
 

 

Aus der Klinik mit Schwerpunkt Nephrologie und Intensivmedizin 
der Medizinischen Fakultät Charité – Universitätsmedizin Berlin  

 

 

 

 

DISSERTATION 
 

 

 Use of interferon-stimulated gene expression level in renal transplant 
patients’ blood as biomarkers for diagnosis of rejection 

 

 

 

zur Erlangung des akademischen Grades 
Doctor medicinalium (Dr. med.) 

 

 

 

 

 

 

vorgelegt der Medizinischen Fakultät  
Charité – Universitätsmedizin Berlin 

 

 

 

 

 

von  
 

 

 

Qiang Zhang 

aus V.R. China 

 

 

Datum der Promotion: 18.09.2020 



 

  

VORWORT  

 

Teilergebnisse der vorliegenden Arbeit wurden bereits veröffentlicht: 

 

Matz M, Heinrich F, Zhang Q, Lorkowski C, Seelow E, Wu K, Lachmann N, Addo RK, 

Durek P, Mashreghi MF, Budde K. The regulation of interferon type I pathway-related 

genes RSAD2 and ETV7 specifically indicates antibody-mediated rejection after kidney 

transplantation. Clinical transplantation. 2018 Dec;32(12): e13429 



 

    I 

TABLE OF CONTENTS 

List of figures .................................................................................................................. III 

List of tables .................................................................................................................. IV 

List of abbreviations ........................................................................................................ V 

Abstrakt (Deutsch) ........................................................................................................ VII 

Abstract (English) .......................................................................................................... IX 

 

1 INTRODUCTION .......................................................................................................... 1 

1.1 Kidney transplantation ........................................................................................ 1 

1.2 Renal allograft rejection ...................................................................................... 3 

1.3 Antibody-mediated rejection (ABMR) in kidney transplantation .......................... 4 

1.3.1 Hyperacute rejection ................................................................................ 4 

1.3.2 Acute ABMR ............................................................................................. 4 

1.3.3 Chronic ABMR .......................................................................................... 5 

1.4 T cell-mediated rejection (TCMR) in kidney transplantation ............................... 6 

1.4.1 Pathophysiology of TCMR ........................................................................ 6 

1.4.2 T cell subsets ........................................................................................... 7 

1.5 Interstitial fibrosis/tubular atrophy in kidney transplantation ............................... 8 

1.6 Non-invasive diagnosis of complication in kidney transplantation ...................... 8 

1.7 Interferon-stimulated genes ................................................................................ 9 

1.8 Aims and objectives .......................................................................................... 11 

 

2 MATERIALS and METHODS .................................................................................... 12 

2.1 Study design ..................................................................................................... 12 

2.2 Patients and sample collection ......................................................................... 12 

2.2.1 Eligibility criteria and clinical data collection ........................................... 12 

2.2.2 Biopsy specimens .................................................................................. 12 

2.2.3 Blood samples collection ....................................................................... 13 

2.3 Candidate markers selection ............................................................................ 13 

2.4 Isolation of blood RNA ...................................................................................... 13 

2.5 Reverse transcription ........................................................................................ 15 

2.6 Quantitative real-time PCR ............................................................................... 15 

2.7 ELISA ............................................................................................................... 16 

2.8 Statistical analysis ............................................................................................ 17 

2.9 Materials ........................................................................................................... 18 

2.9.1 Reagents and Kits .................................................................................. 18 

2.9.2 Laboratory equipment and devices ........................................................ 18 

2.9.3 Software ................................................................................................. 20 

 

3 RESULTS ................................................................................................................... 21 



 

    II 

3.1 Patient population ............................................................................................. 21 

3.2 Interferon-stimulated gene mRNA expression in whole blood cells after kidney 

transplantation ........................................................................................................ 22 

3.3 Diagnostic value of interferon-stimulated gene mRNA expression levels in whole 

blood cells for ABMR .............................................................................................. 25 

3.4 Interferon-stimulated gene protein expression levels in serum and plasma after 

kidney transplantation............................................................................................. 29 

3.5 Diagnostic value of interferon-stimulated gene protein expression levels in 

serum and plasma for ABMR ................................................................................. 31 

3.6 Serum creatinine levels and diagnostic value for ABMR after kidney 

transplantation ........................................................................................................ 33 

 

4 DISCUSSION ............................................................................................................. 36 

4.1 Levels of interferon-stimulated gene expression .............................................. 37 

4.2 Diagnostic performance of interferon-stimulated genes ................................... 39 

    4.3 Clinical implications .......................................................................................... 41 

    4.4 Limitations and future study .............................................................................. 42 

    4.5 Concluding remarks .......................................................................................... 43 

 

5 SUMMARY ................................................................................................................. 45 

 

Reference ...................................................................................................................... 46 

Eidesstattliche Versicherung  ........................................................................................ 56 

Anteilserklärung an etwaigen erfolgten Publikationen ................................................... 57 

Curriculum Vitae ............................................................................................................ 58 

List of publications ......................................................................................................... 60 

Acknowledgement ......................................................................................................... 61 



 

    III 

List of figures 

Fig. 1   Waiting lists and transplantation in Eurotransplant [11]. .................................... 2 

Fig. 2   Candidates and kidney transplants in the USA [12]. ......................................... 2 

Fig. 3   The process of antibody-mediated rejection in kidney transplantation [17]. ...... 5 

Fig. 4   Flowchart of patient enrollment and classification. .......................................... 21 

Fig. 5   mRNA expression of ISGs in blood cells after kidney transplantation. ............ 23 

Fig. 6   ROC curves for single ISG mRNA expression levels in blood cells to 

discriminate ABMR from all other patients. ..................................................... 25 

Fig. 7   ROC curves for single ISG mRNA expression levels in blood cells to 

discriminate ABMR from SGF patients. ........................................................... 27 

Fig. 8   Protein expression of ISGs in plasma (IFIT1, RSAD2) and serum (ETV7) 

after kidney transplantation. ............................................................................ 30 

Fig. 9   ROC curves for single IFIT1, RSAD2, ETV7 protein expression levels in 

plasma (IFIT1, RSAD2) and serum (ETV7) to discriminate ABMR from all 

other patients. ................................................................................................. 31 

Fig. 10  ROC curves for single IFIT1, RSAD2, ETV7 protein expression levels in 

plasma (IFIT1, RSAD2) and serum (ETV7) to discriminate ABMR from SGF 

patients. ........................................................................................................... 32 

Fig. 11  Serum creatinine and ROC curves.................................................................. 34 



 

    IV 

List of tables 

Table 1   Quantitative real-time PCR program ............................................................ 16 

Table 2   Patients’ demographics and clinical characteristics ...................................... 22 

Table 3   Logistic regression analysis of ISG mRNA expression levels in relation to the 

occurrence of ABMR in all patients .............................................................. 26 

Table 4   Diagnostic performance of single markers of mRNA expression levels for 

ABMR from all patients ................................................................................ 27  

Table 5   Logistic regression analysis of ISG mRNA expression levels in relation to the 

occurrence of ABMR in SGF patients .......................................................... 28 

Table 6   Diagnostic performance of single markers of mRNA expression levels for 

ABMR from SGF patients. ........................................................................... 29 

Table 7   Diagnostic performance of single markers of protein expression levels for             

ABMR ........................................................................................................... 32 

Table 8   Diagnostic performance of serum creatinine levels for ABMR ..................... 35 



 

    V 

List of abbreviations 

ABMR antibody-mediated rejection 

APCs antigen-presenting cells 

AR acute rejection 

AUC area under the curve 

BL borderline 

CAN chronic allograft nephropathy 

CKD chronic kidney disease 

CNI calcineurin inhibitor 

CR chronic rejection 

CXCL10 C-X-C motif chemokine 10 

DCs dendritic cells 

DGF delayed graft function  

DSAs donor-specific antibodies 

EMT epithelial-mesenchymal transition 

ETS E26 transformation-specific 

ETV7 ETS variant transcription factor 7 

HGF hepatocyte growth factor 

HLA human leukocyte antigen 

IFI44 interferon-induced protein 44 

IFI44L interferon-induced protein 44-like 

IFIT1 interferon-induced protein with tetratricopeptide repeats 1 

IFIT3 interferon-induced protein with tetratricopeptide repeats 3 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280444/


 

    VI 

IFN interferon 

IFTA interstitial fibrosis/tubular atrophy 

IL  interleukin 

IP-10 interferon-inducible protein 10 

IRI ischemia-reperfusion injury 

ISG interferon-stimulated gene 

ISGF-3 interferon-stimulated growth factor-3 

LR likelihood ratio 

MHC major histocompatibility complex 

MICA major histocompatibility complex class I-related chain A 

mPCR multiplex polymerase chain reaction  

MVI microvascular inflammation 

QOL quality of life 

ROC receiver operating characteristics 

ROS reactive oxygen species 

RSAD2 radical S-adenosyl methionine domain containing 2 

SGF stable graft function 

TCMR T cell-mediated rejection 

TGF-β transforming growth factor beta 

Th1 type 1 helper T cell 

Th2 type 2 helper T cell 

Tregs regulatory T cells 

UTI urinary tract infection 

 



 

    VII 

Abstrakt (Deutsch)  

Einleitung: Antikörper-vermittelte Abstoßung (ABMR) wurde als Hauptursache für 

Transplantatverlust erkannt. Eine frühe Diagnose ist entscheidend für eine wirksame 

Behandlung von Patienten mit ABMR. Der Nachweis der Expression von 

Interferon-stimulierten Gene (ISG) könnte einen nicht-invasiven Weg zur Differenzierung 

von ABMR von Patienten mit stabiler Transplantatfunktion (SGF), Harnwegsinfektion 

(UTI), T-Zell-vermittelter Abstoßung (TCMR) und interstitieller Fibrose / tubuläre Atrophie 

(IFTA) bieten.  

