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2 Abstract

Objective: Machine Learning models, in particular Artificial Neural Networks, have shown to be 

applicable in clinical research for tumor detection and sleep phase classification. Applications in 

systems medicine and biology, for example in Physiological Networks, could benefit from the 

ability of these methods to recognize patterns in high-dimensional data, but decisions of an 

Artificial Neural Network cannot be interpreted based on the model itself. In a medical context 

this is an undesirable characteristic, because hidden age, gender or other data biases negatively 

impact the model quality. If insights are based on a biased model, the ability of an independent 

study to come to similar conclusions is limited and therefore an essential property of scientific 

experiments, known as results reproducibility, is violated. Besides results reproducibility, methods 

reproducibility allows others to reproduce exact outputs of computational experiments, but 

requires data, code and runtime environments to be available. These challenges in interpretability 

and reproducibility are addressed as part of an assessment of the Physiological Network in 

Obstructive Sleep Apnea. 

Approach: A research platform is developed, that connects medical data, code and environments 

to enable methods reproducibility. The platform employs a compute cluster or cloud to accelerate 

the demanding model training. Artificial Neural Networks are trained on the Physiological 

Network data of a healthy control group for age and gender prediction to verify the influence of 

these biases. In a subsequent study, an Artificial Neural Network is trained to classify the 

Physiological Networks in Obstructive Sleep Apnea and a healthy control group. The state-of-the-

art interpretation method DeepLift is applied to explain model predictions. 

Results: An existing collaboration platform has been extended for sleep research data and modern 

container technologies are used to distribute training environments in compute clusters. Artificial 

Neural Network models predict the age of healthy subjects in a resolution of one decade and 

correctly classify the gender with 91% accuracy. Due to the verified biases, a matched dataset is 

created for the classification of Obstructive Sleep Apnea. The classification accuracy reaches 87% 

and DeepLift provides biomarkers as significant indicators towards or against the disorder. 

Analysis of misclassified samples shows potential Obstructive Sleep Apnea phenotypes. 

Significance: The presented platform is extensible for future use cases and focuses on the 

reproducibility of computational experiments, a concern across many disciplines. Machine 



6 

 

learning approaches solve analysis tasks on high-dimensional data and novel interpretation 

techniques provide the required transparency for medical applications. 

3 Kurzfassung 

Ziel: Methoden des maschinellen Lernens, insbesondere künstliche neuronale Netze, finden 

Anwendung in der klinischen Forschung, um beispielsweise Tumorzellen oder Schlafphasen zu 

klassifizieren. Anwendungen in der Systemmedizin und -biologie, wie physiologische Netzwerke, 

könnten von der Fähigkeit dieser Methoden, Muster in großen Merkmalsräumen zu finden, 

profitieren. Allerdings sind Entscheidungen eines künstlichen neuronalen Netzes nicht allein 

anhand des Modells interpretierbar. In einem medizinischen Kontext ist dies eine unerwünschte 

Charakteristik, weil die Daten, mit denen ein Modell trainiert wird, versteckte Einflüsse wie 

Alters- und Geschlechtsabhängigkeiten beinhalten können. Erkenntnisse, die auf einem 

beeinflussten Modell basieren, sind nur bedingt durch unabhängige Studien nachvollziehbar, 

sodass keine Ergebnisreproduzierbarkeit gegeben ist. Neben der Ergebnisreproduzierbarkeit 

bezeichnet Methodenreproduzierbarkeit die Möglichkeit exakte Programmausgaben zu 

reproduzieren, was die Verfügbarkeit von Daten, Programmcode und Ausführungsumgebungen 

voraussetzt. Diese Promotion untersucht Veränderungen im physiologischen Netzwerk bei 

obstruktivem Schlafapnoesyndrom mit Methoden des maschinellen Lernens und adressiert dabei 

die genannten Herausforderungen der Interpretierbarkeit und Reproduzierbarkeit. 

Ansatz: Es wird eine Forschungsplattform entwickelt, die medizinische Daten, Programmcode 

und Ausführungsumgebungen verknüpft und damit Methodenreproduzierbarkeit ermöglicht. Die 

Plattform bindet zur Beschleunigung des ressourcenintensiven Modelltrainings verteilte Rechen-

ressourcen in Form eines Clusters oder einer Cloud an. Künstliche neuronale Netze werden zur 

Bestimmung des Alters und des Geschlechts anhand der physiologischen Daten einer gesunden 

Kontrollgruppe trainiert, um den Einfluss der Alters- und Geschlechtsabhängigkeiten zu 

untersuchen. In einer Folgestudie werden die Unterschiede im physiologischen Netzwerk einer 

Gruppe mit obstruktivem Schlafapnoesyndrom und einer gesunden Kontrollgruppe klassifiziert. 

DeepLift, eine Interpretationsmethode nach aktuellem Stand der Technik, wird zur Erklärung der 

Modellvorhersagen angewendet. 

