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Summary

� Anthropogenic atmospheric deposition can increase nutrient supply in the most remote

ecosystems, potentially affecting soil biodiversity. Arbuscular mycorrhizal fungal (AMF) com-

munities rapidly respond to simulated soil eutrophication in tropical forests. Yet the limited

spatio-temporal extent of such manipulations, together with the often unrealistically high fer-

tilization rates employed, impedes generalization of such responses.
� We sequenced mixed root AMF communities within a seven year-long fully factorial nitro-

gen (N) and phosphorus (P) addition experiment, replicated at three tropical montane forests

in southern Ecuador with differing environmental characteristics. We hypothesized: strong

shifts in community composition and species richness after long-term fertilization, site- and

clade-specific responses to N vs P additions depending on local soil fertility and clade life his-

tory traits respectively.
� Fertilization consistently shifted AMF community composition across sites, but only reduced

richness of Glomeraceae. Compositional changes were mainly driven by increases in P supply

while richness reductions were observed only after combined N and P additions.
� We conclude that moderate increases of N and P exert a mild but consistent effect on tropi-

cal AMF communities. To predict the consequences of these shifts, current results need to be

supplemented with experiments that characterize local species-specific AMF functionality.

Introduction

Tropical Andean forests are centers of endemism and constitute
the most biodiverse region of the world per unit area (Rahbek
et al., 2019b). Despite the large contribution of these forests to
preserve Earth’s biodiversity, many aspects of their ecology
remain unresolved. Most notably, the role that soils –and soil
dwelling organisms– play in shaping these ecosystems’ response
to global change drivers (Baez et al., 2015; Hagedorn et al.,
2019). This is particularly relevant for tropical Andes, as mon-
tane forest soils store considerable amounts of carbon (C)
(Girardin et al., 2010; Moser et al., 2011; Spracklen & Righelato,
2014), yet the drivers controlling C fluxes are shifting in this
region. In the past two decades, the intensification of human
activities in the neighboring Amazonian plains has fueled a mod-
erate increment in the deposition rates of reactive nitrogen (N)
(Wilcke et al., 2013; Velescu et al., 2016) and phosphorus (P)
(Wilcke et al., 2019) into the eastern Andes. Given that N and P
are arguably the main soil elements regulating C cycling, and that
their availability also affects soil microbes and the processes they
drive (Camenzind et al., 2018), understanding how tropical

montane forests change in the face of ongoing soil eutrophica-
tion, requires a deeper understanding of how soil microbial com-
munities respond to these disturbances.

Arbuscular mycorrhizal fungi (AMF) – a basal sub-phylum of
mutualistic fungi (Glomeromycotina; Spatafora et al., 2016)
– form the most common type of mycorrhizal symbiosis world-
wide (van der Heijden et al., 2015), and are the dominant mutu-
alists in Andean tropical forests (Kottke et al., 2008; Smith &
Read, 2008). AMF are ecologically relevant because they increase
the uptake of P in exchange for plant derived C (Smith & Smith,
2012), and to a lesser extent the uptake of inorganic N (Hodge
& Storer, 2015; Ushio et al., 2017). Because of their prominent
role in the flow of nutrients, assessing AMF community responses
to shifting nutrient pulses might serve to establish a link between
AMF diversity and ecosystem function (Rillig, 2004).

Based on what is currently known about the nutritional
attributes of the symbiosis, several predictions on how AMF
diversity may respond to increased N and P availability can be
attempted. From a resource economy perspective (Johnson,
2010), when atmospheric deposition increases P supply beyond
limitation, the benefit of the symbiosis is reduced (Johnson et al.,
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2015). This may intensify competition between AMF taxa for
plant derived C and for soil nutrients, as well as between the host
and AMF for inorganic N. In both cases, a reduction in AMF
diversity can be expected. Conversely, in cases when P supply is
the most limiting resource (i.e. N supply increases beyond limita-
tion), the benefit of the symbiosis is enhanced. In this case AMF
diversity levels might be maintained. The situation is consider-
ably more nuanced when hosts are N and P co-limited. In this
scenario, the nutritional benefit of the symbiosis will still be
required, yet weak competition between AMF taxa for resources
(Powell & Rillig, 2018) might lead to shifts in community com-
position. This last prediction is congruent with the co-adaptation
model (Johnson, 2010). This model predicts that over time,
ambient nutrient status selects sets of plants and fungi that are
able to co-exist and maximize the exchange of resources (Johnson
et al., 2010).