Methoden: Insgesamt wurden 185 adulte Nierentransplantationsempfänger 

einschließlich ABMR (n=20), SGF (n=51), UTI (n=17), Borderline (BL) (n=22), TCMR 

Typ I (n =19), TCMR Typ II/III (n=26) und IFTA (n=30) rekrutiert. Gesamt-RNA wurde 

zum Zeitpunkt der Biopsie aus Vollblut von Patienten isoliert. Quantitative Echtzeit-PCR 

und ELISA wurden durchgeführt, um das Expressionsniveau von ISG zu messen, die 

IFIT1, IFIT3, RSAD2, ETV7, IFI44, IFI44L enthielten. Die mRNA- und 

Proteinexpressionsniveaus von ISG in verschiedenen Patientengruppen wurden durch 

den Mann-Whitney-U-Test miteinander verglichen. Eine Receiver Operating 

Characteristics (ROC) Analyse wurde durchgeführt, um den diagnostischen Wert für die 

Unterscheidung von ABMR-Patienten von anderen zu bewerten.  

Ergebnisse: Die mRNA-Expressionsspiegel von IFIT1, IFIT3, RSAD2, ETV7 waren im 

Blut von ABMR-Patienten im Vergleich zur SGF-Gruppe signifikant erhöht (P<0,05). Der 

Proteinexpressionsgrad zeigte keine signifikanten Veränderungen im Vergleich zur 

SGF-Gruppe (P>0,05). ETV7-mRNA Expressionsniveau in ABMR war signifikant höher 

als in den SGF, BL, TCMR Typ II / III-Gruppen und signifikant niedriger in der 

UTI-Gruppe (P<0,05). Der ETV7-Fläche unter der ROC-Kurve (AUC), der ABMR von 

allen anderen Gruppen unterscheidet, ist 0,69 (95% CI: 0,60-0,78, P=0,006) mit einer 

Sensitivität von 0,95 und einer Spezifität von 0,50. Die AUC von ABMR zur 

Unterscheidung von der SGF- Gruppe ist 0,83 (95% CI: 0,74-0.92, P<0,001) mit einer 
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Sensitivität von 0,95 und einer Spezifität von 0,70. 

Schlussfolgerungen: Die Messung der ETV7-mRNA-Expression könnte einen neuen 

und nicht-invasiven Ansatz darstellen, eine ABMR von anderen Komplikationen nach 

Nierentransplantation zu differenzieren.
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Abstract (English) 

Purpose: Antibody-mediated rejection (ABMR) has been recognized as a major cause of 

graft loss. Early diagnosis is crucial for the effective treatment of patients with ABMR. 

Detecting the blood expression of interferon-stimulated gene (ISG) might offer a 

non-invasive way to differentiate patients with ABMR from patients with stable graft 

function (SGF), urinary tract infection (UTI), T cell-mediated rejection (TCMR) and 

interstitial fibrosis/tubular atrophy (IFTA). 

Methods: A total of 185 adult kidney transplant recipients were recruited, including ABMR 

(n=20), SGF (n=51), UTI (n=17), Borderline (BL) (n=22), TCMR type I (n=19), TCMR 

type II/III (n=26) and IFTA (n=30) patients. Total RNA was isolated from the whole blood 

of patients at the time of biopsy. Quantitative real-time PCR and ELISA were performed 

to measure the expression levels of ISGs, which included IFIT1, IFIT3, RSAD2, ETV7, 

IFI44, IFI44L. The mRNA and protein expression levels of ISGs in different patient 

groups were compared with each other by the Mann-Whitney U test. Receiver operating 

characteristics (ROC) analysis was performed to assess the diagnostic value for those 

markers distinguishing ABMR patients from other patients. 

Results: mRNA expression levels of IFIT1, IFIT3, RSAD2, ETV7 were significantly 

up-regulated in the blood of ABMR patients compared to the SGF group (P<0.05). The 

protein expression of these genes showed no significant differences compared to those 

of the SGF group (P>0.05). The ETV7 mRNA expression level in ABMR was significantly 

higher than in the SGF, BL, TCMR type II/III groups and significantly lower in the UTI 

group (P<0.05). The area under the ROC curve (AUC) for ETV7 mRNA expression 

distinguishing ABMR from all other groups is 0.69 (95% CI: 0.60-0.78, P=0.006) with a 

sensitivity of 0.95 and a specificity of 0.50. The AUC for ETV7 mRNA expression 

distinguishing the ABMR group from the SGF group is 0.83 (95% CI: 0.74-0.92, P<0.001) 

with a sensitivity of 0.95 and a specificity of 0.70. 
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Conclusions: The measurement of the ETV7 mRNA expression level might offer a novel 

and non-invasive approach for differentiating ABMR from other complications after 

kidney transplantation. 
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1 INTRODUCTION 

1.1 Kidney transplantation 

Chronic kidney disease (CKD) is a worldwide public health problem with increasing 

incidence and prevalence [1-4]. Patients with CKD may develop the end-stage renal 

disease (ESRD), resulting in lifelong renal replacement therapy (dialysis or 

transplantation), which puts a high burden on the patient and the health system [5]. 

Dialysis alone takes about 2% of health-care budgets with only less than 0.1% of overall 

patients in Europe [6]. Kidney transplantation (from either a living or a deceased donor) 

is the most effective treatment for most patients with ESRD despite an increased 

short-term risk of death after transplantation. Besides increasing patients’ quality of life 

(QOL) and reducing the health-care budget, the most important factor is that kidney 

transplantation can improve long-term patient survival compared with patients on dialysis 

[7-9].  

The number of active patients listed waiting for kidney transplantation exceeds the 

number of kidney transplantations in the Eurotransplant region [10]. A total of 10,476 

patients were on kidney waiting lists on 31 December 2016 at Eurotransplant (for 

comparison: 10,400 patients were on waiting lists at Eurotransplant on 31 December 

2015) [11] (Fig. 1). The numbers of both active and inactive adult candidates listed for 

kidney transplantation decreased in 2016 compared with 2015, which might be due to 

the death or deteriorating medical condition of candidates in the USA. The total number 

of kidney transplants has increased, but there are still thousands of candidates waiting 

for transplantation, reflecting the ongoing organ shortage all over the world [12] (Fig. 2). 

The imbalance of organ supply and the number of patients waiting for kidney 

transplantation are challenges for society. 
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Fig. 1: Waiting lists and transplantation in Eurotransplant. 

A. Active Eurotransplant waiting lists at year-end, from 2012 to 2016; B. Kidney transplants 

(deceased donor) from 2012 to 2016 [11]. 

 

Fig. 2: Candidates and kidney transplants in the USA. 

A. New adult candidates added to kidney transplant waiting lists in the USA; B. Total kidney 

transplants in the USA (All kidney transplant recipients, including adult and pediatric, 

retransplant, and multi-organ recipients.) [12]. 
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Over the past 20 years, along with the introduction of more effective calcineurin inhibitor 

(CNI)-based immunosuppressive regimens and advances in tissue typing, organ 

preservation technology, diagnostics and new medical and surgical therapies, the 1-year 

renal allograft survival rate has increased to 95% or even higher [13]. In contrast, 

long-term graft survival is still disappointing due to multiple complications leading to 

constant graft attrition after transplantation, which has only marginally improved in the 

last decades [14, 15]. 

1.2 Renal allograft rejection 

After transplanting a graft from a genetically disparate individual, a series of 

inflammatory and immunological events in both host and graft may occur. Some of the 

responses come up as a result of trauma related to ischemia-reperfusion injury (IRI), 

transplantation surgery, etc., whereas others involve the direct effect of immune system 

incompatibility between recipients and donors, which if not controlled will destroy the 

graft [16, 17]. This immune response to an allogeneic-transplanted graft is called 

rejection, which involves both innate and adaptive immune response mechanisms [18].  

Renal allograft rejection can be classified in different ways: as hyperacute rejection, 

accelerated rejection, acute rejection (AR), or chronic rejection (CR) from the time of 

onset and progression to injury [19]. It can also be classified based on other features 

such as severity, response to treatment (glucocorticoid resistance or not), the 

involvement of deterioration of graft function (subclinical rejection or not), and finally, 

according to the predominant immunologic mechanism: T cell-mediated rejection 

(TCMR), antibody-mediated rejection (ABMR) or mixed rejection. 

Hyperacute rejection occurs immediately after the graft is reperfused. It is caused by 

pre-existing complement-fixing antibodies to graft antigens and is an irreversible process 

[20]. Accelerated rejection is associated with pretransplantation humoral and cellular 

components of the immune response against donor antigens [21]. It occurs within 

http://dict.youdao.com/w/a%20series%20of/#keyfrom=E2Ctranslation
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several days or several weeks and usually does not respond to anti-rejection therapy. 

Both of these kinds of rejection are rare since cross-matching technique and effective 

anti-rejection treatment have improved.  

AR can occur at any time after transplantation [19]. The occurrence, timing, and the 

number of AR episodes are also associated with increased risk of graft loss [22]. The 

clinical manifestation of CR is the progressive reduction of graft function combined with 

hypertension and proteinuria. Its pathological features are renal interstitial fibrosis, renal 

tubular atrophy, and vascular changes. The gradual progression of CR ultimately results 

in transplanted kidney fibrosis and causes graft failure [23]. 

1.3 Antibody-mediated rejection in kidney transplantation 

Antibody-mediated rejection, also termed humoral rejection, accounts for 20-30% of all 

AR episodes after kidney transplantation and it has been recognized as a major cause of 

graft loss [24]. Antibodies that cause ABMR include those against donor human 

leukocyte antigen (HLA) class I, class II, or non-major histocompatibility complex (MHC) 

antigen on the endothelium. The types of ABMR include a) hyperacute rejection, which 

occurs immediately after renal revascularization; b) acute ABMR, which occurs within 

several days or several weeks after transplantation; and c) chronic ABMR, which usually 

develops more than one year after transplantation. 

