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Summary

When people are asked whether they like to take risks, their responses are typically consistent
over time and predictive of real-world behavior. Hence, risk attitude can be regarded as a stable
psychological trait (Frey et al., 2017). Yet, in behavioral risky choice tasks used in psychological
and economic research—such as choices between lotteries, abstractly described in terms of out-
comes and probabilities—behavior often varies considerably across measurement time-points and
formats of the task (Frey et al., 2017; Pedroni et al., 2017). It seems paradoxical that decisions
in these situations—which try to condense the problem of decision making under risk to its essen-
tial parts—are rarely an expressions of a person’s stable, latent risk attitude. This dissertation
examines why experimental risky choice behavior can be notoriously hard to predict, and how the
methodological and theoretical apparatus with which we approach the study of risk preferences
shapes the inferences we can make.

In the first chapter I introduce major theoretical perspectives on decision making under
risk and the methods their proponents rely on. The notion of constructed preferences (Lichtenstein
& Slovic, 2006; Slovic, 1995) is introduced as a general framework for understanding the lack of
temporal stability and convergent validity of behavioral measures of risk attitude. According to
this framework, behavioral risk preferences may be constructed on the spot, in the light of available
cues and processing capacities. Hence, features of the choice environment—which have nothing to
do with risk itself—and psychological characteristics of the decision maker—besides dispositional
risk attitude—may profoundly shape the process and output of preference construction. In the
subsequent chapters I investigate how surface features of stimulus materials, and individual differ-
ences in psychological characteristics, as well as their interplay, shape risky choice behavior. I also
use different approaches of computational modeling to describe and explain these changes in risky
choice and the underlying cognitive processes. In chapter 2 I demonstrate that in choices between
a risky and a safe option, apparent age differences in risk attitude crucially depend on whether the
options differ in complexity, rather than on age differences in latent risk attitude. In chapter 3 I
investigate whether differences in option complexity also shape (age differences in) tasks used to
measure framing effects, loss aversion, and delay discounting. This experiment identifies boundary
conditions of the effects of option complexity. In chapter 4 I turn from focusing predominantly on
behavior and its dependence on the anatomy of the task towards underlying cognitive processes. I
demonstrate that risky choice behavior is shaped by differences between younger and older adults
in the ability to implement selective attention. In chapter 5 I demonstrate why it may be useful to
view risky choice through the lens of different formal theories—both economic and psychological
ones—by identifying systematic signatures of attentional biases simulated in the attentional drift
diffusion model in the parameters of cumulative prospect theory.

Overall, this dissertation shows why decision making under risk cannot be comprehen-
sively understood in terms of latent risk attitude alone. It identifies specific contextual (option
complexity) and psychological (selective attention) determinants of risky choice behavior which
need to be taken into account as well, and explains how they affect the underlying process of



preference construction, using computational modeling. Moreover, this work underlines the merits
of theoretical and methodological pluralism for studying the variable, context-sensitive aspects of
risky choice behavior and individual differences therein.



Zusammenfassung

Wenn Personen gefragt werden, ob sie gerne Risiken eingehen, geben Sie typischerweise über die
Zeit hinweg stabile Antworten, die auch echtes Verhalten vorhersagen. Daher kann Risikoein-
stellung als ein stabiler psychologischer Charakterzug betrachtet werden (Frey et al., 2017). In
Verhaltensaufgaben, die in der psychologischen und ökonomischen Forschung verwendet werden—
zum Beispiel Entscheidungen zwischen Lotterien, die abstrakt in Form der möglichen Ergebnisse
und ihrer Wahrscheinlichkeiten beschrieben werden—variiert Verhalten allerdings häufig über die
Zeit und zwischen verschiedenen Formaten der Aufgabe (Frey et al., 2017; Pedroni et al., 2017). Es
erscheint paradox, dass Entscheidungen in diesen Situationen—in denen das Problem des Entschei-
dens unter Risiko auf seine scheinbar essentiellen Aspekte reduziert wird—kaum Ausdruck der sta-
bilen, latenten Risikoeinstellung der Person zu sein scheint. Diese Dissertation untersucht, warum
in Experimenten gezeigtes Verhalten in Entscheidungen unter Risiko sehr schwer vorherzusagen sein
kann und wie bestimmte wissenschaftliche Methoden und Theorien beeinflussen, welche Schlüsse
wir über Risikopräferenzen ziehen können.

Das erste Kapitel stellt prominente Theorien und Messmethoden zum Entscheiden unter
Risiko vor. Die Idee der Präferenzkonstruktion (Lichtenstein & Slovic, 2006; Slovic, 1995) di-
ent als theoretischer Rahmen um die zeitliche Instabilität und geringe konvergente Validität von
verhaltensbasierten, experimentellen Maßen der Risikoeinstellung zu verstehen. Es wird dabei
angenommen, dass Verhalten in experimentellen Aufgaben im Moment der Entscheidungsfindung
konstruiert wird und somit abhängig von der momentan verfügbaren Information und kognitiven
Kapazitäten ist. Daher können Umgebungsmerkmale—welche nichts mit Risiko an sich zu tun
haben—und psychologische Charakteristika—neben latenter Risikoattitüde—einen entscheidenden
Einfluss darauf haben, wie Präferenzen konstruiert werden und welches Ergebnis dieser Konstruk-
tionsprozess hervorbringt. In den folgenden Kapiteln wird untersucht, wie Oberflächenmerkmale
von Stimulusmaterialien und psychologische Charakteristika, wie auch deren Interaktion, Entschei-
dungen unter Risiko beeinflussen. Verschiedene Ansätze der komputationalen Modellierung wer-
den verwendet, um diese Veränderungen im Verhalten, sowie die zugrundeliegenden kognitiven
Prozesse, zu beschreiben und zu erklären. In Kapitel 2 wird gezeigt, dass bei Wahlen zwischen
einer sicheren und einer risikoreichen Option scheinbare Altersunterschiede in der Risikoeinstellung
zwischen jüngeren und älteren Erwachsenen maßgeblich davon abhängen, ob sich die Optionen in
ihrer Komplexität unterscheiden. In Kapitel 3 wird untersucht, ob Unterschiede in der Option-
skomplexität auch Altersunterschiede in Aufgaben beeinflussen, die häufig verwendet werden, um
Framing-Effekte, Verlustaversion, und die Abwertung zukünftiger Gewinne zu untersuchen. Dieses
Experiment identifiziert Randbedingungen für die Effekte von Optionskomplexität. Kapitel 4
wendet sich den kognitiven Prozessen zu, die der Abhängigkeit des Verhaltens von der Struktur
der Aufgabe zugrundeliegen. Es wird gezeigt, dass Risikoentscheidungen von Unterschieden in
der Fähigkeit, selektive Aufmerksamkeit zu implementieren, abhängen. Kapitel 5 demonstriert,
warum es nützlich sein kann, Risikoverhalten aus der Perspektive verschiedener psychologischer
und ökonomischer Theorien zu betrachten. Dazu werden die Effekte von ungleicher Aufmerk-



samkeitsverteilung, simuliert im attentional Drift Diffusion Model, auf die Parameter von Cumu-
lative Prospect Theory abgebildet.

Insgesamt zeigt diese Dissertation, dass Entscheidungen unter Risiko nicht hinreichend
im Sinne von latenter Risikoeinstellung allein verstanden werden können. Sie identifiziert spezi-
fische Kontextmerkmale (Optionskomplexität) und psychologische Merkmale (selektive Aufmerk-
samkeit), die ebenfalls beachtet werden müssen, und erklärt anhand von komputationaler Model-
lierung, wie diese Faktoren den zugrundeliegenden Prozess der Präferenzkonstruktion beeinflussen.
Weiterhin unterstreicht die Arbeit den Nutzen von theoretischem und methodologischem Plural-
ismus für die Untersuchung der variablen, kontext-sensitiven Aspekte von Risikoentscheidungen,
und von Unterschieden zwischen Individuen darin.
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1 | General Introduction

1.1 What is Risk?

The most intriguing constructs in psychology are typically those that lack a commonly agreed-upon
definition—concepts such as intelligence, rationality, and also risk. In daily use, risk often refers to
the threat of dangers, losses or undesirable events in general (Aven, 2012). More broadly speaking,
risk can be understood as a property of probabilistic environments with negative, neutral or posi-
tive outcomes. In behavioral research on decision making, risk is often defined by distinguishing it
from certainty and uncertainty: In a world of certainty, each possible action invariably leads to a
specific outcome, which is known to the decision maker (Luce & Raiffa, 1989). In decisions under
risk, defined in the Knightian sense, each action leads to one of several possible outcomes, and
the decision maker has full and precise knowledge about the outcomes and associated probabilities
(Knight, 1921, see also Edwards, 1954). Throughout this dissertation I rely on this concept of risk.
Finally, in decisions under uncertainty (Hacking, 2006; Knight, 1921; Luce & Raiffa, 1989), the
probabilities and/or values of possible outcomes are not precisely known, due to reasons located
within the decision maker (epistemic uncertainty), or they are even unknowable, due to an inher-
ently stochastic structure of the world (aleatory uncertainty). In this dissertation, I mainly focus
on decisions under risk, although certainty and uncertainty are encountered along the way.

Quantitatively, the risk of an option can, for instance, be measured as the variance of its
possible outcomes, or as this variance normalized by the expected return—a dimensionless measure
of risk (Weber et al., 2004).

Risk preference, in turn, refers to psychological responses to risk (Frey et al., 2017). Risk
preferences have been studied in a rich literature spanning the disciplines of economics, psychology
and cognitive science. Yet, different disciplines, and even schools of thought within disciplines,
neither agree upon a common formal framework for modeling risk preferences, nor on a common
experimental measure to elicit them—which is particularly troublesome given the low convergence
between some of the existing measures (Frey et al., 2015; Pedroni et al., 2017).

In this dissertation I demonstrate how the theoretical and methodological apparatus with
which we approach the study of risk preferences determines which kinds of inferences we (can)
make—and why it can be so difficult to predict risky choice behavior reliably. I mainly focus on
behavioral measures of risk preference, which show particularly weak convergence and test-retest
reliability (Frey et al., 2017; Pedroni et al., 2017). My core thesis is that behavior in risky choice
tasks often depends on features of stimulus materials besides risk itself, and on individual differ-
ences in psychological characteristics besides latent risk attitude. However, traditional theoretical
frameworks make it easy to overlook such contextual and psychological variables, since they de-
scribe risk preferences by reference to (transformations of) outcomes and probabilities alone. This
narrow focus can result in a failure to control or account for experimental confounds, thus gener-
ating a distorted and confusing picture of differences in risk preferences across tasks and groups of
individuals.
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I illustrate and address this problem by investigating how surface features of stimulus
materials (the structural complexity of safe and risky options), and individual differences in psy-
chological features (such as differences in attentional capacities due to cognitive aging) shape
behavior in risky choice tasks. Moreover, I use different approaches in computational modeling
to 1) describe the psychoeconomic structure of observed risky choice behavior, and to 2) explain
its psychological underpinnings on the level of information processing. I also demonstrate how
separate formal frameworks for modeling decision making under risk can be mapped onto each
other, although they operate on different levels of explanation (Marr, 1982). This fosters a more
integrative, holistic understanding of both empirical phenomena as well as formal frameworks for
studying decision making under risk.

In this introduction, I embed the individual chapters conceptually, within prominent the-
oretical and methodological frameworks for studying risk preference, and give a brief outlook on
each chapter.

1.2 From Normative to Descriptive Models:

Neo-Bernoullian Theories

1.2.1 Expected Value and Expected Utility

In mathematics, the problem of decision making under risk has been normatively solved since
1654, when Blaise Pascal and Pierre Fermat formulated the concept of mathematical expectation
in an exchange of letters (cf. David-Nightingale, 1962). Expectation maximization prescribes that
decision makers should choose the option with the highest expected value (EV ), defined as the
sum across its n outcomes x, weighted by their objective probabilities p:

EV =

n∑
i=1

pi × xi (1.1)

Challenging the descriptive appropriateness of this principle, Nicolas Bernoulli (the cousin
of Daniel Bernoulli) formulated the St. Petersburg paradox. He described a gamble where a
coin is tossed until it comes up heads, and the player’s reward doubles on each consecutive coin
toss, starting from one ducat on the first toss. The paradox is that although this gamble in
principle has an infinite EV, only few would be willing to pay infinite amounts of money for playing
(Bernoulli, 1954). Daniel Bernoulli offered a solution to this paradox, by introducing the expected
utility principle (1738/1954)1. Expected utility (EU) moves one step away from normative calculus
towards subjective preferences, by replacing objective monetary values by the subjective utility the
decision maker would derive from them:

EU =

n∑
i=1

pi × u(xi) (1.2)

The utility function u(xi) is assumed to be concave, capturing that the same increase in
value becomes less significant when the value of goods already possessed increases. The concave
utility function is reminiscent of the Weber-Fechner law in psychophysics, which describes a loga-
rithmic relationship between stimulus magnitude and the intensity of sensations (Fechner, 1860),
and it is still featured in several modern theories of decision making under risk (Birnbaum, 2005;
Fishburn, 1970; Lopes, 1987; Tversky & Kahneman, 1992). The expected utility principle was

1The English translation of Bernoulli’s work originally written in Latin in 1738 was published in 1954.
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later axiomatized by von Neumann and Morgenstern (1945), and viewed as an appropriate theory
of human reasoning and decision making for a while.

1.2.2 Behavioral Paradoxes

However, it soon became clear that empirical human behavior often contradicted EU. For instance,
under EU, common consequences that are part of all options can be eliminated from consideration—
but decision makers do not behave accordingly. For illustration, consider a choice between option
A and B and a choice between option C and D:

option A offers
a 100% chance to win $1 Mio

option B offers
a 89% chance to win $1 Mio
a 1% chance to win $0
a 10% chance to win $5 Mio

option C offers
a 89% chance to win $0
an 11% chance to win $1 Mio

option D offers
a 10% chance to win $5 Mio
a 90% chance to win $0

Under EU the common 89% chance to win $1 Mio in option A and B, and the common 89% chance
to win $0 in option C and D can be ignored. This elimination of common consequences makes A
equivalent to C and B equivalent to D:

option A and C offer
an 11% chance to win $1 Mio

option B and D offer
a 10% chance to win $5 Mio
a 1% chance to win $0

Nevertheless, people typically prefer A over B while also preferring D over C. This prefer-
ence pattern, known as the Allais paradox (Allais, 1953), can not be explained under any possible
utility function in EU.

Kahneman and Tversky (1979) slightly modified the Allais paradox and showed that elim-
inating an equivalent 66% chance of winning $2400 from a safe and a risky option had a greater
impact on the desirability of the safe option than of the risky option. This phenomenon, known as
the certainty effect, suggests a subjective overweighting of safe outcomes relative to merely proba-
ble ones (Kahneman & Tversky, 1979; Tversky & Kahneman, 1986)—thus violating the weighting
by objective probabilities in EU. Further speaking against weighting by objective probabilities,
people were found to exhibit the fourfold pattern of risk attitudes: People are risk averse for
high-probability gains and low-probability losses, but risk seeking for low-probability gains and
high-probability losses (Tversky & Fox, 1995; Tversky & Kahneman, 1992). The fourfold pattern
comprises a reversal of preference patterns between the positive and negative domain (gains and
losses) also known as the reflection effect (Kahneman & Tversky, 1979).

1.2.3 Prospect Theory and Cumulative Prospect Theory

These and other intriguing empirical demonstrations of EU’s limits as a descriptive model of
human risk preferences led to the development of prospect theory (PT; Kahneman & Tversky,
1979) and later cumulative prospect theory (CPT; Tversky & Kahneman, 1992). The authors set
themselves the goal “to assemble the minimal set of modifications of expected utility theory that
would provide a descriptive account of [...] choices between simple monetary gambles” (Kahneman
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& Tversky, 2000, p.x)—and they did just that. In PT and CPT the carriers of subjective utility
are no longer absolute end states, but changes in value compared to a reference point. CPT’s value
function v(xi) is concave for gains and convex for losses, capturing that changes in value are more
difficult to discriminate the further they are away from the reference point. The value function is
steeper for losses than for gains, capturing loss aversion—the observation that losses seem to have
greater impact on preferences than gains of equal magnitude. Moreover, objective probabilities are
replaced by decision weights π, derived from an inverse S-shaped probability-weighting function
w(pi).2 Hence, in CPT decision makers are assumed to choose the option with the highest valuation
V :

V =

n∑
i=1

πi × v(xi) (1.3)

The nonlinear transformations of outcomes and probabilities in the value function and the
probability-weighting function allow CPT to account for the Allais paradox, the certainty effect,
the fourfold pattern, the reflection effect and several other benchmark violations of EU.

1.2.4 Modern Applications of CPT

Ever since, CPT has been one of the most influential modern economic theories of decision mak-
ing under risk, culminating in Daniel Kahneman being awarded a Nobel Price in 20023. Various
fields still apply CPT to make sense of observed behavior, ranging form finance over insurance
to psychology (Barberis, 2013; Camerer, 2000). Although Kahneman and Tversky (1979) largely
refrained from ascribing specific psychological meaning to CPT’s parameters, such psychological
interpretations are intuitive and tempting, and modern psychology often takes the bait: Parameter
estimates obtained by fitting CPT to empirical choice data are, for instance, used to assess subjec-
tive representations of probabilities and outcomes (Kellen et al., 2016), or to measure individual
levels of optimism, pessimism, and probability sensitivity (Gonzalez & Wu, 1999). In chapter
2 of this dissertation I apply CPT, in combination with a stochastic choice rule, to disentangle
systematic distortions of attributes from unsystematic errors (cf. Rieskamp, 2008), and to assess
which of these components are affected by manipulating the complexity of options in risky choice
tasks (more details below). In Chapter 5 I further identify a novel psychological interpretation for
CPT’s probability-weighting function, in terms of the relative amount of attention given to safe
and risky options in risky choice.

1.2.5 The Persistent Rationale of Maximization

Note that EU, PT, and CPT moved away from rigid, normative principles prescribing behavior of
idealized agents, towards increasingly flexible functions describing behavior observed in humans.
Critics disparagingly view the consecutive addition of free parameters as a “repair program” for
Bernoullian logic (Berg & Gigerenzer, 2010, p. 135). It is true that this lineage of theories retained
the core principle of maximization—picking the best option after multiplying and integrating (some
function of) values and probabilities. In a non-judgmental manner, I will refer to such models as
neo-Bernoullian.

2PT assumed decision weights on non-cumulative probabilities, and an initial editing phase, during which dom-
inated options were eliminated. CPT assumed no editing phase and decision weights on cumulative probabilities
instead, to preclude violations of stochastic dominance.

3Amos Tversky had died in 1996.
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1.3 Psychological Concepts and Operationalizations of Risk

Preferences

1.3.1 Lotteries as a Psychological Measurement Tool for Risk
Preferences

Beyond the rationale of maximization, models within the neo-Bernoullian framework have another
thing in common: Their assumptions are largely shaped by empirical insights obtained in choices
between symbolically described lotteries, consisting of discrete outcomes (x1, ..., xk, ..., xn) with
associated probabilities (p1, ..., , pk = 1 −

∑k−1
i=1 pi −

∑n
i=k+1 pi, ..., pn = 1 −

∑n−1
i=1 pi), such as

a choice between option A, offering a 100% chance to win $50 and option B, offering a 50%

chance to win $100, and a 50% chance to win $0. Such lotteries were not only essential in the
development of economic theory, but are also frequently used as a psychological measurement tool
for risk preferences (e.g., Pachur, Mata, et al., 2017; Rutledge et al., 2016). Risk preferences can
be loosely defined as psychological responses to risk (Frey et al., 2017, more details below), and
choices between lotteries promise to extract and isolate risk preferences in a highly structured and
controlled manner: Much like thought experiments in philosophy (cf. Dennett, 2013), lottery choice
tasks break down the rich problem of decision making under risk and amplify what is thought to
be its essential parts—numerical properties of options. However, this sharp focus also creates blind
spots. This becomes evident when considering that choices between described lotteries are only
one tool in a vast and diverse set of psychological methods for studying risk preferences, which
often produce divergent results.

1.3.2 Alternatives to Lotteries

Indeed, there are two major traditions for operationalizing risk preferences (Frey et al., 2017;
Hertwig et al., 2019; Pedroni et al., 2017): Choices between lotteries belong to the revealed-
preference tradition of measurement, which prompts and observes behavior in artificial choice
situations involving risk. The structure of individual tasks within this tradition differs considerably,
for instance in terms of the information presented, the response required, and the availability of
feedback (Pedroni et al., 2017). In the stated-preference tradition of measurement, people are
instead asked to self-report their introspective risk taking propensity, either in general (cf. Dohmen
et al., 2011), or with respect to some specific scenario or domain (such as financial, recreational,
or health-related risk taking, cf. Josef et al., 2016). Even more concretely, frequency measures ask
how often a person engages in a particular risky activity, such as the number of cigarettes smoked
per day (Heatherton et al., 1991). In terms of what they demand of the decision maker, individual
measures within the stated-preference tradition resemble each other more closely than individual
measures within the revealed-preference tradition.

1.3.3 Dispositional (Trait) or Constructed (State) Preferences?

This distinction between measurement traditions maps, to some degree, on a conceptual disagree-
ment about the psychometric structure of risk preference (Frey et al., 2017; Hertwig et al., 2019;
Mata et al., 2018): Is risk preference a stable, trait-like disposition, or does it vary substantially
over time and situations, more like a state? The empirical preference reversals in choices about
lotteries (which shaped EU, PT and CPT) seem to speak strongly in favor of context-dependence
and variability. Indeed, behavioral measures of risk preference—where such preference reversals
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are frequently observed—only converge to a small degree, and display low test-retest reliability—
suggesting a state-like structure (Frey et al., 2017). Interestingly though, stated-preference mea-
sures show substantial convergence and high test-retest reliability—indicating a stable, disposi-
tional structure instead. Therefore, a general factor of risk preference, conforming to features of a
stable psychological trait, can be identified—but this trait rarely becomes evident in (experimental)
choice behavior (Frey et al., 2017). What is special about choice?

The notion of constructed preferences offers an explanation for this methodological and
conceptual discrepancy (Lichtenstein & Slovic, 2006; Slovic, 1995; Warren et al., 2011): In choice
tasks, participants may not implement stable, well-defined, and ordered preferences, but instead
construct their preferences on the spot by actively processing whatever cues are available. The
construction process may involve strategies such as discarding, overweighting, or cognitively re-
structuring certain information on the decision problem. Hence, diverse features of the choice
context—which may have nothing to do with the options’ risk itself—can shape the process and
output of preference construction. Examples for context-variables that demonstrably shape choice
behavior are response mode (Lichtenstein & Slovic, 1971; Lindman, 1971), time pressure (Maule
& Svenson, 1993; Payne et al., 1993) and gain/loss framing (Kahneman & Tversky, 1984; Tversky
& Kahneman, 1981). Hence, preference construction assigns a crucial role to the environment to
explain the variability of risky choice behavior. Consistently, the greater diversity of information
formats and demands of different behavioral measures of risk preference, compared to different
stated-preference measures, maps onto a greater diversity of preferences observed, and conversely,
a lower degree of convergence between behavioral methods.

Slovic’s (1995) writing generates the impression that the idea of dispositional preferences
might be entirely replaced by that of preference construction. However, there is no reason why
observed inconsistencies in risky choice behavior should in principle preclude the existence of a
dispositional risk attitude, especially given Frey et al.’s (2017) recent results. Rather, behavior
may reflect the combined consequences of both disposition and construction (Simonson, 2008),
and conditional on the specific measurement tool, one may override the other (Frey et al., 2017):
While responses in propensity measures of risk attitude seem to be relatively well-explained in
terms of dispositional risk attitude, responses in behavioral tasks can be understood within the
general framework of constructed preferences. However, this conceptual framework alone does not
allow to predict preferences in specific risky choice tasks reliably. To this end, the concrete factors
shaping preference construction need to be comprehensively understood.

1.4 Determinants of Preference Construction

According to the notion of preference construction, two types of variables, besides risk and dis-
positional risk attitude itself, may systematically determine behavior in risky choice: Features of
stimulus materials, that is, environmental variables, and features of the mind, that is, psychological
variables.

1.4.1 Factors in the Choice Environment

As delineated previously, environmental characteristics (besides risk itself) are a staple for under-
standing constructed risk preferences. For instance, preferences reverse when the response format
changes, that is, when people have to assign prices to lotteries instead of making binary choices
(Binswanger, 1980; Lichtenstein & Slovic, 1971), or when probabilities are displayed in terms of
fractions rather than decimals (E. J. Johnson et al., 1988). Moreover, different ways of communi-
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cating risk, either by numerically describing outcomes and probabilities (decision from description,
DfD) or by granting first-hand experience through sampling the options’ outcome distributions
(decision from experience, DfE) entail choice behavior that either seems indicative of an over-
weighting or underweighting of rare events, respectively (Hertwig et al., 2004; Wulff et al., 2018).
This phenomenon is known as the description-experience gap. Differences between description-
and experience-based measures of risk preference have, among other things, been attributed to
differential learning requirements of the tasks (Mata et al., 2011). Notably, higher learning re-
quirements affect older adults more severely than younger adults, and thus distort inferences on
age-differences in (dispositional) risk preference (Mata et al., 2011).

1.4.2 The Mind-Environment Fit

This insight is worth repeating: Varying task requirements do not affect preference in all individ-
uals alike. Consequently, studying the environment alone is not sufficient to fully understand the
behavioral variability of risk preferences—instead, individual differences in psychological charac-
teristics (beyond dispositional risk attitude) have to be taken into account as well. Simon (1990,
p.7) famously expressed this in the scissors metaphor: “Human rational behavior [...] is shaped by
a scissors whose two blades are the structure of task environments and the computational capabil-
ities of the actor”—and one stands no chance of understanding the act of cutting by considering
only one blade. Following this rationale, researchers have studied cognitive and other psychologi-
cal variables that predict individual differences in risk preference, and how they interact with task
characteristics.

1.4.3 Individual Differences in Psychological Characteristics

Maybe most prominently, behavior in risky choice tasks has often been linked to cognitive ability.
To provide a concrete example, participants who perform better on the cognitive reflection test
(CRT)—where each question invites an intuitive but incorrect response, which can be overcome
by more reflective deliberation—tend to be less risk averse in choices about gains (Frederick,
2005). Likewise, a recent meta-analysis including diverse behavioral measures of risk preference
found a weak but significant negative relationship between cognitive ability and risk aversion in
the domain of gains (Lilleholt, 2019), and a similar pattern also emerges for self-reported risk
preferences (Dohmen et al., 2018). Moreover, participants with lower numeracy (mathematical or
quantitative literacy; Cokely et al., 2012) tend to make more inconsistent risky choices (Tymula
et al., 2013).

To address how cognitive capacities interact with environmental features to shape prefer-
ences, comparisons between younger and older adults have proven particularly useful. Cognitive
aging entails a well-established decline in fluid intelligence (Baltes, 1987; Craik & Bialystok, 2006;
Horn & Cattell, 1967; Salthouse, 2004; Zaval et al., 2015), a component of general intelligence typ-
ically opposed to crystallized intelligence (Cattell, 1987). Fluid intelligence comprises the abilities
to manipulate, comprehend and draw inferences based on novel information in real time (Craik
& Bialystok, 2006; Zaval et al., 2015). Whether these age-related cognitive impairments affect
decision making often depends on task demands: For instance, older adults tend to rely more
on simpler strategies, which discard certain aspects of information (Mata et al., 2007), especially
in choice problems with a high number of options (Besedeš et al., 2012a, 2012b). Moreover, a
meta-analysis on pre-decisional information search concluded that older adults searched for less
information before choice, especially if options were characterized by a greater number of attributes
(Mata & Nunes, 2010). Similarly, in decision from experience, Frey et al. (2015) found that older
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adults sampled less per option than younger adults, but only under if the overall number of options
was high. Moreover, older adults’ adhere less to EV calculation (Mamerow et al., 2016; Pachur,
Mata, et al., 2017), and this can induce the impression of age differences in risk preference when
safe options systematically have higher EVs than risky options (Mamerow et al., 2016).

That is, since younger and older adults differ in cognitive abilities, they tend to respond
differently to complex and cognitively demanding features of risky choice tasks. This can shape in-
ferences on age differences in risk preference—and thus exemplifies the intricate interaction between
mind and environment that constitutes constructed risk preferences.

In Chapter 2-4 of this dissertation, I demonstrate that previously overlooked differences
in complexity between safe and risky options in lottery choice tasks affect cognitive processing
and risky choice behavior differently in younger and older adults. In chapter 2, I experimentally
manipulate the complexity of safe options to show that older adults are typically more likely
to choose safe gains over risky gains—not because they are less risky, but because they are less
complex. Chapter 3 tests the scope of this interaction between age group and option complexity,
by extending the investigation to a wider range of choice tasks. In chapter 4, I investigate how
differences in selective attention between younger and older adults shape risky choice behavior, and
age differences therein, under varying levels of option complexity. These findings on the impact of
environmental complexity and psychological capacities on the construction of risk preferences are
formalized in terms of different theoretical frameworks. The next section outlines how this can, in
principle, be achieved.

1.5 From Descriptive to Explanatory Models

To capture constructed preferences, formal theories need to account for the structure of the en-
vironment and for decision makers’ psychological characteristics, such as limited knowledge and
computational capacity—reminiscent of Simon’s (1956, 1997) notion of bounded rationality. To
which extent can different classes of models of decision making under risk capture these factors,
and thus constructed preferences?

1.5.1 Neo-Bernoullian Constructed Preferences?

Let us first briefly return to neo-Bernoullian models. Since assumptions in these models were
shaped by paradoxes and preference reversals, the framework might be well-adapted to study
constructed, context-dependent and variable risk preferences. Indeed, CPT’s value and probability-
weighting function emulate a fundamental dependency of preferences on the numerical structure
of the environment. Moreover, the proportion of individuals classified as best described by EU
or CPT varies considerably across different behavioral tasks, thus capturing that decision makers
do not seem to apply a task-general evaluation strategy (Pedroni et al., 2017). This illustrates
that the neo-Bernoullian framework is well-suited to structurally describe risky choice patterns
that vary across contexts and individuals in a compact manner, once these behaviors have been
observed. However, since neo-Bernoullian models do not explicitly state how their parameters
depend on specific environmental or psychological characteristics, they make it difficult to predict
context-sensitive behaviors and individual differences therein reliably.

Moreover, neo-Bernoullian models are not models of the mind: To appreciate this, remem-
ber that neo-Bernoullian models transform objective outcomes and probabilities such that behavior
viewed in reference to the transformed problem allows to maintain the assumption of maximiza-
tion. This identifies an abstract representation of the problem that the decision maker seems to
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have solved—the functions that they seem to have computed—to produce observed behavior. Yet,
even though decision makers behave as if they computed these functions, these models do not
capture how they might have done this. In fact, it seems quite implausible that humans literally
compute the psychoeconomic functions of CPT and similar models (Berg & Gigerenzer, 2010),
and search processes in risky choice do not usually conform to those expected under a deliberate
weighting and adding (Pachur et al., 2013; Su et al., 2013). Overall, the neo-Bernoullian formalism
of maximization is simple for the modeler but difficult for the decision maker to implement (cf.
Einhorn, 1971; Lindman & Lyons, 1978).

1.5.2 Formalizing the Process of Preference Formation

How else—if not by adding and weighting—might decision makers arrive at a choice, conditional
on features of the task and of their own psychology? Under bounded rationality, the notion of
maximizing—which is merely a function of selected features of the environment, and disregards the
actor (Payne, 1973; Simon, 1990)—is replaced by satisficing, verbally a mixture between satisfying
and sufficing. Satisficing decision makers do not look for an optimal outcome, but instead, for
a satisfactory one, which meets an aspiration level, and is typically much easier to find (Simon,
1955). Under this perspective, the process of arriving at the decision, including information search
and processing strategies, is as essential as the decision itself (Simon, 1997). Models that capture
both of these aspects in a cognitively plausible way are commonly referred to as process models
(cf. Lopes, 1995), and different families of process models can be distinguished.

Heuristics

One family of process models are heuristics—simple strategies which typically consist of a search
rule, a stopping rule and a choice rule (Gigerenzer et al., 1999). For instance, the priority heuristic
(PH, Brandstätter et al., 2006) assumes a lexicographic search process, where the minimum gain,
the probability of the minimum gain, and the maximum gain of options in risky choice are consid-
ered sequentially (in that order), until one of these reasons is found to be decisive. Upon reaching
an aspiration level, search is stopped and a choice is made. This processing strategy can predict the
Allais paradox, the certainty effect, and several other benchmark violations of EU, which shaped
the assumptions of CPT—and also offers an explanation for their cognitive roots. However, some
authors have questioned the appropriateness of processing assumptions in PH (Glöckner & Betsch,
2008; Hilbig, 2008). This highlights a general intricacy of process modeling. Making processing as-
sumptions explicit offers additional opportunity for disputing a model, since its predictions become
more constrained. Conversely, data consistent with highly constrained (process-level) predictions
can provide more impressive evidence in favor of a model, than if the predictions were less specific
(Lewandowsky & Farrell, 2018; Roberts & Pashler, 2000).

Sampling-based Models

A second prominent class of process models are sampling-based models. Like heuristics, they are
attractive since they do not require an explicit computation of psychoeconomic functions. Further
speaking to their psychological plausibility, computation in the brain is likely to be implemented as
a Bayesian sampler (Sanborn & Chater, 2016). For instance, the theory of Decision by Sampling
(DbS, Stewart et al., 2006) assumes that decision makers perform a series of binary, ordinal com-
parisons between the options’ outcomes and probabilities, and samples of these attributes drawn
from memory. The rank of each attribute’s value within the sample determines evaluations. These
processing assumptions predict and explain the emergence of choice patterns indicative of concave
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utility functions, loss aversion, the overweighting of small probabilities and the underweighting of
large probabilities—without requiring to literally compute CPT’s functions.

Similarly, sequential sampling models (e.g., Link & Heath, 1975; Ratcliff, 1978; Ratcliff
& Smith, 2004), which originate in signal detection theory (Swets, 1961; Tanner Jr. & Swets,
1954), formalize a deliberation process which is time-consuming but easy to implement: The
decision maker continuously evaluates the possible consequences of choosing each option, until
preference becomes strong enough to make a choice. For instance, random walk models (Bogacz et
al., 2006) assume a continual sampling and comparison of noisy payoff distributions, constituting
the options, until enough information is obtained to exceed a response threshold and make a
choice. The response threshold conceptually closely resembles the aspiration level in satisficing
(Simon, 1956). Decision field theory (DFT, Busemeyer & Townsend, 1993; Roe et al., 2001)
explicitly applies these core principles of sequential sampling to risky choice, and successfully
accounts for benchmark violations of EU, such as violations of strong stochastic transitivity and
preference reversals between buying and selling the same item. Moreover, sequential sampling
models generalize seamlessly from decision making under risk to uncertainty, since sampling does
not require full knowledge of the distribution of outcomes and probabilities.

A whole class of sequential sampling models addresses the important role of attention in
decision making (Busemeyer & Townsend, 1993; Krajbich et al., 2010; Krajbich & Rangel, 2011;
Roe et al., 2001; S. M. Smith & Krajbich, 2019; Trueblood et al., 2014; Usher & McClelland, 2001,
2004). Maybe most prominently, the attentional Drift Diffusion Model (aDDM, Krajbich et al.,
2010; Krajbich & Rangel, 2011) posits that looking longer at an option amplifies the impact of
its value on evidence accumulation, and therefore on choice. This simple assumption allows the
model to explain why people typically tend to choose the option that they look at longer (Armel
et al., 2008; Cavanagh et al., 2014; Fiedler & Glöckner, 2012; Glöckner et al., 2012; Glöckner &
Herbold, 2011; Konovalov & Krajbich, 2016; Krajbich et al., 2010; Krajbich et al., 2012; Krajbich
& Rangel, 2011; Shimojo et al., 2003; Stewart et al., 2016), in risky choice and other domains
(S. M. Smith & Krajbich, 2018). The processing perspective can thus pinpoint specific cognitive
variables that contribute to risk preferences—such as attentional biases—which neo-Bernoullian
theories are blind to. The narrow focus on outcomes and probabilities in models like CPT makes
it difficult to even begin thinking about attention as a potentially determinant of risky choice, and
almost impossible to express specific hypotheses in this regard.

In chapter 4 I use the attentional drift diffusion framework to investigate differences in in-
formation processing under selective attention between younger and older adults, and their impact
on age differences in risky choice. In chapter 5 I demonstrate how the process-model perspec-
tive can help identify psychological underpinnings of psychoeconomic functions in neo-Bernoullian
models.

1.5.3 Matching Models and Experimental Methods

As previously established, choices between described lotteries directly reflect the neo-Bernoullian
rationale that outcomes and probabilities capture the essence of decision making under risk. The
process-based framework highlights that this approach falls short of capturing how people search,
manipulate and integrate outcome and probability information—which is crucial for fully under-
standing risk preferences from a constructed-preference perspective. Consequently, the process-
oriented tradition comes with its own distinct set of experimental tools, namely process-tracing
methods that directly capture information acquisition (Schulte-Mecklenbeck et al., 2011). For
instance, information boards (Payne, 1976) and MouseLab (Bettman et al., 1990; E. J. Johnson
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et al., 1989; Payne et al., 1993) capture how participants sequentially open physical envelopes
or fields on a computer screen containing outcome or probability information. Mouse-tracking
(Franco-Watkins & Johnson, 2011; Koop & Johnson, 2011) and eye-tracking (Orquin & Loose,
2013; Rayner, 1998; Stewart et al., 2016) capture continuous movements of mouse-cursors and
eyes during information search and response selection. Thereby obtained processing signatures
can either be analysed in their own right or incorporated into computational models. By formally
modeling response time data, different aspects of processing can also be dissociated parametri-
cally, without directly monitoring search (Ratcliff, 1978; Ratcliff & Smith, 2004). Although less
immediate, this approach can be applied to simpler data.

1.6 Connecting Different Levels of Explanation

We have considered two influential formal frameworks for studying decision making under risk,
the neo-Bernoullian and process-related framework. Although they differ considerably in their
conceptual and methodological implications, the two frameworks are not necessarily strictly com-
peting accounts. Note, for instance, that many choice patterns can be correctly predicted by
both CPT and PH (Brandstätter et al., 2006). Moreover, the processing assumptions in DbS give
rise to CPT’s psychoeconomic functions (Stewart et al., 2006), without literally computing them,
and some random walks which can implement EV maximization (Bogacz et al., 2006) without
applying the algebraic calculus of adding and weighting. These observations highlight that neo-
Bernoullian and process models may be compatible rather than competing accounts of the same
behavioral phenomena—which operate on different levels of explanation (cf. Marr, 1982). For
instance, CPT’s iconic psychoeconomic functions can be viewed as an abstract description of be-
havior that emerges, when realistic agents implement simple processing strategies, like heuristics or
sampling-based strategies (cf. Pachur, Suter, et al., 2017, and chapter 5 of this dissertation). That
is, while neo-Bernoullian models describe constructed preferences, meaning behavioral outputs of
the construction process, process models capture the active process of construction itself. In this
sense, both have their place in the theoretical landscape of decision making under risk, rather than
competing for the same niche. In the end, what one considers a (more) satisfying explanation
may depend on subjective phenomenological markers (Gopnik, 1998). I employ both frameworks,
and their associated experimental methods, throughout this dissertation, thus demonstrating how
they can complement each other. Chapter 5 explicitly addresses the potential for theory integra-
tion between neo-Bernoullian and process models, by showing that the attentional drift diffusion
framework can be used to identify attentional underpinnings for characteristic shapes of CPT’s
probability-weighting function.

1.7 Overview of the Dissertation

In this dissertation I investigate how the conceptual and methodological apparatus with which we
approach the study of decision making under risk determines which kinds of inferences we (can)
make—and why it can be so difficult to predict risky choice behavior accurately. Each chapter of
this dissertation has been prepared for publication, and can thus also be read as self-contained.

In chapter 2, I demonstrate experimentally how differences in option complexity between
safe and risky options, a longtime overlooked confound in lottery choice tasks for the behavioral
measurement of risk attitude, distort inferences on age differences in risk attitude. In two experi-
ments, I show that older adults are more likely to choose safe gains and to reject safe losses than
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younger adults—but only if these safe options are simpler than their risky alternatives. Experimen-
tally increasing the complexity of safe options eliminated such age differences. These preference
shifts are not explained by complexity aversion, or by an increase in non-systematic errors. Rather,
modeling in CPT suggests that the availability of simple safe options amplifies systematic distor-
tions in the probability-weighting function and the value function.

In chapter 3, I investigate whether differences in option complexity also distort the mea-
surement of age differences in other prominent phenomena in risky and risk-free choice, namely
loss aversion, framing effects, and delay discounting. Contrary to our hypotheses, manipulating
differences in option complexity in these tasks barely affected choice behavior, and age differences
therein. I discuss which features of these tasks may serve as boundary conditions for the impact
of option complexity on constructed preferences.

Chapter 4 moves further along the spectrum from descriptive towards explanatory ap-
proaches and directly targets age differences in cognitive processing of risky choice materials.
Using eye-tracking and modeling in the attentional drift diffusion framework, I demonstrate that
risky choice behavior is shaped by differences in attentional capacities between younger and older
adults, especially in choices between safe and risky options that differ in complexity. By applying
methods and theories which originate outside of the world of risky choice, I thus obtain a process-
based explanation for why traditional risky choice tasks make it so difficult to reliably capture risk
preferences and age differences therein.

Chapter 5 demonstrates on a more abstract level why it may be useful to view risky choice
through the lenses of diverse economic and psychological theories—even theories that superficially
seem to have little to do with each other. In a cross-theory parameter recovery between the
attentional drift diffusion model and CPT I show that seemingly disparate constructs in both
theories, attentional biases and probability weighting, may accommodate the same behaviors.
Thereby I identify innovative process-based explanations for iconic probability-weighting functions
prevalent in the risky choice literature—and for the associated empirical findings, such as the
certainty effect and the description-experience gap.

Chapter 6 synthesizes the results from chapters 2-5 and carves out the main empirical and
theoretical contributions, and embeds them in the broader discussions they contribute to.
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Abstract

The canonical conclusion from research on age differences in risky choice is that older adults are
more risk averse than younger adults, at least in choices between options with possible gains.
However, most of the evidence for this conclusion derives from studies that have investigated a
specific type of choice problem: choices between a safe and a risky option. However, safe and risky
options differ not only in the degree of risk but also in the amount of information to be processed—
that is, in their complexity. We demonstrate that differences in option complexity are a key driver
of age differences in risk attitude: When the complexity of the safe option is increased, older adults
no longer seem more risk averse than younger adults (in gains). Using computational modeling, we
compare candidate mechanisms underlying the effect of option complexity on risky choice: Results
show that participants are not simply averse to complexity, and that increasing safe options’
complexity does not only make responses more noisy. Rather, differences in option complexity
affect the impact of attribute information on preferences: the availability of a simple safe option is
associated with the distortion of probability weighting and decreased outcome sensitivity. When
both options’ complexity becomes more similar, these effects are attenuated. We also dissociate the
effect of option complexity from an effect of certainty on risky choice. We conclude by discussing
possible implications of our results for other phenomena in decision making (e.g., framing effects,
loss aversion, immediacy effects).



Chapter 2

2.1 Introduction

In many—perhaps most—of life’s decisions, people cannot be certain about which of the potential
outcomes will actually materialize. At best, they have some information about the probability
that the outcomes will occur, making them decisions under risk (Knight, 1921). A key behavioral
regularity in decisions under risk is that people seem to be risk averse, that is, to find riskier
options (defined as those having a larger variance in the possible outcomes; Markowitz, 1952)
less attractive than less risky ones. To illustrate, when asked to choose between a risky option
offering a 80% chance to win $4,000 (otherwise nothing) and a safe option of $3,000 for sure, most
people prefer the latter, although the former option’s expected value is higher (e.g., Kahneman &
Tversky, 1979).1 People’s risk attitude, that is, the degree to which they are risk averse or risk
seeking, has been shown to be sensitive to a number of factors, such as the domain (e.g., people
tend to be risk seeking when evaluating options with possible losses; Kahneman & Tversky, 1979)
and the magnitude of the outcome offered (people are more risk averse when the outcomes are
very high, Holt & Laury, 2002). In addition, there are considerable individual differences in risk
attitude, which have been associated with, for instance, personality (e.g., Becker et al., 2012) or
cognitive ability (Dohmen et al., 2018; Henninger et al., 2010). Moreover, there are robust gender
differences, with females often showing higher risk aversion than males (e.g., Charness & Gneezy,
2012).

Which of an individual’s characteristics affect their risky choices? One characteristic that
has attracted much attention is age—in particular, how does risky choice differ in older adults,
relative to younger ones? A common conclusion is that older adults are more risk averse than
younger adults in the domain of gains (Best & Charness, 2015; Mather et al., 2012; Rutledge
et al., 2016; Tymula et al., 2013). In this article, we highlight that much of the evidence for greater
risk aversion in older age stems from one type of choice problem—namely choice between a safe and
a risky option. For instance, when asked to choose between a risky option offering a 20% chance
to win $50 (otherwise nothing) and a safe gain of $10, older adults are more likely than younger
adults to prefer the safe option (e.g., Mather et al., 2012). Choice problems consisting of a safe and
a risky option have several practical advantages. For instance, they allow researchers to easily vary
the difference in risk between the options by keeping the safe option constant while increasing or
decreasing the variance of the risky option, thus capturing fine-grained degrees of risk aversion. Safe
and risky options, however, differ not only in their degree of risk; they also differ in the amount of
information to be processed—that is, in their complexity. Unlike safe options, risky options consist
of multiple pieces of information that together make up its anatomy. For illustration, even the
simplest risky option consists of two outcomes and their respective probabilities, whereas a safe
option is fully described by a single number (the only outcome).

We provide evidence that this difference in structural option complexity—defined presently
as the number of elements that characterize an option—is a key driver of differences between
younger and older adults typically observed in risky choice.2 We demonstrate that once complexity
differences between options are attenuated, the age differences in the risk attitude disappear. This
difference in option complexity between risky and safe options might help to explain puzzling
inconsistencies in the literature on age differences in decision making under risk. Last but not

1The expected value (EV) of a risky lottery is defined as the sum of all possible outcomes weighted by their
probabilities. The tendency to choose the option with the higher EV is commonly used as a standard to judge
decision quality.

2Clearly, complexity includes other dimensions as well. We focus on the number of elements here because it is
the most relevant one for conceptualizing differences between risky and safe options in the common risky choice
paradigm.

22



2.1. Introduction

least, we investigate the cognitive mechanisms underlying the effect of option complexity on risky
choice.

In what follows, we first review the evidence regarding age differences in risk attitude and
describe the potential role of option complexity in their emergence. We then derive hypotheses
about cognitive mechanisms possibly underlying the effects of complexity in risky choice in older
and younger adults. Finally, we report an online (Study 1) and a lab study (Study 2) that test these
hypotheses by analyzing behavioral patterns and by employing computational modeling based on
cumulative prospect theory (CPT; Tversky & Kahneman, 1992).

2.1.1 Age Differences in Risky Choice: An Overlooked Task
Dependency

A standard behavioral approach to examine age differences in risk preferences is to have people
make choices between options with differing levels of risk. In most studies with this approach,
older adults appear to be more risk averse than younger adults, at least in the domain of gains
(e.g., Mather et al., 2012; Rutledge et al., 2016; Tymula et al., 2013). In their meta-analysis
summarizing 18 studies using behavioral tasks to examine age differences in risky choice, Best and
Charness, 2015 concluded that, overall, older adults were more risk averse than younger adults
in the gain domain (−0.25, 95% CI [0.33, 0.18]), whereas there were no robust age differences in
the loss domain (−0.02, 95% CI [−0.10, 0.06]). Yet findings from some individual studies in the
domain of gains violate this pattern. For instance, Mather et al., 2012 did not find general age
differences in the tendency to choose the more risky gain (we discuss these results in more detail
below), and in Pachur, Mata, et al., 2017 and Kellen et al., 2017 older adults made even more
risk seeking choices in the domain of gains than younger adults. Table 2.1 provides an overview of
existing findings (focusing on studies with described probability and outcome information; for an
overview of studies in which this information has to be learned from experience, see Mata et al.,
2011).

How might these seemingly inconsistent results be reconciled? A closer look at the stimuli
used in the different studies reveals a striking yet hitherto largely neglected difference. Almost
all studies observing higher risk aversion in older than in younger adults (in the domain of gains)
examined choices between a safe and a risky option; in contrast, studies reporting no age differences
or the opposite pattern examined primarily choices between two (more or less) risky options: In
Pachur, Mata, et al.’s (2017) and Kellen et al.’s (2017) studies—both of which found that older
adults were more likely to choose the more risky gain—most choice problems consisted of two risky
options, such as a choice between option A, offering $23 with a chance of 44% or $31 with a chance
of 56%, and option B, offering $62 with a chance of 74% or $0 with a chance of 26%. Likewise,
Henninger et al., 2010, who also found higher risk seeking in older adults’ choices, employed the
Cambridge Gambling Task, in which all gain options involve risk.
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Table 2.1: Results from Previous Studies on Age Differences in Risky Choice, By Type of Choice
Task

n Age Results by Domain
Type of Task Used Subjectsa Range M SD Gains Losses Mixedb

Safe vs. Risky (Lotteries)
Rutledge et al., 2016 25189 18–69 OA more risk averse No age difference OA more risk seeking
Tymula et al., 2016 135 12–90 OA more risk averse than

YA and MA
OA more risk seeking than
AD, YA, and MA

–
- AD 12–17
- YA 21–25
- MA 30–50
- OA 65–90

Mather et al., 2012
Experiment 1 38 YA 18.7 (1.1) OA more risk averse than YA – –

38 OA 67.5 (5.4)
Experiment 2 48 YA 20.8 (3.5) OA more risk averse than YA – –

48 OA 72.4 (6.7)
Experiment 3 20 YA 21.1 (2.0) – OA more risk seeking than

YA
–

20 OA 68.8 (6.8)
Experiment 4 107 YA 29.46 (7.17) – – OA avoid safe losses more

than YA50 OA 59.30 (4.04)
Weller et al., 2011 358 EA 18–22 OA and MA more risk averse

than EA and YA

No age difference –
106 YA 24–44
61 MA 44–64
61 OA 65–85

Mamerow et al., 2016 902 18–90 47.4 (17.4) No age difference – –
Lauriola et al., 2001 26 YA 21–40 OA more risk averse than

YA; EA more risk averse
than OA

OA more risk seeking than
YA and EA27 OA 41–60

23 EA 61–80
Lee et al., 2007 21 YA 29.9 (6.2) – – OA more risk averse than YA9 OA 65.2 (4.2)
Safe vs. Risky (Framing)
Mayhorn et al., 2002 58 YA 29.9 (3.2) No age differencec No age difference No age difference

58 OA 70.3 (4.8)
Mikels and Reed, 2009 22 YA 19.77 (1.19) No age difference YA more risk seeking –

22 OA 71.55 (4.48)
Kim et al., 2005 186 YA 17–28 OA more susceptible to framing effectd

186 OA 58–78
Bruine de Bruin et al., 2007 360 18–88 47.7 (17.0) OA more susceptible to framing effect
Rönnlund et al., 2005 192 YA 69.1 (3.5) YA and OA equally susceptible to framing effect

192 OA 23.8 (7.4)
Watanabe et al., 2010 661 YA 20–64 44.8 YA more susceptible to framing effect168 OA 65–92 72.5
Thomas and Millar, 2011

Experiment 1 120 YA 19.4 No age difference OA more/equally risk
seeking than YAe

–
120 OA 74.3

Experiment 2 136 YA 20.1 No age difference No age difference –
136 OA 20.1

Risky vs. Risky (Lotteries)
Mather et al., 2012

Experiment 1 38 YA 18.7 (1.1) No age difference – –
38 OA 67.5 (5.4)

Experiment 2 48 YA 20.8 (3.5) No age difference – –
48 OA 72.4 (6.7)

Experiment 4 107 YA 29.46 (7.17) – – No age difference
50 OA 59.30 (4.04)

Pachur et al., 2017 60 YA 18–30 23.6 (3.1) OA more risk seeking OA more risk averse OA more risk averse
62 OA 63–88 71.3 (6.4)

Kellen et al., 2017 30 YA 18–34 OA more risk seeking OA more risk seeking OA more risk seekingf

30 OA 61–78
Risky vs. Risky (Cambridge Gambling Task)
Henninger et al., 2010 58 YA 23.4 (4.4) OA more risk seeking – –

54 OA 70.7 (3.0)
Deakin et al., 2004 177 17–79 41.0 (15.1) – – OA more risk averse
Zamarian et al., 2008 33 YA 18–54 36.1 (13.7) – – No age difference

52 OA 55–88 69.3 (7.0)
Risky vs. Risky (Blackjack)
Dror et al., 1998

Experiment 1 42 YA 18–33 20.9 3.2 No age difference
45 OA 61–85 70.5 (5.5)

Experiment 2 50 YA 18–39 21.0 (4.4) No age difference
53 OA 62–86 71.0 (5.2)

a AD = adolescents, YA = younger adults, MA = middle-aged adults, OA = older adults, EA = elderly adults.
b Mixed problems involve options with both positive and negative outcomes, such as a 50% chance to win 20$ and a 50% chance to lose 15$.
c Except in one scenario.
d Greater framing effect indicates a greater difference in risky choice behavior between gains and losses, typically higher risk aversion for gains and/or higher risk seeking
for losses.
e Depending on type of secondary task.
f Except in choices between mixed lotteries and loss-only lotteries.
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Mather et al., 2012 used both choice problems involving a risky and a safe option and two
risky options. Age differences in risky choice behavior emerged only if a safe option was available,
with older adults showing greater risk aversion in the domain of gains and greater risk seeking in
the domain of losses than younger adults. In problems with two risky options, by contrast, there
were no age differences. Mather et al., 2012 attributed this finding to a stronger certainty effect
in older adults. The certainty effect describes a relative overweighting of certainty: For instance,
the difference between 100% and 85% is weighted more heavily than the difference between 90%
and 75% (despite being nominally of the same magnitude). One of the most prominent expla-
nations for the certainty effect is provided by CPT (Tversky & Kahneman, 1992), a model that
describes regularities in risky choice in terms of non-linear transformations of outcome and prob-
ability information. In CPT (Tversky & Kahneman, 1992), the certainty effect is captured by an
inverse S-shaped probability weighting function that transforms objective probabilities into sub-
jective decision weights (for details and a formal definition see the section “Testing the underlying
mechanisms: Computational modeling”). The inverse S-shape of the weighting function has been
attributed to affective responses: situations triggering fear or hope (i.e., whenever the probability
of winning is less than 1) and situations devoid of those emotions (whenever the probability of
winning is equal to 1) are treated as categorically different (Lopes, 1987; Rottenstreich & Hsee,
2001), leading to large jumps in probability weighting at the extreme ends of the probability scale.

