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Abstract

Systems biology deals with the computational and mathematical modeling of complex
biological systems. The aim is to understand the big picture of the system’s dynamics
rather than the individual parts by integrating different sciences, e.g., mathematics, physics,
biology, computer science, and engineering. In biological systems, mathematical models
of biochemical networks are necessary for predicting and optimizing the behavior of cells
in culture. Different mathematical models have been discussed, such as discrete models,
continuous models, and hybrid models. In a discrete model, the biological system assumes
discrete values. A continuous model uses a system of differential equations to describe the
change of concentrations of substances in a cell over time. A hybrid model combines both
discrete and continuous models. The main challenge in continuous models is to find the
kinetic parameter values. In this thesis, we build a kinetic model of a metabolic-genetic
network introduced in Covert et al., 2001 that mimics a discrete model of regulatory flux
balance analysis (rFBA) which is based on steady-state assumptions. The kinetic model
we introduce has unknown parameters, so it is necessary to perform parameter estimation
techniques. We perform a parameter estimation technique using data sets generated from a
simulation of the rFBA model. In nature, many phenomena of interest are high-dimensional
and complex. Thus, model reduction is considered a vital topic in systems biology. Model
reduction methods are mathematical techniques that aim to represent a high-dimensional,
dynamical system by a low-dimensional system that roughly preserves the main features
and characteristics of the original system. The idea of model order reduction is to use the
reduced-order model instead of the full-order model in the simulation or optimization of the
system to reduce the computational effort and the runtime of the simulations. In this thesis,
we discuss two different model reduction methods. The first method assumes a time scale
separation, i.e., it assumes two time scales, a fast time scale and a slow time scale, where
the fast time scale dynamics converge to a quasi-steady state. The second approach, proper
orthogonal decomposition, aims at obtaining low-dimensional approximate descriptions of
high-dimensional processes while retaining the most important features of the dynamics. We
apply these approaches to different biological system models from the BioModels database.





Zusammenfassung

Die Systembiologie beschäftigt sich mit der computergestützten und mathematischen Beschrei-
bung biologischer Systeme. Ziel ist dabei, die Gesamtheit der Dynamik des Systems zu
verstehen, und nicht etwa nur individuellen Teile. In biologischen Systemen werden mathe-
matische Modelle biochemischer Netzwerke benötigt um das Verhalten von Zellen vorher
zu sagen und in Zellkulturen zu optimieren. Unterschiedlichste Modelle sind im Diskurs –
diskrete Modelle, kontinuierliche Modelle, Hybridmodelle. In einem diskreten Modell nimmt
das biologische System diskrete Werte an. Ein kontinuierliches Modell verwendet ein System
von Differentialgleichungen um die veränderung der Konzentration von Zellsubstanzen über
einen bestimmten Zeitraum zu beschreiben. Ein Hybridmodell kombiniert diskrete und
kontinuierliche Modelle. Die größte Herausforderung eines kontinuierlichen Modells ist
die kinetische Reaktionsrate zu finden. In dieser Arbeit wurde ein kontinuierliches Mod-
ell eines metabolisch-genetischen Netzwerks nach Covert et al. 2001 aufgebaut, welches
auf einer steady-state Annahmen beruht und ein diskretes Modell einer regulatorischen
Flux-Gleichgewichts-Analyse (rFBA) nachahmt. Da die Parameter des kinetischen Systems
unbekannt sind, müssen diese abgeschätzt werden. Dazu werden Datensätze aus rFBA Simu-
lationen generiert, welche zur Kalibrierung verwendet werden. Viele natürliche Systeme,
die von Interesse sind, sind hoch-dimensional und komplex. Folglich ist die Reduktion von
Modellen ein integraler Bestandteil der Systembiologie. Modellreduktionsmethoden sind
mathematische Techniken, die dazu dienen ein hoch-dimensionales, dynamisches System in
einem niedriger-dimensionalen System, welches grob die wesentlichen Eigenschaften und
Charakteristika erhält, darzustellen. Die Idee hinter der Reduktion einer Modellordnung ist
ein System niedrigerer Ordnung an Stelle des vollen Models zur Simulation oder Optimierung
des Systems zu verwenden, um somit den rechnerischen Aufwand und die Rechenzeit der
Simulationen zu reduzieren. In dieser Arbeit werden zwei verschiedene Methoden zur Mod-
ellreduktion diskutiert. In der ersten Methode wird eine Separierung der Zeitskala angenom-
men – eine langsame und eine schnelle Zeitskala. In der zweiten Herangehensweise, welche
’Proper Orthogonal Decomposition’ genannt wird, werden niedrig-dimensionale Näherungen
höher-dimensionaler Prozesse generiert, wobei wiederum die wichtigsten Eigenschaften der
ursprünglichen Dynamik erhalten bleiben. Diese Methoden werden auf unterschiedliche
Modelle der BioModel Datenbank angewendet.





Contributions

In biological systems, mathematical models of biochemical networks are necessary for pre-
dicting and optimizing the behavior of cells in culture. Different mathematical models have
been introduced, such as discrete models, continuous models, and hybrid models to describe
the behavior of a cell. In this thesis, we have addressed two main topics. First, we propose
how to build a continuous model for given discrete and hybrid models of a metabolic-genetic
network to overcome the limitation and the difficulty of these models. Second, we apply
two different model order reduction methods of the kinetic model of biological systems,
where the kinetic models of many phenomena of interest are high-dimensional and complex
resulting in large computational effort in the simulation.

The continuous model we introduce enables us to study the dynamic behavior of every
single component of the biological system which helps in understanding the full picture of the
system. Additionally, various mathematical theories may be applied to a continuous model,
e.g., for parameter estimation, model order reduction, etc. However, the procedure of finding
parameter values (e.g., constant reaction rates) for a continuous model is still a challenge in
biological systems. This requires us sometimes to apply parameter estimation techniques
to obtain parameter values. In contrast, a discrete model of regulatory flux balance analysis
(rFBA) uses only a few parameters because rFBA is based on steady-state assumptions.
However, even though rFBA uses a few parameters, its main limitation is that it is not able
to predict the dynamic behavior of every component which the continuous model is able to
achieve (Chapter 2).
The metabolic-regulatory network is considered as an example of a hybrid system. However,
the hybrid model becomes complicated if the number of regulatory rules is large because the
modeling of regulatory rules using the boolean functions and detecting of events becomes dif-
ficult. We have introduced a continuous model of the hybrid system of a metabolic-regulatory
network. We have shown that by using our continuous model, we can more easily obtain
the same results as those produced by a hybrid model for a metabolic regulatory network
(Chapter 3).



6 List of Tables

In the second primary topic, we have explained a model order reduction methods (MOR).
The MOR methods are used to reduce the computational complexity of high dimensional
systems by approximating them with lower-dimensional systems while retaining the im-
portant information and properties of the full order system. First, we have discussed the
time scale separation technique, a major class of MOR methods in system biology. The
time scale separation technique assumes two time scales, a fast time scale and a slow time
scale, where the fast time scale dynamics converge to a quasi-steady state. The available
literature was not clear enough about how to satisfy the required conditions of this technique
to biological systems. We have clarified and explained the idea behind the technique and
applied it to different metabolic-genetic networks. In our study, we checked numerically that
the required conditions were satisfied (Chapter 4). The advantage of the time scale separation
technique is that it preserves the dynamics of the original system. However, it is difficult
to apply it to a large scale system since the required conditions (Tikhonov’s theorem ) of
this technique are difficult to satisfy. The technique requires the separation of slow and fast
components which is difficult to do in large scale systems. This difficulty motivated us to use
another technique that overcomes all the difficulties of the time scale separation technique.
The technique which we use is called proper orthogonal decomposition (POD). The POD
technique works by projecting a high-dimensional system onto a lower-dimensional space.
The POD technique works well for large-scale systems, but the dynamics are given for a
surrogate model that is obtained via a projection of the original model. Thus, it is difficult to
predict the contribution of a specific single component.
We successfully applied the POD technique to the different biological systems from the
BioModels database. We have used the POD to compute a reduced-order model for different
initial conditions of the dynamical system. Using different initial conditions in the time scale
separation technique will usually fail, because the algebraic equations of the fast variables
may not be solvable if inconsistent initial values are prescribed (Chapter 5).



Chapter 1

Introduction

Systems biology is an integrated approach to study the behavior of biological processes. It
tries to put all the pieces of a biological system together to understand how all the pieces
interact [21]. Research in systems biology is based on an interdisciplinary approach studying
the whole living system rather than individual components [5; 82]. It integrates different sci-
ences, e.g., mathematics, biology, computer science, engineering, and physics, to understand
the various interacting roles involved, see [49; 79; 149].

Systems biology relies on simplified mathematical models of cells and organisms. Often,
mathematical models are used to study complicated objects, such as population dynamics
[70; 112], regulatory networks [20], or metabolic networks [37]. The goal is to develop
models that capture the essence of various interactions while allowing their output to be more
fully understood [109]. Mathematical modeling is considered a powerful tool for gaining
an understanding of the functioning of the large and complicated systems where the good
models show how the process works and then predict what may follow [1; 40; 86].

The mathematical model of a dynamic system can be characterized by a set of differential
equations [3; 126] which are about continuous flows or difference equations [77; 87] which
are useful in describing discrete problems. These equations, form the mathematical model of
the phenomena of interest. The parameters and variables that define the equations can be
measured or estimated using experimental data. Different forms of mathematical models have
been discussed, such as discrete models, continuous models, and hybrid models. In a discrete
model, the biological system assumes discrete values [80; 135]. A continuous model uses a
system of differential equations to describe the change of concentrations of substances in a
cell over time [71; 74; 143]. A hybrid model combines both discrete and continuous models
[8; 65]. A continuous model is considered to be more effective and provides a useful level of
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description of the biological system. It is considered a convenient mathematical model to
which many theorems can be applied, e.g., model reduction and parameter estimation. On
the other hand, a continuous model can be complicated because it requires more information
about kinetic parameters which still poses a challenge in biological study. Often, discrete
models are used in biological systems to describe gene expression networks. The gene
expression networks usually are described by the boolean network model [76; 146] where
genes switch between two states "on" or "off".

Here, in this thesis, we focus on the study of a mathematical model that is described by a
system of ordinary differential equations. We are interested in a continuous model that can
predict the full picture of the system behavior to which we can apply different theories. In
our study, we discuss how to express discrete and hybrid models by continuous models and
predict almost the same result as for the discrete models in Chapters 2,3. In addition, we will
study model reduction methods of continuous mathematical models in Chapters 4,5.

In the following sections, we will discuss the different mathematical models that are used
and the types of kinetic laws that are used for describing specific reactions.

1.1 Kinetic modeling of chemical networks

In kinetic theory [90; 139], different types of kinetics are used to build up a system of ordinary
differential equations. Examples include mass action kinetics, which was introduced by
Guldberg and Waage in the 19th century [46; 61] and Michaelis-Menten kinetics [104],
[73] which is considered to be one of the best models for the reactions that are catalyzed
by enzymes. The formulas for Michaelis-Menten kinetics are derived from mass-action
kinetics of enzymatic reactions. In addition, there is the Monod equation, which has the
same form as the Michaelis-Menten equation [96; 108]. The Monod equation is used for
describing the growth of microorganisms. Hill equations [53; 66] were introduced by A. Hill
in 1910 to describe the equilibrium relationship between oxygen tension and the saturation
of haemoglobin [67]. It is considered the simplest example of a mathematical representation
of a regulated reaction. Most of these kinetics will be discussed later in this chapter.
In this section, we will give an overview of the kinetic modeling of biochemical reactions.
Firstly, we introduce a simple structure of a chemical network, as shown in Figure 1.1.
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A
C

B D

E

r1 r2

r3

r4

r5

r6 r72F

Figure 1.1: A simple structure for a metabolic network involving a set of species: A, B, C, D, E,
and 2F . It shows seven reactions as r1 : 0 −→ A, r2 : A −→ B+C, r3 : B −→ D, r4 : C −→ E,
r5 : E −→C, r6 : D+E −→ 2F , r7 : 2F −→ 0. The metabolites on the left-hand side of arrows
indicate the reactants, and the ones on the right-hand side indicate the products.

The general formula of the set of chemical reactions ri, i ∈ {1,2, ..., nr} is defined as
follows

ri :
nm

∑
j=1

ξ jiM j −→
nm

∑
j=1

η jiM j,

where nr and nm are the number of reactions and species, respectively. The coefficients ξ ji

and η ji are called the stoichiometric coefficients, they denote the proportion of substrate
and product molecules involved in the reaction, see [136]. The network has seven reactions
(nr = 7) and six species (nm = 6). For instance, the reaction r2 will be written as

r2 : A −→ B+C,

where the stoichiometry coefficients of this reaction are

ξ12 = 1, ξ22 = 0, ξ32 = 0, ξ42 = 0, ξ52 = 0, ξ62 = 0,

η12 = 0, η22 = 1, η32 = 1, η42 = 0, η52 = 0, η62 = 0,

where ξ12 = 1 is the proportion of the substrate M1 involve in reaction r2, i.e., only one
molecule of A participates in the reaction r2. We can introduce the chemical network
mathematically by a stoichiometric matrix , which contains important information about the
structure of the metabolic network [123].
A stoichiometric matrix [S = S ji] is a nm ×nr matrix such that the rows correspond to the
species and the columns to the reactions, with a coefficient defined by
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S ji = η ji −ξ ji.

The stoichiometric matrix of the network which is shown in Figure 1.1 is given as follows

S =



r1 r2 r3 r4 r5 r6 r7

A 1 −1 0 0 0 0 0

B 0 1 −1 0 0 0 0

C 0 1 0 −1 1 0 0

D 0 0 1 0 0 −1 0

E 0 0 0 1 −1 −1 0

F 0 0 0 0 0 2 −2



∈ R6×7.

1.1.1 Dynamic behavior of chemical networks

At the beginning of any reaction in a network, the species start with initial concentration
values. A reaction rate v describes the change in concentration of reactants over time. In
other words, a reaction rate measures how quickly reactants are changed into products [29].
A simple characterization of the rate of a chemical reaction is given by the law of mass action
[60], which states that the rate of a chemical reaction is proportional to the product of the
concentrations of the reactants [46]. The reaction rate is thus defined as follows

vi(M(t)) = ki

nm

∏
j=1

Mξ ji
j (t), for all i = 1, ...,nr,

where M(t) = [M1(t),M2(t), ...,Mnm(t)], ki is the reaction rate constant for the ith reaction.
The dimensions of the rate constant depend on the number of reactants. The rate constant for
a single-reactant reaction has dimensions of time−1 and in the case of two reactants, the rate
constant has dimensions of concentration−1 · time−1 .

The modeling of chemical reaction systems is described by systems of ordinary differen-
tial equations that represent the rate of change of metabolite concentrations as follows

The rate of change of [M] = S· (rate of reaction).
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In general, the system of differential equations associated with chemical reactions is
given by

dM(t)
dt

= S · v(M(t)),

where M = [M1(t),M2(t), ...,Mnm(t)] is the vector of metabolite concentrations, m is the
number of metabolites in the dynamical system, v = [v1(t),v2(t), ...,vnr(t)] is the vector of
reaction rates, nr is the number of reactions in the network, and S ∈ Rnm×nr is the stoichio-
metric matrix.

Another kinetic to describe the reaction is called Michaelis-Menten kinetics. The
Michaelis-Menten kinetics are often used to account for enzymatic dynamics. Using these
kinetics, the expression of the reaction rates depends on the concentration of enzyme (e) and
substrate (M j). The reaction rate v is given by

v =
vmax ·M j

KM +M j
,

where vmax := kcat · e is the maximum uptake rate. The turnover number kcat [157] is the
number of times each enzyme site converts a substrate to product per unit time. The unit of
turnover number is time−1. The Michaelis-Menten constant KM is defined as the substrate
concentration at half of the maximum velocity [92]. Thus, the unit of KM is the same as the
unit of the concentration of the substrate.
The reaction rate constants of many biological systems of interest are unknown and diffi-
cult to obtain experimentally. This motivates the need for model calibration, which is an
important topic in systems biology [19; 80]. Model calibration is the process of estimating
parameter values from given data sets [12; 124] and it is considered a big challenge topic in
mathematical modeling, see [10; 69]. We will discuss in detail the methods and techniques
of model calibration in Section 1.6.

Some mathematical approaches to systems biology avoid the use of kinetic rate constants
by making the assumption that the dynamical system is in a steady state [27; 136]. Examples
include flux balance analysis (FBA) [114], [48], resource balance analysis (RBA) [56], models
of metabolism and expression (ME) [93] and the dynamic flux balance analysis (dFBA) of
Palsson [147] or Mahadevan [99]. In addition, there are also the dynamicME approach [158]
and the dynamic enzyme-cost flux balance analysis (deFBA) [152]. In the following section,
we discuss the approaches of FBA and dFBA which are mentioned in Palsson et al. [147].
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1.2 Constraint based modeling

Metabolic networks are often analyzed in a steady-state case. However, In real systems, the
cell is not in a steady-state, but is in a dynamic state. Constraint-based modeling is based
on simplifying the network by overcoming the rate constants values, which is considered
to be the difficult part in mathematical modeling. Several approaches are used to study and
analyze metabolic networks, such as the FBA approach, which was used in several recent
applications [42; 43]. The FBA is a mathematical approach that is used to analyze the flow of
metabolite through a metabolic network. The metabolic network is constrained based on the
stoichiometry of the metabolic reactions and there is no need for constant rate values. The
FBA approach [114] is defined as

max c⊺v

s.t Sv = 0

lb ≤ v ≤ ub,

(1.1)

where S is the stoichiometric matrix, v represents the vector of fluxes (reaction rates), c is
a vector of weights indicating how much each reaction v contributes to the objective, and
lb, ub are lower and upper bound flux rates for every reaction, respectively. The expression
c⊺v is called the objective function which will be maximized. For instance, if one aims
to maximize the growth rate associated to one reaction, e.g., biomass (biomass can be de-
fined as a composition of chemical components) production, then c will be a vector with 1
in the entry corresponding to the index of the biomass reaction and 0 in all other entries [114].

