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Abstract: Extracting information from large biological
datasets is a challenging task, due to the large data size,
high-dimensionality, noise, and errors in the data. Gene
expression data contains information about which gene
products have been formed by a cell, thus representing
which genes have been read to activate a particular bio-
logical process. Understanding which of these gene prod-
ucts canbe related towhichprocesses can for example give
insights about how diseases evolve and might give hints
about how to fight them.

The Next Generation RNA-sequencing method
emerged over a decade ago and is nowadays state-of-
the-art in the field of gene expression analyses. However,
analyzing these large, complex datasets is still a challeng-
ing task. Many of the existing methods do not take into
account the underlying structure of the data.

In this paper, we present a new approach for RNA-
sequencing data analysis based on dictionary learning.
Dictionary learning is a sparsity enforcingmethod that has
widely been used in many fields, such as image process-
ing, pattern classification, signal denoising and more. We
show how for RNA-sequencing data, the atoms in the dic-
tionarymatrix can be interpreted asmodules of genes that
either capture patterns specific to different types, or else
represent modules that are reused across different scenar-
ios. We evaluate our approach on four large datasets with
samples frommultiple types. A Gene Ontology term analy-
sis, which is a standard tool indicated to help understand-
ing the functions of genes, shows that the found gene-sets
are in agreement with the biological context of the sample
types. Further, we find that the sparse representations of
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samples using the dictionary can be used to identify type-
specific differences.
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1 Introduction
Next generation RNA-sequencing (RNA-seq) uses high
throughput approaches to enable genome and transcrip-
tome profiling. Emerged over a decade ago, it is increas-
ingly replacing the use of microarrays in the field of gene
expression analyses and thereby becoming the method of
choice in this discipline. Reasons are technological ad-
vances, such as increased genome coverage, reduced se-
quencing costs and less background noise.

Application of RNA-seq data include for instance fea-
ture selection, identification of alternative splicing andde-
tection of differentially expressed pathways. A challenge
in the analysis of RNA-seq data is its high dimensional-
ity. This comes along with the curse of dimensionality,
as usually a good performance on training data can be
achieved well. Reproducibility, however, is often a prob-
lem as small changes in the data can lead to different re-
sults. Therefore the biological relevance of such results
needs to be questioned. To solve this issue, methods en-
forcing sparsity were introduced. In sparse methods coef-
ficients of variables related to noise or uninformative vari-
ables are set to zero. Well known representatives are Lasso
[21], elastic net [25], and sparse random forest [9].

Even though gene expression data is highly structured
[1, 2, 18, 20],many applications act independent of this un-
derlying structure. In this paper, we carry out an analysis
of RNA-seq datawith a variant of dictionary learning (DiL).

DiL is a constrained matrix factorisation approach
that compresses a dataset, preserving most variation in
the lower dimensional space. It is especially interesting in
the analysis of big data as it allows to analyse the data in
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a compressed space. The runtime of data analysis once it
is compressed is significantly smaller than an analysis of
the data in the original space. At the same time, unlike
other data compression methods, DiL allows to interpret
the meaning of the new dimension. Further, the variant
we present in this paper requires significantly less runtime
than the original DiL setting (precise runtime benefits de-
pends on the size of dataset and DiL parameters).

DiL has been widely used in many fields, such as im-
age processing, pattern classification, and signal denois-
ing [4, 23, 6]. The basic idea in DiL is, that a dataset can be
well constructed froma linear combinationof fewmodules
(atoms) of some “basis” (dictionary) given that the data
possesses some structure that can be represented sparsely.
Toour knowledge, its applications toOmicsdata, however,
is rare.

When applying DiL to RNA-seq data from multiple
sample types, the atoms can be described as the basic ele-
ments of thedata (e. g. specific genes sets that aremutually
activated/deactivated), that capture patterns of the anal-
ysed data. Each sample can then be reconstructed (with
small errors) by a linear combination of these atoms. In
interpretation this means, that the dictionary atoms entail
the main building blocks, or modules of the analysed data
and the sparse coding can be interpreted as a data com-
pression.

Dictionary learning (DiL) and compressed sensing
(CS) are data compression methods for which the problem
of sparsity per sample is solved, meaning that the num-
ber of selected modules per sample is always ≤ s (where s
is a defined integer, describing the level of sparsity). They
have found wide application in image compression. How-
ever, for the application to biological data we found only
few examples. In 2002 Prat et al. [18] applied CS tomicroar-
ray data to recover a support set of genes for each gene
in a genome. In 2014 Emad et al. [7] applied CS to Omics
data to discover directed interactions in gene networks. In
2016 Khormuji and Khormuji [11] used a novel sparse cod-
ing algorithm for classificationof tumors basedongene ex-
pression data. In 2017 Clearly et al. [3] presented a method
based on compressed sensing, to generate a high dimen-
sional transcriptomicprofile fromsequencinga small, ran-
dom selection of genes. In their review on low rank repre-
sentation and its application in bioinformatics You et al.
[24] concluded that researchers need to make full use of
the structure of problems. In her thesis from 2019 [12], Ko-
letou applied nested dictionary learning on different types
of Omics data from prostate cancer patients. She devel-
oped nested dictionary learning, describing an iterative
application of dictionary learning: In the first step, the dic-
tionary is learned from the data and further dictionaries

are learned from thedictionary in the pre-descending step.
Reason for this nested approach is the aim of a drastic di-
mensional decrease as the first dictionary from the data
still has 10% of the initial dimension (in the number of
genes).