2.1.2 Task-Dependent Age Differences in Risky Choice: The Potential
Role of Option Complexity

Here we offer a different, and, in principle, complementary, explanation of why age differences in
risky choice or lack thereof critically depend on the presence or absence of a safe option. In contrast
to the certainty-effect account, our explanation attributes the differences to cognitive rather than
affective factors. It builds on the finding that risk aversion in choices between safe and risky gains
is negatively associated with cognitive ability (Dohmen et al., 2018) and the well-documented age-
related decline in fluid cognitive ability (Baltes, 1987; Craik & Bialystok, 2006; Horn & Cattell,
1967; Salthouse, 2004). Specifically, we argue that the presence of safe options may influence the
emergence (and possibly the direction) of age differences in risk attitude not (only) because their
outcomes are certain, but because they are less complex than risky options: In choice problems
involving a safe and a risky option—in which age differences in risky choice behavior are typically
observed—the options differ substantially in complexity. In contrast, in choice problems with two
risky options—in which age differences in choice are attenuated, eliminated, or even reversed—
differences in complexity between options are much smaller. We suggest that the age differences
typically observed in choices involving safe options are not primarily due to genuine differences
in risk attitude, or to older adults responding more strongly to certainty than younger adults but
stem from older adults’ response to option complexity. This seems consistent with age-related
declines in fluid intelligence (Craik & Bialystok, 2006; Horn & Cattell, 1967; Zaval et al., 2015),
which in turn have been drawn upon to explain age differences in several dimensions of decision
making (e.g. choice, information search). Those age differences appear to occur especially in
complex and demanding tasks (cf. Frey et al., 2015; Mamerow et al., 2016; Mata et al., 2007;
Zaval et al., 2015). On a neurobiological level, these impairments in information processing have
been linked to changes in dopaminergic neuromodulation, affecting, for instance, the signal-to-
noise ratio of neural processing (Li et al., 2001). Moreover, aging is associated with structural
and functional impairments in the (dorsolateral) prefrontal cortex (Rypma et al., 2001; Salat et
al., 2005; West, 1996), which in turn is implicated in decision-relevant working memory functions
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such as manipulating and integrating different pieces of information (Curtis & D’Esposito, 2003;
D’Esposito et al., 1995; Krawczyk, 2002; Rypma & D’Esposito, 2000).

Our complexity account and Mather et al.’s (2012) certainty account make different pre-
dictions about how age differences in risky choice behavior should differ between problem types.
Notably, the choice problems used in Mather et al., 2012 do not allow for the possible effects of
certainty versus complexity to be disentangled as the safe options were always less complex than
the risky ones. Turning to similarly complex safe and risky options, however, would permit the
certainty-effect and the complexity accounts to be dissociated. To construct such a problem type,
we increased the complexity of safe options by expressing the safe outcome as a mathematical term
rather than a single number, thus rendering its complexity more similar to the complexity of the
risky option (see Figure 2.1 for an example, and the section “Materials” for more detail). Com-
paring choices in this problem type to choices between a simple safe and a complex risky option
isolates the effect of complexity. Furthermore, comparing this problem type to choices between two
complex risky options isolates the effect of certainty. The most basic prediction of the complexity
account is that age differences in the tendency to choose the safe option should emerge if the
options differ in complexity (involving a simple safe option) but that they should be reduced (or
eliminated) with smaller or no differences in option complexity (involving a complex safe option).
By contrast, the certainty account does not predict a change in age differences between these two
problem types, as both involve a safe option. It does predict, however, reduced age differences in
the tendency to choose the less risky option in a condition with two risky options, compared to a
condition with complex safe options—which differ in certainty, but not complexity. Let us empha-
size that, although they make distinct predictions, the two accounts are not mutually exclusive:
Older adults may be more sensitive to both certainty and complexity than younger adults are.
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Figure 2.1: Conditions of the risky choice task: Exemplary choice problems by problem type and
domain.
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2.1.3 How Might Complexity Affect Age Differences in Risky Choice?

In addition to examining whether complexity affects the emergence of differences between younger
and older adults in risky choice, we were also concerned with how complexity might exert its
influence on choice behavior. We next describe four candidate mechanisms. Each mechanism
entails specific testable predictions, all of which are summarized in Table 2.2 and elaborated below.

Complexity aversion hypothesis

One possible mechanism by which option complexity impacts choice behavior is that people find
more complex options generally less attractive—due to their greater computational effort required
for their evaluation (e.g., due to their lower processing fluency; less fluent stimuli are often perceived
as less attractive than fluent ones (Alter & Oppenheimer, 2009). Consistent with complexity
aversion, Bernheim and Sprenger, 2019 argued that people prefer lotteries with fewer outcomes
that are easier to understand, and that the certainty effect may be a special case of this more
general phenomenon. Moreover, both Huck and Weizsäcker, 1999 and Sonsino et al., 2002 found
that participants choosing between lotteries that differed in the number of available outcomes
preferred the lottery with fewer outcomes (which were thus less complex). Similarly, in Mador
et al., 2000, participants assigned lower prices to more complex lotteries (in terms of the number
of outcomes) than to simpler lotteries, even when the simpler lottery had a lower expected value
than, or was stochastically dominated by, the more complex lottery. Kovářık et al., 2016 had their
participants rank, in order of preference, lotteries that were described as more or less complex
sequences of probabilistic events. For instance, a multi-stage lottery could consist of a coin toss
that determined the composition of an urn, with the color of a chip drawn from that urn determining
the final outcome. Most participants ranked the simpler but otherwise identical versions higher
than the more complex versions. Due to their declining fluid cognitive abilities (also defined as the
ability to analyse complex relations and to draw inferences, cf. Cattell, 1963; Craik & Bialystok,
2006; Horn & Cattell, 1967), older adults might show a stronger aversion to complexity than
younger adults. The complexity-aversion hypothesis thus predicts that older adults are more
averse to more complex options than younger adults are. As a consequence, increasing an option’s
complexity should decrease older adults’ likelihood of choosing that option more than it decreases
younger adults’, in both gain and loss domains alike.

Response-noise hypothesis

A second possibility is that rather than directly affecting the subjective utility of the options,
complexity increases the error in mapping the valuation of the options onto a response. Response
noise is often formalized in the context of a probabilistic choice rule, using a parameter that governs
the probability that an option, viewed as more attractive, is actually chosen (e.g., Olschewski et
al., 2018; Rieskamp, 2008). In choices between risky lotteries, response noise has been found
to be higher under greater cognitive load (Olschewski et al., 2018). To the extent that higher
complexity induces cognitive load, it might also increase response noise. Overall, this should shift
the proportion of choices of the safe option toward 50%, that is, risk neutrality. Given that people
are typically risk averse in the domain of gains and risk seeking in the domain of losses (Kahneman
& Tversky, 1979), higher response noise should thus lead to a reduction in risk aversion in the
gain domain, and an increase in risk aversion in the loss domain. Since older adults display higher
response noise and make more inconsistent choices than younger and middle-aged adults (Pachur,
Mata, et al., 2017; Tymula et al., 2013), the response-noise hypothesis predicts that the increase in
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response noise under higher complexity will be more pronounced in older than in younger adults. If
this is the case, the common age differences in choices between simple safe and complex risky option
risky options—that is, older adults making more risk-averse (/risk-seeking) choices than younger
adults in choices about gains (/losses)—should be reduced when both options are similarly or
equally complex.

Table 2.2: Possible Mechanisms Underlying an Effect of Option Complexity on Risky Choice: Each
Mechanism Makes Specific Predictions about the Effect of Increasing Safe Options’ Complexity on
One or Several Outcome Variables
Mechanism

Outcome variable Prediction
Complexity-aversion hypothesis

Risky choice behavior Increased risk seeking in both gain and loss domain

Response-noise hypothesis
ρ parameter Decrease in ρ (more noise)
Risky choice behavior Higher risk neutrality (choice proportion closer to 50%)

Probability-weighting hypothesis
γ parameter Increase in γ (more linear probability weighting)
Risky choice behavior Increased risk seeking in gain domain

Increased risk aversion in loss domain

Outcome-sensitivity hypothesis
α parameter Increase in α (higher outcome sensitivity)
Risky choice behavior Increased risk seeking in gain domain

Increased risk aversion in loss domain

Probability-weighting hypothesis

A third possibility is that option complexity might affect the processing of specific attribute infor-
mation. That is, rather than generally decreasing an option’s attractiveness (as assumed by the
complexity-aversion hypothesis) or making the mapping of the valuation onto the response more
error-prone (as assumed by the response-noise hypothesis), higher complexity might affect how
people extract and integrate attribute information on the options. According to the probability-
weighting hypothesis, complexity differences affect probability weighting, a key construct in CPT,
which describes how objective probabilities are transformed into subjective decision weights (a
formal description is provided in the section “Testing the underlying mechanisms: Computational
modeling”). This hypothesis is based on the observation by Glöckner et al., 2016 (in a study on
younger adults; we refer to the data in the description condition) that choices between a safe and
a risky option—that is, choices differing in complexity—give rise to a more curved probability
weighting function than choices between two risky options that do not differ in complexity.

Moreover, the findings by Mather et al., 2012 suggest that this effect may be more pro-
nounced in older than in younger adults. To recap, Mather et al. found no age differences in choices
between two risky options, but that older adults had a higher (lower) tendency to choose the safe
gains (losses) in choices between a safe and a risky option. The strongly curved weighting function,
observed in choices between a safe and a risky option in younger adults cf. Glöckner et al., 2016,
may therefore be even more strongly curved in older adults. In contrast, in choices between two
risky options younger and older adults may both show a moderately curved weighting function.
This would imply that probability weighting is more sensitive to the availability of safe options in
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older than in younger adults.
Our complexity account thus predicts more linear probability weighting in a condition

with complex safe options than in a condition with simple safe options, especially in older adults.
The certainty-effect account does not predict these differences in probability weighting; rather, it
predicts that, due to differences in certainty, probability weighting will differ between choices with
complex safe and risky options and choices with two risky options.

Outcome-sensitivity hypothesis

Complexity might also affect the processing of outcome information, that is, how objective out-
comes are subjectively represented. In CPT, objective outcomes are transformed into subjective
values according to a value function, which exponentiates the outcome magnitude by an outcome
sensitivity parameter (a formal description is provided in the section “Testing the underlying mech-
anisms: Computational modeling”). For values of the outcome sensitivity parameter smaller than
1 (i.e., concave value functions), differences between the outcomes’ magnitudes are attenuated; for
values of the outcome sensitivity parameter larger than 1 (i.e., convex value functions), differences
are amplified. Notably, in choices between safe and risky options, the largest outcome in the choice
set is typically offered by the risky option (unless the safe option dominates the risky option) such
that the value function tends to amplify or attenuates the subjective value of the risky option more
than that of the safe option. As a consequence, a more concave value function entails greater risk
aversion in the domain of gains and greater risk seeking in the domain of losses.

Based on these insights, we can now use Mather et al.’s (2012) results to derive predictions
about the possible effects of option complexity on outcome sensitivity. If older adults are more
risk seeking for gains and more risk averse for losses in choices between two risky options than
in choices between a simple safe and a risky option, this could indicate a steeper value function.
Hence, the outcome-sensitivity hypothesis predicts an increase in outcome sensitivity in problems
with complex safe and risky options relative to problems with a simple safe and a risky option,
especially in older adults. Note that under the certainty-effect account, no such difference in
outcome sensitivity between these two problems types is expected.

To summarize, we have delineated four mechanisms—complexity aversion, response noise,
probability weighting, and outcome sensitivity—that might contribute to the effect of option com-
plexity on age differences in risky choice. Note that each mechanism could affect both age groups,
which would be indicated by a main effect of problem type (complex safe) on the respective out-
come variable (i.e., model parameters or choice behavior, see Table 2.2). Moreover, the hypotheses
predict that each mechanism would be more pronounced in older versus younger adults, which
would be indicated by an interaction between complexity and age group on the outcome variable.
However, it is also possible that option complexity affects choices through a combination of several
mechanisms (except if their predictions are mutually exclusive). For instance, complexity could af-
fect both the processing of probabilities and outcomes, and none, one, or both of these mechanisms
could be more pronounced in older adults.

2.2 Study 1

We tested these hypotheses by experimentally manipulating (within-subjects) the complexity of a
safe option. The key question was how this manipulation would affect the willingness of younger
and older adults to choose a safe option over a risky option. Whereas the complexity-aversion hy-
pothesis can be tested based on the observed choice probabilities alone, testing the response-noise,
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Table 2.3: Characteristics of the Participant Sample in Study 1 by Age Group

Characteristic Younger Older
n 82 76
Sex (n female) 39 41
Age (years) M = 26, Md = 25, SD = 4.2 M = 60.4, Md = 60, SD = 4.4

—range [18; 34] [55; 72]
Self-reported Risk Preference M = 5.9, Md = 6, SD = 2.2 M = 5.4, Md = 6, SD = 2.2
Numeracy M = 2.6, Md = 3, SD = 1.2 M = 2.3, Md = 2, SD = 1.2

the probability-weighting, and the outcome-sensitivity hypotheses requires to separate the evalua-
tion of probability and outcome information from the influence of response error. To this end, we
modeled choice data in a Bayesian hierarchical implementation of CPT (described in more detail
in the section “Testing the underlying mechanisms: Computational modeling”). In our analyses,
we used CPT as a measurement model to disentangle and quantify the effects of complexity on
response noise and parameters linked to the systematic impact of attribute information on prefer-
ences, namely outcome sensitivity and probability weighting. The role of CPT as a measurement
model and potential underpinnings of its parameters in terms of cognitive processing strategies
are addressed in the General Discussion in more detail. Finally, we also compared the risky choice
behavior in both conditions involving safe options with a condition involving two risky options
that do not differ in complexity, and do not include safe outcomes.

2.2.1 Method

Participants

The experiment was conducted online, using Prolific Academic to recruit participants. We targeted
younger and older adults based on age range (18 − 35 years and ≥ 55 years, respectively) using
the Prolific Academic prescreening tool. Hence, only individuals conforming to the specified age
ranges were invited to participate. Participants were removed from the sample if they did not
complete the survey, or if their age or sex, as identified by the Prolific Academic prescreening tool,
diverged from their responses to the demographic questions at the end of the survey. To ensure that
participants had read the instructions and understood the task, we asked a simple comprehension
question on the same screen frame.3 Participants who failed this item were excluded from the
sample. The final sample of participants consisted of 82 younger adults and 76 older adults.
Demographic characteristics, numeracy scores, and self-reported risk preferences are described in
Table 2.3. Participants who finished the experiment received a basic payment of 4.20 GBP as
well as a performance-contingent monetary bonus. The bonus was determined individually for
each participant by randomly selecting one trial and playing out the chosen lottery. The resulting
outcome was converted into GBP (with 100 units in the experimental currency E$, in which the
outcomes of the options were presented, corresponding to 1 GBP). Participants were informed
about this reward scheme before starting the choice task.

Materials

Risky choice task In the main task, participants were presented with a total of 108 two-option
choice problems. Each problem consisted of either a safe and a risky option, or two risky options

3Specifically, the item read as follows: “To demonstrate that you have understood the task, please indicate which
is the correct option below: 1) All gambles involve losses. 2) All gambles involve gains. 3) The equations shown on
some gambles express probabilities. 4) The equations shown on some gambles express outcomes.” Response 4 was
correct.
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(depending on condition). 12 choice problems included a stochastically dominated option, in which
all outcomes were lower than all outcomes of the other option. We included these problems to assess
data quality: Participants who paid attention should choose the dominating option in most of these
trials. The main analyses of risk attitude reported below include the nondominated problems only.

In the risky choice task, each option offered monetary outcomes, described in terms of
the experimental currency E$ (“E-Dollar”), and the probabilities of these outcomes, expressed as
percentages. In half of the choice problems, the more risky option (both in terms of variance
and in terms of coefficient of variation, CV; Weber et al., 2004) had a higher expected value;
in the other half, the less risky option had a higher expected value. The problem set did not
involve choices between equal EV options.This is because only problems with unequal EVs allow
to measure decision quality. Moreover, if all options had equal EVs participants would not have
an incentive to seriously engage in the task, because their choices would not be consequential. For
each problem, participants were asked to indicate which option they preferred and how confident
they were in this preference on a 10-point confidence scale ranging from “very confidently A” to
“very confidently B,” where A and B referred to the options “lottery A” and “lottery B”. (In our
analyses below, however, we focus on the binary choices.) Screen shots and a timeline for the task
can be found in Appendix A.7.

The within-subjects manipulation of option complexity was implemented using three types
of choice problems (see Figure 2.1). In all three types, one option was a risky option, offering two
possible outcomes with some probability (adding up to 100%). Depending on problem type, this
risky option was paired with either a simple safe option, a complex safe option, or another (less)
risky option. In the simple safe condition, the safe option offered one outcome, expressed as a single
number, with certainty (100%). In the complex safe condition, the safe option offered the same
certain (100%) outcome magnitude as the simple safe condition, but this outcome was expressed
as a mathematical term in which two integers had to be multiplied by a number between 0.01 and
.99 (rounded to the second digit and adding up to one) and then summed up (see Figure 2.1). For
instance, a safe outcome of 66 E$ was expressed as (0.6 x 90) + (0.4 x 30) E$. Finally, in the
risky condition, both options were risky, but one was more risky than the other. The second risky
option was constructed using the same components as in the mathematical term in the complex
safe condition: The two integers were used as the outcomes, and the weights as their probabilities
(adding up to 100%). For example, the complex safe outcome of (0.6 x 90) + (0.4 x 30) E$
corresponded to a risky option offering 90 E$ with 60% and 30 E$ with 40%. Note that the risky
condition and the complex safe condition were structurally similarly complex: In both conditions,
calculating each option’s objective value required to multiply two sets of numbers and add up
the results. The construction principle for the choice problems also ensured that EVs and EV
differences were the same across all three conditions. The outcomes were randomly sampled from
a uniform distribution ranging from 1 to 100. To prevent participants from recognizing options
from a previous choice problem in a different condition, the outcomes of corresponding choice
problems were randomly jittered by +/-2 across the conditions. The first outcome’s probability
was obtained by randomly sampling the uniform distribution ranging from 0.01 to 0.99; the second
outcome’s probability was the difference between the obtained value and 1. In all three conditions,
half of the choice problems involved gain outcomes; the other half, loss outcomes. Choice problems
with losses were constructed by reflecting the outcomes of the choice problems with gains into the
loss domain. We provide a full list of all choice problems in Appendix A.9, where we also display
choice probabilities in younger and older adults on each individual problem.

Every participant made choices in all conditions and both domains. The choice problems
were presented in a randomized order that was uniquely determined for each participant. We
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also randomized which side of the screen the high and low risk options appeared on across choice
problems and uniquely for each participant. Response times in the risky choice task were recorded
in ms.

Complexity rating In order to measure to what extent the participants perceived the different
types of choice problems as differing in complexity, we had them rate the perceived complexity of
a subset of 30 randomly drawn choice problems from the different conditions, on a six-point scale
ranging from 1 = “very low complexity” to 6 = “very high complexity”.

Self-reported risk preference In order to explore how participants’ decisions in the three con-
ditions of the risky choice task related to their self-reported risk preference, we asked participants
to indicate their risk preference on a one-item general risk question: How do you see yourself: are
you generally a person who is fully prepared to take risks or do you try to avoid taking risks? Please
tick a box on the scale, where the value 0 means: “not at all willing to take risks” and the value 10
means: “very willing to take risks”. This is a standard item which has been used, for instance, to
assess the risk preferences in the in the German Socio-Economic Panel (SOEP; see Dohmen et al.,
2011) and across different age cohorts (Josef et al., 2016).

Berlin Numeracy Test As the more complex choice problems involved more challenging numer-
ical operations, we explored the role of numerical abilities and measured participants’ numeracy,
using the adaptive, computerized version of the Berlin Numeracy Test (Cokely et al., 2012). This
adaptive test consists of two to four items (depending on a person’s responses) and is normed to
divide participants into quartiles based on their numerical skills.

Design

The experiment had a mixed design, with age group as between-subjects factor and type of choice
problem (simple safe, complex safe, and risky) and domain (gains vs. losses) as within-subjects
factors. The experiment was approved by the IRB of the Max Planck Institute for Human Devel-
opment.

Procedure

The experiment was programmed in the survey software Unipark. Participants from the subject
pool of Prolific Academic were approached based on age as previously delineated and invited via
e-mail. Upon clicking the invitation link, participants were directed to the questionnaire, informed
about privacy and data-protection guidelines and asked for informed consent. Participants who did
not provide informed consent were not able to proceed to the study. Next, participants received
instructions regarding the risky choice task, its baseline payment and incentivization scheme and
then completed this task, the complexity rating, and the numeracy task (in that order). After
completing all tasks, participants indicated their gender and age in years and answered the self-
report item on risk preference. In addition, they had the opportunity to comment on the study
in an open-answer written format. Participants then clicked on a link to get redirected to Prolific
Academic and communicate that they had completed the study. Submissions were accepted after
the data had been checked with regard to the criteria described above, which resulted in participants
receiving the basic payment. The bonus payments were determined after all participants had
completed the experiment. If the randomly selected trial for a participant happened to be a loss
trial, no bonus was paid out.
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2.2.2 Results

The behavioral analyses were performed in RStudio (Version 1.1.463) running under macOS
10.14.4. Computational modeling was performed on a Windows server in RStudio (Version 1.1.463)
and JAGS-4.3.0. All Bayesian GLMER analyses reported below were implemented using the rsta-
narm package (Goodrich et al., 2018). Individual effects in GLMERs were considered credible if
the 95% posterior interval for the coefficient excluded zero. The posterior intervals, sometimes also
referred to as credible intervals, cover the central 95% of the posterior distribution of the estimated
coefficients, and can be interpreted as covering the range that includes the true parameter value
with 95% probability (cf. Morey et al., 2016). All GLMER analyses were conducted separately for
the gain and loss domains, given the evidence for domain specific age differences in risk attitude in
the previous literature (Best & Charness, 2015). When reporting the effects of the factor problem
type (which has three levels), the simple safe condition serves as the reference condition (unless
specified otherwise). In brackets we specify the condition that was compared to the reference con-
dition. For instance, a main effect of problem type (complex safe) reports the comparison between
the simple safe and the complex safe condition—that is, the effect of complexity. An interaction
between problem type (complex safe) and age group (older) describes whether the difference be-
tween the simple safe and the complex safe condition was more pronounced for older than for
younger adults—that is, whether older adults showed a stronger response to complexity. For the
factor age group the younger adults served as the reference group.

To first assess the quality of the choice data, we inspected the responses in the risky
choice problems including a dominated option. Across all problem types, participants chose the
dominating option in 69.22% of trials in the domain of gains (average choice proportion for younger
adults: 73.96%; older adults: 64.19%) and in 88.46% of trials in the domain of losses (younger
adults: 88.82%; older adults: 88.07%). The high overall rate of choices of the dominating option
indicates relatively good data quality. Further analyses of the choices on the problems with a
dominated option are reported in Appendix A.1.

Was the complexity manipulation successful?

We used Bayesian GLMERs to analyze participants’ complexity ratings of the three problem
types. Detailed results are reported in Table A.1 and illustrated in Figure A.2 in Appendix A.1.
Participants rated the choice problems from the complex safe condition and those from the risky
condition as more complex than those from the simple safe condition, indicating that the complexity
manipulation was successful.

We also examined the effect of the complexity manipulation on response times (RTs) in
the risky choice task, using Bayesian mixed-effect regressions. Detailed results are reported in the
bottom panel of Table A.1 and illustrated in Figure A.3 in Appendix A.1. Most importantly, and
further supporting that the complexity manipulation successfully increased the complexity of the
problems, participants took longer to make choices in the complex safe condition and the risky
condition than in the simple safe condition. Further, older adults overall took more time for their
choices than younger adults.

Overall, the analyses show that our manipulation increased, as intended, the complexity
of the safe options both subjectively (in terms of complexity ratings) and objectively (in terms of
the time spent on solving the task).
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Did complexity affect age differences in risky choice?

Next, we tested the basic hypothesis about the effects of complexity on behavior in the risky choice
task, according to which age differences in risky choice should be reduced or even eliminated in
choices between more similarly complex options (for an analysis of decision quality, the tendency to
choose the option with the higher EV, see Appendix A.5). The average empirical choice proportions
of the less risky option in each problem type, domain, and age group are displayed in the top panel
of Figure 2.2. The observed qualitative patterns support the hypothesis: In the condition with
simple safe options older adults appear more risk averse in the domain of gains and more risk
seeking in the domain of losses. These age differences are attenuated in the other conditions,
where options’ complexity is more similar.

We next evaluate the statistical credibility of these qualitative patterns. Based on our
key hypothesis—according to which older adults are more sensitive to differences in option com-
plexity than younger adults—we expect an interaction between age group and problem type on
the tendency to choose the more risky option. To test this hypothesis, we conducted Bayesian
mixed-effects logistic regressions using the choice of the more risky option as the outcome vari-
able, and problem type and age group (main effect model) as well as their interaction (interaction
model) as fixed effects. The models further included fixed effects for the EV difference between
options, a dummy variable indicating whether the option with the higher EV was also more risky,
each participant’s numeracy score, and their self-reported risk preference. The models included a
random intercept for each participant. Coefficients and 95% posterior intervals are displayed in
Table 2.4.

In the gain domain, when both options were similarly complex, the tendency to choose
the more risky option increased more in older than in younger adults, as indicated by the credible
interaction of problem type (complex safe) and age group. This statistically corroborates our
basic hypothesis about choice behavior, and the qualitative pattern apparent in Figure 2.2, for the
domain of gains: Older adults are more sensitive to differences in option complexity than younger
adults. In the loss domain, the interaction between problem type (complex safe) and age group
was not credible.

We also conducted a (more liberal) test for the main effect of age group on risky choice
behavior within each condition, using Bayesian mixed-effect logistic regressions. Detailed results
are reported in Table A.3 in Appendix A.2. To summarize the key findings, in the condition with
simple safe options, older adults made credibly more risk-averse choices in the domain of gains,
and credibly more risk-seeking choices in the domain of losses, compared to younger adults. No
credible differences between younger and older adults emerged in the conditions with similarly
complex safe and risky options, in both domains. That is, although in the domain of losses the
interaction between problem type (complex safe) and age group was not credible in the model with
the full data, the analysis of main effects in the individual conditions extends the support for our
core behavioral hypothesis to the domain of losses: Age differences in risky choice behavior are
eliminated when both options are similarly complex, in both domains.

Testing the underlying mechanisms: Complexity aversion

The choice patterns are also informative regarding one potential mechanism underlying the effect
of complexity on risky choice—the complexity-aversion hypothesis. To recap, according to this
hypothesis, increasing an option’s complexity should make it less attractive, both in the gain and
loss domains. To test this hypothesis, we evaluated the direction of the effect of the complexity
manipulation on risky choice behavior within each age group, using Bayesian logistic mixed-effect
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Figure 2.2: Empirical and posterior predictive—that is, predicted by cumulative prospect theory (CPT) based on the estimated parameters—
choice proportions for the nondominated problems in all conditions and age groups by domain. Error bars indicate 95% confidence intervals. Age
differences in the tendency to choose the low risk option are more pronounced in the simple problem type, where the options differ considerably
in complexity, than in problems involving more similarly complex options.
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Table 2.4: Regression Coefficients and 95% Posterior Intervals from the Bayesian Mixed-Effects
Logistic Regression for Responses in the Risky Choice Task, by Condition, in Study 1 (Upper
Table) and in Study 2 (Lower Table). CPT = Cumulative Prospect Theory

Outcome Variable: Choice of Option with Higher Risk (Study 1) Main effect model Interaction model Interaction model with CPT
Predictor Gain Loss Gain Loss Gain Loss

(Intercept) -2.69
[-3.09, -2.28]

-0.18
[-0.48, 0.12]

-2.55
[-2.95, -2.16]

-0.26
[-0.57, 0.04]

-4.14
[-4.51, -3.75]

1.6
[1.26, 1.95]

Problem Type (Complex Safe) 0.42
[0.29, 0.56]

-0.06
[-0.18, 0.06]

0.19
[0, 0.37]

0.03
[-0.14, 0.2]

-1.07
[-1.33, -0.81]

0.42
[0.23, 0.62]

Problem Type (Risky) 0.23
[0.1, 0.37]

-0.08
[-0.2, 0.04]

0.06
[-0.13, 0.24]

0.07
[-0.1, 0.24]

-0.76
[-1.04, -0.48]

0.3
[0.05, 0.55]

Age Group (Older) -0.19
[-0.38, 0.01]

0.16
[0.01, 0.3]

-0.48
[-0.72, -0.23]

0.32
[0.13, 0.52]

-0.42
[-0.63, -0.21]

0.08
[-0.1, 0.26]

Higher EV Choice = Higher CV Choice 2.29
[2.18, 2.41]

1.23
[1.13, 1.33]

2.29
[2.18, 2.41]

1.23
[1.14, 1.32]

2.36
[2.25, 2.48]

1.26
[1.16, 1.35]

EV Difference 0.02
[0.01, 0.02]

-0.01
[-0.01, 0]

0.02
[0.01, 0.02]

-0.01
[-0.01, 0]

0.02
[0.01, 0.02]

-0.01
[-0.01, 0]

Numeracy 0.15
[0.07, 0.23]

-0.03
[-0.1, 0.03]

0.15
[0.07, 0.24]

-0.03
[-0.1, 0.03]

0.05
[0, 0.1]

0
[-0.04, 0.05]

Self-reported Risk Preference 0.02
[-0.03, 0.06]

-0.01
[-0.04, 0.03]

0.02
[-0.02, 0.06]

-0.01
[-0.04, 0.03]

-0.01
[-0.03, 0.02]

0
[-0.03, 0.02]

Gender (Male) 0.18
[0.01, 0.37]

-0.09
[-0.24, 0.06]

0.18
[0, 0.37]

-0.09
[-0.24, 0.06]

0.08
[-0.04, 0.19]

0.01
[-0.1, 0.11]

Problem Type (Complex Safe) × Age Group (Older) 0.5
[0.22, 0.77]

-0.19
[-0.43, 0.05]

0.58
[0.3, 0.87]

0.37
[0.11, 0.63]

Problem Type (Risky) × Age Group (Older) 0.38
[0.11, 0.65]

-0.31
[-0.55, -0.07]

0.44
[0.16, 0.72]

0.12
[-0.12, 0.37]

Probability Weighting 1.85
[1.62, 2.08]

-1.52
[-1.8, -1.24]

Response Noise -1.27
[-2.24, -0.27]

1.09
[0.62, 1.58]

Outcome Sensitivity 1.16
[0.96, 1.35]

-0.85
[-0.99, -0.7]

Outcome Variable: Choice of Option with Higher Risk (Study 2) Main effect model Interaction model Interaction model with CPT
Predictor Gain Loss Gain Loss Gain Loss

(Intercept) -2.94
[-3.35, -2.49]

-0.61
[-1.02, -0.2]

-2.78
[-3.22, -2.36]

-0.65
[-1.07, -0.23]

-4.48
[-4.79, -4.15]

1.35
[0.98, 1.73]

Problem Type (Simple Safe Zero) 0.29
[0.12, 0.45]

-0.43
[-0.59, -0.27]

0.16
[-0.05, 0.36]

-0.4
[-0.6, -0.2]

0.23
[0, 0.47]

-0.09
[-0.35, 0.16]

Problem Type (Complex Safe) 0.53
[0.4, 0.67]

-0.24
[-0.36, -0.11]

0.3
[0.1, 0.48]

-0.07
[-0.25, 0.11]

0.11
[-0.08, 0.29]

0.17
[-0.02, 0.36]

Problem Type (Complex Safe Zero) 0.87
[0.71, 1.03]

-0.39
[-0.56, -0.24]

0.62
[0.42, 0.83]

-0.4
[-0.61, -0.2]

-0.09
[-0.3, 0.13]

0.04
[-0.18, 0.26]

Problem Type (Risky) 0.37
[0.24, 0.51]

-0.19
[-0.32, -0.06]

0.22
[0.04, 0.4]

-0.15
[-0.34, 0.03]

0.35
[0.15, 0.56]

0.21
[0, 0.4]

Age Group (Older) -0.23
[-0.48, 0.03]

-0.01
[-0.26, 0.24]

-0.56
[-0.88, -0.26]

0.09
[-0.21, 0.38]

-0.7
[-0.92, -0.47]

0.27
[0.02, 0.5]

Higher EV Choice = Higher CV Choice 2.09
[2, 2.18]

2.2
[2.12, 2.29]

2.09
[2, 2.18]

2.2
[2.12, 2.29]

2.19
[2.09, 2.27]

2.28
[2.19, 2.37]

EV Difference 0.01
[0.01, 0.02]

-0.01
[-0.01, 0]

0.01
[0.01, 0.02]

-0.01
[-0.01, 0]

0.01
[0.01, 0.02]

-0.01
[-0.01, 0]

Numeracy 0.11
[-0.01, 0.21]

-0.04
[-0.15, 0.07]

0.11
[0, 0.22]

-0.04
[-0.15, 0.07]

0.06
[0, 0.13]

-0.02
[-0.09, 0.06]

Self-reported Risk Preference 0.1
[0.04, 0.16]

0.01
[-0.04, 0.07]

0.1
[0.04, 0.16]

0.01
[-0.04, 0.06]

0.03
[0, 0.06]

0
[-0.04, 0.04]

Gender (Male) 0.1
[-0.15, 0.35]

0.13
[-0.1, 0.38]

0.11
[-0.14, 0.35]

0.14
[-0.12, 0.38]

0.05
[-0.09, 0.18]

0.04
[-0.1, 0.2]

Problem Type (Simple Safe Zero) × Age Group (Older) 0.27
[0.03, 0.53]

-0.06
[-0.31, 0.19]

0.47
[0.2, 0.74]

0.17
[-0.12, 0.45]

Problem Type (Complex Safe) × Age Group (Older) 0.5
[0.24, 0.77]

-0.33
[-0.59, -0.09]

-0.16
[-0.43, 0.12]

-0.07
[-0.34, 0.19]

Problem Type (Complex Safe Zero) × Age Group (Older) 0.52
[0.27, 0.78]

0.01
[-0.24, 0.26]

-0.01
[-0.27, 0.26]

0.77
[0.47, 1.08]

Problem Type (Risky) × Age Group (Older) 0.33
[0.08, 0.6]

-0.07
[-0.34, 0.19]

0.47
[0.2, 0.74]

-0.51
[-0.8, -0.25]

Probability Weighting 1.15
[0.98, 1.32]

-0.75
[-0.96, -0.53]

Response Noise -0.24
[-0.32, -0.16]

-0.04
[-0.19, 0.12]

Outcome Sensitivity 2.13
[1.95, 2.3]

-1.55
[-1.69, -1.41]

Increasing the complexity of safe options made older adults less likely to choose the safe
options in the domain of gains, but not in the domain of losses. On the contrary, there was a slight
although non-credible trend indicating that increasing the complexity of safe losses made older
adults more likely to choose these safe options.4 That is, while older adults found safe gains less
attractive when their complexity increased, they found safe losses equally or even more attractive
when their complexity increased. This latter result from the domain of losses allows us to discard
the complexity-aversion hypothesis, which predicts that increasing an option’s complexity should
make it less attractive, irrespective of outcome domain. We conclude that the higher sensitivity
to option complexity of older compared to younger adults is not simply due to more aversion to

4In younger adults, increasing the complexity of safe options decreased the tendency to choose these safe options
in the domain of gains, but this effect was weaker than in older adults. Younger adults’ risky choices were not
credibly affected by complexity in the domain of losses.
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complexity.

Next, we turn to the remaining candidate mechanisms that we hypothesized might underlie
the effect of complexity on risky choice, namely response noise, probability weighting, and outcome
sensitivity. We used computational modeling with CPT to evaluate these hypotheses.

Testing the underlying mechanisms: Computational modeling

We modeled participants’ choices using a hierarchical Bayesian implementation of CPT. Our model
structure is inspired by the implementation in Nilsson et al. (2011, see also Scheibehenne and
Pachur, 2015).

In CPT, each option’s objective outcomes xi are transformed into subjective values ac-
cording to the value function v

v(xi) =

{
xα

gain

i , if xi ≥ 0

-(| xi |α
loss

), if xi < 0
(2.1)

with α ∈ [0, 2]. The outcome sensitivity parameter α modulates the curvature of the value
function and captures the sensitivity to differences in outcomes. α = 1 indicates linear (objective)
treatment of outcomes and thus high outcome sensitivity. Values of α < 1 indicate a concave value
function and diminishing sensitivity to outcomes; values of α > 1 indicate a convex value function.
Note that because our choice problems did not include mixed lotteries, the model’s value function
does not have a loss aversion parameter.

Further, objective probabilities p are transformed into cumulative decision weights π using
the probability weighting function w

w(pi) =
pγi

(pγi + [1− pγi ])1/γ
(2.2)

with γ ∈ [0, 2]. Whereas Nilsson et al., 2011 implement CPT with non-cumulative deci-
sion weights, we defined the decision weights in a cumulative manner, as specified by Tversky and
Kahneman, 1992. For a detailed description of how cumulative weights π are derived from w, see
Tversky and Kahneman (1992). The parameter γ governs the shape of the probability weighting
function and reflects the degree of nonlinear distortion when the probabilities are mapped onto
decision weights. The probability weighting function is linear under γ = 1. Values of γ < 1

entail an inverse S-shaped probability weighting function; values of γ > 1 entail an S-shaped
probability weighting function. An inverse S-shaped probability weighting function indicates a
reduced sensitivity to probabilities in the middle range and a relative amplification of extreme
probabilities—thus accommodating the certainty effect. An S-shaped probability weighting func-
tion, in contrast, indicates a reduced sensitivity at the extreme ends of the probability scale and a
relative amplification of differences in probabilities in the middle range of the scale.

The overall valuation V of each option is then determined by multiplying the subjective
values of its outcomes by the corresponding decision weights, and then summing up across the
outcomes within each option:

V =
∑

π(pi)v(xi) (2.3)

Choice probabilities are then derived from the valuations of options A and B using the
logit choice rule (cf. Stott, 2006), which defines the probability that option A is chosen over option
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B as

p(A,B) =
1

1 + e−ρ[V (A)−V (B)]
(2.4)

The response noise parameter ρ > 0 captures the extent to which choices deterministically
follow the difference in valuation between the options. With ρ = 0 the choice probability is 0.5
(i.e., choice behavior is not a function of the valuations of the options). With increasing values of
ρ the probability of choosing the option with the higher valuation approaches 1. We defined each
model parameter (α, γ and ρ) separately for the gain and loss domain, based on the observation
that the effects of complexity on the behavioral level are not identical across domains. The chosen
model structure made it possible to capture underlying differences in model parameters between
the domains.

In Bayesian parameter estimation, parameters are initially represented in terms of prior
distributions and then updated into posterior distributions in the light of the observed data. In
the hierarchical approach, model parameters are estimated for each participant individually and
the individual-level parameters are assumed to be drawn from a group-level distribution. This
approach acknowledges dependencies between individual data points due to common sources of
variation (M. D. Lee, 2011; Nilsson et al., 2011). We estimated the individual-level and group-
level posterior distributions for all parameters, separately for younger and older adults, and for
the different conditions of the complexity manipulation in both studies. The CPT model was
implemented in JAGS-4.3.0 and estimated using the jags.parallel function from the R2jags package
(Su & Yajima, 2015). We ran 30 parallel chains of 101,000 samples each, each including an
initial burn-in period of 1,000 samples that were discarded from analysis (cf. Kruschke, 2014).
To reduce autocorrelation, the chains were thinned such that every 20th sample was recorded.
We assessed convergence via the potential scale reduction factor R̂ (Gelman & Rubin, 1992),
which was smaller than 1.03 for all estimated parameters, indicating good convergence. To assess
whether our computational modeling approach could disentangle the various components of CPT
we also conducted an extensive parameter recovery analysis. The analysis demonstrated very good
recoverability of the parameters and is reported in Appendix A.8.

To assess the degree to which the estimated CPT model captured the empirical choice
patterns, we inspected the posterior predictive choice probabilities based on the posterior estimates
of the CPT parameters for each condition, domain, and participant. Both in terms of risk attitude
(the tendency to choose the less risky option; Figure 2.2) and decision quality (see Appendix
A.5), the posterior predictive choice proportions reproduced the qualitative patterns found in the
empirical data very well.

To test the predictions of the response-noise hypothesis, the probability-weighting hy-
pothesis, and the outcome-sensitivity hypothesis, we conducted a series of Bayesian GLM analyses
comparing the individual-level parameter estimates in the different conditions and age groups.
Each hypothesis predicts effects of problem type on the respective parameter of the CPT analy-
sis (ρ, γ, and α) in both domains (for a summary of the predictions see Table 2.2). In separate
Bayesian GLMs, we first analyzed the effects of age group and problem type on the means of the
individual-level posterior distributions of each parameter (main effect models). To further test
whether older adults were more sensitive to the complexity manipulation than younger adults on
any parameter, we calculated a second set of models that also included the interaction between
age group and problem type (interaction models). For the models reported in the main text,
we used the condition with simple safe options as the reference condition for the problem type
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Table 2.5: Regression Coefficients and 95% Posterior Intervals for the GLMs Predicting Parameters
of the CPT Analysis in Study 1

Outcome Variable (Study 1) Gain Loss
Predictor Main effect model Interaction model Main effect model Interaction model

ρ (response noise)

(Intercept) 0.2
[0.19, 0.21]

0.2
[0.19, 0.22]

0.27
[0.25, 0.29]

0.28
[0.26, 0.31]

Age Group (Older) -0.03
[-0.04, -0.02]

-0.04
[-0.06, -0.02]

-0.07
[-0.09, -0.05]

-0.09
[-0.13, -0.06]

Problem Type (Complex Safe) -0.1
[-0.11, -0.09]

-0.12
[-0.13, -0.1]

-0.09
[-0.12, -0.07]

-0.12
[-0.16, -0.09]

Problem Type (Complex Safe) × Age Group (Older) 0.04
[0.01, 0.06]

0.06
[0.01, 0.11]

Problem Type (Risky) -0.03
[-0.05, -0.02]

-0.03
[-0.05, -0.01]

-0.08
[-0.11, -0.06]

-0.09
[-0.13, -0.06]

Problem Type (Risky) × Age Group (Older) -0.01
[-0.03, 0.02]

0.02
[-0.03, 0.07]

γ (probability weighting)

(Intercept) 0.77
[0.72, 0.82]

0.71
[0.64, 0.77]

0.78
[0.74, 0.82]

0.84
[0.79, 0.89]

Age Group (Older) -0.06
[-0.11, 0]

0.08
[-0.01, 0.17]

-0.02
[-0.06, 0.02]

-0.16
[-0.22, -0.09]

Problem Type (Complex Safe) 0.44
[0.37, 0.5]

0.51
[0.43, 0.6]

0.39
[0.34, 0.44]

0.23
[0.17, 0.3]

Problem Type (Complex Safe) × Age Group (Older) -0.16
[-0.28, -0.03]

0.33
[0.23, 0.43]

Problem Type (Risky) 0.61
[0.55, 0.68]

0.73
[0.64, 0.82]

0.49
[0.44, 0.55]

0.46
[0.4, 0.53]

Problem Type (Risky) × Age Group (Older) -0.25
[-0.38, -0.12]

0.07
[-0.03, 0.16]

α (outcome sensitivity)

(Intercept) 0.72
[0.66, 0.77]

0.81
[0.75, 0.87]

1.17
[1.11, 1.23]

1.26
[1.18, 1.33]

Age Group (Older) -0.1
[-0.15, -0.04]

-0.29
[-0.38, -0.2]

0.02
[-0.05, 0.08]

-0.17
[-0.28, -0.06]

Problem Type (Complex Safe) 0.24
[0.18, 0.31]

0.12
[0.03, 0.21]

-0.06
[-0.14, 0.02]

-0.12
[-0.23, -0.01]

Problem Type (Complex Safe) × Age Group (Older) 0.25
[0.12, 0.38]

0.13
[-0.03, 0.29]

Problem Type (Risky) -0.32
[-0.39, -0.26]

-0.49
[-0.58, -0.39]

-0.46
[-0.54, -0.38]

-0.66
[-0.77, -0.56]

Problem Type (Risky) × Age Group (Older) 0.35
[0.22, 0.48]

0.42
[0.27, 0.57]

factor. Comparing the problem type (complex safe) with this reference allowed us to evaluate
the effects of complexity on the model parameters predicted by the response-noise hypothesis, the
probability-weighting hypothesis, and the outcome-sensitivity hypothesis.

The means of the individual-level posterior distributions for each parameter of the CPT
analysis are shown in Figure 2.3 and the resulting value and weighting functions are shown in
Figure 2.4 and 2.5. The regression results testing the effect of complexity on CPT parameters are
displayed in Table 2.5.

We also tested whether the availability of a safe option affected the parameters of the CPT
analysis after controlling for complexity, to address predictions from Mather et al.’s (2012) certainty
account. To this end, we re-ran the GLM analyses, this time using the condition with complex safe
options as the reference condition. The effect of problem type (risky) in these analyses allowed
us to evaluate the isolated effect of certainty. The results are reported in detail in Appendix A.4.
To summarize the key results, there were credible main effects of the availability of a safe option
on all parameters of the CPT analysis (except for the response noise parameter in the domain of
losses), and in some cases, also interactions between certainty and age group. That is, even when
differences in complexity between safe and risky options are attenuated, the availability of a safe
option affects participants’ preferences as reflected by CPT.

Response-noise hypothesis According to this hypothesis, complexity increases response noise,
and this effect may be more pronounced in older than in younger adults. We tested this hypothesis
using Bayesian GLMs with individual-level estimates of the response noise parameter ρ as the
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Figure 2.3: Mean and 95% CI of individual-level posterior means for the model parameters ρ
(response noise), γ (probability weighting), and α (outcome sensitivity), for each condition and
age group, separately for the gain and loss domains.

dependent variable and the simple safe condition as the reference condition for the effect of problem
type. GLM results are displayed in Table 2.5. Figure 2.3 displays the means of the estimated
individual-level posterior distributions for ρ, for each age group and domain. In both gains and
losses, there was a negative main effect of age group, which indicates that ρ was lower and response
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noise thus higher in older than in younger adults. In both domains, there was also a negative main
effect of problem type (complex safe), meaning that for both age groups response noise was higher
in the complex safe than in the simple safe condition. Next, we evaluated the interaction model
for both domains. In both domains, the interaction between problem type (complex safe) and age
group (older) was credible, indicating that younger adults showed a stronger increase in response
noise when the safe option was more complex. This might be because older adults already displayed
relatively high response noise in the simple safe condition. Taken together, these results support
the general notion that choices become more unsystematic when the complexity of safe options
increases. This effect was more pronounced in younger than older adults. Response noise alone
thus cannot explain the directed effect of complexity on the age differences in risky choice behavior:
Increasing the complexity of safe options shifts the proportion of older adults’ safe option choices
closer to 50%. For the response noise parameter to explain this pattern, the increase in response
noise under higher complexity would have to be more pronounced in older adults, in both domains.

Probability-weighting hypothesis According to this hypothesis, differences in option com-
plexity distort the shape of the probability weighting function, and this effect may be more pro-
nounced in older than in younger adults. We hence expected to see a positive effect of problem
type (complex safe) on the probability weighting parameter γ in both domains, and a positive
interaction of age group and problem type (complex safe). Figure 2.3 displays the means of the
individual-level posterior distributions for the γ parameter and Figure 2.4 displays the implied
weighting functions for both gains and losses and both age groups. GLM results are displayed in
Table 2.5.

In both domains, there was a credible positive main effect of problem type (complex safe)
on γ, such that probability weighting functions were less distorted when the second option was a
complex safe option than when it was a simple safe option—that is, when the options were more
similar in their complexity. The interaction between age group and problem type (complex safe)
was credible and negative in the domain of gains and credible and positive in the domain of losses.
This indicates that with higher option complexity, younger adults showed a stronger increase in
the probability weighting parameter than older adults in the domain of gains, while older adults
showed a stronger increase in the probability weighting parameter than younger adults in the
domain of losses.

These results support the general notion that probability weighting is more linear when
options are similarly complex than when they differ in their complexity. Further, probability
weighting can contribute to explaining the (rather small) effects of complexity on the age differences
in risky choices behavior in the domain of losses, but not in the domain of gains: For the probability
weighting parameter to fully explain the choice patterns, older adults would have to show a stronger
increase in the probability weighting parameter in both domains.

Outcome-sensitivity hypothesis According to the outcome-sensitivity hypothesis, increasing
the complexity of a safe option increases outcome sensitivity, and this effect may be more pro-
nounced in older than in younger adults. Figure 2.3 displays the means of the individual-level
posterior distributions for the outcome sensitivity parameter α and Figure 2.5 shows the corre-
sponding value functions for both domains and age groups. GLM results are displayed in Table
2.5.

There was a positive main effect of complexity on outcome sensitivity in the domain of
gains, showing that outcome sensitivity is higher when the safe and risky option are similarly
complex than when the options differ in complexity. The negative main effect of age group in the
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domain of gains indicates that older adults were generally less sensitive to outcome information
than younger adults were. This main effect was not credible in the domain of losses. In line with
the outcome-sensitivity hypothesis, there was a positive interaction effect of problem type (complex
safe) and age group on α in the gain domain, indicating that outcome sensitivity increased more
strongly for older adults than for younger adults when both options were similarly complex. This
interaction was not credible in the domain of losses.
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Figure 2.4: Individual-level probability weighting functions (based on CPT probability weighting parameter estimates for gains and losses) for
Study 1 and the corresponding conditions that were replicated in Study 2.
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Figure 2.5: Individual-level value functions (based on CPT outcome sensitivity parameter estimates for gains and losses) for Study 1 and the corresponding
conditions that were replicated in Study 2.
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Outcome sensitivity can thus contribute to explaining the effects of complexity on the
age differences in risky choices behavior in the domain of gains, but not losses: For the outcome
sensitivity parameter to explain the overall choice patterns, older adults would have to show a
stronger increase in the outcome sensitivity in both domains.

Hence, the results on the outcome sensitivity parameter complement our findings on the
probability weighting parameter: When the complexity of safe options is increased, older par-
ticipants show a stronger increase in outcome sensitivity in the domain of gains, and a stronger
increase in the probability weighting parameter in the domain of losses, compared to younger
adults. Hence, two of our hypotheses about the impact of complexity on age differences in risky
choice are supported—indicating that complexity acts via a combination of mechanisms.