1.3.1 Hyperacute rejection 

As mentioned above, hyperacute rejection occurs due to preformed donor-specific 

antibodies (DSAs) against HLA expressed on the endothelium of the glomeruli and 

microvasculature [25]. The classic complement cascade is activated, which eventually 

results in endothelial necrosis and platelet deposition [26]. 

1.3.2 Acute ABMR 

Compared to 7% incidence of acute ABMR in HLA-matched renal graft recipients, as 
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many as 50% of HLA-incompatible patients suffer from this complication [27, 28]. 

Besides anti-HLA antibodies, numerous pathogenic non-HLA anti-endothelial cell 

antibodies, such as major histocompatibility complex class I-related chain A (MICA) 

antibody, angiotensin II type 1 receptor antibody, etc., have been identified to play roles 

in the process of ABMR [29, 30]. Regardless of antibody origin, after binding to its 

respective target on the graft endothelial, damaged endothelial cells release various 

injurious molecules such as cytokines, chemokines, as well as the chemoattractants C3a 

and C5a [31]. As a result of cell adhesion, the classical complement pathway is activated, 

which causes localized endothelial necrosis and apoptosis [17]. Activation of the 

complement cascade by DSAs might be the primary mechanism of acute ABMR [32]. 

 

Fig. 3: The process of antibody-mediated rejection in kidney transplantation [17]. 

Based on the mechanism of ABMR, the Banff 2015 classification scheme was changed 

to include three necessary diagnostic criteria, which are a) presence of donor-specific 

antibodies, b) evidence of current/recent antibody interaction with vascular endothelium, 

and c) histologic evidence of acute tissue injury [33]. 

1.3.3 Chronic ABMR 

With the optimization of immunosuppressive regimens and better tissue typing, the 
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one-year renal graft survival rate has increased to >90%, whereas long-term survival is 

still not satisfactory, with a 10-year renal allograft survival rate of around 50% [13]. The 

development of DSAs to foreign antigens is considered a major cause of late renal 

allograft dysfunction and graft loss [34]. The histological features of chronic active ABMR, 

are a) microvascular remodeling, b) moderate microvascular inflammation (MVI), and c) 

new-onset arterial intimal fibrosis [35]. As a supplement, the revised 2013 Banff 

classification assumed chronic ABMR was accompanied by significant MVI as chronic 

active ABMR [36].   

1.4 T cell-mediated rejection in kidney transplantation 

T cell-mediated rejection is another independent risk factor for graft loss [37]. TCMR can 

serve as a sensitizing event that triggers the development of de novo DSA and 

subsequent ABMR and thereby affects long-term graft outcome.  

Most B cells require help from T cells to initiate the production of alloantibody. A study 

including 795 cross-match negative patients showed that TCMR could accelerate graft 

inflammation and fibrosis [38]. A study including 69 C4d-negative biopsies patients with 

TCMR-arteritis showed an 8-year graft survival rate of 72.7% compared with 93.3% in 

the matched-control group without arteritis [39]. Also, a common clinical observation is 

the combination of ABMR and TCMR, called mixed rejection [40]. 

1.4.1 Pathophysiology of TCMR 

For TCMR, the activation of T cells requires multiple signals, which include two 

prerequisite signals: antigen recognition and costimulation [41]. The most common form 

of allograft rejection is triggered as soon as donor alloantigens are presented to the T 

lymphocytes of the recipients by antigen-presenting cells (APCs). Both dendritic cells 

(DCs) and macrophages can serve as APCs, and even a B cell can present antigen to T 

cells efficiently by their surface immunoglobulins and MHC class II molecules [42].  
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The recipient’s T lymphocytes respond to donor alloantigen via either the direct pathway 

(alloantigens displayed by the donor’s APCs) or the indirect pathway (alloantigens 

displayed by the recipient’s APCs) [43]. When T cells recognize alloantigens by either of 

these two pathways, antigen-specific signals are delivered. Coupled with the interaction 

of costimulatory molecules with their ligands on both the T cells and APCs, naïve T cells 

are activated [44].  

Following activation, depending on the microenvironment and the extra signals T cells 

received, they will differentiate into different kinds of cells that possess various cytokine 

signatures and functions [45]. Immune status of the recipients at the time of 

transplantation, immunosuppressive regimens, degree of HLA mismatch, or antibody 

load will serve as influence factors that determine the way and result of T cell 

differentiation [41]. T cells mediate allograft injury directly by contact with tubular 

epithelial cells and the release of cytokines locally.  

1.4.2 T cell subsets  

Helper T cells play an important role in the immune system, particularly in the adaptive 

immune response. By releasing some T cell cytokines, helper T cells regulate the activity 

of other immune cells. Overall, type 1 helper T (Th1) cells can mediate rejection, while in 

contrast type 2 helper T (Th2) cells facilitate tolerance. However, evidence also shows 

that Th2 cells can take part in the allograft rejection process [46].  

CD8+T cells, also known as cytotoxic lymphocytes, mediate cytotoxicity, while CD4+T 

cells can produce all kinds of cytokines such as interleukin (IL) and interferon (IFN), 

which may drive both cellular and humoral immune response [47].  

Regulatory T cells (Tregs) characterized by CD4+ CD25+ FOXP3+ have shown an 

important role in maintaining immune homeostasis, limiting allograft rejection response, 

and even in promoting graft tolerance [48]. After transplantation, Tregs migrate from the 

blood into grafts and draining lymph nodes and they can have a role in suppressing 
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effector T cell proliferation by cell contact and suppressive cytokines [49]. 

1.5 Interstitial fibrosis/tubular atrophy in kidney transplantation 

Based on the Banff 97 expert consensus, chronic allograft nephropathy (CAN) was 

defined as progressively impaired renal graft function with the presence of interstitial 

fibrosis and tubular atrophy independent of etiology [50]. CAN was replaced by interstitial 

fibrosis/tubular atrophy (IFTA) as a pathological classification in the Banff score system 

to prevent CAN being misunderstood as a specific disease entity [51]. IFTA is a 

non-specific lesion caused by various immune and non-immune injuries to the renal 

allograft [52].  

IFTA occurs in about 40% of renal grafts at 3-6 months after transplantation and this 

number increases to 65% at 2 years after transplantation [53]. Regardless of whether a 

specific disease was diagnosed in the allograft, IFTA is an independent risk factor for 

graft loss, especially in grafts from expanded criteria donors [54, 55].  

Understanding the mechanism of progressive IFTA in the renal allograft is crucial for 

early diagnosis and further development of treatment strategies to prolong allograft 

survival. In the past several decades, numerous efforts have been made to conduct a 

series of research studies to explore the pathogenesis of IFTA. Multiple factors such as 

IL, reactive oxygen species (ROS), hepatocyte growth factor (HGF), transforming growth 

factor beta (TGF-β), and various mechanisms have been demonstrated to be involved in 

the progress of IFTA, including IRI, immunosuppressant toxicity, ABMR, 

epithelial-mesenchymal transition (EMT) [53, 56-60].  

1.6 Non-invasive diagnosis of complication in kidney transplantation 

After the graft is transplanted to the recipient, a series of complications may occur. 

Among these complications, IFTA and rejection, regardless of type or timing, significantly 

reduce graft survival [61,62]. Therefore, early diagnosis and effective treatment are of 



 

 

 
9       

great significance. Approximately 10-20% of the renal transplant recipients suffer from 

one or multiple episodes of AR, which occur mainly in the first year after surgery [63].  

The current gold standard for the diagnosis of rejection and IFTA is renal allograft biopsy 

[64]. However, biopsy is an invasive examination, carrying the potential risk of damaging 

precious kidney grafts, which limits repetitive and dynamic observations. Patients with 

coagulation disorders cannot undergo biopsies. Due to operative procedures, only a 

small portion of r nal allograft tissue can be obtained via biopsy, which presents a 

challenge for the accurate evaluation of all pathological changes [65]. 

Therefore, many attempts have been made to find a non-invasive method to diagnose 

rejection and IFTA at an early stage and to offer a sensitive marker to evaluate the effect 

of treatment. However, few of these are used for clinical routine due to their limited 

sensitivity and specificity as well as their relatively low predictive values regarding renal 

allograft outcomes [66, 67]. 

1.7 Interferon-stimulated genes 

Interferon is a cytokine used for the communication between cells to trigger the immune 

defenses [68]. IFN can be divided into three classes: Type I, Type II, and Type III based 

on the type of signal receptor. IFN-α and IFN-β belong to Type I IFN, which is produced 

mainly by fibroblasts and monocytes. Type II IFN or IFN-γ is produced mostly by CD4+ 

and CD8+ T cells and NK cells. These IFNs have complex effects on immune cells and 

induce a range of downstream gene expression [69]. IFN-γ modulates the allogeneic 

responses in organ transplantation and IFN-γ-induced genes have been reported to be 

involved in TCMR and ABMR [70-72]. 

Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), interferon-induced 

protein with tetratricopeptide repeats 3 (IFIT3), radical S-adenosyl methionine domain 

containing 2 (RSAD2), ETS variant transcription factor 7 (ETV7), interferon-induced 

protein 44 (IFI44), and interferon-induced protein 44-like (IFI44L) these six genes are 
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members of interferon-stimulated genes (ISGs). ISGs are described as genes whose 

expression is induced or regulated by interferon and play pivotal roles in immune system 

defense against infection [73]. However, this classic definition is not comprehensive 

enough to cover all aspects of ISGs. Recent observations demonstrate that the 

expression of ISGs can also be a response to a variety of stimulatory factors such as 

injury, inflammation, stress, and other events [74, 75]. Emerging functional roles of ISGs 

besides their antiviral effect remain to be elucidated.  

