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Herbarium collections represent a rich treasure of plant specimens 
from around the world, providing the raw material for evolution-
ary, taxonomic, and ecological research. The increasing digitization 
of these natural history collections and their free availability allow 
scientists to tap into this treasure for systematic, historical, and 
phenological studies. The Global Biodiversity Information Facility 
(https://www.gbif.org) alone references herbaria containing over 30 
million digitized plant specimens. Until recently, this source of data 
remained largely untouched due to the amount of manual labor re-
quired for the analysis of herbarium photographs.

Modern image-processing methods, however, allow scientists to 
automate the analysis of digitized herbarium specimens (Corney  
et al., 2012a, b). In the past few years, progress in machine learning, 
especially the development of convolutional neural networks (CNNs), 
has made it possible to automatically identify the genus or species 

of herbarium specimens (Unger et al., 2016; Carranza-Rojas et al., 
2017), or even automatically extract qualitative information like leaf 
arrangement, form, and structure from digital images of preserved 
plants (Younis et al., 2018). Recently, Lorieul et al. (2019) showed 
that machine learning–based image classification can be used to 
detect the phenological state of herbarium specimens. An area of 
machine learning that has only very recently gained traction within 
the plant science community is the explicit object detection of plant 
structures such as leaves, flowers, or fruits in preserved specimens 
(Goëau et al., 2020; White et al., 2020).

Here, we introduce GinJinn, an object-detection pipeline based 
on the TensorFlow (Abadi et al., 2016) object-detection applica-
tion programming interface (API) designed to make supervised 
deep-learning object detection accessible for plant scientists. Its 
name relates to the “magical” [Jinn] extraction of herb(arium 
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PREMISE: The generation of morphological data in evolutionary, taxonomic, and ecological 
studies of plants using herbarium material has traditionally been a labor-intensive task. 
Recent progress in machine learning using deep artificial neural networks (deep learning) 
for image classification and object detection has facilitated the establishment of a pipeline 
for the automatic recognition and extraction of relevant structures in images of herbarium 
specimens.

METHODS AND RESULTS: We implemented an extendable pipeline based on state-of-the-art 
deep-learning object-detection methods to collect leaf images from herbarium specimens of 
two species of the genus Leucanthemum. Using 183 specimens as the training data set, our 
pipeline extracted one or more intact leaves in 95% of the 61 test images.

CONCLUSIONS: We establish GinJinn as a deep-learning object-detection tool for the 
automatic recognition and extraction of individual leaves or other structures from herbarium 
specimens. Our pipeline offers greater flexibility and a lower entrance barrier than previous 
image-processing approaches based on hand-crafted features.
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specimen)s [Gin] to detect morphological features/structures. 
GinJinn streamlines the process of moving from annotated images 
to a trained object-detection model that can be exported and used 
for the automatic extraction of relevant structures of interest from 
newly acquired images of a particular study group. Thus, GinJinn 
allows scientists with little or no prior knowledge of machine learn-
ing to apply modern visual-recognition tools and to incorporate 
object detection into their workflow by automatizing data-mining 
processes that were previously largely manually performed.

We provide an automatic setup of projects for 47 different 
bounding-box-based object-detection architectures together with 
the automatic download of pretrained models for 17 of them. While 
simplifying the process of model training and deployment, GinJinn 
still exposes the raw TensorFlow object-detection API configuration 
files, which gives advanced users full access to all the architectural, 
preprocessing, and augmentation options provided by TensorFlow.

To show the efficacy of our pipeline, we used GinJinn to train 
and evaluate a model for the extraction of intact leaves from digi-
tized herbarium specimens. From a technical point of view, the au-
tomatic extraction of leaves is an interesting problem, as software is 
already available for the automatic morphometry of isolated leaves 
(Corney et al., 2012a; Bonhomme et al., 2014; Chuanromanee et al., 
2019) but the process of isolating the leaves themselves is not yet 
fully automatized (Corney et al., 2012b), especially not using mod-
ern machine learning techniques. From a biological point of view, 
leaf morphometry is an important tool for species delimitation and 
recognition, as well as for the reconstruction of historical climate 
conditions (Royer et al., 2005, 2008).

