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Summary 

Primary cardiomyopathies (CMPs) are genetically heterogeneous disorders with a large 

number of disease-causing genes. The underlying genetic mechanisms and early pathological 

events of children with primary CMP are poorly characterized. This work aimed to identify 

genetic causes of childhood CMP, and to understand the development of early-onset and 

severe heart muscle disease. Mutation of PR/SET domain 16 (PRDM16) was shown to be 

associated with two types of CMP, dilated CMP (DCM) and left ventricular non-compaction 

CMP (LVNC). PRDM16 encodes for a transcriptional regulator with a previously unknown 

function in the heart. 

Eighty unrelated index patients with pediatric primary CMP underwent genetic testing with a 

panel-based next generation sequencing (NGS) approach of 89 genes. Adverse events such 

as heart transplantation (HTX) and death were higher for individuals affected by DCM and 

restrictive CMP than for other types of CMP. Patients with a higher number of variants of 

interest (VOI) had an increased risk to experience an adverse event. At least one pathogenic 

or likely pathogenic variant was identified in 30/80 (38%) index patients. In all CMP subgroups, 

patients carried most frequently VOI in sarcomere genes suggesting them as a major 

contributor in pediatric primary CMP. Protein and transcript level analysis on heart biopsies 

from individuals with homozygous mutation of troponin I3, cardiac type (TNNI3) revealed that 

the TNNI3 protein was absent and associated with upregulation of the fetal isoform troponin 

I1, slow skeletal type (TNNI1). These observations support the clinical importance of 

sarcomeric mutation in primary CMP. TNNI3 is the third most important disease gene in 

pediatric CMP. 

The mutational spectrum of PRDM16 in an extended cohort of 285 patients with different types 

of heart muscle diseases revealed 16 VOI in total. These alterations occurred in six different 

cardiac diseases and comprised missense, splice site, frame shift, and stop gain variants. 

Pathogenic PRDM16 variants were only found in LVNC patients, confirming the important role 

of PRDM16 in LVNC pathogenesis. By prediction of posttranslational modification sites, 

structural features and functional interaction sites of the PRDM16 protein were identified. 

Functional and biochemical characterization of PRDM16 showed different subcellular 

localization of CMP variants and the influence of CMP variants on the protein stability of 

PRDM16. Patient specific CMP variants altered the cellular distribution of PRDM16, with 

condensed signals differing between the cytoplasm and the nucleus. 

In conclusion, the spectrum and number of genetic alteration in pediatric primary CMP 

determine clinical outcome. PDRM16 is a frequent CMP gene and translational approaches 

for potential therapies need to be developed.  
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Zusammenfassung 

Primäre Kardiomyopathien (CMP) sind heterogene, genetisch determinierte Erkrankungen mit 

einer Vielzahl von krankheitsverursachenden Genen. Die zugrundeliegenden genetischen 

Mechanismen und früh vorhandenen pathologischen Vorgänge sind bei Kindern mit primärer 

CMP wenig untersucht. Diese Arbeit beschäftigt sich mit der Identifizierung von genetischen 

Ursachen der Kardiomyopathie des Kindesalters, insbesondere mit dem Auftreten von früh 

einsetzenden und schweren Krankheitsverläufen. Genetische Veränderungen von PR/SET 

domain 16 (PRDM16) führen zu zwei verschiedenen Arten von Kardiomyopathien, der 

dilatativen CMP (DCM) und der linksventrikulären Noncompaction CMP (LVNC). PRDM16 

kodiert für einen transkriptionellen Regulator mit bis dahin unbekannter Funktion im Herzen. 

Achtzig nicht verwandte Indexpatienten mit pädiatrischer primärer CMP wurden mit einem 

panel-basierten next generation sequencing (NGS) Ansatz einer genetischen Testung auf 

Veränderungen in 89 Genen untersucht. Unerwünschte Ereignisse wie Herztransplantation 

und Tod waren bei Individuen mit DCM und restriktiver CMP höher als bei anderen CMP. 

Patienten mit einer höheren Anzahl von genetischen Varianten von Interesse (VOI) hatten ein 

höheres Risiko für ein unerwünschtes Ereignis. Bei 30/80 (38%) Indexpatienten wurde 

mindestens eine wahrscheinlich pathogene oder pathogene Variante identifiziert. Bei allen 

CMP Subtypen waren VOI in Sarkomergenen am häufigsten und sind somit für die Entstehung 

der pädiatrischen primären CMP hauptverantwortlich. Auf Protein- und mRNA Ebene von 

Herzbiopsien von Individuen mit homozygoter Variante konnte gezeigt werden, dass TNNI3 

nicht nachweisbar war und stattdessen eine Hochregulation der fetalen Isoform TNNI1 

stattfand. Diese Beobachtungen unterstützen die klinische Bedeutung von genetischen 

Veränderungen in Sarkomergenen bei primärer CMP. TNNI3 ist das dritthäufigste 

Krankheitsgen bei pädiatrischer CMP. 

Das Spektrum der VOI bei PRDM16 in einer erweiterten Kohorte von 285 Patienten mit 

verschiedenen Herzmuskelerkrankungen ergab insgesamt 16 verschiedene VOI. Diese 

Veränderungen traten bei sechs verschiedenen Herzerkrankungen auf und umfasste Punkt-

Varianten, Spleiß-Varianten, Frameshift-Varianten und Stopp-Varianten. Pathogene PRDM16 

Varianten wurden nur bei Patienten mit LVNC gefunden, was die Bedeutung von PRDM16 in 

der Entstehung der LVNC unterstreicht. Durch die Vorhersage von Stellen für 

posttranslationale Modifikationen wurden strukturelle Eigenschaften und funktionelle 

Interaktionsstellen des PRDM16 Proteins identifiziert. Die funktionelle und biochemische 

Charakterisierung von PRDM16 zeigte unterschiedliche subzelluläre Lokalisationen von CMP 

Varianten und auch die Stabilität vom PRDM16 wurde unterschiedlich durch die jeweiligen 

CMP Varianten beeinflusst. Patientenspezifische CMP Varianten veränderten die zelluläre 
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Verteilung von PRDM16 dahingehend, dass kondensierte Signale zwischen Zellkern und 

Zytoplasma jeweils differierten.  

Abschließend fanden wir, dass das Spektrum und die Anzahl der genetischen Veränderungen 

bei pädiatrischer primärer CMP für den klinischen Ausgang verantwortlich sind. PRDM16 ist 

ein häufiges Krankheitsgen für CMP und translationale Ansätze für mögliche Therapien sollten 

entwickelt werden.  
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1 Introduction 

In 2016 according to World Health Organization (WHO) data cardiovascular disease 

represented with 31% the number one cause of death worldwide (https://www.who.int/news-

room/fact-sheets/detail/cardiovascular-diseases-%28cvds%29). The most frequent diseases 

in this group are ischemic heart disease, where restricted blood supply leads to adverse events 

in the heart, strokes, where limited blood flow affects the brain, and hypertensive heart disease 

caused by high blood pressure. Nevertheless, cardiomyopathy (CMP), myocarditis and 

endocarditis pooled into one category by the WHO, are included in this group of life-threatening 

diseases and constitute to 374000 casualties worldwide each year (0.7%, estimates for 2016). 

This category comprises malformations of the heart due to congenital alterations or 

inflammatory events. Therefore, these numbers present a necessity to investigate 

mechanisms leading to these diseases to reduce death rates. Especially congenital forms of 

cardiomyopathies can be related to genetic alterations and are suited for genetic screening. 

While mechanisms leading to cardiomyopathy in adults are well-established, the underlying 

genetic mechanisms, early pathological events and other disease promoting factors are poorly 

characterized in children. Thus, in this work a pediatric cohort consisting of patients affected 

by primary, non-syndromic cardiomyopathies was tested for its genetic background. 

Furthermore the function of many proteins involved in cardiomyopathy relevant processes is 

well understood, but the impact of small genetic alterations is difficult to predict and requires 

further investigation. Additionally to well-known cardiomyopathy genes like myosin heavy chain 

7 (MYH7) and myosin binding protein C, cardiac (MYBPC3) genetic testing led to newly 

discovered disease genes and approximately 100 different genes are associated so far with 

cardiomyopathy (R. E. Hershberger, Hedges, & Morales, 2013). Many of these genes are 

poorly characterized in the cardiac setting. Therefore, another purpose of this work was to gain 

functional knowledge of the involvement of the transcriptional regulator PR/SET domain 16 

(PRDM16) for the progression of cardiomyopathies due to small variants. 

1.1 Classification of cardiomyopathies and prevalence 

The word cardiomyopathy originates from the Greek language and means disease of the heart 

muscle (καρδίᾱ - heart, mỹs – muscle, πάθος – suffering, disease). It is characterized by 

complex malformations of the myocardium and manifests itself as abnormalities in the 

structure and function of the heart (Burke, Cook, Seidman, & Seidman, 2016). Especially 

resulting in arrhythmia, heart insufficiency and hypoxia can lead to adverse events and death. 

Cardiomyopathies are distinguished into primary and secondary. Secondary cardiomyopathies 

are either part of systemic diseases or rather consequences of these for example Fabry’s 



 
2 

  

disease (metabolic) or Diabetes mellitus (endocrine). Primary cardiomyopathies are defined 

as predominantly affecting the myocardium in the clinically relevant disease processes. 

Furthermore, primary cardiomyopathies are distributed into the categories genetic/congenital, 

acquired and mixed. Acquired diseases of the heart muscle can be caused by environmental 

factors like stress or infection of the myocardium through bacteria and viruses (Takotsubo 

cardiomyopathy and myocarditis). Further risk factors such as overweight, pregnancy or drug 

and alcohol abuse may cause acquired cardiomyopathy or at least contribute to the congenital 

forms. Genetic cardiomyopathies however are caused by alterations of the genome. Some of 

the congenital forms of cardiomyopathies can also be acquired through environmental factors 

and therefore represent a mixed form (Maron et al., 2006; Cecchi, Tomberli, & Olivotto, 2012). 

Such case may occur when a myocarditis develops into a more severe dilated cardiomyopathy. 

Historically the term idiopathic was used due to unknown mechanisms as to why 

cardiomyopathies develop and progress. Ongoing investigation relates genetic burdens to the 

initiation and progression of primary cardiomyopathies. These genetic forms are further 

distributed into the specific cardiomyopathy phenotypes of dilated cardiomyopathy (DCM), 

hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM), arrhythmogenic right 

ventricular cardiomyopathy (ARVC, due to involvement of both ventricles in new publications 

referred to as arrhythmogenic ventricular cardiomyopathy - AVC), left ventricular 

noncompaction cardiomyopathy (LVNC) and ion channelopathies. The subtypes of 

cardiomyopathy will be further described in the following sections. Because ion channels can 

also lead to other affected organs and syndromic diseases, they are not further described or 

discussed in this work. 

1.1.1 Dilated cardiomyopathy 

Dilated cardiomyopathy is the most common cardiomyopathy form (McKenna, Maron, & 

Thiene, 2017; Herkert et al., 2018). DCM is characterized by the dilatation of the left ventricle. 

Additionally global systolic dysfunction has to be observed leading to an ejection fraction 

smaller than 50%. For the congenital form further factors like coronary artery disease, systemic 

hypertension or inflammatory heart disease have to be absent. Wall thinning is believed to 

contribute to the contractile deficiencies. The right ventricle can be affected similarly. These 

physiological features can manifest in ventricular heart failure (right-, left- and biventricular), 

arrhythmias, syncope or sudden death (Lipshultz et al., 2019). The prevalence of DCM is 

estimated at 1:250 to 1:500 in adults and uncommon in children with an accumulation of cases 

with an age of younger than one year (McKenna, Maron, & Thiene, 2017; Lipshultz et al., 

2003). 
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1.1.2 Hypertrophic cardiomyopathy 

Hypertrophic cardiomyopathy is characterized by an enlargement of the septum or ventricular 

wall, whereas the right ventricles are rarely affected. The hypertrophy can occur in confined 

segments. Due to wall thickening tachycardia, arrhythmia and sudden cardiac death can occur 

(often in undiagnosed athletes with HCM through burden of the heart, Cecchi, Tomberli, & 

Olivotto, 2012). Therefore, implantation of pacemakers are common for advanced HCM 

additionally to pharmaceutical treatment. Otherwise many HCM patients are asymptomatic or 

show only mild signs of the disease. The onset of disease is often with advanced age and thus 

uncommon in children, although often occurring in adults with an estimated frequency of 

1:250/500 (Semsarian, Ingles, Maron, & Maron, 2015; McKenna, Maron, & Thiene, 2017). Still, 

HCM is believed to be rarer than DCM and the second most frequent cardiomyopathy in 

children (R. E. Hershberger, Hedges, & Morales, 2013; Lee et al., 2017). 

1.1.3 Restrictive cardiomyopathy 

Restrictive cardiomyopathy is a rare phenotype and characterized by diastolic impairment or 

abnormal compliance often of both ventricles. The ventricles therefore seem rigid or restricted 

and as a result the atria are often affected by enlargement, whereas the ventricles are 

presented normal (not dilated or hypertrophic, normal wall thickness). RCM can result in heart 

failure, arrhythmias or sudden death and conduction abnormalities and atrial/ventricular 

arrhythmias as first signs of the disease (M. A. Walsh et al., 2012). As mentioned, RCM is 

uncommon in adults and children (McKenna, Maron, & Thiene, 2017; Lee et al., 2017). 

1.1.4 Arrhythmogenic right ventricular cardiomyopathy 

Arrhythmogenic right ventricular cardiomyopathy is also rare and only restricted data of 

population data is available for this CMP. Nevertheless, a frequency of 1:2000/5000 is 

estimated and rarer in children (Marcus et al., 2010; Nava et al., 2000; Lee et al., 2017). The 

disease is characterized by fibrofatty replacement of the myocardium in the ventricles and thus 

restricted conduction. Ventricular arrhythmias are the consequence and atrial fibrillation can 

occur (Cecchi, Tomberli, & Olivotto, 2012; Corrado et al., 2015). 

1.1.5 Left ventricular noncompaction cardiomyopathy 

Left ventricular noncompaction cardiomyopathy is characterized by “spongy” and therefore 

noncompacted appearance of the left ventricular myocardium due to massive trabeculation 

and the formation of deep intratrabecular recesses (Oechslin & Jenni, 2011; Lipshultz et al., 
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2019). Typical symptoms are palpitations, non-specific chest pain, heart failure symptoms and 

arrythmias. LVNC is often observed in combination with other cardiomyopathies and without 

or mild symptoms (Maron et al., 2006). Therefore it is highly debated, if LVNC is a distinct 

cardiomyopathy leading to adverse events or only prominent with other diseases and thus not 

an isolated cardiomyopathy. The prevalence of LVNC cases is difficult to estimate, because 

available large population reports are lacking and diagnosis criteria leading to adverse events 

are highly discussed. Additionally, it is unclear, if LVNC is a developmental condition or can 

also be acquired in advanced age (Tian et al., 2017; Kodo et al., 2016). 

1.2 Genes causing cardiomyopathies 

In contrast to acquired forms of cardiomyopathy, congenital CMPs are caused by genetic 

alterations, predominantly small changes leading to amino acid changes at one position or 

modifying the reading frame and therefore resulting in a frameshift. Meanwhile a wide spectrum 

of genes was associated with this category of disease. 

1.2.1 Functional groups of cardiomyopathy-related genes 

Only for HCM over 2000 variants have been associated with the onset of this cardiomyopathy 

detected in over 40 genes (Bondue et al., 2018; Cirino et al., 2017). These findings show, that 

CMPs are heterogenous diseases considering that DCM is associated with considerably more 

cardiac genes. Thereby, variation in genes are not entirely specific for one phenotype and 

mechanisms how different variants in the same gene result in different cardiac phenotypes are 

hardly understood (R. E. Hershberger et al., 2018; Burke, Cook, Seidman, & Seidman, 2016; 

Pugh et al., 2014). Genes investigated regarding the onset and progression of CMPs can be 

classified in functional groups and a set of major genes is presented in Figure 1. Genes 

included in the functional group of the sarcomere are detected in CMP cases with the highest 

rate. The sarcomere is the functional unit of the muscle and generates the contractile force for 

movement due to the interaction of myosin and actin filaments. Therefore, impairment of this 

system leads to compensative remodeling of the heart and thus to cardiomyopathies (Dadson, 

Hauck, & Billia, 2017). Alteration of proteins in the Z-disc, the complex scaffold separating two 

sarcomeres, often leads to structural modifications and again adverse remodeling of the heart 

(Towbin, 2014). Defects in proteins of desmosomes, cell-cell contacts in cardiomyocytes, can 

result in decreased capability to withstand mechanical strains in the heart and mitochondrial 

proteins may influence metabolic features of cardiomyocytes (Lipshultz et al., 2019). 

Further classification categorizes CMP-related genes into cytoskeleton (dystrophin-

sarcoglycan complex), gene expression leading to impaired transcription of proteins, nuclear 
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membrane and a few others (Burke, Cook, Seidman, & Seidman, 2016). Due to divergence of 

genetic burden suggestions have been phrased to change the classification from 

morphological phenotypes to molecular genetic defect (sarcomeric cardiomyopathy, cell 

junction cardiomyopathy, ion channel cardiomyopathy, cytoskeletal cardiomyopathy, etc., 

Thiene, Corrado, & Basso, 2004). Either way, newly discovered genes associated with CMP 

are discovered repeatedly like PRDM16 (Arndt et al., 2013) and diagnostical criteria have to 

be as distinct as possible to choose the clinical treatment accordingly. 

 

 

Figure 1: Spectrum of genes associated with CMPs in different cell compartments. Genes are associated 

with the corresponding compartments in a schematic cell model (Burke, Cook, Seidman, & Seidman, 2016). 
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1.2.2 Abundance of variants in genes causing cardiomyopathy 

For the cardiomyopathies DCM, HCM, RCM, ARVC and LVNC distinct gene spectra were 

detected. A former study suggested, that HCM is a force generating disease of the sarcomere 

and DCM a force transmitting disease of the mostly the cytoskeleton, whereas ARVC is caused 

by defects in desmosome and therefore a cell junction disease (McKenna, Maron, & Thiene, 

2017). The occurrence of variants in sarcomeric genes in patients with DCM, RCM and LVNC 

contradicts the afore mentioned suggestion and presents the difficulty to genetically define the 

different cardiac phenotypes (Bollen & van der Velden, 2017). One precise example is MYH7, 

a major factor for the contraction of sarcomeres. Variants in this gene were detected in more 

than one type of CMP. Therefore, variants in different functional domains of a protein may 

contribute differently to the phenotype. 

Nevertheless, tendencies can be detected and in HCM cases mainly sarcomere genes are 

observed (Ingles et al., 2019; Rupp et al., 2019). The majority of variants is observed in the 

genes MYBPC3 and MYH7 (19% and 14.2%), whereas variants in other sarcomere genes are 

considerably less frequent (R. Walsh et al., 2017). Other non-sarcomeric genes associated 

with HCM are galactosidase alpha (GLA), protein kinase AMP-activated non-catalytic subunit 

gamma 2 (PRKAG2) and lysosomal associated membrane protein 2 (LAMP2) but may present 

the cardiomyopathy as a secondary symptom (R. E. Hershberger et al., 2018). 

DCM is associated with a heterogenous spectrum of genes. Most frequently with 15-25% 

variants were detected in titin (TTN, Akinrinade et al., 2019, Schafer et al., 2017). Thereby, 

only truncating variants were considered for analysis. TTN is the longest known protein with a 

number of alternatively spliced transcripts. Due to its challenging length it is difficult to predict 

the effect of single amino acid or short in-frame changes. A cardiac-specific transcript has been 

analyzed to predict the expression of truncating variants (Roberts et al., 2015). Other less 

frequent but statistically enriched genes compared to healthy individuals were MYH7 (5.3%, 

sarcomere), lamin A/C (LMNA, 4.4%, nuclear envelope), troponin T2, cardiac type (TNNT2, 

2.9%, sarcomere), tropomyosin 1 (TPM1, 1.9%, sarcomere,) and desmoplakin (DSP, 

truncating variants with 2.8%, desmosome, R. Walsh et al., 2017). 

For LVNC patients the highest genetic burden was observed with variants in MYH7, MYBPC3 

and TTN (Oechslin & Klaassen, 2019; Kolokotronis et al., 2019). Therefore again, LVNC cases 

show similarities to HCM and DCM. Additionally, mitochondrial and desmosomal genes were 

associated with the disease (Lipshultz et al., 2019). 

Patients affected with ARVC present the most distinct and non-overlapping genotype in the 

group of cardiomyopathies. In 50-60% of ARVC cases variants were detected in desmosomal 

genes (Hall et al., 2018). 
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Cases with RCM are mainly affected by alterations in sarcomeric genes (Kaski et al., 2008). 

The abundance of variants in RCM-specific is only estimated because epidemiological 

research is lacking so far. Therefore, mainly single cases or individual consanguineous families 

are reported with the onset of RCM. In less frequent cases RCM patients were described to 

be affected with variants in desmin (DES) and filamin C (FLNC, Lipshultz et al., 2019). 

1.3 Next generation sequencing 

Due to the need to understand mechanisms on how cardiomyopathies develop, genetic 

screening of CMP patients becomes more important. Although genetic cause is associated 

with cardiomyopathies since 1990 (Geisterfer-Lowrance et al., 1990) the genetic basis for this 

group of diseases remains challenging and new genes are associated repeatedly with the 

onset of cardiomyopathies partly due to rapid development of new sequencing methods. Since 

the decoding of the human genome during the Human Genome Project (IHGSC, 2004) the 

sequencing of a collection of genes (panel-based sequencing), the protein coding exome or 

the whole genome is improving steadily. 

 

 

Figure 2: Schematic presentation of the Illumina next generation sequencing (NGS) method. The stepwise 

sequencing of a DNA fragment in four cycles shows marking of each nucleotide with an additional fluorophor in 

each cycle (Illumina Inc., 2010). 

 

One major contributor in this field is the company Illumina. The method preferred by Illumina 

technology is based on sequencing through synthesis of the complementary DNA strand 
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(Figure 2, Pettersson, Lundeberg, & Ahmadian, 2009; Reuter, Spacek, & Snyder, 2015). The 

process is using fluorophor conjugated nucleotides and stepwise sequencing of each DNA 

position in cycles. The fluorophor is used as terminator group and therefore inhibits further 

DNA polymerization at the 3´ end of the newly synthesized chain in the same cycle (one 

nucleotide per cycle). After the positional readout the fluorophor is cleaved from the sequence 

and the next cycle is initiated (cleavage of fluorophor removes terminating feature, Buermans 

& den Dunnen, 2014; Illumina Inc., 2010). Each nucleotide is according to its base emitting 

light with specific wavelengths. The complementary DNA strands were captured on a flow cell 

through previously conjugated adaptor sequences and amplified/clustered to strengthen the 

signal (Meyer & Kircher, 2010). 

1.4 PRDM16 as cause for cardiomyopathies 

As mentioned before, genes newly associated with cardiomyopathy are discovered steadily. 

Currently genetic diagnostic rates are still low. Therefore, a necessity to increase genetic 

screening in patients is given. Further need to understand the impact of detected variants in 

regard to the occurrence of more than one genetic alteration (modifying variants) or newly 

associated genes remains, especially functionally or mechanistically. One such gene is 

PRDM16. 

1.4.1 PRDM16 in fat tissue and as important factor for the state of progenitor 

and stem cells 

The function of the transcriptional regulator PRDM16 was described in different tissues and 

first associated with the development of positive leukemia cells (Mochizuki et al., 2000). 

However, it is best known for its involvement in the differentiation of fat tissue, especially brown 

and beige adipocytes. It pushes the cell fate of myoblastic and adipocyte precursors to 

adipocytes and therefore interacts with different transcription factors (Ohno, Shinoda, 

Spiegelman, & Kajimura, 2012; Ohno, Shinoda, Ohyama, Sharp, & Kajimura, 2013). 

Therefore, PRDM16 has been shown to direct brown and beige fat determination and 

differentiation, acting as a major contributor in a critical complex to control the cell fate switch 

from myoblastic precursors to brown fat cells. Peroxisome proliferator-activated receptor 

gamma (PPARγ) agonists induce a white-to-brown fat conversion through stabilization of 

PRDM16 Protein (Figure 3). On the molecular level, PRDM16 interacts with several 

transcription factors like CCAAT/enhancer binding protein beta (C/EBPß) regulating 

adipogenic programs. Moreover, PRDM16 exposes epigenetic regulation of adipogenesis via 
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interaction with the euchromatic histone lysine methyltransferase 1 (EHMT1). Thus, PRDM16 

seems to be involved in many signal pathways or is regulated by such. 

 

 

Figure 3: Schematic development of brown and beige adipocytes driven by PRDM16-specific initiation and 

stabilization. The upper part shows the development of brown adipocytes from myoblasts and trough PRDM16 

activated transcription processes and the lower part shows differentiation to beige adipocytes from preadipocytes 

through stabilization of PRDM16 (Ohno, Shinoda, Spiegelman, & Kajimura, 2012). 

 

Additionally, PRDM16 was observed with crucial roles in other tissues. Hence, this protein was 

described to be involved in the processes of palatogenesis, hematopoiesis, neurogenesis and 

angiogenesis and is defined by a major role in stem cell regulation and homeostasis (Bjork, 

Turbe-Doan, Prysak, Herron, & Beier, 2010; Chuikov, Levi, Smith, & Morrison, 2010; Aguilo et 

al., 2011; Baizabal et al., 2018; Su et al., 2020). 

1.4.2 Heart phenotype of PRDM16 deactivation 

Apart from the afore mentioned tissues PRDM16 was associated with the onset of 

cardiomyopathies. First evidence for cardiac involvement of PRDM16 was generated through 

a knockout mouse model carrying a splice site alteration resulting in a premature stop and 

therefore impaired PRDM16 expression (Bjork, Turbe-Doan, Prysak, Herron, & Beier, 2010). 

The variant was lethal in pre- and early postnatal stages in homozygous form. Although the 

mouse mainly was described for a cleft palate defect, it was shown, that mice were affected 

by cardiac hypoplasia (Figure 4). 



 
10 

  

Further evidence was presented in a study, where 1p36 deletion syndrome patients with 

additional occurring cardiomyopathy were analyzed (Arndt et al., 2013). With this syndromic 

disease individuals are affected by the partial deletion of the first chromosome. It was 

suggested that cardiomyopathy is only occurring when certain parts of the chromosome are 

deleted. The common minimal region of deletion of 18 individuals was positioned in the gene 

PRDM16 including the exons 4 to 17. Furthermore, through genetic screening of patients 

affected by primary non-syndromic cardiomyopathies missense and truncating variants were 

detected in seven DCM and LVNC cases. One of the truncating variants was then investigated 

in zebrafish, leading to severe heart phenotypes. 

 

 

Figure 4: Expression of PRDM16 in mice heart and cardiac hypoplasia due to PRDM16 ko. (A) Expression of 

PRDM16 in ventricles marked with blue. (B) Cardiac proportions of a normal heart (wt) are shown. (C)/(D) Through 

deactivation of PRDM16 the mice heart was affected by hypoplasia (Bjork, Turbe-Doan, Prysak, Herron, & Beier, 

2010). 

 

Since then, further PRDM16-specific publications associated with cardiac research were rare. 

However, in a study investigating a nonsense variant in the T-box transcription factor 20 

(TBX20) PRDM16 was determined as a downstream target of TBX20 and therefore a 

transforming growth factor beta (TGF-β) signaling modifier. In patient-specific human induced 

pluripotent stem cell–derived cardiomyocytes and cardiac biopsies the regulation of PRDM16 

through TBX20 was observed and its effect on the TGF-β pathway determined 

Just recently further proof for the involvement of PRDM16 in cardiac phenotypes was published 

(Nam, Lim, Ha, Oh, & Kang, 2020). A null variant of PRDM16 was introduced into a cardiac 

conditional knockout mouse model. With electrocardiographic diagnosis considerable 

alterations were observed (QRS duration and QTc interval increased). Fibrosis and 

hypertrophic cardiomyocytes were detected in the affected mice and the expression of cardiac 

ion channels was dysregulated. Thus, cardiac conduction was impaired. 
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These findings mainly proof that PRDM16 is involved in the development of the heart and 

cardiac impairments. Molecular mechanisms mainly remain uncertain and further investigation 

to understand the effect of genetic alterations in PRDM16 is necessary for prospective 

therapies. 

1.5 Aims of the dissertation 

This work aims to identify genetic causes of childhood CMP and to understand the 

development of early-onset and severe heart muscle disease. Only recently, mutation of 

PRDM16 was shown to be associated with two types of CMP, DCM and LVNC. PRDM16 

encodes for a transcriptional regulator with a previously unknown function in the heart. The 

mutational spectrum of PRDM16 in extended cohorts of patients with different types of heart 

muscle diseases will be examined. Furthermore, biochemical exploration of PRDM16 in the 

context of CMP is another aim of this work. 

1. We start with a targeted panel NGS approach covering the established CMP disease 

genes. The cohort of patients with pediatric CMP will be characterized using clinical 

parameters. The impact of age of onset of CMP, type of CMP, and genetic vs. sporadic 

CMP will be evaluated for event-free survival.  

2. We ask if the number and type of VOI have an impact on the occurrence of adverse 

events in patients. The genetic variants will be classified according to ACMG for their 

pathogenicity. This aim requires to develop and apply specific rules for interpretation in 

the context of CMP and to establish an in-house evaluation scheme. 

3. We hypothesize that we find a gene or a functional subset of genes that are of either 

high or low risk to develop severe CMP courses. With these patients we will perform 

further characterization on RNA and protein level.  

4. As PRDM16 seems to be important for heart function, we anticipate that genetic 

alterations in PRDM16 will be associated with several types of heart muscle disease of 

different age groups. We will perform mutational analysis of CMP associated genes, 

specifically in myocarditis, and in a set of adult patients with LVNC. For prediction of 

posttranslational modification sites and structural elements of PRDM16, protein 

prediction tools will be used. 

5. In addition, this work will cover research on genetic CMP disease mechanisms and 

biochemical characterization of PRDM16. Specifically, we will explore the subcellular 

localization of CMP variants and the influence of CMP variants on the protein stability 

of PRDM16. 

This approach is of vital interest to explore CMP pathogenesis, appropriately manage CMP 

patients, and to explore translational approaches for diagnosis as well as potential therapies. 
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2 Methods 

2.1 Materials 

2.1.1 Consumables 

Plastic consumables such as Eppendorf tubes, Falcon tubes or cell culture dishes and plates 

were purchased from companies mentioned in the following list. 

 

Manufacturer Location 

Biozym Scientific GmbH Hessisch Oldendorf, Germany 

Eppendorf AG Hamburg, Germany 

INTEGRA Biosciences GmbH Biebertal, Germany 

Merck KGaA (Sigma-Aldrich, Millipore) Darmstadt, Germany 

Sarstedt Nümbrecht, Germany 

Thermo Fisher Scientific/Applied Biosystems Darmstadt, Germany 

VWR International GmbH/NanoEnTek Darmstadt, Germany 

2.1.2 Sequencing 

2.1.2.1 DNA isolation from blood and saliva 

DNA was isolated and purified from blood or saliva. The following kits were used. 

