Betrachtung von Klassifikationsproblemen in der algebraischen

Geometrie. Bei der Klassifizierung von geometrische Objekten ergibt sich gewöhnlich, dass die

diskreten Invarianten nicht ausreichen, um diese geometrischen Objekte zu klassifizieren. Das Ziel

ist Modulräume zu konstruieren, dessen Punkte mit den Äquivalenzklassen der zu klassifizierenden

Objekte korrespondieren, wobei die diskreten Invarianten fixiert werden, und deren Geometrie das

Verhalten von Familien der zu klassifizierenden Objekte reflektiert.

Diese Arbeit betrachtet Modulprobleme für Homomorphismen von Garben über einer pro-

jektiven Varietät X indiziert von einem Köcher; dass heißt, wir betrachten Darstellungen eines

Köchers in der Kategorie der kohärenten Garben über X wobei wir die Garben fixieren, die von

dem Punkten des Köchers indiziert werden, und nur die Homomorphismen, indiziert durch die

Pfeile, variieren. Wir definieren Modulfunktoren für Homomorphismen von Garben über einer

projektiven Varietät X indiziert von einem Köcher Q. Für diese Modulfunktoren zeigen wir, dass

die Konstruktion von Modulräumen durch Quotienten für die Gruppenwirkung von Produkten der

Automorphismengruppen der Garben über X auf affinen Varietäten, die die Homomorphismen

parametrisieren realisiert werden kann.

Darüber hinaus wird gezeigt, dass die Automorphismengruppen von Garben über X lineare al-

gebraische Gruppen sind. Im Falle, dass diese Gruppen reduktiv sind, können diese Quotienten mit

Hilfe von Mumfords klassischer geometrischer Invariantentheorie (GIT) studiert und konstruiert

werden. Im allgemeinen Fall sind diese Automorphismengruppen nicht reduktiv, so dass ein signifik-

anter Teil dieser Arbeit Wege studiert, um Mumfords GIT auf Gruppenwirkungen nicht-reduktiver

linear algebraischer Gruppen auf affinen Varietäten anzuwenden. Im letzten Teil der Arbeit neh-

men wir an das alle Garben halbeinfach sind. Unter dieser Annahme werden die Ergebnisse zur



nicht-reduktiven GIT auf Modulprobleme für Homomorphismen indiziert von einem Köcher Q

über einer projektiven Varietät X angewandt.
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Introduction

The aim of this thesis is to study the moduli problem for homomorphisms of sheaves over a project-

ive variety indexed by a quiver. This problem has been studied previously in two special cases. If

we fix the projective variety Spec k then we are considering quiver representations in the category

of finite dimensional vector spaces; this moduli problem has been studied by King (see [44]). Spe-

cialising in the other direction by fixing the quiver consisting of an arrow connecting two distinct

vertices we obtain the moduli problem of sheaf homomorphisms studied by Drézet and Trautmann

(see [25]). In both cases the problem is approached from the perspective of geometric invariant

theory. The purpose of Mumford’s reductive geometric invariant theory (see [30]) is to construct

quotients for actions of reductive groups on varieties. For moduli of quiver representations the

groups are all reductive and reductive geometric invariant theory can be directly applied. The

moduli problem of sheaf homomorphisms involves non-reductive groups. The approach of Drézet

and Trautmann is to translate this problem of non-reductive geometric invariant theory into a

problem of reductive geometric invariant theory. More recently Bérczi, Doran, Hawes and Kirwan

(see [9]) developed non-reductive geometric invariant theory for algebraic actions of linear algeb-

raic groups on projective varieties under certain additional constraints. Our aim is to construct

moduli spaces for homomorphisms of sheaves indexed by a quiver via non-reductive geometric

invariant theory. The translation of the moduli problem into a geometric invariant theory problem

results in algebraic actions of linear algebraic groups on affine varieties which leads us to study

non-reductive geometric invariant theory for affine varieties.

The thesis is structured in the following way.
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Chapter 1 We define quivers and quiver representations in an abelian category. Afterwards we

define several moduli functors for homomorphisms of sheaves and show for these moduli

functors that the construction of moduli spaces can be reduced to the construction of an orbit

space for

H :=×
v∈V

Aut(Ev)

acting on

W :=
⊕
a∈A

Hom(Es(a), Et(a)).

Chapter 2 We recall the classical results on reductive geometric invariant theory. Additionally

we recall the recent result by Bérczi, Doran, Hawes and Kirwan ([9, Theorem 0.1] in non-

reductive geometric invariant theory. Roughly speaking they consider linearised actions of

a non-reductive group H with unipotent radical U on a projective variety X under the

assumption that the group H admits a so-called graded unipotent subgroup Û = U o Gm

where the multiplicative subgroup Gm behaves as outlined in Definition 2.5.3. Using the

grading subgroup Gm they define a locus X+
min ⊂ X which admits a principal U -bundle

quotient if every U -stabiliser in X+
min is trivial. Using a suitable linearisation L → X of the

H-action they obtain a rational map X P := P(H0(X,L)U ) which is compatible with the

graded unipotent subgroup Û in the sense that the locus X+
min is contained in the domain

of definition of X P in such a way that the morphism X+
min → P+

min factorises via the

principal U -bundle quotient X+
min → X+

min/U with X+
min/U → P+

min a closed immersion. In

the final step reductive geometric invariant theory is applied for the reductive group H/U to

obtain the H-quotient for details see Theorem 2.5.8.

Chapter 3 This chapter concerns technical results which we will use later to construct quotients

for action of non-reductive groups on affine varieties. Since our approach later on is based on

quotienting in stages, we focus on actions of unipotent groups on affine varieties; in particular

we focus on principal U -bundle quotients. In the first section we recall some results on actions

of unipotent groups on affine varieties such as the Kostant-Rosenlicht Theorem which states

that for a given action of a unipotent group U on an affine variety V each U -orbit is closed.
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Based on the notion of a graded unipotent group by Bérczi, Doran, Hawes and Kirwan, we

consider an action of a unipotent group U on an affine variety V which can be extended by

a torus T to a so-called graded U -action (see Definition 3.0.5).

The following two sections are more technical and are used two prove the following two

results:

1. If the unipotent group acts set-theoretically freely and the action can be extended to

a graded unipotent action, then we obtain that V → SpecO(V )U is a trivial principal

U -bundle.

2. Conversely given an action of a semi-direct product U o T with U unipotent and T

a torus on V with V → SpecO(V )U a trivial principal U -bundle then we show that

V → SpecO(V )U admits a T -invariant section.

Chapter 4 In this chapter we obtain our main results on non-reductive geometric invariant theory

for affine varieties. We consider an action of a non-reductive linear algebraic group H on an

affine variety X. Our goal is to construct good or, even better, geometric quotients for open

subsets of X. We distinguish between two approaches to construct these quotients:

1. The first notion is a classical approach to construct a quotient for a graded H-action on

X with respect to a linearisation L of the trivial line bundle X×A1. To obtain a quotient

we use certain H-invariant sections belonging to O(X)H .

2. The other notion is an approach of using quotienting in stages and a certain embedding

inspired by [9].

In both cases we will assume that the action of the unipotent radical U ⊂ H extends to

a graded action U o T on X for a suitable subgroup of T ⊂ H. For the first approach we

use a family of H-invariant sections (σi)i∈I belonging to O(X)H which each admit a trivial

principal U -bundle quotient Xσi → SpecO(X)Uσi (see Definition 4.1.8). We obtain Theorem

4.1.9: Let H be a linear algebraic group with a Levi decomposition H ∼= U o R and X be a

graded H-variety. We lift the H-action on X to the trivial line bundle X × A1 via a character

χ : H → Gm and denote the associated linearisation by L. Then
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1. The open subset X lss(H,χ) := Xss(R,L) ∩
⋃
i∈I

Xσi admits a good quotient via restricting

qL : Xnss(H,L) → X//L H = Proj R(X,L)H

to X lss(H,χ), where Xnss(H,L) is the domain of definition of the rational map qL :

Xnss(H,L) X//LH. The image ofX lss(H,χ) under qL is open inX//LH and qL(X lss(H,χ))

is a variety.

2. The restriction X ls(H,χ) := Xs(R,L) ∩
⋃
i∈I

Xσi → X ls(H,χ)/H is a geometric H-quotient

that is open in X lss(H,χ)//H.

3. If U acts set-theoretically free on X, then the loci X lss(H,χ) and X ls(H,χ) admit the

following Hilbert-Mumford criterion:

X l(s)s(H,L) =
⋂
h∈H

h ·X(s)s(T,L)

where T ⊂ H is a maximal torus and X(s)s(T,L) and X(s)s(R,L) are the T -(semi)stable

and R-(semi)stable loci as introduced in Definition 2.4.1 and Remark 2.4.2.

For the second approach we consider an H-representation W and a family of one-parameter

λn : Gm → H subgroups which grade the unipotent radical of H (see Definition 2.5.3)

together with a family of characters χn : H → Gm satisfying 〈χn, λn〉 < 0 to obtain an

analogue of the projective Û -Theorem by Bérczi, Doran, Hawes and Kirwan. In particular

we construct a morphism W → V equivariant relative to H → H/U with W an R := H/U -

representation. In the following we assume that the unipotent radical acts set-theoretically

freely on the open locus W+
min defined in Definition 4.2.4 and show that we can choose the

H/U -representation V in such a way that for n >> n0 we obtain via restriction a morphism

W+
min → V s(λn(Gm),χn) which factorises via the principal U -bundle W+

min → W+
min/U with

W+
min → V s(λn(Gm),χn) a closed immersion. Using this procedure we obtain the affine Û -

Theorem (Theorem 4.2.5).

Let H be a linear algebraic group with a Levi-decomposition U oR. Suppose that λn : Gm →

Z(R) ⊂ H is an N-indexed family of central 1-PS adapted to a H-representation W. Suppose
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for each n ∈ N, there is a character χn : H → Gm such that 〈χn, λn〉 < 0. Then for n large

enough the following statements hold.

1. The locus W+
min admits a geometric Ûn-quotient q : W+

min → W+
min/Ûn with W+

min/Ûn a

projective over affine variety and W+
min = W ss(λn(Gm),χn) = W s(λn(Gm),χn).

2. There exists an affine completion of W+
min → W+

min/U such that the corresponding

relative semistable locus W rss(H,χn) (see Definition 4.2.1) admits a good H-quotient

q : W rss(H,χn) →W rss(H,χn)//H

with W rss(H,χn)//H a projective over affine variety.

3. The restriction q
∣∣
W rs(H,χn) : V rs(H,χn) → q(W s(H,χn)) is a geometric H-quotient with

q(W rs(H,χn)) open in W rss(H,χn)//H.

Chapter 5 In this chapter we consider sheaf homomorphisms indexed by a quiver. More concretely,

we fix the following data D = (X,Q, (Ev)v∈V ), where

1. X is a projective scheme of finite type over k,

2. Q = (V ,A, s, t : A→ V ) is a quiver, and;

3. (Ev)v∈V is a collection of semisimple coherent sheaves over X.

To this data we associated several moduli functors in Chapter 1 and reduced the construction

of a moduli space to the construction of a good quotient for the linear action of

H :=×
v∈V

Aut(Ev)

on

W :=
⊕
a∈A

Hom(Es(a), Et(a))

given by

(hv)v∈V · (wa)a∈A := (ht(a) ◦ wa ◦ h−1
s(a))a∈A.
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To obtain these good quotients we apply the results obtained in Chapter 4 that is Theorem

4.1.9 and Theorem 4.2.5. In order to apply these results we recall in the first section several

descriptions of the automorphism groups involved. In the second and final section we recall

the approach by Drézet and Trautmann who considered the case where the quiver is given

by Q =
1◦ → 2◦. Additionally we apply Theorem 4.2.5 to obtain a projective over affine good

quotient for an open subset of W, for the data D = (Pn, ◦ → ◦, (Ev)v∈{1,2}) where

E1 = OPn(c1)⊕m1 ⊕OPn(c2)

and

E2 = OPn(d1)⊕OPn(d2)⊕m2

with c1 ≤ c2 < d1 < d2 (see Theorem 5.2.3). In order to apply Theorem 4.1.9 we consider

a quiver with loops and recall some classical results due to Sylvester. By applying these

results we obtain the necessary H-invariant sections which we call Sylvester sections and

their non-vanishing locus is called the Sylvester locus (see Definition 5.2.9 and 5.2.12)

to obtain Theorem 5.2.15. Finally, we consider the case where the automorphism groups

are all reductive: in this case we can apply classical reductive geometric invariant theory

recalled in Chapter 2 and by using King’s Hilbert-Mumford criterion we obtain a description

of (semi)stability in terms of one-parameter subgroups.



Chapter 1

The moduli problem for sheaf

homomorphisms

We define a moduli problem for sheaf homomorphisms over a projective scheme of finite type over

an algebraically closed field k = k̄ that are indexed by a quiver. More precisely, we consider a fibre

of the moduli functor for quiver sheaves with fixed Hilbert polynomials. First we recall quivers and

quiver representations in an abelian category. Afterwards, we define a moduli functor for quiver

sheaves, which are quiver representations in the abelian category Coh(X) of coherent sheaves

over a projective k-scheme X. For X = Speck, this approach yields the classical moduli problem of

quiver representations with a fixed dimension vector in the category of finite dimensional k-vector

spaces. Finally, we consider the geometric invariant theory approach to construct a (coarse) moduli

space associated to this moduli problem.

1.1 Quiver representations in an abelian category

In this section, we recall the definition of quivers and quiver representations in an abelian category.

1.1.1 Quivers

Definition 1.1.1. A quiver Q consists of a quadruple (V ,A, s, t) where V is the set of vertices,

A is the set of arrows and s, t : A → V are maps called source and target respectively. We only
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consider finite quivers, i.e. quivers such that the sets V and A are both finite. A path in the quiver is

a sequence of arrows p = a1a2 · · · an such that s(ai+1) = t(ai), i = 1, . . . , n− 1. For a vertex v ∈ V ,

we denote the set of arrows with target v by T (v) := {a ∈ A|t(a) = v} and the set of arrows with

source v by S(v) := {a ∈ A|s(a) = v}. A vertex v ∈ V is called a source if T (v) is empty and a sink

if S(v) is empty.

Example 1.1.2. Let n be a natural number.

1. An n-Kronecker quiver is a quiver with two vertices and n arrows such that one vertex is a

source and the other vertex is a sink.

K1 :
v1◦ v2◦ K2 :

v1◦ v2◦ K3 :
v1◦ v2◦ etc.

2. An-quivers defined recursively. Let A0 be an isolated vertex. Given An we obtain An+1 from

An by adding one vertex v and one arrow from the sink s of An to the vertex v.

A0 :
s0◦ A1 :

s◦ v=s1◦ A2 :
s0◦ s1◦ s2◦

Note that for each n ∈ N the quiver An has a unique source and sink.

3. A cyclic quiver Zn is obtained from the quiver An by adding one arrow from the sink of An

to the source of An.
1◦ 1◦ 2◦ 1◦ 2◦ 3◦

Definition 1.1.3. Let Q be a quiver. We call Q acyclic, if Q does not contain any oriented cycles

that is if and only if Q does not contain any of the cyclic quivers Zn as a subquiver for all n ∈ N.

Definition 1.1.4. Let Q1 and Q2 be quivers. Then the product of Q1 and Q2 is denoted by Q1×Q2

and is given by V Q1×Q2
:= V Q1

× V Q2
and AQ1×Q2

:= AQ1
× V Q2

t V Q1
×AQ2

together with

the source map

s : A→ V

x 7→


(s1(a), v) if x = (a, v) ∈ AQ1

× V Q2

(v, s2(a)) if x = (v, a) ∈ V Q1
×AQ2

and the target map, which is given by an analogous construction to the source map.
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Example 1.1.5. The double loop quiver is given as the product of two loop quivers Z1 ×Z1 :

1◦ .

K2 ×Z1 is the quiver
1◦ 2◦ .

1.1.2 Quiver representations

We want to consider quiver representations in an abelian category such as the category Coh(X) of

coherent sheaves over a projective scheme X of finite type over C or the category vectk of finite

dimensional C-vector spaces.

Definition 1.1.6. A representation of a quiver Q in a category A consists of

1. for each vertex v ∈ V , an object Mv of A;

2. for each arrow a ∈ A, a morphism ϕa ∈ HomA(Ms(a),Mt(a)).

Given two representations (Mv, ϕa)v∈V ,a∈A and (Nv, ψa)v∈V ,a∈A of the quiver Q in a category A,

a morphism from (Mv, ϕa)v∈V ,a∈A to (Nv, ψa)v∈V ,a∈A is given by morphisms Φv ∈ HomA(Mv, Nv)

for each v ∈ V such that for each arrow a ∈ A the following diagram commutes

Ms(a) Ns(a)

Mt(a) Nt(a).

Φs(a)

ϕa ψa
Φt(a)

A morphism of quiver representations given by (Φv : Mv → Nv)v∈V is

1. injective, if for each v ∈ V, Φv is injective,

2. surjective, if for each v ∈ V, Φv is surjective,

3. and bijective, if for each v ∈ V, Φv is bijective.

Let (Mv, ϕa)v∈V , a∈A be a representation; then a subrepresentation of (Mv, ϕa)v∈V , a∈A consists

of subobjects M ′v ⊂Mv together with the morphisms ϕa|M ′
s(a)

such that for each arrow a ∈ A, the

restriction ϕa|M ′
s(a)

defines a morphism from M ′s(a) to M ′t(a). The representations of the quiver Q

in A form a category which we denote by Rep(Q,A).



12 CHAPTER 1. THE MODULI PROBLEM OF SHEAF HOMOMORPHISMS

Remark 1.1.7. In categorical terms, the quiver Q corresponds to a small category Q and a repres-

entation of the quiver Q is a functor F : Q→ A. Similarly, under this identification, a morphism is

a natural transformation of functors.

1. If A is an abelian (additive) category, then also Rep(Q,A) is an abelian (additive) category.

2. Rep(Qop,Aop) ∼= Rep(Q,A)op, where Qop denotes the quiver with the same vertices and

arrows but the roles of the source and targets maps are interchanged; that is, sQop := tQ and

tQop := sQ.

1.2 The moduli functor

Let Set denote the category of sets and Sch/k the category of schemes of finite type over Speck

with k an algebraically closed field. Since the category Sch/k is essentially small, we can con-

sider the category PSh(Sch/k) := PSh(Sch/k,Set) of contravariant functors from Sch/k to Set.

Equipping the category Sch/k with the Zariski topology we can determine, whether a presheaf

F : (Sch/k)op → Set is actually a sheaf; that is, for any T ∈ Sch/k and any Zariski-covering

{Ui → T}; the following diagram is exact

F(T )
∏
i∈I

F(Ui)
∏
i,j∈I

F(Ui ×T Uj).
pr∗1

pr∗2

Here we denote by pr1 : Ui ×T Uj → Ui and pr2 : Ui ×T Uj → Uj the first and second projection

respectively. In other words, F is a Zariski-sheaf if for every T ∈ Sch/k and any Zariski-covering the

following condition is satisfied: given a Zariski-covering {Ui → T} and a set of elements ai ∈ F(Ui)

such that pr∗1 ai = pr∗2 aj ∈ F(Ui ×T Uj) for all i and j, then there exists a unique section a ∈ F(T )

whose pullback to F(Ui) is ai for all i.

Definition 1.2.1. A moduli problem is given by

1. sets AT of families over T and an equivalence relation ∼T for each T ∈ Sch/k,

2. pullback maps f∗ : AT ′ → AT for each morphism of schemes T → T ′ satisfying the following

properties:
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(a) for a family F over T we have id∗T F = F

(b) for a morphism f : T → T ′ and equivalent T ′-families F ∼T ′ F′ we obtain equivalent

T -families f∗F ∼T f∗F′.

(c) for morphisms f : T → T ′ and g : T ′ → T ′′ and a T ′′-family F we have (g ◦ f)∗F ∼T

f∗g∗F.

The moduli problem defines a moduli functor

M : (Sch/k)op → Set

T 7→ AT /∼T .

Definition 1.2.2. Let F,G ∈ PSh(Sch/k) be presheaves and G be a group object in PSh(Sch/k).

We call a natural transformation σ : G× F → F a group action, if for every object T ∈ Sch/k we

have that σT : (G× F)(T ) ∼= G(T )× F(T )→ F(T ) is a group action.

Example 1.2.3. Given a group action in the category of presheaves σ : G× F→ F, then taking the

orbits of G(T ) in F(T ) to be the equivalence classes we obtain a moduli problem in the sense of

definition 1.2.1. We denote the associated moduli functor by F/G.

In the following we define several moduli functors for homomorphisms of sheaves indexed by the

arrows of a quiver Q.

Notation 1.2.4. Let X → S and T → S be a S-schemes. We denote the fibre product X ×S T by

XT :

XT X

T S.

p

q
p

For a coherent sheaf E over X we denote the pullback of E along p by ET .

Definition 1.2.5. Let f : X → S be a morphism of finite type of noetherian schemes. A flat family

of coherent sheaves on the fibres of f is a coherent OX -module F which is flat over S. Recall that

this means that for each point x ∈ X the stalk Fx is flat over the local ring OS,f(x).
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Definition 1.2.6. Let k be an algebraically closed field. We call the tuple (X,OX(1)) a polarised

projective scheme if

1. X is a projective scheme of finite type over k, and

2. OX(1) is a very ample invertible sheaf over X.

Definition 1.2.7. Let Q = (V ,A, s, t) be a quiver and X be a connected projective scheme of finite

type over k. A family of Q-sheaves on X parametrised by a scheme T is a Q-sheaf in Coh(X × T )

which is flat over T.

Definition 1.2.8. Let Q = (V ,A, s, t) be a quiver and X be a connected projective scheme of

finite type over k. Let T be a scheme and (Ev, ϕa) and (Fv, ψa) be two T -families of Q-sheaves. We

call (Ev, ϕa) and (Fv, ψa)

1. absolutely equivalent denoted by ∼T,abs, if there exists an isomorphism of Q-sheaves Φ :

(Ev, ϕa)
∼→ (Fv, ψa); that is isomorphisms Φv : Ev → Fv for all v ∈ V such that for each a ∈ A

the following diagram

Es(a) Et(a)

Fs(a) Ft(a)

ϕa

Φs(a) Φt(a)

ψa

commutes;

2. relatively equivalent denoted by ∼T,rel, if there exists a line bundle L over T such that (Ev, ϕa)

is absolutely equivalent to (Fv ⊗ q∗L, ψa ⊗ idq∗L).

Definition 1.2.9. Let Q = (V ,A, s, t) be a finite quiver and X be a connected projective scheme

of finite type over k with OX(1) a very ample invertible sheaf. Fix a polynomial hv for each vertex

v ∈ V. For a coherent sheaf F , we denote the Hilbert polynomial with respect to OX(1) by χ(F).

The absolute moduli functor for coherent Q-sheaves in Coh(X) with Hilbert polynomial data
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(hv)v∈V is given by

MX,Q,(hv) : (Sch/k)op → Set

T 7→MX,Q,(hv)(T ) :=

{
[(Ev, ϕa)]∼T,abs

∣∣∣∣∣ (Ev, ϕa) is a T -family of Q-sheaves

∀v ∈ V ∀t ∈ T (k) : χ(Ev|X×{t}) = hv

}

f 7→MX,Q,(hv)(f) := (idX ×f)∗

We define the relative moduli functor by

MX,Q,(hv)v∈V : (Sch/k)op → Set

by considering the same families up to relative equivalence. In the case that Q is the trivial

quiver consisting of a single vertex and no arrows, we denote the absolute and relative moduli

functors by MX,hv and MX,hv . We obtain a forgetful natural transformation π from MX,Q,(hv)v∈V to∏
v∈V MX,hv by forgetting the arrows: for T ∈ Sch/k and [(Ev, ϕa)] ∈MX,Q,(hv)(T ), we associate

([Ev])v∈V ∈
∏
v∈V MX,hv(T ). Recall that hSpeck →

∏
v∈V MX,hv corresponds to an element in∏

v∈V MX,hv(Speck); that is, a tuple of equivalence classes of sheaves ([Ev])v∈V on X with Hilbert

polynomial data (hv)v∈V .

In the following we are interested in a fibre of the absolute moduli functor for Q-sheaves i.e. we

want to consider the fibre product

MX,Q,[Ev ]v∈V MX,Q,(hv)v∈V

hSpeck
∏
v∈V MX,hv .

p
π

([Ev ])v∈V

To define the relative moduli functor for sheaf homomorphism indexed by Q, note that we have an

action of the group object Pic ∈ PSh(Sch/k) on MX,Q,(hv)v∈V and
∏
v∈V MX,hv , where L ∈ Pic(T )

acts on [Ev, ϕa] ∈MX,Q,(hv)v∈V (T ) via

L · [Ev, ϕa] = [Ev ⊗ q∗L, ϕa ⊗ idq∗L],
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where q : X × T → T is the projection to T. The action of Pic on
∏
v∈V MX,hv is given by

L · [Ev] = [Ev ⊗ q∗L]

for ([Ev])v∈V ∈
∏
v∈V MX,hv(T ) and L ∈ Pic(T ). The natural transformation π is equivariant with

respect to the action of Pic and furthermore we have that

MX,Q,(hv)v∈V /Pic = MX,Q,(hv)v∈V .

By an abuse of notation, let

π : MX,Q,(hv)v∈V = MX,Q,(hv)v∈V /Pic→
( ∏
v∈V

MX,hv

)
/Pic

be the natural transformation which forgets the arrows. We obtain the analogous fibre product for

the relative moduli functor

MX,Q,[Ev ]v∈V MX,Q,(hv)v∈V

hSpeck

( ∏
v∈V

MX,hv

)
/Pic .

p
π

([Ev ])v∈V

Remark 1.2.10. By [42, 17.4.9.] the sheafification functor on presheaves of sets commutes with

finite limits.

For a presheaf P : (Sch/k)op → Set let us denote the sheafification with respect to the Zariski topo-

logy by P̃(Zar). By the above remark the sheafification of the relative moduli functor MX,Q,[Ev ]v∈V

with respect to the Zariski topology (or any other Grothendieck topology) will fit into the analogue

commutative diagram:

M̃
(Zar)
X,Q,[Ev ]v∈V

M̃
(Zar)
X,Q,(hv)v∈V

hSpeck
˜( ∏

v∈V
MX,hv

)
/Pic

(Zar)

.

p
π

Theorem 1.2.11. ([33, III 7.7.6]) Let S be a noetherian scheme and r : X → S be a proper morphism.

Let F be a coherent sheaf on X which is flat over S. Then there exists a coherent sheaf Q on S together
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with a functorial OS-linear isomorphism

θ : r∗(F ⊗OX r
∗−)→ HomOS (Q,−)

on the category QCoh(S). By its universal property, the pair (Q, θ) is unique up to a unique isomorph-

ism.

Then following [52] we have the following result which is a combination of [33, III 7.7.8 and

7.7.9].

Theorem 1.2.12. Let S be a noetherian scheme and r : X → S be a projective morphism. Let E and F

be coherent sheaves on X. Consider the set-valued contravariant functor HomE,F on S-schemes, which

associates to any T → S the set of all OXT -linear homomorphisms HomE,F (T ) := HomOXT (ET ,FT )

where ET and FT denote the pull-backs of E and F under the projection XT → X. If F is flat over S,

then the functor HomE,F is representable by a linear scheme V over S.

Remark 1.2.13. Let E be a locally free sheaf and F be a reflexive sheaf. Furthermore, let us assume

that S = Speck where k is an algebraically closed field. Then by the proof of the above theorem

(see [52]), it follows that V = Spec Sym•OS Q, where Q = r∗HomOX (E ,F)∨ = HomOX (E ,F)∨.

Definition 1.2.14. Let Q be a quiver and (Ev)v∈V be a collection of coherent sheaves over X

indexed by V . The tautological family T = (Fv, eva) over
⊕
a∈A

HomOX (Es(a), Et(a)) is given by

1. sheaves Fv for v ∈ V , which are the pullbacks of Ev along the projection map

X ×Speck

⊕
a∈A

HomOX (Es(a), Et(a))→ X

and

2. morphisms eva0 : Fs(a0) → Ft(a0) for a0 ∈ A, which correspond to inclusion maps

HomOX (Es(a0), Et(a0))→
⊕
a∈A

HomOX (Es(a), Et(a)).

Definition 1.2.15. For a moduli functor M, a family T over a scheme S has the local universal
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property, if for any family F over a scheme T and for any k-point t ∈ T there exists a neighbourhood

U of t ∈ T and a morphism f : U → S such that F|U ∼U f∗T.

Lemma 1.2.16. Let X be a connected projective scheme of finite type over S = Speck. Assume that

Ev is a locally free sheaf over X for each v ∈ V, then the relative moduli functor

MX,Q,[Ev ]v∈V : (Sch/k)op → Set

T 7→ {families over T up to relative equivalence ∼T }

admits a family with the local universal property. Explicitly this is given by T the tautological family

over
⊕
a∈A

Hom(Es(a), Et(a)).

Proof. A T -family is given by an equivalence class of Q-sheaves. By construction of the moduli

functor as a fibre product any representative of the equivalence class corresponds to a Q-sheaf F =

(Fv, ϕa : Fs(a) → Ft(a)) such that Fv ∼= (idX ×f)∗Ev⊗q∗L for each v ∈ V where idX ×f : X×T →

X × Speck. Given a k-point t ∈ T, there exists an affine open neighbourhood U ⊂ T containing

t such that L|U ∼= OU and hence Fv|X×U ∼= (idX ×f |U )∗Ev ⊗ q∗UOU ∼= (idX ×f |U )∗Ev. Therefore,

the family F|U restricted to U corresponds to a morphism g : U →
⊕
a∈A

Hom(Es(a), Et(a)) and

(idX ×g)∗T ∼= F|U which implies that the tautological family has the local universal property.

Recall the following result, which allows us to construct our potential (coarse) moduli space

via methods from (non-reductive) geometric invariant theory. For the convenience of the reader

several notions of quotients, and in particular categorical quotients which will be employed in the

following proposition, are recalled in Definition 2.3.9.

Proposition 1.2.17. [51, Proposition 2.13] For a moduli functor M, let T be a family with the local

universal property over a scheme S ∈ Sch/k. Furthermore, suppose that an algebraic group H acts

on S such that two k-points p, q of S lie in the same H-orbit if and only if Tp ∼ Tq. Then

1. any coarse moduli space is a categorical quotient of the H-action on S;

2. a categorical quotient of the H-action on S is a coarse moduli space if and only if it is an orbit

space.
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1.3 The geometric invariant theory set up for the moduli problem

Analogously to King’s GIT-Ansatz (see [44]) for moduli of quiver representations in the category

vectk, we want to consider moduli of homomorphisms of sheaves over X indexed by arrows in

Q where we fix a sheaf at each vertex of Q. The justification of our GIT-Ansatz for constructing

(coarse) moduli spaces is given by Proposition 1.2.17. We already showed that we have a family

with the local universal property. It remains to show that this local universal family is compatible

with an action of a linear algebraic group for which Proposition 1.2.17 applies. In the following, let

X be a projective scheme of finite type over C and Ev ∈ Coh(X) a collection of coherent sheaves

for v ∈ V and consider the space

W :=
⊕
a∈A

Hom(Es(a), Et(a))

together with a linear action α : H ×W →W of the group

H :=×
v∈V

Aut(Ev)

where

α
(
(hv)v∈V , (ϕa)a∈A

)
:= (ht(a)ϕa(hs(a))

−1)a∈A.

Proposition 1.3.1. Let T be the family over V with the local universal property. Then two k-points

s, t ∈W satisfy Ts ∼= Tt if and only if s and t belong to the same H-orbit. Furthermore any p ∈W has

a nontrivial stabiliser StabH(p) which identifies with the automorphisms of the Q-sheaf corresponding

to the point p. Since each Q-sheaf has at least the isomorphisms t · id for t ∈ Gm, we obtain a global

stabiliser given by this Gm .