Linking the impact of option complexity on age differences in choice to the
parameters of the CPT analysis

We next directly linked the observed age differences in risky choice to the differences on the model
parameters between conditions and age groups. To this end, we conducted another set of Bayesian
logistic GLM analyses to see to what extent the interaction between age group and condition on risk
attitude would disappear once the estimated CPT parameters were entered in the regression. The
results are displayed in Table 2.4 (interaction model with CPT). As can be seen, the interaction
between problem type (complex safe) and age group on risk attitude in the gain domain is still
credible when the parameters of the CPT analysis are included in the model. However, all three
parameters independently explain some variance in the tendency to choose the high-risk option,
and these effects operate in the expected direction.5

The observation that all three model parameters—response noise, probability weighting,
and outcome sensitivity—contributed to the observed behavioral regularities indicates that com-
plexity acts via a combination of mechanisms.

How do responses in the risky choice task relate to self-reported risk preference?

Finally, we explored the relationship between participants’ risky choices and their self-reported
risk preferences (as measured with the one-item general risk question). This self-report measure
was not related to participants’ risky choices in any condition or age group (cf. Table 2.4 and
Tables A.3 and A.5 in Appendix A.2). Hence, as in several previous studies (Frey et al., 2017;
Pedroni et al., 2017), there was a disconnect between behavioral and self-report measures of risk
preference. A Bayesian GLM with self-reported risk preference as the dependent variable and age
group and gender as predictors (Table 2.6) shows that despite a slight trend toward a decrease in
self-reported risk preference in older adults (consistent with findings in large-scale panel data by
Dohmen et al., 2017; Josef et al., 2016), this effect was not credible.

Table 2.6: Regression Coefficients and 95% Posterior Intervals From the GLM of Self-Reported
Risk Preference in Study 1 and Study 2

5The positive effects of probability weighting and outcome sensitivity in the domain of gains show that higher
values on the probability weighting parameter (and thus more linear weighting functions) as well as higher values
on the outcome sensitivity parameter (and thus more linear value functions) increased the tendency to choose the
risky option. Higher values on the response noise parameter (i.e. lower response noise) decreases the tendency to
choose the risky option. In the domain of losses, higher values on the probability weighting parameter and the
outcome sensitivity parameter decreased the tendency to choose the risky option. Higher values on the response
noise parameter (lower response noise) increased the tendency to choose the risky option.
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Outcome Variable: Self-reported Risk Preference (Study 1)
Predictor Main Effect Model

(Intercept) 5.64
[5.05, 6.21]

Age Group (Older) -0.4
[-1.07, 0.29]

Gender (Male) 0.45
[-0.28, 1.15]

Outcome Variable: Self-reported Risk Preference (Study 2)
Predictor Main Effect Model

(Intercept) 4.54
[3.97, 5.13]

Age Group (Older) -0.04
[-0.75, 0.65]

Gender (Male) 0.7
[0.01, 1.4]

2.2.3 Summary of Study 1

Study 1 provided evidence for a crucial role of differences in option complexity between safe and
risky options for measuring age differences in risk attitude. As hypothesized, age differences in
risky choice behavior emerged in choices with simple safe and more complex risky options, but
they were eliminated when safe options were presented in a format similarly complex to risky
options. Regarding the underlying mechanism, the results—especially from the domain of losses—
speak against the complexity-aversion hypothesis: Increasing the complexity of safe losses did
not make them less attractive to younger or older adults. Modeling in CPT reveals that, while
higher option complexity increases response noise, this can not explain the behavioral differences
between younger and older adults. Rather, older adults’ stronger behavioral response to option
complexity in the domain of gains was paralleled by a stronger increase in outcome sensitivity,
compared to younger adults. In the domain of losses, older adults showed a stronger increase in
the probability weighting parameter than younger adults in response to increasing safe options’
complexity, indicating increasingly linear weighting functions. These findings suggest that the
effect of complexity on age differences on risky choice is driven by a combination of the dynamics
captured in the outcome-sensitivity hypothesis and the probability-weighting hypothesis.

2.3 Study 2

Study 1 was an online study. The goal of Study 2 was thus to replicate the results in a laboratory
experiment. Therefore, it included the same choice problems as Study 1 to ensure exact replication.
Moreover, we extended the investigation of the impact of differences in option complexity on age
difference in risky choice to choice problems with a safe option and a risky option that has a zero
outcome—a type of choice problem sometimes used in research on age differences in risky choice
(e.g. Bruine de Bruin et al., 2007; M. Y. Kim & Kanfer, 2009; Mamerow et al., 2016; Mather
et al., 2012; Mikels & Reed, 2009; Rönnlund et al., 2005; Rutledge et al., 2016; Thomas & Millar,
2011; Watanabe & Shibutani, 2010; Weller et al., 2011). In such problems, complexity differences
are arguably smaller than in choice problems in which the risky option has no zero outcomes.
This is because a risky option with an outcome of zero, for instance offering a 70% chance to win
$50 and a 30% chance to win nothing, that is, $0, can be reduced to a 70% chance to win $50.
Since the zero outcome and its associated probability can be ignored, the risky option in this type
of choice problem is similarly complex to a safe option, for instance offering a 100% chance to
win $40. Consequently, complexity differences between safe and risky options may be comparably
small in this problem type, and thus have a comparably small impact on age differences in risky
choice—compared to choice problems without a risky outcome of zero (like those used in Study 1).
Hence we test if age differences in risky choice also emerge in choice problems with risky outcomes
of zero (as found by Bruine de Bruin et al., 2007; M. Y. Kim & Kanfer, 2009; Mather et al., 2012;
Rutledge et al., 2016; Watanabe & Shibutani, 2010; Weller et al., 2011), and if so, whether they
can also be eliminated by further reducing the complexity differences between the options.

Figure 2.6 illustrates these new choice problems. People are asked to choose between simple
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safe options and risky outcomes of zero (where differences in complexity are comparably small).
Are there age differences on these problems as well, and if so, can they be reduced by increasing the
complexity of safe options? Details on the construction of these problems are provided below. To
characterize the participant sample and further increase comparability with other prior research,
Study 2 also included some additional cognitive and affective measures (more details below).
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Figure 2.6: New conditions of the risky choice task in Study 2, including risky options with
outcomes of zero.

2.3.1 Method

Participants

The experiment was conducted in the behavioral laboratory of the Max Planck Institute for Human
Development in Berlin, and participants were recruited from the internal participant data base of
the institute. The sample of participants consisted of 80 younger adults and 80 older adults. We
approached participants who were between 18-35 years old or who were at least 60 years old,
respectively. Demographic characteristics, self-reported risk preference and cognitive and affective
characteristics can be found in Table 2.7. Participants received a baseline payment of e 20 and a
performance-contingent monetary bonus. Like in Study 1, the bonus was determined individually
for each participant by selecting one of the risky choices and playing out the lottery chosen by
the participant. To induce a realistic sense of the possibility to win or lose actual money, the
experimenter put e 5 on the desk in front of the participant as a baseline bonus, before starting
the experiment. The experimenter explained that the choices in the experiment would determine
if the participant would get to keep this baseline bonus and possibly increase it up to e 10, or if
they would have to return some of or even the whole baseline bonus at the end of the experiment.
After all choice were made, one trial was randomly selected, and the option that the participant
had chosen was played out. The resulting outcome was converted into Euros (with 100 units in
the experimental currency E$, in which the outcomes of the options were presented, corresponding
to e 5). The converted amount in e was added to or subtracted from the baseline bonus of e 5,
depending on whether the randomly selected lottery was a gain or a loss trial. Detailed instructions
about this reward scheme were also provided in written form.

Materials

All tasks of Study 2 were programmed in PsychoPy (version 1.85.2).
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Table 2.7: Characteristics of the Sample in Study 2 by Age Group. Categories for Monthly In-
come, in e : (500 or less/500-1000/1000-1500/1500-2000/2000-2500/2500-3000/3000-3500/3500-
4000/4000 or more/Not disclosed). Categories for Highest Educational Attainment: (Still In
School/Completion of Compulsory Basic Secondary School/Secondary School Degree/High School
Degree/Vocational Training/Bachelor Degree/Master Degree/University Diploma/PhD/Other)

Characteristic Younger Older
n 80 80
Sex (n female) 42 41
Age (years) M = 26.2, Md = 26, SD = 3.9 M = 70.2, Md = 69, SD = 4.8

—range [18; 34] [61; 84]
Self-reported risk preference M = 4.9, Md = 5, SD = 2.3 M = 4.8, Md = 5, SD = 2.2
Numeracy M = 2.2, Md = 2, SD = 1.2 M = 1.6, Md = 1, SD = 1
Positive affect

—momentary M = 3.8, Md = 3.8, SD = 1 M = 4.8, Md = 4.8, SD = 1.1
—habitual M = 4.5, Md = 4.6, SD = 1 M = 5, Md = 5.1, SD = 0.8

Negative affect
—momentary M = 1.9, Md = 1.7, SD = 0.8 M = 1.4, Md = 1.2, SD = 0.6
—habitual M = 2, Md = 1.9, SD = 0.8 M = 1.6, Md = 1.4, SD = 0.7

DSST
—n accurate M = 56, Md = 55, SD = 8.2 M = 37.3, Md = 38, SD = 5.3
—% accurate M = 0.97, Md = 0.97, SD = 0.03 M = 0.98, Md = 0.99, SD = 0.03

Monthly income (n/category) (23/26/16/6/3/0/0/0/0/6) (0/5/20/22/10/8/5/2/5/3)
Educational attainment (n/category) (1/0/3/25/9/30/9/1/2/0) (0/5/16/16/7/2/4/26/3/1)

Risky choice task In addition to the choice problems from Study 1, we included an additional
80 problems consisting of a safe and a two-outcome risky option in which one outcome was zero
(40 from each domain). Half of these additional problems offered a simple safe option (condition
simple safe zero) and the other half offered a complex safe option (condition complex safe zero).
That is, the complexity of safe options was manipulated in the same manner as in the original
conditions. However, whereas in Study 1 the terms expressing the complex safe outcome did not
include zeros, they did in Study 2. For instance, while a safe outcome of 54 might be expressed as
(0.4 x 90) + (0.6 x 30) E$ in Study 1, it might be expressed as (0.6 x 90) + (0.4 x 0) E$ in Study 2.
This served to render complex safe options and risky options with zero outcomes similarly complex
on the structural level. In both new conditions, half of the choice problems involved gain outcomes;
the other half, loss outcomes. The numerical structure of the new choice problems was based on
the unequal-EV problems in Mather et al., 2012: The choice problems were constructed by fixing
both options’ EVs. The safe option’s outcome equaled its EV, and one of the risky outcomes was
set to zero. The non-zero risky outcome was adjusted to conform to the risky option’s EV, while
varying its probability from 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95 to 0.99 across problems. On
half of the problems within each condition and domain, the option with the higher EV was safe,
and on the other half was risky. For each of these choice problems, we constructed a version with
a simple safe option and a version with a complex safe option. A full list of all choice problems
used is provided in Appendix A.9. There, we also report choice probabilities in younger and older
adults on each individual problem.

Every participant made choices in all conditions and both domains. The choice problems
were presented in a randomized order that was uniquely determined for each participant. We
also randomized which side of the screen the high and low risk options appeared on across choice
problems and uniquely for each participant. Response times in the risky choice task were recorded
in ms.

Complexity rating, numeracy test and self-reported risk preference As in Study 1,
participants rated the perceived complexity of a subset of 30 randomly drawn choice problems,
solved the numeracy test and indicated their self-reported risk preference.
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PANAS We also included a measure of momentary and habitual affect, a German version of
the 10 item positive-and-negative-affect scale PANAS (Grühn et al., 2010; Watson et al., 1988).
On each trial of the PANAS, an adjective describing an affective state was presented in the center
of the screen and participants were asked to rate how strongly they felt this affect right now (for
momentary or state affect) or generally (for habitual or trait affect). Participants responded on a 7-
point scale (see Grühn et al., 2010). There were 2 separate blocks for measuring state (momentary)
and trait (habitual) affect, both including the same adjectives. The 10 positive and 10 negative
adjectives were presented intermixed and randomized within each block. The order or the two
blocks was randomly determined for each participant.

Digit symbol substitution test We also included a measure of fluid intelligence in terms of
speed of processing: Participants completed a digit symbol substitution test (cf. McLeod et al.,
1982). A table on top of the screen defined a (randomly determined, for each participant) mapping
between 9 symbols and the digits 1—9. On each trial, one of the 9 symbols was presented in the
center of the screen and participants had to press the associated number key; the next symbol
appears as soon as the participant has responded. The test lasted 90 seconds and participants
were instructed to work as quickly and as accurately as possible. We report both the number of
correctly matched symbol-number pairs and the percentage of correct responses in Table 2.7.

Design

The experiment had a mixed design, with age group as between-subjects factor, and type of choice
problem (simple safe, complex safe, risky, and the new conditions simple safe zero and complex
safe zero) and domain (gains vs. losses) as within-subjects factors. The experiment was approved
by the IRB of the Max Planck Institute for Human Development.

Procedure

Upon arriving at the lab participants were informed about privacy and data-protection guide-
lines and provided informed consent. Next, participants received instructions regarding the risky
choice task and the reward scheme. Participants responded to 5 practice trials (which were non-
consequential for the determination of the bonus, and participants were informed about this) before
completing the actual choice task. After the choice task, participants completed the complexity
rating, the numeracy test, the digit symbol substitution task, and the PANAS. The order of these
additional tasks was randomized across participants. After completing all additional tasks, partic-
ipants indicated their gender, age in years, monthly income, and highest educational attainment,
and answered the self-report item on risk preference. In addition, they had the opportunity to
comment on the study in an open-answer written format. Upon completing the experiment, the
bonus payment amount was automatically determined, and each person received the baseline plus
the bonus payment.

2.3.2 Results

We implemented and evaluated all behavioral analyses using the same procedures as in Study
1, and extended them to the two new conditions involving zero outcomes. As in Study 1, an
analysis of participants’ choices in problems with a dominated option indicated good data quality:
Participants chose the dominating option in 76.88% of trials in the domain of gains (younger
adults: 85.21%; older adults: 68.54%) and in 88.07% of trials in the domain of losses (younger
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adults: 93.02%; older adults: 83.12%). Further analyses of the choices on the problems with a
dominated option are reported in Appendix A.1.

Was the complexity manipulation successful?

We used Bayesian GLMERs to analyze participants’ complexity ratings of the different types
of choice problems. Detailed results are reported in Table A.1 and illustrated in Figure A.2 in
Appendix A.1. As in Study 1, participants rated the choice problems from the complex safe
condition and those from the risky condition as more complex than those from the simple safe
condition. We further expected that the availability of a zero outcome would reduce the perceived
complexity of risky options, and hence of choice problems involving such risky options. This is
supported by the ratings: Problems from the simple safe zero condition were rated to be less
complex than problems from the simple safe condition. There were no credible differences between
complexity ratings for problems from the complex safe zero condition and the simple safe condition.
These results support the notion that risky options with a zero outcome, which are structurally
less complex than risky options with only nonzero outcomes, are also perceived as such.

We also examined the effect of the complexity manipulation on response times (RTs) in the
risky choice task. Detailed results are reported in the bottom panel of Table A.2 and illustrated
in Figure A.3 in Appendix A.1. Participants took more time to make choices in the complex safe
condition and the risky condition than in the simple safe condition. Moreover, participants made
faster choices in the simple safe zero condition than in the simple safe condition, further supporting
that the availability of a zero outcome made the choices less difficult. Older adults overall took
more time for their choices than younger adults. An interaction between age group and problem
type (complex safe) indicated that older adults’ RTs increased more than younger adults’ when
the complexity of the safe option increased. This holds in both the domain of gains and losses.

Did complexity affect age differences in risky choice?

Next, we used the risky choice task to test whether age differences in risky choice behavior were
reduced or even eliminated in choices between similarly complex options. The average empirical
choice proportions of the less risky option in each problem type, domain, and age group are
displayed in the top panel of Figure 2.2. We first assess the effects of option complexity on age
differences in risky choice in the conditions that were included in both studies, before turning to the
role of zero outcomes. As can be seen, the observed qualitative patterns in these three conditions
support our basic hypothesis, and closely reproduce the findings from Study 1: In the condition
with simple safe options in the domain of gains older adults appear more risk averse. These age
differences are attenuated in the other conditions, where options are more similarly complex. In the
domain of losses, younger and older adults are similarly risk seeking in the condition with simple
safe options, and both age groups were more risk neutral in the other conditions with similarly
complex options. The increase in safe choices in the complex safe condition compared to the
simple safe condition in the domain of losses is more pronounced in older adults. Coefficients and
95% posterior intervals from Bayesian GLMER analyses supporting the statistical credibility of
these qualitative patterns are displayed in Table 2.4. Credible interactions between age group and
problem type (complex safe) in both domains support our hypothesis that older adults are more
sensitive to differences in option complexity than younger adults. This interaction in the domain of
losses was not credible in Study 1. Hence, Study 2 provides support for our basic hypothesis that
older adults are more sensitive to differences in option complexity between safe and risky options,
this time across both domains (though the effect is still stronger for gains than for losses).
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We also tested for the main effect of age group on risky choice behavior within each
condition, using Bayesian mixed-effect logistic regressions. Detailed results are reported in Table
A.4 in Appendix A.2. These analyses further support that age differences in risky choice behavior
are reduced or eliminated when both options are similarly complex.

Did complexity affect age differences in risky choice in problems involving zero
outcomes?

So far, the results from Study 2 replicate, in an independent participant sample and experimental
setting, that age differences in risky choice behavior depend on differences in option complexity
between safe and risky options—if the risky options involve two non-zero outcomes. Figure 2.2 dis-
plays choice behavior in the new conditions of Study 2, offering risky outcomes of zero. Consistent
with the finding that the presence of a risky outcome of zero reduces the perceived complexity of
choice problems, there were no age differences on problems with a risky outcome of zero. It is thus
not surprising that rendering the options even more similar in their complexity by increasing the
complexity of the safe option (problem type complex safe zero) does not affect choices. This finding
is consistent with the notion that complexity differences between options drive age differences in
risk preference: In choices between safe and risky options of comparable complexity (i.e., in our
experiments, all problem types except for the simple safe condition without zero outcomes), we
expected and observed very small or no age differences.

To statistically corroborate this qualitative pattern, we changed the reference level for
the factor problem type to the simple safe zero condition, and re-ran the mixed-effects logistic
regressions for risky choice behavior reported above. Coefficients and 95% posterior intervals are
displayed in Table A.6 in the Appendix A.3. Indeed, there was no credible interaction between
problem type complex safe zero and age group in either domain. Moreover, there was no credible
main effect of age group within either condition offering risky outcomes of zero (cf. Table A.4 in
Appendix A.2).

To summarize, these results extend the support for the complexity account, according
to which age differences in risky choice behavior emerge when the options differ considerably in
complexity, but are reduced or eliminated once these differences in complexity are reduced. This
finding suggests that age differences observed on the basis of choice problems involving choices
between a (simple) safe and a (complex) risky option with two non-zero outcomes may not only
reflect age differences in risk attitude, but, to some extent, a stronger response to option complexity
in older than in younger adults.

Testing the underlying mechanisms

Like in Study 1, the behavioral patterns can be used to discard the complexity-aversion hypothesis:
Increasing the complexity of safe options made older adults more likely to choose safe options in
the domain of losses. They found safe options more attractive when their complexity increased—
which can not be explained under complexity aversion. Detailed results statistically corroborating
this findings are reported in Table A.5 in Appendix A.2.

Next, we used computational modeling with the same estimation approach and hierarchical
Bayesian implementation of CPT as in Study 1 to evaluate the remaining candidate hypotheses,
regarding the effects of option complexity on response noise, probability weighting, and outcome
sensitivity. The scale reduction factor R̂ (Gelman & Rubin, 1992) was smaller than 1.001 for all
estimated parameters, indicating very good convergence. The estimated CPT parameters captured
the empirical choice patterns very well, as indicated by the posterior predictive choice probabilities
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for each condition, domain, and participant (cf. Figure 2.2 and Appendix A.5). The means of
the individual-level posterior distributions for each parameter of the CPT analysis are shown in
Figure 2.3. The resulting value and weighting functions are shown in Figure 2.4 and 2.5 for the
replicated conditions. The value and weighting functions for the new conditions involving risky
outcomes of zero are shown in Figure 2.7. The CPT-based hypotheses were again evaluated with
a series of Bayesian GLM analyses comparing the individual-level parameter estimates in the
different conditions and age groups. The coefficients and 95% highest posterior density intervals
for the Bayesian GLMs evaluating these different hypotheses are displayed in Table 2.8. We also
tested whether the availability of a safe option affected the parameters of the CPT analysis after
controlling for complexity. The results are reported in Appendix A.4.

Replicating results from Study 1, response noise was overall higher in older than in younger
adults in both domains, and lower in the problems with complex safe than simple safe options,
in the domain of losses. Response noise was not credibly higher in problems with complex safe
than simple safe options in the domain of gains, in contrast to Study 1. The interaction between
problem type (complex safe) and age group (older) was not credible, indicating that younger and
older adults showed similar increases in response noise in choice problems with complex safe rather
than simple safe options.

Next, we turn to the probability weighting patterns, which also replicate results from
Study 1: Probability weighting functions were less distorted when the problem offered a complex
safe option rather than a simple safe option—that is, when the options were more similar in their
complexity. The interaction between age group and problem type (complex safe) was credible and
positive in the domain of losses. This indicates that older adults showed a stronger increase in
the probability weighting parameter than younger adults in the domain of losses. There was no
credible interaction between problem type (complex safe) and age group in the domain of gains.

Finally, and further replicating the results from Study 1, outcome sensitivity in the domain
of gains was higher when the safe option was complex than when it was simple. In contrast to
Study 1, there was also a positive main effect of complexity on outcome sensitivity in the domain
of losses. We further replicated the result that outcome sensitivity increased more strongly in older
adults than in younger adults when safe and risky options were similarly complex, in the domain
of gains, but not in the domain of losses.

In summary, these modeling results extend the support for findings in Study 1 that choices
are more unsystematic, probability weighting is more linear, and outcome sensitivity is higher,
when safe and risky options are similarly complex than when they differ in their complexity.
The results from Study 1 and 2 speak against response noise as an explanation for the effects of
option complexity on age differences in risky choice (although option complexity led to more noisy
responses overall). Rather, both studies indicate that older participants show a stronger increase
in outcome sensitivity in the domain of gains and a stronger increase in the probability-weighting
parameter in the domain of losses relative to younger adults, when the complexity of safe options
is increased. Outcome sensitivity might thus contribute to explaining the effects of complexity on
age differences in risky choice in the domain of gains, but not losses. The probability-weighting
estimates complement this finding, since they help to explain the effects of complexity on age
differences in risky choice in the domain of losses (rather than gains).
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Table 2.8: Regression Coefficients and 95% Posterior Intervals for the GLMs Predicting Parameters
of the CPT Analysis in Study 2. Reference Condition: Choices Between Simple Safe Options and
Risky Options Without a Zero Outcome

Outcome Variable (Study 2) Gain Loss
Predictor Main effect model Interaction model Main effect model Interaction model

ρ (response noise)

(Intercept) 0.25
[0.16, 0.35]

0.2
[0.09, 0.33]

0.24
[0.19, 0.29]

0.21
[0.14, 0.27]

Age Group (Older) -0.14
[-0.22, -0.06]

-0.05
[-0.22, 0.13]

-0.15
[-0.19, -0.11]

-0.08
[-0.17, 0.01]

Problem Type (Complex Safe Zero) 0.44
[0.32, 0.56]

0.37
[0.2, 0.54]

0.35
[0.29, 0.42]

0.31
[0.22, 0.4]

Problem Type (Complex Safe Zero) × Age Group (Older) 0.13
[-0.12, 0.37]

0.09
[-0.03, 0.21]

Problem Type (Complex Safe) -0.08
[-0.21, 0.04]

-0.07
[-0.24, 0.11]

-0.07
[-0.14, -0.01]

-0.1
[-0.19, -0.01]

Problem Type (Complex Safe) × Age Group (Older) -0.03
[-0.27, 0.22]

0.05
[-0.08, 0.18]

Problem Type (Risky) -0.07
[-0.19, 0.05]

-0.06
[-0.24, 0.11]

-0.03
[-0.09, 0.04]

-0.03
[-0.12, 0.06]

Problem Type (Risky) × Age Group (Older) -0.03
[-0.27, 0.23]

0
[-0.13, 0.13]

Problem Type (Simple Safe Zero) 1.25
[1.12, 1.38]

1.51
[1.33, 1.69]

0.64
[0.57, 0.71]

0.9
[0.81, 0.99]

Problem Type (Simple Safe Zero) × Age Group (Older) -0.54
[-0.78, -0.29]

-0.51
[-0.63, -0.38]

γ (probability weighting)

(Intercept) 0.61
[0.55, 0.67]

0.66
[0.59, 0.74]

0.67
[0.62, 0.71]

0.83
[0.77, 0.88]

Age Group (Older) 0.22
[0.17, 0.26]

0.12
[0.02, 0.22]

0.25
[0.22, 0.29]

-0.07
[-0.14, 0.01]

Problem Type (Complex Safe Zero) 0.33
[0.26, 0.41]

0.18
[0.08, 0.28]

0.48
[0.42, 0.53]

0.1
[0.03, 0.17]

Problem Type (Complex Safe Zero) × Age Group (Older) 0.3
[0.16, 0.44]

0.75
[0.65, 0.86]

Problem Type (Complex Safe) 0.13
[0.05, 0.2]

0.1
[0, 0.2]

0.21
[0.15, 0.27]

0.15
[0.08, 0.22]

Problem Type (Complex Safe) × Age Group (Older) 0.06
[-0.08, 0.2]

0.12
[0.01, 0.22]

Problem Type (Risky) 0.53
[0.45, 0.6]

0.44
[0.33, 0.54]

0.44
[0.38, 0.5]

0.33
[0.26, 0.41]

Problem Type (Risky) × Age Group (Older) 0.18
[0.04, 0.32]

0.22
[0.12, 0.32]

Problem Type (Simple Safe Zero) -0.01
[-0.08, 0.06]

0
[-0.1, 0.1]

0.22
[0.16, 0.28]

-0.03
[-0.1, 0.04]

Problem Type (Simple Safe Zero) × Age Group (Older) -0.02
[-0.16, 0.12]

0.51
[0.41, 0.62]

α (outcome sensitivity)

(Intercept) 0.63
[0.58, 0.68]

0.64
[0.58, 0.71]

0.9
[0.84, 0.97]

0.88
[0.8, 0.96]

Age Group (Older) -0.01
[-0.05, 0.03]

-0.03
[-0.12, 0.06]

0.1
[0.04, 0.15]

0.15
[0.03, 0.26]

Problem Type (Complex Safe Zero) 0.33
[0.27, 0.4]

0.28
[0.19, 0.37]

0.29
[0.21, 0.37]

0.23
[0.12, 0.35]

Problem Type (Complex Safe Zero) × Age Group (Older) 0.1
[-0.03, 0.22]

0.11
[-0.05, 0.27]

Problem Type (Complex Safe) 0.18
[0.11, 0.24]

0.03
[-0.06, 0.12]

0.14
[0.06, 0.22]

0.08
[-0.04, 0.2]

Problem Type (Complex Safe) × Age Group (Older) 0.29
[0.16, 0.41]

0.12
[-0.05, 0.28]

Problem Type (Risky) -0.37
[-0.44, -0.31]

-0.3
[-0.39, -0.21]

-0.12
[-0.2, -0.04]

0.07
[-0.05, 0.19]

Problem Type (Risky) × Age Group (Older) -0.14
[-0.27, -0.01]

-0.38
[-0.54, -0.22]

Problem Type (Simple Safe Zero) 0.06
[0, 0.13]

0.13
[0.05, 0.22]

0.15
[0.07, 0.23]

0.2
[0.08, 0.31]

Problem Type (Simple Safe Zero) × Age Group (Older) -0.13
[-0.26, -0.01]

-0.09
[-0.26, 0.07]

Impact of complexity on CPT parameters when the risky option has a zero outcome

We also examined how the complexity of safe options affected CPT parameters when a risky
outcome of zero was available, using the new conditions of the choice task. To this end, we
changed the reference level for the factor condition to the problem type simple safe zero, and re-
ran the Bayesian GLM analyses of CPT parameters. The coefficients are reported in Table 2.9.
The effect of problem type (complex safe zero) in these analyses allows us to evaluate the effect of
safe options’ complexity, given a risky outcome of zero.

There was a negative credible main effect of problem type (complex safe zero) on ρ in
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Table 2.9: Regression Coefficients and 95% Posterior Intervals for the GLMs Predicting Parameters
of the CPT Analysis in Study 2. Reference Condition: Choices Between Simple Safe Options and
Risky Options Offering a Zero Outcome

Outcome Variable (Study 2) Gain Loss
Predictor Main effect model Interaction model Main effect model Interaction model

ρ (response noise)

(Intercept) 1.49
[1.4, 1.59]

1.71
[1.58, 1.83]

0.88
[0.83, 0.94]

1.1
[1.03, 1.16]

Age Group (Older) -0.14
[-0.21, -0.06]

-0.57
[-0.74, -0.4]

-0.15
[-0.19, -0.11]

-0.58
[-0.67, -0.49]

Problem Type (Complex Safe Zero) -0.81
[-0.93, -0.68]

-1.13
[-1.3, -0.96]

-0.29
[-0.36, -0.22]

-0.58
[-0.67, -0.49]

Problem Type (Complex Safe Zero) × Age Group (Older) 0.65
[0.41, 0.9]

0.59
[0.46, 0.72]

Problem Type (Complex Safe) -1.32
[-1.45, -1.2]

-1.56
[-1.74, -1.39]

-0.71
[-0.78, -0.65]

-0.99
[-1.08, -0.9]

Problem Type (Complex Safe) × Age Group (Older) 0.49
[0.25, 0.73]

0.55
[0.42, 0.68]

Problem Type (Risky) -1.31
[-1.44, -1.19]

-1.56
[-1.73, -1.38]

-0.67
[-0.74, -0.6]

-0.92
[-1.01, -0.83]

Problem Type (Risky) × Age Group (Older) 0.5
[0.25, 0.74]

0.5
[0.37, 0.63]

Problem Type (Simple Safe) -1.24
[-1.37, -1.12]

-1.51
[-1.67, -1.33]

-0.64
[-0.71, -0.57]

-0.89
[-0.98, -0.8]

Problem Type (Simple Safe) × Age Group (Older) 0.53
[0.28, 0.77]

0.5
[0.37, 0.63]

γ (probability weighting)

(Intercept) 0.6
[0.54, 0.65]

0.66
[0.59, 0.73]

0.89
[0.84, 0.94]

0.79
[0.74, 0.84]

Age Group (Older) 0.22
[0.18, 0.27]

0.09
[-0.01, 0.19]

0.25
[0.22, 0.29]

0.45
[0.37, 0.52]

Problem Type (Complex Safe Zero) 0.34
[0.27, 0.41]

0.18
[0.08, 0.28]

0.25
[0.2, 0.31]

0.13
[0.06, 0.2]

Problem Type (Complex Safe Zero) × Age Group (Older) 0.33
[0.18, 0.46]

0.24
[0.14, 0.34]

Problem Type (Complex Safe) 0.14
[0.07, 0.21]

0.1
[0, 0.2]

-0.02
[-0.08, 0.04]

0.18
[0.11, 0.25]

Problem Type (Complex Safe) × Age Group (Older) 0.08
[-0.06, 0.22]

-0.39
[-0.5, -0.29]

Problem Type (Risky) 0.54
[0.47, 0.61]

0.44
[0.34, 0.54]

0.22
[0.16, 0.28]

0.36
[0.29, 0.43]

Problem Type (Risky) × Age Group (Older) 0.2
[0.06, 0.34]

-0.29
[-0.4, -0.19]

Problem Type (Simple Safe) 0.01
[-0.06, 0.08]

0
[-0.1, 0.1]

-0.22
[-0.28, -0.17]

0.03
[-0.04, 0.1]

Problem Type (Simple Safe) × Age Group (Older) 0.02
[-0.12, 0.17]

-0.51
[-0.62, -0.41]

α (outcome sensitivity)

(Intercept) 0.7
[0.65, 0.75]

0.77
[0.71, 0.83]

1.05
[0.99, 1.11]

1.08
[0.99, 1.16]

Age Group (Older) -0.01
[-0.05, 0.03]

-0.16
[-0.25, -0.08]

0.1
[0.04, 0.15]

0.05
[-0.07, 0.17]

Problem Type (Complex Safe Zero) 0.27
[0.2, 0.33]

0.15
[0.07, 0.24]

0.14
[0.06, 0.23]

0.04
[-0.08, 0.15]

Problem Type (Complex Safe Zero) × Age Group (Older) 0.23
[0.11, 0.35]

0.21
[0.03, 0.37]

Problem Type (Complex Safe) 0.11
[0.05, 0.18]

-0.1
[-0.18, -0.01]

-0.01
[-0.09, 0.07]

-0.11
[-0.23, 0]

Problem Type (Complex Safe) × Age Group (Older) 0.42
[0.29, 0.54]

0.21
[0.05, 0.37]

Problem Type (Risky) -0.43
[-0.5, -0.37]

-0.43
[-0.52, -0.34]

-0.27
[-0.35, -0.19]

-0.13
[-0.24, -0.01]

Problem Type (Risky) × Age Group (Older) -0.01
[-0.13, 0.11]

-0.29
[-0.45, -0.12]

Problem Type (Simple Safe) -0.07
[-0.13, 0]

-0.13
[-0.22, -0.04]

-0.15
[-0.23, -0.07]

-0.2
[-0.31, -0.09]

Problem Type (Simple Safe) × Age Group (Older) 0.13
[0.01, 0.25]

0.1
[-0.07, 0.25]

both domains, indicating that participants’ response noise was higher in choices with complex safe
options than with simple safe options, when risky outcomes of zero were available. This effect
was more pronounced in younger than in older adults, indicated by a credible interaction in both
domains. There was also a positive main effect of problem type (complex safe zero) on γ in both
domains, indicating that probability weighting was more linear when the safe option was complex
versus simple. Moreover, this effect was more pronounced in older than in younger adults, as
indicated by the positive credible interactions between problem type (complex safe zero) and age
group in both domains. There was a positive main effect of problem type (complex safe zero)
on α in both domains, indicating that outcome sensitivity increased when the safe option was
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Figure 2.7: Individual-level weighting functions and value functions in the new conditions of study
2, involving risky options with zero outcomes. Value and weighting functions are based on CPT
outcome sensitivity parameter estimates and probability weighting parameter estimates for gains
and losses.

complex than when it was simple. This effect did not interact with age group. However, there was
a positive credible interaction between problem type (complex safe zero) and age group in both
domains, suggesting that this effect was more pronounced in older than in younger adults.

Taken together, these results extend the findings from the CPT analyses on the effects of
safe options’ complexity to choice problems with risky outcomes of zero. Paralleling the results from
choice problems without risky outcomes of zero, increasing the complexity of safe options was linked
to a decrease in the response noise parameter, and to an increase in both the outcome sensitivity and
probability weighting parameters. The effect on response noise was less pronounced in older adults,
and the effect on probability weighting was more pronounced in older adults, compared younger
adults. That is, in choice problems where risky outcomes of zero were available the interactions
between complexity and age group were not credible on the level of choice behavior, but they were
on the level of model parameters. This is because computational modeling disentangles in a more
fine-grained manner how individual attributes (and distortions thereof) shape choice, and how this
differs between age groups and conditions.

Linking the impact of option complexity on age differences in choice to the
parameters of the CPT analysis

We next again directly linked the observed age differences in risky choice to the differences on the
model parameters between conditions and age groups by conducting another set of Bayesian logistic
GLM analyses on risky choice behavior, including the estimated CPT parameters as predictors.
The results are displayed in Table 2.4 (interaction model with CPT). Notably, the core finding on
the level of choices in both domains—the interaction between problem type (complex safe) and
age group on risk attitude—is no longer credible when the parameters of the CPT analysis are
included in the model, underlining that the model accounts for these patterns. Moreover, like in
Study 1, the observation that all three model parameters—response noise, probability weighting,
and outcome sensitivity—contributed to the behavioral regularities to some extent, and in the
expected direction, indicates that complexity acts via a combination of factors captured in CPT.
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How do responses in the risky choice task relate to self-reported risk preference?

Finally, we again explored the relationship between participants’ risky choices and their self-
reported risk preferences (cf. Table 2.4 and Table A.4 in Appendix A.2). Higher self-reported
risk preference was associated with a higher tendency to choose the risky option in the conditions
involving safe options in the domain of gains, but not in the conditions involving two risky options,
and not in any conditions in the domain of losses. As in Study 1, there was also no credible main
effect of age group on self-reported risk preference (Table 2.6).

2.4 General Discussion

Research in psychology and economics on differences in risk attitude between younger and older
adults has yielded not infrequently resulted in conflicting findings. Many studies have concluded
that older adults are more risk averse than younger adults (in the gain domain). This pattern,
however, has mainly been obtained in tasks involving a choice between a risky and a safe option
(Best & Charness, 2015; Mather et al., 2012; Rutledge et al., 2016; Tymula et al., 2013). When
choosing between two risky options, by contrast, older adults often appear equally or less risk
averse than younger adults (Kellen et al., 2017; Pachur, Mata, et al., 2017). We proposed that age
differences in risky choice depend on the availability of a safe option because younger and older
adults respond differently to differences in option complexity.

In two studies we varied the complexity of the safe option—thus rendering risky and
safe options’ complexity more similar —and obtained evidence that age differences in risky choice
indeed depend strongly on whether choice problems differ in complexity. Older adults chose more
likely a safe gain over a risky one when the two options differed in complexity. This age difference,
however, disappeared when these differences were rendered smaller. In Study 1, we also observed
find age differences in the loss domain, with older adults now being more likely to choose risky over
simple safe losses. However, even these age differences disappeared when complexity differences
were rendered smaller. The effect of option complexity on age differences in risky choice could help
to explain striking inconsistencies in the literature on age-dependent differences in risk attitude.
Moreover, examining the underlying mechanism, we showed that the impact of complexity was not
driven by complexity aversion. Using computational modeling with CPT, we found that increasing
the complexity of safe options has two somewhat opposing effects: First, it does introduce more
error into the choice process. Second, it leads to more ’rational choice’ insofar as it increased the
sensitivity to differences in outcomes and, in addition, made probability weighting more linear.
Finally, we dissociated the effect of option complexity from an effect of certainty: Certainty seems
to influence CPT parameters (see Appendix A.4), beyond the effect of complexity. These findings
materialized consistently in an online (Study 1) and a laboratory experiment (Study 2). In Study
2, we further found that there were also no age differences in choices between a safe option and a
risky option, with the latter offering an outcome of zero and differences in complexity differences
being small. Next, we discuss the broader implications of these findings.

2.4.1 Implications for Age Differences in Decision Making Under Risk

Our focus here has been on age differences in risk attitude as revealed in a behavioral task, a
commonly used approach to investigate decision making under risk (Hertwig et al., 2019; Mata
et al., 2018). Results using this risk elicitation measure have often been interpreted to suggest
greater risk aversion in older adults. In contrast our results suggest that these results may be
primarily response a response to a property of the anatomy of the stimulus—option complexity.
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Once differences in option complexity are render smaller, the age differences in risky choice behavior
seem to be reduced or even eliminated.

Let us emphasize, however, that this does not means that younger and older adults are
alike in their risky choices outside the laboratory for at least two reasons. The first reason is
existing complexity differences in the wild. Specifically, the level of risk in real options may be
confounded with complexity, too: For instance, in many situations a safe and easy to evaluate
fall-back or default option may be available (e.g., simply maintaining the status quo). Given the
effects of option complexity on choice behavior, age differences are likely to emerge in some natural
environments but not in others. As a consequence, it may be rather difficult (or even impossible)
to predict invariant age differences in behavior in risky situations in general. A more modest, and
possibly more promising, approach to predict age differences in risky choice based on behavioral
tasks could be to tailor the measurement task to a clearly defined reference class of situations
and its contextual features. To this end, it is important to conduct studies like ours, which
identify and isolate contextual variables that shape risky choice behavior. The suggested approach
also highlights an advantage of behavioral approaches to studying risk preferences: Contextual
features of choice tasks can be explicitly varied to match particular target ecologies and to gauge
their impact on behavior. The second reason is that age differences have also been found beyond
behavioral tasks. Specifically, a second major tradition in measuring risk attitude exists that
relies on self-reports. For instance, respondents are asked to indicate on a scale from 0 to 10
how prepared they are to take risks in general (Dohmen et al., 2011). A robust finding in studies
using this approach is that older adults indicate a lower willingness to take risks than younger
adults (Dohmen et al., 2017; Josef et al., 2016; Mata et al., 2016). It is unclear, however, what
situations or episodes of risk taking people use as a basis to inform their response. Although
some variants of commonly used self-report items refer to particular domains in life—for instance
regarding financial, career, or health risks (Dohmen et al., 2011; Weber et al., 2002)—the self-
report approach to measuring risk preferences affords less control over specific contextual features,
rendering it difficult to determine their impact.

To summarize, although our understanding of the factors influencing decisions under risk
has been growing, it may not be possible to derive a general conclusion regarding age differences
in risky choice behavior—simply because decisions under risk are apparently very sensitive to the
structural characteristics of the choice ecology. As a consequence, the predictive power of tasks
with specific characteristics (e.g., options differing in complexity) may be limited to only those
situations that match them. Acknowledging the characteristics’ impact may not only enhance pre-
dictive power, but also help explain the rather modest convergent validity among diverse behavioral
measures (Frey et al., 2017; Pedroni et al., 2017).

2.4.2 Can CPT Parameters be Interpreted Psychologically?

We used the computational modeling framework of CPT to examine potential mechanisms. In
implementations with a probabilistic choice rule, CPT separates random error from systematic
transformations of the options’ attributes. Moreover, CPT distinguishes between a representation
of outcome information (value function) and probability information (weighting function), which
together are assumed to shape preferences. Our analyses show that participants displayed more
linear probability weighting and higher outcome sensitivity in choice problems involving complex
safe rather than simple safe options. What can be inferred from these results regarding the impact
of option complexity on the underlying cognitive processing?
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Possible interpretations in terms of attention

CPT stands in the tradition of “as-if” models of choice, which do not strive to describe the cogni-
tive processes underlying a choice cf. Berg and Gigerenzer, 2010. At the same time, key constructs
in CPT, such as “loss aversion”, “probability sensitivity”, and “outcome sensitivity”, have been in-
terpreted psychologically (see Pachur, Suter Hertwig, 2017). Several recent analyses have found
evidence that CPT—though not modeling cognitive processes themselves—may be systematically
linked to how information is processed. For instance, Pachur et al., 2018 showed that CPT pa-
rameters can reflect the amount of attention allocated to probability and outcome information in
a construct-coherent manner (e.g., a more linear probability weighting function is associated with
more time spent processing probability information). Moreover, Pachur, Suter, et al., 2017 demon-
strated that choices simulated based on strategies that ignore probability information are reflected
in strongly curved probability weighting functions when modeled with CPT. Finally, probabil-
ity weighting patterns may reflect asymmetries in the allocation of attention towards individual
options in the choice set during preference formation (Zilker & Pachur, 2019).

In light of these results, the observed differences in our CPT analyses between the condi-
tions and age groups might point to specific differences in attention allocation. For instance, the
more linear probability weighting and higher outcome sensitivity for choices involving complex safe
rather than simple safe options may reflect more attention paid to probability and outcome infor-
mation, or a more symmetric allocation of attention between safe and risky options. Furthermore,
patterns in the allocation and impact of attention on preferences may differ between younger and
older adults. Addressing these possibilities directly using process measures (e.g., eye tracking) will
be an interesting avenue for future research.

2.4.3 Differential Effects of Complexity in the Gain and Loss Domains

In Study 1 and 2, age differences in response to option complexity primarily emerged in the
gain domain, and were substantially attenuated in the loss domain. Specifically, in Study 1, the
interaction between complexity and age group on risky choice behavior was credible for gains, but
not for losses. In Study 2, this interaction was credible in both domains, but there were no credible
age differences in the domain of losses when the safe options were simple.

What might explain this difference across domains? Losses have been shown to trigger an
increased investment of cognitive resources and attention. For instance, people maximize more,
show longer response times, and search more extensively in tasks involving losses rather than
gains (e.g., Lejarraga & Hertwig, 2017; Lejarraga et al., in press; Yechiam & Hochman, 2013).
Importantly, this effect might be stronger in older than in younger adults. There is evidence that
due to an increasingly unfavourable ratio of gains to losses in later life, older adults undergo a
motivational shift in goal orientation and thus focus more strongly on preventing losses rather
than on achieving gains (Depping & Freund, 2011). It has also been demonstrated that such an
age-specific motivational shift affects risky choice: Best and Freund, 2018 found that older adults
are more willing to choose risky options when those options increase the chance of avoiding a larger
loss, whereas younger adults are more likely to choose risky options when they offer the chance
of larger gains. An increased focus on loss prevention could motivate older adults to invest more
effort and cognitive resources specifically in choices about losses—and thus reduce the impact of
option complexity. As a consequence, older and younger adults may behave more similarly in
choices about losses than in choices about gains.
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2.4. General Discussion

2.4.4 Effects of Complexity on Age Differences in Other Risky Choice
Paradigms

We are not the first to demonstrate that differences in cognitive requirements of a task, for instance
due to complexity, affect age differences in risky choice. In their meta-analysis on behavioral risky
choice tasks, Mata et al., 2011 concluded that age differences emerged primarily in paradigms with
high learning requirements. Older adults also rely more on simpler strategies, which discard certain
aspects of information (Mata et al., 2007), especially in choice problems with a high number of
options (Besedeš et al., 2012a, 2012b). Moreover, a meta-analysis on pre-decisional information
search concluded that older adults search for less information before choice, especially if options
were characterized by a greater number of attributes (Mata & Nunes, 2010). Similarly, Frey
et al., 2015 investigated the effect of choice set size (2, 4, or 8 options) on age differences in
behavior in decisions from experience, where participants learn about options by sampling their
payoff distributions. The authors found age differences in the effect of higher set size on search
effort (older adults sampled less per option than younger adults under high set size) but not in
choice behavior. This highlights a subtle but important difference to our study: In contrast to
our experiment (where the options within a choice problem differed in complexity), Frey et al.,
2015 manipulated the complexity of choice problems as a whole. Taken together, different facets
of complexity in risky choice tasks may impact behavior—and age differences therein—in different
ways. Consequently, age differences may emerge in response to some, but not necessarily all
manifestations of complexity.

2.4.5 Effects of Complexity on Other Decision Making Phenomena

Our finding that differences in option complexity seem to crucially shape age differences in deci-
sion making may also have implications for other prominent decision-making phenomena that are
typically demonstrated in tasks with options differing in complexity. One such example are fram-
ing effects, and specifically, preference reversals as a result of different descriptions of otherwise
numerically equivalent options (Tversky & Kahneman, 1981). For instance, people who appear
risk averse in choices about positively framed options often appear risk seeking in choices about
(equivalent) negatively framed options. Studies on framing effects often use tasks (e.g., the Asian
disease problem; Tversky & Kahneman, 1981) that involve a choice between a safe and a risky
option, thus giving ample room to the impact of differences in complexity. A second example is
loss aversion, the notion that people assign subjectively greater weight to losses than to gains of the
same size (Kahneman et al., 1991; Tversky & Kahneman, 1992). Loss aversion has been invoked to
explain the observation that most people reject the chance to play a mixed lottery offering equal
chances to lose an amount of money and to win an equivalent of or even larger amount (Gächter
et al., 2007; Tom et al., 2007, but see Erev et al., 2008). Importantly, this task also involves
a choice between a safe option (i.e., rejecting the risky lottery) and a risky option (i.e., playing
the mixed lottery). Finally, option complexity might also affect choices beyond decisions under
risk. In intertemporal choice—people are asked to choose between a smaller sooner or a larger
later reward—the immediacy effect describes people’s tendency to choose the smaller immediate
reward (Keren & Roelofsma, 1995; Prelec & Loewenstein, 1991). Immediate rewards, just like safe
options, tend to be less complex to evaluate. If so, responses to option complexity—rather than
immediacy—might play an not yet recognized role as well in intertemporal choice.

This is admittedly speculative. But it seem pertinent to systematically examine the extent
to which responses to option complexity contribute to classical choice phenomena such as framing
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effects, loss aversion, and immediacy effects. Interestingly, there is already evidence showing that
the presence of safe options increases the magnitude of framing effects (Kühberger, 1998) and
contributes to the emergence of loss aversion: Many participants show no, or only rather low
levels of, loss aversion in choices between two (equally complex) risky gambles (Pachur, Mata,
et al., 2017; Pachur et al., 2018; Rieskamp, 2008). Potentially, evidence interpreted as an increased
susceptibility of older adults to framing effects (e.g., S. Kim et al., 2005) and an increased loss
aversion (Gächter et al., 2007) may, to some extent, reflect their greater sensitivity to complexity.

2.4.6 Conclusion

Do risk preferences differ between younger and older adults? A considerable amount of work
in psychology and economics has revealed the constructed nature of preferences (Lichtenstein &
Slovic, 2006). To the extent that preferences are constructed, they are likely to be very sensitive
to contextual features. It has rarely been considered, however, how older and younger adults
may differ in their response to such contextual properties in paradigmatic choice tasks designed
to measure risk attitude. We argue that it is essential to acknowledge the influence of subtle task
properties on risky choice behavior; otherwise it will remain difficult or even impossible to predict
risk behaviors in the wild that are likely to be profoundly impacted by properties of the choice
ecology.
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Abstract

We recently showed that age differences in risky choice behavior, measured based on com-
monly used choices between safe and risky options which differ in complexity, may be better
explained by age differences in the response to differences in option complexity, than by age dif-
ferences in genuine risk attitude. In other commonly used choice paradigms the options also differ
in complexity. Here we investigate whether inferences on age differences in such paradigms—
specifically, choice tasks for measuring loss aversion, framing effects, and delay discounting—may
also be distorted by complexity differences between the options. In each of these paradigms, we
experimentally increased the complexity of the typically simpler option, in order to control for
complexity differences. We hypothesized that this manipulation would affect younger and older
adults’ choice behavior differently. The results indicate no evidence for effects of option complexity
on choice behavior that typically considered indicative of loss aversion and framing effects, or for
age differences therein. Increasing the complexity of immediate options in delay discounting made
younger, but not older adults less likely to choose these options. Our results thus largely discon-
firm the hypothesis that differences in option complexity influence age differences in behavior in
these choice tasks. We discuss implications and potential explanations for the domain-specificity
of complexity effects.



Chapter 3

3.1 Introduction

Many classical phenomena of decision making—and by extension, individual differences therein—
are typically demonstrated in quite specific choice tasks. For instance, studies on age differences
in risk preference have often employed choices between a safe option, which offers a fixed reward
amount with 100%, and a risky option, which offers the possibility to win one of two rewards, each
associated with a specified probability (p and 1− p). In this task, older adults are typically found
to be more risk averse in the domain of gains, and more risk seeking in the domain of losses (e.g.,
Mather et al., 2012; Rutledge et al., 2016).

However, Zilker et al. (2019, see chapter 2) recently demonstrated that older adults’ greater
tendency to choose safe gains and to reject safe losses may not indicate age differences in proper
risk aversion or risk seeking. Rather, these age differences may be due to a previously overlooked
confound in the stimulus material: Safe options typically consist of fewer pieces of numerical in-
formation than risky options—that is, they are less complex. Zilker et al. (2019, see chapter 2)
demonstrated that increasing safe options’ complexity, and thus reducing complexity differences
between the options, made the commonly observed age differences in risky choice behavior disap-
pear. Hence, behavior that was previously interpreted as age differences in risk attitude is better
explained by age differences in the response to option complexity. The authors further demon-
strated that this response is not necessarily indicative of complexity aversion, or fully explained
by more non-systematic errors, but rather reflects a systematic shift in the impact of attribute
information (outcomes and probabilities) on valuation and choice.

Notably, age differences in apparent risk preferences are not the only phenomenon typically
demonstrated in choices between options that arguably differ in complexity. Framing effects, loss
aversion, and delay discounting—and age differences therein—are other prominent phenomena of
this kind. We first describe each phenomenon, the task typically used to demonstrate it (involving
a simple and a complex option), and the prior evidence on age differences therein. Then we
develop and test hypotheses about the potential role of differences in option complexity in each
phenomenon, and about age differences therein. Can age differences in framing effects, loss aversion,
and delay discounting be counteracted by reducing complexity differences between the options in
the respective choice tasks?

