
D I S S E R T A T I O N

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

How social learning strategies boost or

undermine decision making in groups

eingereicht am Fachbereich Erziehungswissenschaft und
Psychologie der Freien Universität Berlin

von Alan Novaes Tump, M.Sc.

Berlin, 2019



Promotionskommision

Erstgutachter: Prof. Dr. Ralph Hertwig

Zweitgutachter: Prof. Dr. Hauke Heekeren

Prof. Dr. Jens Krause

Prof Dr. Dirk Ostwald

Dr. Julia Rodŕıguez Buritica
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Summary

Social interactions resulting in emergent collective behaviour play a key role in almost all layers of
society, from local, small-scale interactions, such as people crossing the street, to global, large-scale
interactions, such as the spread of fake news on online platforms. In our digital and interconnected
world, it is increasingly important to understand the emergence of beneficial or detrimental collec-
tive dynamics. The characteristics of such dynamics are expected to depend greatly on the nature
of information individuals have personally acquired and how they learn from others. Yet, how
the decision-making processes shape the resulting collective dynamics remains poorly understood.
When do individuals seek more information from social sources? How do individuals reap the
benefits when navigating in social environments, and when do they fail to do so? This dissertation
aims to answer these questions extending established theories and frameworks from individual
decision-making into the social realm. This approach allows for the operationalization of personal
and social information in a theory-driven manner, thereby achieving a deeper understanding of
the individual-level decision process.

The first chapter provides a introductory overview of the interplay between personal informa-
tion use, social learning strategies and collective dynamics, and introduces the key theories and
models I will expand on in this dissertation. In Chapter 2, inspired by Brunswick’s lens model,
I investigate how individuals form beliefs about the meaning of ecological structures (i.e., cues).
Here, participants had to categorize images based on multiple cues, the meaning of which had to
be learned over trials. I showed that participants observing the same cues formed different beliefs
about the cue meanings. This diversity in cue beliefs is, in turn, an important process governing
the quality of social information. The greater this diversity, the more independent personal infor-
mation is, and the stronger the potential for social information use. Participants, however, failed
to realize the full potential of this diversity because they only changed their personal decisions if
a large majority disagreed with them. Simulating different strategies of social information use, I
show that this reliance on strongly agreeing majorities impedes individuals from benefiting from
diversity. This chapter thus identifies diversity in cue beliefs as an important factor allowing indi-
viduals in groups to benefit from the wisdom of each other, while simultaneously highlighting the
importance of the individuals’ social learning strategies to exploit this diversity.

Chapter 3 dives deeper into the social learning strategies individuals use. By carefully con-
trolling the social information displayed to participants, the study in this chapter provides an
in-depth analysis of social learning strategies. Participants were confronted with an estimation
task. They first provided an independent estimate, after which they observed estimates of others.
Using Bayesian modelling techniques, I show that the incorporation of others’ opinions strongly
depends on how consistent those opinions are with an individual’s own opinion and the degree of
agreement among others. Individuals also strongly differ in the social learning strategies they use.
These results elucidate what aspects are conducive for people to change their minds and contribute
to the understanding of how individuals’ social information use shapes opinion and information
dynamics in our interconnected society.
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In Chapter 4, I embed individuals a in temporal dynamic system which allows the investigation
of the use of information in interaction with the emergent collective dynamic. Here, my focus is
on social interactions where multiple people make decisions sequentially and thereby are simulta-
neously emitters and receivers of social information. To shed light on the unfolding dynamic in
such settings, I will introduce the social drift-diffusion model (DDM). The model allows the inves-
tigation of the cognitive processes underlying the integration of personal and social information
dynamically over time, and the subsequent collective dynamic. Analysis of the data shows that
correct information spreads when the participants’ confidence reflects accuracy and when more
confident participants decide faster. Under these conditions, later-deciding participants are likely
to adopt social information and thereby to amplify the correct signal provided by early-deciding
participants. The social DDM successfully captures all the key dynamics observed in the social
system, revealing the cognitive underpinnings of information cascades in social systems.

The general principles of personal and social information use that emerge from Chapter 4
allow to investigate the optimal behaviour when deciding sequentially. In Chapter 5, I develop
an agent-based version of the social DDM and embed it in evolutionary algorithms, allowing the
identification of evolutionarily advantageous strategies. I show that the individuals’ decision time
should depend on the quality of information, with the most accurate individuals deciding first. For
all later.deciding individuals it is evolutionary advantageous to imitate the (often accurate) first
decision. When introducing asymmetric error costs, single individuals should develop response
biases to avoid the more costly error. In groups, however, such response biases can have dramatic
consequences, as these biases are likely to be amplified in the group. As a result, individuals in
large groups should use much weaker response biases to benefit from social information. I conclude
that individuals facing asymmetric error costs in social environments need to carefully trade off
the expressed response bias and sensitivity to social information to avoid the more costly error but
simultaneously benefit from the collective.

Overall, this thesis deepens our understanding of social dynamics by accounting for individual-
level decision-making processes across various choice problems. I show that the behaviour of
individuals in social environments can significantly differ depending on the personal information
individuals possess and the strategies individuals use. Furthermore, I highlight the importance of
accounting for such differences to predict the emergence of beneficial or detrimental dynamics in
social environments.



Zusammenfassung

Soziale Interaktionen spielen auf fast allen Ebenen der Gesellschaft eine zentrale Rolle, von lokalen
Interaktionen, wie dem Überqueren der Straße, bis hin zu globalen Interaktionen, wie der Verbre-
itung von falschen Nachrichten auf Online-Plattformen. In unserer digitalen und eng vernetzten
Welt wird es immer wichtiger, die Entstehung nützlicher oder schädlicher kollektiver Dynamiken zu
verstehen und vorherzusagen. Die Eigenschaften der kollektiven Dynamiken hängen stark von der
Art der Informationen ab, die die einzelnen Personen besitzen, und wie diese Personen voneinander.
Wie die individuellen Entscheidungsprozesse die daraus entstehende kollektive Dynamik prägen,
bleibt jedoch wenig erforscht. Wann suchen Personen gezielt Informationen aus ihrem sozialen Um-
feld? Wann profitiert der Einzelne davon, und wann nicht? Die vorliegende Arbeit will diese Fragen
mit Hilfe etablierter Theorien zur Entscheidungsfindung, die auf den sozialen Kontext erweitert
werden, beantworten. Dieser theoretisch fundierte Ansatz ermöglicht ein tieferes Verständnis von
Entscheidungsprozessen in Gruppen.

Das erste Kapitel bietet einen theoretischen Überblick über das Zusammenspiel von persönlichen
Informationen, Strategien zum sozialen Lernen und kollektiver Dynamik. Außerdem stellt es die
wichtigsten Theorien und Modelle vor, die in dieser Dissertation erweitern werden. Inspiriert durch
Brunswicks Linsenmodell wird in Kapitel 2 untersucht wie Personen die Bedeutung von Hinweisen
bewerten. Ich zeige, dass obwohl Personen dieselben Situationen beobachten, sie unterschiedliche
Bewertungsansichten dieser Hinweise entwickeln. Die Vielfalt der Ansichten ist wiederum eine
wichtige Voraussetzung für qualitativ gute soziale Informationen. Je höher die Ansichtsvielfalt,
desto unabhängiger sind die Personen und desto größer ist das Potenzial für eine erfolgreiche
Nutzung sozialer Informationen. Die Probanden in dem Versuch konnten jedoch nicht das volle
Potenzial dieser Vielfalt ausschöpfen, da sie sich nur auf große Mehrheiten verließen. Proban-
den änderten ihre persönliche Entscheidung nur, wenn eine große Mehrheit anderer Probanden
nicht mit ihrer Meinung übereinstimmte. Durch die Simulation verschiedener Strategien zeige
ich, dass Personen mehr von der Ansichtsvielfalt profitiert hätten, wenn sie sich auch auf kleinere
Mehrheiten verlassen hätten. Dieses Kapitel zeigt daher, dass dass die Bewertungsvielfalt von
Hinweisen erlaubt, dass Personen von der Weisheit der Vielen profitieren können. Es betont aber
gleichzeitig wie wichtig es ist die Lernstrategien der Individuen zu beachten um zu Verstehen wann
diese Vielfalt nützlich ist.

Kapitel 3 geht tiefer auf die sozialen Lernstrategien ein, die Individuen anwenden. Die genaue
Kontrolle der sozialen Informationen, die den Teilnehmern im Versuch gezeigt werden, ermöglicht
in diesem Kapitel eine detaillierte Analyse der sozialen Lernstrategien. Die Teilnehmer der Studie
schätzten zunächst selbst die Anzahl von Objekten in einem Bild, woraufhin sie Schätzungen
anderer beobachteten. Mit Hilfe bayesianischer Statistik zeige ich, dass die Einbeziehung der
Meinungen anderer in hohem Maß davon abhängt, wie sehr diese die eigene Meinung wieder-
spiegeln. Außerdem werden andere Einschätzungen stärker gewertet, wenn diese mehr miteinander
Übereinstimmen. Personen unterscheiden sich sehr in den Strategien, mit denen sie von anderen
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lernen. Die Ergebnisse zeigen auf unter welchen Umständen Personen ihre Meinung ändern, und
tragen zum Verständnis bei, wie die Nutzung sozialer Informationen Meinungsdynamiken in un-
serer Gesellschaft formt.

Als nächsten Schritt bette ich Individuen in ein zeitliches dynamisches System ein, um die
Interaktion zwischen Informationsnutzung und den entstehenden kollektiven Dynamiken zu un-
tersuchen. Hier konzentriere ich mich auf soziale Interaktionen, bei denen mehrere Personen hin-
tereinander entscheiden und damit gleichzeitig Sender und Empfänger von sozialen Informationen
sind. Um die sich entwickelnde Dynamik in solchen Gruppen zu verstehen, stelle ich das social
drift-diffusion Model (social DDM) vor. Das Modell ermöglicht die Untersuchung der zugrunde
liegenden kognitiven Prozesse bei der dynamischen Informationsaufnahme über Zeit sowie der
entstehenden kollektiven Dynamik. Empirisch stelle ich heraus, dass sich korrekte Informationen
verbreiten, wenn die Zuversicht auf die Richtigkeit der eigenen Informationen diese auch wirklich
widerspiegelt. Zusätzlich sollten die zuversichtlichen Personen sich schneller entscheiden. Unter
diesen Bedingungen ist es wahrscheinlich, dass später entscheidende Personen soziale Informatio-
nen übernehmen und damit das richtige Signal früh entscheidender Personen weiter verstärken.
Das social DDM erfasst erfolgreich alle beobachteten Schlüsseldynamiken und gibt Einblicke in
kognitive Prozesse bei Informationskaskaden.

Die beobachteten allgemeinen kognitiven Prozesse ermöglichen es zu untersuchen, wie Personen
sich optimal Verhalten sollten. In Kapitel 5 bette ich das etablierte social DDM in evolutionäre
Algorithmen ein, die es ermöglichen, evolutionär vorteilhafte Strategien zu identifizieren. Ich zeige,
dass der Zeitpunkt der Entscheidung von der Qualität der Informationen abhängen sollte, wobei
die Person mit den meisten Informationen zuerst entscheiden sollte. Für alle späteren Entscheider
ist es von Vorteil, die (oft richtige) erste Entscheidung nachzuahmen. Bei der Einführung asym-
metrischer Fehlerkosten sollten Personen eine Antworttendenz entwickeln, um den kostspieligeren
Fehler zu vermeiden. In Gruppen können solche systematischen Antworttendenzen jedoch drama-
tische Folgen haben, da sich diese in der Gruppe wahrscheinlich verstärken werden. Infolgedessen
sollten Personen in großen Gruppen deutlich schwächere Tendenzen aufweisen, um von sozialen
Informationen zu profitieren. Ich komme zu dem Schluss, dass Personen, die mit asymmetrischen
Fehlerkosten konfrontiert sind, die Antworttendenzen und die Sensibilität für soziale Informatio-
nen sorgfältig abwägen müssen, um die kostspieligeren Fehler zu vermeiden und gleichzeitig vom
Kollektiv zu profitieren.

Insgesamt vertieft diese Arbeit unser Verständnis von sozialen Dynamiken, indem sie Entschei-
dungsprozesse auf individueller Ebene über viele verschiedene Entscheidungsprobleme hinweg un-
tersucht. Ich zeige, dass das Verhalten von Individuen im sozialen Umfeld je nach den persönlichen
Informationen, die sie besitzen, und den Strategien, die sie anwenden, erheblich variieren kann.
Darüber hinaus betone ich, wie wichtig es ist, solche Unterschiede zu berücksichtigen, um das
Entstehen einer positiven oder negativen Dynamik im sozialen Umfeld vorherzusagen.
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Social learning

Throughout their lives, humans and animals, face problems that involve uncertainty. Individuals

thereby often have incomplete information but are aware that others might have complementary

information. Hence, in many situations, observing the behaviour or decisions of others to acquire,

so-called, social information is a beneficial strategy (Galef, 2009; Danchin et al., 2004). What to

eat, which books to buy, whether to cross the street, or whether to get vaccinated, all of these

choices are likely to be influenced by the behaviour of others. The predisposition to learn from

the behaviour of others is a fundamental element of cognition and has been investigated by social

psychologists and animal behaviourists for centuries. Social learning is assumed to be advantageous

because individuals can save time and effort on gathering personal information. Consumers do not

have to evaluate all potential products or animals all potential foods. Instead, they could simply

copy the behaviour of other individuals.1

Despite the intuitive appeal of this premise, copying others indiscriminately is considered a

poor strategy for individuals (Laland, 2004), and can even have negative consequences for the

population or society as a whole (Giraldeau et al., 2002). The inefficiency of indicriminatory

copying lies in the parasitic nature of this strategy. As pointed out by Rogers (1988), a population

relying exclusively on copying would lack individuals providing reliable information, a finding

commonly known as Rogers’ paradox (Rogers, 1988; Boyd and Richerson, 1995). In other words,

if everyone just follows, nobody gets anywhere. Rogers’ paradox inevitably raises the question:

How do individuals reap the benefits of social environments? Laland (2004) answers this question

by arguing that individuals need to acquire (social) information strategically. He introduces a

collection of adaptive heuristics or social learning strategies which individuals should adaptively

rely on, dividing them into two groups.

The first group answers the question of when to use social information, focusing on an in-

dividual’s personal information. Individuals should rely on social information if they face high

uncertainty and if gathering personal information is costly (Boyd and Richerson, 1996, 1985). A

large body of literature has indeed shown that individuals strongly differ in the propensities for

social learning. Individuals who are inexperienced (Baude et al., 2008; Kawaguchi et al., 2007;

Morgan et al., 2012; Smolla et al., 2016) or lack confidence (Morgan et al., 2012; Toelch et al.,

2014) rely more on social information than others. Also, characteristics of the task itself such

1Copying here refers to any kind of social learning.
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as increasing task difficulty (McElreath et al., 2005) or cost of personal information acquisition

(Webster and Laland, 2008; Moussäıd et al., 2016) have been shown to increase the tendency to

learn from others. When individuals use social information crucially influences the quality of

information within a social environment. Strong reliance on personal information might hinder

the spread of high-quality social information, while strong reliance on social information might

hinder the acquisition of personal information (Laland, 2004).

The other group of strategies targets the immediate social environment, focusing on the ques-

tion: From whom should we learn? Obviously, learning from informed others is likely to be a

very effective strategy. Yet, it is often difficult to deduce the quality of information on which

observed decisions are based. Instead, the quality of social information needs to be inferred by

observing indirect cues of success. Previous research has shown that individuals, indeed, rely on

such cues, including past performance, expressed confidence, wealth, health, age, and hierarchical

status (Laland, 2004; Drea and Wallen, 1999; Schlag, 1998; Moussäıd et al., 2013; Deaner et al.,

2005; Yaniv and Kleinberger, 2000; Reebs, 2001).

Horner et al. (2010), for example, found that that chimpanzees (Pan troglodytes) preferably

learn from older and higher ranking individuals—characteristics which covary with success. Such

strategies that involve using cues to identify accurate individuals often performs well. However,

the downside is that these strategies fail as soon as the cues supposedly indicating accuracy are

unreliable (Herzog et al., 2019).

A more robust strategy is to copy the behaviour expressed by the majority (Laland, 2004;

Hastie and Kameda, 2005; Van Vugt, 2006), also known as conformist behaviour (Morgan and

Laland, 2012; Henrich and Boyd, 1998; Bond and Smith, 1996; Morgan et al., 2012). One of the

earliest demonstrations of its power was provided by the mathematician and philosopher Nicolas

de Condorcet. In a nutshell, his Jury Theorem states that the accuracy of a majority of voters

increases with the number of voters (i.e., individuals making choices), provided that these voters

perform better than chance (Condorcet, 1785), an effect also known as the “Wisdom of Crowds”

(Surowiecki, 2004; Laan et al., 2017; Bang and Frith, 2017; Mannes et al., 2014; Herzog et al.,

2019). Past studies have found evidence for conformist behaviour in a wide range of animal taxa

including insects (Bridges and Chittka, 2019), birds (Aplin et al., 2015), fish (Day et al., 2001; Pike

and Laland, 2010; Kendal et al., 2004), rats (Konopasky and Telegdy, 1977; Galef and Whiskin,

2008), monkeys (Dindo et al., 2009), and great apes (Whiten et al., 2005). Conformity has also

been studied extensively in humans (Bond and Smith, 1996; McElreath et al., 2005; Toelch and
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Dolan, 2015; Moussäıd et al., 2016; Morgan et al., 2012; Milgram et al., 1969).

Arguably, the most famous experiments on conformity were conducted by Solomon Asch in

the 1950s (Asch, 1956; Asch and Guetzkow, 1951). Here, participants performed a simple percep-

tual judgment task in the presence of confederates, who were instructed to often make incorrect

judgments. Asch found that participants regularly abandoned their own judgment when facing a

majority of confederates disagreeing with them. The study thereby provided an intriguing exam-

ple of the persuasive power of (even wrong) majorities.2 Yet, it also reveals the detrimental effect

of relying on majorities when these are likely to be wrong. In highly spatially and temporally

fluctuating environments, for example, the behaviour of the population might not be adapted to

the current conditions and, hence, relying on the majority would be a bad choice (Henrich and

Boyd, 1998; Feldman et al., 1996). Another important requirement for the success of this strategy

is diversity (Kaniovski, 2010; Ladha, 1992, 1995; Sekiguchi and Ohtsuki, 2015). If individuals

have access to diverse information (Sorkin et al., 2001), or use diverse inference strategies (Fujisaki

et al., 2018), they are expected to make diverse errors and thereby promote the Wisdom of Crowds

effect. In this thesis I will investigate a further mechanism promoting diversity and show which

learning strategies allow individuals to make use of it.

While past research has identified various factors influencing social learning and proposed

various verbal concepts explaining these findings, it has been challenged to find a single holistic,

theoretically-grounded model. Arguably, the most successful attempt is Latané’s (1981) social

impact theory. He operationalizes social influence by describing it as a social force—analogous to

a physical force such as light, gravity or magnetism—that acts within its force field (i.e., social

surrounding). Latané identified three key factors that determine the magnitude of social influence:

Strength: determined by the characteristics of the social source (e.g., past accuracy or age).

Immediacy: determined by the proximity of the social source in time and space.

Number of sources: the number of other individuals present.

Having a formal model—with principles borrowed from physics—allowed social impact theory to

accurately predict the diminishing additional effect of increasing the number of social sources as

observed in Asch’s (1951) and Milgram’s (1969) experiments. The variables of the model (i.e,

2Note that the participants’ behaviour in Asch’s experiments can also be explained by a motivation to conform to
the group’s norm rather than informational gain (Deutsch and Gerard, 1955).
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strength, immediacy and number) thereby account for strategies targeting the social environment

(i.e, who to copy). However, they are blind to the information individuals possess (i.e, when to

copy) and by that miss a crucial aspect of social learning strategies. This thesis will provide new

theories that formalize both: when and from whom to learn.

Collective dynamics

The importance of social influence goes beyond an individual’s personal experience. Judgements or

behaviours can spread through a population via social influence, thereby affecting the dynamics of

collective behaviour. Social influence, for example, is considered to be a driver of self-organization

(Deneubourg et al., 1990; Kurvers et al., 2015; Couzin and Krause, 2003), swarm intelligence

(Krause et al., 2010; Couzin et al., 2005), and cultural evolution (Danchin et al., 2004; Morgan

et al., 2012; Kempe and Mesoudi, 2014). In addition, it is a key mechanism driving the dynamics in

a range of societal areas, including fashion (Salganik et al., 2006), the spread of violence (Slutkin

et al., 2015), political mobilisation (Battaglini, 2005; Bond et al., 2012), consumer preferences

(Chen, 2008), and financial markets (Shiller, 2002; Welch, 2000).

Social influence can positively affect collective dynamics, but it can also threaten collective

systems. On the one hand, collective dynamics, fueled by social influence, allows bees to choose

the best nest site (List et al., 2009), termites to build their nest (Deneubourg, 1977), pigeons to

find their way home (Biro et al., 2006), and modern societies to rise, via the diffusion of innovation

(Goldstone and Gureckis, 2009). On the other hand, collective dynamics can lead to the spread

of fake news (Xiong and Liu, 2014; Vosoughi et al., 2018), maladaptive herding (Toyokawa et al.,

2019), echo chambers, and filter bubbles (Lewandowsky et al., 2017). In an increasingly digital and

interconnected society with platforms such as Twitter, Facebook, Reddit or Amazon, which are

designed for information to propagate, it is important to understand the mechanisms underlying

such systems.

An influential approach to understanding the spread of information is the concept of infor-

mation cascades (Bikhchandani et al., 1998; Banerjee, 1992; Anderson and Holt, 1997): A single

individual observing a small group expressing a particular behaviour is likely to adopt this be-

haviour, especially in the absence of personal information. The next individual will now face an

even larger group expressing a certain behaviour and is, therefore, even more likely to adopt this

behaviour. In an extreme case, everyone adopts the behaviour originally expressed by only a small

group. Understanding the dynamics of such cascades, and particularly when these cascades go
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wrong, is important for a wide range of social systems.

Whether information cascades promote positive or negative outcomes strongly depends on the

initial (early) behaviour and the social learning strategies individuals use. Previous research on

cascades has suggested that both decision timing and social learning strategies should be based on

the quality of personal information (Chamley and Gale, 1994; Gul and Lundholm, 1995; Zhang,

1997; Ziegelmeyer et al., 2005). Hence, to predict collective behaviour it is important to take

personal information, social learning strategies and their interaction into account. Past researchers

have developed a number of models to describe collective dynamics. Many target the question of

how individuals coordinate spatially and, for example, investigate collective motion in fish (Couzin

et al., 2005), birds (Flack et al., 2015), monkeys (Strandburg-Peshkin et al., 2013) or pedestrians

(Helbing et al., 2002; Hoogendoorn and Daamen, 2007). Another class of—non-spatial—models

target the spread of information conceptually, for example, in sequential decisions (Sumpter and

Pratt, 2008; Deneubourg et al., 1990; Bikhchandani et al., 1998), innovation diffusion (Rogers,

2004), social networks (Abrahamson and Rosenkopf, 1997) or opinion dynamics (Lorenz, 2007;

Granovetter, 1978).

These modes have been very instrumental in increasing our understanding of emergent collective

behaviour by investigating how simple principles of social interactions shape collective dynamics.

Yet, they have received criticism from cognitive psychologists who pointed out that they often have

a top-down or bird’s-eye perspective, where individuals are treated as units or atoms with simple

interaction rules. In short, they focus on patterns, not on people (Raafat et al., 2009). While doing

so, they regularly oversimplify the influence of the cognitive processes on the unfolding dynamics.