Proof. Let (Ev, ϕa) be the Q-sheaf corresponding to the point (ϕa)a∈A ∈ W. By definition an

automorphism Φ : (Ev, ϕa) → (Ev, ϕa) corresponds to (Φv)v∈V ∈ H = ×
v∈V

Aut(Ev) such that for

each arrow a ∈ A the following diagram is commutative
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Es(a) Es(a)

Et(a) Et(a).

ϕa

Φs(a)

ϕa

Φt(a)

Equivalently, we have for each arrow a ∈ A the following equation

Φt(a) ◦ ϕa ◦ Φ−1
s(a) = ϕa.

So the point (ϕa)a∈A ∈W gets fixed by (Φv)v∈V ∈ H, hence Aut
(
(Ev, ϕa)

)
= StabH((ϕa)a∈A).

Given two k-points (ϕa) and (ψa) of W then T(ϕa) = (Ev, ϕa) and T(ψa) = (Ev, ψa). From the

definition of an isomorphism of Q-sheaves it follows immediately that the fibres of T are isomorphic

if and only if (ϕa) and (ψa) belong to the same H-orbit.

Remark 1.3.2. In the case where Q is the A1-quiver the linear action of H := Aut(E)×Aut(F) on

W := Hom(E ,F) has been partially considered by Drézet and Trautmann (see [25]).



Chapter 2

Background on Geometric Invariant

Theory

The construction of moduli spaces often involves the construction of orbit spaces (or quotients) for

the action of an affine algebraic group on a suitable variety. Classical Geometric Invariant Theory

(GIT) can be used to construct these quotients if the algebraic group is reductive. Since there are

moduli problems which involve non-reductive groups, in particular the moduli problem considered

in Chapter 1 is such a moduli problem, we will also recall more recent results on non-reductive

Geometric Invariant Theory.

In this chapter and the following chapters we assume that k is an algebraically closed field of

characteristic zero.

2.1 Algebraic groups

In this section, we recall the definitions of k-group schemes and algebraic groups.

Definition 2.1.1. A k-group scheme is a k-scheme G equipped with morphisms

µG : G×G→ G, ιG : G→ G and eG : Speck→ G

such that for any k-scheme T, the set of T -points G(T ) is a group with composition law µ(T ),
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inverse map ι(T ) and neutral element T → Speck
eG→ G.

Proposition 2.1.2. Given a k-scheme G equipped with morphisms

µG : G×G→ G, ιG : G→ G and eG : Speck→ G.

The following statements are equivalent:

1. G equipped with above morphisms is a k-group scheme.

2. The morphisms satisfy the following commutative diagrams

G×G×G G×G

G×G G

idG×µG

µG×idG

µG

µG

(µG is associative),

G ∼= Speck×G G×G G ∼= Speck×G

G
idG

eG×idG

µG

idG×eG

idG

(eG is the unit morphism),

G ∼= Speck×G G×G G ∼= Speck×G

Speck G Speck

sG

ιG×idG

µG sG

idG×ιG

eG eG

(ιG is the inverse morphism).

Definition 2.1.3. A morphism of group schemes is a morphism of schemes f : G→ H where G and

H are group schemes and the following diagram commutes

G×G G

H ×H H.

f×f

µG

f

µH

Definition 2.1.4. An algebraic group is a k-group scheme G such that the underlying k-scheme is

a variety. A homomorphism of algebraic groups H1 → H2 is a morphism of group schemes. If the

homomorphism is a closed immersion then we say that H1 is a closed subgroup of H2. A linear

algebraic group is an algebraic group that is a closed subgroup of GL(n,k), for some n ≥ 0.
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Example 2.1.5. There are two connected linear algebraic groups of dimension one:

1. The additive group Ga = Speck[t] with the group composition µ : Ga×Ga → Ga correspond-

ing to µ# : k[t]→ k[t]⊗ k[t] with µ#(t) = t⊗ 1 + 1⊗ t and the inversion ι : Ga → Ga given

by ι# : k[t]→ k[t] where ι#(t) = −t. Moreover e : Speck→ Ga corresponds to e# : k[t]→ k

where t 7→ 0.

2. The multiplicative group Gm = Speck[t, t−1] analogously has µ# : k[t, t−1] → k[t, t−1] ⊗

k[t, t−1] with µ#(t) = t · t and ι# : k[t, t−1]→ k[t, t−1] where ι#(t) = t−1 and e# : k[t, t−1]→

k with e#(t) = 1.

Definition 2.1.6. Let H be an algebraic group. A morphism of group schemes H → Gm is called a

character of H.

Definition 2.1.7. A linear algebraic group T is called an algebraic torus (or simply a torus) if it is

isomorphic to Gn
m for some natural number n.

Lemma 2.1.8. [48, Lemma 8.34,Lemma 8.35] Let P be a property of algebraic groups. We assume

the following:

1. Every quotient of a group with property P has property P.

2. Every extension of groups with property P has property P.

Let G be an algebraic group and H,N be algebraic subgroups G with N normal. Then

1. If H and N have property P, then HN also has property P.

2. The algebraic group G has at most one maximal normal algebraic subgroup with property P.

Definition 2.1.9. An algebraic group is called solvable, if it admits a subnormal series

G = G0 DG1 D . . .DGt = {e}

such that each quotient Gi/Gi+1 is commutative.

Proposition 2.1.10. [48, Proposition 8.13] Algebraic subgroups, quotients, and extensions of solvable

algebraic groups are solvable.
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Definition 2.1.11. An algebraic group G contains a maximal connected solvable normal subgroup,

called the radical of G. A linear algebraic group G is called reductive if its radical is a torus.

2.2 Linear algebraic monoids

Definition 2.2.1. A linear algebraic monoid (M, ◦) is an affine variety M together with an associ-

ative composition law ◦ : M ×M →M which is a morphism of varieties and admits a unit element

1 ∈M.

Theorem 2.2.2. Let k be an algebraically closed field and M a linear algebraic monoid over k.

1. [18, 2.2 Theorem 1] The group of units G(M) is an algebraic group, which is open in M.

Moreover, G(M) consists of nonsingular points of M.

2. [55, Theorem 3.15] If M is a linear algebraic monoid, then M is isomorphic to a closed sub-

monoid of Mat(n× n,k) for some n ∈ N.

Remark 2.2.3. By the above theorem, the group of units G(M) of a linear algebraic monoid is a

closed subgroup of some GL(n,k) [55, 3.25].

Example 2.2.4. Any unital finite dimensional k-algebra A is with respect to multiplication a linear

algebraic monoid. In particular, we obtain for a projective k-scheme (X,OX) and a coherent OX -

module F that EndOX (F) is a finite dimensional k-algebra. By forgetting the addition EndOX (F)

becomes a linear algebraic monoid with unit group AutOX (F). We conclude that AutOX (F) is a

linear algebraic group.

2.3 Group actions and quotients of group actions

In this section, we define algebraic actions of group schemes on schemes in the category of schemes

over k.

Definition 2.3.1. Given a k-group scheme G and a k-scheme X, then we call X a G-scheme, if

X is equipped with an algebraic G-action. An algebraic G-action on X is given by a morphism

σ : G×X → X which makes the following two diagrams commute:
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G×G×X G×X X ∼= Speck×X G×X

G×X X X.

idG×σ

µG×idX

σ idX

eG×idX

σ

σ

Definition 2.3.2. Let G be a k-group scheme and X be a G-scheme given by a G-action σ on X.

The action σ is said to be

1. closed if for all geometric points x of X, the orbit G · x is closed.

2. separated if the image of Ψ = (σ, pr2) : G×X → X ×X is closed.

3. proper if Ψ is proper,

4. set-theoretically free if Ψ : Ψ−1(∆X)→ ∆X is an isomorphism,

5. free if Ψ is a closed immersion.

Lemma 2.3.3. [27, Lemma 8] An action of a linear algebraic group G on X is free if and only if it is

set-theoretically free and proper.

Lemma 2.3.4. [10, Lemma 4.2 (i)] Let G be a group scheme of finite type over k and X be a G-

scheme of finite type over k. Then G acts set-theoretically free on X if and only if G(k) acts freely on

X(k).

Definition 2.3.5. Given a k-group scheme G and a k-group scheme H equipped with an algebraic

G-action σ : G×H → H, we can form the semi-direct product

Goσ H = (G×H, ◦σ)

with the composition law (g, h) ◦σ (g′, h′) = (g · g′, σ(g′, h) · h′).

Definition 2.3.6. Let X be a H-scheme and Y be a G-scheme. We say that a morphism of schemes

ϕ : X → Y is equivariant relative to a morphism of group schemes f : H → G, if the following

diagram commutes

H ×X X

G× Y Y.

f×ϕ

σH,X

ϕ

σG,Y
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If ϕ is equivariant relative to f : H → Speck, where Speck the trivial k-group scheme, then we

say that ϕ is H-invariant.

Proposition 2.3.7. [14, Proposition 2.8.5] Let H be an algebraic group, G ⊆ H be a subgroup

scheme and N E H be a normal subgroup scheme. Consider the semi-direct product N oG, where G

acts on N by conjugation.

1. The map f : N oG→ H, given by (x, y) 7→ xy is a homomorphism with kernel G ∩N, which

is identified with a subgroup scheme of N oG via x 7→ (x−1, x).

2. The image G ·N of f is the smallest subgroup scheme of H containing G and N.

3. The natural maps G/G ∩N → G ·N/N and N/G ∩N → G ·N/G are isomorphisms.

4. If G is normal in H, then G ·N is normal in H as well.

Proposition 2.3.8. [15, Proposition 2.1.10] Let G be an algebraic group and X be a G-variety. For

x ∈ X, the following statements hold.

1. The orbit G · x is a locally closed, smooth subvariety of X.

2. The closure G · x is the union of G · x and G-orbits of strictly lower dimension.

3. Every orbit of minimal dimension is closed. In particular, G · x contains a closed orbit.

Definition 2.3.9. Let H be a linear algebraic group and X be a H-variety. A pair (Y, ϕ) consisting

of a variety Y and a H-invariant morphism ϕ : X → Y is

1. a categorical quotient, if for any other H-invariant morphism X
ψ→ Z to a variety Z there

exists a unique morphism Y
ψ→ Z such that the diagram

X Z

Y

ϕ

ψ

ψ

commutes.

2. a good quotient, if
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(a) the morphism ϕ is surjective and affine;

(b) for each open subset U ⊆ Y the pull-back map ϕ] : OY → ϕ∗OX induces an isomorph-

ism of sheaves OY ∼= (ϕ∗OX)H , where (ϕ∗OX)H(U) := OX(ϕ−1(U))H ;

and

(c) if W1,W2 are disjoint H-invariant closed subsets of X, then ϕ(W1) and ϕ(W2) are

disjoint closed subsets of Y .

In this case, we write Y = X//H.

3. a geometric quotient is a good quotient (Y, ϕ) that is also an orbit space; i.e. ϕ−1(y) is a single

H-orbit for each y ∈ Y . In this case, we write Y = X/H.

4. A principal H-bundle is a H-variety X with a H-invariant morphism ϕ : X → Y such that,

for every point y ∈ Y , there is a Zariski-open neighbourhood Uy ⊆ Y of y and a finite étale

morphism Ũy → Uy, such that there exists a H-equivariant isomorphism H × Ũy ∼= Ũy ×Y X,

where the fibred product Ũy ×Y X has the canonical H-action coming from the H-action on

X and H × Ũy has the trivial H-bundle action, induced by left multiplication by H on itself:

H × (H × Ũy)→ H × Ũy

(h, (h0, u)) 7→ (h · h0, u).

Proposition 2.3.10. [51, Proposition 3.10] Let H be a linear algebraic group and X be a H-variety.

Then

1. A H-invariant morphism ϕ : X → Y is a good (respectively, geometric) quotient if and only if

there is an open cover {Ui} of Y such that each restriction ϕ|ϕ−1(Ui) : ϕ−1(Ui) → Ui is a good

(respectively, geometric) quotient of H acting on ϕ−1(Ui).

2. Conversely, if ϕ : X → Y is a good (respectively, geometric) quotient, then for each open subset

U ⊆ Y the restriction ϕ|ϕ−1(U) : ϕ−1(U)→ U is a good (respectively, geometric) quotient of H

acting on ϕ−1(U).

Proposition 2.3.11. [30, Proposition 0.9] A geometric quotient X → X/H has the structure of a

principal H-bundle if and only if the action of H on X is free.
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Definition 2.3.12. Let X be a H-variety with a good quotient ϕ : X → Y. We define the locus

X0 ⊂ X to be the set of points x ∈ X such that theH-orbit of x is closed and of maximal dimension.

Proposition 2.3.13. Let X be a H-variety and ϕ : X → Y be a good quotient. The locus X0 is open

in X and the restriction ϕ : X0 → ϕ(X0) is a geometric quotient with ϕ(X0) open in Y.

Proof. By definition X0 consists of closed orbits in X and since ϕ is a good quotient we know

that ϕ separates disjoint closed H-invariant subsets of X thus ϕ : X0 → ϕ(X0) is a geometric

quotient provided ϕ(X0) ⊂ Y is open (Prop. 2.3.10 ). We have to show that ϕ(X0) is open with

ϕ−1(ϕ(X0)) = X0. If X0 = ∅ there is nothing to show, so suppose X0 6= ∅. Let m = max{dimH ·

x|x ∈ X}. The set Z = {z ∈ X|dimH · z < m} is closed (see [37, Proposition 3.21]) and H-stable.

Hence ϕ(Z) ⊂ Y is closed, and U := Y \ ϕ(Z) is open. Thus ϕ−1(U) ⊆ X is open and H-stable

and consists only of m-dimensional orbits. It remains to show ϕ−1(U) = X0. Assume x ∈ ϕ−1(U)

then ϕ(x) /∈ ϕ(Z). Hence any closed orbit that is contained in the closure of H ·x has dimension at

least m, but dimH · x ≤ m, hence by Proposition 2.3.8 H · x itself is this closed orbit, thus x ∈ X0.

Conversely, if x ∈ X0, then ϕ(x) /∈ ϕ(Z), hence x ∈ ϕ−1(U). We conclude that ϕ(X0) is open with

ϕ−1(ϕ(X0)) = X0.

Example 2.3.14. It can happen that the locus X0 is empty. For instance, consider the action of

Gm on X = An = Speck[x1, . . . , xn] given by scalar multiplication then k[x1, . . . , xn]Gm = k and

hence the good quotient is a single point. This is a consequence of the fact that all orbits contain

the origin in their closure and get identified by the good quotient.

Theorem 2.3.15. [58] Let H be a linear algebraic group and X be a H-variety. There exists a H-

invariant open subset U ofX such that U has a geometric quotient U/H and U/H is a quasi-projective

variety.

The determination/description of such open subsets as described by the above theorem is in

general an open problem. Classical geometric invariant theory for linearised actions of reductive

groups provides a partial answer to finding open invariant subsets depending only on a so-called

linearisation which admit a geometric quotient.

Definition 2.3.16. Let H be a linear algebraic group and X be a H-scheme with associated H-

action σ : H×X → X. A linearisation of the H-action on X is a line bundle p : L→ X over X with



2.3. GROUP ACTIONS AND QUOTIENTS OF GROUP ACTIONS 29

an isomorphism of line bundles p∗XL ∼= H × L ∼= σ∗L where pX : H ×X → X is the projection,

such that the induced bundle homomorphism Σ : H × L→ L defined by

H × L

σ∗L L

H ×X X

Σ

idH ×p

∼=

p

σ

induces an action of H on L; that is, we have a commutative square of bundle homomorphisms

H ×H × L H × L

H × L L.

µH×idL

idH ×Σ

Σ

Σ

Remark 2.3.17. Let L→ X be a linearisation of an action σ : H ×X → X. We obtain an H-action

on the global sections f ∈ H0(X,L) via

h · f(x) = Σ
(
h, f

(
σ(h−1, x)

))
.

Example 2.3.18. Let H be a connected algebraic group and X be an irreducible H-variety. A

linearisation L of the trivial line bundle p : X×A1 → X can be defined via a character χ : H → Gm .

More precisely, the H-action on X × A1 is defined via h · (x, v) := (h · x, χ(h)v). Conversely, any

H-linearisation of the trivial line bundle is equivalent to the choice of a character of H; see [15,

Lemma 4.1.7].

Proposition 2.3.19. [15, p. 18] Let X be a H-variety and L1,L2 be H-linearisations over X. The

tensor product L1 ⊗ L2 and the dual line bundles L∨1 and L∨2 naturally carry the structure of an

H-linearisation.

Definition 2.3.20. Let H be a linear algebraic group. A rational H-module is given by a pair (V, ρ),

where V is a vector space and ρ : H → GL(V ) is a group homomorphism, such that every v ∈ V

is contained in a finite dimensional H-invariant subspace of V on which H acts algebraically. A
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rational H-module (V, ρ) is called a (rational) H-representation if V is a finite dimensional vector

space.

Example 2.3.21. Let X = SpecA be an affine H-variety. The H-action on A given by h · f(x) :=

f(h−1 · x) for each h ∈ H and x ∈ X turns A into a rational H-module.

Proposition 2.3.22. [15, p. 7] Given an algebraic action σ of H on a finite dimensional vector space

V. Then the H-action on V corresponds to a rational representation of H if and only if for each h ∈ H

the map σ(h, ·) : V → V is linear.

Definition 2.3.23. An algebraic group U is unipotent, if every nonzero (rational) representation

of U has a nonzero fixed vector.

From the definition it follows that extensions of unipotent groups and quotients of unipotent groups

are unipotent; see [48, p. 135-136].

Definition 2.3.24. Let H be an algebraic group. The unipotent radical Ru(H) of H is the maximal

normal unipotent subgroup of H.

Definition 2.3.25. Let H be a smooth affine k-group scheme with unipotent radical U. A Levi-

subgroup of H is a smooth k-subgroup scheme L ⊂ H such that L→ H/U is an isomorphism.

Remark 2.3.26. According to [19, p. 171] the following two conditions are equivalent for a smooth

subgroup L of H:

1. L is a Levi-subgroup.

2. There exists an isomorphism U o L→ H.

Proposition 2.3.27 (Mostow). ([19, Proposition 5.4.1]) Let H be a smooth affine k-group scheme.

Then Levi subgroups of H exist and the unipotent radical U of H acts transitively via conjugation on

the set of Levi subgroups of H.

Example 2.3.28. Given a finite dimensional vector space V, we denote by P(V ) the projective

space of lines in V. Suppose that V is a rational representation of H, then P(V ) is a H-variety.

Moreover the H-action on P(V ) lifts to an action on the tautological line bundle L = OP(V )(−1).
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To see this, recall that the tautological line bundle is the subvariety of P(V ) × V given by pairs

(x, v) such that v lies on the line corresponding to x. The diagonal H-action on P(V )× V stabilises

L and the projection p : L ⊂ P(V )× V → P(V ) is H-equivariant. Moreover, H acts linearly on the

fibres of L. In conclusion we obtain that L is a G-linearisation and by Proposition 2.3.19 we obtain

a H-linearised dual line bundle L∨ = OP(V )(1).

Definition 2.3.29. Let H be a linear algebraic group and X be a H-variety together with a linear-

isation L of the H-action on X. We define the section ring of L to be

R(X,L) :=
⊕
r≥0

H0(X,L⊗r)

where the multiplication is induced by the natural mapsH0(X,L⊗r)⊗H0(X,L⊗s)→ H0(X,L⊗r+s).

2.4 Reductive geometric invariant theory

Reductive geometric invariant theory is a method for constructing quotients by actions of reductive

groups in algebraic geometry. It was developed by Mumford. For Mumford’s classical book on

reductive geometric invariant theory see [30]. Following Mumford, we recall the definition of the

stable and semi-stable locus for a of a linearised action of a reductive group G on a variety X. If

L is a linearisation of the G-action with respect to an ample line bundle L and X is a projective

over affine variety (see Definition 2.4.4), then we will state the Hilbert–Mumford criterion, which

allows us to determine the (semi)stable locus without having to calculate the ring of invariant

sections R(X,L)G =
⊕
n≥0

H0(X,L⊗n)G.

Definition 2.4.1. Let X be a G-variety and L be a G-linearisation. A point x ∈ X is called

1. semistable, if for some r > 0 there exists an invariant f ∈ H0(X,L⊗r)G such that Xf is affine

and x ∈ Xf .

2. stable, if for some r > 0 there exists an invariant f ∈ H0(X,L⊗r)G such that

(a) Xf is affine and the G-action on Xf is closed,

(b) x ∈ Xf and for all y ∈ Xf the stabiliser StabG(y) is finite.
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3. unstable if it is not semistable.

Remark 2.4.2. In the following, we will denote the subvarieties of semistable, stable and unstable

points by Xss(G,L), Xs(G,L) and Xus(G,L).

Theorem 2.4.3. [30, Theorem 1.10] Let X be a k-scheme and let G be a reductive algebraic group

acting on X. Suppose L is a G-linearised line bundle over X. Then a categorical quotient (Y, φ) of

Xss(G,L) exists. Moreover:

1. φ is affine and universally submersive,

2. there is an ample line bundle L′ on Y such that φ∗(L′) = L⊗n for some n ∈ N>0; hence Y is a

quasi-projective algebraic scheme;

3. there is an open subset
◦
Y ⊂ Y such that Xs(G,L) = φ−1(

◦
Y ) and (

◦
Y , φ|Xs(G,L)) is a geometric

quotient of Xs(G,L) by G.

Definition 2.4.4. A variety X is a projective over affine variety if one of the following equivalent

conditions hold:

1. There exists a closed immersion X → Pn × Am.

2. The morphism X → SpecH0(X,OX) is projective and SpecH0(X,OX) is a variety.

Seshadri introduced a notion of relative Geometric Invariant Theory (see [61]). Gulbrandsen,

Halle and Hulek obtained in this relative setup a Hilbert–Mumford criterion for the loci Y ss(G,L)

and Y s(G,L) under the assumptions of the following theorem (for details see [34]).

Theorem 2.4.5. [30, Theorem 1.10] Let S = SpecA be an affine scheme of finite type over k, and

let f : Y → S be a projective morphism. Let G be a reductive linear algebraic group over k. Assume

that G acts on Y and S such that f is equivariant. Let L be an ample G-linearised invertible sheaf on

Y. Then one can define the set of stable points Y s(G,L) and the set of semistable points Y ss(G,L) in a

similar fashion as in the absolute case. These sets are open and invariant. For the semi-stable locus,

there exists a universally good quotient

φ : Y ss(G,L)(L)→ Z.
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We shall often refer to Z as the GIT quotient of Y by G. Moreover, there is an open subscheme Z ′ ⊂ Z

with Y s(G,L) = φ−1(Z ′), the restriction is such that

Y s(G,L) → Z ′

is a universally geometric quotient. Furthermore Z is projective over the quotient S//G = SpecAG.

From the preceding theorem we obtain a categorical quotient for the semistable locus and a

geometric quotient for the stable locus. In the following we are going to recall the Hilbert–Mumford

criterion to determine these loci for so-called projective over affine varieties.

Definition 2.4.6. Let X be a G-variety. A one-parameter subgroup (1-PS) of G is an injective

group homomorphism λ : Gm → G. If x ∈ X then we obtain a morphism σx : Gm → X given by

t 7→ λ(t) · x. If the morphism σx extends to a Gm-equivariant morphism from A1 → X where Gm

acts on A1 by t · x = t1x then we denote σx(0) by lim
t→0

λ(t) · x. It follows that if y := lim
t→0

λ(t) · x

exists, then y is fixed by Gm under λ. So for any G-linearisation L over X the fibre Ly is a one

dimensional representation of Gm. We let µL(λ, x) denote the weight with which Gm acts on Ly

(i.e. the integer corresponding to the character) of this representation.

For an affine G-scheme X there is the following topological criterion by Kempf.

Theorem 2.4.7. [43, Theorem 1.4] Let G be a connected reductive group over k and X be an affine

G-scheme over k. For a k-point x of X, let S be a closed G-subscheme of X, which meets the closure of

the orbit G ·x. Then there exists a 1-PS λ : Gm → G such that lim
t→0

λ(t) ·x exists and is contained in S.

Theorem (Hilbert–Mumford criterion) 2.4.8. [30], [44], [34] Assume that

1. X is affine with L a G-linearisation of the trivial line bundle X × A1,

or

2. X projective over affine with L an ample G-linearisation.

Then x ∈ X is

1. stable, if for every 1-PS λ : Gm → G such that lim
t→0
t∈Gm

λ(t)x exists, we have µL(λ, x) > 0.
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2. semistable, if for every 1-PS λ : Gm → G such that lim
t→0
t∈Gm

λ(t)x exists, we have µL(λ, x) ≥ 0.

3. unstable, if there exists a 1-PS λ : Gm → G such that lim
t→0
t∈Gm

λ(t)x exists, we have µL(λ, x) < 0.

Following Białynicki-Birula (see [12, p. 54]), we also call an equality of the following form a

Hilbert–Mumford criterion: Let G be a reductive linear algebraic group and T ⊂ G be a maximal

torus of G. Given a linearised action Gy L→ X on a G-variety X, we also call an equality of the

form

Xss(G,L) =
⋂
g∈G

gXss(T,L)

a Hilbert–Mumford criterion. In this sense, the following proposition is a Hilbert–Mumford cri-

terion for an action of a reductive group on a projective variety.

Proposition 2.4.9. (Hilbert–Mumford criterion for a projective variety) [24, Theorem 9.2 and 9.3]

Let G be a reductive group and X be a projective G-variety. Let L be an ample G-linearisation which

defines a G-equivariant projective embedding X ⊆ Pn such that the G-linearisation OPn(1) pulls back

to a positive tensor power of L.

1. Let T be a maximal torus of G. The loci of semistable and stable points satisfy

Xss(G,L) =
⋂
g∈G

gXss(T,L)

and

Xs(G,L) =
⋂
g∈G

gXs(T,L).

2. A point x ∈ X with homogeneous coordinates [x0 : . . . : xn] in some coordinate system on Pn is

semistable (respectively stable) for the action of a maximal torus of G acting diagonally on Pn

with weights α0, . . . , αn if and only if the convex hull Conv({αi|xi 6= 0}) contains 0 (respectively

contains 0 in its interior).

Analogously to the projective Hilbert–Mumford criterion the affine Hilbert–Mumford criterion

can also be stated in terms of a maximal torus of a reductive group G. Since we will be mostly

concerned with affine GIT, we postpone the affine Hilbert–Mumford criterion (see subsection 2.7).
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2.5 Non-reductive geometric invariant theory

In this section, we recall some definitions and results on non-reductive GIT. The first paper on

GIT for a linear algebraic group H with a non-trivial unipotent radical U by Fauntleroy (see [28])

approaches the construction of GIT-quotients with a two step method. He assumes that the linear

algebraic group H acts with respect to a linearisation on a quasi-projective variety. According to

Fauntleroy the idea to construct a quotient in stages goes back at least to Nagata, who proposed to

construct first a quotient for the action of the unipotent radical U / H and then a quotient for the

residual action of H/U on the U -quotient. This procedure was slightly modified in the sense that

Fauntleroy considered a H/U -action on a projective completion of the U -quotient instead which

allowed him to apply results from classical geometric invariant theory.

Later Bérczi, Doran, Hawes and Kirwan (see [9]) also followed the same approach under the

assumption that there exists a one parameter subgroup λ : Gm → H such that the induced linear

Gm-action on the Lie algebra of the unipotent radical of H is graded in the sense that all Gm-

weights on Lie(U) are either strictly positive or strictly negative. The resulting semi-direct product

U o Gm is called a ‘graded unipotent’ group. Following the notation and convention of Bérczi,

Doran, Hawes and Kirwan, we denote a graded unipotent group by Û = U oGm ⊂ H and assume

that all Gm-weights on Lie(U) are strictly positive. Suppose a graded unipotent group Û acts via a

’well-adapted’ linearisation (see Definition 2.5.7) on a projective variety and the U -stabilisers are

all trivial on the open stratum from the Białynicki-Birula-decomposition containing the Gm-stable

locus with respect to the well-adapted linearisation. Then they obtain a geometric Û -quotient given

by a projective variety which admits a ‘Hilbert–Mumford-like’ characterisation of the stable locus.

This is then further generalised to linear algebraic groups H with unipotent radical U and such

that Û = U oGm is a normal graded unipotent subgroup of H.

2.5.1 Several notions of (semi)stability for linear algebraic groups

In this section, we introduce the notions of stability from Kirwan et al following [7].

Definition 2.5.1. Let H be a linear algebraic group and L → X be a linearised H-variety. The
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naively semistable locus is the open subset

Xnss :=
⋃

f∈Inss
Xf

of X, where Inss :=
⋃
r>0H

0(X,L⊗r)H is the set of invariant sections of positive tensor powers of

L. The finitely generated semistable locus is the open subset

Xss,fg :=
⋃

f∈Iss,fg
Xf

of Xnss, where

Iss,fg := {f ∈ Inss | (SH)(f) is finitely generated}

and S =
⊕

r≥0H
0(X,L) is the ring of sections.

Definition 2.5.2. Let H be a linear algebraic group with unipotent radical U and X be a H-variety.

For a given linearisation H y L → X of the H-action on X we define the stable locus as the open

subset

Xst(H,L) :=
⋃
f∈Ist

Xf

of X, where Ist ⊂
⋃
r>0

H0(X,L⊗r)H is the set of invariant sections of positive tensor powers of L

such that

1. the open set Xf is affine

2. the action of H on Xf is closed with all stabilisers being finite groups; and

3. the restriction of the rational map qU : X 99K Proj
⊕

r≥0H
0(X,L)U to Xf

qU |Xf : Xf → Spec
((⊕

r≥0

H0(X,L
)U

)(f)

)

is a trivial principal U -bundle for the action of U on Xf .
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2.5.2 The Û -Theorem

We recall the Û -Theorem by Bérczi, Doran, Hawes and Kirwan.

Definition 2.5.3. [8] Let U be a unipotent group together with a one-parameter group of auto-

morphisms

ϕ : Gm → Aut(U)

t 7→ ϕt : U → U

such that the weights of the induced Gm-action on the Lie algebra u = Lie(U) of U are all strictly

positive (respectively negative). Then we call the semi-direct product Û = U oϕ Gm given by

U ×Gm with composition law (u1, t1) · (u2, t2) = (ϕ−1
t2

(u1)u2, t1t2) a graded unipotent group. In the

following we will use the convention of [9] that a graded unipotent group has positive grading.

Example 2.5.4. Consider a linear action of U := Ga on An. By Seshadri´s proof of Weitzenbock´s

Theorem, the Ga-action extends to an SL2-action on An. Consider the Borel subgroup B ⊂ SL2 of

upper triangular matrices. Then B ∼= Ga oGm and B is a graded extension of Ga . We conclude

that any linear Ga-action on An extends to an action of a graded unipotent group Ga oGm .

Proposition 2.5.5. [9, Lemma 4.2] Let H := Ga oGm be a graded unipotent group and X be an

affine H-variety. Suppose that the Levi-factor Gm of H acts on Lie(Ga)⊕O(X) such that the weight

of Lie(Ga) is positive and the weights of O(X) are non-positive. Then every point in x has a limit in

X under the action of t ∈ Gm as t → 0. If additionally StabGa(x) = {e} for each x ∈ XGm , then

X → SpecO(X)Ga is a trivial principal Ga-bundle.

Definition 2.5.6. Let λ : Gm → H be a 1-PS of H. Then Uλ = U ocλ Gm ⊂ H where

cλ : Gm → Aut(H)

h 7→ λ(t)hλ(t)−1

is the inner automorphism of H induced by conjugation and U is the unipotent radical of H. The

automorphism cλ restricts to an automorphism of U, since U is a normal subgroup of H.
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To state the Û -Theorem, we consider a linear algebraic groupH,with unipotent radical U admitting

a one parameter subgroup λ : Gm → H, such that Ûλ is a normal graded unipotent subgroup of H.