Quite importantly, all these predictions assume that each
AMF taxon occupies a defined nutritional niche (Treseder &
Allen, 2002). This assumption is underpinned by the fact that
AMF isolates differ in the benefits they provide to plants (Koch
et al., 2017), and by different clades (e.g. families) differing in
susceptibility to fertilization regimes (van der Heyde et al., 2017;
Treseder et al., 2018; Roy et al., 2019). Using classical abundance
measures (e.g., root colonization, hyphal length), which are fre-
quently used to assess fertilization effects, it is not possible to cap-
ture differences in responses of different AMF taxa to nutrient
enrichment (Treseder, 2004). Information at such higher level of
resolution can only be obtained by sequencing surveys. Yet the
scarcity of surveys of this kind in tropical areas has been repeat-
edly noted in the literature (Cotton, 2018; Lilleskov et al., 2019),
particularly for the tropical Andes (Soteras et al., 2019). We are
aware of only two deep sequencing studies conducted at AMF
dominated neo-tropical forests within the context of nutrient
manipulation experiments (Camenzind et al., 2014; Sheldrake
et al., 2018). These studies showed AMF diversity decreases when
N is added alone or in combination with P, while community
structure is affected mainly by the addition of P. These responses,
however, appear to be modulated by the fertilization regime, the
duration and dosage of the application, and whether AMF com-
munities were characterized from DNA isolated from roots or
soil.

Given that virtually all aspects of AMF ecology are understud-
ied in the tropics, it is evident that important gaps in our under-
standing still remain. First, studies conducted on tropical AMF
communities in the context of increased nutrient supply are geo-
graphically narrow. Given whole ecosystem manipulations are
resource intensive, these can only be maintained over relatively
small areas (Fayle et al., 2015). Hence the majority of such exper-
iments in the tropics have been established in mesic lowland
forests that grow over P-deficient soils (Matson et al., 1999; Mir-
manto et al., 1999; Kaspari et al., 2008; Cusack et al., 2011). In
tropical montane forests, however, plants obtain most of their
nutrients from thick layers of organic detritus of very heteroge-
neous nutritional condition (Tanner et al., 1998; Wilcke et al.,
2002). This heterogeneity is thought to originate from the inter-
action of parent material of different age and composition

(Hoorn et al., 2010) with climate (i.e. thermal isoclines, cloud
immersion, seasonal precipitation patterns, Rahbek et al., 2019a)
and topography (Tanner et al., 1992; Werner & Homeier,
2015). In addition to the geographic bias, there is a temporal one.
Up until now, assessments of tropical AMF communities within
nutrient addition experiments have not been reproduced, thereby
ignoring the temporal dimension of the disturbance (Zhang
et al., 2018). Finally, the majority of tropical nutrient manipula-
tion experiments have set rates of mineral fertilization with the
goal of assessing plant growth limitations (Tanner et al., 1992;
Mirmanto et al., 1999; Kaspari et al., 2008). These, however,
often exceed the actual rates of atmospheric nutrient deposition
that these regions experience (Cusack et al., 2010).

In this paper, we assess the responses of tropical forest AMF
communities to increased nutrient deposition in a more realistic
scenario. We do so by surveying a seven year-long fully factorial
nitrogen (N) and phosphorus (P) addition experiment in south-
ern Ecuador (Homeier et al., 2012). This experiment is fully
replicated at three sites where P is the main limiting element for
tree growth (C�arate-Tandalla et al., 2018), but its availability, as
well as that of mineralized N, is modulated by local environmen-
tal conditions (Martinson et al., 2013). One of these sites was
surveyed after two years of simulated atmospheric deposition
(Camenzind et al., 2014), indicating important short-term reduc-
tions in AMF species richness. Here we focus on assessing the
long-term response and increasing the external validity of our
results by including all three sites within the experiment. We
hypothesized that: (1) there will be a decrease in AMF molecular
diversity after fertilization in sites with greater P availability, (2)
nutrient applications will shift AMF community composition,
but these shifts will be mediated by ambient availability of nutri-
ents at different sites, and (3) assuming AMF lineages differ in
terms of nutrient use and exchange capacities, clade responses to
nutrient applications will be also different. To the best of our
knowledge, this constitutes the most encompassing assessment of
nutrient addition effects on naturally occurring AMF dominated
forests.

Materials and Methods

Study site

Experimental work occurred on three sites along the south east-
ern Andes of Ecuador. Sites are located at an average distance of
19 km and at an average elevation difference of 1000 m of each
other, starting at c. 1000 m above sea level (m asl; Supporting
Information Fig. S1). All sites are within protected areas and are
covered by different forest types (Homeier et al., 2013). The low-
est site corresponds to pre-montane forest, the mid site to lower
montane forests and the highest site to upper montane forest.
Tree species turnover is complete between pre- and upper mon-
tane forests while fewer than five species are shared between lower
montane and the other two forest types (Homeier et al., 2013).
Canopy openness and stand height are reduced, while fine root
biomass sharply increases at the upper montane forest in relation
to the other two forest classes (Moser et al., 2011). From pre-
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montane to upper montane forest, understorey vegetation
becomes denser with decreasing canopy openness. This stratum is
mainly composed of tree recruits, herbaceous monocots, ferns,
and a few woody shrub species (J. Homeier, pers. comm).