Similarly, research on social learning strategies has identified choice rules individuals should rely

on, but usually ignores the cognitive processes implementing them (Heyes, 2016a,b). In parallel,

an increasing number of studies emphasize the ability of (individual) decision-making models to

account for such cognitive processes under social influence (Germar et al., 2014; Toelch and Dolan,

2015; Toelch et al., 2018; Bang and Frith, 2017). Researchers have, thus, called to for an integrative

approach to link the different levels of decision-making in groups(Raafat et al., 2009; Heyes, 2016a).

Continuing on this vein, I will use several well-known models and theories of individual decision-

making to generate new hypotheses and derive insights on important factors influencing collective

dynamics in a bottom-up manner. I will investigate how individuals incorporate social information

and how this depends on the type of personal evidence individuals possess. In the following, I will

introduces these models and outline their contributions to this thesis.
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Models of (individual) decision-making

Multiple cue learning

Research on collectives identified diversity as a key factor for the success of groups (Krause et al.,

2011; Luan et al., 2012; Herzog et al., 2019). But what makes a group diverse? A useful framework

for thinking about how individuals make decisions and why individuals may arrive at different

decisions is Brunswik’s lens model (Brunswik, 1952). It describes situations in which a decision

maker needs to judge the state of the environment, for example, whether a mushroom is toxic

or not. As the state of the environment is usually not directly accessible, the individual has to

infer it via observable ecological structures (i.e., cues), for example, the shape, color, or texture

of the mushroom. These cues are probabilistically related to the true state of the environment

(e.g., many, but not all, red mushrooms are toxic), and their validity has to be learned. Describing

how individuals judge an inaccessible state of the environment through the lens of observable

cues allows researchers to analyse the relationships between the environment, the cues and the

judge. Extending the model to a social situation with multiple judges allows one to infer which

environmental and cognitive characteristics differ between judges and, hence, cause diversity (see

also Broomell and Budescu, 2009). Here, diversity refers to the degree of diverse choices (and

errors) and can be influenced by (1) the diversity of cues judges observe, (2) the diversity of

beliefs about the cue validities and (3) the diversity of inference strategies judges use (Fig. 1.1A).

Although all factors are expected to play a role in the potential to reap the benefits of collectives,

the role of belief diversity has never been explored. In Chapter 2, I investigate whether individuals

develop diverse cue beliefs and whether this diversity helps individuals to profit from the collective.

Bayesian inference and heuristics

Looking at the decision-making process in a social environment through the lens of Brunswik’s

model also allows for a different perspective. Instead of taking the ecological structures (e.g, the

color of a mushroom) as cues, one can take the choices of others as cues that need be weighted and

integrated, raising the question of how individuals do so. A classic assumption is that individuals

integrate multiple cues in a compensatory way, for example, via Bayesian inference or multiple

regression (Fig. 1.1B). The optimal Bayesian integration of cues is achieved by weighting each

(social) cue according to its reliability. Indeed, studies on perception provide evidence that indi-

viduals’ decision-making process can adequately be described by Bayesian inference (Ernst and
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Figure 1.1. Illustrations of the three canonical individual decision-making models that will be extended
to the social domain. (A) Brunswik’s Lens model (Brunswik, 1952), generalized to social environments
where multiple decision makers have to judge the state of the environment. They can arrive at different
conclusions (1) by observing different cues, (2) by forming different beliefs about their validity, and (3)
by using diverse inference strategies. (B) Bayesian learning as an example of “optimal” cue integration.
Individuals form their belief about the state of the world (e.g., a quantity) by updating their initial belief
(prior) with further—possibly social—information (likelihood) to generate a new belief (posterior). (C)
Illustration of the social DDM, which will be introduced in this thesis. Initially, individuals accumulate
evidence independently. Individuals who begin close to either of the thresholds (red lines) are likely to
choose early (by hitting the thresholds), and to provide social information to undecided individuals. This
social information can influence the evidence accumulation process and sway individuals towards choice the
threshold favoured by the majority.

Banks, 2002; van Dam et al., 2014). In perceptual tasks individuals usually have good information

about the reliability of visual, auditory or haptic cues. Under higher levels of uncertainty, however,

the feasibility of such “optimal” strategies is questioned in theories of bounded rationality. Instead,

“fast and frugal” heuristics are much better suited for coping with high uncertainty (Gigerenzer

and Goldstein, 1996; Gigerenzer and Gaissmaier, 2011). Accordingly, the decision maker is thought

to be equipped with a cognitive toolbox containing a variety of heuristics or strategies to handle

uncertainty. As the reliability of social cues is often highly uncertain, it is expected that individuals

rely on simple heuristics when integrating social information. In Chapter 3, I will use a cognitive

toolbox approach to investigate the repertoire of strategies individuals use to harness the wisdom

of others (Rieskamp et al., 2003).

Evidence accumulation models

Another crucial element for understanding collective dynamics is time. Whether following trends

(Lorenz-Spreen et al., 2019; Chen, 2008) or others in emergency evacuations (Moussäıd et al.,

2016), individuals tend to imitate the choices of others, which potentially results in information
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cascades (Bikhchandani et al., 1998). In such situations, individuals can often strategically time

their decision. They can either decide early, thereby providing information to others, or wait until

others have made their decision and use that as additional information. Individual characteristics

such as knowledge (Kurvers et al., 2015; Zhang, 1997), personality (Kurvers et al., 2009) and mo-

tivation (Bousquet and Manser, 2011) can influence the timing of choice and thereby the collective

dynamic. However, current models of information cascades assume random decision orders and,

hence, are ill-equipped to account for decision timing (e.g., Anderson and Holt, 1997; Banerjee,

1992; Bikhchandani et al., 1998; Deneubourg et al., 1990; Mann, 2018; Sumpter and Pratt, 2008).

A class of models that can address this shortcoming are the so-called drift diffusion models (DDM;

Ratcliff, 1978; Ratcliff and McKoon, 2008). These models describe the decision process as a con-

tinuous updating of information over time until a decision threshold is reached and a choice is

made. Consider, for example, an animal under predation risk deciding whether to escape. The

animal is continuously exposed to cues potentially indicating a predator’s presence (e.g., smell,

sound or visual cues) and continuously updates its personal information. When enough evidence

has been collected indicating the presence of a predator, the animal is expected to make the choice

to escape. In Chapter 4, I will introduce a social extension of the DDM to account for choices of

multiple individuals deciding sequentially (the social DDM, see Fig. 1.1C). In addition to personal

information, individuals now gather social information via the choices of others who have already

made a decision. Because individuals are both emitters and receivers of social information, the

system is highly dynamic and accounts for the amplification of cascading social information over

time. In Chapter 5 I will embed an agent-based version of the social DDM into a evolutionary

algorithm to identify how individuals should optimally integrate social information and time their

decision in such contexts.

Outline of the thesis

The aim of this dissertation is to deepen the knowledge of social dynamics using the above described

well-known concepts of individual decision-making to cover all crucial layers of social interactions:

from personal information to social learning strategies to the unfolding collective dynamics. Chap-

ter 2 reports a study focusing on how individuals acquire and learn about the validity of cues, and

how this process, in turn, affects the benefits of social information use. In the study, participants

have to categorize image based on a multiple cues. The meaning of this cues has to be learned via

feedback. Individuals first make a personal decision, after which they receive the decisions of all
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group members and have the opportunity to revise their judgement. Simultaneously, we track the

development of their beliefs in the cues. Despite observing the same images, individuals develop

diverse beliefs about the validity of informative and uninformative cues. The diversity in beliefs

thereby maintains error diversity in the group and, hence, promotes the quality of social infor-

mation. However, participants fail to benefit from belief diversity because they only incorporate

opposing views if this view is supported by a very large majority (i.e., if the group members show

strong agreement). Although the participants increase their sensitivity to social information over

the course of the experiment, they maintain their reluctance to follow small majorities. Using

simulations I show that this reliance on strongly agreeing majorities impedes individuals from

benefiting from diversity. I conclude that diversity is an important factor promoting the quality

of social information but also highlight how social learning strategies can prevent individuals from

exploiting these benefits.

Chapter 3 provides a more detailed picture of how people cope with disagreement. In the study,

individuals are confronted with an estimation task and allowed to adjust their initial judgment after

observing judgements of other peers. Controlling the exact distribution and distance of the social

information allowed me to decouple characteristics of personal and social information. I investigate

individuals’ behavior with a cognitive model encompassing a toolbox of strategies, including simple

heuristics and more sophisticated Bayesian updating. I conclude that the incorporation of social

information strongly depends on the similarity to one’s own judgment and degree of agreement

among others. Additionally, individuals strongly differ in the heuristics they use incorporate social

information. The results help elucidate what factors are conducive to people changing their minds.

This contributes to the understanding of how individuals’ social information use shapes the spread

of information and opinions in our interconnected society.

Providing social information as a collection of independent judgments is a rather simplistic

process of social information exchange. Decisions are usually not made simultaneously but take

place over time allowing information to spread via information cascades. These more realistic

situations confront individuals with new challenges. Should one decide quickly or wait for further

information, and how should social information which is changing over time be weighted? In

Chapter 4, I introduce the social DDM to investigate the process of how individuals in groups

integrate personal and social information dynamically over time. I test the model in a sequential

choice paradigm in which participants need to decide between two options and are free to time

their decision. I find that correct information spreads when individuals’ confidence accurately



General Introduction 13

reflects their personal information and when more confident individuals decide faster. Under these

conditions, late-deciding (unconfident) individuals are more likely to adopt the social information,

amplifying the correct signal provided by early-deciding individuals. The social DDM successfully

captures all the key dynamics of the social system, thereby revealing the cognitive mechanisms

underpinning information cascades.

Many choice environments are characterised by asymmetric errors (e.g., missing the presence of

a predator or a malignant tumour is worse than a false alarm). Under conditions in which errors are

asymmetrical, individuals should develop response biases to avoid the more costly error. However,

the consequences of such asymmetric error costs on group dynamics are poorly understood. In

Chapter 5, I embed the social DDM into an evolutionary algorithm to derive the optimal behaviour

in sequential decision tasks under asymmetric error costs. The evolutionary simulations show that

single individuals should, indeed, develop response biases to avoid the worse outcome. However,

the presence of such response biases in groups can be extremely detrimental, because in large

groups biases can quickly amplify, triggering false information cascades. As a result, individuals

in large groups should use much weaker response biases to benefit from social information. I show

that individuals facing asymmetric error costs in social environments need to carefully trade off the

expressed bias and sensitivity to social information to avoid large error costs, while simultaneously

benefit from the collective.

Lastly, Chapter 6 provides a synthesis of the findings embedding the main results in the broader

context of social learning and collective dynamics, and proposes directions of future research.
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Abstract

Our increasingly interconnected world provides virtually unlimited opportunities to observe the

behavior of others. This affords abundant useful information but also requires navigating complex

social environments with people holding disparate or conflicting views. It is, however, still largely

unresolved which strategies people use to integrate information from multiple social sources that

(dis)agree with oneself and each other and how this affects collective dynamics. We address this

in three steps. First, systematically varying the variance and skewness of the social information

in a highly controlled experiment on social influence, we show people’s use of social information

strongly depends on how it is distributed. We found that, as expected, higher variance among

social sources reduces their social influence. More importantly, only observing one social source

confirming an individual’s estimate, resulted in a strong decrease of influence of other—more dis-

tant—social sources. Second, we develop a framework for modelling the cognitive processes under-

lying the integration of disparate social information, combining Bayesian inference with heuristic

approaches. Our models accurately account for people’s adjustment strategies and reveal that

people particularly heed social information that confirms personal judgments. Moreover, we find

strong inter-individual differences in strategy use. Third, using simulations across a range of

opinion distributions in virtual groups, we provide novel insights into how identified adjustment

strategies can promote the emergence of filter bubbles and exacerbate group polarization. Overall,

our results help elucidate what aspects of the social environment are, and are not, conducive to

changing people’s minds.
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Introduction

The way in which individuals integrate personal and social information shapes a wide range of

collective phenomena such as the spread of knowledge across social networks (Bakshy et al., 2012),

the development of financial markets (Devenow and Welch, 1996), political mobilization (Bloom-

field and Hales, 2009) and voting outcomes (Stewart et al., 2019). By interacting with others

and observing their behavior, individuals can often glean useful information helping them to, for

example, rapidly adjust to new environments (Boyd et al., 2011). However, with more and more of

these interactions occurring online, and being controlled by algorithms that prioritize interactions

between like-minded people, people can become cut off from information that might challenge

their beliefs (Sunstein, 2007; Pariser, 2011). It has been argued that such dynamics may lead

to stronger ingroup consensus, and between-group polarization, in controversial matters ranging

from same-sex marriage and vaccine safety to climate change (Lewandowsky et al., 2013; Deryug-

ina and Shurchkov, 2016; Kerr and Wilson, 2018). To counteract these dynamics, several recent

projects (e.g., onesub.io and nuzzera.com) have focused on de-biasing news feeds and providing

users with more balanced social information from disparate sources (for review see Bozdag and

van den Hoven, 2015). Yet, to effectively de-bias individuals we need a detailed understanding

of the strategies individuals use when they are confronted with social information coming from

multiple sources.

Social information use has been extensively studied across the biological and social sciences

(Asch, 1956; Boyd and Richerson, 1985; Surowiecki, 2004; Bond, 2005; Page, 2008; Rendell et al.,

2010; Mesoudi, 2011; Hoppitt and Laland, 2013; Kurvers et al., 2014; van den Berg et al., 2015;

Aplin et al., 2015; Moussäıd et al., 2017; Danchin et al., 2018; Kendal et al., 2018; Analytis et al.,

2018; Tump et al., 2018; Derex et al., 2019; Mercier and Morin, 2019; Efferson et al., 2019). In

humans, social information use often involves changing one’s mind after observing the behavior

of other people (Yaniv, 1997, 2004; Soll and Larrick, 2009; Bednarik and Schultze, 2015). This

process is commonly emulated with estimation tasks in which people are allowed to revise their

first estimates after observing the estimate of a peer (e.g., Yaniv and Kleinberger, 2000; Bonaccio

and Dalal, 2006; Moussäıd et al., 2013; Moussäıd et al., 2017; Jayles et al., 2017). Studies using this

approach give a detailed and quantified account of the effects of social cues on behavior, primarily

focusing on how individuals incorporate a single piece of social information (Yaniv, 1997, 2004;

Bonaccio and Dalal, 2006; Soll and Larrick, 2009; Bednarik and Schultze, 2015; Molleman et al.,
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2019). Studies considering multiple peers have mainly evaluated the effect of the central tendency

(the mean social information; Larrick and Soll, 2006; Park et al., 2017; Jayles et al., 2017; but see

Yaniv and Milyavsky, 2007). In most real-world environments, however, people are confronted with

multiple sources of social information simultaneously with varying degrees of extremity. Currently

it is unclear how people integrate such disparate social information. Here we will address this

important issue in three steps.

First, we will experimentally investigate how key characteristics of the distribution of social

information shape social information use. Specifically, we systematically vary the variance (reflect-

ing the agreement among peers) and skewness (reflecting the clustering of peers close or far away

from the focal participant) of the distribution, while holding its mean constant. We show that the

impact of social information strongly depends on how it is distributed. Disagreement among peers

decreased their overall influence. Furthermore, the direction of the skew substantially altered the

impact of social information: participants adjusted their first estimate considerably more when

the majority of peers moderately agreed with them and one peer strongly disagreed, compared

to a situation in which a single peer strongly confirmed them, but the majority of peers strongly

disagreed. This highlights strong effects of confirmation bias.

Second, we will introduce a formal model to explain the strategies underlying these adjust-

ments. When observing information from a single social source, individuals have been shown to

use different strategies: (1) keeping one’s initial beliefs, (2) adopting the behavior of others, or

(3) ‘compromising’ between personal and social information (Yaniv, 1997; Budescu et al., 2003;

Budescu and Yu, 2007; Harries et al., 2004; Bahrami et al., 2010; Shea et al., 2014; Aitchison et al.,

2015; Toelch and Dolan, 2015; Soll and Larrick, 2009; Yaniv, 2004; Moussäıd et al., 2013; Moussäıd

et al., 2017). When compromising, people generally take a (weighted) average of their initial be-

liefs and the social information, weighting their own beliefs more than the social information, and

weighting social information more if it confirms their own beliefs (Yaniv and Kleinberger, 2000;

Yaniv, 2004). Which adjustment strategies people use when facing multiple pieces of disparate so-

cial information is, however, largely unknown. To address this, we develop novel cognitive models

that provide a unifying theoretical framework that extends previous modeling efforts (Toelch and

Dolan, 2015; Bang and Frith, 2017; Park et al., 2017), accommodating both simple heuristics (e.g.,

keeping and adopting) and more complex strategies (e.g., compromising). Our modelling results

reveal that social information receives more weight when it is confirming the participant’s initial

belief and when it is in close agreement with other social information (reflecting peer consensus).
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Moreover, our models accurately predict how the distribution of social information impacts the

relative frequencies of adjustment strategies, providing a unified account for when people are likely

to keep their own beliefs, adopt the behavior of a peer, or compromise towards the mean social

information.

Finally, we use our model to generate predictions for social information use beyond the scenarios

studied in our experiment. These simulations reveal that even in making ‘informational’ decisions

with minimal social context, people’s prioritizing of social information that confirm their personal

beliefs can exacerbate filter bubble effects and can even lead some individuals to adopt more

extreme beliefs, fueling group polarization.

Experimental Design

To examine how people integrate disparate information from multiple social sources, we used

an adapted version of the BEAST (Berlin Estimate AdjuStment Task): a validated perceptual

judgment task known to reliably measure individuals’ social information use (Fig. 3.1; Molleman

et al., 2019). In the task, participants are repeatedly shown images of animal groups and have to

estimate the number of animals (Fig. 3.1A,B). They then observe the estimates of three previous

participants, and make a second estimate (Fig. 3.1C). The relative degree of adjustment (s) is a

measure of an individual’s social information use (Fig 3.1D; Molleman et al., 2019).

We studied participants’ social information use across four conditions that systematically dif-

fered in variance and skewness, while controlling for the mean deviation from a participant’s first

estimate (Fig. 3.1E): (i) low variance, not skewed (LN); (ii) high variance, not skewed (HN); (iii)

high variance, with the distribution leaning away from the participants’ first estimate (HA; one

peer strongly agrees with the participant, and two peers strongly disagree); (iv) high variance,

with the distribution leaning towards the participant’s first estimate (HT; two peers show moder-

ate agreement, and one shows strong disagreement). These conditions encompass a broad range of

distributions an individual may encounter when sampling its social environment. Across all condi-

tions, the three pieces of social information always pointed in the same-and correct-direction (i.e.,

avoiding situations in which the social information bracketed the personal estimate). Importantly,

holding constant the mean deviation from a participant’s first estimate across conditions implies

that a participant weighting all peer estimates equally should make similar adjustments across all

conditions.
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Figure 3.1. Experimental paradigm and the impact of disparate social information. (A)
Participants start with observing a group of animals for six seconds. (B) Next, they enter their first
estimate of the total number of animals using a slider. (C) Then, they observe the estimates of three pre-
recorded peers (red squares), as well as their first estimate (light blue oval), and enter their second estimate
(dark blue oval). (D) Social information use in a round (s) is calculated as the adjustment from the first
estimate (E1) to the second estimate (E2), divided by the distance between the first estimate and the mean
of the social information (X̄). (E) In four conditions, we manipulated the distribution of social information
(squares) relative to a participant’s first estimate (oval). Across conditions, we varied the variance and
skewness of the social information, while fixing the distance between the mean of the social information
(X̄) and the participant’s first estimate (E1; for details see Experimental Design). Peer estimates displayed
either low variance (LN) or high variance - but no skewness (HN) -, or high variance with the distribution
leaning away from (HA), or towards (HT) E1. (F) Mean estimate shifts in each condition. Colored dots
show participants’ mean adjustments across the five rounds of each treatment; S̄ � 1 indicates a mean
estimate shifts to X̄. Boxplots show the interquartile range (IQR), the median (black line), and the 1.5
IQR (whiskers). Red vertical lines show predicted medians of the best-fitting model for each treatment (see
Cognitive Model).

Ninety-five participants completed thirty rounds of the judgment task. Each participant com-

pleted five rounds of each condition, presented in randomized order and interleaved with 10 ‘filler’

rounds. Social information in the ‘filler’ rounds consisted of the estimates of three randomly drawn

previous participants, ensuring that across all rounds, social information was sometimes higher and

sometimes lower than a participant’s first estimate, and sometimes bracketed the participant’s per-

sonal estimate (see Methods for details). As a control, participants completed five rounds in which

they did not observe the stimulus themselves, but only the estimates of four peers. The distribu-

tion of these peer estimates emulated the distributions of the four experimental conditions (i.e.,
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one of each condition), plus the filler round. This enables us to compare how participants integrate

personal and social information with a control in which participants integrate four pieces of social

information only. Participants were recruited and performed the task online (see Methods).

Results

Experimental results. Participants’ use of social information strongly depended on its distri-

bution (Fig. 3.1F). Participants adjusted their estimates most when social information had low

variance and no skewness (LN condition; Fig. 3.1F, yellow), shifting, on average, 41.5% towards

the mean social information. In the high variance and no skew condition (HN condition; Fig.

3.1F, purple), average adjustments were credibly lower (mean adjustment: 29.0%; see Table B1

for statistics). Although adjustments in both conditions with skewed distributions were credibly

lower than in the LN condition, the direction of the skew affected the relative adjustment: par-

ticipants adjusted credibly more when the distribution of social information leaned towards the

participants (HT condition; mean: 36.5%; Fig. 3.1F, red) than when it leaned away from the

participant (HA condition; mean: 27.9%; Fig. 3.1F, green). Interestingly, we observed strong

correlations between participants’ mean adjustments across conditions (all pairwise Pearson cor-

relations r ≤ 0.76, P < 0.001; Fig. B1), indicating strong inter-individual differences in social

information use (see also below).

Figure 3.2 zooms in on the strategies underlying behavioral adjustments across rounds, differ-

entiating between three distinct strategies: (1) keeping the first estimate, (2) adopting the estimate

of one of the three peers, or (3) compromising between the first estimate and the peer estimates.

The relative frequency of these strategies differed between the four conditions (Fig. 3.2A-D; see

Table B2 for statistics). When participants observed a single peer that closely agreed with them

(i.e., the HN and HA conditions; Fig. 3.2B,C), participants were more likely to (i) either keep

their first estimate (ii) or adopt the estimate of this close peer, and (iii) less likely to compromise.

As a consequence, participants adjusted less in these conditions. Figure 3.2E shows the frequency

of strategies per participant across all conditions, illustrating that participants ranged from almost

exclusively compromising, to exclusively keeping (see also Fig. B1), with compromising being the

most frequent strategy.

In all four control conditions, in which participants did not observe the stimulus—but four peer

estimates, emulating the four distributions of the experimental conditions—, responses were close

to the arithmetic mean of the four peer estimates (Fig. B2; Fig. B3). Participants did, however,
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Figure 3.2. Adjustment strategies across conditions and participants. (A-D) Bars indicate the
observed distribution of adjustments in individual rounds, expressed as the fraction of a participant’s first
estimate (i.e., |E2 − E1 |/E1), per condition. The relative positions of the peer estimates (red squares)
slightly varied across rounds (shown are their mean positions; see Methods for details). Bar and inset colors
indicate the three strategies (i.e., keep, adopt, and compromise). Insets show the proportion of strategies
per condition. Red diamonds show the predictions from the best cognitive model (see Cognitive Model),
closely tracking the observed distributions. (E) The proportion of adjustment strategies per participant
across all conditions. Participants (i.e., rows) are sorted according to their frequency of using the respective
strategies.

assign more weight to estimates closer to each other (Fig. B4). This indicates that the observed

deviations from the arithmetic mean in the experimental conditions (Fig. 3.1F; Fig. 3.2A-D) are

not due to an inability to integrate multiple pieces of information. Rather, the stark differences be-

tween the experimental and control conditions suggest that people down-weight social information

that is more distant from their first estimate, an effect known as ‘egocentric discounting’ (Yaniv,

1997; Yaniv and Kleinberger, 2000; Budescu et al., 2003; Harries et al., 2004; Yaniv, 2004; Yaniv

and Milyavsky, 2007; Mannes, 2009; Moussäıd et al., 2013; Schultze et al., 2015; Jayles et al., 2017).