 

Chemical/Kit Manufacturer Ref 

NucleoSpin Blood MACHEREY-NAGEL 740951 

PrepIT-L2P Kit DNA Genotek PT-L2P 

2.1.2.2 Sanger sequencing 

Sanger sequencing was used to verify the results of NGS and investigate the segregation of 

variants within families. Furthermore, the quality of cloned vectors was validated with this 

method. The following devices, chemicals and primers were used for Sanger sequencing. 
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Gene (Transcript) Primer Primer sequence Length 

Primer for genomic exon amplification 

LDB3 

(NM_007078) 

ghLDB3_ex10_f AAGTGATGCAACAATGAACACC 22 

ghLDB3_ex10_r GTTCCACCACCACTTCAAGC 20 

MYBPC3 

(NM_000256) 

ghMYBPC3_ex10-11_f CAACAGTCATCCTCACAGTG 20 

ghMYBPC3_ex10-11_r CAGGACCAAGGAGCTGTAG 19 

TNNI3 

(NM_000363.4) 

ghTNNI3_ex2_f AAGTGGGTTTGCGAGTCA 18 

ghTNNI3_ex2_r CCATCACCACCAAGACCC 18 

 ghTNNI3_ex5_f GGAGCTTGAGAATGGGTGGG 20 

 ghTNNI3_ex5_r GAGCCAAGACTCCACAGACC 20 

 ghTNNI3_ex8_f(a)  AGATACTTAGGCATCCAGGGTAG 23 

 ghTNNI3_ex8_r(a) ACAGCCAAGAGTGCTTCACAT 21 

 ghTNNI3_ex8_f(b)  GCTACTATTGACCTGAGAATCC 22 

 ghTNNI3_ex8_r(b) ACAGCCAAGAGTGCTTCACAT 21 

Primer for amplification of coding sequence embedded in plasmid 

PRDM16 

(NM_022114.3) 

235-256 CCGATCCCAGCAGACTTCGAGC 22 

260-241 CGGAGCTCGAAGTCTGCTGG 20 

 621-641 GGTGCACGTGAAGGAAGGCG 20 

 872-892 CCAACAAGTACAGCCTGGAGC 21 

 1062-1081 GCACATCCGCTCGCAGCACG 20 

 1450-1469 GGCTTCAACGAGTACTTTCC 20 

 1800-1819 CGGCAGTGACTTTGAGGACG 20 

 2009-2028 CCCAGCACTCATTCTTCCCG 20 

 2112-2093 CCATTGCCGAGAAGTACTTT 20 

 2238-2257 CCACAACTTGCTGGTCAAGG 20 

 2553-2572 CCCGCTCCACTACGCCAAGC 20 

 2712-2730 GACAGAGAAGCTGGAGAGC 19 

 2994-3013 CCGGAACATCCACAACAAGG 20 

 3241-3259 GCCAATAGTGAGATGAACC 19 

 3498-3518 GGGCTTTGACCACACCCGAAG 21 

Primer for cDNA exon amplification for splice site analysis TNNI3 c.24+2T>A  

TNNI3 

(NM_000363.4) 

chTNNI3_ex1_f1 TCACTGACCCTCCAAACG 18 

chTNNI3_ex1_f2 GGGAGTCTCAAGCAGCCC 18 

 chTNNI3_ex5_r TGGCAGCGGGTGCTCAGA 18 
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Chemical/Enzyme/Kit Manufacturer Ref 

BigDye Terminator v3.1 Thermo Fisher Scientific 4337455 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich D4540 

dNTP set Rapidozym GEN-009-250 

Ethidium bromide, 1% in H2O SIGMA-ALDRICH 46067-50ML-F 

Exonuclease I New England Biolabs M0293 

FIREPol DNA polymerase SOLIS BIODYNE 04-11-00115 

GeneRuler 100bp DNA ladder Thermo Fisher Scientific SM0242 

GeneRuler 1kb DNA ladder Thermo Fisher Scientific SM0313 

Hi-Di Formamide Thermo Fisher Scientific 4311320 

Illustra Sephadex G-50 DNA Grade GE Healthcare Life Sciences 17-0573-02 

LE Agarose Biozyme 840004 

Phusion High-Fidelity DNA Polymerase New England Biolabs Inc. M0530 

rAPid Alkaline Phosphatase Roche/MERCK 4898141001 

Taq DNA polymerase Qiagen 201205 

TERMIPol DNA polymerase SOLIS BIODYNE 01-03-00500 

2.1.2.3 Next-generation sequencing (NGS) 

Next-generation sequencing (NGS) was used to identify genetic variants in CMP patients by 

massive parallel sequencing in a high throughput method. The TruSight Cardio Sequencing 

panel, including a primer mix to detect 174 cardiac disease genes, was applied. Utilized 

devices and chemicals are listed below. Corresponding software is listed in the section 2.1.6. 

 

Device Company 

2100 Bioanalyzer Agilent Technologies 

DynaMag-2 Magnet Applied Biosystems, Thermo Fisher Scientific 

DynaMag-PCR Magnet Invitrogen, Thermo Fisher Scientific 

Hybex Microsample Incubator SciGene 

NextSeq 550 Illumina 

Qubit 3.0 Fluorometer Invitrogen, Thermo Fisher Scientific 

Device Company 

DNA Engine Tetrad 2, Peltier Thermal Cycler Bio-Rad 

NanoDrop ND-1000 Spectrophotometer Thermo Fisher Scientific 

3730xl DNA Analyzer Applied Biosystems 
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Chemical/Kit Manufacturer Ref 

Agilent DNA 1000 Kit Agilent Technologies 5067-1504 

Agilent High Sensitivity DNA Kit Agilent Technologies 5067-4626 

Ethanol ≥99,8 % Carl Roth 9065.1 

NextSeq 500/550 High Output Kit v2 Illumina FC-404-2005 

Qubit dsDNA HS Assay Kit Invitrogen, Thermo Fisher Scientific Q32854 

TruSight Cardio Sequencing 

Kit for NextSeq, (48 samples) 

Illumina 

 

FC-141-1011 

 

2.1.3 Cell culture 

For cell culture approaches mainly the human embryoid kidney cell line HEK293 was used. 

Only for initial experiments other cell lines like HeLa (cervical cancer cell line extracted from 

patient Henriette Lacks) or MCF7 (Michigan Cancer Foundation - 7) cell lines were tested for 

the expression of specific proteins but were less suited. For the maintenance and transfection 

of these cell lines the following materials were used. 

 

Chemical/Enzyme/Medium/Kit Manufacturer Ref 

Cycloheximide SIGMA-ALDRICH C7698 

FBS Thermo Fisher Scientific 10270106 

HEK293 cells ATCC ATCC-CRL-1573 

jetPEI kit Polyplus 101-10N 

MEM Thermo Fisher Scientific 31095-052 

OptiMEM Thermo Fisher Scientific 31985070 

PBS pH 7.4 Thermo Fisher Scientific 20012-068 

Trypsin Thermo Fisher Scientific 25200056 

2.1.4 Cloning of newly ligated expression vectors 

To transfer genes with patient specific variants into expression vectors suited for expression 

of proteins in human cell lines specific primer, adding distinct restriction sites into the newly 

designed constructs, were developed and are listed below. 
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Primer Primer sequence Length Target vector 

Primer for ligation of PRDM16 (NM_022114.3) 

PRDM16_f_XhoI 

 

CTCAGATCTCGAGCTATGCGATCCA 

AGGCGAGGGCGAGGAAGCTA 

45 

 

pEGFP-C1 

 

PRDM16_f_EcoRI 

 

TCAGAATTCCCGATGCGATCCAAGG 

CGAGGGCGAGGAAGCTA 

42 

 

pFLAG-CMV5a 

 

PRDM16_f_HindIII 

 

CTCAAGCTTGCGATGCGATCCAAGG 

CGAGGGCGAGGAAGCTA 

42 

 

pFLAG-CMV6a 

 

PRDM16_r_EcoRI_a 

 

ACTGGAATTCTCAGAGGTGGTTGAT 

GGGGTGAAATGCTCC 

40 

 

pEGFP-C1/ 

pFLAG-CMV6a 

PRDM16_r_BamHI_a 

 

ACTGGGATCCTCAGAGGTGGTTGAT 

GGGGTGAAATGCTCC 

40 

 

pFLAG-CMV5a 

 

 

After amplification of the gene target (insert) the PCR product was ligated into the new vector 

and transformed into competent E. coli. Additional antibiotic selection and purification 

completed the cloning process. All necessary components are listed below.  

 

Component Manufacturer Ref Restriction site 

Restriction enzymes used for cloning  

EcoRI 

 

New England Biolabs 

 

R3101 S 

 

5‘...GvAATTC...3‘ 

3‘...CTTAAvG...5‘ 

BamHI 

 

New England Biolabs 

 

R0136S 

 

5‘...GvGATCC...3‘ 

3‘...CCTAGvG...5‘ 

HindIII 

 

New England Biolabs 

 

R0104S 

 

5‘...AvAGCTT...3‘ 

3‘...TTCGAvA...5‘ 

XhoI 

 

New England Biolabs 

 

R0146 S 

 

5‘...CvTCGAG...3‘ 

3‘...GAGCTvC...5‘ 

Plasmids used as target vector  

pEGFP-C1 BD Biosciences Clontech 6084-1 MCS* 

pFLAG-CMV5a Sigma-Aldrich E7523 MCS* 

pFLAG-CMV6a Sigma-Aldrich E1900 MCS* 

* MCS – multiple cloning site 
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Chemical/Enzyme/Kit Manufacturer Ref 

Ampicillin Sigma-Aldrich A0166-25G 

Kanamycin Sigma-Aldrich 60615-5G 

LB Broth with agar (Miller) Powder Sigma-Aldrich L3147 

LB medium (Luria/Miller) Carl Roth X968 

NucleoBond Xtra Midi EF MACHEREY-NAGEL 740420.50 

NucleoSpin Plasmid MACHEREY-NAGEL 740588.250 

Phusion DNA Polymerase New England Biolabs M0530L 

rAPid alkaline phosphatase Sigma-Aldrich 489813300 

T4 ligase New England Biolabs M0202 S 

XL1 blue competent Agilent 200249 

2.1.5 DNA and protein expression analysis 

2.1.5.1 Preparation of human tissue 

2.1.5.2 qPCR 

For the isolation of RNA, synthesis of cDNA and quantitative PCR the following components 

were necessary. 

 

Chemical/Enzyme/Kit Manufacturer Ref 

Ethanol Thermo Fisher Scientific 20012-068 

Isopropanol Thermo Fisher Scientific 31095-052 

PrimeScript RT Reagent Kit TaKaRa RR037A 

SYBR® Premix Ex Taq™ II (Tli RNase HPlus) TaKaRa RR820W 

Trizol Thermo Fisher Scientific 31985070 

 

The Taqman 7500 system from Applied Biosystems, USA, was used for all qPCR 

measurements. Specific primers were designed to detect and amplify mRNA expressed DNA 

fragments. The targeted genes and designed primers are listed next. 
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Gene (Transcript) Primer Primer sequence Length 

Primer for cDNA amplification with quantitative PCR 

ACTN2 

(NM_001278343) 

qhACTN2_ex13-14_f  TTGGAACACCTGGCTGAGA 19 

qhACTN2_ex13-14_r  GCCGACTCGTAATCCTTCTG 20 

MYBPC3  

(NM_000256) 

qhMYBPC3_ex11-12_f GCATGAGGCGCGATGAGAAGA 21 

qhMYBPC3_ex11-12_r CAGCCAGTTCCACGGTCAGC 20 

TNNI1  

(NM_003281) 

qhTNNI1_ex5-6_f GGATGAGGAGCGATACGACA 20 

qhTNNI1_ex5-6_r GGCGCTTGAACTTCCCAC 18 

TNNI3  

(NM_000363.4) 

qhTNNI3_ex3-4_f CACCAGCCCCAATCAGACG 19 

qhTNNI3_ex3-4_r CTGCAATTTTCTCGAGGCGG 20 

TNNT2  

(NM_000364) 

qhTNNT2_ex14-15_f  GAGCTGTGGCAGAGCATCTA 20 

qhTNNT2_ex14-15_r  ATCCTGTTTCGGAGAACATTG 21 

2.1.5.3 Western blotting 

For Western blot analysis standard procedures and protocols were used (running and washing 

buffers for BioRad protocols). Tissue and cells were harvested by adding RIPA buffer. To 

separate a cytoplasmic fraction from the nucleus of a cell a hypotonic buffer with 20 mM Tris-

HCl pH 7.4, 10 mM NaCl and 3 mM MgCl2 was prepared to separate the lysis of each 

compartment. Further components used for Western blot are listed below.  

 

Chemical/Enzyme/Kit Manufacturer Ref 

20X Bolt™ MES SDS Running Buffer Thermo Fisher Scientific B0002 

Ammonium peroxydisulfate Carl Roth 9592.2 

Bolt™ 4-12% Bis-Tris Plus Gels Thermo Fisher Scientific NW04125BOX 

DNase I, 20.000 U Thermo Fisher Scientific 18047019 

Hypotonic buffer* In-house  

Methanol Carl Roth 8388.2 

NP-40 Sigma-Aldrich 74385 

Powdered milk Carl Roth T145.2 

Precision Plus Protein™ Dual Xtra  

Prestained Protein Standards 

BioRad 

 

1610377 

 

RIPA buffer 10x Cell Signaling 9806S 

Rothiphorese NF-Acrylamide/Bis-Sol. 30% Carl Roth A124.1 

SDS Carl Roth 2326.2 

TEMED, ≥99 % Carl Roth 2367.3 

WesternBright ECL Biozym 541004 

http://www.ncbi.nlm.nih.gov/nuccore/NM_001278343
http://www.ncbi.nlm.nih.gov/nuccore/NM_000256
http://www.ncbi.nlm.nih.gov/nuccore/NM_003281
http://www.ncbi.nlm.nih.gov/nuccore/NM_000364
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Device/Material Company 

Mini-PROTEAN® Tetra electrophoresis system BioRad 

Chemiluminescence imaging system CHEMI only VWR 

PVDF membrane, roll, pore size 0.2 µm Thermo Fisher Scientific 

2.1.5.4 Immunohistochemistry 

Samples prepared for immunohistochemistry were first fixated with a formaldehyde solution 

and then permeabilized with saponin. In further incubation steps antibodies and staining 

chemicals were applied and supernatants were washed away with PBS. All used chemicals 

are listed below. 

 

Chemical/Enzyme/Kit Manufacturer Ref 

Fetal Bovine Serum, heat inactivated, US origin Thermo Fisher Scientific 16140071 

Fluoromount-G Mounting Medium Science Services E17984-25 

Formaldehyde solution 37% Sigma-Aldrich 47608-250ML-F 

PBS pH 7.4 Thermo Fisher Scientific 20012-068 

Saponin Sigma-Aldrich 47036-50G-F 

 

Cells were seeded on cover slips to prepare samples for immunostained fluorescence 

microscopy. Therefore, the LSM700 microscope of the Advanced Light microscopy core facility 

of the MDC Berlin was used. 

 

Device/Material Company 

Cover slips for microscopy (13 mm Ø) Neolab (Marienfeld) 

Microscope slides, VWR superfrost BLUE CUT EDGE VWR 

LSM700 Zeiss 

2.1.5.5 Antibodies and cellular imaging chemicals 

In the following list there are all antibodies used for this thesis. These antibodies were used in 

Western blot and immunohistochemistry approaches. 
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 Antibody Host Class Manufacturer REF 

Characterization of TNNI3 

Anti-GAPDH Mouse monoclonal Life Technologies AM4300 

Anti-HSC70/HSP70 Mouse monoclonal Enzo Life Science ADI-SPA-820 

Anti-MYBPC3 Sheep polyclonal R&D Systems AF7439 

Anti-TNNI1 Rabbit polyclonal Sigma-Aldrich HPA028190 

Anti-TNNI3 Rabbit polyclonal Thermo Fisher Scientific PA5-28964 

Anti-TNNT2 Mouse monoclonal Thermo Fisher Scientific MA5-12960 

Characterization of PRDM16  

Anti-EGFP Rabbit polyclonal Sigma-Aldrich G1544 

Anti-FLAG Mouse monoclonal Sigma-Aldrich F1804 

Anti-LMNA Mouse monoclonal Cell Signaling 4777S 

Anti-PRDM16 Rabbit polyclonal Abcam ab106410 

Anti-PRDM16 Sheep polyclonal R&D systems AF6295 

Anti-PRDM16 Rabbit polyclonal Thermo Fisher Scientific 720206 

Anti-β-Tubulin Mouse monoclonal UBPBio Y1060 

DAPI   Thermo Fisher Scientific D1306 

Phalloidin Alexa 647   Thermo Fisher Scientific A22287 

Secondary antibodies  

Anti-mouse Alexa 488 Goat  Thermo Fisher Scientific A-11029 

Anti-mouse IgG-HRP Horse  Cell Signaling 7076 

anti-rabbit Alexa 568 Goat  Thermo Fisher Scientific A-11036 

Anti-rabbit IgG-HRP Goat  Cell Signaling 7074 

Anti-sheep Alexa 488 Donkey  Thermo Fisher Scientific A-11015 

Anti-sheep IgG-HRP Donkey  Thermo Fisher Scientific A16041 

2.1.6 Software 

To analyze the data generated in various experiments different software packages were used. 

Licenses for these packages for these applications were obtained through institution involved 

for this work (FU Berlin, MDC, Charité, DHZB) or acquired privately. 
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Software Company 

Varfish Core Unit Bioinformatics (CUBI), Charité Berlin 

CorelDRAW Home & Student 

2019 

Corel Corporation 

Microsoft Office 2010/365 Microsoft 

SPSS IBM 

GelQuantNet BiochemLabSolutions 

ZEN 3.0 (blue edition) ZEISS 

2100 Bioanalyzer Expert Agilent Technologies 

IGV Version 2.3.97 Broad Institute/Regents of the University of California 

Variant Studio Software v3.0 Illumina 
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2.2 Methods 

2.2.1 Genetic characterization of cardiomyopathy patients 

2.2.1.1 Clinical assessment of cardiomyopathy patients 

Recruitment of CMP patients has been done at the Charité - Universitätsmedizin Berlin and 

the German Heart Center Berlin (DHZB), Berlin, Germany. Between November 2011 and 

February 2017 unrelated probands carrying a CMP and equal to or under the age of 18 (≤) 

were phenotyped according to the design of the study related to this thesis (Figure 5). 

 

Figure 5: Schematic study design with clinical assessment and genetic analysis for evaluation of genetic 

variants and their pathogenicity. 

 

Informational consent according to the Declaration of Helsinki was obtained from each patient 

or their legal guardians (study approval by the local institutional review board: ID EA2/083/13, 

EA2/131/10, Charité Universitätsmedizin Berlin). For each subject and their available family 

members evaluation of medical history, physical examination, 12-lead electrocardiography, 

and transthoracic echocardiography was recorded. A retrospective approach for clinical and 

echocardiographic data has been realized for patients recruited after heart transplantation 

(HTX). Probands included in this study had to be diagnosed with a primary CMP, comprising 

HCM, DCM, RCM, LVNC and ARVC, and occurred non-syndromically. CMPs were classified 

according to the guidelines of the American Heart Association (Maron et al., 2006). Patients 

carrying a CMP and an additional structural congenital heart defect were excluded from the 
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study. Blood samples from the recruited subjects and their available family members were 

taken for further genetic analysis. 

2.2.1.2 Targeted next-generation sequencing 

For genetic characterization with NGS DNA was isolated from blood samples of the CMP 

patients with the NucleoSpin Blood kit (2.1.2.1) or were already available as DNA samples. 

Amounts of DNA were measured with a Qubit 3 fluorometer using Qubit reagents for dsDNA 

(2.1.2.3). To investigate alterations in exonic regions of 174 cardiovascular disease genes, a 

cardio-panel from Illumina was used for NGS (2.1.2.3, Pua et al., 2016). Information of these 

genes and their implication in structural heart diseases and arrhythmias can be found on 

https://support.illumina.com/sequencing/sequencing_kits/trusight-cardio-sequencing-kit.html. 

After diluting the DNA to prescribed amounts library preparation and enrichment has been 

realized in a multiplex approach. Therefore, DNA fragments of defined length were marked by 

specific flanking sequences (protocol according to manufacturer). To quantify the DNA libraries 

a Bioanalyzer 2100 was used, applying the high sensitivity DNA kit or DNA 1000 kit (2.1.2.3). 

For sequencing the NextSeq 500 system was implemented with mid output cartridge v2 with 

paired end sequencing (150 cycles) and dual indexing. 

2.2.1.3 Alignment and variant calling of NGS data 

The multiplexed libraries were decoded using bcl2fastq v2.17.1.14. Alignment of the reads was 

realized with BWA-MEM v0.7.15 (Li, 2013) aligning to the reference genome GRCh37 

(hs37d5.fa). Separate read groups were assigned for all reads from one lane, and duplicates 

were masked using Samblaster v0.1.24 (Faust & Hall, 2014) was used to mask duplicates and 

separate read groups were assigned for all reads from one lane. Quality control was realized 

with FastQC (Andrews, 2010) and due to analyzing the minimal coverage of all sections 

covered by the Illumina TruSight Cardio Sequencing Kit. To finish the alignment, variants were 

called with GATK UnifiedGenotyper v3.7 (DePristo et al., 2011). 

2.2.1.4 Bioinformatic evaluation and variant classification 

For further analysis the called variants were imported into Variant Studio (Illumina, USA) to 

filter all non-synonymous and splice site variants with a minor allele frequency (MAF, the 

frequency at which the second most common allele occurs in a given population) < 0.001. After 

additional filtering with a MAF < 0.001 in the Genome Aggregation Database (gnomAD, Lek et 

al., 2016) and excluding CMP genes only described in single case reports, a selection of 89 

https://support.illumina.com/sequencing/sequencing_kits/trusight-cardio-sequencing-kit.html
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CMP genes was further analyzed (Table S 1). The coverage quality control of the variants was 

again examined with the Integrative Genomics Viewer (2.1.6). 

 

Table 1: Online tools to filter for rare variants and predict the effect and pathogenicity of base exchanges 

Category Name Website 

Population 
Database 

gnomAD http://gnomad.broadinstitute.org/ 

HGMD http://www.hgmd.cf.ac.uk/ac/index.php 

ACGV https://cardiodb.org/ACGV/ 

Missense 
prediction 

SIFT http://sift.jcvi.org/ 

Polyphen-2 http://genetics.bwh.harvard.edu/pph2/ 

Mutationtaster* http://www.mutationtaster.org/ 

Splice site 
prediction 

MaxEntScan http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html 

NNSplice http://www.fruitfly.org/seq_tools/splice.html 

HSF3 http://www.umd.be/HSF3/index.html 
*Predicts effect of all small base changes (missense, splice site changes, frameshift, indel)  

 

The pathogenicity of the variants was evaluated according to the guidelines of the ACMG 

(Richards et al., 2015). For the presence of variants in disease databases such as Human 

Gene Mutation Database (HGMD) and Atlas of Cardiac Genetic Variation (ACGV) were 

checked. Computational and predictive data like PolyPhen-2 and Sorting Intolerant From 

Tolerant (SIFT) for missense variants or Human Splice Finder (HSF), Neural Network Splice 

(NNSplice) and Maximum Entropy Scan (MaxEntScan) for splice site variants was used to 

predict the impact of the filtered variants. Mutation Taster (MT) served as a multifunctional tool 

for the impact of all amino acid changing variants. Other criteria comprised functional data, 

including data from variant and literature databases for information about mutational hotspots, 

functional domains or well-established functional studies (Ensembl, UniProt, HGMD, ARVD/C 

Genetic Variants Database and PubMed), segregation data from family members and 

phenotypical compliance. Corresponding to the guidelines of the ACMG variants were 

classified as pathogenic (P), likely pathogenic (LP) and variant of uncertain significance (VUS). 

After application of the filter criteria mentioned in Figure 6 all variants interpreted as VUS, LP 

and P were summarized with the term variant of interest (VOI). To investigate the influence of 

different functional origins of the variants, the 89 CMP genes were categorized into functional 

groups like the sarcomere or the Z-disc (Table S 1, Burke, Cook, Seidman, & Seidman, 2016). 
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Figure 6: Schematic overview of genetic analysis and evaluation of pathogenicity according to the 

guidelines of the ACMG. In each category of the guidelines the strongest applicable argument was counted 

(double counting, Abou Tayoun et al., 2018). 

1PVS1: If borderline cases occurred, literature and ClinVar entries were taken into consideration. 

2PM1: Examples for mutational hotspot or well-studied functional domains are MYH7 with its head region 

(aa 181 to 937, Kelly et al., 2018) and TTN (PSI, Roberts et al., 2015). 

*gnomAD was not available for Illumina variant studio 

2.2.1.5 Validation and segregation of variants of interest 

To validate the variants detected in CMP patients and to examine the familial segregation (if 

possible) Sanger sequencing was applied. Standard laboratory protocols were used for this 
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procedure (Klaassen et al., 2008, 2.1.2.2). Primers for sequencing variants identified by NGS 

were constructed with Primer3web (Whitehead Institute for Biomedical Research, USA, 

2.1.2.2) and verified with the tools Blat and in-silico PCR from the UCSC genome browser 

(UCSC Genomics Institute, USA). Additional verification was realized with sequence alignment 

using Ensembl (EMBL-EBI, Great Britain). 

2.2.1.6 Statistical analysis 

Frequencies and percentages were used for variables defined as categorical. Continuous 

values were presented as means and interquartile ranges (IQR). Kaplan-Meier curves were 

generated to analyze the survival or event free progression of disease in the CMP cohort. The 

probability of survival was therefore contextualized with the phenotype (DCM, HCM, etc.), 

number of VOI and the sporadic or genetic appearance of the CMP. For calculations the time 

point zero was defined as the age at diagnosis. The log-rank test was used to compare the 

differences in estimated survival curves of ≥ 2 groups. Statistical significance was considered 

with p value < 0.05 (probability value). SPSS v24.0 was used for data analysis (2.1.6). 

2.2.1.7 Genetic variation in an extended cohort 

To further analyze the distribution of CMP related variants the initial pediatric CMP cohort was 

extended with CMP and myocarditis patients from all age groups. The samples were registered 

for an in-house cohort. The recruitment, which started in 1999, and the genetic handling were 

similar to the samples from the pediatric cohort. DNA was either extracted from blood samples 

or was already prepared. NGS, alignment, variant calling, bioinformatic evaluation and variant 

classification was done as described before (see 2.2.1.2 to 2.2.1.4). Family members were 

mostly not available.  

2.2.2 Functional analysis of cardiomyopathy genes 

2.2.2.1 Cloning of PRDM16 wildtype and variants 

Plasmids carrying the wt and variants containing PRDM16 gene were already available in the 

laboratory. The backbone of these plasmids was the pcDNA-Dest53 vector. Variants chosen 

for analysis comprised the amino acid exchanges p.E271K, p.P291L, p.R525Pfs*79, p.N816S 

and p.L887P. Therefore, four missense and one truncating (frameshift, which leads to a 

premature stop) variant were included. All of these variants were formerly described to cause 

DCM or LVNC (Arndt et al., 2013). 
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For overexpression of PRDM16 in the human cell line HEK293 PRDM16 constructs were 

reamplified without the backbone and containing specific restriction sites using PCR (2.1.4). 

After cutting the plasmids pEGFP-C1, pFLAG-CMV5a and pFLAG-CMV6a with specific 

restriction enzymes and dephosphorylating their open DNA ends, the ligation into the vectors 

was realized with the T4 DNA ligase from NEB (2.1.4). The restriction enzymes used in this 

approach were EcoRI (pFLAG-CMV5a, pFLAG-CMV6a and pEGFP-C1), BamHI (pFLAG-

CMV5a), HindIII (pFLAG-CMV6a) and XhoI (pEGFP-C1).  

Then competent E. coli XL1-Blue cells were transformed with these vectors for positive 

selection and amplification of the plasmids. Therefore LB-plates containing the corresponding 

antibiotics kanamycin or ampicillin were inoculated with the transformed bacteria. After 

incubation overnight and at 37°C the grown colonies were used to inoculate LB-master plates 

and 1.5 ml of liquid LB medium with the corresponding antibiotic for doing a miniprep with the 

NucleoSpin Plasmid kit the following day (2.1.4, protocol according to manufacturer’s 

instruction). For higher yields of DNA and after quality control liquid LB medium of 160 to 200 

ml was inoculated and the midiprep NucleoBond Xtra Midi EF kit was used for plasmid isolation 

(2.1.4, protocol according to manufacturer’s instruction). 

2.2.2.2 Quality control of cloned vectors 

To check the quality and sequence of the PRDM16 constructs two general methods were used. 

The first step was to estimate the length of the newly ligated plasmids in an agarose gel run 

with a standard DNA ladder and to compare it to the calculated length available in online 

databases. Therefore a 1% agarose gel and the GeneRuler 1 kb DNA ladder were used 

(2.1.2.2). The gels were loaded with plasmids in supercoiled, linearized or double digested 

form (no restriction enzyme, one restriction enzyme or two restriction enzymes corresponding 

to the enzymes used in 2.2.2.2). 

The second step was to sequence the inserted PRDM16 constructs and its up and downstream 

transitions into the vector to check the right insertion into the vector and if false variants were 

inserted into the DNA during the cloning procedure. For the sequencing reaction the BigDye 

Terminator v3.1 cycle sequencing kit was used (2.1.2.2). The concentration of the DNA was 

spanning from 100 to 200 ng/µl. The protocol was adjusted to smaller amounts of BigDye 

Terminator solution and additional TERMIPol DNA polymerase to generate more stable and 

longer sequencing strands (2.1.2.2). For sequencing a 3730 DNA Analyzer was used. The 

sequences were base called with ABI sequencing analysis and analyzed with the software 

LaserGene, Seqman (2.1.2.2). 
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2.2.2.3 Maintenance of cell culture 

HEK293 cells were used for overexpression of PRDM16. They were thawed from stocks stored 

in liquid nitrogen with a low passage number and splitted twice a week using trypsin (0,25% 

Trypsin-EDTA, 0) to detach the surface attached cells (HEK293 cells splitted in the ratio from 

1:8 to 1:12). 

2.2.2.4 Cell count and seeding 

For experiments the cells were seeded in specific cell numbers and therefore counted with the 

automated cell counter system EVE (0). Accordingly, the cells were trypsinated, centrifuged 

(500 rpm, 5 min, RT) and resuspended in a defined volume of cell culture medium (DMEM low 

glucose/MEM plus 5% FBS). For counting the cells 10 µl of cell culture was mixed with 10 µl 

of trypan blue and pipetted into a counting slide available from the same manufacturer (10 µl 

into the slide). The cell counter system is giving the unit cells per ml. With this the number of 

cells can be calculated with the following formula. 

 

𝑣(𝑤𝑎𝑛𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟) µ𝑙 =
𝑤𝑎𝑛𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑚𝑙−1
∙ 1000 

 

For microscopy cells were seeded on glass cover slips. Therefore, up to three cover slips were 

put in a well of a six well plate. To increase the attachment of the cells to the cover slips and 

wells, the plates were incubated with 1 ml DMEM F-12 medium per well, including a 1:100 

dilution of Geltrex. Seeding without Geltrex was sufficient for samples used in Western blotting. 