Ergebnisse: Eine existierende Forschungsplattform wurde für die Verarbeitung schlafbezogener 

Forschungsdaten erweitert und Containertechnologien ermöglichen die Bereitstellung der 

Ausführungsumgebung eines Experiments in einem Cluster. Künstliche neuronale Netze können 
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anhand der physiologischen Daten das Alter einer Person bis auf eine Dekade genau bestimmen 

und eine Geschlechtsklassifikation erreicht eine Genauigkeit von 91%. Die Ergebnisse bestätigen 

den Einfluss der Alters- und Geschlechtsabhängigkeiten, sodass für Schlafapnoeklassifikationen 

zunächst eine Datenbasis geschaffen wird, in der die Geschlechts- und Altersverteilung zwischen 

gesunden und kranken Gruppen ausgeglichen ist. Die resultierenden Modelle erreichen eine 

Klassifikationsgenauigkeit von 87%. DeepLift weist auf Biomarker und mögliche physiologische 

Schlafapnoe-Phänotypen im Tiefschlaf hin. 

Signifikanz: Die vorgestellte Plattform ist für zukünftige Anwendungsfälle erweiterbar und 

ermöglicht Methodenreproduzierbarkeit, was über den Einsatz in der Medizin hinaus auch in 

anderen Disziplinen von Bedeutung ist. Maschinelles Lernen bietet sinnvolle Ansätze für die 

Analyse hochdimensionaler Daten und neue Interpretationstechniken schaffen die notwendige 

Transparenz für medizinische Anwendungszwecke. 
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4 Introduction 

In recent years, Machine Learning (ML) models have become a popular tool in clinical research 

to improve or enable computer-aided diagnostics. Prominent examples, where ML models have 

outperformed other solutions, are the detection of metastatic tissue in pathological images [1] of 

lymph nodes as an indicator for breast cancer [2] [3], as well as automatic sleep scoring [4] and 

classification of Type 1 Narcolepsy [5] based on polysomnographic biosignal recordings. These 

advances are possible, because computational resources are more widely available and large 

amounts of patient data are collected. In contrast to a static computer program, ML models do not 

follow handcrafted rules representing the knowledge of domain experts. ML models represent 

mathematical functions with unknown, randomly initialized parameters. Based on existing data 

samples, these parameters are optimized in an iterative, computationally expensive training 

process, until the model closely predicts the desired output for the given samples. A well optimized 

and generalized ML model cannot only predict the outcome for training data samples, but also for 

unknown test data with an acceptable error rate. Depending on the number of parameters and the 

structure, ML models can solve different problems of varying complexity. Artificial Neural 

Networks (ANN) are a type of ML model with a very flexible architecture, that is constructed from 

several layers of artificial neurons with non-linear mathematical operations between each layer 

[6]. They can work with high-dimensional data and can adapt to different types of input data using 

different layer architectures. For example, cancer detection in high-resolution images uses 

Convolutional Neural Networks (CNN) that consist of layers performing image convolution 

operations [7] [8]. On the other hand, the narcolepsy classification uses Long Short-Term Memory 

(LSTM)  layers [9] [10], that are capable of processing temporal data like biosignals. Despite the 

structural differences of the input data, the data values can be referred to as features, that together 

form a feature space. A feature can be an individual pixel of an image, a measurement value in a 

biosignal time series, or any kind of engineered feature, like the statistical sleep parameters used 

in sleep research [11]. Based on such features, ANNs can be trained to solve various types of 

problems. In case of a classification problem, an ANN can learn to transform a high-dimensional 

feature space into a low-dimensional representation. This representation is linearly separable in 

the ANNs output layer to classify the data. In the context of this thesis, any type of algorithmic 

analysis that relies on digital assets, like an ANN classification training, is referred to as 

computational experiment. 
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Although ANNs can outperform other methods in terms of a decreased prediction error, they 

impose various challenges, that need to be addressed to be a viable solution in a medical context. 

Compared to some simpler ML models, like Decision Trees [12], ANNs do not have the intrinsic 

ability to be interpretable with respect to existing domain knowledge [13] [14], because a non-

linear mathematical model with thousands of parameters is incomprehensible for humans. If, for 

example, the diagnostic prediction of an ANN leads to a certain treatment, it would be desirable 

to understand the decision process [15]. This problem is even more amplified, when it comes to 

hidden biases in the data [16], which can be learned by ML models to distinguish patient groups 

by features not related to the actual disease. The result is a misclassification of patients, that do 

not share the typical secondary features of other patients with the same disease. As an example, 

Obstructive Sleep Apnea (OSA) is more prevalent in elderly men [17] and therefore datasets 

contain more samples of this group. An ANN model trained on such a skewed dataset, could rely 

on age- and gender-related features to support its predictions without this misbehavior being 

discovered. To understand or visualize how important individual features are for an ANN 

prediction, new external interpretation methods for various ANN architectures have been 

developed in recent years [18] [19] [20] [21] [22]. These methods can be compared to each other 

in benchmarks [23] [24], but also allow ANNs to compete with feature selection algorithms [25] 

[26], statistical testing on group differences [27] and tree-based ML models [12] [28] [29], that are 

intrinsically interpretable. Furthermore, the problem of data biases does not only relate to 

interpretability, but also to reproducibility [30] [31] [32]. Achieving results reproducibility, as 

defined by Goodman et al. [33], requires other researchers to being able to obtain similar results 

in an independent study that supports the original findings. If the original study did not account 

for biases, for example by not age matching data samples between patient groups, the results might 

not be reproducible. Compared to results reproducibility, a more technical aspect is methods 

reproducibility [33]. It requires the actual resources that have been used in the experiment to be 

available to other researchers, to allow them to reproduce exact outcomes, like statistics or plots, 

as they have been published by the original authors. In the context of computational experiments, 

relevant resources are data, code and environment [34]. Code can be shared publicly on popular 

code hosting platforms like GitHub, where for example the ANN models for Narcolepsy 

classification [5] can be found1. In order to execute this code, many software dependencies like an 

operating system, programming libraries and script interpreters must be installed and configured 

on a computer system. These environments can be prepared and distributed to others using modern 