Cognitive Model. To investigate potential cognitive mechanisms underlying individuals’

integration of disparate social information, we developed a set of cognitive models unifying heuristic

(i.e., keeping and adopting) with more complex strategies (i.e., compromising; 3.3A). Based on
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our behavioral findings and previous literature, we identified four plausible assumptions. First, an

individual’s probability to keep its first estimate is higher, the closer the nearest peer (i.e., shorter

distance between first and nearest peer estimate; Yaniv and Milyavsky, 2007; Schultze et al.,

2015). Second, an individual’s probability to adopt the estimate of the nearest peer is higher the

closer the peer. Third, when compromising, peer estimates closer to an individual’s first estimate

are weighted more, capturing a possible ‘confirmation’ effect (Yaniv and Kleinberger, 2000; Yaniv,

2004; Moussäıd et al., 2013; Schultze et al., 2015; Jayles et al., 2017). Fourth, peer estimates

closer to each other are weighted more, capturing a possible ‘proximity’ effect (Fig. B4; Yaniv and

Milyavsky, 2007; Schultze et al., 2015). We formalize - and test - these assumptions below.

We cast these four assumptions into a Bayesian mixture model. First, individuals choose one

of the three strategies with mixture probabilities P(keep), P(adopt), and P(compromise) based

on logistic functions (Rieskamp et al., 2003). Formally, the probability to keep is determined by:

P(keep) � S(αkeep + βkeep × d1), where αkeep and βkeep are the intercept and slope of the standard

logistic function (S), and d1 is the absolute distance between the first estimate and the nearest

peer estimate: d1 � |E1−X1 |. Likewise, the probability to adopt the estimate of the nearest peer is

also described by a logistic function of this distance: P(adopt) � S(αadopt + βadopt × d1). Note that

we did not include the possibility to adopt the estimates of the peers that were not the closest, as

this rarely happened (Fig. 3.2) and would make the model overly complicated.

The probability to compromise is now given by: 1 − P(keep) − P(adopt). Compromising is

modelled as a Bayesian updating process (Fig. 3.3A; Toelch and Dolan, 2015; Park et al., 2017;

Adjodah et al., 2017; Bang and Frith, 2017): individuals weigh their first estimate (E1) and the

peer estimates (X1−3) and generate an updated (i.e., posterior) belief (Fig. 3.3A). We assume that

an individual’s initial (i.e., prior) belief Ep about the number of animals (N) follows a discretized

normal distribution centered around the first estimate E1. The uncertainty of the belief is captured

in the variance of the distribution (σ2p): p(Ep |N) ∼ Norm(E1 , σ2p).

Likewise, we model social information (SIs) as discretized normal distributions around peer es-

timates (Xs), with uncertainty σ2s : p(SIs |N) ∼ Norm(Xs , σ2s ), where the subscript s indexes each

peer estimate. Both σ2p and σ2s are free parameters indicating how much weight individuals assign

to the estimate, with high values (i.e., more uncertainty) indicating less weight. When σ2p < σ2s ,

participants assign more weight to their own first estimate than to those of others.

Individuals further weigh each peer estimate based on two properties: its distance to their first
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Figure 3.3. Cognitive model of the integration of disparate social information. (A) We model
participants’ estimate adjustments by combining heuristic updating strategies of keeping and adopting
with more complex compromising strategies. The probability of keeping the first estimate (green arrow)
was modelled as a function of the distance between a participants first estimate (E1; blue oval) and the
nearest peer (X1). Similarly, the probability of adopting the nearest peer estimate (brown arrow) is a
function of its distance to E1. Compromising entails taking a weighted average between E1 and the peer
estimates (Xi ; red squares): a participant’s second estimate (E2; transparent blue) is obtained by Bayesian
updating using weighted means of E1 and each Xi . Personal and social information are represented as
probability density distributions with means at the observed estimates, and variances inversely related to
their weight. Relative weights of social information depend on their distance to E1 (degree of agreement with
the participant; ‘confirmation’) and mean distance to other social information (i.e., degree of agreement with
others; ‘proximity’). (B) Improvement of model fit for each of the four features based on looic differences
(Methods). Dots show the fit in improvement for pairs of models excluding and including each feature,
and the box plots show the median improvement and IQR. (C-E) The main effect of each feature in the
best-fitting model. (C) Fitted probability of keeping one’s first estimate as a function of its distance to the
nearest peer. (D and E) Variance assigned to peer estimates as a function of their distance to E1 (D) and as
their mean distance to other peers (E). Thin lines represent estimates for individuals and thick lines show
group-level means.

estimate (‘confirmation’), and its summed distance to the other two peer estimates (‘proximity’).

Confirmation-based weighting depends on the absolute distance between a peer estimate and an

individual’s first estimate (ds � |E1 −Xs |), σ2s � αs + βcon f irmation × ds , where αs the intercept and

βcon f irmation the slope of the distance weighting function. Likewise, proximity-based weighting of

a peer estimate depends on its summed absolute distance to the other two peer estimates (e.g.,

τ1 � |X1 − X2 | + |X1 − X3 |), σ2s � αs + βproximit y × τs . Both effects can also simultaneously

shape uncertainty σ2s in an additive fashion. Positive values of βcon f irmation or βproximit y that the
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weight assigned to peer estimates decreases as they become less consistent with an individual’s first

estimate (i.e., confirmation) or with the other two peer estimates (i.e., proximity), respectively.

This discounting would be, in turn, reflected in higher values of σ2s . Bayes’ rule now allows to form

an updated belief about the number of animals by integrating Ep and SIs (see Supplementary

Methods). Note that compromising can also result in instances of keeping or adopting.

We fit a series of models to our experimental data to estimate the parameter values of the

different strategies: keeping, adopting, and Bayesian updating, including the confirmation and

proximity effects. To account for individual differences in strategy use (Fig. 3.2E), we implement

hierarchical Bayesian models (see Methods for implementation details). We evaluate the impor-

tance of the four model features ‘keep’, ‘adopt’, ’confirmation’, and ‘proximity’ by calculating the

leave-one-out cross-validation (looic; Vehtari et al., 2019) of the 16 models comprising all possible

combinations of these features (Table B3).

Comparing the model fits in- and excluding each feature reveals that all features, except ‘adopt’,

improve the model fit (Fig. 3.3B). Hence, the best-fitting model includes keeping and compromis-

ing based on ‘confirmation’ and ‘proximity’ , but not adopting (Table B3). Overall, we find that

participants (i) weight their own information more than the information of others, (ii) weigh social

information more if it confirms their own information, and (iii) weigh social information more if it

shows high inter-peer agreement (Table B4). Importantly, the best-fitting model closely predicts

the mean adjustment across conditions (Fig. 3.1F; red vertical lines) as well as the distributions of

adjustments in rounds across conditions (Fig. 3.2A-D; red diamonds). Moreover, it recovers the

high inter-individual differences in mean adjustment and keeping probability (Fig. B5).

Figure 3.3C-E shows the effects of the three features of the best model. The highest im-

provement in model fit was found for keeping (Fig. 3.3B,C). Participants frequently kept their

first estimate when they observed a peer in close agreement, but this likelihood sharply dropped

with increasing distance to the nearest peer. When participants compromised, they assigned more

weight to peers who more strongly agreed with them (Fig. 3.3D; note that the variance assigned

to a piece of social information is inversely related to its weight). Both effects are indicative of a

confirmation bias (i.e., favouring information that affirms one’s beliefs). Participants also assigned

more weight to peers who showed a high agreement with other peers (a similar effect was found in

the control trials without any personal information, Fig. B4). This ‘proximity’ effect was, however,

much smaller than the effect ‘confirmation’ (Fig. 3.3B). For each of the model features, we observe
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Figure 3.4. Simulated adjustments of agents observing ten pieces of social information in varying compo-
sitions. In the simulations, peer estimates were always Low or High (vertical black lines; the numbers in
the red boxes correspond to the number of peers in each category; see Methods for details). In (A-C) The
agent’s first estimate is also Low. In these situations, agents are very likely to keep their first estimate when
they observe (A) a large majority agreeing with them , (B) half of the peers agreeing with them, and (C)
only a small minority agreeing with them, though in the latter case, agents shifted substantially more. In
(D-E) the agent’s first estimate is between Low and High (but closer to Low), and peers are equally split.
(D) Agents with a strong confirmation bias (sampled from the upper 50% of the distribution; cf. steepest
slopes in Fig. 3.3D) tend to adjust towards local extremes. (E) Agents with a weak confirmation bias (lower
50% of the distribution) tend to adjust towards the global mean estimate. In all panels, bars show distri-
butions of predicted adjustments across 1,000 simulations. Boxplots summarize these distribution showing
the median, IQR and and the 1.5 IQR (whiskers).

substantial individual differences (indicated by the thin lines in Fig 3.3C-E). This is consistent

with the high inter-individual differences in mean adjustment (Fig. B5). Finally, we note that the

absence of an effect of adopting the closest peer estimate (Fig. 3.3B), is because these situations

can be accounted for by adjustment through compromising.

These results indicate that our best-fitting model can account for the main patterns observed

in our experimental conditions. Figure B5 shows that the model can also accurately predict par-

ticipants’ mean adjustment and keep probability in the ‘filler’ rounds (where peer estimates were

randomly selected from the prerecorded pool and frequently bracketed the participant’s first es-

timate). Figure B6 shows that the model can also recover a commonly-observed phenomena in

estimation tasks, namely that mean adjustments are highest when social information is at inter-

mediate distance from first estimates (Moussäıd et al., 2013; Jayles et al., 2017). Taken together,

these results suggest that our model can be generalized to qualitatively different cases.
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Simulations. The identified strategies of social information use allow us to predict how

they may shape belief shifts in settings where people encounter peers with various levels of like-

mindedness. In the following, we simulate the social information use in exemplary cases to explore

what features of social information use and the social environment foster consensus, or, alterna-

tively, lead to polarization. We simulate agents who, as in the experiment, observe other estimates

and adjust their initial estimate. Agents observe ten pieces of social information, across five quali-

tative different settings: (i) a large majority agreeing with the agent, (ii) half of the peers agreeing

with the agent, or (iii) only a small minority agreeing with the agent. Furthermore, we simulate

the effect of a confirmation bias when the individual is slightly leaning towards one of two strongly

disagreeing groups were we compare the adjustment of individuals with (iv) strong or (v) weak

confirmation bias. In each setting, we simulated 1,000 agents whose adjustment strategies (i.e.,

their parameter setting) were sampled from the parent distributions of the best-fitting model (see

Methods for details).

Figure 3.4 shows the predicted adjustments for the five scenarios. (i) When agents predom-

inantly observe social information that agrees with their initial beliefs (i.e., mirroring a ‘filter

bubble’; Pariser, 2011), they predominantly keep their initial estimate or, at most, adjust a tiny

bit (Fig. 3.4A). (ii) Even when only half of the peers agree with them—and the other half strongly

disagrees (a typical de-biasing attempt; Bozdag and van den Hoven, 2015)— agents only shift little,

remaining far away from the global mean estimate (Fig. 3.4B). This suggests that even regular

exposure to opposing information (e.g., from outside one’s filter bubble) does not result in strong

behavioral adjustment. (iii) Even when only a small minority agrees with them, agents still have

a high likelihood to keep their initial estimate, though overall adjustments towards the majority

become more substantial (Fig. 3.4C). These results show the prominent role of the confirmation

bias: confirming social information reinforces participants’ beliefs and prompts them to retain

their beliefs, even if these beliefs reflect minority views.

To analyse the implications of a confirmation bias, we simulated adjustments for agents with

high and low levels of this bias (i.e., individuals with steep and shallow slopes in Fig. 3.3D).

The agents were located between two, equally-split, clusters of peers, but slightly closer to one of

the clusters. Whereas agents with a strong confirmation bias adjusted their opinion towards the

local cluster— and away from the global mean (Fig. 3.4D)—, agents with a weak confirmation

bias adjusted towards the global mean estimate (Fig. 3.4E). These results suggest that a strong
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confirmation bias can drive people to more extreme views, and, over time, increase polarization.

Discussion

This paper makes three novel contributions. First, we show that the impact of multiple sources

of social information strongly depends on its distribution. Higher variance in social information

reduces the participants’ adjustments, while skewness decreases adjustments if a peer confirms

their first estimate. Second, our cognitive models provide a unified and mechanistic account for

how people integrate disparate social information, mapping out the determinants of adjustment

strategies relying on simple heuristics (keeping first estimates and adopting those of others) and

compromising (Bayesian inference). These models allow us to investigate participants behaviour

beyond accounting for mean estimate adjustments, and to capture how the weight of social infor-

mation is independently shaped by its distance from people’s initial beliefs and its proximity to

other pieces of social information. Third and finally, our simulations illustrate how prioritizing

confirmatory social information may exacerbate filter bubble effects and even cause individuals to

adjust towards more extreme beliefs.

In real life, judging the accuracy of social information is often hard due to a lack of direct

information on peer performance (or proxies thereof, like peer confidence, expertise or social status;

Kurvers et al., 2019). In such cases, prioritizing social information that is consistent with other

social information can be beneficial: when peers tend to make valid decisions, agreement reliably

signals accuracy (Ravazzolo and Røisland, 2011; Mercier and Morin, 2019). It seems somewhat

more puzzling why people show an even stronger tendency to prioritize their initial beliefs and

social information confirming those beliefs, in a task where social information consists of the

judgement of others who are incentivised to solve the same problem accurately. Indeed, from

an external point of view, there is no reason to assume that one’s initial judgment would be

more accurate than those of others. People’s overweighting of their initial beliefs might partly

reflect a primacy effect (Asch, 1946); in our task, participants first formed their own beliefs before

they observed social information. Another factor might be lacking access to the other’s reasons

for holding their opinions , as social information merely reflected the end-product of another

person’s decision process, whose identity and competence are unknown (Yaniv and Kleinberger,

2000). These processes may lead participants’ to be (over) confident of their first judgments, and

downweight social information especially when it is very distinct from one’s own beliefs. Assessing

the relative impact of confirmatory and disconfirming social cues on individuals’ confidence in their
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own judgement- as well as the order in which individuals access such information - would be an

interesting topic for future research.

Our cognitive models provide a framework that unifies heuristic strategies (keeping and adopt-

ing) and strategies relying on weighted averaging between personal information and social informa-

tion. Model selection revealed that assuming a separate heuristic for ‘adopting’ is not necessary, as

Bayesian updating can already explain the instances of copying peer estimates in our experiment.

This finding highlights to investigate whether identified qualitative different cases (here adopting),

could also be explained by other established strategies (here compromising). Furthermore, cross-

validation of our models by predicting behaviour in the ‘filler rounds’ underscores their ability to

go beyond mere description, and suggest they can be generalized to settings beyond our exper-

imental conditions (Fig. B5; see also Fig. B6). Moreover, our hierarchical modeling approach

allowed for accounting for individual differences in social information use, a regularly observed but

poorly understood phenomenon (Efferson et al., 2008; Molleman et al., 2014; Mesoudi et al., 2016).

In sum, our models provide a detailed and predictive account of people’s adjustment strategies,

contributing to understanding the hitherto understudied computational and cognitive mechanisms

underlying social information use (Heyes, 2016).

Our simulations predict that disparate social information changes people’s minds only to a lim-

ited degree, even when it signals that they hold minority views (Fig. 3.4). Moreover, under certain

conditions, observing balanced social information can in principle lead individuals to take more

extreme views (Fig. 3.4D,E). These findings suggest that efforts to de-bias online information that

present people with balanced views (Bozdag and van den Hoven, 2015) might not suffice to break

filter bubble effects and dynamics of polarization. Our simulations suggest that people’s minds

are most likely changed in social environments where none of their peers agrees with them. Future

empirical work should test these predictions, as well as the extent to which our results generalise

to other (possibly non-WEIRD; Henrich et al., 2010) populations and, perhaps more importantly,

other - and possibly richer - domains of decision making (e.g. matters of taste, choosing a product

to buy, or moral, emotive or political issues; Analytis et al., 2018). It seems plausible that in

many important real-world contexts, the integration of disparate social information can be further

hampered due to ‘motivated reasoning’ (selectively bringing in reasons countering information that

conflicts with one’s worldview; Bail et al 2018) or when observed peers belong to an out-group

(Votruba and Kwan, 2015; Ostrom et al., 1993; Guilbeault et al., 2018). On the other hand, at

least some people might be susceptible to incorporating disparate views, when these views are
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accompanied by good arguments (Laughlin, 2011; Mercier et al., 2017).

Methods

Behavioral experiment. We recruited 100 participants from Amazon Mechanical Turk (MTurk),

restricted to US citizens. By clicking the link to the experimental pages, participants confirmed

informed consent. Five participants dropped out during the task and did not receive any payment,

resulting in 95 participants (57% male, mean age: 35.8; s.d.=10.7). The online experiment was

programmed in LIONESS Lab (Giamattei et al., 2019). Ethical approval was obtained from the

Institutional Review Board of the Max Planck Institute for Human Development Berlin (ARC

2017/18).

The experimental task is based on a validated perceptual judgment paradigm for quantifying

social information use (Fig. 3.1A-C). In each of 30 rounds (5 per experimental condition, plus

10 ‘filler’ rounds with random social information, see below), participants observed an image

with 50-100 animals for 6 seconds and had to estimate how many animals there were. They

entered their estimates with a slider limited from 1 to 150. After submitting their first estimate

(E1), they observed the estimates of three other participants (X1 ,X2 ,X3) who had completed the

same task before but without receiving social information. After observing the social information,

participants provided a second estimate (E2). Participants were rewarded for accuracy, earning

100 points if their estimate was exactly correct (both for E1 and E2) . For each animal they

were off, five points were subtracted (but earnings in a round could not drop below zero). At the

end of the session, one decision was randomly chosen from each of the experimental ‘blocks’ (see

Supplementary Methods) for bonus payment (100 points = $1.00), which came on top of on top of

a flat fee of $4.50. Total earnings ranged from $4.50 to $7.00 (average $5.50). Participants took,

on average, 35 minutes, resulting in an hourly wage of $9.50. Experimental sessions ended with a

short questionnaire in which we recorded participants’ age and gender, and measured individualism

(Triandis and Gelfand, 1998), social conformity (Mehrabian and Stefl, 1995), and resistance to peer

influence (Fig. B1; Steinberg and Monahan, 2007).

We used four experimental conditions (Fig. 3.1E) systematically varying the variance and

skewness of the distributions across conditions, while keeping the distance between the mean so-

cial information (X) and E1 constant. To achieve experimental control without deception, we first

recorded a large (N=100) pool of estimates made by MTurkers for each image shown in the main

experiment. In a given trial, the three pieces of social information were selected based on the



Strategies for integrating disparate social information 35

participant’s first estimate and the experimental condition. Based on these, the three estimates

that most closely matched the conditions were selected (for implementation details, see Supple-

mentary Methods). This procedure resulted in clearly defined experimental conditions (Fig. B7).

We randomly shuffled the order of experimental conditions across rounds and held this order fixed

for all participants.

Cognitive Model. We analysed the cognitive model with a hierarchical Bayesian MCMC

technique implemented with “RStan” in R (R Core Team, 2019; Stan Development Team, 2018, for

implementation of the sampler and the hierarchical model structure, see Supplementary Method).

We investigated the predictive power of the four model features ‘keep’, ‘adopt’, ’confirmation’ and

‘proximity’ by calculating the looic (Vehtari et al., 2019) of the 16 model variants comprising all

possible combinations of these features (Table B3). We quantified the importance of a feature

by calculating the average reduction of the looic when the feature was included (Fig. 3.2B). We

report the fittings of the model with the lowest looic (see Supplementary Methods).

We generated predictions of the best fitting model (i.e., lowest looic) by calculating the prob-

ability density function for each participant and round. This density function was based on the

mean posterior parameter estimates for each participant (see Table B4 for characteristics of the

parameter parent distributions), the first estimate (E1) and the observed social information (Xs).

To account for stochasticity, the model predictions in Figure 3.1F and Figure 3.2C (red dots) are

based on 10 samples of estimates from each density function. To analyse the prediction of the

best-fitting model for the experimental conditions versus ‘filler’ rounds we once sampled from each

density function of each round and participant and calculated the actual and predicted individual-

level mean adjustment and keep proportions (Fig. B4).

Simulations. In each of the settings, individuals were endowed with adjustment strategies

whose parameter values were sampled from the parent distributions from the best-fitting model

(Table B4), assuming no correlations between the parameters. For each agent we emulated a

first estimate, and simulated their adjustment given the social environment. For Fig. 3.4, the

social environment consisted of ten pieces of social information, either agreeing (i.e., an estimate

of 50) or disagreeing (i.e., an estimate of 65) with the focal agent. For Fig. 3.4D and 3.4E we

sampled the distance weighting parameter from the higher and lower half of the parent distribution,

respectively. The individuals’ first estimate in these settings was 55.
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Abstract

Whether getting vaccinated, buying stocks, or crossing streets, people rarely make decisions alone.

Rather, multiple people decide sequentially, setting the stage for information cascades whereby

early-deciding individuals can influence others’ choices. To understand how information cascades

through social systems, it is essential to capture the dynamics of the decision making process.

We introduce the social drift-diffusion model to capture these dynamics. We tested our model

using a sequential choice task. The model was able to recover the dynamics of the social decision

making process, accurately capturing how individuals integrate personal and social information

dynamically over time and when they timed their decisions. Our results show the importance of

the interrelationships between accuracy, confidence, and response time in shaping the quality of

information cascades. The model reveals the importance of capturing the dynamics of decision

processes to understand how information cascades in social systems, paving the way for applica-

tions in other social systems.
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Introduction

In many situations—be they financial investments, consumer choices, or simply crossing the

street—one is generally not making a decision alone. Rather, there are multiple others present each

making their own decisions. In such situations, decision makers can observe the choices of others

and use that information to inform their own decisions. Early-deciding individuals can thereby

trigger information cascades, in which later-deciding individuals adopt earlier choices, potentially

creating a situation where, in the extreme case, everyone does what everyone else is doing, even

at the expense of abandoning their private information (Banerjee, 1992; Anderson and Holt, 1997;

Bikhchandani et al., 1998; Gallup et al., 2012).

Yet for a myriad of reasons—from limited time and computational resources to biases in the

decision process—people’s choices do not always perfectly reflect the true state of the world. Infor-

mation cascades can thus promote both positive and negative outcomes: in online environments,

for example, both true and fake news can spread quickly (Vosoughi et al., 2018); in offline en-

vironments, the behaviour of initial pedestrians crossing a road can amplify both safe and risky

behaviours in other pedestrians (Faria et al., 2010; Pfeffer and Hunter, 2013). Understanding the

conditions leading to positive and negative information cascades is crucial across many domains,

including financial markets (Welch, 2000; Shiller, 2002), consumer preferences (Chen, 2008), po-

litical opinion formation (Battaglini, 2005), and opinion dynamics in social networks (Xiong and

Liu, 2014).

To understand the conditions underlying positive and negative information cascades, we need

to comprehend the timing of individual decisions as well as how individuals integrate personal and

social information (i.e., other people’s decisions) dynamically over time. We, currently, however,

lack a detailed understanding of the individual decision process in sequential choice paradigms.