ISGs can be subdivided further into type I (stimulated mainly by interferon α, β), type II 

(interferon γ), and type III (interferon λ). One single ISG can belong to one subtype or 

several subtypes, which means this gene can be stimulated by one kind or several kinds 

of interferon [76]. Both IFIT1 (also known as ISG56) and IFIT3 (also known as ISG60) 

belong to the ISG56/IFIT1 gene family, which can be induced by type I and type III 

interferons, especially IFN-α/β [77, 78]. RSAD2 (also known as viperin) belongs to the 

S-adenosylmethionine enzyme superfamily and can be induced by type I, II and III IFN in 

a variety of cell types [79]. ETV7 or TEL2, a poorly studied transcription factor member of 

ETS family, is known to be induced by IFN-α [80,81]. IFI44L gene is a type I ISG and 

belongs to the IFI44 family [82]. 

ISGs play vital roles in both innate and adaptive immune responses through different 

types of IFN signaling [76]. The involvement of ISGs has also been described in solid 

organ transplantation, in addition to systemic lupus erythematosus and cancer [83, 84]. 

Saiura et al. found that interferon-γ-inducible genes are up-regulated in murine cardiac 

transplantation mode during the late phase of AR [85]. Interferon-γ related genes also 

significantly changed in AR compared to patients without rejection after lung 

transplantation [86]. The early activation of ISGs in human liver allografts has been 

related to the risk of acute cellular rejection. However, unlike other organ transplantation, 

the induction of ISGs after liver transplantation might also be due to the recurrence of 

hepatitis C as an antiviral response [87]. 
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In the field of kidney transplantation, Rascio et al. compared the peripheral blood 

molecular signature of 29 chronic ABMR patients with eight IFTA and 29 stable 

transplant recipients as controls. They found that several types I ISGs including IFIT1 

and IFIT3 are up-regulated in chronic ABMR patients [88]. Akalin et al. used an 

oligoarray to analyze three normal renal allograft biopsy samples and seven human 

TCMR samples, six of which showed up-regulated interferon-stimulated growth factor-3 

(ISGF-3), the activator of ISG [89]. Maluf et al. evaluated gene expression profiles of 

kidney biopsies from 24 normal kidneys, six normal allografts, and seventeen allografts 

with IFTA using high-density oligonucleotide microarray. Several genes including RSAD2, 

IFI44, and IFI44L were overexpressed in IFTA samples compared with normal allografts 

and normal kidneys [90]. The capability of ISGs to distinguish between the different 

types of rejection and complications in kidney transplantation with a larger sample size 

still needs confirmation. 

1.8 Aims and objectives 

This study aimed to find non-invasive markers for sensitive and specific diagnosis of 

ABMR. To achieve this aim, the following objectives were formulated:  

1. To measure the mRNA expression levels of candidate ISGs in the whole blood cells in 

different kidney transplant recipients.  

2. To investigate the protein expression levels of ISG markers in the serum or plasma of 

different patients.  

3. To study the feasibility of the mRNA and protein expression levels of ISGs in blood as 

markers to diagnose ABMR. 

4. To validate which marker can be the most effective tool to diagnose ABMR. 

5. To provide a potential clue to the mechanism of ABMR.
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2 MATERIALS and METHODS 

2.1 Study design 

The present study is a single-center study comparing the peripheral blood expression 

levels of six ISGs in different kidney transplant recipients and providing further proof of 

the feasibility of these markers to diagnose ABMR. The pre-/peritransplant period 

information was retrieved from the transplantation database (TBase) retrospectively and 

posttransplant creatinine was measured at the time of biopsy. Samples were measured 

without knowledge of grouping. 

2.2 Patients and sample collection 

2.2.1 Eligibility criteria and clinical data collection 

The inclusion criteria for this study included adult kidney transplant recipients regardless 

of donor types, and patients who had given their written consent. Exclusion criteria 

included pediatric patients, recipients of multiple organ transplantations, patients with a 

serious infectious disease, patients who had developed dialysis-requiring chronic 

allograft failure, and patients with any factors that limited their ability to cooperate during 

the study (e.g., mental disorder or substance abuse). This study was approved by the 

ethical committee of the Charité-Universitätsmedizin Berlin (EA1/091/10). All the patients 

received and signed written informed consent.  

Clinical data that included the demographics of patients, creatinine at the time of biopsy, 

the patient’s immunosuppressive regimen, etc. were collected. 

2.2.2 Biopsy specimens  

Ultrasound-guided graft biopsy was performed when clinically indicated due to rising 

creatinine or proteinuria or in the case of prolonged delayed graft function (DGF). The 

histological analysis was performed by two independent pathologists in a blinded fashion. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280444/
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The pathological changes were graded according to the 2009/2013 Banff classification. 

2.2.3 Blood samples collection 

Fresh blood samples (2.5 ml/sample) were collected into PAXgene blood RNA tubes 

from patients at the time of biopsy according to the manufacturer’s instructions, and the 

tubes were kept in the -80°C freezer until the RNA isolation procedure began. 

Besides, serum and plasma samples were taken at the time of biopsy. Serum separator 

tubes were used to collect the patients’ peripheral blood, and samples were clotted for 

two hours at room temperature before being centrifuged for 10 minutes at 3000×g. The 

serum was removed and stored at -80°C. The plasma was collected using EDTA tubes 

and the samples were centrifuged for 10 minutes at 3000×g. The supernatant was 

removed and the samples were stored at -80°C. 

2.3 Candidate markers selection 

As described before [91], candidate genes were selected through next-generation 

sequencing, gene set enrichment analysis, and further verified by quantitative real-time 

PCR (RT-PCR) using whole peripheral blood from six biopsy-proven ABMR, four 

biopsy-proven TCMR patients and six patients with stable graft function (SGF). IFIT1, 

IFIT3, RSAD2, ETV7, IFI44 were the most significantly regulated genes in ABMR 

compared to SGF and TCMR. IFI44L was chosen as one of the most ABMR-SGF 

discriminating candidates and paralog of the IFI44 gene. Significant enrichment for IFN-α 

and IFN-γ signaling which included these markers was also found. The mRNA 

expression difference between ABMR and SGF patients was statistically significant after 

validation. Therefore, all these markers were measured in a large cohort of kidney 

transplant patients with different complications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

2.4 Isolation of blood RNA 

Total RNA was isolated from the whole blood using PAXgene blood miRNA kit 
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(PreAnalytix; Qiagen, Hilden, Germany) based on the manufacturer’s instructions. 

Samples in PAXgene blood RNA tubes were incubated for 2 hours at room temperature 

and then centrifuged for 10 minutes at 4600×g. The supernatant was removed. 4 ml of 

RNase-free water was added to the pellet. After thorough mixing, the tube was sealed by 

a new secondary Hemogard. The tube was centrifuged for 10 minutes at 4600×g. The 

upper phase was removed by decanting.  

The further RNA isolation procedure was carried out with the PAXgene blood RNA kit, 

which contains PAXgene RNA spin columns, PAXgene shredder spin columns, 

processing tubes, Buffer BM1 (resuspension buffer), Buffer BM2 (binding buffer), Buffer 

BM3 (wash buffer concentrate), Buffer BM4 (wash buffer concentrate), Buffer BR5 

(elution buffer), proteinase K, and an RNase-free DNase set.  

The sample was resuspended in Buffer BM1 and then transferred to a 1.5 ml 

microcentrifuge tube. 300 µl of Buffer BM2 and 40 µl of proteinase K were added. After 

being incubated for 10 minutes in a 55°C shaker-incubator at 900 rpm, the sample was 

pipetted into a PAXgene shredder spin column and then centrifuged for 3 minutes at 

14,000 rpm. The entire supernatant and 700 µl of isopropanol were mixed by shaking. 

The sample was pipetted into the PAXgene RNA spin column and centrifuged for 1 

minute at 14,000 rpm.   

After the sample was washed by 350 µl of Buffer BM3, the DNase I incubation Mix was 

pipetted directly onto the PAXgene RNA spin column membrane and incubated on the 

benchtop (20–30°C) for 15 minutes. After being washed with 350 µl of Buffer BM3 once 

and with 500 µl of Buffer BM4 twice, the spin column was placed in a new 2 ml 

processing tube, which was centrifuged at 14,000 rpm for 1 minute. 40 µl of Buffer BR5 

was pipetted directly onto the spin column membrane to elute the RNA. And the elution 

step was repeated. 

After being incubated for 5 minutes at 65°C in the shaker–incubator without shaking, the 
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eluate was chilled immediately on ice. The concentration of the sample was measured 

using a NanoDrop lite spectrophotometer.  

2.5 Reverse transcription   

The Maxima first strand cDNA synthesis kit (Thermo Scientific), which contains 10× 

dsDNase buffer, dsDNase, 5× reaction mix, Maxima enzyme mix and RNase-free water 

was used for reverse transcription of RNA into cDNA.  

1µg of RNA was diluted in a total volume of 50µl of nuclease-free water. 3µl of RNA, 1µl 

of 10x dsDNase buffer, 1µl of dsDNase, and 5µl of RNAse-free water were mixed gently. 

The reagents were incubated in a thermal block for 2 minutes at 37°C to eliminate 

contaminating genomic DNA. After being chilled on ice, 4µl of 5× reaction mix, 2 µl of 

Maxima enzyme mix, and 4µl of RNase-free water were added. This mix was incubated 

in thermal blocks for 10 minutes at 25°C, followed by 15 minutes at 95°C. The reaction 

was terminated by heating at 85°C for 5 minutes. The reverse transcriptase minus 

negative control, which included all components except the Maxima enzyme mix, was 

used to verify the result. The cDNA samples were stored at -20°C until further use.  