In this study we evaluate whether a variant of DiL can
be used to separate gene expression data of different types
and whether the atoms of the dictionary are biologically
reasonable. Further, we analyse whether dictionary learn-
ing can be used to classify RNA-seq data with respect to
type, e. g. tissue type, in the lower dimension. In particu-
lar we evaluate the use of dictionary learning for analysis
of RNA-seq data from multiple different types and the in-
fluence of parameters in this analysis. Thereto, we focus
on the following topics:
1. How do the parameters for dictionary learning influ-

ence results? (e. g. number of atoms and sparsity)
2. How well can the found gene-sets separate the types?
3. Does the biological evaluation of the dictionarymatrix

(using GO-terms) agree with the types?

We start by analysing simulated datasets which are de-
signed to contain (expression) patterns similar to biolog-
ical datasets. Based on results from the simulation study
we can decrease the parameter search space for real world
datasets.

When analysing real world datasets we find that sam-
ple clustering of the sparse codings results in high overlap
of the true type-groups. Further, a GO-term analysis of the
identifiedmodules is in agreementwith the biological con-
text of the sample types.

The analysed dataset in focus is the GTEx RNA-
seq with more than 50k reads and 26 tissues with 96
samples per tissue. Further, results for two tissue RNA-
seq datasets from GEO (GSE120795) and Expression At-
las (E-Mtab-2836), one single cell dataset from GEO
(GSE112004), and one simulated dataset are evaluated.

2 Identification of gene modules
from RNA-seq data using a
variant of dictionary learning

2.1 Dictionary learning

The key idea in dictionary learning (DiL) is that a variety
of data can be well constructed from a linear combination
of fewmodules (atoms) of some “basis” (dictionary) given
that the data possesses a sparse structure.
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Given an input dataset X = [x1, ..., xp], xi ∈ ℝd, and a
positive integer m ∈ ℤ>0, the number of columns the dic-
tionary will have, and s ∈ ℤ>0, the sparsity level per sam-
ple, in the dictionary learning problem we wish to find a
matrix D ∈ ℝd×m and s-sparse vectors r1, ..., rp ∈ ℝm, so
called sparse codings, such that Dri ≈ xi ∀i. D is called
the dictionary and its columns are referred to as atoms.
The vectors ri, with at most s non-zero entries, contain the
coefficients for the columns of D to linearly represent xi.
To make the choices of D and ri unique, the constraint
‖di‖2 = 1 is added. The sparsity level, s, often satisfies
s ≪ m. This can be formulated as:

argmin
D,R

P
∑
i=1
‖xi − Dri‖

2
2 + λ‖ri‖0 s. t. ‖di‖2 = 1, (1)

where D ∈ ℝd×m : D = [d1, ..., dm] and R = [r1, ..., rp],
ri ∈ ℝm. In the standard setting the dictionary is an over-
complete system, meaningm > d.

The optimization problem in equation (1) is non-
convex, which means that only sub-optimal solutions can
be found in polynomial time. To improve the computa-
tional feasibility and efficiency, (1) is usually reformulated
using the L1-norm:

argmin
D,ri∈ℝn

P
∑
i=1
‖xi − Dri‖

2
2 + λ‖ri‖1 s. t. ‖di‖2 = 1. (2)

2.2 DiL for RNA-seq data

When applyingDiL to RNA-seq data, according to the stan-
dard DiL setting the orientation of the data X would be
X ∈ ℝp×g , where g is the number of genes and p is the
number of samples. As typically g >> p, the dictionary is
overcomplete only for this data orientation (compare Fig-
ure 1).

If X ∈ ℝp×g , then D ∈ ℝp×m. This, however, would
mean that thedictionary doesnot entail information about
the genes. In fact, this information would be in the sparse
vectors, while at the same time each samples would be
represented by many (up to m) sparse gene vectors which
would only slightly fulfil the aim of dimension reduc-
tion.

We suggest to apply DiL to X, for X ∈ ℝg×p. If X ∈ ℝg×p,
then D ∈ ℝg×m. Only in this setting the dictionary en-
tails information about the genes and each sample is rep-
resented by few (up to s) atoms. This does, however, mean
that the dictionary is not overcomplete as D = X ∈ ℝg×p

would be an optimal solution to (2) already. A further in-
crease of m would not lead to better solutions. Therefore,

Figure 1: Visualisation of the two optional orientations of the data
X for DiL and the resulting orientations of the matrices D, the dic-
tionary, and R, the sparse codings. At the top X ∈ ℝp×g and D is
overcomplete. At the bottom X ∈ ℝp×g (p, number of samples;
g, number of genes) and D is not overcomplete. The overcomplete
dictionary requires a long computational time, whereas runtime for
our method is a lot shorter.

we neglect the overcompleteness while still using the for-
mulation in (2). This means that we are already enforc-
ing sparsity by the selection ofm, as this will describe the
number of dimensions we are compressing the data to and
m < p in our variant of DiL.