Climate at the three sites is permanently humid and strongly
influenced by the dominant easterlies coming from the Amazon.
Radar and ground station data indicate high precipitation totals
that increase towards the upper montane forest (2000–
4500 mm yr�1; Homeier et al., 2010; Rollenbeck & Bendix,
2011). Precipitation patterns are weakly seasonal with a maxi-
mum usually distributed from April to July. Minima occur
towards the end of the year (Sep-Dec), when the dominant east-
erlies briefly give way to westerlies coming from the Pacific
Ocean (O~nate-Valdivieso et al., 2018). Temperature regimes also
shift between sites. Direct measurements of average daily temper-
ature show a decrease from c. 19°C to c. 9°C between the pre-
and upper montane sites (Moser et al., 2007).

Soil physical and chemical characteristics also change between
sites. Soils at the lower and upper montane sites are covered by
10–40 cm deep organic layers, have a propensity to water logging
and a loamy mineral fraction (Wolf et al., 2011; Werner &
Homeier, 2015). At the pre-montane forest, soil texture becomes
sandy, leading to a better drainage and the organic horizon depth
is reduced close to 0 cm. Organic layers are generally acidic (pH
range: 3–5) and suffer from chronic nutrient deficiencies. N and
P availability tends to increase in the pre-montane forest relative
to the lower and upper montane forests (Wolf et al., 2011;
Werner & Homeier, 2015). Despite of this, tree growth at all
sites is predominantly limited by P availability (Graefe et al.,
2010; C�arate-Tandalla et al., 2018).

Additional details of each site environmental characteristics
can be found in Table S1.

Experimental design

A full factorial nutrient manipulation experiment started at each
site in January 2008 (Homeier et al., 2012; Fig. S1b). Since then,
urea (50 kg of N ha�1 yr�1) and monosodium phosphate (10 kg
P ha�1 yr�1) were applied manually every six months. These rates
of application are moderate relative to the rates applied in similar
experiments elsewhere (Liu et al., 2015a; Sheldrake et al., 2018)
and correspond well to the annual rates of atmospheric deposi-
tion quantified at the lower montane forest site between years
2007–2012 (Velescu et al., 2016; Wilcke et al., 2019). Experi-
mental factors are applied in a randomized block arrangement.
That is, on each site there are four blocks of four plots each (16
plots per site, 48 plots total). Each block consists of three plots
with different nutrient application regimes (+N, +P and +N+P)
and one unfertilized plot (Ctrl). Ctrl plots were always located
above fertilized plots to avoid fertilizer runoff. Fertilization
regime was assigned randomly at the start of the experiment for
the remaining plots. While randomization mitigates the effects of
confounding sources of variability, blocking ensures greater
homogeneity in environmental conditions between sets of plots.
Plots are 400 m2 and are at least 10 m apart to ensure indepen-
dence of experimental units.

In August 2015, a 10 cm soil core (Ø 5 cm) was extracted from
the organic layer of six sub-plots (4 m2) within each treatment
plot. Sub-plots were randomly established along two orthogonal
transects. We sampled one core within each sub-plot. This
yielded a total of 96 cores per site (Fig. 1). In order to standardize
our sampling procedure, c. 20 fine root pieces of 1–2 cm length
and < 2 mm diameter were separated from the organic layer of
each soil core and subsequently preserved in 97% EtOH. Roots
were favored over soil, because DNA extraction from the organic

(a) (b) (c)

Fig. 1 Spatial distribution of cores collected for this study. Each cluster of six points of the same color represent cores within a plot according to their
fertilization regime. Text indicates the relative position of blocks at each site, each encompassing four plots (i.e. 24 cores). Core position was allocated
randomly using two orthogonal transects within each plot. Map coordinates are in decimal degrees and polygons in various shades of green intend to
remind the reader that each site is different in terms of soil and plant community composition, forest structure and climate.
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layer of these forests is cumbersome and hinders amplification.
Samples were kept frozen upon their transport to the molecular
ecology laboratories at the Institute for Biology of Freie Univer-
sit€at Berlin, where they were finally stored at �20°C.

DNA extraction, PCR amplification and sequencing

Roots from each of the samples were lyophilized overnight
(Alpha 1-4 LDplus; Christ GmbH, Harz, Germany). Upon
lyophilization, roots were pulverized by shaking a 2 mm metal
bead along with roots in a 2 ml tube placed within a MM400
mill (2 min of 25 oscillations per second, Retsch GmbH., Hann,
Germany). DNA was isolated from pulverized roots following
the PowerSoil DNA isolation kit (MoBio Laboratories Inc.,
Carlsband, CA, USA) standard protocol. DNA extracts were
stored at �20°C upon amplification. In order to minimize con-
tamination, blank extracts were included, and all materials used
were sterilized.