2.6 Quantitative real-time PCR  

RT-PCR was performed with candidate genes IFIT1, IFIT3, RSAD2, ETV7, IFI44, IFI44L 

and HPRT1 as housekeeping gene using TaqMan™ Universal Master Mix II with UNG 

(Thermo Scientific), which included AmpliTaq Gold® DNA Polymerase, 

Uracil-N-Glycosylase (UNG), dNTPs with dUTP, ROX passive reference, and optimized 

buffer components. 

For each reaction, a mixture of 5 µl of TaqMan™ Universal Master Mix II, with UNG, 0.5 

µl of Primer TaqMan mRNA Assay, and 3.5 µl of nuclease-free water were transferred to 

the wells of a 96-Well Reaction Plate with Barcode (Thermo Scientific ) before adding 1µl 

of cDNA sample (1:2 diluted). The final volume of each reaction mixture was 10µl and 
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reactions were carried out in duplicate. Negative controls, which replaced cDNA with the 

same volume nuclease-free water, were included in each run. The reaction was run on a 

QuantStudio 3 Real-Time PCR System (Thermo Scientific) based on the program below 

(Table 1). The results were analyzed using the QuantStudio™ Design & Analysis 

Software v1.4.1 (Thermo Scientific). Relative quantification of gene expression was 

calculated using the 2–ΔCt method. The housekeeping gene HPRT1 was used to 

normalize each cDNA sample. 

Table 1 Quantitative real-time PCR program 

  

2.7 ELISA 

Serum was used to measure ETV7 and plasma was used to analyze the concentration of 

IFIT1 and RSAD2. All reagents were brought to room temperature before use for 30 

minutes. Serial dilution was made for standards according to the instructions. 100µl of 

standards and samples were added per well in duplicates, and the sample diluent served 

as a blank. The plate was covered with a plate lid and incubated at 37°C for 2 hours. The 

liquid in the wells was discarded, and 100 µL of the detector antibody was added to each 

well. The plate was covered with a plate lid and incubated at 37°C for 1 hour. Each well 

was aspirated and washed three times by filling each well with 200-300µl of wash 

buffer.100µl of HRP-conjugate reagent was added to each well and the plate was 

covered with a plate lid. The plate was washed 4-5 times after being incubated at 37°C 
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for 1 hour. 90µl of TMB Substrate (for RSAD2 and IFIT1) or 50µl of chromogen solution A 

and 50µl of chromogen solution B (for ETV7) were added to each well. The plate was 

incubated in the dark for 15 minutes at 37°C. 50µl of stop solution was added to each 

well, then the optical density (OD) of each well was determined within 5 minutes using 

the DTX 880 Multimode Detector (Beckman Coulter) at 450 nm.  

The mean duplicate readings for each standard and sample were used to make standard 

curves after subtracting the average OD of the blank. The concentration of ETV7, 

RSAD2, and IFIT1 were interpolated by GraphPad Prism 8.3.0.  

2.8 Statistical analysis 

Continuous variables with normal distribution were summarized as mean±standard 

deviation; other continuous variables were expressed as medians with interquartile 

ranges. For categorical variables, the N and percentages in each category were shown. 

To analyze the different expression levels of markers from the different groups, a 

Kolmogorov-Smirnov normality test was performed to test whether the data were 

normally distributed; if not, the nonparametric one-way analysis of variance (ANOVA) on 

ranks (Kruskal-Wallis test) was conducted. When significant differences between the 

groups were observed, the post hoc nonparametric Mann-Whitney U test was used to 

compare the difference between every two patient groups. The two-stage step-up 

method of Benjamini, Krieger and Yekutieli correction was applied to control the false 

discovery rate in multiple comparisons. The univariate logistic regression was performed 

in each single candidate marker to test the diagnostic value. The receiver operating 

characteristics (ROC) analysis was performed to present diagnostic utility. The area 

under the curve (AUC), sensitivity, and specificity were determined to specify the 

performance of markers in discriminating ABMR from the comparators (None ABMR 

patients or SGF patients). The best cut-off point for each marker was defined at the 

maximal Youden index. The multivariate logistic regression including all candidate 

https://research.bergen.org/images/Documents/Stem_Cell/Beckman_Coulter_DTX_880_Multimode_Detector_Complete_Guide.pdf
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markers was used to test the diagnostic value of the combination of the genes. A P 

value<0.5 was considered statistically significant.  

2.9 Materials 

2.9.1 Reagents and Kits 

Nuclease-Free Water Ambion 

Isopropanol  J.T. Baker 

Ethanol  J.T. Baker 

PAXgene Blood RNA Kit PreAnalytiX 

Maxima First Strand cDNA Synthesis Kit Thermo Scientific 

TaqMan™ Universal Master Mix II, with UNG Thermo Scientific 

TaqMan™ Gene Expression Assays Thermo Scientific 

Human IFIT1 ELISA Kit Cusabio Biotech 

RSAD2 ELISA Kit (Human) AVIVA Systems Biology 

Human Transcription Factor ETV7 ELISA Kit MyBioSource 

2.9.2 Laboratory equipment and devices 

Centrifuges:   

Heraeus Multifuge 3 S-R  Thermo Scientific 

Refrigerated Microcentrifuge, Model 5417R Eppendorf 

Mini Plate Centrifuge NG040 Nippon Genetics 

Thermal cyclers:  

Personal Cycler Biometra 

QuantStudio 3 Real-Time PCR System Thermo Scientific 



 

 

 
19       

Pipettes:  

Pipette, 2.5 µl/10 µl/100ml/200ml/1ml/5ml Eppendorf 

Pipette tips, 10 µl/100 µl/200 µl/1ml/5ml  Sarstedt 

NeoPipette Controller D-6017 neoLab Migge GmbH 

Serological Pipette, 5ml Falcon 

E1-ClipTip Electronic Pipette, 2-125µl Thermo Scientific  

Multipette plus Eppendorf 

Mixers:  

Vortex Mixer  Scientific Industries 

Thermomixer Compact Eppendorf 

Tubes, plates, and other consumables:  

PAXgene Blood RNA Tubes (2.5 ml) Becton Dickinson 

Safe-lock tubes 0.5ml/1.5ml Eppendorf 

PCR Tubes 0.2ml Fisher Scientific 

96-Well Reaction Plate with Barcode, 0.1 mL Thermo Scientific 

PCR film Eppendorf 

Other equipment:  

Holten Horizontal Laminar Airflow Clean Bench Thermo Scientific 

Scotsman AF80 Ice Flaker Scotsman 

NanoDrop Lite Spectrophotometer Thermo Scientific 

PCR Workstation VWR Peqlab 

XT Cooling Core Corning 

https://www.fishersci.com/shop/products/corning-thermowell-gold-polypropylene-pcr-tubes-6/p-2826383
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CoolRack XT PCR96 Corning 

Ultralow-temperature freezer Panasonic 

Heraeus B6 incubator Thermo Scientific 

DTX 880 Multimode Detector  Beckman Coulter 

2.9.3 Software 

QuantStudio™ Design & Analysis Software v1.4.1 Thermo Scientific 

GraphPad Prism 8.3.0 GraphPad Software 

Office software word/excel/access Microsoft 

SPSS for Windows, Version 20  IBM 

Transplantation date bank, "T-Base 3.0" Charité 

Multimode Analysis Software Beckman Coulter 

https://research.bergen.org/images/Documents/Stem_Cell/Beckman_Coulter_DTX_880_Multimode_Detector_Complete_Guide.pdf
https://research.bergen.org/images/Documents/Stem_Cell/Beckman_Coulter_DTX_880_Multimode_Detector_Complete_Guide.pdf
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3 RESULTS  

3.1 Patient population 

One hundred and twenty-two indicated biopsy patients who met the inclusion criteria 

were collected consecutively from both outpatients and inpatients in the Department of 

Nephrology, Campus Mitte, Charité-Universitätsmedizin Berlin from 2010 to 2017. 

Fifty-five patients with SGF and 18 patients with urinary tract infection (UTI) were 

selected randomly at the same time. A total of 195 patients were selected, of whom 10 

patients were excluded due to insufficient data or inadequate sample material. The flow 

chart (Fig. 4) shows the process of patient selection and subgroup distribution. 

A total of 185 adult kidney transplant recipients were analyzed, in which 20 patients were 

diagnosed as Banff-2 ABMR (Banff2-ABM), 22 patients with borderline rejection 

(Banff3-BL), 19 patients with TCMR Banff4-I, 26 patients with TCMR Banff4-II/III, 30 

patients with Banff5-IFTA, 51 patients with SGF, as well as 17 patients with UTI. The 

distribution of demographic data and other patient characteristics is shown in Table 2. 

Fig. 4: Flowchart of patient enrollment and classification. 
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Table 2 Patients’ demographics and clinical characteristics* 

 

*Values are presented as mean±SD or median (IQR); Tx: transplantation, ns: not specified. 

 

3.2 Interferon-stimulated gene mRNA expression in whole blood cells after kidney 

transplantation  

All candidate ISGs, which included IFIT1, IFIT3, RSAD2, ETV7, IFI44, and IFI44L mRNA 

expression in whole blood cells, showed significant differences with varied medians 

between the groups after being compared with a nonparametric one-way ANOVA 

(Kruskal-Wallis test), P<0.05. A nonparametric Mann-Whitney U test was performed 

between every two groups (21 comparisons for every single marker) and a two-stage 



 

 

 
23       

step-up method of Benjamini, Krieger and Yekutieli was used subsequently to control the 

false discovery rate. By comparing the difference within the groups excluding SGF 

patients using Kruskal-Wallis test, IFIT1 (P=0.033), RSAD2 (P=0.002), and ETV7 

(P<0.001) showed significant different medians, while IFIT3 (P=0.167), IFI44 (P=0.781), 

and IFI44L (P=0.540) showed no significant differences. 