2.2.2.5 Transfection of cells 

For transfection of HEK293 cells jetPEI was used (0). Therefore, cells were seeded in six-well 

or 12-well plates with a respective cell number for the relevant experiment and planed time for 

transfection (250k to 400k cells per well for six-well plates and one to two days of incubation 

and 150k to 200k for 12-well plates one to two days of incubation). The transfection protocol 

was started with a confluency of the cells at 70 to 80%. Dilution of 3 µg of DNA with water 

resulted in 100 µl of DNA solution. After 6 µl of jetPEI were diluted with 94 NaCl solution it was 

mixed with the DNA solution with following vortexing immediately and spinning down to 

incubate for 15 to 30 minutes. In the meantime, cell culture medium was changed to 1 ml of 

OptiMEM for better transfection results. After incubation the DNA/jetPEI mix was added 

dropwise to the wells. To distribute the mix equally in the wells the plates were agitated gently 

(not circular to avoid concentration of cells in the middle). To prepare cells to investigate under 

the microscope glass cover slips. 
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2.2.2.6 Determination of protein concentration (BCA assay) 

To compare different cell or tissue lysates and quantify amounts of detected proteins it is 

important to use the same concentration of proteins. To determine the concentration a 

bicinchoninic acid (BCA) assay was applied. Within this assay the reduction of Cu2+ ions to 

Cu+ in highly basic medium due to proteins is used to chelate bicinchoninic acid with Cu+ , 

which produces a purple colored complex with strong light absorption at 562 nm and 

proportional to the protein concentration. Therefore, lysates were treated according to the 

manufacturer’s protocol and the respective absorption was measured to calculate the 

concentration (Thermo Fisher Scientific, USA, REF 23250). 

2.2.2.7 Stabilization assay of proteins 

The stability or turnover of proteins was tested to investigate the effect of variants compared 

to the wild type form. To gain this information HEK293 cells were transfected as described in 

2.2.2.5. After 24 h of transfection incubation, cycloheximide (CHX) was added to the wells to 

inhibit the expression of new proteins. Therefore, protein levels decreased, and the different 

amounts could be detected after certain time points of 0h, 8h, 16 h and 24 h. The cells were 

then harvested with RIPA buffer, treated with DNase I to digest DNA and centrifuged (14800 

x g, 5 min, at RT) to separate debris from the lysate. The samples were frozen at -20°C for 

later use or directly used for further experimentation like BCA assay and Western blotting. To 

calculate the half time of the proteins an exponential fit was applied, and the corresponding 

formula was used to calculate the time at 50% of maximal protein detection. 

 

𝑦 = 𝑒−𝑎𝑥 𝑤𝑖𝑡ℎ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑎𝑡 1 𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑦 − 𝑎𝑥𝑖𝑠) 

 

With y being the signal from protein detection follows for 50% protein (0.5 for normalized 

protein signals): 

0.5 = 𝑒−𝑎𝑥    →    𝑥 =
ln 0.5

−𝑎
= 𝑇1 2⁄  

2.2.2.8 Nuclear separation 

To separate a cytosolic from a nuclear fraction to observe the distribution of specific proteins 

in these compartments, cells were first harvested by scraping to loosen them from the surface. 

After collecting the cells in a new tube, they were washed with PBS (1 ml per well in a six-well 

plate, centrifuged for 5 min at 1000 rpm at 4°C). In the next step the cells were treated with a 

hypotonic buffer to increase the inner osmotic pressure (2.1.5.3). Therefore 50 µl of the buffer 
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was added to approx. 5 x 105 cells. After resuspension and incubation for 15 minutes on ice 

the detergent NP40 was added in a final concentration of 0.5%. To mix the samples they were 

vortexed for ten seconds on the highest setting and centrifuged with 3000 rpm for 30 minutes 

at 4°C to separate the cytoplasmic fraction from the nuclei. Therefore, the supernatant was 

collected in a new tube and stored at -20°C for further use. The pellet containing the nuclei 

was then resuspended in 50 µl RIPA buffer with protease inhibitor for 30 minutes on ice, 

vortexing the mix every ten minutes. To separate the nuclear fraction from debris and 

precipitated DNA the samples were centrifuged for 30 minutes at 14000 x g and 4°C and the 

supernatant was transferred to a new tube for storage at -20°C or further experimental use. 

2.2.2.9 Immunofluorescence staining 

To stain different proteins in HEK293 cultures on cover slips cells were fixated with 4% PFA 

and incubated for 30 min at 4°C (2.1.5.4). From this point on every step was carried out at RT. 

After the fixation the cells were washed three times with PBS for five to ten minutes and the 

membrane of the cells was permeabilized for ten minutes with a solution of 0.1% saponin and 

3% BSA solved in PBS buffer. After three further washing steps in PBS for five to ten minutes 

the samples were blocked with 3% BSA in TBS for one hour. Again, a washing step was 

applied with PBS for five to ten minutes and the primary antibody was added to the samples 

in the corresponding dilution released by the manufacturer. For incubation the samples were 

left in the antibody dilution for one hour with four additional washing steps afterwards. The 

secondary antibodies, conjugated with a fluorophor, were added for another 20 minutes. 

During the first of the last four washing steps DAPI was added to PBS in a 1:300 dilution to 

mark the nuclei. After washing the cover slips in water to remove salt remnants, they were 

embedded onto object slides with fluoromount-G (2.1.5.4). After drying the samples were ready 

for observation. 

2.2.2.10 Preparation of human heart tissue 

Cardiac biopsies from patients with severe CMP phenotypes were obtained during cardiac 

surgery. To analyze the protein and mRNA expression levels of these samples they were 

frozen with liquid nitrogen and mechanically crushed. For measuring mRNA levels, total RNA 

isolation was applied and therefore the crushed samples were collected with a cooled spatula, 

weighed and solved in 1 ml of TRizol reagent (2.1.5.2). Further steps are described in the 

section RNA isolation (2.2.2.9). For the investigation of proteins in these samples 100 µl of 

RIPA buffer mixed with protease inhibitor (Pierce, Thermo Fisher Scientific, Waltham, USA) 

was used instead of TRizol. Afterwards the samples were homogenized with an ultra turrax 
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disperser. A centrifugation step pelleted the debris and the protein concentration was 

measured with a BCA assay (2.2.2.6). 

2.2.2.11 RNA isolation 

To isolate RNA cells seeded in a six-well plate or prepared cardiac tissues were harvested 

with adding 1 ml of TRizol (2.1.5.2) to the samples. Then the cells/tissues of interest were 

centrifuged for five minutes at full speed and RT (14800 x rpm) before starting with the RNA-

isolation and to purify the sample from cell debris (cell pellet). To separate RNA from other cell 

components 0.2 ml chloroform was added to the mix and centrifugation (10000 x g for 15 min 

at 4°C), after vigorously shaking the samples for at least 15 seconds, led the separation of 

three different phases (upper aqueous phase, interphase, lower chloroform phase). The upper 

phase, which contained the RNA, was then pipetted into a new RNase-free tube. The lower 

organic and the interphase, which contained DNA and proteins, were discarded. For 

precipitation of RNA 0.5 ml isopropanol was added to the samples and incubated for ten 

minutes. After a further centrifugation step for ten minutes with 10000 x g at 4°C a white RNA 

pellet should be visible if the amounts were sufficient. In the next step the samples were 

washed with 1 ml of 75% Ethanol (diluted in DEPC water) and centrifuged for five minutes at 

RT with 21100 x g (full speed) followed by discarding the supernatant and letting the samples 

dry at 80°C. The pellets were then solved in 100 to 200 µl of DEPC water and stored at -20°C 

or directly used for experimentation. 

2.2.2.12 Real time quantitative PCR 

Expression levels of mRNA were measured using the standard method real time qPCR. 

Therefore, tissue of interest was prepared as described in 2.2.2.8 and 2.2.2.9. Transcription of 

RNA to cDNA was done according to the standard protocol of the PrimeScript RT reagent kit 

(Takara, Kusatsu Japan). For the detection of cDNA the TB Green Premix Ex Taq II from 

Takara was used (Kusatsu, Japan). After mixing reaction reagents with the cDNA samples and 

primers DNA levels were measured with a Taqman 7500 (2.1.5.2). Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was used as an endogenous control and the detected 

signals were normalized with the ΔΔCT method (Kolanczyk et al., 2011; Seifert et al., 2009). 

Different primers to amplify die cDNA during the PCR are listed in 2.1.5.2. 

2.2.2.13 Western Blotting 

The presence or absence and the distribution of proteins can indicate mechanisms for 

pathological development and functions of specific proteins. Therefore, Western blots were 
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performed. First protein samples were loaded onto SDS-PA gels. After running the gels the 

proteins were loaded onto PVDF membranes using a wet blot system from Bio-Rad (2.1.5.3). 

Blocking of membranes was done with 5% milk powder and 0.2% NP-40 in TBS-T buffer 

(blocking buffer). After incubation with the primary antibody for 3 h or overnight in blocking 

buffer (used primary antibodies in 2.1.5.3) the membranes were washed three to four times 

with TBS-T for 10 min. In the next step the membranes were incubated with the secondary 

antibody (conjugated with HRP) for 1 h in blocking buffer and again washed three to four times 

with TBS-T for 10 min. For detection of the marked proteins a mix of luminol/ECL enhancer 

and peroxide was added to the membrane in a 1:1 ratio as reaction mix for the HRP (2.1.5.3). 

After incubation for 1 min the membranes were drained from excess reagent and the emitted 

light was detected with a Chemiluminescence imaging system CHEMI only system. 

2.2.2.14 Prediction of post-translational modification sites and structural elements 

To predict structural features and functional interaction sites, online prediction tools were used. 

Therefore, the amino acid chains from proteins of interest were loaded into the programs. For 

post-translational modification (PTM) tools common tools were used to predict sites for 

acetylation, methylation, phosphorylation, etc. (Audagnotto & Dal Peraro, 2017, 

http://gps.biocuckoo.cn). Additional information for structural and conserved features was 

collected from programs like PSIPRED, RaptorX, Spider2 or ConSurf. All applied online tools 

with positive results are listed in the supplement (Table 2). PTM prediction was always applied 

with the highest stringency. With more than one tool per PTM category only hits at the same 

amino acid position with ≥ half of the applied prediction programs were considered as true hit. 

Exceptions are marked in figures. For the secondary structure the most frequent predicted 

structure (α-helix, β-sheet, coil) was determined for each amino acid position. The average of 

normalized values for disorder were used to predict ordered regions in proteins. Only ConSurf 

was used for conservational features. The same procedure was applied for accessible surface 

are (ASA). 
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Table 2: Online Prediction tools used to determine possible functional sites or domains from proteins of 

interest (SUMOylation coming from small ubiquitin-related modifier – SUMO) 

Category Name Website 

General PTM 
prediction 

ProSite https://prosite.expasy.org/ 

PhosphoSitePlus https://www.phosphosite.org/psrSearchAction 

dbPTM http://dbptm.mbc.nctu.edu.tw/ 

Acetylation 

NetAcet http://www.cbs.dtu.dk/services/NetAcet/ 

PAIL http://bdmpail.biocuckoo.org/prediction.php 

GPS-PAIL http://pail.biocuckoo.org/ 

PSKAcePred http://bioinfo.ncu.edu.cn/inquiries_PSKAcePred.aspx 

ASEB http://bioinfo.bjmu.edu.cn/huac/predict_p/ 

Glycosylation 

GLYCOPP1.0 http://crdd.osdd.net/raghava/glycopp/submit.html 

NetNGlyc1.0 http://www.cbs.dtu.dk/services/NetNGlyc/ 

NetOGlyc4.0 http://www.cbs.dtu.dk/services/NetOGlyc/ 

YinOYang1.2 http://www.cbs.dtu.dk/services/YinOYang/ 

Methylation 

PMeS http://bioinfo.ncu.edu.cn/inquiries_PMeS.aspx 

GPS-MSP http://msp.biocuckoo.org/ 

PSSME http://bioinfo.ncu.edu.cn/PSSMe.aspx 

iMethyl-PseACC http://www.jci-bioinfo.cn/iMethyl-PseAAC 

S-Nitrosylation 
iSNO-PseAAC http://app.aporc.org/iSNO-PseAAC/ 

GPS-SNO http://sno.biocuckoo.org/ 

Phosphorylation 

ScanSite https://scansite4.mit.edu/4.0/#scanProtein 

KinasePhos2.0 http://www.jci-bioinfo.cn/pSumo-CD 

ProSite https://prosite.expasy.org/ 

GPS http://gps.biocuckoo.cn/online.php 

SUMOylation 

GPS-SUMO http://sumosp.biocuckoo.org/online.php 

JASSA http://www.jassa.fr/ 

pSUMO-CD http://www.jci-bioinfo.cn/pSumo-CD 

SUMOAMVR http://bioinfo.ncu.edu.cn/SUMOAMVR_Prediction.aspx 

Ubiquitination 

iUbiq-Lys http://www.jci-bioinfo.cn/iUbiq-Lys 

UbiProber http://bioinfo.ncu.edu.cn/ubiprober.aspx 

UbPred http://www.ubpred.org/ 

Conservation ConSurf http://consurf.tau.ac.il/ 

Accessible 
Surface Area 

NetSurf2.0 http://www.cbs.dtu.dk/services/NetSurfP/ 

Spider2 http://sparks-lab.org/server/SPIDER2/ 

Disorder 
DisoPred http://bioinf.cs.ucl.ac.uk/psipred/ 

IUPred https://iupred2a.elte.hu/plot 

Secondary 
Structure 

PsiPred http://bioinf.cs.ucl.ac.uk/psipred/ 

NetSurf2.0 http://www.cbs.dtu.dk/services/NetSurfP/ 

SPIDER2 http://sparks-lab.org/server/SPIDER2/ 

JPRED http://www.compbio.dundee.ac.uk/jpred/index.html 

RaptorX http://raptorx.uchicago.edu/ 
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3 Results 

3.1 Phenotypic and genetic characterization of pediatric patients affected 

by primary cardiomyopathy 

To investigate the genetic mechanisms of primary CMPs in pediatric cases not affected by 

systemic or syndromic disorders a prospective study at the DHZB and Charité Berlin was 

established. During enrollment of this study 83 pediatric patients (age ≤ 18 years) were 

recruited and examined for analysis of their cardiac phenotype and the underlying genetic 

variation. 80 subjects of this cohort (CMP-80) were genotyped with NGS (3.1.1/3.1.2), whereas 

a sub cohort of 60 patients in this study (CMP-60) underwent additional follow-up examinations 

(3.1.3, overlap of 57 patients). For all index patients the pathogenicity of the genetic information 

originated from NGS was determined according to the guidelines of the ACMG (Figure 6) and 

available family members were checked for segregation of the detected CMP-relevant 

variants. 

3.1.1 Characteristics of pediatric patients with primary cardiomyopathy 

During the study period 80 patients (CMP-80) were recruited for testing genetic variants in 89 

CMP-relevant genes included in the Illumina TruSight Cardio Panel. Therefore, cases affected 

by DCM (34), HCM (23), LVNC (14), RCM (7) and ARVC (2) were analyzed. Only two 

individuals had ARVC and were excluded in further analysis. The overall gender distribution 

was almost equal with 38 females (f) and 42 males (m), but differentiated for the single CMP´s, 

most notably for DCM with 23 females and 11 males and HCM with 5 females to 18 males. 

The mean age of the pediatric cohort was 4.8 years. In general DCM, LVNC, RCM and ARVC 

patients were slightly younger than the average age, whereas HCM patients were older and 

had by far the widest range in the distribution of age (IQR = 0.6 – 12.8). Within the cohort CMP-

80, 63 patients were younger than 10 years at the date of diagnosis (79%) including 34 patients 

younger than 1 year (43%). Considering these age groups the distribution of the different 

phenotypes did not differ drastically (Figure 7 A - C) although the rate of DCM cases decreased 

slightly with ageing in comparison to the total cohort, whereas the rate of HCM patients 

increased. With the shortest range in the distribution of age (IQR = 1.5 – 4.2 years) the RCM 

subgroup had the most defined age and therefore appeared in the age group younger than 10 

years. Family screening was available in 61 families with positive CMP results in 27 (available 

family members in 76.3 % of all patients), where at least one additional family member was 

affected by CMP. The highest number of positive family screenings was observed in the 

subgroup of HCM with 12 (52.2%) out of 19 families (82.6%), whereas the lowest number of 
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familial CMP was observed in the subgroup of DCM with 8 (23.5%) out of 23 families included 

(67.7%). For a short clinical characterization IVSd, LVEDD, LV-EF and FS are listed in Table 

3. The IVSd, presenting the thickness of the septum, was increased for the HCM subgroup, 

displaying hypertrophied myocardium (Z-score of 10.6). 

 

Table 3: Characterization of CMP-phenotypes during enrollment and diagnosis of pediatric cohort CMP-80 

Phenotype (n) All (80) DCM (34) HCM (23) LVNC (14) RCM (7) 
ARVC 

(2) 

Sex       

Females, n (%) 38 (47.5) 23 (67.7) 5 (21.7) 7 (50) 3 (42.9) 0 (0) 

Males, n (%) 42 (52.5) 11 (32.3) 18 (78.3) 7 (50) 4 (57.1) 2 (100) 

Age       

in years, mean 4.8 3.2 7.2 3.9 4.4 n.a. 

IQR 0.2-9.0 0.1-4.8 0.6-12.8 0.2-8.2 1.5-4.2 n.a. 

Family screening       

Included, n (%) 61 (76.3) 23 (67.7) 19 (82.6) 12 (85.7) 5 (71.4) n.a. 

Positive result, n (%) 27 (33.8) 8 (23.5) 12 (52.2) 5 (35.7) 1 (14.3) n.a. 

IVSd       

mean mm (±SD) 9.1 (7.6) 5.5 (1.8) 16.7 (9.6) 5.5 (1.3) 5.0 (1.3) n.a. 

mean z-score (±SD) 3.6 (6.8) 0.4 (1.6) 10.6 (8.4) 0.4 (0.6) 0.2 (0.8) n.a. 

LVEDD       

mean mm (±SD) 39.4 (13.0) 46.2 (13.7) 33.8 (11.1) 38.6 (7.1) 26.0 (4.4) n.a. 

mean z-score (±SD) 2.8 (5.1) 7.0 (4.2) -1.4 (2.8) 2.5 (3.0) -2.0 (0.7) n.a. 

LV-EF, mean % (±SD) 46.5 (22.4) 29.7 (15.4) 66.8 (14.7) 44.0 (19.5) 62.1 (12.6) n.a. 

FS, mean % (±SD) 27.6 (16.8) 15.1 (6.7) 44.7 (16.5) 26.2 (11.5) 31.5 (11.6) n.a. 

MACE, n (%) 39 (48.8) 22 (64.7) 8 (34.8) 3 (21.4) 6 (85.7) n.a. 

AICD, n (%) 8 (10) 1 (2.9) 7 (30.4) 0 (0) 0 (0) n.a. 

VAD/BVAD, n (%) 22 (27.5) 16 (47.1) 1 (4.4) 2 (14.3) 3 (42.9) n.a. 

ECMO, n (%) 6 (7.5) 5 (14.7) 0 (0) 0 (0) 1 (14.3) n.a. 

HTX       

with enrollment, n (%) 17 (21.3) 13 (38.2) 0 (0) 3 (21.4) 1 (14.3) n.a. 

during study, n (%) 9 (11.3) 4 (11.8) 1 (4.4) 0 (0) 4 (57.1) n.a. 

Deceased, n (%) 5 (6.3) 2 (5.9) 1 (4.4) 0 (0) 2 (28.6) n.a. 

Abbreviations: IVSd - interventricular septum thickness at end diastole, LVEDD - left ventricular end diastolic diameter (Z score, 
normal reference range -2 < +2, m-mode), LV-EF - left ventricular ejection fraction (auto 4CH monoplan) , FS - fractional 
shortening, MACE - Major adverse cardiovascular events, AICD - automatic implantable cardioverter defibrillator, VAD - ventricular 
assist device, BVAD - biVAD, ECMO - extracorporeal membrane oxygenation, HTX - heart transplantation; n.a. - not applicable, 
SD - standard deviation 

 

The LVEDD and LV-EF are measurements for the function of the left ventricle and pose the 

diameter at the end diastole and the fraction of blood pumped out. The LVEDD was increased 
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and the LV-EF was decreased for DCM and LVNC (LVEDD Z-Score of 7 and 2.5, LV-EF of 

29.7% and 44%, respectively). The fractional shortening is a term for the ratio between LVEDD 

and LVESD (normal range: 25% - 45%, LVESD – left ventricular end systolic diameter). 

Therefore, changes to the norm are another characteristic for DCM and was down to 15.1% 

for the DCM subgroup. The FS for LVNC was slightly reduced (26.2%). Other criteria not 

mentioned in Table 3 but used for the distinction of the CMPs are trabeculation and non- 

compacted myocardium for LVNC and remodeling of the atria and restricted movement of the 

heart for RCM. 

 

 

Figure 7: Distribution of CMP phenotypes in cohort with 80 primary and pediatric CMP patients (CMP-80). 

(A) All patients with indicated CMP subgroup. (B) Patients with an age <1 yearsindicated CMP subgroup. (C) 

Patients with an age <10 years with indicated CMP subgroup. (D) Patients who underwent heart transplantation 

(HTX) or deceased patients with indicated CMP subgroup. 

 

To assess the severity of the phenotypes the events implantation of an automatic implantable 

cardioverter defibrillator (AICD), a ventricular assist device (VAD) or a device for 

extracorporeal membrane oxygenation (ECMO), heart transplantation and death were 

summarized as major adverse cardiovascular events (MACE). In total 39 patients (48.8%) 

were affected by MACE. With 85.7% and 64.7% RCM and DCM patients had the highest rates 

and therefore a more severe disease progress. In contrast, the percentage of MACE in 

individuals with HCM and LVNC was considerably lower with 34.8% and 21.4%, respectively. 

Especially the occurrence of HTX and death was of notice. DCM and RCM patients had rates 
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of 53% and 85.7% in this category whereas the average was 36.4% (Figure 7 D, distribution 

of CMP phenotypes in the subgroup of HTX and deceased patients). 

3.1.2 Distribution and pathogenicity of rare genetic variants 

The analysis process is exemplarily shown for family 11 (Figure 8). In this family with five 

members three were affected by HCM (11-I:1/11-II:1/11-II:2, Figure 8 A) whereas one showed 

first signs of a CMP (11-II:3). Therefore, only the mother (11-I:2) was unaffected. After the 

signals from the NGS runs were aligned to the corresponding genes, the data was further 

processed with Variant Studio to eliminate synonymous variants, technical artefacts and 

variants occurring in variable regions and repeats from rare missense, in frame indel or 

truncating variants (nonsense, frameshift or splice site).  

 

 

Figure 8: Example for analysis with data generated from NGS. (A) A pedigree of family 11 affected by HCM is 

presented. (B)/(C) Two gnomAD entries of variants detected in family 11 are shown. (D) NGS data was analyzed 

with Variant Studio from Illumina. Shown are all detected variants for family 11. 



 
38 

  

In Figure 8 D there are 14 variants listed for family 11. All genetic alterations with a MAF of 

higher than 0.001 in ExAC, an alternative variant frequency of lower than 30% (all sequences 

covering the same region presented the alternative allele with less than 30%) and detected as 

synonymous variants were previously excluded. After elimination of false positives only the 

variants in MYBPC3 and LIM domain binding 3 (LDB3) were considered as VOI. Examples for 

false positives are the deletion of an adenine (A) at the end of an A repeat in ATP binding 

cassette subfamily C member 9 (ABCC9, Figure S 4) and the exchange of thymine to guanine 

(G) between two G repeats in potassium voltage-gated channel subfamily H member 2 

(KCNH2, Figure S 5). Strong arguments for both variants not to be considered for further 

analysis are the appearance in controls and the relatively low alternative variant frequency 

(near 30%). In comparison the variants in LDB3 and MYBPC3 are absent in controls and both 

alleles are distributed almost evenly with 3% and 1% difference (Figure S 6, Figure S 7). 

Because in Variant Studio only data from ExAC was available the MAF of all relevant variants 

were checked again in gnomAD (Figure 8 B/C). In the case of MYBPC3 the MAF was 

considerably smaller than the threshold of 0.001 whereas the MAF of the notch receptor 1 

(NOTCH1) variant was above the threshold and was therefore excluded from further analysis. 

Families were then checked for segregation. In the case of family 11 MYBPC3 

NM_000256.3:c.927-2A>G segregated with all affected family members.11-II:1 is not carrying  

 

Table 4: Characterization of genetic VOI detected in pediatric CMP-cohort CMP-80 

 Pathogenic1 
Likely 

pathogenic1 
Uncertain 

significance1 
Total 

Variants according to 
phenotype, n 

17 (14%) 15 (12%) 94 (74%) 
126 

(100%) 

DCM 4 4 44 52 

HCM 11 2 26 39 

LVNC 1 4 13 18 

RCM 1 2 10 13 

ARVC 0 3 1 4 

Category of variants, n     

De novo 5 2 0 7 

Not de novo (inherited) 4 9 55 68 

Novel2 2 9 42 53 

Not novel (known) 15 6 52 73 

Missense 11 9 83 103 

Indel/frameshift 2 4 3 9 

Stop gain 1 1 1 3 

Splice site 3 1 7 11 
1Classification according to Richards et al., 2015 

2Novel indicates variants that have not been annotated in genetic disease reference databases 

ClinVar, ACGV, HGMD 
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LDB3 NM_001171610.1:c.1807T>C indicating that the variant does not segregate with the 

disease phenotype in all family members. With a complete and checked dataset for each 

patient and family the pathogenicity of the variants was determined according to the ACMG 

guidelines (Figure 6). All 80 patients and family members were analyzed in the same way. 

In all patients of the CMP-80 cohort 126 VOI were detected (Table 4). 17 and 15 

variants were classified as pathogenic (P) and likely pathogenic (LP, 14% and 12%). Variants 

of uncertain significance occurred 94 times (74%). Most P and LP variants were detected in 

HCM patients, whereas individuals affected by DCM were carrying the most VUS variants. 

Seven of all VOI were detected as de novo. Five of these variants were interpreted as P and 

two as LP. With 58% over half of all VOI were already detected in disease databases like 

ClinVar. The frequency of novel variants considered as P/LP or VUS did not differ considerably 

with 34% and 45%. Not surprisingly most VOI were caused by single missense exchanges 

(103). Stronger alterations such as frameshift or nonsense variants were much rarer, but also 

shifted to be P/LP (frameshift: six out of nine P/LP; Stop gain: two out of three P/LP; splice 

site: four out of 11 P/LP). 

VOI were then considered per number of patients. 1.58 variants were detected per patient. In 

the subgroups these numbers differed slightly (DCM: 1.53, HCM: 1.7, LVNC: 1.29, RCM: 1.86). 

In 16 patients no VOI were observed and 36 patients were carrying more than one VOI (1 VOI, 

n = 28; 2 VOI, n = 20; 3 VOI, n = 12; >3 VOI, n = 4). P and LP variants occurred in 30 of 80 

index patients (38%). Complex genotypes were only detected in two individuals carrying two 

LP variants each (Table S 5). In 21 patients with and 34 patients without a P/LP variant (26%, 

43%) sequencing resulted in an additional VUS variant. P and LP variants were detected with 

a higher rate in HCM patients with over half of all patients carrying at least one variant (0.57 

variants per patient; values for other CMP: DCM 0.24 variants per patient, LVNC: 0.357 

variants per patient, RCM: 0.429 variants per patient). 

3.1.3 Spectrum of rare variants 

A more detailed analysis of the VOI detected in the pediatric CMP-80 cohort showed that 

mainly changes in major CMP genes were observed. Thus, VOI were most frequently identified 

in MYH7 (16%), MYBPC3 (9%), troponin I3, cardiac type (TNNI3, 7.5%), DSP (7.5%), LDB3 

(6%), and myopalladin (MYPN, 6%) (Figure 9). The order was slightly changed in the different 

subgroups, but MYH7 remained the most frequent gene except for RCM patients (Figure 9 B 

- E). In individuals diagnosed with RCM truncating TTN variants were the most frequent with 

three splice site variations. In general truncating TTN DNA changes were very rare with one 

additional single base deletion in a DCM case (4). The distribution of rare variants in the HCM 

group was very distinct and similar to the general cohort with MYH7, MYBPC3 and LDB3 the 
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most abundant genes with observed variation. With VOI in 31 different genes the subdivision 

of DCM patients was the most heterogeneous one. 

 

 

Figure 9: Distribution of genes with VOI in CMP patients (CMP-80). (A) The number of CMP patients with a VOI 

in the indicated CMP gene is shown in a pie chart. (B) The number of patients affected by DCM (B), HCM (C), 

LVNC (D) and RCM (E) with a VOI in the indicated CMP gene is shown (full name of genes in Table S 1). 

 

To get an overview of the general mechanisms for the manifestation of CMP in this cohort all 

89 CMP genes were pooled into functional groups (Table S 1). As expected, sarcomere genes 

were most frequent in pediatric CMP patients in general and likewise in the subgroups (Figure 

10 A - E). Surprisingly VOI in desmosome genes were second most frequent in the complete 

cohort and mainly detected in DCM and LVNC patients (in total cohort: 20%, in DCM subgroup: 

26%, in LVNC subgroup: 21%). Nearly as frequent as VOI in the desmosome group were VOI 

detected in Z-disc genes. Sarcomere and Z-disc genes mainly contribute to the build-up of the 

sarcomere, the structural element of muscle cells, and were most abundantly detected with 

VOI in the HCM group (sarcomere genes: 57%, Z-disc: 26%). Additionally of notice is the fact, 

that some functional categories were specific to the CMP groups. Patients with DCM were the 
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only ones with VOI in the category protein quality control, whereas VOI in the group of 

dystrophin complex were very specific to individuals affected by HCM and RCM. VOI in genes 

affecting the mitochondria were only observed in the subgroup of LVNC. The group 

transcription/splicing was most specific for RCM and DNA changes for extracellular matrix 

(ECM) genes were only observed in DCM and HCM patients. The distribution of rare variants 

in the different functional groups from patients younger than one year was similar to the 

complete cohort with only minor differences (Figure 10 F). The order from highest to lowest 

frequency of the groups was nearly the same starting with sarcomere (49% to 35%), 

desmosomes (20% to 24%) and Z-disc (19% to 18%) and only considerably different in cellular 

signaling (6% to 15%). Of note are possible overrepresentations of groups comprising a large 

number of genes or exons in Figure 10.  

 

 

Figure 10: Relative frequency of VOI in CMP genes detected in samples from CMP patients (CMP-80) divided 

into functional groups. The relative frequency of VOI in functional groups is shown for all (A), DCM (B), HCM (C), 

LVNC (D) and RCM (E) patients and patients with age < 1 year (F). The classification of CMP genes into functional 

groups can be seen in Table S 1. 

 

Most VOI were detected in the heterozygous state. Exceptions were observed with two 

homozygous (nexilin abbr. NEXN, TNNI3) and two compound heterozygous variants 

(desmocollin 2 abbr. DSC2, MYBPC3). The case involving the MYBPC3 variants was 
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considered notable, because one allele was affected by the exchange p.S858R and the other 

allele was completely deleted (Table S 5). Hemizygous variants occurred in dystrophin (DMD, 

1), four and a half LIM domains 1 (FHL1, 1) and tafazzin (TAZ, 2). 