If X is a projective variety with a very ample H-linearisation L, we can identify X with a closed

H-invariant subvariety of P(V ) where V := H0(X,L)∨ and the H-linearisation L is the pullback

of the natural H-linearisation OP(V )(1).

Let ωmin be the minimal weight for Gm acting on V := H0(X,L)∨ and let Vmin be the weight

space of ωmin in V . Define

Zmin :=X ∩ P(Vmin)

={x ∈ X|x is a Gm-fixed point and Gm acts on L∨
∣∣
x

with weight ωmin}

and

X0
min := {x ∈ X| lim

t→0
t∈Gm

t · x ∈ Zmin}.

Definition 2.5.7. Consider a linear action of the graded unipotent group Û on X with respect

to the linearisation L. Let χ : Û → Gm be a character of Û . We identify such characters χ with

integers so that the integer 1 corresponds to the character which fits into the exact sequence

{1} → U → Û → Gm → {1}. Suppose that ωmin < ωmin +1 < · · · < ωmax are the weights with

which the one-parameter subgroup Gm of Û acts on the fibres of the line bundle OP((H0(X,L)∨)(1)

over points of the connected components of the fixed point set P
(
H0(X,L)∨

)
for the action of

Gm on P
(
H0(X,L)∨

)
. We will assume that there exist at least two distinct such weights since

otherwise the action of U on X is trivial. Let c be a positive integer such thatχc = ωmin + ε where

ε > 0 is a sufficiently small rational number; we will call rational characters χ
c with this property

well adapted and we will call the linearisation well adapted if the trivial character 0 is well adapted.

The linearisation of the action of Û on X with respect to the ample line bundle L⊗c can be twisted

by the character χ so that the weights ωj are replaced with ωjc − χ; let L⊗cχ denote this twisted

linearisation. Then ωmin(L⊗cχ ) = ωmin(L)c− χ = −εc < 0 < ωmin +1(L⊗cχ ).

We say that semistability coincides with stability for the well adapted Û -linearisation L → X if

StabU (x) = {e} for every x ∈ Zmin.

Theorem 2.5.8. [9] Let H act on an irreducible projective variety X over C and let Û be a graded
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unipotent subgroup of H such that Gm = Û/U lies in the center of H/U. Let L be a well adapted

linearisation with respect to a very ample line bundle L. Suppose that the linear Û -action satisfies the

condition semistability coincides with stability. Then

1. The Û -invariants are finitely generated, and the inclusion of the Û -invariant algebra induces a

projective geometric quotient of an open subvariety Xst(Û ,L) = Xss,Û of X

Xss,Û → X//L Û .

2. Consequently the H-invariants are finitely generated, and the inclusion of the H-invariant

subalgebra induces a projective good quotient of an open subvariety Xss,H of X

Xss,H → X//L H.

where X//L H is the GIT-quotient of X//L Û by the induced action of the reductive group H/Û

with respect to the induced linearisation.

3. The good quotient Xss,H → X//L H restricts to a geometric quotient

Xs,H → Xs,H/H ⊆ X//L H.

of an open subset Xs,H ⊂ Xss,H .

4. (Non-reductive Hilbert–Mumford Criterion) For H = Û we have

Xss(Û ,L) =
⋂
u∈U

uXss(Gm,L) = X0
min \ UZmin.

In the case that each point x ∈ X has well behaved positive dimensional stabilisers for the U -action

on X0
min there are variations of the Û -Theorem using a blow-up procedure. For further details we

refer the interested reader to [9].
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2.6 Linearised actions on affine varieties

Given a linear algebraic group H and an affine H-variety X together with a linearisation L of the

trivial line bundle X × A1. For this choice of linearisation, we obtain an isomorphism of N-graded

rings R(X,L) ∼= O(X)[t]. It follows that ProjO(X)[t] ∼= SpecO(X) which induces a rational map

X ∼= Proj R(X,L) Proj R(X,L)H

corresponding to the inclusion of graded rings R(X,L)H ⊂ R(X,L). By Example 2.3.18, any

linearisation of the trivial line bundle corresponds to the choice of a character χ : H → Gm . If

the linearisation L corresponds to the trivial character χ with kerχ = H we obtain SpecO(X)H ∼=

Proj R(X,L)H . In this case the rational mapX Proj R(X,L)H is a morphism of affine schemes

X → SpecO(X)H induced by the inclusion O(X)H ⊂ O(X).

The following result implies that the ring of invariants is in general not finitely generated. Con-

sequently we have to impose additional assumptions on an action of a linear algebraic group on

an affine variety in order to obtain a finitely generated ring of invariants.

Popov’s theorem 2.6.1. [54] For a linear algebraic group H, the following statements are equi-

valent:

1. H is reductive.

2. Every rational H-action on a finitely generated k-algebra A has a finitely generated subal-

gebra of invariants AH .

Definition 2.6.2. Let H be an affine algebraic group and X be an affine H-variety. Suppose the

H-action on X is linearised with respect to the trivial line bundle L.

1. Two points x, y ∈ X are (H,L)-separable if there exists r ≥ 1 and f ∈ H0(X,L⊗r)H such

that f(x) 6= f(y).

2. A subset S ⊂
⋃
n≥1H

0(X,L⊗r)H is said to be (H,L)-separating if for any two (H,L)-

separable points x, y ∈ X there exists g ∈ S with g(x) 6= g(y).
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If the linearisation L corresponds to the trivial character we drop L from the notation and call

points H-separable if Condition 1 is satisfied and a subset satisfying Condition 2 a H-separating

set.

By Popov’s theorem, we cannot expect the ring O(X)H to be finitely generated but we have the

following result by Derksen and Kemper which tells us that we can find a finite set of H-separating

invariants.

Theorem 2.6.3. [22, Theorem 2.4.8] Let X be an affine H-variety. Then there exists a finite separat-

ing set for the induced H-action on O(X).

Corollary 2.6.4. Let X be an affine H-variety and L = X × A1 be a linearisation of the trivial

line bundle over X. Suppose that H0(X,OX)H = k; then there exists a finite (H,L)-separating set

S ⊂
⋃
n≥1H

0(X,L⊗r)H .

Proof. This follows immediately from Theorem 2.6.3 and Proposition 2.6.5.

Proposition 2.6.5. Let X be an affine H-variety and χ : H → Gm be a character of H. We consider

the action of H on X × A1 via h · (x, t) := (h · x, χ−1(h)t). Then X × A1 is an affine H-variety and

provides a linearisation of the H-action on X. Let O(X × A1)H = (O(X) ⊗k k[t])H be the ring of

H-invariants for H acting on X × A1 graded via setting deg t = 1. Then as a graded ring we have

O(X × A1)H ∼=
⊕

r≥0H
0(X,L⊗r)H .

Proof. Recall that H0(X,L⊗r)H ∼= {f ∈ O(X)|∀h ∈ H : h · f = χr(h)f}. Via this identification we

obtain the following homomorphism given by

ϕ :
⊕
r≥0

H0(X,L⊗r)H → O(X × A1)

(fr)r≥0 7→
∑
r≥0

frt
r.

Given f = (fr)r≥0, g = (gr)r≥0 ∈
⊕
r≥0

H0(X,L⊗r)H then ϕ(f) = ϕ(g) implies that fr = gr for all

r ≥ 0 thus ϕ is injective. Additionally we have that h · fr = χrfr and h · tr = χ−r thus frtr is

H-invariant. We conclude that ϕ is compatible with the grading ofO(X×A1) by the degree of t and

the image of ϕ is contained in O(X × A1)H . It remains to show that ϕ surjects onto O(X × A1)H .
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Given g ∈ O(X × A1)H ∼= O(X)[t]H then g decomposes as g =
∑ng

i=0 git
i. Since g is H-invariant

we have that ∀h ∈ H that h · g = g. By comparing the degree i-part of the right hand side and left

hand side it follows that h · gi = χi(h)gi. Thus the element g′ defined by g′i = gi for i ≤ ng and

g′i = 0 for i > ng is such that ϕ(g′) = g. We conclude that ϕ is an isomorphism of graded rings.

Definition 2.6.6. Let H be a linear algebraic group and G be a subgroup of H.

1. G is an observable subgroup of H, if there exists a rational H-module V and v ∈ V such that

StabH(v) = G.

2. G is a Grosshans subgroup of H, if for every affine H-variety X the ring of G-invariants

O(X)G is finitely generated.

Theorem (Grosshans Criterion) 2.6.7. [31] Let R be a reductive group over an algebraically

closed field k and G be an observable subgroup of R. Then the following conditions are equivalent:

1. G is a Grosshans subgroup of R.

2. The algebra O(R)G is finitely generated, where G acts on R via right translation.

3. There exists a rational R-representation V and some v ∈ V such that G = StabR(v) and

dim(R · v \R · v) ≤ dim(R · v)− 2.

Example 2.6.8. The additive group Ga is a Grosshans subgroup of SL(2;k). If furthermore k has

characteristic zero, then by Seshadri’s proof of Weitzenböck’s Theorem any rational Ga-representation

V is also a rational SL(2;k)-representation and hence O(V )Ga is finitely generated.

2.7 Geometric invariant theory for affine varieties

We recall the GIT-quotient for reductive groups acting algebraically on affine varieties with respect

to a linearisation of the trivial line bundle. We also recall the characterisation of stability, as

defined by King, for reductive actions on affine spaces in terms of the Hilbert–Mumford criterion

as stated by Hoskins (see [36, Proposition 2.7]). For torus actions on affine N -space linearised by

a character %, we recall the geometric Hilbert–Mumford criterion which expresses (semi)stability
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via polyhedral cones which are defined in terms of the weights and one parameter subgroups of the

torus action. Via duality for cones we obtain the equivalent dual characterisation of (semi)stability.

Theorem 2.7.1. [51, Theorem 3.4 and Theorem 3.5] Let G be a reductive algebraic group and X be

an affine G-variety over k. Then

1. The morphism X → SpecO(X)G is a good quotient.

2. The ring of invariants O(X)G is finitely generated and SpecO(X)G is an affine variety.

3. For x, y ∈ X we have ϕ(x) = ϕ(y) if and only if G · x ∩G · y 6= ∅.

4. Any G-orbit in X contains a unique closed orbit.

By applying Proposition 2.6.5 we obtain the following Corollary to the above theorem.

Corollary 2.7.2. Let G be reductive linear algebraic group and X be an affine G-variety linearised

with respect to the trivial line bundle L = X×A1. The ring ofG-invariant sections
⊕

r≥0H
0(X,L⊗r)G

is finitely generated.

Remark 2.7.3. Given an action of a reductive group G on an affine G-variety X linearised with

respect to the trivial line bundle, then the morphism Proj
⊕

r≥0H
0(X,L⊗r)G → SpecO(X)G is

projective [44, p. 517-518].

Theorem 2.7.4. [30], [44] Let G be a reductive linear algebraic group and X be an affine G-variety.

Let L be the linearisation of the trivial line bundle corresponding to the character χ : G→ Gm then

1. The locus Xss(G,χ) = Xss(G,L) admits a good quotient

qL : Xss(G,L) → Proj R(X,L)G

where the Xss(G,L) is the domain of definition of the rational map

qL : X Proj R(X,L)G.

2. The good quotient restricts to a geometric quotient Xs(G,L) → Xs(G,L)/G with Xs(G,L)/G open

in Proj R(X,L)G.
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Affine Hilbert–Mumford criterion

Notation 2.7.5. Let T be a torus. We denote the group of characters by X∗(T ) := Homgrps(T,Gm)

and the group of one parameter subgroups by X∗(T ) := Homgrps(Gm, T ). By composition we

obtain a natural pairing

〈 , 〉 : X∗(T )×X∗(T )→ Homgrps(Gm,Gm) ∼= Z

(χ, λ) 7→ χ ◦ λ.

By tensoring with −⊗Z R, we extend the natural pairing to

〈 , 〉 : X∗(T )R ×X∗(T )R → R.

To a character χ ∈ X∗(T ) we associate the halfspace Hχ := {λ ∈ X∗(T )R|〈χ, λ〉 ≥ 0}.

Proposition 2.7.6. Let T be a torus and V be a (rational) T -module. Then there exists a weight

space decomposition

V =
⊕

χ∈X∗(T )

Vχ

where Vχ := {v ∈ V |∀t ∈ T : t · v = χ(t)v}.

Definition 2.7.7. Let V be a (rational) T -module with weight space decomposition V =
⊕

χ∈X∗(T )

Vχ.

1. We denote by prχ the projection to the weight space Vχ.

2. For v ∈ V, let wtT (v) := {χ ∈ X∗(T )| prχ(v) 6= 0} be the weight set associated to v and

σv :=
⋂

χ∈wtT (v)

Hχ the weight cone associated to v.

The Hilbert-Mumford criterion obtain by King in [44] was conveniently restated in terms of torus

weights by Hoskins [36] in the following Proposition.

Proposition 2.7.8. [36, Proposition 2.7] Given a rational G-representation V of a reductive group

G with maximal torus T and let % : G→ Gm be a character. Then v ∈ V belongs to x ∈ V (s)s(G,%) if

and only if for each g ∈ G we have gx ∈ V (s)s(T,%). Let v ∈ V then
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1. v ∈ V ss(T,%) if and only if is H% is a supporting halfspace for σv that is, σv ⊂ H%.

2. v ∈ V s(T,%) if and only if σv \ {0} ⊂ H% \ (H% ∩H−%) = {λ ∈ X∗(T )R|〈%, λ〉 > 0}.

By duality for polyhedral cones we obtain the following dual statement to the Hilbert–Mumford

criterion for rational G-representations which can be more useful then Hoskins’s reinstatement in

some cases.

Corollary 2.7.9. The affine Hilbert–Mumford criterion for a linear torus action admits the following

dual version:

1. σv =
⋂
χ∈wtT (v)Hχ ⊂ H% if and only if % ∈ Cone(wtT (v)).

2. σv \ {0} ⊂ H% \ (H% ∩H−%) if and only if % belongs to the interior of Cone(wtT (v)).

Proof. By Proposition A.1.4 we have that Cone(%) = H∨% ⊂ σ∨v = Cone(wtT (v)) if and only if

σ∨ ⊂ H%. For the second part we use that σv \ {0} ⊂ H% \ (H% ∩H−%) is equivalent to σv ⊂ H% and

σv ∩H−% = {0}. Now apply conic duality to obtain Cone(wtT (v),−%) = X∗(T )R and Cone(%) ⊂

Cone(wtT (v)) which is equivalent to % belonging to the interior of Cone(wtT (v)).

Proposition 2.7.10. (Hilbert-Mumford criterion for an affine G-variety) Let G be a reductive group

and X be an affine G-variety. Let L be a linearisation of the trivial line bundle over X corresponding

to a character χ : G→ Gm . Then there exists a G-representation together with a G-equivariant closed

immersion ι : X → V. Then if we linearise the trivial line bundle over V with respect to χ we obtain a

G-equivariant commutative square

X × A1 V × A1

X V.

pX

ι×idA1

pV

ι

1. Let T be a maximal torus of G. The loci of semistable and stable points satisfy

Xss(G,χ) =
⋂
g∈G

gXss(T,χ)
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and

Xs(G,χ) =
⋂
g∈G

gXs(T,χ).

2. Let T be a maximal torus ofG. A point x ∈ X with linear coordinates in V consisting of T -weight

vectors ι(x) =
∑n

i=1 vχi is χ-semistable (respectively χ-stable) for the restricted action of T if

and only if Cone({χ1, . . . , χn}) contains χ (respectively contains χ in its interior).

Corollary 2.7.11. Let f : V →W be T -equivariant with respect to linear T -actions on V and W. Let

v ∈ V and set w := f(v) then the following statements hold.

1. We have that σv ⊂ σw.

2. Suppose that v is a weight vector of weight χ. Then w is a T -fixed point or there exists n ≥ 1

such that χn ∈ wtT (w).

3. Let w be a weight vector of weight χ, then χ is a non-negative combination of weights from

wtT (v).

Proof. 1. Given a 1-PS in σv then lim
t→0

t · v exists. By equivariance it follows that also lim
t→0

t · w

exists and hence σv ⊂ σw.

2. From σv ⊂ σw and duality it follows that Cone(wtT (w)) ⊆ Cone(wtT (v)) = R≥0χ. We con-

clude that either Cone(wtT (w)) = {0}which implies thatw is a T -fixed point or Cone(wtT (w)) =

Cone(wtT (v)).

3. From the weight space decomposition of V, we can write v =
∑k

i=1 vi with vi ∈ Vχi . From⋂k
i=1Hχi = σv ⊂ σw = Hχ, it follows that χ is a non-negative combination of χ1, . . . , χk and

a positive combination of a linearly independent subfamily from χ1, . . . , χk.



Chapter 3

Actions of unipotent groups on affine

varieties

Let U be a unipotent linear algebraic group. It is easy to see that U admits only the trivial character

χ : U → Gm with kerχ = U. This implies that for an affine U -variety X, we have a unique

linearisation of the trivial line bundle L = X × A1 and are left to consider the morphism X →

SpecO(X)U .

Kostant–Rosenlicht Theorem 3.0.1. [59, Theorem 2] Let X be an affine U -variety. Then all

U -orbits in X are closed.

Corollary 3.0.2. Let X an affine U -variety with a good U -quotient ϕ : X → Y. Then ϕ : X → Y is a

geometric U -quotient.

Proposition 3.0.3. Let X be a U -variety. The U -action is free if and only if it is proper.

Proof. If Ψ : U × X → X × X is proper then Ψ : Ψ−1(∆X) → ∆X is finite so the U -action has

finite stabilisers. The stabiliser subgroups are finite and unipotent. It follows that the stabilisers are

trivial since we are working in characteristic zero. We conclude that proper implies set-theoretically

free. By Lemma 2.3.3 the action is free if and only if it is proper and set-theoretically free.

If U acts properly on an affine variety, then any geometric quotient is a principal U -bundle. In

the following we are considering a sufficient condition to obtain a trivial principal U -bundle for
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actions on affine varieties (see [9]). This naturally leads us to the notion of graded actions on

affine varieties. As a motivation for the consideration of trivial principal U -bundles, we recall the

following proposition.

Proposition 3.0.4. [7, Proposition 2.1.26] Suppose X is an affine U -variety and a locally trivial

quotient X → X/U exists. Then X/U is affine if and only if X → X/U is a trivial principal U -bundle.

Let T be a torus and X be an affine variety. To a T -action on X, we can associate the coaction

map O(X) → O(X) ⊗ O(T ) which induces an X∗(T )-grading on O(X). Conversely given an

X∗(T )-grading on O(X) we obtain a coaction map which corresponds to a T -action on X. This

construction gives a bijective correspondence between

{T − actions on X} ↔ {X∗(T )− gradings on O(X)}.

Based on the notion ’graded unipotent radical’ from [9] we define a graded action.

Definition 3.0.5. Let X be an affine H-variety for a linear algebraic group H with unipotent

radical U. We call the action of H on X a graded action with respect to a grading subgroup

UTg = U o Tg ⊂ H with Tg a torus if the following conditions are fulfilled:

1. The grading monoid M := {w ∈ X∗(Tg)|O(X)w 6= {0}} ⊂ X∗(Tg) is positive; that is, if

x ∈M and −x ∈M, then x = 0.

2. Additionally we assume for the linear Tg-action on Lie(U) induced by the semi-direct product

structure of U o Tg that {w ∈ X∗(Tg)|Lie(U)w 6= {0}} ∩M = ∅.

We call X a graded H-variety and UTg a grading subgroup for the H-action on X, if the H-action

on X restricted to UTg satisfies Conditions 1 and 2.

Proposition 3.0.6. Let H = U o Gm be a linear algebraic group with U unipotent and Gm the

multiplicative group. Let V be an H representation. If H = Û is a graded extension of a unipotent

group, then there exists a character χ : Û → Gm such that the χ-twisted Û -action on V is a graded

action. Conversely given a graded action of U o T with T = Gm then U oGm is a graded extension of

U.
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Proof. Let Û is a graded extension of a unipotent group and V a Û -representation. Let χ be

the character corresponding to −ωmin where ωmin is the minimal weight of Gm acting on V. By

twisting with χ the Û -representation Vχ has a graded action. We postpone the proof of this fact to

Proposition 4.2.8. Conversely, let V be a H-representation such that the H-action on V is graded.

The grading monoid O(V ) contains zero thus Gm either acts with positive or negative weights

on Lie(U). By interchanging the roles of t and t−1 if necessary we can assume that Gm acts with

positive weights on Lie(U) then H = U oGm is a graded extension of U as claimed.

Proposition 3.0.7. Let H be a linear algebraic group and X be an affine H-variety with a graded

H-action. Let U o Tg be a grading subgroup for the H-action on X and N ⊂ U be a normal subgroup

of U o Tg. Then the action of U o Tg/N on SpecO(X)N satisfies Condition 1 and 2 of Definition

3.0.5.

Proof. We have that

{
w ∈ X∗(Tg)|O(X)Nw 6= {0}

}
⊂
{
w ∈ X∗(Tg)|O(X)w 6= {0}

}
and

wtTg(Lie(U/N)) ⊂ wtTg(Lie(U)).

Since U o Tg is a grading subgroup for the H-action on X we have that

∅ =
{
w ∈ X∗(Tg)|O(X)w 6= {0}

}
∩wtTg(Lie(U)) ⊃

{
w ∈ X∗(Tg)|O(X)Nw 6= {0}

}
∩wtTg(Lie(U/N)).

We conclude that the action of U/N o Tg on SpecO(X)N satisfies Condition 1 and 2 of Definition

3.0.5.

Proposition 3.0.8. [41, p. 247] Let T be a torus and X be an affine T -variety. Suppose that the

grading monoid of O(X) is positive. Then the fixed point variety XT is affine and a good quotient for

the T -action on X. As a consequence the only closed T -orbits are given by the T -fixed points.

Proof. Let I := 〈
⊕

m∈M\{0}O(X)m〉 be the ideal generated by
⊕

m∈M\{0}O(X)m. It is well

known that SpecO(X)/I ∼= XT and by positivity of the grading monoid M it follows that
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I =
⊕

m∈M\{0}O(X)m. We conclude that O(X)/I ∼= O(X)0 = O(X)T . From the identification

O(X)/I ∼= O(X)0 we obtain a morphism O(X)0 → O(X) → O(X)/I = O(X)0 which is the

identity map on O(X)0. Let X → X//T = SpecO(X)T be the affine GIT-quotient. By Theorem 2.7.1

we know that X → X//T = SpecO(X)0
∼= XT is a good quotient. Each fibre of a good quotient

contains a unique closed orbit. It follows that the closed T -orbits in X are given by T -fixed points,

since each fibre of the good quotient contains a T -fixed point.

3.1 Background on Ga-actions

In this subsection we recall some basic facts on Ga-actions which will be used in proofs related to

graded actions on affine varieties.

Definition 3.1.1. Let A be an affine k-algebra, so then SpecA is an affine variety.

1. Denote by LND(A) the set of locally nilpotent derivations of A, where a locally nilpotent

derivation is a k-linear map δ : A→ A such that

(a) for each f ∈ A there exists nf ∈ N such that δnf (f) = 0, and

(b) ∀f, g ∈ A : δ(fg) = δ(f)g + fδ(g).

2. Assume that the affine k-algebra A is graded by a submonoid M ⊆ Zn, then δ ∈ LND(A) is

a homogeneous locally nilpotent derivation of the M -graded algebra A =
⊕

k∈M Ak, if there

exists deg δ ∈ Zn such that for each k ∈M we have δ|Ak : Ak → Ak+deg δ.

3. We call an element of s ∈ A a slice of the locally nilpotent derivation δ if δ(s) = 1.

Proposition 3.1.2. [62, Subsection 14.2.1] Let X be an irreducible affine variety over k. We obtain

a bijective correspondence between algebraic Ga-actions on X and locally nilpotent derivations of the

ring of regular functions O(X).

Example 3.1.3. Let X be an affine Ga oT -variety. Under the above correspondence the restriction

of the Ga oT -action on X to Ga corresponds to a homogeneous locally nilpotent derivation δ :

O(X)→ O(X) of the M -graded k-algebra O(X) where the grading monoid M ⊆ X∗(T ) ∼= Zn is

induced by the T -action on X. Here, we have deg δ ∈ X∗(T ) ∼= ZdimT .
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Definition 3.1.4. Let A be an affine k-algebra, so then SpecA is an affine variety. Given δ ∈

LND(A), define Fix(δ) := {p ∈ Spec(A)|δ(A) ⊂ p}. Note that Fix(δ) is a closed subset of Spec(A).

Proposition 3.1.5. [21, Prop 9.7.] Let A be an affine k-algebra and δ ∈ LND(A). Consider the

associated Ga-action αδ on X := SpecA. Then the following holds

1. The ring of invariants of αδ is the subring ker(δ) of A.

2. The fixed points of αδ are precisely the closed points of Fix(δ).

Lemma 3.1.6. [53, Lemme de Taylor] Suppose X is an affine Ga-variety and let δ : O(X)→ O(X)

be the associated locally nilpotent derivation. Suppose that δ has a slice, then X → SpecO(X)Ga is a

trivial principal Ga-bundle.

3.2 On trivial Ga-quotients of affine varieties

The following lemma is the base case of the inductive proof of Lemma 3.3.1 and will also be

reapplied in the proof of the induction step.

Lemma 3.2.1. Given an affine variety X with a graded action of Ga oT. Suppose that each T -fixed

point x ∈ XT has trivial Ga-stabiliser, then the homogeneous locally nilpotent derivation corresponding

to the Ga-action admits a section and hence X → SpecO(X)Ga is a trivial principal Ga-bundle.

Remark 3.2.2. For T = Gm we obtain that Lemma 3.2.1 is equivalent to [9, Lemma 4.2].

Before we proceed with a proof of the above lemma we are going to need the following results:

Proposition 3.2.3. Consider an algebraic action on an affine variety X by a semi-direct product

H := U o Gm of an unipotent group with the multiplicative group. Suppose that x0 ∈ XGm and

x ∈ X such that lim
t→0

t · x = x0 then we have that dim StabU (x) ≤ dim StabU (x0).

Proof. To prove the above statement, we use the fact that x0 = lim
t→0

λ(t) · x lies in the closure of the

H-orbit H ·x. Recall, that by Proposition 2.3.8, the closure of an orbit consists of the orbit itself and

orbits of strictly lower dimension. If x0 lies in the H-orbit of x then there exists (u, t) ∈ H such that

x0 = (u, t)x and if c(u,t) : H → H is the inner automorphism mapping (v, s) 7→ (u, t)(v, s)(u, t)−1
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we get an isomorphism from c(u,t) : StabH(x) → StabH(x0) with inverse c(u,t)−1 . Since U is

a normal subgroup of H we have that for (v, 1) ∈ StabU (x) it follows that c(u,t)

(
(v, 1)

)
lies in

StabH(x0) and c(u,t)

(
(v, 1)

)
∈ U which implies that we get a restricted morphism

c(u,t) : StabU (x)→ StabU (x0)

with inverse c(u,t)−1 and hence dim StabU (x) = dim StabU (x0). Otherwise, the orbit of H · x0

has strictly lower dimension than the orbit of H · x and by the orbit-stabiliser formula (see [37,

Proposition 3.20])

dimH = dimH · y + dim StabH(y)

we obtain the inequality dim StabH(x0) ≥ dim StabH(x) + 1 but x0 = lim
t→0

t · x is a Gm-fixed point

and hence dim StabU (x0) = dim StabH(x0)− 1 ≥ dim StabH(x) ≥ dim StabU (x).

Corollary 3.2.4. Consider a graded action of H on X with grading subgroup U o Tg. Then the

following statements are equivalent

1. ∀x ∈ XT : StabU (x) = {e}

2. ∀x ∈ X : StabU (x) = {e}.

Proof. The implication 2. implies 1. is trivial so we will only prove that 1. implies 2. Let x ∈ X then

since U oTg is a grading subgroup for the H-action on X it follows that the Tg-orbit Tg ·x contains

a Tg-fixed point in its closure (see Proposition 3.0.8). By Kempf’s theorem (Theorem 2.4.7) there

exists a 1-PS λ : Gm → Tg such that x0 = lim
t→0

λ(t)x is a Tg-fixed point. Now apply Proposition

3.2.3 to obtain 0 ≤ dim StabU (x) ≤ dim StabU (x0) = 0. We conclude that StabU (x) = {e} since

chark = 0.

Proof of Lemma 3.2.1. By Example 3.1.3 an action of Ga oTg on an affine variety X corresponds to

a grading of O(X) induced by the Tg-action on X together with a homogeneous locally nilpotent

derivation δ : O(X)→ O(X). Since the Ga oTg-action is graded, it follows that deg δ /∈M where

M is the grading monoid for Tg acting onX. To verify that δ admits a slice (s ∈ O(X) with δ(s) = 1)

it is enough to consider the restriction δ|O(X)− deg δ
: O(X)− deg δ → O(X)0. In the following, we

want to establish that the restricted linear map δ|O(X)− deg δ
is surjective and hence that δ admits a
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slice. To do this consider the following Tg-graded subvector space

I := δ(O(X)− deg δ)⊕
⊕

w∈M\{0}

O(X)w

ofO(X).We claim that I is an ideal inO(X) and the surjectivity of δ|O(X)− deg δ
translates to the fact

that I is not a proper ideal. To show that I is an ideal inO(X) it is suffices to show for homogeneous

elements a ∈ O(X)k and b ∈ Il that ab ∈ Ik+l, since I is a Tg-graded k-subvector space of O(X).

The only non-trivial case is for a ∈ I0 = δ(O(X)− deg δ) and b ∈ O(X)0, but then δ(b) ∈ O(X)deg δ

and deg δ /∈ M hence O(X)deg δ = {0}. By definition of I0 there exists c ∈ O(X)− deg δ such that

δ(c) = a and

δ(cb) = δ(c)b+ cδ(b) = ab+ c0 = ab

which implies ab ∈ δ(O(X)− deg δ) = I0. Now that we know that I is an ideal let us assume that

δ : O(X)− deg δ → O(X)0 is not surjective which implies that I is a proper ideal of O(X). Then

there exists a maximal ideal m containing I. Since δ(O(X)) ⊂ I ⊂ m it follows from the definition

of Fix(δ) that m ∈ Fix(δ). By Proposition 3.1.5 we conclude that the Ga-action α associated to δ

has a fixed point which contradicts the assumption on trivial stabilisers (see Corollary 3.2.4). It

follows that δ : O(X)− deg δ → O(X)0 is surjective.

Remark 3.2.5. Consider the following algebraic Ga-action on A5 given by

u ·



x1

x2

x3

x4

x5


=



x1

x2 + ux1

x3

x4 + ux3

x5 + u(1 + x1x
2
4) + u2x1x3x4 + u3

6 x1x
2
3


The locally nilpotent derivation corresponding to the above Ga-action on A5 is studied in [23] and

it is shown that the action is not locally trivial. This gives us an example of an algebraic Ga-action

with trivial stabilisers which does not extend to a graded action since the action does not admit a
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locally trivial quotient.

3.3 On trivial U -quotients of affine varieties

The following result generalises [9, Proposition 4.3] to graded H-actions (see Definition 3.0.5).

More precisely, we allow the grading of unipotent radical by a higher dimensional tori.

Lemma 3.3.1. Let H be a linear algebraic group and X be a graded H-variety with a grading

subgroup UTg . Suppose that each x ∈ XTg has StabU (x) = {e}, then X → X/U is a trivial principal

U -bundle.

The proof can be reduced to a successive construction of trivial principal Ga-bundles. Before we

can proceed with the proof of Lemma 3.3.1, we will recall some more results.

Definition 3.3.2. Let H be a group and U a subgroup. We call U a characteristic subgroup of H, if

every automorphism α : H → H preserves the subgroup U.