Here, we use two closely related Leucanthemum Mill. 
(Compositae, Anthemideae) species with different ploidy levels, 
namely the diploid L. vulgare Lam. and the tetraploid L. ircutianum 
DC., to demonstrate the application of leaf detection and extraction 
in a herbaceous plant group.

METHODS AND RESULTS

Software

GinJinn was originally developed as an internal tool for rapid it-
eration through deep-learning model architectures to find ade-
quate neural network models for the detection and extraction of 
intact leaves in digital images of herbarium specimens for subse-
quent morphometric analyses. It has since evolved into a general 
object-detection pipeline for the setup, training, evaluation, and de-
ployment of bounding-box-based object-detection models with a 
focus on providing easy access to a high number of different model 
architectures with little manual work for the user, including the au-
tomated download of pretrained models if available. With GinJinn, 
we provide plant scientists a tool for applying modern machine 
learning–based visual recognition to their own data sets without re-
quiring a thorough theoretical background in machine learning and 
proficiency in programming, which is generally necessary to apply 
and deploy deep-learning object detection.

GinJinn is a Python 3 command-line application for the man-
agement, training, and application of object-detection models. In 
addition to the pipeline application, GinJinn contains several helper 
scripts that can be used separately from the main command line 
tool. GinJinn makes use of the free, open-source deep-learning 
framework TensorFlow (Abadi et al., 2016). Specifically, we are 

using the TensorFlow object-detection API to access highly opti-
mized training and evaluation pipelines and modern neural net-
work architectures. The object-detection models supported by 
GinJinn are bounding-box prediction models; segmentation mod-
els are not yet implemented. This means that, based on sufficient 
training data where representative instances of the objects of in-
terest are annotated with encompassing bounding boxes, the CNN 
learns to recreate those bounding boxes on the training data, and is 
also able to transfer the learned image-to-bounding-box transfor-
mation to newly acquired, similar data (Girschick et al., 2013; Liu et 
al., 2015; see O’Shea and Nash [2015] for an introduction to CNNs). 
This allows the automatic recognition of structures of interest af-
ter the training of the neural network. In the context of herbarium 
specimens, those structures might be, for example, fruits, flowers, 
leaves, buds, or herbivore damage patterns. Structures extracted by 
GinJinn may be subsequently subjected to different downstream 
analyses aiming to quantify their shape, color, or texture; count dif-
ferent structure classes (number of buds vs. number of flowers vs. 
number of fruits in phenological studies); or quantify their posi-
tions relative to each other on the surveyed herbarium specimen 
(coordinates of members of a predefined structure class).

The two different meta-architectures of bounding-box prediction 
models that are supported by GinJinn are Regions with CNNs 
(R-CNNs; Girschick et al., 2013) and Single Shot Multibox Detectors 
(SSDs; Liu et al., 2015). R-CNNs basically employ a two-step proce-
dure of first predicting regions of interest, so-called region propos-
als, and subsequently classifying the regions of interest (Girschick  
et al., 2013; Girschick, 2015; Ren et al., 2015). In contrast, SSDs  
combine both steps in a single neural network architecture (Liu  
et al., 2015). While SSDs are more modern and allow faster pre-
diction of bounding boxes, a recent benchmarking study by Zhao  
et al. (2018) showed that R-CNNs achieve similar or better  
accuracies. The even more recently developed class of bounding-box 
prediction models, You Only Look Once (YOLO) (Redmon et al., 
2015), is intentionally not supported by GinJinn, because these 
models focus on prediction speed by sacrificing accuracy (Zhao  
et al., 2018), which is not necessary for the extraction of structures 
from static images of preserved plants.

Although GinJinn makes heavy use of the TensorFlow ob-
ject-detection API, it is not merely a wrapper to ease the use of the 
API. GinJinn provides additional tools for data preprocessing, set-
ting up a standardized project structure, downloading pretrained 
models (if available), simple model exporting, and using the trained 
network for the extraction of bounding boxes from newly acquired 
data, which is a functionality not supported out-of-the-box by the 
TensorFlow object-detection API. While providing this additional 
functionality, we ensured that the intermediary and output files 
were kept compatible with TensorFlow to allow advanced users to 
seamlessly access the more advanced features of the TensorFlow 
object-detection API without having to leave the framework pro-
vided by GinJinn. Hence, for users who are new to the field of ma-
chine learning–based object detection, the pipeline can act as a 
gentle introduction and allow them to iteratively try out more ad-
vanced functionalities of modern deep-learning object detection. 
Additionally, the interoperability with TensorFlow allows GinJinn 
users to monitor the training and evaluation of their models live 
with the TensorBoard (Abadi et al., 2016) tool.