 

 

 

HTX and deceased patients (n = 28) represented a faction of this cohort with a very severe 

form of CMP and are therefore separately mentioned (Figure 7 D). Most frequently VOI were 

detected in DSP (4 VUS), TTN (2 LP, 2 VUS), DMD (3 VUS), NEXN (3 VUS), PRDM16 (3 

VUS) and TNNI3 (1 LP, 2 P). Thus, all four truncating TTN variants in the CMP-80 cohort were 

also present in the HTX and deceased patients more precisely in 3 cases of RCM and in one 

case of DCM (Table S 5). Compared to all patients the frequency of VOI in the functional 

groups was similar with most detected VOI in the groups of sarcomere, desmosomes, 

transcription/splicing and Z-disc, although the values for transcription/splicing and 

desmosomes were slightly increased and frequencies for cellular signaling, mitochondria, 

nuclear envelope and endo-lysosomes were absent. Two or more VOI occurred in 15 HTX and 

deceased patients, seven were carrying one VOI and six individuals were observed to carry 

no VOI. 

3.1.4 Clinical course of early onset cardiomyopathy in a selected pediatric 

cohort 

To further investigate the process and severity of CMPs in children a selected group of the 

pediatric cohort CMP-80 was examined in follow up investigations (CMP-60). To calculate a 

value for the development of the disease the occurrence of major adverse cardiovascular 

events (MACE) like implantation or application of defibrillators, ventricular assist devices, heart 

transplantation or death was observed over time. 60 CMP patients were repeatedly examined. 

This sub cohort included 21 cases of DCM, 17 cases of HCM, 15 cases of LVNC, five cases 

Figure 11: Relative frequency of VOI in CMP genes detected in samples 

from HTX and deceased patients from the CMP cohort (CMP-80) divided 

into functional groups. In addition to Figure 10 the distribution of VOI 

categorized into functional groups is shown for severe CMP cases who 

underwent heart transplantation or were deceased. 
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of RCM and two cases of ARVC. The phenotypic characteristics were similar to the general 

cohort. Therefore, the gender was slightly shifted to males with exceptions for DCM (slightly 

shifted to females: 12 f, 9 m) and HCM (drastically shifted to males: 4 f, 13 m). The mean age 

was 5.4 years and again the group of HCM was an outlier with 7.5 years (IQR = 0.3 – 9.1 

years).  

 

Table 5: Characterization of selected CMP patients (CMP-60) for correlation of major adverse cardiovascular 

events (MACE) over time 

Phenotype (n) All (60) DCM (21) HCM (17) LVNC (15) RCM (5) ARVC (2) 

Sex       

Females, n (%) 25 (41.7) 12 (57.1) 4 (23.5) 7 (50) 2 (42.9) 0 (0) 

Males, n (%) 35 (58.3) 9 (42.9) 13 (76.5) 8 (50) 3 (57.1) 2 (100) 

Age       

in years, mean 5.4 4.3 7.5 3.5 5.5 n.a. 

IQR 0.3-9.1 0.2-6.2 1.5-12.1 0.2-6.0 1.8-4.6 n.a. 

MACE, n (%) 24 (40) 11 (52.4) 5 (29.4) 3 (20) 5 (100) n.a. 

AICD, n (%) 6 (8.3) 1 (4.8) 5 (23.5) 0 (0) 0 (0) n.a. 

VAD, n (%) 13 (21.7) 8 (38.1) 0 (0) 2 (13.3) 3 (60.0) n.a. 

ECMO, n (%) 3 (5.0) 2 (9.5) 0 (0) 0 (0) 1 (20.0) n.a. 

HTX       

with enrollment, n 

(%) 
8 (13.3) 5 (23.8) 0 (0) 3 (20.0) 0 (0) n.a. 

during study, n (%) 8 (13.3) 4 (19.0) 0 (0) 0 (0) 4 (80.0) n.a. 

Deceased, n (%) 2 (3.3) 0 (0) 0 (0) 0 (0) 2 (40.0) n.a. 

 

Regarding MACE’s most events occurred in DCM patients although RCM cases showed the 

highest frequency (11 from 21 DCM and five from five RCM patients with MACE’s, Figure 12 

B). Due to arrhythmias often occurring in HCM patients, defibrillators were mostly implanted in 

this group (HCM: five, DCM: one). For preventive reasons and due to no recorded shocks from 

these devices AICD’s were not included for further calculations. Otherwise other events were 

absent with HCM. The requirement to introduce supporting circulatory devices like ventricular 

assist device or extracorporeal membrane oxygenation was often leading to further procedures 

and therefore ending in HTX or death. Deceased patients were only present in the RCM group. 

ARVC patients were not analyzed due to low sample size. 

With these results Kaplan-Meier plots were generated and analyzed (Figure 12). Hence, event-

free survival in percent was correlated with age in years. Adverse events were observed in 

32% of index patients (Table 5, Figure 12, be aware of defibrillator implantations not taken into 

consideration, because of preventive character). In Figure 12 B the probability of event-free 
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survival was investigated regarding the different CMP subgroups. As described RCM had the 

lowest rate followed by DCM, LVNC and HCM. With a p-value of p<0.001 the groups had a 

significantly different outcome for adverse events. Also of interest was the disease course with 

different numbers of VOI detected in the index patients (Figure 12 C). Individuals with >1 VOI 

observed, had a significant higher rate for adverse cardiac events (p-value = 0.021). 

Furthermore the difference in outcome for sporadic and genetic CMP was tested and resulted 

in worse prognosis for genetic CMP patients (not significantly: p-value = 0.305, Figure 12 D). 

 

 

Figure 12: Kaplan-Meier curves of event-based survival in pediatric cohort of 60 CMP patients (CMP-60). 

The event-free survival percentage of CMP patients is presented over the years. (A) The correlation was observed 

in all patients, (B) between CMP subgroups, (C) between subjects carrying no, one or more than one VOI and (D) 

between the groups diagnosed with sporadic and genetic CMP. Events are defined as death, heart transplantation, 

and mechanical circulatory support. No VOI but positive family history of CMP was only seen in one index patient 

who was therefore excluded from the Kaplan-Meier analysis. 
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3.1.5 Early onset of cardiomyopathy in cases carrying variants in TNNI3 

As mentioned in 3.1.3, variants of sarcomere genes were most common in the pediatric CMP 

cohort and within this group MYH7, MYBPC3 and TNNI3 exhibited the most genetic alterations 

(number variants (P or LP): MYH7 – 13 (7), MYBPC3 – 8 (6, two variants in one patient), TNNI3 

– 6 (5), Figure 9 A, Figure 10 A). In this selection TNNI3 was of notice because of two reasons. 

Firstly, a set of variants agglomerated in the c-terminus of the protein and secondly, in one 

patient a homozygous truncating variant was detected. Therefore, available tissue and blood 

samples from these patients and inherent family members were further analyzed (Figure 13, 

Table S 5, Table S 6). An additional case of DCM from an in-house cohort was included in 

these analyses due to a detected homozygous truncating variant in TNNI3. In conclusion, 

seven genetic alterations of TNNI3 were detected in seven patients (DCM n = 2, HCM n = 2, 

RCM n = 2, LVNC n = 1). Six of these variants were interpreted as P or LP (VUS variant was 

not considered in further analysis). Two variants were inherited as homozygous and truncating. 

One variant presented a splice site modification directly after the second exon. The other 

variant resulted in a frameshift leading to a premature stop codon in the IT arm region shortly 

behind a troponin C1, slow skeletal and cardiac type (TNNC1) binding region of TNNI3 (Figure 

13). The other four variants clustered at the c-terminus, which is expected to be important in 

actin and tropomyosin binding. All four variants occurred in a heterozygous state and three led 

to an amino acid exchange (missense), whereas one was a truncating variant at the very end 

of the amino acid chain at position 209 from 210 amino acids (Figure 13). 

 

 

Figure 13: TNNI3 functional protein domain and gene structure with six indicated TNNI3 variants. (A) The 

protein domain structure of TNNI3 includes binding sites to TNNC1 (purple), TNNT2 (cyan), ACTC2 (blue) and 

TPM1 (light purple). Therefore, truncating variants near the n-terminus lose the ability to bind to most of these 

proteins whereas binding capabilities of C-terminal variants to actin and tropomyosin are influenced. (B) Two 

truncating variants in exons two and five are predicted to lead to early truncation of TNNI3 and four missense 

variants in exon eight indicate a mutational hotspot for variants to cause CMPs. 

 

In both homozygous truncating cases, affected by DCM/LVNC and an early disease 

progression (1.1 and 0.8 years old at diagnosis and with HTX or deceased), the parents were 
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consanguineous, which led to the homozygous inheritance of the genetic variants. In family 1 

blood samples from both parents were available and therefore checked for the segregation of 

the variant (Figure 14 A, Figure S 3). In family 2 only heart tissue from the index patient 2-II:3 

was available, and segregation could not be checked, but an extended pedigree was available 

(Figure 14 B, Figure S 2). To analyze the expression of TNNI3 qPCR and Western blotting 

approaches were used. In Figure 14 C TNNI3 mRNA levels were drastically reduced in patient 

1-II:1 whereas patient 2-II:3 showed only little differences. In both samples a distinct increase 

in signal was detected for the gene troponin I1, slow skeletal type (TNNI1), the fetal form of 

TNNI. Smaller changes were also detected in TNNT2 (increase) and MYBPC3 (decrease). 

 

 

Figure 14: Pedigrees, mRNA analysis and protein expression analysis of two patients with a homozygous 

and truncating variant in TNNI3. (A)/(B) Pedigrees of two families carrying truncating variants in TNNI3 are 

presented. Genotypes are shown as wt or mut, representing the wildtype or altered allele. For individuals with no 

genotype no samples for sequencing were available. Phenotypes and the variants on coding sequence and protein 

level are indicated. Males are represented with squares and females with circles. Affected individuals have a filled 

form and deceased family members are marked with a diagonal line. (C) Analysis of mRNA levels show transcription 

of different targets (TNNI3, TNNI1, TNNT2 and MYBPC3). Expression of mRNA was normalized to GAPDH with a 

following Student’s t-test to determine statistical significance (* for p<0.05). Heat shock 70 kDa protein 1A (HSP70) 

was used as loading control (normalization) and Student’s t-test was performed to determine statistical significance 

(* for p<0.05). (D) Protein levels from heart tissues were analyzed to compare the expression of different targets 

(TNNI3, TNNI1, TNNT2 and MYBPC3). (E) Expression levels from signals in (D) were quantified. 
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Similar events were examined on protein level. Changes in protein concentrations are shown 

in Figure 14 D. Whereas TNNI3 was absent in both index patients, TNNI1 was drastically 

increased. Levels of TNNT2 and MYBPC3 showed small changes. Quantification of these 

signals showed significant changes for TNNI3 and TNNI1 (Figure 14 E). 

 

 

Figure 15: Prediction, mRNA expression and sequencing of the TNNI3 splice site variant c.24+2T>A. (A) In 

silico analysis of the base exchange TNNI3 c.24+2T>A with HSF (http://www.umd.be/HSF3/index.html) predicted 

a negative effect and an altered splice site. (B) A PCR product, amplified from cDNA originating from heart tissue 

samples of patient 2-II:3, shows altered length in fragments (yellow star). (C) Sequencing of the elongated cDNA 

fragment in (B) showed intronic extension of exon 2 leading to a premature stop. 
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To further investigate the effect of the splice site variation in TNNI3 c.24+2T>A in silico 

prediction, amplification from TNNI3 of affected parts in the mRNA and sequencing were used. 

The prediction of the online tool HSF was positive for changes of the wt donor splice site 

(Figure 15 A). Thus cDNA was generated from isolated RNA originating from the patient 2-II:3. 

Primer designed to amplify parts of TNNI3 between exon 1 and 5 were used to generate the 

altered splice products seen in Figure 15 B. In comparison to control PCR products mRNA 

affected by TNNI3 c.24+2A>A was elongated and alternated by alternative or mis-splicing. In 

the following sequencing of these products five additional amino acids were identified and a 

premature stop codon was implemented as illustrated in Figure 15 C. 

In the same manner a case of RCM diagnosed at the age of 3.8 years and with HTX at 4.5 

years was analyzed. The phenotype of this patient was associated with a heterozygous variant 

in TNNI3 occurring as truncating at the end of the protein. The base insertion c.624t>TT led to 

a premature stop at the amino acid position 209 and therefore concluded in the truncation of 

the last two amino acids in TNNI3. The variant occurred de novo and was not detected in the 

parents (Figure 16 A). This LP variant is likely to have an effect because the parents without 

the variant are not affected by a cardiac phenotype. On mRNA level tissue samples of patient 

3-II:1 showed increases in signals for TNNI3 and TNNI1. The gene MYBPC3 was slightly 

downregulated, whereas mRNA levels of actinin alpha 2 (ACTN2) and TNNT2 were similar to 

the control signals. In Western blotting experiments TNNI3 was still present in same amounts 

of protein as in controls. Only the signal for TNNI3 in the sample 2-II:3 was absent (Figure 14 

D). Regarding TNNI1 there was no increase in signal observed for patient 3-II:1, which 

distinguished again from the homozygous truncating variant. 

As mentioned before, three cases of CMP with a detected heterozygous missense variant in 

TNNI3 were observed in the pediatric CMP cohort. Like p.Glu209* these base exchanges 

clustered near the c-terminus in a region associated with actin and tropomyosin binding 

(p.Asp190Glu, p.Arg192Cys and p.Asn194Lys, Figure 17). The three index patients were 

affected by HCM, RCM and DCM, whereas the RCM patient had the most adverse disease 

development diagnosed with CMP at the age of 1.8 years and undergoing HTX at age 3.4 

years. The individuals affected by HCM and DCM were diagnosed at the age of 11.2 and 9.3 

years. In family 4 the father was already deceased, and a history of sudden cardiac death was 

documented in the family. Thus, the segregation was not fully checked, but the probability is 

high that the LP variant p.Asp190Glu in TNNI3 segregated in the affected members of this 

family. For the other two families parental blood samples were available. In both cases the 

variants occurred de novo and were not detected in the parents. Therefore, the observed 

TNNI3 alterations, similar to the heterozygous truncating variant, are likely to influence the 

heart in these patients, because the individuals without p.Arg192Cys and p.Asn194Lys are not 

affected by any cardiac phenotype. For preventive reasons patient 4-II:1 underwent ICD 
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implantation and patient 6-II:1 was at risk for potential heart failure, because similar events 

occurred in a deceased twin brother. Due to the lack of heart tissue no further experiments 

were performed. 

 

 

Figure 16: Pedigree, mRNA analysis and protein expression analysis of a patient with a truncating and C-

terminal variant in TNNI3. (A) A pedigree of a family carrying a truncating and C-terminal variant in TNNI3 is 

presented. Genotypes are shown as wt or mut, representing the wildtype or altered (mutated) allele. For individuals 

with no genotype no samples for sequencing were available. Phenotypes and the variants on coding sequence and 

protein level are indicated. Males are represented with squares and females with circles. Affected individuals have 

a filled form and deceased family members are marked with a diagonal line. (B) Analysis of mRNA levels show 

transcription of different targets (TNNI3, TNNI1, TNNT2, MYBPC3 and ACTN2). Expression of mRNA was 

normalized to GAPDH. (C) Protein levels from heart tissues were analyzed to compare the expression of different 

targets (TNNI3 and TNNI1). (D) Expression levels from signals in (C) were quantified. HSP70 was used as loading 

control (normalization). The results for patient 2-II:3 were used from Figure 14. 
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In conclusion, two homozygous variants in TNNI3 leading to truncations near the n-terminus 

showed absent signals for TNNI3 on protein level probably due to non-sense mediated decay 

and a drastic increase in expression of TNNI1. Both cases showed a very severe and early 

disease development. Experiments with a heterozygous truncating variant at the c-terminus 

did not show any significant alteration in protein expression. In this case the CMP progression 

was still severe, but the onset of the phenotype was with higher age. Similar statements can 

be made for the three mentioned missense variants. Of note is the heterogeneity of the disease 

development with TNNI3 variants. Four CMP subtypes were associated with TNNI3 variants 

in the CMP-80 cohort and the onset varied from 0.8 to 11.2 years. 

 

 

Figure 17: Pedigrees of patients with C-terminal missense variants in TNNI3. (A) – (C) Pedigrees of three 

families carrying C-terminal variants in TNNI3 are presented. Genotypes are shown as wt or mut, representing the 

wildtype or altered (mutated) allele. For individuals with no genotype no samples for sequencing were available. 

Phenotypes and the variants on coding sequence and protein level are indicated. Males are represented with 

squares and females with circles. Affected individuals have a filled form and deceased family members are marked 

with a diagonal line. 
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3.2 Detection of PRDM16 variants in patients with cardiac phenotypes – 

Genetic and functional analysis 

VOI were most frequently detected in the genetic groups of sarcomere, Z-disc and 

desmosomes genes. With four detected variants PRDM16 was as frequent as plakophilin 2 

(PKP2), TNNT2 or TTN (truncating) and an exception outside of the afore mentioned groups. 

PRDM16 is a transcriptional regulator and therefore listed in the group of transcription and 

splicing. Further genetic and functional analysis of PRDM16 can help to better understand 

cardiac mechanisms and signal pathways in the heart. Hence, this chapter investigates the 

genetic and functional impact of PRDM16 variants for CMP in an extended genetic cohort. 

3.2.1 High number of PRDM16 variants in an extended cohort of cardiac disease 

phenotypes 

To further investigate the frequency of PRDM16 variants in patients with the phenotype of CMP 

and myocarditis an in-house cohort was added to the existing pediatric CMP-80 cohort. CMP 

specific genes of an additional 205 patients with CMP or myocarditis (Heart-205) were tested 

for genetic alterations. In total an assembly of 285 individuals was investigated (Heart-285). In 

this cohort individuals of all age groups were included (181 pediatric cases with age ≤ 18 

years). The gender was shifted to males (112 f, 174 m). VOI were detected in 226 cases with 

320 missense, 58 splice site, 33 frame shift and 15 stop gain variants. On average a patient 

was carrying 1.49 VOI. The in-house cohort comprised mainly LVNC cases and therefore the 

distribution of phenotypes shifted in comparison to the pediatric CMP cohort (Figure 18 B). 

Most patients were diagnosed with LVNC (n = 119) followed by similar amounts of myocarditis, 

DCM and HCM patients with around 50 cases each (Figure 18 A). RCM and ARVC were again 

underrepresented with eight and four cases. The five genes with most detected VOI were 

MYH7 (n = 36), TTN (n = 27, only possible truncating variants), MYBPC3 (n = 20), DSP (n = 

16) and PRDM16 (n = 16, Figure 18 C). Whereas MYH7, MYBPC3 and TTN were expected 

with high numbers of variations in this cohort, cases with cardiac phenotypes caused by 

PRDM16 variants are rarely known. Therefore, the detected frequency was surprisingly high. 

The frequency of VOI in major CMP genes like TNNI3, TNNT2, LDB3 or TPM1 was 

considerably lower (n = 11/11/10/10). 

To gain deeper understanding about the effect of PRDM16 variants, further investigations were 

performed. An overview of PRDM16 variants showed altered sequences in 16 different 

patients, whereas two variants occurred in one patient and one variant was detected twice 

(Table 6). Most of these patients were diagnosed with LVNC (n = 7) followed by two cases of 

ARVC, DCM, HCM and RCM each and one case of myocarditis. Therefore, VOI in PRDM16 
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were detected in all investigated phenotypes. The gender of the 16 patients prevailed slightly 

to males (f = 6, m = 10) and with a range from 0.6 to 55 years all age groups were present.  

 

 

Figure 18: Distribution of cardiac phenotypes from additional in-house cohort and frequency of VOI in CMP 

relevant genes in patients. (A) The distribution of phenotypes from 285 CMP and myocarditis patients shows the 

composition of the initial pediatric cohort and an additional in-house cohort. (B) The distribution of phenotypes from 

205 CMP and myocarditis patients shows the composition of an additional in-house cohort. (C) The frequency of 

different genes with a variant detected in CMP patients is shown (full name of genes in Table S 1). 

 

The spectrum of the detected PRDM16 variants included 11 missense, three truncating and 

two splice site affecting variants. Two stop gain and one frame shift variant of the truncating 

variants were considered as P, whereas the rest was interpreted as VUS (11 missense and 

two splice site variants). Due to a MAF in the reference database gnomAD of smaller than 

0.1% all VOI were considered as rare, but variants with an amino acid position of 702 and 

smaller were at least detected with a MAF of 0.01% and lower. The only exception was variant 

p.G791D (gnomAD MAF = 0). Eight of these variants were not previously reported with cardiac 

phenotypes and three variants were already published. 
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Table 6: Heterozygous genetic Variants detected in PRDM16 (transcript: ENST00000270722) in the cohort Heart-285 

Diagnosis Sex 
Age in 
years 

Genomic 
location 

cDNA 
position 

Protein 
position 

gnomAD 
MAF 

ACMG 
pathogenicity 

Novel ClinVar 
PubMed 

ID 

Myocarditis m 13,7 1:3102766 c.115G>A p.E39K 0.0000789 VUS yes no - 

HCM m 0,6 1:3313149 c.668G>T p.G223V 0.0000318 VUS yes no - 

ARVC1 m 38,6 1:3319454 c.776C>T p.A259V 0.0000572 VUS yes no - 

LVNC m 4 1:3322136 c.1110C>A p.D370E 0.0000041 VUS yes no - 

LVNC m 44,6 1:3328329 c.1573dup p.R525Pfs*79 0 P no P 23768516 

LVNC f 10,5 1:3328388 c.1627C>T p.Q543* 0 P yes no - 

LVNC f 28,9 1:3328646 c.1885G>C p.V629L 0 VUS yes no - 

ARVC1 m 38,6 1:3328817 c.2056A>G p.T686A 0.0000678 VUS yes no - 

LVNC f 21,5 1:3328865 c.2104A>T p.K702* 0 P no P 23768516 

DCM f 2,5 1:3328948 c.2187C>G p.F729L 0.00039 VUS no LBe - 

HCM m 15 1:3329057 c.2296G>A p.G766S 0.00029 VUS no LBe - 

RCM m 17 1:3329133 c.2372G>A p.G791D 0 VUS yes no - 

LVNC2 m 19,9 1:3329208 c.2447A>G p.N816S 0.000232 VUS no P 23768516 

RCM2 m 5 1:3329208 c.2447A>G p.N816S 0.000232 VUS no P 23768516 

DCM f 9,9 1:3329370 c.2603+6C>T - 0.000414 VUS no LBe - 

ARVC f 53,5 1:3331186 c.2666C>T p.P889L 0.000177 VUS no VUS - 

LVNC m 55,0 1:3331216 c.2691+5G>A - 0.000201 VUS no LBe - 
Abbreviations: MAF – minor allele frequency, ACMG – American college of Medical Genetics and Genomics, VUS – variant with uncertain significance, P – pathogenic, LBe – likely benign 

1two variants in same patient 

2same variant in two patients
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To analyze the distribution of known and novel PRDM16 variants, their amino acid position 

was highlighted in a schematic protein domain structure (Figure 19). Homology alignments and 

similarity tools predicted an n-terminal SET domain at amino acid position 82 to 211 and two 

separated zinc finger domains (aa position 230 to 445 and 951 to 1032). The first zinc finger 

domain contained seven zinc fingers and was located near and behind the SET domain. The 

second zinc finger was located near the c-terminus and consisted of three zinc fingers. At 

position p.459-557 a proline rich region was located and already published data provided 

information on isolated SKI proto-oncogene (SKI), c-terminal binding protein 1 (CTBP1), c-

terminal binding protein 2 (CTBP2) and zinc finger protein 516 (ZNF516) interaction sites in 

the second half of the sequence (PFDLT and PLDLS motifs at aa position 774 to 778 and 804 

to 808 mediate binding of CTBP, Kajimura et al., 2008, Takahata et al., 2009). The detected 

variants in this work were distributed evenly throughout the protein and no clear cluster 

emerged. Regions without any alteration so far were the SET domain, the second zinc finger 

domain and the following n-terminal region. The pathogenic nonsense and frameshift variants 

located between the two zinc finger domains were predicted to express approximately half of 

the protein and therefore leading to loss-of function of PRDM16.  Functional regions containing 

missense variants were observed between the amino acids 223 to 370, potentially changing 

properties of the first zinc finger domain and 629 to 889, maybe interfering with published 

protein binding sites. 

 

 

Figure 19: Schematic protein domain structure of PRDM16. Shown is the sequence of predicted functional 

domains in PRDM16. It consists of an n-terminal SET domain followed by seven zinc fingers of the C2H2-type. A 

second zinc finger domain near the c-terminus consists of three zinc fingers (C2H2 type). Shortly after the first zinc 

finger domain a proline rich region is following. At the c-terminus the interaction sites with SKI (TGF-β signaling), 

CTBP1/2 (PLDLS motif) and ZNF515 are shown. Above the scheme are variants colored in black (described in 

literature) and red (newly detected in cardiac phenotype cohort of 285 patients). 
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3.2.2 Bioinformatic characterization of PRDM16 

Additional features of PRDM16 were identified using protein prediction tools. PRDM16 was 

examined for PTM, secondary structure, conserved regions, disordered sections through the 

sequence and parts with high surface accessibility (Figure 20). Positive results for PTM were 

obtained for acetylation, methylation, phosphorylation, glycosylation, SUMOylation and S-

nitrosylation. Data was collected from different prediction tools and hits, exceeding certain 

thresholds, were considered as true results. Putative PTM sites were distributed over the entire 

PRDM16 protein. On note, in the region p.540- 608 six PTM clustered. This suggests an 

exposed surface accessibility and a potentially critical functional region. At position p.K915 an 

acetylation and SUMOylation site were predicted. This lysine residue was described to be 

involved in stabilization of PRDM16 through SUMOylation (Chen, Huang, Pan, Zhu, & Wang, 

2018). Stabilization of PRDM16 protects the protein from degradation and enables binding of 

downstream interaction partners for further stabilization and signaling. No PTM corelated with 

VOI detected throughout genetic analysis. Protein conservation tools, taking into consideration 

homology and similarity alignments, identified functional regions e.g. the zinc finger domains. 

Thereby nine grades of conservation were possible spanning from 1 to 9 and from low to high 

conservation. Positions exceeding the threshold of 5 for being conserved were marked by a 

red dot above the graph. Other sections were characterized by changing conservation values 

and only peaked for small sequences like the PFDLT and PLDLS motifs. Surprisingly the SET 

domain showed a relatively low conservation, although secondary structural elements were 

especially predicted in this region and the zinc finger domains and should be affected by steric 

properties of amino acid residues changes. Further structural elements, marked as red for α-

helices and as green for β-sheets, were located at the position from amino acid 680 to 762 and 

at the c-terminus. These findings coincided with results from surface accessibility calculations. 

Values for surface accessibility were normalized to 1 (exposed = maximal value 1, buried = 

minimal value 0). Again values exceeding the threshold were marked as red dot above graph 

(threshold = 0.25). In general, predicted structural elements seemed more buried than flexible 

regions. Therefore, low surface accessibility was observed for the SET and zinc finger 

domains, the region between amino acid 680 to 762 and the c-terminus. The presence of 

structural elements positively coincided with ordered protein regions. For these predictions 

again normalized values were used and 1 presented maximal disorder, whereas 0 was the 

minimal amount and 0.5 was used as threshold to characterize a position as disordered. The 

SET and zinc finger domains and the afore mentioned region from position 680 to 762 rarely 

passed the threshold for disorder and strengthened the prediction of secondary structure. Most 

disordered region located at the termini, between position 521 to 654 and between 784 and 

866 and contained possible protein binding sites marked in red on the graph.
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3.2.3 Cloning of PRDM16 and quality control 

For expression already available PRDM16 in wt (PRDM16_wt), p.E271K (PRDM16_v1), 

p.P291L (PRDM16_v2), p.R525Pfs*79 (PRDM16_v3fs), p.N816S (PRDM16_v4) and p.L887P 

(PRDM16_v5) form embedded in the pcDNA-Dest53 vector was used to amplify the gene, 

ligate it into the new vector and transform the constructs in E. coli (XL1-blue). Vectors used for 

expression in human cell lines with and without protein tags were pFLAG-CMV5/6a and 

pEGFP-C1. Selection of positively transformed E. coli was expressed through antibiotic 

resistance (pFLAG-CMV5/6a - ampicillin, pEGFP-C1 - kanamycin). After inoculation of LB 

medium with the transformed bacteria a midiprep was applied to purify the plasmid DNA from 

the cultures. This process with additional quality control steps is described in the following part. 

 
Table 7: DNA-constructs for the expression of PRDM16 in wt form and containing different variants 

Name Protein tag Expression 

Backbone Insert  Vector Variant 

pFLAG_CMV5a PRDM16_wt - PRDM16_no_tag wt 

pFLAG_CMV5a PRDM16_E271K - PRDM16_no_tag v1 

pFLAG_CMV5a PRDM16_P291L - PRDM16_no_tag v2 

pFLAG_CMV5a PRDM16_R525Pfs*79 - PRDM16_no_tag v3fs 

pFLAG_CMV5a PRDM16_N816S - PRDM16_no_tag v4 

pFLAG_CMV5a PRDM16_L887P - PRDM16_no_tag v5 

pFLAG_CMV6a PRDM16_wt n-term. FLAG FLAG+PRDM16 wt 

pFLAG_CMV6a PRDM16_E271K n-term. FLAG FLAG+PRDM16 v1 

pFLAG_CMV6a PRDM16_P291L n-term. FLAG FLAG+PRDM16 v2 

pFLAG_CMV6a PRDM16_R525Pfs*79 n-term. FLAG FLAG+PRDM16 v3fs 

pFLAG_CMV6a PRDM16_N816S n-term. FLAG FLAG+PRDM16 v4 

pFLAG_CMV6a PRDM16_L887P n-term. FLAG FLAG+PRDM16 v5 

pEGFP-C1 PRDM16_wt n-term. EGFP EGFP+PRDM16 wt 

pEGFP-C1 PRDM16_E271K n-term. EGFP EGFP+PRDM16 v1 

pEGFP-C1 PRDM16_P291L n-term. EGFP EGFP+PRDM16 v2 

pEGFP-C1 PRDM16_R525Pfs*79 n-term. EGFP EGFP+PRDM16 v3fs 

pEGFP-C1 PRDM16_N816S n-term. EGFP EGFP+PRDM16 v4 

pEGFP-C1 PRDM16_L887P n-term. EGFP EGFP+PRDM16 v5 

Figure 20: Analysis of predicted functional features from PRDM16. Shown is the schematic functional structure 

of PRDM16 at the bottom of the figure with novel (red) and published (black) genetic variants above the model. 

Predicted PMT are shown for acetylation, methylation, phosphorylation, glycosylation, SUMOylation and S-

nitrosylation. Predictions for other modification categories like palmitoylation were also applied . The following 

graphs show predictions for PRDM16 protein conservation, secondary structure (coil, α-helix, β-sheet), accessible 

surface area and disorder. The numbers of the corresponding amino acids are shown at the bottom. 

1Acetylation sites were predicted with three out of six online tools and not with at least four and were therefore 

selected with less stringency than the other predictions of PTM. 

2The SUMOylation at position K915 did not fulfill the criteria to be listed but was described experimentally in the 

literature and is therefore considered as SUMOylation site (Chen, Huang, Pan, Zhu, & Wang, 2018). 
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All used constructs are listed in Table 7. These plasmids were created to express PRDM16 

with its mentioned variants in three forms, without any tag, with a FLAG-tag and with an EGFP-

tag. The protein tags were expressed n-terminally to ensure the expression of the tagged 

variant PRDM16_v3fs. For untagged protein, a plasmid with c-terminal FLAG-tag was chosen. 