Varma and Palsson [147] further developed the FBA to optimize the biomass growth by
predicting the time course of concentration of biomass and external metabolites Mext in a
medium and taking into account that the behavior inside the cell is at a quasi-steady state.
The dynamical behavior of biomass and external metabolites concentration is described by
differential equations in the following form

d
dt

X(t) = µ(t)X(t), X(t0) = X0

d
dt

Mext(t) =−vext ·X(t), Mext(t0) = Mext,0

where X is the cell density (biomass), µ is the growth rate, Mext,0 is the initial substrate
concentration of external metabolites, and vext denotes the substrate uptake. Palsson et al.
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(see e.g., [33; 147]) studied the dynamic profiles of cell growth and external concentrations
by dividing the experimental time into small time steps ∆t, specifying initial concentrations,
and predicting the biomass and by-product concentrations for the next step by an iterative
algorithm:

Xi+1 = Xi · eµi∆t ,

Mext,i+1 = Mext,i +
vext,i

µi
Xi(1− eµi∆t),

for i = 0,1, ...,N where N is the number of time step, Xi is an approximation for X(ti), µi is
an approximation for µ(ti), and so on for Mext,i, vext,i. The values for µi and vext,i in each
iteration step are obtained from the optimization problem solved in the FBA (1.1).

Since the FBA model does not include the regulation of gene expression, the approach
leads to incorrect prediction in many cases related to the regulation of gene expression. In
2001, Covert & Palsson [33] developed a method that combines transcriptional regulatory
rules with the FBA to generate time profiles and simulate the corresponding behavior under
certain conditions. This approach is called the regulatory flux balance analysis (rFBA). In
the rFBA models, the objective function (e.g., biomass growth) is optimized while regulatory
constraints reduce the dimension of the solution space. The rFBA models are solved in an
iterative way, alternating between flux balance analysis and applying the boolean rules. Due
to the steady-state assumption of flux balance analysis, the rFBA can handle only external
metabolite concentrations. In Chapter 2, our contribution is to build a kinetic model that
mimics the rFBA model, to overcome the limitation of the rFBA model. We study the trans-
formation of the rFBA model into a kinetic model, which includes concentrations for both
internal and external metabolites. In addition, we perform parameter estimation techniques.

1.3 Modeling gene regulation networks

The study of metabolic networks is one of the main areas of research in understanding the
behavior of metabolites and flux distribution in metabolic networks. The development of bio-
logical systems, especially in genomics, has provided detailed insight into genetic networks
of many microorganisms. Metabolic-genetic models present the combination of metabolism
and gene expression. In these models, different metabolite reactions are interconnected by
various forms of protein interactions [89].
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We now review the central dogma [34; 81] of molecular biology, which states that protein
synthesis depends on two phases: transcription and translation. See Figure 1.2.

Transcription: Transcription process starts when RNA polymerase binds to a section of
DNA known as a promoter and copies messenger RNA (mRNA ).

Translation: The translation is the process in which ribosomes in the cytoplasm synthe-
size proteins after the transcription of DNA to RNA in the cell’s nucleus.

Figure 1.2: The central dogma of molecular biology describes the two-step process, transcription
and translation, by which the information in genes flows into proteins: DNA → RNA → protein.
Figure is taken from [35], License: CCBY −SA3.0.

The central dogma could be summarized [137] as follows:

Gene mRNA Protein

0 0

transltransc

degradation degradation
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1.3.1 Discrete modeling of gene regulation networks

Since it is known that the gene regulatory and metabolic processes depend on one another, a
few studies addressed their interplay on a large scale model. In 2008, Samal et al. studied the
transcriptional regulatory network of E. coli metabolism as the boolean network model [127].
Covert et al. [32; 33] discussed gene regulation through the core carbon metabolic network
of E. coli, such that the transcriptional regulatory rules are presented by the boolean Logic
equation [76; 146].
Figure 1.3 shows a simple system that involves one gene G which is transcribed by a process

trans to produce an enzyme E. The enzyme catalyzes the reaction rxn which converts the
species A to the species B. The presence of species B will inhibit the trans process, see [33].
The logic equation which describes this procedure is

trans= IF (G) AND NOT (B)

rxn= IF (A) AND (E)

where trans and rxn have boolean values 0 or 1.

G

Arxn

trans

E

AextB

Figure 1.3: A simple regulatory circuit. Gene G is transcribed by a process trans to produce an
enzyme E. Then this enzyme catalyzes a reaction rxn which converts substrate A into product B.
Product B then represses transcription of G. The figure is inspired from [33].

1.3.2 Continuous modeling of gene regulation networks

In the previous subsection, we showed how the boolean logic functions describe the expres-
sion of regulatory genes in the discrete model. In this subsection, we present the continuous
version of gene regulation. For instance, consider that the transcription of a gene is activated
by activator m, see Figure 1.4. Then the gene regulation can be described as shown in the
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diagram below.

Gene mRNA Protein

Activators

0

0

Figure 1.4: A structure illustrates how the activator induce the gene to produce mRNA then
produce Protein [137].

Assume that the regulator ( Activator) m controls the synthesis of mRNA. The dynamics
of mRNA and proteins are described by ordinary differential equations using mass action
kinetics and Hill function as

dmRNA
dt

= k1
mh

Kh +mh −d1 ·mRNA,

dProtein
dt

= k2 ·mRNA−d2 · protein,

where k1 is a maximal transcription rate, K is an activation coefficient with units of concen-
tration. A Hill coefficient h is a dimensionless parameter that was derived by A. V. Hill in
1910, and reinvented by J. Wyman several decades later [15; 55], see Figure 1.5. The scalar
parameters d1 and d2 are degradation rates for mRNA and Proteins, respectively [137].

m

h=2
h=4
h=6

Figure 1.5: The figure shows the graph of the Hill function Γ(m) =
mh

γh +mh with different values

of h, where h is the Hill coefficient, γ is a threshold value, and m is the substrate concentration.



1.4 Hybrid model 17

So far, we have presented models that are discrete or continuous. In the following section,
we discuss another type of model, the so-called hybrid models that combine continuous and
discrete models.

1.4 Hybrid model

Hybrid systems are a collective term for dynamical systems presenting both continuous
variables (described by a differential equation) and discrete states (logical functions) [59; 91].
A formal model for a hybrid system is known as a hybrid automaton. In [7; 8; 65; 118], a
hybrid automaton H is defined a tuple (Y,Mode,Edge,Event, Init, Inv,Dyn,Jump), where

• Y is a finite set of real variables and Ẏ represents the first derivatives of the variables;

• Mode is a finite set of {M1,M2, ...,MnM} discrete states, nM is a number of modes;

• Event is the set of event names;

• Edge (EEE) is a finite set of labeled edges that represents discrete changes of one mode
to another in the hybrid system that are labeled by event names;

• Init is a set of initial conditions of continuous variables Y when the hybrid system starts
from mode M, Inv is an invariant condition which constrains the possible valuations of
the continuous variables Y when the control of the hybrid system is in mode M, and
Dyn is a set of differential equations that specifies the dynamics of variables in every
mode;

• Jump defines the possible discrete actions of H and specifies the change of the variable
values after transition eee ∈EEE has taken place.

To clarify the hybrid system and its components, we give an example of a simple metabolic-
regulatory network for describing a hybrid system.



18 Introduction

RP = off RP = on

ẏ = vy − kdyẏ = −kdy

y ≥ oy ≥ o

RP < 3

RP ≥ 3

RP < 3RP ≥ 3

Discrete state

Dynamic (Dyn)

Inv(l)

Event

Edge

yo yo
Init(l)

Figure 1.6: Hybrid automaton model of a metabolic-regulatory network. Assume a regulatory
protein (RP) that has binary values {0,1}. In the on-mode, the rate change of protein y is
described by the protein synthesis rate vy and degradation term kdy where kd is the degradation
constant. In the off-mode, the rate change of protein y is described by degradation term kdy only.
The transition from on-mode to off-mode depends on the value of RP, which is called an event.

Hybrid modeling topics are an area of active research; see [117; 140; 141] for some
overviews and surveys. Some of this research focuses on integrative and systems biology
[98; 106] and complexity in biology [31]. In addition, hybrid models have been applied in
cancer modeling [102; 128; 154], and to tumor growth models [51; 122].

In Chapter 3, our contribution is to describe a continuous version of the hybrid model
of a metabolic-regulatory network that is introduced in [95], because a continuous model
is considered more convenient and easy to handle. In addition, different theories can be
applied to continuous models, e.g., parameter estimation, model reduction, etc. In addition,
the hybrid model becomes more complicated in case the number of regulatory proteins is
enormous because the modeling of regulatory proteins and detecting of events becomes
difficult. In the above example, we have one regulatory rule and the number of the modes is
2 according to the formula 2n where n = 1 is the number of regulatory rules. It means that
the increase in the number of regulatory rules leads to the increase in the number of modes
and events which make the hybrid system is difficult to handle.
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1.5 Model reduction methods

Kinetic models of metabolic networks are necessary for predicting and optimizing the
behavior of cells in culture. However, most of these models are high-dimensional because of
a large number of species and reactions, as well as kinetic rate constants [52]. Model order
reduction (MOR) aims to reduce the computational complexity and computational time of
large-scale dynamical systems, by using approximate models of much lower dimension that
can produce almost the same input-output response characteristics [129]. A survey of MOR
methods is given in [16].

In the history of mathematics, the approximation of a complicated function with a simpler
formulation already exists a long time ago. In 1807, Fourier published the idea that a function
can be approximated with a few trigonometric terms [129]. In linear algebra, the initial step
in the topic came from Lanczos (1893-1974). The aim is to reduce a matrix in a tridiagonal
form [11].

In system biology, methods based on time scale separation are a major class of MOR
methods. Such methods are based on singular perturbation analysis, which depends on
the identification of quasi-steady-state conditions for fast reactions, and the derivation of
non-linear models of the slow dynamics independent of the fast reaction rate expressions
[104]. This approach was applied to a model of erythrocytes metabolism by assuming all
reversible reactions occur at a faster time scale than the irreversible ones [130]. Also, it
was applied to a metabolic-genetic network model, where metabolism reaction is very fast
compared to enzyme reactions, which are considered to be slow. That means the difference
between the time scales of enzymes and metabolites leads to a steady-state of metabolism
reactions to adapt to the changing of the cell, see [89].

Another approach is called proper orthogonal decomposition, which is a MOR technique
that works by projecting high-dimensional data onto a lower-dimensional space [78; 150].
The idea of the proper orthogonal decomposition is to reduce a large number of interdepen-
dent variables to a much smaller number of variables while retaining as much as possible of
the variation in the original variables.

The advantage of the time scale separation method is that it preserves the dynamics of
the original system. On the other hand, it is difficult to apply to a large scale system because
the required conditions ( Tikhonov’s conditions) of this technique are sometimes difficult
to satisfy. In addition, it requires the separation between slow and fast components. In
contrast, the POD method works well for large scale systems but the dynamics are given for
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a surrogate model that is obtained via a projection of the original model. Thus, it is difficult
to predict the contribution of a specific single component.

In Chapter 4, our contribution is to discuss a model reduction by time scale separation
technique for a metabolic-genetic network. By following the work of [62], we clearly
described the boundary layer system which is needed to show the asymptotic stability of
the fast variables. We apply the time scale separation technique to different examples of a
metabolic-genetic network. For instance, systems that describe a scenario of unimolecular
and bimolecular reactions. While, in Chapter 5, our contribution is to discuss the Proper
Orthogonal Decomposition (POD) method for model reduction and to apply that technique
to different biological systems from the BioModels database. In addition, we compare the
time cost of the simulation of the full and reduced models. Also, we predict the behavior of
the metabolic-genetic network for different scenarios with the same reduced order model.

1.6 Model fitting

This section aims at giving an overview of statistical methods used for parameter estimation
or model fitting on which the "Data2Dynamics" toolbox based. We will apply this toolbox
on a case study in Chapter 2.

Mathematical modeling in systems biology may require solving a forward problem or an
inverse problem [159]. The forward problem (inputs to outputs) in the mathematical model
means that given a model with known inputs and parameter values, compute the system state
(output), see Figure 1.7. In contrast, model calibration (outputs to inputs) uses the measured
system states and other available information to find the unknown model inputs [115]. This
procedure is called the inverse problem of the model prediction [13; 145].
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Forward problem

Inverse problem

DataModelModel

Figure 1.7: A simple definition of forward and inverse problems.

Parameter estimation is defined as the process of using observations from a dynamical
system to develop mathematical models that represent the system characteristics properly.
More precisely, the main goal of parameter estimation is to determine the parameter values
for a model such that simulated data from this model best match experimental observations,
see [107; 144].

With advances in computing, algorithms and numerical tools have been developed for
simulating complicated chemical and biological processes. These developments concerning
optimization and modeling focus on methods, and algorithms of computational optimization
[121] such as least square regression [6; 18], maximum likelihood estimation [45], Gauss-
Newton Method [39; 85; 113], Markov Chain Monte Carlo Methods (MCMC) [22; 54], etc.
These methods are used for estimating unknown parameters of mathematical models.

1.6.1 Some basic concepts of statistics

Here, we will introduce some definitions from statistics that are used in the following sections.
First, we briefly present the concept of a random variable. Subsequently, we present some
basic concepts, e.g., a probability density function, likelihood, and maximum likelihood
estimation.

A random variable Z is a variable whose values are numerical outcomes of a random
phenomenon. In other words, it is a numerical quantity whose value depends on chance,
[156]. There are two types of random variables, discrete and continuous. A discrete random
variable has values that form a discrete data set, like the number of cars on the street. A
continuous random variable has values that form a continuous data set, like the height of
students in a class.



22 Introduction

A probability distribution Pr is a table or an equation that links each outcome of a statistical
experiment with its probability of occurrence [156].

A probability density function of a continuous random variable Z is a function P(z) such
that for any two numbers a and b

Pr(a ≤ Z ≤ b) =
∫ b

a
P(z)dz,

which means that the probability of Z in the interval [a,b] is the area under the graph of the
density function [151], see Figure 1.8. In addition, P(z) should satisfy these properties:

1. P(z)≥ 0 for all z ∈ [a,b],

2.
∫

∞

−∞
P(z)dz = 1.

Figure 1.8: Probability density function

There are different types of probability distributions. A commonly used probability
distribution is the normal distribution, which has the probability density function

P(z) =
1√

2 π σ2
exp (

−(z− µ̂)2

2 σ2 ),

where µ̂ is the mean and σ2 is the variance. The normal distribution with mean µ̂ and
variance σ2 is often denoted by N(µ̂,σ2) [4; 116].

The probability density function P(z) of the normal distribution is characterized by the
parameters µ̂ and the standard deviation σ . Thus, we can write the probability density
function as P(z, µ̂,σ). All the parameters can be written as a single vector of parameters
θ ∈ Rnθ , where nθ is the number of parameters.
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In practice, we often have unknown parameters θ , and the goal is to estimate θ values
from some given data z. Thus, we can estimate the unknown parameters by maximizing the
function

L(z|θ) = P(z|θ),

for the given observations z, where L(z|θ) is called the likelihood function [17]. This ap-
proach is called the maximum likelihood estimation [44; 105; 125]. It is a method for
estimating parameters of a model for given data by maximizing a likelihood function such
that the estimate which explains the data best, will be the best estimator.

In the following section, we will discuss in detail how to estimate the unknown parameters
for a given data set using maximum likelihood estimation.

1.6.2 Parameter estimation method

As we have discussed in the previous chapter, the dynamics of the species concentrations in
chemical networks can be described by a system of ordinary differential equations:

ẋ(t) = f (x(t),θ) = S · v(x(t),θ), x(t0) = x0, (1.2)

where x(t) ∈ Rnm is the vector of concentration of nm species and θ ∈ Rnθ is a vector of
parameters that contains all unknown constants determining the dynamics, e.g., kinetic
parameters and Hill coefficients. The function f can be decomposed into the stoichiometric
matrix S ∈ Rnm×nr and reaction rate v ∈ Rnr , where nr is the number of reactions, v could be
expressed by the rate law of mass action or the Michaelis-Menten kinetics.

In most cases, not all of the species concentrations can be measured directly. The dynamic
states x are linked to measurements via observation function gk(x(ti),θ) ∈ R such that

yk(ti) = gk(x(ti),θ)+ ε̂ki, (1.3)

where yk(ti), i = 1, ...,d is the measured data, d is the number of experimental data yk(ti) for
each observable k = 1, ...,s and s is the number of observable, measured at time points ti. The
measurement noise ε̂ki is assumed to be normally distributed such that ε̂ki ∼ N(0,σ2

k ). Thus,
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from equation (1.3), yk(ti) is also normally distributed yk(ti)∼ N(gk(ti),σ2
k ) with mean gk(ti)

and variance σ2
k , see [84].

For the estimation of the parameters θ , we use maximum likelihood estimation (MLE).
Under the assumption that the random variables yk(ti) are independent and identically
distributed, the maximum likelihood function L(y|θ) [84] is expressed as

L(y|θ) =
s

∏
k=1

d

∏
i=1

P(yk(ti)|θ),

where P(y|θ) is a probability density function is defined as:

P(yk(ti)|θ) =
1√

2 π σ2
k

exp
(
−(yk(ti)−gk(x(ti),θ))2

2 σ2
k

)
.

The parameters can be estimated numerically by

θ̂ = arg max
θ

L(y|θ).

The log-likelihood function is

log L(y|θ) = log
1√

2 π σ2
k

+ log
(

exp
(
−(yk(ti)−gk(x(ti),θ))2

2 σ2
k

))
.

Then we obtain

log L(y|θ) = const +
s

∑
k

d

∑
i

−(yk(ti)−gk(x(ti),θ))2

2 σ2
k

.

If we take two times the negative log-likelihood −2 logL(y|θ) of the data y for the
parameter θ then we get the following:

−2 log L(y|θ) = const +
s

∑
k

d

∑
i

(yk(ti)−gk(x(ti),θ))2

σ2
k

,

we represent −2 log L(y|θ) by −2 LL(y|θ). The maximum likelihood estimate of the
unknown parameter is given by
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θ̂ = arg min
θ

s

∑
k

d

∑
i
(yk(ti)−gk(x(ti),θ))2/σ

2
k ,

where −2LL is called the Chi-square χ2 [58; 155] or goodness of fit statistic. The goodness
of fit statistic −2LL is much easier to interpret than the likelihood and more efficient to
compute numerically.