 
1 https://github.com/Stanford-STAGES/stanford-stages 
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virtualization and container technologies [35]. While sharing code and environments is feasible, 

the public accessibility of medical data is limited due to ethical considerations. Here, medical Data 

Management Systems (DMS) [36], like the Extensible Neuroimaging Archive Toolkit (XNAT) 

[37], that allow for data access restrictions, can be used to share data with authorized users over a 

network. Although various technical systems and platforms exist to make data, code and 

environment available, methods reproducibility can only be achieved if these systems follow the 

FAIR Guiding Principles [38], that require resources to be findable, accessible, interoperable and 

reusable. These principles require the usage of global identifiers, support for standard network 

transmission and authentication protocols, to store data in open formats and to follow community 

standards. Furthermore, combining the described resources to run a defined computational 

experiment is a rather difficult technical hurdle. Compared to established grid computing 

infrastructures and science gateways [39] [40] [41] [42], modern research platforms and workflow 

runtimes [43] [44] leverage container technologies for reproducible environments. While these 

tools provide platform-specific ways of handing data into these environments, they are not flexible 

enough to work well with external data sources like XNAT, that have complex programming 

interfaces. In addition, they are not designed with ML applications in mind and therefore do not 

explicitly support the usage of Graphics Processing Units (GPU) that are hardware devices 

typically used to accelerate the training of ANNs [45]. 

It is important to address the described challenges, because advances in the fields of systems 

medicine and biology [46] [47], that study the complex interactions in the human body, rather than 

attributing problems to individual organs, require “new computational and analytical approaches 

to extract information” [48]. In particular multidimensional biosignals recorded during sleep, 

known as polysomnographies (PSG), provide a rich data source to analyze Physiological Network 

(PN) interactions across the human body and how these interactions are altered in the context of 

sleep disorders. In a PN, each network node represents an organ system or specific characteristic 

of it. The edges of the network, that connect each pair of nodes represent the coupling of these 

organ systems. ML methods, like ANNs, can be applied to classify diseases based on these high-

dimensional feature spaces formed by the edges in a PN, to discover underlying patterns or even 

novel biomarkers [49]. In the course of this dissertation, ML methods have been applied, to 

discover physiological differences in patients suffering from OSA. OSA is a disorder with high 

prevalence [50], that has the potential to disrupt physiological processes and the common pattern 

of sleep cycles, when compared to healthy individuals [51]. Affected people stop breathing (apnea) 

or have a reduced airflow (hypopnea) for more than 10 seconds [52], due to a “clinical condition 
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in which the throat narrows or collapses repeatedly during sleep” [53]. The Apnea Hypopnea Index 

(AHI) indicates the number of apnea or hypopnea events per hour during a night. Depending on 

this index, OSA is classified as mild (AHI 5‒15), moderate (AHI 15‒30) or severe (AHI >30) [52]. 

Senaratna et. al have reported OSA prevalence in a recent meta-study: ”At ≥5 events/h apnea-

hypopnea index (AHI), the overall population prevalence ranged from 9% to 38% and was higher 

in men. It increased with increasing age and, in some elderly groups, was as high as 90% in men 

and 78% in women. At ≥15 events/h AHI, the prevalence in the general adult population ranged 

from 6% to 17%, being as high as 49% in the advanced ages.” [17]. As suggested by these 

numbers, the prevalence increases with age and is higher in men than in women. Disturbed sleep 

often leads to daytime sleepiness, but not every affected person suffers from negative conditions. 

Although the prevalence of OSA is higher in elderly people, daytime sleepiness in this age group 

is less of a problem compared to young patients [54]. In terms of known network effects, an 

increased cardio-respiratory coordination in OSA patients has been reported [55]. 

To enable interpretability and reproducibility of the conducted experiments, the previously 

described challenges are addressed on different levels. First, a collaborative research platform 

centered around XNAT is introduced, that supports the handling of medical data and connects to 

a private cloud or compute cluster for efficient and distributed processing of experiments. The 

platform is further evaluated and improved to enable methods reproducibility and to follow the 

FAIR principles. External data sources and GPUs for ANN training acceleration are explicitly 

supported. An analysis conducted in the platform is the assessment of age- and gender-related 

differences [56] [57] [58] in the PNs of a healthy control group during sleep. As part of the study, 

ANNs are trained to predict age and gender based on the PN data, because the contained 

information could function as an underlying bias in other classification tasks. In a subsequent 

study, ANNs are trained to classify OSA based on the same type of PN and such that the ANN 

classification decisions can be explained using a state-of-the-art interpretation method called 

DeepLift [21]. The performance of the ANN classifiers is compared to other interpretable ML 

methods and the relevance of features is verified using statistical tests. For these methods not to 

rely on the described biases, the training is performed on an age and gender matched dataset. 

Countermeasures against data biases and the interpretation of models contribute towards an 

improved results reproducibility of the presented computational experiments. 
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5 Methods 

5.1 SIESTA Database 

The SIESTA database [59] contains PSGs from various patient groups, including 100 recordings 

from 50 OSA patients and 393 recordings from 197 healthy controls. The healthy control group 

contains 103 female and 94 male subjects. Two consecutive nights have been recorded for most 

subjects. Eight European sleep labs have taken part in the SIESTA study. Included PSGs contain 

at least six EEG channels to capture brain activity, EOG measuring activity of the eyes, a chin 

EMG, an ECG, as well as three respiratory signals (nasal, chest, abdomen) and oxygen saturation. 