Many models of information cascades assume a random decision order and are thus ill-equipped to

predict who will respond earlier and why (e.g., Anderson and Holt, 1997; Banerjee, 1992; Bikhchan-

dani et al., 1998; Deneubourg et al., 1990; Mann, 2018; Sumpter and Pratt, 2008). When models

of information cascades do refer to the timing of decisions, they do so from an optimal Bayesian

perspective based on the quality of each individual’s private information (e.g., Chamley and Gale,

1994; Gul and Lundholm, 1995; Zhang, 1997; Ziegelmeyer et al., 2005). Yet we know that peo-

ple’s actual choice behaviour often deviates systematically from optimal Bayesian models (Hertwig

et al., 2019; Pleskac and Busemeyer, 2010; Tversky and Kahneman, 1974).
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To address these shortcomings, we developed a dynamic theory of social decision making by

focusing on each individual’s decision process. As a basis, we took a well-established modeling

framework of individual decision making that models decisions as a dynamic process in which

information is accumulated as evidence over time until a threshold is reached (e.g., Edwards, 1965;

Laming, 1968; Link and Heath, 1975; Ratcliff, 1978; Stone, 1960; Usher and McClelland, 2001).

This evidence accumulation process has been successful in accounting for a wide range of decisions

in domains including perception (Ratcliff and Smith, 2004), memory (Ratcliff, 1978), categoriza-

tion (Nosofsky and Palmeri, 1997), preference (Busemeyer and Diederich, 2002; Busemeyer and

Townsend, 1993; Konovalov and Krajbich, 2019), inference (Pleskac and Busemeyer, 2010), and

has successfully been applied to analyse the influence of static social information (Germar et al.,

2014; Toelch et al., 2018). We extended this evidence accumulation framework by showing how the

choices of others are integrated with personal information and together accumulated as evidence.

This approach provides a process-level account of the choices and response times of individuals

in dynamic social systems. We tested the model in an empirical study. Findings showed that

participants self-organize based on the quality of their personal information so that later deciders

benefit from observing the choices of early deciders. Fitting the model to the data allowed us to

test several hypotheses about how individuals simultaneously combine personal and social infor-

mation, and how they time their decision in groups. In addition, we reveal mechanisms leading to

the amplification of correct or incorrect cascading information.

The Social Drift-Diffusion Model

Models of the evidence accumulation process during decision making include the drift-diffusion

model (DDM; Ratcliff, 1978; Ratcliff and McKoon, 2008), the linear ballistic accumulator model

(Brown and Heathcote, 2008), and the leaky competing accumulator model (Usher and McClelland,

2001). Most of these models can, in principle, be extended to model a social system. Here, we focus

on the DDM, arguably the most successful framework for accounting for human choice behaviour,

including some of the most basic aspects of the decision process, such as the speed–accuracy trade-

off (Ratcliff and Smith, 2004; Voss et al., 2004), the construction of preferences (Busemeyer and

Townsend, 1993), the formation of confidence judgements (Pleskac and Busemeyer, 2010), the

emergence of response biases (Leite and Ratcliff, 2011; Pleskac et al., 2018), and how attention

guides the evidence accumulation process (Diederich, 1997; Krajbich and Rangel, 2011).

According to the DDM, people faced with a choice between two options, A or B, base their
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Figure 4.1. Illustration of the social DDM and the experimental paradigm. (a) A generic
example of the social DDM with five individuals, each represented by a jagged line. The start point of
each individual indicates the personal evidence accumulated up to that point. At the start, no individual
exceeds the choice threshold and social information is absent, implying no social drift (as indicated by the
horizontal arrow). Individuals who begin close to either of the thresholds (red lines) are likely to choose
early, providing social information for undecided individuals. This social information impacts the rate of
evidence accumulation, with the drift rate shifting towards the choice threshold favoured by the majority
(as indicated by the arrow pointing upwards). (b) The stages of the predator detection task. During the
personal phase, individuals briefly observe a grid of ‘sharks’ and ‘tuna.’ They then make a personal decision
whether to ‘Stay’ or ‘Escape’ and report their confidence in that decision. In the subsequent social phase,
they are asked to make a second decision on whether to ‘Stay’ or ‘Escape,’ but now they can freely time
their decisions and simultaneously observe the choices of others before doing so. Finally, the correct answer
is displayed, and the next trial begins (with 40 trials in total).

choice on an internal level of evidence. Initially, people can have a bias and lean towards either

option. This is modeled as an initial level of evidence. Over time, people extract further informa-

tion about the options and accumulate this information as evidence. This accumulation gives rise

to an evolving (latent) level of evidence, as depicted by the jagged line in Figure 4.1a. The jagged-

ness arises because each sample of evidence is noisy (i.e., the stimuli itself and the cognitive and

neural processes introduce variability into the evidence accumulation). Once a choice threshold
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has been reached, a decision is made. If the accumulated evidence reaches the upper threshold,

option A is selected; if it crosses the lower threshold, option B is selected. The time it takes for the

evidence to reach either threshold is the predicted response time. In the social DDM, we modify

this framework to cover multiple individuals accumulating evidence at the same time (Fig. 4.1a).

In this case, the evidence comes from two sources: personal information, gathered from sampling

the physical environment (e.g., for visual or auditory cues), and social information, gathered by

observing the behaviour of others (Dall et al., 2005; Galef and Laland, 2005).

Formally, we denote the cumulative evidence at time point t as L(t). At the start, individuals

may favour one option over the other, described by their start point L(t � 0) � β. Here, their

start point is based on previously collected personal information and is estimated from confidence

ratings provided during the initial stage of the decision task. However, the start point can also

represent initial biases towards either option (e.g., Voss et al., 2004). At each time step ∆t, the

current state of evidence L(t) is updated by sampling new evidence until a decision is made (i.e.,

until the level of evidence reaches the choice threshold θ):

L(t + ∆t) � L(t) + [δp + δs(t)] × ∆t +
√
∆t × ε, (4.1)

where ε is Gaussian white noise (i.e., the diffusion process) with a mean of 0 and a variance of 1.

The parameters δp and δs(t) correspond to the strength of the personal and social information up-

take, respectively. Personal information uptake describes the integration of information extracted

directly from the physical environment, as well as the evaluation of information from memory.

Social information is defined as the size of the majority of individuals M(t) who already decided

at time point t (see also Bikhchandani et al., 1998):

M(t) � NA(t) − NB(t), (4.2)

where NA(t) and NB(t) are the number of individuals who have already decided for option A or B,

respectively. The impact of majority size on the social drift rate is described by a power function,

analog to Latané (1981):

δs(t) � s ×M(t)q . (4.3)

The parameter s is a scaling factor that influences the strength of the social drift; q governs the

shape of the power function. When q � 1, each additional choice for the majority option has the

same influence on the social drift rate (i.e., a linear effect); when q > 1 (q < 1), each additional

choice for the majority option has an increasingly stronger (weaker) impact on the social drift
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Table 4.1. Description of the parameters of the social DDM

Model feature Parameter Description

Nondecision time τ

Response latency (e.g., motor response
time). The parameter τ describes the
time relative to the individual’s fastest re-
sponse.

Start point β �
1

1+e−a(C−b)

The start point is a function of the con-
fidence in the personal choice C, which
ranges from highly confident but incor-
rect to highly confident and correct (Fig.
4.4b). The parameter a determines how
sensitive the start point is to changes in
confidence; b captures other factors be-
sides confidence in the personal decision
that impact the start point.

Personal drift rate δp
The average rate of evidence accumulation
supporting the personal choice (Fig. 4.4c).

Social drift rate δs � s ×M(t)q

The social drift rate describes the impact
of social information, with s being a scal-
ing parameter that influences the strength
of the social drift rate, and q being a pa-
rameter that shapes the power function
describing the relationship of majority size
M(t) and social drift rate (Fig. 4.4d).

Choice threshold θ

The amount of evidence an individual
has to accumulate to make a decision; θ
(−θ) reflects the correct (incorrect) choice
threshold (Fig. 4.4e).

rate. Note that, in contrast to the individual drift rate, the social drift rate can vary over time

(indicated by the changing direction of the arrows in Fig. 4.1a). By incorporating a social drift

into the classical DDM, the social DDM can account for individuals being emitters and receivers of

social information and thereby capture the dynamic information exchange among group members.

In sum, the social DDM characterizes (i) how individuals incorporate personal information

with the parameters β and δp, (ii) how individuals incorporate social information depending on

the majority size via the parameters s and q, and (iii) individuals’ willingness to wait for social

information with the parameter θ (see Table 4.1 for all parameter descriptions).
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The predator detection task

We tested the social DDM in an empirical study (see Fig. 4.1b; see Methods for full details). In

brief, participants were divided into groups of varying sizes (‘small’, ‘medium’, or ‘large’). Each

group of participants was seated together in a single room, facing a large screen. Participants

were asked to imagine being a fish in a school facing a choice between two alternatives—namely

whether to escape or not—depending on the presence of predators, in this case, sharks. They were

instructed to escape when five or more sharks were present and to stay when four or fewer sharks

were present. At each trial, participants were shown—for 2 seconds—a grid with a varying number

(3, 4, 6, or 7) of sharks hidden among harmless fish. Participants first made a personal choice on

whether to ‘Stay’ or ‘Escape’ and then reported their confidence in that choice on a scale from

50% to 100%. They then entered the social phase, in which they had a maximum of 20 seconds

to make a second decision on whether to ‘Stay’ or ‘Escape’, but without seeing the grid again.

Instead, the display showed a count of the number of choices for each option. Participants were

free to enter their choice at any point in time; they could thus respond early (thereby providing

social information) or wait to observe the decisions of others. However, they could only decide

once. Finally, we provided feedback on the correct choice.

Results

Empirical results: groups show beneficial self-organization according to

information quality

Participants achieved an accuracy of 74% in their personal choice (Fig. 4.2a), and participants

reporting higher confidence in their personal choice were also more accurate (Fig. 4.2b; β = 3.82,

CI = [3.35, 4.28]). Participants were thus—at least partly—aware of the quality of their personal

information. We fitted a Two-Stage Dynamic Signal Detection model (2DSD; Pleskac and Buse-

meyer, 2010) to the choice, RT, and confidence data from the personal phase (see Supplementary

Results and Discussion). The close correspondence between the model and the data suggests

that a drift–diffusion process is a good description of the decision process during this stage of the

experiment.

With an average accuracy of 79%, participants’ choices during the social phase, where they

had the opportunity to wait for social information before choosing again, were more accurate (Fig.
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Figure 4.2. Choice accuracy and the relationship between personal accuracy and confidence.
(a) The accuracy of the personal and social choices. Individuals, on average, achieved a higher decision
accuracy during the social choice as compared to the personal choice. Each line connects a participant’s
average accuracy during the personal and social choice (n=141 participants). (b) Participants reporting
a higher confidence in their personal choice were more likely to be correct in their personal choice. The
points and error bars reflect the mean and the 95% credible intervals of the posterior distribution from the
Bayesian logistic regression model.

4.2a; β � 0.3, CI = [0.20, 0.39]). The reported level of confidence in their personal choice predicted

their likelihood to improve (Fig. 4.3a; β � −4.27, CI = [−4.88,−3.68]): participants reporting the

lowest confidence level improved in more than 15% of trials; whereas the most confident, in less

than 1% of trials. Why do unconfident participants achieve such higher gains from the social

process? There are two mechanisms underlying this. First, participants reporting lower confidence

waited longer before making a decision during the social phase (Fig. 4.3b; β = −4.86, CI =

[−5.22,−4.5]). Second, participants partly adopted the decisions of others (Fig. 4.3c; β = 0.62,

CI = [0.57, 0.67]): the larger the majority for the opposing option, the more likely participants

were to change their decision. Individuals rarely changed their minds if the majority agreed with

their personal decision. As Supplementary Figure C1 shows, participants followed both correct

and incorrect majorities, highlighting the importance of the accuracy of early-deciding participants

for triggering positive/negative information cascades. Figure 4.3d shows the consequences of these

patterns: participants whose personal choices were accurate (and confident) tended to respond

early in the social phase, whereas those whose choices were inaccurate (and unconfident) tended

to wait longer, as illustrated by the downward trend of the blue dots (slope: β = −0.16, CI =



Wise or mad crowds? The cognitive mechanisms underlying information cascades 48

Figure 4.3. Empirical results and predictions of the social DDM. Participants reporting higher
confidence in their personal choice (a) improved less and (b) responded earlier during the social choice. (c)
The larger the majority favouring the opposing option, the more likely participants were to change their
decision. (d) The choices of participants who responded later in the social choice were less accurate in the
personal choice (declining blue dots) but improved more in the social choice (indicated by the increasing
difference between blue and yellow dots at later RTs). For visualization purpose, RTs are binned by rounding
to the closest integer. RTs greater than 13 seconds (less than 1%) were assigned to the 12 seconds bin.
(a–d) The dashed lines show the choices and RTs predicted by the social DDM, accurately capturing all
relationships. For frequency distributions, see Supplementary Figure C2. (e) Participants improved most
when more confident individuals were more accurate (yellow dots) and responded earlier. Numbers indicate
the number of trials. For all panels, the points and error bars depict the mean and the 95% credible intervals
of the posterior distribution of the Bayesian regression model.

[−0.18,−0.14]). The latter participants increased their accuracy during the social phase through

social influence, as illustrated by the higher yellow dots compared to the corresponding blue dots

at higher RTs (interaction: β = 0.11, CI = [0.09, 0.13]).

Participants in groups thus self-organized according to information quality, with confident and

accurate participants deciding early, thereby providing high-quality information for the less confi-

dent and less accurate participants, who decided later. This beneficial self-organization depended

on two crucial aspects: (i) a positive relationship between confidence and accuracy of personal

choice across group members, and (ii) a negative relationship between confidence and RT during
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Figure 4.4. Model comparison and individual- and group-level fittings of the social DDM for
different group sizes. (a) The deviance information criterion (DIC) values of all models relative to the
model with the lowest DIC. The model with the lowest DIC (i.e., preferred model) features a (i) confidence-
dependent start point, (ii) drift towards the initially chosen option, and (iii) social drift. (b) Participants
reporting higher confidence in the correct/incorrect choice started closer to the correct/incorrect decision
threshold at y-value 1/0. (c) Evidence tended to drift towards the choice threshold of the option chosen
during the personal phase. (d) The larger the majority favouring an option, the more strongly participants
drifted towards the choice threshold favoured by the majority. Participants in smaller groups had a stronger
drift given the same majority size. (e) The choice threshold θ, reflecting a participant’s willingness to wait
for social information, did not differ between group sizes. Grey lines/dots represent individual-level fittings;
coloured lines/dots, the estimates on a group size-level.

the social choice phase. As Figure 4.3e illustrates, groups showed the highest improvement when

both conditions were met, and this occurred in the majority of trials. Improvement was credibly

lower for all other conditions (Supplementary Table C1).

Model results: the cognitive mechanisms driving self-organization

To understand the processes leading to the self-organization of groups, we need to understand the

cognitive mechanisms underlying individuals’ dynamic integration of personal and social informa-

tion over time. To this end, we developed the social DDM (Fig. 4.1a; Table 4.1), which allowed us

to test competing hypotheses on how participants integrate personal and social information over
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time. We examined three model features: (A) Individuals base their start point on their personal

decision and reported confidence. (B) When participants start drifting, they drift towards the

correct option, their initially chosen option, or neither of the two. (C) When social information

becomes available, participants drift towards the option favoured by the majority. We tested

several candidate models composed of various combinations of these three features, and used the

deviance information criterion (DIC; Spiegelhalter et al. (2002)) to compare their performance.

Figure 4.4a shows the models’ DIC values relative to that of the best model (see also Supplemen-

tary Table C2). In the following, we present the results of the model with the lowest DIC (see

Supplementary Table C3 for parameter estimates). Finally, to test how the cognitive mechanisms

were affected by group size, we compared the different group sizes (Supplementary Table C4).

Individuals incorporate personal information via start point and drift rate

Participants incorporated their personal information (i.e., personal choice and confidence) during

the social decision process in two distinct ways. First, consistent with current models of choice

and confidence judgements (Moran et al., 2015; Pleskac and Busemeyer, 2010; Yu et al., 2015),

they shifted their start point towards their initially chosen option: Individuals who reported higher

confidence in the [in]correct option started closer to the threshold of the [in]correct option (Fig.

4.4b; small: a = 4.20, CI = [3.11, 5.35]; medium: a = 3.42, CI = [2.81, 4.07]; large: a = 3.90,

CI = [3.46, 4.37]). This implies that individuals with high confidence in their personal choice

were more likely to decide in favour of this option and to do so fast. Second, participants drifted

towards the threshold of their initially chosen option (Fig. 4.4c; small: δp = 0.65, CI = [0.45,

0.86]; medium: δp = 0.62, CI = [0.50, 0.75]; large: δp = 0.53, CI = [0.47, 0.59]). Both processes

were independent of group size (Supplementary Table C4). To sum up, across all group sizes,

highly confident participants started close to the choice threshold of their initially chosen option

and, on top of that, drifted towards that option, whereas participants with low confidence started

out unbiased (i.e., in the middle between the thresholds).

Individuals incorporate social information via drift rate

We found that the drift rates were credibly influenced by the majority (Fig. 4.4d). The larger

the majority favouring an option, the more strongly participants drifted towards that option. The

shape of the relationship between majority size and social drift rate (the q parameter) differed

between group sizes (small vs. medium: q = 0.82, CI = [0.22, 1.44]; medium vs. large: q =
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0.27, CI = [0.14, 0.41]). In small groups, the drift rate increased exponentially with increasing

majority size. In larger groups, each additional individual voting for the majority had less impact

than the preceding one, and this function followed a concave shape. Accordingly, the influence

of a single individual was larger in small groups than in large groups. Comparing the strength

of the personal drift rate (i.e., towards the choice threshold of the initially chosen option) to the

social drift rate (i.e., towards the option favoured by the majority) showed that a majority of

approximately two is required to counteract an individual’s tendency to drift towards the choice

threshold reflecting their initial choice. This highlights participants’ tendency to give personal

information more weight than social information. Corroborating this finding, Figure 4.3c shows

that a majority of approximately four participants in favour of the opposing option is required to

induce a 50% likelihood of changing a participant’s decision. Finally, we found that participants’

willingness to wait for social information, captured by the threshold parameter θ, did not differ

between group sizes (Fig. 4.4e).

Model predictions: the social DDM captures the self-organizing dynamics

Importantly, the model described above was able to recover all the key features of the dynamics of

the social decision making process. The dashed lines in Figure 4.3 show the model predictions of the

social DDM. In line with the empirical data, the social DDM predicts that unconfident participants

wait longer before making a decision (Fig. 4.3b), that individuals are increasingly likely to follow

the majority as the size of that majority increases (Fig. 4.3c), and that participants whose personal

choices were inaccurate wait longer and improve more during the social phase (Fig. 4.3d). As a

result, participants with low confidence in their personal choice improved most (Fig. 4.3a). We

investigated the validity of the model with a parameter recovery analysis (see Supplementary

Information). For all parameters, the generating and recovered parameters were highly correlated,

implying that each parameter describes a distinct mechanism. Further, all recovered parameter

estimates were close to the generating parameters, affirming the validity of the magnitude of the

parameter estimates as captured by the social DDM (Supplementary Fig. C3).

Discussion

We have shown that the behaviour of individuals in a social sequential decision making task can

be described by an evidence accumulation process whereby personal and social information is

integrated until a decision is made, formalized by the social DDM. The model accurately predicts
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decision time and choice by taking personal information, social information, and the willingness to

wait for social information into account. It successfully captured all the interrelationships of the

key behavioural results of the social phase, thereby revealing the cognitive underpinnings of the

group-level self-organization according to information quality. Measuring how individuals process

personal and social information affords a deeper understanding of how individuals in a social

environment cope with the complex problem of evaluating personal information, how they time

their decision, and incorporate social information.

During the social decision making process, individuals incorporated personal information in

two ways: at the start of the process, they adjusted their subjective level of evidence to their

confidence (i.e., they adjusted their start point), and during the process, they reinforced their

‘belief’ in their original choice over time (i.e., they drifted towards the decision threshold of their

personal choice). We also found evidence for such ‘belief reinforcement’ over time in the personal

phase (see 2DSD model analysis in the Supplementary Information). The reinforcement of initial

beliefs can potentially have a large influence in real-world social choices. Because individuals

generally gather personal information before receiving social information, reinforcement of initial

beliefs can lead to situations where even strong counterfactual social information may no longer

prove persuasive (i.e., confirmation bias; Klayman, 1995; Koriat et al., 1980; Nickerson, 1998).

Many studies have found that individuals indeed weight personal information more strongly than

social information, a phenomenon called egocentric discounting (e.g., Jayles et al., 2017; Larrick

and Soll, 2006; Tump et al., 2018; Yaniv and Kleinberger, 2000). In almost all of these studies,

participants made a personal judgement before receiving social information. When the order was

reversed, the influence of social information indeed increased (Koehler and Beauregard, 2006). Our

finding of belief reinforcement provides a compelling explanation for egocentric discounting, simply

by providing personal information first. Future studies could test whether increasing the length

of the delay between personal choice and provision of social information reduces the influence of

social information, as predicted by the social DDM.

When looking at how social information entered the evidence accumulation process, we found

that individuals incorporated social information by drifting towards the decision threshold favoured

by the majority. The larger the majority size, the more strongly individuals drifted towards

that majority choice. For medium- and large-sized groups, the relationship followed a concave

power function, where each additional individual voting for the majority choice had less additional

impact on the drift rate. Such saturating influence is consistent with the findings of earlier studies
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(Asch and Guetzkow, 1951; Bond, 2005; Latané, 1981; Milgram et al., 1969). In groups of three,

the relationship followed an exponential function. Weighting single choices less with increasing

group size is probably an adaptive strategy: In larger groups, waiting for further decisions avoids

confirming fast, but wrong, choices, as others can still correct initial mistakes. In small groups,

fast but wrong choices will also occur, but since there are few others to correct those choices, there

is little point in delaying a response via a reduced social drift rate.

The social DDM can also characterize other features of the dynamics of the social decision

making process. Beyond capturing how social information impacts the accumulation of evidence,

it also captures an individual’s willingness to wait for social information via the threshold param-

eter θ. Thus, the model is able to distinguish, for instance, between individuals who are sensitive

to majorities but unwilling to wait for social information and individuals who may be interested

in observing the decisions of others but put more weight on their own personal information. The

capacity to unify these different facets of social decision making within a single theoretical frame-

work is a long-standing goal of social decision making in the areas of collective animal behaviour

(Deneubourg et al., 1990; Sumpter and Pratt, 2008) and social psychology (Latané, 1981). Future

studies could investigate the interrelationships between the different parameters, and potential

links to established personality measures.

Previous studies have provided evidence for both positive information cascades, such as knowl-

edgeable individuals leading others to resources or safety (Dyer et al., 2008; Kurvers et al., 2015;

Stroeymeyt et al., 2011; Watts et al., 2016), and for negative ones, such as the spread of fake news,

mobbing, or stampedes (Giraldeau et al., 2002; Bikhchandani et al., 1998; Raafat et al., 2009).

Here, we have shown the importance of two key aspects promoting positive information cascades.

First, a positive confidence/accuracy relationship across group members. In many contexts, confi-

dence is a valid cue for accuracy (Freund and Kasten, 2012; Hertwig, 2012; Bahrami et al., 2012).

The strongest association of confidence and accuracy across group members arises when all in-

dividuals are more confident when they are more accurate and when their confidence scales are

well aligned (i.e., a given level of confidence implies the same level of accuracy across individuals;

see also Marshall et al., 2017; Bang and Frith, 2017). The second key aspect promoting positive

information cascades is a negative relationship between confidence and RT, meaning that more

confident individuals respond faster. Several mechanisms in the social DDM can influence this

relationship—for example, how individuals adjust their start point depending on their confidence.

If confident individuals do not start closer to a decision threshold, they are not expected to respond
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earlier. Also, interindividual differences in model parameters such as choice thresholds or personal

and social drift rate can negatively impact the confidence–RT relationship.