2.3 Implementation and complexity analysis

We use DictionaryLearnig [15] for small datasets (up to a
size of 100MB) and MiniBatchDictionaryLearnig [16] for
large datasets. The sparse codings (ri) are computed using
orthogonal matching pursuit (OMP) [17] for which parallel
and GPU versions are available [8]. A detailed complexity
analysis of OMP can be found in [19]. To summarize, the
overall algorithmic complexity is:

O (p ∗ (2gm + s2m + 7sm + s3 + 4sg) + 5gm2)

Recall that p is the number of samples (varying between
different datasets), and g is the number of genes (varying
between different species).

However, for the case of using an overcomplete dictio-
nary the runtime would be:

O (g ∗ (2pm + s2m + 7sm + s3 + 4sp) + 5pm2)

As in RNA-seq experiments typically g >> p, this would
require a highly increased runtime.
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Table 1: Overview of the four real world datasets analysed in this study. Dataset D4 is a single cell dataset. Datasets D1 and D4 contain larger
number of samples than D2 and D3.

ID Database Types Samples per type Reads/Genes Type class

D1 GTEX 26 92 55,091 Tissues
D2 GEO 8 8 53,679 Tissues
D3 Expression Atlas 8 8 49,914 Tissues
D4 GEO 9 32 11,781 B-cell type & experiment time

3 Results

Recall, that the dictionary atoms can be described as the
basic elements of the data. When applied to RNA-seq data
we interpret the atoms as specific genes sets that are mu-
tually activated/deactivated in a large number of samples.
The sparse codings entail information of how to recon-
struct each sample (with small errors) by a linear combi-
nation of a subset of the atoms.

In this section we evaluate applications of our DiL
based approach to different datasets to assess its rele-
vance for RNA-seq data analysis. In general, if our ap-
proach is suitable for RNA-seq data, for one thing, main
differences in the data should be preserved in the com-
pressed representation, hence the sparse codings. To anal-
yse if this is the case, we apply our approach to datasets
with samples from different types. This allows to evaluate
whether the respective types are represented differently
in the sparse codings. Types can be anything referring to
different classes of samples such as phenotype, stimula-
tion in an experiment or donor. At the same time, the com-
pression should be done in a biologically reasonable way,
which we assess by an evaluation of the dictionary atoms
from the real world datasets.

We apply our approach to simulated and real world
datasets. The simulated datasets are constructed to have
fivedifferent sample types. Fivedifferent simulation strate-
gies are performed, which vary in construction of groups
and noise. The four real world datasets each contain
data from multiple types and with multiple samples per
type. One of the datasets stems from a single cell experi-
ment, the others are bulk experiments. Table 1 shows an
overview of the four real world datasets. Details on simu-
lated and real world data are given in section 5.

For each dataset we compute dictionaries of different
sizes and reconstructions for different sparsity levels. We
evaluate how the parameters for dictionary learning (e. g.
number of atoms and sparsity) influence the results, how
well the found gene-sets separate the types, and whether
the biological evaluation of the genes corresponding to the
atoms agrees with the types.

Results from the dictionary learning are (1) the dictio-
nary matrix and (2) a sparse coding vector for each sam-
ple. To evaluate the sparse coding, we use clustering and
analyse whether the clusters have a high agreement with
the sample types. For the RNA-seq data, the dictionary is
evaluated by a Gene Ontology (GO) term analysis [5] (of
the genes corresponding to the high values in the dictio-
nary matrix). Gene Ontology assigns genes to a) biochem-
ical activities, b) biological goals and c) cellular structures
thereby helping to understand functions of the genes and
their products. We use the GO term analysis to evaluate
whether these genes can be associated with the sample
type.

3.1 Evaluation of results

We apply DiL to datasets from multiple types and with
multiple samples per type. The respective sparse codings
should reveal type specific characteristics. To evaluate
whether this is the case, the sparse codings are clustered
and the resulting clusters are comparedwith the true type-
groups. The clustering is performedwith k-means [14] (im-
plementation from Python’s sklearn) with k = n (where n is
the number of types of the dataset). To evaluate the clus-
tering we compute the adjusted rand index (ARI) and the
adjustedmutual information (AMI) of the k-means clusters
and the true type-groups.

The ARI [10] is based on the Rand index, which is de-
fined as the number of pairs of elements that are either in
the same group or in different groups in two partitions di-
vided by the total number of pairs of elements. A problem
with the Rand index, which is corrected in the ARI, is that
the expected value of the Rand index between two random
partitions is not constant. The maximum ARI is 1 and its
expected value is 0 for random clusters.