Ligation primers in this case were designed to leave the stop codon of PRDM16 intact to 

exclude the protein tag. Upscaling to midi cultures and purification of plasmid DNA through 

midiprep resulted in plasmid concentrations of 0.8 to 3.4 µg/ml. 

The plasmids were then checked for the DNA length on agarose gels (Figure 21).The expected 

length of the backbone vectors with PRDM16 was 8.5 kb. For a quick check the plasmids were 

not linearized. Therefore, gel bands were visible for a lower and stronger supercoiled and a 

higher nicked form of plasmids. Supercoiled vectors move faster through agarose gels and 

thus appeared lower than the expected 8.5 kb (around 6 kb). In the example of Figure 21 all 

constructs had at least one clone with the corresponding height except PRDM16_wt. To get 

the full set, new clones had been picked and checked for the right height as seen in the right 

part of the figure. For further quality checks a sequencing step followed afterwards to detect 

possible base exchanges and small deletions or insertions. 

 

 

Figure 21: Ligation approach of PRDM16 inserts into the pFLAG-CMV5a vector. A minipreps preceded by 

PCR, ligation and transformation into XL1 blue E. coli cells with the pFLAG-CMV5a vector and PRDM16 inserts 

were loaded onto an agarose gel (1%) to check the corresponding length in supercoiled from. If one approach did 

not lead to a clone with the right height (wt cl1-4), new clones had to be picked (wt cl7). Clones containing the 

corresponding plasmids with the right height were picked to inoculate a miniprep culture for higher yields of DNA 

and deeper purification.  

 

In a final quality check, all cloned plasmids were validated with Sanger sequencing. In Figure 

22 two positive and two negative examples are shown. Most alterations of the DNA appeared 

at the termini. Base exchanges of altered start and stop codons would lead to missing initiation 

of PRDM16 expression or its elongation. Clone one and two in Figure 22 were affected by this 

and therefore not considered for further processing. All clones presented the right base 
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exchange for the variant PRDM16_v2 normally coded by the codon CCC and changed to CTC. 

The entire gene was sequenced in this matter. 

 

 

Figure 22: Sequencing of pFLAG-CMV5a plasmids containing PRDM16_v2. After checking the size of newly 

cloned vector/PRDM16 constructs on an agarose gel (Figure 21), the DNA base sequence had to analyzed for 

small deletions/inserts and base exchanges. Therefore, the BigDye Terminator v3.1 protocol was applied, and 

samples were analyzed with the 3730 DNA Analyzer. 

 

A last step to ensure the correctly designed expression vectors were restriction enzyme digests 

(Figure 23). Due to restriction sites in the multiple cloning sites of vectors restriction enzymes 

could be used to confirm the length of insert and vector in linear form. Two approaches were 

followed. A single digest confirmed the length of the entire expression plasmid, expected to be 

8.5 kb and a double digest separated the backbone vector and the insert (backbone vector 

with 4.7 kb and PRDM16 insert with 3.8 kb). For the single digest the restriction enzyme EcoRI 

was used. For the double digest BamHI was added to the reaction. The linearization with EcoRI 

showed bands with heights at approximately 8.5 kb. No additional bands were observed and 

the expected difference in length to the empty vector was visible. The double digest clearly 

showed the separation of insert and backbone with the later exactly on the same height as the 
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empty vector. Again no additional unexpected bands were visible and therefore the samples 

were clear of contaminations. 

 

 

Figure 23: Restriction enzyme digest of pFLAG-CMV5a with PRDM16 inserts. To prove the correct length of 

the PRDM16 insert into the vector pFLAG-CMV6a, a restriction enzyme digest with EcoRI in a single digest 

approach and EcoRI + BamHI in a double digest approach were used and loaded onto an agarose gel (1%). 

3.2.4 Overexpression of PRDM16 wt and variants 

All investigated PRDM16 variants were detected in patients with CMP. Zebrafish studies 

showed that PRDM16 truncation induces CMP. However, the impact of missense variants on 

PRDM16 function is unknown. Thus, further experiments were conducted to explore an impact 

of PRDM16 missense variants on subcellular localization and protein stability. 

3.2.4.1 Subcellular localization analysis of cardiomyopathy-associated PRDM16 

mutants with immunostaining 

To investigate the subcellular location of PRDM16, HEK293 cells were transfected with 

different PRDM16 constructs and subsequently analyzed with immunostaining and four-

channel confocal microscopy. Several cell types were tested for the overexpression of 

PRDM16. Cell lines like Hela and A549 are characterized by no intrinsic PRDM16 expression 

and therefore more sensitive to PRDM16 transfection and expression (unstable and early cell 

death after transfection). MCF7 cells exhibit endogenous PRDM16, but expression of this 

protein was more heterogenous than in HEK293 cells. Therefore, HEK293 cells were chosen 

for further investigation. Initially, the impact of the EGFP and FLAG protein tags on 
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PRDM16_wt subcellular localization was tested (Figure 24). Hence, with PRDM16_wt 

transfected HEK293 cells were fixated and analyzed with antibodies against PRDM16 and the 

FLAG-tag. EGFP emitted fluorescence without marking. The nuclei were detected with DAPI 

(grey) and phalloidin (magenta) was used to mark actin filaments. In each row of Figure 24 the 

expression of one construct is shown in three pictures. 

 

 

Figure 24: PRDM16 expression with protein tag or in untagged form in immunostained HEK293 cells. To 

investigate the location and distribution of overexpressed RPDM16 HEK293 cells were transfected with EGFP (top) 

and FLAG (middle) tagged PRDM16 and compared to cells with untagged overexpressed PRDM16 (bottom). 

Fluorescence signals were either directly detected with EGFP being a fluorophor or due to immunostaining, where 

fluorophor conjugated antibodies were used. Nuclei were stained with DAPI (white). Green represented detection 

of the EGFP- and FLAG-tag, yellow was used for PRDM16 and magenta for phalloidin staining. 
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HEK293 cells transfected with EGFP+PRDM16_wt expressed strong EGFP signals in the nuclei 

(green) and PRDM16 signals in nuclei as well as the cytoplasm (yellow) (Figure 24). 

Unexpectedly, both signals did not merge completely as the EGFP staining was not present in 

the cytoplasm. A similar pattern was observed for HEK293 cells transfected with 

FLAG+PRDM16_wt. With this approach the PRDM16 signal was more abundant in the 

cytoplasm. The samples transfected with PRDM16_no_tag_wt expressed signals in the 

cytoplasm and showed the localization of PRDM16 in the nucleus in different intensities, when 

compared from cell to cell. Therefore, the protein seemed to localize in both fractions, the 

nucleus and the cytoplasm. The subcellular analysis revealed discrepancies between 

untagged and tagged PRDM16 protein with pronounced nuclear accumulation of tagged 

PRDM16. These observations suggest an impact of n- or c-terminal tagging for correct 

PRDM16 dynamics between the cytoplasm and nucleus. For further analysis only 

PRDM16_no_tag proteins were used. For these initial approaches the antibody anti-PRDM16 

from Thermo Fisher Scientific was used. For further approaches (Figure 25, Figure 26) the 

antibody anti-PRDM16 from R&D systems was used except for the PRDM16_v3fs variant. 

 

 

Figure 25: Distribution of untagged overexpressed PRDM16 in three-dimensional microscopy images of 

HEK293 cells. HEK293 cells were transfected with untagged PRDM16 and stained with DAPI (white), PRDM16 

(yellow) and phalloidin (magenta). A series of images with different depths were taken for the same section (z-

stack). Therefore, the location of PRDM16 could be determined in three different dimensions. White boxes were 

used to enlarge and highlight specific sections. The five images in different planes (0 – 4.04 µm) were merged into 

a maximum intensity projection (MIP). 
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To further investigate the subcellular distribution of PRDM16 in a cell three-dimensional 

records (z-stacks) were generated with confocal microscopy. The signals of PRDM16_wt were 

detected in the cytoplasm and the nucleus (Figure 25). At the lowest level the yellow signal 

was visible in small spots. In further planes the intensity of the signals increased in every 

compartment and detected PRDM16 concentrated at the edge of the DAPI marked nucleus 

(highlighted in the white box with white arrows). On the highest level the yellow signal 

accumulated and overlapped with DAPI detection in the nucleus. In conclusion PRDM16 was 

located in both the cytoplasm and nucleus and accumulated at the nuclear membrane. The 

maximum intensity projection (MIP) showed the accumulation at and in the nucleus. 

To test the impact of PRDM16 variants detected in CMP patients HEK293 cells were 

transfected with six PRDM16 mutant constructs (Table 7) and subsequently analyzed with 

immunostaining and confocal microscopy. These constructs comprised PRDM16_wt, 

PRDM16_v1, PRDM16_v2, PRDM16_v3fs, PRDM16_v4 and PRDM16_v5. In Figure 26 

signals detected for the PRDM16_wt protein were compared with immunostained samples 

from cells transfected with variants containing PRDM16. Three different stainings were used 

to analyze the samples. PRDM16 was detected in yellow whereas the nuclei and actin 

filaments were again stained with DAPI (grey) and phalloidin (magenta). The images for 

PRDM16_wt transfected cells showed similar results as observed before with PRDM16 

localization in the cytoplasm and nucleus. Thereby some cells showed a shift in localization to 

the nucleus or the cytoplasm (highlighted with an arrow for a shift to the nucleus or marked 

with a star for a shift into the cytoplasm). Overall the signal of PRDM16_wt was evenly 

distributed between nucleus and cytoplasm as observed before in Figure 24 and Figure 25. 

For PRDM16_v1 and PRDM16_v2 a change of localization to the cytoplasm was observed 

and signals in the nuclei were much less distinct as for the wt (missense variants in first zinc 

finger domain). The opposite was examined for PRDM16_v3fs (frame shift variant after the 

first zinc finger domain). Signals for PRDM16 were strongly accumulated in the nuclei (only an 

arrow to highlight cells with PRDM16 localized in the nuclei). Of note was also the availability 

of the signal for PRDM16_v3fs because a premature stop codon may lead to regulatory 

degradation of the partly expressed protein, which was not observed in this case. The sample 

PRDM16_v4 expressed similar results to the wt whereas the signals of PRDM16_v5 again 

shifted to the nuclei, but in a more attenuated form compared to PRDM16_v3fs. In conclusion, 

an even distribution for PRDM16_wt in cytoplasm and nucleus was confirmed, but the 

introduction of variants to this protein seemed to change the conditions for localization in the 

cell. Signals of PRDM16 shifted to the nucleus drastically for PRDM16_v3fs and with weaker 

effects in PRDM16_v5. For PRDM16_v1 and PRDM16_v2 PRDM16 was detected with weaker 

intensity in the nuclei and stronger signals in the cytoplasm. Therefore, further analyzing the 

distribution of PRDM16 in the two fractions nucleus and cytoplasm seemed promising. 
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Figure 26: Immunostaining of PRDM16_wt form and CMP variants in HEK293 cells. HEK293 cells were transfected with untagged PRDM16 and stained with DAPI (white), 

PRDM16 (yellow) and phalloidin (magenta). Variants detected in CMP patients were introduced into the wt protein to investigate functional effects. These five variants contained 

four missense variants (v1 – E271K, v2 – P291L, v4 - N816S and v5 – L887P) and a frameshift variant with a premature stop codon (v3fs – R525Pfs*79). 
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3.2.4.2 Localization and stability analysis of PRDM16 through Western blotting 

With immunofluorescence staining differences between tagged and untagged PRDM16 were 

observed. Thus, for more validity these findings were reevaluated with Western blotting (Figure 

27). HEK293 cells were transfected with the EGFP+PRDM16, FLAG+PRDM16 and 

PRDM16_no_tag constructs encoding the PRDM16_wt and PRDM16_v1 – 5 forms. With 

every approach PRDM16 was expressed and could be detected. In general, all variants and 

the wt protein could be detected in the three approaches (tagged expression with EGFP or 

FLAG and untagged expression). Interestingly for the frame shift variant PRDM16_v3fs, 

containing a predicted premature stop codon, stable signals were observed, and regulatory 

degradation did not lead to absence of PRDM16. For the proteins expressed with tags specific 

antibodies against their tags were used, which confirmed the expression of artificially 

introduced PRDM16 into the cells and the corresponding weights of the different constructs 

due to the detection with a variety of antibodies (anti-EGFP, anti-FLAG and anti-PRDM16). 

The theoretical molecular weight of PRDM16 is 140.3 kDa. PRDM16_no_tag_wt and 

PRDM16_FLAG_wt were detected with approx. 170 kDa PRDM16_EGFP_wt was detected at 

200 kDa due to the EGFP tag contributing 27.7 kDa to the overall protein mass. The detected 

signals for the tagged PRDM16 were sharp and no additional protein bands were visible. The 

shift in height compared to the untagged protein was accordingly due to conjugated tag. The 

signals for PRDM16_v3fs were appropriately reduced by 74 kDa due to the afore mentioned 

truncation (expected molecular weight without tag: 66.3 kDa). The results for untagged 

PRDM16 were similar but differed in the occurrence of a second band clearly marked by a red 

box. A second band also appeared for PRDM16_v4 and PRDM16_v5 with EGFP-tagged 

PRDM16 but will not be considered for further discussion due to the absence in other 

experiments. The tagged PRDM16 wt constructs were used as expression controls as seen in 

the detection of PRDM16_no_tag (in the right image of Figure 27, c1 – EGFP+PRDM16, c2 – 

FLAG+PRDM16). A second band was also visible in PRDM16 detection for c2. The expression 

of the different variants differed in intensity and was also observed in following experiments 

not shown, especially for the wt expression. Furthermore, a smear appeared with PRDM16 

specific detection and therefore different antibodies against this protein were tested (Figure 

28). In conclusion the expression of PRDM16 with protein tags again distinguished from 

untagged protein but confirmed the expression of the introduced plasmids used during 

transfection. Therefore, these constructs were further used as expression controls. The 

detected signals for PRDM16 were all considerably higher in molecular weight for unclear 

reasons. The truncating variant was stably expressed and showed expected reduction in 

height for the expected truncation. 
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Figure 27: Western blot detection of HEK293 lysates with overexpressed PRDM16 carrying a protein tag or 

in untagged form. HEK293 cells were transfected with EGFP (left) and FLAG (middle) tagged PRDM16 and 

compared to cells with untagged overexpressed PRDM16 (right). For constructs comprising the EGFP or FLAG-

tags, specific antibodies were used to only mark the protein tags. In the right part of the figure an antibody against 

PRDM16 was used to detect the untagged protein. EGFP- and FLAG-tag containing PRDM16 samples were used 

as controls (c1 – PRDM16 + EGFP, c2 – PRDM16 + FLAG) to verify the corresponding height and specificity. For 

every detection the wt and variants of PRDM16 were applied (v1 – E271K, v2 – P291L, v3fs – R525Pfs*79, v4 – 

N816S and v5 – L887P). 

 

As mentioned before three antibodies to detect PRDM16 were tested for the expression of this 

protein (Figure 28). Although for the first two antibodies operating instructions suggested a 

predicted molecular weight of 140 kDa, specific PRDM16 bands could be observed at 170 

kDa. Double bands were also common for the three different detections. Thus, the occurrence 

of the second PRDM16 specific band was confirmed. For the first antibody additional bands 

occurred with increased and decreased heights (above 250 kDa and below 150 kDa). Due to 

the immunization against a c-terminal peptide of PRDM16 during the creation of the Abcam 

antibody the frame shift variant PRDM16_v3fs was not detected. Therefore, the PRDM16_v3fs 

sample could be used as a c-terminal PRDM16 specific control and as seen in the left image 

of Figure 28 for detection of unspecific protein bands. Similar events took place for the R&D 

Systems antibody. The immunogen of the Thermo Fisher Scientific antibody was an n-terminal 

peptide and therefore PRDM16_v3fs could be detected. There were only minor additional 

bands with lower molecular weight detected for this antibody, but a severe smear was visible. 

Bands with lower weight were probably degraded elements of PRDM16 and therefore not 

evitable. The sharpest bands were detected with the R&D systems antibody. No smear and 

only minor additional bands with lower molecular weight were observed. As mentioned before 

the variant PRDM16_v3fs could not be detected due to a c-terminal immunogen used for 

antibody production. Nevertheless, further investigations were performed with the R&D 

Systems antibody. If detection of the truncating variant PRDM16_v3fs was necessary, the 

Thermo Fisher Scientific antibody was applied. 
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Figure 28: Antibody test specific for PRDM16 and detection of PRDM16 variants with Western blotting. 

Western blots were generated to compare the expression of PRDM16 wt and variants (v1 – E271K, v2 – P291L, 

v3fs – R525Pfs*79, v4 – N816S and v5 – L887P) with three different antibodies detecting PRDM16. 

PRDM16+EGFP_wt (c1) and PRDM16+FLAG_wt (c2) were used as a loading controls. PRDM16 specific bands 

were marked with a red box. 

 

Subcellular analysis of overexpressed PRDM16_no_tag in PRDM16_wt and PRDM16_v1 to 

v5 form revealed diverse localizations. With the following approach mainly changes between 

the concentration of PRDM16 in a cytoplasmic and nuclear fraction were examined. To quantify 

this shift a procedure to separate the cytoplasmic fraction from the nuclear fraction has been 

applied to HEK293 cells transfected with PRDM16_no_tag constructs. Following detection with 

Western blot was used to characterize the distribution of PRDM16 (Figure 29). First the nuclear 

separation method was tested with the PRDM16_wt construct. Similar to the general signal 

distribution in immunostained samples for PRDM16_wt no differences were visible for 

PRDM16 specific bands detected in the cytoplasmic and nuclear fraction (cytoplasm - cp, 

nucleus - n, overexpressed, Figure 29 A). The separation of both fractions could be confirmed 

with the control detection of β-Tubulin at 50 kDa. β-Tubulin appeared enriched in the cytoplasm 

due to its role for the microtubule network. For detection of the cytoplasmic or nuclear fraction 

β-Tubulin and LMNA, an inner nuclear membrane marker, emerged as suited control proteins. 

In comparison the detection of endogenous expressed PRDM16 showed very weak or no 

signals although the protein concentration was amplified considerably (adherent cells 

harvested from two 75 cm2 cell culture flasks for endogenous detection to two wells of a 

standard six-well plate with 9.5 cm2). Probably due to the high protein concentration in the 

endogenous samples there were not a distinct separation of the fraction as seen for the β-

Tubulin specific bands. To compare the expression of PRDM16 carrying different variants the 

same procedure was applied to the PRDM16_no_tag constructs PRDM16_wt and 

PRDM16_v1 to v5 (Figure 29 B/C). After blotting the protein samples from an SDS 

polyacrylamide gel onto a PVDF membrane the gel was stained with Coomassie staining 

solution to check for the protein transfer and homogenous protein loading (Figure 29 B). As 

seen for the ladder (La) the transfer worked although plenty of protein remained in the gel in 

the case of the samples. Of note, nuclear and cytoplasmic fraction showed diverse band 
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pattern confirmed successful separation. Moreover, the samples were evenly loaded as seen 

in the image. Specific expression bands for PRDM16, typically examined in overexpression 

approaches, were not observed. More evidence for a successful separation of the two fractions 

could be confirmed due to the Lamin C and β-Tubulin signals (Figure 29 C). Lamin C was 

absent in the cp fraction and β-Tubulin was absent in the nuclear fractions. The signals 

detected for PRDM16 however differed slightly. In the wt sample the strongest signal was 

examined for the lower band in the cytoplasmic fraction and with the intensity of the other 

PRDM16 bands evenly distributed the localization of PRDM16 was slightly shifted to the cp. 

Differences for the samples PRDM16_v1 to v5 were observed for the upper band in the cp 

fraction resulting in weaker signals. Weaker signals in the lower band of the cp fraction also 

led to the impression, that PRDM16 was present with higher concentrations in n fraction for 

the variants PRDM16_v2, PRDM16_v4 and PRDM16_v5.  

 

 

Figure 29: Detection of PRDM16 wt and variants in separated cell fractions (nucleus and cytoplasm) with 

Western blotting. Western blots were generated to compare the expression of PRDM16_wt and variants 

(PRDM16_v1 – v5) in the cytoplasm (cp) and the nucleus (n). These two sections were separated and examined 

separately. (A) The two fractions for endogenous PRDM16 expression and overexpressed PRDM16_wt are shown 

and compared to PRDM16+EGFP_wt (c1) and PRDM16+FLAG_wt (c2) control expression. (B/C) Overexpression 

of PRDM16_no_tag constructs was then compared. The Coomassie staining of the SDS polyacrylamide gel further 

processed to the Western blot in C was used to show successful transfer to the blotting membrane (see ladder - 

La) and equal loading of the samples. 
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For more validity the same experiment was performed at least four times under same 

conditions, but quantified signals differed too much and produced very heterogeneous results. 

The main problem here were considerably weaker signals for wt samples although same 

amounts of protein were loaded (confirmed by analysis of Coomassie stained gels). In 

conclusion differences in PRDM16 signals were observed, but the results were too 

heterogenous for further analysis. A major concern was the stability of the PRDM16_wt 

expression. Without distinct detection for this construct, results from the other variants cannot 

be compared. 

To further investigate the stability of PRDM16_wt and variants, HEK293 cells were transfected 

with PRDM16 and harvested after CHX incubation for 0h, 8h, 16h and 24 h). The samples 

were analyzed via Western blot. In Figure 30 a set of PRDM16_wt and the five different 

variants PRDM16_v1 to v5 from the stabilization approach are presented. For each 

transfection the four time points at 0, 8, 16 and 24 h of incubation after addition of CHX to 

inhibit protein expression are shown.  

 

 

Figure 30: Time series of PRDM16 expression after CHX incubation for stability determination. HEK293 cells 

were transfected with PRDM16_wt and PRDM16_v1 to v5 constructs. After 24 h of incubation with CHX (protein 

expression inhibitor) differences of stability in PRDM16 variants were determined. Lysates were generated after a 

series of time points (0 h, 8 h, 16 h, 24 h) and detected with Western blotting (left). The expression levels at different 

time points were correlated with the intensity of bands detected in WB to calculate the half time of the corresponding 

protein (right). 
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PRDM16 expression detected with a molecular weight of approximately 170 kDa or 66 kDa for 

the frameshift variant was compared to the expression control of β-tubulin at around 50 kDa. 

With the quantified intensities of these samples an exponential fit was applied and with the 

resulted formula the half-life of the protein was determined. Visually the PRDM16_wt, 

PRDM16_v1 and PRDM16_v2 were observed with strong decline of signal, whereas decline 

in signal for PRDM16_v4 and PRDM16_v5 was elongated and PRDM16_v3fs showed no 

decrease in intensity and seemed therefore stable through the entire incubation time. 

Noticeable here were the observed quantities of the β-tubulin detection. Homogenous protein 

loading was achieved with BCA analysis and subsequent adjusted protein loading. With 

consistent protein concentrations unstable proteins were degraded, whereas more stable 

proteins relatively increased. This seemed to be the case for β-tubulin most visible for the 

sample PRDM16_v2 (Figure 30). Quantities of β-tubulin again were used as loading controls. 

The calculated half-lives T1/2 in Figure 30 corresponded with the visual estimations. Whereas 

the wt expressed a T1/2 of 7.8 h, the variants PRDM16_v1 and PRDM16_v2 were determined 

with shortened half-lives of 4.8 h and 2.7 h. The T1/2 values for PRDM16_v4 and PRDM16_v5 

were elongated with 10.5 h and 12.2 h. The result with the biggest difference to the wt was 

observed in cells transfected with the frameshift variant PRDM16_v3fs. The signal intensity did 

not decrease considerably and therefore resulted in a calculated T1/2 with 49.5 h. These results 

suggest difference in protein stability of PRDM16 variants, but due to the heterogenous results 

should be analyzed with caution and thus further confirmation is needed.  
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4 Discussion 

In this thesis, the genetic basis of a cohort comprising 80 pediatric cases of primary non- 

syndromic CMP were analyzed. The frequency of VOI in CMP-relevant genes and genotype-

phenotype correlations were evaluated. DCM followed by HCM patients represented the 

majority of the CMP cases with decreased numbers for LVNC and RCM and nearly no cases 

of ARVC. Overall, the gender was distributed equally, but differed for DCM and HCM (more 

affected females for DCM and more affected males for HCM). Considering the age, the HCM 

group showed later disease onset and a wider range. Adverse events were considerably higher 

for individuals affected by DCM and RCM, including considerably more frequent heart 

transplantations and deaths. Adverse events were correlated with the number detected VOI 

and expressed a higher risk to experience such events with increasing number of VOI. 

Most frequently VOI were detected in sarcomere, Z-disc or desmosome genes. These groups 

contained the disease genes with most frequently detected VOI in MYH7, MYBPC3, TNNI3 

and DSP. Especially VOI in MYH7 and MYBPC3 accumulated in HCM patients. The other 

groups showed more heterogeneity and RCM cases represented an exception with truncating 

TTN VOI most frequently detected. 

In the group of most frequently detected VOI TNNI3 was the third most important gene. Of 

note were TNNI3 variants due to a homozygous splice site variant leading to a complete loss 

of TNNI3 in the myocardium and resulting in the compensatory increase of TNNI1. Confirmed 

was this case with a second homozygous frame shift variant examined with similar results 

detected in an additional pediatric CMP case. 

PRDM16 is a transcriptional regulator and several variants were detected in pediatric CMP. 

Further availability of patients with adverse cardiac phenotypes identified 16 variants detected 

in PRDM16. These alterations occurred in six different cardiac diseases and comprised 

missense, splice site frame shift and stop gain variants. Through bioinformatic analysis 

structural and accessible regions of the protein were revealed and associated with the detected 

variants. Immunohistochemistry experiments showed different properties for the expression of 

PRDM16 when tagged compared to untagged form. Furthermore, PRDM16 containing CMP 

variants mediated altered localization in the cell with condensed signals in the cytoplasm or 

the nucleus. Therefore, the cytoplasmic and nucleic fractions were analyzed separately in 

Western blot approaches. Stabilization test of PRDM16 wt and variants showed differences in 

the protein half-life time correlating with localization in the cells suggesting more stability of 

PRDM16 when located in the nucleus. 
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4.1 Clinical characterization of pediatric cohort 

In the recruitment period of pediatric patients with primary CMP mainly DCM and HCM cases 

were diagnosed. These results are consistent with current findings (Lee et al., 2017). Less 

frequently were cases with LVNC and RCM. Children affected by ARVC were rarely recruited. 

The sex of the patients was equally distributed overall but differed for HCM and DCM cases. 

The gender in the other subgroups was equally distributed (LVNC) or the group was too small 

to comment (RCM, ARVC). Males were affected more frequently by HCM, whereas more 

females were affected by DCM. For HCM cases both in adults and children a higher incidence 

for males is known (Lu et al., 2020; van Driel, Nijenkamp, Huurman, Michels, & van der Velden, 

2019). As for DCM patients, findings are contradictory. In adults, all-cause mortality was 

described as an independent predictor for females (Doesch et al., 2014). An Australian 

childhood cohort presented a gender distribution with 56% females affected by DCM (103 out 

of 184, Nugent et al., 2003), which coincides with characteristics of the cohort described in this 

thesis. Contradictory to that, in a cohort containing 1426 pediatric DCM cases 769 males were 

affected by the CMP (54%, Towbin et al., 2006). In these publications differences between 

ethnic groups were also described as an influential factor with indigenous and African 

American patients diagnosed with a higher incidence. These factors may alter the gender 

specific distribution. Additionally, DCM can be caused by different environmental factors and 

is therefore more susceptible to fluctuations in their patient’s characteristics (Lipshultz et al., 

2019). 

Age specific effects compared to the other phenotype groups were only observed for HCM. 

The onset was at later age and the age range was wider. In a study of childhood patients 

affected by HCM, the poorest prognosis has been examined with an age younger than one 

year. In cases with an age higher than one year no age specific associations were observed 

(Colan et al., 2007). Partly these findings were confirmed with results in this thesis. For HCM 

cases survival seems independent from the age of diagnosis. Only one patient in this sub 

cohort underwent heart transplantation and died half a year after the operation with an age at 

diagnosis of 0.3. Therefore, in this case the early onset of the disease increased the severity, 

but six different cases with patients younger than one year affected by HCM presented different 

results and did not show any occurrences of adverse events. Reasons for this observation 

could be a milder and elongated progression of the disease or higher thresholds to develop 

adverse events due to hypertrophy of the heart compared to other disease symptoms such as 

dilatation (see athlete's heart, Baggish & Wood, 2011). 

In our cohort, adverse events were mainly observed in DCM and RCM patients, whereas HCM 

patients were nearly event free. In other studies, an early onset is often described as risk factor 

to develop a more severe phenotype for HCM and DCM (Lipshultz et al., 2013; Alexander et 
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al., 2018; Colan et al., 2007). Regarding age, 11 DCM patients observed with adverse events 

were younger than one year (seven were older). LVNC cases affected by MACEs seemed also 

age specific and were diagnosed with an age younger than one year, although the occurrence 

with three cases was rare. RCM patients were older than one year and up to 15.9 years old at 

diagnosis. Therefore, in this subgroup the development of adverse events seemed age 

independent, although these cases presented the worst prognosis together with DCM patients. 

4.2 Interpretation of genetic variants detected in 80 pediatric 

cardiomyopathy patients and efficacy of genetic screening 

According to the guidelines of the American College of Medical Genetics and Genomics 

variants were categorized as VUS, LP or P in this thesis (VOI, Richards et al., 2015). LP and 

P variants are considered to be disease-causing according to current ACMG guidelines for 

CMP. Therefore, in 30 of 80 patients at least one P or LP variant was detected concluding in 

38% of cases the underlying genetic alteration has been discovered. 

4.2.1 Cardiomyopathy specific observations 

The highest rate of VOI was observed in HCM patients with 57%. Most frequently VOI were 

detected in MYH7 and MYBPC3. In all HCM patients 37% of VOI were observed in these two 

genes (10 out of 37). In P and LP variants this term went up to 69% (9 out of 13). Former 

studies showed similar results with slightly higher frequencies over 75% (Morita et al., 2008). 

Categorized by functionality VOI detected in HCM patients were mainly observed in sarcomere 

and Z-disc genes (57% and 26%). Thus, HCM cases presented the most distinct genotype and 

as described in the literature HCM is a disease of the sarcomere (Thierfelder et al., 1994). 

Interestingly, the proportion of VOI in MYH7 and MYBPC3 decreases with earlier onset (three 

MYH7 and one MYBPC3 VOI in 14 patients < 10 years of age, one MYH7 VOI in seven patients 

< one year of age). Therefore, VOI in MYH7 and MYBPC3 seem to manifest in adult CMP 

patients with a later onset of the disease. 