The quality of information cascades is shaped by the relationship between accuracy and re-

sponse time, whereby it is crucial for positive information cascades that accurate individuals re-

spond faster than inaccurate individuals. The social DDM framework allows us to predict the

quality of information cascades on the basis of individual or task characteristics. For example, if

individuals differ in their ability to solve a task (e.g., individual differences in drift rates), those

with higher ability are expected to make faster, more accurate decisions than the less competent

ones, triggering positive information cascades. In contrast, when individuals differ systematically

in their speed–accuracy tradeoff (e.g., differences in threshold separation; Chittka et al., 2009; Rat-

cliff et al., 2016), and groups harbour both fast, but inaccurate individuals and slow, but accurate

individuals, we expect relatively many fast errors, triggering negative information cascades.

Because the DDM has been successful in accounting for behavioural phenomena across a wide

range of tasks, our extension to social environments opens up new possibilities for studying a

range of social and collective phenomena. It makes it possible to measure how individuals combine

personal and social information and time their decisions whenever decisions are made sequentially

and the choices are—at least partially—observable by others. We hope future work will apply and

extend the social DDM to areas such as dynamics in consumer preferences (Chen, 2008), emergency

evacuations (Moussäıd et al., 2016), and social media (Vosoughi et al., 2018), or to areas of animal

social and collective behaviour such as predator detection and mate choice (Danchin et al., 2004).

Methods

Experimental procedure

Participants were 141 students from Wageningen University (the Netherlands) and the University

of Bielefeld (Germany). Participants were divided into 16 groups, with group size ranging from

small (3 individuals; 5 groups) to medium (7–10 individuals; 6 groups), to large (15–17 individuals,

5 groups; see also Supplementary Table C5). Prior to participation, each participant signed an

informed consent form. Each group of individuals was seated on chairs facing a large screen.

They were confronted with the following binary decision task: individuals briefly (for 2 seconds)

observed an image of a shoal of 72 stylized fish (tuna and sharks aligned in an 8 x 9 grid; see

Fig. 4.1b). Participants were instructed to choose “Escape” if there were five or more sharks and
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“Stay” if there were four or fewer. The number of sharks present was three, four, six, or seven,

and each number was repeated ten times, resulting in 40 trials. Treatment order was randomized.

After observing a shoal of fish, individuals had five seconds to report their personal decision and

an additional five seconds to report their confidence in their personal decision. Participants were

instructed to use confidence as the subjective probability of being correct on a scale from 50% to

100%. In the subsequent social phase, participants made a second decision on the same image.

During this phase, they received social information in the form of the number of group members

who had already decided on a particular option, displayed on the screen. The social information

was first updated after three seconds and then iteratively every two seconds (i.e., at sec 3, 5, 7,

9,. . . 19). The social phase lasted 20 seconds. A countdown timer on the screen indicated the

remaining choice time. Participants made all decisions using a wireless keypad. Afterwards, we

provided feedback on the correct choice. Participants received 0 points for an incorrect decision

and 100 points for a correct decision. To avoid a scenario in which all participants waited until the

last second for social information, we introduced a small cost of one point per second for correct

decisions during the social phase. The members of each group with the highest payoff got a small

reward in kind. Prior to the 40 study trials, participants completed two test trials to familiarize

themselves with the procedure. These results were excluded from the analyses.

Statistical analysis

We used Bayesian hierarchical generalized linear models with the “brms” package (Bürkner et al.,

2017) to analyse the empirical data in R (R Core Team, 2019). The parameter estimates were

generated by running five Markov Chain Monte Carlo (MCMC) simulations in parallel with 5,000

iterations, of which the first 2,500 were discarded as burn-in to reduce autocorrelations. To analyse

the difference in the accuracy of personal and social choices (Fig. 4.2a), we fitted choice correct

(yes/no) as a binary response variable and type of choice (personal/social) as a population-level

effect (i.e., fixed effect). In this model (and all following models, unless stated otherwise), we

included individual and group identity as group-level effects (i.e., mixed effects). We ran separate

models to investigate how confidence related to (i) personal accuracy (Fig. 4.2b), (ii) likelihood

to improve (Fig. 4.3a), and (iii) RT during social choice (Fig. 4.3b). ‘Personal accuracy’ (cor-

rect/incorrect) and ‘likelihood to improve’ (yes/no) were fitted as binomial response variables and

‘RT during social choice’ as an exponentially modified Gaussian (ex-Gaussian) distributed response

variable. Confidence was included as a population-level effect in all three models. To investigate
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whether the majority size affected the likelihood of an individual changing its decision (Fig. 4.3c),

we fitted the likelihood to change the decision as a binary response variable (yes/no) and majority

size favouring the opposing option as a population-level effect. To analyse the relationship between

RT in the social phase and accuracy of personal and social choices (Fig. 4.3d), we used decision

correct (yes/no) as a binary response variable and type of choice (personal/social) in interaction

with RT as a population-level effect.

To investigate how the interrelationships between confidence, accuracy, and RT affected im-

provement (Fig. 4.3e), we first calculated—for each group and trial—the Spearman’s correlation

coefficients of confidence and accuracy as well as of confidence and RT. We converted these co-

efficients into dichotomous variables, with the correlation coefficient being either 0 and above or

below 0. We excluded trials in which all individuals reported identical choices or confidences,

because it was impossible to calculate correlation coefficients for these. We treated all four pos-

sible combinations of correlations as different levels of a single factor. We included the factor as

a population-level effect and improvement as response variable. In this model, group identity was

the only group-level effect. As statistical summary, we report the mean of the posterior distri-

butions and the 95% credible intervals (CI). See Supplementary Table C1 for the results of the

regression models. To visualize the results (Fig. 4.2 and Fig. 4.3), while accounting for the hierar-

chical structure of the data, we re-ran the regression models, treating the continuous variables as

categorical data. Unless stated otherwise, the points and error bars reflect the mean and the 95%

CI of the posterior distribution. Visual inspection of the Markov chains and the Gelman Rubin

statistic (R̂) indicated that all Markov chains converged.

Social DDM: Model parameter estimation

To understand the dynamics of the social phase, we developed the social DDM (Fig. 4.1a, Table

4.1). The model features decisions with variable drift rates, in order to obtain choice and RT pre-

dictions. We calculated the probability density function of RTs and associated choice probabilities

of the drift-diffusion process by implementing an extended version of a Markov chain approach

(Diederich, 1997; Diederich and Busemeyer, 2003) in R (R Core Team, 2019). A detailed descrip-

tion of how to implement the Markov chain approach can be found in Diederich and Busemeyer

(2003).

The model assumes that the state space of the decision maker’s evidence L is ranging from the

lower decision threshold −θ (reflecting the wrong decision) to the upper threshold θ (reflecting
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the correct decision) with a step size of ∆ and k being the number of steps to reach the decision

threshold from a neutral start point:

L � [−k∆,−(k − 1)∆, ...,−∆, 0,∆, ..., (k − 1)∆, k∆]; (4.4)

where θ � k∆.

Each time step h the evidence states change with probabilities given by a m × m transition

probability matrix P, with m �
2×θ
∆

+1. The elements p1,1 � 1 and pm ,m � 1 are the two absorbing

states and reflect the decision thresholds. The other elements of P with 1 < i < m are:

pi , j �



1

2α
(1 − u

σ2
√

h) if j=i-1

1

2α
(1 +

u
σ2
√

h) if j=i+1

1 − 1

α
if j=i

0 otherwise

(4.5)

with σ2 being the diffusion coefficient and u � δp + δs the total drift rate, whereby δp and δs are

drift rates reflecting the accumulation of personal and social information, respectively (see Table

4.1). The parameter α > 1 improves the approximation of the continuous time process. We set

α � 1.3, σ2 � 1 and h � 0.005. The transition probability matrix in its canonical form:

P =


PI 0

R Q

 =

©­­­­­­­­­­­­­­­­­­­­­­­­­«

1 m 2 3 . . . m − 2 m − 1

1 1 0 0 0 . . . 0 0

m 0 1 0 0 . . . 0 0

2 p12 0 p22 p23 . . . 0 0

3 0 0 p32 p33 . . . 0 0

4 0 0 0 p43 . . . 0 0

...
...

...
...

...
. . .

...
...

m − 3 0 0 0 0 . . . pm−3,m−2 0

m − 2 0 0 0 0 . . . pm−2,m−2 pm−3,m−1

m − 1 0 pm−1,m 0 0 . . . pm−1,m−2 pm−1,m−1

ª®®®®®®®®®®®®®®®®®®®®®®®®®¬

(4.6)

With PI being a 2×2 matrix with the two absorbing states and R a (m−2)×2 matrix containing

the transition probabilities that eventually lead to the absorbing states in a single transition. Q is a
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(m−2)× (m−2) matrix including the remaining transition probabilities. The initial evidence state

of the process is represented by Z an m − 2 vector containing the initial probability distribution.

The initial start point β is a function of confidence and choice and relative to the upper (correct)

threshold:

β �
1

1 + e−a(C−b) ; (4.7)

with a and b being free parameters. C is the reported confidence in the correct choice and is scaled

from zero (i.e., highly confident and wrong) to one (i.e., highly confident and correct). We set the

distribution of the initial evidence states by Zβ∗ � 1, with β∗ � β(m − 3) + 1. Because β∗ is not

always an integer, we avoid rounding errors by giving most probability mass 1 − (β∗ − round(β∗))

to Zround(β∗) and the rest β∗− round(β∗) the closest integer of β∗. For example, if the process starts

unbiased (i.e., β � 0.5) and m � 7 then β∗ � 3 and Z � [0, 0, 1, 0, 0]. However, if β � 0.55, then

β∗ � 3.2 and β∗ − round(β∗) � 0.2 and therefore Z � [0, 0, 0.8, 0.2, 0]. We account for variable

drift rates by updating the transition probabilities of Q at t � (3, 5, 7, 9, . . . 19) seconds, reflecting

the iterative updated social information (see Experimental procedure). With Qn containing the

transition probabilities at time point t � nh, we can calculate the probability of choosing the

correct or wrong option after n time steps:

[Pr(correct|n), P(wrong|n)] � Z ×Q1 ×Q2 ×Q3 . . .Qn × R − τ × tmin , (4.8)

with τ being the non-decision time relative to the fastest response of the individual tmin. By

varying the transition probabilities of Qn with changing δs we are able to account for varying

social information over time.

Integrating the social DDM into a Bayesian estimation technique, namely a Differential-Evolution-

MCMC algorithm, enables us to sample posterior probability densities of the model parameters

(see Table 4.1). The Differential-Evolution-MCMC is an extension of the Metropolis-Hastings al-

gorithm where proposals are generated by taking the Markov states of parallel computed chains

into account (Ter Braak, 2006; Turner et al., 2013). To estimate the effect of group size while

controlling for individual differences, we used a hierarchical framework. Each parameter was fit-

ted on an individual level but was simultaneously informed by a higher order group-level prior,

a normal distribution described by two hyper parameters (i.e., mean and variance), which were

informed by the individual fittings. To estimate the posterior probability densities we ran 24

chains in parallel, each with a chain length of 20,000 including a burn-in period of 10,000 and a

thinning factor of 10 to reduce autocorrelations. The tuning parameter (γ) was set to � 2.38/
√

2d,
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with d being the dimensionality of the posterior, which was d = 2 for the hyper parameters and

d � 7 for the individual parameters (see Ter Braak, 2006; Turner et al., 2013). To further improve

the mixing of the parallel chains, we included deterministic and probabilistic (i.e., relying on the

Metropolis–Hastings probability) migration steps where chain-states are swapped across parallel

chains (Turner et al., 2013). We performed the deterministic migration step with a probability

of 5% where we first determine a random number of n � 2, 3, ..., 24 chains and then sample n

chains without replacement. We then swap the parameter set in a cyclic fashion where the set

of the first sampled chain moves to the second, the second to the third and so on, until the last

set moves to the first set. A deterministic migration step strongly improves the mixing behaviour

of chains but does not resolve the frequent problem of Differential-Evolution-MCMC algorithms

that outlier chains hardly converge. We, therefore, additionally implemented a probabilistic mi-

gration step which was carried out with a probability of 10%. For the probabilistic version we

swapped proposal states instead of accepted states between chains which therefore still relied on

the Metropolis–Hastings probability to be accepted. Thereby, we sampled two parallel chains and

interchanged a single random parameter state.

We used the social DDM to compare competing hypotheses on how individuals integrate per-

sonal and social information. More specifically, we examined three model features: (A) Individuals

base their start point on their personal choice and reported confidence. (B) Individuals drift to-

wards the correct option, their initially chosen option, or neither of the two. (C) Individuals drift

towards the option favoured by the majority. We compared the performance of models composed

of the various combinations of these three features using the deviance information criterion (DIC;

Spiegelhalter et al., 2002). To investigate the effect of group size on the collective dynamics, we

categorized groups as small (3 individuals), medium (7–10), or large (15–17), and fitted the pa-

rameters separately for each group size. As a statistical summary, we report the mean of the

posterior distributions and the 95% CI. We excluded all observations for which personal choice,

social choice, confidence, or RT of social choice were missing (˜8%) and if the RT was below 0.1

second (˜6%).

Social DDM: predictions

To analyse the predictions (i.e., choices and RTs) of the social DDM, we generated decisions by

sampling from the probability density functions produced by the model using the mean of the

individual-level posterior distribution as model estimates. The probability density function was
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computed for each individual and trial by taking into account the individual model estimates, the

personal choice, the reported confidence, and the social information observed by the individual

at a given trial. We then sampled 10 choices and RTs to account for stochasticity. The model

predictions are shown as dashed lines in Figure 4.3.
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Abstract

Across a wide range of contexts, decision makers face the challenge of compromising between two

kinds of errors: false positives and false negatives. If the costs of these errors are asymmetrical,

individuals acting alone are known to develop a response bias to avoid the more costly error.

However, how individuals in groups cope with asymmetrical costs is not well understood. We

used a drift–diffusion model to study the decision-making process of groups facing asymmetrical

error costs. In the model, individuals first gather personal information alone; in a second phase,

they can aggregate additional social information to make a decision. Individuals can either decide

early on, potentially influencing others, or wait for more social information. We combined this

with a genetic algorithm approach to derive the optimal behavior. Our results confirm that,

under asymmetrical costs, small cooperative groups (where individuals aim to maximize group

payoff) evolve a response bias to avoid the costly error. Large cooperative groups, however,

do not evolve a response bias, since the danger of response biases triggering false information

cascades increases with group size. In small and large competitive groups (where individuals

aim to maximize individual payoff), individuals evolve a higher response bias and wait longer for

social information, thereby undermining the overall group performance. Our results have broad

implications for understanding social dynamics in situations where error costs are asymmetrical,

such as crowd panics and predator detection.
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Introduction

Whether detecting predators, making medical diagnoses, or assessing security, decision makers

face a crucial challenge. They have to categorise the world into one of two possible states: signal

(e.g., a predator, disease, or threat) or no signal (Beauchamp and Ruxton, 2007; Green and Swets,

1966; Macmillan and Creelman, 2005; Swets et al., 2000). The true state of the world, however,

is unknown, and must be inferred from noisy cues. This leads to a fundamental trade-off in

decision theory, namely, compromising between increasing true positives, or “hits” (e.g., escaping

a predator, referring a diseased person for treatment) and decreasing false positives, or “false

alarms” (e.g., escaping in the absence of a predator, referring a healthy patient for treatment). A

decision maker who is sensitive to cues that potentially indicate the signal increases hits, but at the

expense of an increase in false alarms. A decision maker who is unresponsive to cues reduces false

alarms, but also hits. In most of these binary decision-making contexts, the costs (or base rates)

an individual faces are not symmetrical. Failing to identify a signal, such as a predator or disease

(“miss”), is generally more costly than a false alarm (Johnson et al., 2013). It is therefore critical

to take asymmetries into account in adaptive decision making (Johnson et al., 2013; Marshall et al.,

2019; Mulder et al., 2012).

A substantial body of literature has investigated how individuals adjust their decision-making

strategies to differences in cost (or base rate) asymmetries, showing that individuals are likely to

develop a response bias that allow them to avoid the more costly error when faced with asym-

metrical costs (Green and Swets, 1966; Maddox, 2002; Mulder et al., 2012; Ratcliff and McKoon,

2008; Swets et al., 2000). However, the way groups of decision makers should and actually do deal

with asymmetrical costs has received far less attention. Given the widespread manifestations of

collective decisions across biological systems—from bacteria to cells to groups of animals—and the

widespread presence of asymmetrical error costs, this is an important knowledge gap, not least be-

cause individual response biases can have substantial bearings on collective responses. Wolf et al.

(2013) studied how to optimally pool information in a collective decision-making scenario in which

all individuals simultaneously indicated their decision. They showed that optimal decisions arise

when individuals use a quorum threshold between the true and false positive rate of their group

members. Building on this, Marshall et al. (2019) investigated how to optimally pool independent

decisions for various error costs and base rates, showing that the use of quorums is extremely

powerful for optimizing decision making across a broad range of environmental conditions (see
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also Ben-Yashar and Nitzan, 1997).

These studies assume that all group members decide simultaneously, and that individuals have

information about the group’s average opinion. Both assumptions are unrealistic for decision-

making processes in most biological systems, where individuals decide sequentially, with more

knowledgeable (or confident) individuals making faster decisions (Kurvers et al., 2015; Stroeymeyt

et al., 2011; Tump et al., 2019; Watts et al., 2016). These early decisions can influence later-

deciding individuals, and, in extreme cases, early-deciding individuals can even trigger information

cascades in which all individuals imitate early decisions (Anderson and Holt, 1997; Banerjee, 1992;

Bikhchandani et al., 1998; Gallup et al., 2012). Understanding the dynamics of these cascades,

in particularly when and why they go wrong (e.g., crowd panics), is relevant for a wide range of

social systems.

To study optimal decision making under asymmetrical costs, we developed a dynamic agent-

based model that can account for a realistic decision-making scenario of sequential decision making.

We modeled the decision process using a social drift–diffusion model (social DDM) and retrieved

the adaptive—and therefore optimal—behavioral parameters using evolutionary algorithms. In

the model, each decision maker first accumulates its own personal information about the state of

the world, then enters a social phase. During the social phase, decision makers aggregate their

personal information with social information (i.e., the choices of others). When a decision maker

has gathered sufficient evidence (i.e., the decision threshold is exceeded), the decision is made.

Because individuals both emit and receive social information, the system is highly dynamic and

the final outcome is influenced by early responders and the initial evidence distributions among

group members. We systematically varied the asymmetry in costs to study how this affects the

evolution of several key decision-making parameters, such as the evolution of a response bias and

the use of social information, across group size. We started with groups of individuals whose

interests were completely aligned and selection operates on the mean group payoff (hereafter:

“cooperative groups”). We then investigated how introducing competition between individuals

shaped optimal behavior across different cost asymmetries and group sizes. In short, we found

that individuals facing high asymmetrical costs in small cooperative groups optimized payoff by

evolving a high bias towards the signal response. Large cooperative groups, however, do not evolve

a bias, even when facing strong asymmetrical costs. Across all group sizes, adding competition

increased the optimal bias while simultaneously reducing performance, showing how competition

can impair collective benefits.
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Figure 5.1. Illustration of the social DDM. Each decision maker, represented by a jagged line, has to
decide whether a signal is present (left panel) or absent (right panel). If the signal is present, the individual
can decide correctly (hit) or wrongly (miss). If the signal is absent, the individual can be correct (correct
rejection, CR) or wrong (false alarm, FA). The start point of each individual depends on the information
it gathered prior to the social process (δp) and on its bias (zp). Here the bias is towards the decision
boundary of the signal, implying that an individual is more likely to make a correct decision when the
signal is present, but more likely to err when the signal is absent, reflecting the trade-off between increasing
hits at the expense of increasing false alarms. At the start of the drift, no individual reached either decision
boundary, implying that social information was absent. As individuals diffuse they hit a decision boundary
and make a decision. Undecided individuals, in turn, start drifting towards the choice of the individuals
that already decided, reflecting the process of social information use.

Methods

The social DDM. In the social DDM a group of individuals faces a signal detection task, choosing

between two states of the world: signal present or signal absent. There are thus four possible

decision outcomes: Individuals can correctly decide that a signal is present, correctly decide that

a signal is absent, incorrectly decide that a signal is present, or incorrectly decide that a signal

is absent. The decision-making process consists of two phases: first, a personal phase in which

individuals independently sample information from the environment, then a social phase in which

individuals decide on an option in the presence of others.

In the personal phase, each individual independently gathers information about the state of

the world. The personal evidence accumulation process is formalized by a diffusion process (Gold

and Shadlen, 2007; Pleskac and Busemeyer, 2010), whereby individuals start with an initial bias

zp and, over time, gather, on average correct evidence described by a positive drift rate δp. The

total amount of evidence L(tp) at time point tp is described by a normal distribution with a mean

of
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E[L(tp)] �

δp × tp + zp , if signal is present

δp × tp − zp , if signal is absent
(5.1)

and a variance of

Var[L(tp)] � σ2p × tp; (5.2)

with σp being the diffusion rate (σp and tp are set to 1 for simplicity). The parameters δp and zp

change the state of evidence in distinct ways. A positive (negative) δp shifts the mean towards the

decision boundary of the correct (wrong) decision; a positive (negative) zp shifts the mean towards

the decision boundary of the signal (no signal) option (see Fig. 5.1).

Next, individuals enter a social phase—also formalized as a drift–diffusion process. In this

phase, individuals no longer sample independent information from the environment; instead, they

can update their evidence based on the decisions of others. At each time step t the current state

of evidence L(t) is updated by sampling new evidence until a decision is made (i.e., the level of

evidence reaches the decision boundary at ±θ2 ):

L(t + t) � L(t) + δs × t +
√

t × ε, (5.3)

where ε is white noise (i.e., the diffusion process) with a mean of zero and a variance of one. The

social drift rate δs(t) describes the change in an individual’s drift rate depending on the decisions

of others (i.e., the impact of social information) and is modeled proportional to the size of the

majority M(t) of individuals who already decided at time point t (e.g., see Bikhchandani et al.,

1998; Tump et al., 2019):

M(t) � N+(t) − N−(t), (5.4)

δs(t) � s ×M(t), (5.5)

where N+(t) and N−(t) are the number of individuals that decided the signal was present or absent,

respectively, at time point t and s is scaling the strength of the social drift. This model imple-

mentation ensures that individuals with strong personal information will, on average, start closer

to one of the decision boundaries and thus make faster decisions. This captures the observation

that, in groups across many biological systems, individuals that are better-informed make faster

decisions (Couzin et al., 2005; Kurvers et al., 2015; Reebs, 2000; Stroeymeyt et al., 2011). Be-

cause early-deciding individuals can influence the drift rate of undecided individuals, information
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can flow from early-deciding, well-informed individuals to later-deciding, less-informed individuals,

capturing the process of information cascades (Tump et al., 2019).

To study the effect of asymmetrical error costs, we implemented different payoff structures.

Under symmetrical costs, an individual received one point for a correct decision (hit or correct

rejection) and lost one point for a wrong decision (miss or false alarm). We modeled asymmetries

in error costs by increasing the cost ratio of a miss compared to that of a false alarm (see The

evolutionary algorithm), reflecting that missing a signal (e.g., a predator or disease) generally in-

curs a higher cost than does a false alarm. We also included a time cost of 0.05 points per second,

which is subtracted from the payoff whether the choice is correct or not. This time cost reflects

the ecologically valid benefit of making fast choices (Chittka et al., 2009).