3.1.1 Loss Aversion

Loss aversion describes the observation that losses loom larger than gains, that is, losses appear
to have a greater impact on choice than gains of equal magnitude (Kahneman & Tversky, 1979).
In prospect theory (PT) and cumulative prospect theory (CPT), loss aversion is captured in a
value function that is steeper in the domain of losses than in the domain of gains (Kahneman &
Tversky, 1979; Tversky & Kahneman, 1992). Participants’ tendency to reject the chance to play
a lottery offering equal chances of loosing and winning equivalent amounts of money (Gächter
et al., 2007; Tom et al., 2007) is commonly interpreted as evidence for loss aversion. The degree
of loss aversion can be measured using choice lists consisting of several such accept/reject choices,
where the risky alternative is made increasingly attractive by varying the magnitude of the risky
loss outcome (Gächter et al., 2007). Participants with stronger loss aversion are expected to reject
more often, even on items where the expected value of the mixed risky gamble is equal to or greater
than zero. Note that such accept/reject choices are essentially choices between a mixed domain
risky lottery and a safe outcome of zero (the consequence of simply rejecting). The safe option
(rejecting) is considerably less complex than the mixed gamble, which consists of several pieces of
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numerical information (outcomes and probabilities) that can be considered and integrated during
valuation. Hence, preferences for the safe option (rejecting) may to some extent reflect a response
to these differences in option complexity—not necessarily greater loss aversion. Speaking in favor
of this argument, many participants show no loss aversion in choices between two risky gambles
(of equal complexity, cf. Pachur et al., 2017; Pachur et al., 2018; Rieskamp, 2008). Furthermore,
there is evidence for increased loss aversion in older age (Gächter et al., 2007)—which may to
some extent reflect older adults’ greater sensitivity to complexity: Older adults may reject mixed
lotteries more than younger adults, not (only) because they are more loss averse, but because
differences in complexity between the risky lottery and the safe reject choice skew their valuations
more. Consistently, in choices between two equally complex risky mixed gambles there is evidence
for lower loss aversion in older adults (Pachur et al., 2017).

Hypotheses

We hypothesize that loss aversion may emerge in choices between risky mixed options and safe
outcomes of zero. Moreover, increasing the complexity of safe options, thus rendering the two
options more similar in their complexity, may reduce the tendency to choose the safe option. This
reduction may be more pronounced in older adults, indicating a stronger response to differences in
option complexity. These hypotheses are summarized in Table 3.1.

3.1.2 Framing Effects

Whether people tend to choose safe or risky options (which are otherwise equivalent) depends
critically on the verbal framing of options in terms of gains or losses. The classical demonstration
of framing effects is behavior in the “Asian disease problem” (Tversky & Kahneman, 1981)1, which
requires a choice between different programs in a fictitious scenario where a disease threatens to
kill 600 people.2 In the positively framed condition, the options are described as "If program A
is adopted, 200 people will be saved. If Program B is adopted, there is 1/3 probability that 600
people will be saved, and 2/3 probability that no people will be saved" and in the negatively framed
condition, the options are described as "If program C is adopted, 400 people will die. If Program D
is adopted, there is 1/3 probability that nobody will die, and 2/3 probability that 600 people will die.”
Although A is equivalent to C and B is equivalent to D, most participants prefer the safe option (A)
in the positive frame, but the risky option (D) in the negative frame. Similar to behavioral measures
of risk attitude, framing problems typically involve a (simple) safe and a (complex) risky option.
The safe option is simpler since it consists of only one certain outcome, compared to the risky option
which consists of two possible outcomes and the associated probabilities. These differences in option
complexity may contribute to apparent risk aversion in choices about positively framed options
(gains) and apparent risk seeking in choices about negatively framed options (losses). Notably, a
meta-analysis by Kühberger (1998) concluded that framing effects are stronger in choices between
a risky and a safe option (which, in our view, differ in complexity) than in choices between two
risky options (which, in our view, are more similar in complexity). This underlines that to some
extent, framing effects may be a consequence of complexity differences between the options.

Moreover, a meta-analysis by Best and Charness (2015) demonstrated that younger and
older adults differ in their susceptibility to framing effects. This finding is mainly driven by older

1Since the original name can be viewed as a manifestation of racial prejudice, now terms such as “deadly disease
problem” are sometimes used instead. We only use the original term to clarify which literature we refer to, not to
invoke such prejudice.

2The precise wording is “Imagine the U.S. is preparing for the outbreak of an unusual Asian disease, which is
expected to kill 600 people. Two alternative programs to combat the disease have been proposed. Assume that the
exact scientific estimate of the consequences of the programs are as follows:"
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adults’ greater propensity to choose (simple) safe options in positively framed problems, compared
to younger adults. The age groups behave more alike in negatively framed problems. Note that
age differences in the response to option complexity were also more pronounced in choices between
gains than losses in the experiments by Zilker et al. (2019, see chapter 2). Hence, it seems plausible
that the age differences in choice behavior, especially in positively framed problems, may reflect a
stronger response to option complexity in older compared to younger adults.

Hypotheses

We hypothesize that framing effects emerge in choices between the classical simple safe and risky
options. Moreover, increasing the complexity of safe options, thus rendering the two options
more similar in their complexity, may reduce framing effects. That is, participants may become
less likely to choose safe options in positively framed problems, and/or less likely to choose risky
options in equivalent negatively framed problems. This reduction in the framing effect may be
more pronounced in older adults, due to a stronger response to differences in option complexity.
These hypotheses are also summarized in Table 3.1.

Table 3.1: Hypotheses on Potential Effects of Option Complexity on Different Decision Making
Phenomena, and on Differences Between Younger and Older Adults.
Choice Phenomenon Prediction

Type of Choice Problem
Loss aversion

Simple safe vs. risky Loss aversion: Unwillingness to choose an advantageous
risky option with a potential loss over a safe option of lower
value

Complex safe vs. risky — Reduced loss aversion
— Stronger reduction in older adults

Framing effects
Simple safe vs. risky Framing effect: Apparent risk aversion in positive frame

and apparent risk seeking in negative frame
Complex safe vs. risky — Reduced framing effect

— Stronger reduction in older adults
Intertemporal choice

Simple immediate vs. delayed Delay discounting: Preference for smaller immediate (SS)
rewards over larger later (LL) rewards

Complex immediate vs. delayed — Reduced delay discounting
— No directed hypothesis about age differences

3.1.3 Delay Discounting

In intertemporal choice, participants are typically asked to choose between a smaller reward that
can be obtained immediately or after a short delay (smaller sooner or SS reward) and a larger
reward that can be obtained after a longer delay (larger later or LL reward). Preferring SS over LL
rewards indicates a tendency to discount the value of rewards conditional on the associated delay.
Delay discounting is particularly pronounced in choices between immediate and a delayed rewards,
compared to choices between two (more or less) delayed rewards (cf. Berns et al., 2007; McClure et
al., 2004). This immediacy effect in intertemporal choice—an overweighting of immediate relative
to delayed outcomes—is strikingly analogous to the certainty effect in risky choice—which describes
an overweighting of certain relative to probabilistic outcomes (Keren & Roelofsma, 1995; Prelec
& Loewenstein, 1991; Weber & Chapman, 2005). Like a certain outcome, the prospect of an
immediate reward is very simple to understand. By contrast, delayed rewards often bear implicit
uncertainty, making it more difficult to evaluate them: For instance, decision makers may be
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uncertain whether the delayed reward will actually materialize, and if so, when exactly, or how
much utility or hedonic value they will derive from a reward upon its delayed delivery (Dai et
al., 2019). Such considerations may render the evaluation of delayed rewards more complex,
compared to immediate rewards. Note that the assumed complexity differences between options
in intertemporal choice are hence implicit (in the valuation of options), by contrast to the explicit
complexity differences (on the level of numerical properties of stimulus materials) in the other
investigated choice tasks. Nevertheless, the implicit complexity differences between the options
may contribute to the immediacy effect: Preferences for immediate over delayed options may not
reflect a genuine attitude towards delays, but—to some extent—a response to implicit complexity
differences. The reduced tendency to discount delays in choices between several delayed rewards—
which are more similarly complex than immediate and delayed rewards—speaks to this point.

How about age differences in delay discounting? Based on the previous finding that older
adults are more likely to choose simple safe over risky gains, compared to younger adults (Mather
et al., 2012; Zilker et al., 2019, see chapter 2), one might expect that older adults are also more
prone to choosing simple immediate rewards over more complex delayed rewards, compared to
younger adults. However, in prior studies on age differences in delay discounting, older adults
often behave more patiently than younger adults—that is, they tend to choose delayed rewards
more (Eppinger et al., 2012; Green et al., 1994; Green et al., 1999; Li et al., 2013; Löckenhoff
et al., 2011; Reimers et al., 2009). In a few other studies, delay discounting behavior appears to
be rather stable across the adult lifespan (Green et al., 1996; Samanez-Larkin et al., 2011), and in
yet others, older adults are found to discount more than younger adults (Liu et al., 2016; Read &
Read, 2004). Hence, prior evidence on age differences in intertemporal choice differs considerably
from prior evidence on age differences in framing and loss aversion: Compared to younger adults,
older adults seem less likely to choose simple immediate rewards over complex delayed ones, while
they also seem more likely to choose the simple safe options over complex risky ones in the other
two paradigms. Hence, it is not clear whether increasing immediate options’ complexity might
further amplify age differences in intertemporal choice, or attenuate them.

Hypotheses

We hypothesize that people prefer immediate rewards in standard choices between simple smaller
immediate and larger later rewards. However, increasing the complexity of immediate rewards,
thus rendering immediate and delayed rewards more similar in their implicit complexity, may
reduce this tendency to choose immediate rewards. This reduction in apparent delay discounting
may differ between the age groups. However, prior evidence points in different directions and thus
does not allow to formulate a directed hypothesis about these age differences. These hypotheses
are summarized in Table 3.1.

3.1.4 Outline of the Study

We experimentally increased the complexity of safe and immediate options in decision tasks typ-
ically used to measure loss aversion, framing effects, and delay discounting. In each case, we
investigated whether this manipulation reduced the magnitude of the classical phenomenon, and
whether this potential reduction in response to option complexity differed between younger and
older adults. We also explore the association between the behavioral tasks and self-reports of risk
preference, impulsivity, and patience. The study was approved by the IRB of the Max Planck
Institute for Human Development Berlin.
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3.2 Methods

3.2.1 Participants

Eighty younger adults (aged 18 - 28,M = 23.9, SD = 2.34, 39 female) and eighty older adults (aged
61 - 77, M = 70.8, SD = 3.83, 40 female) participated in the study. Participants were recruited
via the internal participant data base of the Max Planck Institute for Human Development, Berlin.
The participant sample is characterized in more detail in Table 3.2.

Table 3.2: Characteristics of the Participant Sample. Cognitive Measures, Self-reports and Amount
of Bonus Reward Obtained in the Loss Aversion Task.

Younger adults Older adults
M (SD) [Min; Max] M (SD) [Min; Max]

Age (years) 23.9 (2.34) [18; 28] 70.8 (3.83) [61; 77]
DSST

— % accurate 0.96 (0.03) [0.83; 1] 0.97 (0.03) [0.86; 1]
—n accurate 57.38 (9.41) [32; 84] 37.19 (6.88) [24; 56]

Numeracy score 4.01 (1.78) [1; 7] 2.51 (1.47) [0; 6]
Self-report

—Risk preference 5.16 (1.97) [1; 8] 4.81 (1.87) [1; 9]
—Impulsivity 4.8 (2.11) [0; 9] 5.13 (1.96) [0; 10]
—Patience 5.5 (2.6) [0; 10] 6.15 (2.13) [0; 10]

Reward LA (EUR) 3.7 (1.81) [1; 8] 3.53 (1.71) [0; 7]

3.2.2 Choice Tasks

Loss aversion task

To test for the hypothesized effect of differences in option complexity in the behavioral measure-
ment of loss aversion, we constructed a choice task with three conditions. Each condition (called
the simple safe condition, complex safe condition, and risky condition) consisted of 21 choices,
amounting to 63 choices overall. All conditions involved choices between a risky mixed gamble and
an alternative option. The alternative option was either a simple safe, a complex safe, or a risky
mixed option. Each condition involves “distractor” trials which were added for pragmatic reasons
(details below).

We based the numerical structure of choice problems on a choice list similar to the one
used by Gächter et al. (2007). All option pairs were derived from this list. Each pair on the list
consisted of a safe option and a risky mixed option. Each safe option offered an amount of zero
for sure and each risky mixed option offered two outcomes, each with a probability of 50%. One
outcome of the risky gamble was always 6, and the other outcome varied between trials (possible
values being -3, -4, -5, -6, -7, -8, -9). Thus the risky gamble was advantageous and disadvantageous
in terms of EV on 3 choices each and equally valuable as the safe outcome of zero on one choice.
Hence differences in risk between options were de-correlated from differences in expected value.
Loss-averse participants are expected to choose the safe option even if the expected value of the
risky option (which includes potential loss outcomes) is greater than zero. This is because under
loss aversion, the risky gain has to be larger than the equiprobable risky loss to outweigh the
greater impact of the possible loss, amounting to a non-negative subjective valuation of the risky
option.

We varied the complexity of safe outcomes between the simple safe condition and the
complex safe condition: In the simple safe condition, people made choices between a risky mixed
gamble (e.g., 50% chance to win 6, 50% chance to lose 5) and a simple safe amount (e.g. 100%
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Figure 3.1: Timeline of the loss aversion task with exemplary choice problems. Participants made
self-paced choices, separated by a fixation period of 1 second.

chance to win 0). In the complex safe condition, people made choices between a risky mixed gamble
and a complex safe amount. We manipulated the complexity of safe options analogous to Zilker
et al. (2019): In the complex safe condition, the safe option offered the same outcome magnitude
as in the simple safe condition, but this outcome was now expressed as a mathematical term in
which two integers had to be multiplied by .5 and then subtracted. For instance, a safe outcome of
-3 could be expressed as a 100% chance to win (0.5 x 2) - (0.5 x 8). The risky condition, involved
choices between two risky mixed gambles.

Since all safe outcomes in the original choice list were equal to zero, participants might have
inferred the value of complex safe options from this regularity, instead of engaging with evaluating
the mathematical terms. To make such strategies impossible, the simple safe condition and the
complex safe condition involved distractor trials. Distractor trials required choices between mixed
risky options and positive or negative safe outcomes (with EVs unequal zero, either -3 or +3). The
risky mixed options for distractor trials were the same as those on the original choice list. Both
conditions involved 14 such distractor choices (7 with positive and 7 with negative safe outcomes
each). In the complex safe condition the safe distractor outcomes were displayed in the complex
mathematical term format. In the risky mixed condition, people made choices between two risky
mixed options. The option pairs are based on the risky mixed gambles also used in the other two
conditions, and a second risky mixed gamble to replace the respective safe option. These new
risky mixed gambles also had probabilities of 50% and the outcomes varied, such that the resulting
gambles matched the EVs of the corresponding safe options.

All outcomes were presented in the currency $. Participants were informed that $100 in the
experiment corresponded to e5,00 in potential bonus payments (see the section on incentivization
for more details). Participants made choices by pressing the keys f and j, corresponding to the left
and right option on screen on each given trial.

Framing task

To test for the hypothesized effect of option complexity in framing paradigms, we constructed
three types framing problems. We used five framing problems with different cover stories from the
previous literature (Chick et al., 2016; Rönnlund et al., 2005). In each condition, participants faced
all five problems, framed both positively and negatively (on different trials). The different cover
stories involved, for instance, the death of turtles after an oil spill, the destruction of paintings
in a burning museum, and the death of civilians in a war region. In the previous literature
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these problems often have the same numerical properties (e.g., same number of lives saved/lost)
irrespective of the cover story. To avoid such repetition we constructed distinct numerical properties
(stakes and probabilities) for each cover story. We ensured to maintain the key characteristic of
classical framing problems, namely that both options within each trial always had an equal EV.

In the simple safe condition and the complex safe condition, participants made choices
between a risky mixed and a safe option. In the simple safe condition, the safe option offered
one outcome with certainty, such as “249 turtles will die with certainty”. In the complex safe
condition, the same certain outcome magnitude would be presented in a more complex format.
This was achieved by expressing the outcome as a sum of proportions, such as “With certainty
10% of 20 turtles will die, and with certainty 90% of 274 turtles will die”. In the risky mixed
condition participants made choices between two risky mixed options. Each risky mixed option (in
all conditions) involved two probabilistic outcomes, such as “With a probability of 10% 20 turtles
will die, and with a probability of 90% 274 turtles will die”. Note that the numerical properties of
this risky mixed option are the same as those of the complex safe option. Calculating the expected
value of the risky option would involve the same numerical operations as calculating the expected
value of the complex safe option. Moreover, the expected value of each option was kept constant
across the three conditions.

Since individual scenarios were presented repeatedly in different formats and frames (2
frames × 3 conditions), we split the framing trials into two blocks. One block was presented at the
beginning of the experiment, followed by the loss aversion task and the intertemporal choice task,
and the second block of framing trials. Which particular version of each choice problem appeared
in the first or second block was determined in a pseudorandom manner for each participant indi-
vidually, ensuring that half of the total six versions of each scenario (2 frames × 3 conditions) were
presented in each block. The order of scenarios within each block and the presentation side on
screen of the options on each trial was randomized for each participant individually. Participants
were instructed to always read each scenario and its options carefully, even though they might
appear very similar. It was pointed out that individual scenarios always differed in important
respects. Participants were also instructed to read carefully whether percentages (which appeared
both in complex safe and risky options) referred to proportions or probabilities.

Participants made choices by pressing the keys 1 and 2, corresponding to the options
(“program 1” and “program 2”) on each trial.
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Figure 3.2: Timeline of the framing task with exemplary choice problems. Participants made self-paced choices, confirmed their choices by pressing the Enter
key, and moved on to the next scenario after a fixation period of 1 second.
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Intertemporal choice task

To test for a possible effect of option complexity differences in intertemporal choice, we constructed
a task with three conditions. Each condition involved choices between a smaller sooner and a larger
later amount. The simple immediate condition involved choices between a simple smaller immediate
and a larger delayed reward, such as $5 today vs. $10 in 15 days. For the complex immediate
condition we increased the complexity of the smaller immediate amount used in the simple safe
condition by decomposing it into a mathematical term, requiring multiplying a monetary amount
by a decimal number. For instance, an immediate reward of 1 in the simple safe condition might
be described as (0.25 × 4) in the complex safe condition. In the delayed condition people made
choices between smaller sooner and larger later rewards which were both delayed.

The numerical properties of the choice problems were determined as follows: 10 SS reward
amounts were randomly drawn from a uniform distribution ranging from 10 and 200. The 10
associated larger later rewards were generated by increasing the SS rewards by proportions of the
SS amount, evenly spaced between 1% and 80%. The resulting 10 pairs of rewards were used in all
conditions. To make recurring stimuli less recognizable the SS rewards used in simple immediate
condition were jittered by +/-1 in the other conditions. For instance, if 1 was added to the original
SS reward in the complex immediate condition, then 1 was subtracted from the original SS reward
in the delayed condition, and vice versa. For each trial it was randomly determined which condition
would have the positively or negatively jittered SS reward.

Figure 3.3: Timeline of the intertemporal choice task with exemplary choice problems. Participants
made self-paced choices, separated by a fixation period of 1 second.

The delays associated with these rewards were generated as follows: In the simple im-
mediate condition and complex immediate condition the smaller sooner option was not delayed
(verbally described as “today”). In the delayed condition the SS reward was always delayed by 14
days (verbally described as “in 14 days”). In each condition there were three possible delays for
each LL reward (14 days, 28 days or 42 days after the respective smaller sooner option’s delay).3

That is, each pair of reward amounts occurred at three possible time differences, resulting in 30
choices per condition, and 90 choices in total.

In order to be able to monitor if participants solved the task attentively, we also included
attention check trials. On these trials, participants made choices between a larger sooner and a
smaller later amount. On these trials, the larger sooner amount constituted a dominating alter-
native that was normatively preferable, both in terms of magnitude and delay. Each condition

3Hence the possible delays for larger later rewards in the two conditions with immediate rewards were “in 14
days”, “in 28 days” and “in 42 days”, and the respective delays for the delayed condition were “in 28 days”, “in 42
days” and “in 56 days”
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included 6 attention check trials.

The rewards in all conditions were expressed in the experimental currency $. Participants
were instructed that $100 in the experiment corresponded to e5,00 in real life. Participants made
choices by pressing the keys f and j, corresponding to the left and right option on screen on each
given trial. The order of trials and the presentation side of SS and LL options on screen within
each trial was randomized individually for each participant.

3.2.3 Procedure

Incentivization

Participants received a baseline payment of e20 for participating in the study, and a performance-
contingent bonus ranging between e0-e10, determined based on responses in the loss aversion
task. Before the start of the experiment, the experimenter put e5 on the desk in front of the
participant as a baseline bonus. The experimenter explained that the choices in the first phase
of the experiment would determine if the participant would get to keep this baseline bonus and
possibly increase it up to e10, or if they would have to return a part of or even the whole amount
at the end of the experiment. More detailed instructions about the determination of bonuses were
provided in written form as part of the instructions for the loss aversion task. At the end of the
loss aversion task, one trial was randomly selected, and the option chosen by the participant was
played out. The resulting outcome was converted from the experimental currency $ into e, such
that $100 in the experiment converted to e5 in real bonus payments. The thereby determined
bonus amount was added to or subtracted from the baseline bonus of e5, depending on whether
the randomly determined trial was a gain trial or a loss trial.

3.2.4 Additional Tasks

Berlin Numeracy Test

We measured participants’ statistical numeracy, that is, their understanding of operations of prob-
abilistic and statistical computation, using the 7 item version of the Berlin Numeracy Test (Cokely
et al., 2012). The test was scored based on the number of correct responses. The numerical abilities
of the younger and older participants are described in Table 3.2.

Digit symbol substitution test

Wemeasured participants’ fluid intelligence in terms of a digit symbol substitution test (see McLeod
et al., 1982). A table on top of the screen defined a mapping between 9 symbols and the digits
1—9. The mapping was randomly determined for each participant individually. On each trial,
one of the 9 symbols was presented in the center of the screen, and participants had to press the
associated number key. There was no feedback, and the next symbol appeared as soon as the
participant had responded. The test lasted 90 seconds and participants were instructed to work as
quickly and accurately as possible. Before the test phase participants practiced the task during 2
practice rounds (9 trials each). We report the fluid abilities of the younger and older participant
sample, scored as the total number and percentage of correctly matched symbol-number pairs, in
Table 3.2.
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Self-reported risk preference, time preference and impulsivity

After completing these cognitive tasks, participants were asked to indicate their introspective risk
preference on the one-item general risk question (Dohmen et al., 2011). They were also asked
for self-reports regarding their impulsivity and their patience. We used standard items from the
German Socio-Economic Panel (SOEP, cf. Richter et al., 2013), which require a response on a
discrete 11-point scale. The precise wording of these items is documented in Appendix B.1.

Demographic information

Finally, participants were asked to indicate their age and sex and were given the opportunity to
comment on the experiment in an open text format. Then the experimenter revealed the result of
the automatically determined random bonus lottery and paid the respective amount as well as the
baseline participation fee.

3.3 Results

All behavioral analyses were performed in RStudio (Version 1.1.463) running under macOS 10.14.4.
All Bayesian GLMER analyses reported below were implemented using the rstanarm package
(Goodrich et al., 2018). Individual effects in GLMERs were considered credible if the 95% posterior
interval for the coefficient excluded zero. The posterior intervals, sometimes also referred to as
credible intervals, cover the central 95% of the posterior distribution of the estimated coefficients,
and can be interpreted as covering a range which includes the true parameter value with 95%
probability (cf. Morey et al., 2016).

3.3.1 Loss Aversion Task

First, we analyze choice behavior on the non-distractor trials of the loss aversion task, which
correspond to commonly used choice lists for measuring loss aversion. We tested the hypothesis
that the proportion of disadvantageous safe option choices might decrease when safe options are
displayed in a more complex format. We also tested whether such a potential effect of option
complexity might be stronger in older adults compared to younger adults.

Figure 3.4 displays the tendency to choose the safe option, conditional on the complexity
of the safe option, in trials where the risky option had a higher EV. Remember that loss averse
participants are expected to choose the safe option, even if the risky option (which involves the
possibility of losses) has a higher EV than the safe option. Hence, the tendency to choose (dis-
advantageous) safe options on trials where the risky option has the higher EV is typically viewed
as indicative of loss aversion. Overall, participants rarely made disadvantageous safe choices, indi-
cating that their behavior was largely driven by EV maximization, and only to a relatively small
degree by loss aversion. Moreover, increasing the complexity of safe options did not affect the
proportion of disadvantageous safe option choices.

We statistically corroborated these findings by calculating Bayesian logistic GLMERs on
the choice of the safe option as the outcome variable, including fixed predictors for age group,
the complexity condition, as well as each participant’s self-reported risk preference, and a random
intercept for each participant (main effect model). We also calculated an analogue model including
the interaction between the complexity condition and age group (interaction model). Results are
displayed in Table 3.3. Analogous analyses for trials where the safe option had a higher EV—which
are not diagnostic regarding loss aversion—are reported in Appendix B.2.
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Table 3.3: coefficients and 95% Posterior Intervals for the Bayesian Logistic GLMERs for Responses
on the Loss Aversion Task, in Non-distractor Trials where the Risky Option had the Higher EV

Outcome: Safe choice (when risky option has higher EV)
Predictor Main effect model Interaction model

(Intercept) -2.46
[-4.04, -1.02]

-2.53
[-4.17, -1.07]

Age group (older) 0.84
[-0.14, 1.84]

0.9
[-0.13, 1.98]

Condition (complex safe) -0.19
[-0.59, 0.24]

-0.04
[-0.65, 0.59]

Condition (risky) -3.04
[-3.88, -2.29]

-3.57
[-4.95, -2.42]

Self-report (risk) -0.05
[-0.29, 0.2]

-0.05
[-0.3, 0.21]

Age group (older) × Condition (complex safe) -0.25
[-1.07, 0.52]

Age group (older) × Condition (risky) 0.82
[-0.67, 2.37]

‚

There was no credible main effect of condition (complex safe) on the tendency to make
disadvantageous safe choices. That is, increasing the complexity of safe options did not affect
behavior typically interpreted as indicative of loss aversion. Moreover, there was no credible main
effect of age group, indicating that both younger and older adults were equally loss averse. There
was a credible negative main effect of condition (risky), indicating that in choices between two
risky options (both of which involve the possibility for losses), participants are less likely to chose
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Figure 3.4: Proportion of safe choices in the loss aversion task in non-distractor trials, in which the
risky option has a higher EV than the safe option, conditional on the complexity manipulation.
Behavior in these trials is most diagnostic regarding loss aversion: Loss-averse participants are
expected to choose the safe option—which ensures the avoidance of losses—even though it is
disadvantageous since it has a lower EV than the risky option—which offers the possibility of
losses. The tendency to make disadvantageous safe choices is unaffected by increasing safe options’
complexity, and by age group. In choices between two risky mixed options, the displayed choice
proportion is the proportion of choices of the option with the lower risk (rather than the safe
option). In these trials both options involve the possibility for losses, and participants made even
less disadvantageous low risk choices than if a safe option was available. These patterns emerge in
both age groups. Error bars indicate 95 % confidence intervals.
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disadvantageous low risk options. That is, since loss aversion makes both options unattractive, they
maximize even more. The interaction model further shows that there were no credible interactions
between age group and condition, indicating that the age groups were similarly insensitive to the
complexity manipulation.

Overall, these results speak against the hypothesis that behavior in choice tasks typically
interpreted as indicative of loss aversion depends on complexity differences between the options.
Moreover, the results speak against a stronger response to option complexity in older adults in this
choice task.

3.3.2 Framing Task

Next we analysed choice behavior on the framing task, displayed in Figure 3.5. Overall, there
was a pronounced framing effect in the expected direction: Participants predominantly chose risky
options in the negative frame, and predominantly chose safe options in the positive frame.
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Figure 3.5: Choice proportions of the safe (or low risk) option on the framing task, for problems
presented in negative framing (left panel) and positive framing (right panel). Overall, there was
a pronounced framing effect in the expected direction: Participants predominantly chose risky
options in the negative frame, and predominantly chose safe options in the positive frame. This
pattern emerged in both age groups and was unaffected by manipulating the complexity of safe
options. Error bars indicate 95 % confidence intervals.

We tested the hypothesis that the magnitude of the framing effect might decrease when
safe options are displayed in a more complex format. To this end, we calculated Bayesian logistic
GLMERs with the choice of the safe option in the framing task as the outcome variable, and frame,
condition, and their interaction as fixed predictors. The model also included a random intercept
for each participant. This model was calculated separately for each age group. As Table 3.4 shows,
the interaction between frame and condition (complex safe) was not credible in either age group.
That is, the magnitude of the framing effect did not depend on the complexity manipulation, in
either age group. Likewise, there was no credible interaction between frame and condition (risky),
indicating that neither younger nor older adults showed a stronger (or attenuated) framing effect
when the second option was also risky, compared to when it was safe.

These results indicate that choices in the framing task were not a function of the complexity
of safe options. This was the case in both younger and older adults. Hence, the results also speak
against a stronger response to option complexity in older adults in this type of choice task.

82



3.3. Results

Table 3.4: coefficients and 95% Posterior Intervals for the Bayesian Logistic GLMERs for Responses
on the Framing Task, by Age Group

Outcome: Safe choice Younger Older
Predictor

(Intercept) 1.47
[1.06, 1.87]

1.7
[1.35, 2.07]

Frame (negative) -2.11
[-2.45, -1.75]

-2.38
[-2.74, -2.05]

Condition (complex safe) -0.16
[-0.51, 0.19]

0.26
[-0.12, 0.65]

Condition (risky) -0.1
[-0.45, 0.26]

-0.02
[-0.39, 0.33]

Frame × Condition (complex safe) 0.11
[-0.38, 0.58]

-0.46
[-0.97, 0.04]

Frame × Condition (risky) 0.11
[-0.38, 0.6]

0.05
[-0.4, 0.54]

3.3.3 Intertemporal Choice Task

Next, we turned to analysing choice behavior on the intertemporal choice task. We first analysed
data from the attention check trials, where the sooner option also offered the larger reward. As
shown in the left panel of Figure 3.6, participants predominantly chose the dominant (larger sooner)
option. When the larger sooner option was simple, it was chosen on 98.96% of the trials by younger
adults, and on 98.96% of the trials by older adults. When the larger sooner option was presented
in a more complex format, making it more difficult to identify that this option was dominant, it
was still chosen in 89.17% in younger adults and 83.12% in older adults. In the condition with two
delayed options, the larger sooner amount was chosen on 98.54% of the trials by younger adults,
and on 98.33% of the trials by older adults. Overall, these high choice proportions of dominating
options indicate that participants worked on the task attentively. The lower proportion of choices
of the dominant option in the complex safe compared to the simple safe condition indicates that
higher complexity affected decision quality negatively. This result is statistically corroborated in
analyses presented in Appendix B.3.
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Figure 3.6: Choice proportions in the intertemporal choice task. Left panel: On attention check
trials, where the sooner reward was also larger, participants almost always chose this dominant
option. Increasing the complexity of the dominant option affected performance negatively, indicat-
ing lower decision quality. Nevertheless, the dominant option was still chosen in a great majority
of cases. Right panel: In the non-dominated trials participants rather tended to choose the larger
later option, and this behavior was unaffected by the complexity manipulation or by age group.
Error bars indicate 95 % confidence intervals.
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Next, we analysed data on the non-dominated trials, where the sooner reward was smaller
than the later reward. Such trials are typically used to measure delay discounting. To test our
hypothesis that increasing the complexity of immediate rewards may affect the tendency to choose
these immediate rewards, we calculated Bayesian GLMERs with choices of the smaller sooner
option as the outcome variable, with fixed predictors for condition and each participant’s self-
report on patience and impulsivity, as well as a random intercept for each participant. Such a
model was calculated separately for each age group. Coefficients and 95% posterior intervals are
displayed in Table 3.5. Increasing the complexity of immediate rewards decreased younger adults’
tendency to choose these options credibly. Older adults’ choices were not credibly affected by
increasing the complexity of immediate rewards. That is, our hypothesis that increasing immediate
options’ complexity may reduce delay discounting is supported in younger adults but not in older
adults. These results also indicate that the age groups differed in their response to increasing the
complexity of immediate options.

Table 3.5: Coefficients and 95% Posterior Intervals for the Bayesian Logistic GLMERs for Re-
sponses on the Intertemporal Choice Task, by Age Group

Outcome: Smaller sooner choice Younger Older
Predictor

(Intercept) -1.96
[-3.64, -0.16]

-1.71
[-3.83, 0.58]

Condition (complex immediate) -0.24
[-0.39, -0.1]

0.02
[-0.14, 0.17]

Condition (delayed) 0.04
[-0.1, 0.18]

0.13
[-0.02, 0.29]

Self-report (patience) -0.02
[-0.2, 0.16]

0.05
[-0.18, 0.3]

Self-report (impulsivity) 0.3
[0.07, 0.52]

0.19
[-0.06, 0.45]

Table 3.6: Coefficients and 95% Posterior Intervals for the Bayesian Logistic GLMERs for Re-
sponses on the Intertemporal Choice Task

Outcome: Smaller sooner choice
Predictor

(Intercept) -1.84
[-3.23, -0.49]

Age group (older) 0.15
[-0.42, 0.81]

Condition (complex immediate) -0.24
[-0.39, -0.1]

Condition (delayed) 0.04
[-0.1, 0.18]

Self-report (patience) 0
[-0.13, 0.14]

Self-report (impulsivity) 0.25
[0.09, 0.42]

Age group (older) × Condition (complex immediate) 0.26
[0.06, 0.47]

Age group (older) × Condition (delayed) 0.1
[-0.11, 0.3]

To further corroborate this finding, we also calculated a Bayesian GLMER across data
from both age groups, again with choices of the smaller sooner option as the outcome variable.
The model included the same predictors and in addition the interaction between condition and age
group. Coefficients and 95% posterior intervals are displayed in Table 3.6. There was a credible
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interaction between age group and the condition with complex immediate rewards, indicating that
the age groups reacted differently to increasing the complexity of immediate rewards. This is
consistent with the different main effects of complexity within the individual age groups.

To summarize, the age groups differed in their response to increasing the complexity of
immediate options in the intertemporal choice task. Younger, but not older adults, became less
likely to choose immediate options when they were displayed in a more complex format, compared
to the standard task. This indicates a stronger preference for simple immediate over complex
delayed rewards in younger, not older adults. The direction of this effect is somewhat surprising,
given our prior finding that older adults show a stronger preference for simple safe over complex
risky options in pure domain risky choice tasks (Zilker et al., 2019, see chapter 2). However, it
is consistent with the prior literature on age differences in intertemporal choice, indicating that
younger adults are generally more sensitive to immediate rewards than older adults.

3.4 General Discussion

Recent work demonstrated that differences in option complexity between safe and risky options,
in a choice paradigm commonly used to measure risk attitude, shape age differences in risky
choice behavior (Zilker et al., 2019, see chapter 2). This result was replicated in two independent
participant samples. In this paper we examined the extent to which differences between options
in complexity might also contribute to (age differences in) loss aversion, framing effects and delay
discounting, which are often measured with tasks where options differ in complexity.

In each task, we tested if increasing the complexity of the typically simpler option—and
thereby rendering the two options more similar in complexity—affected choice behavior. Contrary
to our hypotheses, we found no effect of such a manipulation on the tendency to make disadvanta-
geous safe choices when being offered a mixed gamble (typically interpreted as an indicator of loss
aversion), and no effect on the magnitude of framing effects. We also found no evidence for age
differences in the response to option complexity in these behaviors. Increasing the complexity of
immediate rewards in intertemporal choice made younger but not older adults less likely to choose
them. Although this indicates an age difference in the response to complexity, the direction of this
effect was not expected. How can these results, which for the most part disconfirm our hypotheses,
be interpreted and reconciled with our previous findings?

First, it is important to point out that the hypotheses tested here concern different types
of choice behavior than our previous research. While Zilker et al. (2019, see chapter 2) investigated
the impact of option complexity in pure domain risky choice, our current experiment posed mixed-
domain risky choice problems, and risk free choices with delayed outcomes. Hence, not finding
the hypothesized effects of complexity in these types of choice problems is not inconsistent with
our previous findings. Moreover, our prior research identified some stimulus characteristics (the
availability of loss outcomes and of risky outcomes of zero) under which option complexity seemed
to have a lesser impact (cf. study 2 in Zilker et al., 2019, see chapter 2). Such features are
also present in some of the choice tasks investigated here, and discussed in more detail below.
Moreover, in a recent experiment using eye-tracking, we identified that attentional processes can
to some extent explain the impact of option complexity on risky choice (Zilker & Pachur, 2019,
see chapter 4). The identified attentional mechanism is only expected to modulate choice behavior
under quite specific conditions (details below), which may not have been met in the paradigms
investigated here. Hence, this mechanistic perspective may also help explain why our hypotheses
were disconfirmed. We discuss these potential reasons why we did not find the hypothesized effects,
and also some aspects in which our current and previous results overlap below.
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3.4.1 How Particular Types of Outcomes May Counteract the Effects
of Complexity

Risky outcomes of zero

In Study 2 of Zilker et al. (2019), we compared the impact of complexity differences in choices
between safe and risky options without risky outcomes of zero to choices between safe and risky
options where each risky option had one outcome of zero. In choices without zero outcomes, older
adults were more likely to choose safe gains than younger adults, and increasing safe options’
complexity reduced this age difference. If risky options offered an outcome of zero, neither the
main effect of age group nor the interaction with option complexity emerged. Why might this be
the case? Notably, a risky option with an outcome of zero—for instance, offering a 70% chance to
win $50 and a 30% chance to win nothing, that is, $0—can be reduced to a 70% chance to win $50.
Since the zero outcome and its associated probability can be ignored, the risky option in this type
of choice problem is similarly complex to a safe option—for instance, offering a 100% chance to
win $40. Consequently, complexity differences between safe and risky options are arguably smaller
when the risky option has an outcome of zero, compared to when it has two non-zero outcomes.

This is relevant to interpreting our findings on the framing task—since risky options in
framing problems typically offer an outcome of zero—for instance “with a probability of 80% 900
people will die and with a probability of 20% 0 people will die”. Thus, complexity differences
between the options in the framing task may have been comparably low, even in the baseline
condition with simple safe options. This may explain why younger and older adults behaved very
similarly in the framing task and why we did not find the predicted interaction between age group
and the complexity manipulation.

Outcomes from the domain of losses

In the experiments by Zilker et al. (2019, see chapter 2) and Zilker and Pachur (2019, see chapter
4), option complexity affected choice behavior (and age differences therein) primarily in the gain
domain, and substantially less in the loss domain. Notably, in our current study, both the loss
aversion task and the framing task involved outcomes from the domain of losses. Consistent with
our previous findings in the loss domain, we did not find evidence for the hypothesized effects of
option complexity in these tasks. Why might losses affect the impact of option complexity on
behavior, and age differences therein?

The availability of losses tends to trigger an increased investment of cognitive resources
in choice tasks (e.g., Lejarraga & Hertwig, 2017; Yechiam & Hochman, 2013). Consequently,
participants facing losses may engage more deeply with information on the options and try harder
to maximize EVs. The overall very high level of maximization performance in the loss aversion task
(see Appendix B.2) speaks to this notion. In the framing task, maximization performance cannot
be assessed, since the two options on each trial had equal EVs. However, an exploratory analysis
of RT data in the framing task (see Appendix B.5) showed that older adults’ RTs were generally
longer in the negative than in the positive frame, indicating a greater cognitive investment in choices
about the explicit possibility of losses. Moreover, in both age groups, increasing the complexity of
safe options entailed a stronger increase in RTs in the domain of losses than in the domain of gains.
This further suggests that participants were especially motivated to do well on the challenging
complex choices when they were framed as losses relative to when they were framed as gains.

In summary, the availability of losses may have motivated participants to carefully scru-
tinize the options, and thus, to rely less on simplifying processing strategies that they may use in
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choices about gains. Hence, to the extent that the previously documented effects of option com-
plexity in the domain of gains (Zilker et al., 2019, see chapter 2) are a consequence of simplifying
strategies, more in-depth considerations due to possible losses may explain why complexity did
not affect choices as expected in our current experiment. We next discuss further evidence that
simplifying strategies contribute to the emergence of complexity effects, and how this may inform
the interpretation of our results.

3.4.2 Strategic Shortcuts and the Impact of Attention

In a recent eye-tracking study, we showed that attentional biases can be a critical driving force for
the effects of option complexity on pure domain risky choice. When options differed in complexity,
participants predominantly fixated on simpler options, and to some extent ignored information
on the more complex alternatives (Zilker & Pachur, 2019, see chapter 4)—indicating a strategic
shortcut to choosing between options that differ in complexity. These attentional biases contributed
credibly to choice biases in favor of simple safe gains. However, increasing safe options’ complexity
attenuated both the attentional biases and therefore also the choice biases in favor these of safe
options.

Attentional biases

This insight highlights attentional biases as a possible driver for the effects of option complexity on
choice. Conversely, differences in option complexity are not expected to bias choice via this mech-
anism if participants allocated their attention evenly across the options. This may have been the
case in some of the choice tasks investigated here: Before the framing task, participants were ex-
plicitly instructed to consider all options very carefully, because individual scenarios were repeated
with rather small changes to the options that might easily be overlooked. Such an instruction
to process all options carefully was not included in previous studies where complexity did affect
behavior (Zilker et al., 2019; Zilker & Pachur, 2019). It is possible that this instruction led par-
ticipants to intentionally antagonize their intuitive or strategic attentional biases towards simpler
options in the framing task, thus counteracting the mechanism that contributed to explaining the
impact of complexity in the eye-tracking study. Moreover, in intertemporal choice, the options
look superficially quite similar, since they typically consist of one reward and one associated time
of delivery. Due to the highly similar visual appearance of these options systematic attentional
biases may be less common or less pronounced in intertemporal choice than in risky choice—where
safe and risky options look quite strikingly different. Therefore attentional mechanism identified
in risky choice may contribute less to the effects of complexity differences in intertemporal choice.

EVs of zero

In the loss aversion task, a different feature of the options may have prevented this attentional
mechanism from affecting behavior. In the non-distractor loss aversion trials all safe options and
some risky options had an EV of zero. Why would this affect how attention modulates choice? A
prominent explanation for why attention can modulate choice posits that the impact of attended
value information is amplified during the comparison of options (Smith & Krajbich, 2019). This
can be formalized in terms of a gaze-weighted value difference, where each option’s EV is multiplied
by an attentional weight. Notably, under this model, greater attention towards an option with an
EV of zero will barely increase this options’ likelihood of being chosen—since multiplying any
attentional weight by zero still yields zero. Hence, the same account that explains why attention
can biase choices in favor of simple safe options with non-zero EVs (in the eye-tracking study) may
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also explain why attentional biases to simple safe options might have been largely inconsequential
when these simple safe options had an EV of zero (in the loss aversion task).

If options with an EV of zero indeed counteract the hypothesized attentional effects of
option complexity, then replacing them by non-zero EVs might allow for these effects to emerge.
Hence, to assess the plausibility of this idea, we conducted exploratory analyses of the distractor
trials in the loss aversion task, where the safe options’ EV was unequal zero (see Appendix B.2).
In these trials, manipulating safe options’ complexity indeed affected the tendency to choose these
safe options, and this effect was more pronounced in older adults. This finding is consistent with
the notion that options with an EV of zero may act as a gatekeeper for the attentional effects of
option complexity. However, since we did not collect eye-tracking data in the present experiment,
and since we did not formulate an a priori hypothesis about different effects of option complexity
depending on the availability of EVs of zero, we refrain from strong inferences. Yet, testing these
ideas may be an interesting direction for future research.

3.4.3 Overall Task Demands and Difficulty

Another reason why we may not have found evidence for the hypothesized age differences in the
response to increasing option complexity may have been the overall quite low difficulty of the
tasks. Task difficulty can be assessed by decision quality (i.e., the tendency to choose the option
with the higher EV, or even the dominated option) in the loss aversion task (cf. Appendix B.2)
and in the dominated trials of the intertemporal choice task. In both cases, participants showed
impressively high levels of decision quality, even in the more complex conditions. By comparison
to the risky choice problems used in (Zilker et al., 2019, see chapter 2), the loss aversion trials
employed here were overall much simpler: All probabilities and decimals were either 1, 0 or .5, and
rewards were constituted by single-digit numbers. The intertemporal choice problems generally
offer less pieces of numerical information, since each option is fully described by one delay and
one reward. In the framing task, decision quality can not be directly evaluated since both options
on each trial had equal EVs. However, the availability of zero outcomes, which can effectively be
ignored, also suggests a relatively low level of overall difficulty. Why might the overall relatively
level of computational demands across all tasks have shaped our findings?

Many studies on comparing younger and older adults indicate that age differences in diverse
facets of decision making primarily emerge under high (cognitive) task demands. A meta-analysis
on behavioral risky choice tasks concluded that age differences emerged primarily in paradigms with
high learning requirements (Mata et al., 2011). Older adults also rely more on simpler heuristic
strategies, which discard certain aspects of information (Mata et al., 2007), especially in choice
problems with a high number of options (Besedeš et al., 2012a, 2012b). Moreover, a meta-analysis
on pre-decisional information search concluded that older adults search for less information before
choice, especially if options were characterized by a greater number of cues that needed to be
integrated (Mata and Nunes, 2010, see also Frey et al., 2015).

In the light of these findings, it seems plausible that differences in complexity between
the options only lead to age differences in choice behavior under a relatively high level of baseline
difficulty. Hence, the overall difficulty of the tasks investigated here may have been too low for age
differences due to differences in option complexity to materialize. The highly similar behavior of
the age groups in the baseline conditions with choices between simple and complex options supports
this notion. Consequently, the manipulation of option complexity—meant to control for such age
differences—may also not have mattered. The overall high level of maximization performance,
even if options were rendered more complex, also speaks to this point.
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3.4.4 Implicit Versus Explicit Complexity in Intertemporal Choice

The intertemporal choice task is, to some extent, an odd one out in our study. By contrast to the
other tasks, our hypotheses on intertemporal choice were based on the assumption that immediate
and delayed options differed in complexity implicitly, rather than explicitly. That is, we assumed
that although immediate and delayed reward consist of a comparable amount of information (a
reward and an associated delivery time), the cognitive operations necessary to evaluate them differ
in complexity. This is consistent with formal models of delay discounting, which assume that a
reward’s utility is transformed (discounted) by a hyperbolic or similar function that takes as inputs
the discounting parameter k and the associated delay (cf. Frederick et al., 2002; Grüne-Yanoff,
2015). Computing this function seems more complex than evaluating immediate rewards, which
are not assumed to be discounted. However, just because intertemporal choice behavior is (for
the most part) appropriately described by a particular mathematical function does not mean that
decision makers necessarily compute this function explicitly (Berg & Gigerenzer, 2010). Instead,
their behavior may be an emergent property of much simpler processes, which bypass the complex
computation entirely. In this case, the assumed complexity differences between immediate and
delayed options might vanish. Under this perspective, it is not surprising that option complexity
did not seem to matter, and our hypotheses were disconfirmed.

However, one curious finding remains unexplained. Increasing the complexity of immediate
rewards made younger, but not older adults, less likely to choose these options. That is, in this
paradigm younger rather than older adults appeared to be more sensitive to option complexity, by
contrast to our previous finding in risky choice (Zilker et al., 2019, see chapter 2). It is possible that,
regardless of the apparent similarity between choices about risks and about delays, fundamentally
different (neuro-)cognitive mechanisms may be involved. This might explain why moderators such
as option complexity and age also have divergent effects in the different paradigms.

3.4.5 Convergence with Previous Findings

We have discussed many dissimilarities between the findings presented here and those in our other
experiments, and also offered some potential explanations how these differences might come about.
However, it has to be noted that there are also some close similarities between the current and
previous findings on the effects of option complexity.

Decision quality

The first similarity concerns the effect of option complexity on decision quality. Decision quality
can be assessed in the loss aversion task and the dominated trials of the intertemporal choice
task, where one option was objectively preferable in terms of (expected) value. The complexity
manipulation affected decision quality negatively in the loss aversion task (see Appendix B.2) and
also in the dominated intertemporal choice trials (see Appendix B.3). In the loss aversion trials
in which the safe option had an EV unequal zero, this detrimental effect of option complexity on
decision quality was also more pronounced in older adults. This aligns with our previous finding
that older adults are more sensitive to option complexity than younger adults in decisions under
risk.

Response times

A second close similarity to our previous results is the effect of option complexity on response times
(see Appendix B.5). Across all choice tasks, the complexity manipulation entailed longer response
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times. Moreover, we observed interactions between age group and the complexity manipulation
on RTs in all three tasks: Response times increased more in older than in younger adults in
response to increasing option complexity. Like the interaction between age group and complexity
on decision quality, this interactive effect on RTs further supports the notion that older adults
are indeed typically more sensitive to differences in option complexity than younger adults. This
greater sensitivity to option complexity can lead to age differences in different dimensions of choice
behavior (risk preference, decision quality, RT, eye movements). Hence, although we did not find
interactive effects of age group and complexity on the hypothesized dimensions of choice behavior,
such interactions were observed in other regards, consistent with prior research. These findings
suggest that features of the choice task heavily influence which particular dimensions of behavior
are affected by complexity.

Complexity aversion

Also supporting inferences from our previous research, our findings provide further evidence against
complexity aversion. Under complexity aversion, increasing the complexity of an option (while
leaving the alternative option untouched) should reduce the likelihood of choosing the manipulated
option. We previously showed that the opposite is sometimes the case: For instance, increasing
the complexity of safe losses can make participants choose them more (Zilker et al., 2019, see
chapter 2). This directly contradicts complexity aversion. Similarly, in the unequal EV trials of
our loss aversion task, increasing the complexity of disadvantageous safe options made participants
more likely to choose these options. Hence, our results highlight once again that participants are
not complexity averse—especially when unattractive options are rendered more complex. Rather,
manipulations of complexity seem to affect the evaluation of the options in a more subtle manner,
and the behavioral consequences of these modified evaluation processes are not accounted for by
complexity aversion.

3.4.6 Conclusion

We presented results that largely disconfirmed our hypotheses regarding the effects of option com-
plexity on measuring loss aversion, framing effects, delay discounting, and age differences therein.
Although our specific hypotheses were disconfirmed by experimental data, we still gained interest-
ing insights. We came to a better understanding of the boundary conditions for the effects of option
complexity on choice behavior, and for age differences therein. That is, the results map out some
limits for generalizing our previous inferences (cf. Zilker et al., 2019, see chapter 2) to different
choice domains, and to choice problems with specific types of outcomes. This may help control for
option complexity as a potential confound for measurement in future research. Moreover, in the
light of prevalent publication bias and the replication crisis in psychology, we are convinced that
reporting such results is a step in the right direction—hopefully shifting the focus in the evaluation
of scientific work away from positive and novel findings, towards interesting research questions
investigated with high methodological standards (cf. Munafò et al., 2017).

3.5 Author Contributions

Conceptualization: V.Z. & T.P.; Experimental Materials & Programming: V.Z.; Data Analysis:
V.Z.; Writing—Original Draft: V.Z.; Writing—Reviewing & Editing: V.Z.
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3.6 Data and Code Availability

Data and code to implement all analyses is hosted at
https://osf.io/859qm/?view_only=841bcbb4702d4fb398699300e9e4b363.
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Abstract

Selective attention can influence choice by amplifying the impact of fixated information during
preference formation. This interaction between gaze and value has been demonstrated across
diverse choice domains and a majority of individuals in several studies. However, previous studies
on the attentional amplification of value information have been conducted in standard samples of
younger adults only. Here we investigate if attention affects preferences in younger and older adults
alike. In a risky choice task with options of varying complexity, visual attention of both younger and
older adults was systematically biased towards simpler options. However, computational modeling
in the attentional drift diffusion framework reveals that greater attention to simpler options only
amplified the impact of these options on younger, but not on older adults’ choices. This can be
explained by an impairment of attentional gains in processing efficiency in older adults. Therefore,
attentional biases explain preferences for simpler options in younger but not older adults.



Chapter 4

4.1 Introduction

Visual attention plays a critical role for choice behavior. People tend to choose the option that they
look at longer (Armel et al., 2008; Cavanagh et al., 2014; Fiedler & Glöckner, 2012; Glöckner et al.,
2012; Glöckner & Herbold, 2011; Konovalov & Krajbich, 2016; Krajbich et al., 2010; Krajbich et
al., 2012; Krajbich & Rangel, 2011; Shimojo et al., 2003; Stewart et al., 2016), and the option that
they look at last (Fiedler & Glöckner, 2012; Konovalov & Krajbich, 2016; Shimojo et al., 2003).
Suggesting a causal relation, exogenously manipulating visual attention can shape preferences
(Armel et al., 2008; Pärnamets et al., 2015; Shimojo et al., 2003). Visual attention affects choices
in diverse task domains (S. M. Smith & Krajbich, 2018, 2019) and in a majority of individuals
(Thomas et al., 2019), raising the question: Is the impact of attention on preferences a fundamental,
possibly invariant regularity in human cognition?