Remark 3.3.3. Note that any characteristic subgroup U is also a normal subgroup, as by defin-

ition a normal subgroup is a subgroup that is preserved by all inner automorphisms. An inner

automorphism is given by

ch : H → H

g 7→ hgh−1

where h is some fixed element of H.

Definition 3.3.4. Let H be a linear algebraic group (over k). The derived subgroup of H is the

intersection of the normal algebraic subgroups N of H such that H/N is commutative. The derived

subgroup of H is denoted DH.

Proposition 3.3.5. [48, Proposition 8.20, Corollary 8.21, Corollary 8.30] The derived subgroup DH

of H has the following properties:

1. DH is a characteristic subgroup and
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2. DH is an algebraic subgroup.

If furthermore H is solvable, then if H is connected (resp. smooth, resp. smooth and connected), then

DH is connected (resp. smooth, resp. smooth and connected).

Proposition 3.3.6. Let UT := U o T be a linear algebraic group where U is the unipotent radical

and T is a torus. Then we can find a subnormal series of U given by

{e} = U0 / U1 / . . . / Un = U

such that the following statements hold.

1. Ui+1/Ui ∼= Ga for each i = 0, . . . , n− 1,

2. each Ui+1 is T -invariant and hence T also acts on Ui+1/Ui and

3. the weight of T acting on Lie(Ui+1)/Lie(Ui) is one of the weights of T acting on Lie(Ui+1).

Proof. Let us first consider the case where U is abelian. Then we obtain an algebraic isomorphism

exp : U → LieU. Choose a basis of LieU consisting of T weight vectors ξ1, . . . , ξn ∈ LieU for the

induced action of T on Lie(U). The subgroups generated by ξ1, . . . ξk for k = 1, . . . n fulfil Properties

1, 2 and 3. For the general case, we use the derived series of U where DU is the derived subgroup

of U and if the n-th derived group DnU is already defined for n ≥ 1, then the (n + 1)-th derived

group is defined by Dn+1H := D(DnH). The derived series for U is the normal series

U . DU . D2U . . . .

Since U is unipotent and hence solvable, it follows that derived series as defined above terminates

after finitely many steps with the trivial subgroup {e}. So let k := min{n ∈ N|DnU = {e}} then

we obtain

{e} = DkU / Dk−1U / . . . / DU / U.

Each DiU ( U is a characteristic subgroup of the smooth group U by Proposition 3.3.5. Since

DiU is preserved by any automorphism of U, it follows that DiU is preserved by each automorph-
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ism in the family Φ : T → Aut(U) associated to the semi-direct product structure. The restric-

tion of Φ to Aut(DiU) yields an inclusion of algebraic groups DiU o T ⊂ U o T. Each of the

quotients DiU/Di+1U is an abelian group and since Di+1U ( DiU is T -invariant we obtain a

semi-direct product DiU/Di+1U o T. This reduces everything to the abelian case but we already

know that we can find a T -invariant subnormal series for DiU/Di+1U o T using the projection

πi : DiU → DiU/Di+1U in combination with the T -invariant subnormal series Ui,0 /Ui,1 /. . ./Ui,ni

for DiU/Di+1U. We consider

πi,j : DiU → DiU/Di+1U → (DiU/Di+1U)/Ui,j

and let U0 := kerπk,0, . . . , Unk := kerπk,nk = kerπk−1,0, Unk+1 := kerπk−1,1 and so on. This yields

the T -invariant subnormal series for U given by

{e} = U0 / . . . / Un = U

where n := nk + . . .+ n1.

To proceed with the induction step in the proof of Lemma 3.3.1, we use the following results.

Proposition 3.3.7. [9, Lemma 1.20] Let U be a unipotent linear algebraic group with a normal

subgroup N such that the projection U → U/N splits and let X be an affine H-variety. Suppose X

has the structure of the total space of a principal N -bundle, and the quotient X/N is the total space of

a principal U/N -bundle, for the canonical action of U/N on X. Then X is a principal U -bundle over

X/U.

Lemma 3.3.8. [9, Lemma 1.21] Suppose H is a linear algebraic group, N is a normal subgroup of

H and X is a H-variety. Suppose all the stabilisers for the restricted action of N on X are finite and

this action has a geometric quotient p : X → X/N. Note that H/N acts canonically on X/N. Then

given y ∈ X/N, the stabiliser StabH/N (y) is finite if and only if StabH(x) is finite for some and hence

all x ∈ p−1(y).

Proof of Lemma 3.3.1. We proceed via induction on n := dimU. For n = 1 we have by Lemma 3.2.1

that X → SpecO(X)U is a trivial principal U -bundle. To proceed with an inductive proof we use
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the subnormal series

{e} = U0 / . . . / Un = U

from Proposition 3.3.6. Suppose that for some k ≥ 1 that qk : X → SpecO(X)Uk =: X ′ is a

trivial principal Uk-bundle. We want to show that q′ : X ′ → SpecO(X ′)Uk+1/Uk is a trivial principal

Ga-bundle and that the composition qk+1 := q′ ◦ qk : X → SpecO(X)Uk+1 is a trivial principal

Uk+1-bundle. By Lemma 3.2.1 q′ : X ′ → SpecO(X ′)Uk+1/Uk is a trivial principal Ga-bundle if the

action Uk+1/Uk o Tg is graded and Uk+1/Uk acts set-theoretically free on X ′. Since X ′ is an affine

variety it follows by Proposition 3.0.7 that the action of Uk+1/Uk o Tg on X ′ is graded. To see that

Uk+1/Uk acts set-theoretically free on X ′ let y ∈ X ′ then there exists x ∈ X such that qk(x) = y.

By Lemma 3.3.8 it follows that StabUk+1
(x) is trivial if and only if StabUk+1/Uk(y) is trivial. By the

assumptions of Lemma 3.3.1 it follows that {e} = StabU (x) ⊃ StabUk+1
and we conclude that

StabUk+1/Uk(y) is trivial. Since all assumptions from Lemma 3.2.1 are satisfied we obtain that

q′ : X ′ → SpecO(X ′)Uk+1/Uk = SpecO(X)Uk+1

is a trivial principal Ga-bundle. It remains to show that qk+1 = q′ ◦ qk : X → SpecO(X)Uk+1 is a

trivial principal Uk+1-bundle. This follows from Proposition 3.3.7 if Uk+1 → Uk+1/Uk splits. Take

Ξ ∈ Lie(Uj+1) \ Lie(Uj) then the associated subgroup of Uj+1 is isomorphic to Ga and splits the

above projection map. It follows that the composition qk+1 = q′ ◦ qk : X → SpecO(X)Uk+1 is a

trivial principal Uk+1-bundle.

Lemma 3.3.9. Let H be a linear algebraic group and X be an affine H-variety. Suppose that U is

the unipotent radical of H and p : X → X/U is a trivial principal U -bundle, then for T a torus of H

there exists a T -equivariant section s : X/U → X.

To prove the above lemma we will use the following results.

Proposition 3.3.10. Let U be a unipotent linear algebraic group and N be a closed normal subgroup

of U. Then q : U → U/N is a trivial principal N -bundle.

Proof. We have that q : U → U/N is a geometric N -quotient with U/N a linear algebraic group

(see [62, p. 19]). By Proposition 2.3.11, a geometric N -quotient has the structure of a principal
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N -bundle if and only if the N -action is free. By Definition 2.3.2 the action of N on U is free if

Ψ : N × U → U × U

is a closed immersion. Using the notation from Chapter 2 we factorise Ψ = (σ, id) ◦ (inc, id) where

(inc, id) : N × U → U × U

is a closed immersion and

(σ, id) : U × U → U × U

is an isomorphism. We conclude that Ψ is a closed immersion and hence q : U → U/N is a principal

N -bundle. By Proposition 3.0.4 it follows that q : U → U/N is a trivial principal N -bundle since

both U and U/N are affine.

Corollary 3.3.11. Let U be a unipotent linear algebraic group with a normal subgroup N. Suppose

that q : X → X/U is a trivial principal U -bundle, then X has the structure of a trivial principal

N -bundle.

Proof. Since X is a trivial principal U -bundle there exists a U -equivariant isomorphism X →

U ×X/U. Then X → U ×X/U → U/N ×X/U is a trivial principal N -bundle.

Proof of Lemma 3.3.9. Let H be a linear algebraic group with T ⊂ H a torus and unipotent radical

U. By proceeding analogously to the proof of Propositon 3.3.6 we obtain a subnormal series for U

{e} = U0 E U1 E . . .E Un = U

such that Ui o T is a subgroup of U o T and Ui+1/Ui is isomorphic to Ga . By applying Corollary

3.3.11 to N = Un−1 we obtain that X → X/Un−1 is a trivial principal Un−1-bundle. By iteration we

obtain that X → X/Ui is a trivial principal Ui-bundle for each 1 ≤ i ≤ n. Furthermore it follows

that X/Ui = SpecO(X)Ui → Spec
(
O(X)Ui

)Ui+1/Ui ∼= X/Ui+1 is a trivial principal Ui+1/Ui-bundle.

To show that X → X/U admits a T -equivariant section we proceed by induction over n =

dimU. For dimU = 1 we have that U ∼= Ga and the action of Ga oT on X gives us a locally
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nilpotent derivation δ : O(X)→ O(X) which is homogenous with respect to the X∗(T )-grading of

O(X). Since X → X/Ga is a trivial principal U -bundle there exists a slice σ ∈ O(X). We write

σ =
∑

χ∈X∗(T )

σχ

with all but finitely many σχ equal to zero. Let χ0 ∈ X∗(T ) be the degree of the homogeneous

locally nilpotent derivation δ then σχ0 is also a slice for δ and O(X) is T -equivariantly isomorphic

to O(X)Ga ⊗k k[σχ0 ]. We conclude that the evaluation at σχ0 = 0 gives a morphism of k-algebras

O(X)→ O(X)Ga which is T -equivariant. Here we consider an element ofO(X) to be a polynomial

in s with coefficients in O(X)Ga . By applying the functor Spec to the T -equivariant morphism of

k-algebras, we obtain a T -equivariant section

s : SpecO(X)Ga → SpecO(X).

By the induction hypothesis, we suppose that X → X/Ui has a T -equivariant section si :

X/Ui → X for some i ≥ 1. Then we obtain a T -equivariant section s′ : (X/Ui)/(Ui+1/Ui)→ X/Ui

since dimUi+1/Ui = 1. We conclude that si+1 := si ◦ s′ is a T -equivariant section of X → X/Ui+1.

To see this recall that qi+1 : X → X/Ui+1 factorises via qi : X → X/Ui composed with q′ : X/Ui →

(X/Ui)/(Ui+1/Ui) and qi+1 ◦ si+1 = (q′ ◦ qi) ◦ (si ◦ s′) = q′ ◦ (qi ◦ si) ◦ s′ = q′ ◦ id ◦s′ = q′ ◦ s′ = id .

We conclude that si+1 : X/Ui+1 → X is a T -equivariant section of the trivial principal Ui+1-bundle

X → X/Ui+1 thus the trivial principal U -bundle X → X/U admits a T -equivariant section.
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Chapter 4

Non-reductive geometric invariant

theory for affine varieties

In the preprint [9] by Bérczi, Doran, Hawes and Kirwan, the notion of a graded unipotent group

Û , was introduced (see Definition 2.5.3). For a linear algebraic group H, they consider the case

where the unipotent radical U of H can be graded by a 1-PS of H. They obtain a theorem for

suitably linearised H-actions on a projective variety under the assumption that U acts freely on the

open stratum for the Białynicki-Birula-decomposition with respect to the flow to 0 for the 1-PS Gm

that grades U. By using a blow-up procedure they obtain several varations of the previous theorem

which have weaker assumptions on the action of unipotent radical U (see Subsection 2.5.2).

In this chapter, we will consider an action of a non-reductive linear algebraic group H on an

affine variety X. Our goal is to construct good or, even better, geometric quotients for open subsets

of X. We distinguish between two approaches to construct these quotients:

1. The first notion is a classical approach to construct a quotient for a graded H-action on X

with respect to a linearisation L of the trivial line bundle X × A1. To obtain a quotient we

use certain H-invariant sections belonging to O(X)H .

2. The other notion is an approach of using quotienting in stages and a certain embedding

inspired by [9].

Let X be an affine H-variety for a linear algebraic group H with unipotent radical U. We recall
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from Definition 3.0.5 that the action of H on X a graded action with respect to a grading subgroup

UTg = U o Tg ⊂ H with Tg a torus if the following conditions are fulfilled:

1. The grading monoid M := {w ∈ X∗(Tg)|O(X)w 6= {0}} ⊂ X∗(Tg) is positive; that is, if
x ∈M and −x ∈M, then x = 0.

2. Additionally we assume for the linear Tg-action on Lie(U) induced by the semi-direct product
structure of U o Tg that {w ∈ X∗(Tg)|Lie(U)w 6= {0}} ∩M = ∅.

We call X a graded H-variety and UTg a grading subgroup for the H-action on X, if the H-action

on X restricted to UTg satisfies Conditions 1 and 2.

From Definition 3.0.5, we obtain Lemma 3.3.1: Suppose, we have a graded action with grading

subgroup UTg on an affine variety X such that for each x ∈ XTg we have that StabU (x) = {e}.

Then the morphism X → SpecO(X)U , corresponding to the inclusion O(X)U → O(X), is a trivial

principal U -bundle.

4.1 Classical approach to construct quotients

Given a linear algebraic group H and an affine H-variety X we lift the H-action on X to the trivial

line bundle X × A1 and denote the linearisation by L. Any linearisation obtained in this manner

corresponds to the choice of a character χ : H → Gm (see Example 2.3.18). From the associated

N-graded ring of sections

R(X,L) :=
⊕
r≥0

H0(X,L⊗r)

by taking the H-invariant subring, we obtain a rational map

qL : X Proj R(X,L)H .

Recall that the maximal domain of definition of qL is called the naively semistable locus and denoted

by Xnss(H,L) (see Definition 2.5.1). If the linearisation L corresponds to the trivial character then

Proj R(X,L)H ∼= SpecO(X)H

is an isomorphism and all points are naively semistable.
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Definition 4.1.1. Let H be a linear algebraic group and X be an affine H-variety. Let L be the

linearisation corresponding to the character χ : H → Gm . We define the intrinsic semistable locus

to be

Xiss(H,χ) :=
⋃

f∈Iiss
Xf

where f ∈ Iiss if f ∈
⋃
r≥1H

0(X,L⊗r)H and Xf → SpecO(Xf )H is a good quotient.

Let T ⊂ H be a maximal torus then the Hilbert-Mumford (semi)stable locus with respect to the

linearised action H y L→ X is given by

XHM−(s)s(H,χ) :=
⋂
h∈H

hX(s)s(T,χ).

If additionally

Xiss(H,χ) = XHM−ss(H,χ)

then we say that the linearised action H y L → X admits a Hilbert-Mumford description of the

semistable set.

Remark 4.1.2. It follows from Proposition 2.3.10 that Xiss(H,χ) admits a good H-quotient. Note

that the Hilbert-Mumford (semi)stable locus does not depend on the choice of the maximal torus

T ⊂ H.

Proposition 4.1.3. We obtain the following chain of inclusions

Xiss(H,χ) ⊆ Xnss(H,χ) ⊆ XHM−ss(H,χ).

Proof. If x ∈ Xiss(H,χ) then there exists n ≥ 1 and f ∈ O(X)Hχn with f(x) 6= 0 and Xf →

SpecO(X)Hf a good quotient. By the definition of the naively semistable locus, it follows that

x ∈ Xf ⊂ Xnss(H,χ). For the second inclusion, let y ∈ Xnss(H,χ) then there exists m ≥ 1 and

g ∈ O(X)Hχm with g(y) 6= 0. Let T ⊂ H be a maximal torus of H. The inclusion O(X)Hχm ⊂

O(X)Tχm yields that Xg ⊂ Xss(T,χ). Additionally Xg is H-invariant since g ∈ O(X)Hχm thus Xg ⊂

XHM−ss(H,χ).

Proposition 4.1.4. LetH be a linear algebraic group with unipotent radical U andX be an irreducible
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affine H-variety. Let L be a linearisation corresponding to a character χ : H → Gm . Given r ≥ 1 and

f ∈ H0(X,L⊗r)H with Xf → SpecO(Xf )U a trivial principal U -bundle; then Xf → SpecO(Xf )H

is a good quotient.

Proof. If Xf → SpecO(Xf )U is a trivial principal U -bundle, then O(Xf )U is finitely generated

since O(Xf ) ∼= O(Xf )U ⊗k O(U) and the finite generation of O(Xf ) and O(U) implies the finite

generation of O(Xf )U . For the induced action of the reductive group H/U on the affine variety

SpecO(Xf )U , we obtain a good H/U -quotient given by the affine GIT quotient SpecO(Xf )U →

Spec(O(Xf )U )H/U . Since X is irreducible, we have O(Xf )H ∼=
(
O(Xf )U

)H/U
. We conclude that

Xf → SpecO(Xf )H is a good H-quotient since it is a composition of a geometric U -quotient with

a good H/U -quotient.

Let q : Z → Y be a good H-quotient. Recall from Definition 2.3.12 that we defined the open

subset Z0 ⊂ Z, consisting of closed H-orbits of maximal dimension, such that q|Z0 : Z0 → q(X0)

is a geometric H-quotient with q(Z0) open in Y (see Proposition 2.3.13).

Notation 4.1.5. In the following lemma and corollary, we set Z := Xiss(H,χ) and denote the subset

Z0 = (Xiss(H,χ))0 by Xs(H,χ).

Lemma 4.1.6. Let H be a linear algebraic group and let X be a graded H-variety with respect to

the grading subgroup UTg with Tg a torus. Let L be a linearisation corresponding to a character

χ : H → Gm with Tg ⊂ ker(χ). Then for the linearised action H y L→ X the following statements

hold.

1. The ring of semi-invariant sections R(X,L)H is determined by the restricted action of the Levi-

factor R; that is, R(X,L)H = R(X,L)R. It follows that R(X,L)H is finitely generated.

2. (Hilbert-Mumford criterion) The intrinsic semistable locus is the Hilbert-Mumford semistable

locus, that is Xiss(H,χ) = XHM−ss(H,χ) = Xss(R,χ) and

qL : XHM−ss(H,χ) → X//L H := Proj R(X,L)H

is a good quotient and moreover X//L H is a projective over affine variety.
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3. If we restrict the morphism qL : XHM−ss(H,χ) → X//L H to the open subset Xs(H,χ) ⊂

XHM−ss(H,χ), then we obtain a geometric quotient

qL : Xs(H,χ) → q(Xs(H,χ)) ⊂ X//L H

with qL(Xs(H,χ)) open in X//L H.

Proof. It is enough to show thatH0(X,L⊗n)R ⊆ H0(X,L⊗n)H . Let f ∈ H0(X,L⊗n)R be a χn-semi-

invariant (that is, for all r ∈ R we have r · f = χn(r)f ); in particular, since Tg ⊂ kerχ ⊂ kerχn, it

follows that f is Tg-invariant. We claim that f is also U -invariant (and thus a H-semi-invariant).

To see this consider the grading subgroup U o Tg. By Proposition 3.3.6, there exists a subnormal

series of U

{e} = U0 / U1 / . . . / Um = U

such that Ui+1/Ui ∼= Ga and for each Ui we obtain a restricted action UioTg on X which is graded.

By quotienting in stages, we obtain the ring of Ui+1-invariants via

O(X)Ui+1 = (O(X)Ui)Ui+1/Ui = (O(X)Ui)Ga .

By induction over dimU, we will show that O(X)Tg = O(X)UoTg ⊂ O(X)U . The Tg-action on

O(X) defines a X∗(Tg)-grading of O(X). For dimU = 1, we have a Ga oTg action. The Ga-action

on X corresponds to a locally nilpotent derivation δ : O(X) → O(X) that is homogeneous with

respect to the grading induced by Tg. The ring of Tg-invariants is given by the degree zero part of

the grading on O(X) and the ring of Ga-invariants is the kernel of the associated locally nilpotent

derivation δ. The action of Ga oTg is graded and hence the weight of δ is not contained in the

grading monoid M. Therefore

δ : O(X)0 → O(X)deg δ

is the zero map since deg δ /∈ M implies O(X)deg δ = {0}. Thus O(X)Tg = O(X)0 = O(X)Ga
0 ⊂

O(X)Ga as required. The ring of Ui-invariants O(X)Ui inherits the X∗(Tg)-grading from O(X) and

by the induction hypothesis we assume that O(X)0 = O(X)Ui0 . Now consider the homogeneous

locally nilpotent derivation δi+1 : O(X)Ui → O(X)Ui correspond to the action of Ga = Ui+1/Ui on
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O(X)Ui . The restriction

δi+1 : O(X)Ui0 → O(X)Uideg δi+1

is the zero map since by Proposition 3.0.7 the action of Ui+1/UioTg satisfies Conditions 1 and 2 of

a graded action. We conclude that O(X)Tg = O(X)0 = O(X)U0 = O(X)UoTg ⊂ O(X)U and obtain

R(X,L)H =
⊕
r≥0

H0(X,L⊗r)H =
⊕
r≥0

H0(X,L⊗r)R = R(X,L)R.

We conclude that X//LH = X//LR. The remaining statements now follow from reductive Geometric

Invariant Theory for affine varieties (see Theorem 2.7.4) and Proposition 2.3.13.

Corollary 4.1.7. Let X be a graded H-variety. Then

1. The morphism q : X → SpecO(X)H is a good quotient.

2. The ring of invariants O(X)H is finitely generated and SpecO(X)H is an affine variety.

3. For x, y ∈ X we have q(x) = q(y) if and only if H · x ∩H · y 6= ∅. Consequently, each H-orbit

in X contains a unique closed orbit.

4. The open subset Xs(H,0) admits a geometric quotient q : Xs(H,0) → q(Xs(H,0)) ⊂ SpecO(X)H

whose image q(Xs(H,0)) is open in SpecO(X)H .

Proof. Properties 1, 2 and 4 are an immediate consequence of Lemma 4.1.6 and Theorem 2.7.1,

where one takes χ to be trivial.

For convenience of the reader we give an elementary proof of property 3: Since q is a good H-

quotient, if the closures of the H-orbit of x and y are disjoint then q(H · x) and q(H · x) are disjoint

which implies that q(x) 6= q(y). Conversely, suppose that q(x) 6= q(y) then q−1(q(x))∩q−1(q(y)) = ∅.

For any z ∈ X we have that q−1(q(z)) is closed and by H-invariance of q, it follows that H · z ⊂

q−1(q(z)). We conclude that H · x ∩H · y ⊂ q−1(q(x)) ∩ q−1(q(y)) = ∅.

In the following result, we consider a graded H-action on an affine variety X. We use certain

H-invariant sections to remove the restriction on the choice of character χ : H → Gm .
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Definition 4.1.8. LetH be a linear algebraic group with a Levi decomposition H ∼= UoR. Suppose

that X is an affine H-variety.

1. We define the strongly stable locus of the unipotent radical subordinate to H to be the open

subset

Xssu(H,U) :=
⋃

σ∈Issu(H,U)

Xσ

where

Issu(H,U) := {σ ∈ O(X)H such that Xσ → SpecO(X)Uσ is a principal U -bundle}.

2. For a character χ : H → Gm and a maximal torus T ⊂ H we define the local (semi)stable

locus for the H-action linearised by χ to be

X l(s)s(H,χ) := Xssu(H,U) ∩XHM−(s)s(H,χ) = Xssu(H,U) ∩
⋂
h∈H

h ·X(s)s(T,χ).

Theorem 4.1.9. Let H be a linear algebraic group with a Levi decomposition H ∼= U o R and X

be a graded H-variety. We lift the H-action on X to the trivial line bundle X × A1 via a character

χ : H → Gm and denote the associated linearisation by L. Then

1. The open subset X lss(H,χ) admits a good quotient via restricting

qL : Xnss(H,L) → X//L H = Proj R(X,L)H

to X lss(H,χ). The image of X lss(H,χ) under qL is open in X//L H and qL(X lss(H,χ)) is a variety.

2. The restriction X ls(H,χ) → X ls(H,χ)/H is a geometric H-quotient that is open in X lss(H,χ)//H.

3. If U acts set-theoretically free on X, then the loci X lss(H,χ) and X ls(H,χ) admit the following

Hilbert-Mumford criterion:

X l(s)s(H,L) =
⋂
h∈H

h ·X(s)s(T,L)

where T ⊂ H is a maximal torus.
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Corollary 4.1.10. Let σ1, . . . , σn ∈ Issu(H,U) then we obtain a good quotient for XHM−ss(H,χ) ∩
n⋃
i=1

Xσi and a geometric quotient for XHM−s(H,χ) ∩
n⋃
i=1

Xσi .

Before we proceed with the proof of the above theorem we will state and prove the following

Propositions.

Proposition 4.1.11. Let H be a linear algebraic group with unipotent radical U and X be an affine

variety with a graded H-action. Then Issu(H,U) ∪ {0} is an ideal of O(X)H and Issu(H,U) =
{
σ ∈

O(X)H \ {0}|∀x ∈ Xσ : StabU (x) = {e}
}
.

Proof. Given σ ∈ Issu(H,U) and τ ∈ O(X)H \ {0} we have to show that τσ ∈ Issu(H,U). If σ = 0

then there is nothing to show so we assume that σ 6= 0. By definition of Issu(H,U) we have that

Xσ → SpecO(X)Uσ is a principal U -bundle. SinceXτσ is open inXσ and U -invariant, the restriction

of Xσ → SpecO(X)Uσ to Xτσ → SpecO(X)Uστ is a trivial principal U -bundle. We conclude τσ ∈

Issu(H,U). It remains to show that for σ1, σ2 ∈ Issu(H,U) we have σ1 + σ2 ∈ Issu(H,U). If σ1 + σ2 = 0

there is nothing to show. So let σ1 + σ2 6= 0 then Xσ1+σ2 ⊂ Xσ1 ∪Xσ2 . By definition of Issu(H,U)

we have that Xσi → SpecO(X)Uσi is a trivial principal U -bundle and so we conclude that each

x ∈ Xσ1+σ2 has trivial U -stabiliser. Since σ1 +σ2 is a H-invariant function it has degree zero for the

torus Tg of the grading subgroup U o Tg ⊂ H for the H-action on X. It follows that the H-action

on Xσ1+σ2 is graded with trivial U -stabilisers and we conclude that Xσ1+σ2 → SpecO(Xσ1+σ2)U

is a trivial principal U -bundle by Lemma 3.3.1. From the equality O(Xσ1+σ2)U = O(X)Uσ1+σ2 we

conclude σ1 + σ2 ∈ Issu(H,U).

It is obvious that Issu(H,U) ⊆
{
σ ∈ O(X)H \ {0}|∀x ∈ Xσ : StabU (x) = {e}

}
. For the converse

inclusion we use the fact that the H-action on the affine open subsets Xσ is graded, because σ is

H-invariant and the H-action on X is graded. By assumption each x ∈ Xσi has trivial U -stabiliser

thus Lemma 3.3.1 applies and we obtain that Xσi → Xσi/U is a trivial principal U -bundle. We

conclude that Issu(H,U) =
{
σ ∈ O(X)H \ {0}|∀x ∈ Xσ : StabU (x) = {e}

}
.

Proposition 4.1.12. Let H be a linear algebraic group with a Levi-decomposition H ∼= U o R and

let X be an affine H-variety. Further suppose that p : X → X/U is a trivial principal U -bundle. If we
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linearise the trivial line bundles over X and X/U with respect to a character χ : H → Gm then

XHM−ss(H,χ) = p−1
(
(X/U)ss(H/U,χ)

)
and XHM−s(H,χ) = p−1

(
(X/U)s(H/U,χ)

)
.

Proof. By Lemma 3.3.9 there exists for each torus T of H a T -equivariant section sT : X/U → X.

Recall for a reductive group G and an affine G-variety Y that (semi)stability with respect to a

character χ : G→ Gm can be characterised by

Y (s)s(G,χ) =
⋂
g∈G

gY (s)s(T ′,χ) =
⋂

Ta maximal torus of G

Y (s)s(T,χ)

where T ′ is any fixed maximal torus of G. We conclude that x ∈ (X/U)ss(H/U,χ) if and only if for

each maximal torus T of H/U we have that x ∈ (X/U)ss(T,χ). To obtain the equality

⋂
h∈H

hX(s)s(T,χ) = p−1
(
(X/U)(s)s(H/U,χ)

)
it suffices to show for x ∈ X and a fixed maximal torus T that z := p(x) is (semi)stable with respect

to T if and only if each x′ ∈ U · x is (semi)stable with respect to T. Let λ : Gm → T be a 1-PS such

that lim
t→0

λ(t) ·x exists. Then by T -equivariance of p it follows that also lim
t→0

λ(t) · z exists. Conversely,

let λ : Gm → T be a 1-PS such that lim
t→0

λ(t) · z exists then by T -equivariance of sT : X/U → X it

follows that lim
t→0

λ(t) · x′ exists where x′ := sT (x) with x′ ∈ U · x . In both cases we can determine

the Hilbert-Mumford weight from the pairing 〈χ, λ〉. We conclude that p(x) ∈ X/U is semistable

(respectively stable) with respect to T if and only if each x′ ∈ U · x is semistable (respectively

stable) with respect to T.

Proposition 4.1.13. Let A =
⊕

d≥0Ad be an N-graded algebra and σ ∈ A0 be a homogeneous

non-zero divisor of degree zero. We let B = Aσ be the localisation of A at σ. Then B =
⊕

d≥0Bd is

an N-graded algebra with a natural morphism of graded algebras ι : A → B. Moreover the induced

rational morphism ProjB ProjA is an open immersion with image {p ∈ ProjA|σ /∈ p}.

Proof. We assume that the reader is familiar with the Proj construction and any facts that we

use in the following proof can be found in [32, pp. 366-373]. The domain of definition of
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ProjB ProjA is given by

D := {p ∈ ProjB|ι(A+) 6⊂ p}.

To see that D = ProjB we will show that the ideal generated by ι(A+) is B+. Since ι is a ho-

momorphism of N-graded algebras we have that ι(Ad) ⊂ Bd and hence ι(A+) ⊂ B+. Conversely,

let f ∈ Bd be a homogeneous element for some d ≥ 1. For a suitable large n ∈ N it follows that

σnf = h
1 for some h ∈ Ad. We conclude that h

1 ∈ 〈ι(A+)〉 but then also h
σn ∈ 〈ι(A+)〉. By [32,

Proposition 2.12] the image ProjB → ProjA is given by

{p ∈ ProjA|σ /∈ p}.

Let (fi)i∈I be a family of homogeneous elements in A that generates the irrelevant ideal A+. Then

{p ∈ ProjA|σ /∈ p} =
⋃
i∈I D+(σfi) and we have that 〈ι(σfi)|i ∈ I〉 = 〈ι(fi)|i ∈ I〉 = B+. Since an

open immersion is local on the target, it is enough to show for each i ∈ I that

D+(ι(σfi))→ D+(σfi)

is an open immersion. This restricted morphism is given by

D+(ι(σfi)) ∼= SpecB(
ι(σfi)

) → SpecA(σfi)
∼= D+(σfi)

which corresponds to the isomorphism

A(σfi) → B(
ι(σfi)

).
We conclude that ProjAσ = ProjB → ProjA is an open immersion.

Proof of Theorem 4.1.9. By Proposition 4.1.11 we have that Issu(H,U) is an ideal in O(X)H . By

Corollary 4.1.7 it follows that O(X)H is a finitely generated k-algebra thus the ideal Issu(H,U) is

finitely generated. Let σ1, . . . , σr generate the ideal Issu(H,U) then Xssu(H,U) =
⋃r
i=1Xσi .
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We lift the action ofR ∼= H/U on Xσi/U to the trivial line bundle (Xσi/U)×A1 via the character

χ : H/U → Gm and denote the linearisation by L. Note that characters of H and of H/U are in

bijective correspondence since each character of H contains the unipotent radical of H in its kernel.