The evolutionary algorithm. We embedded the social DDM into an evolutionary algo-

rithm to derive the optimal behavior. Inspired by biological evolution, evolutionary algorithms

allow fitness-maximizing parameter settings to evolve by exposing them to selection pressure and

mutation (Hamblin, 2013). These algorithms are particularly suited for game-theory problems,

where the optimal behavior of individuals depends on the behavior of others. Each individual had

three genes, coding their parameter values for their bias zp, boundary separation θ, and strength

of the social drift s (Table 5.1). The parameters covered a wide range, ensuring the best solutions

were included (range for bias: -0.5–2; boundary separation: 0.01–12; social drift: 0–2). To ensure

that the end points of the simulations were independent of their starting conditions, we sampled

the initial parameters from a beta distribution with the minimum and maximum scaled to the re-

spective evaluated parameter range, whereby the mean of the beta distribution was sampled from

a uniform distribution. In each generation, individuals were randomly and repeatedly (on average

10 times) sampled from the population; they performed the social DDM simulation as described

above in the presence of other individuals (in different-sized groups; see below). Population size

was fixed at 1,000 individuals across all conditions. After these simulations, individuals produced

offspring based on their sum payoff, implemented via tournament selection: Three individuals

were randomly sampled from the population and the individual with the highest payoff passed its

genes to the next generation. This procedure was repeated 1,000 times. Finally, the genes of the

new generation were exposed to mutation and crossover to ensure genetic variation. Crossover

was implemented by swapping two genes between a focal and a randomly drawn individual with a

probability of 0.05. For the mutation process, we added Gaussian noise to a gene with a mutation
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Table 5.1. Description of model parameters. Underlined parameters evolve in the evolutionary algorithm.

Model feature Parameter Description

Start point L(tp) ∼ N(δp ± zp , σp)

Parameters influencing the evidence gathered
during the personal phase L(tp), which then
served as the start point in the social phase. δp,
zp determine the mean and σp the variance of

a normal distribution. A positive (negative) δp
shifts the mean towards the correct (wrong) op-
tion, reflecting the amount of correct evidence
gathered. A positive (negative) zp shifts the

mean towards the signal (no signal) response,
reflecting a response bias.

Boundary
separation

θ

The boundary separation determines how much
evidence an individual accumulates before mak-
ing a decision. Increasing the boundary separa-
tion increases the potential for social informa-
tion use.

Social drift rate δs(t) � s ×M(t)

s determines how strong individuals incorporate
social information by adjusting the strength of
the social drift rate and the size of the majority
of individuals who already decided for a partic-
ular option M(t) at time point t.

probability of 0.02 and a standard deviation of 5% of the evaluated parameter ranges. These

procedures were repeated for 1,000 generations, ensuring that populations converged to stable end

points. We measured the evolved parameters by averaging the parameter values of the last 10

generations across eight populations.

We systematically varied three features to study their impact on the evolution of optimal

parameter settings. First, we varied the group size (1, 5, 10, 20, and 50) in which individuals

made decisions. Second, we varied the miss/false alarm cost ratio (1, 2, and 4). For this, we

kept the average cost constant at 1 by increasing the cost of a miss from 1 to 1.33 to 1.6, and

decreasing the cost of a false alarm from 1 to 0.66 to 0.4. Third, individuals received either a payoff

based on their mean group payoff (cooperative scenario) or their own payoff (competitive scenario).

Performance evaluation. To gain a deeper understanding of the individuals’ behavior at

the evolutionary end points, we performed additional social DDM analyses with fixed parameter

settings (i.e., no evolution of parameters). To investigate the effect of the bias zp, boundary sepa-

ration θ, and social drift s, on individuals’ performance (i.e., their payoff and their hit and correct

rejection rates), we varied the parameter of interest—for different group sizes and error costs—
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Figure 5.2. Example trajectories of the evolutionary algorithm. The evolution of the (a) bias, (b)
boundary separation, and (c) social drift rate over 1,000 generations in cooperative groups of five individuals
and a miss/false alarm cost ratio of 4. The colored lines represent the average parameter values within each
of the eight evolving populations and the black line indicates the average across all populations.

while fixing the other two parameters at their evolved level of cooperative groups, and measured

individuals’ performance over 1,000,000 repetitions (see Figs. 5.4 & 5.5a–c).

Evaluating the influence of competition. Since the end points of cooperative and compet-

itive groups differed (see Results), we studied how competition drives populations away from the

optimal end points of cooperative groups. As before, we varied the bias zp, boundary separation

θ, or social drift s while fixing the remaining two parameters at their evolved level of cooperative

groups. However, we also introduced individual heterogeneity by assigning half of the individuals

of each group a higher parameter value, and the other half a lower value (splitting groups of five

randomly), using a difference of 0.4 for bias, 0.2 for boundary separation, and 0.1 for the social

drift. This allowed us to measure the benefits of having a higher or lower parameter value than the

other group members and, thereby, the effect of competition. We measured payoffs over 1,000,000

repetitions for each parameter combination (see Fig. 5.5d–f). The code for the analyses can be

accessed at https://github.com/alantump/socialDDM Evolutionary Algorithm.

Results

In all scenarios, populations converged to a single solution, independent of the starting conditions.

This indicates that the algorithm found robust solutions across group size, cost asymmetry, and

competitiveness. Figure 5.2 shows examples of the trajectories of three evolving parameters for

one scenario (see Supplementary Fig. D1 for other scenarios). Figure 5.3 shows the evolved pa-

rameters (i.e., the end points of the evolutionary trajectories) for different error costs and group

https://github.com/alantump/socialDDM_Evolutionary_Algorithm


Adaptive decision rules in groups under asymmetrical error costs 73

Figure 5.3. Outcomes of the evolutionary algorithms per group size and error cost in cooperative groups.
Error cost ratio is symmetrical (1), moderately asymmetrical (2), or strongly asymmetrical (4). (a) When
costs are symmetrical, no bias evolves at any group size. When costs become more asymmetrical, small
groups evolve a bias; large groups do not. (b) In larger groups a higher boundary separation evolves,
independent of the error costs. (c) Across all combinations of group size and error cost, a high social
drift rate evolves. The dots and error bars represent the mean and standard deviation across the eight
populations.

sizes in cooperative groups.

Asymmetry in costs. When both errors were equally costly (i.e., symmetrical error costs),

we observed, as expected, no development of a bias in cooperative groups at any group size (Fig.

5.3a). However, as asymmetry in costs increased, individuals alone and in small cooperative groups

evolved a bias towards the signal decision boundary avoiding the costly error. This was not the

case in large cooperative groups. How can this effect be understood? Figure 5.4 shows the hit and

correct rejection rates, as well as the payoff, for different group sizes using different biases (while

fixing the boundary separation and social drift rate at the evolved level of the specific group size;

see Fig. 5.3). Across all group sizes, increasing the bias increased the hit rate but decreased the

correct rejection rate. Looking at the associated payoffs, we observed again that under symmetrical

costs, the highest payoffs were obtained at a bias level of 0, which maximizes the combined sum

of the hit and correct rejection rate. However, when misses became more costly than false alarms,

single individuals and small groups maximized their payoff at a relatively high bias to avoid costly

misses. In large groups, by contrast, a bias close to 0 was optimal. Large groups achieved high hit

and correct rejection rates without a bias, and were very sensitive to small biases. Increasing their

bias did increase their hit rate, but this did not outweigh the associated costs of the steep drop in

the correct rejection rate. The steepness of this drop increased with group size. In other words,

a strong bias in large groups would lead to many false alarms, which can be avoided by reducing

the bias; small groups, however, cannot avoid false alarms in the presence of strong asymmetrical
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Figure 5.4. The hit and correct rejection rates (black lines, left axis) and the payoff (colored lines, right
axis) as a function of the bias for different group sizes and error costs for cooperative groups. Across all
group sizes, increasing the bias towards the decision boundary of the signal leads to an increase in the hit
rate at the expense of the correct rejection rate. Under symmetrical error costs, individuals across all group
sizes maximize their payoff by maximizing the hit and correct rejection rate alike; this occurs at a bias close
to 0. Under asymmetrical costs, individuals need to ensure a high hit rate in order to avoid costly misses.
Small groups achieve this by developing a bias. Large groups achieve a high hit (and correct rejection) rate
without a bias, and therefore maximize the payoff at a much lower bias. The boundary separation and
social drift were fixed at the end points of the evolutionary algorithms for each combination of group size
and error cost.

costs. Figure 5.5a further illustrates this by showing the payoffs associated with different levels of

bias under highly asymmetric costs. Here, small groups can even outperform large groups under

high levels of bias emphasizing the sensitivity of large groups to biases.

Boundary separation. Figure 5.3b shows that individuals in larger groups evolved a larger

boundary separation and therefore waited longer for social information. This effect is independent

of the asymmetry in error costs. Why should individuals wait longer in larger groups? Figure

5.5b shows the payoffs at different levels of boundary separation for different group sizes. Because

the potential benefits of social information are higher in larger groups, the relative benefits of

waiting for social information are also expected to be higher. Larger groups thus evolved a greater

boundary separation, as shown by a shifting payoff peak to higher boundary separations for larger

groups (Fig. 5.5b).

Social drift. Across all group sizes and error costs, the social drift evolved to the maximum

level (Fig. 5.3c). The evolution of these extreme parameters indicates the effectiveness of a sim-
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Figure 5.5. (a–c) The mean payoff of individuals in different-sized, cooperative groups across the three
key parameters under high asymmetrical costs (cost asymmetry: 4). In these simulations, one of the
evolved parameters was varied (x-axis), while the other two parameters were fixed at their evolved level
of cooperative groups. Larger groups maximized their payoffs (indicated by circles) at (a) a lower bias
and (b) higher boundary separation compared to small groups. (c) All group sizes maximized their payoff
at the highest level of social drift. Dashed horizontal lines show the mean payoff of the first responder.
With increasing social drift rate, the mean payoff of all group members approximates the payoff of the
first responder. (d–f) The benefits of individuals in competitive groups having above-average values in the
three key parameters under high asymmetrical costs. Positive (negative) y-values indicate that individuals
with above-average (below-average) values in the respective parameter achieve a higher payoff. Competitive
groups are expected to evolve parameter values at which their members do not profit from having a higher—
or lower—parameter value (i.e, where the colored lines meet the horizontal solid line at zero). These values
partly differed from optimal outcomes in cooperative groups (circles). Individuals in competitive groups
benefited from having a (d) higher bias and (e) higher boundary separation than individuals in cooperative
groups. (f) Cooperative and competitive groups did not differ, however, in their optimal value of social
drift.

ple “copy-the-first” heuristic, whereby individuals immediately imitate the decision of the first

responder via a strong social drift. The reason this simple heuristic performs so well lies in the

way personal information is gathered. Individuals with more accurate personal information start,

on average, closer to a decision boundary than do individuals with less accurate information. This

gives rise to a process of self-organization, with more accurate individuals making faster decisions

(Tump et al., 2019). The first responder therefore generally achieves a higher payoff than do

later-deciding individuals, independent of social drift rate or group size (as indicated by the higher

dashed lines compared to the solid lines in Fig. 5.5c). For later-deciding individuals, the best

strategy is thus to increase the social drift rate in order to imitate the first decision, thereby saving

costly time.
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Competitive versus cooperative groups. Next, we compared the evolutionary outcomes

of cooperative and competitive groups. Across all group sizes, competitive groups developed a

stronger bias towards the signal boundary than did cooperative groups (Fig. 5.6a). To investigate

why, we introduced inter-individual heterogeneity in the bias level within competitive groups,

and compared the payoffs of these different bias levels. We observed that, at the bias level that

maximized the mean group payoff (dots in Fig. 5.5a, d), competitive individuals with a slightly

higher bias gained higher individual payoffs—this advantage only disappeared when the group had

a substantially higher mean bias; Fig. 5.5d). This could be due to the tension between providing

good information to group members and maximizing one’s own payoff. Individuals provide better

social information by reducing their bias. Increasing this bias helps an individual avoid the high

costs of misses but will result in less accuracy and therefore more misleading social information.

When comparing the optimal boundary separation for cooperative and competitive groups, we

found that, for all group sizes, competitive groups evolved higher boundary separations than did

cooperative groups (Fig. 5.6b). Figure 5.5e shows that, at the maximum payoff level of cooperative

groups (dots), competitive individuals benefited from having a slightly higher boundary separation.

Over a large parameter range, individuals profited from waiting slightly longer than others for social

information driving the boundary separation in competitive groups to higher values. Notably,

the larger bias and boundary separation in competitive groups partly undermines the benefits of

collective decision making: The mean payoff of cooperative groups increased much stronger with

increasing group size compared to the payoff of competitive groups (Fig. 5.6d). Finally, both

cooperative and competitive groups evolved to the maximum level of social drift (Fig. 5.6c). In

line with this, individuals with a lower drift rate never outperformed individuals with a higher

drift rate (indicated by the strictly positive values in Fig. 5.5f). This confirms the strong adaptive

benefits of using social information, or even copying the first responder, independent of group size

or cooperative setting.

Discussion

We investigated the evolution of individuals’ optimal decision rules across different group sizes,

cost asymmetries, and competitiveness. When confronted with a high cost of misses (compared

to the cost of false alarms), individuals in small groups evolved a bias to avoid them. This agrees

with earlier findings from signal detection theory (Maddox, 2002) and has also been found as a
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Figure 5.6. Comparing the evolutionary outcomes of cooperative and competitive groups at an error cost
ratio of 4. The dots and error bars represent the mean and variance of the end points of the evolutionary
simulations. Across all group sizes, competitive groups evolved (a) a larger bias and (b) larger boundary
separation, indicating a conflict between individual- and group-level interests. (c) Both cooperative and
competitive groups evolved maximum social drift rates. (d) At large, but not small, group sizes, cooperative
groups outperformed competitive groups.

start point bias in the DDM framework (Mulder et al., 2012). Strong biases are adaptive in small

groups, but in large groups they amplify quickly, leading groups to almost always decide for signal.

This leads to a high hit rate, but also to a high false alarm rate. This implies that individuals that

do not adjust their biases accordingly can be highly detrimental for large groups.

Individual response biases can have dramatic consequences for collective systems—for example,

in panicking crowds. Following terrorist attacks like 9/11 or the Paris attacks in 2015, it is

conceivable that some individuals adjusted their response bias towards an alarm response. This

type of adjustment might be wise in a small group, but can quickly escalate in large crowds,

which are more vulnerable to false alarms. In post-9/11 Chicago, for example, several club visitors

mistook pepper spray for a poison gas attack; the resulting panic left 21 dead (CNN, 2003).

The risk of amplification is further worsened in competitive groups, which evolve a higher bias

than cooperative groups. When individuals aim to maximize their own payoff, they are willing

to accept a higher level of false alarms at the expense of the collective well-being. Indeed, large

competitive groups performed substantially worse than large cooperative groups, partly due to a

higher evolved bias. In high-stress situations, a shift from cooperative to competitive behavior is

frequently observed (Mintz, 1951; Moussäıd and Trauernicht, 2016). Taken together, our results

highlight the potential danger posed to groups by individuals with a high response bias, and call

for a more detailed understanding of how information spreads in such situations.

An important reason that groups are vulnerable to information cascades is their high reliance

on social information. We found that social drift rate evolves to a maximum across group size,

cost asymmetry, and competitiveness, indicating the superiority of a copy-the-first strategy. This

finding confirms previous studies on strategic delay, which describe a Nash equilibrium in which
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everyone initially delays their choice. As time passes, the individual with the best information can

assume that their information is better than that of other members in the group, inferred by the

absence of choice. Since the individual with the best information is expected to decide first, others

then imitate this decision (Gul and Lundholm, 1995; Zhang, 1997). Adopting a copy-the-first

strategy not only allows individuals to rely on the social source with the strongest evidence but

also saves them time, since they do not need to wait for other individuals to decide.

Crucially, these studies—and ours—assume that individuals have the same speed–accuracy

trade-off (e.g., the same boundary separation). If individuals differed in their speed–accuracy

trade-off, those with the best information would be less likely to be the first responders. Indeed,

in this scenario the first responder is more likely to be an individual with a high emphasis on

speed—which comes at the expensive of accuracy. When individuals differ in their speed–accuracy

trade-off, favoring the decisions of individuals who respond quickly might undermine the benefits

of social information use and of a copy-the-first strategy. Individual differences in speed–accuracy

trade-offs may therefore be a critical factor in explaining why few, if any, empirical studies find

that individuals simply copy the first decision maker (e.g., Kurvers et al., 2015). Future work could

investigate the consequences of individual heterogeneity in speed–accuracy trade-offs on optimal

decision making in collective systems.

Another interesting extension of our framework is the evolution of more complex strategies

to integrate social information. For the sake of simplicity, we assumed a linear relationship of

majority size and drift rate. However, individuals could also use nonlinear responses such as

quorum thresholds (Kurvers et al., 2014; Marshall et al., 2019; Sumpter, 2006; Sumpter and Pratt,

2009). Nonlinear response strategies down-weight small minorities, but once the majority reaches

a certain threshold they ramp up social information use.

The willingness to wait for further social information—described by the boundary separation—

also influences the collective dynamics. We found that the boundary separation increased with

group size, meaning that individuals in larger groups required more evidence to make a deci-

sion. This effect was particularly prominent in competitive groups where individuals profited from

requiring more evidence than others. These results resemble a well-known finding in social psy-

chology: the bystander effect. According to the bystander effect—first demonstrated by Darley

and Latané (1968)—people are less likely to offer help the more other people there are nearby.

We show that waiting longer to see whether others respond can be an adaptive strategy, as in-

dividuals in larger groups should only make a choice (e.g., whether to offer help) with strong
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evidence. Matching this prediction, a study using CCTV footage found that increased bystander

presence reduced individuals’ likelihood of intervening (e.g., via increased boundary separations)

while simultaneously increasing the likelihood of someone intervening (Philpot et al., 2019). The

bystander effect could be explained as a rational adaptation to maximize informational gain in

varying group sizes. However, future work should investigate this explanation in situations with

less moral connotations.

In conclusion, we show that in the presence of asymmetrical costs, individuals should ad-

just their response bias to the group size to maximize their payoff. In particular, individuals in

large groups should avoid strong response biases as they frequently trigger false information cas-

cades. Further, we show that in competitive groups, individuals are—to some extent—indifferent

to the potentially negative consequences of their response bias; this leads groups—especially large

groups—to fail to reap the full potential of making decisions with others. As asymmetrical costs

are the rule rather than the exception, our results have important implications for understanding

a wide range of social dynamics, including police officers’ decisions to shoot (Pleskac et al., 2018),

panicking behavior in crowds (Moussäıd et al., 2016), and escape responses under predation risk

(Lima, 1995).
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Efficiently learning from others is a complex task and requires the implementation of various

social learning strategies which, in turn, crucially affect the collective dynamic. Although these

dynamics often further boost the accuracy of decisions, these dynamics can also go utterly wrong.

The ubiquity of social influence in our society makes it crucial to understand the emergence of

beneficial or detrimental dynamics.

This thesis aimed to deepen the knowledge of social dynamics by extending several well-known

models of individual decision-making into a social context. These models allowed me to understand

collective dynamic using a bottom-up approach.This chapter will summarise the major findings

(see also Table 6.1), put them into a broader context, and, finally, discuss future research directions.

Synthesis

Scientists from a variety of disciplines have studied what characterises good social information.

One evident factor predicting information quality is the expertise of the source. However, many

researchers pointed out that, in addition to the ability of these sources, their diversity is a crucial

element influencing the ability to benefit from others (Sorkin et al., 2001; Luan et al., 2012; Krause

et al., 2011; Hong and Page, 2004). Only a diverse group produces diverse sets of solutions which

allow social learning rules operating with majorities or averaging to perform well (Herzog et al.,

2019). But which features of the decision-making process contribute to the diversity of solutions in a

group? Describing the cognitive process from the perspective of Brunswik’s lens model (Brunswik,

1952) allows to identify features by which decision makers may come to diverse conclusions: (1)

by observing different cues, (2) via diverse inference strategies, and (3) by developing different

beliefs about the validity of cues. While the influence of observed cues and inference strategies on

behavioural diversity has been investigated (Sorkin et al., 2001; Fujisaki et al., 2018), the potential

of belief diversity is less understood. Chapter 2 addressed the role of belief diversity in a paradigm

in which the meaning of cues had to be learned. Despite provided with the same information,

individuals developed different cue beliefs, including many wrong ones. The resulting diversity

in cue beliefs, indeed, increased social information quality. However, individuals failed to realize

the full potential of diversity. Using simulations, I show that individuals could have benefited

from diversity if they would had relied on simple majorities. Individuals, however, showed great

reluctance to rely on social information and followed the majority only if these majorities were

very large (i.e., if the majority showed strong agreement). In many situations, individuals might

benefit from relying on consistent social information, as agreement can predict expertise (Kurvers
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et al., 2019; Ravazzolo and Røisland, 2011). These strategies are, however, expected to strongly

impair the benefit of diversity because diversity can easily be misinterpreted as disagreement and,

hence, the absence of evidence.

Despite the general consent that diversity is an important ingredient to benefit from others,

this chapter has shown that we need to consider the social learning strategies to infer the realized

potential of diversity in social environments. Chapter 3 addressed this shortcoming and provides

a better understanding of individual-level learning strategies by analysing how decision makers

cope with disagreement. For this purpose, I used a cognitive toolbox approach allowing the

quantification of intra- and inter-individual differences in strategies individuals use to adjust their

judgment after observing others’ judgements. The toolbox combines Bayesian inference with more

heuristic choice rules. I find that individuals put more weight on opinions which are in close

proximity to other opinions (i.e., group members agree). This strategy resembles the finding in

Chapter 2 that only majorities showing high agreement are being followed. Both chapters show that

individuals use the agreement among other group members as an important cue when using social

information. Moreover, I found that individuals weighted others’ estimates much more heavily

if these estimates confirmed their own opinion. Some individuals even used a keep-heuristic (see

also Moussäıd et al., 2013; Jayles et al., 2017), a strategy in which they simply ignored social

information, in particular when another person agreed with the own opinion. For both strategies,

social information is strongly influenced by an individual’s personal opinion and the notion of

being confirmed, highlighting the importance of confirmation biases in the repertoire of strategies

individuals possess (Koriat et al., 1980; Nickerson, 1998; Schulz-Hardt et al., 2000).

Such confirmation biases can have a substantial effect on the collective dynamic. Using simu-

lations, I showed that when provided with polarised information (i.e., two groups with disagreeing

estimates), the individual’s adjustment is predicted to be very small if someone confirms his or her

own opinion. In other words, trying to convince individuals by exposing them to different views

or beliefs (e.g., from outside one’s filter bubble) might hardly induce any opinion shift. I further

show that a confirmation bias can even cause further polarisation and promote more extreme views.

These results highlight the importance of understanding the social learning strategies individuals

use to predict opinion dynamics (Lorenz, 2007) and to counteract the spread of misinformation—

a matter of great public concern (Lewandowsky et al., 2017; Vosoughi et al., 2018).

Using a cognitive toolbox approach thereby allows testing various plausible strategies by ac-

counting for personal information and social information but can also consider the consistency of
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the individuals’ behaviour over trials by having a theoretical basis for the sources of stochasticity.

However, the notion of such strategy toolboxes has also received criticism. One argument is the

difficulty of falsifying such models and testing them against alternative models of cognition (Todd

and Gigerenzer, 2001). The main reason is its flexibility, as strategy sets in toolbox models can,

in principle, contain an infinite number of strategies. Therefore, I restricted the number of inves-

tigated strategies to a relatively small set. Yet, future work should investigate further plausible

strategies. This model represents a theoretical and methodological advancement and lays an im-

portant foundation for future researchers to study how individuals adjust estimates or opinions

when confronted with the beliefs of others. Only a deep understanding of how such local strategies

eventually generate collective patterns of opinion change allows us to meet the challenges of our

globalized and interconnected world.

Using the toolbox, I investigated learning strategies in a controlled and static social environ-

ment, allowing measurement of information transmission and enabling conjectures about which

collective dynamics arise. These resulting dynamics are, however, likely to result in a feedback

loop that can alter the use of learning strategies. Hence, when analysing how individuals navigate

in social environments, I might miss a crucial aspect when only focusing on learning strategies un-

der static conditions. In Chapter 4, we embed individuals in a temporal dynamic system allowing

for the comprehensive investigation of social learning strategies in interaction with the unfolding

dynamic.