To investigate the link between attention and choice on a firm formal and theoretical
foundation sequential sampling models have proven useful. Prominently, the attentional Drift
Diffusion Model (aDDM, Krajbich et al., 2010; Krajbich & Rangel, 2011) posits that selective
attention amplifies the impact of currently attended information on choice, allowing the model
to explain the previously delineated empirical findings. The aDDM implicitly identifies two key
factors contributing to the link between attention and choice—both of which may vary across
individuals and choice tasks.

The first factor is that selectively attended information is processed more efficiently than
non-attended information. This enhancement of processing efficiency is plausibly implemented by
a modulation of neural activity that prioritizes the processing of signals that represent attended
information (Boynton, 2009; Brown & Friston, 2013; Feldman & Friston, 2010; Fries et al., 2001;
Hillyard & Anllo-Vento, 1998; Hillyard et al., 1998; Kastner et al., 1999; Reynolds & Heeger, 2009;
Summerfield & Egner, 2009). The second factor is the magnitude and direction of option-specific
attentional biases. Only if one option is predominantly attended to its impact on choice can be
amplified more than the impact of the alternative option(s).

Attentional biases depend on features of task materials (cf. Orquin & Loose, 2013; Orquin
et al., 2018) but they may also differ across individuals—for instance, between younger and older
adults. Moreover, measures of selective neural enhancement and suppression indicate that the pri-
oritized processing of attended information may be impaired in older adults (Gazzaley & D’esposito,
2007; Gazzaley & Nobre, 2012). Do older adults’ deficits in implementing selective attentional en-
hancement entail age differences in the impact of attention on choice? Since previous studies on
the impact of attentional enhancement on choice were conducted in standard samples of younger
participants, this question has yet been unaddressed.

We investigate differences in the impact of attention on choice between younger and older
adults, addressing both factors outlined above, in an eye-tracking experiment on risky choice.
We evaluate age differences in option-specific attentional biases using fixation patterns. Using
an attentional Wiener drift diffusion model, we investigate if attention enhances the efficiency of
processing attended value information to the same degree in younger and older adults, and how
this, together with option-specific attentional biases, shapes risky choice in younger and older
adults. Since this approach builds on the attentional mechanism described in the aDDM, we first
review this model in more detail.
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4.1.1 The Link Between Attention and Choice in the aDDM

The aDDM captures empirical findings on the impact of attention on choice, like those outlined
in the introductory paragraph, remarkably well (Krajbich et al., 2010; Krajbich & Rangel, 2011).
The explanatory mechanism in the aDDM can be summarized as an interaction between gaze and
value (S. M. Smith & Krajbich, 2019). Two factors—attentional gains in processing efficiency and
option-specific attentional biases—constitute this mechanism. Because we use a risky choice task
in our experiment we introduce the model in the exemplary case of choices between safe and risky
options.

In the aDDM, preferences are constructed by sequentially sampling noisy evidence on the
options’ values until the accumulated evidence in favor of one option exceeds the evidence in favor
of the alternative by a pre-defined threshold amount. Evidence in favor of the safe option DVsafe
and evidence in favor of the risky option DVrisky are initialized at 0 on time-step t = 0. On each
subsequent discrete time-step t the values of the safe and the risky option EVsafe and EVrisky,
scaled by the constant d = 0.01, with added samples of Gaussian noise ε ∼ N (0, σ2), are sampled
as evidence. On each step t either the safe or the risky option is attended to. On time-steps t
where the safe option is attended to DVsafe and DVrisky evolve according to

DVsafe(t) = DVsafe(t− 1) + d ∗ θattended ∗ EVsafe + ε

DVrisky(t) = DVrisky(t− 1) + d ∗ θunattended ∗ EVrisky + ε
(4.1)

and on time-steps t where the risky option is attended to DVsafe and DVrisky evolve
according to

DVsafe(t) = DVsafe(t− 1) + d ∗ θunattended ∗ EVsafe + ε

DVrisky(t) = DVrisky(t− 1) + d ∗ θattended ∗ EVrisky + ε
(4.2)

The aDDM does not predict which option is attended to on a given time step, but uses mea-
sured fixation data as input to the model. Once the relative evidenceDV (t) = DVsafe(t)−DVrisky(t)
surpasses the positive (negative) choice threshold, indicating that accumulated evidence in favor
of the safe (risky) option exceeds the accumulated evidence in favor of the risky (safe) option
by a sufficient amount, the safe (risky) option is chosen. Figure 4.1 illustrates exemplary aDDM
processes for different parameter settings.

Attentional Gains in Processing Efficiency

The parameters θattended and θunattended capture that evidence for each option evolves at a faster
rate whenever this option is attended to. The evidence for the currently attended option on each
step t evolves with θattended = 1. Evidence for the other (unattended) option on each step t evolves
with θunattended ≤ 1. In the most extreme case with θunattended = 0 evidence for an option does
not change at all when it is not attended to (cf. Krajbich & Rangel, 2011).

The discrepancy between θattended and θunattended captures attentional gains in process-
ing efficiency—that is, it captures how strongly selective attention prioritizes the processing of
information on the attended option. Under θunattended = θattended = 1 attention does not enhance
processing efficiency, and evidence accumulates proportional to the objective value difference be-
tween the options (see Panel A and B in Figure 4.1). Under θunattended < θattended evidence on
the attended option’s value accumulates at an amplified rate, compared to when it is not attended
(see Panel C and D in Figure 4.1). That is, selectively attending to a subset of information (one
option) increases the efficiency with which the value signal provided by this information can be
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processed.
These attentional gains in processing efficiency can increase the impact of the attended

option on choice. Hence, the magnitude of attentional gains in processing efficiency is the first
key factor shaping the impact of attention on choice in the aDDM. However, the behavioral con-
sequences of these attentional efficiency gains crucially depend on a second factor: The existence,
direction, and magnitude of attentional biases.

Figure 4.1: How do attentional gains in processing efficieny and of attentional biases affect evidence
accumulation in the aDDM? Illustration for an exemplary choice problem, offering a safe option
with EVsafe = 1 and a risky option with EVrisky = 1.7. The relative evidence in favor of the safe
option versus the risky option accumulates over time, and attention alternates between the safe and
the risky option (white background: attention to safe option, gray background: attention to risky
option). When the accumulated relative evidence exceeds one of the choice thresholds, here set at
±1, the corresponding option is chosen. The upper threshold corresponds to the safe option, and
the lower threshold corresponds to the risky option. The top panels A and B illustrate processes
where attention does not enhance processing efficiency (θunattended = 1), and the bottom panels
C and D illustrate processes where attention does enhance processing efficiency (θunattended = 0).
The left panels A and C illustrate processes where attention is distributed evenly across the options
(no attentional bias, pts = 0.5), and the right panels B and D illustrate processes where attention
is biased towards the safe option (pts = 0.7). Each panel depicts several exemplary noisy diffusion
processes (gray fuzzy lines), and, for clear illustration, a noise-free process (thick black line). A)
In the absence of attentional gains in processing efficiency and of attentional biases, evidence
accumulates proportional to the objective value difference EVsafe − EVrisky. Hence the higher-
valued risky option is chosen. B) If there are attentional biases to one option, but attention does
not enhance processing efficiency, evidence still accumulates proportional to the objective value
difference EVsafe − EVrisky. Hence the higher-valued risky option is still chosen. C) If attention
enhances processing efficiency, evidence in favor of the currently fixated option accumulates faster.
If there are no attentional biases, the attentional advantages of both options cancel each other out.
Hence the higher-valued risky option is still chosen. D) If attention enhances processing efficiency
and if attention is biased towards the lower-valued safe option, evidence in favor of the safe option
is amplified for a longer proportion of processing time than evidence in favor of the alternative.
Hence attention systematically increases the probability of choosing the lower-valued option, and
thus biases choice. In all four cases, noise in the process can induce non-systematic deviations from
the predicted behaviors.
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Option-Specific Attentional Biases

Either the safe or the risky option is in the focus of attention on each time-step t. The propor-
tion of time spent attending to the safe option pts captures the attentional bias in the process:
pts equals 0.5 if both options are attended to for equal amounts of time. There is an attentional
bias to the risky option if pts < 0.5 and an attentional bias to the safe option if pts > 0.5.

Why do attentional biases crucially shape the impact of attentional gains in processing
efficiency on choice? For illustration, consider an aDDM process where selective attention strongly
amplifies processing efficiency (e.g. under θunattended = 0). If attention is allocated evenly across
the options—meaning that there are no attentional biases—value information on both options is
amplified for 50% of the processing time (see Panel C in Figure 4.1). Hence, the amplifying effects
of attention on both options cancel each other out. The model tends to choose the same option
that it also chooses when attention does not amplify processing efficiency (cf. Panel A in Figure
4.1)—the higher valued option. That is, in the absence of attentional biases, attentional gains in
processing efficiency do not bias choice behavior.

However, if attentional biases exist, attentional gains in processing efficiency can create
a systematic advantage for an option, even if this option objectively has a lower value than the
alternative: For instance, if attention is allocated to the safe option for 80% of the processing
time, the accumulation of evidence in favor of the safe option is amplified for a longer proportion
of time, compared to the accumulation of evidence in favor of the risky option (see Panel D in
Figure 4.1). Hence, the probability of choosing the safe option increases—even if it is objectively
less valuable than the risky option. Therefore, the model can explain why looking longer at an
option can increase the probability of choosing it.

Note that due to the noise ε in the process, the model does not always choose the option
considered preferable under a fully deterministic (undisturbed by noise) computation of evidence,
based on the interaction between gaze and value. Instead, on individual trials, the model can show
some non-systematic deviations from these behaviors.

To summarize, there are two variables systematically shaping the impact of attention on
choice behavior in the aDDM: The magnitude of attentional gains in processing efficiency, and the
magnitude and direction of attentional biases. In the absence of option-specific attentional biases,
attentional gains in processing efficiency do not affect predicted choice proportions. Vice versa, if
attention does not enhance the efficiency of processing attended information, attentional biases do
not affect predicted choice proportions. Only if attentional gains in processing efficiency are paired
with attentional biases, they systematically bias choice.

4.1.2 Hypotheses on Age Differences in the Impact of Attention on
Choice

A currently emerging literature suggests that the impact of attention on choice varies across indi-
viduals (S. M. Smith & Krajbich, 2018; Thomas et al., 2019), and that this variability translates
into systematic individual differences in choice patterns. For instance, participants who display
a stronger link between attention and choice perform worse at choosing the best option in the
choice set (Thomas et al., 2019). Here we extend this line of research by investigating systematic
differences in the attention-choice link between younger and older adults. Based on the attentional
dynamics of preference construction described in the aDDM, we next develop hypotheses on po-
tential age differences in the impact of attention on choice: We flesh out how attentional gains in
processing efficiency and option-specific attentional biases may differ between younger and older
adults. Our core hypotheses are summarized in Table 4.1.
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Age differences in attentional gains in processing efficiency

On a neurocognitive level, the attentional gains in processing efficiency described in the aDDM
may be implemented in terms of top-down modulatory control. This mechanism enhances neural
activity representing currently relevant information and suppresses irrelevant, distracting informa-
tion. For instance, top-down modulation implements the attentional selection necessary to restrict
capacity-limited working memory contents to task-relevant objects (Gazzaley et al., 2005; Gazza-
ley & Nobre, 2012). Notably, top-down modulatory control seems to be impaired in older adults.
Older adults show reduced neural activity in structures thought to support attentional control,
and an stronger neural response to distracting stimuli than younger adults (Chao & Knight, 1997;
Gazzaley et al., 2008; Gazzaley et al., 2005; Gazzaley & D’esposito, 2007; Gazzaley & Nobre, 2012;
Milham et al., 2002). Moreover, behaviorally, older adults show higher error rates on tasks which
require to focus on target stimuli and ignore distracting stimuli (Chao & Knight, 1997; Gazzaley
et al., 2005). It seems plausible that mechanisms of prioritized neural processing, like top-down
modulation, also implement the attentional gains in processing efficiency described in the aDDM.
Thus we hypothesize that attentional gains in processing efficiency, as captured by the aDDM, may
also be impaired (i.e., reduced) in older compared to younger adults, and thus affect preferential
choice. If this holds, fixating on an option would amplify the impact of that option’s value on
preference formation less in older compared to younger adults. As a consequence, attention may
have a lesser impact on choice behavior in older compared to younger adults, even if both age
groups show similar attentional biases.

Table 4.1: Hypotheses on Potential Differences Between Attentional Processes Between Younger
and Older Adults
Attentional variable Prediction
Attentional gains in processing efficiency

Directed hypothesis Attention may enhance processing efficiency more in
younger than in older adults.

Consequences for choice Attention shapes preferences more in younger than in older
adults (under identical attentional biases).

Attentional biases
Undirected hypothesis Attentional biases may differ in magnitude and direction

between younger and older adults.
Consequences for choice Attention shapes preferences more in the age group display-

ing more extreme attentional biases (under identical gains
in processing efficiency).

Age differences in option-specific attentional biases

Moreover, option-specific attentional biases may differ between younger and older adults in mag-
nitude and/or direction. Previous research on age differences in attentional biases during decision
making has mainly focused on affective stimuli. Older adults seem to avoid attending to negative
stimuli more than younger adults, possibly due to a strategy of emotional regulation that be-
comes more prominent in older age (L. O. Lee & Knight, 2009; Mather & Carstensen, 2003, 2005).
Likewise, in risky choice, older adults may place an increased emphasis on wins and a decreased
emphasis on losses compared to younger adults. This is suggested by a model-based analysis of
IOWA gambling task data (Wood et al., 2005), and by findings of reduced loss aversion in older
adults (Pachur et al., 2017). However, these studies provide no direct measures of visual fixation
patterns, and are also uninformative regarding domain-pure risky choice problems. Studies on
eye movements in risky choice exist, but are typically conducted in standard samples of younger
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adults only (cf. Fiedler & Glöckner, 2012; Franco-Watkins & Johnson, 2011; Glöckner et al., 2012;
Glöckner & Herbold, 2011; S. M. Smith & Krajbich, 2018; Stewart et al., 2016; Su et al., 2013;
Venkatraman et al., 2014).

Therefore, we formulate a non-directed, exploratory hypothesis: Younger and older adults
may differ in their option-specific attentional biases. Attention may have a stronger impact on
preference in the age group displaying more extreme attentional biases (depending on attentional
gains in processing efficiency).

4.2 Outline of the Study

We investigate whether the impact of attention on choice differs between younger and older adults,
in terms of two factors, namely attentional biases and attentional gains in processing efficiency.
We test these hypotheses in a risky choice experiment using eye-tracking. Risky choice is a domain
where preferences have previously been found to be shaped by attention (in standard samples
of younger adults, cf. S. M. Smith & Krajbich, 2018), and risky choice behavior often differs
between younger and older adults (cf. Best & Charness, 2015; Mather et al., 2012; Pachur et al.,
2017). Hence, our experiment implicitly also tests if differences in attentional mechanisms between
younger and older adults contribute to age differences in risky choice. To test for age differences
in attentional biases we use fixation patterns. To test for the hypothesized age differences in
attentional gains in processing efficiency we model choices and RTs in an attentional variant of the
Wiener Drift Diffusion Model. This also allows us to capture the combined effects of attentional
efficiency gains and attentional biases on preferences in younger and older adults.

Besides investigating age differences in the impact of attention on risky choice, a second
aim of this study is to further assess the generalizability of the effects of option complexity on risky
choice. Following Zilker et al. (2019, see chapter 2) and Orquin and Loose (2013) we define option
complexity as a surface feature of stimulus information, that is, the amount of information used
to describe each option in a risky choice task. For instance, the complexity of safe options, which
are fully described by a single outcome and the associated probability of 100%, is typically lower
than the complexity of risky options with several non-zero probabilistic outcomes, which need to be
described by at least two outcomes and the associated probabilities. In two previous studies (Zilker
et al., 2019, see chapter 2) we showed that older adults are more likely to choose safe gains over risky
gains than younger adults, but only if the safe gains are less complex than the risky ones. That is,
the apparently increased certainty effect in older adults—the overweighting of safe outcomes over
probabilistic ones (cf. Kahneman & Tversky, 1979; Mather et al., 2012)—to some extent reflects a
response to differences in option complexity (Zilker et al., 2019, see chapter 2). Recently, Bernheim
and Sprenger (2019) posited that the certainty effect may only be a special case of a more general
aversive response to option complexity. Our previous studies do not warrant inferences about this
more general claim, since we only manipulated the complexity of safe options in choices between
safe and risky options. In our new experiment, we hence manipulate the complexity of high and
low risk options, both in choices where safe options are available and in choices between two risky
options. This allows us to investigate if option complexity also affects choices where certainty is
not a factor.

As a convenient side-effect, manipulating option complexity may help elicit option-specific
attentional biases. As outlined above and illustrated in Figure 4.1, attentional gains in processing
efficiency (and by extension, age differences therein) only affect choice behavior if participants also
show attentional biases. However, based on the previous literature on eye-movements in risky choice
it is not clear whether participants—of any age group—show systematic option-specific attentional
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biases in risky choice, and if so, in which direction. However, a review on eye-movements in decision
making concluded that complexity affects fixation durations (cf. Orquin & Loose, 2013). Hence,
manipulating the complexity of individual options within risky choice problems may help ensure
that attentional biases emerge, at least in some conditions of the task—even though we do not
know if attention is biased in baseline risky choice problems where complexity is not intentionally
manipulated.

4.3 Methods

4.3.1 Participants

80 younger adults (age in years: range 18 - 35, M = 25.1, SD = 3.82) and 80 older adults (age in
years: range 60 - 78, M = 69.1, SD = 3.59) participated in the study. Participants were recruited
via the internal participant data base of the Max Planck Institute for Human Development Berlin.
The participant sample is characterized in more detail in Table 4.2.

Table 4.2: Participant Characteristics. Cognitive and Affective Scales as well as Self-report Mea-
sures were Administered After the Risky Choice Task.

Younger adults Older adults
M SD Range M SD Range

Age (years) 25.1 (3.82) [18; 35] 69.1 (3.59) [60; 78]
DSST

— % accurate 0.95 (0.04) [0.76; 1] 0.98 (0.03) [0.86; 1]
—n accurate 55.05 (7.82) [39; 84] 39.33 (5.65) [29; 57]

WORD score 0.79 (0.11) [0.06; 0.92] 0.90 (0.04) [0.78; 1.00]
OS score 0.71 (0.14) [0.17; 0.99] 0.42 (0.24) [0.03; 0.91]
Positive affect

—momentary 3.84 (0.88) [1.9; 5.7] 4.79 (1.02) [2.2; 6.9]
—habitual 4.62 (0.83) [2.4; 6.1] 4.99 (0.83) [3.6; 6.9]

Negative affect
—momentary 1.86 (0.78) [1; 4.2] 1.55 (0.63) [1; 3.7]
—habitual 2.15 (0.75) [1; 2.15] 1.68 (0.66) [1; 1.68]

CRT score 1.19 (1.15) [0; 3] 0.64 (0.89) [0; 3]
Numeracy score 3.81 (1.66) [0; 7] 2.67 (1.57) [0; 6]
Self-reported risk prefer-
ence

4.92 (2.24) [1; 10] 5.03 (1.77) [0; 9]

Reward (EUR) -0.22 (2.38) [-4.45; 4.25] 0.39 (2.48) [-4.95; 4.35]

4.3.2 Materials

The risky choice task consisted of 108 decision problems, half of which were from the domains of
gains and losses. The option space included risky options, offering the chance to obtain one of two
non-zero outcomes with probabilities adding up to 100%, and safe options, offering one outcome
with certainty (i.e., 100%). Depending on problem type, the more risky option was paired with
either a safe option (36 safe vs. risky decision problems), or another less risky option (72 risky
vs. risky decision problems). On half of the decision problems the more risky option (in terms of
the coefficient of variation CV = abs(SD/EV ); Weber et al., 2004)had a higher expected value,
and on the other half the less risky option had a higher expected value. The expected value
difference between the options ranged between 3 and 20. We ensured that no decision problems
included a stochastically dominated option. All outcomes were presented in the experimental
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currency E$. Analogue to Zilker et al. (2019, cf. chapter 2) the within-subjects manipulation
of option complexity was implemented by presenting the options’ outcomes in different formats.
We implemented options of three different levels of complexity: In a low complexity option, each
outcome was expressed as a single number, for instance, 60 E$. In a medium complexity option,
each outcome was expressed as a mathematical term in which an integer (drawn from a uniform
distribution between 2 and 120) had to be multiplied by a number between 0.1 and 0.9 (rounded
to the second digit). For instance, an outcome magnitude of 60 E$ could be expressed as (0.8 x 75)
E$. In a high complexity option, the mathematical term expressing the outcome required solving
two such multiplications and adding up the results. For instance, 60 E$ could be expressed as
(0.2 x 100) + (0.8 x 50) E$. Both in problems involving choices between safe and risky options,
and in problems involving choices between two risky options, we manipulated the complexity of
the high and the low risk option orthogonally. This results in a 3× 3 manipulation of complexity.
The different types of options and permuted experimental factors underlying the experimental
conditions are illustrated in Figure 4.2. The study was approved by the IRB of the Max Planck
Institute for Human Development Berlin.
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Figure 4.2: Different types of options offered in the risky choice task, and possible combinations
of option types within each choice problem. Our design offered safe and risky options, from the
domain of gains and losses, of varying levels of complexity (low/medium/high). On each individual
choice problem, participants made choices between two options, which both varied in complexity
across trials (3×3 levels). Each choice problem offered either a safe and a risky option, or a choice
between two risky options. Both options on each choice problem were from the same domain (gains
or losses).
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4.3.3 Procedure

Upon arriving at the lab, participants provided informed consent for the study. To minimize
distractions, each participant sat in one of two laboratory rooms alone. The experiment consisted
of two phases: In the first phase, participants worked on the risky choice task while their eye-
movements were recorded. In the second phase (without eye-tracking), participants completed
several several cognitive tests and provided self-reports regarding affect, risk preferences, and
demographic characteristics. The order or the tasks in phase 2 was randomly determined for
each participant. All experimental tasks were programmed in PsychoPy v1.90.2 (Peirce, 2007,
2009).

Technical Setup

We used the eye tracker from The EyeTribe (cf. Dalmaijer, 2014). All task information was
presented on a computer screen (1920 × 1080 pixels). Participants were asked to sit with their
chin positioned comfortably on a head rest, at approximately 50 cm distance from the screen. The
vertical and horizontal distance of outcomes and probabilities of the risky choice task on screen
was at least 5 cm, amounting to a minimum distance of 5 degrees in visual angle. Hence at any
point in time only one attribute could be fixated in the area of highest visual acuity of the fovea
(Wertheim & Dunsky, 1980).

Incentivization

Participants received a baseline payment of e 20 for participating in the study, and a performance-
contingent bonus of e 0-10. Before the risky choice task, the experimenter put e 5 on the desk
in front of the participant as a baseline bonus. The experimenter explained that the choices in
the risky choice phase of the experiment would determine if the participant would get to keep this
baseline bonus and possibly earn an additional bonus of up to e 5, or if they would have to return
a part of or even the entire e 5 at the end of the experiment. At the end of the risky choice task,
one trial was randomly selected, and the lottery chosen by the participant was played out. The
resulting outcome was converted from the experimental currency E$ into e , such that 100 E$
converted to e 5. The resulting amount in e was added to/subtracted from the baseline bonus
of e 5, depending on whether it was a gain or a loss trial. Participants obtained the flat fee of
e 20 for participation irrespective of the lottery outcome. This procedure for the determination
of bonuses was also explained to participants in detail during the written instructions of the risky
choice task. The experiment and incentivization scheme did not involve deception of participants.

Risky choice task and eye tracking

Before starting the risky choice task, the experimenter told participants that their eye-movements
would be monitored, and asked them to rest their chin comfortably on the head rest. Next, the
eye-tracker was calibrated using the calibration tool provided by the manufacturer The EyeTribe.
After successful calibration, the experimenter started the experiment. Participants received written
instructions about the risky choice task and the incentivization scheme on the screen, completed
5 practice trials, and had the opportunity to ask any further questions about the task. Then the
risky choice task started. The trials were presented in randomized order, determined uniquely
for each participant. The position of options on screen (left or right) and of individual outcome-
probability pairs within options (top or bottom) was also randomized uniquely for each participant.
Individual trials were separated by a 1 second period with a fixation cross displayed in the center
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of the screen. After every 20 trials participants had the opportunity to take a self-paced break.
They were instructed to stay seated with their head in the headrest to maintain the eye-tracker
calibration during each break. After the last trial participants could take another break, while the
experimenter uninstalled the headrest from the desk. Then the second phase of the experiment,
including cognitive and affective measures, was started.

Berlin Numeracy Test

As solving the more complex choice problems in our task involved more challenging numerical
operations we measured participants’ numerical skills, using the 7 item version of the Berlin Nu-
meracy Test (Cokely et al., 2012). An exemplary item of this test is “Imagine we are throwing a
five-sided die 50 times. On average, out of these 50 throws how many times would this five-sided
die show an odd number (1, 3 or 5)?” (correct response: 30). The test is scored based on the
number of correct responses.

Cognitive style

We measured cognitive style using the cognitive reflection test (CRT, Frederick, 2005). The CRT
consists of 3 items, each of which has an intuitive but false response, and a correct response which
requires more reflection. All three items are structured similar to the bat and ball question: "A
bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much does the ball
cost?". Here the intuitive (but wrong) response is 10 cents, and the correct response is 5 cents.
The test is scored based on the number of correct responses.

Working memory capacity

The operation span (OS) task from the working memory battery by Lewandowsky et al. (2010) was
used to measure working memory capacity. On each trial, participants had to quickly alternate
between judging the accuracy of arithmetic expressions (e.g., 2+7 = 5) and memorizing consonants.
After each sequence of alternating arithmetic expressions and consonants participants had to recall
the consonants from the last sequence in correct order. The procedure is described in more detail
in Lewandowsky et al. (2010). The task is scored in terms of proportion of consonants recalled
correctly.

Affect

We measured momentary and habitual affect, using a German version of the 10 item positive-
and-negative-affect scale (PANAS, Grühn et al., 2010; Watson et al., 1988). On each trial of the
PANAS an adjective describing an affective state was presented in the center of the screen and
participants were asked to rate how strongly they felt this affect right now (measuring momentary
or state affect) or generally (measuring habitual or trait affect). Participants responded on a 7-point
scale (see Grühn et al., 2010). There were 2 separate blocks for measuring state and trait affect,
both including the same adjectives. The 10 positive and 10 negative adjectives were presented
intermixed and randomized within each block. The order or the two blocks and of individual trials
within each block was randomly determined for each participant.

Fluid intelligence

To measure fluid intelligence in terms of speed of processing, participants completed the digit
symbol substitution test (DSST, cf. McLeod et al., 1982). A table on top of the screen defined
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a mapping between 9 symbols and the digits 1—9. The mapping was randomly determined for
each participant individually. On each trial, one of the 9 symbols was presented in the center
of the screen, and participants had to press the associated number key. There was no feedback,
and the next symbol appeared as soon as the participant responded. The test lasted 90 seconds
and participants were instructed to work as quickly and accurately as possible. Before the test
phase participants practiced the task during 2 practice rounds (9 trials each). The DSST is scored
in terms of number of correctly matched symbol-number pairs. For completeness we also report
the percentage of correct responses in Table 4.2, although this measure does not capture speed of
processing.

Crystallized intelligence

We measured crystallized intelligence using a lexical decision task, the spot the word test (cf.
Baddeley et al., 1993). On each item, participants saw one word and 4 non-words on the screen in
randomized order. Participants had to identify the word and respond by pressing a corresponding
digit key (1—5). Participants completed one practice item and the test phase, consisting of 36
items of varying difficulty.

Self-reported risk preference

After completing these psychometric tasks, participants were asked to self-report their risk pref-
erence on the one-item general risk question (cf. Dohmen et al., 2011): How do you see yourself:
are you generally a person who is fully prepared to take risks or do you try to avoid taking risks?
Please tick a box on the scale, where the value 0 means: “not at all willing to take risks” and the
value 10 means: “very willing to take risks”.

Demographic information

Finally, participants were asked whether they wore glasses, contact lenses or no vision aids, entered
their age and gender and were given the opportunity to comment on the experiment in open format
writing. Then the experimenter revealed the result of the random bonus lottery and paid out the
participation fee and the bonus.

4.4 Behavioral Data Analysis and Results

We first tested to which extent the effects of option complexity generalized to the manipulation
of risky options, and to choices where no safe option was available, and whether these effects
differed between younger and older adults. We estimated Bayesian Mixed Effect regressions with
different outcome variables (risky choice behavior, RTs and decision quality), using the rstanarm
package for R (Goodrich et al., 2018). All models included fixed effects for option complexity
(separate for both options), age group, the interaction between option complexity and age group,
the absolute difference in EV between the options, a dummy variable indicating whether the more
risky option had a higher EV, and a random intercept for each participant. All models were
estimated separately for each domain (gains and losses) and type of choice problem (safe vs. risky
and risky vs. risky). We also calculated analogue models for the main effects of complexity on each
outcome variable within each age group (including all predictors listed above, except for age group
and its interaction with option complexity). The effects of fixed predictors were considered credible
if the 95% posterior interval on the coefficient excluded zero. Posterior intervals, sometimes also
referred to as credible intervals, cover the central 95% of the posterior distribution of the estimated
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Figure 4.3: Effects of option complexity on risky choice, gaze behavior, and response times, in
choices between safe and risky options. Increasing an option’s complexity tends to decrease partic-
ipants’ tendency to choose this option, especially in older adults. Increasing an option’s complexity
also decreases the proportion of time participants spend fixating on this option, and increases RTs.
This holds both when increasing the complexity of safe options (left column) and the complexity
of risky options (right column). Error bars indicate 95% CI.

coefficients, and can be interpreted as a range which includes the true parameter value with 95%
probability (cf. Morey et al., 2016). For each model, we provide a table with all fixed coefficients
and the respective 95% posterior intervals. The behavioral results are illustrated in Figure 4.3.
Below, we first address the results in choices between safe and risky options and then summarize
the key differences in choices between two risky options.

4.4.1 Risky Choice

Increasing the complexity of safe gains decreased participants’ tendency to choose these safe gains,
and this effect was more pronounced in older adults for highly complex safe gains. Increasing the
complexity of safe losses did not affect participants’ tendency to choose these options (see top left
panel in Figure 4.3). These findings replicate our earlier results on age differences in the response
to safe options’ complexity on the level of risky choice behavior (Zilker & Pachur, 2019, chapter
2). Moreover, we newly establish that increasing the complexity of risky options has an analogue
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effect to increasing the complexity of safe options (see top right panel in Figure 4.3): Participants
from both age groups chose risky gains less when their complexity increased, and their tendency
to choose risky losses was mostly unaffected by the complexity of these risky losses. The GLMER
results for risky choice behavior are provided in Table C.1 and C.2.

4.4.2 Response Times

When option complexity increased participants took more time for their choices. These results
indicate that participants indeed solved the task in an engaged and motivated manner, even if
it was very demanding. This effect emerged when manipulating the complexity of safe and risky
options, from both the domain of gains and losses, and in both age groups. Interestingly, younger
adults’ RTs tended to increase more under higher complexity, compared to those of older adults.
The third row in Figure 4.3 illustrates these results. The GLMER results for RTs are provided in
Table C.3 and C.4.

4.4.3 Decision Quality

Increasing option complexity also decreased participants’ tendency to choose the option with the
higher EV, that is, their decision quality. Younger adults showed a more pronounced decrease
in decision quality than older adults when the complexity of safe losses increased. The GLMER
results for decision quality are provided in Table C.5 and C.6.

4.4.4 Behavioral Results for Choices Between two Risky Options

We also carried out analogue analyses for choices between two risky options, with largely similar
results. Increasing the complexity of risky options decreased participants’ tendency to choose these
options in the domain of gains, but not in the domain of losses. Higher option complexity also
increased participants’ RTs in both domains, and had a detrimental effect on their decision quality.
The GLMER results corroborating all analyses are displayed in Appendix C, and the behavioral
patterns are illustrated in Figure C.1.

4.4.5 Summary of the Behavioral Results on Effects of Complexity

The behavioral analyses address our objectives regarding the generalizability of complexity effects
in risky choice. We replicate our earlier finding that older adults are more sensitive to the complex-
ity of safe gains than younger adults in terms of risky choice behavior. We further established that
not only the complexity of safe options, but also of risky options, affects risky choice behavior, both
in choices between safe and risky options, and in choices between two risky options. Therefore,
consistent with the argument by Bernheim and Sprenger (2019), the certainty effect may indeed be
a specific case of a more general aversive response to option complexity, which affects risky choice
behavior in a wider range of scenarios. Moreover, we show that not only older, but also younger
adults’ risky choice behavior can be shaped by option complexity, especially in choice problems
which are highly complex overall (i.e., choice problems involving safe options and highly complex
risky options, and choices involving two risky options). In choices between two risky options, the
complexity manipulation even affected risky choice behavior more strongly in younger than older
adults. In summary, choice behavior displayed by younger and older adults in risky choice problems
sometimes used to elicit risk preferences is sensitive to option complexity. The impact of option
complexity, a contextual feature which is detached from the options’ true risk or value, highlights
the constructed nature of these preferences.
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4.4.6 Option-Specific Biases in Attention Allocation

Next, we tested our hypothesis about potential age differences in attentional biases using the gaze
data. To obtain a measure of option-specific attentional biases we first preprocessed the data as
follows.

Preprocessing of gaze data

We identified the fixations in the eye-tracking data using the saccades package for R (von der
Malsburg, 2015) and then classified the location of the fixations into areas of interest (AOIs).
Each AOI corresponded to one attribute of one of the options (i.e., one outcome or probability).
AOIs for outcomes were defined as rectangles of 634 x 183 pixels size (16.1 cm x 4.6 cm on screen)
and AOIs for probabilities were defined as rectangles of 317 x 183 pixels size (8 x 4.6 cm on screen),
both centered on the location where the attributes were presented.1 After classifying the fixations
into AOIs, we calculated the duration of fixating on each AOI within each trial and subject. To
obtain the proportion of time spent fixating on the high and the low risk option in each trial and
subject, we summed up the fixation time for the individual AOIs constituting each option, and
divided by the total time spent fixating on any AOIs. These option-specific dwell time proportions
were used as a measure for option-specific attentional biases for further analyses. For instance, if
the proportion of time spent attending to the risky option on a trial is greater than .5, the person
showed an attentional bias to the risky option.

Attention allocation

Did manipulating option-complexity indeed help elicit attentional biases, and did such attentional
biases differ between younger and older adults? To test this, we estimated Bayesian Mixed Effect
regressions, analogue to the models reported for the other dimensions of choice behavior in the
previous section, but with the proportion of time spent fixating on the risky option on each trial
as the outcome variable.

For choices between safe and risky options, the proportion of time spent fixating on the high
risk option is illustrated in the second row in Figure 4.3, and the GLMER results are reported in
Table C.7 and C.8. Participants showed pronounced attentional biases towards safe options when
they were presented in the least complex format. However, increasing safe options’ complexity
(and thus rendering them more similarly complex to risky options) reduced or even eliminated
these attentional biases: When safe options were highly complex, participants allocated their visual
attention more evenly between the options. An analogue pattern also emerges when the complexity
of risky options was manipulated. Specifically, when risky options in choices between safe and risky
options were presented in a more complex format, participants spent a lower proportion of time
fixating on the risky options. This is true for both gains and losses, and crucially, in both age
groups. That is, younger and older adults showed very similar option-specific attentional biases
towards simpler safe options, and these biases were also similarly sensitive to option complexity in
both age groups.

For choices between two risky options, the option-specific dwell time proportions are illus-
trated in Figure C.1, and GLMER results are displayed in Appendix C.5. By contrast to choices
between safe and risky options, participants tended to distribute their attention evenly across the

1The width of the probability-AOIs was defined as half the width of the outcome-AOIs, reflecting that probability
information took up less horizontal space on the screen than outcome information, as illustrated in Figure 4.2. The
height of the AOIs of 4.6 cm on a screen at 50 cm distance corresponds to 5 degrees in visual angle. Hence, when
fixating on an attribute, only the contents of the fixated AOI could be fixated within the area of highest visual
acuity in the fovea (Wertheim & Dunsky, 1980)
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options, irrespective of their complexity, in choices between two risky options. Again, younger and
older adults showed highly similar fixation patterns.

4.4.7 Summary of the Behavioral Results on Attentional Biases

Therefore, our non-directed, exploratory hypothesis about potential age differences in attentional
biases can be rejected: Younger and older adults showed highly similar attentional biases. While
not depending on age, attentional biases strongly depended on stimulus characteristics. Specifically,
participants showed pronounced attentional biases towards simple safe options, especially in choice
problems with very simple safe options and highly complex risky options (that is, in choice problems
where the options differed most strongly in complexity). In choices between two risky options, such
systematic attentional biases did not emerge.

4.5 Computational Modeling

Our second hypothesis, regarding age differences in attentional gains in processing efficiency, can
not be evaluated based on choice behavior alone. We draw on the attentional drift diffusion frame-
work, which belongs to the class of sequential sampling models (Krajbich et al., 2012; Krajbich
& Rangel, 2011; Ratcliff, 1978; Ratcliff & Smith, 2004), to measure age differences in attentional
gains in processing efficiency.

The aDDM in its original random walk formulation (as described in the introduction, see
Equation 4.1 and 4.2) is difficult to estimate, since it assumes discrete time-steps. Hence, we
adapt the Wiener Drift Diffusion Model (Ratcliff, 1978) to implement the core ideas underlying
the aDDM. This model can be fitted relatively easily in the hierarchical Bayesian framework, using
the Wiener module for JAGS (Wabersich & Vandekerckhove, 2014a). Other authors have resolved
the estimation difficulties associated with the aDDM via similar adaptations (Thomas et al., 2019).

Remember that attentional biases are one key prerequisite for attention to affect choice
according to the aDDM framework. Since the most pronounced attentional biases were observed
in choices between safe and risky options, attention likely affects choice most profoundly in these
choice problems. This makes choices between safe and risky options the most interesting application
for computational modeling. Hence, when describing the model and the results below, we focus
on this problem type. Finally, we also summarize how the results in choices between two risky
options differ from those between safe and risky options.

4.5.1 Estimation Strategy

The model was estimated in the Bayesian framework using JAGS. In the Bayesian approach,
parameters are estimated by first specifying prior distributions representing initial beliefs about
plausible parameter values, and then continually updating them in the light of the data, to obtain
posterior parameter distributions. The posteriors estimates represent informed beliefs that incor-
porate evidence provided by data (cf. M. D. Lee, 2011; Lewandowsky & Farrell, 2018), and they
are used for parameter inference—that is, to test whether specific model parameters differ between
age groups or conditions (details below). The model was estimated separately for data from each
domain and problem type.
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4.5.2 Removal of Slow RTs

For computational modeling RTs below 100ms were removed from the data.2 In total (across all
participants and trials) responses on 15 trials in the domain of gains, and 7 trials in the domain of
losses were faster than 100ms and thus removed.

4.5.3 Hierarchical Model Structure

The model assumes a hierarchical parameter structure, where parameter values for each individual
are informed by a group-level distribution. To capture the hypothesized age differences in the
attentional process, we specified separate group-level distributions for younger and older adults.
Details on variability in parameters across trials within individuals are provided below.

4.5.4 Distribution of Choices and RTs

In the attentional variant of the Wiener DDM the RT distributions for the two possible responses
follow a Wiener process

(
choice
RT

)
∼Wiener(α, δ, τ, γ) (4.3)

with the diffusion parameters δ, α, τ , and γ.3 The Wiener process specifies how evidence
accumulates on each trial until a response threshold, corresponding to one of the options, is ex-
ceeded and a choice is made. The upper and lower threshold are defined as choices of the safe
option and the risky option, respectively. The drift rate δ is the core parameter of interest for our
purposes, since it captures the speed of evidence accumulation and how it is modulated by atten-
tion, in analogy to the aDDM. Details on the other diffusion parameters are provided in Appendix
C.6.

4.5.5 Drift Rate

The drift rate parameter δtotal,i,j captures the speed of accumulation of evidence in favor of the safe
option over the risky option, on each trial i in each subject j. A positive drift rate indicates that
evidence in favor of the safe option exceeds evidence in favor of the risky option, and vice versa. A
drift rate of zero indicates indifference. In order to incorporate the aDDM’s core assumption that
gaze amplifies the impact of attended value information on evidence accumulation, we defined the
parameter δtotal,i,j as a linear combination of subject-level coefficients βj and trial-level regressors
Xi,j :

δtotal,i,j =δbaseline,j + δattention,i,j

=δbaseline,j + βgaze:EV,j︸ ︷︷ ︸
Efficiency

Gain

∗ (Xgazesafe∗EVsafe,i,j −Xgazerisky∗EVrisky,i,j)︸ ︷︷ ︸
Gaze−weighted
V alue Difference

(4.4)

2Removing very fast outliers was necessary because these outliers make it difficult to estimate the non-decision
time parameter. Given very few very fast outliers the subject-level non-decision time parameter tends to approach
values higher than the fastest outliers. Since such values are logically impossible (the non-decision time can not
be longer than the fastest choices), their emergence forcefully terminates MCMC sampling. Removing RTs faster
than 100ms was a simple and effective way counteract this issue. It allowed to achieve stable estimation while only
requiring to remove very few data points.

3We refer to the bias parameter as γ instead of the conventional notation β. We adopt this notation to avoid
confusion, as we refer to coefficients on the drift rate as β (details below).
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We thereby disentangle the baseline drift δbaseline,j from the attentional drift δattention,i,j ,
which consists of attentional gains in processing efficiency and option-specific attentional biases.

Baseline drift

The baseline drift δbaseline,j captures systematic aspects of preference formation that do not de-
pend on option-specific attention. This coefficient captures whether participants have a baseline
preference in favor of the safe or the risky option, which is not a consequence of the attentional
mechanism. We assume that higher complexity may make options appear generally less attractive,
even beyond the potential impact of attention. Hence, to capture that increasing an option’s com-
plexity may slow down the basline drift in favor of this option, we estimate δbaseline,j conditional
on the level of option complexity.

Attentional drift

The attentional drift δattention,i,j captures the systematic impact of attention on preferences: It
allows the model to implement the attentional mechanism proposed by the aDDM. It captures how
attentional gains in processing efficiency and option-specific attentional biases affect preferences.

Impact of attentional gains in processing efficiency The coefficient βgaze:EV,j captures
the magnitude of attentional gains in processing efficiency. As previously delineated, selective
attention may increase the efficiency of processing attended value information, and thus prioritize
and amplify its impact on choice. If the coefficient βgaze:EV,j is credibly greater than zero, attending
to an option for a greater proportion of time amplifies the impact of this option on preferences.
That is, βgaze:EV,j mimics the role of the parameters θattended and θunattended in the random walk
formulation of the aDDM (see Equation 4.1 and 4.2).

According to our hypothesis, attentional gains in processing efficiency may be impaired in
older compared to younger adults. To evaluate this hypothesis, we test whether βgaze:EV,j is lower
in older adults than in younger adults.

Besides these potential age differences, it is possible that βgaze:EV,j may vary across dif-
ferent levels of option complexity: Selectively attending to an option may increase processing
efficiency for value information that is expressed in a simple, easily accessible manner. However,
when a more complex description makes value information more difficult to access, this attentional
gain in processing efficiency may be dampened. To capture that increasing option complexity may
reduce attentional gains in processing efficiency, we estimate the coefficient βgaze:EV,j conditional
on the level of option complexity.

Impact of option-specific attentional biases Besides attentional gains in processing effi-
ciency, the direction and magnitude of attentional biases contributes to the attentional drift, via
the regressor term Xgazesafe∗EVsafe,i,j − Xgazerisky∗EVrisky,i,j . This term captures the difference
between the safe and risky option’s EVs, weighted by the proportion of time participant j spent
attending to each option on trial i. Whereas EVs were experimentally controlled for, attentional
biases are under the control of the participants.

Since participants’ attentional biases varied across different levels of option complexity, we
strongly expect that the attentional drift, which depends on these attentional biases, also varies
with option complexity—even if attentional gains in processing efficiency are stable across different
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levels of option complexity.4 Therefore, it is essential that our modeling approach allows us to
separate changes in processing efficiency βgaze:EV,j from changes in attentional biases themselves.

4.5.6 Posterior Predictive Choice Behavior and RTs

Before conducting parameter inference, we inspected whether the model can reproduce key aspects
of choice behavior, using posterior predictive choice probabilities and RTs. We simulated behavior
based on the subject level posterior mean estimates for all parameters and the original experi-
mental task materials and fixation patterns, by applying the rwiener function from the RWiener
package (Wabersich & Vandekerckhove, 2014b). Inspecting posterior predictives can be viewed as
a Bayesian analogue to frequentist measures of model fit, and allows to assess if the model suc-
cessfully accounts for behavior. The simulated posterior predictive behavior is displayed in Figure
4.4. Comparing the posterior predictive choice behavior to the original data (Figure 4.3) shows
that the model reproduced the key behavioral regularities well. That is, options were chosen less
when they became more complex and RTs increased with complexity. The model also reproduces
the interaction between safe options’ complexity and age group in the domain of gains.
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Figure 4.4: The posterior predictive choice probabilities and RTs for choices between safe and risky
options reproduce the empirical patterns (cf. Figure 2) very well. Error bars indicate 95% CIs.

4.5.7 Parameter Inference on Attentional Effects in Preference
Construction

Attentional gains in processing efficiency

Next we tested our hypothesis that attentional gains in processing efficiency βgaze:EV,j may be
higher in younger than in older adults. The parameter estimates for βgaze:EV,j in choices between

4Conversely, even if there were strong differences in processing efficiency gains βgaze:EV,j across the different
levels of complexity, but no systematic attentional biases, the attentional mechanism would not effectively bias
preferences. As illustrated in Figure 4.1 the attentional mechanism only biases choice if attention is biased towards
one option.
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safe and risky options are displayed in the top panel of Figure 4.5. We estimated Bayesian GLMs
with the subject level posterior mean estimates for βgaze:EV,j as the outcome variable and the factor
age group as the predictor, using the rstanarm package (Goodrich et al., 2018). These GLMs were
estimated for each domain and complexity level. To further test if potential gains in processing
efficiency in each age group depended on complexity, we also estimated Bayesian GLMs with the
subject level posterior mean estimates for βgaze:EV,j as the outcome variable and the factor option
complexity as the predictor, within each domain and age group. The GLM coefficients and 95%
posterior intervals for choices between safe and risky options are displayed in Table C.9 and Table
C.10 under Attentional Efficiency Gains.

In both domains, attentional gains in processing efficiency were credibly lower in older
than in younger adults when safe options were simple, but not when they were highly complex.
The analyses within each age group show how these complexity-dependent age differences come
about: In older adults, selective attention did not credibly increase the efficiency of processing
attended value information (indicated by βgaze:EV,j not being credibly larger than zero), and this
was largely unaffected by safe options’ complexity. In younger adults, attention credibly enhanced
processing efficiency when safe options were simple (indicated by βgaze:EV,j being credibly larger
than zero), but these attentional efficiency gains were credibly reduced when safe options were
more complex, at least in the domain of gains.

To summarize, gaze amplified the processing of value information in younger but not older
adults’ decisions. Moreover, in younger adults, gaze tended to amplify value less under higher
option complexity. Therefore, our hypothesis that attention enhances processing efficiency less
in older than in younger adults is supported in choices involving simple safe options but not in
choices involving more complex safe options—where younger adults’ attentional gains in processing
efficiency also decrease.

Attentional drift

As outlined earlier, attentional gains in processing efficiency alone do not shape preferences—
their impact on choice also depends on attentional biases. Hence, we next test how both aspects
in combination contributed to preferences, based on the attentional drift δattention,i,j . The blue
portions of the stacked barplots in Figure 4.5 illustrate the attentional drift in both younger and
older adults’ choices, separately for the different levels of complexity of the safe options.

To test for age differences in the overall impact of attention on preferences we estimated
Bayesian GLMs with the subject level posterior mean estimates for the attentional drift δattention,i,j
as the outcome variable and the factor age group as the predictor, within each domain and com-
plexity level. We also tested whether the impact of attention on preferences depended on option
complexity within each age group, by estimating Bayesian GLMs with the subject level posterior
mean estimates for δattention,i,j as the outcome variable, and the levels of option complexity as
predictors. The GLM coefficients and 95% posterior intervals for choices between safe and risky
options are displayed in Table C.9 and Table C.10 under Attentional Drift.

Attention had a stronger impact on preferences in younger than in older adults in problems
with simple safe options. More precisely, in the domain of gains, the attentional drift in younger
adults was credibly greater than zero, and there was a credible negative main effect of age group
(older adults). In the domain of losses, the attentional drift in younger adults is credibly lower than
zero, and there is a credibly positive main effect of age group (older adults). That is, attention
contributed to younger adults’ preferences in favor of simple safe gains, and against simple safe
losses. Both of these effects were less pronounced in older adults (whose attentional drift was
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Figure 4.5: Parameter estimates from the attentional Wiener drift diffusion model in choices be-
tween safe and risky options, conditional on the complexity of safe options. Error bars indicate 95%
posterior intervals. Top panel: Estimates for attentional gains in processing efficiency βgaze:EV,j .
Bottom Panel: Estimates for the drift rate. The total height of the stacked bars represents the
overall drift. A positive overall drift rate indicates a preference for safe options and a negative
overall drift rate indicates a preference for risky options. The overall drift consists of the atten-
tional drift δattention (displayed in blue) and the non-attentional baseline drift δbaseline (displayed
in grey). The relative impact of these components on the overall drift—that is, on overall risk
preferences—is represented by the color-coded proportion of the bars.

closer to zero in both cases). This reflects that in choice problems with simple safe gains, both
age groups primarily attended to safe options, but only younger adults showed credible attentional
gains in processing efficiency: Younger adults’ highly efficient processing of the primarily attended
safe options amplified the positive evidence in favor of safe gains, and the negative evidence against
safe losses. By comparison, older adults showed reduced attentional gains in processing efficiency,
such that attention only very weakly contributed to their preferences, even though they also showed
systematic attentional biases.

In choices with more complex safe options, where attentional biases were reduced, and
where attentional gains in processing efficiency were also less pronounced in younger adults, at-
tention also impacted preferences less (or not at all) in younger adults: When safe options became
more complex, the attentional drift towards (/away from) safe options in the domain of gains
(/losses) was slower.

Attentional effects in choices between two risky options

Next we briefly summarize the computational modeling results in choices between two risky options.
The GLM coefficients and 95% posterior intervals are displayed in Table C.11 and C.12. As in
choices between safe and risky options, older adults did not show credible attentional gains in
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processing efficiency, but younger adults did (at least in choices involving simple options in the
domain of gains). In these respects, the results reproduce the patterns from choices between safe
and risky options.

However, there is an important difference. Since there were no systematic option-specific
attentional biases in choices between two risky options, attention barely biased overall preferences—
even in younger adults who showed credible attentional gains in processing efficiency. This is
because in the absence of attentional biases, attention amplifies the impact of value information
on both options to the same degree, such that their relative advantages cancel each other out.

4.5.8 Parameter Inference on Non-attentional Effects in Preference
Construction

We have shown that attention credibly shapes younger adults’ preferences in choices between
simple safe and risky options. Attention contributed less to younger adults’ preferences under
higher levels of complexity. This explains, to some extent, why option complexity affected choice
behavior in younger adults. However, strikingly, attention did not contribute to explaining older
adults’ preferences, or why they were sensitive to complexity. Attention also did not explain why
preferences depended on option complexity in choices between two risky options, in either age
group. That is, risk preferences and their sensitivity to option complexity could not be fully
explained by attention.

Systematic effects of complexity on risk preferences, which are not a consequence of at-
tention, are captured in the baseline drift rate δbaseline,j . To investigate how option complexity
affected baseline preferences in favor of safe or risky options, we estimated Bayesian GLMs with
the subject level posterior mean estimates for δbaseline,j as the outcome variable and the levels
of option complexity as predictors, within each age group, domain and trial type. To assess age
differences in baseline preferences we also estimated Bayesian GLMs with the factor age group
as the predictor, within each level of complexity, domain, and trial type. The GLM results are
displayed under Baseline Drift in Table C.10 for choices between safe and risky options and in
Table C.12 for choices between two risky options. The grey portions of the stacked barplots in
Figure 4.5 illustrate the baseline drift in both younger and older adults’ choices between safe and
risky options, conditional on the complexity of safe options.

In choices between safe and risky gains both younger and older adults showed credible
baseline preferences in favor of safe options, indicated by a positive baseline drift. This effect was
more pronounced in older adults. Also, only in older adults this baseline drift in favor of safe
options was credibly reduced when the complexity of safe gains increased to a high level. That
is, increasing the complexity of safe options made them less attractive to older adults, but not to
younger adults. These effects of complexity on the level of baseline drift explain why the tendency
to choose safe gains decreased more strongly in older than in younger adults, when these safe gains
became highly complex.