The GinJinn pipeline consists of six steps (Fig. 1): (1) The gener-
ation of a project directory including a project configuration tem-
plate file. The project configuration file is the place for the user to set 
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FIGURE 1.  Flow diagram of the six GinJinn pipeline steps. A project folder is generated using ginjinn new (1) and the configuration file is modified 
depending on the user’s needs (1.1). The preparation (2), processing (3), training (4), and export (5) steps are executed sequentially with specific 
GinJinn commands (setup_dataset, setup_model, train, and export, respectively), or alternatively at once with the single ginjinn auto command. When 
not using ginjinn auto, the user can modify intermediary TensorFlow configuration files (3.1) for additional control over the model parameters and 
augmentation options. The trained and exported model can be used for inference of bounding boxes on new data using ginjinn detect. GinJinn com-
mands are indicated by the yellow process boxes. Data inputs and outputs are illustrated with solid and dashed arrows, respectively. After bounding 
box detection, the extracted structures of interest can be supplied to other tools for downstream analyses.
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data paths and select parameters for the subsequent pipeline steps. 
(2) The conversion of the data to an internal format and splitting 
of the data into training and test data sets. (3) Model preparation, 
which includes the setup of the model and the automatic download 
of pretrained models (if desired and available). Additionally, this 
step generates the TensorFlow model configuration file. Advanced 
users can modify this file to influence image preprocessing, as well 
as the training and evaluation of the model. (4) Simultaneous model 
training and evaluation. Model checkpoints are automatically saved. 
During this step, progress can be monitored via TensorBoard or the 
console output. (5) Model export, in which the user can select one 
saved model checkpoint for export. (6) The use of exported models 
for the extraction of structures from newly acquired images via an 
additional GinJinn command.

GinJinn accepts JPEG (.jpg, .jpeg) and PNG (.png) images with 
corresponding annotations in PASCAL Visual Object Classes 
Challenge (VOC; Everingham et al., 2010) XML format or VGG 
Image Annotator (Dutta and Zisserman, 2019) JSON format for the 
training and evaluation of the CNNs. PNG images can be supplied 
only without the alpha channel (transparency). Like the exported 
models, the intermediary outputs are also compatible with standard 
TensorFlow object-detection workflows. The prediction of bound-
ing boxes on newly obtained image data can be performed based 
on both JPEG and PNG formats. The output of the prediction is 
available as class-wise images with bounding boxes for visual in-
spection, cropped bounding boxes, or bounding-box coordinates 
in CSV (.csv) format. The output image formats are PNG or JPEG, 
depending on the format of the respective input images.

We have tested GinJinn on Windows 10 (Microsoft Corporation, 
Redmond, Washington, USA), Debian (https://www.debian.org/), 
and Ubuntu (https://ubuntu.com/). The pipeline requires an in-
stallation of Python 3.6 (van Rossum and Drake, 2009) and a 
corresponding TensorFlow or TensorFlow–graphics processing 
unit (GPU) version. The latter version is recommended due to the 
speedup in training, evaluation, and inference time compared to the 
CPU version, but requires the installation of proprietary NVIDIA 
GPU drivers and toolkits. Apart from the computation time, both 
versions are equivalent. Detailed installation instructions can be 
found in the manual. GinJinn has been released open source under 
the MIT license. The source code, including the installation instruc-
tions, is available at https://github.com/AGObe​rprie​ler/ginjinn.

Example application: Leucanthemum leaves

As an example of the application of GinJinn, we present the recogni-
tion and extraction of intact leaves from digital images of preserved 
herbarium specimens of two species of Leucanthemum (ox-eye 
daisies; Compositae, Anthemideae) with different ploidy levels, 
namely the diploid L. vulgare and the tetraploid L. ircutianum. 
One important morphological character for the differentiation of 
those two species is the shape of the basal and middle cauline leaves 
(Wagenitz, 1977; Vogt, 1991).