Here, we clarify how to generate parameter samples to perform parameter estimation
techniques. In statistical sampling, a Latin square is a square grid containing sample posi-
tions, such that there is only one sample in each column and each row. It was inspired by
Leonhard Euler (1707–1783) [28; 153]. Latin hypercube sampling (LHS) is a generalization
of the Latin square-based method to an arbitrary number of dimensions and was introduced
by McKay in [64; 103]. It is a method for generating fewer samples and is used to decrease
computational complexity. Latin hypercube sampling is used to guarantee that each parame-
ter estimation run starts in a different place in the high-dimensional parameter space.

1.7 Thesis Structure

This thesis focuses on mathematical modeling of metabolic-genetic network and model order
reduction techniques for a kinetic model of different biological systems.
We introduce in Chapter 2, a kinetic model that mimics the regulatory flux balance analysis
of a metabolic-genetic network. Our kinetic model is built to overcome the limitation of the
rFBA model. Due to the steady-state assumption of flux balance analysis the rFBA model
can handle only external metabolite concentrations, whereas our kinetic model includes
concentrations for both internal and external metabolites.
We then introduce in Chapter 3 a continuous model that mimics the hybrid system of a
metabolic regulatory network. The hybrid model becomes complicated if the number of
regulatory proteins is large, since the modeling of regulatory proteins and detecting of events
becomes difficult. In other words, the increase in the number of regulatory rules leads to an
increase in the number of modes and events exponentially, which makes the hybrid model
is difficult to handle. Our continuous model is introduced to overcome the difficulty of the
hybrid model. We show that by using our continuous model, we can obtain the same results
as the results produced by the hybrid model for a metabolic regulatory network.
We continue in Chapter 4 with a model reduction method using the time scale separation
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technique. We clearly explain the required conditions that are needed to apply the technique.
We apply the technique to different examples of a metabolic-genetic network. We check
numerically that the required conditions are satisfied.
In Chapter 5, we discuss model order reduction using the proper orthogonal decomposition
method. We apply the method to different biological systems from the BioModels database.
In addition, we compute the reduced order model for different initial conditions of the
dynamical system. Finally, we end with some concluding results of the thesis in Chapter 6.





Chapter 2

Kinetic modeling of metabolic-genetic
networks

In this chapter, we build a kinetic model that mimics the regulatory flux balance analysis
(rFBA) model that is introduced in [33]. Our kinetic model is designed to overcome the
limitation of the rFBA model. Due to the steady-state assumption of flux balance analysis,
the rFBA model can handle only external metabolite concentrations, whereas our kinetic
model includes concentrations for both internal and external metabolites. Another difference
between the models is that the rFBA framework aims at an optimization over discrete time
steps in order to approximate the dynamics of external metabolites from stoichiometric
constraints. By contrast, the kinetic model gives a full picture of the dynamical system by
studying the dynamics of every component over a continuous time interval. The kinetic model
requires more parameters, while rFBA model uses only a few parameters. Due to the large
number of parameters, the kinetic model relies heavily on parameter estimation techniques.
We perform the parameter estimation technique using the D2D toolbox [119; 120] with two
different data sets for the diauxic switch and aerobic/anaerobic-diauxie scenarios. Then we
validate the kinetic model using a different data set for another scenario. In addition, we
discuss different kinetic models for the regulatory proteins in order to show diauxic growth
behavior.

2.1 Regulatory flux balance analysis (rFBA)

Integrated modeling of metabolism and gene regulation continues to be a challenging problem
in computational system biology. In [33], Covert & Palsson developed a method that
combines transcriptional regulatory rules with the FBA approach to generate time profiles
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and simulate the corresponding behavior under certain conditions. This approach is the
regulatory flux balance analysis (rFBA). The rFBA is a dynamic modeling approach that
shows the effects of transcriptional regulation on metabolism. In the rFBA model, the
objective function (e.g., Biomass growth) is optimized while regulatory constraints reduce
the dimension of the solution space. After the constraints have been applied, the original
solution may remain in the smaller solution space. The transcriptional regulatory rules can
be represented by the boolean functions [127]. In this section, we will briefly introduce the
main concepts of the regulatory flux balance analysis. The general form of the rFBA model
is defined by

max c⊺v

s.t Sv = 0,

gi(t) = fi(Mext(t),vint(t)), i = 1,2, ...,nr,

vmin,i ·gi(t)≤ vi ≤ vmax,i ·gi(t),

(2.1)

for discrete times t, where nr is a reaction number and vmin,i, vmax,i are lower and upper
bound flux rates for every reaction, respectively. In our study, the objective function c⊺v is
the growth rate. In (2.1) the regulation function gi(t) depends on the presence or the absence
of several important factors, e.g., external metabolites Mext and internal fluxes vint . The
function gi = 1 means that the reaction is constrained like in FBA, while gi = 0 implies that
the reaction flux is zero (i.e., vi = 0). By using the algorithm of Palsson in [147] as denoted
in Chapter 1, we obtain the concentration of Biomass and external metabolites in the discrete
time steps.

The COBRA toolbox [63] can perform the optimization over the discrete-time step of the
rFBA model after providing the initial condition values and several parameters, e.g., vmin,i,
vmax,i. It generates the value of Biomass and external metabolite concentrations for every
time step. This is shown in section 2.4. In the following section, we will present the object of
study, the metabolic-genetic network, from the perspective of rFBA and kinetic models.

2.2 Metabolic-genetic network

The most discussed microorganism in the current literature is the bacterium Escherichia
coli (E. coli) [24], which is often chosen as a “model” organism. This is because of its
central carbon metabolism. Many mathematical models have been developed to study the
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metabolism of E. coli, including the biochemical reactions that are involved in its growth and
cell division [9; 41; 94; 100; 101]. Therefore, mathematical models of cellular systems of E.
coli that can describe the interactions between metabolic networks and gene expression are
important for understanding biological phenomena [36; 82].
In this section, we will study mimicking core metabolic network of E. coli introduced in
[33]. We will present the reaction rates and the regulatory proteins of a simplified metabolic
network as depicted in Figure 2.1. The network contains 20 reactions and 19 metabo-
lites: 7 external metabolites (C1,C2,Oext ,Fext ,Hext ,Eext ,Dext) and 11 internal metabolites
(A,B,C,F,H,E,D,G,AT P,NADH,O2). We use a symbol X to represent the Biomass in the
mathematical model.

Biomass

A ATP

B F

Fext

Tc2 Tc1 Tf

2 ATP, 3 NADH 2ATP, 3NADH

C2 C1

R1

R3

R2a

R2b

ATP

Oext

O2

NADH

TO2

Rres

Rgrowth

10ATP

2NADH, 0.8C
2 ATP

Td

Te

R5a, b C

G
H

3E Eext

Hext

R8a, b

1ATP, 2NADH

4 NADH

3D DextR6

R7
R4

Th

Figure 2.1: A simplified core carbon metabolic network.

In Table 2.1, we describe all chemical reactions of metabolism and regulatory proteins
corresponding to every reaction.
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Reaction Reaction’s name Regulation

Exchange reactions

C1 → A T c1
C2 → A T c2 IF Not RPc1

Fext → F Tf
Oext → O2 To2

D → Dext Td
E → Eext Te
Hext → H Th

Intracellular metabolite reactions

A + ATP → B R1
B → C + 2 ATP+ NADH R2a IF Not RPb
C + 2 ATP + NADH → B R2b
B → F R3
C → G R4
G → 0.8 C + 2 NADH R5a IF Not RPO2

G → 0.8 C + 2 NADH R5b IF RPO2

C → 3 D + 2 ATP R6
C + 4 NADH → 3 E R7 IF Not RPb
G + ATP + 2 NADH → H R8a IF Not RPh
H → G + ATP + 2 NADH R8b
NADH +O2 → ATP Rres IF Not RPO2

Growth Processes
C+ F+ H + 10 ATP → Biomass Growth

Table 2.1: Reactions and regulatory rules for the simplified metabolic network.

The transcriptional regulatory rules are used with FBA to generate time profiles of cell
growth, substrate utilization, and by-product secretion for organisms. The regulatory rules
are presented by Thomas’ boolean formalism [146].
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The four regulatory rules of the network are summarized in the following table:

Regulatory proteins Transcriptional regulation
RPc1 IF (C1) tT c2 IF NOT ( RPc1)
RPh IF (νT h > 0) tR8a IF NOT ( RPh )
RPb IF (νR2b > 0) tR2a, tR7 IF NOT ( RPb )
RPO2 IF Not (Oext) tRres, tR5a IF NOT (RPO2)

Table 2.2: Boolean logic formula of regulatory protein rules.

The first logic formula in the above table illustrates that the presence of the metabolite
C1 will activate the regulatory protein RPc1; the activation of RPc1 (on) inhibits the tran-
scriptional regulation tT c2 (off). Every regulatory protein is defined by the boolean function
with values 0 or 1 (off, on) in the rFBA model. In the following section, we will discuss the
kinetic model that describe the reactions and regulatory proteins of the network.

2.3 Kinetic modeling of metabolic-genetic network

Dynamical studying of models is the study of the relationship between components of the
network that are dynamically interrelated. An ordinary differential equation (ODEs) model
allows the qualitative simulation of changes in concentration over time. In general, a network
has external (e.g., nutrients) and internal metabolites, and Biomass reactions (growth rate
reaction). The growth rate equation has been studied by many researchers [38; 72; 131]. The
general formula of Biomass is given by

dX
dt

= µX ,

where µ is the growth rate and X is the Biomass, we refer to [36] for more information. The
external metabolites depend on the Biomass. It means that if there is no Biomass, there is no
nutrient consumption. Therefore, we use the Biomass term in external metabolite equations.
In addition, we maintain that the extracellular components are given based on the reactor
volume, while intracellular components are given on the basis of the cellular dry weight.
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In summary, the differential equations of a metabolic network can be given as follows:

dMext

dt
= SextvX ,

dMint

dt
= Sintv,

dX
dt

= µX , with µ =
nb

∑
i=1

ωiνi,

(2.2)

where Mext and Mint are the vectors of external and internal metabolite concentrations, re-

spectively, S =

[
Sext

Sint

]
is the stoichiometric matrix split into external and internal parts, v is

the vector of reaction flux, and X is the Biomass. The factor µ describes the growth rate and
is composed of the reaction fluxes νi, for all reactions i = 1, . . .nb, which produces Biomass,
multiplied with the corresponding yield coefficients ωi. The yield coefficients expressed as
the mass of cells or product formed per unit mass of substrate consumed, the standard notion
is gDW produced/g substrate used. Notice that in our model nb = 1.

Regulatory rules in the kinetic model
As we discussed in Chapter 1, the regulatory proteins can be described by the boolean

function with values 0 or 1 in a discrete model or by the Hill function with a range between
[0,1] in a continuous model, see section 1.3. In our kinetic model, we use the Hill function
to represent the regulatory proteins. Using the Hill function causes an increase in the number
of parameters of the kinetic model as ( thresholds and Hill coefficients ). As an example, we
discuss one of the regulatory proteins of the network, for the other regulatory proteins the
formulation is similar.

1- Carbon catabolite repression

In this case, C1 in the extracellular medium is considered the prioritized carbon source
which activates the regulatory protein RPc1. The activated RPc1 inhibits the transcription of
the gene which encodes a protein for transport of C2 into the cell via tT c2. The regulatory
proteins RPc1 and tT c2 are expressed using the Hill functions as follows

RPc1 = F+
h (C1,ζ ) =

Ch
1

ζ h +Ch
1
,

tT c2 = F−
h (C1,ζ ) =

ζ h

ζ h +Ch
1
,
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where ζ is a threshold and h is the Hill coefficient. The sign of + and − in the function F
indicates the activation and inhibition Hill function, respectively. The curve of the inhibition
Hill function is shown in Figure 2.2. The rest of the regulatory proteins of the network are
represented in the same way.

m

Figure 2.2: The inhibition Hill function Γ̂(m) =
ζ h

ζ h +mh , where m is a substrate, h = 2, and

ζ = 0.2.

These Hill kinetics yields the following relations for the regulatory rules defined in Table
2.2:

tT c2 =
ζ h

ζ h +Ch
1
,

tR2a = tR7 =
Bh

γh +Bh ,

tR5a = tRres =
Oh

ext

β h +Oh
ext

,

tR5b =
β h

β h +Oh
ext

,

tR8a =
αh

αh +Hh ,

where ζ ,γ , β , and α are the thresholds and B, H are the internal metabolites. In our study,
we fix the value of the Hill coefficient to h = 2.
There are many kinetic rates that can be used to describe the behavior of metabolic networks.
In our kinetic model, we use the Michaelis-Menten kinetics for the external metabolites
because their reactions are considered enzymatic reactions such that the enzyme active
sites become saturated. We use mass action kinetics for internal metabolites for the sake
of simplicity and to reduce the number of kinetic parameters. Altogether, the ordinary
differential equations to model the dynamical behavior of the simplified metabolic-genetic
network in Figure 2.1 are given by
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dC1

dt
=−vT c1 ·X

dC2

dt
=−vT c2 · tT c2 ·X

dFext

dt
=−vT f ·X

dOext

dt
=−vTo2 ·X

dDext

dt
= vT d ·X

dEext

dt
= vTe ·X

dHext

dt
=−vT h ·X

dA
dt

= vT c1 + vT c2 · tT c2 − vR1

dB
dt

= vR1 − vR2a · tR2a− vR3 + vR2b

dC
dt

= vR2a · tR2a− vR2b − vR4 − vR7 · tR7− vR6 +0.8 · vR5a · tR5a+0.8 · vR5b · tR5b− vbio

dD
dt

= 3 · vR6 − vT d

dE
dt

= 3 · vR7 · tR7− vTe

dF
dt

= vT f + vR3 − vbio

dG
dt

= vR4 − vR8a · tR8a+ vR8b − vR5a · tR5a− vR5b · tR5b

dH
dt

= vT h + vR8a · tR8a− vR8b − vbio

dAT P
dt

=−vR1 +2 · vR2a · tR2a−2 · vR2b +2 · vR6 + vR8b − vR8a · tR8a+ vRres · tRres−10 · vbio

dNADH
dt

= 2 · vR2a · tR2a−2 · vR2b −4 · vR7 · tR7+2 · vR5a · tR5a+2 · vR5b · tR5b−

2 · vR8a · tR8a+2 · vR8b − vRres · tRres
dO2

dt
= vTo2 − vRres · tRres

dX
dt

= ω · vbio ·X

(2.3)
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We use Michaelis-Menten kinetics to model the reaction rates for external metabolites
yielding:

vT c1 = vmaxc1 ·C1/(kM1 +C1)

vT c2 = vmaxc2 ·C2/(kM2 +C2)

vT f = vmax f ·Fext/(kM3 +Fext)

vTo2 = vmaxo2 ·Oext/(kM4 +Oext)

vT d = vmaxd ·D/(kM5 +D)

vTe = vmaxe ·E/(kM6 +E)

vT h = vmaxh ·Hext/(kM7 +Hext)

and mass action kinetics to model the reaction rates for internal metabolites yielding:

vbio = k8 ·F ·H ·C ·AT P

vR1 = k9 ·A ·AT P

vR2a = k10 ·B
vR2b = k11 ·AT P ·NADH ·C
vR3 = k12 ·B
vR4 = k13 ·C

vR5a = k14 ·G
vR5b = k15 ·G
vR6 = k16 ·C
vR7 = k17 ·C ·NADH

vR8a = k18 ·G ·AT P ·NADH

vR8b = k19 ·H
vRres = k20 ·O2 ·NADH

The kinetic model depends on the parameters kM1, . . . ,kM7 and k8, . . . ,k20, as well as the
thresholds for Hill equations α , β , γ , ζ .
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The unit of quantities in the kinetic model should match well. Now, we will clarify the
units that are used in our kinetic model. The external metabolite concentration Mext has
unit [mM] or [mmol/L] because it is based on the volume of the medium. The internal
metabolite concentration Mint in unit [mmol/gDW ], it is based on cell dry weight DW. The
unit of Biomass X is g/L, yield coefficient ω unit is [gDW/g], and the growth rate µ unit
is 1/hr. The unit of vmax is [mmol/(gDW.hr)], the turnover constant unit is 1/hr, and KM

and thresholds ζ , γ, β , and γ have the same units of the corresponding metabolites in every
formula of them.

2.4 Model fitting

Notice that our goal is to build a kinetic model that mimics the rFBA model. Since our kinetic
model (2.2) contains unknown parameters, we aim to obtain the parameter values. Finding
the value of the parameters from the literature will be difficult because the network 2.1 is
mimicking core metabolism and it is difficult to know exactly what the metabolites A, B, ...,
etc., represent in the real system. Therefore, we aim to perform the parameter estimation
technique using the D2D toolbox, that is based on the maximum likelihood estimation which
is mentioned in Chapter 1.
In order to perform the parameter estimation technique, we need a dynamical model and
data sets. The data sets we use are the simulation results of the rFBA model. We perform
the simulation of the rFBA model using the COBRA toolbox [63] by creating a network
model in Matlab using the reaction rates and corresponding regulatory rules in Table 2.1.
Additionally, we provide the initial conditions of external metabolites and Biomass, and we
define the time interval and time step size. By running our model file using the COBRA
toolbox, we obtain a data set for the Biomass and concentration of external metabolites over
discrete-time steps.

We assume that the kinetic model equations (2.2) are given by

dMext

dt
= SextvX

dMint

dt
= Sintv

dX
dt

= µX


=⇒ dx(t)

dt
= f (x(t),θ), (2.4)
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where x(t) denotes the concentration vector and θ ∈ Rnθ is a vector of parameters i.e. the
kinetic parameters and the thresholds in the Hill function. The function f is given by the rate
equations, like the mass action or the Michaelis-Menten rate laws.

In order to calibrate the kinetic model, defined by equation (2.4) to a given data set
(simulation result of rFBA), the dynamic states x are linked to measurements via

y(ti) = g(x(ti),θ)+ ε(ti),

where y is the simulation result of rFBA of external metabolites and Biomass at some
time points ti; g is the observation function involving the parameter θ . In our model, the
observation function is the dynamical state x(t) of external metabolites and Biomass.
We aim to fit our model to two different data sets for the diauxic switch and aerobic/anaerobic-
diauxie scenarios of the cell, which are mentioned in [33]. The data sets of the different
scenarios of the rFBA model are obtained using the Cobra toolbox [63]. Using the D2D
toolbox [119; 120] we can fit the kinetic model to the data sets.
In the following, we discuss the two different scenarios for the metabolic-genetic network
model that have been used for parameter estimation.