DCM cases represented the biggest group in this work. VOI in these cases were detected in a 

heterogenous spectrum of genes. MYH7 remains the gene with most frequently observed VOI 

in this sub cohort with detection in four patients, but not as clearly as within HCM cases. Altered 

genes not considerably less frequent were BCL2 associated athanogene 3 (BAG3), DSP, 

NEXN, PKP2 and TNNT2 (detected in three patients). In P and LP variants only one variant 

was detected in MYH7 and MYBPC3 each. Interestingly, P and LP variants comprised only 

sarcomere genes. Including VUS, VOI were most commonly detected in sarcomere, 

desmosome and Z-disc genes. DCM is known to be heterogenous with different spectra of 
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disease genes for adult, pediatric and infant cases (Pugh et al., 2014). In adults truncating TTN 

and LMNA variants are predominating. In infants the occurrence of variants in these genes is 

described to be drastically decreased. Here, this statement is confirmed for infants. In contrast 

to the published data this observation is not limited to infants with an age younger than two 

years and in this work observed in all pediatric age groups. In infants it is also described that 

alterations in MYH7 are predominantly, which cannot be entirely confirmed in this work. 

Compared to HCM patients the frequency of MYH7 decreases partly with age and mainly with 

severity (occurrence of MACE’s or death as term for severity, 11 from 18 HTX or deceased 

patients ≤ 1 year old). 

RCM patients were primarily affected by VOI in sarcomere and transcription/splicing genes. 

Pathogenic and likely pathogenic variants were only detected twice in TNNI3 and once in TTN. 

In a former study variants in sarcomere genes were associated with the development of RCM 

in children, which coincides with the findings in this thesis (Kaski et al., 2008). In adults, genetic 

analysis is restricted to consanguineous families and case reports (Peled et al., 2014). The 

interpretation of these results is limited due to the small numbers of diagnosed RCM cases 

(Kaski et al., 2008). 

Patients affected by LVNC showed heterogenous genotypes. MYH7 again was the most 

frequent gene with detected VOI followed by ACTN2 and TAZ. Similar genotypes were 

detected in other studies, again with the absence of TTN variants in pediatric cases (van 

Waning et al., 2018; Wang et al., 2017). Complex MYBPC3 genotypes specific for pediatric 

cases were not examined in this work. Sarcomere, desmosome and Z-disc genes were most 

prominent in the spectrum of LVNC VOI. Here, the proportion of MYH7 and MYBPC3 VOI did 

not change considerably regarding age and severity of the disease. The P and LP variants 

contained mainly sarcomere genes. 

In conclusion, genes categorized into the functional groups of sarcomere, desmosome and Z-

disc genes were most frequently detected with VOI. Sarcomere and Z-disc genes are 

influencing the generation of the force and rhythm used for normal cardiac function and were 

expected to lead to adverse remodeling of the heart. Interestingly desmosome genes are not 

commonly associated with CMPs except of ARVC (58% of ARVC patients carried variants in 

desmosomal genes and 93.5% of all ARVC related variants were detected in desmosome 

genes , Lazzarini et al., 2015). In this work only two patients were diagnosed with ARVC. In 

these two patients three VOI in desmosome genes were detected accordingly (DSC2:p.I345T, 

desmoglein 2 (DSG2):p.340V*, PKP2:p.R573Efs*4). Desmosomes mediate strong cell-cell 

contacts and localize in tissues with intense mechanical stress like the heart. Thus, mutations 

in genes of the desmosomes may influence mechanical cardiac properties. 
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4.2.2 Specific cardiomyopathy genes 

In general, MYH7 and MYBPC3 showed most frequently VOI in the pediatric CMP-80 cohort. 

VOI were frequently observed on HCM, DCM and LVNC patients. This observation changed 

with earlier onset and increasing severity. In conclusion, variants in MYH7 and MYBPC3 are 

mostly not as adverse as variants in other CMP relevant genes and therefore manifest in adults 

with a later disease development. In more detail, disease onset in 13 patients with MYH7 VOI 

ranges from infancy to adolescence. Five out of eight VOI were previously reported and 

detected in both adults and children (Table S 6). This again suggests an age independency of 

MYH7 variants causing the development of CMP. Seven MYH7 missense variants were 

interpreted as P or LP. All seven P or LP missense variants localize within the HCM cluster 

region ranging from amino acid position 167 to 931 supporting their pathogenic character (Kelly 

et al., 2018). Moreover, a reliable MYH7 disease and risk identification is necessary due to the 

high detection rate of already known missense variants (only four novel MYH7 variants out of 

13, Richards et al., 2015; Kelly et al., 2018). Nevertheless, the assessment and rate of 

pathogenic MYH7 variants is highly specific to the availability of comprehensive genetic and 

functional data. Similar events are applicable for MYBPC3. Three out of six VOI were detected 

in pediatric and adult cohorts and six out of eight variants determined as P or LP (Table S 7). 

Like for MYH7 disease specific effects of MYBPC3 are well known and often described for 

CMP patients especially cases with HCM (Toepfer et al., 2019). 

 As discussed before in section 4.2.1 observation of TTN VOI was of note. In this study, 

TTN missense variants were excluded, due to their currently uncertain interpretation. 

Nevertheless, four heterozygous VOI in TTN were detected. These genetic alterations included 

a frameshift variant, inducing a premature stop of translation and three changes near splice 

sites potentially affecting splicing. One DCM and two RCM cases, observed with VOI in TTN, 

underwent HTX. This may result from a link of TTN truncation with pediatric RCM, eventually 

influenced by a combination of a more complex genetic alteration, and a critical importance of 

both TTN alleles for postnatal development (Peled et al., 2014). In conclusion, VOI in TTN 

were rarely detected in all CMP groups with exceptions in RCM cases. In line with these 

results, former publications showed a much lower frequency of truncating TTN variants in 

pediatric cases with DCM in comparison to adults (Pugh et al., 2014; Fatkin et al., 2016). 

4.2.3 Analysis of segregation in family members 

In 77% of families, the inheritance of genetic alterations and clinical status in first degree 

members was tested. With this approach seven de novo variants (10%) were detected. In 

another study a higher ratio of de novo variants was previously described (Vasilescu et al., 

2018). In the mentioned study 46% de novo variants in a cohort of infant childhood-onset CMP 
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were reported (median diagnosis age of 0.33 years) and 33% of cases were affected by a 

systemic disorder. Due to numerous de novo variants associated with cardiac disease 

observed as standing variation in ExAC, the association of this type of variant with disease 

onset is questioned. Thus, these alterations are less involved in monogenic disease models or 

present less risk as contributors for cardiac disease (Paludan-Muller et al., 2017). 

4.2.4 Interpretation on genetic variants according to the guidelines of the 

American College of Medical Genetics and Genomics 

In this work the guidelines of the American College of Medical Genetics and Genomics were 

used to interpret the pathogenicity of detected variants (Figure 6, Richards et al., 2015). 

Different aspects influential on the outcome of pathogenicity, like population data, 

computational and predictive data, functional data, segregation data and de novo data, were 

used to evaluate variants. The categories allele data, other databases or other data were not 

included into the evaluation, because these aspects could not be properly applied for this 

cohort. The principle of this method was to activate fields or arguments in the afore mentioned 

sections with graded impacts of the pathogenic character (supporting, moderate, strong and 

very strong). The sum of all arguments then determined the overall pathogenicity of the variant, 

in this work categorized as uncertain (VUS), likely pathogenic (LP) or pathogenic (P). This 

method was developed in 2015 and underwent refinement to the current implication described 

in this chapter. Thus, only the highest argument activated for one section is now counted for 

the interpretation of pathogenicity (Abou Tayoun et al., 2018). 

For population data two points were important. The absence of variants in population 

databases, including rare variants with a minor allele frequency of 0.01% and less, and the 

statistically enriched occurrence of these variants in disease population databases. For the 

first point the MAF was chosen to be lower than 0.1% to exclude variants acting as a modifying 

factor for further analysis. Recent studies showed modifying aspects of variants distinguishing 

a mild phenotype from a severe one (Gifford et al., 2019). Therefore, the threshold for exclusion 

should not be too low. The threshold to activate this field for a moderate pathogenic argument 

was chosen to be 0.01% to consider the prevalence of CMP in the population (Lek et al., 2016: 

rare variant defined with MAF < 0.1%; Kelly et al., 2018: MAF < 0.004% recommend for MYH7 

variants). For the second point disease databases like the Atlas of Cardiac Genetic Variation 

are necessary to calculate statistical values for the enrichment of variants in CMP patients 

(Odds Ratio > 5 is usually used). Data from cohort studies with CMP phenotypes can be used 

additionally to increase statistical relevance. Limitations here are the lack of disease databases 

and missing updates on the existing ones. A Database collecting the sequencing results of 

published cohorts for any specific disease would be of help. With the variant database ClinVar 
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first approaches were implemented but further refinement is needed (variants listed without 

case numbers or frequency of the detected variant, Landrum & Kattman, 2018). 

The second category, computational and predictive data, is mainly determined by predictive 

online tools and databases. For the supporting argument PP3 the predicted effect of a variant 

was considered for the pathogenicity. Therefore, the procedure was optimized in the way, that 

at least two out of three tools had to predict an altering effect. Thus, different outcome of 

predictive tools were taken into consideration. The moderate arguments PM4 and PM5 as well 

as the strong argument PS1 were conditional on their availability on disease databases. To 

determine the validity for these arguments the occurrence of variants was checked on ClinVar. 

The very strong argument PVS1 depended on available data on loss of function effects of 

genes, when absent or degraded. The knowledge from knockout mice makes it difficult to apply 

if the heterozygous state was not analyzed and limits the possibilities to interpret PVS1. The 

population database gnomAD implemented values on their site to estimate the effect of 

truncating variants in a gene for such circumstances. Thus, the value Probability of being loss-

of-function intolerant (pLI) and the ratio observed single nucleotide variation to expected single 

nucleotide variation (o/e) were introduced. Important here is the occurrence and frequency of 

truncating variants in the population database. Therefore, the observed truncating variants are 

compared to the amount of calculated expected variants resulting in an o/e value or ratio. This 

value is further used to calculate the pLI, which represents the probability of belonging to genes 

affected by haploinsufficiency (Lek et al., 2016). Thresholds for both terms should be chosen 

stringent and it is important to consider protein length for the confidential interval (CI) of o/e . 

GnomAD suggests a threshold for the upper CI<0.35 of the 90% confidential interval and an 

pLI≥0.9. Thus, it is expected, that truncating variants in genes affected by haploinsufficiency 

are less frequent than calculated and the o/e ratio is reduced. As described before published 

data for null variants and haploinsufficiency as well as frequently occurring P and LP truncating 

variants on ClinVar were considered for the activation of the argument PVS1. 

For the section functional data mainly described effects of variants or domains of the affected 

proteins were used to activate the corresponding fields. One exception is the supporting field 

PP2. Similar to PVS1 the calculated value Z-score and o/e of the population database gnomAD 

were used to estimate the effect of missense variants. The suggested threshold for the Z-score 

was ≥3.09 and for the upper 90% CI again <0.35 (Samocha et al., 2014; Lek et al., 2016). For 

functional relevance frequency of pathogenic and benign variants were additionally checked 

on ClinVar when needed. The fields PM1 and PS3 are mainly reliable on literature or 

databases with gathered information taken from published facts regarding the function and 

impact of variants or functional domains. Especially these categories are vaguely defined and 

can be interpreted differently. It can be argued that only distinct results restricted by examined 

in humans and in vivo can lead to the activation of the PS3 argument and therefore any other 
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experiment would be excluded as false negative. On the other site well characterized functional 

domains can be very long with regions in which variants can be tolerated may resulting in 

variants determined as false positive. Thus, the interpretation of functional data has to become 

more distinct and uniformly assessed. 

In contrast, the sections segregation and de novo data are well defined. For segregation data 

the occurrence of variants in affected family members is determined in meioses. A threshold 

of at least three meioses is considered as describing the supporting character of this argument 

and therefore activated (Kelly et al., 2018). With increasing evidence and higher numbers of 

affected family members carrying the same variant, this argument is gaining more value and 

can be upgraded (≥5 meioses for moderate, ≥8 meioses for strong). Fields regarding the de 

novo character of a variant are similarly dependent on the detection of variants in family 

members. The moderate character of a variant detected only in an affected index patient and 

absent in unaffected parents can be upgraded to strong when paternity is determined. 

In conclusion, Richards et al. introduced a tool to better estimate the pathogenic character of 

genetic alterations. The approach was complex and well thought, but not clear enough in some 

arguments. The availability of new predictive tools and ongoing functional assessment of 

genetic variation is necessary for refinement of this method, but especially functional effects 

of variants are rarely proven and need further investigation before linking more genes to 

specific phenotypes. 

4.2.5 Implications for genetic diagnosis in pediatric cardiomyopathy cohorts 

Whether whole genome sequencing (WGS) or whole exome sequencing (WES) in CMP will 

be used as a diagnostical tool to provide extensive insight into the underlying genotype is 

currently highly debated (Cirino et al., 2017). One major concern in this field is the paucity of 

genetic and functional evidence for variants detected by WGS (Minoche et al., 2019). In 

another study, WES yielded in a diagnosis rate of more than 50% in DCM patients with an 

onset <18 years (Herkert et al., 2018). Other recent publications stated rates of 26% to 39% 

for the identification of pathogenic variants in pediatric CMP (Ouellette et al., 2018; Vasilescu 

et al., 2018). The results of this work suggest genotype determination in pediatric CMP patients 

as soon as possible to induce appropriate therapeutic treatment. Here, a major focus should 

be on sarcomere genes as most frequently group for detected VOI. Therefore, genetic testing 

by NGS improves risk stratification for pediatric CMP patients and can be of much use in 

familial cases to diagnose potential CMP cases exposed to a genetic burden (Wilcox & 

Hershberger, 2018). With this approach the majority of genetic causes for CMP probably will 

be detected, but severe cases with unclear genotypes need further analysis. With increasing 

complexity detected in genetically inherited diseases the necessity to apply methods like WES 
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and WGS becomes demanding (Gifford et al., 2019). Additionally functional analysis of genetic 

alterations have to be implemented more to better understand disease mechanisms and 

improve the interpretation of VOI. 

4.3 Increased numbers of genetic variants in a cardiomyopathy patient 

may present a higher risk factor 

As mentioned before, in 38% of all cases the probability is high, that the genetic basis for the 

development of a CMP was detected with at least one P or LP variant. Concluding this result, 

62% are still unresolved. One explanation could be the occurrence of CMP initiated by 

environmental factors. A virus infection of the myocardium could lead to more severe 

symptoms resulting in a DCM. The involvement of a variant in a gene unknown to have an 

effect on the development of the heart would be another explanation. A third possibility is the 

existence of complex phenotypes. In theory in this scenario not only one variant is the genetic 

basis of the CMP. Thus the monogenic approach is shifting to an oligogenic one. The 

contribution to the cardiac remodeling in these cases is open for discussion and 

experimentation, but Gifford et al. showed in 2019 that at least three variants in cardiac genes 

contributed to the development of a severe LVNC. Patient specific heterozygous missense 

variants in the genes MYH7, myocardin-related transcription factor B (MKL2) and NK2 

homeobox 5 (NKX2-5) led to an early onset of the CMP. Severe events were reported for three 

children, all carrying variants in the afore mentioned genes. The father was asymptotic but 

showed subtle signs of LVNC. He carried the two variants in MYH7 and MKL2, whereas the 

mother, without any signs of CMP, carried a variant in NKX2-5. During whole-exome 

sequencing only variants detected in all three children were included. Further filtering for 

cardiac expression left only three variants, two overlapping with the father in MYH7, MKL2 and 

one overlapping with mother in NKX2-5. The authors augmented with evidence in genetically 

modified mice and human induced pluripotent stem cell–derived cardiomyocytes, that NKX2-

5 operated as a genetic modifier in this case and is therefore lowering the threshold to develop 

the disease and its severity. Of note, the MAF of the variant in NKX2-5 was only 0.0012 and 

would have been sorted out in our cohort. Hence the definition of rare variants should be further 

discussed. 

In the cohort described in this study the number of VOI, including variants determined as VUS, 

P and LP, was correlated with MACE’s in section 3.1.4. Aside from the results that DCM and 

RCM had the most severe disease progression and patients with genetic CMP had worse 

prognosis than sporadic cases, the number of VOI affected the disease progression 

significantly and the proportion of event free cases was smaller for patients carrying more than 
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one VOI. This strengthens the hypothesis of oligogenic disease onset and a modifying 

character of some detected genetic alterations. 

4.4 TNNI switch in cases with homozygous TNNI3 variants 

In this study TNNI3 variants were of note, because they were detected quite frequently (six 

VOI, third most frequent gene) and heart tissue of two patients with either DCM (1-II:1, 

p.Arg69Alafs*) or LVNC (2-II:3, c.24+2T>A) carrying homozygous truncating TNNI3 variants 

were available (Table S 8). Heterozygous TNNI3 variants described as disease causing are 

already published in numerous cases with DCM, HCM, and RCM. Nevertheless, homozygous 

alteration of TNNI3 is a rarely described (Burke, Cook, Seidman, & Seidman, 2016). So far, 

three homozygous TNNI3 cases in DCM patients have been reported. These three cases 

comprised the missense variant p.Ala2Val (DCM), the synonymous and exonic splice site 

variant c.G150A (p.Lys50Lys) and a genomic deletion containing the exon 8 of TNNI3 and the 

entire TNNT2 gene (Belkaya et al., 2017; Murphy et al., 2004; Streff et al., 2019). The absence 

of the TNNI3 protein in cardiac tissue was shown in this work for patients carrying homozygous 

and truncating TNNI3 variants. Furthermore, TNNI1 was upregulated probably to compensate 

the lack of TNNI3. The TNNI1 protein presents the fetal isoform of troponin I and therefore 

these results suggest an impairment of TNNI isoform switch form fetal to postnatal cardiac 

development. Thus, the absence of TNNI3 actually resulted in restrained signaling to 

downregulate TNNI1, normally observed in the troponin I switch during postnatal cardiac 

development and human induced pluripotent stem cell–derived cardiomyocytes maturation 

(Bedada et al., 2014; Sasse et al., 1993). Actually, this switch is already described in mice and 

was now proven in human tissue (Huang et al., 1999). It is believed that TNNI1 partly 

compensates the absence of TNNI3 but is also depleted after a certain amount of time. Thus, 

the postnatal heart is functional but is increasingly constrained in its properties over time. Both 

patients carrying homozygous truncating TNNI3 variants were diagnosed with young age (1.1 

and 0.8 years old) and suffered from adverse cardiac events (HTX at 1.8 years of age and 

death after 1.3 years), supporting the afore mentioned model. On molecular level TNNI 

switching regulates Ca2+ sensitivity, the ability to respond to adrenergic stimulation of the 

contractile system and resistance to hypoxia and acidosis (Schiaffino, Gorza, & Ausoni, 1993). 

To conclude, a restrained TNNI1 to TNNI3 switch in CMP patients carrying a truncating and 

homozygous TNNI3 mutation may prevent adequate adaptation to postnatal heart physiology. 

Although the cardiac specific n-terminus mediates interaction with the regulatory n-terminus of 

the cardiac TNNC1 (Hwang, Cai, Pineda-Sanabria, Corson, & Sykes, 2014), its specific role 

remains unclear but proves to be essential for the mechanical strains of the heart. 
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In the remaining cases of CMP carrying a heterozygous variant a depletion of TNNI3 and an 

increase of TNNI1 compared to controls was not observed. Thus, different disease 

mechanisms probably determine the progression of the disease in these patients. The onset 

and development of the CMP in these individuals coincides with this statement (onset ≥ 1.8 

years, occurrence of adverse events ≥ 3.4 years, Table S 8). The clustering of VOI near the c-

terminus suggest impaired interaction with other sarcomere genes like TPM1 or cardiac actin 

(ACTC1). At least for patient 3-II:1 mRNA and protein levels were determined but presented 

no clear result. The available heart tissue was limited and therefore protein levels of all 

sarcomere protein remained to be tested. Especially levels of TPM1 and ACTC1 could have 

revealed new functional insights because of reported interaction sites of TNNI3 with these 

proteins (van den Wijngaard et al., 2011; Akhter, Bueltmann, Huang, & Jin, 2014; Zhang, 

Akhter, Mottl, & Jin, 2011). 

4.5 PRDM16 in patients with cardiomyopathy 

 As mentioned before, the rate of pediatric CMP cases with known genotypes does not exceed 

far above 50% for all described disease genes so far. To exceed these limitations, the search 

for such genes is ongoing and the function of many newly described genes is unknown or 

rarely described. Such gene is PRDM16. First described in 2013 in association with CMP the 

cardiac function of this gene remains unknown due to the absence of further publications (Arndt 

et al., 2013). In an approach to determine the minimal overlapping genomic sequence of 1p36 

deletion syndrome patients with CMP involvement, a sequence including PRDM16 exons four 

to 17 was determined. Truncating and missense variants were then observed in patients 

diagnosed with primary non-syndromic DCM and LVNC. In further genetically modified zebra 

fish experiments the effect of a truncating variant on adverse heart development was 

confirmed. In this work PRDM16 was detected as the fourth most frequent gene with 17 VOI 

after MYH7, TTN and MYBPC3 in an extended cardiac phenotype cohort of 285 patients. 

These VOI were not age specific but tended to be detected more often in males. Interestingly 

variants in PRDM16 were detected in all six different phenotypes included in this cohort. Most 

of these patients were affected by LVNC with 8 patients possibly due to the high number of 

LVNC cases recruited in this cohort (6.7% detection rate). For HCM and DCM cases VOI were 

detected in two individuals each. Thus, the rate of PRDM16 variants were lower with 4.2% and 

3.7%. Although two patients carried PRDM16 variants for RCM and ARVC cases the 

population has to be increased to determine statistically relevant terms (RCM: n = 8, ARVC: n 

= 4). The sub cohort of myocarditis only expressed a rate of 1.9%. Nevertheless, these 

observations suggest, that PRDM16 may influence general cardiac disease mechanisms in 

early developmental stages as suggested by former studies and especially in LVNC cases 
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(Kodo et al., 2016; Bjork, Turbe-Doan, Prysak, Herron, & Beier, 2010). Another study predicts 

an increased variant burden for truncating but nor for non-truncating variants due to the number 

of observed rare variants in the population database gnomAD (MAF < 0.0001, Mazzarotto et 

al., 2020). Seven truncating and 1900 non-truncating variants in 120147 alleles in gnomAD 

controls were compared to six truncating and non-truncating variants each detected in 444 

affected LVNC patients using the Fisher’s Exact test. A significant enrichment was determined 

for truncating variants. Similar values can be calculated within the extended cohort of this work. 

Three pathogenic and truncating variants, detected in LVNC patients, are significantly 

enriched, when processed the same way as described in the publication mentioned before (p 

< 0.00001). Therefore, PRDM16 can be described as specific for LVNC cases. The difference 

between truncating and non-truncating variants coincides with the o/e values, Z-scores and 

the pLI for PRDM16 in gnomAD described in section 4.2.4 (Z-score (missense) = 1.35, o/e 

(missense) = 0.87, pLI (truncating) = 1, o/e (truncating) = 0.08). Nevertheless, the impact of 

missense variants in this gene remains unknown and requires more functional insight. So far, 

no homozygous PRDM16 variant was reported. The detection and analysis of such a variant 

could increase insight into the disease mechanism of this gene. At least in mice homozygous 

truncating variants were shown to be lethal in early fetal stages (Bjork, Turbe-Doan, Prysak, 

Herron, & Beier, 2010). 

4.6 Functional data of PRDM16 variants 

The function of PRDM16 was mainly assessed in brown and beige fat tissue and its myoblastic 

precursors (Ohno, Shinoda, Spiegelman, & Kajimura, 2012). Other tissue specific publications 

linked the function of PRDM16 with the processes of hematopoiesis and neurogenesis (Aguilo 

et al., 2011; Baizabal et al., 2018; Chuikov, Levi, Smith, & Morrison, 2010). Until this point 

functional knowledge for PRDM16 in cardiac context is rare and only available from knockout 

experiments in mice, zebra fishes and human induced pluripotent stem cells. Mechanistic 

insights of truncating and non-truncating variants of PRDM16 are unknown. Here, an approach 

was started to investigate the effects of such variants. 

4.6.1  Mutation of PRDM16 affects subcellular localization 

To investigate the subcellular location of PRDM16, HEK293 cells were transfected with 

PRDM16 constructs and immunostained with PRDM16 specific antibodies. In former studies 

PRDM16 was detected in the nucleus supporting a role of PRDM16 as transcriptional regulator 

(Baizabal et al., 2018; Dempersmier et al., 2015). In this work, it is shown, that PRDM16 is not 

entirely localized in the nucleus and therefore confirms similar observations in other 
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publications (Pinheiro et al., 2012). Overexpression of PRDM16 in HEK293 cells showed 

fluorescence signals in the nucleus and the cytoplasm. Thereby, cells were observed with the 

signal entirely in the nucleus, whereas other cells mainly showed PRDM16 expression in the 

cytoplasm. This suggests a cytosolic function of PRDM16 for instance in initial histone 

modification (Pinheiro et al., 2012). Additionally, protein tagged expression of PRDM16 

seemed to shift the signal into the nucleus (EGFP- and FLAG-tag). Therefore, different 

observations were determined with tagged and untagged PRDM16. Results gathered with 

tagged PRDM16 constructs may have to be reevaluated or viewed with caution (e.g. Chen, 

Huang, Pan, Zhu, & Wang, 2018; Takahata et al., 2009). Most work published on PRDM16 so 

far describes knockout approaches or experimentation with overexpressed and tagged 

PRDM16. Endogenous PRDM16 is partly cell type specific and lowly concentrated in cells and 

detection is thus challenging. In this work, to reduce artificial influences the untagged protein 

was used to analyze the expression of PRDM16 in cells. In further experiments, it was shown 

that overexpressed PRDM16 accumulated at the nuclear membrane. In three dimensional 

images the signal of PRDM16 is mainly distributed around the nucleus and not directly located 

within the nucleus. Due to the absence of a nuclear localization sequence, PRDM16 has to 

interact with proteins located to the nucleus. So far interaction with such nuclear localized 

protein was not proven but seems highly regulated with the strong accumulation of PRDM16 

at the nuclear membrane (Figure 25). Otherwise functions outside the nucleus were already 

described (Pinheiro et al., 2012). 

Overexpression of CMP PRDM16 variants revealed different subcellular localization pattern. 

The PRDM16 frameshift variant p.R525Pfs*79 accumulated in the nuclei. Therefore, the 

truncating PRDM16 variant was not eliminated by regulatory mechanisms such as nonsense-

meditated decay (as described before for TNNI3 in this work or MYBPC3, Carrier, Schlossarek, 

Willis, & Eschenhagen, 2010; Seeger et al., 2019). The afore mentioned accumulation may 

induce dysregulated nuclear function and transcription e.g. impaired chromatin or nuclear 

envelope modeling (Pinheiro et al., 2012). The PRDM16 missense variants p.E271K and 

p.P291L were more abundant in the cytoplasm while the variants p.N816S and p.L887P 

accumulated in the nucleus. 

The introduction of truncating and missense variants seems to change properties of the protein 

in such way, that PRDM16 is differently transported through the cell. Therefore, mechanisms 

including methyltransferase activity and methylation of histone 3 outside of the nucleus 

(Pinheiro et al., 2012) or activation of gene expression in the nucleus through transcription 

factors/regulators like mitochondrial brown fat uncoupling protein 1 (UCP1) and PPAR-gamma 

coactivator 1-alpha (PGC1α, Ohno, Shinoda, Spiegelman, & Kajimura, 2012; Dempersmier et 

al., 2015) can be impaired with changed concentrations of PRDM16. In conclusion, these 

results suggest a dose-dependent disease mechanism in an epigenetic setup. 
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4.6.2 N-terminal protein tags and patient-specific cardiomyopathy variants 

influence subcellular localization of PRDMD16 

Using Western blot the expression of the untagged protein was again compared with 

expression of PRDM16 conjugated with n-terminal protein tags (EGFP/FLAG). Of note here 

were the detection of a PRDM16-specific band higher than expected and the occurrence of a 

double band mainly observed in the untagged protein. Due to uniformly loading PRDM16 with 

the detergent SDS during sample preparation, intrinsic features such as charge were 

eliminated (Reynolds & Tanford, 1970; Smith, 1984). Therefore, the observed higher molecular 

weight and the occurrence of double bands were probably associated with post-translational 

modifications. In a former study, SUMOylation of PRDM16 was described to stabilize the 

protein (Chen, Huang, Pan, Zhu, & Wang, 2018). Here, three SUMOylation sites were 

predicted (Figure 20) and one was already published at position p.K915. With 11 kDa the 

difference between expected and appearing bands can be caused by triple SUMOylation (~30 

to 35 kDa), whereas one SUMOylation site would be positioned before the amino acid 525, 

because the frameshift variant was observed with ~10 kDa difference. For the untagged protein 

an additional band was observed with 10 to 20 kDa difference below the corresponding 

PRDM16 bands determined with the tagged protein. The same difference was determined 

before (Chen, Huang, Pan, Zhu, & Wang, 2018). It was suggested that this difference 

represents the shift between a stable and unstable form of PRDM16 due to SUMOylation. An 

antibody for SUMO 2/3 was applied to HEK293 samples with overexpressed PRDM16 but no 

specific band was observed due to complex SUMOylation patterns in the cell (appearance of 

many bands). Co-immunoprecipitation would be an alternative approach to further investigate 

the covalent binding of SUMO. With side-directed mutagenesis predicted SUMOylated amino 

acid residues can be exchanged or deactivated and the distinct SUMOylation sites would be 

exposed. Furthermore, treatment of PRDM16 transfected cells with SUMOylation inhibitors 

can additionally confirm the published data (Chen, Huang, Pan, Zhu, & Wang, 2018). The 

inhibition would result in reduced molecular weight of PRDM16. In vitro experiments in which 

PRDM16 is SUMOylated or deSUMOylated can also end in promising results. Other post-

translational modifications are also possible as predicted in Figure 20, but the change in 

molecular weight is too drastic to be caused by these alterations. With Western blot similar 

results were obtained for the frameshift variant (PRDM16_v3fs). This variant was not degraded 

and therefore not affected by regulatory mRNA or protein degradation (discussed in 4.6.1). 

To investigate differences in expression in the nucleus and cytoplasm the 

corresponding fractions were separated with specific lysis buffers and centrifugation steps for 

each fraction. Because this procedure allows concentration of the lysates, an endogenous 

PRDM16 detection was applied and only very weak or no bands were detected. Thus, 
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endogenous PRDM16 seems to be expressed in very low concentrations, although HEK293 

cells are believed to have one of the highest PRDM16 expression levels in cultured cell types 

(Thul et al., 2017, https://www.proteinatlas.org/). In overexpressed form there are at least small 

visible effects, when expressed with missense variants of PRDM16. The expression pattern 

between nucleus and cytoplasm exhibits different amounts of PRDM16 for each fraction and 

also for the upper and lower band of PRDM16, suggesting the variants influence the switch 

between localization in the nucleus or cytoplasm and the stable or unstable form of PRDM16. 

Thus, hyperstabilization of PRDM16 mutants in the nucleus is a possible disease mechanism. 

The experiment was performed at least four times and although the separation worked fine 

(lamin C and β-tubulin bands) the results were too heterogenous to generate a clear result. In 

three of the four experiments the wt was expressed weakly, suggesting more limited and 

unstable expression or more sensitive dose-dependency. 

In conclusion, the introduction of patient-specific variants of PRDM16 in HEK293 cells result 

in changed localization and stabilization properties, but this cell culture approach seems limited 

for the purpose of stable PRDM16 expression for further functional insight. There is evidence, 

that the stability of PRDM16 is controlled by its state of SUMOylation, but further 

experimentation is necessary. 