Themutual informationmeasureshowmuchknowing
one clustering reduces uncertainty about the other cluster-
ing. Similarly as for the Rand Index and the ARI, the AMI
[22] is an adjustment of the mutual information to account
for chance.
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Additionally, the reconstruction error is measured as
the Euclidean distance of the data matrix and the matrix
resulting from D ∗ R (compare (1), (2)).

3.2 How do the parameters for dictionary
learning influence results?

The dictionary learning requires two parameters: The
number of atoms of the dictionary, m, and the sparsity, s.
In this sectionmultiple parameter combinations are tested
to evaluate how they influence the results.

3.2.1 Simulated data

For the simulated datasets the algorithm is run for dictio-
naries with m = [1, 2, 3, 4, 5, 10, 20]. Recall, that the simu-
lated data is constructed to have n = 5 types and five dif-
ferent simulation strategies are performed, which vary in
construction of groups and noise. As our method is new a
newmethod these parameters are selected based on a first
grid search over a wide parameter range. In the selected
range (1 ≤ m ≤ 20) we see the most relevant changes in
ARI, AMI and reconstruction error. Results are visualised
in Figure 2. Construction of the simulateddata is explained
in the Data section.

For all simulated datasets the clustering is in entire
agreement with the types for a dictionary with 5 atoms no
matter how sparsely the data is represented. Further, all
clustering scores are 1 for settings without noise (A, B, C)
whenever the dictionary has 4 or more atoms. For simula-
tion setting C, the median clustering scores are 1 for a all
dictionaries (1, 2, 5, and 10 atoms). Setting E is the only one
for which the clustering scores are not 1 for a dictionary
with 4 atoms. In the settings with noise (D, E), the cluster-
ing scores decrease when the number of atoms exceeds 5,
whereas in the settings without noise clustering scores re-
main 1 for any number of atoms ≥ 4. An explanation could
be that the additional dictionary atoms in settings D and E
are trying to explain the noise which is independent from
the data types and thus leads to a worse clustering result.

The median reconstruction error is minimal among
all evaluated dictionaries for m ≥ 5. In all settings with-
out noise theminimal median reconstruction error is zero,
whereas in the ones with noise there appears to be in-
formation that cannot be explained by the dictionary for
m ≤ 20 and the reconstruction error remains > 0.

Note that the ordering of “high genes”, which are
sorted for each group to appear in blocks in our visuali-
sations (Figure 8), does not influence results.

Summarising the simulation results, it shows that the
selection of the number of dictionary atomshas a big influ-
ence on the results, especially for noisy data. In this small
example it seems to be a good choice to set the number
of dictionary atoms equal to the number of groups in the
dataset.

3.2.2 Real world data

Experiments for the real world datasets, are run for dictio-
naries withm ∈ [1, 2, ..., 2n], where n is the number of types
in each dataset and s ∈ [1, 2, ...,m] for each dictionary. The
choice of values ofm is based on the results from the sim-
ulated data (wherem = n showed to be a good choice and
wewould like to analyse the surrounding parameter space
as well).

As behaviour of ARI and AMI are similar in our exper-
iments (see Figure 3 for an example for dataset D1), we fo-
cus on the ARI in the detailed parameter evaluation and
conclusions can be transferred to AMI.

For all RNA-seq datasets, we find that in general the
ARI increases for increasing number of atoms up to a cer-
tain value where m is close to n (see Figure 4). Consid-
ering the sparsity, for many dictionaries the ARI first in-
creases when s is increased and stays close to some ARI
for larger values of s. ARIs for D2 are worse than for the
other three datasets. Dataset D2, however, showed to have
many samples with a strikingly high number of zero val-
ues. Discarding samples with zero-entries per sample of
more than 75%, yields significantly better results with a
maximum ARI of 0.80. For dataset D1, we perform evalua-
tions for both k = 26 (n = 26 with tissue labels as general
types) and k = 48 (n = 48 with tissue labels as detailed
types) as true labels.

The maximum ARI is: 0.77/0.73 for D1 (for general
types/detailed types), 0.56 for D2, 1.00 for D3, 0.7 for D4.
The maximum AMI is: 0.88/0.85 (for general types/de-
tailed types) for D1, 0.68 for D2, 1.00 for D3, 0.8 for D4.

3.3 How well can the found gene-sets
separate the types?

To find the best parameter combination for the biologi-
cal evaluation, we suggest to perform a grid search with
m ∈ [0.5n, 1.5n] and for each dictionary s = [1, 2, ...,m] and
select the parameters corresponding to the best ARI. In all
experiments we conducted the best ARI of a wide range of
parameters lay in this interval.
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Figure 2: The plots show evaluations for dictionary learning of the simulated data with several parameters. The data is simulated to consist
of five groups (precise simulation setting is given by capital letters, compare section 5.1). Shown are the reconstruction error (blue), and ARI
(green), respectively AMI (purple) for the k-means clusters of the sparse codings. The x-axis displays the number of atoms of the dictionar-
ies. The lines and points display the median value in 100 simulations, the shadows display the 25th and 75th percentile. In each column
results for 1, 2, 5, respectively 10-sparse coding are visualised (see bottom for respective sparsity). In all settings without noise (A, B, C)
the minimal median reconstruction error is zero. Further, in all settings the clustering scores are 1 for a dictionary with 5 atoms no matter
how sparsely the data is represented. In the settings with noise (D, E), the clustering scores decrease when the number of atoms exceeds 5,
whereas in the settings without noise the clustering scores stay 1 for any number of atoms ≥ 4.