All markers were significantly elevated in Banff2-ABM patients compared with patients 

with SGF except for IFI44 and IFI44L (Fig. 5A-F). The significant differences between the 

Banff4-I and the SGF groups were observed in the IFIT3, RSAD2 and ETV7 mRNA 

expression levels (Fig. 5B-D). No significant differences were found between the 

Banff4-II/III and the SGF groups in all markers (Fig. 5A-F). All markers were significantly 

elevated in IFTA patients compared with patients with SGF except for IFI44 (Fig. 5A-F). 

Patients with UTI also had significantly higher marker expression than those with SGF 

except for IFI44 and IFI44L (Fig. 5A-F). Differences between Banff3-BL and SGF were 

not significant in all markers (Fig. 5A-F).   
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Fig. 5: mRNA expression of ISGs in blood cells after kidney transplantation. 

The mRNA expression levels of IFIT1 (A), IFIT3 (B), RSAD2 (C), ETV7 (D), IFI44 (E), IFI44L (F) 

were presented by Box-Whisker-Plots and the outliers were specified by the Tukey method. The 

boxes indicate the median and the lower and upper quartiles. The maximum and minimum 

values excluding outliers are shown as whiskers above and below the boxes. After performing 

the nonparametric one-way ANOVA (Kruskal-Wallis test), a nonparametric Mann-Whitney U test 

was performed between every two groups (21 comparisons for every single marker) and a 

two-stage step-up method of Benjamini, Krieger and Yekutieli was used subsequently to correct 

P values.  (*P<0.05; **P<0.01; ***P<0.001). 

Moreover, the IFIT1 mRNA expression level was significantly lower in the Banff4-II/III 

group than that in the Banff2-ABM and IFTA groups (Fig. 5A). Similarly, RSAD2 also 
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showed relatively lower expression in the Banff4-II/III patients compared with the 

Banff2-ABM, UTI, Banff4-I, and IFTA patients. The Banff3-BL patients showed lower 

RSAD2 expression than the UTI patients (Fig. 5C). ETV7 expression in the blood cells 

was at the highest level in the UTI patients compared with all the other 6 groups. Patients 

in the Banff2-ABM group expressed a higher ETV7 level than those in the Banff3-BL and 

Banff4-II/III groups (Fig. 5D).  

3.3 Diagnostic value of interferon-stimulated gene mRNA expression levels in 

whole blood cells for ABMR  

ROC curves were used to assess the utility of ISG mRNA expression levels in whole 

blood cells for differentiating the ABMR patients from all the other patient groups and 

from the patients with SGF. When compared with all the other patient groups, the ABMR 

ROC test of IFIT1, RSAD2, ETV7 showed AUCs of over 0.65 (0.656, 0.668, and 0.689 

respectively) (Fig. 6). 

 

Fig. 6: ROC curves for single ISG mRNA expression levels in blood cells to discriminate 

ABMR from all other patients. 

AUCs are shown in figures and the corresponding P values are IFIT1 (P=0.023), IFIT3 (P=0.052), 

RSAD2 (P=0.017), ETV7 (P=0.006), IFI44 (P=0.129), IFI44L (P=0.242). 
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Both univariate and multivariate logistic regression were used to test the diagnostic value 

of these markers, whereas none of these single or combined markers entered the 

logistic regression equation (Table 3).  

 

Table 3 Logistic regression analysis of ISG mRNA expression levels in relation to the 

occurrence of ABMR in all patients 

 

Univariate and multivariate logistic regression were performed. The multivariate logistic 

regression including all candidate markers (IFIT1, IFIT3, RSAD2, ETV7, IFI44, and IFI44L) was 

used to test the diagnostic value of the combination of the genes. OR: odds ratio; CI: confidence 

interval. 

The diagnostic properties of all the markers of mRNA expression levels for the diagnosis 

of ABMR in all other patient groups are presented in Table 4. The IFIT1, RSAD2, ETV7 

mRNA expression levels showed relatively high specificity and high sensitivity, with 

AUCs of over 0.65 compared with all the other groups’ patients. 
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Table 4 Diagnostic performance of single markers of mRNA expression levels for ABMR 

from all patients 

ROC analysis of data from all patients to determine optimal thresholds for the diagnosis of 

ABMR and to estimate the diagnostic value of each mRNA expression level. CI: confidence 

interval; LR+: positive likelihood ratio; LR-: negative likelihood ratio; * value at the optimal 

Youden index. 

Whereas the ROC analysis of mRNA expression in patients with ABMR versus patients 

with SGF demonstrated relatively high specificity and sensitivity for ETV7, with an AUC 

of over 0.8, IFIT1, IFIT3, RSAD2, IFI44, IFI44L also showed AUCs of over 0.7 (0.748, 

0.766, 0.761, 0.708 and 0.701 respectively) (Fig. 7).  

Fig. 7: ROC curves for single ISG mRNA expression levels in blood cells to 

discriminate ABMR from SGF patients. 
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AUCs are shown in figures and the corresponding P values are IFIT1 (P=0.001), IFIT3 (P=0.001), 

RSAD2 (P=0.001), ETV7 (P<0.001), IFI44 (P=0.007), IFI44L (P=0.009). 

One of the possible ways to increase the diagnostic accuracy was to combine different 

markers by the logistic regression approach. However, no markers entered the 

multivariate logistic regression equation (P>0.05), while IFIT3 and RSAD2 showed the 

significant P value, which might due to the limited sample size (Table 5).  

 

Table 5 Logistic regression analysis of ISG mRNA expression levels in relation to the 

occurrence of ABMR in SGF patients 

 

Univariate and multivariate logistic regression were performed. The multivariate logistic 

regression including all candidate markers (IFIT1, IFIT3, RSAD2, ETV7, IFI44, and IFI44L) was 

used to test the diagnostic value of the combination of the genes. OR: odds ratio; CI: confidence 

interval. 

The diagnostic properties of all the markers of mRNAs expression levels for the 

diagnosis of ABMR in all patients with SGF are presented in Table 6. The ETV7 mRNA 

expression level showed relatively high specificity and high sensitivity with an AUC of 

over 0.80 when compared with other markers. 
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Table 6 Diagnostic performance of single markers of mRNA expression levels for ABMR 

from SGF patients 

ROC analysis of data from patients with SGF and ABMR to determine the optimal thresholds for 

classification of blood samples and to estimate the diagnostic value of each marker of mRNA 

expression levels. CI: confidence interval; LR+: positive likelihood ratio; LR-: negative likelihood 

ratio; * value at the optimal Youden index. 

3.4 Interferon-stimulated gene protein expression levels in serum and plasma after 

kidney transplantation 

The protein expression levels of IFIT1, RSAD2 in the plasma, and ETV7 in the serum 

were further measured by ELISA because of the significant various expression levels of 

mRNA in whole blood cells. The nonparametric one-way ANOVA (Kruskal-Wallis test) 

found that IFIT1 and ETV7 originated from the different distribution (P<0.05), while the P 

value of RSAD2 was 0.108. A nonparametric Mann-Whitney U test was performed 

between every two groups (21 comparisons for every single marker), and a two-stage 

step-up method of Benjamini, Krieger and Yekutieli was subsequently used to control the 

false discovery rate. By comparing the difference within the groups excluding SGF 

patients using Kruskal-Wallis test, IFIT1 (P=0.011) and ETV7 (P<0.001) showed 

significant different medians, while RSAD2 (P=0.059) showed no significant differences. 
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The plasma IFIT1 protein expression level in Banff5-IFTA group was significantly higher 

than that of all the other groups except the UTI and Banff4-I groups (Fig. 8A). No 

significant differences in RSAD2 protein expression level were found between different 

patient groups (Fig. 8B). Banff5-IFTA patients showed significantly the lowest ETV7 

serum expression level compared with all the other patients except for Banff2-ABM 

group (Fig. 8C). 

 

Fig. 8: Protein expression of ISGs in plasma (IFIT1, RSAD2) and serum (ETV7) after 

kidney transplantation. 
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The protein expression levels of IFIT1 (A), RSAD2 (B), ETV7 (C) are presented by 

Box-Whisker-Plots and the outliers are specified by the Tukey method. The boxes indicate the 

median and the lower and upper quartiles. The maximum and minimum values excluding outliers 

are shown as whiskers above and below the boxes. After performing the nonparametric one-way 

ANOVA (Kruskal-Wallis test), a nonparametric Mann-Whitney U test was performed between 

every two groups (21 comparisons for every single marker) and a two-stage step-up method of 

Benjamini, Krieger and Yekutieli was used subsequently to correct P values. (*P<0.05; **P<0.01; 

***P<0.001). 

 

3.5 Diagnostic value of interferon-stimulated gene protein expression levels in 

serum and plasma for ABMR  

ROC curves were used to assess the utility of ISG protein expression levels in serum 

and plasma for differentiating the ABMR patients from all the other patient groups and 

from the patients with SGF. When compared with all the other group patients, the 

markers in plasma and serum did not show any diagnosis value, with AUCs lower than 

0.60 and P values of over 0.05 (Fig.9). When compared with SGF patients, the markers 

in plasma and serum also did not show any diagnosis value, with AUCs lower than 0.60 

and P values of over 0.05 (Fig.10). 

 

Fig. 9: ROC curves for single IFIT1, RSAD2, ETV7 protein expression levels in plasma 

(IFIT1, RSAD2) and serum (ETV7) to discriminate ABMR from all other patients. 
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AUCs are shown in figures, and the corresponding P values are IFIT1 (P=0.450), RSAD2 

(P=0.916), ETV7 (P=0.842). 

 

Fig. 10: ROC curves for single IFIT1, RSAD2, ETV7 protein expression levels in plasma 

(IFIT1, RSAD2) and serum (ETV7) to discriminate ABMR from SGF patients. 

AUCs are shown in figures and the corresponding P values are IFIT1 (P=0.868), RSAD2 

(P=0.734), ETV7 (P=0.637). 