By reductive geometric invariant theory, we obtain a rational morphism qi : Xσi/U (Xσi/U)//L

(H/U) = Proj R(Xσi/U,L)H/U with qi : (Xσi/U)ss(H/U,χ) → (Xσi/U)//L (H/U) a good quotient.

If we take the preimage of
(
Xσi/U

)ss(H/U,χ) under the trivial U -quotient qU : Xσi → Xσi/U we

obtain an open subset of Xσi that has a good quotient via composition with the good quotient for

H/U.

It remains to show that q−1
U (X

(s)s(H/U,χ)
σi ) = Xσi ∩XHM−(s)s(H,χ). By Proposition 4.1.12 we have

that

q−1
U (X(s)s(H/U,χ)

σi ) =
⋂
h∈H

hX(s)s(T,χ)
σi = XHM−(s)s(H,χ)

σi .

To see that XHM−(s)s(H,χ)
σi = Xσi ∩XHM−(s)s(H,χ) we will show that x ∈ Xσi is T -(semi)stable as a

point in X if and only if x is T -(semi)stable as a point in Xσi . The inclusion X(s)s(T,χ)
σi ⊂ X(s)s(T,χ)

is trivial. For the converse inclusion we claim that for a 1-PS λ : Gm → T and x ∈ Xσi such that

the limit lim
t→0

λ(t) · x exists in X then lim
t→0

λ(t) · x belongs to Xσi . By definition of the limit the

morphism Gm → X given by t 7→ λ(t) · x extends to a continuous map A1 → X. The composition

A1 → X
σi→ A1 is constant on Gm ⊂ A1 by the H-invariance of σi. It follows by continuity of σi that

σi(lim
t→0

λ(t) · x) = σi(x) 6= 0. We conclude that Xσi ∩XHM−(s)s(H,χ) = X
HM−(s)s(H,χ)
σi .

By the following chain of isomorphisms

R(X,L)Hσi = R(Xσi ,L)H =
(

R(Xσi ,L))U
)H/U

= R(Xσi/U,L)H/U

we obtain an isomorphism Proj R(Xσi/U,L)H/U ∼= Proj R(X,L)Hσi . By Proposition 4.1.13, the

morphism ProjR(X,L)Hσi → Proj R(X,L⊗r)H is an open immersion. By patching together these

local quotients on the overlaps we obtain a good quotient for

X lss(H,χ) → Y :=
r⋃
i=1

Proj R(X,L)Hσi ⊂ Proj R(X,L)H

and a geometric quotient for X ls(H,χ) → Z ⊂ Y. The quotient X lss(H,χ) → Y is obtained by



72 CHAPTER 4. NON-REDUCTIVE GEOMETRIC INVARIANT THEORY FOR AFFINE VARIETIES

gluing finitely many varieties and by [47, Proposition 4.13] it is a prevariety. It remains to show

that Y is separated. The open immersion from Y → Proj R(X,L)H is separated. Additionally

Proj R(X,L)H → SpecO(X)H is separated. By Corollary 4.1.7, SpecO(X)H is a variety, thus

SpecO(X)H → Speck is separated. It follows that the morphism from Y → Speck is separated,

since a composition of separated morphisms is separated. We conclude that Y is a variety.

To show that the third statement of Theorem 4.1.9 holds, note that the H-invariant section

σ = 1 belongs to Issu(H,U).

Proof of Corollary 4.1.10. Since σi ∈ Issu(H,U), it follows Xσi → Xσi/U is a trivial principal U -

bundle and if x ∈ Xσi admits a limit under a 1-PS λ, then the limit belongs to Xσi . We conclude

that as in the proof of Theorem 4.1.9 that XHM−ss(H,χ) ∩
n⋃
i=1

Xσi admits a good quotient and

XHM−s(H,χ) ∩
r⋃
i=1

Xσi admits a geometric quotient.

Remark 4.1.14. If the H-action on X is not graded, then O(X)H may not be finitely gener-

ated. Furthermore we did use the assumption that the H-action on X is graded to show that

Issu(H,U) ∪ {0} is an ideal. Therefore the covering Xssu(H,U) =
⋃

σ∈Issu
Xσ need not be finite.

We obtain the weaker result that qL : X lss(H,χ) →
⋃

σ∈Issu(H,U)

Proj
⊕

r≥0H
0(X,L⊗r)Hσ is a good

quotient with
⋃

σ∈Issu(H,U)

Proj R(X,L)Hσ an open subscheme of Proj R(X,L)H . We conclude that⋃
σ∈Issu(H,U)

Proj R(X,L)Hσ is a reduced, separated scheme locally of finite type over k.

"

4.2 Using quotienting in stages and a certain embedding to construct

quotients

The main result of this section is Theorem 4.2.5 which is the affine analogue to the projective

Û -Theorem by Bérczi, Doran, Hawes and Kirwan (see Theorem 2.5.8).

Definition 4.2.1. LetH be a linear algebraic group with a fixed Levi decomposition H = UoR and

W be a rational representation of H. Additionally, let W be a H/U -representation and ev : W → V

be a morphism which is equivariant relative to H → H/U. Suppose that V ′ ⊂ V is an open H-

invariant subset such that W ′ → W ′/U is a principal U -bundle. If the morphism ev : W → V
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restricted to W ′ factorises via W ′ → W ′/U with W ′/U → V ′ a closed immersion and V ′ open in

V then we call the pair (ev, V ) an affine completion of the U -quotient W ′ →W ′/U. Suppose that

(ev, V ) is an affine completion of the U -quotient W ′ →W ′/U and linearise the H/U -action on V

with respect to a character χ : H/U → Gm . We define the relative (semi)stable loci

W rss(H,χ) = V rss(H,χ,ev,W ′) := ev−1(ev(W ′) ∩ V ss(H/U,χ))

and

W rs(H,χ) = V rs(H,χ,ev,W ′) := ev−1(ev(W ′) ∩ V s(H/U,χ)).

Remark 4.2.2. 1. The approach to construct an H-quotient is to first construct a quotient for

the unipotent radical of H and then to embed this quotient space in an affine completion

and apply reductive geometric invariant theory on the affine completion. This mimics the

approach of Bérczi, Doran, Hawes and Kirwan (see Theorem 2.5.8) of first constructing a

(projective) completion of the U -quotient and then applying reductive GIT to the projective

completion of the U -quotient. The idea to use an affine completion instead to apply reductive

geometric invariant theory was to obtain a Hilbert-Mumford criterion for the stable and

semistable locus as claimed by Bérczi, Doran, Hawes and Kirwan. It is unclear whether such

a Hilbert-Mumford criterion is true in the affine case.

2. Note that the obvious morphism X → SpecO(X)U is an affine completion in the category

of affine schemes, since O(X)U needs not be finitely generated. Additionally, the morphism

X → SpecO(X)U is in general not surjective. In order to mimic the construction from the

projective Û -theorem we will use an affine completion given by some An. This yields a

quotient variety whereas the affine completion X → SpecO(X)U gives a quotient in the

category of schemes.

3. If we assume that V ss(H/U,χ) ⊂ V ′ then it follows that W rss(H,χ) admits a good quotient and

W rs(H,χ) admits a geometric quotient. To obtain the inclusion V ss(H/U,χ) ⊂ V ′ we introduce

the notion of an N-indexed family of multiplicative subgroups of H; for further details, see

Definition 4.2.4.
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Notation 4.2.3. For an action β : (U oGm)×W →W such that β|Gm : Gm×W →W acts linearly,

we introduce the following notation.

1. The β-weight space decomposition for Gm acting via β on W is denoted by

W =

r(β)⊕
i=1

Wωi(β)

where Wωi(β) = {w ∈W |β(t, w) = tωi(β)w} and we order the Gm-weights so

ω1(β) < . . . < ωr(β)(β).

2. For any vector subspace V ⊂W, we write V 0 := V \ {0}. We denote by Wmin,β := W 0
ω1(β).

3. Let pmin,β : W →W denote the projection onto Wω1(β) and write W+
min,β := W \ ker pmin,β.

Definition 4.2.4. (Compare Definition 2.5.7) Let H be a linear algebraic group with unipotent

radicalU andW be aH-representation. To an N-indexed family of central one-parameter subgroups

λn : Gm → Z(R) of the Levi factor R, we associate a family of Gm-extensions of the unipotent

racial U of H via

U oGm → H

(u; t) 7→ u · λn(t).

We denote the corresponding subgroup of H by Ûn. The family (Ûn)n∈N is said to be adapted to the

H-representation W , if the following assumptions are satisfied, for the actions αn : Ûn ×W →W

obtained from restricting the H-action to Ûn.

(A1) For all n ∈ N we have

ω1(α0) ≤ ω1(αn) and ω2(αn) < ω2(αn+1)

where the weights are assumed to be totally ordered such that

ω1(αi) < 0 ≤ ω2(αi) < . . . < ωri(αi)

for each 1-PS λi.

(A2) For all n ∈ N we assume the equality Wmin,α0 = Vmin,αn . In the following we drop the
dependence on αn from the notation and write Wmin and W+

min.

(A3) The U -stabiliser for each x ∈ Wmin is trivial and Û0 is a graded extension of the unipotent
radical of H.
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Theorem 4.2.5. Let H be a linear algebraic group with a Levi-decomposition U o R. Suppose that

λn : Gm → Z(R) ⊂ H is an N-indexed family of central 1-PS adapted to a H-representation W.

Suppose for each n ∈ N, there is a character χn : H → Gm such that 〈χn, λn〉 < 0. Then for n large

enough the following statements hold.

1. The locus W+
min admits a geometric Ûn-quotient q : W+

min →W+
min/Ûn withW+

min/Ûn a projective

over affine variety and W+
min = W ss(λn(Gm),χn) = W s(λn(Gm),χn).

2. There exists an affine completion of W+
min → W+

min/U such that the corresponding relative

semistable locus W rss(H,χn) admits a good H-quotient

q : W rss(H,χn) →W rss(H,χn)//H

with W rss(H,χn)//H a projective over affine variety.

3. The restriction q
∣∣
W rs(H,χn) : V rs(H,χn) → q(W s(H,χn)) is a geometricH-quotient with q(W rs(H,χn))

open in W rss(H,χn)//H.

4.2.1 The proof of Theorem 4.2.5

To prove the affine Û -Theorem we need several preliminary results:

1. We show that the open subset W ′ := W+
min admits a principal U -bundle quotient. Fur-

thermore for a suitable N-indexed sequence of characters χn : H → Gm we show that

W+
min = W ss(λn(Gm),χn) = W s(λn(Gm),χn).

2. We show that there exists an affine completion (ev, V ) for W+
min →W+

min/U. Additionally, for

a suitable choice of an affine completion ev : W → V, the closed immersion W+
min/U → W ′

has the additional property that W ′ = W ss(λn(Gm),χn) = W s(λn(Gm),χn) for sufficiently large

n.

Some properties of the locus W+
min

In this subsection we show that W+
min is H-invariant and admits a principal U -bundle quotient.
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Proposition 4.2.6. Let H be a linear algebraic group with unipotent radical U and Û = U o Gm

be a graded unipotent group such that Û/U lies in the centre of H/U. For a H-representation W, we

obtain that the linear projection pmin : W → W to the minimal weight space Wωmin is equivariant

relative to H → H/U. Consequently it follows that W+
min is H-invariant.

Proof. By assumption Û is a graded unipotent group and pmin is the projection to the minimal

weight space of the grading subgroup Gm ⊂ Û . In particular the grading subgroup Gm acts on

Lie(U) with positive weights. Consider A ∈ LieU \ {0} a Gm-weight vector of weight ω > 0 which

determines a locally nilpotent derivation δA on W that is also a Gm-weight vector of weight ω > 0.

The corresponding subgroup of U, which is isomorphic to Ga, acts on W via

u · w := exp(uδA)(w)

for u ∈ U and w ∈ W. Let w be a Gm-weight vector. We claim for u ∈ Ga that we can write

u · w = w + w′ with wtGm(w) < min wtGm(w′). Note that for u ∈ U

u · w = exp(uδA)w =

nw∑
i=0

uiδiA(w)

i!
= w +

nw∑
i=1

uiδiA(w)

i!
= w + w′

where nw := min{n ∈ N|δnA(w) = 0}. Together with t · (u · w) = (t · u) · w =
(
(tωu) · t

)
· w we

obtain wtGm(w) < wtGm(w) + ω ≤ min(wtGm(w′)). We conclude by linearity of the U -action, for

any w ∈ W and any Gm-weight vector A ∈ Lie(U), that pmin(exp(uδA)w) = pmin(w). It follows

that for all u ∈ U and w ∈W that pmin(u · w) = pmin(w), since Lie(U) is generated by Gm-weight

vectors.

We claim for the central 1-PS Gm of our Levi-factor R ∼= H/U that the Gm-weight spaces get

preserved under the restricted R-action. Let w ∈ Wω ⊂ W be a Gm-weight vector; then we have

for all t ∈ Gm and r ∈ R that t · w = tωw and

r · (t · w) = (rt) · w = (tr) · w = t · (r · w)

holds. By linearity of the R-action we conclude that indeed t · (r · w) = tω(r · w).
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For r ∈ R and w ∈ W, we decompose w = wmin + w′ with wmin ∈ Wωmin and w′ ∈
⊕

ω>ωmin

Wω

then

pmin(r · w) = pmin

(
r · (wmin + w′)

)
= pmin

(
r · wmin + r · w′)

)
= pmin(r · wmin) + pmin(r · w′)

= r · wmin + 0 = r · pmin(wmin) = r · pmin(w),

which proves the claimed equivalence of pmin, where the equality between the first and the second

line follows as the Gm-weight spaces are R-equivariant. We conclude for all h ∈ H and w ∈W that

pmin(w) 6= 0 if and only if pmin(h·w) 6= 0 which implies thatW+
min := W \ker pmin isH-invariant.

Proposition 4.2.7. Let W be a H-representation satisfying the assumptions of Definition 4.2.4 and

χn : H → Gm be a character such that 〈χn, λn〉 < 0, then the locus W+
min is equal to the Gm-

(semi)stable locus W ss(λn(Gm),χn) = W s(λn(Gm),χn).

Proof. The claim follows immediately from the discrete-geometric Hilbert-Mumford criterion (see

Corollary 2.7.9) a point x ∈W is

1. semistable with respect to % if and only if % ∈ Cone(wtT (x)); and,

2. stable with respect to % if and only if % belongs to the interior of Cone(wtT (x)).

Since T = Gm we have that Cone(wtT (x)) is the origin, a half space containing the origin or

the space X∗(Gm)R. By our assumption 〈χn, λn〉 < 0 thus w ∈ W is semistable if and only if

pmin(w) 6= 0. Furthermore if χn|λn(Gm) belongs to Cone(wtλn(Gm)(w)) then the only potential

boundary point of Cone(wtλn(Gm)(w)) is 0 thus χn|λn(Gm) belongs to Cone(wtλn(Gm)(w)) if and

only if χn|λn(Gm) belongs to the interior of Cone(wtλn(Gm)(w)).

Proposition 4.2.8. Let Û be a graded unipotent group and W be a Û -representation with minimal

weight space Wωmin . Suppose that σ ∈ O(Wωmin) ⊂ O(W ) is such that each x ∈ Wσ has trivial

U -stabiliser. Then Wσ → SpecO(W )Uσ is a trivial principal U -bundle. If each x ∈ Wmin has a trivial

U -stabiliser, then W+
min →W+

min/U is a principal U -bundle.

Proof. To obtain that Wσ admits a trivial principal U -bundle quotient, we invoke Lemma 3.3.1.

Thus it is enough to show that the U -action on W extends to a graded Û -action, since U acts
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set-theoretically free on Wσ. By twisting the linear Û -action with the character corresponding to

the weight −ωmin, we obtain for the twisted Û -action that ωmin = 0 and that the function σ is a

Û -invariant. In other words the weight space decomposition of W for the twisted Û -action consists

of non-negative weights. Thus the Gm-weights of O(W ) are non-positive and by our assumption

we have that Gm acts on Lie(U) with positive weights. It follows that the twisted Û -action on W is

graded in the sense of Definition 3.0.5. The grading of O(Wσ) ∼= O(W )σ for the twisted Û -action

is also non-positive since σ is a Û -invariant. Thus the twisted Û -action on Wσ is graded with trivial

U -stabilisers. By Lemma 3.3.1, it follows that Wσ → SpecO(Wσ)U is a trivial principal U -bundle.

If each x ∈ W+
min has trivial U -stabiliser, then we can cover W+

min by finitely many Û -invariant

principal open subsets thus W+
min →W+

min/U is a principal U -bundle.

Embedding the locally trivial U -quotient

Let X be an affine H-variety and F ⊂ O(X) be a finite dimensional H-invariant vector subspace.

The inclusion F ⊂ O(X) extends to a morphism Sym•(F ) → O(X) which defines a morphism

X → Spec Sym•(F ). Moreover, if F contains a generating system of O(X) as a k-algebra, then

the morphism X → F∨ ∼= Spec Sym•(F ) is a H-equivariant closed immersion (see [17, Lemma

A.1.9]). In the following definition we will assume that X = V is a rational H-representation and

U is the unipotent radical of H.

Definition 4.2.9. Let W ′ be an open subset of W together with a finite covering by principal open

U -invariant subsets Wσi ⊂ W indexed by i = 1, . . . , r such that each Wσi → SpecO(Wσi)
U is a

trivial principal U -bundle. We call a finite dimensional vector subspace F of O(W )U a U -separating

subspace adapted to the finite covering W ′ =
r⋃
i=1

Wσi if the following conditions are satisfied:

1. The space F contains regular functions g1, . . . , gl ∈ O(W )U such that O(Wσi)
U ∼= O(W )Uσi is

generated g1, . . . , gl and 1
σi

as a k-algebra for each i = 1, . . . , r.

2. F contains a finite H-separating set S for U acting on W such that σ1, . . . , σr ∈ S (see

Definition 2.6.2).

3. F is H-invariant.
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We also consider a H-invariant finite dimensional k-subspace G of O(W ) such that G contains F

and a generating system of O(W ) as a k-algebra. Define Y := G∨ and V := F∨. Let ev : W → V

be the morphism corresponding to the ring homomorphism from Sym•(F ) → O(W ) induced by

the inclusion F ⊂ O(W ).

Let pr : Y → V be the restriction map and W → Y the morphism corresponding to the ring

homomorphism Sym•(G)→ O(W ) induced by the inclusion G ⊂ O(W ).

Proposition 4.2.10. Given W ′ = ∪mi=1Wσi ⊂W and F ⊂ G ⊂ O(W ) as in Definition 4.2.9, consider

the morphism ev : W → V together with the natural H-action on V induced by the H-action on

F ⊂ O(W )U . Then the following statements hold.

1. The morphism ev is equivariant relative to π : H → H/U.

2. The following diagram is commutative

W Y

SpecO(W )U V.

evπU pr

3. If we restrict the morphism ev to W ′, then we obtain the following commutative diagram

W ′ V ′

W ′/U

ev

π
ι

where V ′ := ∪ri=1Vσi is an open subset of V and W ′/U ι→ V ′ is a closed immersion.

Proof. By definition the evaluation map ev : W → V := Homlin(F,A1) corresponds to the homo-

morphism Sym•(F )→ O(W ) induced by the inclusion of F intoO(W ). Analogously, the morphism

V → Y is defined via the homomorphism Sym•(G)→ O(W ) induced by the inclusion G ⊂ O(W ).

Since G contains a generating system of the k-algebra O(W ) it follows that W → Y is a closed im-

mersion. The inclusion F ⊂ G implies that Sym•(F )→ O(W ) factorises via Sym•G. By definition

of F, it follows that Sym•(F )→ O(W ) also factorises via O(W )U since F ⊂ O(W )U . We obtain a

commutative diagram
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O(W ) Sym•(G)

O(W )U Sym•(F ).

By applying the functor Spec we obtain Statement 2.

For Statement 1, to see that ev : W → V = F∨ is equivariant relative to H → H/U, we first

claim that ev(x) = evx : F → k is the linear map given by evx(f) = f(x) for x ∈ V. Since a

morphism of varieties over an algebraically closed field k is determined on the level of k-points, it

is enough to show for a k-point Speck
x→ V that ev(x) = evx . Given

Speck
x→W

ev→ F∨

we obtain the corresponding morphism of k-algebras

Sym•(F )→ O(W )→ O(W )/mx
∼= k.

By restricting to F we obtain

F
inc→ O(W )→ O(W )/mx

∼= k

f 7→ f 7−−−→ f̄

which corresponds to evaluating f at x as claimed.

Let L ∈ V = F∨ (respectively L ∈ Y = G∨). We define the H-action on V (respectively

Y ) by (h · L)(f) := L(h−1 · f) where f : V → A1 is an element of F (respectively G) and

(h · f)(x) := f(h−1x) for h ∈ H and x ∈ V. Note that the H-action on V (respectively Y ) is

well-defined since for h ∈ H and f ∈ F (respectively f ∈ G) it follows that h−1f belongs F

(respectively G) by the H-invariance of F (respectively G). For L = evx, we obtain

(h · evx)(f) = evx(h−1 · f) = (h−1 · f)(x) = f(h · x) = evh·x(f).
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For u ∈ U, it follows from the fact that each f ∈ F is U -invariant that

u · evx(f) = evu·x(f) = f(ux) = f(x) = evx(f).

We conclude that ev : W → V is equivariant relative to π : H → H/U.

It remains to prove the third Statement. By definition, we have a cover W ′ =
⋃r
i=1Wσi and

for each i = 1, . . . , r we have that σi ∈ F ⊂ Sym•(F ). Consider the open subset V ′ :=
⋃r
i=1 Vσi

of V where Vσi = Spec(Sym•(F ))σi . We claim that the induced morphism W ′/U → V ′ is a

closed immersion. The property of a morphism to be a closed immersion is local on the target.

Therefore, it is enough to show that for each i = 1, . . . , r the morphism Wσi/U → Vσi is a closed

immersion. By the first property of the definition of F, the associated morphism of k-algebras

(Sym•(F ))σi → O(Wσi)
U is surjective. Thus Wσi/U → Vσi is a closed immersion. It follows that

W ′/U → V ′ is a closed immersion.

Remark 4.2.11. Let W be a H-representation and (Ûn)n∈N be an N-indexed family adapted to

the H-representation W (see Definition 4.2.4). In the following we consider a covering of W+
min

induced by a basis b1, . . . , br of the weight space Wωmin = Wωmin(αn). Let σ1, . . . , σr be the dual

basis to b1, . . . , br. We fix the covering W+
min =

r⋃
i=1

Wσi .

Lemma 4.2.12. Let H be a linear algebraic group and V be a rational H-representation admitting

an N-indexed family (Ûn)n∈N. Then there exists a U -separating subspace F ⊂ O(W )U adapted to the

covering W+
min =

r⋃
i=1

Wσi .

Proof. Given the covering W+
min =

r⋃
i=1

Wσi we will show that there exists a U -separating subspace

F adapted to this covering. By Proposition 4.2.8, it follows that Wσi → SpecO(Wσi)
U is a trivial

principal U -bundle and thus W+
min → W+

min/U is a principal U -bundle. By Theorem 2.6.3, there

exists a finite separating system of U -invariants s1, . . . , sk for the U -action on W. Since Wσi →

SpecO(Wσi)
U , is a trivial principalU -bundle, it follows thatO(Wσi)

U is finitely generated. Together

with the isomorphism

O(Wσi)
U ∼=

(
O(W )U

)
σi

we deduce that there exist finitely many elements g1, . . . , gl ∈ O(W )U such that each O(Wσi)
U is
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generated as a k-algebra by g1, . . . , gl and 1
σi
.

Let F be the k-vector space generated by h · sj and h · gi for h ∈ H, 1 ≤ i ≤ k and 1 ≤ j ≤ l.

By definition of F it follows that F is H-invariant. Furthermore, since H acts rationally on O(W )U

the vector subspace F ⊂ O(W )U is finite dimensional. Additionally F contains a finite separating

system, σ1, . . . , σr and the functions g1, . . . , gl thus we conclude that F is a U -separating subspace

adapted to the covering W+
min =

r⋃
i=1

Wσi in the sense of Definition 4.2.9.

Lemma 4.2.13. Let H be a linear algebraic group and V be a rational H-representation admitting

an N-indexed family (Ûn)n∈N. Then we can choose a U -separating subspace F ⊂ O(W )U adapted to

the covering W+
min =

r⋃
i=1

Wσi such that for n ∈ N large enough W+
min/U is closed in V ss(λn(Gm),χn) =

V s(λn(Gm),χn) where χn : H → Gm is a character satisfying 〈χn, λn〉 < 0.

Proof. Let F be the U -separating subspace adapted to the covering W+
min =

r⋃
i=1

Wσi as constructed

in the proof of Lemma 4.2.12. We claim that the following statements hold for n ∈ N a sufficiently

large natural number.

1. A λn(Gm)-weight vector f ∈ F has a positive weight if and only if f 7→ pf (σ) via the

homomorphism Sym•(F )→ O(W ) where pf (σ) is a polynomial in σ1, . . . , σr.

2. V ss(λn(Gm),χn) =
⋃
Vf where the union is taken over f ∈ F such that f 7→ pf (σ) via the

homomorphism Sym•(F )→ O(V ) where pf (σ) is a non-constant polynomial in σ1, . . . , σr.

3. The image of the morphism ev : W → V is contained in the locus Y := {f − pf (σ) = 0|f ∈

F with f 7→ pf under Sym•(F )→ O(W )}.

4. We have V ′ ∩ Y = V ss(λn(Gm),χn) ∩ Y.

Suppose Statements 1 to 4 are true. We already know that W+
min/U ⊂ ∪ri=1Vσi = V ′ is closed by

Proposition 4.2.10. By Statement 3 we obtain the inclusion W+
min/U ⊂ V ′ ∩ Y. We conclude that

W+
min/U is closed in V ′ ∩ Y. Finally, by Statement 4 V ′ ∩ Y = V ss(λn(Gm),χn) ∩ Y which is closed in

V ss(λn(Gm),χn) thus we conclude that W+
min/U is closed in V ss(λn(Gm),χn).

It remains to show that Statements 1 to 4 hold. We denote by DF := max{deg g|g ∈ F}. By

Property (A1) of Definition 4.2.4 there exists a natural number n ≥ 1 such that |ω1(α0)|DF <
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n ≤ ω2(αn). For Statement 1 let f ∈ F be a λn(Gm)-weight vector. The H/U -action on F is

the induced action from H/U on O(V )U by restricting to F. We claim that any λn(Gm)-weight

vector f ∈ F has a positive λn(Gm)-weight if and only if it gets mapped to a polynomial of the

form pf (σ) by the homomorphism Sym•(F ) → O(W )U . Let q ∈ O(W )U be the image of f then

wtλn(Gm) f = wtλn(Gm) q. In particular it follows that q is a λn(Gm)-weight vector since f is a

λn(Gm)-weight vector. Suppose that q is of the form pf (σ). By remark 4.2.11, we have chosen

a basis b1, . . . , br of the weight space Wωmin and the corresponding dual basis σ1, . . . , σr of the

dual λn(Gm)-representation. From the definition of the N-indexed family of 1-PS it follows for

each n ∈ N that the λn(Gm)-weight vector bi has the negative weight ωmin(λn), thus the dual

vector σi is a λn(Gm)-weight vector of positive weight −ωmin(λn). Any monomial of q = pf has the

same weight as the λn(Gm)-weight vector q and is given by a product of the form
r∏
i=1

σlii . Thus the

weight of q is a non-negative combination of the weights of the σ1, . . . , σr and therefore positive

as claimed.

Conversely, suppose that the λn(Gm)-weight of q is positive then we have to show that q is of the

form pf (σ). We extend b1, . . . , br by c1, . . . , cs to obtain a basis of V consisting of λn(Gm)-weight

vectors. Using the corresponding dual basis σ1, . . . , σr, τ1, . . . , τs we can write q as a finite sum

of monomials in σ1, . . . , σr, τ1, . . . , τs. Each of these monomials is a λn(Gm)-weight vector of the

same weight as q. Thus we assume without loss of generality that q is a monomial λn(Gm)-weight

vector. We can decompose the monomial q into a product q = q+q− or q = q+ with wtλn(Gm) q+ > 0

and wtλn(Gm) q− < 0. If q = q+ then q is a polynomial in σ1, . . . , σr since the λn(Gm)-weights of V

satisfy ω1(αn) < 0 < ω2(αn) < . . . < ωmax(αn) and σ1, . . . , σr is a dual basis for the weight space

Vω1 . So suppose that q = q+q− then it follows that

wtλn(Gm) q+ ≤ |ω1(αn)| deg q+ ≤ |ω1(αn)|(DF − 1) ≤ |ω1(α0)|(DF − 1)

and wtλn(Gm) q− ≤ −ω2(αn). From

wtλn(Gm) q = wtλn(Gm) q+ + wtλn(Gm) q−

it follows that wtλn(Gm) q ≤ |ω1(αn)|(DF − 1) − ω2(αn) ≤ |ω1(α0)|(DF − 1) − ω2(αn) < 0. We
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conclude that q has positive weight if and only if q = q+ but then q is a polynomial in σ1, . . . , σr thus

Statement 1 holds. By Statement 1 and the discrete-geometric Hilbert-Mumford criterion, it follows

that v ∈ V is χn-semistable for the 1-PS λn, if and only if wtλn(Gm)(v) contains a negative weight.

From V = F∨, it follows that wtλn(Gm)(v) contains a negative weight if and only if there exists

a positive λn(Gm)-weight f ∈ F such that f(v) 6= 0. We conclude as in the proof of Proposition

4.2.7 that V s(λn(Gm),χn) = V ss(λn(Gm),χn) =
⋃
Vf where the union is taken over f ∈ F such that

f = f+. We already saw that f+ gets mapped to a non-constant polynomial of the form pf (σ)

via Sym•(F ) → O(W )U , thus the claim follows. For Statement 3 note that σ1, . . . , σr ∈ F thus

pf (σ) ∈ Sym•(F ). Under the homomorphism Sym•(F )→ O(W ) the elements f and pf get mapped

to pf thus f − pf is in the kernel. We conclude that im(ev) ⊂ Y. It remains to show that Statement

4 holds. By Statement 2 we have that V ss(λn(Gm),χn) =
⋃
Vf where the union is taken over f ∈ F

such that f gets mapped to a non-constant polynomial of the form pf (σ) via Sym•(F )→ O(W )U .

By definition

V ′ =
r⋃
i=1

Vσi .

We conclude that V ′ ⊂ V ss(λn(Gm),χn) which implies V ′ ∩ Y ⊂ V ss(λn(Gm),χn) ∩ Y. For the converse

inclusion note that Vpf (σ) ⊂ V ′ together with Vf ∩Y = Vpf (σ)∩Y implies that V ss(λn(Gm),χn)∩Y ⊂

V ′ ∩ Y.

Proof of Theorem 4.2.5. By Proposition 4.2.8, which we can apply as property (A3) of Definition

4.2.4 holds, we obtain a principal U -bundle

W+
min →W+

min/U.

Furthermore by Lemma 4.2.12 and Proposition 4.2.10 there exists a morphism ev : W → V

which is equivariant relative to H → H/U such that the restriction ev |W+
min

factorises via a closed

immersion ι as follows
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W+
min V ′

W+
min/U

ev |
W+
min

πU ι

with V ′ :=
⋃r
i=1 Vσi open in V. From our N-indexed family λn : Gm → H and Lemma 4.2.13 we

obtain for n ∈ N large enough that

V ′ ⊂ V ss(λn(Gm),χn) = V s(λn(Gm),χn)

holds. Additionally by Lemma 4.2.13, we know that W+
min/U is a closed H-invariant subset of

V ss(λn(Gm),χn) for n large enough. Consider the following commutative diagram

W s(λn(Gm),χn)) = W+
min V s(λn(Gm),χn) V //χn λn(Gm)

W+
min/U (W+

min/U)/λn(Gm)

πU

πGm

ι

πGm

∣∣∣
W+
min

/U

where V //χn λn(Gm) is a projective over affine variety as it is the reductive GIT quotient of the

affine space V with respect the a character χn. The morphism (W+
min/U)/λn(Gm)→ V ′/λn(Gm) is

a closed immersion since ι is a closed immersion. This concludes the proof of the first statement of

Theorem 4.2.5.