Each EEG channel is split into delta, theta, alpha, sigma and beta frequency bands [60], resulting 

in 38 signals in total. Associated with each PSG is a hypnogram created by a human scorer 

following the Rechtschaffen and Kales scoring rules [61]. The hypnograms describes the sleep 

stage transitions during the course of a recorded night, containing labels for wake (W), rapid eye 

movement (REM) and non-REM (N1, N2, N3, N4) stages. Since the distinction between N3 and 

N4 deep sleep stages is not made in the newer AASM scoring criteria [62] [63], the N4 stages 

were labeled as N3 stages for the purpose of the presented studies. All PSGs are stored in the 

standardized European Data Format (EDF) [64]. 

5.2 Data Normalization 

EDF+ is an addition to the original EDF standard, that defines strict formatting rules for EDF 

header fields [65]. Since the EDFs contained in the SIESTA database have been created before the 

release of EDF+ and have been exported from different recording devices, they do not always 

contain consistent information and strictly formatted header fields. For the purpose of this work, 

an existing open-source MATLAB application2 was employed to convert individual EDFs to 

contain normalized channel names and header fields. 

5.3 Physiological Networks 

Physiological Networks (PN) describe the physiological interactions between organ systems. The 

coupling of organs can be calculated using various methods. As a foundation for the presented 

experiments, the Time Delay Stability (TDS) [66] method has been applied. TDS is based on cross-

correlation to determine if two signals are coupled at a certain point in time. The cross-correlation 

 
2 Dagmar Krefting, https://github.com/somnonetz/psgScan2edfData 
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determines a certain time-delay of one signal to the other, where correlation is maximized. If this 

time-delay does not change across five subsequent time steps, the coupling is considered stable. 

When first introduced, the concept was used to find changes in physiological interactions during 

sleep stage transitions. This universal method is applicable to combinations of many organ 

systems, including brain EEG frequency bands, EOG, chin and leg EMG, respiration and heart 

rate. A follow-up study has identified rules for brain-brain, brain-periphery and periphery-

periphery systems in healthy subjects [67]. Concerning brain-brain interactions, intra- and inter-

channel communication is distinguished. In a single brain hemisphere, inter-channel couplings 

between frontal and central EEG are stronger than couplings between frontal and occipital EEG. 

Across hemispheres, the coupling of frontal channels is stronger than the coupling of central 

channels, which again is stronger than occipital coupling. Concerning brain-periphery interactions, 

the EOG is coupled with the frontal EEG. In general, during W and N2 stages couplings occur 

more often and are stronger than during N3 and REM stages. 

Using the TDS method [66], the PN topology changes over the course of the recording time. The 

time dimension of a signal pair can be summarized by taking the average value per sleep stage. 

Based on the 38 preprocessed PSG signals, this results in 2812 feature values for the sleep stages 

W, N2, N3 and REM. This high-dimensional feature space is a summarized description of the PN 

topology based on a single PSG. The TDS method shows great flexibility, because it is applicable 

to all standard PSG channels contained in the SIESTA EDFs. Again, an existing MATLAB 

application3 is used to generate TDS values from previously normalized EDFs. 

5.4 Infrastructure 

5.4.1 Container Appliances 

While data normalization and TDS algorithms are provided as existing MATLAB applications, 

other programs, including ANN models, had to be implemented for the presented studies. The 

implementation of ANNs has been carried out in Python, a general-purpose programming 

language with support for popular ML frameworks. Tree-based ML methods have been 

implemented using the software ecosystem of the R language. MATLAB, Python and R 

applications each require specific runtimes and additional software libraries to be installed on the 

Linux host operating system (OS). To enable the execution of these applications on remote servers, 

 
3 Dagmar Krefting, https://github.com/somnonetz/physiological-networks-tds 
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without the requirement of setting up the specific runtime environment on the given server, the 

applications and all their respective dependencies can be installed in Docker container images. 

Container technologies provide process isolation from the host OS, which means that instead of 

accessing the host’s file system, they provide their own minimalistic file systems in the form of a 

container image. A bundled application, also referred to as appliance, can be uploaded to a Docker 

registry. Given the required authorization credentials, any computer running a docker-engine on 

top of a Linux operating system can pull the appliance from the registry using a URL and execute 

it without any further modifications. 

5.4.2 Common Workflow Language 

A Docker appliance on its own, does only solve the problem of distributing a given software 

program, but does not provide a standardized way of executing it. Containers can either contain 

long-running server processes, which we are not interested in for the given use case, or can execute 

command-line interface (CLI) applications, that terminate after finishing an analysis. Every CLI 

application accepts certain parameters, for example a path to an input file or a parameter to change 

the behavior of the program, to produce certain outputs. Since every CLI application is different, 

a person or automation process trying to run the software, does not know how to do so. The 

Common Workflow Language (CWL) [68] solves this problem, by providing a CLI specification 

language, which allows for formalization of the process execution. 

5.4.3 OpenStack 

Compared to Grid computing infrastructures, modern cloud computing technologies use virtual 

machines (VM) and virtual networks to partition different kinds of physical resources, like storage, 

network and processing time. This allows for fine-grained control in a multi-tenant environment. 