Diauxic switch scenario

At first, we consider the diauxic switch scenario [14; 132]. In this scenario, there are two
sources of carbon that are introduced to the cell in culture. During the first phase, cells prefer
to metabolize the sugar (e.g., C1) where the cells can grow faster. Only after the first sugar
has been exhausted, the cells switch to the second source of carbon, see [26; 83; 110; 111].
Most of the initial concentration for the external metabolites are taken from [33] in all the
scenarios discussed here. The initial concentrations of extracellular metabolites and Biomass
are C1 = 10 , C2 = 10, Oext = 50, Dext = 0, Eext = 0, Hext = 0, Fext = 0, all in unit [mM], and
X = 0.003 g/L. We use vmaxc1 = vmaxc2 = 10.5, vmax f = vmaxh = 5, vmaxd = vmaxe = 12 and
vmaxo2 = 15, all in unit [mmol/(gDWhr)], cf. [33]. We simulate the rFBA model using the
COBRA toolbox [63] over discrete experimental time [0,5] with 20 step number and step size
0.25. Using the COBRA toolbox [63; 148], we predict the time profile of external metabolites
and Biomass concentration at the diauxic switch scenario, see Figure 2.3. Moreover, we
assume the initial condition of most of internal metabolites have zero concentration as A =

0, B = 1,C = 0, D = 0, E = 0, F = 0.2, G = 0, H = 0.03, AT P = 6, NADH = 5, O2 = 0,
the unit of the internal metabolites is [mmol/gDW ]. By using the D2D toolbox, we fit the
kinetic model to the simulation results of the rFBA model, see Figure 2.4.
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Figure 2.3: Simulation results of the rFBA model generated by the COBRA toolbox: Left
figure shows the behavior of Biomass and right side figure depict the curves of the external
metabolites. The initial concentrations of Biomass and extracellular metabolites are C1 = 10,
C2 = 10, Oext = 50, Dext = 0, Eext = 0, Hext = 0, Fext = 0, and X = 0.003 g/L.

The results of the model fitting have been generated by the D2D toolbox, using the func-
tions arInit, arPlot to run and plot the data of the ODEs simulation and arFitLHS
for parameter values generation. Resulting trajectories of model fitting are below:
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Figure 2.4: a) Model calibration of external metabolites: (∗) indicates the data of Biomass and
external metabolites obtained by simulation of the rFBA, (−) indicates the solution of the ODEs
model. b) The trajectory of the internal metabolites for the diauxic-switch scenario.
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In Figure 2.4a, we observe that the simulation result of the rFBA model and the solution
of the kinetic model have similar qualitative behaviors for most of the external metabolites.
Only the data points of the metabolite Eext look different from the solution of the kinetic
model but are similar in the magnitude. In Figure 2.4b, the trajectory of all the internal
metabolites converges to their steady-state at a time interval of 4hr. Specifically, the trajectory
of the internal metabolite O2 increased continuously with time and reaches to the maximum
value of 14 [mmol/gDW]. One possible explanation for this increasing trend could be the
higher availability of the Oext . In addition, the cell consumes ATP and NADH for the
reactions. Then, it seems like the cell produces energy as the concentration of ATP is getting
higher until the value 9 [mmol/gDW]. The trajectory of the metabolites H starts increasing
until 5 [mmol/gDW], the reason could be due to the presence of Oext .

Aerobic/Anaerobic-diauxie

In the aerobic/anaerobic-diauxie scenario of transcriptional regulatory modeling, there is
only one source of carbon (C2) and oxygen supplied to the culture. The oxygen is removed
after two hours. The initial conditions of extracellular metabolites and Biomass are given as
C1 = 0, C2 = 10, Oext = 2, Dext = 0, Eext = 0, Hext = 0, Fext = 0 mM, and X = 0.0008 g/L.
We simulate the model using the COBRA toolbox [63] by discrete experimental time [0,5]
to 20 step number with size 0.25. The results are given in Figure 2.5 and model fitting in
Figure 2.6.
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Figure 2.5: The simulation of rFBA model in the aerobic/anaerobic-diauxie scenario using
COBRA toolbox. The figure shows the behavior of Biomass, C2, Dext , and Eext .

From Figure 2.6, we observe that the simulation results of the rFBA model fit well with
the solution of the kinetic model. Figure 2.4 shows that the cell consumes ATP and NADH
for the reactions. Then, it seems like the cell produces energy as the concentration of NADH
is getting higher until the value 11 [mmol/gDW]. The concentration of the metabolite F is
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increasing and attains 2 [mmol/gDW]. All the metabolites, except NADH and F , almost
converge to zero value.
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Figure 2.6: a) Model calibration of external metabolites: (∗) indicates the data of Biomass and
external metabolites obtained by simulation of rFBA, (−) indicates the solution of the ODEs
model generated by the D2D toolbox. b) The trajectory of internal metabolites predicted from
the solution of the ODEs model.

2.4.1 Model verification

We have built the kinetic model and estimated the parameter values, hence we aim to validate
our kinetic model. In order to validate our kinetic model, we compared the numerical solution
of our model with a different independent data set that is not used before in the parameter
estimation process in Sec 2.4. The data sets is generated for a scenario that considers the
growth on one source of carbon (C2) with the presence of amino acid Hext in the culture
using the initial conditions C1 = 0, C2 = 10, Oext = 50, Dext = 0, Eext = 0, Hext = 2, Fext = 0
mM, and X = 0.0008 g/L. The results depicted in Figure 2.7 show that the simulation data
obtained from the rFBA model using the COBRA toolbox and simulated dynamics of our
kinetic model have a qualitatively similar dynamic behavior. The results have been generated
using Matlab16b by the function ode23s with TolFunc=1e-6.
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Figure 2.7: Model validation: The behaviors of the simulation of the metabolites and Biomass
(−) are qualitatively the same of the data(−×).

In the previous sections, we have built a kinetic model that mimics the rFBA model,
performed the parameter estimation technique, and validated the kinetic model.
In the kinetic model (2.3), we expressed the regulatory protein tR2a using the Hill function
which depends on the internal metabolite B. In the following section, we will discuss the
possibility of expressing tR2a in the kinetic model as a function of the metabolite C or the
reaction rate vR2b. Every expression gives us different kinetic models. Our goal is to discuss
the different kinetic models and study how far these models are able to generate diauxic
growth behavior.
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2.5 Different model structures for regulatory proteins

In this section, we will discuss different model structures for regulatory mechanisms tR2a
that are used to convert metabolite B into metabolite C. We discuss three cases for describing
the regulatory protein tR2a. First, the metabolite B acts as a regulatory metabolite and acti-
vates the regulatory protein tR2a. Second, the metabolite C acts as a regulatory metabolite
and inhibits the regulatory protein tR2a. Finally, the reaction rate vR2b acts as a regulatory
reaction rate and inhibits the regulatory protein tR2a. The three study cases are shown in
Figure 2.8.
We are interested in the diauxic switch scenario. Thus, we will focus on the behavior of
C1, C2, and Biomass. We will explain that every reaction scheme for the kinetic model
with regulations generates the diauxic growth behavior for chosen parameter values. In
general, we will use the estimated parameter values, see Appendix, Table A.1 and some of
the parameter values will be tuned, as we will discuss later.

B

R2aR2b

C

activation

A ATP

Tc2 Tc1

C2 C1

R1

A1

B

R2aR2b

C inhibition

A ATP

Tc2 Tc1

C2 C1

R1

A2

B

R2aR2b

C
inhibition

A ATP

Tc2 Tc1

C2 C1

R1

A3

Figure 2.8: Reaction schemes for kinetic models with regulation. A1) The metabolite B activates
the regulatory protein tR2a. A2) The presence of metabolite C inhibits tR2a. A3) In case of the
value of reaction vR2b > 0, it inhibits tR2a.

Case A1: the metabolite B activates the regulatory protein tR2a. In the kinetic model
(2.3), we use the Hill function to express the relation between B and tR2a. Then tR2a is
given by

tR2a =
Bh

γh +Bh .
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Case A2: the metabolite C inhibits the regulatory protein tR2a. Then ttR2a is given by

tR2a =
γ2

γ2 +C2 .

In this case, we use the same parameters in Appendix, Table A.1 but we adjust the value of
the threshold γ to be 30 [mmol/gDw] to obtain a good fit. In Figure 2.10 (a,b), we observe
that the kinetic model generates the diauxic-switch behavior.

Case A3: the regulatory protein tR2a is given by

tR2a =
γ2

γ2 + v2
R2b

.

We adjust the value of the Michaelis-Menten constants of C1,C2 to be km1 = km2 = 0.08
[mmol/l], the constant rate of Biomass reaction is k8 = 2 [mmol³/(gdw³.hr)], and the threshold
γ is 30 [mmol/gDw], see Figure 2.10 (c,d).
By solving the system of differential equations (2.3) numerically using Matlab function
ode45 and comparing with the simulation of rFBA model, we obtain the following results:
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Figure 2.9: Comparison of the simulation of kinetic model (solid lines) with the simulation of
rFBA model (circles). Substrates C1 and C2 are shown in red and blue, respectively and Biomass
is shown in black.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (hr)

0

1

2

3

4

5

6

7

8

9

10

 C
on

ce
nt

ra
tio

n 
(m

M
)

(c) Case A3
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Figure 2.10: Comparison of the simulation of kinetic model (solid lines) with the simulation of
rFBA model (circles). Substrates C1 and C2 are shown in red and blue, respectively and Biomass
is shown in black.

In this section, we have discussed different model structures for regulatory rule tR2a that
generate the diauxic growth behavior for chosen parameters.

2.6 Conclusion

In this chapter, we built a kinetic model that mimics the regulatory flux balance analysis
model. While Covert and Palsson [33] have used the boolean functions to express the
regulatory proteins, in our kinetic model we have used a continuous representation by Hill
functions. We have presented a mathematical kinetic model of a simplified core carbon
metabolic network describing the extracellular and intracellular metabolites, as well as the
growth rates. We have discussed the diauxic switch and aerobic/anaerobic-diauxie scenarios.
These scenarios were used to estimate the parameter values in our kinetic model. The
parameter estimation process is done by using the D2D toolbox which is based mainly on the
Chi-square test, log-Likelihood, and using Latin hypercube sampling for the initial guesses
of the parameters. A numerical simulation using the ODEs model can be used to study the
behavior of the metabolites inside the cell. The ODEs model has a great advantage because
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the regulatory flux balance analysis fails in studying the dynamics of internal metabolites
because it is based on a steady-state assumption. In addition, we have studied different model
structures for gene regulations and show that every model generates diauxic growth behavior.





Chapter 3

A continuous version of a hybrid system

In this chapter, we introduce a continuous model that mimics the hybrid system of a metabolic-
regulatory network studied in [95]. Our continuous model aimed to overcome the difficulty
of the hybrid model. The hybrid model becomes complicated if the number of regulatory
proteins is large since the modeling of regulatory rules and detecting of events becomes
difficult. In other words, the increase in the number of regulatory rules leads to an increase
in the number of modes and events by 2n where n = 1,2, ..., is the number of regulatory
rules. We show that by using our continuous model, we can obtain the same results as the
results produced by the hybrid model for a metabolic regulatory network more easily. This is
because we use the Hill functions to express the regulatory rules in our continuous model
instead of the boolean functions in the hybrid model. In general, the main challenge in
continuous models is to find the kinetic parameter values. Here, our continuous model is of
great advantage because it does not need any more parameters than the hybrid model.

3.1 Hybrid automaton of metabolic-regulatory network

An integrated model of metabolism and gene regulation is considered as an example of a
hybrid system. Metabolites are described by the continuous variables, while a gene regu-
latory mechanism is described by discrete states, which are expressed in logic functions.
In [95], the hybrid automaton system is applied to the carbon catabolite repression model
as an application of hybrid automaton systems. The hybrid model integrates metabolism
with transcriptional regulation, macromolecule production, and enzyme resources. A hybrid
automaton system enables us to study the dynamic interplay between these different cellular
processes.
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In our study, we will introduce a continuous model of the hybrid model of a metabolic-
regulatory network (MRN) of the diauxic shift, see Figure 3.1. The network has two carbon
sources C1, C2, introduced to the cell in the medium, and converted into the precursor M.
The precursor M is a substance that can be converted into another substance. Two regulated
proteins RP and T2 are described by boolean variables RP and T2. The regulatory rules of the
network are as follows:

• If the molar amount of C1 is greater than the threshold γ , the gene encoding for RP is
activated.

• If the molar amount of RP inside the cell is greater than the threshold α , the gene
encoding for T2 is repressed.

The regulatory rules are denoted in Figure 3.1 with green and dark orange arrows.

M

C1C2

RP φ

T1

φ

R

φ

T2

φ

T1 : vC1T2 : vC2

vRP

vQ
vT2vT1vR

Q

φ

C1 ≥ γ

RP ≥ α

Figure 3.1: A metabolic network with two regulatory rules. C1, C2 are the two carbon sources.
T1, T2 are the enzymes for converting carbon sources into precursor metabolite M. Q represents
non-catalytic macromolecule. RP is a regulatory protein, R represents the ribosome catalyzing
the protein production.

The components of the hybrid system of MRN (Figure 3.1) are described as follows:
the continuous variable Y is C1,C2,M,Q,R,T1,T2, and RP. The continuous variables are
expressed by the differential equations. The states of two regulatory proteins are expressed
by four modes, see Figure 3.2. These four modes describe the hybrid automaton. The modes
are (on, on), (on, off), (off, off), and (off, on). The Events are the regulatory proteins RP,
T2 depending on the value of thresholds γ and α , respectively. Each node in Figure 3.2
represents the differential equations of continuous variables and some invariants (constraints).
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In the hybrid model, the Michaelis-Menten kinetics are used for most reaction rates and
mass action laws are used for degradation terms. The differential equations of C1,C2, and
precursor M in the hybrid model are given by

dC1

dt
=−vC1,

dC2

dt
=−vC2,

dM
dt

= vC1 + vC2 − vM,

with reaction rates
vC1 = kcat1 ·T1 ·C1/(KT +C1),

vC2 = kcat2 ·T2 ·C2/(KT +C2),

vM = kr ·R ·M/(Kr +M),

where kr, kcati, i = 1,2 are a turnover constants, KT is the Michaelis-Menten constant, and
Kr denotes the half-saturation constant, see Table 3.1.
The reaction rates vp of macromolecular p ∈ {Q,R,T1,T2,RP} are assumed to be the same
as in [47]. For instance, the differential equation of macromolecular Q is

dQ
dt

= vp − kde ·Q,

where kde is degradation constant. The reaction rates vp are given by

vp =
βp

np
· vM, vM =

kr ·M ·R
Kr +M

, p ∈ {Q,R,T1,T2,RP},

where the weights βp represent the fraction of cellular resources allocated to protein p, such
that ∑p βp = 1. The constant np denotes the length of proteins p, for more detail, see [47].
We notice that in every node in Figure 3.2, the weights change such that the sum is one. In
node (on, on), there are 5 proteins where the synthesis term exists, so the weight of every
protein is 1/5. We observe that these changes in weights are based on the regulatory rules in
every node, they change from 1/5 to 1/4 to 1/3 to 1/4. The Biomass is defined as the sum
of the molecular masses as follows

Biomass(t) = w ·M(t)+ ∑
p∈{Q,R,T1,T2,RP}

w ·np · p(t),

where w is average molar weight of precursor M.
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Figure 3.2: The hybrid automaton of metabolic-regulatory network. The figure is taken from
[95], License Number: 4781951163564.
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Reaction rates Value unit
kcat1 3000 min−1

kcat2 2000 min−1

kr 7 min−1

Michaels-Menten constants
KT 1000 mmol
Kr 1260 mmol
Degradation constants

kde 0.01 min−1

kdRP 0.2 min−1

kdT 1 0.05 min−1

kdT 2 0.05 min−1

Length of enzyme, ribosome
nQ,nRP 300
nT 1 400
nT 2 1500
nR 7459
Thresholds
γ 20 mmol
α 0.03 mmol
Average molar weight of precursor
w 100 mg mmol−1

Table 3.1: Table of kinetic parameters, enzymes length, and threshold values.

We aim to build a continuous model that mimics the hybrid model of the metabolic-
regulatory network Figure 3.1, in which the metabolite concentrations and regulatory proteins
are expressed by continuous variables. In addition, we compare the results of the hybrid and
continuous models.

3.2 A continuous version of the hybrid automata model

In the continuous model, we use the Michaelis-Menten kinetics for production and consump-
tion reactions and mass action kinetics for degradation reactions as in the hybrid model. In
the hybrid model, the regulatory proteins are described by the boolean function with value
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0 or 1, while in our continuous model, the regulatory proteins are expressed by the Hill
functions. The system of ordinary differential equations of the network is given by

dx
dt

= f (x(t),θ) = S · v(x(t),θ), x(t0) = x0, (3.1)

where x ∈ Rnm is the vector of concentration of nm species and θ ∈ Rnθ is a vector of
parameters, e.g., kinetics parameters. The function f can be written into the stoichiometric
matrix S ∈ Rnm×nr and reaction rate v ∈ Rnr , nr the number of reactions, v can be expressed
by the mass action, Michaelis-Menten kinetics, or Hill functions.
In the metabolic regulatory network, two regulatory proteins are RP and T2 with thresholds γ ,
α , respectively. The regulatory protein RP has a boolean value 1 if and only if C1 ≥ γ , and
the regulatory protein T2 has a boolean value 0 if and only if RP ≥ α . We represent these
regulatory proteins by two Hill functions, RPC1 and RPRP, defined as follows:

• RPC1 is the Hill function representing the regulatory protein RP, defined as follows

RPC1 =Ch
1/(γ

h +Ch
1),

where h is the Hill coefficient which is assumed to be h = 2. The function RPC1

has a value of almost 1 if enough amount of C1 exists, while RPC1 has a small value
gradually when the concentration of C1 is decreasing. The function RPC1 has a value
in range [0,1].

• RPRP is the Hill function representing the regulatory protein T2, defined as follows

RPRP = αh/(αh +RPh).

The function RPRP has a value of almost 0 if enough amount of RP exists, while RPRP

has a high value gradually when the value of RP is decreasing.