The genetic polymorphism within the nuclear rDNA operon
was assessed adopting a nested PCR strategy. DNA extracts were
amplified with a cocktail of Glomeromycotina specific primer
sets developed by Kr€uger et al. (2009), in two consecutive PCR
rounds. A third and final PCR round targeted a c. 400 bp frag-
ment spanning the D1 and D2 variable domains of LSU with the
LR2rev–LR3 primer set (Roy et al., 2017). Details of the PCR
conditions and amplicon library preparation can be found in the
Methods S1. Amplicon libraries were sequenced in three separate
reactions on an Illumina MiSeq platform using 29 250 paired-
end chemistry at the Berlin Center for Genomics in Biodiversity
Research (BeGenDiv).

Bioinformatic processing and taxonomic assignment

Paired-end reads were processed in USEARCH v.10 (Edgar,
2010). Reads from each site were processed separately for the
merging, primer sequence removal and filtering steps. Reads
that passed the filtering criteria were then combined in a single
file for subsequent steps. MOTHUR (Schloss et al., 2009) was
employed to retain sequences with at least 375 bp and less than
seven homopolymers. Sequences were clustered de novo into
operational taxonomic units (OTUs) with UPARSE (Edgar,
2013), the minimum OTU cluster size was set to 8 and
sequence similarity threshold to 97%. Chimera removal and
clustering occurred simultaneously. Merged reads of each site
were then mapped to OTUs to produce an OTU abundance
table. Sequences representing these OTUs are deposited at the
European Nucleotide Archive (ENA), under accession nos.
LR656271–LR656682.

Phylotype taxonomic identity was assigned by aligning OTUs
to Kr€uger et al. (2012) reference database using BLAST+ (Cama-
cho et al., 2009). Only the query sequences with alignment cov-
erage ≥ 90% were retained. Following Martinez-Garc�ıa et al.
(2015), an OTU was assigned to species level when the best hit
was ≥ 97% identical to a reference sequence, to genus when iden-
tity was between 90–96%, and to family when identity was
between 80–90%.

Environmental factors

One composite sample of the organic layer was created by aggre-
gating and homogenizing six sub-plot samples extracted from
each plot (n = 48). Air dried samples were then transported to the
plant ecology laboratories at the University of G€ottingen, Ger-
many. Soil pH was determined by suspension of the sample in a
KCl solution; organic soil C and N with a C/N analyzer (Vario
EL III; Elementar, Hanau, Germany) and plant-available P with
the resin-bag method (Amer et al., 1955). Finally, all trees with a
diameter at breast height ≥ 10 cm were identified to species level
in order to calculate tree species richness per plot.

Statistical analyses

All statistical analyses were performed in R (v.3.4.3; R Core
Team, 2017). Packages ADESPATIAL (Dray et al., 2019), DESEQ2
(Love et al., 2014), DPLYR (Wickham et al., 2018), GGPLOT2
(Wickham, 2016), GGPUBR (Kassambara, 2018), LME4 (Bates
et al., 2015), LMERTEST (Kuznetsova et al., 2017), MVABUND

(Wang et al., 2012), PHYLOSEQ (McMurdie & Holmes, 2013),
RGDAL (Bivand et al., 2019), SP (Bivand et al., 2013) and VEGAN

(Oksanen et al., 2018) were employed. The commands used for
the analyses can be found in Table S2.

Variability of environmental factors across sites and plots To
visualize how environmental factors varied across plots and sites,
variability was collapsed using a principal component analysis
(PCA). Variables were scaled and centered and the two most
informative axes were plotted.

Normalization of sequencing data As is typically observed in
high throughput sequencing data, there was a high number of
samples with few sequences and few samples with high number
of counts (Fig. S2a). To account for the large differences in
sequencing depth across samples, a variance stabilization transfor-
mation (VST) was applied (Love et al., 2014). VST avoids rarefy-
ing to an arbitrary minimum sequencing depth while preserving
the integrity of the data (McMurdie & Holmes, 2014; Sheldrake
et al., 2018). Applying VST normalized the density distribution
of sequencing depth (Fig. S2b) while still allowing a sufficient
coverage to characterize the diversity of AMF across samples
(Fig. S3). Thus, the transformed table was used for all subsequent
analyses.

AMF molecular diversity indices Following Morris et al.
(2014), per sample AMF molecular diversity (hereafter referred
as ‘alpha diversity’) was quantified by two indices: Hill number 0
(H0) and 2 (H2). H0 and H2 are generalized forms of popular
diversity indices that facilitate comparisons across studies given
they express taxonomic diversity in standardized units (Hill,
1973). H0 equals richness (S) and expresses the number of OTUs
per sample while H2 equals to the inverse of Simpson’s domi-
nance index and expresses the effective number of ‘abundant’
OTUs per sample (Chao et al., 2014). To visualize how alpha
diversity partitioned between different families within
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Glomeromycotina, H0 and H2 were also estimated by segregating
OTU tables of the most represented families in our dataset (i.e.
Acaulosporaceae, Glomeraceae and Gigasporaceae). To visualize
AMF taxa turnover across sites, OTUs with relative abundance
equal or greater to 1% were selected and their presence and rela-
tive abundance was plotted.