How can these changes in older adults’ baseline preferences under higher complexity be in-
terpreted? Remember that selective attention did not enhance older adults’ processing efficiency of
value information, indicating that older adults may have had considerable difficulties with extract-
ing meaningful information on the options’ true values. As a consequence, older adults may have
relied mostly on surface features of the options (i.e., their complexity) rather than their content
(i.e., value information) when making their choices. That is, older adults may have chosen simple
safe gains more because they seemed superficially more attractive to them, whereas younger adults
chose simple safe gains more because selective attention allowed them to process these options very
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efficiently, and thus increased the impact of these options on their preferences.
In the domain of losses, younger and older adults showed neutral or negative baseline drift

rates, indicating a baseline preference for risky losses over safe losses, or indifference. By contrast
to the domain of gains, older adults’ baseline drift rate in favor of risky losses was unaffected by
complexity. This explains, so some extent, why the age groups responded more similarly to the
complexity manipulation in the domain of losses than in the domain of gains on the level of choice
behavior. In choices between two risky options, increasing the complexity of low (high) risk options
decreased the baseline drift towards these low (high) risk options in the domain of gains, but not
in the domain of losses (see Table C.12). These effects emerged in both age groups.

4.6 General Discussion

The link between visual attention and choice behavior has been intensely studied in recent years.
Intriguing phenomena, such as the finding that manipulating attention can bias choice (Armel
et al., 2008; Ghaffari & Fiedler, 2018; Pachur et al., 2018; Pärnamets et al., 2015; Shimojo et al.,
2003), and research suggesting that attention is linked to choice across a wide variety of choice
domains (S. M. Smith & Krajbich, 2018) and in a great majority individuals (Thomas et al.,
2019) contribute to the widespread fascination with this topic. Yet, existing research has focused
on younger adults, leaving the question unanswered if and how attention affects older adults’
preferences. Evidence that older adults show deficits in implementing selective attention outside
of the preferential domain, for instance in working memory tasks, (e.g., Gazzaley et al., 2008)
suggests that this question may be an interesting one to tackle.

We investigated the interplay between age, attention, and preferential decision making in
a risky choice paradigm. In this paradigm we manipulated the complexity of safe and risky options
to assess the generalizability of our previous findings on the impact of safe options’ complexity on
risky choice, and age differences therein. These effects largely generalized to the manipulation
of risky options’ complexity, and to choices between two risky options. Moreover, consistent
with previous studies, we showed that attention can profoundly shape choice behavior in younger
adults, by contributing to their apparent risk aversion (seeking) in the domain of gains (losses).
However, this effect did not generalize to older adults. In older adults, attention did not enhance
the efficiency of processing attended value information, and thus did not explain their choices.
Moreover, in younger adults, attention only shaped preferences in types of choice problems where
attentional biases emerge (in choices between safe and risky options, but not choices between two
risky options), and when information on the options was displayed in a comparably simple format.
Below, we embed these newly identified boundary conditions for the link between attention and
choice in the existing literature and discuss several theoretical and methodological implications.

4.6.1 Attentional Capacities and Preferences in Older Age

Older adults’ declining fluid cognitive capacities in terms of processing speed, reasoning, and
working memory (cf. Salthouse, 2004) are frequently invoked to explain age differences in choice
behavior. For instance, they have been linked to age differences in risky choice in paradigms with
high learning requirements (Mata et al., 2011) and with high computational demands (Mamerow
et al., 2016), and also to older adults’ greater reliance on simpler heuristic strategies (Mata et al.,
2007), their greater choice inconsistency (Brocas et al., 2019), and their decreased decision quality
(Pachur et al., 2017).

Age differences in the impact of attentional capacities on choice, by contrast, have received
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only little attention. Those who do discuss attentional processes in aging decision makers typically
focus on affect, pointing out that older adults appear to focus more on positive rather than negative
information, possibly to regulate emotion (Mather & Carstensen, 2005). Going beyond the affective
realm, we demonstrate that age differences in attentional processes profoundly contribute to age
differences in choice behavior, by showing that in younger adults, attended information is processed
in an enhanced and prioritized way. Neuroscientific evidence suggests that processing enhancements
due to selective attention seem to be impaired in older adults (Chao & Knight, 1997; Gazzaley et al.,
2008; Gazzaley et al., 2005; Gazzaley & D’esposito, 2007; Gazzaley & Nobre, 2012; Milham et al.,
2002). Consistently, our computational modeling demonstrates that older adults’ selective visual
attention did not enhance their processing efficiency for attended information. As a consequence,
choice behavior is explained by attention to a lesser degree in older than in younger adults.

This has some interesting consequences. The model-based analyses reveal that qualita-
tively similar behaviors in younger and older adults, such as the tendency to choose safe gains
less when they become more complex, emerge from different mechanistic underpinnings. While
younger adults chose simple safe gains because attention amplified their impact on choice, this was
not the case in older adults, due to their attentional impairments. Rather, older adults seemed
to choose simple safe gains more because more complex options seemed less attractive to them at
baseline, without the impact of attention. By extension, increasing the complexity of safe options
modulated the attentional component of preferences in younger adults, but the non-attentional
baseline preferences in older adults. Hence, although in both age groups the construction of risk
preferences is influenced by option complexity, the specific constructive processes differ quite pro-
foundly. When inspecting mere behavior, however, the consequences of these two mechanisms are
necessarily intermixed. Therefore, mere choice behavior may create misleading impressions of age
differences in risk preferences, without being informative about the different cognitive mechanisms
generating these behaviors in younger and older adults. Since different behavioral tasks for measur-
ing risk preferences tap into these different cognitive mechanisms to different degrees, this finding
may help explain the low association between different behavioral measures of risk preferences,
and also between each of these measures and the dispositional factor of risk attitude (Frey et al.,
2017; Pedroni et al., 2017).

4.6.2 Generalizability of Effects of Complexity in Risky Choice

One objective of our experiment was to further assess the generalizability of the effects of option
complexity on risky choice in younger and older adults, which we previously demonstrated (Zilker
et al., 2019, see chapter 2). We replicated our previous finding of an interaction between safe
options’ complexity and age group in the domain of gains, and the finding that the effects of
complexity are considerably dampened in the domain of losses. We also extend these findings,
by showing that choice behavior is affected not only by the complexity of safe options, but also
by the complexity of risky options—that is, irrespective of whether a safe option was available
or not. Our results also indicate that complexity affects choice behavior in the same direction in
both age groups (more complex options tend to be chosen less), but these effects are sometimes
more pronounced in older adults. As outlined in the previous paragraph, however, these similar
behavioral tendencies in younger and older adults emerge from different mechanistic underpinnings.
Hence, in extension of our prior research, we show that age differences in the response to option
complexity do not only differ in magnitude, but also in quality.
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4.6.3 Does Gaze Shape or Reflect Preferences?

A question that can hardly be left unaddressed here is whether longer gaze to an option merely
reflects that a person evaluates this option positively, or whether it indeed causally contributes to
preferences. Is looking at options a consequence of liking them, or the cause thereof? The existence
and direction of this causal link is a topic of ongoing and vivid debate. The aDDM implicitly takes a
stance on this issue, positing that gaze shapes preferences in a particular manner (details discussed
below). Since our analyses are based on these assumptions, we will review some key arguments
and findings addressing the direction of the causal relation between gaze and preference, focusing
on whether or not they are consistent with the aDDM, and hence with our modeling approach.

Evidence on preferences causing gaze patterns: The gaze cascade

A phenomenon known as the gaze cascade (Shimojo et al., 2003) invokes a strong intuition that
gaze is a consequence of emerging preferences, rather than their cause: Over the time course of
preference formation, participants seem to increasingly look at the option that they end up choos-
ing. An intuitive interpretation of this pattern is that participants increasingly look at options
because a preference for these options develops. A positive feedback loop, where evolving pref-
erences affect attention allocation and thus amplify mere exposure effects has been proposed to
explain this finding (Shimojo et al., 2003). However, Mullett and Stewart (2016) showed that
the impression of a temporarily evolving gaze bias can emerge in accumulator models such as the
aDDM, even when fixations are in fact allocated randomly: The apparent gaze cascade can be
explained as an artefact of retrospectively plotting fixation patterns time-locked to the decision.
Moreover, remarkably similar gaze patterns also evolve in non-preferential visual decision making
tasks, further underlining that it is not necessary to assume that preferences cause the gaze cascade
(cf. Glaholt & Reingold, 2009, 2011).

Evidence on gaze patterns causing preferences: Last fixations

The opposite hypothesis on causality posits that fixations drive preferences. Intuitively supporting
this notion, the option that is fixated last is typically more likely to be chosen (Ghaffari & Fiedler,
2018; Krajbich et al., 2010; Pärnamets et al., 2015). In an attempt to test this causality Pärnamets
et al. (2015) manipulated which option was fixated last, by externally interrupting the search
process and prompting a choice in a gaze-contingent manner. Their data indicates that participants
were indeed biased towards choosing the externally determined last fixated option. However, Newell
and Le Pelley (2018) demonstrate that the effect in Pärnamets et al. (2015) may be exaggerated
due to a selective analysis of particular subsets of data. Based on an analysis of complete data, also
including trials that would have been excluded by Pärnamets et al. (2015), Newell and Le Pelley
(2018) reject last fixations as a causal factor for preferences.

This is consistent with assumptions of the aDDM. Even though in the aDDM surpassing
a response threshold typically coincides with a (last) fixation to the chosen option, the model does
not predict that interrupting choice processes biases choices towards the last fixated option: When
interrupting the sampling process at an arbitrary time point, the relative evidence accumulated
until that time does not necessarily favor the currently (and thus last) fixated option. Consistently,
Ghaffari and Fiedler (2018) demonstrate experimentally that last fixations are associated more
strongly with choice when they occur as a by-product of (self-terminated) preference formation
than when experimentally manipulated.

121



Chapter 4

Evidence on gaze patterns causing preferences: Fixation durations

Does this mean that attention does not causally shape preferences? Notably, there is an interesting
twist to Newell and Le Pelley’s findings (2018). On trials where participants gazed at the non-
target option for considerably longer than at the target option, they chose the non-target option
in a clear majority of cases. Hence, even though the experiment speaks against a causal impact
of last fixations, it leaves open the possibility for (relative) fixation durations exerting causal
influence instead. This causality can neither be accepted nor rejected based on Newell and Le
Pelley’s experiment, since fixation durations were not explicitly manipulated. However, several
other studies have explicitly manipulated the relative duration of gaze towards the options, and
thus warrant stronger causal inferences (Armel et al., 2008; Bird et al., 2012; Nittono & Wada,
2009; Shimojo et al., 2003). These studies, too, find that relatively longer gaze towards an option—
even if externally manipulated—entails a greater probability of choosing it. It can be demonstrated
via simulation that this is consistent with the aDDM, which predicts that manipulating relative
fixation duration biases preferences towards the option that was fixated for a longer proportion of
time.

Taken together, both theoretical and empirical insights speak against a positive feedback
loop where fixations are a consequence of evolving preferences. Evidence suggesting that atten-
tion shapes preference points towards fixation durations rather than last fixations exerting causal
influence, consistent with the aDDM. The aDDM also sufficiently explains prominent empirical
phenomena, such as the gaze cascade and choice biases towards options that are looked at longer,
speaking towards the appropriateness of its (causal) processing assumptions.

4.6.4 An Attentional Explanation for Domain Differences in Risky
Choice

Our results provide a novel attentional explanation for a hallmark finding in risky choice, the
reflection effect. This effect describes a mirroring of preference patterns between the domains,
meaning that risk aversion in choices about gains is typically accompanied by risk seeking in
choices about losses (Kahneman & Tversky, 1979).

This effect also emerges in our experiment, especially in choices between simple safe and
risky options. Our results in younger adults suggest a novel attentional explanation for this effect.
Younger adults primarily attended to safe options, and attention amplified the impact of these
options’ values on choice. That is, the prioritized processing of safe options amounted to amplified
(positive) evidence in favor of the safe option in the domain of gains, and to amplified (negative)
evidence against the safe option in the domain of losses. That is, the same underlying attentional
mechanism—highly efficient processing of attended information paired with attentional biases to-
wards simple safe options—entailed opposite behavioral consequences in the two domains, namely
apparent risk aversion for gains and apparent risk seeking for losses. If these behavioral patterns
were viewed in isolation from the underlying construction process, they might be mistaken to re-
flect dispositional risk preferences. However, our results illustrate that these patterns may instead
emerge from the processing dynamics of aDDM, a computational model that does not assume an
underlying disposition towards risk.

To our knowledge, there is currently only one other published study investigating the
impact of the attentional mechanism described by the aDDM in choices about items with negative
values (and none in the domain of risky choice). Armel et al. (2008) also find that attentional
amplification has reversed consequences for appetitive and aversive options, using food items rather
than safe and risky prospects. This is consistent with our results, and with the notion that the
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same general attentional mechanism may apply in both the domain of gains and losses, but with
opposite behvioral consequences.

4.6.5 Implications for Stimulus Design

Attention during decision making is often influenced by irrelevant features that are unrelated to
the goals of decision makers, such as the salience, color, size or—as our experiment highlights—
complexity (Orquin et al., 2018). As a consequence, Orquin et al. (2018) argue that there is no such
thing as a neutral presentation format. Our analyses underline that surface features which induce
option-specific attentional biases can crucially shape choice. For instance, attention contributes
to younger adults’ preferences in choices involving safe options, where attentional biases emerge—
but not in choices between two risky options, where such biases are absent. Hence, although
we appreciate and agree with Orquin et al.’s (2018) general sentiment regarding the difficulty of
achieving truly neutral presentation formats, we think that it can be qualified. At least, there
are more or less neutral presentation formats, especially in choice tasks with several options:
Formats in which one option is visually particularly distinctive—such as safe options among risky
alternatives—may be more prone to attentional biases, compared to formats where the options
look superficially more alike—such as in choices between two risky options. Choosing a (rather)
neutral presentation format in experimental choice paradigms may hence help to prevent confounds
due to a differential impact of attention.

4.6.6 Attentional Biases and Rational Search Strategies

So far we have focused on the impact of attention on choice from a descriptive perspective. Next,
we turn to a closely related normative question: How should decision makers best allocate their
attention to make good choices?

Mere maximization

When decision makers are judged according to the standard of maximizing expected payoffs, this
question is simple to answer: Maximization behavior can be implemented in sequential sampling
models in terms of a sequential probability ratio test (SPRT, Bogacz et al., 2006). Notably, the
aDDM reduces to an SPRT in the absence of attentional biases (Krajbich et al., 2010). Conversely,
the introduction of attentional biases negatively affects maximization performance (except if atten-
tion is systematically biased towards the option with the higher EV). Hence, allocating attention
evenly across the options is advised to implement the optimal maximization policy of SPRT.

Mere maximization under differential efficiency gains

However, the aDDM only reduces to an SPRT in the absence of attentional biases, if attentional
gains in processing efficiency are identical for all options considered. Notably, our computational
modeling results indicate that attentional gains in processing efficiency can depend on stimulus
characteristics, namely complexity, which can differ between the options within a choice problem.
This finding is consistent with a model-based re-analysis of several previous data sets by (Thomas
et al., 2019): A model accounting for the impact of a gaze bias on choice was more clearly favored
over a model that did not account for gaze in simple perceptual choice than in more complex
value-based choice.5 (Newell & Le Pelley, 2018) also concluded that attention and choice seem to

5The authors qualify this finding by pointing out that these differences in model performance might be driven
by a higher number of trials in perceptual experiments.
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be linked more strongly for simple perceptual choices, especially if evidence is weak, compared to
more complex moral choices (but see Ghaffari & Fiedler, 2018).

How do normative implications change if attentional gains in processing efficiency differ
between options in a choice problem—for instance, if efficiency gains are greater for simpler options?
In this case, attending to a simple option will result in a greater information gain compared to
attending to a more complex option over the same time period. Hence, allocating attention evenly
across the options entails differences in how precisely the options’ values can be assessed, and can
also generate an advantage for the simpler option to be chosen which is not necessarily justified
by its objective value. Attentional biases towards the simpler option may further reinforce this
imbalance (since the decision maker obtains even more excess information regarding the simple
option), and attentional biases towards the more complex option may attenuate the imbalance.
That is, in order to implement a maximization policy similar to SPRT, decision makers may have
to compensate for the higher rate of information gain for simple options by attending longer to
more complex options.

The double-edged sword of attention

The above discussion highlights a seemingly paradoxical feature of attention: Enhanced processing
efficiency due to attention intuitively seems like a desirable feature for decision makers to have,
allowing them to gather precise information faster. However, in situations of binary choice, these
efficiency gains can jeopardize the goal to identify the best option. If attention happens to be
biased to an inferior option, the efficient processing can enhance the impact of this inferior option
so much that it is chosen, even though the other option is objectively preferable. Therefore,
attentional gains in processing efficiency may interfere with maximization. Yet, they may help
satisficers (Simon, 1955)—who aim to find a good enough option rather than the best option in
the choice set, and who may find even inferior options good enough—achieve their aspiration levels
faster. That is, depending on which standard for performance is applied, attentional biases may
be viewed as a rational or an irrational feature of search. This view converges with the notion
that attentional selection may not just be a response to a resource constraint, but an appropriate
solution to an inference problem, and can thus be normative (Dayan et al., 2000). In a similar
vein, selective integration of evidence—a processing strategy considered suboptimal by classical
definitions—can protect choices against late neural noise (which occurs after sensory processing
stages), and can thus lead to better decisions (Tsetsos et al., 2016). This intriguing tension has
been described as optimal irrationality (Tsetsos et al., 2016).

At the current point, we do not have a definite solution on how to exploit the interplay
between attentional biases and (different standards for) rational choice. However, it seems feasi-
ble to identify the boundary conditions under which attentional biases of a given magnitude and
direction may help decision makers achieve their goals (whether maximizing or satisficing) via sim-
ulation. This seems like a promising direction for future research, with the potential to counteract
the powerful intuition that biases in search or reasoning necessarily indicate irrationality.

4.6.7 Conclusion

Several years ago, Henrich et al. (2010a, 2010b) called into question the generalizability of large
chunks of psychological research by pointing out the WEIRDness of standard participant samples—
samples drawn predominantly from Western, Educated, Industrialized, Rich, and Democratic
(WEIRD) populations. Although it might not have made for such a nice acronym, it seems
like the authors were missing a letter—Y, for Younger. Not only do samples in top psychology
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journals consist of 96% subjects from Western industrialized countries, which house only 12% of
the world’s population (Arnett, 2008; Henrich et al., 2010a)—they are also typically made up of
almost entirely younger adults. Research on cognitive aging is segregated into dedicated outlets, as
if older adults were not members of the general population whose psychology—one might assume—
the discipline is striving to understand. It is not surprising that inferences about basic cognitive
processes, such as the role of attention in decision making, do not seamlessly generalize to older
adults. Basic cognitive and motivational processes do not only vary around the globe, but also
across the lifespan—and in the interest of understanding the human mind, not only a thin slice
thereof, this factor needs to be accounted for.

4.7 Author Contributions

Conceptualization: V.Z. & T.P.; Experimental Materials & Programming: V.Z.; Data Analysis
and Modeling: V.Z.; Writing—Original Draft: V.Z.; Writing—Reviewing & Editing: V.Z. & T.P.

4.8 Data and Code Availability

Data and code to implement all analyses is hosted at
https://osf.io/v6zmg/?view_only=0d5a5b348c694321a3da5e31e31121fb.
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Abstract

Probability weighting is a key construct allowing cumulative prospect theory (CPT) to
account for seminal phenomena of risky choice, such as the fourfold pattern. It describes the impact
of a risky outcome on a choice in terms of a nonlinear transformation of its objective probability.
Recently, the attentional drift diffusion model (aDDM) formalized how attentional biases can
shape preference construction in terms of a sequential sampling process. Here we demonstrate
that probability weighting in CPT can account for the effects of attentional biases in aDDM. We
simulated choices between safe and risky options using the aDDM while systematically varying
option-specific attentional biases. The resulting choices were modeled with CPT. Attentional
biases to safe and risky options had highly systematic signatures in the different characteristics of
CPT’s weighting function (curvature, elevation). We further establish that more linear (objective)
probability weighting in CPT is associated with longer response times predicted in the aDDM.
We also demonstrate empirically that attentional biases entail systematic patterns in probability
weighting. Our findings highlight that apparent distortions in probability weighting may be due to
simple option-specific biases in information search, for instance during the sequential sampling of
outcomes. These results challenge conventional psychological interpretations of CPT’s weighting
function. They also suggest novel attention-based explanations for empirical phenomena that are
associated with characteristic shapes of CPT’s probability-weighting function, such as the certainty
effect, the fourfold pattern, and the description-experience gap. More generally, we add to the
integration of two prominent computational frameworks for decision making under risk.



Chapter 5

5.1 Introduction

Psychological theory is often depicted as fragmented to a high degree, with some even going so far
as to claim psychology has no theory (Gigerenzer, 2010). Others have argued that the replication
crisis in psychology is rooted in the lack of overarching theoretical frameworks (Muthukrishna
& Henrich, 2019). Even within sub-fields, such as research on decision making under risk, key
constructs of existing models are typically specific to their theoretical framework. Each framework
operates within closely circumscribed conceptual bounds, making it difficult to identify connections
between different theories.

For instance, Cumulative Prospect Theory (CPT, Tversky & Kahneman, 1992), belongs
to the class of neo-Bernoullian models of decision making under risk, which revolve around the
economic concept of utility. CPT encodes choice patterns by assuming systematic distortions of
outcome and probability information, formalized in terms of psychoeconomic functions. Specifi-
cally, the valuation of outcomes is described in a value function, and the impact of the outcomes
on the desirability of options is captured in decision weights derived from a nonlinear probability-
weighting function. The particular shape of the probability-weighting function allows researchers
to assess whether probabilistic events receive too much or too little weight, compared to linear
weighting using objective probabilities. Thereby CPT accommodates intriguing phenomena of
risky choice, such as the certainty effect—the tendency to systematically overweight safe outcomes
compared to merely probable ones.

On the other hand, the attentional Drift Diffusion model (aDDM, Krajbich et al., 2010;
Krajbich & Rangel, 2011) belongs to the class of sequential sampling models, which rely on very dif-
ferent key constructs. Sequential sampling models stem from the literature on perceptual discrim-
ination but are now applied in other domains, including risky choice (cf. Busemeyer & Townsend,
1993; Diederich & Trueblood, 2018; Johnson & Busemeyer, 2005). They describe the decision-
making process as an accumulation of information over time until the evidence in favor of one
alternative exceeds a threshold, resulting in a choice. A recently developed variant, the aDDM,
formalizes how attention affects the evaluation and comparison of options: By assuming that
evidence in favor of an option accumulates at a faster rate while this option is in the focus of at-
tention the aDDM can, for instance, explain why people tend to choose the option that they look
at longer (Armel et al., 2008; Cavanagh et al., 2014; Fiedler & Glöckner, 2012; Glöckner et al.,
2012; Glöckner & Herbold, 2011; Konovalov & Krajbich, 2016; Krajbich et al., 2010; Krajbich
et al., 2012; Krajbich & Rangel, 2011; Shimojo et al., 2003; Stewart et al., 2016), even if their
attention is exogenously manipulated (Armel et al., 2008; Shimojo et al., 2003), and why people
seem to increasingly look at the option that they end up choosing during the process of preference
formation—a phenomenon known as the gaze cascade (Shimojo et al., 2003).

Hence, both CPT and aDDM provide powerful tools to sharpen the understanding of
empirical phenomena in their respective fields—by expressing these phenomena in terms of their
particular conceptual language. Yet, this sharp conceptual focus also creates blind spots. For
instance, both the certainty effect and the gaze cascade have driven major theoretical innovations
within one tradition, yet they seem to be nearly irrelevant to the other one. How does the certainty
effect emerge on a process level, and does attention contribute to this? Does the gaze cascade have a
distinctive signature in CPT’s probability-weighting function? Questions of this kind simply do not
arise, as an artifact of the separation between the two theoretical traditions: The predominant way
of reasoning in each tradition determines which empirical phenomena even get considered. Indeed,
the particular conceptual language in which theories are expressed can make it difficult to formulate
certain problems (cf. Broadbent, 1984). This echoes Marr’s (1982) sentiment that different ways
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of expressing the same information make some aspects of it more explicit while pushing others
to the background—and thereby crucially determine how the information can be further utilized
and understood. Therefore, many opportunities to exploit potentially complementary insights
from the world of neo-Bernoullian and sequential sampling models may have gone unnoticed.
Remarkably little is known about whether and how the neo-Bernoullian and the sequential sampling
frameworks—or individual models and constructs within them—map onto each other.

Here we showcase an approach for overcoming this divide. First, we consider how core
assumptions in CPT and aDDM came about historically. Although not much exchange took place
during their evolutions, both traditions faced similar challenges, which led to the introduction
of nonlinear probability-weighting functions and attentional weighting, respectively. Besides this
historical perspective, formal similarities suggest that probability-weighting functions in CPT may
be able to account for the effects of attentional biases in the aDDM. To test this, we conduct a
cross-theory parameter recovery, by simulating data in the aDDM and fitting it in CPT. Indeed, the
behavioral consequences of attentional biases in the aDDM—including both choices and response
times—have highly systematic signatures in the shape of CPT’s probability-weighting function.
That is, the two traditionally disconnected theoretical constructs—nonlinear probability weighting
in CPT and attentional biases in aDDM—can account for the same behavioral regularities.

After establishing this mapping theoretically by simulation and recovery, we show that it
also holds empirically. Specifically, in a re-analysis of data on decisions from experience, we find
that attentional biases towards safe or risky options during information search have highly system-
atic signatures in empirical probability-weighting functions, strikingly similar to those identified in
the parameter recovery. Hence, our integrative theoretical efforts open up a novel, process-based
perspective for understanding behavior in a paradigm that has long been scrutinized in terms of
apparent probability weighting patterns. Beyond decision from experience, our results also suggest
innovative explanations for several other seminal phenomena of risky choice, which have so far
mainly been discussed in terms of CPT: The probability weighting patterns characteristic of the
certainty effect, the fourfold pattern and the description-experience gap may be consequences of
systematic attentional biases. Moreover, our findings also have important conceptual implications:
Parameters of CPT’s weighting function are often interpreted psychologically, in terms of probabil-
ity sensitivity and optimism or pessimism (Gonzalez & Wu, 1999). Our results suggest a different
interpretation in terms of attentional biases.

Next we describe central assumptions in CPT and aDDM, and how they evolved. This
illustrates the key differences between the models, but also points towards the potential for con-
necting them.

5.1.1 Neo-Bernoullian Models of Risky Choice: The Origins of
Cumulative Prospect Theory

The tradition of (neo-)Bernoullian models of risky choice reaches back to the 18th century, when
Daniel Bernoulli replaced the notion of expected value maximization by the expected utility princi-
ple (1738/1954)1, which was later axiomatized by von Neumann and Morgenstern (1945). In what
became subsequently known as expected utility (EU) theory, Bernoulli posited that the desirabil-
ity of items should not be assessed based on their objective value, but the subjective utility each
individual would derive from them. Further assuming that the same increase in value would be
less significant for a more wealthy person, he proposed a concave utility function—a concept still
featured in several modern theories of decision making (Birnbaum, 2005; Fishburn, 1970; Lopes,

1The English translation of Bernoulli’s work originally written in Latin in 1738 was published in 1954.
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1987; Tversky & Kahneman, 1992). The most widely known modern variant is the value function
of prospect theory (PT, Kahneman & Tversky, 1979) and CPT (Tversky & Kahneman, 1992).
Here, in contrast to EU theory, the carriers of subjective utility are no longer absolute end states,
but changes in value compared to a reference point. CPT’s value function is concave for gains and
convex for losses, assuming that such changes in value are more difficult to discriminate the further
they are away from the reference point. Moreover, the value function is steeper for gains than for
losses, thus assuming loss aversion.

While many neo-Bernoullian theories maintain the notion of a curved utility function, they
revise EU in another important aspect—the weighting of probabilistic events. In EU, the utilities of
possible outcomes are weighted by their objective probabilities. This principle provides a normative
benchmark for maximizing expected utility, but it is often violated by human decision makers. For
instance, in choices between a risky prospect, offering the chance to win (or lose) some amount
x with probability p and nothing otherwise, and a safe prospect, offering to win (or lose) some
amount y with certainty, people exhibit the fourfold pattern of risk attitudes: They are risk averse
for high-probability gains and low-probability losses, but risk seeking for low-probability gains and
high-probability losses (Tversky & Fox, 1995; Tversky & Kahneman, 1992). In further violation of
EU, most people prefer a small safe gain over a more valuable risky gain, but when offered a choice
between two risky gains, they prefer the one with the higher EV. This phenomenon, known as the
certainty effect, suggests that people overweight safe outcomes relative to merely probable ones
(Allais, 1953; Kahneman & Tversky, 1979; Tversky & Kahneman, 1986). To account for these and
other violations of EU, PT (Kahneman & Tversky, 1979) and later CPT (Tversky & Kahneman,
1992) replaced objective probabilities as weights on the subjective utilities by decision weights.
Decision weights capture the impact of an event’s probability on its desirability, and are derived
from an inverse S-shaped probability-weighting function. This weighting function implies that
small probabilities are overweighted, whereas moderate to large probabilities are underweighted—
capturing the fourfold pattern. Moreover, differences in probability have less impact the further
they are away from the reference points of certainty and impossibility. For instance, the difference
in probability between .9 and 1 has a greater impact on the event’s desirability than the difference
between .4 and .5—although the increment is .1 in both cases—thus capturing the certainty effect.
An exemplary inverse S-shaped weighting function is illustrated in Figure 5.1.

The introduction of nonlinear probability-weighting functions marked a major paradigm
shift in the world of neo-Bernoullian modeling: Rigid constraints qualified EU to prescribe how
idealized economic agents could maximize expected utility. Then, CPT sacrificed adherence to
strict maximization for the sake of improved descriptive validity, by allowing for more flexible,
nonlinear weighting. Consequently, CPT has become one of the most widely applied and influential
descriptive models of risky choice.

Subsequently, the functional form of the nonlinear weighting function was continually
refined based on formal and empirical grounds (cf. Prelec, 1998; Stott, 2006; Tversky & Fox, 1995).
This resulted in a variety of weighting functions, governed by a curvature parameter γ, and in some
cases by an additional elevation parameter δ (cf. Figure 5.4, more details on differences between
specific weighting functions are provided below). These parameters are commonly used to measures
distinct psychological constructs. Tversky and Kahneman (1992) interpreted the curvature as an
indicator of probability sensitivity. Later, the elevation parameter of two-parameter weighting
functions became commonly understood as a measure of optimism or pessimism (Gonzalez &
Wu, 1999; Lattimore et al., 1992). We will identify possible alternative interpretations for these
parameters in terms of attentional processes.
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Figure 5.1: An exemplary inverse S-shaped weighting function like the one used by Tversky &
Kahneman (1992) when introducing CPT. The dashed identity line serves as a reference for the
objective weighting of probabilities, as assumed in EU.

5.1.2 Sequential Sampling Models: The Origins of Attentional Drift
Diffusion Models

Sequential sampling models account for both choice behavior and response times by formalizing
how decision makers gather and integrate information on the options over time. They originate
from theories of ideal performance, originally developed as solutions to optimization problems in
engineering (Wallis, 1980): Static signal detection models (SDT) captured how ideal observers
can maximize accuracy in simple perceptual tasks, such as judging whether a stochastic stimulus
contains only noise or some signal component (Swets, 1961; Tanner Jr. & Swets, 1954). Sequential
probability ratio tests (SPRT, cf. Ashby, 1983; Stone, 1960; Wald & Wolfowitz, 1948) extend the
notion of the optimal observer in SDT along the temporal dimension: Instead of evaluating the
signal strength or value of the stimulus in a single step, evidence is sampled repeatedly in a discrete
random walk. The Drift Diffusion Model (DDM, Ratcliff, 1978) is the continuous-time analogue
of discrete random walks (Bogacz et al., 2006; Ratcliff & Smith, 2004; Ratcliff & Tuerlinckx,
2002). Both SPRT and DDM can optimize response speed for a desired level of accuracy, with
higher accuracy coming at the cost of longer RTs (Bogacz et al., 2006). Therefore both SPRT and
DDM provide a mechanistic explanation for speed-accuracy trade-offs, a key behavioral regularity
in many domains, such as perception, memory and higher cognition (Reed, 1973; Wickelgren,
1977). Many areas of experimental psychology applied, extended and refined the class of sequential
sampling models for paradigms including perceptual judgments (Link & Heath, 1975; Ratcliff &
Rouder, 1998), recognition memory (Ratcliff, 1978), lexical decision tasks (Ratcliff et al., 2004),
categorization (Nosofsky & Palmeri, 1997), and—most relevant for our current purposes—risky
choice (Busemeyer & Townsend, 1993; Diederich & Trueblood, 2018; Johnson & Busemeyer, 2005).

However, since the optimal but comparably restrictive predictions of early sequential sam-
pling models were found incompatible with the complex empirical relationship between RT distri-
butions and choice behavior, the model parameters were rendered increasingly flexible (Laming,
1968; Ratcliff, 1978; Ratcliff & Smith, 2004; Ratcliff & Tuerlinckx, 2002). Among the most note-
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Figure 5.2: An exemplary simulated aDDM process. The relative evidence in favor of option A
versus option B accumulates over discrete steps of time. During each fixation, evidence in favor
of the currently fixated option is amplified, generating an advantage for the predominantly fixated
option. When evidence exceeds one of the choice criteria the corresponding option is chosen.

worthy recent extensions of the framework are variants of DDM that account for the impact of
visual attention on choice: In a wide variety of choice domains (Smith & Krajbich, 2018) people
tend to choose the option that they look at longer (Armel et al., 2008; Cavanagh et al., 2014;
Fiedler & Glöckner, 2012; Glöckner et al., 2012; Glöckner & Herbold, 2011; Konovalov & Kra-
jbich, 2016; Krajbich et al., 2010; Krajbich et al., 2012; Krajbich & Rangel, 2011; Shimojo et al.,
2003; Stewart et al., 2016), even if their attention is exogenously manipulated (Armel et al., 2008;
Ghaffari & Fiedler, 2018; Newell & Le Pelley, 2018; Shimojo et al., 2003), and over the time course
of preference formation, individuals seem to increasingly look at the item they end up choosing
(a phenomenon known as the gaze cascade, cf. Mullett & Stewart, 2016; Shimojo et al., 2003).
To accommodate these striking findings Krajbich et al. (2010) introduced a mechanism of option-
specific attentional weighting to the sequential sampling framework: In what is now commonly
referred to as the attentional Drift Diffusion Model (aDDM, cf. Krajbich et al., 2012; Krajbich
& Rangel, 2011),2 evidence for an option accumulates at a faster rate while that option is in the
focus of attention. An exemplary evidence accumulation trajectory as assumed by the aDDM is
illustrated in Figure 5.2. Under aDDM assumptions, the proportion of time spent attending to the
options in the choice set modulates their relative desirability. Thereby, the aDDM can account for
the previously delineated empirical findings: Options that receive more attention are more likely
to be chosen, and the model predominantly tends to choose the item that was looked at last (thus
creating the impression of a temporally evolving gaze cascade, cf. Mullett & Stewart, 2016).

Notably, this boost in descriptive accuracy sacrificed adherence to earlier notions of optimal
performance: While the simple (non-attentional) random walk serving as a baseline for the aDDM
can implement an optimal SPRT, that is, a pure maximization strategy, the aDDM allows for
systematic deviations from this normative benchmark (Krajbich & Rangel, 2011): Excess time
spent attending to an option can increase the probability of choosing the option, even if it is
objectively inferior. Hence, unless attention is systematically biased towards the highest valued,

2We subscribe to this terminology although referring to these types of models as aDDM invokes the notion of
continuous time, which is at odds with the original formalization of aDDM as a discrete random walk (Krajbich
et al., 2010; Krajbich et al., 2012; Krajbich & Rangel, 2011).
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objectively preferable option, systematic deviations from maximization behavior emerge. This also
holds empirically: Individuals who show a stronger association between gaze and choice behavior,3

perform worse at choosing the best item in the choice set (Thomas et al., 2019). Hence, although
the aDDM is not explicitly framed as a theory of choice biases or deviations from optimality,
it makes an important contribution regarding choice phenomena that are typically described in
such a way: It (implicitly) identifies option-specific attentional biases as a possible determinant of
systematic deviations from pure maximization.

5.1.3 The Potential for Theory Integration: Overlooked
Commonalities of the Two Modeling Traditions

The historical viewpoint illustrates that the neo-Bernoullian and sequential sampling frameworks
are largely disconnected, and to some extent also explains why this is the case: Both traditions
started out to address fundamentally different types of choice tasks, they encountered their own em-
pirical challenges, and established and refined their own conceptual language accordingly. It is not
immediately obvious why it might be interesting—or even possible—to translate these languages
into one another. A closer look, however, reveals several commonalities between both frameworks.

For instance, although the perceptual discrimination tasks of early SDT models are not
commonly described as risky choice, they required to distinguish and evaluate stochastic stimuli.
Conversely, for the economically rational agents of early utility models, risky choice tasks reduce to
the psychophysical problem of distinguishing noisy distributions, in order to identify the one with
the higher expected value—the standard problem solved by SDT models. Early verbal descriptions
of prospect theory as a model of the psychophysics of chance (cf. Kahneman & Tversky, 1984)
highlight this common essence of the problems addressed within both traditions.

Besides being applicable to similar choice problems, both traditions also faced similar
hurdles when trying to accommodate empirical behavior. Early notions of optimal performance
were sacrificed in favor of descriptive accuracy: CPT managed to account for systematic empirical
deviations from utility maximization, as prescribed by EU, by introducing nonlinear probability
weighting. The aDDM managed to account for preferences in favor of options that may be objec-
tively inferior, but receive more attention, by introducing attentional weighting. While decision
weights in CPT distort the representations of options themselves, the attentional weights in aDDM
distort the comparison between the options. In essence, however, both types of distortions generate
a systematic advantage for one of the options, which is not necessarily justified under a maximizing
policy. Thus CPT’s decision weights and aDDM’s attentional weights equip their respective frame-
work with analogue capacities—suggesting that both constructs may capture the same behavioral
regularities.

That is, it might be possible to bridge the conventional divide between CPT and aDDM
in a very fruitful manner: The behavioral consequences of overweighting options that receive more
attention in the aDDM might have systematic signatures in CPT’s probability-weighting function.
Conversely, cornerstone phenomena of risky choice that are typically described by characteristic
shapes of CPT’s probability-weighting function (e.g. the certainty effect, the fourfold pattern),
might be explicable by systematic attentional biases. That is, establishing a correspondence be-
tween disparate theoretical constructs might make it possible to obtain a more holistic understand-
ing of phenomena so far studied exclusively in within one (native) tradition. Regardless, this rich
possibility has thus far been overlooked.

3meaning that they implement the aDDM assumptions to a stronger degree

139



Chapter 5

5.1.4 Outline

In what follows, we investigate to which extent probability weighting in CPT can reflect the effects
of attentional weighting in aDDM. To carve out the shared essence of both constructs, we first
introduce aDDM and CPT formally and explain how both attentional biases and decision weights
can make risky or safe options appear more or less attractive than justified by their objective value,
and thereby modulate choice behavior. We then derive specific hypotheses how systematic changes
in the aDDM’s choice behavior due to attentional biases to safe or risky options might be reflected
in CPT’s probability-weighting function.

To develop and test our argument, we focus on choices between safe and risky options,
a paradigm often employed in behavioral experiments on risky choice, and sometimes thought to
measure risk preferences (e.g., Rutledge et al., 2016). We define a safe option as offering one
certain outcome osafe, and a risky option as consisting of a high outcome ohigh,risky and a low
outcome olow,risky < ohigh,risky with the probabilities phigh and plow = 1− phigh. Illustrating our
argument in this type of choice problem allows us to keep formal complexity to a minimum. We
later elaborate why and how our argument also extends to choices between two risky options, and
to the domain of losses.

5.1.5 The Impact of Attentional Biases on the Comparison between
Safe and Risky Options in aDDM

The aDDM is a sequential sampling model which assumes that evidence in favor of an option is
accumulated at a faster rate whenever this option is attended to (Krajbich et al., 2010; Krajbich
& Rangel, 2011). This model can formalize the process of preference formation in choices between
safe and risky options as follows.

Evidence in favor of the safe option DVsafe and evidence in favor of the risky option
DVrisky evolve over time. On each time-step t of the accumulation process, either the safe or the
risky option is in the focus of attention. The probability pts of attending to the safe option on
each step defines the attentional bias in the process. Both options are inspected equally often if
pts = 0.5. If pts < 0.5, there is an attentional bias to the risky option, and if pts > 0.5, there is an
attentional bias to the safe option. On time-steps t where the safe option is attended to DVsafe
and DVrisky evolve according to

DVsafe(t) = DVsafe(t− 1) + d ∗ θattended ∗ osafe + ε

DVrisky(t) = DVrisky(t− 1) + d ∗ θunattended ∗ oi,risky + ε
(5.1)

and on time-steps t where the risky option is attended to DVsafe and DVrisky evolve
according to

DVsafe(t) = DVsafe(t− 1) + d ∗ θunattended ∗ osafe + ε

DVrisky(t) = DVrisky(t− 1) + d ∗ θattended ∗ oi,risky + ε
(5.2)

On each step t, one outcome of the safe and the risky option (osafe and oi,risky) are
sampled as evidence, scaled by the constant d = 0.01, with added Gaussian noise ε ∼ N (0, σ2).
The i different outcomes oi,risky of the risky option are sampled proportionally to their probabilities
pi,risky.4 The parameters θattended and θunattended capture that evidence for each option evolves at

4Instead of sampling individual outcomes proportional to their objective probability, this process could also be
implemented by sampling the options’ EVs. This alternative implementation is described in chapter 4. Due to the
law of large numbers both implementations behave alike, except if the total number of samples preceding the choice
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a slower rate whenever the alternative option is attended to. The evidence DV for the currently
attended option on each step t evolves with θattended = 1. Evidence for the unattended option
evolves with θunattended < 1. Therefore, over time, evidence in favor of an option accumulates at
a faster rate if attention is biased towards this option—a mechanism of option-specific attentional
weighting.5

Once the difference DVsafe−DVrisky reaches the upper or the lower decision boundary—
indicating that the evidence in favor of one option exceeds the evidence in favor of the other option
by a sufficient magnitude—a choice is made. Attentional biases can shift this comparison in favor
of the option that is in the focus of attention for a larger proportion of time and thus increase the
probability of choosing this option.

5.1.6 The Impact of Decision Weights on the Comparison between
Safe and Risky Options in CPT

In CPT, each option’s objective outcomes are transformed into subjective values according to the
value function v

v(oi) =

{
oαi , if oi ≥ 0

-(| oi |α), if oi < 0
(5.3)

with α ∈ [0, 1], such that v is concave for gains and convex for losses. The overall valuation
V of an option is defined as the sum across all outcomes’ subjective values, weighted by cumulative
decision weights π (details below):

V =

n∑
i=1

πi × v(oi) (5.4)

To derive choice probabilities from the CPT-based valuation Vsafe and Vrisky of the safe
and the risky option the difference Vsafe − Vrisky is typically entered into a stochastic choice rule.
For instance, the logit choice rule (Stott, 2006) defines the probability that the safe option is chosen
over the risky option as

p(safe, risky) =
1

1 + e−ρ[Vsafe−Vrisky]
(5.5)

with ρ > 0. The response noise parameter ρ captures to which extent choices are deter-
mined by the difference between the options’ valuations. Under ρ = 0 the choice probability is 0.5.
With higher values of ρ the probability of choosing the option with the higher valuation increases.

Here we focus on how probability weighting can affect the relative attractiveness of safe
and risky options. The decision weights π of all outcomes within a pure-domain risky gamble add
up to 1. Hence probability weighting can be interpreted as re-distributing the total probability
mass of 1 across the outcomes. The decision weight π for each positive outcome oi is defined
as the difference between the probability of obtaining an outcome at least as good as oi and the

is extremely low. Here we describe the variant that samples individual outcomes, since it more closely resembles
the process of preference formation in the sampling paradigm in decision from experience (Hertwig & Erev, 2009;
Wulff et al., 2018), which we turn to later.

5In the most extreme case θunattended is set to zero, such that on steps where the safe option is inspected evidence
DVsafe evolves with θ = 1, and evidence DVrisky does not change at all. Krajbich and Rangel (2011) assume that
θunattended can vary in [0,1]. Also note that under θunattended = 1 the aDDM reduces to a standard DDM6,
where attentional biases do not distort the comparison between the options. In this case the model can implement
an optimal SPRT, where decision quality (maximization performance) is only impaired by non-systematic noise.
That is, for θunattended = 1 the model predicts no systematic deviations from EV maximization. The impact of
θunattended is addressed in Appendix D.1 in more depth.
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probability of obtaining a strictly better outcome, both transformed by the probability-weighting
function w.7 Hence, for a two-outcome risky gamble in the domain of gains, the decision weights
of the higher and lower outcome are given by

πhigh = w(phigh)

πlow = w(plow + phigh)− w(phigh)

= 1− πhigh

(5.6)

and the total valuation Vrisky of such a risky option is

Vrisky = πlow ∗ v(olow,risky) + πhigh ∗ v(ohigh,risky)

= πhigh︸ ︷︷ ︸
decision
weight

∗ [v(ohigh,risky)− v(olow,risky)]︸ ︷︷ ︸
potential increase

in utility

+ v(olow,risky)︸ ︷︷ ︸
minimum
utility

(5.7)

Thus Vrisky depends on the decision weight of the higher outcome πhigh. Under linear
probability weighting, πhigh equals the objective probability phigh, such that weighting in CPT
reduces to EU assumptions. Under nonlinear probability weighting, πhigh can be smaller (larger)
than phigh. In particular, given a weighting function that predominantly runs below (above)
the identity line, the chance to obtain the higher outcome is assigned less (more) weight than it
objectively deserves. That is, if a weighting function predominantly underweights (overweights)
probabilities, it systematically makes risky options appear less (more) attractive than objective
weighting. This is illustrated in Figure 5.3.

By contrast, the valuation of the safe option is not affected by nonlinear probability weight-
ing, because the decision weights of safe outcomes always equal 1:

Vsafe = πpsafe ∗ v(osafe)

= 1 ∗ v(osafe)
(5.8)

Hence, in choices between a safe and a risky option, nonlinear weighting functions can
selectively modulate the valuation of the risky option while leaving the valuation of the safe option
unaffected. Therefore, they can shift the comparison between safe and risky options (Vsafe−Vrisky)
in favor of or against the risky option, and thereby in- or decrease the probability of choosing the
risky option. Note that by contrast, the value function v always affects the valuation of both
options (except if osafe = 0), and hence can not modulate the relative attractiveness of safe and
risk options as selectively as the weighting function. Thus, when developing our hypotheses about
corresponding constructs in aDDM and CPT, we mainly focus on probability weighting.

5.2 Simulation Analyses: Do Attentional Biases in aDDM

Affect Probability Weighting in CPT?

5.2.1 Predictions

We propose that nonlinear probability-weighting functions in CPT may be able to accommodate
the behavioral consequences of option-specific attentional biases in the aDDM. For instance, given

7Applying the probability-weighting function to cumulative probabilities in this manner avoids violations of
stochastic dominance which are implicit in non-cumulative weights, as used in the original version of Prospect
Theory (Kahneman & Tversky, 1979; Lattimore et al., 1992). In original PT this issue was resolved by removing
dominated options from the choice set during the editing phase.
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Figure 5.3: How non-linear probability weighting affects the valuation of risky options, for risky
options with different exemplary values of phigh. A) The black diagonal illustrates linear weight-
ing, where the decision weight πhigh equals the objective probability. The green weighting function
predominantly runs above the diagonal, and thus predominantly overweights probabilities. Hence
most πhigh are larger than the corresponding objective probabilities. The red weighting function
predominantly runs below the diagonal, and thus predominantly underweights probabilities. Hence
most πhigh are smaller than the corresponding objective probabilities. B) How does probability
weighting affect the valuation Vrisky of risky options (in the exemplary case with ohigh = 20 and
olow = 10)? Under linear weighting (black diagonal) Vrisky equals the objective valuation under
EU. Under the green weighting function, which predominantly overweights probabilities, Vrisky is
typically larger than the objective valuation. Under the red weighting function, which predom-
inantly underweights probabilities, Vrisky is typically smaller than the objective valuation. By
contrast, the valuation of safe options with psafe = 1 remains the same under all three weight-
ing functions. Hence non-linear probability weighting can selectively amplify or attenuate the
attractiveness of risky compared to safe options

an attentional bias to the risky option, the aDDM accumulates evidence in favor of the safe option
at a slower rate, thus increasing the probability of choosing the risky option. Weighting functions
in CPT may be able to accommodate this pattern by assuming a shape that makes the risky option
appear more attractive, thus shifting the comparison in its favor and increasing the probability of
choosing it. This can be achieved if probabilities are predominantly overweighted, relative to linear
weighting. Conversely, weighting functions may be able to reflect attentional biases towards the
safe option by assuming parameter settings that make risky options appear unattractive. This can
be achieved if probabilities are predominantly underweighted. Hence, attentional biases in aDDM
may have systematic signatures in probability weighting in CPT. Generally speaking, weighting
functions in CPT should be able to reflect option-specific attentional biases in the aDDM to the
extent that they are capable of modulating the relative attractiveness of the risky and safe options.

Differential Effects for Different Types of Weighting Functions

We test this argument using four different weighting functions—including highly flexible two-
parameter weighting functions and less flexible one-parameter weighting functions. These weighting
functions differ in their capacities for modulating the relative attractiveness of safe and risky
options. Consequently, if our argument holds, some—but not all—weighting functions should be
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Figure 5.4: Weighting functions by Goldstein & Einhorn (1987), Prelec (1998) and Tversky &
Kahneman (1992) for a range of parameter settings.

able to reflect option-specific attentional biases. We derive whether and how (i.e., based on which
parameter settings) each of the four weighting functions can be expected to reflect option-specific
attentional biases. These predictions are summarized in Table 5.1.8

Two-parameter weighting functions The weighting functions by Goldstein and Einhorn
(1987)

wGE87(p) =
δ ∗ (pγ)

δ ∗ pγ + (1− p)γ
(5.9)

and the weighting function by Prelec (1998)

wPR98(p) = e−δ(−log(p))
γ

(5.10)

are shaped by two parameters γ ∈ [0, 2] and δ ≥ 0 (cf. left and middle panel of Figure
5.4). The parameter δ governs the elevation of the weighting functions and is the key parameter
distorting the relative attractiveness of risky options. A more (less) elevated weighting function
mostly runs above (below) the identity line, such that most probabilities are overweighted (un-
derweighted). Hence a higher (lower) elevation tends to make risky (safe) options appear more
attractive. Therefore we expect two-parametric weighting functions to reflect greater attentional
biases to risky over safe options in terms of a higher elevation, and vice versa. Note in Figure 5.4,
that in Prelec’s weighting function, lower values of δ entail a higher elevation, while in Goldstein
and Einhorn’s weighting function, higher values of of δ entail a higher elevation. Thus, while in
both cases risky options appear more attractive when the weighting function is more elevated, this
feature is mapped on the parameter space differently. Hence, if greater attentional biases to risky
options indeed entail a more elevated weighting function, this should be reflected in higher values
on δ in Goldstein and Einhorn’s (1987) weighting function, but in lower values on δ in Prelec’s
(1998) weighting function. Psychologically, a higher or lower elevation is commonly interpreted in
terms of optimism or pessimism, respectively (Abdellaoui et al., 2010; Gonzalez & Wu, 1999).

The parameter γ determines the curvature of both weighting functions. In Prelec’s (1998)
weighting function, lower values of γ make risky options appear less attractive. Hence, more
attention paid to the safe option is expected to be reflected in decreasing values of γ. In Goldstein
and Einhorn’s (1987) weighting function, the effects of γ depend on the elevation δ. If δ < 1 then
lower values of γ make safe options even more attractive. If δ > 1 then lower values of γ make risky

8In the main text we briefly summarize the key predictions for each weighting function. These predictions are
informed by an in-depth discussion of how each weighting function distorts the valuation of risky options under
different parameter combinations, provided in Appendix D.4.
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Table 5.1: How Different Weighting Functions Are Expected to Reflect Option-Specific Attentional
Biases Implemented in the aDDM for Choices Between Safe and Risky Options.

Predicted Response to Increasing the Predicted Response to Increasing the
Weighting Function Attentional Bias To The Safe Option Attentional Bias To The Risky Option
Goldstein and Einhorn (1987) Decrease in δ (δ < 1) Increase in δ (δ > 1)

Decrease in γ (γ < 1) Decrease in γ (γ < 1)
Prelec (1998)

- two parameters Increase in δ (δ > 1) Decrease in δ (δ < 1)
Decrease in γ (γ < 1) Increase in γ (γ > 1)

- one parameter (with δ = 1) Less sensitive to extreme attentional biases than two-parameter variant
Moderate bias: Decrease in γ (γ < 1) Moderate bias: Increase in γ (γ > 1)

Tversky and Kahneman (1992) Stronger deviation of γ from 1 (in ei-
ther direction)

Not sensitive to bias to risky option

options even more attractive. Therefore, more extreme attentional biases—in either direction—are
expected to be reflected in decreasing values of γ, relative to the neutral value of γ = 1. Note that
more linear (less curved) weighting functions are commonly thought to reflect greater probability
sensitivity (Gonzalez & Wu, 1999). Table 5.1 summarizes these predictions.