Now, we will express the regulatory proteins by the Hill functions in the differential equations
of RP and T2, see Table 3.2. For instance, the differential equation of T2 is given by

dT2

dt
= vM ·RPRP − kdT 2 ·T2,

where kdT 2 is the degradation constant and RPRP is the Hill function.
We used the same parameters and initial conditions as in [95]. The values of constant reaction
rates of Michaels-Menten, mass action, and Hill kinetics are given in Table 3.1. For the
sake of simplicity, we use the same notations of parameters to make it easier for the reader
to compare the different models. Notice that the units of (Q,R,T1,T2,RP) are in mmol that
convert into mg unit using the formula: w ·np · p(t).
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Ordinary differential equations of metabolic-regulatory network (MRN) model

dC1

dt
=−vC1

dC2

dt
=−vC2

dM
dt

= vC1 + vC2 − vM

dQ
dt

=
βp

nQ
· vM − kde ·Q

dR
dt

=
βp

nR
· vM − kde ·R

dT1

dt
=

βp

nT 1
· vM − kdT 1 ·T1

dT2

dt
=

βp

nT 2
· vM ·RPRP − kdT 2 ·T2

dRP
dt

=
βp

nRP
· vM ·RPC1 − kdRP ·RP

Reaction rates

vC1 = kcat1 ·T1 ·C1/(KT +C1)

vC2 = kcat2 ·T2 ·C2/(KT +C2)

vM = kr ·R ·M/(Kr +M)

RPC1 =C2
1/(γ

2 +C2
1)

RPRP = α2/(α2 +RP2)

Biomass equation

Biomass(t) = w ·M(t)+ ∑
p∈{Q,R,T1,T2,RP}

w ·np · p(t)

Table 3.2: System of ordinary differential equations of the simplified metabolic regulatory
network.
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3.3 Comparison of the continuous and hybrid model

In the hybrid model, the weight βp change in each node from βp = 1/5 in mode (on, on) to
βp = 1/4 in mode (on, off) to βp = 1/3 in mode (off, off) to βp = 1/4 in mode (off, on), see
Figure 3.2. In order to find the right expression for these values in the continuous model,
we will substitute the weight value of the regulatory proteins (βp) in the continuous model
by 1/5, 1/4, or 1/3. Then we discuss the simulation results of our continous model and the
hybrid model as follows. Notice that the results of the hybrid model are taken from [95] with
License Number: 4781951163564.
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(a) Hybrid model, figure is taken from [95].
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Figure 3.3: a Simulation results of metabolites C1,C2,M (left axis) and Biomass (right axis) in
the hybrid model. b, c, d The trajectory of metabolites and Biomass in continuous model with
different values of the weight βp.
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(a) Hybrid model, figure is taken from [95].
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Figure 3.4: a Simulation results of macromolecular Q,R,T1,T2, and RP in the hybrid model. b,
c , d Simulation results of macromolecular in the continuous model with different values of the
weight βp.

The simulations of the continuous system were generated in Matlab2016b using the
Matlab function ode45 with tolerances RTOL = ATOL = 10−6, and with initial condi-
tions (C1,C2,M,Q,R,T1,T2,RP) = (500,1000,20,0.1,0.01,0,0,0) in mmol unit. Figures
3.3 and 3.4 depict the results of three different continuous models as well as the result of
the hybrid model. In Figures 3.3 and 3.4, we observe that the trajectories of metabolites,
macromolecules, and Biomass of the two continuous models c, d are a bit different from the
hybrid model (case a), while the case b almost matches the result of the hybrid model. In
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case b, in the beginning of the simulation, the regulatory proteins RP and T2 increase, while
the metabolites C1 and C2 consume slowly. Then after some time (0-20 min), it can be seen
that the protein RP is still increasing while T2 is almost constant (not produced). At that
time, C2 is not being used, and the cell grows on C1 which is consumed exponentially. Later,
after 20 min, we notice that C1 is almost exhausted, and the cell starts to utilize the source of
carbon C2. In addition, at about 25 min, the regulatory protein RP is not produced anymore
and its value becomes zero, while T2 is increasing, see Figure 3.4.

In the other cases, c, d, it is observed that the behavior of Biomass is quite different
from the hybrid model. For instance, in case c, the trajectory of Biomass looks qualitatively
similar but the height of trajectory is lower than the hybrid model. In case d, the increment
in Biomass is more at the start and gets higher between 40 and 60 minutes compared to the
hybrid model. The trajectory of C2 in case c takes time to exhaust until 60 min, while in case
d, it exhausted a bit faster than the case of the hybrid model.

Figure 3.4 depicts the trajectories of macromolecular in different cases. It is observed
that in case b, the trajectories of T1,T2 are qualitatively similar to the hybrid model. In case
c the trajectories of T1,T2 appear lower and a bit later (56 min) as compared to the hybrid
model. In contrast, in case d, the trajectories of T1,T2 appear higher and a bit earlier than the
hybrid model.

The above results show that case b is considered the best representative on the change of
weights in the continuous model, and this seems to contradict with the condition ∑p βp = 1.
However, we have another interpretation that case b does not contradict with the condition

∑p βp = 1. The interpretation is that at the beginning of the time, the weight of T2 is not there
because T2 is not active in the presence of C1. It means that we have four macromolecules
present and the sum of weight is 1. During the time, C1 is consumed, then the regulatory
protein RP does not exist and T2 is active, i.e., the sum of weight is 1. Thus, we will represent
the weight in the continuous model by the value of βp = 1/4.

3.3.1 A diauxic shift for different initial conditions

In this scenario, we discuss the continuous model with a different initial condition of C1.
Assume that the initial condition is 50 instead of 500 mmol.
In Figures 3.5, 3.6, we observe that the proteins RP and T2 are increasing at the beginning
while two sources of carbon C1 and C2 are consuming. After a short time, the regulatory
protein RP starts to decrease based on the behavior of C1, which decreases linearly while T2
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is still increasing. At 20 minutes, we notice the C1 is exhausted, which leads to RP not being
produced anymore, in contrast with T2, which is increasing. Figure 3.5 depicts the Biomass
trajectory, which is increasing exponentially.
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(a) The hybrid model, figure is taken from [95].

0 20 40 60

Time (min)

0

200

400

600

800

1000

1200

M
et

ab
ol

ite
 a

m
ou

nt
 (

m
m

ol
)

1

2

3

4

5

6

7

B
io

m
as

s 
(m

g)

10 4

C1

C2

M
biomass

(b) The value of the weight βp is
1
4

.

Figure 3.5: a Simulation results of metabolites C1,C2,M (left axis) and Biomass (right axis)
with the same of initial conditions as in case one, except C1 = 50 instead of 500 in the hybrid. b
the trajectory fo metabolites and biomass in the continuous model
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Figure 3.6: The trajectory of macromolecular masses Q,R,T1,T2, and RP. c The hybrid model,
d The continuous model.
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3.3.2 The generalization of a continuous model of a hybrid model for
metabolic-regulatory networks

In this section, our goal is to derive a general formula of a continuous model for a hybrid
model of the metabolic-genetic network. As we discussed in the previous section, the
regulatory proteins are described by the Hill functions. We notice that the weight change
in every mode depends on the regulatory protein states. In order to generalize the form
of the weight, we formulate the weight as a function of regulatory proteins. In the case
study, we have 5 macromolecules, two are regulatory proteins RP and T2 that are expressed
by the Hill functions RPRp,RPC1, respectively. Then, we can describe the weights as
βp = 1/((5−2)+RPRp+RPC1). By substituting this term in the ODE system and comparing
the simulation results of the continuous and hybrid models, we obtain the results in Figures
3.7, 3.8.
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Figure 3.7: Simulation results of metabolites C1,C2,M (left axis), and Biomass (right axis). a
The hybrid model. b The continuous model.

We observe that the trajectories of macromolecules in the continuous and hybrid models
are qualitatively similar. The general formula of the weight is given by

βp =
1

(n−ng)+Regng
,

where n = 1,2, .... is the number of all macromolecules and ng = 1,2, .... is the number of
regulatory proteins, and Reg is the Hill functions of the regulatory proteins.
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Figure 3.8: The trajectory of the macromolecules in the hybrid and continuous models. c The
hybrid model. d The continuous model.

3.4 Conclusion

In this chapter, we have introduced a continuous model of the hybrid system of a metabolic-
regulatory network model studied in [95]. We have discussed two different scenarios with
different initial conditions of C1. We studied different differential equation systems to de-
scribe the weight’s changes of the macromolecules (βp) in the metabolic-regulatory network.
We compared the simulation results of the continuous model of the different values of βp

with the hybrid model. We conclude that the continuous model of the weight βp =
1
4

is
considered the best choice to represent the weight changes of regulatory proteins because the
simulation of continuous model fits well with the hybrid model. Our continuous model is of
great advantage in cases with large number of regulatory rules. Whereas, the hybrid model
becomes more complicated if the number of regulatory rules is large because the modeling
of regulatory proteins and detecting of events becomes difficult. In the study example, we
noticed four (22) transition graphs for describing two regulatory proteins. This means that the
transition graph numbers will increase by 2n where n = 1,2, ..., is the number of regulatory
rules, which makes the studying of the hybrid model a bit difficult. Moreover, we generalized
the form of the continuous model for the hybrid model of metabolic-regulatory networks.
In the previous discussions, we proposed kinetic models of the rFBA and hybrid models of
a metabolic-genetic network. In the following chapters, we aim to discuss a mathematical
method called model order reduction. We aim to apply the method to kinetic models of
different metabolic-genetic networks.







Chapter 4

Model reduction by time scale separation
technique

In this chapter, we study a model order reduction method for metabolic-genetic networks by
time scale separation technique. Model order reduction is a mathematical concept to find
a low-dimensional approximation for a system of high-dimension. A successful reduction
method can simplify a model while preserving its relevant features. In metabolic-genetic
networks, metabolic reactions occur at rates in seconds or less (fast variables), while gene
expression usually takes between minutes and hours to complete (slow variables). The
discrepancy in the time of metabolic and regulation reactions leads to a model reduction
topic known as time scale separation technique. However, in some cases, the differences in
the time scales do not suffice for obtaining a reduced model that behaves in the same way
as the original model [50]. Thus, we will discuss a theory called Tikhonov’s theorem [62],
which guarantees that the reduced and original models have similar behavior if its conditions
are satisfied. In the available literature, it was not clear enough how to satisfy the required
conditions of this technique to biological systems. By following the work of [62], we clearly
described the boundary-layer system which is needed to show the asymptotic stability of
the fast variables. We apply the time scale separation technique to different examples of a
metabolic-genetic network. In our study, we check numerically that the required conditions
are satisfied.

4.1 Time-scale properties

In this section, we will define a dynamical system that describes the metabolites and enzymes
in a metabolic-genetic network. Metabolites variables m move faster in time than enzymes
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variables e. We can represent this phenomenon using the expression of a singular perturbation
model.
The singular perturbation model of a dynamical system is a state-space model in which the
derivatives of some of the states are multiplied by a small positive parameter ε , see [62].
Consider the standard singular perturbation model of a metabolic-genetic network

εṁ(t) = f (m(t),e(t)), m(t0) = m0,

ė(t) = g(m(t),e(t)), e(t0) = e0,
(4.1)

for all t ∈ [t0,T ], where T ∈R≥0, the functions f :Rnm ×Rne →Rnm , g :Rnm ×Rne →Rne are
sufficiently smooth, nm, ne are the numbers of metabolites and enzyme variables, respectively.
The constant ε ∈ R+ is a small positive real number. The idea behind time scale separation
technique for metabolic-genetic networks is that the metabolite variables ṁ = f (m,e)/ε are
very fast compared to the slow variable e. The fast variables m evolve much faster, reach to
quasi-steady-state. When we set ε = 0 in (4.1), the dimension of the state equations reduces
from ne +nm to ne, such that εṁ = f convert into the algebraic equation:

f (m(t),e(t)) = 0. (4.2)

Suppose that there exist q functions ri, i = 1,2, . . . ,q, such that (4.2) can be solved for m as

m = ri(e), i = 1,2, ...,q. (4.3)

Then, we substitute (4.3) into (4.1) at ε = 0. The reduced model is given as follows:

˙̄e(t) = g(r(ē(t)), ē(t)), ē(t0) = e0,

m̄(t) = r(ē(t)),
(4.4)

where we have dropped the subscript i from r and denoted the solution of (4.4) by ē(t).
Notice that the original variable m is starting at t0, but the quasi steady state m̄ is not free to
start from t0, there is a discrepancy between the initial values [62]. However, we assume that

m(t)− m̄(t) = O(ε),

holds on an interval excluding t0, that is t ∈ [t∗,T ], where t∗ > t0. If the error m(t)− m̄(t)
is O(ε) over [t∗,T ], then it must be true that the variable m approaches m̄ during the initial
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(boundary-layer) interval [t0, t∗]. In order to m converges to its quasi-steady-state m̄, stability
conditions should be satisfied.

Here, we will study the dynamical system (4.1) at the boundary-layer interval [t0, t∗]. We
introduce the new variable m̂ such that

m̂ = m− r(e),

then, the system (4.1) is written in the new variables (e, m̂) as

ε ˙̂m = f (m̂+ r(e),e)− ε
∂ r(e)

∂e
g(m̂+ r(e),e), m̂(t0) = m(t0)− r(e(t0)), (4.5)

ė = g(m̂+ r(e),e), e(t0) = e0, (4.6)

where m̂ = 0 is the equilibrium point of the system (4.5). We define the new variable τ = t/ε

and set ε
dm̂
dt

=
dm̂
dτ

. Then the system (4.5) is represented by

dm̂
dτ

= f (m̂+ r(e(ετ)),e(ετ))− ε
∂ r(e)

∂e
g(m̂+ r(e),e), (4.7)

by setting ε = 0, then the system (4.7) becomes

dm̂
dτ

= f (m̂+ r(e(0)),e(0)). (4.8)

The system (4.8) is called the boundary-layer system. The stability property that should be
satisfied for the boundary-layer system is the exponential stability of its equilibrium point.
The following definition is mentioned in [62] (Definition 9.1).

Definition 1. The equilibrium m̂ = 0 of the boundary-layer system (4.8) is exponentially
stable, uniformly in e0, if there exist positive constants κ ,ψ , and ρ such that the solution of
(4.8) satisfies

∥m̂(τ)∥ ≤ κe(−ψτ) ∥m̂(τ0)∥ , ∀∥m̂(τ0)∥ ≤ ρ, ∀τ ≥ 0. (4.9)

Theorem 1. Consider the singular perturbation problem (4.1) for all t ∈ [t0,T ] where
T ∈ R≥0 and assume the system (4.1) has the unique solutions m(t), e(t). Consider the
following conditions:
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• There exists an isolated root m = r(e) of (4.2) such that f (ē(t),r(ē(t))) = 0 for all
t ∈ [t0,T ], where ē(t) denotes the unique solution over [t0,T ] of the reduced system
˙̄e = g(r(ē), ē), e(t0) = e0.

• The origin of the boundary-layer model (4.8) is exponentially stable, uniformly in e,
i.e., the solutions of (4.8) satisfy the inequality (4.9).

Then, the relations (4.10), (4.12) hold for all t ∈ [t0,T ] and there exist a time t∗ ≥ 0, such
that (4.11) holds for all t ∈ [t∗,T ].

e(t) = ē(t)+O(ε), (4.10)

m(t) = m̄(t)+O(ε). (4.11)

m(t) = m̄(t)+ m̂(t)+O(ε), (4.12)

The theorem 1 is known as Tikhonov’s theorem, see [62; 89]. In the following sections,
we will discuss two examples for unimolecular and bimolecular reactions as applications of a
time scale separation technique for model reduction of a metabolic-genetic network. Another
example of bimolecular reactions is studied, see Appendix A.2.

4.2 Applications to metabolic-genetic networks

In the following examples, we will follow the method of applying the time scale separation
technique as it is introduced in section 4.1, while trying to satisfy the conditions of Tikhonov’s
theorem.

4.2.1 Unimolecular reactions network

At first, we will discuss the unimolecular reaction network. The network describes a pathway
that converts the metabolites 1,2 into metabolite 4. Suppose that there is a plasmid coding for
enzyme e, whose expression is activated by high concentration of metabolite 4. The enzyme
e catalyses the reaction that converts metabolite 3 into metabolite 5. The network is shown
in Figure 4.1.
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5
e

1

2
3 4

Figure 4.1: Metabolic-genetic network. The pathway converts metabolite 1 and metabolite 2
into metabolite 4. The enzyme e catalyses the reaction that converts metabolite 3 into metabolite
5.

To form a mathematical model of enzyme and metabolite components, we use the
Michaelis-Menten kinetics to describe the reaction of metabolites. The mass action kinetics
are used for degradation terms of the enzyme, and the Hill function for the synthesis term of
the enzyme, see [89]. The dynamical system of the network is given as follows:

dm1

dt
= I1 −

kcat1m1

KM1 +m1
e1→3,

dm2

dt
= I2 −

kcat1m2

KM1 +m2
e2→3,

dm3

dt
=

kcat1m1

KM1 +m1
e1→3 +

kcat2m2

KM2 +m2
e2→3 −

kcat3m3

KM3 +m3
e3→4 −

kcat4m3

KM4 +m3
e3→5,

dm4

dt
=

kcat3m3

KM3 +m3
e3→4 −

E4m4

KO4 +m4
,

dm5

dt
=

kcat4m3

KM4 +m3
e3→5 −

E5m5

KO5 +m5
,

de
dt

= k0 + k1Γ(m4)− kde,

(4.13)

where Γ(m4) =
mh

4

γh +mh
4

is the Hill function, k0 + k1Γ(m4) is the synthesis term of enzyme e

that describes transcription and translation, and kde is the degradation term of enzyme.
The values of constant rates and initial conditions are taken from [89]. The constant
kcati = kcat = 32s−1, KMi = KM = 4.7µM for i = 1,2,3,4 and e1→3 = e2→3 = e3→4 = eN =

200 nM. We assume that E4 = E5 = kcateN , KO4 = KO5 = KM and e = e3→5. The values of
k0 = 5e−7 nM, k1 = 5e−5 nM, kd = 2e−4s−1 and γ = 0.2 µM.
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To apply the time scale separation technique, we should represent the dynamical system
(4.13) in the same form as (4.1). Thus, we will simplify the model by the following process.