The OpenStack Nova client API allows for programmatic control of the cloud resources. Docker 

containers can be started inside of VMs using a Docker client or can be launched outside of VMs 

under control of OpenStack Nova. While many commercial cloud infrastructures are being 

operated by international corporations, the OpenStack4 cloud platform is an open source project 

and can be deployed on premise, for example in clinics or university networks. 

 
4 https://www.openstack.org/ 
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5.5 Artificial Neural Networks 

While different ANN architecture for specific use-cases exist, this section only discusses simple 

feed-forward ANNs for classification and regression problems. ANNs can incorporate combined 

information from large feature-spaces into their predictions. They are organized in layers of 

artificial neurons to apply subsequent non-linear transformations to the data. Each layer is 

determined by a matrix of weights. In a so-called forward pass, the matrix of one or more data 

samples is passed to the first layer, where it is multiplied with the weights of the first layer and 

then transformed by a non-linear activation function. The result is passed to next layer where this 

procedure repeats. The values of the weights are initialized randomly and optimized during 

training. For a given input, a loss function calculates an error value, by comparing the actual output 

of the network with the desired output. A stochastic optimizer, like Adam [69], iteratively adapts 

the weights to improve the ANN output based on the calculated loss. A typical ANN has one input 

layer, where the number of input neurons corresponds to the number of features in the data. This 

input layer is followed by an arbitrary number of hidden layers, with an arbitrary number of 

neurons per layer. The actual number of layers and neurons are hyperparameters, that determine 

the complexity of the model. If the hyperparameters are defined in a way such that each layer has 

an equal or smaller number of neurons than its predecessor, the ANN can effectively transform 

high-dimensional data representations into low-dimensional representations. Throughout the 

experiments, the well-known Rectified Linear Units (ReLU) [70] activation function has been used 

for input and hidden layers. The last hidden layer is followed by a single output layer, that can 

have different properties, depending on the problem at hand. 

For binary classifications, e.g. male and female classes or healthy and OSA classes, two output 

layer options exist. The first option is, to encode the output as a single neuron with a sigmoid 

activation function [71]. This function always yields a response in the range ]0, 1[, where 0 and 1 

represent the classes. The sigmoid activation will never be exactly 0 or 1, instead a classification 

decision is determined at a classification boundary, usually at 0.5. Such a model can be trained 

using the binary cross-entropy loss function. The second option is to encode the classes in two 

separate neurons. The softmax activation function is applied to the output layer, such that the sum 

of all neurons is one [72]. The value of each neuron can then be interpreted as a class probability. 

The classification is therefore determined by the highest probability. This model configuration can 

be trained using the categorical cross-entropy loss function. 
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In a regression problem, for example predicting a continuous age value, no activation function is 

applied to the output layer. The difference between the continuous output value and the continuous 

target value is determined by the Mean Squared Error (MSE) loss function. 

5.5.1 Architecture and Hyperparameters 

The input data to the model are 2812 TDS features, each sample representing a whole night. As 

described in section 5.3, all features are average values, that summarize the coupling during a sleep 

stage. Due to taking the average values, there is no temporal information remaining in the PN 

features. Therefore, a standard feed-forward ANN architecture can be used, where all features are 

passed into the network at once. Working with temporal data would otherwise require a more 

complex architecture, for example with CNN or LSTM layers. For some experiments we have 

conducted a hyperparameter grid-search, where ANNs are trained on all possible combinations 

from a list of predetermined hyperparameter choices to yield optimal results [73]. A grid-search is 

easy to implement, but, due to the potentially large number of combinations, requires a compute 

cluster to execute the experiments in a reasonable amount of time. 

5.5.2 Overfitting Avoidance 

The number of data samples in the SIESTA database is an order of magnitude lower than the 

number of features per sample. ANN models represent complex, non-linear mathematical 

functions, which are likely to overfit on datasets with small sample sizes. An overfitted model has 

learned to identify individual samples and therefore to separate these specific samples into their 

respective classes. Conversely this means, that the trained model does not represent general 

knowledge about the given classes, for example healthy and OSA, and is not able to classify 

validation data correctly. Analyzing the feature importance on basis of such a model would lead 

to false results and must be avoided. Four complementary strategies for overfitting avoidance are 

employed. A) Data is matched by external properties, like age and gender, if these properties are 

not the classification target [74]. In consequence, age and gender are equally distributed for each 

target class. B) Training and validation data splits are stratified for equal class distribution [75]. 

C) With Dropout regularization a certain percentage of neurons per layer is randomly set to zero 

at each training step [76]. Dropout influences the training process, such that an ANN is forced not 

to rely on individual features and instead to learn general patterns in the data. The Dropout 

percentage per layer are additional hyperparameters. D) A 5-fold Cross-Validation (CV) strategy 
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is employed, where the classification performance is evaluated across five different training and 

validation data splits [77]. 

5.5.3 Model Evaluation 

The most basic, but easy to interpret, evaluation score for classifiers is accuracy, the ratio of 

correctly classified samples to the total number of samples. Since the focus of this work is the 

interpretation of models and not model performance, fine-grained scores like precision, recall 

(sensitivity), F-score and specificity were not required. For evaluation of continuous age 

predictions in a regression problem the mean absolute error (MAE) is used. The error term is 

calculated by subtracting the predicted value from the target value and taking the absolute of the 

result. The mean is then calculated over all samples. In contrast to the MSE function, that is used 

during model training, the MAE value is easier to interpret as an absolute age difference. 