The automated recognition of intact leaves on herbarium speci-
mens, especially for plants with a high variability in leaf shape—as 
is the case for Leucanthemum—can be considered a complex task, 
because the occurrence of intact leaves in relation to the occurrence 
of non-intact leaves is rare. This high abundance of damaged leaves 
is caused by factors such as herbivore damage, shearing while han-
dling the vouchers, and most prominently by the dry pressing pro-
cess, where leaves are often unintendedly folded. Additionally, the 

difference between damaged and intact leaves can be very small, 
making it hard to clearly differentiate between the two cases, even 
for human observers. We defined as intact those leaves that were 
completely visible, non-overlapping, non-folded, and not damaged 
by herbivores. For cauline leaves, special care was taken to ensure 
that the leaf base was visible, as this is an important character for 
the distinction between the two Leucanthemum species (Wagenitz, 
1977; Vogt, 1991). Damaged, overlapping, or folded leaves were not 
annotated. Accordingly, the detection of intact leaves in this study 
is posed as a single-class bounding-box detection problem. We have 
refrained from the subsequent downstream analyses of extracted 
structures (here: leaves) because these analyses of taxonomically 
relevant features such as the leaf outline, degree of dissection, color, 
or texture could be easily accomplished with existing software such 
as MASS (Chuanromanee et al., 2019) or Momocs (Bonhomme et 
al., 2014).

For the present example application of GinJinn, we used a data 
set consisting of 286 JPEG images of preserved plant herbarium 
specimens provided by the herbarium of the Botanic Garden and 
Botanical Museum Berlin-Dahlem (B), Berlin, Germany. The im-
ages were annotated using the free open-source tool LabelImg 
version 1.8.1 (https://github.com/tzuta​lin/labelImg), resulting in 
a total of 889 annotated intact leaves in 243 images of herbarium 
specimens. For the 43 remaining images, no intact leaves were pres-
ent. GinJinn was used to split the data into training and test data 
sets for model evaluation by randomly sampling 25% of the images 
into the test data set.

A model architecture consisting of a Faster R-CNN (Ren et al., 
2015) meta-architecture and Inception-ResNet version 2 (Szegedy 
et al., 2016) as the feature extractor was selected. To speed up the 
training process, we applied so-called transfer learning by starting 
the training from a model that was pretrained on the Common 
Objects in Context (COCO) data set (Lin et al., 2014) provided by 
the TensorFlow object-detection API. The model was trained for 
12,000 generations with a batch size of 1.

The evaluation was performed according to the PASCAL VOC 
challenge evaluation metrics (Everingham et al., 2010). The model 
achieved a mean average precision (mAP) of 0.49 at an intersection 
over union (IoU) of 50%. We were able to successfully detect the 
presence of one or more intact leaves in 95% of the 61 test images, 
for which the presence of an intact leaf was manually determined a 
priori. Figure 2A shows the resulting predicted bounding boxes on a 
test image, with Fig. 2B and C depicting true positive and false pos-
itive leaf detection, respectively. The results shown in Fig. 2B could 
subsequently be used for morphometric analyses with tools such as 
MASS (Chuanromanee et al., 2019) or Momocs (Bonhomme et al., 
2014), for example. Our results indicate the applicability of train-
ing a deep-learning model for the detection of objects in preserved 
plant specimens that can potentially assist or even automatize the 
extraction of leaves from herbarium images or assist further anno-
tations, even with a relatively small data set of only 243 images.

The software manual hosted at the GinJinn GitHub repository 
contains a dedicated section for the reproduction of these results. 
This section should also be considered a tutorial for new users.

CONCLUSIONS

With GinJinn, we are introducing a new software tool that allows 
plant scientists to tap into modern deep-learning-based visual 

https://www.debian.org/
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recognition for the exploration and exploitation of the rich treasure 
that digitized herbarium specimens in collections all over the globe 
represent. Here, we have shown that our pipeline is able to automati-
cally extract intact leaves from herbarium specimen images for sub-
sequent downstream analyses. This provides the potential to speed 
up and automatize previously work-intensive manual workflows, and 
can grant scientists access to huge amounts of morphological data for 
morphometric and phenological studies using herbarium specimens.