Effects of nutrient addition on AMF molecular diversity The
response of AMF alpha diversity to fertilization was inferred
through linear mixed effects models (LMMs; Bates et al., 2015).
To meet model assumptions, H0 and H2 estimates were square
root transformed and specified as response variables. N and P
were specified as fixed terms (i.e. sqrt(H0/H2) ~N9 P). To
account for the random variability imposed by the experimental
design, a nested random term was specified (i.e. 1|Site/Block/
Plot). Given that including all components of the random term
led to model over-fitting (blocks contributed to explain 0 % of
residual variability in H0 and H2, Table S3), the random struc-
ture of the models was re-specified as 1|Site/Plot. The full OTU
dataset and the per-family OTU data sub-sets were fitted to this
model structure. The difference from control in mean H0/H2

explained by the nutrient treatment regime, hereafter referred as
the effect size, was used to infer the impact of nutrient addition
on AMF alpha diversity. To visualize the magnitude and direc-
tion of these effect sizes and to provide a measure of uncertainty,
95% confidence intervals around effect sizes were estimated by
refitting the model 1000 times with parametric bootstraps of the
original data (Morris, 2002). In addition to this, we ascertained
the effect of nutrient application regimes with classical null
hypothesis significance testing by performing t tests. The null
hypothesis was that the difference from control was not different
from 0. Given that the current implementation of mixed models
in LME4 package does not estimate P-values, these were deter-
mined via LMERTEST package (Kuznetsova et al., 2017).

Effects of nutrient addition on AMF community composi-
tion The effects of fertilization on AMF community composi-
tion were examined with multivariate generalized linear models
(MGLM; Wang et al., 2012). MGLMs can handle multivariate
response variables in which the variance is not constant (Warton
et al., 2012), which is the case here (Fig. S4). Given the composi-
tional nature of the data (Gloor et al., 2017), phylotype propor-
tions cannot be considered to represent the abundance of AMF
taxa in the environment. Consequently, to assess if fertilization
elicits a change in AMF community composition, we focused on
OTU occurrence data. Because our goal was to assess if the effect
of each fertilization factor differed among sites – and since
MGLMs cannot handle random effects, a separate model for each
site was specified. Spatial dependencies in OTU presence within
each site were accounted for by Moran eigenvectors maps
(MEMs, Dray et al., 2006). MEMs were estimated according to
the method developed by Bauman et al. (2018b). This is both an
estimation and selection procedure that yields a set of MEMs that
optimally describe the spatial structures observed in biotic com-
munities (Bauman et al., 2018a). Thus, the selected MEMs were
specified as predictors in each of the MGLMs (i.e. OTU

occurrence ~MEMs +N9 P). The variance structure for all
three models was specified as binomial. Finally, deviance tests
were performed on each MGLM to measure the strength of
nutrient addition effects on AMF community composition. If
the sequential inclusion of explanatory terms significantly
increased the fit of the data in relation to a reduced model, then
such factor was considered to have a significant influence on
OTU occurrence. In addition to this, distance based redundancy
analysis plots based on Jaccard dissimilarity matrices were
employed to visualize the effects of treatments on AMF commu-
nity composition (RDA; Legendre & Anderson, 1999). One
RDA per site was specified as a two-way model (N9 P), includ-
ing MEMs as conditional covariates.

Sensitivity analysis To test the robustness of our results and
compare to previously observed short-term effects (Camenzind
et al., 2014), the whole dataset was re-analyzed with traditionally
applied statistical procedures (i.e. rarefying to a common mini-
mum depth and PERMANOVA; Anderson, 2001; Oksanen
et al., 2018). Details of these procedures are presented in the
Methods S2.

Results

Taxonomic delineation and assignation

A total of 280 samples were amplified and generated 12 625 525
merged reads. Six samples with less than 10 reads each were dis-
carded as they were considered defective and 503 495 unique
sequences were retained after filtering. These sequences were clus-
tered in 628 OTUs at 97% similarity, of which 65.6% (412
OTUs, 87.77% of reads) identified with known Glomeromy-
cotina sequences. All Glomeromycotina OTUs were assigned to
three orders and six families, but c. 75% of these reads could be
assigned to a known genus.