Non-dimensionalization The non-dimensionalization process simplifies the model by
reducing the number of parameters used. The dynamical system (4.13) of the network is
written in the formula of (4.1) by substituting the variables of the model (4.13) with the
following components:

yi =
mi

KMi

, x =
e
ê
, t̂ = kdt, ê =

k0 + k1

kd
, i = 1, ...,5.

We obtain a dynamical system in new variables (x,y) that have no physical units. The
non-dimensionalization system is given as follows:

ε
dy1

dt̂
= Ĩ1 −

y1

1+ y1
,

ε
dy2

dt̂
= Ĩ2 −

y2

1+ y2
,

ε
dy3

dt̂
=

y1

1+ y1
+

y2

1+ y2
− y3

1+ y3
− ê

eN

y3x
1+ y3

,

ε
dy4

dt̂
=

y3

1+ y3
− y4

1+ y4
,

ε
dy5

dt̂
=

ê
eN

y3x
1+ y3

− y5

1+ y5
,

(4.14)

dx
dt̂

=
k0

k0 + k1
+

k1

k0 + k1
Γ
∗(y4)− x, (4.15)

where Ĩi =
Ii

kcateN
, i = 1,2, Γ∗(y4) = Γ(KMy4), and ε =

KMkd

kcateN
≈ 1.5×10−4. By setting

ε = 0, the right-hand side of metabolite equations (4.14) converges to zero. We obtain a
system of differential-algebraic equations with five algebraic equations and one differential
equation. The algebraic equations have unique roots that are given as follows:

r1(x)=
Ĩ1

1− Ĩ1
, r2(x)=

Ĩ2

1− Ĩ2
, r3(x)= r4(x)=

Ĩ1 + Ĩ2
ê

eN
x+1− Ĩ1 − Ĩ2

, r5(x)=
Ĩ1 + Ĩ2

ê
eN

1
x
+1− Ĩ1 − Ĩ2

.

(4.16)
The system (4.14),(4.15) with ε = 0, is a DAEs system of index 1 [88], which can be seen
from the fact that we can write down the unique solution of the algebraic part directly in
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(4.16) and obtain an underlying ODE in (4.17). By substituting the value of r4(x) in the
enzyme equation (4.15), the reduced model is given as follows

˙̄x =
k0

k0 + k1
+

k1

k0 + k1
Γ
∗(r4(x̄))− x̄, x̄(0) = x0,

ȳ = r(x̄).
(4.17)

The simulations of the original and reduced model were generated in Matlab (R2016b), using
the Matlab function ode45 and ode15s with the default setting to solve the corresponding
systems of ODEs and DAEs. The initial conditions are taken from [89], (y1,y2,y3,y4,y5,x) =
(0.255,0.45,2.4255,2.617,1.148,1.7640). We assume the value of import rates Ĩ1, Ĩ2 are
1/5, 1/6, respectively. The value of import rates is less than one because the root of algebraic
equations (4.16) ( concentrations) should be positive values.
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Figure 4.2: a The trajectory of the metabolites in the original model with a solid line and reduced
model with a dashed line. b The enzyme trajectory of the complete model remains a fraction of a
nano molar away from that of the reduced model.

In Figure 4.2, we observe that the fast variables (metabolites) in the original model
converge to their steady state values after some time. Then the trajectory of metabolites in
the reduced and original model be applicable. The trajectory of the enzyme of the reduced
model remains close to that of the original model. We notice that the dynamical system of 6
differential equations is reduced to 1 differential equation system, such that we obtain the
main information from the lower-dimensional reduced model.
In order to confirm that the variable y converges to its steady state r(x) and the error y− r(x)
is indeed O(ε), we should satisfy the stability condition of the boundary-layer system.
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To discuss the boundary-layer system, we define the new variable ŷ = y− r(x), then the
system (4.19) can be written as

ε
dŷ1

dt̂
= Ī1 −

ŷ1 + r1(x)
1+ ŷ1 + r1(x)

,

ε
dŷ2

dt̂
= Ī2 −

ŷ2 + r2(x)
1+ ŷ2 + r2(x)

,

ε
dŷ3

dt̂
=

ŷ1 + r1(x)
1+ ŷ1 + r1(x)

+
ŷ2 + r2(x)

1+ ŷ2 + r2(x)
− ŷ3 + r3(x)

1+ ŷ3 + r3(x)
− ê

eN

(ŷ3 + r3(x))x
1+ ŷ3 + r3(x)

,

ε
dŷ4

dt̂
=

ŷ3 + r3(x)
1+ ŷ3 + r3(x)

− ŷ4 + r4(x)
1+ ŷ4 + r4(x)

,

ε
dŷ5

dt̂
=

ê
eN

(ŷ3 + r3(x))x
1+ ŷ3 + r3(x)

− ŷ5 + r5(x)
1+ ŷ5 + r5(x)

.

By setting ε
dŷ
dt̂

=
dŷ
dτ

, then the boundary-layer system is given by

dŷ1

dτ
= Ī1 −

ŷ1 + r1(x0)

1+ ŷ1 + r1(x0)
,

dŷ2

dτ
= Ī2 −

ŷ2 + r2(x0)

1+ ŷ2 + r2(x0)
,

dŷ3

dτ
=

ŷ1 + r1(x0)

1+ ŷ1 + r1(x0)
+

ŷ2 + r2(x0)

1+ ŷ2 + r2(x0)
− ŷ3 + r3(x0)

1+ ŷ3 + r3(x0)
− ê

eN

(ŷ3 + r3(x0))x0

1+ ŷ3 + r3(x0)
,

dŷ4

dτ
=

ŷ3 + r3(x0)

1+ ŷ3 + r3(x0)
− ŷ4 + r4(x0)

1+ ŷ4 + r4(x0)
,

dŷ5

dτ
=

ê
eN

(ŷ3 + r3(x0))x0

1+ ŷ3 + r3(x0)
− ŷ5 + r5(x0)

1+ ŷ5 + r5(x0)
.

(4.18)

The simulations of the boundary-layer system (4.18) were generated in Matlab (R2016b)
using the Matlab function ode45 with the default setting to solve the corresponding systems
of ODEs with initial conditions ŷ(0) = y(0)− r(x(0)). In Figure 4.3a, we observe that the
trajectories of the metabolites of the boundary-layer system converge to the equilibrium point
ŷ = 0. We check the exponential stability of equilibrium point of boundary-layer system
by satisfying the inequality in (4.9). We choose the values of constants κ = 2,ψ = 0.3
that satisfy the inequality (4.9). Thus, we find that ∥m̂(τ)∥ ≤ κe(−ψτ) ∥m̂(τ0)∥, see Figure
4.3b. The equilibrium point ŷ = 0 of the system (4.18) is exponentially stable because the
inequality (4.9) is satisfied. By applying Tikhonov’s theorem, the error of the reduced and
complete system will be of order O(ε).
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Figure 4.3: a The trajectory of metabolites of the boundary-layer system converges to ŷ = 0. b
The red trajectory is the norm of ∥m̂(τ)∥ and the blue trajectory is the value of κe(−ψτ) ∥m̂(τ0)∥.

4.2.2 Bimolecular reactions network

In this subsection, we discuss a bimolecular reactions of a metabolic-genetic network. The
pathway converts a metabolite 1 into metabolite 4. Suppose that there is a plasmid coding for
enzyme e, whose expression is activated by high concentration of metabolite 4. The enzyme
e catalyses the reaction that converts metabolite 2 into metabolite 5. The network is shown
in the figure below.

1 2

3

5

e

4

Figure 4.4: Metabolic-genetic network. The pathway converts metabolite 1 into metabolite 4.
The enzyme e catalysis the reaction that converts metabolite 2 into metabolite 5.

The mathematical model of the network is expressed by a system of ordinary differential
equations. Using kinetic laws as the Michaelis-Menten kinetics for metabolites reaction, the
Hill function for enzyme synthesis, and mass action kinetics for enzyme degradation. The
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dynamical system is given as follows:

dm1

dt
= I1 −

kcat1m1

KM1 +m1
e1→2,

dm2

dt
=

kcat1m1

KM1 +m1
e1→2 − kcat2,3

m2

KM2 +m2

m3

KM3 +m3
e2,3→4 −

kcat2m2

KM2 +m2
e2→5,

dm3

dt
= I2 − kcat2,3

m2

KM2 +m2

m3

KM3 +m3
e2,3→4,

dm4

dt
= kcat2,3

m2

KM2 +m2

m3

KM3 +m3
e2,3→4 −

E4m4

KO4 +m4
,

dm5

dt
=

kcat2m2

KM2 +m2
e2→5 −

E5m5

KO5 +m5
,

de
dt

= k0 + k1Γ(m4)− kde,

where, Γ(m4) =
mh

4

γh +mh
4

is the Hill function, k0 + k1Γ(m4) is the synthesis term of enzyme

e that describes transcription and translation, and kde is the degradation term of enzyme [89].
The values of constant rates and initial conditions are taken from [89]. The constant
kcati = kcat = 32s−1, KMi =KM = 4.7µM for i= 1,2,3,4 and e1→3 = e2,3→4 = eN = 200 nM.
We assume that E4 = E5 = kcateN , KO4 = KO5 = KM and e = e2→5. The values of k0 =

5e−7 nM, k1 = 5e−5 nM, kd = 2e−4s−1 and γ = 0.2 µM.

For the sake of simplicity and applying the time scale separation technique, we will study
the non-dimensionalization system in the new variables (x,y) as follows:

ε
dy1

dt̂
= Ī1 −

y1

1+ y1
,

ε
dy2

dt̂
=

y1

1+ y1
− y2

1+ y2

y3

1+ y3
− ê

eN

y2x
1+ y2

,

ε
dy3

dt̂
= Ī2 −

y2

1+ y2

y3

1+ y3
,

ε
dy4

dt̂
=

y2

1+ y2

y3

1+ y3
− y4

1+ y4
,

ε
dy5

dt̂
=

ê
eN

y2x
1+ y2

− y5

1+ y5
,

(4.19)

dx
dt̂

=
k0

k0 + k1
+

k1

k0 + k1
Γ
∗(y4)− x. (4.20)
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Where Γ∗(y4) := Γ(KMy4). At ε = 0, the fast variables (4.19) converge to their steady-
state and we obtain system of DAEs. The roots of the algebraic equations are given as
follows:

r1(x) =
Ĩ1

1− Ĩ1
, r2(x) = a, r3(x) =

−Ĩ2(1+a)
a+ Ĩ2 +aĨ2

,

r4(x) =
Ĩ2

1− Ĩ2
, r5(x) =

Ĩ1 − Ĩ2

1− Ĩ1 + Ĩ2
,

where a =
eN(Ĩ1 − Ĩ2)

êx− Ĩ1 + Ĩ2
. To obtain the reduced model, we substitute the value of r4(x) into

(4.20), at ε = 0. Then the reduced model is defined as follows:

˙̄x =
k0

k0 + k1
+

k1

k0 + k1
Γ
∗(r4(x̄))− x̄, x̄(0) = x0,

ȳ = r(x̄).
(4.21)

The simulations of ODEs and DAEs were generated in Matlab (R2016b), using the Matlab
function ode45, ode15s functions with absolute tolerance 10−4 and relative tolerance
10−6 for DAEs solver. The initial conditions are inspired from [89], (y1,y2,y3,y4,y5,x) =
(0.255,0.45,2.4255,2.617,1.148,1.7640). We assume the value of import rates Ĩ1 = 1/2
and Ĩ2 = 0.03. We choose these values to avoid inconsistent initial conditions while solving
the differential-algebraic equations system.
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Figure 4.5: a The metabolite trajectories of the complete model (solid lines) converge rapidly to
that of the reduced model (dashed lines). b The trajectory of the enzyme of the complete model
remains close to that of the reduced model.
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In Figure 4.5, we observe that the fast variables (metabolites) in the original model (4.19)
converge to their steady state values after some time. The trajectory of the enzyme of the
reduced model remains a nano molar away from that of the original model. Notice that we
reduced a 6-dimensional model to a 1-dimensional model.

To discuss the boundary-layer system, we introduce the new variable ŷ = y− r(x) and by

setting ε
dŷ
dt̂

=
dŷ
dτ

, then the system (4.19) becomes:

dŷ1

dτ
= Ī1 −

ŷ1 + r1(x0)

1+ ŷ1 + r1(x0)
,

dŷ2

dτ
=

ŷ1 + r1(x0)

1+ ŷ1 + r1(x0)
− ŷ2 + r2(x0)

1+ ŷ2 + r2(x0)

ŷ3 + r3(x0)

1+ ŷ3 + r3(x0)
− ê

eN

(ŷ2 + r2(x0))x0

1+ ŷ2 + r2(x0)
,

dŷ3

dτ
= Ī2 −

ŷ2 + r2(x0)

1+ ŷ2 + r2(x0)

ŷ3 + r3(x0)

1+ ŷ3 + r3(x0)
,

dŷ4

dτ
=

ŷ2 + r2(x0)

1+ ŷ2 + r2(x0)

ŷ3 + r3(x0)

1+ ŷ3 + r3(x0)
− ŷ4 + r4(x0)

1+ ŷ4 + r4(x0)
,

dŷ5

dτ
=

ê
eN

(ŷ2 + r2(x0))x0

1+ ŷ2 + r2(x0)
− ŷ5 + r5(x0)

1+ ŷ5 + r5(x0)
.

(4.22)
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Figure 4.6: a The metabolites trajectory of the boundary-layer system. b The red trajectory is
the norm of ∥m̂(τ)∥ and the blue trajectory is κe(−ψτ) ∥m̂(τ0)∥.
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In Figure 4.6a, we observe that all the trajectories of the metabolites of the boundary-
layer system (4.22) converge to the equilibrium point ŷ = 0. The exponential stability of the
equilibrium point of the system (4.22) have proved by satisfying the inequality in (4.9). By
choosing with κ = 2,ψ = 0.05, we notice that ∥m̂(τ)∥ ≤ κe(−ψτ) ∥m̂(τ0)∥, see Figure 4.6b,
thus the equilibrium point ŷ = 0 is exponential stable.

Uniqueness solution of the reduced system

In the reduced system (4.21), the function Γ∗(r4(x̄)) is a constant value because the
function r4(x̄) is a constant. Then the system has a unique solution by solving the (4.21) as
follows

dx̄
dt̂

= ĥ− x̄, (4.23)

where ĥ is a constant and ĥ =
k0

k0 + k1
+

k1

k0 + k1
Γ∗(cons). By integrating the system (4.23),

∫ dx̄
ĥ− x̄

=
∫

dt̂,

then the reduced system has a unique solution

x̄ = ĥ− ce−t̂ ,

where c is the integral constant. Since there is a unique solution of the reduced model and the
equilibrium point of the boundary-layer system (4.22) is exponentially stable, the conditions
of Tikhonov’s theorem are satisfied. Then the difference between the trajectory of the original
model and reduced will be of order O(ε).

4.3 Conclusion

In this chapter, we have discussed the time scale separation technique for model order
reduction of a metabolic-genetic network model. We have clarified the required conditions
for applying this technique. We applied the technique to unimolecular and bimolecular
reaction network models. We have satisfied the conditions of Tikhonov’s theorem, that need
for the application of the technique. These conditions are the uniqueness of a solution of the
reduced system and the exponential stability of an equilibrium point of the boundary-layer
system. We have reduced the dimension of a complete system to a lower-dimension system.
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The advantage of the time scale separation technique is that it preserves the dynamics of
the original system. However, it is difficult to apply it to a large-scale system because the
Tikhonov’s conditions are difficult to satisfy. Additionally, the separation of slow and fast
components in large-scale biological systems is difficult.



Chapter 5

Model reduction by proper orthogonal
decomposition

In this chapter, we discuss the model order reduction technique by proper orthogonal de-
composition (POD) for kinetic models of biological systems. The POD method works by
projecting a high-dimensional system onto a lower-dimensional space while preserving the
most important information of the full order system. From a practical point of view, the
POD technique is more advantageous for a large-scale model than the time scale separation
technique, since the POD technique does not have to take care of satisfying the conditions
required, e.g., for Tikhonov’s theorem. We apply the POD technique to different biological
systems from the BioModels database. Additionally, we use the POD method to compute a
reduced-order model for different initial conditions of the dynamical system. Using different
initial conditions in the time scale separation technique will usually fail, since the algebraic
equations of the fast variables may not be solvable if inconsistent initial values are prescribed.

5.1 Proper orthogonal decomposition

POD is a method of data analysis aimed at obtaining low-dimensional approximate de-
scriptions of high-dimensional processes while retaining the essential features of the full
model. POD is known as Karhunen–Loève Expansion (KLE) [75; 97], which was presented
by Kari Karhunen. The POD method is based on projecting the full order system onto a
lower-dimensional subspace that captures the main characteristics of the full order model.
The great advantage of the POD method is that one can use a Singular Value Decomposition
(SVD) [23; 57; 142] of the snapshot matrix (data set) to calculate the optimal basis that
represents the low-dimensional subspace.
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The selection of a data set plays an important role, and can be obtained by the method of
snapshots [133], where the optimal basis is computed based on a set of state solutions.
We consider a system of ordinary differential equations are given by

dx(t)
dt

= Ax(t)+F(x(t)) x(0) = x0, for t ∈ [0,T ], (5.1)

where x(t) is the nm-dimensional state vector of our model, F is a nonlinear function, and A
is a constant matrix. We compute the snapshot matrix X= [x(t1),x(t2), . . . ,x(tnt )] ∈ Rnm×nt

by solving a system of ODEs. Then, by applying the singular value decomposition (SVD)
[23; 68], we obtain

X=U

[
Σr̂ 0
0 0

]
V ⊺

where U ∈Rnm×nm,V ⊺ ∈Rnt×nt are unitary matrices with orthonormal columns called singu-
lar vectors and Σr̂ = diag(σ̂1, σ̂2, ..., σ̂r̂) ∈ Rr̂×r̂ is a matrix with a real, non negative entries
on the diagonal and zeros off the diagonal called singular values and r̂ = rank(X).

X = U Σ V ⊺

=

nm × nt nm × nt nt × ntnm × nm

Figure 5.1: Scheme clarifies the singular value decomposition.