Previous work in the area of visual recognition of preserved 
plant materials used hand-crafted features for trait and structure 
extraction (Corney et al., 2012b; Henries and Tashakkori, 2012; 
Unger et al., 2016), focused on classification instead of object de-
tection (Jin et al., 2015; Munisami et al., 2015; Carranza-Rojas et 
al., 2017; Younis et al., 2018; Lorieul et al., 2019), or tried to directly 
extract characters from images without using explicit object-detec-
tion techniques (Ubbens and Stavness, 2017; Younis et al., 2018). 
GinJinn, in contrast, is a tool specifically developed for the ex-
traction of structures such as leaves, flowers, buds, or fruits from 
digitized herbarium specimens. As such, GinJinn can be used to 
generate inputs for downstream analyses with existing tools, for 
example, the recently released MASS (Chuanromanee et al., 2019) 
software for morphometric analyses. A tool somewhat similar to 
GinJinn, LeafMachine (Weaver et al., 2020), is also newly available 
for the extraction of leaves from digital images of preserved plants. 
Whereas LeafMachine is designed to extract leaves via semantic 
segmentation, our pipeline can be used to extract instances of any 
kind of structure that it is trained for via bounding-box object de-
tection. Furthermore, all dependencies of GinJinn are free and open 
source, while LeafMachine depends on the proprietary MATLAB 

(MathWorks, Natick, Massachusetts, USA) 
environment. However, if a pixel-wise seg-
mentation is required instead of cropped 
leaves, LeafMachine might be the bet-
ter-suited tool. Another possibility would be 
to use both tools: GinJinn to first reduce the 
complexity of the problem via bounding-box 
cropping and a subsequent pixel-perfect 
extraction of leaf silhouettes based on the 
cropped leaves using LeafMachine.

When compared to the usage of the 
TensorFlow object-detection API directly, 
our pipeline adds the additional features of 
project setup, data preparation, automatic 
download of pretrained models, and an easy-
to-use inference routine with outputs fitted 
to the plant science community. Additionally, 
GinJinn can be used by scientists without 
proficiency in Python programming and 
generally does not require any knowledge 
about the architecture of TensorFlow and the 
TensorFlow object-detection API.

By designing the pipeline with ease of use in 
mind, it was necessary to reduce the feature set 
that is presented to the user when compared to 
TensorFlow. This drawback is partly mitigated 
by exposing the raw TensorFlow configuration 
and the run and export scripts in the project 
folders generated by GinJinn in such a way that 
advanced users can modify those files directly 
without leaving the framework of the pipeline.

As a machine learning–based tool, the performance of ob-
ject-detection models trained using GinJinn is highly dependent 
on the quality of the available training data. This limitation, how-
ever, applies to all machine learning–based modeling. Care must 
be taken to ensure the data used for training the object-detection 
models resemble the expected test data. A problem, for exam-
ple, is strong differences in lighting conditions or the angle from 
which images were taken between the training and test data. This 
limitation is partially mitigated using the built-in augmentation 
options, which introduce small perturbations into the training 
images to make the model more resistant against that type of 
variability.

A temporary technical restriction is that only bounding-box 
prediction models are available, even though models for semantic 
and instance segmentation are also supported by the TensorFlow 
object-detection API. However, in future versions, those segmenta-
tion models will be made available through the GinJinn interface. 
Another goal for the next version of the application is to provide 
the configuration of additional data augmentation options. The 
long-term aim is the integration of the PyTorch (Paszke et al., 2017) 
framework as an alternative to TensorFlow, which would introduce 
a higher amount of available architectures and an easier setup of 
GPU acceleration for GinJinn.

We present GinJinn as a deep-learning object-detection tool 
for the automatic recognition and extraction of structures such 
as leaves or flowers from herbarium specimens. We showed that 
GinJinn can be applied to successfully extract intact leaves from 
images of herbarized Leucanthemum individuals, while offer-
ing greater flexibility and a lower barrier to entry compared 

FIGURE 2.  (A) Output type ‘ibb’ (image with bounding boxes) showing class-wise predicted 
bounding boxes of leaves with a score of 0.5 or higher drawn on the original image of a herbar-
ium specimen. The score can be interpreted as a probability that the content of the bounding box 
belongs to a certain object class (in this case, a leaf ). (B) Output type ‘ebb’ (extracted bounding 
boxes with a padding of 25 pixels) for selected true positive examples of the detected leaves 
shown in A. (C) Output type ‘ebb’ for selected false positive examples of the leaves shown in A.

A B

C
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with previous image-processing approaches based on hand-
crafted features.
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