Environmental variation and AMF community properties
across sites

PCA of environmental factors indicated that environmental con-
ditions in plots at the lower and upper montane forests were simi-
lar and differed from the conditions at the pre-montane forest
site (Fig. 2a). In general, all experimental plots were characterized
by low fertility and acidic soils. However, soils at the lower and
upper montane plots had lower N and greater P availability than
soils at the pre-montane site. In contrast, soils at the pre-montane
site had higher pH and supported more diverse tree communities
(Table S4). AMF OTU accumulation curves indicate that pre-
montane plant communities hosted on average 126 more OTUs
than lower and upper montane forests, which relative to each
other reached a very similar number of OTUs (Fig. S5). Alpha
diversity and relative abundance of reads of the most represented
families within Glomeromycotina traced this pattern. While in
the pre-montane plots OTUs assigned to Glomeraceae were more
diverse and encompassed a greater proportion of reads than
Acaulosporaceae, at both lower and upper montane sites OTUs
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assigned to Acaulosporaceae were more diverse and contributed
with a greater proportion of reads than Glomeraceae (Fig. 2b,c).
Turnover of the most represented OTUs within these families,
however, was strong across sites. None of the aforementioned
OTUs occurred in all three sites whereas c. 10% of these OTUs
were shared between the lower montane and one of the other two
sites (Fig. 3).

Effects of nutrient addition on AMF molecular diversity

Responses of diversity indices to fertilization regime were mini-
mal and statistically insignificant when analyzing all sites together
(Table S5). Closer inspection of effect sizes estimated for each site
confirmed these differences were not biologically meaningful at
any site (Fig. 4a). When the analysis was partitioned among fami-
lies, no effect was observed with only one exception. Glomeraceae
mean H0 and H2 decreased by 5.2 (� 2.4 SE) and 3.7 (� 1.7 SE)
OTUs respectively (P = 0.02 and 0.02) as a response to the com-
bined addition of N and P. The negative effect of the combined
addition of N and P on Glomeraceae was consistent across sites
(Fig. 4b).

Effects of nutrient addition on AMF community
composition

Deviance tests indicate that nutrient addition consistently
affected AMF community composition at every site (Table 1).
Fertilization effects on community composition were dependent
on the nutrient added and the ambient nutrient status at each
site. While adding N did not elicit a shift in AMF community

composition only in the pre-montane forest, adding P alone con-
sistently elicited community shifts at all sites. Given that the most
represented OTUs across sites are present in all fertilization
regimes, the shifts detected by deviance tests are most likely
driven by the appearance and disappearance of rare OTUs. Test
results were robust to the inclusion of eigenvector maps, which
also increased the fit of every model significantly. This suggests
that, in addition to the fertilization effects, spatially structured
factors also contribute to explain the observed variability in AMF
community composition. RDAs on Jaccard dissimilarity index
are congruent with this result, as these indicate that nutrient fac-
tors explained on average 3.87% variability in AMF community
structure, while conditioned MEMs explained 15.5% (Fig. 5).

Sensitivity tests

Re-analysis of the dataset, using more traditionally employed sta-
tistical procedures, did not change results qualitatively (Tables S6
and S7). Rarefying to a minimum depth of 850 reads eliminated
3 AMF OTUs compared with VST. PERMANOVA on Jaccard
distances found addition of P affects AMF community composi-
tion except for the upper montane forest site. In contrast the
addition of N alone or in combination with P did not elicit shifts
in AMF community composition.

Discussion

Our cross-site analysis indicates that tropical montane forests har-
bor highly diverse AMF communities that appear to be struc-
tured by site specific environmental conditions. We provide

(a) (b)

(c)

Fig. 2 Site variability in environmental parameters and relative abundance of phylotypes assigned to main clades within Glomeromycotina. (a) Principle
component analysis (PCA) of soil organic layer parameters and tree species richness. Two axes were sufficient to capture 79.3% of within site variability in
soil parameters (n = 48). Closed and open symbols represent homogenized soil samples according to fertilization regime and hulls enclose all samples within
a site. (b) H0 (Richness) of phylotypes and (c) proportion of reads assigned to the most represented families across sites. White stars within boxplots
represent the mean while the mid-horizontal line represents the median.
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evidence that indicates seven years of moderate N and P fertiliza-
tion rates have affected AMF community composition but not
richness, a finding consistent among sites. Nutrient effects are

indeed mild, but remain clear even when spatial dependencies in
AMF community composition are accounted for. Our results fur-
ther suggest that fertilization effects depend on site ambient

Fig. 3 Turnover of the most abundant operational taxonomic units (OTUs) across the three sites where the nutrient manipulation experiment took place.
OTUs were selected if their relative abundance was greater than 1% of the total. Taxa are ordered by family to emphasize their turnover across sites.
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nutrient status, since N addition did not affect AMF communities
in pre-montane forests, while P shifted community composition
independently of soil nutrient status. Furthermore, the composi-
tion of the regional OTU pool was site specific and the response
to fertilization was clade-specific, suggesting differences among

AMF clades in terms of their adaptation to different nutrient con-
ditions. Overall, our results indicate that the rate of atmospheric
nutrient deposition experienced by these forests constitutes a
modest, yet consistent disturbance for AMF communities.