We evaluate to what extent the resulting clusters over-
lap with the type groups and which types are grouped, re-
spectively split.

Figure 5 shows a visualisation of the sparse codings
of all samples in each dataset. This visual representa-

tion already reveals that the different types have differ-
ent sparse coding values. This is especially the case for
dataset D2, where each type is represented by one atom.
For the other datasets these differences are not as clear,
but still visible. This is in agreement with the ARI, which
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Figure 3: Visualisation of ARI, AMI, and reconstruction error for
dataset D1 for the dictionary with 26 atoms (as many atoms as
types) and sparsities s ∈ [1, 2, ..., 26]. The AMI is always higher than
ARI (about 0.2, but the difference varies slightly). For smaller values
of s until around s = 10 for increasing s all measurements are im-
proving (reconstruction error decreases, ARI and AMI increase). For
higher values of s, ARI and AMI stay close to 0.6 and the reconstruc-
tion error decreases in smaller steps.

is 1 for dataset D2 and between 0.56 and 0.77 for the other
datasets.

3.3.1 D1: GTEx

For dataset D1 the maximal ARI for the general types of
0.77 is reached for m = 42, s = 39 (see Figure 4). Fur-
ther clustering scores for m = 42, s = 39 are: ARIdetailed =
0.66,AMIgeneral = 0.87,AMIdetailed = 0.81. In the resulting
clusters (compare Figure 6),
– 13 of 26 clusters have samples of one tissue type only

and
– in 18/24/25 clusters more than 90% of samples are

from one/two/three tissue type(s).

When the detailed labels are chosen as the tissue types
with subtypes,
– 10 of 26 clusters have samples of one tissue type only

and
– in 13/21/24 clusters more than 90% of samples are

from one/two/three tissue type(s).

Considering the detailed tissue types, some are separated
as for example tissues belonging to either cerebrum or
cerebellum (in clusters 15, respectively 21). This, however,
is a reasonable separation and we are happy to find that
our algorithm detects differences in these groups. Note,
that this decreases the ARI when the general type labels

are used – as all brain tissues have the same type label –
even though this is actually a correct finding and it shows
that the methods is capable of detecting subgroups.

For the detailed types, the maximum ARI of 0.73 is
reached for 39/32, 42/26, 47/34 (m/s).

3.3.2 D2: GEO GSE120795

For dataset D2 the maximal ARI of 0.56 is reached for m =
7, s = 2 (AMI = 0.67). Five clusters of the sparse codings are
comprised of one tissue only, whereas clusters 2,4, and 7
are a mix of multiple tissues (compare Figure 10). We do
not have detailed information for the brain tissue explain-
ing which samples are grey/white matter, but it is conceiv-
able that the separation of the brain samples into two clus-
ters could be explained by that.

Pie charts with an additional preprocessing step re-
garding the number of zero-entries can be found in the Ap-
pendix.

3.3.3 D3: Expression Atlas E-MTAB-2836

For dataset D3 the maximal ARI is 1.00 (reached form = 7,
s = 1), whichmeans that the clusters of the sparse codings
are in entire agreement with the types (compare Figure 11).

3.3.4 D4: GEO GSE112004

For dataset D4 the maximal ARI of 0.7 is reached for
m = 8, s ∈ [4, 5, 6, 7, 8];m = 9, s = 8;m = 11, s = 3 (AMI =
0.8).

The three treatment types are separated, wrong as-
signments appear only for times within one treatment
class (compare Figure 12).

3.3.5 Summary of parameter evaluation for the real
world datasets

It shows that there is a wide range of parameters for which
the variation of ARI is small. E. g. settingm = s = n results
in an ARI that is larger than 0.8 ∗ ARIbest for all datasets.
A small grid search aroundm = s = n, e. g.m ∈ all integer
values ∈ [0.5n, 1.5n], s ∈ all integer values ∈ [0.5m, 1.5m],
improves results further.

Restriction to positive dictionary entries
In experiments with an additional constraint allowing for
positive dictionary entries only, similar maximum ARIs



126 | M. Rams and T. Conrad, Dictionary learning for transcriptomics

Figure 4: Visualisation of the ARIs for the four real world datasets for all parameters evaluated (number of atoms,m ∈ [1, 2, ..., 2n], where n
is the number of types in each dataset and s ∈ [1, 2, ...m] for each dictionary). Subject to certain exceptions, 1.) the ARI increases for increas-
ing number of atoms until it reaches a maximum and then decreases for further increase ofm (compare values from bottom to top), 2.) for
increase of s, the ARI first increases and then stays relatively constant (compare values from left to right). ARIs for D2 are significantly worse
than the for the other three datasets. The parameters sets of the highest ARIs for D1 vary depending on the types the clusters are compared
with (detailed/general). As expected the optimal range for the detailed types (larger n) lies in the range of higher number of atoms, respec-
tively sparsities.