To obtain the second statement, we apply reductive geometric invariant theory for theR ∼= H/U -

action on V with respect to a character χn where n is taken sufficiently large so that ι(W+
min/U)

is closed in V ss(λn(Gm),χn). In the following we use that the GIT quotient has good functorial

properties with respect to closed immersions. The GIT-quotient is given by restricting the following

rational map to its domain of definition

qL : V V //LR := Proj R(W,L)R

where L is the linearisation of trivial line bundle over V linearised with respect to the character χn.

We have the obvious inclusion V ss(R,χn) ⊂ V ss(λn(Gm),χn) which implies that (W+
min/U) ∩ V ss(R,χn)
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is a closed R-invariant subset of V ss(R,χn). It remains to show that

W rss(H,χn) := ev−1((W+
min/U) ∩ V ss(R,χn))

admits a good H-quotient and that the restriction to

W rs(H,χn) := ev−1((W+
min/U) ∩ V s(R,χn))

is a geometric H-quotient. We have that

W rss(H,χn) → (W+
min/U) ∩ V ss(R,χn)

is a geometric U -quotient and

qL : (W+
min/U) ∩ V ss(R,χn) → qL

(
(W+

min/U) ∩ V ss(R,χn)
)
⊂ V //L R

is a good R-quotient with qL
(
(W+

min/U) ∩ V ss(R,χn)
)

closed in V //L R. The composition

W rss(H,χn) → (W+
min/U) ∩ V ss(R,χn) → qL

(
(W+

min/U) ∩ V ss(R,χn)
)

is a good H-quotient with qL
(
(W+

min/U) ∩ V ss(R,χn)
)

a projective over affine variety as it is closed

in the projective over affine variety V //L R. Analogously

W rs(H,χn) → (W+
min/U) ∩ V s(R,χn)

is a geometric U -quotient and

qL : (W+
min/U) ∩ V s(R,χn) → qL

(
(W+

min/U) ∩ V s(R,χn)
)
⊂ V //L R

is a geometric R-quotient and thus the composition is a geometric H-quotient which concludes the

proof of Theorem 4.2.5.
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4.2.2 Towards potential generalisations of Theorem 4.2.5

In this section, we consider ideas to modify the affine Û -Theorem for the case where non-trivial

stabilisers exists for the U -action on W+
min. If the U -action on W+

min is sufficiently well behaved it is

possible to obtain a variation of the affine Û -Theorem by replacing the N-indexed family of 1-PS

by an N-indexed family of subtori of H.

Unlike the projective setting where it is possible to a apply a blow-up procedure which results

again in a projective variety with constant dimensional stabilisers for the locus X̂0
min of the blow

up X̂. If the U -stabilisers for X̂0
min are trivial, then the original Û -Theorem can be applied to X̂.

For our consideration, if we start with an affine variety a blow-up procedure is also possible but we

obtain a projective over affine variety. Thus it is not possible to apply the affine Û -Theorem after a

blow up procedure.

To generalise the affine Û -Theorem we could try to allow constant dimensional U -stabilisers for

the locus W+
min. Another idea is to replace the N-indexed family of central 1-PS with an N-indexed

family of central subtori of H.

Constant dimensional stabilisers on V +
min

Here we will assume that the dimension of StabU (x) is constant for all x ∈ W+
min. Following

Richardson [57], we define an algebraic family of subgroups:

Definition 4.2.14. A family of algebraic subgroups over an variety S is a locally closed subvariety

F of G× S such that the projection p : G× S → S restricted to F has the following properties:

1. p|F is a surjective submersion

2. for every x ∈ S : (p|F )−1(x) = Gx × {x} where Gx is a subgroup of G.

Example 4.2.15. Consider an action α of Û on W = An such that for each x ∈W+
min we have that

dim StabU (x) = d > 0. Then consider the following fibre product

FU U × V +
min

U × V +
min V +

min.

p

q α
π
V+
min
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By [57, Theorem 9.3.1 (iv)], we obtain that FU is an algebraic family of unipotent subgroups in

the sense of Richardson.

Definition 4.2.16. A complement of a subgroup H in a group G is a subgroup K of G such that

HK = G and H ∩K = {1G}. A complemented group is a group where every subgroup admits a

complement.

Example 4.2.17. An abelian unipotent linear algebraic group U is a complemented group.

Remark 4.2.18. Complements need not exist, and if they do they need not be unique.

Remark 4.2.19. Let F be a family of algebraic subgroups over S a connected variety. Further assume

that d is the common dimension of the subgroups Gx for x ∈ S. Then Richardson claims in [57,

Lemma 6.2.2] that the map x 7→ Lie(Gx) determines a morphism of varieties S → Grass(d,LieG).

By [57, Theorem 9.3.1 (iv)] our family of unipotent subgroups is algebraic in the sense of Richard-

son so it defines a morphism to Grass(d,LieG).

From this we obtain the following proposition, which is stated without proof in [9].

Proposition 4.2.20. Let V be a variety and V ′ ⊂ V be an open U -invariant subset such that for each

x ∈ V ′ we have dim StabU (x) = d. Then we get a U -equivariant morphism

V ′ → Grass(d,LieU)

x 7→ Lie StabU (x).

Remark 4.2.21. According to [9], the subset of Grass(d,LieU) which admits a fixed complementary

subgroup is an affine open subset. The preimage defines an affine open subset of V ′. To obtain an

affine Û -Theorem in the case that the dimension of StabU (x) is constant for all x ∈ V +
min = V ′ we

would need to show for a linear graded U oGm-action on V that the affine open subsets Vσ which

admit a fixed complementary subgroup is closed under taking the limit lim
t→0

t · x in the sense that

for each x ∈ Vσ the limit exists and stays in Vσ. Or equivalently that the U o Gm-action on Vσ is

graded.

Example 4.2.22. Consider the action of U = U3 ⊂ GL(3,k), the subgroup of upper triangular
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matrices with diagonal entries equal to one, on W = A3 which we will extend to a Û -action via


t2 u1 u3

0 t u2

0 0 1



x

y

z

 .

For each x ∈W+
min = Vz we have that dim StabU (x) = 1 and the morphism

W+
min → Grass(1,LieU) = P2

(x, y, z) 7→ Lie StabU (x) = [−y : z : 0].

Now consider (0, 0, 1) and (0, 1, 1) which belong to the same U -orbit but do not map to the same

point in Grass(1,LieU). Analogously (0, 1, 1) is in the same Gm-orbit as (0, 2, 1) but their image

under the morphism does not coincide. This shows that W+
min → Grass(1,LieU) is neither U - nor

Gm-invariant and in particular not Û -invariant.

Example 4.2.23. Consider the action of U = U3 ⊂ GL(3,k), the subgroup of upper triangular

matrices with diagonal entries equal to one, on W = A3 which extends to a linear Û -action via


t2 u1 u3

0 t u2

0 0 1



x

y

z

 .

We want to obtain a quotient for U acting on W+
min = Vz. Note that for each x ∈ W+

min we have

that dim StabU (x) = 1 so we can not directly apply the Û -Theorem. We consider the following

subgroup of Û ′ ⊂ Û given by matrices of the following form


t2 u v + u2

0 t 2u

0 0 1

 .

This graded unipotent subgroup is a complementary subgroup of StabU (x) for any x ∈W+
min that
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is StabU (x) ∩ U ′ = {e} and U = StabU (x)U ′. The quotient for the U -action is now given by the

quotient for the U ′-action on W+
min which is the trivial principal U ′-bundle

Vz → A1 \ {0}

(x, y, z) 7→ z.

4.3 Examples

In this section we illustrate the results from section 3.1 and 3.2 to construct quotients for affine

H-varieties with some simple examples.

Example 4.3.1. In this example we apply Lemma 4.1.6 and Corollary 4.1.7 to construct quotients

for graded H-actions on affine varieties.

1. Let H := G2
a oGm acting linearly on X = A3 via

ρ : H → GL(3,k)

(u1, u2, t) 7→
(
t u1 u2
0 1 0
0 0 1

)

then A3 → A2 is a good H-quotient with Xs(H,0) = A3 \
(
V (x2) ∪ V (x3)

)
the stable locus

which admits a quasi-affine geometric quotient

Xs(H,0) → A2 \ {0}.

2. Consider H := G2
a oG2

m acting linearly on A4 via

ρ : H → GL(3,k)

(u1, u2, t, s) 7→
(
t u1 0 0
0 s 0 0
0 0 t u2
0 0 0 s

)

If we linearise the H-action with respect to the character χ : H → Gm given by χ(u, t, s) = s,
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we obtain a good quotient

(A4)ss = A4
x2 ∪ A4

x4 → Proj
⊕
r≥0

H0(X,L⊗r)H = P1

and geometric quotient

(A4)s(H,χ) = A4
x2x4 → P1 \ {0,∞}.

Example 4.3.2. In [4] A´Campo-Neuen considered U := G12
a together with a 19-dimensional

rational U -module V and showed that the ring of U -invariants O(V )U is not finitely generated.

Here we extend the linear U -action induced by U → GL(V ) to graded action of H := G12
a oGm .

For the following choice of coordinates we obtain the locus V +
min =

4⋃
i=1

Vxi but we do not obtain

trivial U -stabilisers for all k-points in V +
min so we can not apply the affine Û -Theorem.

Instead we are lead to consider the strongly stable locus of the unipotent radical subordinate

to H given by

V ssu(H,U) := Vx1x2 ∪ Vx1x3 ∪ Vx1x4 ∪ Vx2x3x4 .

We do obtain a geometric H-quotient for the open subset given by

V ssu(H,U) ∩
⋂
u∈U

u · V s(Gm,χ) = V ssu(H,U) \ UV Gm

which sits as an open subvariety inside the separated k-scheme ProjO(V )U . In the above choice
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of coordinates the morphism Û → GL(V ) is given by matrices of the following form



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

u1 u0 0 0

u2 u1 0 0

0 u2 0 0

t 0 0

0 t 0

0 0 t

u3 0 u0 0

u4 0 u3 0

0 0 u4 0

t 0 0

0 t 0

0 0 t

u5 0 0 u0

u6 0 0 u5

0 0 0 u6

t 0 0

0 t 0

0 0 t

u7 u0 0 0

u8 u7 0 0

u9 0 u8 0

u10 0 u9 0

u11 0 0 u10

0 0 0 u11

t 0 0 0 0 0

0 t 0 0 0 0

0 0 t 0 0 0

0 0 0 t 0 0

0 0 0 0 t 0

0 0 0 0 0 t





x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19



Example 4.3.3. A simple example for the affine Û -Theorem (see Theorem 4.2.5). Let H :=

G2
a oG2

m act linearly on W := A5 via

(
(u1, u2), (s, t)

)
·



x1

x2

x3

x4

x5


=



s 0 0 0 0

0 s 0 0 0

u1 0 t 0 0

u2 u1 0 t 0

0 u2 0 0 t





x1

x2

x3

x4

x5


.
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For n ∈ N \ {0}, let λn : Gm → Z(R) = G2
m be the adapted N-indexed family of central 1-PS given

by τ 7→ (τ−1, τn). Then Ûn := U oλn Gm is graded unipotent and the induced action is given by

(
(u1, u2), τ

)
·



x1

x2

x3

x4

x5


=



τ−1 0 0 0 0

0 τ−1 0 0 0

τnu1 0 τn 0 0

τnu2 τnu1 0 τn 0

0 τnu2 0 0 τn





x1

x2

x3

x4

x5


.

To apply the affine Û -Theorem we choose the following N-indexed family of characters

χn : H → Gm(
(u1, u2), (s, t)

)
7→ snt.

The λn-weight space decomposition is W = W−1 ⊕Wn and for W+
min = Wx1 ∪Wx2 we have trivial

U -stabilisers. Therefore, we get a locally-trivial U -quotient W+
min →W+

min/U which we will identify

with V +
min ⊂ V = A3 where f : W → V is induced by f∗ : k[y0, y1, y2]→ O(W )

yi 7→


x2

2x3 − x1x2x4 + x2
1x5 if i=0

xi if i > 0

The induced H/U -action on V given by (s, t) · (w0, w1, w2) = (s2tw0, sw1, sw2) turns the morphism

f equivariant with respect to H → H/U. The action of λn on V has the weights n−2 and −1 which

are both negative n ≤ 1. It follows that

V ss(λn(Gm,χn)) =


V \ {0} if n=0 or n=1

Vy2 ∪ Vy3 if n > 1

For n = 0 or n = 1 the image under f of Gm-stable locus W ss(λn(Gm),χn) is not closed in the Gm-

stable locus of V ss(λn(Gm,χn)) = V \ {0}. We did not show that F is a fully U -separating subspace
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in the sense of Definition 4.2.9. Nevertheless we obtain a good quotient for

W rss(H,χn) → q(W rss(H,χn)) ⊂ V //χn G
2
m

if n ≥ 2. Moreover, since V ss(G2
m,χn) = V s(G2

m,χn) it follows that the good quotient is even a

geometric quotient.



Chapter 5

Towards moduli spaces for sheaf

homomorphisms indexed by a quiver

In this chapter we consider sheaf homomorphisms indexed by a quiver. More concretely, we fix the

following data D = (X,Q, (Ev)v∈V ), where

1. X is a projective scheme of finite type over k,

2. Q = (V ,A, s, t : A→ V ) is a quiver, and;

3. (Ev)v∈V is a collection of semisimple coherent sheaves over X.

To this data we associated several moduli functors in Chapter 1 and reduced the construction

of a moduli space to the construction of a good quotient for the linear action of

H :=×
v∈V

Aut(Ev)

on

W :=
⊕
a∈A

Hom(Es(a), Et(a))

given by

(hv)v∈V · (wa)a∈A := (ht(a) ◦ wa ◦ h−1
s(a))a∈A.

The construction of good and geometric quotients for algebraic group actions is the aim of reductive
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and non-reductive geometric invariant theory.

5.1 Description of Aut(E) for a coherent sheaf

In this section, we recall two descriptions of the automorphism groups for a coherent sheaf over X

a projective scheme:

1. the concrete description by Drézet and Trautmann for semisimple locally free sheaves over a

complex projective variety. In this case we will only consider k = C.

2. a description of the automorphism as a combination of a result of Álvarez-Cónsul and King

(see [1] and [2]) with a result of Brion (see [13]). Here k is any algebraically closed field.

The second description of the automorphism groups identifies the Levi factor of such a group with

a finite product of general linear groups.

5.1.1 The description by Drézet and Trautmann

From now on, assume that X is a complex projective variety and the sheaf E is semisimple and

locally free, i.e. a finite direct sum of simple subsheaves Ei. Recall that a sheaf G is simple if

its endomorphisms consist solely of homotheties, that is HomOX (G,G) ∼= C. For convenience, we

collect recurring factors and write E =
r⊕
i=1

Mi⊗Ei, where Mi are finite dimensional C-vector spaces.

Finally, assume that HomOX (Ek, El) = 0 for k > l. Following Drézet and Trautmann, we describe

Aut(E) in terms of matrices 

g1 0 · · · 0

u2,1 g2
. . .

...
...

. . . . . . 0

ur,1 · · · ur,r−1 gr


where gi ∈ GL(Mi) and uj,i ∈ HomC

(
Mi,Mj ⊗C HomOX (Ei, Ej)

)
. Note that under these identifica-

tions the maximal normal unipotent subgroup UE of Aut(E) is given by matrices of the following
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form 

IdM1 0 · · · 0

u2,1 IdM2

. . .
...

...
. . . . . . 0

ur,1 · · · ur,r−1 IdMr


.

with uj,i ∈ HomC
(
Mi,Mj ⊗C HomOX (Ei, Ej)

)
. We can also consider the Levi-factor RE of Aut(E)

which is given by the condition that uj,i = 0 for all i, j; that is



g1 0 · · · 0

0 g2
. . .

...
...

. . . . . . 0

0 · · · 0 gr


.

In particular we have that Aut(E)/UE ∼= RE .

5.1.2 Automorphism groups of quiver representations in the category of finite di-

mensional vector spaces

The following result of Álvarez-Cónsul and King (see Theorem 5.1.5) allows us to identify n-

regular coherent sheaves over a projective k-scheme with Kronecker-modules (representations

of the generalised Kronecker quiver Km in the category vectk). For an n-regular sheaf F , the

associated Kronecker-module KF provides a description of the automorphism group of F , by

Proposition 5.1.7 which is a result of Brion.

In the following let (X,OX(1)) be a polarised projective scheme.

Definition (Castelnuovo–Mumford regularity) 5.1.1. A coherent sheaf E over X is n-regular

with respect to the polarisation OX(1), if H i(X, E(n− i)) = 0 for all i > 0. We call a coherent sheaf

E regular, if E is 0-regular.

Example 5.1.2. Consider (PN,OPN(1)); then OPN(d) is n-regular for all n ≥ −d.

Lemma 5.1.3. [1, Lemma 3.2] If E is n-regular, then

1. E is m-regular for all m ≥ n,



98 CHAPTER 5. TOWARDS MODULI SPACES FOR SHEAF HOMOMORPHISMS

2. H i(E(n)) = 0 for all i > 0, hence dimH0(E(n)) = P (E , n),

3. E(n) is globally generated, meaning that the natural evaluation map εn : H0(E(n))⊗OX(−n)→

E is surjective,

4. the multiplication maps H0(E(n))⊗H0(OX(m−n))→ H0(E(m)) are surjective, for all m ≥ n.

Remark 5.1.4. Let T := OX(−n)⊕OX(−m) and set H := H0(OX(m− n)). Set d := dimH, recall

that a d-Kronecker module is a quiver representation of the d-Kronecker quiver Kd. A d-Kronecker

module can be identified with the data V⊗H α→W. The Kronecker module V⊗H α→W corresponds

bijectively to the data required to give V ⊕W the structure of a (right) module for the algebra

A =

k H

0 k


where k is the base field. Since T is (left) A-module it follows that HomOX (T ,F) is a (left)

A-module. Thus we obtain a functor

HomOX (T ,−) : modOX → modA .

Theorem 5.1.5. [1, Theorem 3.4] Assume that OX(m−n) is regular then the functor HomOX (T ,−)

is fully faithful on the full subcategory of n-regular sheaves. In other words, if E is an n-regular sheaf,

then the natural evaluation map εE : HomOX (T , E)⊗A T → E is an isomorphism.

Remark 5.1.6. Let F be an n-regular sheaf. We denote the Kronecker module associated to F by

KF := H0(X,F(n)) ⊗ H0(X,O(m − n))
mF→ H0(X,F(m)). The following result by Brion states

that the automorphism group of a Kronecker module or more generally, the automorphism group

of a finite quiver representation in the category of finite dimensional k-vector spaces is a connected

linear algebraic group, and moreover a semi-direct of a unipotent group and product of general

linear groups.

Proposition 5.1.7. [13, Prop 2.2.1] Let Q be a finite quiver and M a finite-dimensional representa-

tion of Q in the category vectk, where k is an algebraically closed field. Then
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1. The automorphism group AutQ(M) is an open affine subset of the connected linear algebraic

monoid EndQ(M). As a consequence, AutQ(M) is a connected linear algebraic group.

2. There exists a decomposition

AutQ(M) = U o
r

×
i=1

GL(mi),

where U is a closed normal unipotent subgroup and m1, . . . ,mr denote the multiplicities of the

indecomposable summands of M.

Since every coherent sheaf over X is n-regular for n >> 0 by Serre’s vanishing theorem, we obtain

the following result

Corollary 5.1.8. The automorphism group of every coherent sheaf on a connected projective scheme

X over an algebraically closed field k is a linear algebraic group, which is a semi-direct product of a

unipotent group with a product of general linear groups.

Proof. Let F be an n-regular OX -module. The functor from Theorem 5.1.5 is fully faithful, that

means HomOX (G,H)→ HomA

(
HomOX (T ,G),HomOX (T ,H)

)
is bijective for n-regularOX -modules

G and H. Since functors preserve isomorphisms and F is n-regular it follows that Aut(F) ∼=

AutA
(

Hom(T ,F)
)
. In any case A = k[Kd] is the path algebra of the Kronecker quiver with

d := dimH0(OX(m − n)) arrows. It is a classical result that we have a correspondence between

(left)-modules over k[Q] the path algebra of Q and Q-representations in the category of k-vector

spaces. It follows that Aut(F) ∼= AutA
(

Hom(T ,F)
) ∼= Aut(KF ) thus by Proposition 5.1.7 the

automorphism group is a semi-direct product of a unipotent group and a product of general linear

groups.

5.1.3 Grading subgroups

Let Q be a quiver and X a projective scheme of finite type over k. We assume that each vertex

sheaf Ev is a direct sum of simple coherent sheaves.

Definition 5.1.9. Let E =
m⊕
i=1
Enii be a semisimple coherent sheaf over X with simple summands
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Ei. We say that the sheaf E satisfies the condition ( ), if for all 1 ≤ l < k ≤ m we have

Hom(Ek, El) = 0.

Example 5.1.10. Let E =
m⊕
i=1
OPN(−di)ni with d1 > d2 > . . . > dm. Then E satisfies the ( )-

condition.

Remark 5.1.11. Let E =
m⊕
i=1
Enii be a coherent semisimple sheaf satisfying the ( )-condition. Then

the automorphism group Aut(E) corresponds to the set of block matrices given by

Aut(E) ∼=





g1 0 · · · 0

u2,1 g2
. . .

...
...

. . . . . . 0

ur,1 · · · ur,r−1 gr



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
gi ∈ Aut

(
Enii
) ∼= GLni

uj,i ∈ Hom
(
Enii , E

nj
j )


.

In the following proposition, we will assume that each automorphism group Aut(Ev) is a lower

triangular block matrix.

Proposition 5.1.12. Let Q be a quiver and (Ev)v∈V be a collection of coherent semisimple vertex

sheaves over X satisfying the -condition. Let H = ×
v∈V

Aut(Ev) and λ : Gm → H be a 1-PS such that

for each v ∈ V the induced 1-PS λv : Gm → H → Aut(Ev) is given by

t 7→



tlv,1 id 0 · · · 0

0 tlv,2 id
. . .

...
...

. . . . . . 0

0 · · · 0 tlv,rv id


.

with lv,1 < lv,2 < . . . < lv,rv . Then λ grades the unipotent radical U of H.

Proof. The unipotent radical U of H is given by U = ×
v∈V

Uv where Uv is the unipotent radical of

Aut(Ev). It is therefore enough to show that λv grades Uv the unipotent radical of Aut(Ev). The

1-PS λv acts on Lie(Uv) with weights lv,j − lv,i where 1 ≤ i < j ≤ r. We conclude that λv grades

Uv since lv,1 < lv,2 < . . . < lv,rv , thus λ grades U as claimed.
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5.2 Moduli spaces for sheaf homomorphisms indexed by a quiver

As we saw in Chapter 1, the moduli functor MX,Q,[Ev ]v∈V admits a family T with the locus uni-

versal property over W =
⊕
a∈A

Wa where Wa := Hom(Es(a), Et(a)). Additionally, the action of

H := ×
v∈V

Aut(Ev) given by

(αv)v∈V · (ϕa)a∈A := (αt(a) ◦ ϕa ◦ α−1
s(a))a∈A

satisfies the condition that two k-points s, t ∈W belong to the same H-orbit if and only if Ts ∼= Tt.

Therefore we are lead to consider the problem of construction a quotient for an open H-invariant

subset of W.

In the first subsection, we fix the quiver Q =
1◦ → 2◦ and apply the affine Û -Theorem and

indicate how the projective Û -Theorem can be applied.

The second subsection assumes that the quiver Q contains loops. In this context we apply the

results from Section 4.1.

Remark 5.2.1. If we assume that the automorphism groups Aut(Ev) of the vertex sheaves (Ev)v∈V

are reductive. Then we are in a situation quite similar to King’s moduli of finite dimensional

algebras (see [44]). Thus we can apply Theorem 2.7.4. For the concrete discription of semistability

based on King’s Hilbert-Mumford criterion obtained by Drézet and Trautmann we refer the reader

to Remark B.3.4.

5.2.1 Several approaches to moduli for sheaf homomorphisms

In this section, we consider the moduli problem for sheaf homomorphisms which is the moduli

problem obtained from the moduli problem of sheaf homomorphisms indexed by a quiver by fixing

the quiver Q =
1◦ → 2◦. We fix semisimple locally free vertex sheaves E1 and E2 over a projective

k-scheme X of finite type. In the case of moduli of sheaf homomorphisms we are lead to consider
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the action

H = Aut(E2)×Aut(E1) yW = Hom(E1, E2) (5.1)

(h2, h1) · ϕ := h2 ◦ ϕ ◦ h−1
1 . (5.2)

To construct a quotient for the above action we consider the following approaches:

1. The approach of Drézet and Trautmann (see Section B),

2. the affine Û -Theorem (see Theorem 4.2.5),

3. the projective Û -theorem by Bérczi, Doran, Hawes and Kirwan (see Theorem 2.5.8 and [9]),

by choosing a projective embedding of W.

The approach by Drézet and Trautmann

The approach of Drézet and Trautmann [25] is to transfer the non-reductive GIT-problem to a

problem of reductive GIT. From the moduli problem of homomorphism of sheaves we obtain the

linear algebraic group H together with a H-representation W. Drézet and Trautmann construct a

reductive linear algebraic group G together with a rational G-representation V such that

1. H is an observable subgroup of G.

2. For an admissible character χ of H there exists an associated character χ′ of G such that χ′|H

is a positive power of χ.

3. There exists a morphism ζ : W → V which is equivariant relative to the closed immersion

H → G.

4. The morphism ϕ : G × W
idG×ζ→ G × V → V factorises via G ×H W and the morphism

G×H W → V is injective.

In this set-up, the following inclusion

ζ−1(V ss(G,χ′)) ⊆WHM−ss(H,χ) =
⋂
h∈H

hW ss(R,χ)
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is trivial. The converse inclusion is non-trivial. Some sufficient conditions for ζ−1(V ss(G,χ′)) ⊇

WHM−ss(H,χ) can be found at [25, Section 7].

Proposition 5.2.2. [25, Proposition 6.1.1] Keep the above set-up.

1. If ζ−1(V s(G,χ′)) = WHM−s(H,χ), then there exists a geometric quotient

WHM−s(H,χ) →M,

with M a quasi-projective variety.

2. If additionally

ζ−1(V ss(G,χ′)) = WHM−ss(H,χ) and (Imϕ \ Imϕ) ∩ V ss(G,χ′) = ∅,

then there exists a good quotient

π : WHM−ss(H,χ) → P,

with P a normal projective variety andM is an open subset of P such that the geometric quotient

WHM−s(H,χ) →M is the restriction of π to WHM−s(H,χ).

Applying the affine Û -Theorem

In this subsection, we apply the affine Û -Theorem to the problem of homomorphisms of sheaves.

Theorem 5.2.3. For the data D = (Pn, ◦ → ◦, (Ev)v∈{1,2}) we can apply the affine Û -Theorem, if

E1 = OPn(c1)⊕m1 ⊕OPn(c2)

and

E2 = OPn(d1)⊕OPn(d2)⊕m2

with c1 ≤ c2 < d1 < d2. In particular by applying the affine Û -Theorem we can construct a projective

over affine good quotient for an open subset of W.
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Proof. We consider the action of H := Aut(E2)×Aut(E1) on W := Hom(E1, E2) given by

H = Aut(E2)×Aut(E1) yW = Hom(E1, E2)

(h2, h1) · ϕ := h2 ◦ ϕ ◦ h−1
1 .

We distinguish the following cases.

1. c := c1 = c2.

2. c1 < c2.

In the first case, we consider the action

Aut(OPn(d1)⊕OPn(d2)m2)×Aut(OPn(c)m1+1) y Hom(OPn(c)m1+1,OPn(d1)⊕OPn(d2)m2).

To apply the affine Û -Theorem we have to construct an N-indexed family of 1-PS in the sense

of Definition 4.2.4 together with a suitable sequence of characters. We claim that the following

sequence of 1-PS
(
λl
)
l∈N is an N-indexed family. For every l ∈ N and fixed natural numbers

k1, k2, k3 ∈ N satisfying the inequality k1 < k3 < k2, we define the 1-PS

λl : Gm → H = Aut(E2)×Aut(E1)

t 7→
(

diag(tk1, t
k2+l Id), tk3 Id

)
The 1-PS λl acts on W via

λl(t) ·

 C

D

 =



tk1 0 · · · 0

0

...

0

tk2+l Id


 C

D

( tk3 Id

)−1

with weight ω1(αl) := k1 − k3 on the block C and weight ω2(αl) := k2 + l − k3 on the block D.

We conclude that the underlying vector spaces of the weight spaces given by D = 0 respectively

C = 0 are independent of l ∈ N. Thus W+
min := {v ∈ W |Cv 6= 0} is independent of l ∈ N. By the
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inequality k1 < k3 < k2, it follows that

ω1 = ω1(αl) < 0 < ω2(αl) < ω2(αl+1).

We conclude that conditions (A1) and (A2) in Definition 4.2.4 are satisfied. By Proposition 5.1.12,

it follows that for each l ∈ N that λl(Gm) grades the unipotent radical U. A point v ∈ V belongs

to Wmin if the blocks Cv = (x1 . . . xm1+1) and Dv = (yi,j)1≤i≤m1+1
1≤j≤m2

satisfy Cv 6= 0 and Dv = 0. The

unipotent radical acts via



1 0 · · · 0

u1

...

um2

Id


·



Cv

0 · · · 0

...
...

0 · · · 0


It follows that StabU (v) = {e} for each v ∈Wmin since Cv 6= 0. Thus also condition (A3) holds.

To construct a family of characters adapted to the N-indexed family of 1-PS (λl)l∈N, let r be a

natural number such that

r >
k2

k3 − k1
.

We define the associated family of characters

χl : H → Gm
 A 0

U B

 , C

 7→ det(A)s1,l det(B)s2,l det(C)s3,l .
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for integers

s1,l := (m1 + 1)m2(l + r)

s2,l := m1 + 1

s3,l := −m2(l + r + 1).

We claim that the characters χl are chosen in such a way that the 1-PS ∆ : Gm → H given by

t 7→ (t idE2 , t idE1) satisfies 〈χl,∆〉 = 0. We have

〈χl,∆〉 = s1,l +m2s2,l + (m1 + 1)s3,l

= (m1 + 1)m2(l + r) +m2(m1 + 1)− (m1 + 1)(l + r + 1) = 0

thus 〈χl,∆〉 = 0 as claimed. It remains to show for each l ∈ N that 〈χl, λl〉 < 0. From the definition

of λl and χl it follows that

〈χl, λl〉 = k1s1,l +m2(k2 + l)s2,l + (m1 + 1)k3s3,l

= (m1 + 1)m2

(
(l + r)(k1 − k3) + k2 + l − k3

)
.

Since (m1+1)m2 > 0, it is enough to show that (l+r)(k1−k3)+k2+l−k3 < 0. From l(k1−k3)+l ≤ 0

and r(k1 − k3) + k2 <
k2

k3−k1 (k1 − k3) + k2 = −k2 + k2 = 0 it follows that

(l + r)(k1 − k3) + k2 + l − k3 ≤ −k3 < 0

thus 〈χl, λl〉 < 0 as claimed. Furthermore each x ∈ W+
min has a trivial U -stabiliser where U is the

unipotent radical of H. Thus we can apply the affine Û -Theorem.