Fleiss’ Kappa is a score for interrater reliability, where the agreement in decisions from different 

raters is measured [78]. The score ranges from -1 to 1, with 1 denoting perfect consensus in all 

decisions and -1 denoting complete disagreement. Compared to Cohen’s Kappa [79], Fleiss’ 

Kappa is applicable to an arbitrary number of raters. In an equivalent way, Fleiss’ Kappa can be 

applied to classification models. In a 5-fold cross-validation approach five models of the same 

type are trained on five different subsets of the data. If the models are not overfitting on a specific 

training subset of the data, each model of the same type should provide very similar or ideally the 

exact same classification decisions on the full dataset with the Fleiss’ Kappa score being 1. In this 

case, we interpret the score as the intra-type consistency. For comparison of different types of 

classifiers, the score can as well be interpreted as an inter-type agreement. 

5.5.4 DeepLift 

DeepLift [21] is a method to determine the importance of each neuron in an ANN. A forward pass 

through the network is calculated to provide a classification decision for a given sample. From the 

classification output a backward pass determines the importance of neurons one layer at a time, 

starting with the last hidden layer and finishing with the input layer. Importance values are 

calculated in reference to a neutral data input, for example a zero vector. We have applied DeepLift 

to a binary classification problem with a single output neuron. The importance value of a neuron 

can be positive or negative, with positive values indicating that higher inputs to the neuron 
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contribute more towards class 1 and negative values indicating that larger inputs to the neuron 

contribute more towards class 0. 

5.6 Age- and Gender-Related Group Differences 

Since the prevalence of OSA is increased in elderly men, the distribution of subjects in the SIESTA 

database is skewed towards this group. If not conducted carefully, this underlying bias could 

potentially lead to misguided results. OSA classifiers trained on a skewed dataset, might learn to 

differentiate the disorder by age- or gender-related differences instead of actual OSA features. 

Therefore, in a baseline analysis, we asses related studies and compare reported age and gender 

dependencies to statistical group differences in PNs of healthy controls. To validate the findings 

of the employed tests, different ANN architectures for regression and classification tasks are 

trained. This demonstrates the capabilities of the models to predict age (regression) and gender 

(classification) based on the TDS features. 

6 Implementation and Results 

This section summarizes the implementation and results of three subsequent studies: “Multicenter 

data sharing for collaboration in sleep medicine” [80] (including associated studies [81] [82] [83] 

[84] [85]), “Age and gender dependency of physiological networks in sleep” [86] and “Feature 

relevance in physiological networks for classification of obstructive sleep apnea” [87]. 

6.1 Multicenter Data Sharing for Collaboration in Sleep Medicine 

The proposed collaboration platform is centered around XNAT as a data management system. 

Development started in an earlier project [81], with the aim to enable automated quality assessment 

of retinal Optical Coherence Tomography (OCT) scans. Due to XNAT’s extensibility, the system 

was then adapted to store PSGs in EDF format, as well as proprietary vendor formats [80] [84]. 

Custom XNAT data types have been developed to hold sleep research specific metadata, including 

biosignal channel information. Data is organized in projects with access restrictions for 

unauthorized users, but inter-project collaboration is supported by sharing selected patient data or 

recording sessions. Data storage and processing have different server hardware requirements. The 

XNAT server provides high availability and storage capacities, but only moderate processing 

power. Fully utilizing the server’s CPU with data processing jobs would lower the availability of 

the data. The collaboration platform therefore connects the XNAT data storage to a separate cluster 
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with multiple compute nodes for processing tasks. Due to the redundancy in the cluster, high 

availability is a not a concern for individual nodes. Available hardware resources are managed by 

the OpenStack cloud platform. A custom Job Management System (JMS) schedules processing 

tasks in the cluster. These jobs are triggered by XNAT pipelines, either manually through XNAT’s 

web interface or automatically when new data is uploaded. Output data generated by a job is stored 

back to XNAT. Via the JMS, different Docker appliances can be launched to process data, for 

example to normalize data, to extract TDS features from the previously normalized data or to train 

ANN models on TDS features. 

6.1.1 Job Management System 

The Job Management System (JMS) is a server-side software component with a network-based  

programming interface [88] to receive job information from XNAT. It is loosely coupled with 

XNAT and can be integrated with other Data Management Systems (DMS). Originally, the JMS 

was developed to connect with OpenStack Nova to launch Virtual Machines (VM) or Docker 

containers and was therefore not suited to work outside of an OpenStack environment. Support for 

Nova has since been dropped in favor of directly connecting with Docker [82]. This allows for 

more flexibility, by either running containers inside of OpenStack VMs or by running them 

directly on a server’s host Operating System (OS). 

The core concept of the JMS is to control the temporary availability of data in the compute cluster 

and to maximize the security of the medical data. For this purpose, the JMS never directly starts 

an application process in a container, but instead starts a supervisor process. This supervisor 

process downloads input data from a DMS directly into the container file system, launches the 

intended application to process the data and uploads the output data back to the DMS. As soon as 

the supervisor process terminates, the container and its file system are deleted from the compute 

node, leaving no remnant data on the server. Data transfer is handled by so-called connector 

programs, that must be included in the Docker appliance. Besides data transfer with XNAT, 

different connector implementations can enable communication via standard transmission and 

authentication protocols like HTTPS or SSH. 