Remark:
The SVD is considered to be one of the most important matrix factorizations in data

science, as it exists for any matrix and can be used for approximation high-dimensional
data by low-dimensional data in terms of dominant patterns. In many natural systems, it is
noticed that data exhibit dominant patterns, which may be characterized by a low-dimensional
manifold [23; 68]. The SVD is a unique matrix decomposition, it is used for approximation
low-dimensional to high-dimensional data in terms of dominant patterns.
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Figure 5.2: Graphical illustration of model order reduction, the figure is taken from [129],
License Number: 4782000887372.

Figure 5.2 illustrates the concept in a graphical easy-to-understand way, which means
that sometimes little information is needed to describe a model. This figure shows that even
with only a few facets, the rabbit can be recognized [129].

Low rank truncation

The most useful property of the SVD is that it provides a hierarchy of low-rank approximations.
In this step, we truncate the most important features (dominant), which capture the more
information about data.
The general philosophy in model order reduction is to cut off singular values with σ̂i < ε ,
where ε is chosen such that a (much) smaller number of basis elements nk ≪ nm is sufficient
to capture the main features of the solution of (5.1). The goal is to choose nk small enough
while the relative information content [2] of the basis for the nk-dimensional subspace,
defined by

I(nk) =
∑

nk
i=1 σ̂2

i

∑
r̂
i=1 σ̂2

i
,

is near to one. If the nk-dimensional subspace should contain a percentage p of the in-
formation contained in the full dimensional space Rnm , then one should choose nk such
that

nk = argmin
{

I(nk) | I(nk)≥
p

100

}
.

By selection for Unk the first nk columns from U, i.e., Unk = [u1, . . . ,unk ] ∈ Rnm×nk and
σ̂1 ≥ . . . ≥ σ̂nk as well as σ̂nk > σ̂nk+1 ≥ . . . ≥ σ̂r̂ with σ̂nk+1, . . . , σ̂r̂ are sufficiently small.
That means the first nk singular values are the (hopefully) few dominant patterns that explain
the high-dimensional data. Columns of U like a combination of my measurement that show
up in our data and the rows of V is the time history of dominant measurement.
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=

nm × nt nk × nk nk × ntnm × nk

Figure 5.3: Scheme illustrates the truncation of basis vectors

Galerkin Projection

A set of orthonormal basis vectors {u1, . . . ,unk} is used to project the system of equations
(5.1) onto a lower-dimensional subspace. This set is computed by means of the (POD)
method. For the state samples, we search for a subspace U = span{u1, . . . ,unk} ⊂ Rnm in
which the samples can be optimally described. In other words, the error between samples
and their projection U is minimized in a L2 sense, the approximation error

nt

∑
j=1

∥∥x j −UnkU
⊺
nk

x j
∥∥2

2 =
r̂

∑
i=nk+1

σ̂
2
i ,

see [25]. The Galerkin projection onto the low dimension subspace U that is used to obtain
a reduced order model for (5.1), it takes the form x(t) = Unk x̃(t), where x̃(t) ∈ Rnk and
dimension nk ≪ nm. The reduced order system is of the form

dx̃(t)
dt

=U⊺
nk

AUnk x̃(t)+U⊺
nk

F(Unk x̃(t)).

By solving this system of much smaller dimension, the solution of a high-dimensional
dynamical system can be approximated. In the following section, we will apply POD model
reduction method to some of the biological models from the BioModels database.
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5.2 Application of the POD method to kinetic model exam-
ples

In the following, we apply the POD model reduction method introduced in the previous
section to kinetic models for different kinetic model examples. We consider the simple
metabolic-genetic network example of [33], a kinetic model of Lactococcus lactis metabolism
introduced in [30], a large-scale kinetic model of yeast metabolic network [138], and a large-
scale kinetic model of E. coli metabolic network [134].

5.2.1 Kinetic model of metabolic-genetic network

The dynamical system of the metabolic-genetic network contains nineteenth state vector. In
Chapter 2, we have built ODEs model (2.3) that describes the network. Here, the snapshot
matrix is considered to be the solution of ODEs then we apply SVD and choose the POD
modes, the most dominant basis that describes the data (solution of ODEs).

Biomass
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B F

Fext
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2 ATP, 3 NADH 2ATP, 3NADH

C2 C1
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G
H
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Figure 5.4: A simplified core carbon metabolic network.
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We consider the model of the simple metabolic-genetic network from [33] at diauxie-
switch scenario that has been introduced in Section 2.5, Chapter 2. We use the Matlab
function ode23s with tolerances RTOL = ATOL = 10e−6 and initial conditions

x0 = [10,10,0,50,0,0,0,0.003,0,1,0,0,0,0.2,0,0.03,6,5,0]

to compute a numerical solution of the ODE system (2.3) with the parameter values Table A.1
in the time interval [0,5] using a non-equidistant output time-grid. This numerical solution
yields the snapshot matrix X. We use the Matlab function svd to calculate the singular value
decompositions of X. The singular values are depicted in Figure 5.5.
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Figure 5.5: Singular values of snapshot matrix X for the simple metabolic-genetic network
example of [33].

The behavior of the model order reduction method strongly depends on the decay of the
singular values of the snapshot matrix. We can observe gradually decaying singular values
with a strong decay for the smallest singular values indicating that neglection of these will
not result in any considerable loss of information in the reduced-order model.
The original model has a dimension of nm = 19. We compute a reduced-order model of
dimension nk = 16 using the POD approach. The results of a simulation of the reduced-order
system in comparison with the simulation results of the original system for some selected
components of the state vector are depicted in Figure 5.6. We can observe that the main
features of the dynamical behavior of the original model states are preserved in reduced-order
models.
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Figure 5.6: Comparison of some of the model components in the original model and the reduced
order model (POD) of dimension nk = 16.

In a second scenario we reduce the dimension to nk = 15. The results are depicted in
Figure 5.7.
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Figure 5.7: Comparison of some of the model components in the original model and the reduced
order model (POD) of dimension nk = 15.
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In a third scenario we reduce the dimension to nk = 14. The results are depicted in Figure
5.8.
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Figure 5.8: Comparison of some of the model components in the original model and the reduced
order model (POD) of dimension nk = 14.

We observe that some curves still match good with the original model, while the solutions
move off after t = 4 in the second scenario and after t = 3 in the third scenario. The behavior
of C1, Oext and G still fits well for all reduced models. In general, we can say that the external
components still show the same behavior. Since biomass expresses the growth of the cell, it is
an important component of the network that should also be preserved. It is observed that the
reduced model preserves the biomass behavior quite well, such that we get approximately the
same growth. We compare the time costs for the simulations, see Table 5.1. For evaluating
computing times, we use the Matlab function timeit.

original model POD ROM

Scenario 1 (nk = 16) 1.2s 6.04s

Scenario 2 (nk = 15) 1.13s 25.3s

Scenario 3 (nk = 14) 1.14s 4.8s

Table 5.1: Comparison of computing times for the three different scenarios.
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We also study the effects of reducing snapshot matrix columns dimension. As we know,
the ode solver function in Matlab uses a random time steps for the numerical solution of the
differential equations. In most cases, the dimension of snapshot column big, so we tried to
reduce the number of snapshot columns by using the solution in specific time points and
apply the model reduction method on this snapshot matrix that has fewer columns comparing
to the original solution. We notice that there are no significant changes in singular value
decomposition behavior and the trajectory of the metabolites in the reduced model, see
appendix A.3.

5.2.2 Kinetic model of Lactococcus lactis metabolism

In [30], the existing kinetic model of L. lacctis central metabolism is extended to include in-
dustrially relevant production pathways such as mannitol and 2,3-butanediol. The Michaelis-
Menten kinetics are used for reaction rates, where the parameters were estimated from
multivariate time series metabolite concentrations obtained by them through in vivo Nuclear
Magnetic Resonance (NMR).

Figure 5.9: Schematic network representation of the central metabolism of L. lactis. The figure
is taken from [30], License ID: 1022592-1.
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variabel initial value

glcext 40

g6p 0

f 6p 0

f bp 15.3

g3p 0

bpg 1.26

pep 2.48

pyr 0

acetCoA 0

acetoin 0

acetoinext 0

butanediol 0

m1p 0

variabel initial value

mannitol 0

mannitolext 0

lactate 0

ethanol 0

acetate 0

pi 38.26

piext 50

at p 4.89

nad 4.67

CoA 1

f ormate 0

ad p 20.39

nadh 2.3 ·10−6

Table 5.2: Initial values for the kinetic model of L. lactis metabolism.

The ODE model equations are taken from the BioModels Database 1. Since the authors
interested in glcExt concentration, lactate, and ATP, we apply the model order reduction
method to the kinetic model and by taking care of the behavior of these metabolites to be
the same after and before the reduction. We reduce the dimension of the dynamical system
from 26 to 12. The snapshot matrices X is again obtained from a simulation of the original
model equations over the time interval [0,150] using the Matlab solver ode23s with default
settings with initial values given in Table 5.2. The singular values are depicted in Figure
5.10.
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Figure 5.10: The singular values of snapshot matrix X for the kinetic model of Lactococcus
lactis metabolism [30].

1http://identifiers.org/biomodels.db/BIOMD0000000572
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In a first scenario we reduce the dimension of the dynamical system from nm = 26
to nk = 12. In Figure 5.11, the results of the simulation of the POD (reduced model) in
comparison with the original full-order model are illustrated. We can see that the curves for
the reduced-order models well match the curves for the original model.
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Figure 5.11: Comparison of the behavior of some metabolites from the model of L. lactis
metabolism for the reduced-order and original model (Scenario 1).

In the second scenario, we reduce the system to size nk = 11. The results are depicted
in Figure 5.12. In this case, the POD model do not capture the dynamical behavior of the
original model well. In particular, the concentration of external glycolysis, lactate, and ATP
matches the behavior of the original model. A comparison of computation times is given in
Table 5.3. For both scenarios the relative information content is I(12)≈ I(11)≈ 1. Again,
we see the additional computational effort in the computation of the reduced-order model.
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original model POD ROM
Scenario 1 (nk = 12) 0.3 1.5
Scenario 2 (nk = 11) 0.3 0.9

Table 5.3: Comparison of computing times for the different scenarios.
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Figure 5.12: Comparison of the behavior of some metabolites from the model of L. lactis
metabolism for the reduced order and original model (Scenario 2).

5.2.3 Kinetic model of yeast metabolic network

In [138], a workflow for converting metabolic reconstructions into large-scale kinetic models
of yeast metabolism has been developed. Its purpose is to take available data sets, perform
a thorough analysis of the parameter constraints, and then to produce the kinetic model
using large data integration. Here, we apply the order reduction method to the large-scale
yeast model as described in [138]. The ODE model equations are taken from the BioModels
database 2.

2http://identifiers.org/biomodels.db/BIOMD0000000496
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The snapshot matrices X is again obtained from a simulation of the original model
equations over the time interval [0,3000] using the Matlab solver ode23s with default
settings with initial values given in Table 5.2. The singular values are depicted in Figure
5.13.
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Figure 5.13: Singular values of snapshot matrix X for kinetic model of yeast metabolic network
of [138].

The original ODE system is of dimension nm = 281 and we reduce it to nk = 45 (Scenario
1) and nk = 40 (Scenario 2). The results of the simulations are given in Figure 5.14 and 5.15.
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Figure 5.14: Comparison of the behavior of some metabolites in the yeast model for the original
and the POD reduced model (Scenario 1).
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Figure 5.15: Comparison of the behavior of some metabolites in the yeast model for the original
and the POD reduced model (Scenario 2).

A comparison of computing times is given in Table 5.5

original model POD ROM

Scenario 1 (nk = 45) 0.28s 0.20s

Scenario 2 (nk = 40) 0.28s 0.46s

Table 5.4: Comparison of computing times for the two different scenarios.

We can see that in Scenario 1, the metabolites show the same behavior in both models.
We select here the same metabolites as were presented in the supplementary information of
[138]. In Scenario 2, the behavior of the metabolites is still good preserved, although we



5.2 Application of the POD method to kinetic model examples 89

can see that some of the curves start to oscillate. These oscillations increase if we further
decrease the dimension of the reduced-order model until the numerical simulation becomes
unstable. The time cost of the simulation could be lowered by a factor of by approximately
3/4 in Scenario 1.

5.2.4 Kinetic model of E. coli metabolic network

A method for the generation of genome-scale kinetic models of E. coli organism from
reconstruction data has been proposed in [134]. Building a kinetic model requires kinetic
parameters, fluxes, and rate laws. In [134] a small kinetic model has been used with the
presence of experimental data, which has then been extended using typical estimates in cases
where experimental data is not available. We apply the POD method to the generated kinetic
model of E. coli as presented in [134] containing m = 402 state variables and we compare the
original and reduced model for some of the metabolites behavior. The ODE model equations
are taken from the BioModels database 3.

The snapshot matrix X is obtained from a simulation of the ODE model over the time
interval [0,300] using the Matlab solver ode23tb with setting ATOL = 10−3 and initial
values are taken from the database model. The behavior of the singular values of the snapshot
matrix is depicted in Figure 5.16. We can observe a fast decay in the singular values
with a large number of values indicating that neglecting these values will not result in any
considerable loss of information in the reduced-order model.
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Figure 5.16: Singular values of snapshot matrix X of E. coli metabolic network of [134].

The original ODE system is of dimension nm = 402 and we reduce it to nk = 40. The
results of the simulations are given in Figure 5.17 and 5.18.

3http://identifiers.org/biomodels.db/BIOMD0000000469
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Figure 5.17: Comparison of the behavior of some metabolites in the E. coli model for the original
( in blue) and the POD reduced model (in red).

We select here random metabolites for comparing. We can see that the metabolites show
the same behavior in both models. The time cost of the simulation in reduced model could be
lower by a factor of by approximately 1/6 compared to the time cost of the original model.

original model POD ROM

Scenario (k = 45) 0.10s 0.014s

Table 5.5: Computing times for the POD method.
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Figure 5.18: Comparison of the behavior of some metabolites in the E.coli model for the original
(in blue) and the POD reduced model (in red).

We conclude from the previous discussions that the time cost of the POD method is small
when we applied to large models, as in examples 3, 4, compared to examples 1, 2. Thus,
the POD method is more effective in large models. The computational efficiency in the
simulation can be increased using the POD-reduced model if we have large-scale models as
examples presented in Sec 5.2.3 and Sec 5.2.4, while for small-scale examples as in Sec 5.2.1
and Sec 5.2.2 the dynamical behavior is preserved in the POD reduced models, however,
there is no pay off when it comes to computational times.

5.3 POD for kinetic model with different initial conditions

In this section, we study the POD method for a dynamical system with different initial
conditions. In a kinetic system model, different initial conditions can be used to de-
scribe different scenarios or different modes of a biological system. We follow the same
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steps of the POD approach as in Section 5.1. At first, we compute the snapshot matrix
X= [x(t1),x(t2), . . . ,x(tnt )]∈Rnm×nt by solving the system of ODEs (5.1) with the initial con-
ditions x0. Then we compute another snapshot matrix Y= [x(t1),x(t2), . . . ,x(tnt )] ∈ Rnm×nt

with the different initial conditions y0. We combine the two snapshot matrices X, Y in a
snapshot matrix Z. The snapshot matrix Z is given in the following form

Z= [X Y] ∈ Rnm×nl , nl = 2nt .

Then, by applying the singular value decomposition (SVD), we obtain

Z=U

Σr̂ 0

0 0

V ⊺,

where U ∈ Rnm×nm and V ⊺ ∈ Rnl×nl are unitary matrices with orthonormal columns. The
term Σr̂ = diag(σ̂1, σ̂2, ..., σ̂r̂) ∈ Rr̂×r̂ is a matrix with a real, non negative entries on the
diagonal and zeros off the diagonal and r̂ = rank(Z). Then by truncating the most dominant
singular vectors and projecting the original system onto the lower-dimensional subspace, we
obtain a reduced order model.

5.3.1 Application to kinetic model

In the following, we apply the idea to the kinetic model of the metabolic-genetic network
from [33] for different scenarios. The scenarios are diauxic switch and aerobic/anaerobic-
diauxie and both scenarios can be predicted using the kinetic model by prescribing specific
initial values.

Diauxic switch scenario

We consider the model of the simple metabolic-genetic network from [33] at diauxie-
switch scenario that has been introduced in Section 2.5, Chapter 2. We use the Matlab
function ode23s with tolerances RTOL = ATOL = 10−6 and initial conditions

x0 = [10,10,0,50,0,0,0,0.003,0,1,0,0,0,0.2,0,0.03,6,5,0]

to compute a numerical solution of the ODE system (5.1) with parameters in the time interval
[0,5] using a non-equidistant output time-grid. This numerical solution yields the snapshot
matrix X.
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Aerobic/Anaerobic-diauxie scenario

We consider aerobic/anaerobic-diauxie scenario that has been introduced in Section 3.5.
We use the Matlab function ode23s with tolerances RTOL = ATOL = 10−6 and initial
conditions

y0 = [0,10,0,2,0,0,0,0.0008,0,1,0,0,0,0.2,0,0.03,6,5,0]

to compute a numerical solution of the ODE system (5.1) with parameters in the time interval
[0,5] using a non-equidistant output time-grid. This numerical solution yields the snapshot
matrix Y.

We use the Matlab function svd to calculate the singular value decompositions of
Z= [X Y]. The singular values are depicted in Figure 5.19.
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Figure 5.19: Singular values of snapshot matrix Z for the simple metabolic-genetic network
example of [33].

The original model has a dimension of nm = 19. We compute a reduced-order model of
dimension nk = 17 using the POD method. The results of a simulation of the reduced-order
system in comparison with the simulation results of the original system are depicted in
Figures 5.20, 5.21 for the two different scenarios diauxic switch and aerobic/anaerobic-
diauxie, respectively.
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Figure 5.20: Comparison of the behavior of some metabolites in the diauxic switch scenario for
the original and the POD reduced model.

We can observe that the main features of the dynamical behavior of the original model
states are preserved for both scenarios using the same reduced order model. This is an
important result, as it shows that as long as the snapshot matrix provided the essential
information a reduced order model has to be computed only once, and can then be used to
predict the dynamical behavior of the system for different scenarios (for our specific model).
The magnitude by which the system can be reduced depends on the decay of the singular
values. Singular values of magnitude 10−15 can be neglected, while singular values of order
10−4 still contain important information. For large-scale network as in Sec 5.2.3 and Sec
5.2.4 the difference in the dimension of the reduced and the original model can be expressed
to be much larger.
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Figure 5.21: Comparison of the behavior of some metabolites in the aerobic/anaerobic-diauxie
scenario for the original and the POD reduced model.