The diagnostic properties of all the markers of protein expression levels for the diagnosis 

of ABMR from all other patient groups are presented in Table7A and from SGF patients 

in Table7B. 

Table 7 Diagnostic performance of single markers of protein expression levels for ABMR  

ROC analysis of data from all patients to determine optimal thresholds for the diagnosis of 
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ABMR and to estimate the diagnostic value of each protein expression level (A). ROC analysis 

of data from patients with SGF and ABMR was performed to determine optimal thresholds for the 

classification of blood samples and to estimate the diagnostic value of each marker of the protein 

expression level (B). CI: confidence interval; LR+: positive likelihood ratio; LR-: negative 

likelihood ratio; * value at the optimal Youden index. 

3.6 Serum creatinine levels and diagnostic value for ABMR after kidney 

transplantation  

The serum creatinine was measured routinely at the same time. The nonparametric 

one-way ANOVA (Kruskal-Wallis test) was performed and significant difference was 

found within groups (P<0.001). A nonparametric Mann-Whitney U test was performed 

between every two groups (totally 21 comparisons), and a two-stage step-up method of 

Benjamini, Krieger and Yekutieli was subsequently used to control the false discovery 

rate. By comparing the difference within the groups excluding SGF patients using 

Kruskal-Wallis test, significant difference was also found (P<0.001).  

The serum creatinine is significantly elevated in all groups compared with the SGF group 

(Fig. 11A). When compared with all the other patient groups, the serum creatinine did not 

show any diagnosis value, with the AUC lower than 0.6 and a P value of over 0.05 (Fig. 

11B). When compared with SGF patients, the serum creatinine showed AUC of over 

0.85 with P values of < 0.0001(Fig. 11 B, C). 
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Fig. 11: Serum creatinine and ROC curves. 

The serum creatinine levels are presented by Box-Whisker-Plots and the outliers are specified 

by the Tukey method. The boxes indicate the median and the lower and upper quartiles. The 

maximum and minimum values excluding outliers are shown as whiskers above and below the 

boxes. After performing the nonparametric one-way ANOVA (Kruskal-Wallis test), a 

nonparametric Mann-Whitney U test was performed between every two groups (21 comparisons 

for every single marker) and a two-stage step-up method of Benjamini, Krieger and Yekutieli was 

used subsequently to correct P values. (*P<0.05; **P<0.01; ***P<0.001) (A). ROC curves for 

serum creatinine on the diagnostic value of ABMR versus all other groups (B) and versus stable 

graft function (C).  

Univariate logistic regression was used, whereas serum creatinine did not enter the 
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logistic regression equation (P=0.730 vs All, P=0.912 vs SGF). The diagnostic properties 

of serum creatinine for the diagnosis of ABMR in all other patient groups and in the SGF 

group are presented in Table 8. 

Table 8 Diagnostic performance of serum creatinine levels for ABMR 

ROC analysis of data from all patients to determine optimal thresholds and to estimate the 

diagnostic value of serum creatinine for the diagnosis of all ABMR (A) and from patients with 

SGF (B). CI: confidence interval; LR+: positive likelihood ratio; LR-: negative likelihood ratio; * 

value at the optimal Youden index. 
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4 DISCUSSION 

Kidney transplantation is widely recognized as the most effective treatment for ESRD. 

Over the past 20 years, along with the application of CNI-based immunosuppressive 

regimens and advances in tissue typing and organ preservation technology, the 1-year 

renal allograft survival rate has increased to 90% or higher [12]. However, acute and 

chronic rejections, IFTA, and other causes are responsible for suboptimal long-term graft 

survival [13]. Among all the causes of graft loss, ABMR is considered a major cause of 

long-term renal graft loss [14]. Therefore, early diagnosis and the development of better 

treatment options are of great significance.  

The clinical symptoms of ABMR are increasing serum creatinine, elevated blood 

pressure, decreased urine output, and proteinuria. Current strategies for monitoring 

ABMR have limitations, as severe damage may precede an increase in creatinine, and 

the development of proteinuria already reflects a later stage of injury. The gold standard 

for the diagnosis of ABMR is renal allograft biopsy. However, it is difficult to detect 

ABMR at an early stage. Moreover, biopsy is an invasive procedure carrying the 

potential risk of damaging precious kidney grafts, which limits repetitive and dynamic 

observations. Therefore, many attempts have been made to find non-invasive markers 

for the diagnosis of ABMR in an early stage. Such a sensitive and specific marker might 

offer the opportunity for early therapeutic intervention. Detecting a cheap and reliable 

marker for distinguishing potential ABMR would also be valuable, especially for 

longitudinal observations (e.g. for treatment effects). However, there is still a lack of good 

markers with sufficient sensitivity and specificity [66]. 

In this study, IFIT1, IFIT3, RSAD2, ETV7 showed significantly different expression in 

ABMR patients. The selection of these markers was based on previous sequencing 

results [91]. To compensate for the limitations of sequencing and to enable the 

application of these markers for clinical use, this study was organized into large patient 
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cohorts that were thoroughly matched against a control group in order to identify the 

diagnostic value of these markers and thus find a more effective clinical application.  

4.1 Levels of interferon-stimulated gene expression 

The interferon response protects cells from pathogen invasions by stimulating the 

expression of ISGs. ISGs show immunomodulating effects and are reported to take part 

in the regulation of autoimmune disease, cancer, and hepatitis [92-95]. 

Interferon-inducible protein 10 (IP-10), also known as C-X-C motif chemokine 10 

(CXCL10), is considered an ISG. It has been reported to promote the generation and 

migration of effector T cells [96, 97]. IP-10 has also been found to be a diagnostic marker 

for acute cellular rejection in kidney allografts [98]. As shown in section 3.2, our study 

found that from mRNA levels, candidate ISGs, which included IFIT1, IFIT3, RSAD2, 

ETV7, were higher expressed in the ABMR group compared to the SGF group. While 

none of the markers in serum or plasma showed significant differences between the 

ABMR group and the SGF group, this could be due to different gene expression profiles 

between blood cells and body fluids. Similar to our previous work [99], this result 

suggests that blood cells are a better marker resource for diagnosis than serum or 

plasma.  

Like the ABMR patients, the IFTA patients also showed elevated mRNA levels of ISGs. 

Additionally, the protein level of IFIT1 in plasma and ETV7 in serum were also 

significantly changed in the IFTA group compared with the SGF group.   

Interferon is used as an immunomodulator to treat viral infection in clinical settings. It 

plays a crucial role in physiological and pathological immune responses by regulating 

innate and adaptive immune responses [100]. IFN-γ is known to be important in 

modulating the allogeneic responses in transplantation. Transcript changes involving 

IFN-γ are also found in TCMR and ABMR patients [70,71]. Similarly, activation of 

immune responses by IFN-α increases the risk of allograft rejection too [101, 102]. After 
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administration of interferon, ISGs will express, which is also a sign of activated immune 

response. This could be the reason why ISGs are highly expressed during ABMR.  

Halloran et al. showed that ABMR manifested as transcript changes that reflected IFN-γ 

effects, and the molecular feature of TCMR was dominated by IFN-γ-induced genes 

[71,72]. Rascio et al. also found up-regulated genes involved in type I interferon 

signaling in chronic ABMR and IFTA patients which included IFIT1 and IFIT3. Their 

results are similar to our founding, but they did not analyze these markers’ expression 

levels in a large patient cohort, and so were unable to determine the diagnostic value of 

these markers [88]. They thought the expression of these markers might relate to B cell 

differentiation, DC maturation, and polarization of CD4+ T cells. Although the exact 

mechanism is unknown, this provides us with a further research direction in the 

pathophysiology of ABMR. 

mRNA expression levels of ISGs were upregulated in patients with UTI compared to the 

SGF group. Similar results were also found in previous works on non-transplantation 

patients [103, 104]. 

The TCMR patients showed no significant differences in expression levels compared to 

the SGF groups in IFIT1, IFI44, IFI44L, while, IFIT3, RSAD2, ETV7 up-regulated mRNA 

levels in the Banff4-I TCMR patients compared with the SGF group. IFIT1, RSAD2, 

ETV7 mRNA expression levels in the Banff4-II/III TCMR group were lower than in the 

ABMR group, which may be because no significant difference was found between the 

Banff4-II/III TCMR and the SGF patients. 

Many biopsies with inflammation changes that are not sufficient to be TCMR are labeled 

as BL. De Freitas et al. compared the molecular phenotype of the BL biopsies in TCMR 

and SGF patients and found that BL rejection as defined by histopathology is found to be 

nonrejection by molecular phenotyping [105]. Their work may help to explain why 

markers in the Banff3 BL group did not show any significant differences between patients 



 

 

 
39       

with SGF.  

Among these uniquely expressed markers, ETV7 showed the highest discrepancy 

between groups. While this marker is relatively new and has not yet been studied in 

larger cohorts, ETV7 is a member of the E26 transformation-specific (ETS) family of the 

transcriptional regulators, and it is an IFN-stimulated gene. ETV7 plays a key role in 

blood cell development and differentiation as well as tumor genesis [80]. ETV7 was 

highly expressed in the UTI patients compared to all other patients at mRNA levels. The 

ABMR patients also expressed ETV7 mRNA differently from all patients with the 

exception of the Banff4-I TCMR and IFTA patients. Apart from the Banff3 BL and 

Banff4-II/III TCMR groups, the ETV7 mRNA expression levels in all other groups was 

higher than in the SGF group.  

RSAD2 was also highly expressed in Banff2-ABMR, UTI, Banff4-I TCMR, and IFTA 

patients compared to SGF patients. RSAD2 is a specific marker necessary for DCs 

maturation, mature DCs then triggers allogeneic immune responses [106, 107].  