One-parameter weighting functions Prelec’s weighting function is sometimes reduced to a
one-parameter form by fixing the elevation δ at 1

wPR981par(p) = e−(−log(p))γ (5.11)

and Tversky and Kahneman (1992) also used a one-parametric weighting function in their
seminal paper introducing CPT:

wTK92(p) =
pγ

(pγ + [1− pγ ])1/γ
(5.12)

Both one-parameter weighting functions are shaped by a curvature parameter γ ∈ [0, 2]

(cf. middle and right panel of Figure 5.4). For both functions, γ can be set such that the function
mostly runs below the identity line, such that risky options tend to appear less attractive than
under linear probability weighting. In Prelec’s (1998) weighting function, lower values of γ tend to
make risky options appear less attractive. Hence, we expect attentional biases to the safe option
to be reflected in decreasing values of γ. In Kahneman and Tversky’s (1992) weighting function,
values of γ that deviate from 1 more (in either direction) make risky options appear less attractive,
compared to linear weighting. Hence, attentional biases to the safe option are expected to be
reflected in values of γ 6= 1.

Moreover, the one-parameter weighting function by Prelec (1998), but not the one by
Tversky and Kahneman (1992), can assume shapes that run mostly above the identity line, such
that risky options tend to appear more attractive than under linear weighting. Hence, we expect
that the one-parametric weighting function by Prelec (1998), but not the one by Tversky and
Kahneman (1992), is also able to accommodate attentional biases towards the risky option over
the safe option, in terms of its curvature. Overall, the one-parameter weighting functions tend
to under- or overweight probabilities less strongly than the two-parameter weighting functions
with δ 6= 1. Hence, the one-parametric weighting functions may be less capable of reflecting very
pronounced attentional biases. These predictions are summarised in Table 5.1.
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5.2.2 Simulations

To test the proposed correspondence between attentional biases and probability weighting, we
simulated choices and RTs for 150 decision problems offering a safe and a risky option, using the
aDDM. The proportion of time that the synthetic participants spent attending to the safe and the
risky option was systematically varied. To test whether the different weighting functions pick up
on these option-specific attentional biases as predicted, hierarchical Bayesian CPT was fitted to
the simulated choices for each level of attentional bias in the generative process.

Choice problems

150 pairs of safe and a risky options were generated using the following procedure: Both risky
outcomes oi,risky were sampled from a uniform distribution ranging from 0 to 10, and rounded
to 2 digits. The probability phigh of the higher outcome of the risky option was sampled from
a uniform distribution ranging from 0 to 1, and the probability of the lower risky outcome was
defined as plow = 1− phigh. All safe options consisted of one outcome osafe with a probability of
1. The outcome osafe for each safe option was sampled from a uniform distribution ranging from
the smaller to the larger risky outcome on the same choice problem, and rounded to 2 digits. This
serves to prevent dominated pairs of gambles (i.e., where all outcomes of one option are larger than
all outcomes of the other option). The absolute EV differences between the options within each
trial ranged from 0 to 5.69.

Data generation

The aDDM was used as a generative model. The probability pts of attending to the safe option
(i.e., sampling from its payoff distribution) on each step was systematically varied from .1 to .9
in increments of .1. To increase the resolution of our analysis for moderate attentional biases, we
added two additional levels for pts in the mid-range (at .45 and .55), resulting in a total of 11
levels of attentional bias. The parameter θunattended was set to 0.5, such that evidence for each
option accumulated at half the speed when it was unattended (versus attended). This constitutes
a moderate level of attentional amplification. The noise parameter σ was set to 0.075, a moderate
level of noise. In Appendix D.1 we show that varying θunattended and σ does not change the general
direction of attentional effects on choice—they merely become more or less pronounced. For each
level of pts choices of 25 synthetic participants on all 150 pairs of gambles were simulated, resulting
in 11 data sets with 25× 150 = 3750 choices each.

Resulting Behavior

We first describe the simulated behavioral consequences of attentional biases in the aDDM, in
terms of behavioral risk preferences (the tendency to choose the safe option), decision quality (the
tendency to choose the option with the higher EV), and response times (RTs, measured as the
number of steps in the diffusion process until the boundary is hit). All three features are analysed
with Bayesian Mixed Regression models implemented using the rstanarm package in R (Goodrich
et al., 2018). All GLMERs include fixed effects for the attentional bias in the generative process,
and random intercepts for each synthetic subject. We evaluate the credibility of the fixed effects
by inspecting whether the 95% posterior intervals on the regression coefficients enclose zero.

Proportion of safe choices The proportion of safe (risky) choices increased with the attentional
bias towards the safe (risky) option (cf. left panel of Figure 5.5). The statistical credibility of this
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Figure 5.5: Risk preference, decision quality, and response times observed in the choice patterns
generated in the aDDM, conditional on the relative attention to the safe option (attentional bias).

effect was corroborated in a Bayesian logistic mixed regression on the choice of the safe option as
the outcome variable. The model included the relative attention to the safe option pts as a fixed
predictor. There was a strong credible effect of attention to the safe option on the tendency to
choose that option (β = 5.55, 95% CI [5.43, 5.67]).

Proportion of higher EV option choices Decision quality, or maximization performance,
decreased with increasingly extreme attentional biases, regardless of which option received more
attention (cf. middle panel of Figure 5.5). The statistical credibility of this effect was corroborated
in a Bayesian logistic mixed regression of decision quality as the outcome variable. The model
included the absolute magnitude of the attentional bias (calculated as the absolute deviation of
pts from .5) as a fixed predictor. There was a credible negative effect of the magnitude of the
attentional bias on decision quality (β = −2.26, 95% CI [−2.42,−2.11]). That is, as pointed out
earlier, introducing attentional biases impairs maximization performance, because the probability
of choosing the option that receives more attention increases, irrespective whether this option is
objectively preferable.

Response times The RTs decreased with increasingly extreme attentional biases, regardless
which option received more attention (cf. right panel of Figure 5.5). The statistical credibility
of this effect was corroborated in a Bayesian mixed regression of RT as the dependent variable.
The model included the absolute magnitude of the attentional bias (calculated as the absolute
deviation of pts from .5) as a fixed effect. There was a credible negative effect of the magnitude of
the attentional bias on RT (β = −108.32, 95% CI [−114.24,−102.13]): Stronger attentional biases,
regardless towards which option, led to faster choices.

5.2.3 Modeling in CPT

Each of the 11 data sets was fitted separately in four hierarchical Bayesian implementations of CPT.
We considered four different versions of CPT, that differed in terms of the weighting function, using
either the function by Goldstein and Einhorn (1987), Prelec (1998, both variants) or Tversky and
Kahneman (1992). For all models, we estimated the parameters of CPT’s value and weighting
function and the parameter of a logit choice rule complementing the model. In the hierarchical
models, each synthetic participant had a separate value on each parameter, and these individual-
level parameters informed a group-level distribution. We use the group-level posterior estimates
for the weighting function parameters γ and, if applicable, δ, to make inferences about the effects
of attentional biases.
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How CPT’s Weighting Function Reflects Option-Specific Attentional Biases

Goldstein and Einhorn (1987) weighting function How does the weighting function by
Goldstein and Einhorn (1987) reflect the different levels of attentional bias in data generated by
the aDDM? The top panel in Figure 5.6 shows the means of the posterior distribution of δ and γ, for
each level of attentional bias in the generative process, as well as the resulting weighting functions.
As can be seen, the attentional bias in the generative process systematically affected the shape of
the weighting function. The weighting function becomes less elevated with an increasing proportion
of time spent attending to the safe option, relative to the risky option. This is reflected in lower
values on δ. Attentional biases towards the risky option are reflected in δ > 1 and attentional
biases towards the safe option are reflected in δ < 1. Conventionally, a higher elevation would
be psychologically interpreted as greater optimism (or reduced pessimism, Abdellaoui et al., 2010;
Gonzalez & Wu, 1999).

Moreover, increasingly extreme attentional biases (whether in favor of the safe or the risky
option) are reflected in a more extreme curvature, that is, lower values of γ. Conventionally, a
more extreme curvature would be psychologically interpreted as reduced probability sensitivity
(Gonzalez & Wu, 1999; Tversky & Kahneman, 1992).

Unbiased attention is reflected by a neutral elevation (i.e., δ of approximately 1) and a
neutral curvature (i.e., γ of approximately 1)—that is, linear probability weighting.

Prelec (1998) weighting function The attentional bias in the generative process also system-
atically affects the two-parameter variant of Prelec’s (1998) weighting function. The bottom panel
in Figure 5.6 shows the posterior mean parameter estimates for each level of attentional bias in
the generative process, as well as the resulting weighting functions. The weighting function is less
elevated when an increasing proportion of time is spent attending to the safe option, relative to
the risky option. A less elevated weighting function would conventionally be interpreted in terms
of greater pessimism (Gonzalez & Wu, 1999).

Moreover, an increasing proportion of time spent attending to the safe option is reflected
in lower values of the curvature γ. Therefore, the weighting function is more convex (or inverse S-
shaped) under stronger attentional biases towards the safe option, and more concave (or S-shaped)
under stronger attentional biases towards the risky option. These more extreme curvatures under
more extreme attentional biases would conventionally be interpreted in terms of reduced probability
sensitivity (Gonzalez & Wu, 1999; Tversky & Kahneman, 1992).

Unbiased attention is reflected by a neutral elevation (i.e., δ of approximately 1) and a
neutral curvature (i.e., γ of approximately 1)—that is, linear probability weighting.

Note that the two-parameter weighting functions by Prelec (1998) and by Goldstein and
Einhorn (1987) assume very similar shapes to accommodate the same attentional biases. However,
to achieve these similar shapes (more or less elevated and more or less extremely curved), the
two weighting functions need to assume different parameter settings. This is due to the different
functional definition of both weighting functions.

Moreover, we expected that the one-parameter variant of Prelec’s weighting function would
reflect moderate attentional biases in terms of its curvature, but that it would be limited in
accounting for extreme attentional biases. The posterior parameter estimates show that this is
indeed the case (cf. upper panel in Figure 5.7). The one-parameter form reflects moderate biases
to the risky option in terms of higher values on the curvature parameter γ. However, as γ reaches its
upper bound, more extreme biases towards the risky option cannot be distinguished anymore. As
expected, fixing the elevation parameter, and thereby limiting this weighting function’s flexibility
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Figure 5.6: Parameter estimates and weighting functions for the two-parameter weighting functions
by Goldstein & Einhorn (1987, top panel) and Prelec (1998, bottom panel), fitted to data generated
in the attentional Drift Diffusion Model, with varying levels of attentional bias to the safe option.
The color gradient represents the proportion of time spent attending to the safe option relative
to the risky option in the generative process. Darker colors represent a greater attentional bias
to the safe option. As can be seen, a greater attentional bias to the safe option (darker colors)
is reflected in a less elevated and more extremely curved weighting function, indicating a greater
underweighting of probabilities. Conventionally such weighting functions would be interpreted as
reflecting pessimism. A greater attentional bias to the risky option (brighter colors) is reflected in a
more elevated and more extremely curved weighting function, indicating a greater overweighting of
probabilities. Conventionally such weighting functions would be interpreted as reflecting optimism.
To achieve the similar shapes (more or less elevated and more or less extremely curved, right panel),
which allow to accommodate particular attentional biases, the two weighting functions need to
assume different parameter settings (left panel). This is due to the different functional definition
of both weighting functions.

to distort the valuation of risky options, also limits its ability to reflect option-specific attentional
biases.

Tversky and Kahneman (1992) weighting function Finally, we expected the weighting
function used by Tversky and Kahneman (1992) to be sensitive to attentional biases to the safe
over the risky option, but insensitive to attentional biases to the risky over the safe option. Indeed,
the parameter estimates (cf. bottom panel in Figure 5.7) show that the curvature γ invariably
approaches 1 for any generative process that is biased towards the risky option: As predicted,
this weighting function is insensitive to attentional biases to the risky option, because it lacks
the flexibility to make risky options appear more attractive. By contrast, moderate attentional
biases towards the safe option over the risky option are accommodated in terms of increasing
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Figure 5.7: Parameter estimates and weighting functions for the one-parameter variant of the
weighting function by Prelec (1998, top panel) and the one-parameter weighting function by Tver-
sky & Kahneman (1992), fitted to data generated in the attentional Drift Diffusion Model, with
varying levels of attentional bias to the safe option. The color gradient represents the proportion
of time spent attending to the safe option relative to the risky option in the generative process.
Darker colors represent a greater attentional bias to the safe option. As can be seen, a greater
attentional bias to the safe option (darker colors) is reflected in a more extremely curved weighting
functions. Conventionally, such weighting functions would be interpreted as reflecting low proba-
bility sensitivity. A greater attentional bias to the risky option (brighter colors) is reflected a more
extreme curvature in the weighting function by Prelec (1998), but can not be accommodated in the
weighting function by Kahneman & Tversky (1992), due to its limited flexibility for overweighting
probabilities.

values of the curvature parameter γ. However, γ quickly approaches its upper bound, and for
extreme attentional biases towards the safe option, the posterior intervals on the estimates become
extremely wide. This indicates that it is difficult to identify a unique, suitable value of γ to
accommodate strong attentional biases towards the safe option. This may be due to the fact that
safe options appear more attractive under Tversky and Kahneman’s weighting function as soon as
γ deviates from 1—regardless in which direction. Hence biases to the safe option could in principle
be accommodated either by values of γ < 1 and γ > 1, making the estimation problem difficult to
solve. Overall, this inflexible one-parameter weighting function can only reflect moderate biases
towards the safe option and is entirely insensitive to attentional biases to the risky option.

How CPT’s Weighting Function Reflects Response Times

So far we have focused on how CPT’s weighting function reflects the choice patterns generated in
the aDDM. However, the aDDM does not only generate choices but also RTs. As shown previously,
biased diffusion processes result in faster RTs compared to unbiased ones (but at the cost of lower
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Figure 5.8: Association between RTs generated in the aDDM and parameter estimates for the
probability-weighting function by Goldstein & Einhorn (1987, upper panel) and the two-parameter
probability-weighting function by Prelec (1998, lower panel). The color gradient represents the
proportion of time spent attending to the safe option relative to the risky option in the generative
process. Darker colors represent a stronger attentional bias to the safe option.

decision quality and risk neutrality). Since the choice patterns that produce systematic signatures
in the weighting function parameters also map directly onto these RT patterns, there should
also be a systematic link between the parameters of CPT’s weighting function and RTs. Figure
5.8 and 5.9 display the mean RTs for each level of attentional bias against the posterior mean
parameter estimates for each of the four weighting functions. In the two-parameter weighting
function by Goldstein and Einhorn (1987, upper panel of Figure 5.8) the highest RTs are linked to
parameter estimates for both γ and δ approximating 1—both characteristics of a neutral, linear
weighting function. Lower RTs are associated with lower values on γ and more extreme values
on δ—both indicating a stronger distortion of probabilities. A similar pattern emerges for the
two-parameter weighting function by Prelec (1998, bottom panel of Figure 5.8): The highest RTs
are associated with a linear weighting function, with γ and δ approximating 1. Lower RTs are
associated with deviations from neutral weighting on both parameters. That is, in both two-
parameter weighting functions, linear probability weighting—and thus maximizing behavior—is
associated with most time invested in the process of preference formation, and increasingly extreme
distortions in probability weighting are associated with faster RTs.

The same pattern holds for the one-parameter variant of the weighting function by Pr-
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Figure 5.9: Association between response times (RTs) generated in the aDDM and parameter
estimates for the one-parameter variant of the probability-weighting function by Prelec (1998, left
panel) and the probability-weighting function by Tversky and Kahneman (1992, right panel). The
color gradient represents the proportion of time spent attending to the safe option relative to the
risky option in the generative process. Darker colors represent a stronger attentional bias to the
safe option.

elec (1998, left panel of Figure 5.9), regarding the curvature parameter γ: The slowest RTs are
associated with values of γ close to 1, that is, linear weighting, and faster RTs are associated
with increasingly extreme probability distortions. However, at the upper bound of the parameter
range, γ does no longer differentiate between the decreasing RTs—mirroring the incapacity of the
one-parameter variant of this weighting function to differentiate between extreme biases towards
the risky option on the choice level. Finally, in the weighting function by Tversky and Kahneman
(1992), the association between RTs and γ largely breaks down (right panel of Figure 5.9), also
mirroring this weighting functions’ limited capacity to reflect attentional biases on the choice level.

Taken together, the behavioral consequences of attentional biases in the aDDM—including
both choice behavior and response times—have systematic signatures in CPT’s weighting function.
Across all weighting functions, more linear (objective) probability weighting—and thus maximizing
behavior—was associated with the slowest RTs, resulting from unbiased or barely biased diffusion
processes. Faster RTs, resulting from biased diffusion processes that deviate from maximization,
are associated with pronounced distortions in probability weighting. That is, although CPT alone
makes no predictions about RTs, the connection to aDDM reveals that CPT’s probability weighting
function can reflect speed-accuracy trade-offs.

Did Other Parameters Reflect Attentional Biases?

So far we have focused exclusively on CPT’s probability-weighting function, since we had theo-
retically motivated predictions about its capacity to account for attentional biases. However, the
fitted CPT models also included a value function with a free parameter for outcome sensitivity,
complemented by a logit choice rule with a free parameter for response noise (also referred to as
choice sensitivity). We next examine whether attention also systematically affected the estimates
for outcome sensitivity and response noise, although we had no directed hypotheses about these
parameters. The results are displayed in Figure 5.10.
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Figure 5.10: Impact of pts on the other CPT parameters when using the weighting function by
Goldstein and Einhorn (1987, top row, left panel), the two-parametric variant of the weighting
function by Prelec (1998, top row, right panel), the one-parametric variant of the weighting function
by Prelec (1998, bottom row, left panel) or the one-parametric weighting function by Tversky and
Kahneman (1992, bottom row, right panel).

Value function

In CPT with the two-parametric weighting functions by Goldstein and Einhorn (1987) and Prelec
(1998), increasing attentional biases were linked to an increase in outcome sensitivity (see top row in
Figure 5.10). In CPT with Prelec’s (1998) one-parametric weighting function, the direction of this
effect was reversed, and in CPT with Tversky & Kahneman’s (1992) weighting function, outcome
sensitivity was mostly high, except for one sudden, unsystematic drop at mid-range attentional
biases (see bottom row in Figure 5.10). That is, viewed across all four implementations of CPT,
the attentional biases had considerably less systematic effects on outcome sensitivity than on
probability weighting.

Why is this the case? Probabilities in risky choice problems are bounded between 0 and
1 and need to add up to unity within each option. Hence, in a choice between a safe option and
a two-outcome risky option, a single probability of the risky option is sufficient to fully describe
all probabilities. Consequently, how specific shapes of the weighting function distort the attrac-
tiveness of risky and safe options can be relatively easily predicted (cf. Appendix D.4). This clear
and general association underlies the highly systematic effects of attentional biases on probability
weighting. By contrast, safe and risky outcomes are not in principle bound to a particular range,
and the magnitude of one outcome does not imply the magnitude of other outcomes. The outcomes
of safe options are not in principle fixed, in contrast to their probabilities. Consequently, the as-
sociation between the (barely constrained) possible outcomes constituting safe and risky options,
the shape of the value function, and the relative attractiveness of the options, cannot be predicted
in the same general, systematic manner as the respective association for the probabilities. This
explains why attentional biases had considerably less systematic effects on the outcome sensitivity
parameter than on the probability weighting parameters. However, it may be possible to carefully
construct a set of choice problems where the outcomes are configured in such a way that attentional
biases are also reflected more systematically in the outcome sensitivity parameter.
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Choice rule

Did attentional biases systematically affect the response noise parameter of the choice rule? In
CPT with the two-parametric weighting functions by Goldstein and Einhorn (1987) and Prelec
(1998), the response noise parameter was not systematically affected by attentional bias (see top
row in Figure 5.10). In CPT with Prelec’s less flexible one-parametric weighting function, response
noise increases (indicated by a decreasing ρ parameter) with more extreme attentional biases: The
behavioral consequences of stronger attentional biases, which could not be accounted for sufficiently
by the inflexible probability-weighting function, are attributed to noise. A similar effect is observed
in CPT with Tversky and Kahneman’s weighting function, where especially attentional biases to
the risky option (which cannot be accounted for by this inflexible weighting function) are associated
with higher response noise (see bottom row in Figure 5.10).

5.2.4 Extension to Choices Between Risky Options and to the Loss
Domain

Choices between two risky options

We have developed and illustrated our argument in choices between safe and risky options. Does
the mapping between attentional biases in aDDM and weighting functions in CPT extend to
choices between two risky options? Indeed, it does—as long as the risky options differ in their
probabilities. In choices between two risky options, the attentional bias in the aDDM is no longer
defined as the relative attention to the safe option, but as the relative attention to the option with
the larger probability phigh of the highest outcome. A stronger attentional bias towards this option
is reflected in a less elevated and a more strongly S-shaped weighting function—because under such
a weighting function higher probabilities will be overweighted more (or at least underweighted less)
than lower probabilities. To illustrate this, we conducted a cross-theory recovery study like the
one presented here for choices between two risky options, presented in detail in Appendix D.2.

Choices between losses

All choice problems in our choice set involved outcomes from the domain of gains. Can the results
be generalized to the domain of losses? When using the aDDM to generate choices the domain of
losses, the effects of attention on preferences reverse, relative to the domain of gains. For instance,
paying more attention to a safe loss amplifies the accumulation of negative evidence regarding this
safe loss, making it appear less attractive and less likely to be chosen. Nevertheless, the effects
of attention on the weighting functions are identical across domains. That the same weighting
function can account for opposite behavioral patterns in the the domain of gains and losses can
be illustrated by the certainty effect. Both the tendency to choose safe gains and to reject safe
losses are accounted for by an inverse S-shaped weighting function, which overweights (positive
and negative) safe outcomes. Hence, identical weighting functions can also account for opposite
behavioral consequences of attentional biases in the domains of gains and losses.

5.3 Empirical Analyses: Do Attentional Biases in Decision

from Experience Affect Probability Weighting in CPT?

So far, we have made a purely theoretical argument: Attentional biases, implemented in the aDDM,
have highly systematic signatures in CPT’s probability-weighting function. Do option-specific at-
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Figure 5.11: Empirical risk preference as a function of the attentional bias to the safe option
(measured as proportion of samples from the safe option) in the sampling paradigm for DfE. As in
the simulation analysis, a greater attentional bias to the safe option was associated with a higher
propensity to choose this safe option. The same holds for risky options.

tentional biases also affect empirically observed probability weighting? We test this question using
data from the sampling paradigm for decisions from experience (cf. Hertwig & Erev, 2009). In
the sampling paradigm, participants can explore initially unknown payoff distributions by repeat-
edly sampling their outcomes for as long as they like before making a final, consequential choice.
The sampling paradigm allows for a straightforward measurement of option-specific attentional
biases—the proportion of samples drawn from each option on each trial. We test whether such
option-specific attentional biases in the sampling paradigm have systematic signatures in CPT’s
weighting function parameters, analogue to the patterns identified by simulation.

We used data from the sampling paradigm in decision from experience compiled in the
context of the meta-analysis on the description-experience gap by Wulff et al. (2018). To ensure
comparability with our simulation results, we analyzed trials from the domain of gains where one
option was experienced as safe, while the other option was experienced as risky with two distinct
experienced outcomes.9 For a trial to be included in the analysis, both the safe and the risky
option had to be sampled at least once. In total, we analyzed data from 1,994 participants and
7,573 sampling sequences and choices. For each trial, we computed the experienced probability of
each option’s individual outcomes, and the proportion of samples from the safe option in reference
to the total number of samples on each trial, as a measure of attentional bias towards the safe
option.

Figure 5.11 depicts the proportion of choices of the safe option as a function of the atten-
tional bias to the safe option. More pronounced biases towards the safe option are associated with
a higher propensity to choose this option, and the same holds for risky options. To statistically
corroborate this effect, we estimated a Bayesian mixed-effect logistic regression in the rstanarm
package in R (Goodrich et al., 2018), using the choice of the safe option as the dependent variable.
The model included a fixed effect for the proportion of samples from the safe option, and random
intercepts for each participant and study from the meta-analysis. There was a credible effect of
the magnitude of sampling biases to the safe option on the tendency to choose this safe option
(β = 1.18, 95% CI [0.8, 1.57]). That is, empirical risk attitudes are linked to option-specific atten-

9In the context of the empirical analysis we refer to “safe” options meaning options that were experienced as
safe—which also includes options whose underlying distribution offered several probabilistic outcomes, but only one
of these outcomes was encountered during sampling.
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tional biases in the sampling paradigm. Is this association between attentional biases and choice
behavior also reflected in CPT’s weighting function?

5.3.1 How CPT’s Weighting Function Reflects Empirical
Option-Specific Sampling Biases

The empirical data was modelled in two variants of hierarchical Bayesian CPT, using the two-
parameter weighting functions by Goldstein and Einhorn (1987) and by Prelec (1998). The
probability-weighting functions were estimated based on the experienced probabilities, such that
deviations from linear weighting cannot be attributed to the under- or oversampling of outcomes
relative to their objective probability—a prevalent regularity especially when overall sample sizes
are small (Hertwig & Erev, 2009). To measure the potential link between attentional biases and
CPT’s weighting function, the elevation and curvature parameters could co-vary with the relative
attention to the safe option on each trial. It is important to emphasize that the model does not
imply but merely measure this potential association between attentional biases and weighting func-
tion parameters—much like a linear regression model would. If the data does not provide evidence
for such an association, it will not show up in the parameter estimates. Details on the CPT models
are provided in Appendix D.3.

Goldstein and Einhorn (1987) weighting function

How does the weighting function by Goldstein and Einhorn (1987) reflect empirical attentional
biases to the safe option in sampling paradigm? The top panel in Figure 5.12 shows the mean
posterior weighting function parameter estimates as a function of sampling bias, as well as the
resulting weighting functions. As can be seen, there is a clear association between the attentional
bias in sampling and the weighting function parameters. This association is strikingly similar to
the results of our simulation analyses. Specifically, δ decreases with an increasing proportion of
samples from the safe option, indicating a less elevated weighting function. Biases towards the
risky option are reflected in δ > 1 and biases towards the safe option are reflected in δ < 1.
Moreover, increasingly extreme attentional biases (whether in favor of the safe or the risky option)
are reflected in lower values of γ, indicating a more extreme curvature. For unbiased sampling,
the elevation and curvature parameters are close to 1, that is, linear probability weighting. These
empirical results closely resemble our findings based on synthetic data generated in the aDDM.

Prelec (1998) weighting function

The empirical attentional bias is also systematically linked to the shape of the two-parameter
weighting function by Prelec (1998). The bottom panel in Figure 5.12 shows the mean posterior
estimates of the weighting function parameters for each level of attentional bias in the empirical
data, as well as the resulting weighting functions. The parameter δ increases with an increasing
proportion of samples from the safe option, relative to the risky option, indicating a lower eleva-
tion. Moreover, increasing attentional biases to the safe option are reflected in lower values of γ.
Therefore, the weighting function is more convex (or inverse S-shaped) under stronger sampling
biases towards the safe option, and more concave (or S-shaped) under stronger sampling biases
towards the risky option. Unbiased sampling is reflected in linear probability weighting (i.e., γ and
δ of approximately 1). These empirical results closely resemble our findings based on synthetic
data generated in the aDDM.
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Figure 5.12: Attentional biases in empirical sampling sequences in decision from experience are
linked to probability weighting in CPT. The color gradient represents the attentional bias, mea-
sured as the proportion of samples from the safe option in each trial. Darker colors represent a
greater attentional bias to the safe option. Left panel: Mean parameter estimates for the cur-
vature and elevation parameters of the weighting functions by Goldstein & Einhorn (1987) and
Prelec (1998), for each level of attentional bias in the empirical sampling sequences. Right panel:
Resulting weighting functions for parameter estimates under each level of attentional bias. As can
be seen, greater attentional biases to the safe option (darker colors) are reflected in less elevated
and more extremely curved weighting functions. Conventionally such weighting functions would be
interpreted as indicative of pessimism and low probability sensitivity. Greater attentional biases
to the risky option (brighter colors) are reflected in more elevated and more extremely curved
weighting functions. Conventionally such weighting functions would be interpreted as indicative
of optimism and low probability sensitivity. Overall, the empirical patterns reproduce the results
from the simulation analyses remarkably well (cf. Figure 5.6).

5.4 Discussion

We demonstrated in a cross-theory parameter recovery that the behavioral consequences of atten-
tional biases in the aDDM, a popular model in the sequential sampling tradition, have systematic
signatures in probability weighting when the resulting choices are modeled with CPT, arguably the
most influential model in the neo-Bernoullian tradition of modeling risky choice. In the aDDM,
option-specific attentional biases can shift the comparison between safe and risky options in favor
of the option that receives more attention. To the extent that four different weighting functions
in CPT can make risk options appear more or less attractive, compared to objective weighting,
they can also account for option-specific attentional biases. After identifying this correspondence
in simulations, we tested whether it also holds empirically, using data from decisions from experi-

157



Chapter 5

ence. Indeed a link between empirical option-specific attentional biases in sampling behavior and
probability weighting in CPT was found, and the patterns were very similar to those identified
in the simulation. We next discuss several implications of our results, starting with psychological
interpretations of the shape of the weighting function.

5.4.1 Implications for Psychological Interpretations of the
Probability-Weighting Function

The parameters of CPT’s probability-weighting function are conventionally interpreted in terms of
distinct psychological constructs, namely probability sensitivity and optimism or pessimism (Ab-
dellaoui et al., 2010; Gonzalez & Wu, 1999; Kahneman & Tversky, 1979; Tversky & Kahneman,
1992). Our results suggest an alternative interpretation in terms of attentional processes. Specif-
ically, distinct shapes of the weighting function may reflect basic—and even observable—features
of information acquisition and processing: The existence, direction, and severity of option-specific
attentional biases. This may have far-reaching consequences.

The notion of probability sensitivity

In their seminal article on prospect theory, Kahneman and Tversky (1979, p. 280) emphasized that
“decision weights measure the impact of events on the desirability of prospects, and not merely
the perceived likelihood of these events”. This conceptual distinction between decision weights
and subjective probabilities is accentuated by our finding that probability-weighting functions can
closely trace the dynamics of a data-generating mechanism in which probabilities are not even
explicitly represented: In sequential sampling models like the aDDM, probabilities only affect
evidence accumulation indirectly, by determining the relative frequency with which the outcomes
are sampled. That is, probabilities are inherent in the structure of the world, but only the sampled
outcomes themselves, not their probabilities, are explicitly represented in the model as evidence
for evaluating options.

This challenges the common psychological interpretation of the curvature parameter in
terms of diminishing sensitivity to probabilities (Gonzalez & Wu, 1999): It may be problematic to
use estimates of the curvature to measure the decision maker’s ability to discriminate probabilities,
given that this parameter can vary very systematically in the absence of any explicit representation
of probabilities. Caution is demanded especially when interpreting empirical data, where true
representations cannot be directly accessed (by contrast to simulations). This notion is consistent
with an argument by Sanborn and Chater (2016), who posit that brains are poorly adapted to
represent or calculate probabilities, and more likely implement probabilistic reasoning based on a
sampling-based mechanism without explicitly represented probabilities.

The notion of optimism and pessimism

Since the seminal paper by Gonzalez and Wu (1999), many studies have used the elevation of
CPT’s weighting function trying to measure individual differences in motivational constructs such
as optimism and pessimism (e.g. Abdellaoui et al., 2010; Booij et al., 2010; Charupat et al., 2013;
Etchart-Vincent, 2004; Fehr-Duda et al., 2006; Vieider et al., 2015).10 Yet, our findings suggest
an alternative interpretation for the elevation parameter. We show that the elevation can be
shifted around systematically from trial to trial by modulating option-specific attentional biases.

10The paper by Gonzalez and Wu (1999) has been cited 1264 times (cf. google scholar, 17.04.2019), providing
a rough sense of the vast impact of the authors’ central claims about the psychological interpretability of CPT’s
weighting function.
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Notably, empirical attentional biases are often guided by superficial features of information (Orquin
& Loose, 2013; Orquin et al., 2018), which may arbitrarily vary from situation to situation. Hence,
even if CPT’s elevation parameter reflects both attentional biases and optimism/pessimism, such
fluctuations in attention would likely render the measurement of optimism and pessimism quite
imprecise. On the other hand, people might also have stable individual dispositions for attending to
specific types or features of stimuli. In this light, the considerable intra-individual stability in the
elevation parameter across experimental sessions (cf. Glöckner & Pachur, 2012; Pachur et al., 2018)
might reflect such personal attentional predispositions. Hence, further empirical research using
process tracing will be necessary to separate attentional components (both temporally fluctuating
and stable within persons) of the elevation parameter from non-attentional components, reflecting
psychometric constructs such as optimism and pessimism. This may help to evaluate whether, to
which degree, and in which cases the conventional interpretation of CPT’s elevation parameter in
terms of optimism or pessimism is still warranted.

5.4.2 Attention-Based Explanations for Empirical Phenomena with
Characteristic Weighting Functions

Our results also offer novel, process-based explanations for key phenomena of risky choice, such as
the certainty effect, the fourfold pattern, and the description-experience gap. These phenomena
have predominantly been discussed in the neo-Bernoullian terms of probability weighting, but our
findings may contribute to a more process-oriented understanding thereof.

The certainty effect

The certainty effect describes a preference for safe over higher valued risky options, which reverses
when the safe option is replaced by another risky option (Kahneman & Tversky, 1979; Tversky &
Kahneman, 1986). This apparent overweighting of safe over probabilistic events is typically cap-
tured by an inverse S-shaped weighting function in CPT. Our results suggest a new, process-based
explanation for the certainty effect: Inverse S-shaped weighting functions in choices between safe
and risky options may reflect attentional biases towards safe options, which shift the comparison
between the options in favor of the safe option.

Indeed, in a recent eye-tracking study Zilker and Pachur (2019, see chapter 4) participants
displayed pronounced attentional biases towards safe options over risky options when safe options
were described using fewer pieces of information than risky options. Presenting safe options in
a more complex format counteracted the attentional biases, and also reduced the proportion of
safe choices. Hence, attentional biases towards simple safe options in standard risky choice tasks
may underlie the apparent overweighting of certainty when modeling the data in CPT. Further
substantiating this idea, attention was allocated more symmetrically in choices between two risky
options, which are structurally more similar than safe and risky options (Zilker & Pachur, 2019).
Likewise, weighting functions in choices between two risky options tend to be more linear than
those in choices between safe and risky options (Glöckner et al., 2016).

The fourfold pattern

The fourfold pattern of risk attitudes describes risk aversion for gains and risk seeking for losses of
high probability, accompanied by risk seeking for gains and risk aversion for losses of low probability
(Tversky & Fox, 1995; Tversky & Kahneman, 1992). This pattern can be accommodated by
assuming an inverse S-shaped weighting function in CPT, implying that small probabilities are
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overweighted and moderate to large probabilities underweighted. The fourfold pattern is typically
demonstrated in choices between safe and risky options. Hence, to the extent that safe options
attract more attention, the inverse S-shaped weighting functions may again—as in the case of the
certainty effect—be a consequence of systematic attentional biases.

The description-experience gap

Decisions from description and decisions from experience seem to evoke distinct probability weight-
ing patterns—an apparent overweighting (description) and underweighting (experience) of rare
events (cf. Wulff et al., 2018). Common operationalizations of the description-experience gap are
even based on assuming these probability weighting patterns. For instance, the discrete opera-
tionalization of the gap posits that the gap is present if the rare event received more weight in
description than in experience, that is, if the weighting function is more inverse S-shaped (or less
S-shaped) in description than in experience. In the light of our results, these distinct weighting
function signatures may be due to opposite option-specific attentional biases. Specifically, par-
ticipants may predominantly attend to the safe option in description and predominantly sample
the risky option in experience. This is supported by the previously described findings from the
eye-tracking study on decision from description by Zilker and Pachur (2019), and by the finding
that people tend to search more variable (risky) options more than safe options in decision from
experience (Lejarraga et al., 2012; Pachur & Scheibehenne, 2012). These opposite attentional bi-
ases may entail differences in choice behavior which get picked up by common operationalizations
of the gap. This novel explanation for the description-experience gap will be tested thoroughly in
future work.

5.4.3 Different Paths to Theory Integration

As outlined in the introduction, psychology is sometimes viewed as widely lacking overarching the-
oretical frameworks (Gigerenzer, 2010), and this may have fostered the replication crisis (Muthukr-
ishna & Henrich, 2019). Without doubt, substantive integrative progress will be necessary to arrive
at a more holistic, theoretically grounded understanding of the human psyche—or at least to unify
different phenomena within specific sub-disciplines, such as decision making. In this light, one
of the most important contributions of the work presented here is to strengthen the ties between
two largely disjoint streaks of formal decision theory—neo-Bernoullian and sequential sampling
models. Some previous steps to bridge this divide have been taken, broadly following two general
approaches to theory integration. To put our own work into context, we illustrate these approaches
by reference to this previous work, and highlight their respective merits and shortcomings.

Hybrid models

The first approach for theory integration involves the construction of new, hybrid theories that
capitalize on insights and constructs from both the neo-Bernoullian and the sequential sampling
world. Such hybrid models exist along a spectrum: Some incorporate only few details from the
“opposite” framework, and others offer a genuinely integrative mixture of ideas and constructs. For
instance, the transfer-of-attention-exchange model (TAX, Birnbaum, 1999) is firmly rooted in the
neo-Bernoullian tradition, but explicitly assumes that the over- or underweighting of probabilistic
events reflects their competition for limited attentional resources. Attentional weight is transferred
along the ordered branches (possible events). Regardless of this (verbal) attentional interpretation,
TAX does not incorporate any formal features (e.g., a sampling processes) which originate outside
of the neo-Bernoullian world.
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On the other hand, Decision Field Theory (DFT, Busemeyer & Townsend, 1993), was
developed by extending and refining the assumptions of static utility models to dynamic and
probabilistic contexts. DFT can be described as a sequential sampling model whose assumptions
heavily depend on considerations originating in neo-Bernoullian theory. Among the hybrid models
discussed here, DFT may therefore be the most genuinely integrative one. Under this integra-
tive perspective, the authors also offer a psychological interpretation of the weights in subjective
expected utility (SEU), as reflecting the amount of attention given to each event—which closely
resembles our own insights with respect to CPT.

Besides models themselves, experimental paradigms are often direct reflections of the ways
in which traditions tend to think about particular problems, constraining the very nature of data
that even gets generated and considered (Gigerenzer, 2010). Our final example for hybrid modeling
illustrates how this gap between behavioral phenomena, which are predominantly considered within
their native framework, can be bridged. Diederich and Trueblood (2018) transplanted constructs
from two neo-Bernoullian theories (SEU and CPT) into a sequential sampling model. They applied
the resulting model to capture the impact of time pressure, a factor classically discussed within the
process-oriented tradition, on framing effects, a phenomenon rooted in the neo-Bernoullian world.
Hence, they transcend the conventional bounds between the neo-Bernoullian and the process-
oriented world not only on the level of theory, but also on the level of application.

These examples illustrate some merits of hybrid modeling for theory integration. Never-
theless, since hybrid modeling involves the construction of new theories, the genuinely unifying
power of this approach may be questioned.

Cross-theory parameter recovery

A second approach for theory integration aims to learn more about one set of theoretical constructs
by viewing them through the lens of a different theory. Our cross-theory parameter recovery
between aDDM and CPT belongs to this category. Similarly, Pachur et al. (2017) demonstrated
that heuristic strategies have quite distinct signatures in terms of CPT parameters. Moreover,
Luan et al. (2011) used the language of signal detection theory to better understand fast and
frugal trees (FFT).

In all these examples one set of constructs is used to model behavior that is known to be
generated by a different theory. If both theories are fully disjoint, meaning that their constructs
share no explanatory power, this procedure should result in entirely unsystematic parameter esti-
mates. However, theories that are successful within their native realm (which are natural candidates
for integration) typically capture essential aspects of behavior, which may to some extent overlap
with the essential aspects identified by influential theories in other traditions—such as system-
atic deviations from maximization. Cross-theory parameter recovery makes this shared essence of
disconnected theoretical positions graspable, and provides a common language for researchers to
communicate about ideas.

Moreover, the cross-theory recovery approach highlights how different theoretical positions
can complement each other. For instance, CPT in itself does not predict RTs, but the association
with aDDM unlocks RTs as a new territory for CPT-based enquiry. Another benefit of this ap-
proach is exemplified by our discovery that CPT’s weighting function can closely trace attentional
biases—without any refinement to CPT’s original assumptions. This demonstrates that it may not
be necessary to invent or introduce new constructs to transcend the explanatory scope originally
attributed to one particular theory. Rather, connections to other frameworks can reveal previously
overlooked capacities of constructs that are already established as part of a theory.
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5.4.4 An Extension to Other Attentional Sequential Sampling Models?

The aDDM is not the only sequential sampling model that incorporates attentional processes. For
instance, Decision Field Theory (DFT, Busemeyer & Townsend, 1993) and by extension, Multi-
alternative Decision Field Theory (MDFT, Roe et al., 2001), the Leaky Competing Accumulator
(LCA, Usher & McClelland, 2001, 2004), and the Multiattribute Linear Ballistic Accumulator
(MLBA, Trueblood et al., 2014), also build on the sequential sampling framework to formalize
time-consuming deliberation processes that consist of a continual evaluation of alternative options,
to some extent, weighted by attentional constructs.

What can be said about a possible correspondence between attentional constructs in these
models and CPT’s weighting function, based on our results? Broadly speaking, it seems conceiv-
able that CPT’s probability-weighting function may be linked to constructs capturing attentional
weighting in these other models in a similar way as to the attentional weighting in the aDDM.
However, without conducting a concrete simulation analysis like the one presented here, such ex-
trapolations remain quite speculative. This is because the aDDM differs from other attentional
sequential sampling models in some important assumptions, especially regarding the conceptual-
ization of attention. Some of these distinctions are fleshed out below.

Attribute- or option-specific attention

The first distinguishing characteristic is whether attention is thought to be allocated to individual
attributes or entire options. In DFT, MDFT, and LCA attention is assumed to sequentially scan
individual attribute dimensions rather than entire options, as in the aDDM. This difference in the
resolution of attention allocation may entail subtle differences in choice patterns, which may in
turn translate into different probability weighting signatures when modeled in CPT.

Measuring or modeling attention

The second distinguishing characteristic is whether attention allocation is measured or modeled.
The aDDM takes observed attentional patterns—for instance, quantified via eye tracking—as in-
puts to the model. By contrast, in DFT and MDFT the switching of attention itself is modeled
as a Bernoulli process (which can be imagined as the repeated flipping of a—potentially biased—
coin). In LCA, shifts in attention follow a fixed probability. In MLBA, option-specific attentional
weights are defined as a function of the discriminability of attributes, and do not add up to 1.
That is, although these weights are conceptualized as capturing attentional processes, they are not
probabilities, and hence do not precisely quantify the distribution of attention (Trueblood et al.,
2014). Since these formal approaches to capturing attentional processes differ quite fundamen-
tally, attentional weights in different models may not necessarily translate into the same choice
regularities, and by extension, probability weighting signatures in CPT.

Competition among options

Another distinguishing characteristic of different attentional sequential sampling models is if and
how they implement competition among the options for evidence. The aDDM’s assumption of a
relative evidence threshold implies that incoming evidence always moves the (single) accumulator
closer to one option’s boundary and thereby, at the same time, away from the alternative option’s
boundary. Since this constant comparison of options in the aDDM achieves competition among
options, evidence in favor of one option does not need to explicitly discount or inhibit evidence
accumulated in favor of the alternative. Other models that assume several racing accumulators,
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and absolute rather than relative evidence thresholds, implement competition among options via
lateral inhibition. MDFT assumes lateral inhibition of valences between the options, determined
by their distance in the attribute space. In LCA, activations can also inhibit each other, but
independently of their distance. (M)DFT and LCA further assume memory related decay over
time via self-connections of options to their previous activation states, a feature not present in the
aDDM. These different assumptions regarding competition and temporal decay may entail crucial
differences in choice behavior, which may, again, be reflected in different parametric signatures if
modeled in CPT.

Due to these and other divergent assumptions between the aDDM and other attentional
sequential sampling models, simply extrapolating from our results to an analogue correspondences
between attentional construct in other models and CPT’s weighting function would likely involve
unwarranted generalizations, and not do justice the subtle originality of each model’s behavior.
Thus, we refrain from such speculation. However, whether the correspondence can be extended
may be addressed by conducting further cross-theory recovery analyses, including more than just
the two exemplary models addressed here. Our analysis may only mark the starting point for
further enquiry into this kind of theory integration.

5.4.5 Conclusion

Formal frameworks equip scientists with a roadmap for reasoning in a theoretically grounded
manner, provide them with a shared language, and enable them to make quantifiable predictions.
Both the neo-Bernoullian and the sequential sampling framework have facilitated and shaped
scientific progress within their respective disciplines in this manner. However, formal theories are
necessarily abstractions and cannot provide comprehensive accounts of phenomena themselves in
all their richness. As such, they operate on a specific, closely circumscribed conceptual level, such
as the level of attentional processes (aDDM), or the level of apparent attribute distortions (CPT).
Our simulation analyses trace out a previously overlooked correspondences between these levels.
The results demonstrate that even constructs that seem to have very little to do with each other
superficially, such as attentional biases and probability distortions, may still relate to remarkably
similar structures in data. The concrete usefulness of overlaying different frameworks in this way is
illustrated in our empirical analysis, which makes a substantive contribution: Previously neglected
option-specific biases in attention can help to explain risky choice behavior and characteristic
probability weighting patterns in decision from experience. That is, theory integration can open
up innovative perspectives on empirical phenomena that have been studied in great detail in their
native tradition.

5.5 Author Contributions

Conceptualization and Methodology: V.Z.; Simulations, Data Analysis and Modeling: V.Z.; Em-
pirical Analysis: V.Z.; Writing—Original Draft: V.Z.; Writing—Reviewing & Editing: V.Z. and
T.P.

5.6 Data and Code Availability

Code to implement all analyses is hosted at
https://osf.io/e7xtr/?view_only=91d9160b279749978db3e8f38a014ad4. Data for the empirical anal-
yses is hosted by Dirk Wulff at https://www.dirkwulff.org/data/WulffEtAl_TwoModes_Data.zip.
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6 | Synthesis

In this chapter I carve out the major contributions and implications of my work and embed them
in the broader discussions they contribute to.

6.1 Major Empirical Contributions

In the empirical parts of this dissertation, I demonstrated why it can be so difficult to predict be-
havior in risky choice tasks reliably, focusing on choices between described lotteries. I investigated
how risky choice behavior depends on features of stimulus materials besides risk itself—namely
option complexity—and on individual differences in psychological characteristics besides latent
risk attitude—namely attentional processes. Interactions between these factors were illustrated by
comparing younger and older adults.

6.1.1 Option Complexity Modulates Risky Choice Behavior

I showed that risky choice behavior in choice problems with positive, non-zero outcomes can be
quite easily pushed around by manipulating differences in option complexity between the options
in the choice problem. People, and especially older adults, tend to choose safe and risky gains less
when they are presented in a more complex format (while keeping the complexity of the alterna-
tive option constant). This research stands in the tradition of classical investigations of preference
construction, which often focused on the anatomy of the environment—for instance, demonstrat-
ing preference reversals due to changing stimulus features (e.g., Binswanger, 1980; Johnson et al.,
1988; Lichtenstein & Slovic, 1971). However, I also showed that environmental features tend to
interact with each other—option complexity had a lesser or no impact in choice tasks involving
losses and outcomes of zero—and with individual differences in psychology—choice behavior was
more sensitive to option complexity in older than in younger adults. Hence, to fully understand if
and when a particular confound matters (and should be taken into account for predicting choice
behavior), one needs to also consider how it exerts its confounding influence on the mind of the de-
cision maker. Although manipulating option complexity does not affect the content of information,
such as the value or risk of options, it affects how this information can be and is processed—by
humans in general, and by individuals with varying cognitive capacities in particular. Individual
differences in information processing capacities—such as attentional capacities—are essential for
understanding how environmental features affect the process of preference construction.

6.1.2 Age-related Changes in Selective Attention Affect the
Construction of Risk Preferences

Selective processing is a staple of intelligent cognition under resource constraints. Both research on
human (Dayan et al., 2000; Dempster, 1991; Heitz et al., 2005; Stankov, 1983, 1988) and artificial
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intelligence (Blum & Langley, 1997; Jensen & Shen, 2008) recognizes the importance of ignoring
irrelevant, interfering information and of processing relevant information in a focused manner for
arriving at good choices. Indeed, attentional processes come to bear in most dimensions of fluid
intelligence. For instance, since working memory has limited capacity, attentional selection has
the important task of prioritizing the storage to the most relevant information, and keeping out
unnecessary clutter (Myers et al., 2017). Consistently, age differences in basic attentional processes
seem to contribute to age-related impairments in fluid intelligence (Salthouse, 2004; Stankov, 1988),
which are in turn frequently invoked to explain age differences in decision making (cf. Brocas et
al., 2019; Mamerow et al., 2016; Mata et al., 2011; Mata et al., 2007; Pachur et al., 2017; Pachur
et al., 2009). In younger adults, attention has also been found to directly affect preferences by
prioritizing and reinforcing the impact of currently looked at information (e.g., Krajbich et al.,
2012; Krajbich & Rangel, 2011; Smith & Krajbich, 2019). The neural mechanisms that implement
selective attention by prioritizing the processing of relevant information from the environment are
impaired in older age (cf. Gazzaley et al., 2008; Gazzaley et al., 2005). In this dissertation, I
newly established a direct link between age-related deficits in selective attention, measured via
computational modeling, and age differences in risk preference.

I demonstrated that preference formation in decision making under risk is profoundly
shaped by age differences in selective attention. While both age groups showed attentional biases
towards simple safe options, attention only amplified the impact of these options on younger, but
not older adults’ choice processes. My findings also highlight how cognitive capacities and the
environment interact during preference construction: Increasing the complexity of safe options
modulated the impact of attention on preferences in younger adults, but the non-attentional base-
line preferences in older adults. Although in both age groups the construction of risk preferences
is influenced by option complexity, the specific constructive processes differ dramatically. This
underlines that mere risky choice behavior results from different psychological processes across
individuals and variants of the choice task, and that the construction of risk preferences can vary
across the lifespan as cognitive capacities change.

6.1.3 Option-specific Sampling Biases Explain Choice Behavior in
Decisions from Experience

As a side-product of investigating the mapping between attentional biases and patterns in probability-
weighting, I also obtained a new explanation for choice behavior in decision from experience. In
my re-analysis of data from the meta-analysis on the description-experience gap by Wulff et al.
(2018), I show that option-specific biases in sampling behavior are systematically linked to risky
choice behavior: Predominantly sampling the more (less) risky option in the choice set is asso-
ciated with a greater propensity for choosing this option. This is analogous to the finding in
decision from description that people tend to choose safe options more when they look at them for
a greater proportion of time. Hence, I identified a common denominator of behavior in decision
from description and experience—option-specific biases in information search. This may reconcile
some of the puzzling differences between both paradigms: Systematic attentional biases to safe
options in decision from description (as identified in chapter 4), accompanied by systematic sam-
pling biases in favor of risky options in decision from experience (Lejarraga et al., 2012; Pachur
& Scheibehenne, 2012), may contribute to the opposite behavioral tendencies in both paradigms
(Hertwig & Erev, 2009; Wulff et al., 2018). That is, option-specific attentional biases may help to
explain the description-experience gap. This will be an exciting direction for future research.
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6.1.4 Implications for the Behavioral Measurement of Risk Preferences

To draw together these empirical findings, reconsider the seeming paradox of measuring risk atti-
tudes behaviorally: Although risk attitude can be regarded as a stable psychological trait, behavior
in risky choice tasks—which try to condense the problem of decision making under risk to its es-
sential parts—often varies considerably across measurement time-points and formats of the task
(Frey et al., 2017; Pedroni et al., 2017).

In several regards, my research contributes to explaining why the latent trait of risk atti-
tude rarely becomes evident in (experimental) choice behavior. I show that differences in option
complexity, biases in visual attention (which to some extent overlap), individual differences in
processing efficiency under selective attention, and biases in sampling behavior can profoundly
shape preferences in risky choice tasks. This underlines and explains the constructed nature of
these preferences, reminiscent of early work by Slovic (1995). My simulations in chapter 5 even
suggest that choice behavior which appears indicative of risk seeking or risk aversion can emerge
in the total absence of a latent disposition towards risk. Specifically, the aDDM, a model that does
not assume a built-in disposition towards risk, can still implement (i.e. construct) apparently risk
seeking and risk averse behavior.