In the second case given by c1 < c2, we need to show that there exists an N-indexed family

of 1-PS (λl : Gm → H)l∈N in the sense of Definition 4.2.4 together with a family of characters

(χl : H → Gm)l∈N such that for each l ∈ N the inequality 〈χl, λl〉 < 0 holds. Elements of H are
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given by a tuple of matrices





g1 0 · · · 0

u1

...

ur

g2


,


g3

0

...

0

v1 · · · vs g4




,

where g1, g4 ∈ Gm, g2 ∈ GL(m2,k), g3 ∈ GL(m1,k), ui ∈ Hom(OPn(d1),OPn(d2)) and vi ∈

Hom(OPn(c1),OPn(c2)). We define for each l ∈ N and fixed integers k1, . . . , k4 ∈ Z satisfying the

inequality k3 < k1 < k4 < k2 the 1-PS

λl : Gm → H

t 7→
(

diag(tk1,l , tk2,l Id),diag(tk3,l Id, tk4,l)
)

where k1,l := k1 + l, k2,l := k2 + 2l, k3,l := k3, k4,l := k4 + l. The λl action on W has the weights

ω1(αl) < ω2(αl) < ω3(αl) < ω4(αl) with

ω1(αl) = k1,l − k4,l = k1 − k4,

ω2(αl) = min{k1,l − k3,l, k2,l − k4,l} = min{k1 − k3, k3 − k4}+ l,

ω3(αl) = max{k1,l − k3,l, k2,l − k4,l} = min{k1 − k3, k3 − k4}+ l,

ω4(αl) = k2,l − k3,l = k2 − k3 + l.

We conclude for each l ∈ N that ω1(αl) < 0 < ω2(αl). By Proposition 5.1.12, it follows that λ0

grades the unipotent radical of H. It remains to show that for each M ∈ Wmin we have that

StabU (M) = {e}. A matrix M belongs to Wmin if all entries except the last entry of the first row
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are zero. To see that StabU (M) = {e} consider



1 0 · · · 0

u1

...

ur

Id





0 · · · 0 x

0 · · · 0 0

...
. . .

...
...

0 · · · 0 0




Id

0

...

0

−v1 · · · −vs 1


=



−v1x · · · −vsx x

−v1xu1 · · · −vsxu1 u1x

...
. . .

...
...

−v1xur · · · −vsxur urx


since x 6= 0 it follows that StabU (M) = {e}. We conclude that (λl)l∈N defines an N-indexed family

of 1-PS.

To define a suitable sequence of characters, recall that any character χ : H → Gm is of the form

χ : H → Gm
 A 0

U B

 ,

 C 0

V D


 7→ det(A)r1 det(B)r2 det(C)r3 det(D)r4 .

for integers r1, . . . , r4. We construct a family of characters χl : H → Gm by choosing integers

r1,l, r2,l, r3,l, r4,l ∈ Z such that the following two conditions are satisfied

1. The pairing 〈χl, λl〉 corresponds to a negative integer.

2. The 1-PS ∆ : Gm → H given by ∆(t) = (t idE2 , t idE1) acts trivially on W, so we assume for

each l ∈ N that 〈χl,∆〉 = 0.

Explicitly, these two conditions translate to

1.
4∑
i=1

ki,lr
′
i,l < 0

2.
4∑
i=1

r′i,l = 0

where r′l = diag(1,m1,m2, 1)rl.

To show that such a family of characters exists, we will add the simplifying assumption

r′4,l = −r′1,l

r′3,l = −r′2,l
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We conclude that condition 2 is satisfied. It remains to show that

4∑
i=1

ki,lr
′
i,l < 0

We claim that for r′1,l >> r′2,l > 0 the conditions can be satisfied. We have

k1,lr
′
1,l + k2,lr

′
2,l + k3,lr

′
3,l + k4,lr

′
4,l = (k1 + l)r′1,l + (k2 + 2l)r′2,l − (k3)r′2,l − (k4 + l)r′1,l

= (k1 − k4)r′1,l + (k2 − k3 + 2l)r′2,l

where (k1 − k4)r1,l ≤ −r1,l < 0 and (k2 − k3 + 2l)r′2,l > 0. Let

r′1,l > (k2 − k3 + 2l)r′2,l

then 〈χl, λl〉 < 0. We conclude that there exists an N-indexed family of 1-PS together with a family

of characters such that conditions of the affine Û -Theorem (Theorem 4.2.5) are satisfied.

Remark 5.2.4. 1. Keeping the assumptions from Theorem 5.2.3. We could alternatively apply

the projective Û -Theorem. To apply the projective Û -Theorem we need to replace W by

P(k×W ) via the H-equivariant morphism

V → P(k×W )

v 7→ [1 : v].

Finally, it is necessary to find a suitable linearisation of the H-action on X := P(k × W )

and check that the unipotent radical of H acts set-theoretically free on the locus X0
min. By

applying the projective Û -Theorem we obtain a projective good H-quotient, while the affine

Û -Theorem only implies that the H-quotient is projective over affine.

2. Additionally, if we consider the moduli problem of sheaf homomorphisms indexed by a quiver

neither the projective nor the affine Û -Theorem can be applied since the condition on trivial

stabilisers for the unipotent radical is almost never satisfied. Potentially the variants of the
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projective Û -Theorem, which require a blow-up procedure could be applied in these cases.

5.2.2 Moduli for homomorphisms of sheaves indexed by a quiver with loops

In this section, we consider a quiver Q with at least one loop `. Recall that a loop ` is an arrow

whose source s(`) and target t(`) coincide. Let X be a projective scheme of finite type over k.

Additionally, we only consider collections of coherent semisimple sheaves (Ev)v∈V over X such

that each vertex sheaf satisfies the ( )-condition in the sense of Definition 5.1.9.

Let H := ×
v∈V

Aut
(
Ev
)

and W =
⊕
a∈A

Wa where Wa := Hom
(
Es(a), Et(a)

)
. The action H ×W →

W given by

(αv)v∈V · (ϕa)a∈A := (αt(a) ◦ ϕa ◦ α−1
s(a))a∈A

turns W into an affine H-variety. Furthermore, let U denote the unipotent radical of H. To apply

Theorem 4.1.9 to the affine H-variety W we need at least one H-invariant section σ ∈ Issu(H,U) ⊂

O(W )H . Recall that σ ∈ O(W )H belongs to Issu(H,U) if Wσ → SpecO(Wσ)U is a trivial principal

U -bundle. In general, it is hard to determine the locus W ssu(H,U); instead we are going to define the

Sylvester locus WSyl ⊂ W ssu(H,U) and prove that in some cases we obtain that W ssu(H,U) = WSyl.

To define the Sylvester locus we will crucially use the fact that our quiver Q has at least one loop.

Before we proceed with the construction of the Sylvester locus, we will recall two results due to

Sylvester, the so-called Sylvester equation and the resultant of two univariate polynomials p and q.

Definition 5.2.5. Consider M ∈ Mat(n× n,k), N ∈ Mat(m×m,k) and R ∈ Mat(n×m,k) then

X ∈ Mat(n×m,k) is a solution of the Sylvester equation given by M,N and R if MX −XN = R.

Proposition 5.2.6. [6, Sylvester–Rosenblum Theorem] For M,N,R as above, the Sylvester equation

MX−XN = R has a unique solution X ∈ Mat(n×m,k) if and only if the characteristic polynomials

of M and N have no common zero.

Definition 5.2.7. Let B be a k-algebra and let p, q ∈ B[t] be two polynomials represented by

p =
n∑
i=0

ait
n−i and q =

m∑
i=0

bit
m−i such that the leading coefficients an and bm are both non-zero.

The resultant of p and q denoted by res(p, q) is defined as the determinant of (m + n) × (m + n)-
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Sylvester-matrix Sp,q associated to the polynomials p and q. Where Sp,q is given by

Sp,q :=



a0 0 · · · 0 b0 0 · · · 0

a1 a0
. . .

... b1 b0
. . .

...
... a1

. . . 0
... b1

. . . 0

an−1
...

. . . a0 bm−1
. . . b0

an an−1 a1 bm bm−1 b1

0 an
. . .

... 0 bm
. . .

...
...

. . . . . . an−1
...

. . . . . . bm−1

0 · · · 0 an 0 · · · 0 bm



.

Lemma 5.2.8. Assume that B = k. The polynomials p, q ∈ k[t] have a common factor if and only if

res(p, q) = 0.

Definition 5.2.9. Let Q be a quiver with loops `1, . . . , `k at the vertices v1, . . . , vk and X be

a projective scheme of finite type over k. We fix semisimple vertex sheaves (Ev)v∈V with each

Ev ∈ Coh(X). Fix a loop `, as stated in the begin of the section the corresponding vertex sheaf

E` := Es(`) =
m⊕̀
i=1
E⊕n`,i`,i satisfies the ( )-condition. Thus any endomorphism ϕ` ∈ W` := End

(
E`
)

corresponds to a lower triangular block matrix of the form



A1 0 · · · 0

V2,1 A2
. . .

...
...

. . . . . . 0

Vn`,1 · · · Vn`,n`−1 An`



where Ai ∈ Hom
(
E⊕n`,i`,i , E⊕n`,i`,i

) ∼= Mat(n`,i × n`,i,k) and Vj,i ∈ Hom
(
E⊕n`,ii , E⊕n`,jj

)
. We define

σ̂` :=
∏

(i,j)∈J`

res(χ`,i, χ`,j) : W` → A1

where J` := {(i, j)|1 ≤ i < j ≤ m` and Hom(E`,i, E`,j) 6= 0} and χ`,i(t) ∈ O
(

End(E⊕n`,i`,i )
)
[t]GL(n`,i,k) ⊂

O(V )[t]H is the characteristic polynomial. More generally, for given loops `i1 , . . . , `ir we define a
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pre-Sylvester section

σ`i1 ,...,`ir :=

r∏
j=1

σ̂`ij ◦ pr`ij

where pr`ij
: W →W`ij

is the projection to W`ij
= Hom

(
Es(`ij ), Et(`ij )

)
= End

(
E`ij
)
.

We call a pre-Sylvester section σ`i1 ,...,`ir a Sylvester section if the action H ×W →W restricted

to U ×Wσ`i1 ,...,`ir
→Wσ`i1 ,...,`ir

is set-theoretically free.

Example 5.2.10. Let X = Pn, and Q =
1◦ 2◦`1

α
`2 . We fix the vertex sheaves

E1 = E`1 :=

m`1⊕
i=1

OX(ci)
n`1,i and E2 = E`2 :=

m`2⊕
j=1

OX(dj)
n`2,i

for natural numbers n`1,i, n`2,i,m`1,i,m`2,i, ci, dj ∈ N \ {0} such that c1 < . . . < cn < d1 < . . . < dm

and m`1 ,m`2 ≥ 2. There are three pre-Sylvester sections σ`1 , σ`2 and σ`1,`2 . It is easy to see, that

σ`1,`2 is only Sylvester section.

Proposition 5.2.11. Given the action of

H :=×
v∈V

Aut(Ev)

on

W :=
⊕
a∈A

Hom(Es(a), Et(a))

Then any pre-Sylvester section σ`i1 ,...,`ir defines a H-invariant regular function on W.

Proof. By definition, we have that σ`i1 ,...,`ir =
r∏
j=1

σ̂`ij ◦ pr`ij
, thus it is enough to show that σ̂` ◦ pr`

is H-invariant function for ` ∈ {`i1 , . . . , `ir}. The projection pr` : W →W` is equivariant relative to

H → Aut(E`). It is therefore enough to show that σ̂` is an Aut(E`)-invariant function. By definition

σ̂` is a product of resultants res(χ`,i, χ`,j). Since a product of Aut(E`)-invariant functions is a

Aut(E`)-invariant function, it is enough to show that the function res(χ`,i, χ`,j) is Aut(E`)-invariant.

To see that the resultant res(χ`,i, χ`,j) is Aut(E`)-invariant, we consider the action of Aut(E`) on
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End(E`) by conjugation



M1 0 · · · 0

U2,1 M2
. . .

...
...

. . . . . . 0

Un,1 · · · Un,n−1 Mn


·



A1 0 · · · 0

V2,1 A2
. . .

...
...

. . . . . . 0

Vn,1 · · · Vn,n−1 An


·



M1 0 · · · 0

U2,1 M2
. . .

...
...

. . . . . . 0

Un,1 · · · Un,n−1 Mn



−1

.

Note that the diagonal entries are given by MiAiM
−1
i . It follows that the coefficients of the

characteristic polynomial χXi ∈ O(W`)[t] are Aut(E`)-invariant. We conclude that the function

res(χ`,i, χ`,j) ∈ O(W`) is Aut(E`)-invariant. It follows that σ̂` =
∏

1≤i<j≤n`
res(χ`,i, χ`,j) is Aut(E`)-

invariant and σ̂` ◦ pr` is H-invariant. We conclude that σ`i1 ,...,`ik is H-invariant function.

Definition 5.2.12. We consider a finite quiver Q with loops `1, . . . , `k and semisimple vertex

sheaves Ev which are coherent over X a projective scheme of finite type over k. We consider the

associated H-action on W and define the Sylvester locus by

WSyl :=
⋃
σ∈S

Wσ

where S is the finite set of Sylvester sections.

Proposition 5.2.13. Let Q be a quiver with loops and (Ev)v∈V be a collection of vertex sheaves

satisfying condition ( ). Suppose that ` is a loop in the quiver Q and let U` be the unipotent radical of

Aut(E`). Then the action of U` on Wσ` induced by the inclusion U` → Aut(E`)→ H is set-theoretically

free.

Proof. We show that U` acts set-theoretically free on Wσ` . The group U` acts via conjugation on

End(E`) ⊂W. We have an H-equivariant projection

pr` : Wσ` → End(E`)σ` .

It follows that StabU`(x) ⊂ StabU`(pr`(x)); thus it is enough to show that U` acts set-theoretically
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free on End(E`)σ` . Note that the action of U` extends to a graded U` oGm-action via

((Ui,j)1≤j<i≤n, t) 7→



t id 0 · · · 0

U2,1 t2 id
. . .

...
...

. . . . . . 0

Un,1 · · · Un,n−1 tn id


.

By Corollary 3.2.4, it is enough to show that U` acts set-theoretically free on the Gm-fixed locus

End(E`)Gm
σ`

which is given by matrices of the form diag(A1, . . . , An). We act by conjugation on such

a matrix via



id 0 · · · 0

U2,1 id
. . .

...
...

. . . . . . 0

Un,1 · · · Un,n−1 id


·



A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0

0 · · · 0 An


·



id 0 · · · 0

U2,1 id
. . .

...
...

. . . . . . 0

Un,1 · · · Un,n−1 id



−1

.

Let A ∈ End(E`)Gm
σ`
. Note that U ∈ StabU`(A) if UAU−1 = A which is equivalent to A satisfies the

equation UA = AU. In terms of the entries Ui,j we obtain the Sylvester equation Ui,jAj−AiUi,j = 0.

If Hom(Ej , Ei) = 0 then Ui,j = 0 and there is nothing to show. Otherwise if Hom(Ej , Ei) 6= {0} we

have that Ui,j = 0 is a solution to the Sylvester equation. Since A ∈ End(E`)σ` it follows that the

eigenvalues of Ai and Aj are distinct, thus Ui,j = 0 is the unque solution. To see the uniqueness,

consider a basis s1, . . . , sN of Hom(Ei, Ej). We write Ui,j =
N∑
l=1

slUi,j,l and each Sylvester equation

Ui,j,lAj − AiUi,j,l = 0 has the unique solution Ui,j,l = 0, since Ai and Aj have no common

eigenvalues, which implies that Ui,j = 0. We conclude that U` acts set-theoretically free on Wσ`

Corollary 5.2.14. Let Q be the loop quiver and E =
m⊕
i=1
Enii be a semisimple sheaf satisfying the

condition ( ). Then x ∈ End(E) satisfies StabU (x) = {e} if and only if x ∈ End(E)σ where σ = σ` is

the unique Sylvester section of the loop quiver.

Proof. By the condition ( ), it follows that either σ` = 1 and for each 1 ≤ i < j ≤ m we have

Hom(Ei, Ej) = 0 or there exist 1 ≤ i0 < j0 ≤ m such that Hom(Ei0 , Ej0) 6= 0. In the first case

the unipotent radical is trivial and there is nothing to show. We assume in the following that the
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unipotent radical U of Aut(E) is non-trivial. The Aut(E)-action on End(E) restricted to U is given

by



id 0 · · · 0

U2,1 id
. . .

...
...

. . . . . . 0

Un,1 · · · Un,n−1 id


·



A1 0 · · · 0

V2,1 A2
. . .

...
...

. . . . . . 0

Vn,1 · · · Vn,n−1 An


·



id 0 · · · 0

U2,1 id
. . .

...
...

. . . . . . 0

Un,1 · · · Un,n−1 id



−1

.

We saw in the proof of Proposition 5.2.13, that the U -action on W can be extended to a graded

action via a 1-PS λg : Gm → Aut(E) on End(E). For a given x ∈ W, it is enough to consider the

associated fixed point x′ := lim
t→0

λg(t)x, since dim StabU (x) ≤ dim StabU (x′) by Proposition 3.2.3.

For the λg-fixed point x′ the entries Vi,j are all equal to zero, thus we are considering



id 0 · · · 0

U2,1 id
. . .

...
...

. . . . . . 0

Un,1 · · · Un,n−1 id


·



A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0

0 · · · 0 An


·



id 0 · · · 0

U2,1 id
. . .

...
...

. . . . . . 0

Un,1 · · · Un,n−1 id



−1

.

We conclude as in the proof of Proposition 5.2.13, that x′ has a trivial U -stabiliser if and only if

every Sylvester equation Ui,jAj − AiUi,j = 0 is uniquely solvable by Ui,j = 0. We conclude that

StabU (x′) = {e} if and only if x′ ∈ Wσ. By Proposition 5.2.11, σ is an H-invariant function thus

if σ(x′) 6= 0 then also σ(x) = σ(lim
t→0

λg(t)x) = σ(x′) 6= 0. We conclude that StabU (x) = {e} if and

only if x ∈Wσ.

Theorem 5.2.15. Let Q be a finite quiver without directed cycles of length at least 2. Fix a collection

of semisimple vertex sheaves (Ev)v∈V satisfying the condition ( ) and a character χ : H → Gm . Then

we obtain a good H-quotient for the open subset WSyl ∩WHM−ss(H,χ) and a geometric quotient for

WSyl ∩WHM−s(H,χ).

Proof. We want to apply Corollary 4.1.10 to the locus WSyl. Since W admits only finitely many

Sylvester sections, it is enough to show that any Sylvester section belongs to Issu(H,U) (see Defin-

ition 4.1.8). We already saw that any Sylvester section is H-invariant. It remains to show for a
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Sylvester section σ that Wσ →Wσ/U is a trivial principal U -bundle.

We will show in the following lemma that the action of H on W is graded, thus Wσ is a graded

H-variety and by the definition of a Sylvestersection it follows that the unipotent radical U acts

set-theoretically freely on Xσ. We conclude that Lemma 3.3.1 applies, thus Wσ →Wσ/U is a trivial

principal U -bundle.

Lemma 5.2.16. Let Q be a quiver without directed cycles of length at least 2 and (Ev)v∈V be a

collection of semisimple vertex sheaves satisfying condition ( ). Then the H-action on W is graded.

Proof. Let Q′ be the quiver obtained from Q by removing the set of loops {a ∈ A|s(a) = t(a)}. By

our assumption Q does not contain a cycle of length at least two, thus since Q′ is obtained from Q

by removing the cycles of length one, it follows that Q′ is a acyclic.

It follows that V ′source := V \ {v ∈ V |∃a ∈ A′ : t(a) = v} is non-empty. Otherwise we could

construct a path in Q′ of arbitrary length which implies that the quiver Q′ has an infinite vertex

set or contains a cycle which contradicts our assumptions.

We claim that there exists a 1-PS λ : Gm → H such that

1. The image of λ : Gm → H → H/U lies in the centre of H/U.

2. The action of λ(Gm) on the unipotent radical U of H has only positive weights.

3. The action of λ(Gm) on W has only non-negative weights.

We prove the existence of such a 1-PS λ : Gm → H inductively on the number of vertices.

Since Q′ is acyclic, we need at least two distinct vertices in the quiver to have any arrows. So

assume that Q′ has exactly two vertices then Q′ = Kn is a Kronecker quiver and the weights of

each arrow space Wa are the same so we can assume without loss of generality that Q′ = K1. The

automorphism groups can be assumed to be given in lower triangular block matrix form and hence

the unipotent radical is graded, by a 1-PS λ : Gm → H of the following form

λ(t) =





tl1,t(a) id 0 · · · 0

0 tl2,t(a) id
. . .

...
...

. . . . . . 0

0 · · · 0 t
lkt(a),t(a) id


,



tl1,s(a) id 0 · · · 0

0 tl2,s(a) id
. . .

...
...

. . . . . . 0

0 · · · 0 tlks(a),s(a) id




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if the block weights li,v satisfy li,v < li+1,v for v ∈ V = {s(a), t(a)} and l1,t(a) ≥ lks(a),s(a). The

weights with which this 1-PS λ acts on W are li,t(a) − lj,s(a) thus the condition l1,t(a) ≥ lks(a),s(a)

implies that all weights are non-negative. We conclude that λ(Gm) acts with positive weights on

Lie(U) and with non-positive weights on O(V ).

More generally, let Q′ be a finite quiver with at least n ≥ 3 vertices and v0 ∈ V source. We

obtain a quiver Q> by setting A> := A \ {a ∈ A|s(a) = v0} and V > := {v ∈ V |∃a ∈ A> : v =

s(a) or v = t(a)} and restricting the source and target maps to A>. By the induction hypothesis,

we can grade the unipotent radical for the restricted H>-action on W> such that we act with

non-negative weights on W> :=
⊕

a∈A>
Hom(Es(a), Et(a)). The linear projection pr : W → W> is

equivariant relative to H → H>. By replacing λ with λ−1 if necessary we can assume without loss

of generality that λ(Gm) acts with positive weights on W>. We have that H = H> ×Aut(Ev0) and

W = W> ⊕
⊕

a∈A:s(a)=v0

Wa. To extend λ : Gm → H> to H, recall that λ : Gm → H> is given by

λ(t) = (λv(t))v∈V > where each λv is of the form

λv(t) =



tl1,v id 0 · · · 0

0 tl2,v id
. . .

...
...

. . . . . . 0

0 · · · 0 tlkv,v id


with li,v < li+1,v and l1,t(a) ≥ lks(a),s(a)for all a ∈ A>. Finally, we select exponents for v0 satisfying

l1,v0 < . . . < lkv0 ,v0 and min{l1,t(a)|a ∈ A : s(a) = v0} > lkv0 ,v0 . We claim for this extension

λext : Gm → H that the following conditions are satisfied.

1. The image of λext : Gm → H → H/U lies in the centre of H/U.

2. The 1-PS λext acts with non-negative weights on W.

3. The 1-PS λext acts with positive weights on Lie(U).

The first statement is obvious. For the second statement note that λext acts on the subspace Wa

with weights li,t(a) − lj,s(a) which are non-negative by definition of λext. For the final statement

note that U = ×
v∈V

Uv, thus Lie(U) =
⊕
v∈V

Lie(Uv). Each Uv is a normal subgroup of H thus the
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subspaces Lie(Uv) are λext-invariant. The 1-PS λext acts on Lie(Uv) with weights lj,v − li,v where

i < j. We have l1,v < . . . < lkv ,v, thus λext acts with positive weights on Lie(U). We conclude that

the H-action on W is graded.

Example 5.2.17. We consider homomorphisms of sheaves indexed by the loop quiver Q = Z1

consisting of a vertex v and loop `. By Lemma 5.2.16 the action of H = Aut(E) on W = End(E) is

graded. There exists a unique pre-Sylvester section σ := σ`. By Proposition 5.2.13 this section is a

Sylvester section. We conclude that

WSyl = Wσ ⊂W ssu(H,U)

and by Corollary 5.2.14 it follows that WSyl = W ssu(H,U). We obtain a good quotient for

Wσ ∩WHM−ss(H,χ) →Wσ//χ H,

with Wσ//χ H := Proj R(Wσ,L)H a projective over affine variety.

We can more generally consider the quiver

Q =
1◦ 2◦`1

α
`2 .

where both vertex sheaves have non-reductive automorphism groups. Again we have a unique

Sylvester section σ = σ`1,`2 and obtain a good quotient for

Wσ ∩WHM−ss(H,χ) →Wσ//χ H,

with Wσ//χ H a projective over affine variety.

5.2.3 Moduli spaces for sheaf homomorphisms indexed by a quiver via reductive

Geometric Invariant Theory

For a projective scheme X of finite type over k, the automorphism groups of coherent sheaves

over X will not necessarily be reductive. In particular, for a quiver Q and semisimple vertex
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sheaves (Ev)v∈V the automorphism group of a semisimple sheaf Ev0 is reductive then either up

to isomorphism Ev0 has exactly one simple factor or every pair S, T of non-isomorphic simple

factors of Ev0 is incomparable; that is, both HomOX (S, T ) and HomOX (T ,S) are trivial. In this

situation we can apply reductive Geometric Invariant Theory for affine spaces as established by

King (see [44]). For the quiver Q = ◦ → ◦ Drézet and Trautmann already translated the 1-PS

Hilbert-Mumford criterion to homomorphisms of sheaves (see Appendix B.3.4 or [25]).

The (left) action of G = ×
v∈V

Aut(Ev) on W =
⊕
a∈A

Hom(Es(a), Et(a)) turns W into a rational G-

module. Note that ∆ :=
{

(t · idEv)v∈V
∣∣t ∈ Gm

}
is a subgroup that stabilises all points w ∈ W.

Under the assumption that the automorphism groups are reductive, we obtain that

G =×
v∈V

Aut(Ev) =×
v∈V

(
kv×
i=1

GL(nv,i,k),

where nv,1, . . . , nv,kv denote the multiplicities of the indecomposable summands of Ev described at

the start of §5.2.3. The characters of X∗(G) correspond bijectively elements of Z
∑
v∈V kv . Under

this χ ∈ X∗(G) correspondences to Θ =
(
Θ(v, i)

)
v∈V

i=1,...,kv
∈ Z

∑
v∈V

kv
where Θ(v, i) is the exponent

of the factor det : GL(nv,i,k)→ Gm in the character χ = χΘ.

Let E :=
(
Ev, ϕa : Es(a) → Et(a)

)
be a representation of the quiver Q in Coh(X) with fixed

semisimple vertex sheaves (Ev)v∈V . More concretely; suppose Ev =
kv⊕
i=1

Mv,i ⊗ Ev,i where Mv,i are

finite dimensional vector spaces and the sheaves Ev,i are simple.

Definition 5.2.18. E :=
(
Ev, ϕa : Es(a) → Et(a)

)
be a representation of the quiver Q with fixed

vertex sheaves (Ev)v∈V =
( kv⊕
i=1

Mv,i⊗Ev,i
)
v∈V where Mv,i are finite dimensional vector spaces and

the sheaves Ev,i are simple. We call a subrepresentation E′ of E admissible, if E′ is defined via a

sequence of subvector spaces
(
M ′v,i ⊂Mv,i

)
v∈V

i=1,...,kv
; that is E ′v =

kv⊕
i=1

M ′v,i ⊗ Ev,i and for each arrow

a ∈ A the morphism ϕa : Es(a) → Et(a) restricts to ϕa : E ′s(a) → E
′
t(a).

Proposition 5.2.19. LetE = (Ev, ϕa) be a representation of the quiver Q in Coh(X) with semisimple

vertex sheaves Ev for each v ∈ V . Consider a 1-PS λ of G such that lim
t→0

λ(t) ·E exists; this 1-PS induces

a finite filtration of E by admissible subrepresentations. Conversely, any finite filtration of E by

admissible subrepresentations corresponds to a 1-PS λ for which lim
t→0

λ(t)E exists in W.

Proof. Let λ be a 1-PS of G. Consider the 1-PS λv,i induced by λ via Gm
λ→ G

πv,i→ GL(Mv,i).
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We obtain that each Mv,i decomposes into weight spaces M (n)
v,i for n ∈ Z and denote by E(m)

v :=
kv⊕
i=1

M
(m)
v,i ⊗ Ev,i then

E(≥m)
v :=

kv⊕
i=1

(⊕
n≥m

M
(n)
v,i

)
⊗ Ev,i =

⊕
n≥m
E(n)
v .

Analogously to [44] we can show that lim
t→0

λ(t)E exists if and only if for all m ∈ Z and all a ∈ A

we have that

ϕa(E(≥m)
s(a) )) ⊂ E(≥m)

t(a) .

To see this let λa : Gm
λ→ G→ Aut(Es(a))×Aut(Et(a)). We define the morphism ϕm,na to be

E(n)
s(a)

ι→ Es(a)
ϕa→ Et(a)

π→ E(m)
t(a)

ι→ Et(a).

The action of λa on ϕm,na is given by scalar multiplication with tm−n. The limit of (ϕa)a∈A with

respect to λ exists, if for each arrow a ∈ A the restricted 1-PS λa acts with non-negative weights

on ϕa; that is ϕm,na = 0 for m < n. Therefore, the limit for a 1-PS λ exists if and only if we have a

filtration of the representation E = (Ev, ϕa) by admissible subrepresentations

. . . ⊃ E(≥m) = (E(≥m)
v , ϕa) ⊃ E(≥m+1) ⊃ . . .

such that E(≥M) = E is for M << 0 and E≥L = 0 for L >> 0.

To an admissible subrepresentation of E′ of E, we associate a dimension vector dimE′ ∈ Z
∑
v∈V

kv

with (dimE)(v,i) denoting the multiplicity of the i-th indecomposable summand of E ′v. For two

elements f and g of Z
∑
v∈V

kv
we associate the following pairing

〈f, g〉 :=
∑
v∈V

kv∑
i=1

f(v, i) · g(v, i).

Definition 5.2.20. We call a representation Θ-stable respectively Θ-semistable if for any non-trivial

admissible subrepresentation E′ of E we have that 〈Θ,dimE′〉 > 0 respectively 〈Θ, dimE′〉 ≥ 0

Proposition 5.2.21. A representation E = (Ev, ϕa) with semisimple vertex sheaves corresponds to the

point (ϕa)a∈A ∈W :=
⊕

a∈A Hom(Es(a), Et(a)). Then the point (ϕa)a∈A is (semi)stable with respect
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to the G-action linearised by χΘ on W if and only if the representation E is Θ-(semi)stable.

Proof. A point w ∈ W is G-(semi)stable with respect to the χΘ-linearised action on W if for any

1-PS λ of G such that lim
t→0

λ(t)w exists, we have 〈χΘ, λ〉 > (≥)0.
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Appendix A

Some results related to Geometric

Invariant Theory

A.1 Polyhedral cones

Let us fix a pair of dual vector spaces MR and NR for our applications this will be X∗(T )R and

X∗(T )R.

Definition A.1.1. A convex polyhedral cone in NR is a set of the form

σ = Cone(S) =

{∑
u∈S

λuu

∣∣∣∣λu ≥ 0

}
⊆ NR

where S ( NR is finite. We say that σ is generated by S. For S = ∅ we define Cone(∅) := {0}.

Remark A.1.2. Since all cones that we want to consider in the following will be convex we will call

them polyhedral cones instead of convex polyhedral cones.

In the following, we denote the pairing between MR and NR by 〈 , 〉.

Definition A.1.3. Given a polyhedral cone σ ⊆ NR, its dual cone is defined by

σ∨ := {m ∈MR|∀u ∈ σ : 〈m,u〉 ≥ 0}.
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For m ∈MR we define the closed halfspace

Hm := {u ∈ NR|〈m,u〉 ≥ 0} ⊂ Nr.

If σ ⊆ NR is a polyhedral cone with σ ⊂ Hm we call Hm a supporting halfspace. Note that Hm is a

supporting halfspace of σ if, and only if, m ∈ σ∨.