4.6.3 Patient-specific cardiomyopathy variants influence protein stability of 

PRDM16 

With another approach the protein turnover of PRDM16 was analyzed. The expression of 

PRDM16 transfected cells was inhibited with cycloheximide for different time intervals from 0 

to 24 h. The harvested cells were then analyzed with Western blot and the half-life T1/2 of the 

corresponding protein was determined. The T1/2 for the PRDM16 wt was 7.8 h and is consistent 

with published data (Chen, Huang, Pan, Zhu, & Wang, 2018). Surprisingly, the stability of the 

frameshift variant PRMD16_v3fs was drastically increased with 49.5 h. With such elongation 

the exponential fit is not very accurate, because the curve seems almost linear. To increase 

accuracy the incubation with CHX has to be elongated. These observations suggest 

aggregation of the truncated PRDM16 protein or hyperstabilization after nuclear translocation 

(aggregation in myopathy, Meister-Broekema et al., 2018). These findings are consistent with 

published data, that PRDM16 is regulated by stabilizing processes (Ohno, Shinoda, 

Spiegelman, & Kajimura, 2012; Chen, Huang, Pan, Zhu, & Wang, 2018). As for the other 

constructs an elongation to 10.5 and 12.2 h was observed for variants PRDM16_v4 and 

PRDM16_v5, whereas the half-life of variants PRDM16_v1 and PRDM16_v2 was shortened 

to 4.8 and 2.7 h. When compared with the results presented in Figure 26, similarities can be 

observed. For PRDM16_v1 an PRDM16_v2 the PRDM16 signal is shifted to the cytoplasm 
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and decreased in stability, whereas for PRDM16_v4 and PRDM16_v5 increased detection was 

observed in the nucleus and PRDM16 carrying these variants seemed more stable. Therefore, 

the stability of PRDM16 probably is associated with localization in the cell. But whether due to 

higher stability more PRDM16 can be transported into the nucleus or due to localization in the 

nucleus the protein is protected from degradation remains unclear. However, the link between 

stability and localization raises the need to understand the implementation of SUMO to stabilize 

the protein. To gain validity, here again, a set of four attempts have been applied, but 

heterogenous results especially for wt did not confirm the determined results. As seen in Figure 

30 the signal detected for PRDM16 seems weak for wt compared to the other variants and 

although the same amounts of protein were applied. Further results for PRDM16_wt were even 

weaker and more difficult to detect, suggesting cytotoxic effects of high PRDM16 

concentrations in the cell. 

To conclude, different variants of PRDM16 resulted in decrease or increase of stability and 

thus an effect of these variants was observed. This suggests similar effects may can be 

observed in patients carrying PRDM16 variants and favor cardiac remodeling. Opposing 

results were observed for the variants PRDM16_v1 and PRDM16_v2 compared to 

PRDM16_v3fs to PRDM16_v5 similarly observed as in localization approaches (Figure 26). 

Therefore, stability can be associated with localization. Nonetheless, one limitation occurred 

repeatedly, affecting the expression of the wt in all experiments, seemingly weakened in almost 

all experiments suggesting some cytotoxic effect of PRDM16 in the cell. 

4.7 Limitations 

With 80 pediatric cases affected by primary CMP more patients than originally planned were 

recruited. Nevertheless, patients with RCM and ARVC were underrepresented in this cohort. 

Furthermore, extension of the families with deep phenotyping if available may increase insight 

into the genetic mechanism and segregation of VOI detected in CMP genes. This would also 

increase the detection of carriers with pathogenic CMP variants and therefore potential CMP 

patients in familial cases. With more segregation data, evidence for the pathogenicity of VOI 

would increase. Although 126 VOI were detected, only 38% of patients were observed with at 

least one P or LP variant. Thus, the genetic basis in 62% of pediatric CMP cases remains 

unclear. To increase this rate whole exome and genome sequencing could be applied to 

identify genetic alteration outside of the selection of disease genes investigated in this work. 

Although the number of variants in possible disease genes would increase, but the functional 

characterization to estimate its pathogenicity and the complexity of the genotype would 

increase too. There are also economic advantages for the panel-based procedure used in this 

work, although WES and WGS are becoming more available through further development of 
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the methods. Further insight or elucidation of CMP cases can be gained through investigation 

of complex phenotypes as discussed in 4.3. To better understand disease mechanisms can 

also increase the rate of clarified genotypes. 

Further limitations were presented during pathogenicity assessment using the ACMG 

guidelines (Figure 6, Richards et al., 2015). When released in 2015, many arguments of this 

guideline were phrased with a large range of interpretation. Meanwhile, several studies 

suggested restrictions on the guidelines generating more distinct results (Abou Tayoun et al., 

2018; Kelly et al., 2018; Brnich et al., 2019; Riggs et al., 2020). Prediction tools for this purpose 

are constantly improved and became more precise, but functional data remains essential for 

pathogenicity interpretation of genetic variants. Furthermore, the ACMG needs to address 

distinct regulations on how and when arguments in the category “Functional data” are activated 

and in which degree. Until disease mechanisms are not fully resolved these guidelines have 

to be adapted to the current knowledge. One example for these circumstances are presented 

through the high number of P and LP variants for MYH7 and MYBPC3, functionally better 

characterized than most other CMP genes, and low numbers of P and LP variants in genes 

not well characterized, such as LDB3 or DSP. Another example is the impact of more than one 

modifying variant forming a complex phenotype and initiating a severe phenotype (Gifford et 

al., 2019). 

The main issue for investigating the effects of homo- and heterozygous TNNI3 variants was 

missing heart biopsies. The available tissue was used to determine the amounts of some 

sarcomere and Z-disk genes. With more samples investigation of TNNI3 interaction partners 

could have been extended. Especially for the heterozygous missense variants accumulated at 

the c-terminus of TNNI3 no heart tissue was available and possible changes in interaction with 

described interaction partners like TPM1 and ACTC1 (van den Wijngaard et al., 2011; Akhter, 

Bueltmann, Huang, & Jin, 2014; Zhang, Akhter, Mottl, & Jin, 2011). Further functional analysis 

is required to better understand the adverse influence of these genetic variants. To mimic the 

structural setup of the heart engineered heart tissue (EHT) composed of human induced stem 

cell- derived cardiomyocytes could be used for such purpose. Biopsies of other cell types like 

fibroblasts or peripheral blood can be taken from patients carrying TNNI3 variants and 

differentiated to cardiomyocytes (Takahashi et al., 2007; Yamanaka, 2010; Mannhardt et al., 

2016). In EHT’s force production of the contractile sarcomere system can be measured. 

Additional immunostaining experiments of 2D cardiomyocyte culture may reveal disrupted 

interactions between the sarcomere proteins and give further insights into to the mechanisms 

of the disease onset caused by TNNI3 variants. 

The overexpression of PRDM16 in human cell lines works in principal and promising results 

can be achieved in such settings. Furthermore, PRDM16 expression seems highly regulated. 

Due to increased cell death with high PRDM16 concentrations and high lethality in mice when 
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knocked out PRDM16 is believed to be dose-dependent to function normally and cytotoxic 

when overdosed or reduced. This suggest, heterozygous knockout and knockin models to 

introduce CMP-specific VOI in animals and cells are better suited to investigate the effects of 

PRDM16 modification. Again, induced pluripotent stem cell-derived cardiomyocytes can be 

used to overcome restrictions to functionally examine PRDM16 variants in similar ways as 

described for TNNI3. Further implementing additional readouts such as increasing reactive 

oxygen species levels would strengthen evidence for the effect of PRDM16 variants (Chuikov, 

Levi, Smith, & Morrison, 2010). Additionally, PRDM16 production in E. coli did not yield 

significant amounts of protein. Therefore, in vitro approaches could not be implemented. For 

in vitro experiments other expression systems like yeast, human cell lines or cell-free 

expression within cell lysates rather than in living cells to decrease cytotoxic effects of PRDM16 

should be tested to gain high yields for PRDM16 (Gregorio, Levine, & Oza, 2019). 

4.8 Outlook 

This study describes the identification of genetic defects in known CMP disease genes and 

performed functional analysis of CMP associated VOI identified in PRDM16. Thus, this work 

covers research on genetic CMP disease mechanisms and biochemical characterization of 

PRDM16. Both areas are of vital interest to explore CMP pathogenesis, appropriately manage 

CMP patients, and to explore translational approaches for diagnosis as well as potential 

therapies. 

This work focused on a relatively large pediatric CMP cohort. Further strengthening of the main 

findings gained in this study can be achieved by expanding the number of DCM, HCM, and 

LVNC patients. Together with advanced clinical characterization this may identify CMP specific 

subgroups that are of either high or low risk to develop severe CMP courses. Such information 

would be critical for appropriated patient management. The relative high number of CMP 

patients without detected VOI can be due to multiple aspects for instance insufficient 

interpretation of VOI, unknown genetic disease mechanisms, genomic alterations affecting 

known disease genes, or oligomeric disease mechanisms. In this regard is the analysis of CMP 

patients without VOI for other genomic alterations a promising approach. WES or WGS will 

facilitate identification of genetic defects in novel CMP disease genes or chromosomal 

alterations affecting non-coding or genomic regions. Improved interpretation of VOI will be 

facilitated by appropriated gene/protein specific assays allowing efficient functional analysis of 

missense variants. This would help to identify critical alterations in vitro or in vivo. 

An interesting aspect of this work is the observation that oligomeric VOI induce more severe 

phenotypes. Oligomeric disease mechanisms or the identification of genetic modifier VOI are 

currently underexplored in CMP (Gifford et al., 2019). Here it would be of interest to investigate 
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genetic modifier and their impact on well-defined pathogenic or likely pathogenic CMP VOI. 

Such analysis must be performed in larger cohorts to ensure sufficient power to identify or 

validate candidate VOI. Complementary analysis in vivo or in vitro will be essential to model 

the tissue specific interplay of different VOI. 

Here, PRDM16 was identified as frequently mutated in pediatric and adult CMP. This 

unexpected finding should motivate further biochemical exploration of PRDM16 in the context 

of CMP. The molecular understanding of PRDM16 was mainly achieved from studies in 

adipocytes and adipose tissue. These studies identified PRDM16 as transcriptional integrator 

of critical transcription factors such as C/EBP, CTBP1/2, PGC1b, PPAR, or PPAR (Fog, 

Galli, & Lund, 2012). Moreover, PRDM16 exposes histone H3K4 and H3K9 methyltransferase 

activity regulating chromatin organization and transcriptional programs (Pinheiro et al., 2012; 

Zhou et al., 2016). The activity of transcriptional programs is highly specific in postmitotic 

cardiomyocytes. Thus, identification of chromatin regions controlled by PRDM16 and 

epigenetic marks in heart tissue is of critical value for further understanding of PRDM16 in the 

heart. Another aspect of transcriptional mechanisms inducing CMP is their activation during 

development or in adulthood (Kodo et al., 2016; de Soysa et al., 2019). 
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Supplement 

Table S 1: CMP-relevant Genes and classification into functional groups 

Functional 
classification Gene name Gen Protein 

Chromo- 
some Transcript ID Exon Function  

Sarcoplasmic 
reticulum 

calreticulin 3 CALR3 CALR3 Chr19 ENST00000269881  
NM_145046 

9 Ca2+ binding protein within SR 

 dolichol kinase DOLK DOLK Chr9 ENST00000372586 
NM_014908 

1 dolichol kinase within SR; involved in GPI-
anchor, N- and O-linked protein 
glycosylation  

 phospholamban PLN PLN Chr6 ENST00000357525 
NM_002667 

2 regulation of cardiac ATP2A2 Ca2+ ATPase, 
critical regulator Ca2+ homeostasis 

 ryanodine receptor 2 RYR2 RYR2 Chr1 ENST00000366574 
NM_001035.2 

105 Ca2+ channel releasing Ca2+ from SR into 
cytoplasm, regulation of cardiomyocyte 
contractility 

Sarcolemma ATP binding cassette 
subfamily C member 9 

ABCC9 ABCC9 Chr12 ENST00000261200 
NM_020297 
ENST00000261201 
NM_005691 

38 regulation of KCNJ11 potassium channel 

 caveolin 3 CAV3 CAV3 Chr3 ENST00000343849 
NM_033337 

2 scaffolding protein of caveolae, regulation of 
G-protein alpha subunits and potassium 
channels, sarcolemma repair 

 hyperpolarization 
activated cyclic 
nucleotide gated 
potassium channel 4 

HCN4 HCN4 Chr15 ENST00000261917 
NM_005477.2 

8 hyperpolarization-activated ion channel with 
slow activation and inactivation, exhibiting 
weak selectivity for potassium over sodium 
ions, cAMP regulated 

 hemochromatosis HFE HFE Chr6 ENST00000357618 
NM_000410.3 

5 transferrin receptor binding, regulation 
endocytosis of iron loaded transferrin 

 junctophilin-2 
 

JPH2 JPH2 Chr20 ENST00000372980 
NM_020433.4 

6 formation of junctional membrane complexes 
between plasma membrane and SR, 
regulator of Ca2+ signaling  

 sodium channel protein 
type 5 subunit alpha 

SCN5A SCN5A Chr3 ENST00000413689 
NM_001099404.1 

28 mediates voltage-dependent Na+ 
permeability of excitable membranes 

Z-disc actinin alpha 2 ACTN2 ACTN2 Chr1 ENST00000366578 
NM_001103.2 

21 F-actin crosslinking protein 
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 ankyrin repeat domain 
1 

ANKRD1 ANKRD1 Chr10 ENST00000371697 
NM_014391.2 
 

9 myofibrillar stretch-sensor Z-disc, 
transcription factor that negatively regulates 
cardiac gene expression 

 cysteine and glycine 
rich protein 3 

CSRP3 CSRP3 Chr11 ENST00000533783 
NM_003476 

7 scaffolding protein at Z-disc, actin binding, 
regulation of actin dynamics myogenic 
transcriptional cofactor 

 four and a half LIM 
domains 1 

FHL1 FHL1 ChrX ENST00000394155 
NM_001159702.2 

8 mechanosensor at Z-disc, transcriptional 
cofactor 

 four and a half LIM 
domains 2 

FHL2 FHL2 Chr2 ENST00000344213 
NM_201555.1 

7 mechanosensor at Z-disc, transcriptional 
cofactor 

 LIM domain binding 3 LDB3 LDB3, 
ZASP 

Chr10 ENST00000429277 
NM_001171610.1 

14 Interaction with actin, stabilization sarcomere 
during contraction 

 myozenin 2 MYOZ2 MYOZ2 Chr4 ENST00000307128 
NM_016599.4 

6 Z-disc organization by interaction with 
several proteins, myofibrillogenesis, 
calcineurin signaling 

 myopalladin MYPN MYPN Chr10 ENST00000358913 
NM_032578 

20 scaffold at Z-disc; binds nebulette, nebulin, 

-actinin 

 nexilin F-actin binding 
protein 

NEXN NEXN Chr1 ENST00000334785 
NM_144573.3 

13 F-actin binding, maintenance Z-disc and 
sarcomere integrity 

 PDZ and LIM domain 3 PDLIM3 PDLIM3 Chr4 ENST00000284770 
NM_014476 

7 crosslinking of F-actin with -actinin-2 

 titin-cap, telethonin TCAP TCAP Chr17 ENST00000309889 
NM_003673 

2 binds titin at Z-disc, part of mechanosensing 
system, interaction of Z-disc and T-tubules  

 vinculin VCL VCL Chr10 ENST00000211998 
NM_014000.2 

22 F-actin binding, mechanosensing, cell-matrix 
and cell-cell adhesion, linker of Z-disc 
proteins to catenin cadherin dystroglycan 

Sarcomere 
thick filament 

myosin binding protein 
C, cardiac 

MYBPC3 MYBPC3 Chr11 ENST00000545968 
NM_000256.3 

35 integrates myosin heavy chain and F-actin, 
modulation of muscle contraction and 
sarcomere organization 

 myosin heavy chain 6 MYH6 MYH6, 

MHC- 

Chr14 ENST00000405093 
NM_002471.3 

39 major component of cardiac muscle thick 
filament, muscle contraction, fast myosin 
isoform, ATPase activity 
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 myosin heavy chain 7 MYH7 MYH7, 

MHC- 

Chr14 ENST00000355349 
NM_000257.2 

40 major component of cardiac muscle thick 
filament, muscle contraction, slow myosin 
isoform, ATPase activity 

 myosin light chain 2 MYL2 MYL2 Chr12 ENST00000228841 
NM_000432.3 

7 stabilizes S1 neck region of myosin heavy 
chain  

 myosin light chain 3 MYL3 MYL3 Chr3 ENST00000292327 
NM_000258.2 

7 stabilizes S1 neck region of myosin heavy 
chain  

 myosin light chain 
kinase 2 

MYLK2 MYLK2 Chr20 ENST00000375985 
NM_033118.3 

13 essential for muscle contraction cycle, 
phosphorylates specific position of myosin 
light chain 

 titin TTN  TTN Chr2 ENST00000589042 
NM_001267550.1 

363 central sarcomere scaffolding protein 
required for assembly, protein interaction 
platform, regulation of sarcomere resting 
length and passive stiffness  

Sarcomere 
thin filament 

actin, alpha 1, skeletal 
muscle 

ACTA1 ACTA1 Chr1 ENST00000366684 
NM_001100 

6 globular G-actin form F-actin fibers; essential 
part of the contractile apparatus thin filament 

 actin, alpha, cardiac 
muscle 1 

ACTC1 ACTC1 Chr15 ENST00000290378 
NM_005159.4 

7 globular G-actin form F-actin fibers; essential 
part of the contractile apparatus thin filament 

 troponin C1, slow 
skeletal and cardiac 
type 

TNNC1 TNNC1 Chr3 ENST00000232975 
NM_003280.2 

6 binds the switch region of troponin I in a Ca2+ 
dependent manner to activate contraction  

 troponin I3, cardiac 
type 

TNNI3 TNNI3 Chr19 ENST00000344887 
NM_000363.4 

8 inhibitory subunit of troponin, regulation thin 
filament Ca2+ sensitivity  

 troponin T2, cardiac 
type 

TNNT2 TNNT2 Chr1 ENST00000236918 
NM_001276345 

16 binding of troponin complex to tropomyosin  

 tropomyosin 1 TPM1 TPM1 Chr15 ENST00000403994 
NM_001018005.1 

9 coiled coil protein that lies along thin filament 
and blocks myosin binding sites on actin 
under resting calcium concentrations  

Nuclear 
envelope 

emerin EMD EMD ChrX ENST00000369842 
NM_000117 

6 formation and stabilization of cortical nuclear 
actin network, cellular signaling 

 lamin A/C LMNA LMNA Chr1 ENST00000368300 
NM_170707.3 

12 nuclear lamina and chromatin organization, 
critical for nuclear dynamics  
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 transmembrane protein 
43 

TMEM43 TMEM43 Chr3 ENST00000306077 
NM_024334.2 

12 nuclear envelope structure at inner nuclear 
membrane, interaction with emerin, 
mechanotransduction, gene expression 

Mitochondria cytochrome c oxidase 
assembly homolog 

COX15 COX15 Chr10 ENST00000370483 
NM_001320975 

9 heme A biosynthesis, porphyrin synthesis 

 DnaJ heat shock 
protein family (Hsp40) 
member C19 

DNAJC19 DNAJC19 
TIM14 

Chr3 ENST00000382564 
NM_145261 

6 peptide translocation inner membrane to 
matrix, subunit of HSP40/HSP70 complex, 
mitochondrial chaperone 

 frataxin FXN FXN Chr9 ENST00000377270 
NM_000144 

5 heme biosynthesis, protection against iron-
catalyzed oxidative stress, iron storage  

 hydroxyacyl-CoA 
dehydrogenase/3-
ketoacyl-CoA 
thiolase/enoyl-CoA 
hydratase (trifunctional 
protein), alpha subunit 

HADHA HADHA Chr2 ENST00000380649 
NM_000182 

20 fatty acid beta-oxidation and in lipid 
metabolism 

 cytochrome c oxidase 
assembly protein 

SCO2 SCO2 Chr22 ENST00000252785  
NM_001169111 

2 copper chaperone, delivering copper to 
COX2 

 succinate dehydro-
genase complex 
flavorprotein subunit A 

SDHA SDHA, 
SDH2 

Chr5 ENST00000264932 
NM_004168 

15 complex II mitochondrial electron transport 
chain, transfer of electrons from succinate to 
ubiquinone, involved tricarboxylic acid cycle 

 tafazzin TAZ TAZ ChrX ENST00000601016 
NM_000116 

11 synthesis/remodeling of cardiolipin, 
phospholipid-lysophospholipid transacylase, 
important for mitochondrial energy 
production 

Desmosome desmocollin 2 DSC2 DSC2 Chr18 ENST00000280904 
NM_024422 

16 part of desmosome junctions, cell-cell 
adhesion, interaction intermediate filaments 

 desmoglein 2 DSG2 DSG2 Chr18 ENST00000261590 
NM_001943.3 

15 part of desmosome junctions, cell-cell 
adhesion, interaction intermediate filaments 

 desmoplakin DSP DSP Chr6 ENST00000379802 
NM_004415.2 

24 anchoring of intermediate filaments to 
desmosomes, essential for desmosomal 
plaque formation 

 plakophilin 2 PKP2 PKP2 Chr12 ENST00000070846 
NM_004572.3 

14 links cadherins to intermediate filaments, 
mechanical stabilization desmosomes, 
signaling function 
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 junction plakoglobin JUP JUP Chr17 ENST00000393931 
NM_002230.2 

14 cytoplasmic component of desmosomes, 
linker of cadherins to F-actin 

Regulation of 
transcription 
and splicing 

EYA transcriptional 
coactivator and 
phosphatase 4 

EYA4 EYA4 Chr6 ENST00000355167 
NM_172105.3 

20 tyrosine phosphatase of histone H2AX; 
impact for DNA repair, stress response and 
apoptosis 

 GATA zinc finger 
domain containing 1 

GATAD1 GATAD1 Chr7 ENST00000287957 
NM_021167 

5 part of chromatin complex recruited to 
methylated H2K4me 

 NK2 homeobox 5 NKX2-5 NKX2-5 Chr5 ENST00000329198 
NM_004387.3 

2 transcriptional activation of myocardial 
lineage together with GATA4, 
transcriptionally controlled by PBX1 

 PR/SET domain 16 PRDM16 PRDM16, 
MEL1 

Chr1 ENST00000270722 
NM_022114.3 

17 transcriptional regulator of adipocyte 

development, interaction e.g. PPAR, 

C/EBP and PGC1, regulator of TGF- 
signaling, has histone methyltransferase 
activity (H3K9me1, H3K9me3) 

 RNA binding motif 
protein 20 

RBM20 RBM20 Chr10 ENST00000369519 
NM_001134363.1 

14 mRNA splicing regulator of a specific target 
genes, important regulator of TTN slicing 

 T-box 20 TBX20 TBX20 Chr7 ENST00000408931 
NM_001077653.2 

8 transcriptional activator/repressor in cardiac 
development, interacts with GATA4 and 
NKX2-5, repression of TBX2 

Dystrophin 
complex 

desmin DES DES Chr2 ENST00000373960 
NM_001927.3 

9 intermediate filament; connecting Z-discs, 
sarcomere, sarcolemmal cytoskeleton, 
nucleus and mitochondria; sarcomeric 
microtubule anchor 

 dystrophin DMD DMD ChrX ENST00000357033 
NM_004006.2 

79 anchors ECM to F-actin cytoskeleton, ligand 
dystroglycan 

 dystrobrevin alpha DTNA DTNA Chr18 ENST00000444659 
NM_001390.4 

22 interacts with dystrophin 

 sarcoglycan beta SGCB SGCB Chr4 ENST00000381431 
NM_000232.4 

6 linker between F-actin and ECM 

 sarcoglycan delta SGCD SGCD Chr5 ENST00000435422 
NM_000337.5 

8 linker between F-actin and ECM 

 sarcoglycan gamma SGCG SGCG Chr13 ENST00000218867 
NM_000231 

8 linker between F-actin and ECM  
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Cellular 
signaling 

B-Raf proto-oncogene, 
serine/threonine kinase 

BRAF BRAF Chr7 ENST00000288602 
NM_004333.4 
 

18 phosphorylates MAP2K1, part of MAPK 
signaling pathway, transmission of mitogenic 
signals 

 CBL proto-oncogene CBL CBL Chr11 ENST00000264033 
NM_005188.3 
 

16 E3 ubiquitin-protein ligase, ubiquitination → 
degradation, negative regulator of cell 
surface receptors e.g. FGFR1/2, EGFR, KIT  

 HRAS proto-oncogene, 
GTPase 

HRAS HRAS  Chr11 ENST00000610977 
NM_001130442 

5 small GTPase, RAS signaling pathway, 
growth factor signaling 

 KRAS proto-oncogene, 
GTPase 

KRAS KRAS Chr12 ENST00000311936 
NM_004985 

5 small GTPase, RAS signaling pathway, 
growth factor signaling, regulating cell 
proliferation, critical for tumor development 

 mitogen-activated 
protein kinase kinase 1 

MAP2K1 MAP2K1 
MEK1 

Chr15 ENST00000307102 
NM_002755 

11 essential component of MAPK pathway, 
growth factor signaling, regulating diverse 
cellular functions, upstream activated by 
RAF1, downstream activation of ERK1/2 

 mitogen-activated 
protein kinase kinase 2 

MAP2K2 MAP2K2 
MEK2 

Chr19 ENST00000262948 
NM_030662 

11 essential component of MAPK pathway, 
growth factor signaling, regulating diverse 
cellular functions, upstream activated by 
RAF1, downstream activation of ERK1/2 

 mindbomb E3 ubiquitin 
protein ligase 1 

MIB1 MIB1 Chr18 ENST00000261537 
NM_020774 

21 ubiquitination of Delta receptors, positively 
regulates the Delta-mediated Notch 
signaling  

 NRAS proto-oncogene, 
GTPase 

NRAS NRAS Chr1 ENST00000369535 
NM_002524 

7 small GTPase, RAS signaling pathway, 
growth factor signaling, regulating cell 
proliferation, critical for tumor development 

 protein kinase AMP-
activated non-catalytic 
subunit gamma 2 

PRKAG2 PRKAG2 Chr7 ENST00000287878 
NM_016203.3 

16 AMP/ATP-binding subunit of AMPK, 
regulation of cellular energy metabolism by 
sensing ATP levels 
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 protein tyrosine 
phosphatase, non-
receptor type 11 

PTPN11 PTPN11 Chr12 ENST00000635625 
NM_001330437 

15 regulator unfolded protein response in ER, 
dephosphorylation EIF2AK3/PERK, tumor 
development 

 Raf-1 proto-oncogene, 
serine/threonine kinase 

RAF1 RAF1 Chr3 ENST00000251849 
NM_002880.3 

17 serine/threonine-protein kinase linking 
membrane-associated RAS GTPases with 
MAPK signaling, key regulator of cell fate  

 SHOC2, leucine rich 
repeat scaffold protein 

SHOC2 SHOC2 Chr10 ENST00000369452 
NM_007373.3 

9 regulatory subunit of protein phosphatase 1, 
activation of RAF1 kinase, MAPK signaling 
pathway activation, growth factor signaling 

 SOS Ras/Rac guanine 
nucleotide exchange 
factor 1 

SOS1 SOS1 Chr2 ENST00000402219 
NM_005633.3 

23 guanine nucleotide exchange factor (GEF) 
for RAS GTPases, promotion of RAS 
activation, regulates MAPK3 phosphorylation 

 transforming growth 
factor beta 3 

TGFB3 TGFB3 Chr14 ENST00000238682 
NM_003239.2 

7 regulates mesenchymal development, 
activates TGFBR2, regulates cell adhesion 
ECM formation 

Protein 
quality 
control 

BCL2 associated 
athanogene 3 

BAG3 BAG3 Chr10 ENST00000369085 
NM_004281.3 

4 activator of autophagy and HSP70 
chaperone system, nucleotide exchange 
factor HSP70 complex, adaptor protein 

 crystallin alpha B CRYAB CRYAB 
HSPB5 

Chr11 ENST00000616970 
NM_001885.1 

4 detection of misfolded proteins, targeting to 
the HSP70 complex, prevention of protein 
aggregate formation, cardioprotective, 
stabilization of cyto- and nucleoskeleton, 
stress inducible 

 heat shock protein 
family B (small) 
member 8 

HSPB8 HSP22 
HSPB8 

Chr12 ENST00000281938 
NM_014365.2 

3 detection of misfolded proteins, induction of 
autophagy, prevention of protein aggregate 
formation, chaperone activity, disassembly 
of stress granules with BAG3/HSP70 
complex 

ECM 
components 

fibrillin 1 FBN1 FBN1 Chr15 ENST00000316623 
NM_000138.4 

66 structural component of 10-12 nm diameter 
ECM microfibrils, structural and regulatory 
function in load-bearing connective tissue, 

regulation TGF- and BMP signaling 
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 laminin subunit alpha 2 LAMA2 LAMA2 Chr6 ENST00000421865 
NM_000426.3 

65 ECM glycoprotein, mediates interaction to 
dystrophin complex 

 laminin subunit alpha 4 LAMA4 LAMA4 Chr6 ENST00000230538 
NM_001105206.2 

39 ECM glycoprotein, constituent of basement 
membrane 

Glycosyl-
transferases 

fukutin FKTN FKTN Chr9 ENST00000223528 
NM_006731 

10 biosynthesis of phosphorylated O-mannosyl 

trisaccharide, required for -dystroglycan 
synthesis, protein glycosylation 

 fukutin related protein FKRP FKRP Chr19 ENST00000318584 
NM_001039885 

4 biosynthesis of phosphorylated O-mannosyl 

trisaccharide, required for -dystroglycan 
synthesis, protein glycosylation 

Cytoskeleton Alstrom syndrome 
protein 1 

ALMS1 ALMS1 Chr2  ENST00000613296  

NM_015120.4 
23 centrosome and basal body associated 

protein, pericentriolar and cilia transport, 

interaction -actinin, endosomal transport 

Endo-
lysosomal 
system 

glucosidase alpha, acid GAA GAA Chr17 ENST00000302262 
NM_000152 

20 hydrolysis of lysosomal glycogen to glucose 

 galactosidase alpha GLA GLA ChrX ENST00000218516 
NM_000169 

7 hydrolysis of -D-galactose residues in -D-
galactosides 

 lysosomal associated 
membrane protein 2 

LAMP2 LAMP2 
CD107b 

ChrX ENST00000434600  
NM_001122606.1 

9 binding of target protein and delivery to 
lysosomes, protein degradation, required 
fusion autophagosomes and lysosomes, 
antigen presentation  

Others transthyretin  TTR TTR Chr18 ENST00000237014 
NM_000371.3 
 

4 thyroid hormone-binding protein, transport of 
thyroxine from bloodstream to peripheral 
organs 
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Table S 2: Scheme to interpret the pathogenicity of genetic variants according to guiedelines of the ACMG given by the publication. For each category (population data, 

etc.) the strongest argument will be activated for each variant. The sum of arguments in all categories is determining the pathogenicty of a genetic variant (Figure S 1). 