ISG56/IFIT1 Gene Family markers IFIT1 and IFIT3 showed similar mRNA expression 

differences. Both markers showed elevated expression in Banff2-ABMR, UTI, and IFTA 

patients compared to the SGF group. However, both IFI44 and IFI44L showed no 

significant difference within each group except IFI44L elevated in IFTA patients 

compared to the patients with SGF.  

Cumulatively, these differences create a foundation for the diagnosis of ABMR from all 

other complications.  

4.2 Diagnostic performance of interferon-stimulated genes  

Acute renal graft dysfunction is a common complication after kidney transplantation. 

Despite its limitations, serum creatinine remains the routine test to monitor the graft 

function. When ABMR patients show elevated serum creatinine, graft damage already 
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exists. Also, elevated serum creatinine cannot distinguish between various types of graft 

changes requiring different treatments. The diagnostic uncertainty of existing markers 

triggers the decision for an invasive allograft biopsy, which carries the potential risk of 

damaging precious kidney grafts. Thus, there is an urgent need to develop a noninvasive 

way to diagnose ABMR. 

We have successfully validated several markers in blood for the noninvasive diagnosis 

of ABMR. The diagnostic accuracy of ISG mRNA expression levels for the diagnosis of 

ABMR was remarkable compared to that of serum creatinine (Table 4, 6, 8), while the 

ISG protein expression levels were not helpful (Table 7).  

There was a relatively fair performance characteristic of ETV7 in discriminating ABMR 

patients from non-ABMR patients (AUC=0.69 with 0.95 sensitivity and 0.50 specificity 

cutoff>0.84) and from patients with SGF (AUC=0.83 with 0.95 sensitivity and 0.70 

specificity cutoff>0.84). Notably, ETV7 possesses more value for diagnosing ABMR in all 

patients as compared with serum creatinine (AUC=0.57 with 0.89 sensitivity and 0.30 

specificity cutoff>1.69). This can also be seen from the obvious trend that the ETV7 

expression level in ABMR patients is distinct from that in all the other groups.  

The ROC analysis of markers distinguishing ABMR from patients with SGF is able to 

diagnose ABMR early without allograft function impairment. Patients with SGF might 

also encounter potential ABMR or be in the early stage of ABMR, which shows no 

significant elevated serum creatinine. All six markers showed good performance, with 

AUCs over 0.70.   

Regretfully, none of the single variable or multi-variables entered the logistic regression 

equation to predict the onset of ABMR in all other patients or in the SGF group, which is 

also the case with serum creatinine. A possible explanation for this could be the small 

sample size and the heterogeneity of patients. However, multi-parameter measurements 

can still increase the sensitivity by reaching any one or even all of the parameter cutoffs 



 

 

 
41       

(parallel test) and elevate the specificity by reaching all the cutoffs of the parameters 

(serial test).  

4.3 Clinical implications  

The final goal of biomarker research is to find noninvasive markers to diagnose ABMR 

directly instead of using graft biopsy. Due to the complexity of ABMR, this goal is still far 

away. However, with the help of some specific markers, unnecessary biopsies may be 

avoided, and this can make the diagnosis of ABMR more cost-effective and precise. The 

use of circulating RNA or protein as biomarkers offers several advantages: the sample 

can be collected easily and the quantification of RNA or protein is economical and 

reproducible, and can even be ward-based in the future [108]. 

Currently, the clinical routine of ABMR diagnosis is based on elevated creatinine and the 

presence of DSAs. Whereas there are still so many reasons that may explain the 

increase of creatinine, DSAs are also only a risk factor for ABMR and many patients are 

bearing DSAs without ABMR. The stratification of patients based on the levels of 

biomarkers will enable clinicians to use an invasive tool with greater precision for 

diagnosing high-risk patients. In this case, the implementation of a marker with a low LR- 

might prevent a large number of patients from undergoing a pointless biopsy. Based on 

our results, a single use of the ETV7 mRNA expression level conveys a LR- 0.10, and 

the high LR+1.90 could increase the probability of ABMR before a biopsy is performed.  

A series of markers was analyzed and showed relatively fair efficacy for the diagnosis of 

ABMR in all patients or patients with SGF in our study. The sensitivity and specificity for 

the diagnosis of ABMR will improve with the measurement of these markers. An increase 

of sensitivity will have to be compromised with a decrease of specificity. Thus, it is of 

great importance to adjust the cutoff value in order to achieve a better diagnosis of 

ABMR. For patients with SGF, a missed diagnosis of potential or subclinical ABMR 

should be avoided. Therefore, a more sensitive diagnosis is necessary. For patients with 
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elevated serum creatinine, an indicated biopsy could be performed, which allows less 

misdiagnosis, and in such cases the cutoff value should be adjusted to achieve higher 

specificity.    

The perfect diagnostic marker tests should also have a favorable cost-benefit ratio, be 

prepared expediently, and be reproducible so that they can be used as clinical routine. In 

this study, the most positive result is on the basis of mRNA expression level 

measurement, which can be tested by RT-PCR. This technique is an extremely sensitive, 

rapid, easily operative method, which, hopefully, will become a valuable tool for detecting 

the expression levels of specific markers for the diagnosis of ABMR. A point-of-care 

multiplex polymerase chain reaction (mPCR) system has also been developed, and it 

could simplify all the steps of the traditional system into a multiplexed, automated, and 

closed system [109]. This reliable system may someday be applicable for monitoring the 

changes of markers in the blood of ABMR patients. Since this technique can be 

practiced routinely in clinics, the most important task will be to determine the most 

effective marker or marker combination scheme. 

4.4 Limitations and future study  

As may be encountered in many clinical studies, patient heterogeneity can lead to a 

decrease in accuracy. Thus, a larger group cohort, multi-center recruitment, and the 

application of random selection and the blind method could help prevent bias in future 

research. More frequent marker monitoring at different time points after transplantation is 

also needed to determine the dynamic trend of the expression level of markers. 

Moreover, a single cohort analysis of markers is prone to the inaccurate diagnostic effect 

of biomarkers by chance. Thus, including a replication test from an independent patient 

cohort would be important in order to further validate the diagnostic utility of these 

markers.  

The elevated expression levels of these genes give us a clue: related genes could be 
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targeted to increase the list of candidate markers so that more potential markers could 

be identified to achieve a better diagnosis of ABMR. Furthermore, searching for the 

origin of these genes from specific cell subsets and tracking the molecular pathway of 

these genes might offer a better understanding of the mechanism of ABMR.  

For patient measuring, it is better to choose control patients matched in age or time after 

transplantation so that we can better determine the influence of these factors. Because 

the patients had not undergone protocol biopsies, the control group we used was 

diagnosed based on the clinical findings, which may have included patients with 

subclinical rejection. As may be encountered in a clinic, the recurrence of primary 

diseases and viral infections such as cytomegalovirus or BK virus can also impair the 

graft function, which needs to be further qualified. However, due to the limited patient 

numbers, we were unable to compare more diseases.  

The prognostic value of these markers for the survival of the graft or the patients should 

also be analyzed in order to provide clinicians with more information so that they can 

decide timely and appropriate treatments. Most ABMR patients enrolled in this study 

encountered ABMR more than one year after kidney transplantation and most of the 

patients in the ABMR group encountered chronic ABMR or chronic active ABMR. Since 

the goal of this study was to find a better way to diagnose ABMR, using a more detailed 

subgroup with a larger population should be considered in a future study. 

4.5 Concluding remarks 

Despite the advances in immunosuppressive therapy, which have greatly improved the 

short-term graft survival, ABMR is still a threat to long-term graft survival. Timely 

diagnosis of ABMR and adjustments of immunosuppressant drugs can salvage the 

precious graft. A major limitation of the current management is that serum creatinine is 

not a sensitive and specific marker for ABMR. Therefore, the discovery of a new ABMR 

marker is essential to distinguish patients at risk for ABMR from other patients. Based on 
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the clinical needs, we included in this study the most common complications after kidney 

transplantation.  

After measurement and comparison of the mRNA and protein levels of the ISG markers, 

the mRNA levels of IFIT1, RSAD2, ETV7 showed significant diagnostic value for 

distinguishing patients at risk for ABMR from other patients. The combination of these 

three markers will increase the overall sensitivity and specificity by serial test and parallel 

test. This procedure could make it possible to diagnose ABMR accurately and in this way 

greatly benefit kidney transplant patients. 
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5 SUMMARY 

ABMR is considered to be an elemental factor affecting the long-term survival of renal 

allograft. The gold standard for diagnosing ABMR is the needle biopsy, which is far away 

from being widely practiced as clinical routine due to its invasiveness. The graft function 

test, like serum creatinine measurement, is neither sensitive nor specific enough for the 

diagnosis of ABMR. Moreover, when the serum creatinine is elevated, the precious graft 

has been damaged inevitably and the best chance for treatment might have been 

missed. Hence, there is an urgent need for discovering effective and repeatable markers 

for the diagnosis of ABMR to facilitate an earlier intervention. 

ISGs are the effectors of interferon actions and play crucial roles in innate immune 

defense against pathogens. More and more evidence has revealed that ISG might be 

induced during various autoimmune diseases such as systemic lupus erythematosus or 

systemic sclerosis. Our previous sequencing results also showed a high expression level 

of ISGs in ABMR patients. All these findings suggest that the elevation of ISG levels in 

the blood could be an indicator of ABMR. 

The present study provides ISG expression information on renal transplantation 

recipients from a large patient cohort at both the RNA and the protein levels based on 

RNA sequencing results. This work also validates the effects of these genes for the 

diagnosis of ABMR and thus provides a foundation for future research. Of all the 

candidate ISGs, ETV7 shows the highest sensitivity and specificity, even though the 

combination of these candidate markers using logistic regression failed.  

In conclusion, the serum ISG RNA is an effective marker for the detection of ABMR. 

However, further prospective multicenter and longitudinal studies are warranted to 

determine the utility of these markers for future clinical practice. 
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