(±0.01) are reached, however, the number of atoms is of-
ten higher: 47 atoms for D1 and 8 atoms for D2, D3, and
D4.

3.4 Does the biological evaluation of the
dictionary matrix agree with the types?

Let vpos represent the sorted absolute values of D and
vneg the sorted absolute negative values of D. To select
a set of genes for each group, only the largest absolute
values of vpos and vneg are evaluated (compare [13]): All
values in the dictionary matrix that are in the interval
]1st − percentile, 99th − percentile[ are set to zero. The re-
sulting dictionarywill be referred to as 2%Dictionary. Note
that this most likely leads to atoms that have different
amount of non-zero values.

To assign a subset of atoms to each type, we compute
a valuemeasuring the atom-preference among all samples
for each type:
– From all samples’ sparse codings, we compute the

mean value for each atom.
– The resulting values are divided by the absolute sum

of all atom selection values.

For the biological analysis, for each type, we evaluate
genes corresponding to those atoms with top three abso-
lute atom-preferences. A GO-term analysis of these genes
is performed. Only GO-termswith a p-value≤ 10−5 are con-
sidered. Each atom is analysed separately and the genes
with positive, respectively negative values are analysed
separately as well.

In the 2%Dictionary, the number of non-zero entries
per atom varies between 127 and 1841 (out of 55,091) for
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Figure 5: Shown are the values of the sparse codings (values colour coded, see legend). The x-axis represents the samples ordered by type
and the atoms are shown on the y-axis. The black lines indicate the border between each two types. This means that each coloured hori-
zontal stripe reflects the values of the sparse coding for one atom for one sample. This way, multiple dimensions can be visualised – and
therefore compared among different types. What has been confirmed by the ARIs – that for each type (most of the) sample types have a sim-
ilar and unique representation – is confirmed by this visualisation.

dataset D1; Between 560 and 1601 (out of 53,679) for D2;
Between 131 and 1331 (out of 49,914) for D3; Between 152
and 329 (out of 11,781) forD4. Formanyatoms theGO-terms
entail terms that can be associatedwith the corresponding
tissue (see Figure 7).

4 Use case runtime evaluation

The experiments were carried out on a machine with In-
tel(R) Core(TM) i5-8500 processors and 16GB RAM. The
runtime scales with a) dataset size and b) m, the number
of atoms. Depending on the parameter m the runtime for

the smaller datasets varies between 0.4 and 1.4 seconds
for m = 1, respectively m = 20; For the larger dataset D1
the runtime varies between 3.15 and 46.45 seconds for the
same parameters (see Table 2).

5 Data

Evaluations of our algorithm are performed on different
datasets: (1) Simulated data and (2) four real world dataset
from varying sources. Details on the respective datasets
are given in the following paragraphs.
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Figure 6: Shown are the clustering results of the sparse codings for dataset D1 for the maximal ARI measured (dictionary with 42 atoms and
a 39-sparse coding). (a) shows the tissues in the clusters. Most clusters consist of one tissue type (in high extent). Interestingly, some gen-
eral tissue types are separated into few cluster, such as Brain in cluster 15 and 21. These cluster separate the cerebellum from the cerebrum.
(b) shows the clusters for each tissue for the same sparse coding: In (a) we can see for example, that cluster 6 consists of one main type and
a few Salivary Gland samples; In (b) we can see that all Muscle tissue samples appear in only one cluster (cluster 6).

Table 2:Wall-clock time of our approach for the four datasets for two
selected parameters values for the number of atoms,m ∈ [1, 2].
For dataset D1, functionMiniBatchDictionaryLearnig was applied
due to the large datasize (marked with a ‘*’). For the other datasets
the function DictionaryLearnig was used. For the smaller datasets
< 100MB the runtime is < 2 second form = 20. For D1, the runtime
form = 20 is still < 1 minute.

Dataset Wall-clock time [s]
form = 1 Wall-clock time [s]

form = 20
D1 3.2* 46.5*
D2 0.4 1.4
D3 0.4 1.2
D4 0.4 0.7

5.1 Simulated data

The construction of simulated data is inspired by biologi-
cal data.We simulate amatrix of 50 samples and 100 reads.
The data is simulated to have 5 groups of 10 samples each.
In the simulation, for each group we differentiate between
a subset of background genes and up to 20 high genes. The
subset-size and themeaning of “high”/“low” is differently
defined in each simulation setting. The values for back-
ground genes and high genes are simulated separately. In
two of the five settings a subset of the background values

are high in all samples to simulate housekeeping genes. For
a detailed explanation of the simulation settings see Ta-
ble 3 and Figure 8.

For each setting but the first (because the first does not
require a random drawing) we simulate 100 datasets.