5.4 Conclusion

In this chapter, we have discussed the model reduction of a kinetic model using the POD
approach. Since kinetic models of chemical networks can be large, the possibility to obtain a
reduced-order model that replicates the desired dynamical behavior is of vital importance.
We have applied the model reduction techniques to several examples. It has to be noted that
the computation of a reduced-order model requires some additional computational effort.
However, the computation of the snapshots and the SVD usually has to be computed only
once (often this is called the offline phase), while the simulations of the reduced-order models
are run several times, e.g., within an optimization process (in the so-called online phase).
Thus, the effort for setting up a reduced order model will pay off if we can reduce a large-scale
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model to a much smaller dimension and running simulations of the reduced-order model
for a long time. Moreover, the efficiency of the model order reduction strongly depends on
the decay of the singular values of the snapshot matrix. How far the model can be reduced
also depends on the application and on what components of the solution one is interested in.
In addition, we have predicted the behavior of the network for different scenarios (diauxic
switch and aerobic/anaerobic diauxie) with the same reduced order model.





Chapter 6

Conclusions

This thesis is dedicated to studying the dynamics of metabolic-genetic networks using con-
tinuous models. Many approaches successfully studied these networks, e.g., the regulatory
flux balance analysis (rFBA). The rFBA model is based on steady-state assumptions. Thus
the rFBA model handles only external metabolites. However, in real systems, the cell is not
in a steady-state, but is in a dynamic state. Thus, our first contribution was to introduce a
kinetic model that mimics the rFBA model of the metabolic-genetic network studied in [33]
to overcome the limitations of the rFBA model. The kinetic model gives a full picture of
the dynamical system by studying the dynamics for every component (internal and external)
over a continuous time interval. The kinetic model we introduced is formed of a system of
differential equations with unknown parameters, e.g., kinetic reaction rate constants. So we
performed a parameter estimation technique using the Data2Dynamics toolbox to obtain
the parameter values. By studying the kinetic model, the behavior of the components of the
cell becomes clear and easy to analyze. In addition, different theories can be applied to the
kinetic model, e.g., model reduction and parameter estimation, etc.

Another approach that can be used to study metabolic-regulatory networks is the hybrid
model. The hybrid model of a metabolic-regulatory network has been studied in [95]. The
hybrid model becomes more complicated if the number of regulatory proteins is large since
the modeling of regulatory rules and detecting of events becomes very difficult. It means that
the increase in the number of regulatory rules leads to exponential increase in the number
of modes and events by 2n where n = 1, 2, ..., is the number of regulatory rules. We aimed
to introduce a continuous model that mimics the hybrid model studied in [95] because a
continuous model is easy to handle. We have successfully shown that by using our continuous
model, we can more easily obtain the same results as the results produced by the hybrid
model for a metabolic regulatory network. This is because we have used the Hill function to
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express the regulatory rules instead of the boolean functions in the hybrid model.

In metabolic-genetic networks, metabolic reactions occur at rates of seconds or less (fast
variables), while gene expression usually takes between minutes and hours to complete (slow
variables). The discrepancy in the time of metabolic and regulatory reactions leads to a
model reduction topic known as time scale separation technique. A good deal of research has
discussed the time scale separation technique for model reduction. However, from our point
of view, there were no clear guidelines for how to apply it to kinetic models. Our contribution
was to explain and clarify the method and the required conditions, e.g., Tikhonov’s theorem,
which is needed to apply this technique. By following the work of [62], we have applied
that technique to different metabolic-genetic networks and obtained a reduced-order model
that predicts the same behavior of the full order model. The advantage of the time scale
separation method is that it preserves the dynamics of the original system. However, the
conditions of Tikhonov’s theorem are difficult to satisfy for large scale dynamical systems,
so we have suggested to apply another technique for model reduction called the proper
orthogonal decomposition (POD).

We have discussed the model reduction using the POD technique for kinetic models of
biochemical networks. We illustrated the POD technique on some examples of kinetic net-
work models. We have observed that the reduction of the model order depends on the decay
of the singular value decomposition. We have computed the time cost of the full and reduced
model. The computation of the reduced-order model requires additional computational effort.
However, we have observed that in large scale models, the time cost in the simulation can
be significantly reduced using the reduced-order method. In addition, we succeed in using
the POD method to compute a reduced-order model for different initial conditions (diauxic
switch and aerobic/anaerobic-diauxie scenarios) of the metabolic-genetic network. We can
say that the POD method works well for large-scale systems, but the dynamics are given
for the surrogate model that is obtained via a projection of the original model. Thus, it is
difficult to predict the contribution of a specific single component.
We believe that, in the end, the kinetic or continuous model is the best mathematical form to
study cell behavior in case one wants to analyze the full components of the cell. Although the
kinetic model provides the full picture of the dynamics of the cell components, the process
of finding the value of the parameters is still a challenge in system biology.
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Characteristics Limitations

rFBA model

Kinetic model

Hybrid model

Continuous model

It does not need kinetic parameter values

It handles only external metabolites

It cannot predict internal metabolite concentrations

It cannot use for modeling dynamic behavior

It consists of ODEs and the boolean functions

It needs kinetic parameter values

It relies on stoichiometric characteristics It does not uniquely specify the fluxes

It used for modeling dynamic behavior

It handles with external and internal metabolites

It consists of ODEs and the Hill functions

Hard to apply to large scale systems

-

Model reduction techniques

Time scale separation

POD

It preserves the dynamics of the original system

It does not need to satisfy Tikhonov’s theorem

The required conditions are difficult to satisfy

The dynamics are given for a surrogate model

(e.g., Tikhonov’s theorem)

It works well for large scale system

It is useful in optimization processes

It computes a reduced model for different initial conditions

(i.e., an increase in the number of events and modes)

It requires two different time scales fast and slow

Advantages Disadvantages

Easy to handel

( studied in Covert et al., 2001 )

( studied in the thesis )

( studied in Lin et al., 2019 )

( studied in the thesis )

Figure 6.1: Main characteristics of different mathematical models and model order reduction
methods used in the thesis.
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Appendix A
A.1 Parameter’s values

Constant rates Value Unit

kM1 0.38 mM

kM2 0.38 mM

kM3 6.2 mM

kM4 5.6 ·10−5 mM

kM5 0.00011 mmol/gDW

kM6 10−5 mmol/gDW

kM7 41 mM

k8 980 mmol3/(gDW 3 ·hr)

k9 1000 mmol2/(gDW 2 ·hr)

k10 300 mmol/(gDW ·hr)

k11 140 mmol3/(gDW 3 ·hr)

k12 23 mmol/(gDW ·hr)

k13 25 mmol/(gDW ·hr)

k14 1.6 mmol/(gDW ·hr)

k15 1000 mmol/(gDW ·hr)

k16 13 mmol/(gDW ·hr)

k17 2.9 mmol2/(gDW 2 ·hr)

k18 150 mmol3/(gDW 3 ·hr)

k19 7.9 ·10−5 mmol/(gDW ·hr)

k20 170 mmol2/(gDW 2 ·hr)

ζ 10−5 mM

γ 0.024 mmol/gDW

β 0.11 mM

α 290 mmol/gDW

ω 1 (assumed) gDW/mmol

Table A.1: The estimated parameters of kinetic model using two data sets of diauxic-switch and
aerobic/anaerobic scenarios.



A.2 Bimolecular reactions network 103

A.2 Bimolecular reactions network

We study a bimolecular reaction metabolic-genetic network such that the network describes
two substrates 1 and 2, which are consumed by one reaction to produce the metabolite 3, see
Figure A.1.

e

1

2
3 4

5
Figure A.1: The pathway converts metabolite 1 and metabolite 2 together into metabolite 3 by
one reaction. The enzyme e, catalysis the reaction that converts metabolite 3 into to metabolite 5.

The network is described by a system of ODEs using Michaelis-Menten Kinetics expres-
sion for metabolites reaction, Hill function for enzyme synthesis, and mass action kinetic for
enzyme degradation. The dynamical system is given as follows:

dm1

dt
= I1 −

kcat1m1m2

KM1KM2 +KM2m1 +KM1m2 +m1m2
e1,2→3,

dm2

dt
= I2 −

kcat1m1m2

KM1KM2 +KM2m1 +KM1m2 +m1m2
e1,2→3,

dm3

dt
=

kcat1m1m2

KM1KM2 +KM2m1 +KM1m2 +m1m2
e1,2→3 −

kcat3m3

KM3 +m3
e3→4 −

kcat4m3

KM4 +m3
e3→5,

dm4

dt
=

kcat3m3

KM3 +m3
e3→4 −

Ê4m4

KO4 +m4
,

dm5

dt
=

kcat4m3

KM4 +m3
e3→5 −

Ê5m5

KO5 +m5
,

de
dt

= k0 + k1Γ(m4)− kde,

where e = e3→5, the constant rate values of kcat , KM, eN , and export rates have the same
value of the example in [89].
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We consider the non-dimensionalization system with new variables (x,y) as follows:

ε
dy1

dt̂
= Ĩ1 −

y1y2

1+ y1 + y2 + y1y2
,

ε
dy2

dt̂
= Ĩ2 −

y1y2

1+ y1 + y2 + y1y2
,

ε
dy3

dt̂
=

y1y2

1+ y1 + y2 + y1y2
− y3

1+ y3
− ê

eN

y3x
1+ y3

,

ε
dy4

dt̂
=

y3

1+ y3
− y4

1+ y4
,

ε
dy5

dt̂
=

ê
eN

y3x
1+ y3

− y5

1+ y5
,

dx
dt̂

=
k0

k0 + k1
+

k1

k0 + k1
Γ
∗(y4)− x,

where Γ∗(y4) := Γ(KMy4), ε =
KMkd

kcateN
, and Ĩi =

Ii

kcateN
, i = 1,2.

Here, we assume the import rates Ĩ1, Ĩ2 have the same value then the first two metabolites
have the same differential equation. It means that one metabolite can be written in terms of
another one as follows:

dy1

dt̂
=

dy2

dt̂
, (A.2)

by integrating the equation (A.2) over the time t̂, we obtain

y1 = y2 +δ ,

where δ is an integral constant, at ε = 0, we express the roots of algebraic equation by r(x).
The roots of algebraic equations are given as follows

Ĩ1 −
r1(x)r2(x)

1+ r1(x)+ r2(x)+ r1(x)r2(x)
= 0,

Ĩ1 + Ĩ1r1(x)+ Ĩ1r2(x)+ Ĩ1r1(x)r2(x)− r1(x)r2(x)
1+ r1(x)+ r2(x)+ r1(x)r2(x)

= 0,

Ĩ1 + Ĩ1(r2(x)+δ )+ Ĩ1r2(x)+ Ĩ1(r2(x)+δ )r2(x)− (r2(x)+δ )r2(x) = 0,

r2
2(x)(1− Ĩ1)− r2(x)(2Ĩ1 + Ĩ1δ −δ )− (Ĩ1 + Ĩ1δ ) = 0,
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r2(x) =
(2Ĩ1 + Ĩ1δ −δ )+

√
(2Ĩ1 + Ĩ1δ −δ )2 +4(1− Ĩ1)(Ĩ1 + Ĩ1δ )

2(1− Ĩ1)
,

we ignore the negative solution since we study the concentrations that have positive values

r3(x) = r4(x) =
Ĩ1

ê
eN

x+1− Ĩ1

,

r5(x) =
Ĩ1

ê
eN

1
x
+1− Ĩ1

,

thus the reduced model is given by

˙̄x =
k0

k0 + k1
+

k1

k0 + k1
Γ
∗(r4(x̄))− x̄, x̄(0) = x0,

ȳ = r(x̄).
(A.3)
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Figure A.2: a The metabolite trajectories of the complete model (solid lines) converge rapidly to
that of the reduced model (dashed lines). b The trajectory of the enzyme of the complete model
remains so close to the reduced model.

We obtain the reduced system of bi-substrates reactions, in particular, in the case of the
import rate of the metabolites y1,y2 has equal value. The simulation of the complete and the
reduced systems were generated in Matlab2016b using function ode45 with a default setting
with initial conditions (y1,y2,y3,y4,y5,x) = (0.255,0.5638,2.4255,2.617,1.1489,1.7640).
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The value of δ is 0.3088 and Ĩ1, Ĩ2 have value is 1/2. It is clear from Figure A.2 that the the
trajectory of the original system remains close to the reduced system and the trajectories of
the fast variables converge to their quasi steady state after some time.

Now, we will discuss the boundary layer system. The boundary layer system is obtained
using the same previous steps of changing the variables to ŷ = y− r(x) and substituting
dt̂
dτ

= ε . The boundary layer system is given as follows

dŷ1

dτ
= Ī1 −

ŷ1 + r1(x0)

1+ ŷ1 + r1(x0)

ŷ2 + r2(x0)

1+ ŷ2 + r2(x0)
,

dŷ2

dτ
= Ī2 −

ŷ1 + r1(x0)

1+ ŷ1 + r1(x0)

ŷ2 + r2(x0)

1+ ŷ2 + r2(x0)
,

dŷ3

dτ
=

ŷ1 + r1(x0)

1+ ŷ1 + r1(x0)

ŷ2 + r2(x0)

1+ ŷ2 + r2(x0)
− ŷ3 + r3(x0)

1+ ŷ3 + r3(x0)
− ê

eN

(ŷ3 + r3(x0))x0

1+ ŷ3 + r3(x0)
,

dŷ4

dτ
=

ŷ3 + r3(x0)

1+ ŷ3 + r3(x0)
− ŷ4 + r4(x0)

1+ ŷ4 + r4(x0)
,

dŷ5

dτ
=

ê
eN

(ŷ3 + r3(x0))x0

1+ ŷ3 + r3(x0)
− ŷ5 + r5(x0)

1+ ŷ5 + r5(x0)
,
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Figure A.3: a The metabolites trajectory of the boundary-layer system. b The red trajectory is
the norm of ∥m̂(τ)∥ and the blue trajectory is κe(−ψτ) ∥m̂(τ0)∥.

The simulations of the boundary layer system was generated in Matlab (R2016b) using
the Matlab function ode45 with the default setting to solve the corresponding systems of
ODEs with initial conditions ŷ(0) = y(0)− r(x(0)). In Figure A.3a, we observe that all the
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trajectories of the metabolites of the boundary layer system converge to the equilibrium
point ŷ = 0. The exponential stability of equilibrium point of boundary-layer system by
satisfying the inequality in (4.9). By choosing with κ = 2,ψ = 0.15, we notice that ∥m̂(τ)∥≤
κe(−ψτ) ∥m̂(τ0)∥, see Figure A.3b, thus the equilibrium point ŷ = 0 is exponential stable.
Then the error of the reduced and complete system will be of order O(ε).

A.3 Model reduction by the POD method

Here, we discuss how far the change in the dimension of the snapshot matrix can affect the
behavior of the reduced model. The ODEs solver in MATLAB chooses internal time steps
to solve ODE system. In the kinetic model of the metabolic-genetic network, the snapshot
matrix is 19×2313 dimension. The number of 19 indicates to the metabolites and the time
steps number is 2313. We will adjust the dimensions of the snapshot matrix and discuss the
effect of small-time steps number on the model reduction technique. We reduce snapshot
matrix column from 19×2313 to 19×29 dimension. We compute a reduced-order model of
dimension nk = 16 using the POD approach. The singular values of the snapshot matrix are
shown in Figure A.4.

0 5 10 15 20
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10 -5

10 0

10 5
SVD

Figure A.4: Singular values of snapshot matrix of dimension 19×29.

The results of a simulation of the reduced-order system in comparison with the simulation
results of the original system are depicted in Figure A.5.
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Figure A.5: Comparison of the behavior of some metabolites in the diauxic switch case for the
original and the POD reduced model.

Here, we adjust the dimensions of the snapshot matrix 19×2313 to 19×16. We compute
a reduced-order model of dimension nk = 16 using the POD approach. The singular values
is shown in Figure A.6.
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Figure A.6: singular values of snapshot matrix in 19×16 dimension.

The results of a simulation of the reduced-order system in comparison with the simulation
results of the original system are depicted in Figure A.7.
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Figure A.7: Comparison of the behavior of some metabolites in the diauxic switch case for the
original and the POD reduced model.

From the above results, we can observe that the main features of the dynamical behavior
of the original model states are preserved in reduced-order models. There is no significant
change in the behavior of the reduced model, and even if we have adjusted the dimension of
the snapshot matrix.
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List of abbreviations

ODE Ordinary Differential Equations
DAE Differential Algebraic Equations
FBA Flux Balance Analysis
dFBA Dynamic Flux Balance Analysis
deFBA Dynamic Enzyme-cost Flux Balance Analysis
RBA Resource Balance Analysis
rFBA Regulatory Flux Balance Analysis
MOR Model Order reduction
POD Proper Orthogonal decomposition
KLE Karhunen–Loève Expansion
SVD Singular Value Decomposition
Pr Probability distribution
LL Log Likelihood
MRN Metabolic Regulatory Network
NMR Nuclear Magnetic Resonance





Notation

R The real number
S Stoichiometric matrix
ri The ith reactions
M Vector of species
Mext Vector of external metabolites
Mint Vector of internal metabolites
v Vector of reaction rates
ki The ith constant reaction rates
nk Dimension of reduced model
nm Number of species
nr Number of reactions
µ(t) Growth rate at time point t
e(t) Enzyme vector at time point t
l(t),u(t) Lower and upper flux bounds vectors at time point t, respectively
KM Michaelis-Menten constant
kcat Turnover constant rate
X Biomass
w Average molar weight of precursor
R Ribosome
X,Y,Z Snapshot matrices
σ̂ Singular value
µ̂ The mean of random variable
σ2 The variance of random variable
χ2 Chi square distribution
x̃(t) State’s vector of reduced model
γ,α,ζ ,β Thresholds for the Hill function
h The Hill coefficient
t Discrete time
θ Vector of parameter
θ̂ Vector of optimized parameters
U Projection subspace
U,V Unitary matrices
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r̂ Rank of matrix
c Vector of weights
RP,T2 Boolean variables
nb Biomass reactions
vmax Maximum uptake rates
H Hybrid automaton
⊺ Transpose
ε̂ Measurement noise
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