Duality has the following important properties

Proposition A.1.4. [20, Proposition 1.2.4 & 1.2.8] Let σ ⊆ NR be a polyhedral cone. Then:

1. σ∨ is a polyhedral cone in MR and (σ∨)∨ = σ.

2. If σ = Hm1 ∩ . . . ∩Hms , then σ∨ = Cone(m1, . . . ,ms).

3. If σ1 ⊂ σ2 ⊆ NR are polyhedral cones, then σ∨2 ⊂ σ∨1 .

Remark A.1.5. Given a polyhedral cone σ ⊆ NR, then by the above proposition σ∨ is also a

polyhedral cone that is there exist m1, . . . ,ms ∈ MR such that σ∨ = Cone(m1, . . . ,ms). It is easy

to check that σ = Hm1 ∩ . . .∩Hms so any polyhedral cone is also a finite intersection of halfspaces.

Definition A.1.6. The group of characters of T denoted by X∗(T ) = HomGrp(T,Gm). Dually we

have the group of one parameter subgroups X∗(T ) = HomGrp(Gm, T ). We obtain a perfect pairing

〈·, ·〉 : X∗(T )×X∗(T )→ HomGrp(Gm,Gm).

A.2 Ga-actions on affine varieties

Let V be an irreducible affine Ga-variety over k an algebraically closed field of characteristic

zero. Algebraic actions of Ga correspond bijectively to the locally nilpotent derivatives of the

ring of regular functions A := O(V ). More precisely, if we have a Ga-action on the affine variety

V = SpecA then the action α : Ga×V → V corresponds to a morphism α∗ : A→ A⊗ C[t] ∼= A[t].

For f ∈ A we can write α∗f =
∑
n≥0

Dn(f)tn with almost all Dn(f) = 0 and each Dn : A → A
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k-linear maps. The fact that α∗ is a Ga-action is equivalent to the following properties:


D0 = idA,

for f, g ∈ A : Dn(fg) =
∑

k+l=n(Dkf)(Dlg)

DnDm =
(
n+m
n

)
Dn+m.

From this it follows that D := D1 is a k-derivation of A and since we are working in characteristic

zero we also have that Dn = 1
n!D

n. So D is a locally nilpotent derivation. Let us denote the set of

locally nilpotent k-derivations of the k-algebra A by LND(A).

Definition A.2.1. Given D ∈ LND(A), define Fix(D) = {p ∈ Spec(A)|D(A) ⊂ p}. Note that

Fix(D) is a closed subset of Spec(A).

Proposition A.2.2. Let D ∈ LND(A) and consider the associated Ga-action αD on X. Then

1. The ring of invariants of αD is the subring ker(D) of A.

2. The fixed points of αD are precisely the closed points which belong to Fix(D).

Remark A.2.3. In Proposition A.2.2 the first part is well known and the second can be found in [21,

Prop 9.7.].

Let us denote by AD = kerD then we get a short exact sequence of AD modules

0→ AD → A→ Im(D)→ 0.

Further for S ⊂ A denote by 〈S〉 the ideal of A generated by S.

Proposition A.2.4. We get the following results:

1. If 1 ∈ 〈Im(D)〉 then the Ga-action is free.

2. If 1 ∈ 〈Im(D) ∩AD〉 then the action is locally trivial.

3. If 1 ∈ Im(D) then the action has a slice and X = SpecA → SpecAD is a trivial principal

Ga-bundle.
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4. If AD → A is faithfully flat we get a trivial principal Ga-bundle SpecA→ SpecAD.

Definition A.2.5. A degree function on a ring B is a map deg : B → N ∪ {−∞} satisfying:

1. ∀x ∈ B : deg x = −∞ ⇐⇒ x = 0

2. ∀x, y ∈ B : deg(xy) = deg x+ deg y

3. ∀x, y ∈ B : deg(x+ y) ≤ max(deg x, deg y).

Definition A.2.6. Let B be a ring. Then each D ∈ LND(B) determines a map degD : B →

N∪{−∞} defined as follows: degD(x) = max{n ∈ N|Dnx 6= 0} for x ∈ B\{0}, and degD(0) = −∞.

Note that kerD = {x ∈ B|degD(x) ≤ 0}.

Proposition A.2.7. [21, Proposition 4.8] Let B be a domain of characteristic zero and D ∈ LND(B).

Then the map degD : B → N ∪ {−∞} is a degree function.

Remark A.2.8. Since degD is a degree function we can associate to the locally nilpotent derivation

D a filtration Fn := {x ∈ B|degD(x) ≤ n} = kerDn+1.

Corollary A.2.9. Let X be an affine Ga-variety. The following statements are equivalent:

1. The locally nilpotent derivation associated to the Ga-action on X has a slice.

2. The deg-function degD associated to the locally nilpotent derivation D : O(X) → O(X) cor-

responding to the Ga-action on X induces a N-grading of O(X) and the ideal D(O(X)1) ⊕⊕
n≥1O(X)n is the ring O(X).

3. The Ga-action extends to a graded action of Ga oGm and for each x ∈ V we have that

StabGa(x) = {e}.

Proof. Suppose we have a Ga-action on an affine variety X such that the associated derivation

D : O(X) → O(X) has a slice s ∈ O(X). Then we obtain O(X) = O(X)Ga ⊗k k[s] which gives

us a grading O(X)n := O(X)Gasn for each n ∈ N with respect to this grading D is homogeneous

of degree −1 and hence the Ga-action extends to a graded action Ga oGm . Since s ∈ O(X) it

follows that D(O(X)1) ⊕
⊕

n≥1O(X)n = O(X) so 1 implies 2 and 3. This implies together with

Lemma 3.2.1 that a Ga-action on X gives a trivial principal Ga-bundle X → SpecO(X)Ga if and
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only if the Ga-action is fixed point free and extends to a graded action Ga oGm . Therefore, the

three statements are equivalent.

Definition A.2.10. Let A be a finitely generated k-algebra ( with k a field of characteristic zero)

and D ∈ LND(A) be a locally nilpotent derivation on A. We call s ∈ A

1. a slice of the locally nilpotent derivative D, if Ds = 1.

2. a local slice of the locally nilpotent derivative D, if Ds 6= 0 and D2s = 0.

A.3 Białynicki-Birula-decomposition

Let X to be a a non-singular Gm-variety over C. We assume that the Gm-fixed locus XGm is non-

empty with connected components F1, . . . , Fr. For x ∈ X we have the orbit morphism

σx : Gm → X

t 7→ t · x.

If X is complete then σx extends to a morphism

σx : P1 → X.

We denote σx(0) by limt→0 t · x and σx(∞) by limt→∞ t · x. Furthermore we define the following

locally-closed subschemes

X+
i := {x ∈ X| lim

t→0
t∈Gm

t · x ∈ Fi}

and

X−i := {x ∈ X| lim
t→∞
t∈Gm

t · x ∈ Fi}

of X which are called plus-cells respectively minus-cells of the Białynicki-Birula-decomposition.

Then

X =

r∐
i=0

X+
i =

r∐
i=0

X−i
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and there exists a source Xi0 and a sink Xi1 of the action characterised by the fact that X+
i0

is open

in X and X−i0 = Xi0 and analogously X−i1 is open in X and X+
i1

= Xi1 .[11]

For Gm acting linearly with respect to OP(V )(1) on P(V ) the following proposition characterises

the Białynicki-Birula-decomposition.

Proposition A.3.1. Let V be a representation of Gm and let v ∈ V. Denote by [v] its class in P(V ).

1. [v] is a fixed point if and only if v is an eigenvector for Gm .

2. If [v] is not fixed under the Gm-action write

v =

s∑
i=r

vi

with vi ∈ Vi and r < s (the space Vi is the eigenspace for the eigenvalue i ∈ Z). In this

case the morphism σ : Gm → P(V ) defined by σ(t) := [t · v] extends uniquely to a morphism

σ : P1 → P(V ) with σ(0) = [vr] and σ(∞) = [vs].

A.3.1 Categorical Białynicki-Birula-decomposition for Gm

In [26] a categorical Białynicki-Birula-decomposition is stated in terms of algebraic spaces of finite

type over k and it is shown that the corresponding functors are representable by algebraic spaces.

Furthermore if the algebraic space under consideration is a scheme then the functors corresponding

to the categorical Białynicki-Birula-decomposition are represented by schemes. Here we will restrict

to the case of schemes.

Let Z be a Gm-scheme of finite type over k. We identify the category Sch/k with Gm-schemes

via equipping each scheme with the trivial Gm-action. For Gm-schemes X and Y wee denote by

HomGm

Sch/k(X,Y ) ⊂ HomSch/k(X,Y ) the set of Gm-equivariant morphisms from X to Y. Consider

the following functors

Z0 : (Sch/k)op → Set

S 7→HomGm

Sch/k(S,Z),
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and

Z+ : (Sch/k)op → Set

S 7→ HomGm

Sch/k(A1 × S,Z)

where Gm acts on A1 via homotheties. Furthermore we also consider the opposite action of Gm on

A1 and denote the corresponding Gm-variety by A1
−. This allows us to define

Z− : (Sch/k)op → Set

S 7→ HomGm

Sch/k(A1
− × S,Z).

We obtain natural transformations q± : Z± → Z0 by evaluation at 0 ∈ A1

Proposition A.3.2. [26, Proposition 1.2.2] If Z is a scheme of finite type over k then Z0 is represented

by a scheme Z0 of finite type over k. Moreover the morphism Z0 → Z is a closed embedding.

Proposition A.3.3. [26, Theorem 1.4.2, Corollary 1.4.3] If Z is a scheme of finite type over k then

Z+ is represented by a scheme Z+ of finite type over k. The morphism q+ : Z+ → Z is affine.

Lemma A.3.4. The morphisms i± : Z0 → Z± are closed embeddings.

A.3.2 Categorical Białynicki-Birula-decomposition for certain reductive groups

Following Drinfeld, Jelisiejew and Sienkiewicz define a categorical Białynicki-Birula-decomposition

for a reductive group G such that G is the group of units of M a linear algebraic monoid with

zero. We identify the category Sch/k with G-schemes via equipping each scheme with the trivial

G-action.

Consider the following functors

Z0 : (Sch/k)op → Set

S 7→HomG
Sch/k(S,Z),
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and

DZ = DZ,M : (Sch/k)op → Set

S 7→ HomGm

Sch/k(M × S,Z)

where G acts on M via the composition law of M :

G×M →M ×M ◦→M.

Theorem A.3.5. [40, Theorem 1] Let X be a G-scheme locally of finite type over k. Then the functor

DX is represented by a scheme X+ locally of finite type over k. Moreover, the scheme X+ has a natural

M -action and the morphism X+ → XG is affine of finite type and equivariant.



Appendix B

The work of Drézet and Trautmann

In this section, we follow the approach of Drézet and Trautmann and try to replace the non-

reductive groups with reductive groups. Drézet and Trautmann define a new notion of GIT-

(semi)stability for sufficiently nice objects in Rep(
1◦ → 2◦,Coh(X)) where X is a projective al-

gebraic variety over the field of complex numbers. More concretely, they assume that the sheaves

E1and E2 are both semisimple and locally free. In this situation they give an explicit description

of the automorphism groups involved [25, 1.1]. To construct quotients for their linearised group

actions they replace the action of the (non-reductive) automorphism groups with an action of an

reductive group and compare the resulting stability conditions for both linearised actions.

B.1 An explicit description of the automorphism groups

Consider locally free sheaves E ,F overX that are semisimple, i.e. a direct sum of simple subsheaves

Ei,Fj . Recall that a sheaf G is simple, if its endomorphism consist solely of homotheties, that

is, HomOX (G,G) ∼= k. For convenience, we collect recurring factors and write E =
r⊕
i=1

Mi ⊗ Ei

and F =
s⊕
j=1

Nj ⊗ Fj where Mi, Nj are finite dimensional k-vector spaces. Finally, assume that

HomOX (Ek, El) = 0 for k > l and HomOX (Fr,Fs) = 0 for r > s. The groups Aut(E) and Aut(F)

can be viewed as matrix groups. For instance Aut(E) identifies with the group of matrices of the
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following form 

g1 0 · · · 0

u2,1 g2
. . .

...
...

. . . . . . 0

ur,1 · · · ur,r−1 gr


where gi ∈ GL(Mi) and uj,i ∈ HomC

(
Mi,Mj ⊗C HomOX (Ei, Ej)

)
. Analogously, we can consider

Aut(F) to be a matrix group. Under this identification the maximal normal unipotent subgroup UE

of Aut(E) is given by elements of the following form



IdM1 0 · · · 0

u2,1 IdM2

. . .
...

...
. . . . . . 0

ur,1 · · · ur,r−1 IdMr


.

with uj,i ∈ HomC
(
Mi,Mj⊗CHomOX (Ei, Ej)

)
. We can also consider the reductive partRE of Aut(E)

which is given by the condition that uj,i = 0 for all i, j.



g1 0 · · · 0

0 g2
. . .

...
...

. . . . . . 0

0 · · · 0 gr


.

In particular, we have that Aut(E)/UE ∼= RE . In the following we consider the natural left action

of the linear algebraic group H := Aut(E) × Aut(F) on the affine space V := HomOX (E ,F). Let

us denote the reductive respectively the unipotent part of H by R := RE × RF respectively by

U := UE×UF . Under this identification we also obtain a block matrix description of φ ∈ Hom(E ,F)

where φk,l : Ml ⊗ El → Fk ⊗ Nk identifies with an element of Hom(Ml ⊗ Hom(El,Fk)∨, Nk) =

Hom(Ml, Nk ⊗Hom(El,Fk)).
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B.2 An extension of the action

In this section, we will replace the actionH×V → V by an action ofG×W →W that is compatible

with the original action in the following sense:

1. H is an observable subgroup of G

2. G has enough characters in the following sense: To any character χ : H → Gm we can

associate a character ψ : G→ Gm .

3. The diagram

H × V V

G×W W

α

idH ×ζ ζ

β

commutes.

4. StabH(x) = StabG(ζ(x))

5. The morphism β ◦ (idG×ζ) : G× V →W factorizes via G×H V.

Note that the following construction of Drézet and Trautmann uses the decomposability of the

sheaves E1 and E2 in an essential way. We use this construction only for the special case Q =
1◦ → 2◦

and denote E := E1 and F := E2. Let E =
r⊕
i=1

Mi ⊗ Ei and F =
s⊕
j=1

Nj ⊗ Fj , where Ei and Fj are

simple reflexive sheaves of OX -modules and Mi, Nj are finite dimensional C-vector spaces.

If Aut(E) respectively Aut(F) is reductive there is no need to replace the automorphism group.

In the following suppose that sheaf E respectively F has a non-reductive automorphism group.

We try to replace the sheaf with a simpler sheaf admitting a reductive group as a replacement for

Aut(E). Here we have to different choices depending on whether we are working with the source

E or target F of our unique arrow a. Set

1. E◦ := E1 ⊗Hom(E1, E),

2. F• := Fs ⊗Hom(F ,Fs)∨ and

3. W0 := Hom(E◦,F•).
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To construct an injective morphism from V = Hom(E1, E2) to W0 consider the following set-up.

For a given morphism φ : E → F we construct a morphism Φ : E◦ → F• :

E◦ = E1 ⊗HomOX (E1, E)
evE1−→ E φ−→ F

κ∨F,Fs−→ Fs ⊗HomOX (F ,Fs)∨ = F•.

All together this determines a closed immersion

γ : HomOX (E ,F)→ HomOX (E◦,F•)

φ 7→ γ(φ) = evE1 ◦φ ◦ κ∨F ,Fs .

On W0 we have a natural action of the reductive group Aut(E◦) × Aut(F•) but this group

does admit enough characters [25, p. 134]. Since we are interested in comparing notions of

(semi)stability with respect to a polarization (character) we find the group Aut(E◦) × Aut(F•)

unsuitable. To circumvent this problem we extend W0 to W together with a group action of

×r
j=1 GL

(
HomOX (Ei, E)

)
××r

j=1 GL
(

HomOX (F ,Fj)∨
)
.

Consider the following composition maps

κi : HomOX (Ei, E)⊗HomOX (Ei−1, Ei)→ HomOX (Ei−1, E)

given by φ⊗ ψ 7→ φ ◦ ψ and

ηl : HomOX (F ,Fl+1)∨ ⊗HomOX (Fl,Fl+1)→ HomOX (F ,Fl)∨

mapping HomOX (F ,Fl)
F→ k ⊗Fl

ψ→ Fl+1 to F (ψ ◦ −) := ηl(F ⊗ ψ).

Setting

WL :=
r⊕
i=2

Hom
(

HomOX (Ei, E)⊗HomOX (Ei−1, Ei),HomOX (Ei−1, E)
)

and

WR :=
s−1⊕
l=1

Hom
(

HomOX (F ,Fl+1)∨ ⊗HomOX (Fl,Fl+1),HomOX (F ,Fl)
)
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ζ : V →WR ⊕W0 ⊕WL

ϕ 7→
(
(κ2, . . . , κr), γ(ϕ), (η1, . . . , ηs−1)

)
.

Proposition B.2.1. The morphism ζ is a closed embedding of affine schemes [25, p.137].

On W := WL ⊕HomOX (E◦,F•)⊕WR we have an action of G := GL ×GR where

GL :=
r

×
j=1

GL
( j⊕
i=1

Mj ⊗C HomOX (Ei, Ej)
)

=
r

×
j=1

GL
(

HomOX (Ei, E)
)

and

GR :=
s

×
l=1

GL
( l⊕
m=1

Nl ⊗C HomOX (Fm,Fl)∨
)
.

We construct a group homomorphism θ : H → G. Since H = HR × HL and G = GR × GL

we will only construct θL : HL → GL where θ = θL × θR and θR is defined analogously. Recall

that HL = Aut(E) where E =
r⊕
i=1

Mi ⊗ Ei with Ei a simple locally free sheaf. An element h ∈ HL

corresponds to a matrix

h =



g1 0 · · · 0

u2,1 g2
. . .

...
...

. . . . . . 0

ur,1 · · · ur,r−1 gr


where gi ∈ GL(Mi) and uj,i ∈ HomC

(
Mi,Mj ⊗C HomOX (Ei, Ej)

)
. For j ≥ i, let ḡij := gj ⊗

IdHomOX (Ei,Ej) and ūik,l be constructed from

uk,l : Ml →Mk ⊗HomOX (El, Ek).

Given uk,l then define ūik,l for i ≤ l ≤ k by

Ml ⊗HomOX (Ei, El)
uk,l⊗Id
−→ Mk ⊗HomOX (El, Ek)⊗HomOX (Ei, El)

Id⊗κ−→ Mk ⊗HomOX (Ei, Ek)



136 APPENDIX B. THE WORK OF DRÉZET AND TRAUTMANN

where κ is the composition map. Finally set θL = (θL,1, . . . , θL,r) where

θL,i(h) :=



ḡii 0 · · · 0

ūii+1,i ḡii+1

. . .
...

...
. . . . . . 0

ūir,i · · · ūir,r−1 ḡir


According to Drézet and Trautmann [25, p. 138] it follows that θL is a closed embedding of

algebraic groups.

Remark B.2.2. Consider the rational H-module W and the rational G-module V then ζ : W → V

is a closed embedding that is equivariant with respect to the closed embedding of linear algebraic

groups θ : H → G. In other words θ is a closed embedding of algebraic groups and ζ : W → V is a

closed embedding of affine varieties such that the following diagram commutes

H ×W W

G× V V

σH,W

θ×ζ ζ

σG,V

In particular we have that w,w′ ∈ W belong to the same H-orbit if and only if ζ(w) and ζ(w′)

belong to the same G-orbit in V [25, Cor 5.3.2]. Furthermore H is the stabilizer of ζ(0) under the

G-action on V [25, Lemma 5.3.1].

B.3 The notion of stability

Recall there is a linear action of H := Aut(E)×Aut(F) on W = HomOX (E ,F). In this section, we

define following the paper by Drézet and Trautmann [25] the (semi)stable subsetW (s)s(H,Φ) ⊂W

for the H-action on V with respect to a character χΦ of H, where Φ is a proper polarization as

defined below.

Definition B.3.1. A proper polarization Φ = (λ1, . . . λr,−µ1, . . . ,−µs) for the R-action on V is

given by a sequence of positive rational numbers λi, µj such that

r∑
i=1

λi dimMi =
s∑
j=1

µj dimNj = 1. (B.1)
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Remark B.3.2. A proper polarization corresponds to a linearisation of the action by a charac-

ter. Given a proper polarization Φ, let t be the smallest common denominator of the numbers

λ1, . . . , λr, µ1, . . . , µs then

χΦ(hE , hF ) =
r

×
i=1

det(hE,i)
tλi

s

×
j=1

det(hF ,j)
−tµj

is a character of H, where hE,i respectively hF ,j are the restricted automorphisms from Mi ⊗ Ei →

Mi ⊗ Ei respectively Nj ⊗Fj →Mj ⊗Fj .

Definition B.3.3. Let V be a rational R-module, χ : R → Gm be a character and f ∈ C[V ] be a

polynomial. We call f χ-invariant, if for every v ∈ V and r ∈ R we have f(r · v) = χ(r)f(v).

A point v ∈ V is (R,χ)-semistable if there exists an integer n ≥ 1 and a χn-invariant polynomial

f ∈ C[V ] such that f(v) 6= 0. The point v is (R,χ)-stable if and only if

1. v is (R,χ)-semistable,

2. dim(R · v) = dim(R/Gm) = dim(R)− 1 and

3. the action of R on Vf := {v′ ∈ V |f(v′) 6= 0} is closed.

Remark B.3.4. 1. Let χ : R → Gm be a character associated to a proper polarisation Φ. Then

W ss(R,χ) = π−1(P(W )ss(OP(W )(t)) for a suitable linearised OP(W )(t) see [25, p. 122-123]

where π : W \ {0} → P(W ) is the canonical quotient morphism.

2. For (R,χ)-(semi)stability we have the following criterion by A. King: A point f ∈ Hom(E ,F)

is χ-(semi)stable if and only if for each family of subvector spaces ((M ′i)1≤i≤r, (N
′
j)1≤j≤s)

which is neither the trivial family ((0), (0)) nor the maximal family ((Mi), (Nj)) and which

satisfies for each i, j : f(M ′i⊗Ei) ⊂ N ′j⊗Fj we have
r∑
i=1

tλi dimM ′i+
s∑
j=1
−tµj dimN ′j(≤) < 0.

Definition B.3.5. For the pair (H,χ) a point v0 ∈ V is (semi)stable, if every v ∈ H · v0 is (R,χ)-

(semi)stable.

Remark B.3.6. According to [25, p. 120] it follows, that if we want to have stable points that is

V s(H,Φ) 6= ∅ then we need for each i that λi > 0 and for each j we have −µj < 0.



138 APPENDIX B. THE WORK OF DRÉZET AND TRAUTMANN

B.4 Examples

Example B.4.1. [25, §4.2]

Consider V := Hom(OP2(−2)⊕2,OP2(−1)⊕OP2). In this case we have three notions ofH-(semi)stability,

two of these notions correspond to nonsingular polarizations. A polarization for the action of H

on V is a triple Φ = (1
2 ,−µ1,−µ2) with µ1, µ2 positive rational numbers satisfying µ1 + µ2 = 1. In

this example the polarization Φ0 := (1
2 ,
−3
4 ,
−1
4 ) corresponds to the character χ : H → Gm given by

χ(g, ( λ1 z
0 λ2

)) = det(g)−2λ3
1λ2. In particular µ2 = 1−µ1, hence we only depend on µ1. There is only

one singular polarization corresponding to µ1 = 1
2 . If µ1 > (<)1

2 then stability equals semistabiliy.

If µ1 >
1
2 then V s(H,Φ) has a geometric quotient which is the universal cubic Z ⊂ P2 × P9.

Example B.4.2. [39, §2]

Vd := Hom(OP2(−d + 1)⊕2,OP2(−d + 2) ⊕ OP2), which is isomorphic to Ad2+d+6. For d = 3 this

example was obtained already by Drézet and Trautmann. Let Xd be the space of morphisms

OP2(−d + 1)⊕2 A−→ OP2(−d + 2) ⊕ OP2 where the matrix A is given by

z1 z2

q1 q2

 and has the

following properties:

1. the entries z1 and z2 are linearly independent, and

2. A has a non-zero ’determinant’ z1q2 − z2q1.

The group H = Aut(OP2(−d+ 1)⊕2)×Aut(OP2(−d+ 2)⊕OP2) acts linearly on X by the rule

(h, g) ·A = gAh−1.

The morphism X
π→M,

z1 q1

z2 q2

 7→ (〈z1q2 − z2q1〉, z1 ∧ z2) where z1 ∧ z2 is the common zero

of z1 and z2.

Any point x ∈ Xd has Gm
∼= StabH(x) = ∆ / H. Denote by PH := H/∆ then π : X → M is a

principal PH-bundle and in particular a geometrical quotient for PH acting on Xd.



B.5. COMPARISON WITH REDUCTIVE GIT 139

B.5 Comparison with reductive GIT

In the previous section we have defined the Drézet-Trautmann (semi)stable set V ss(H,Φ) ⊂ V for

the H-action on V with respect to a character χΦ. Recall that there is a commutative diagram

H × V V

G×W W

θ×ζ ζ

such that G is a reductive group. In this situation we can consider W as an affine completion of

G×H V and compare ζ−1
(
W ss(G,Ψ)

)
with V ss(H,Φ).

Let Φ be the associated polarization for the action of R on V, then there exists a polarization Ψ

for the action of G on V that is compatible with ζ : W → V and Φ. More precisely,

Definition B.5.1. Let Φ be a proper polarization of the action of H on V, in the sense of Definition

B.3.1. Then Ψ = (α1, . . . , αr,−β1, . . . ,−βs) is given as the unique solution to the following two

linear equations 

λ1

...

...

λr


=



1 0 · · · 0

a2,1 1
. . .

...
...

. . . . . . 0

ar,1 · · · ar,r−1 1





α1

...

...

αr


and 

µ1

...

...

µs


=



1 b2,1 · · · b2,s

0 1
. . .

...
...

. . . . . . bs,s−1

0 · · · 0 1





β1

...

...

βs


where aj,i := dim Hom(Ei, Ej) and bm,l := dim Hom(Fm,Fl)∨. Setting pi := dim Hom(Ei, E) and

qj := dim Hom(F ,Fj)∨ we have that

r∑
i=1

αipi =
s∑
j=1

βjqj = 1 (B.2)

Definition B.5.2. The semi-stable locus V ss(G,Ψ) with respect to the polarization Ψ is more
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precisely defined by the character χΨ associated to it. Let q the lowest common denominator of

α1, . . . , αr, β1, . . . , βs, we have χΨ(g, h) =
∏r
i=1 det(gi)

qαi
∏s
j=1 det(hj)

qβj .

Remark B.5.3. The relation between χΦ : H → Gm and χΨ : G → Gm is given by χΦ = χuΨ|H

where we considerH as a subgroup of G and p respectively q are the lowest common denominators

with respect to λi, µj respectively αi, β|j and u is given by q = up. [25, p. 142]

Lemma B.5.4. Consider the polarized action of (H,Φ) on W let Ψ be the polarization of G associated

to Φ. Then

1. ζ−1
(
W ss(G,Ψ)

)
⊂ V ss(H,Φ)

and

2. ζ−1
(
W s(G,Ψ)

)
⊂ V s(H,Φ)

That is, if v ∈ V and ζ(v) is (G,Ψ)-(semi)stable, then v is (H,Φ)-(semi)stable in the sense of Drézet

and Trautmann [25, Lemma 5.5.1, Lemma 5.5.3].

Let us denote by Z := Gζ(V ) ⊂W. Then in the case that ζ−1
(
W s(G,Ψ)

)
= V s(H,Φ) we have

the following result:

Proposition B.5.5. If ζ−1
(
W s(G,Ψ)

)
= V s(H,Φ), then there exists a geometric quotient V s(H,Φ)→

M s which is a quasi-projective non-singular variety. If in addition ζ−1
(
W ss(G,Ψ)

)
= V ss(H,Φ) and

(Z̄ \ Z) ∩W ss(G,Ψ) = ∅ then there exists a good quotient V ss(H,Φ)
π→ M and V s(H,Φ)→ M s is

the restriction of π to V s(H,Φ). [25, Prop 6.1.1]

Considering the previous Lemma and Proposition we are interested in the case that also the

opposite inclusions hold ζ−1
(
W ss(G,Ψ)

)
⊃ V ss(H,Φ) and ζ−1

(
W s(G,Ψ)

)
⊃ V s(H,Φ).

For any l we consider the composition maps

Hom(E1,Fl)∨ ⊗Hom(E1, Ei)→ Hom(Ei,Fl)∨

w ⊗ x 7→ evw⊗x : Hom(Ei,Fl)→ C

v 7→ w(v ◦ x)
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which induce the map

δl :
r⊕
i=2

Mi ⊗Hom(E1,Fl)∨ ⊗Hom(E1, Ei)→
r⊕
i=2

Mi ⊗Hom(Ei,Fl)∨.

Let K be the set of proper linear subspaces K ⊂
r⊕
i=2

Mi ⊗ Hom(E1, Ei) that are not contained in

r⊕
i=2

M ′i ⊗ Hom(E1, Ei) with
(
M ′i
)
i=2,...,r

a family of subspaces of
(
Mi

)
i=2,...,r

such that there exists

at least at least one i0 with M ′i0 (Mi0 .

Definition B.5.6. Let

cl(m2, . . . ,mr) := sup
K∈K

ρ(K)

where

ρ(K) :=
codim δl(K ⊗Hom(E1, Ei))

codimK

Corollary B.5.7. Assume that s = 1 that is F = N1 ⊗ F1. Let Φ = (λ1, . . . , λr,
−1
n1

) be a polar-

isation and let Ψ = (α1, . . . , αr,
−1
n1

) the associated polarisation. Then if each αi > 0 and if λ2 ≥
dim Hom(E1,E2)

n1
c1(m2, . . . ,mr) then ζ−1

(
W ss(G,Ψ)

)
⊃ V ss(H,Φ) and ζ−1

(
W s(G,Ψ)

)
⊃ V s(H,Φ).

[25, Cor 7.2.2]

Example B.5.8. Let E := M1 ⊗OPN(−d1)⊕OPN(−d2) and F = N1 ⊗OPN . Here

δl : Hom(OPN(−d1),OPN)∨ ⊗Hom(OPN(−d1),OPN(−d2))→ Hom(OPN(−d2),OPN)∨

identifies to

δl : Sd1V ∨ ⊗ Sd1−d2V → Sd2V ∨.

Let K be a subspace of Sd1−d2V then if K 6= 0 we have that δl is surjective hence ρ(K) = 0. To see

that δl is surjective take 0 6= f ∈ K ⊂ Sd1−d2V and consider the natural map µ : Sd1−d2V ⊗Sd2V →

Sd1V and restrict to µ(f⊗−) : Sd2V → Sd1V. Let λ2 : Sd2V → C be linear then pick λ1 : Sd1V → C

to be any linear map λ1 such that the diagram

Sd2V C

Sd1V C

λ2

µ(f⊗−) Id

λ1
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commutes. Since ρ(K) = 0 it follows that c1(1) = 0. Let Φ = (λ1, λ2,
−1
n1

) be an admissible

polarisation with λ1, λ2 > 0 then the associated polarisation Ψ = (α1, α2,
−1
n1

) is given by

λ1

λ2

 =

 1 0

dim Hom(E1, E2) 1


α1

α2

 .

Then we have

α1 = λ1

α2 = λ2 − dim Hom(E1, E2)λ1

= 1− (dim Hom(E1, E2) +m1)λ1

hence for 0 < λ1 <
1

dim Hom(E1,E2)+m1
it follows that α1, α2 > 0. By the above results there exists a

good quotient for W ss(G,Φ) which restricts to a geometric quotient on W s(G,Φ).
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