6.1.2 Methods Reproducibility 

Since reproducibility is a significant concern in computational research, the components of the 

collaboration platform have been evaluated in terms of the FAIR Guiding principles during a 
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subsequent study [83]. XNAT implements or supports all of these principles, because the data is 

findable via URLs or the integrated metadata search engine, it is accessible via a standard REST 

interface, the implemented data exchange formats XML, JSON and DICOM are interoperable and 

reusable. At the time of the study, the JMS fulfilled most of the principles, by providing a REST 

interface with URLs to job metadata, and by implementing support for standard transmission 

protocols via connectors. In terms of the reusability aspect it fell short, due to a custom job 

description format, that did not follow community standards. The job format has since been 

replaced by Reproducible Experiment Descriptions (RED) [85], a new format based on the open 

CWL standard. A RED file contains an application CLI description in CWL format, input 

parameters, connector references for input and output data, container engine settings, including a 

reference to the Docker appliance in a registry, as well as execution engine settings. This complete 

description of an experiment can be used to reproduce results on any computer, that has a Linux 

OS and Docker installed, if the hardware requirements are satisfied. The JMS is now known as 

CC-Agency and has been published as part of the Curious Containers5 open source project. CC-

Agency is one of two available RED execution engines. Docker appliances created to be 

compatible with Curious Containers, are also compatible with CWL runtimes to prevent 

experiments from being locked in the collaboration platform. Besides the sleep research related 

workloads, the RED execution engines have been successfully evaluated to support a 

computationally demanding CNN workload for cancer detection in pathological images [85]. This 

workload requires access to large amounts of training data, that may be too large to be stored on a 

local computer. To circumvent this problem, support for Filesystem in Userspace (FUSE) [89] has 

been added to the software. FUSE network filesystems allow remote data directories, that are 

located on a dedicated storage server, to be mounted on top of a local filesystem. The remote data 

is then transparently accessible on the local computer or within a Docker container. The FUSE 

implementation SSHFS6 does not store data, but transfers chunks of data on demand as they are 

requested by an application. SSHFS enables efficient network access to a CAMELYON16 training 

database, that contains more than a terabyte of tissue image tiles. Additionally, support for the 

Nvidia-Docker technology was implemented to accelerate the process using GPUs and therefore 

reduce CNN training durations. For experiments that rely on these technologies, the filesystem 

and GPU requirements are documented in their respective RED files. 

 
5 https://www.curious-containers.cc/ 
6 https://github.com/libfuse/sshfs 
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6.2 Age and Gender Dependency of Physiological Networks in Sleep 

The second study investigates age- and gender-related differences in PNs of healthy controls from 

the SIESTA database. The PNs are based on the TDS algorithm, with 703 calculated biosignal 

couplings for each sleep stage (W, N2, N3, REM). The study conducts a statistical analysis and 

verifies the results using ANNs for non-linear classification and regression. 

Results from the statistical analysis show, that women have significantly higher couplings in 

different central and occipital brain regions during N2 and REM sleep stages. Other differences in 

men and women, that have been detected, are not statistically significant. With increased age, a 

significant decrease in coupling during N2, N3 and W sleep stages for male and female subjects 

was found. 

Five types of ANN classifiers have been trained on 703 TDS features from the four individual 

sleep stages and a combined input containing all 2812 features. The ANNs are configured with 

two output neurons representing both classes and use the softmax activation function. In a 

hyperparameter grid-search, 1800 hyperparameter combinations have been trained for each type 

of ANN, resulting in a total of 9000 ANN training experiments. The set of possible 

hyperparameters contains different Dropout values for input and hidden layers. All experiments 

have been carried out in the collaboration platform’s job management system. The highest test 

classification accuracy of 0.91 was achieved with the combination of all features. On separated 

sleep stage input data, the classification accuracies are 0.89 for N2, 0.88 for R, 0.79 for W and 

0.77 for N3. These results are in line with the statistical analysis, where some brain couplings are 

significantly higher in women during N2 and REM sleep stages. 

Equivalent to the ANN gender classification task, a hyperparameter grid-search for five types of 

ANNs has been carried out to perform a non-linear regression for age prediction using a single 

output neuron. With a MAE of 4.79 years, the best results are achieved on the N2 sleep stage data. 

The result for combined features from all sleep stages is slightly lower and reaches a MAE of 5.42 

years. This result indicates, that the predictive power of the data lies in N2 and that the other sleep 

stages add noise to the combined features that lower the overall ANN performance. The analysis 

was repeated for male and female subgroups respectively. The age prediction error in N2 was 

slightly lower for the male subgroup (MAE = 4.50 years), than for the female subgroup (MAE = 

5.16 years). 
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ANN classification and regression results show, that ANNs can be successfully trained on TDS 

features using Dropout for overfitting avoidance, even though the number of input features is an 

order of magnitude larger than the number of data samples. This information is required for the 

subsequent OSA study, where age and gender-related biases in the data might influence the results, 

if no countermeasures are applied. 

6.3 Feature Relevance in Physiological Networks for Classification of 

Obstructive Sleep Apnea 

The third study compares the PN topologies of OSA patients to healthy controls during sleep. As 

shown for age and gender differences, ANNs can be trained to solve classification and regression 

tasks based on TDS features. Similarly, ANNs are trained on TDS features to classify OSA and 

the interpretation technique DeepLift is applied to calculate the relevance of features based on a 

given classification decision. DeepLift feature relevance scores are compared with scores obtained 

from Decision Trees, Random Forests and statistical testing on group differences. 