Both the phylotype pool and mean richness in our study sites
are one of the highest so far reported for AMF, yet still fall within
the boundaries of previous global AMF diversity assessments
(Kivlin et al., 2011; Davison et al., 2015). Our observations that
there was a substantial turnover of AMF taxa at different sites are
also congruent with recent literature that found a strong influence
of elevation on AMF beta diversity (Geml et al., 2014; Kivlin
et al., 2017; Haug et al., 2019). Given that metabarcoding studies
are not consistent in the strategies adopted to arrive at OTU defi-
nitions (Lekberg et al., 2014; Hart et al., 2015), and that eleva-
tion is a compound variable that usually involves a number of
inter-related climatic, topographic and soil variables, it is not pos-
sible to generalize this pattern to other areas in the Andes.
Nonetheless, recent reports of high AMF molecular diversity on
both dry (Rodriguez-Echeverria et al., 2017; Morgan & Egerton-
Warburton, 2017) and wet (Bachelot et al., 2017; Garc�ıa de Le�on
et al., 2018) tropical lowland forests lend support to the idea that
tropical Andean forests harbor highly diverse AMF communities.
Acaulosporaceae higher abundance and richness at sites with
acidic pH and low N availability is congruent with the characteri-
zation of members of this clade as stress tolerant (Oehl et al.,

(a)

(b)

Fig. 4 Estimated differences in mean H0

(Richness) and H2 (1/Simpson’s dominance)
of fertilized plots in relation to controls at
each experimental site. Overall differences at
the sub-phylum level are presented in (a)
while (b) presents differences at the family
level. The magnitude of the differences is
presented in the square-root scale. Open and
closed symbols represent point estimates and
whiskers represent their 95% confidence
intervals estimated by refitting the model
1000 times with parametric bootstraps of the
original data. A 0.5 increase or decrease
represents a difference of c. 5 units.

Table 1 Deviance test results parameters describing how each predictor
contributed to improve the fit of the observed data to the model. MEMs
stand for Moran’s Eigenvector maps.

Site Model df Deviance P

Pre-montane c. 1 95
+MEMs 86 4857.440 <0.001
+N 85 393.527 0.553
+ P 84 593.784 <0.001
+N : P 83 520.412 <0.001

Lower montane c. 1 88
+MEMs 79 2862.472 <0.001
+N 78 260.035 0.030
+ P 77 331.201 <0.001
+N : P 76 297.538 <0.001

Upper montane c. 1 88
+MEMs 80 2368.596 0.003
+N 79 329.737 0.003
+ P 78 399.214 <0.001
+N : P 77 215.143 0.054
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2009; Veresoglou et al., 2013; Liu et al., 2015b). By contrast,
high abundance of Glomeraceae at the site with the lowest C/N
ratio among the set is in line with the association of this clade
with higher N availability (Treseder et al., 2018).

We found little support for our first hypothesis that predicted
an overall negative effect of fertilization on AMF alpha diversity,

which included sites with a slightly higher P availability. These
results deviate from the short-term responses reported during an
earlier assessment at the lower montane forest site (Camenzind
et al., 2014). As re-analyzing our data with traditional statistical
approaches yielded qualitatively similar results, it is unlikely our
observations are caused by a technical bias. Rather, these results

(a)

(b)

(c)

Fig. 5 Constrained ordination plots depicting
the influence of nutrient addition on
arbuscular mycorrhizal fungi (AMF)
communities. Panels (a–c) present one
ordination per site. Pairwise Jaccard distances
were estimated from a normalized
operational taxonomic units (OTU) table.
Ellipses represent one standard deviation
from group centroids. Two axes explained
4.3%, 4.5% and 3.9% variability in AMF
community composition, after spatial
dependencies were conditionally partialled
out.
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could be attributed to temporal variability in the response of
AMF communities to increased nutrient supply. Wide shifts in
the response of AMF intraradical structures to fertilization over
time have been observed in our study sites (Camenzind et al.,
2016). Alternatively, given that classic fertilization experiments
have typically applied N and P at much higher rates (Egerton-
Warburton et al., 2007; Liu et al., 2012; Sheldrake et al., 2018),
the rather moderate rate employed in this study could have
allowed AMF communities to respond to the new nutrient con-
dition without impacting taxonomic richness. Multiple examples
of neutral responses of AMF richness as a function of fertilization
dosage can be found in the literature (Alguacil et al., 2010; V�alyi
et al., 2015). Overall, these results support the notion that the
intensity and duration of fertilization could be modulating the
responses of AMF both in terms of abundance (Zhang et al.,
2018), alpha and beta diversity (Roy et al., 2017).