Across a wide range of situations such as consumer choice (Chen, 2008) or decisions about

crossing the street (Faria et al., 2010; Pfeffer and Hunter, 2013), individuals do not decide simul-

taneous but sequentially. They can strategically time their decision, allowing them to decide early

or to wait for (further) social information. The social DDM introduced in Chapter 4 is well-suited

to investigate such a decision process and additionally to capture the resulting dynamic by de-

composing choices and response times into psychologically meaningful parameters. Testing the

model in an empirical study, I showed that enabling individuals to time their decision gave rise

to a collective dynamic where accurate individuals tended to decide early and thereby provided

correct information to others. Later-deciding individuals, in turn, were likely to follow those who

already decided, which further amplified the high-quality signal. This self-organization according

to information quality relies on two driving factors. First, individuals need to have a valid sense of

their information quality (i.e., confident individuals are more accurate). Second, more confident

individuals need to decide earlier. Importantly, the social DDM was able to recover these dynamics
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and revealed the cognitive underpinnings.

The quality of information cascades is crucially influenced by the accuracy of early-deciding

individuals. As only an understanding of cognitive process allows one to account for decision

timing (i.e., fast vs. slow errors), the social DDM is a helpful tool to better predict the spread

of accurate or inaccurate information. Hence, the social DDM makes it possible to analyse how

individuals navigate in social environments and thereby predict the resulting dynamic whenever

publicly observable choices are made sequentially. This framework allows future research to extend

the social DDM to other areas such as crowd dynamics (Moussäıd et al., 2016), the spread of

information in social media (Vosoughi et al., 2018) or collective behaviour in animals (Danchin

et al., 2004).

The beneficial collective dynamic identified here is an illustrative example of how individuals

coordinate without the intention to benefit the “collective well-being.” Importantly, this dynamic

predominately relies on the individual’s adjustment of the decision time according to the quality of

their personal information. If individuals coordinate in such a way that more accurate individuals

decide early and less accurate ones decide late, this will result in a win-win situations. Hence,

individuals have an incentive to accurately evaluate information quality and time their decision

accordingly. This makes the information exchange robust to dishonest behaviour because the

sender and receiver of social information each profit from sensible use of their confidence. Other

studies have shown that individuals can also directly use shared confidences to weight others’

judgments (Moussäıd et al., 2013; Koriat, 2012; Zarnoth and Sniezek, 1997). Here, providing an

honest confidence judgment might not be in one’s own interest. They, for example, might be

neutral regarding whether others perform well or try to gain influence by providing dishonest high

confidence ratings (Hertz et al., 2017). Future work should investigate under which conditions

decision time might be a more accurate predictor of information quality than confidence ratings.

After having identified the general principles of how individuals incorporate personal and so-

cial information over time, I used these insights to investigate how individuals should optimally

integrate information and time their decision. In sequential decision-making contexts, social inter-

actions have a strategic component because the optimal behaviour of individuals strongly depends

on the behaviour of others—i.e., this social situation represents game-theoretical problems. In

Chapter 5, I applied evolutionary algorithms, to identify advantageous strategies individuals are

expected to adopt when facing a game-theoretical problem. I found that the time individuals take

to make a decision is expected to depend on the quality available to them. Interestingly, individ-
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uals should develop a strategy where all imitate the first responder. The intuition behind such a

“copy-the-first” heuristic is that the individual with the most reliable evidence is likely to decide

first. The later-deciding individuals will, on average, have less evidence and mimic the first one

(Gul and Lundholm, 1995; Zhang, 1997; Bikhchandani et al., 1998). Although the whole group

outcome is based on a single decision, this strategy performs substantially better than a single

individual would do, simply because of the strategic timing of decisions.

Yet, such strong social information use comes with a cost. When confronted with asymmetric

error costs, single individuals are expected to develop response biases to avoid the more costly

outcome. Though evolutionarily advantageous in small groups, response biases in large groups

are likely to get amplified and trigger false information cascades. As a consequence, individuals

in larger groups should develop only very weak response biases, allowing them to benefit from

social information. These results highlight the danger of persistent response biases coupled with

strong information use in collective contexts like panicking crowds (Moussäıd et al., 2016) or escape

responses (Lima, 1995), as biased individuals are likely to trigger the spread of false alarms. In

conclusion, individual-level strategies crucially influence the spread of information. Individuals

are expected to self-organize by timing their decision according to their information quality and

thereby boost the spread of correct information. Yet, I also show that these dynamics are sensitive

to how people process the information they receive; i.e., how they derive levels of confidence and

develop response biases. The social DDM allows a new perspective on such dynamics and provides

a novel approach to designing and analysing experiments. In the next section, I will present future

research directions in collective behaviour.

Future Research Directions

From whom to learn

Across all chapters, participants (or simulated agents) were fully interconnected and received

anonymous information, limiting the possibility of strategically learning from specific others. How-

ever, previous work has shown that individuals’ reliance on others varies with specific character-

istics of these group members such as hierarchical status, sex, age or reputation (Reebs, 2001;

Deaner et al., 2005; Yaniv and Kleinberger, 2000). Such strategies could amplify the spread of

accurate information if they allow the filtering out of less reliable information. On the other hand,

if they lead to biased information aggregation—e.g., by relying on a less diverse subgroup— they
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are expected to undermine the potential for collective intelligence (Krause et al., 2010; Page, 2008).

Future work should, therefore, investigate how strategically learning from specific others influences

collective dynamics (but see, Watts et al., 2016).

Another important issue for future research to examine is the influence of the underlying struc-

ture of the group. Information often flows through highly structured networks. The impact of the

network’s structure is determined by the interaction process and the social learning strategies indi-

viduals use. Highly connected networks, for example, promote the spread of accurate information

if individuals tend to explore independently. On the contrary, if individuals rely little on social

information, connected networks are expected to lead to higher collective gains (Mason and Watts,

2012; Lazer and Friedman, 2007). The social DDM would allow for gaining a deeper understanding

of how decision timing and social information use mediate information flow across different types

of social networks.

Influential minorities

Conflicting interests among group members are common when trying to find (democratic) consen-

sus (Conradt and Roper, 2005). Previous work has suggested that uninformed or naive individuals

can strongly influence the collective outcome. While some argue that such uninformed individuals

are vulnerable to opinionated minorities (Olson, 2009), others have pointed out that they could

actually return control to the majority (Couzin et al., 2011). Minority opinions such as corporate

interests or political movements have a long history of seeking to influence public debate, often

against the interest of the general public (Lewandowsky et al., 2017). We need to understand under

what conditions opinionated minorities can sway majorities and which role uninformed individuals

play in such collective dynamics. Can, for example, early-deciding “loud” minorities persuade

uninformed individuals and, in turn, sway the later-deciding “silent” majority? The social DDM

can provide insights by generating hypotheses and allowing to test these empirically.

Humans and Machines

Our society faces the constantly growing prevalence and importance of algorithms in our daily lives.

Ranking algorithms and social media bots influence who observes which information. Autonomous

cars drive on the streets and trading software autonomously purchases and sells financial products.

This ubiquity of algorithms confronts researchers with new research questions.
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First, as humans increasingly interact with machines, we need a better understanding of how

these algorithms will influence our social interactions, social learning strategies and the resulting

dynamics. Autonomous cars, for example, will inadvertently produce “social” information via

their actions. This information will have different characteristics than information conveyed by

their living counterparts. Autonomous cars will adapt their driving speed well before a traffic

jam and anticipate crossing passengers earlier and in other situations than humans. It is, however,

known that driving behaviour is strongly influenced by the behaviour of other drivers (Åberg et al.,

1997). To predict how social systems will be altered by the introduction of intelligent algorithms

into our lives, we need further studies of how people will adjust their learning strategies to this

new environment. Second, we need to understand the behaviour of the algorithms themselves.

Already, very simple algorithms can produce complex collective behaviours which sometimes even

their engineers cannot explain (Bak et al., 1989; Tsvetkova et al., 2017), effectively turning them

into “black boxes” (Voosen, 2017). To understand the behaviour of such algorithms, we need to

analyse them using techniques from cognitive science (Rahwan et al., 2019). Third, to improve

the performance of algorithms and machines, we need to understand how to best make use of

others’ information— from humans or other machines. Should a trading algorithm, for example,

buy products bought by other trading algorithms, and are “social” information using algorithms

in danger of triggering information cascades?

For all of these questions, we need comprehensive cognitive models which allow us to understand

all levels of social interactions: from accumulating personal information to the implementation of

learning strategies to the unfolding dynamic. I believe investigating these questions in a theory-

driven manner with the computational models presented in this thesis allows new insights in this

direction.
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Table 6.1. Summary of the findings.

Chapter Interaction type
Cognitive

model
Social learning strategies Unfolding dynamic

2

Choice adjustment
after receiving
global social
information

Lens Model

Individuals (1) were reluctant to incor-
porate social information but, (2) over
time, got more sensitive to social in-
formation provided by others and (3)
adjusted their sensitivity depending on
their own performance.

(1) Individuals developed diverse beliefs in
informative and uninformative cues. (2)
Groups with diverse cue beliefs provided bet-
ter information. Individuals (3) benefited
from social learning but (4) failed to exploit
the potential of diversity because of over-
reliance on their initial opinion.

3

Estimate
adjustment after
receiving global

social information

Cognitive
Toolbox

(1) Individuals’ adjustment strategies
included a “keep” heuristic influenced by
to the distance to the nearest other es-
timate. They weighted social informa-
tion more: (2) the stronger the agree-
ment with the own estimate (i.e., con-
firmation bias) and (3) the stronger the
agreement among social information.

In scenarios with polarised opinions (i.e., two
disagreeing groups) with a focal individual
slightly leaning towards one view I find that:
(1) individuals with a strong confirmation
bias are expected to shift their opinion to-
wards the closer agreeing groups (i.e., fur-
ther polarisation) while (2) individuals with
a weak confirmation bias move towards the
global mean.

4
Sequential
decisions

Social DDM

(1) The Individuals’ confidence and per-
sonal belief determined their start point
of the evidence accumulation process
and (2) individuals reinforced their ini-
tial belief over time. (3) Individuals
incorporated social information via an
drift towards the choice preferred by the
majority.

More confident individuals (1) were, on av-
erage, more accurate and (2) decided faster.
As a result, unconfident and less accurate
individuals, on average, decided later and
received high quality information. Groups
show, thus, a (3) beneficial self-organisation
according to information quality.

5
Sequential
decisions

(simulations)
Social DDM

(1) Under asymmetrical error cost indi-
viduals in small, but not in large, groups
developed response biases. (2) Individu-
als waited for more evidence, the larger
the group. (3) Individuals imitate the
first responder and, hence, develop a
“copy-the-first” heuristic.

(1) The reliance on the “copy-the-first”
heuristic triggers information cascades. (2)
Groups are sensitive to response biases be-
cause even small biases are amplified. (3)
Individuals in small,but not in large, groups
are willing to accept the detrimental conse-
quences of response biases to avoid costly er-
rors.
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Supplementary Figures

Figure B1. Distributions of individuals’ mean adjustment and correlations across the four experimental
conditions. Outer histogram panels show frequency distributions of individuals’ mean adjustments (s̄)
towards the mean social information for each condition (LN: low variance, no skewness; HN: high variance,
no skewness; HA: high variance, skewness leaning away from the participants first estimate; HT: high
variance, skewness leaning towards the participant’s first estimate). Left (right) grey areas in each panel
represent values of (s̄) below 0 (above 1). Across conditions, almost all individuals had, on average, an
(s̄) value between 0 and 1, implying they did not adjusted away from the social information (i.e., s̄ < 0),
nor adjusted beyond the mean social information (i.e., s̄ > 1). Scatter plots show the correlations between
individuals’ mean (s̄) across the respective conditions. Dots represent individuals, and shown is the Pearson’s
r. Overall, we find strong correlations between participants’ mean adjustments across conditions (all Pearson
correlations P < 0.001), indicating strong inter-individual differences in social information use. Furthermore,
individuals’ mean adjustments averaged across all conditions correlated in the expected directions with self-
reported questionnaire scales measuring conformity (Pearson’s r � 0.258, CI � [0.059, 0.436]), individualism
(r � −0.204, CI � [−0.389,−0.002]), and resistance to peer influence (r � −0.233, CI � [−0.415,−0.033]),
confirming previous findings within this paradigm (Molleman et al., 2019).
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Figure B2. Adjustments in control conditions in which participants did not observe the stimulus, but only
observed four peer estimates. Trials were created by first drawing one random estimate (E

′
1) from a pool

of prerecorded estimates. Then, three additional pre-recorded estimates were drawn analogous to the four
experimental conditions (see Methods). Data has been normalized in the same way as Fig. 3.2A-D, taking
(E
′
1) as the reference point. Histograms show the distribution of estimates in the same colour coding as Fig.

3.2A-D. For comparison, in the grey background on top of each panel we summarize behavior in conditions
where participants did observe the stimulus (Fig. 3.2A-D; blue boxplot: distributions of relative estimates;
insets: relative frequencies of each of the qualitative cases).
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Figure B3. Both in experimental (i.e., with observing the stimulus; colored dots and boxplots) and
control (i.e., without stimulus; grey dots and boxplots) conditions, participants systematically deviated
from an ‘ideal Bayesian observer’, who would weigh all estimates equally. Boxplots and dots show the
absolute difference between participants’ second estimates and the arithmetic mean of all four estimates
(see Methods for more details). Participants deviated more from the arithmetic mean in the experimental
conditions compared to the control conditions, most likely because of egocentric discounting.
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Figure B4. Descriptive model fitted to responses The discrepancy of actual and expected (E
′
2) with varying

proximity discounting in the control rounds in which participants did not observe the stimulus. The blue
line shows mean absolute difference between per-round predictions and observed responses as a function
of parameter β (capturing ‘proximity weighting’ as the extent of discounting of social information that is
inconsistent with other social information). This model assumes that each response is an average of the
pieces of social information (Xi), weighted according to their summed distance (d) to other pieces of social

information. Formally, predicted responses are calculated as: Ê′2 �
∑4

j�1 wi × Xi . In this formula, the

weighting of each piece of social information (wi) is determined by discount factor β: wi �
d−βi∑4

j�1 d−βj

, where

di �
∑4

j�1 |Xi − X j |. When β > 0, more weight is assigned to social information when it is closer to other
social information. We observe that the model predictions match the observed responses best when β ≈ 1.3.
We interpret this as evidence of a ‘peer proximity effect’ (or a ‘consensus effect’): on average, individuals
tend to assign more weight to social information when it is closer to other social information.
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Figure B5. Correlation of predictions of the best-fitting cognitive model (y-axis) with the empirical data
(x-axis). (A,B) Predictions for the 20 rounds of the 4 experimental conditions, to which the model was fitted
(i.e. the ‘training set’), with (A) showing mean adjustment for each individual and (B) showing the fraction
of rounds in which they chose to choose to ‘keep’ their initial estimate. We observe that the predictions
of the cognitive model closely match data in the experimental conditions. (C,D) Predictions for the ‘filler’
trials with social information randomly drawn from previous participants. Again, the behaviour is fairly
well predicted by the model. As for previous predictions we sampled 10 estimates for each individual and
trial. In each panel, numbers in the top left corner indicate Pearson’s correlations.
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Figure B6. Social information tends to have the strongest impact when at intermediate distance. We
simulated trials that systematically increasing the distance between individuals own initial estimates and
the mean social information (∆ � (X̄ − E1)/E1). Dots show predicted mean adjustments as a function of
the mean distance to three pieces of social information, for three levels of ‘proximity’, with peer estimates
at 0 (low), 3 (medium) or 6 (high) numbers away from each other. We observe that mean shifts for each
level are highest when the distance of social information is intermediate, confirming previous observations
(Moussäıd et al., 2013; Jayles et al., 2017). When the distance to mean social information is very low,
individuals are very likely to keep their initial estimates. When the distance to mean social information is
very high, individuals are likely to compromise, but assign little weight to social information, again leading
to reduced average adjustments. At intermediate distance, social information has the strongest impact:
in those cases, the likelihood that individuals keep their initial estimates is very close to zero, but when
compromising, they still assign weight to social information. These effects hold across various levels of peer
proximity. Simulations with peers farther away from each other start at higher values of ∆ to ensure that
all pieces of social information were in the same direction from the first estimate.
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Figure B7. Relative position of peers as shown in each of the experimental conditions. Social information
was based on data from a prerecorded pool of 100 MTurkers who completed the task without social infor-
mation. As described in the Methods, we assigned an experimental condition to each of the 30 rounds and
calculated for each value of E1 the ‘triple’ of previous estimates that most closely matched the experimental
condition (using the lowest value resulting in the ‘cost function’; see Supplementary Methods). The graph
shows for each condition where the peers were located in the actual experiment, as a fraction of E1. Color
coding: red: nearest peer, blue: middle peer, green: farthest peer. Dots show for each of these three peers
their average position (Fig. 3.1E). The graph omits data points that exceeded 0.5, the vast majority of
which are in the Random condition, which was used as ‘filler’ rounds. The Supplementary Methods below
provide a formal description of how we defined these experimental conditions.
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Supplementary Tables

Table B1. Determinants of individuals’ social information use. Numbers on the left hand side show
results from a Bayesian linear mixed model fitted to individuals’ average adjustments towards the mean
social information across the rounds of each of the treatments, with ‘individual’ as random effect. On the
right hand side, we show pairwise comparisons between experimental conditions. Average adjustments were
calculated as the relative distance adjusted towards the mean social information (Fig. 3.1D), across the
five rounds of each of the four experimental conditions (LN, HN, HA, HT; Fig. 3.1E), yielding four data
points for each participant. We omitted those rounds in which a participant adjusted away from the mean
social information. The LN condition was used as the baseline. Relative to that baseline, the HN and HA
conditions had a highly significant negative effect. The HT condition had a smaller negative effect. Pairwise
comparisons indicate that, except for the HN and HA conditions, all pairs of experimental conditions differed
significantly from each other. Age and gender did not significantly affect social information use. To quantify
individuals’ constancy of displayed behaviour across conditions we also derived the commonly used index
of ‘repeatability’ for this model (R=0.790 [0.697, 0.839]; Nakagawa & Schielzeth, 2010; Stoffel et al., 2017).

Table B2. Effects of experimental conditions on individuals’ use of adjustment strategies. Values indicate
for each treatment the predicted frequencies of adjustment strategies - keeping, compromising, adopt the
nearest peer (X1), and all ‘other’ cases pooled - from a mixed multinomial regression with ‘participant’ as
random effect (insets Fig. 3.2A-D of the main text). Values in brackets indicate 95% confidence intervals.
Apart from the experimental conditions, the full model also included age and gender, neither of which had
credible non-zero effects on any of the relative frequencies.
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Table B3. The comparison of all versions of the cognitive models with all possible combinations of consid-
ered features. We compared model with (1) or without (0) keeping, adopting, proximity and confirmation,
and calculated the looic. The looic diff values indicate the goodness-of-fit of each model compared to the
model with the lowest looic (i.e., rank 1). The best-fitting model includes the keep heuristic, proximity and
confirmation, but not the ‘adopt’ heuristic.
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Table B4. The parameters shaping the group-level parent distributions, their priors, their upper (/lower)
bounds and the model estimates of the best fitting model (i.e, without adopt). The parameters and describe
the mean and standard deviation of parent normal distributions and and the two parameters shaping the
of parent beta distributions. Standard deviations and parameters describing the beta distributions were
truncated at 0.01 to avoid zero or negative values. Subscripts p and s respectively indicate personal and social
information; the other subscripts refer to their respective model feature (distance or proximity weighting;
heuristics of keeping or adopting). The right hand side column shows the parameter estimates of the best-
fitting model. This model did not include the ‘adopt’ heuristic (see Table B3) so no values are shown for
the parameters associated with that heuristic.

Group-level parameters Priors Bounds (max/min) Parameter estimates

µσ
2
p N(10, 5) 1 / Inf 3.88 [3.5, 4.42]

τσ
2
p N(0, 1) 0.01 / Inf 1.87 [1.55, 2.24]

µαs N(10, 5) 1 / Inf 7.54 [6.89, 8.2]
ταs N(0, 1) 0.01 / Inf 2.36 [1.96, 2.82]

µβcon f irmation N(0, 0.2) -0.5 / 0.5 0.19 [0.13, 0.27]

τβcon f irmation N(0, 0.2) 0.01 / Inf 0.23 [0.16, 0.29]

µβproximit y N(0, 0.2) -0.5 / 0.5 0.02 [0, 0.04]

τβproximit y N(0, 0.2) 0.01 / Inf 0.05 [0, 0.08]
ααkeep N(1, 0.4) 0.01 / Inf 0.3 [0.22, 0.46]
βαkeep N(5, 2) 0.01 / Inf 0.97 [0.66, 1.55]

µβkeep N(0, 0.5) -Inf / Inf -0.37 [-0.55, -0.26]

τβkeep N(0, 1) 0.01 / Inf 0.15 [0.05, 0.28]
ααadopt N(1, 0.4) 0.01 / Inf
βαadopt N(5, 2) 0.01 / Inf

µβadopt N(0, 0.5) -Inf / Inf

τβadopt N(0, 1) 0.01 / Inf

Table B5. Pearson correlations for parameter estimates across individuals and their 95% confidence
intervals. Overall, we did not find strong correlations of parameter estimates, with three exceptions: (1)
Individuals who put less weight on themselves (higher σ2p) tend to apply stronger proximity weighting (higher
βproximit y) and (2) tend to have a lower tendency to keep their initial beliefs (lower αkeep). (3) The keep
heuristic of individuals with a stronger tendency to keep their initial beliefs (higher αkeep), is less sensitive
to the distance of the closest peer (less negative βkeep)

σ2p αs βcon f irmation βproximit y αkeep βkeep

σ2p 1

αs -0.02 [-0.22, 0.18] 1
βcon f irmation -0.11 [-0.31, 0.09] 0 [-0.2, 0.2] 1
βproximit y 0.35 [0.16, 0.51] -0.15 [-0.34, 0.05] -0.1 [-0.3, 0.1] 1
αkeep -0.22 [-0.41, -0.02] 0.03 [-0.17, 0.23] 0.11 [-0.1, 0.3] 0.04 [-0.16, 0.24] 1
βkeep -0.08 [-0.28, 0.12] 0.01 [-0.19, 0.21] 0.02 [-0.18, 0.22] 0.02 [-0.18, 0.23] 0.44 [0.26, 0.59] 1
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Table B6. Description of the model parameters and the parameters of the their parent distribution (i.e.,
group-level priors).

Model
feature

Parame-
ter

Group-level prior Description

Compromise

Uncertainty
own estimate

σ2p N(µσ2p , τσ2p ) Uncertainty associated with
your own estimate

Intercept
uncertainty

peer estimate
αs N(µαs , ταs )

The intercept uncertainty
associated with the peer

estimates

Distance
weighting βcon f irmation N(µβcon f irmation , τβcon f irmation )

The influence of closeness
of the peer estimate to the

own estimate on the
uncertainty associated with

the peer estimate

Proximity
weighting

βproximit y N(µβproximit y , τβproximit y )

The influence of proximity
of the peer estimate to

other peers on the
uncertainty associated with

the peer estimate

Keep

Keep intercept αkeep Beta(ααkeep , βαkeep )

A value between zero and
one describing the baseline
probability of keeping the

initial estimate.

Keep slope βkeep N(µβkeep , τβkeep )

The influence of the
distance of the closest peer
on the probability to keep

the initial estimate.

Adopt

Adopt
intercept

αadopt Beta(ααadopt , βαadopt )

A value between zero and
one describing the baseline
probability of adopting the

estimate of a peer.

Adopt slope βadopt N(µβadopt , τβadopt )
The influence of distance

on the probability to adopt
the estimate of a peer.
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Supplementary Methods

Definition of experimental conditions. Participants faced four experimental conditions in

which they could adjust their initial estimates based on three pieces of social information. These

conditions varied in the variance and skewness of this social information (Fig. 3.1E, main text).