5.2 Real world data

We analyse four RNA-seq datasets (see Table 4), with sam-
ples frommultiple types (see Table 1). The number of sam-
ples per type varieswithin eachdataset. To obtain datasets
with the same number of samples per type, for each type,
samples are randomly selected such that the number of
samples per tissue type is the same for all tissues andmax-
imal given the data.

5.2.1 D1: GTEX

The GTEX data contains TPM-normalised counts for 11,688
samples and 56,202 reads.

Each sample is labelled with a detailed tissue descrip-
tion (e. g. Adipose – subcutaneous, Adipose – Visceral,
Brain – Amygdala,...), as well as a more general one (e. g.
Adipose – Subcutaneous and Adipose – Visceral as type
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Figure 7:Wordclouds of the GO-terms with p-value ≤ 10−5 for a selection of 3 atoms for each tissue dataset. Dataset and tissue name with
highest atom-preference for the respective atom is given in the subtitles. Only tissues for which the respective atom is added are shown
(referring to positive dictionary entries and sparse coding values, or both negative). For many atoms the GO-terms entail terms that can be
associated with the corresponding tissue.
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Table 3: Overview of the simulation settings in the 5 simulated dataset. Three gene classes are simulated: Background entries, Housekeepin
genes, and Group entries. Among the different simulation settings, for each class the percentage of these gene classes among all genes as
well as the particular values are adjusted.

Setting Background entries Housekeeping genes Group entries
Amount Value Amount Value Amount Value

A All 0 None – All 1
B All 0 None – 50% 1
C 60% 0 40% 1 50% 1
D All N (0,0.2) None – 50% N (0.7,0.2)
E 60% N (0,0.2) 40% N (0.7,0.2) 50% N (0.7,0.2)

Table 4:Meta data for the four real world datasets analysed in this study. Datasets D1 and D4 contain larger number of samples than D2 and
D3. D1, D2, and D3 contain larger number of genes than D4.

ID Database Database ID Total samples Reads/Genes Size [MB] raw
(preprocessed)

D1 GTEX GTEX 2,392 55,091 2700 (572)
D2 GEO GSE120795 64 53,679 24 (34)
D3 Expression Atlas E-MTAB-2836 64 49,914 37 (5)
D4 GEO GSE112004 288 11,781 28 (260)

Figure 8: The simulated data is constructed to consist of 5 types.
For each type a subset of all group specific entries is high. (a) In the
simplest setting, which the others are based on, all group specific
entries are 1 and the other values are 0. (b–e) In the other simu-
lations group specific entities are drawn randomly; (d–e) Noise is
added; (c), (e) A subset of genes is high in all groups.

Adipose). We evaluate the dictionary learning for the gen-
eral grouping anduse the detailed description in the result
analysis only. Data is present for 53 detailed tissue types
with 5–564 samples per type, respectively 31 grouped tis-
sue types with 7–1671 samples per type.

The minimum number of samples per tissue is set to
50.

Outlier removal and selection of the same number of
samples per type results in a 2,392 × 55,091 matrix (2,392 =
26types ∗ 92samples_each).

5.2.2 D2: GEO GSE120795

The GEO dataset GSE120795 contains FPKM-normalised
counts for 166 samples and 58,233 reads. Samples stem
from 25 tissues with 1–15 samples per tissue.

Theminimumnumber of samples per tissue is set to 8.
Outlier removal and selection of the same number of

samples per type results in a 64 × 53,679 (64 = 8types ∗
8samples_each) matrix.

Note, that some samples have zero-values for most
of the reads and only some high values. These samples
could easily be detected by a limitation to the number
of zero-values per sample (e. g. no more than 75% zero-
entries).

5.2.3 D3: Expression Atlas E-MTAB-2836

The Expression Atlas dataset E-MTAB-2836 contains
counts for 200 samples and 65,217 reads. Samples stem
from 32 tissues with 3–13 samples per tissue.

Theminimumnumber of samples per tissue is set to 8.
Outlier removal and selection of the same number of

samples per type results in a 64 × 49,914 (64 = 8types ∗
8samples_each) matrix.
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5.2.4 D4: GEO GSE112004

The GEO dataset GSE112004 is a single cell dataset and
contains read counts for 3,648 samples and 11,841 genes
(already mapped). Samples stem frommice CD19+ B cells:
untreated, treated to trans-differentiate to macrophages,
and treated to trans-differentiate to induced pluripotent
stem cells (3 types). For each type, measurements at three
time points are available (considered as 9 types in total).

The minimum number of samples per tissue is set
to 32.

Outlier removal and selection of the same number of
samples per type results in a 288 × 11,781 (288 = 9types ∗
32samples_each) matrix.

5.2.5 Normalisation

In [3] Clearly et al. suggest to normalise the data by a re-
moval of genes for which the sum of counts is > 99.5th −
percentil to “avoid performance statistics that are skewed
by few genes with extremely high expression”. We adapt
this normalisation and perform the same normalisation
for the samples. Additionally, to avoid for a bias of dif-
ferent experiments, each sample is normalised by divi-
sion through the sum of all counts for this sample. Sub-
sequently, to provide numerical stability and allow greater
interpretability of the dictionary entries, variables are cen-
tred to zero and scaled to have a standard deviation of one.