In line with our second hypothesis, N and P addition did affect
AMF community composition, with the effects of P addition the
most consistent factor across sites. This is congruent with previ-
ous reports at both our study area and other tropical forests
(Alguacil et al., 2010; Camenzind et al., 2014; Sheldrake et al.,
2018). It also suggests that AMF in this region are primarily
involved in P for C transactions and that ambient nutrient status
is important to consider when attempting to predict AMF root
community responses to fertilization, as adding N alone did not
affect AMF community composition as consistently as P. The
addition of P may select for taxa with better ability to hoard P in
order to maximize carbon gains from the host (Whiteside et al.,
2019). Our results also indicate that spatially structured ecologi-
cal processes are influencing how AMF communities in these
forests assemble. As this study was not designed to disentangle
and quantify the relative importance of different ecological pro-
cesses on AMF community composition, we can only speculate
about this point. Previous studies have shown that at small to
intermediate spatial scales, neutral and environmental drivers
interact to determine the structure of AMF communities (Caruso
et al., 2012; Veresoglou et al., 2019). In tropical forests, there is
wide array of available hosts which are likely employing a variety
of strategies to cope with nutrient limitations (Nasto et al., 2014;
Sayer & Banin, 2016; Baez & Homeier, 2018). Yet the degree to
which individual tree species may influence the distribution and
assemblage of AMF communities has yet to be firmly established
in the tropics. For instance, a single AMF phylotype has been
shown to associate with as many as 28 species of trees in one of
our study sites (Haug et al., 2013). What appears more likely, is
that the composition of AMF communities inferred from mixed
root samples is simultaneously reflecting the variability intro-
duced by the host, fine scale edaphic factors, stochastic processes
and priority effects. In order to identify the drivers behind these
patterns, new field assessments that quantify environmental varia-
tion at smaller spatial scales are required.

We observed differential responses to fertilization of clades
within Glomeromycotina in terms of taxonomic diversity, which
lends some support to our third hypothesis. Differential trait
expression (Chagnon et al., 2013) might explain this contrasting
response to some extent. Taxa within Acaulosporaceae are known

to exhibit slow growth, both intra and extra radically (Hart &
Reader, 2002). These traits have traditionally been associated
with high carbon use efficiency. Following this logic, it is plausi-
ble that the negligible effect of fertilization on richness of this lin-
eage is explained by their efficient use of carbon. By contrast,
Glomeraceae consistent reduction in taxonomic diversity after N
and P additions suggests that some members of this clade have
greater carbon demands. As certain members of this clade tend to
exhibit a fast colonization rate and greater investment in intra
radical growth (Hart & Reader, 2005), it could be argued that
they have a less efficient use of carbon and possibly provide less P
for C benefit to the host (Pearson & Jakobsen, 1993). If this is
so, nutrient addition might promote their down regulation by
the host or their competitive exclusion by those taxa that indeed
make a more efficient use of available C (Kiers et al., 2011).
Despite our observations fitting well with a differential trait
expression framework, the highlighted traits might also vary at the
species level (Maherali & Klironomos, 2012; Koch et al., 2017).
Since trait information only exist for a fraction of AMF isolates, at
this stage we simply miss empirical information to clearly link
AMF traits to nutrient requirements or function. This prevents us
to unequivocally establish whether differential adaptations to
nutrient supply are the basis for the patterns reported here.

In conclusion, AM fungal communities appear to have
adjusted to moderate nutrient additions at all experimental sites
by shifting their composition relative to control sites, while
species richness remained stable. These changes are more subtle
than predicted by studies using higher doses of experimental fer-
tilization, yet its robustness and consistency clearly suggest that
such responses to ongoing atmospheric deposition can also be
expected across the tropical Andes. Regarding functional implica-
tions, selection of AMF clades that invest less in extra-radical
mycelium might reduce C storage below ground and retention of
surplus products of N mineralization (Baldos et al., 2015;
Velescu et al., 2016). Changes in AMF community structure
elicited by fertilization could also set feedback loops in motion
(Bever et al., 2012; Neuenkamp et al., 2018). This could favor
plants adapted to high nutrient availability and promote their
dominance (Baez & Homeier, 2018). In the long-term, an
increasing dominance of fewer plant hosts, the so called ‘homoge-
nization’ of the mycorrhizal environment (Caruso et al., 2012),
could support less diverse AMF communities (Alguacil et al.,
2012; Liu et al., 2012; Johnson et al., 2015). In order to fully
capture the functional consequences for these ecosystems we need
to gain a better understanding of how AMF taxa functional roles
differ in these diverse ecosystems, and on how fine scale structural
heterogeneity shapes AMF communities in tropical forests.
Future research needs to tackle how AMF community parameters
vary at finer temporal, spatial and phylogenetic resolutions. Most
importantly, complementary studies about AMF nutrient
demands, host effects and feedbacks deserve further attention.
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