For a meaningful OSA classifier it is crucial not to rely on age and gender information, because 

the age distribution of OSA patients in the SIESTA dataset is skewed towards older patients and 

most of them are male. To avoid these biases, 48 healthy controls have been age and gender 

matched with 48 OSA patients and stratified training, validation and test data splits have been 

created from the matched samples. This bias avoidance strategy improves result reproducibility of 

the experiments. The final dataset contains 188 PSGs from the 48 subject-pairs. In contrast to the 

binary classification ANNs of the second study, the ANNs are configured with a single output 

neuron using the sigmoid activation function. DeepLift is applied to obtain relevance scores from 

a classification decision of this single output neuron, where otherwise different DeepLift scores 

would be obtained from two output neurons. 

Due to the small number of samples, the ANN classifier was prone to overfit on the training data. 

In order to reduce overfitting as much as possible, we found a very high Dropout rate of 95% 

applied to the ANN input layer to yield the best results (ANN95). The resulting ANN95 models 

reach a mean test accuracy of 87% during cross-validation, compared to a mean accuracy of 96% 

on the training data. The Fleiss’ Kappa score measuring intra-model consistency is 0.91. In our 

experiments the ANN95 models reach, compared to ANNs with 20% input Dropout, as well as 

Decision Tree and Random Forest models, the highest accuracy and intra-model consistency. 
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Feature relevance scores have been obtained for all data samples from the five cross-validation 

ANN95 models using DeepLift. From the individual sample scores, the mean scores have been 

calculated across the ANN95 models for each classification group, OSA and healthy. The results 

show, that during N2 increased physiological couplings from breathing rate or chin EMG signals 

to most other signals, including brain EEGs, are an indication for OSA. During N3 on the other 

hand, mostly decreased coupling is an indication for OSA. Relevant decreases are found from the 

right EOG to the right-side EEG bands and to O1 and C4 delta EEG bands. Additionally, a 

decreased coupling between both brain hemispheres in C3 and C4 sigma EEG bands is a relevant 

feature for OSA classification. The alternative ML models, Decision Trees and Random Forests, 

each provide slightly different rankings of the 2812 features, but none of the results contradict 

each other. The five most relevant features of each model are at least in the top 10% of most 

relevant features from every other model. 

A useful property of DeepLift is, that an individual assessment of misclassified samples is possible, 

to find the relevant features for the wrong classification outcome. Some of the OSA patients, that 

have been misclassified as healthy, show typical couplings with breathing and chin EMG signals 

during N2, but do not show the decreased coupling in brain EEG signals during N3. Two of three 

misclassified healthy controls show OSA related couplings in N2 and have an AHI of ~20 and ~40 

respectively. 

7 Discussion 

The collaboration platform has been set up successfully, with EDF raw data and processing results 

being stored in XNAT. In subsequent studies the JMS was improved to be compatible with the 

existing CWL standard and to focus on methods reproducibility. 

In order to find the best ANN models for gender classification and age prediction, the scheduling 

capabilities of the JMS were used to run a hyperparameter grid-search optimization in a compute 

cluster. Based on PN data, such an optimized ANN model can predict the age of a subject in the 

range of a decade. The subject’s gender was classified correctly in 91% of the cases. These results 

confirm, that age and gender information is contained in PNs and that ANNs can learn to use these 

data patterns for predictive tasks. 

ANNs and other ML models have been trained to identify relevant PN features for OSA 

classification. For this approach to yield meaningful results, it is crucial that the trained models do 
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not rely on unrelated biases, that might be present in the data. Based on our previous findings, we 

have only used age and gender matched data samples for OSA classification training, making it 

unlikely for the classifier to rely on these secondary attributes. As shown in the study, the relevance 

values obtained from ANN models via DeepLift are consistent with other types of models and 

statistical tests. The identified features are in good agreement with the sleep medicine and 

physiology literature. In addition, we have identified potential differences in PN phenotypes, 

where some OSA patients do not show reduced brain EEG couplings during N3. However, in 

young OSA patients, the strength in sigma C3 and C4 couplings seems to diverge more strongly 

from healthy subjects in the same age group. 

8 Conclusion 

Different PN analysis tasks based on a high-dimensional feature-space were implemented 

successfully. The development of a collaboration platform allowed for structured data 

management and the usage of distributed compute resources. The platform has specific extensions 

for sleep data support, but is not limited to these data types, as has been shown in an earlier OCT 

quality analysis and a cancer detection use case. The JMS was published as part of the Curious 

Containers open source software project and is still in ongoing development. 

ANN models have been successfully trained on PN data, but strict overfitting avoidance was 

required. DeepLift is an interpretation technique for ANNs that was applied to OSA classifiers. 

The method provides meaningful results in the context of high-dimensional feature-spaces and 

relevance scores are consistent with established ML methods. Due to its generic nature it shows 

great potential for other medical use cases, where black-box classifiers are not desirable, but 

powerful models like ANNs are required. 

Physiological couplings, that differ in strength between OSA patients and healthy controls, have 

been revealed by the interpretation techniques. Most of the findings are in line with other studies, 

but the potential PN phenotypes for OSA patients during N3 still need confirmation from the sleep 

physiology community. 
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