6 Discussion and conclusion

In this study, we present our results for a new version of
dictionary learning.Weapply themethod to simulated and
real world data. We evaluate both, the relation of sam-
ple labels and clusters of the sparse codings, as well as
the biological relevance of the gene-sets represented by
the dictionary atoms. Clustering the sparse codings of the
real world datasets showed that the dictionary keeps rel-
evant properties of the data. Further, the biological rele-
vance of the gene-sets detected by the DiL approach was
confirmed by a GO-term analysis, which revealed the large
potential of dictionary learning in RNA-seq analysis to ex-
tract type specific gene-sets.Weperformeda large studyon
four datasets, showing that results are not unique to one
dataset.

In contrast to [3] the focus of our analysis is not to find
a dictionary such that a high-dimensional transcriptomic
profile can be generated from sequencing a small, random

selection of genes. Rather, we aim at 1.) detecting relevant
genes-sets and 2.) thereby confirming that the dictionary
keeps relevant properties of the data – this in mind, the
sparse codings can be used for further analysis.

In contrast to [12] we perform only one step of dictio-
nary learning which is a lot faster than the standard dic-
tionary learning and again several times faster than the
nested dictionary learning presented in [12].

We have only evaluated clusterings with the number
of clusters, k, equal to the number of types given in the
data, n. In some cases, we found that one type was split
whereas others were found in one cluster, which results in
an ARI < 1. We found that separation of some types was
in agreement with subtypes in some cases. Assuming that
differences between these subtypes is bigger than among
other general types, this leads to those general types be-
ing grouped in one cluster. We have to keep in mind, that
by setting k = n, we rely on the correctness of the data an-
notation. Evaluating higher values of k might resolve this
issue, such that the types that appear in one clustered for
k = n will then be in separate clusters.

The DiL method requires two parameters, the num-
ber of atoms of the dictionary, m, and the level of spar-
sity, s. Our experiments revealed that for every dataset
evaluated there was a large range of parameters for which
the variation of ARI, respectively AMI is small. E. g. setting
m = s = n, hence only evaluating one parameter setting,
results in an ARI that is larger than 0.8 ∗ ARIbest . A small
grid search aroundm = s = n improves results further.

This paper is focused on the method and its analysis
on multiple RNA-seq datasets as well as a detailed anal-
ysis of the results. We have only performed very limited
normalisation of the data. Amore extensive normalisation
might improve results even further. This becomes visible
in the analysis of dataset D2, where one simple additional
normalisation step improved the ARI from 0.56 to 0.8.

By thresholdingwe filtered the dictionarymatrix to re-
ceive the 2%Dictionary and used this to select the gene-
sets. This could be improved by adding a constraint in the
dictionary learning process, such that the dictionary itself
will be sparse and thresholding would no longer be re-
quired.

Other related methods, such as NMF and SVD do not
enforce sparsity per sample. DiL, however, fulfils this crite-
rion. With the results of this paper in mind, showing that
the dictionary keeps relevant properties of the data, one
could use the dictionary for the representation of states
(e. g. of a single cell), and study its e. g. time-dependent
behaviour in the dictionary space. Application of dictio-
nary learning on dataset D4 shows that results for single
cell data are similarly good as for pooled cells.
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In conclusion, our study demonstrates that our dictio-
nary learning based approach is able to detect biologically
relevantmodules of genes specific to various types, aswell
as to represent RNA-seq data in lower dimension.
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05M16KEA (IBOSS) to TC and MR. The funders did not
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Appendix

The following figures show results of the analysis of
datasets D1–D4.

Figure 9: Shown are results for dataset D1 for the maximal ARI measured (dictionary with 37 atoms and a 32-sparse coding). (a) Shown are
the detailed tissue types in the clusters. Many clusters gather subtypes of one tissue (compare Figure 6), which is what we aim for since
the number of clusters is set equal to the number of general tissue types. Interestingly, some general tissue types are separated into few
cluster, such as brain in cluster 11 and 19. These cluster separate the cerebellum from the cerebrum. (c, d) Shown are the clusters for each
tissue.
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Figure 10: Shown are results for dataset D2 for the dictionary with 7 atoms and a 1-sparse coding. (a) Shown are the tissues in the clusters.
Five clusters consist of one tissue type only. (b) Shown are the clusters for each tissue. Interestingly brain tissues are separated into two
clusters which might represent a separation of grey and white matter (no data available).

Figure 11: Shown are results for dataset D3 for the dictionary with 7 atoms and a 1-sparse coding. (a) Shown are the tissues in the clusters.
(b) Shown are the clusters for each tissue. As the ARI for this data is 1, all pies are of one colour only.

Figure 12: Shown are results for dataset D4 for the dictionary with 8 atoms and a 4-sparse coding. The type labels describe the treatment
type and time (hours). (a) Shown are the types in the clusters. Five clusters consist of one tissue type only. (b) Shown are the clusters for
each tissue. The three treatment types are separated, wrong assignments appear only for times within one treatment class.
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