Diagnosis Supporting Moderate Strong Very strong Conclusion 

Population data 
 

Absent or low MAF in 

gnomAD/population 

databases PM2 

Prevalence in affecteds 

statistically increased 

over controls PS4 

 

pathogenic 

Computational 

& predictive 

data 

Multiple lines of 

computational evidence 

support a deleterious effect 

on the gene /gene product 

PP3 

Novel missense change at 

already as pathogenic 

described amino acid PM5 

Protein length changing 

variant PM4 

Same amino acid change 

as an established 

pathogenic variant PS1 

Predicted null variant 

in a gene where LOF 

is a known mechanism 

of disease PVS1 

Functional data Missense in gene with few 

benign and lots of path. 

missense variants PP2 

Mutational hot spot or well-

studied functional domain 

without benign variation PM1  

Well-established 

functional studies  

PS3 

 

Segregation 

data 

Cosegregation with disease 

in multiple affected family 

members PP1 

Increased segregation data More increased 

segregation data 

 

De novo data 
 

De novo (without paternity & 

maternity confirmed) PM6 

De novo (paternity and 

maternity confirmed) PS2 
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Table S 3: Scheme to interpret the pathogenicity of genetic variants according to guiedelines of the ACMG in optimized form (description see Table S 2).  

Diagnosis Supporting Moderate Strong Very strong Conclusion 

Population data 
 

PM2 check MAF and only 

include variants with MAF < 

0.0001 

PS4 activate with 

calculated OR > 5, 

cohorts from literature + 

ACGV for affected and 

gnomAD for unaffected 

 

Pathogenic? 

Computational 

& predictive 

data 

PP3 SIFT/Polyphen-

2/MT2/NNsplice/MaxEnt/ 

HSF → run prediction tools 

(requirement for splice site 

variants in PM4) 

PM5 check ClinVar for P/LP 

variants at same aa position 

PM4 coding sequence: be 

aware of small deletions in aa 

repeats; splice site: PP3 

positive as requirement 

PS1 check ClinVar for 

P/LP variant with same 

aa exchange 

PVS1 use o/e ratio 

(upper CI < 0.35) or pLI 

(≥ 0.9) from gnomAD; 

check ClinVar for 

truncating variants; 

check literature for LoF 

Functional data PP2 use o/e ratio (upper CI 

< 0.35) or Z-score (> 3.09) 

from gnomAD; check 

ClinVar for missense 

variants; check literature 

PM1 check ClinVar/literature 

for influence of missense 

variation 

PS3 check literature for 

functional studies 

(HGMD, ClinVar, 

PubMed, Ensembl, 

UniProt, .etc.) 

 

Segregation 

data 

PP1 Variant segregates in ≥ 

3 meioses (every affected 

member!) 

PP1 Variant segregates in ≥ 5 

meioses (every affected 

member!) 

PP1 Variant segregates 

in ≥ 8 meioses (every 

affected member!) 

 

De novo data 
 

De novo (without paternity & 

maternity confirmed) PM6 

De novo (paternity and 

maternity confirmed) PS2 
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Figure S 1: Counting scheme to interpret the pathogenicity of genetic variants according to the ACMG 

guidelines. The number of activated arguments (PVS1, PS1, etc.) determines the outcome.
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Table S 4: Detection of genetic VOI from 80 index patients with pediatric CMP 

Gene Transcript cDNA alteration 
Protein 

alteration 
Diagnosis 

Patient ID 
complex 

genotypes 

gnomAD 
allele 

frequency 
Pathogenicity 

de 
novo 

novel 

Pathogenic and likely pathogenic genetic variants 

ACTC1 NM_005159.4 c.328G>A p.A110T DCM, HTX CMP-77 0 
Likely pathogenic 

(PM2, PM6, PP2-3) 
yes no 

ACTN2 NM_001103.2 c.574C>T p.R192* LVNC, HTX CMP-10 0.000008122 
Pathogenic 

(PVS1, PM2, PM6) 
yes yes 

DSC2 NM_024422.3 c.1034T>C p.I345T ARVC CMP-33 0.000008133 
Likely pathogenic 
(PS3, PM2, PP3) 

no no 

DSG2 NM_001943.3 c.1016delA p.V340* ARVC CMP-33 0.00000814 
Likely pathogenic 

(PVS1, PM2) 
no yes 

LAMP2 NM_001122606.1 c.222_223delTA p.Y74* HCM  0 
Pathogenic 

(PVS1, PS4, PM6) 
yes no 

MYBPC3 NM_000256.3 
c.772G>A 

(splice variant) 
p.E258K / 

p.Glu258fsX41 
HCM CMP-42 0.00001851 

Pathogenic 
(PS1, PS4) 

? no 

 NM_000256.3 c.927-2A>G - HCM CMP-31 0.00003235 
Pathogenic 

(PS3-4, PM4, PP1) 
no no 

 NM_000256.3 c.1504C>T p.R502W HCM CMP-38 0.00005411 
Pathogenic 
(PS1, PS4) 

? no 

 NM_000256.3 c.1805C>T p.T602I LVNC CMP-27 0.000009848 
Likely pathogenic 

(PS1, PM2) 
no no 

 NM_000256.3 c.2308G>A p.D770N HCM CMP-69 0.00001625 
Pathogenic 

(PS1, PS4, PM1) 
no no 

 NM_000256.3 c.2572A>C p.S858R DCM, HTX CMP-09 0 
Likely pathogenic 
(PS2, PM2, PM5) 

? yes 

MYH7 NM_000257.2 c.677C>T p.A226V HCM  0 
Likely pathogenic 
(PS4, PM1, PP3) 

? no 

 NM_000257.2 c.1063G>A p.A355T HCM CMP-22 0 
Pathogenic 

(PS1, PS4, PM1) 
? no 

 NM_000257.2 c.1283C>A p.A428D LVNC CMP-27 0 
Likely pathogenic 

(PM1-2, PP1, PP3) 
no yes 

 NM_000257.2 c.1357C>T p.R453C HCM  0 
Pathogenic 

(PS1, PS3-4) 
? no 

 NM_000257.2 c.1987C>T p.R663C HCM CMP-28 0 
Pathogenic 

(PS1, PS4, PM2) 
no no 

 NM_000257.2 c.1988G>A p.R663H HCM CMP-43 0.00001443 
Pathogenic 

(PS1, PS4, PM1) 
? no 

 NM_000257.2 c.2710C>T p.R904C DCM CMP-44 0.000004061 
Pathogenic 

(PS1, PS4, PM1) 
? no 

PKP2 NM_004572.3 c.1716delG p.R573Efs*4 ARVC  0 
Likely pathogenic 

(PSV1, PM2) 
no yes 

PRKAG2 NM_016203.3 c.1199C>A p.T400N HCM  0 
Pathogenic 

(PS1, PS3, PM2) 
? no 
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TAZ NM_000116.3 c.355G>A p.V119M LVNC CMP-24 0 
Likely pathogenic 

(PM1-2, PM5) 
no yes 

TNNI3 NM_000363.4 c.24+2T>A (homozygous) - LVNC CMP-01 0.00001254 
Pathogenic 

(PVS1, PS3, PM2) 
? yes 

 NM_000363.4 c.570C>G p.D190E HCM  0 
Likely Pathogenic 

(PM1-2, PM5) 
? no 

 NM_000363.4 c.574C>T p.R192C RCM, HTX CMP-58 0 
Pathogenic 

(PS1, PS3-4, PM2, PM6) 
yes no 

 NM_000363.4 c.582C>A p.N194K DCM CMP-80 0 
Pathogenic 

(PS1, PM1-2, PM6) 
yes no 

 NM_000363.4 c.624dupT p.E209* RCM, HTX CMP-29 0 
Likely pathogenic 

(PM1-2, PM4, PM6) 
yes yes 

TNNT2 NM_000364 c.620_622delAGA p.K207del DCM, HTX CMP-12 0 
Likely Pathogenic 

(PS1, PM1-2) 
? no 

 NM_000364 c.620-622delAGA p.K207del DCM, HTX CMP-74 0 
Pathogenic 

(PS1, PM1-2, PM6) 
yes no 

 NM_000364.2 c.812+1G>A - HCM  0 
Pathogenic 

(PS1, PS3, PM2) 
no no 

TPM1 NM_001018005.1 c.257C>T p.A86V LVNC CMP-34 0 
Likely pathogenic 

(PM1-2, PP1_moderate, PP3) 
no yes 

TTN NM_001267550.1 c.68329+2_68329+3insTT - RCM, HTX CMP-25 0.00009578 
Likely pathogenic 

(PM1-2, PM4) 
no yes 

 NM_001267550.1 c.85891delG p.A28631Lfs*3 DCM, HTX  0 
Likely pathogenic 

(PM1-2, PM4) 
no yes 

Genetic variants of uncertain significance (VUS) 

ACTN2 NM_001103.2 c.278G>A p.R93Q LVNC CMP-24 0.00002525 Uncertain significance no no 

BAG3 NM_004281.3 c.280A>T p.I94F DCM  0.0006493 Uncertain significance ? no 

 NM_004281.3 c.881G>A p.R294H DCM, HTX  0.00003663 Uncertain significance ? no 

 NM_004281.3 c.1634C>G p.P545R DCM  0.00009385 Uncertain significance no no 

CBL NM_005188.3 c.805A>G p.M269V LVNC CMP-24 0.00001218 Uncertain significance no yes 

DMD NM_004006.2 c.2169-7_2169-4delGTCT - HCM CMP-43 0.00003417 Uncertain significance ? no 

 NM_004006.2 c.2273A>C p.D758A RCM, HTX CMP-25 0.0002632 Uncertain significance no yes 

 NM_004006.2 c.5723A>T p.D1908V HCM, HTX  0.0002101 Uncertain significance no yes 

 NM_004006.2 c.8996C>T p.A2999V RCM, HTX CMP-29 0.0000112 Uncertain significance no yes 

DSC2 NM_024422.3 c.304G>A p.E102K DCM  0.0007482 Uncertain significance no no 

 NM_024422.3 c.363G>T p.K121N LVNC  0.00001221 Uncertain significance no no 
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 NM_024422.3 c.802A>G p.T268A DCM  0.0001444 Uncertain significance no no 

DSG2 NM_001943.3 c.1003A>G p.T335A DCM  0.0005089 Uncertain significance ? no 

 NM_001943.3 c.2001+3C>G - LVNC  0.000008136 Uncertain significance no yes 

DSP NM_004415.2 c.2774G>A p.R925Q RCM, HTX  0.0002309 Uncertain significance no no 

 NM_004415.2 c.4961T>C p.L1654P LVNC, HTX  0.00002849 Uncertain significance no no 

 NM_004415.2 c.5178C>A p.N1726K DCM, HTX  0.0006893 Uncertain significance no no 

 NM_004415.2 c.7916G>A p.R2639Q DCM, HTX CMP-74 0.000853 Uncertain significance no no 

 NM_004415.2 c.7994C>T p.T2665M DCM CMP-80 0.00004338 Uncertain significance no no 

 NM_004415.2 c.8524C>T p.R2842C HCM CMP-69 0.000007384 Uncertain significance no no 

DTNA NM_001390.4 c.1757C>T p.P586L HCM  0.0001263 Uncertain significance no no 

EYA4 NM_172105.3 c.59A>G p.D20G RCM  0.000008132 Uncertain significance ? no 

 NM_172105.3 c.971-3T>C - LVNC, HTX CMP-10 0.00006461 Uncertain significance no yes 

FBN1 NM_000138.4 c.902G>T p.G301V DCM, HTX  0.0001876 Uncertain significance ? no 

FHL1 NM_001159702.2 c.283C>T p.R95W HCM  0.0006232 Uncertain significance no no 

FHL2 NM_201555.1 c.143G>A p.G48D DCM  0 Uncertain significance no yes 

 NM_201555.1 c.337C>T p.R113C DCM  0.000395 Uncertain significance ? no 

JPH2 NM_020433.4 c.572C>G p.P191R DCM  0.0005276 Uncertain significance no no 

 NM_020433.4 c.1306C>T p.R436C DCM  0.00003236 Uncertain significance no no 

 NM_020433.4 c.1896G>C p.E632D RCM, HTX CMP-58 0.00007797 Uncertain significance no no 

JUP NM_002230.2 c.1714C>T p.R572W DCM, HTX CMP-09 0.00001219 Uncertain significance ? no 

LAMA4 NM_001105206.2 c.514G>A p.G172S HCM CMP-69 0.0002224 Uncertain significance ? no 

 NM_001105206.2 c.1959T>C p.D653 ARVC CMP-33 0.0009604 Uncertain significance no yes 

 NM_001105206.2 c.2171G>A p.R724K DCM, HTX CMP-12 0.0007326 Uncertain significance ? yes 

 NM_001105206.2 c.4645A>T p.N1549Y HCM  0.0001988 Uncertain significance ? yes 

LDB3/ZASP NM_001171610.1 c.66C>A p.D22E HCM CMP-22 0.00003236 Uncertain significance no yes 
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 NM_001171610.1 c.664G>A p.A222T HCM CMP-42 0.0003646 Uncertain significance ? no 

 NM_001171610.1 c.778G>A p.G260S DCM  0.0000469 Uncertain significance ? yes 

 NM_001171610.1 c.982G>A p.A328T LVNC CMP-34 0.000004062 Uncertain significance no yes 

 NM_007078 c.1792T>C p.C598R HCM CMP-31 0 Uncertain significance no yes 

 NM_001171610.1 c.1978C>A p.P660T HCM CMP-22 0.000007219 Uncertain significance no yes 

LMNA NM_170707.3 c.986G>C p.R329P HCM CMP-22 0 Uncertain significance ? yes 

MYBPC3 NM_000256.3 c.961G>A p.V321M DCM  0.0003261 Uncertain significance no no 

 NM_000256.3 c.2873C>T p.T958I HCM CMP-42 0.000156 Uncertain significance ? no 

MYH6 NM_002471.3 c.3010G>T p.A1004S HCM CMP-43 0.0009523 Uncertain significance ? no 

 NM_002471.3 c.5348G>A p.R1783H HCM  0.00003248 Uncertain significance no no 

MYH7 NM_000257.2 c.475G>A p.D159N LVNC, HTX  0 Uncertain significance ? yes 

 NM_000257.2 c.1425G>T p.Q475H LVNC  0 Uncertain significance no no 

 NM_000257.2 c.2890G>C p.V964L DCM  0.0004256 Uncertain significance no no 

 NM_000257.2 c.3169G>A p.G1057S HCM  0.000008121 Uncertain significance no no 

 NM_000257.2 c.4501G>T p.E1501* DCM  0 Uncertain significance no yes 

 NM_000257.2 c.5767A>G p.K1923E DCM  0 Uncertain significance ? yes 

MYL2 NM_000432.3 c.421G>A p.A141T DCM, HTX  0 Uncertain significance ? no 

MYLK2 NM_033118.3 c.4G>A p.A2T DCM, HTX CMP-77 0.0009884 Uncertain significance no no 

 NM_033118.3 c.425G>T p.G142V LVNC, HTX CMP-10 0.00008924 Uncertain significance no yes 

MYOZ2 NM_016599.4 c.659T>C p.M220T HCM CMP-22 0 Uncertain significance no yes 

MYPN NM_001256267.1 c.259C>G p.P87A DCM  0.0000433 Uncertain significance no no 

 NM_001256267.1 c.802C>T p.P268S RCM, HTX CMP-58 0.0004756 Uncertain significance no no 

 NM_001256267.1 c.970C>T p.H324Y HCM CMP-28 0 Uncertain significance no yes 

 NM_001256267.1 c.2150C>T p.T717M DCM, HTX  0.00004467 Uncertain significance ? yes 

 NM_001256267.1 c.3913A>G p.M1305V HCM CMP-42 0.00005412 Uncertain significance ? no 
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NEXN NM_144573.3 c.893C>G p.T298R HCM CMP-42 0.0001605 Uncertain significance ? no 

 NM_144573.3 c.1572_1574delAGA p.E525del DCM, HTX  0.0001556 Uncertain significance ? yes 

 NM_144573.3 c.1572_1574delAGA p.E525del DCM CMP-01 0.0001556 Uncertain significance ? yes 

 NM_144573.3 c.1619T>C p.M540T DCM, HTX  0.000004072 Uncertain significance ? yes 

NKX2-5 NM_004387.3 c.355G>T p.A119S DCM  0.0009725 Uncertain significance no no 

PKP2 NM_004572.3 c.1536T>A p.N512K DCM, HTX  0.00001446 Uncertain significance no yes 

 NM_004572.3 c.2200A>G p.T734A DCM, HTX  0.00001083 Uncertain significance ? no 

 NM_004572.3 c.2365A>G p.I789V DCM  0.0003105 Uncertain significance ? yes 

PRDM16 NM_022114.3 c.1110C>A p.D370E LVNC, HTX  0.000004112 Uncertain significance ? yes 

 NM_022114.3 c.2296G>A p.G766S HCM CMP-22 0.0002788 Uncertain significance ? no 

 NM_022114.3 c.2372G>A p.G791D RCM, HTX  0 Uncertain significance no yes 

 NM_022114.3 c.2447A>G p.N816S RCM, HTX CMP-25 0.0002405 Uncertain significance no no 

RAF1 NM_002880.3 c.974A>C p.Q325P DCM CMP-44 0.00001804 Uncertain significance ? no 

RBM20 NM_001134363.1 c.298C>T p.L100F DCM  0 Uncertain significance no yes 

RYR2 NM_001035.2 c.1699G>C p.A567P DCM, HTX  0.000008299 Uncertain significance ? yes 

 NM_001035.2 c.4273A>G p.T1425A HCM CMP-38 0.00005876 Uncertain significance ? no 

 NM_001035.2 c.8162T>C p.I2721T HCM  0.0005919 Uncertain significance no no 

 NM_001035.2 c.9655G>A p.V3219M DCM  0.00007581 Uncertain significance ? no 

SCN5A NM_001099404.1 c.998+5G>A - DCM  0.000213 Uncertain significance ? no 

 NM_001099404.1 c.1577G>A p.R526H HCM  0.00006255 Uncertain significance ? no 

SOS1 NM_005633.3 c.3841_3843dupAAG p.E1281dup DCM CMP-01 0.000004065 Uncertain significance ? yes 

TAZ NM_000116.3 c.29C>G p.P10R LVNC CMP-24 0 Uncertain significance ? yes 

TBX20 NM_001077653.2 c.208G>A p.G70S DCM  0 Uncertain significance no yes 

 NM_001077653.2 c.994C>T p.P332S DCM, HTX  0.0000366 Uncertain significance no yes 

TGFB3 NM_003239.2 c.293C>T p.S98L DCM  0.0009523 Uncertain significance no no 



 
XXXI 

  

TMEM43 NM_024334.2 c.1177C>T p.R393W LVNC  0.000008133 Uncertain significance no yes 

TNNC1 NM_003280.2 c.25G>A p.V9I DCM, HTX  0 Uncertain significance ? yes 

TNNI3 NM_000363.4 c.307C>T p.R103C HCM CMP-22 0.000007216 Uncertain significance ? no 

TNNT2 NM_000364.2 c.808G>A p.V270I DCM  0 Uncertain significance no yes 

TPM1 NM_001018005.1 c.340G>C p.E114Q DCM, HTX  0 Uncertain significance no yes 

TTN NM_001267550.1 c.25064-4A>G - RCM  0.000008577 Uncertain significance no yes 

 NM_001267550.1 c.39709+1G>T - RCM, HTX  0 Uncertain significance no yes 

VCL NM_014000.2 c.590C>T p.T197I HCM  0.0002526 Uncertain significance no no 
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Table S 5: Selection of genetic variants and complex genotypes 

Gene Transcript cDNA Position 
Protein 
position 

Diagnosis 
Patient ID 
complex 

genotypes 

gnomAD 
allele 

frequency 
Pathogenicity 

de 
novo 

novel 

Truncating TTN variants 

TTN NM_001267550.1 c.25064-4A>G* - RCM  0.000008577 Uncertain significance no yes 

 NM_001267550.1 c.39709+1G>T* - RCM  0 Uncertain significance no yes 

 NM_001267550.1 c.68329+2_68329+3insTT* - RCM CMP-25 0.00009578 Likely pathogenic no yes 

 NM_001267550.1 c.85891delG p.A28631Lfs*3 DCM  0 Likely pathogenic no yes 

Homozygous variants 

NEXN NM_144573.3 c.1572_1574delAGA p.E525del DCM, HTX  0.0001556 Uncertain significance ? yes 

TNNI3 NM_000363.4 c.24+2T>A* 
p.Ala8_Ala9insG
luArgAlaAlaGly* 

LVNC CMP-01 0.00001254 Pathogenic ? yes 

Hemizygous variants 

DMD NM_004006.2 c.2169-7_2169-4delGTCT* - HCM CMP-43 0.00003417 Uncertain significance ? no 

 NM_004006.2 c.2273A>C p.D758A RCM CMP-25 0.0002632 Uncertain significance no yes 

 NM_004006.2 c.5723A>T p.D1908V HCM  0.0002101 Uncertain significance no yes 

 NM_004006.2 c.8996C>T p.A2999V RCM CMP-29 0.0000112 Uncertain significance no yes 

FHL1 NM_001159702.2 c.283C>T p.R95W HCM  0.0006232 Uncertain significance no no 

TAZ NM_000116.3 c.29C>G p.P10R LVNC  0 Uncertain significance ? yes 

 NM_000116.3 c.355G>A p.V119M LVNC CMP-24 0 Likely pathogenic no yes 

Index patients with compound heterozygous variants 

DSC2 NM_024422.3 c.304G>A p.E102K DCM  0.0007482 Uncertain significance no no 

 NM_024422.3 c.802A>G p.T268A DCM  0.0001444 Uncertain significance no no 

          

MYBPC3 NM_000256.3 c.2572A>C p.S858R DCM CMP-09 0 Likely pathogenic ? yes 

 NM_000256.3 
genomic deletion of 

MYBPC3 gene 
- DCM CMP-09 0 Pathogenic no yes 
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Index patients with >1 pathogenic and/or likely pathogenic variant 

MYBPC3 NM_000256.3 c.1805C>T p.T602I LVNC CMP-27 0.000009848 Likely pathogenic no no 

MYH7 NM_000257.2 c.1283C>A p.A428D LVNC CMP-27 0 Likely pathogenic no yes 

          

DSC2 NM_024422.3 c.1034T>C p.I345T ARVC CMP-33 0.000008133 Likely pathogenic no no 

DSG2 NM_001943.3 c.1016delA p.V340* ARVC CMP-33 0.00000814 Likely pathogenic no yes 
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Table S 6: Genetic and heterozygous variants in MYH7 

Diagnosis Sex 
Age in 
years 

Genomic 
location 

cDNA 
position 

Protein 
position 

gnomAD 
MAF 

ACMG 
pathogenicity 

novel ClinVar 
Age 
≤18 

years† 

Age 
>18 

years‡ 

PubMed 
ID 

 
HCM 

m 11,8 14:23896042 c.1988G>A p.R663H 0.000014 P no yes yes yes 10750581 

DCM f 0,0 14:23893328 c.2710C>T p.R904C 0.000004 P no yes yes yes 
20573160 
29212898 

LVNC m 5,9 14:23897862 c.1425G>T p.Q475H 0 VUS no no no yes 21750094 

LVNC m 0,2 14:23901875 c.475G>A p.D159N 0 VUS yes no - - - 

DCM f 0,3 14:23893148 c.2890G>C p.V964L 0.000426 VUS no yes no yes 
23349452 
19412328 

HCM m 7,4 14:23898214 c.1357C>T p.R453C 0 P no yes yes yes 
1552912 

17495353 

DCM m 6,2 14:23882991 c.5767A>G p.K1923E 0 VUS yes no - - - 

HCM m 15,2 14:23899059 c.1063G>A p.A355T 0 P no yes yes yes 
12707239 
20031618 

HCM m 16,2 14:23891465 c.3169G>A p.G1057S 0.000008 VUS no yes no yes 15358028 

LVNC f 11,7 14:23898288 c.1283C>A p.A428D 0 LP yes no - - - 

HCM m 5,3 14:23896043 c.1987C>T p.R663C 0 P no yes yes yes 
11133230 
15358028 

HCM f 0,7 14:23900849 c.677C>T p.A226V 0 LP no yes - - - 

DCM f 0.2 14:23886380 c.4501G>T p.E1501* 0 VUS yes no - - - 

HTX - heart transplantation, individuals †≤18 years and ‡>18 years with PubMed ID of study; ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) 
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Table S 7: Genetic and heterozygous variants in MYBPC3 

Diagnosis Sex 
Age in 
years 

Genomic 
location 

cDNA 
position 

Protein 
position 

gnomAD 
MAF 

ACMG 
pathogenicity 

novel ClinVar 
Age 
≤18 

years† 

Age 
>18 

years‡ 

PubMed 
ID 

DCM f 0,1 11:47358972 c.2572A>C p.S858R 0 LP yes no - - - 

HCM m 
2,5 11:47364249 c.1504C>T p.R502W 0.000054 

P no yes yes yes 
18403758 
9562578 

HCM m 
15,9 11:47369975 c.772G>A p.E258K / 

p.Glu258fsX41 
0.000019 

P no yes yes yes 
17908752 
9562578 

HCM m 15,9 11:47356625 c.2873C>T p.T958I 0.000156 VUS no yes no yes 18957093 

DCM m 0,2 11:47367887 c.961G>A p.V321M 0.000326 VUS no yes no yes 21750094 

HCM m 
16,9 11:47360071 c.2308G>A p.D770N 0.000016 

P no yes yes yes 
22555271 
15519027 

LVNC f 11,7 11:47362781 c.1805C>A p.T602I 0.00001 LP no yes - - - 

HCM m 15,9 11:47367923 c.927-2A>G - 0.000032 P no yes no yes 9562578 

HTX - heart transplantation, individuals †≤18 years and ‡>18 years with PubMed ID of study; ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) 
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Table S 8: Phenotypes and genotypes of families with TNNI3 variants 

   Echocardiogram    

ID Genotype 
Age 

(years) 
IVSD 
(mm) 

LVPWd 
(mm) 

LVEDd 
(mm) 

LVFS 
(%) 

LVEF 
(%) 

LVEF 
plan. (%) 

CMP, Description 
NC/C 
ratio 
>2:1 

12 lead ECG 
Arrhyth-

mias 
Medical History 

Family 1 

1-I:1 

heterozygous, 
TNNI3 

c.204delG, 
p.Arg69Alafs*8 

33 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
no symptoms, no 

medications 

1-I:2 

heterozygous, 
TNNI3 

c.204delG, 
p.Arg69Alafs*8 

29 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
no symptoms, no 

medications 

1-II:1 

homozygous, 
TNNI3 

c.204delG, 
p.Arg69Alafs*8 

1.2 7 (+3.5) 
6.9 

Z((+5.9) 
38 

(+4.4) 
11 26 25 

DCM, severe MR 
and TR, RVSP 46 

mmHg 
no SR, iRBB no 

symptomatic with CHD 
after vaccination; sus-
pected myocarditis; 

implantation of LVAD at 
1.2 y, HTX at 1.8 y 

Family 2 

 
 

2-II:3 

homozygous, 
TNNI3 

c.24+2T>A, 
p.(Ala8+GluArgA

laAlaGly) 

1 7 (+4.4) 6 (+2.9) 
33 

(+5.2) 
17 37 40 

LVNC, LV 
hypertrophy with 

trabeculations and 
deep recesses in 

the apex and 
lateral wall 

yes SR, normal no 

histology from LV 
biopsy: deep recesses 

covered by endocardium 
highly suspicious of 

LVNC; see pedigree in 
Figure S2; death at 1.3 y 
after LVAD implantation 

and sepsis 

Family 3 

3-I:1 no TNNI3 variant 33 N/A N/A N/A N/A N/A N/A 
MRI: mild dilated 
LA, function and 
size of LV normal 

N/A SR, normal no 
Arterial hypertension, no 

symptoms, no 
medications 

3-I:2 no TNNI3 variant 38 9 N/A 44 35 64 62 normal no SR, normal no 
no symptoms, no 

medications 

3-II:1 

heterozygous, 
TNNI3 

c.624T>TT, 
p.Glu209* 

4 4 (-0.4) N/A 25 (-1.4) 37 69 77 

RCM, biatrial 
enlargement, PHT, 

RVSP 50-80 
mmHg 

no 
SR, biatrial 
abnormality 

no 
LVAD implantation at 4 
y, HTX at 4.5 y, death at 

5 y 
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Family 4 

4-I:1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
died from SCD at age 30 
with pathology of HCM 

at autopsy 

4-I:2 no TNNI3 variant 39 N/A N/A N/A N/A N/A N/A N/A N/A SR, normal N/A 
chronic obstructive 
pulmonary disease, 

NYHA II 

4-II:1 

heterozygous, 
TNNI3 

c.570C>G, 
p.Asp190Glu 

15 37 (+24) 16 29 (-3,6) 43 76 77 HCM, PHT no 

pacemaker: 
atrial 

stimulation, 
WPW 

WPW, 
AV-

reentry 
tachycar

dia 

multiple family members 
with SCD< 40 y, LGE: 

septal and inferoseptal; 
ICD implantation at 11 y, 

NYHA II-III 

Family 5 

5-I:1 no TNNI3 variant 32 13 N/A 53 22 43 57 normal no 

discordant T-
waves in III, 

slow R 
progression 

2 PVCs 
no symptoms, no 

medications 

5-I:2 no TNNI3 variant 30,4 8 N/A 50 38 68 N/A normal no SR, normal normal 
no symptoms, no 

medication 

5-II:1 

heterozygous, 
TNNI3 

c.574C>T, 
p.Arg192Cys 

2,7 4 (-0.3) N/A 24 (-1.8) 25 52 44 

RCM, severe 
biatrial 

enlargement, TI 
°II, RVSP 50 

mmHg 

no 
SR, LVH, 
right atrial 

abnormality 
no 

Cardiac 
decompensation, 
postcapillary PHT, 
biventricular VAD 

implantation at 2.7 y, 
HTX at 3.4 y 

Family 6 

6-II:1 

heterozygous, 
TNNI3 

c.582C>A, 
p.Asn194Lys 

9 5,5 (-0.3) 5,9 (0) 
54,2 

(+4.6) 
18 

(<28) 
45 

(>55) 
30 (>55) 

DCM, mild MR, LA 
slightly enlarged 

 
no SR, normal no 

no symptoms; twin 
brother died of acute 

heart failure and DCM at 
9 y 
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Figure S 2: Extended pedigree of family 2. Genotypes are shown as wt or mut, representing the wildtype or 

altered (mutated) allele. For individuals with no genotype no samples for sequencing were available. Phenotypes 

and the variants on coding sequence and protein level are indicated. Males are represented with squares and 

females with circles. Affected individuals have a filled form and deceased family members are marked with a 

diagonal line 
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Figure S 3: Sequences of index patients and family members carrying a TNNI3 variant. Shown are the DNA 

sections from sequencing variants in all available family members of patients carrying a P or LP TNNI3 VOI. 
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Figure S 4: Sequences from controls and a CMP-affected individual of NGS-generated data analyzed with 

the program IGV for a variant detected in ABCC9. 
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Figure S 5: Sequences from controls and a CMP-affected individual of NGS-generated data analyzed with 

the program IGV for a variant detected in KCNH2. 



 
XLII 

  

 

Figure S 6: Sequences from controls and a CMP-affected individual of NGS-generated data analyzed with 

the program IGV for a variant detected in LDB3. 
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Figure S 7: Sequences from controls and a CMP-affected individual of NGS-generated data analyzed with 

the program IGV for a variant detected in MYBPC3.
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