For each round, for each possible first estimate (E1) we considered each possible triple of unique

prerecorded estimates, and calculated the first three moments of its distribution (mean µ, variance

σ2 and skewness γ). To determine which triple would be shown in a given condition in a given

round for a given value of E1, we used a cost function that assigned penalties (L) to deviations from

the target mean (T), target variance (Tσ2) and skewness (γ). For each round, for each possible

value of E1 we selected the triple with the lowest L. The cost functions L for each condition are

given in the below table, which shows the penalties for deviations from the target mean, variance

and skewness in separate columns:

In all conditions, Tµ was set to deviate 20% from E1. We held this distance fixed to avoid

possible effects of the mean deviation of social information on its impact on behavior (Moussaid

et al., 2013; Jayles et al., 2017; see also Fig. B6). For further standardization, Tµ was always in

the direction of the true value A (Yaniv 2000; Molleman et al., 2019). Formally, Tµ � 1.2 × E1 if

(E1 > A) and Tµ � 0.8 × E1 if (E1 < A). We set Tσ2 � 10 for the LN condition and Tσ2 � 100 for

all other experimental conditions. For the LN and HN we aimed for symmetric distributions so we

penalized positive absolute values of γ. For HA and HT, target skewness depended on whether E1

was higher or lower than A. To this end, we used γ′ which was equal to γ if E1 > A and equal to
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−γ if E1 < A. This procedure ensured that participants faced well-defined experimental conditions

(Fig. B7). For the 10 ‘filler’ rounds, which were intermixed with the experimental rounds, we

randomly drew social information from the prerecorded pool.

We further implemented two control conditions completed in separate blocks of the experi-

mental session (these blocks were completed in randomized order). First, participants completed

trials in which they did not observe the stimulus themselves, but only observed the estimates of

four peers (Fig. B2). The distribution of these peer estimates emulated the distributions of social

information in each of the experimental conditions, enabling us to compare how individuals inte-

grate personal and social information with a control in which individuals integrate four pieces of

information, none of which is their own estimate. Second, participants could observe the estimate

of only one peer whose deviation from the individuals’ first estimate matched that of the mean

deviation in the four experimental conditions. The results from this one-peer control condition are

not the focus of this paper and will not be reported here.

Cognitive model. To analyse potential strategies individuals use we developed a mixture

model approach (Rieskamp et al., 2003), where individuals either apply ‘compromising’, ‘keeping’

or ‘adopting’.

Heuristic adjustment strategies of keeping and adopting. To account for ‘keep’ and

‘adopt’ assume that these two strategies are chosen with the mixture probabilities P(keep) and

P(adopt) and compromising is chosen with probability 1 − (P(keep) + P(adopt)). The keep prob-

ability is defined by a standard logistic function:

P(keep) � S(lo git(αkeep) + βkeep × d), (1)

where lo git(αkeep) and βkeep are the intercept and slope of the sigmoidal function, and d is the

distance between the closest peer estimate and the first estimate (d � |E1 − X1 |). Note that αkeep

is a number between zero and one and transformed to a continuous scale via lo git(αkeep). This

was done to account for individual differences with a Beta parent distribution (see Table B6).

Similarly, the probability to ‘adopt’ the estimate of nearest neighbour depending on their distance

is given by:

P(adopt) � S(lo git(αadopt) + βadopt × d), (2)
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Compromising. We assume that each individual tries to judge the number of animals (N) for

each image. The individual has two information sources: (i) The individuals initial belief about

the number of animals (Ep) and social information provided by the peers (xs) with s � 1 : S

and S being the group size. We assume the initial belief to have a discretized Normal probability

distribution centered around first estimate (E1) and associated with uncertainty (σ2p):

p(Ep |N) ∼ Norm(E1 , σ
2
p). (3)

Similarly, we assume the social information (SIs) in the form of the provided peer estimates (Xs)

and their associated uncertainty (σ2s ) to be Normal distributed:

p(SIs |N) ∼ Norm(Xs , σ
2
s ). (4)

With only one peer (i.e. S � 1) we obtain the (posterior) probability of N animals applying

Bayes rule:

p(N |Ep , SI1) �
p(Ep |N) × p(SI1 |N)

p(Ep , SI1)
(5)

Whereby p(N |Ep , SI1) is the new ‘posterior’ belief N (the number of animals) given own and

social information (i.e., Ep and SI1). Accordingly, with three peers the updating procedure is

conducted with all peer estimates:

p(N |Ep , SI1 , SI2 , SI3) �
p(Ep |N) × p(SI1 |N) × p(SI2 |N) × p(SI3 |N)

p(Ep , SI1 , SI2 , SI3)
(6)

Note that the order is not affecting the generated probabilities. We distinguish between two

features of how individuals weight social information or, more specifically, infer the uncertainty

associated with a peer estimate (σ2s ). First, individuals weight the peer estimates SIs depending

on their absolute distance to the individuals first estimate (ds):

ds � |E1 − Xs |, (7)

σ2s � αs + βcon f irmation × ds , (8)

where αs and βcon f irmation describe the intercept and slope, in other words, the overall sensitivity

to social information and the influence of the distance, respectively. Similarly, individuals can

weight peer estimates depending on their sum distance to the other peers (τs):

σ2s � αs + βproximit y × τs , (9)

or both:

σ2s � αs + βcon f irmation × ds + βproximit y × τs , (10)
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Note that for the fitting process, we centered the predictors ds and τs their mean. Further, we set

the minimal probability in the probability density function to be 10−30 to avoid outcome proba-

bilities of zero.

Model fitting. We fitted the model using a hierarchical Bayesian inference technique im-

plemented with “RStan”in R (R Core Team, 2019; Stan Development Team, 2018). We used a

hierarchical structure where each parameter of the model has a higher order group-level prior (see

Table B6). As default, these priors were normal distributions with hyper-parameters describing

the mean and variance. The intercept parameters of the keep and adopt strategy are restricted

between zero and one and are therefore described by a beta distribution with hyper-parameters

and controlling the shape of the distribution. We ran 4 chains in parallel with 1,000 iterations each

and discarded the first 500 as burn-in. We reduced the memory load by thinning the chains with

a factor of 5. We investigated the importance of the four model features: (i) weighting depending

on the distance of peer, (ii) weighting depending the peer on the proximity to other peers, (iii)

keep heuristic and (iv) the adopt heuristic by calculating the leave-one-out cross-validation (looic;

Vehtari et al., 2019) of the models compound of all possible combinations of these features (16

in total; see Table B3). We quantified the importance of a feature by calculating the average

reduction of the looic when the feature was included (Fig. 3.2B). We report the fittings of the

model with the lowest looic. Visual inspection of Markov chains and the Gelman Rubin statistic

R̂ indicated that all Markov chains of all investigated 16 models converged.

Experimental materials

Participants were recruited from the crowdsourcing platform Amazon Mechanical Turk (MTurk).

On that platform, our experiment was advertised as a ‘Human Intelligence Task’ (HIT) with

a link that led to the experimental screens. Upon completion of the experiment, participants

received a code that they could fill out on MTurk to receive their participation fee of $4.50, plus

a performance-specific bonus.

The experimental session consisted of 3 blocks (referred to ask ‘Task I, II and III’ in the

instructions for participants), the order of which was randomized across participants.

Block 1: Participants observed an image and made their first estimate of the number of animals

on it. Then, they could observe the estimate of three participants who completed the task before,

and then make a second estimate. Participants completed five rounds for each of the experimental
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conditions (Fig. 3.1E), plus 10 ‘filler rounds’ in which they observed three randomly drawn pre-

vious participants. So, in this block, participants completed 30 rounds in total; the participants’

responses in the experimental rounds of this block are the main focus of this study

Block 2: Like in Block 1, participants observed an image and made their first estimate of the

number of animals on it, Then, they could observe the estimate of one participant who completed

the task before, and then make a second estimate. This was repeated for five rounds (with a new

image showing another species of animal in every round). NB: the data for this control condition

is not the focus of this paper, and therefore its results are not presented here.

Block 3: Participants did not observe an image, but had to make an estimate based on the

estimates of four participants who completed the task before. The five rounds of this task mimicked

the four experimental conditions plus a random round (see Methods).
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Supplementary Results

Using the Two-stage Dynamic Signal Detection (2DSD) model to model the personal

phase: To model the personal choice phase, we used the two-stage dynamic signal detection

(2DSD) model. The 2DSD model is an evidence accumulation model that can account for choice

and response time (RT) in the personal choice and the associated confidence judgement. In so

doing, it can identify cognitive mechanisms potentially governing the interrelationships of these

behavioral measures (Pleskac and Busemeyer, 2010). Like other evidence accumulation models,

it assumes that individuals gather evidence over time until the amount of evidence surpasses a

threshold. The two key assumptions of the 2DSD model are that evidence accumulation continues

after the decision is made and that reported confidence depends on the evidence accumulated

at the time of the confidence judgement. Thereby, the evidence state is mapped into confidence

judgements using response criteria that serve as thresholds indicating the next higher confidence

judgements (e.g., from 50 to 60, or 60 to 70). See Pleskac & Busemeyer (2010) for a detailed

description of the 2DSD model.

We fitted the model in the hierarchical Bayesian framework, implemented with RStan in R (R

Core Team, 2019; Stan Development Team, 2018), with five parallel chains with 10,000 iterations

each and a thinning factor of 10. The first half of the iterations were discarded as burn-in.

Descriptions of the main parameters are given in Supplementary Table C6. For the Wiener diffusion

process, we included boundary separation α, predecisional drift rate δpre , relative start point z,

and nondecision time NDT, which was calculated relative to the fastest response. Some trials were

expected to be more difficult than others, because the number of sharks could be closer to (i.e., 4

and 6) or further away from (i.e., 3 and 7) the threshold number of sharks (5). We accounted for

variations in difficulty by varying the predecisional drift rate δpre , depending on trial difficulty:
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δpre �


δdi f f icult , if 4 or 6 sharks present

δdi f f icult + ∆eas y , if 3 or 7 sharks present
(1)

with ∆eas y describing the additional effect of easy trials on the drift rate. For the postchoice

process, we fitted confidence criteria and the postdecisional drift rate (δpost). The postdecisional

drift rate is influenced by the predecisional drift rate, with the parameter w controlling its strength,

and δchoice describing the influence of the choice on the subsequent drift:

δpost �


w × δpre + δchoice , if correct

w × δpre − δchoice , if incorrect
(2)

The evidence distribution at the time point when confidence is reported Lcon f is a combination

of the evidence accumulated at the time point of choice and the evidence accumulated between

choice and confidence judgement. It is normally distributed with a mean of

E[Lcon f ] �

α + δpost × I JT, if correct

0 + δpost × I JT, if incorrect
(3)

and a variance of

var[Lcon f ] � σ2I JT (4)

with I JT being the interjudgement time (i.e., the time between choice and confidence reporting).

Each decision maker has confidence criteria c j to map the evidence state Lc into six possible con-

fidence judgements con f j with j � 0, 1, 2, ...5, corresponding to the confidence levels 50 to 100. The

probability of reporting con f j is given by the normal cumulative distribution ∼ N (E[Lc], var[Lc])
with:

P(c j < Lc < c j+1) (5)

where c0 is equal to −∞ and c6 to ∞. The five remaining confidence criteria are fitted by the

model. We assume the locations of the confidence criteria for correct and incorrect choices to be

symmetrical. Hence, we set the locations relative to the choice thresholds with alpha + c j and

0− c j for correct and incorrect choices, respectively. For the fitting process, we excluded all choices

with RTs below 0.1 sec. To compare the predictions of the model with the empirical data, we gen-

erated choices, RTs, and confidence judgements using the participant’s mean posterior parameter

estimate. The confidence judgements were generated by sampling from the evidence distribution

at the time point of the judgement and mapping this evidence state to a confidence judgement.
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We thus obtained confidence judgements given the individual’s choice, RT, and interjudgement

time. To account for stochasticity generated by the sampling process, we sampled 100 confidence

judgements, choices, and RTs per individual and trial.

2DSD model results: Participants drifted towards the correct choice threshold (δdi f f icult

= 0.37, CI = [0.33, 0.41]). Trials with three or seven sharks were easier than trials with four

or six sharks, as indicated by a stronger drift towards the correct option in the former (∆eas y =

0.05, CI = [+0.00, 0.10]). Varying drift rates depending on difficulty were not included in the

social DDM analysis, as the effect was comparatively small. After making a choice, participants

continued accumulating evidence and, on average, kept gathering correct evidence (w = 0.72,

CI = [0.62, 0.83]). Hence, participants who made an incorrect decision gathered more evidence

over time contradicting their initial choice (resulting in lower confidence), whereas the evidence of

those who made a correct choice was strengthened (resulting in higher confidences). This process

explains the increasing difference in confidence ratings between correct and incorrect choices as

interjudgement time increases (Supplementary Fig. C4a). Additionally, there was a choice effect

on the postdecision drift, whereby participants accumulated evidence in favour of their already

chosen option (δchoice = 1.64, CI = [1.47, 1.80]). As a result, longer interjudgement times are

predicted to lead to higher confidence judgements (Supplementary Fig. C4b). Figure C4c shows

that the 2DSD recreates the well-established relationship between confidence and accuracy, which

is partly determined by the postdecisional processing evident in Figures C4a and b. In both the

2DSD and the social DDM analysis, we thus found that confidence is linked to the evidence state

and that participants drifted in the direction of their chosen option (i.e., reinforced their ‘belief’

in their original choice). Figure C4d shows RT distributions for the personal choice. Overall, the

empirical data (solid lines) correspond closely with the predictions of the 2DSD model (dashed

lines), indicating that the personal phase can be described by a drift diffusion process. One

distribution characteristic the model cannot recover is the higher average RTs for incorrect choices.

This is a well-known property of the drift–diffusion model, and can be addressed by adding trial-

by-trial variability to the drift rates (Ratcliff and Rouder, 1998). For simplicity, we have not

included trial-by-trial variability.
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Supplementary Figures

Figure C1. Improvement during the social phase depended on the quality of social informa-
tion. Participants’ choices were increasingly likely to improve/worsen as the size of the majority for the
correct/incorrect option increased. Dots represent the mean; error bars represent twice the standard error.
The dashed line shows the prediction of the social DDM.
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Figure C2. Distributions of key behavioural measures. (a) The proportion of reported confidence
scores for correct and incorrect choices. The higher the confidence score, the larger the proportion of cor-
rect choices, resulting in a positive confidence–accuracy relationship (see also Supplementary Fig. C4c).
(b) The proportion of choices made in the presence of different majority sizes. In the social phase, most
choices (≈ 60%) were made in the absence of a majority, and participants who experienced a majority were
more likely to observe a confirming majority (i.e., negative values) than an opposing majority. Participants
facing an opposing majority were more likely to change their choice the larger the size of this opposing
majority. (c) Observed RT distributions during the social phase as a function of reported confidence. Par-
ticipants reporting the highest level of confidence overwhelmingly responded within 4 seconds, whereas the
distribution of participants reporting the lowest confidence level peaked after 4 seconds. (d) Observed RT
distributions during the social phase for correct and incorrect choices. Given that unconfident participants
are more likely to be wrong and waited longer, it follows that individuals who were wrong, on average, wait
longer to respond. (e, f) RT distributions as predicted by the social DDM. The model recovers not only
the relationship of RT with confidence and accuracy, but also the shape of the RT distributions. The RT
distributions are multimodal because social information was first updated after 3 seconds and then every 2
seconds. The updating events often resulted in larger majorities which increased the likelihood of a response
by a increase in the drift rate. (c–f) Dashed vertical lines represent the mean RTs.
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Figure C3. Model recovery. The x-axis shows the actual (input) parameters; the y-axis shows the
recovered parameters. The figure shows the results of a parameter recovery analysis conducted to ensure
that the parameters of the social DDM are interpretable and capture distinct cognitive mechanisms. We
repeatedly generated data with random input parameters and recovered them with the same hierarchical
social DDM used to analyse the empirical data. The input parameters were sampled with a quasirandom
number generator (using the sobol sequence), ensuring an even distribution across a large multidimensional
parameter space. Using these input parameters, we generated social choices by computing probability den-
sity functions while taking into account the personal choice, reported confidence, and the social information
observed by the participant at a given trial. The generated data thus have the same hierarchical structure
as the empirical data, with 141 participants and varying group size. Again, we report the mean of the
posterior distributions and the 95% CI of the higher order group-level estimate for each group size. To
measure the relationship of input and recovered parameters, we calculated Spearman’s correlation coeffi-
cient r for all parameters (except nondecision time, which is relative to a participant’s fastest response and
thus meaningless on a group level). For all parameters, there was a strong positive correlation between the
generated and the recovered parameters. The estimates provided by the social DDM thus describe separate
identifiable features and are interpretable in their magnitude.
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Figure C4. Results of the 2DSD model. (a) The longer the time between the personal choice and the
confidence judgement (interjudgement time), the larger the difference in confidence between participants
whose choices were correct vs. incorrect. Dots represent the average confidence judgements for correct
choices minus the average confidence judgements for incorrect choices for different interjudgement times.
(b) The longer the interjudgement time, the higher the reported confidence judgements. Dots represent
the mean; error bars represent twice the standard error. (a–b) For visualization purposes, interjudgement
times are binned by rounding to the closest integer. (c) Participants reporting higher confidence were more
likely to be correct. Dots and error bars represent mean and 95% CI of the posterior distribution. (d) The
solid lines represent the observed RT distribution of the personal choice for correct (blue) and incorrect
(red) choices. (a–d) The dashed lines represent the predictions of the 2DSD model.
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Supplementary Tables

Table C1. Bayesian linear regression results

Response
Predictor Estimate Est.Error l−95% CI u−95% CI Eff.Sample Rhat

Accuracy
Intercept (personal choice) 1.1 0.07 0.97 1.23 9657.34 1
Social choice 0.3 0.05 0.2 0.39 32162.95 1

Accuracy
Intercept -1.58 0.17 -1.91 -1.25 20461.1 1
Confidence 3.82 0.24 3.35 4.28 20270.94 1

Accuracy
Intercept (personal choice) 1.65 0.08 1.48 1.81 7563.13 1
RT -0.16 0.01 -0.18 -0.14 15170.53 1
RT: social choice 0.11 0.01 0.09 0.13 18797 1

Likelihood to change
Intercept -3.6 0.18 -3.96 -3.26 7735.1 1
Size of opposing majority 0.62 0.03 0.57 0.67 12889.8 1

RT
Intercept 6.96 0.23 6.49 7.41 4644.56 1
Confidence -4.86 0.18 -5.22 -4.5 9740.24 1

Improvement
Intercept 1.17 0.2 0.78 1.56 22984.38 1
Confidence -4.27 0.31 -4.88 -3.68 21332.94 1

Improvement
Intercept (earlier; more accurate) 0.09 0.01 0.08 0.11 3830.29 1
Earlier; less accurate -0.09 0 -0.09 -0.08 19689.95 1
Later; more accurate -0.04 0.01 -0.05 -0.03 16925.55 1
Later; less accurate -0.04 0.01 -0.06 -0.02 17547.86 1

Table C2. Deviance information criterions (DIC) for different versions of the social DDM. The version
with the lowerst DIC is indicated in bold.

No further drift Drift towards initial choice Drift towards correct

Neither 79493 76026 77854
Varying start point 76364 74183 74851

Social drift 78058 74275 77286
Both 74200 71865 73835
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Table C3. Mean paramter estimates and 95% credible intervals of the social DDM for different group
sizes.

Small Medium Large

NDT (Ts) 0.4 [0.23, 0.56] 0.33 [0.25, 0.41] 0.31 [0.26, 0.37]
Start point (a) 4.2 [3.11, 5.35] 3.43 [2.81, 4.07] 3.9 [3.46, 4.37]
Start point (b) 0.5 [0.45, 0.54] 0.48 [0.45, 0.51] 0.5 [0.48, 0.52]
Personal drift 0.65 [0.45, 0.86] 0.62 [0.5, 0.75] 0.53 [0.47, 0.59]
Social drift (s) 0.51 [0.23, 0.82] 0.31 [0.24, 0.38] 0.36 [0.3, 0.41]
Social drift (q) 1.75 [1.16, 2.36] 0.93 [0.81, 1.05] 0.66 [0.6, 0.72]

Choice threshold 3.22 [2.58, 3.9] 3.43 [3.09, 3.77] 3.3 [3.04, 3.56]

Table C4. Differences between parameter estimates for different group sizes. Shown are the mean and the
95% credible intervals.

Small – Medium Small – Large Medium – Large

NDT (Ts) 0.06 [-0.12, 0.25] 0.08 [-0.09, 0.26] 0.02 [-0.08, 0.11]
Start point (a) 0.77 [-0.48, 2.08] 0.3 [-0.88, 1.51] -0.47 [-1.25, 0.31]
Start point (b) 0.01 [-0.04, 0.07] -0.01 [-0.06, 0.04] -0.02 [-0.06, 0.02]
Personal drift 0.03 [-0.2, 0.27] 0.12 [-0.08, 0.33] 0.09 [-0.04, 0.23]
Social drift (s) 0.2 [-0.09, 0.51] 0.15 [-0.13, 0.46] -0.05 [-0.13, 0.04]
Social drift (q) 0.82 [0.22, 1.44] 1.1 [0.5, 1.71] 0.27 [0.14, 0.41]

Choice threshold -0.21 [-0.93, 0.54] -0.08 [-0.77, 0.65] 0.13 [-0.3, 0.56]

Table C5. The number of groups per group size.

Group
size

Number
of groups

Number
of participants

Classification

3 5 15 Small

7 3 21 Medium

8 1 8 Medium

9 1 9 Medium

10 1 10 Medium

15 3 45 Large

16 1 16 Large

17 1 17 Large

Total: 16 141
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Table C6. Description of the parameters of the 2DSD.

Model feature Parameter Description

Nondecision
time

NDT

A parameter between 0 and 1 ac-
counting for nondecision time (e.g.,
motor response time), parameterized
as the time relative to an individual’s
fastest response.

Relative start
point

z
Describes the initial evidence state
before the evidence sampling process
begins.

Predecisional
drift rate

δpre �{
δdi f f icult , if difficult

δdi f f icult + ∆eas y , if easy

The baseline predecisional drift rate
for difficult (i.e., 4 or 6 sharks) and
easy (i.e., 3 or 7 sharks) trials.

Boundary
separation

α
The boundary separation determines
how much evidence an individual has
to accumulate to make a decision.

Carryover
effect

w
A parameter controlling how strongly
the predecisional drift rate carries
over to the postdecisional drift rate.

Self-
confirmation

bias
δchoice

A parameter describing the influence
of the choice (i.e., being correct or in-
correct) on the subsequent drift rate.

Confidence
criteria

c j
Thresholds that divide the evidence
space into confidence judgements.

Table C7. 2DSD parameter results

Parameter Estimate l−95% CI u−95% CI Eff.Sample Rhat

Nondecision time 0.63 0.56 0.74 2362.88 1
Relative start point 0.53 0.52 0.54 2085.7 1
Predecisional drift rate (intercept, difficult) 0.37 0.33 0.41 1991.81 1
Predecisional drift rate (effect of easy) 0.05 0 0.1 2256.05 1
Boundary separation 2.5 2.45 2.56 2268.78 1
Carryover effect 0.72 0.62 0.83 2354.22 1
Self-confirmation bias 1.64 1.47 1.8 1962.74 1
Confidence criteria 5 3.27 2.46 4.09 1875.05 1
Confidence criteria 4 4.99 4.54 5.44 2444.76 1
Confidence criteria 3 3.83 3.5 4.17 2160.56 1
Confidence criteria 2 3.04 2.74 3.35 2499.86 1
Confidence criteria 1 2.4 2.11 2.72 2605.37 1
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Figure D1. Example trajectories of the evolutionary algorithm. Shown are the evolutionary trajectories
of bias (left), boundary separation (center), and social drift rate (right), for six additional scenarios. These
scenarios were randomly drawn from all 30 analysed scenarios. The corresponding parameter settings are
shown in the right panels. The colored lines represent the average parameter value within each of the eight
evolving populations and the black line indicates the average across all eight populations.
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