This, admittedly, seems like an extreme idea. Yet, even if risky choice behavior is not only a
consequence of construction processes, but to some extent also an expression of a stable disposition
towards risk, the dispositional and the constructed components may often be misaligned. For
instance, attentional biases towards safe or risky options emerge due to superficial features of
options that have nothing to do with risk itself (e.g., their complexity, size, or salience, Orquin &
Loose, 2013; Orquin et al., 2018). Hence, a person who has a latent disposition towards risk seeking,
but who attends predominantly to safe options may produce choices that appear risk neutral
or even risk averse. Moreover, intra-individually stable tendencies in attention allocation may
systematically distort risk preferences measured in binary choice tasks—but be less consequential
in other methods, such as self-reports. These insights may help explain the striking misalignment
between different methods for measuring risk preference (Frey et al., 2017; Pedroni et al., 2017).

Moreover, having identified (some) concrete determinants of risky choice behavior, and
the cognitive mechanisms by which they exert their influence, we are also in a position to make
constructive suggestions for future research: When aiming to measure dispositional risk preference
behaviorally, the disposition needs to be dissociated from the constructed component of behavior
carefully, for instance via repeated or multi-method measurement. Differences in option complexity
should be controlled for experimentally, and stimuli should be designed such that visual attention
is not systematically drawn towards one visually distinctive option. For improving predictions
of risky choice behavior in concrete situations, we (chapter 2) and others (Weber, 2010) have
suggested that experimental choice tasks do not necessarily have to be de-confounded, but rather
intentionally confounded to closely matches the features of the to-be predicted situation. For
instance, classical choices between safe and risky options differing in option complexity may fare
well at predicting behavior in an ecology where complexity and risk are confounded as well.

More generally, this work underlines that predicting risky choice behavior (in the lab or in
the wild) can be a wildly different pursuit than measuring latent risk attitude. While psychometric
measurement aims to isolate a stable trait, predicting concrete behavior requires to concurrently
account for many contextual and psychological variables and their interplay.
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6.2 Major Theoretical Contributions

The theoretical landscape on decision making under risk—with neo-Bernoullian and process models
being arguably the most influential model families—can be framed in terms of Marr’s computa-
tional and algorithmic levels of explanation (Marr, 1982). Computational-level theories identify
the structure of the abstract problem that the mind solves, and define its ideal solution in func-
tional terms, whereas algorithminc-level theories describe the concrete processes by which the mind
approximates and executes the solution of this problem (cf. Griffiths et al., 2010; Griffiths et al.,
2015). Neo-Bernoullian models like CPT identify a functional representation of the problems that
humans seem to solve in risky choice. Process models such as aDDM or heuristics specify algo-
rithms that approximate the solution of these abstract problems, while taking into account realistic
constraints in processing and environments. These two types of models are often pitted against
each other as competitors. My research illustrates 1) why this may not be a particularly meaning-
or fruitful approach for evaluating models, and 2) how compatible insights from both frameworks
can be identified and their relative strengths can be exploited instead, to make profound theoretical
progress.

6.2.1 How can Models of Decision Making under Risk be Fairly
Evaluated?

Marr’s taxonomy is particularly helpful because it reminds us that neo-Bernoullian and process
models of risky choice serve fundamentally different purposes. However, psychologists sometimes
tend to assert—whether implicitly or explicitly—the primacy of the algorithmic level. For in-
stance, neo-Bernoullian models of decision making under risk are sometimes interpreted as literal
procedures, and judged according to their psychological realism. Maybe most prominently, the as-if
critique questions if actual organisms might realistically compute CPT’s functions (Berg & Gigeren-
zer, 2010). However, this argument either misunderstands or mischaracterizes computational-level
theories. To abstract the structure of the problem that is solved by the mind, computational-level
theories do not need to commit to specific cognitive processes (Griffiths et al., 2010)—this is, in-
stead, the purpose of algorithmic-level theories. Consequently, psychological plausibility is only an
appropriate standard for evaluating algorithmic-level theories.

These different purposes of computational- and algorithmic-level theories are easy to posit
verbally. My analyses in chapter 5 substantiate them via simulations and recovery. I showed
that choice patterns that result from a sequential sampling process—a psychologically plausible
algorithm, which poses remarkably low demands on both arithmetic skills and memory, and which
does not even require an explicit representation of probabilities—give rise to very characteristic
shapes of CPT’s probability-weighting function. Hence, an explicit mental representation and
literal computation of CPT’s functions is not necessary to produce behaviors that appear as if they
had been computed in such a manner. This illustrates that CPT can much more meaningfully be
understood as an abstract description of the emergent properties of simpler and psychologically
more plausible processing strategies, than as a description of the process itself. This finding
emphasizes the punchline of the as-if critique—CPT is not a process model—while at the same
time exposing its false premise: Ironically, the as-if critique treats CPT as if it served to describe
the choice process itself, and applies the (unfair) standard of psychological plausibility.

The failure to distinguish between computational-level and algorithmic-level models is, to
some extent, intertwined with the common conflation between explanation and prediction (Shmueli,
2010). Marr (1982) subsumes both computational and algorithmic theories under the broad phrase
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“levels of explanation”. By contrast, Shmueli (2010) more narrowly defines “explanatory modeling
as the use of statistical models for testing causal explanations” (p. 290), thus distinguishing it
from predictive modeling, as the application of models for predicting new observations, and de-
scriptive modeling, as compactly summarizing the data structure (Shmueli, 2010). Hence, Marr’s
and Shmueli’s taxonomies overlap in meaningful ways. While algorithmic-level theories rather ex-
plain the causal relations that gave rise to data on the process-level, computational-level theories
compress systematic patterns which may allow to predict future observations—regardless of the
underlying causality. Therefore, computational-level theories like CPT can be successful at de-
scribing and predicting behavior (cf. Glöckner & Pachur, 2012), without explaining the process in
a plausible manner, and vice versa.

This further stresses that computational- and algorithmic-level theories address quite fun-
damentally different problems, which are interesting in their own right. Hence, asking the meta-
theoretic question, which type of problem one wants to address (description, prediction, or expla-
nation) can help clarify the standards for judging what constitutes a “good model”, and constrain
the range of theories which even qualify as serious competitors. Maybe most importantly, it also
prevents one from wasting time on defeating theories that are not even playing the same ball game.
However, this insight is very difficult to grasp under the partisan mindset of pitting different classes
of theories against each other as competitors.

6.2.2 Can Computational-level Theories be Interpreted
Psychologically?

Sober parameter estimates of formal models are typically not as compelling as psychological narra-
tives. Hence, researchers have sometimes imposed psychological interpretations on neo-Bernoullian
theories. For instance, although CPT’s probability-weighting function makes no assumptions about
psychological constructs like optimism or pessimism, they can, under specific parameter configura-
tions, produce behaviors that conform to the intuitive idea of how an optimistic agent might act. As
a consequence, such psychological interpretations become attached to the parameters themselves.
My analyses in chapter 5 highlight why this can be problematic.

Inferring unobservable mental states from neuroimaging data posits a reverse inference
problem (Poldrack, 2006, 2011). For instance, just because Broca’s area is usually activated in
language processing, one can not unequivocally infer from activity in this area that the person
currently processes language—since different cognitive processes might activate this area as well.
The same is true for inferring psychological characteristics from parameters of highly flexible models
like CPT: To warrant such psychological inferences, it has to be shown convincingly that these
parameters selectively respond to changes in the specific psychological process. In chapter 5, I show
that both parameters of CPT’s weighting function—the curvature and the elevation—covary very
systematically with option-specific attentional biases. Hence interpretations in terms of optimism,
pessimism or probability sensitivity (Abdellaoui et al., 2010; Gonzalez & Wu, 1999; Tversky &
Kahneman, 1992) are not uncontested or unique. They may be misleading if not applied with
great care, while excluding alternative explanations.

Neuroscientists have recognized reverse inference as a nontrivial problem and developed
more sophisticated methods to infer unobservable mental states from neuroimaging data, such as
multivariate pattern analysis (Haxby et al., 2014; Haynes & Rees, 2005). Moreover, databases
like BrainMap make it easy to look up which psychological tasks are known to activate a given
brain region and thus to approximate how confidently an inference can be made (cf. Poldrack,
2006). In modeling decision making under risk, basic awareness for the problem still seems to
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be lacking. The field would arguably benefit from systematically studying which psychological
and non-psychological variables affect the parameter estimates in highly flexible computational-
level models such as CPT, and compiling databases or meta-analyses of these findings. Much
also remains to be learned from more classical psychometric methods, such as cross-validation, to
asses how well parameters from computational models fare as measurement tools for psychological
characteristics. To start approaching this challenge, a necessary first step is to identify diverse psy-
chological interpretations for parameters in prominent theories like CPT. In chapter 5, I showcased
how cross-theory parameter recovery between process models and computational-level theories can
be used for this purpose.

6.2.3 What can Psychology Gain from Making Peace with
Non-psychological Models?

Neo-Bernoullian models of decision making under risk are in essence non-psychological, and in-
terpreting them psychologically can be problematic. So should psychologists exclusively focus on
algorithmic-level theories, and stop caring about computational-level ones altogether? What is lost
if the computational level is ignored? What can be gained by taking it seriously?

Anderson’s (1991) rational analysis is one of the most prominent examples of psycholog-
ically useful computational-level explanation. Herein, human behavior is explained by assuming
that it is optimized to affordances in the structure of the environment. This approach helps ad-
dress pitfalls of explaining behavior based on specific mental processes alone. For instance, since
many different mental mechanisms may cause equivalent behavioral consequences, there is a seri-
ous problem of identifiability. By positing that mental mechanism need to implement an optimal
relationship between behaviors and environments, rational analysis constrains the vast range of
conceivable mental mechanisms to a smaller number of plausible ones (Anderson, 1991).

More recently, Griffiths et al. (2010) have argued in favor of a top-down analysis of cog-
nition starting with the (computational level) function of cognitive processes, and moving down
towards the algorithms and implementations. They propose “beginning with abstract principles
that allow agents to solve problems posed by the world—the functions that minds perform—and
then attempting to reduce these principles to psychological and neural processes. Understanding
the lower levels does not eliminate the need for higher-level models” (Griffiths et al., 2010, p. 357).

To substantiate this position, consider that computational-level models on decision mak-
ing under risk constantly reference normative standards for rationality. Behavior is described in
terms of deviations from such benchmarks, and the term “bias” pervades the literature. The aDDM
literature emphasizes the process of forming preferences rather than comparing the resulting be-
havior to some normative standard. To recognize that the behavioral consequences of attentional
processing dynamics in aDDM can systematically deviate from maximization, it helps to view
the behavior of the process model through the lens of CPT (cf. chapter 5). And this exercise
pays off: Establishing the link between processing dynamics and normative standards suggests
concrete ways for improving maximization performance, by changing the process—for instance,
by de-biasing attention. Since normative benchmarks are often not obvious, or specified at all, in
algorithmic-level theories, such interventions are more difficult to design based on these theories
alone. Hence, retaining the computational-level may be useful for psychologists to push the notion
of rationality deeper towards the algorithmic level (Griffiths et al., 2015).
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6.3 Conclusion

The human retina has no optic receptors in the area where the optic nerve attaches to the eyeball.
Since the brain lacks sensory information about the corresponding contents of the visual field,
humans have a natural blind spot in each eye. Yet, they are typically blissfully unaware of this
blind spot, and astonished if their attention is drawn to it (Ramachandran, 1992a, 1992b). Con-
ducing research on decision making under risk, while subscribing to a particular methodological or
theoretical perspective, can cause a similar condition.

√	

Figure 6.1: Demonstration of blind spots in the retina. If one closes the right eye, focuses the left
eye’s gaze on the right small circle and slowly moves the page towards oneself, at some point the
larger left circle seems to disappear. Likewise, part of the world can disappear in plain sight when
studying decision making under risk from an exclusive theoretical and methodological perspective.

For instance, the long-standing tradition of (neo-)Bernoullian models of risky choice has
laid the groundwork for—and, to stay within the metaphor, opened our eyes to—starting to think
about decision making under risk. Yet this tradition is blind to features of the world that come
along with risks, and to psychological processes, which more often than not depart from normative
calculus. Notably, these limits of the framework were not easily recognized by its proponents, even
in the light of empirical findings which seemed inexplicable under the theoretical premises of EU.
Instead, such evidence was often labelled “paradoxes” (cf. Allais, 1953; Birnbaum, 2008; Ellsberg,
1961)—a framing that rather questions the decision maker than the applied scientific approach.
Another strategy to cope with such theoretical blind spots is to exploit the fact that models can fit
data well either because they provide a good characterization of the truth, or simply because they
are highly flexible (Lewandowsky & Farrell, 2018; Roberts & Pashler, 2000). Hence, resourceful
modelers can usually find a solution to the conundrum posed by unexplained data, by making the
model more flexible, while retaining its core assumptions. The neo-Bernoullian tradition excels
at this strategy (cf. Berg & Gigerenzer, 2010). Yet, neither the first strategy—questioning the
behavior itself—nor the second one—“fixing” the model by adding free parameters without revising
its core assumptions—make a serious effort to understand where the methodological and theoretical
approach falls short of being informative. So how can these elusive blind spots, which even come
equipped with tools for explaining away their own existence, be overcome?

To experience perceptual failures caused by blind spots in the human retina, one typically
needs to shut one eye (cf. Figure 6.1). This is because the human visual system can fill in the
blind spot of the left eye by using sensory input from retinal cells of the right eye, and vice
versa (Ramachandran, 1992a, 1992b). Likewise, complementary theoretical and methodological
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perspectives can help to fill in lacking information when studying decision making under risk.
For instance, while neo-Bernoullian logic is well accomplished at abstractly describing behavior in
relation to a normative standard, heuristics and sequential sampling models make it easy to think
about psychological processes that may give rise to these patterns. Both issues can be difficult
to even formulate in the other framework. As an almost direct consequence of such theoretical
pluralism, scientists may also be motivated to consider higher-dimensional data. For instance,
highly structured experiments relying on gambles have brought to light intriguing phenomena,
such as the overweighting of certainty. Yet, in their traditional form, these tasks only elicit choice
behavior, and thus make it easy to overlook the importance of information processing. Richer
insights can be obtained by accompanying choices between gambles by process-tracing methods,
such as eye-tracking, or by explicitly building the search process into the choice task itself, as in
the sampling paradigm. To dive even deeper into the implementation of such processes, turning
towards neuroscientific data may be a logical next step.

In essence, each conceptual and experimental framework makes it easy to think about
certain aspects of risky choice, but not others, and thereby determines which kinds of inferences
we (can) make. So far, no individual framework covers all of these aspects comprehensively. Until
such an overarching framework is found, a multi-method and multi-theory approach—such as the
one applied in this dissertation—can serve as a vision-aid for the blind spots that currently exist
in individual branches of research on decision making under risk.
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A | Supplemental Materials to Chapter 2

A.1 Manipulation Checks

Participants’ choices of the dominant option in both studies were analyzed with Bayesian GLMERs,
including problem type, age group, their interaction, EV difference, and numeracy scores as fixed
effects, and a random intercept for each participant. The results are displayed in the top panel
of Table A.1 (Study 1) and Table A.2 (Study 2) and illustrated in Figure A.1. The negative
main effect of the complex safe condition indicates that participants were more likely to choose
the dominant option in the problems with simple safe options (in both domains in Study 2 and in
the loss domain in Study 1). In both studies and across both domains, participants with higher
numeracy scores were more likely to choose the dominant option. In Study 1, younger and older
adults did not differ in their choice of the dominant option, and in Study 2 older adults were
less likely to choose the dominant option, in both domains. There were no interactions between
problem type and age group in either study.
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Figure A.1: Choice proportions for the dominated problems in all conditions and age groups by
domain in Study 1. Error bars indicate 95% confidence intervals.

We also used Bayesian GLMERs to analyze participants’ complexity ratings of the different
types of choice problems including problem type, age group, their interaction, EV difference, self-
reported risk preferences and numeracy scores as fixed effects, and a random intercept for each
participant. Results from the analysis of complexity ratings are displayed in the middle panel
of Table A.1 (Study 1) and Table A.2 (Study 2) and illustrated in Figure A.2. In both studies
and domains, participants rated problems from the complex safe condition and from the risky
condition as more complex than problems from the simple safe condition. In Study 2, participants
rated problems with a zero outcome in the domain of gains as less complex compared to the
corresponding problem type that did not involve zero outcomes. In addition, problems with higher
EV differences between the options were rated as less complex, and problems in which the higher
EV option was more risky were perceived as more complex. In Study 1, there was no credible main
effect of age group on the complexity ratings, indicating that viewed across all conditions, older and
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younger adults did not differ in their perception of complexity. In Study 2, the credible positive
main effect of age group in the domain of gains indicates that older adults overall rated problems
as more complex. There was a credible negative interaction between problem type (complex safe)
and age group in the domain of gains (Study 2) and in the domain of losses (Study 1), indicating
that older adults’ complexity ratings increased less than younger adults’ in the condition with
complex safe compared to simple safe options.
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Figure A.2: Complexity ratings for nondominated problems in all conditions and age groups by
domain in Study 1. Error bars indicate 95% confidence intervals.

Finally, we used Bayesian GLMERs to analyze participants’ RTs on the non-dominated
choice problems. These models included problem type, age group, their interaction, a binary
variable indicating whether the option with the higher EV was also more risky, EV difference,
numeracy scores, and self-reported risk preference as fixed effects, and a random intercept for
each participant. Results are displayed in the bottom panel of Table A.1 (Study 1) and Table A.2
(Study 2) and illustrated in Figure A.3. Participants took more time to respond in the complex safe
condition and in the risky condition, compared to the simple safe condition. Older adults overall
took longer to make choices than younger adults. In Study 1, participants with higher numeracy
scores also generally took longer to make choices in the domain of gains. On trials with larger
EV differences (which are easier) RTs were shorter in the domain of gains (both studies) and the
domain of losses (Study 2). Finally, an interaction between problem type (complex safe) and age
group (older) indicates that older adults’ RTs increased more substantially when the complexity
of safe options increased than younger adults’. In Study 2, participants took less time on choice
problems with risky options offering a zero outcome, compared to the corresponding problems
where no zero outcome was available.

●

●

●

●

●

● ●

●

●
●

●

●

Gain Loss

Simple
safe

 

Complex
safe

 

Risky Simple
safe

 

Complex
safe

 

Risky

1000

1500

2000

2500

Condition

R
es

po
ns

e 
tim

e 
[m

s]

Study 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Gain Loss

Simple
safe

Complex
safe

Risky Simple
safe

(zero)

Complex
safe

(zero)

Simple
safe

Complex
safe

Risky Simple
safe

(zero)

Complex
safe

(zero)

1000

2000

3000

Condition

R
es

po
ns

e 
tim

e 
[m

s]

Age group

●● Younger

Older

Study 2

Figure A.3: Response times for nondominated problems in all conditions and age groups by domain
in Study 1. Error bars indicate 95% confidence intervals.
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A.1. Manipulation Checks

Table A.1: Regression Coefficients and 95% Posterior Intervals From the Mixed-Effects Regression
of Participants’ Responses on the Dominated Choice Problems, Participants’ Responses on the
Complexity Rating Task, and Response Times on the Problems without a Dominated Option,
Separately for Problems in the Gain and Loss Domain, in Study 1

Outcome Variable (Study 1) Main effect model Interaction model
Predictor Gain Loss Gain Loss

Choices on dominated problems

(Intercept) -2.44
[-3.59, -1.25]

2.18
[0.95, 3.53]

-2.45
[-3.66, -1.31]

2.03
[0.7, 3.37]

Problem Type (Complex Safe) 0.04
[-0.39, 0.47]

-1.75
[-2.35, -1.2]

0.09
[-0.49, 0.71]

-1.64
[-2.4, -0.92]

Problem Type (Risky) 0.54
[0.11, 1]

-0.21
[-0.85, 0.44]

0.45
[-0.17, 1.06]

0.09
[-0.74, 1]

Age Group (Older) -0.28
[-0.96, 0.37]

0.13
[-0.51, 0.75]

-0.31
[-1.14, 0.53]

0.46
[-0.59, 1.51]

EV Difference 0.28
[0.1, 0.46]

0.03
[-0.2, 0.24]

0.28
[0.1, 0.46]

0.03
[-0.2, 0.25]

Numeracy 1.07
[0.79, 1.39]

0.46
[0.17, 0.75]

1.08
[0.78, 1.4]

0.47
[0.19, 0.78]

Problem Type (Complex Safe) × Age Group (Older) -0.09
[-0.91, 0.73]

-0.26
[-1.39, 0.82]

Problem Type (Risky) × Age Group (Older) 0.2
[-0.66, 1.1]

-0.65
[-1.99, 0.59]

Complexity rating

(Intercept) 2.27
[1.82, 2.73]

2.44
[2.02, 2.87]

2.23
[1.79, 2.66]

2.42
[1.98, 2.83]

Problem Type (Complex Safe) 1.79
[1.69, 1.88]

1.74
[1.65, 1.84]

1.81
[1.68, 1.95]

1.86
[1.73, 1.99]

Problem Type (Risky) 0.69
[0.6, 0.78]

0.66
[0.56, 0.75]

0.7
[0.57, 0.83]

0.65
[0.52, 0.78]

Age Group (Older) 0.13
[-0.1, 0.37]

0.1
[-0.1, 0.32]

0.16
[-0.11, 0.4]

0.18
[-0.07, 0.43]

Higher EV Choice = Higher CV Choice 0.09
[0.02, 0.17]

0.15
[0.07, 0.23]

0.09
[0.01, 0.17]

0.15
[0.07, 0.23]

EV Difference -0.01
[-0.02, -0.01]

-0.01
[-0.01, -0.01]

-0.01
[-0.02, -0.01]

-0.01
[-0.01, -0.01]

Numeracy 0.01
[-0.08, 0.11]

-0.03
[-0.13, 0.05]

0.02
[-0.07, 0.11]

-0.04
[-0.13, 0.05]

Self-reported Risk Preference 0
[-0.06, 0.05]

0.01
[-0.03, 0.06]

0
[-0.05, 0.05]

0.01
[-0.03, 0.06]

Problem Type (Complex Safe) × Age Group (Older) -0.05
[-0.25, 0.13]

-0.25
[-0.44, -0.05]

Problem Type (Risky) × Age Group (Older) -0.02
[-0.21, 0.17]

0.01
[-0.18, 0.21]

Response times

(Intercept) 785.74
[225.59, 1337.38]

1277.03
[483.53, 2091.94]

786.83
[260.85, 1335.25]

1351.92
[546.74, 2156.8]

Problem Type (Complex Safe) 1093.15
[927.97, 1261.5]

555.8
[220.05, 887.8]

1054.28
[832.86, 1282.67]

436.21
[-22.29, 900.14]

Problem Type (Risky) 538.8
[375.51, 706.72]

274.21
[-51.18, 608.65]

569.09
[342.51, 797.01]

162.13
[-293.3, 643.44]

Age Group (Older) 340.64
[61.26, 601.76]

411.87
[53.58, 778.87]

325.17
[-5.96, 653.89]

257.5
[-279.37, 803.24]

Higher EV Choice = Higher CV Choice -5.36
[-137.66, 128.9]

-221.86
[-495.13, 59.19]

-4.27
[-133.67, 125.32]

-220.78
[-499.12, 53.19]

EV Difference -13.03
[-19.25, -6.55]

-7.31
[-20.56, 5.55]

-12.93
[-19.27, -6.61]

-7.15
[-20.74, 5.68]

Numeracy 123.38
[5.86, 237.61]

91.47
[-65.31, 251.93]

121.42
[12.24, 239.3]

93.52
[-63.56, 246.04]

Self-reported Risk Preference 46.39
[-14.8, 108.32]

52.7
[-26.57, 134.2]

46.54
[-14.77, 108.01]

53.29
[-31.04, 135.12]

Problem Type (Complex Safe) × Age Group (Older) 84.25
[-242.27, 425.24]

252.31
[-430.76, 898.86]

Problem Type (Risky) × Age Group (Older) -61.61
[-391.07, 276.95]

235.51
[-417.99, 874.47]
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Table A.2: Regression Coefficients and 95% Posterior Intervals From the Mixed-Effects Regression
of Participants’ Responses on the Dominated Choice Problems, Participants’ Responses on the
Complexity Rating Task, and Response Times on the Nondominated Problems, Separately for
Problems in the Gain and Loss Domain, in Study 2

Outcome Variable (Study 2) Main effect model Interaction model
Predictor Gain Loss Gain Loss

Choices on dominated problems

(Intercept) 2.32
[1.77, 2.88]

3.27
[2.42, 4.17]

2.42
[1.83, 3.05]

3.61
[2.58, 4.63]

Problem Type (Complex Safe) -0.83
[-1.08, -0.57]

-1.76
[-2.17, -1.39]

-1.09
[-1.54, -0.66]

-2.2
[-2.99, -1.46]

Problem Type (Risky) -0.7
[-1.04, -0.37]

-1.01
[-1.55, -0.45]

-0.43
[-1.02, 0.19]

-1.05
[-2.03, -0.01]

Age Group (Older) -0.95
[-1.31, -0.61]

-0.94
[-1.48, -0.44]

-1.08
[-1.61, -0.58]

-1.36
[-2.23, -0.49]

EV Difference -0.14
[-0.24, -0.04]

0.05
[-0.11, 0.23]

-0.14
[-0.24, -0.04]

0.06
[-0.12, 0.23]

Numeracy 0.26
[0.11, 0.42]

0.33
[0.1, 0.57]

0.26
[0.1, 0.43]

0.34
[0.11, 0.58]

Problem Type (Complex Safe) × Age Group (Older) 0.41
[-0.11, 0.97]

0.6
[-0.27, 1.5]

Problem Type (Risky) × Age Group (Older) -0.43
[-1.18, 0.26]

0.03
[-1.14, 1.16]

Complexity rating

(Intercept) 2.76
[2.29, 3.24]

3.47
[3.04, 3.91]

2.67
[2.16, 3.17]

3.56
[3.1, 4.01]

Problem Type (Simple Safe Zero) -0.24
[-0.46, -0.01]

-0.52
[-0.75, -0.29]

-0.23
[-0.51, 0.08]

-0.73
[-1.03, -0.43]

Problem Type (Complex Safe) 1.07
[0.89, 1.26]

0.93
[0.74, 1.11]

1.39
[1.14, 1.66]

1.02
[0.77, 1.28]

Problem Type (Complex Safe Zero) 0.15
[-0.08, 0.37]

-0.12
[-0.33, 0.12]

0.27
[-0.01, 0.58]

-0.18
[-0.46, 0.11]

Problem Type (Risky) 0.76
[0.58, 0.94]

0.66
[0.47, 0.85]

0.78
[0.52, 1.04]

0.44
[0.18, 0.71]

Age Group (Older) 0.36
[0.1, 0.64]

0.06
[-0.19, 0.33]

0.55
[0.19, 0.91]

-0.09
[-0.43, 0.26]

Higher EV Choice = Higher CV Choice 0.16
[0.04, 0.27]

-0.1
[-0.22, 0.02]

0.15
[0.03, 0.27]

-0.1
[-0.21, 0.01]

EV Difference -0.02
[-0.02, -0.01]

-0.02
[-0.02, -0.01]

-0.02
[-0.02, -0.01]

-0.02
[-0.02, -0.01]

Numeracy 0.03
[-0.1, 0.15]

0.02
[-0.09, 0.14]

0.03
[-0.1, 0.15]

0.02
[-0.08, 0.13]

Self-reported Risk Preference -0.06
[-0.12, 0]

-0.07
[-0.13, -0.01]

-0.06
[-0.12, 0]

-0.07
[-0.13, -0.02]

Problem Type (Simple Safe Zero) × Age Group (Older) -0.02
[-0.41, 0.35]

0.4
[0.02, 0.77]

Problem Type (Complex Safe) × Age Group (Older) -0.65
[-1.03, -0.28]

-0.16
[-0.54, 0.19]

Problem Type (Complex Safe Zero) × Age Group (Older) -0.25
[-0.62, 0.12]

0.12
[-0.22, 0.49]

Problem Type (Risky) × Age Group (Older) -0.06
[-0.44, 0.31]

0.42
[0.06, 0.78]

Response times

(Intercept) 1074.06
[750.88, 1396.62]

1195.55
[813.02, 1560.83]

1184.61
[881.42, 1518.27]

1291.54
[908.33, 1669.54]

Problem Type (Simple Safe Zero) -253.62
[-342.08, -171.64]

-302.7
[-399.3, -208.82]

-334.65
[-445.1, -222.36]

-349.31
[-472.15, -224.44]

Problem Type (Complex Safe) 1519.59
[1448.89, 1588.87]

1476.37
[1400.92, 1551.19]

1332.06
[1233.68, 1430.31]

1382.79
[1271.32, 1487.44]

Problem Type (Complex Safe Zero) 540.56
[452.49, 627.24]

437.56
[340.52, 533.45]

387.12
[274.84, 497.91]

301.58
[182.15, 421.55]

Problem Type (Risky) 687.64
[619.85, 757.32]

779.19
[703.84, 854.68]

474.54
[372.72, 576.26]

640.93
[536.01, 747.2]

Age Group (Older) 615.15
[406.36, 829.46]

724.44
[520.23, 952.58]

352.85
[125.01, 573.59]

555.69
[308.33, 813.09]

Higher EV Choice = Higher CV Choice 21.83
[-21.56, 65.75]

17.46
[-29.74, 65.31]

22.09
[-21.83, 65.05]

17.03
[-28.99, 63.54]

EV Difference -13.44
[-16.1, -10.73]

-12.99
[-15.96, -10.08]

-13.42
[-16.12, -10.88]

-12.92
[-15.83, -10.02]

Numeracy 46.55
[-42.34, 131.83]

70.13
[-32.07, 170.7]

46.26
[-44.64, 133.8]

74.35
[-25.94, 175.72]

Self-reported Risk Preference -12.05
[-56.9, 32.17]

-9.48
[-61.19, 46.2]

-10.84
[-54.13, 31.21]

-13.01
[-59.74, 36.26]

Problem Type (Simple Safe Zero) × Age Group (Older) 164.55
[23.8, 306.67]

94.08
[-52, 241.34]

Problem Type (Complex Safe) × Age Group (Older) 375.34
[229.5, 512.48]

189.75
[44.57, 344.53]

Problem Type (Complex Safe Zero) × Age Group (Older) 308.72
[171.72, 451.05]

275.09
[129.01, 427.46]

Problem Type (Risky) × Age Group (Older) 427.83
[282.77, 575.83]

276.83
[133.1, 430.14]
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A.2 Analysis of Risky Choice Patterns within Individual

Conditions and Age Groups

Table A.3: Regression Coefficients and 95% Posterior Intervals From the Mixed-Effects Logistic
Regression of Responses in the Risky Choice Task of Study 1, by Condition. Outcome Variable:
Choice of the More Risky Option

Outcome Variable: Choice of Option with Higher Risk (Study 1) Gain Loss
Predictor Simple Safe Complex Safe Risky Simple Safe Complex Safe Risky

(Intercept) -3.12
[-3.74, -2.51]

-1.89
[-2.46, -1.36]

-2.6
[-3.07, -2.15]

-0.48
[-0.9, -0.04]

0.13
[-0.38, 0.65]

-0.34
[-0.71, 0.03]

Age Group (Older) -0.48
[-0.76, -0.18]

0.02
[-0.26, 0.29]

-0.14
[-0.33, 0.06]

0.32
[0.12, 0.52]

0.11
[-0.14, 0.37]

0.04
[-0.13, 0.22]

Higher EV Choice = Higher CV Choice 2.49
[2.28, 2.7]

1.99
[1.8, 2.18]

2.53
[2.34, 2.73]

1.36
[1.19, 1.53]

1.13
[0.96, 1.3]

1.22
[1.06, 1.39]

EV Difference 0.02
[0.01, 0.03]

0.01
[0, 0.01]

0.03
[0.02, 0.04]

0.01
[0, 0.01]

-0.01
[-0.02, 0]

-0.01
[-0.02, 0]

Numeracy 0.28
[0.16, 0.41]

0.15
[0.03, 0.27]

0.05
[-0.04, 0.13]

-0.05
[-0.14, 0.04]

-0.06
[-0.17, 0.05]

0.01
[-0.07, 0.08]

Self-reported Risk Preference 0.03
[-0.04, 0.09]

0.01
[-0.05, 0.07]

0.02
[-0.03, 0.06]

-0.02
[-0.06, 0.03]

-0.01
[-0.07, 0.04]

0.01
[-0.03, 0.05]

Gender (Male) 0.19
[-0.11, 0.5]

0.2
[-0.08, 0.47]

0.17
[-0.03, 0.37]

-0.1
[-0.3, 0.11]

-0.24
[-0.5, 0]

0.04
[-0.13, 0.22]

Table A.4: Regression Coefficients and 95% Posterior Intervals From the Mixed-Effects Logistic
Regression of Responses in the Risky Choice Task of Study 2, by Condition. Outcome Variable:
Choice of the More Risky Option

Outcome Variable: Choice of Option with Higher Risk (Study 2) Gain Loss
Predictor Simple Safe Complex Safe Risky Simple Safe (Zero) Complex Safe (Zero) Simple Safe Complex Safe Risky Simple Safe (Zero) Complex Safe (Zero)

(Intercept) -4.48
[-5.32, -3.66]

-2.77
[-3.41, -2.16]

-2.8
[-3.25, -2.36]

-1.58
[-2.25, -0.9]

-1.31
[-1.95, -0.66]

-0.99
[-1.56, -0.46]

-0.81
[-1.34, -0.31]

-0.91
[-1.45, -0.39]

-1.26
[-1.83, -0.73]

-0.91
[-1.45, -0.38]

Age Group (Older) -0.72
[-1.21, -0.23]

-0.08
[-0.44, 0.26]

-0.3
[-0.51, -0.08]

-0.29
[-0.69, 0.11]

-0.03
[-0.43, 0.38]

-0.06
[-0.41, 0.28]

-0.07
[-0.38, 0.25]

0.16
[-0.12, 0.43]

0.15
[-0.21, 0.49]

-0.08
[-0.43, 0.25]

Higher EV Choice = Higher CV Choice 3.82
[3.52, 4.12]

2.45
[2.23, 2.66]

2.89
[2.67, 3.12]

1.54
[1.34, 1.75]

1.46
[1.26, 1.65]

2.28
[2.09, 2.47]

1.85
[1.68, 2.02]

3.04
[2.76, 3.32]

2.15
[1.93, 2.37]

1.87
[1.67, 2.09]

EV Difference 0.01
[0, 0.03]

0.02
[0.01, 0.03]

0.02
[0.01, 0.03]

-0.63
[-0.72, -0.54]

-0.4
[-0.48, -0.31]

0.01
[0, 0.02]

0
[-0.01, 0.01]

-0.02
[-0.03, 0]

0.01
[0, 0.02]

0
[-0.01, 0.01]

Numeracy 0.23
[0.03, 0.45]

0.08
[-0.08, 0.23]

0.04
[-0.06, 0.13]

0.15
[-0.03, 0.32]

0.1
[-0.06, 0.28]

-0.08
[-0.23, 0.07]

-0.06
[-0.2, 0.08]

0.01
[-0.11, 0.13]

-0.01
[-0.16, 0.13]

-0.03
[-0.18, 0.12]

Self-reported Risk Preference 0.13
[0.03, 0.24]

0.1
[0.03, 0.18]

0.03
[-0.02, 0.08]

0.14
[0.05, 0.23]

0.15
[0.06, 0.24]

0.01
[-0.06, 0.09]

0.02
[-0.05, 0.09]

-0.01
[-0.07, 0.05]

0.04
[-0.03, 0.12]

0.02
[-0.05, 0.1]

Gender (Male) 0.05
[-0.4, 0.51]

0.01
[-0.34, 0.33]

0.16
[-0.06, 0.38]

0.27
[-0.11, 0.65]

0.11
[-0.29, 0.5]

0.19
[-0.14, 0.51]

0.15
[-0.16, 0.45]

-0.18
[-0.46, 0.08]

0.2
[-0.13, 0.52]

0.14
[-0.19, 0.48]

We conducted Bayesian mixed-effects logistic regressions to predict the choice of the more
risky option, within each individual condition, using age group as a fixed effect. The models further
included fixed effects for the EV difference between the options, a dummy variable indicating
whether the option with the higher EV was also more risky, each participant’s numeracy score,
and their self-reported risk preference and gender. The model included a random intercept for
each participant. Results for condition-wise analyses are displayed in Table A.3 for Study 1 and
Table A.4 for Study 2. In choices between simple safe and risky options, older adults were credibly
less risk seeking than younger adults in the domain of gains (both studies) and credibly more risk
seeking than younger adults in the domain of losses (Study 1). In the condition with complex
safe options and the condition with two risky options, there were no credible age differences in
either study. This speaks to our hypothesis that age differences in risk preference are reduced or
eliminated when options are similarly complex.

We also conducted Bayesian mixed-effects logistic regressions to predict the choice of the
more risky option, within each individual age group, using condition as a fixed effect. The models
further included fixed effects for the EV difference between the options, a dummy variable indicating
whether the option with the higher EV was also more risky, each participant’s numeracy score, and
their self-reported risk preference and gender. The model included a random intercept for each
participant. Results for the analyses by age group are displayed in Table A.5. In both studies, older
adults were more likely to choose the more risky option in choices between complex safe and risky
options and in choices between two risky options, compared to choices with simple safe options, in
the domain of gains. In the domain of losses, older adults were less likely to choose the more risky
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Table A.5: Regression Coefficients and 95% Posterior Intervals From the Mixed-Effects Logistic
Regression of Responses in the Risky Choice Task of Study 1 (Upper Table) and Study 2 (Lower
Table), by Age Group. Outcome Variable: Choice of the More Risky Option

Outcome Variable: Choice of Option with Higher Risk (Study 1) Gain Loss
Predictor Young Old Young Old

(Intercept) -2.35
[-2.85, -1.84]

-3.28
[-3.87, -2.7]

-0.46
[-0.85, -0.08]

0.3
[-0.14, 0.73]

Problem Type (Complex Safe) 0.19
[0.01, 0.38]

0.69
[0.49, 0.88]

0.03
[-0.14, 0.2]

-0.16
[-0.33, 0.01]

Problem Type (Risky) 0.06
[-0.13, 0.23]

0.44
[0.24, 0.63]

0.06
[-0.1, 0.23]

-0.24
[-0.4, -0.08]

Higher EV Choice = Higher CV Choice 2.33
[2.17, 2.48]

2.26
[2.09, 2.42]

1.33
[1.19, 1.47]

1.12
[0.98, 1.26]

EV Difference 0.01
[0.01, 0.02]

0.02
[0.01, 0.03]

0
[-0.01, 0]

-0.01
[-0.01, 0]

Numeracy 0.16
[0.07, 0.27]

0.14
[0, 0.27]

0.04
[-0.04, 0.12]

-0.1
[-0.21, -0.01]

Self-reported Risk Preference -0.01
[-0.07, 0.04]

0.06
[-0.01, 0.13]

-0.01
[-0.05, 0.03]

-0.01
[-0.07, 0.05]

Gender (Male) 0.2
[-0.05, 0.42]

0.1
[-0.21, 0.42]

-0.2
[-0.38, -0.01]

-0.02
[-0.25, 0.23]

Outcome Variable: Choice of Option with Higher Risk (Study 2) Gain Loss
Predictor Young Old Young Old

(Intercept) -3.03
[-3.52, -2.52]

-3.05
[-3.67, -2.47]

-0.41
[-0.93, 0.09]

-0.81
[-1.32, -0.28]

Problem Type (Simple Safe Zero) 0.16
[-0.08, 0.4]

0.42
[0.19, 0.66]

-0.42
[-0.65, -0.18]

-0.44
[-0.65, -0.23]

Problem Type (Complex Safe) 0.31
[0.13, 0.5]

0.75
[0.56, 0.94]

-0.07
[-0.27, 0.13]

-0.38
[-0.56, -0.2]

Problem Type (Complex Safe Zero) 0.65
[0.41, 0.88]

1.1
[0.88, 1.34]

-0.42
[-0.65, -0.18]

-0.38
[-0.59, -0.16]

Problem Type (Risky) 0.23
[0.05, 0.43]

0.53
[0.34, 0.72]

-0.16
[-0.35, 0.04]

-0.21
[-0.39, -0.03]

Higher EV Choice = Higher CV Choice 2.4
[2.28, 2.53]

1.77
[1.65, 1.89]

2.46
[2.33, 2.58]

1.97
[1.85, 2.08]

EV Difference 0.01
[0.01, 0.02]

0.01
[0, 0.02]

-0.01
[-0.01, 0]

-0.01
[-0.01, 0]

Numeracy 0.04
[-0.07, 0.17]

0.21
[0.02, 0.42]

-0.14
[-0.27, -0.01]

0.11
[-0.07, 0.29]

Self-reported Risk Preference 0.11
[0.05, 0.18]

0.08
[-0.02, 0.17]

0.01
[-0.06, 0.08]

0.01
[-0.07, 0.09]

Gender (Male) 0.29
[0, 0.59]

-0.09
[-0.48, 0.33]

-0.05
[-0.38, 0.28]

0.27
[-0.08, 0.61]

option in choices between complex safe and risky options (Study 2) and in choices between two
risky options (both studies), compared to the condition with simple safe options. Younger adults’
behavior tended to change in the same directions, but the effects were weaker or not credible. This
further supports the hypothesis that older adults are more sensitive to complexity differences than
younger adults.
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A.3 Analysis of Risky Choice In Choice Problems Offering

A Risky Outcome of Zero

Table A.6: Regression Coefficients and 95% Posterior Intervals from the Bayesian Mixed-Effects
Logistic Regression for Responses in the Risky Choice Task in Study 2. Reference Condition:
Simple Safe Zero

Outcome Variable: Choice of Option with Higher Risk (Study 2, reference simple safe zero) Main effect model Interaction model
Predictor Gain Loss Gain Loss

(Intercept) -2.65
[-3.07, -2.23]

-1.04
[-1.44, -0.64]

-2.64
[-3.06, -2.2]

-1.05
[-1.47, -0.66]

Problem Type (Simple Safe) -0.29
[-0.45, -0.13]

0.43
[0.26, 0.59]

-0.16
[-0.36, 0.05]

0.4
[0.2, 0.6]

Problem Type (Complex Safe) 0.25
[0.08, 0.4]

0.19
[0.03, 0.35]

0.14
[-0.07, 0.34]

0.33
[0.13, 0.53]

Problem Type (Complex Safe Zero) 0.58
[0.46, 0.71]

0.03
[-0.1, 0.16]

0.47
[0.28, 0.64]

0
[-0.18, 0.18]

Problem Type (Risky) 0.09
[-0.07, 0.24]

0.24
[0.08, 0.4]

0.06
[-0.15, 0.27]

0.25
[0.04, 0.44]

Age Group (Older) -0.23
[-0.48, 0.03]

-0.01
[-0.26, 0.24]

-0.28
[-0.59, 0.03]

0.03
[-0.26, 0.34]

Higher EV Choice = Higher CV Choice 2.09
[2, 2.17]

2.2
[2.12, 2.28]

2.09
[2, 2.18]

2.21
[2.12, 2.3]

EV Difference 0.01
[0.01, 0.02]

-0.01
[-0.01, 0]

0.01
[0.01, 0.02]

-0.01
[-0.01, 0]

Numeracy 0.11
[-0.01, 0.22]

-0.04
[-0.15, 0.06]

0.11
[0, 0.22]

-0.04
[-0.15, 0.07]

Self-reported Risk Preference 0.1
[0.04, 0.15]

0.01
[-0.04, 0.07]

0.1
[0.04, 0.16]

0.01
[-0.04, 0.06]

Gender (Male) 0.11
[-0.13, 0.35]

0.13
[-0.12, 0.36]

0.1
[-0.17, 0.36]

0.13
[-0.1, 0.37]

Problem Type (Simple Safe) × Age Group (Older) -0.28
[-0.55, -0.02]

0.06
[-0.2, 0.31]

Problem Type (Complex Safe) × Age Group (Older) 0.22
[-0.05, 0.47]

-0.28
[-0.53, -0.03]

Problem Type (Complex Safe Zero) × Age Group (Older) 0.24
[-0.01, 0.5]

0.07
[-0.19, 0.31]

Problem Type (Risky) × Age Group (Older) 0.06
[-0.21, 0.32]

-0.02
[-0.26, 0.24]

In Study 2, we included two new conditions to test for a positive (negative) interaction
between age and option complexity on the tendency to choose the option with the higher risk when
a risky outcome of zero was available in the domain of gains (losses). To test for these effects, we
conducted Bayesian mixed-effects logistic regressions to predict the choice of the more risky option
in Study 2, using problem type and age group (main effect model) as well as their interaction
(interaction model) as fixed effects. For these models we changed the reference level for the factor
problem type to the simple safe zero condition. The models further included fixed effects for the
EV difference between options, a dummy variable indicating whether the option with the higher
EV was also more risky, each participant’s numeracy score, gender, and their self-reported risk
preference. Coefficients and 95% posterior intervals are displayed in Table A.6. There was no
credible interaction between problem type complex safe zero and age group in either domain. Note
that there were already no age differences in choices between simple safe options and risky options
with zero outcomes (which are more similar in their complexity, compared to choices with simple
safe options and risky options without zero outcomes; cf. Appendix A.2). Hence, rendering the
options even more similar in their complexity, by increasing the complexity of safe options, could
not further reduce the (already absent) age differences in risky choice behavior.
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A.4 Testing the Effect of Certainty on the CPT Parameters

Table A.7: Regression Coefficients From the Regressions on CPT Parameters in Study 1. Reference
Condition: Complex Safe. Reference Age Group: Older Adults

Outcome Variable (Study 1) Gain Loss
Predictor Main effect model Interaction model Main effect model Interaction model

ρ (response noise)

(Intercept) 0.1
[0.09, 0.11]

0.09
[0.07, 0.1]

0.18
[0.16, 0.2]

0.16
[0.14, 0.19]

Age Group (Older) -0.03
[-0.04, -0.02]

-0.01
[-0.02, 0.01]

-0.07
[-0.09, -0.05]

-0.03
[-0.07, 0]

Problem Type (Risky) 0.07
[0.06, 0.08]

0.09
[0.07, 0.11]

0.01
[-0.01, 0.04]

0.03
[0, 0.07]

Problem Type (Risky) × Age Group (Older) -0.04
[-0.07, -0.02]

-0.04
[-0.09, 0.01]

Problem Type (Simple Safe) 0.1
[0.09, 0.11]

0.12
[0.1, 0.13]

0.09
[0.07, 0.12]

0.12
[0.09, 0.16]

Problem Type (Simple Safe) × Age Group (Older) -0.04
[-0.06, -0.01]

-0.06
[-0.11, -0.01]

γ (probability weighting)

(Intercept) 1.21
[1.16, 1.26]

1.22
[1.16, 1.28]

1.17
[1.13, 1.21]

1.07
[1.03, 1.12]

Age Group (Older) -0.06
[-0.11, 0]

-0.08
[-0.17, 0.01]

-0.02
[-0.07, 0.02]

0.17
[0.1, 0.24]

Problem Type (Risky) 0.18
[0.11, 0.24]

0.22
[0.13, 0.31]

0.11
[0.05, 0.16]

0.23
[0.17, 0.3]

Problem Type (Risky) × Age Group (Older) -0.09
[-0.22, 0.03]

-0.26
[-0.36, -0.16]

Problem Type (Simple Safe) -0.44
[-0.5, -0.37]

-0.51
[-0.6, -0.42]

-0.39
[-0.44, -0.34]

-0.23
[-0.3, -0.16]

Problem Type (Simple Safe) × Age Group (Older) 0.16
[0.03, 0.29]

-0.33
[-0.43, -0.23]

α (outcome sensitivity)

(Intercept) 0.96
[0.91, 1.01]

0.93
[0.87, 0.99]

1.11
[1.04, 1.18]

1.14
[1.06, 1.21]

Age Group (Older) -0.1
[-0.15, -0.04]

-0.04
[-0.13, 0.05]

0.02
[-0.05, 0.08]

-0.03
[-0.15, 0.08]

Problem Type (Risky) -0.56
[-0.63, -0.5]

-0.61
[-0.7, -0.52]

-0.4
[-0.48, -0.32]

-0.54
[-0.65, -0.44]

Problem Type (Risky) × Age Group (Older) 0.1
[-0.03, 0.22]

0.29
[0.13, 0.45]

Problem Type (Simple Safe) -0.24
[-0.31, -0.17]

-0.12
[-0.21, -0.03]

0.06
[-0.02, 0.14]

0.12
[0.01, 0.23]

Problem Type (Simple Safe) × Age Group (Older) -0.26
[-0.38, -0.12]

-0.13
[-0.29, 0.02]

We tested the impact of certainty—the factor highlighted by Mather et al., 2012—on the
CPT parameters. In a series of Bayesian GLMs, we used the CPT parameters (ρ, γ, and α) as
outcome variables. In the main effect models, we used the factors age group and problem type
as fixed effects. We specified the complex safe condition as the reference condition for the factor
problem type. The effect of the problem type with two risky options captures the effect of offering
a safe option rather than two risky options, while reducing complexity differences. To further test
whether older adults were more sensitive to the availability of a safe option than younger adults on
either parameter, we calculated a second set of models that also included the interaction between
age group and problem type (interaction models). The coefficients for these models are displayed
in Table A.7 for Study 1 and in Table A.8 for Study 2.

First, we evaluated the results for the effect of certainty on response noise (ρ parameter).
In Study 1, there was a credible positive main effect of problem type (risky) in the domain of gains,
indicating that response noise was lower in the risky condition than in the complex safe condition.
There were no credible main effects of problem type (risky) on the response noise parameter in
the domain of losses in Study 1, and in both domains in Study 2. In Study 1, there was a credible
negative interaction between problem type (risky) and age group in the domain of gains on the
response noise parameter. This indicates that the decrease in response noise in the risky relative
to the complex safe condition was less pronounced in older than in younger adults. The other
interactions were not credible.
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A.4. Testing the Effect of Certainty on the CPT Parameters

Table A.8: Regression Coefficients From the Regressions on CPT Parameters in Study 2. Reference
Condition: Complex Safe. Reference Age Group: Older Adults

Outcome Variable (Study 2) Gain Loss
Predictor Main effect model Interaction model Main effect model Interaction model

ρ (response noise)

(Intercept) 0.17
[0.08, 0.26]

0.14
[0.02, 0.26]

0.17
[0.12, 0.22]

0.11
[0.05, 0.17]

Age Group (Older) -0.14
[-0.22, -0.06]

-0.08
[-0.25, 0.1]

-0.15
[-0.19, -0.11]

-0.03
[-0.12, 0.06]

Problem Type (Complex Safe Zero) 0.51
[0.4, 0.64]

0.44
[0.26, 0.61]

0.43
[0.36, 0.49]

0.4
[0.32, 0.49]

Problem Type (Complex Safe Zero) × Age Group (Older) 0.16
[-0.08, 0.41]

0.04
[-0.08, 0.17]

Problem Type (Risky) 0.01
[-0.12, 0.14]

0.01
[-0.17, 0.18]

0.04
[-0.02, 0.11]

0.07
[-0.02, 0.16]

Problem Type (Risky) × Age Group (Older) 0.01
[-0.24, 0.25]

-0.05
[-0.17, 0.08]

Problem Type (Simple Safe Zero) 1.32
[1.2, 1.45]

1.58
[1.4, 1.74]

0.72
[0.65, 0.79]

0.99
[0.9, 1.08]

Problem Type (Simple Safe Zero) × Age Group (Older) -0.51
[-0.74, -0.26]

-0.56
[-0.68, -0.43]

Problem Type (Simple Safe) 0.08
[-0.05, 0.2]

0.06
[-0.11, 0.23]

0.07
[0, 0.14]

0.1
[0.01, 0.18]

Problem Type (Simple Safe) × Age Group (Older) 0.04
[-0.21, 0.28]

-0.04
[-0.17, 0.08]

γ (probability weighting)

(Intercept) 0.74
[0.68, 0.79]

0.76
[0.69, 0.83]

0.87
[0.83, 0.92]

0.97
[0.92, 1.03]

Age Group (Older) 0.22
[0.18, 0.27]

0.18
[0.08, 0.28]

0.25
[0.22, 0.29]

0.05
[-0.02, 0.13]

Problem Type (Complex Safe Zero) 0.2
[0.13, 0.28]

0.08
[-0.02, 0.18]

0.27
[0.21, 0.33]

-0.05
[-0.12, 0.02]

Problem Type (Complex Safe Zero) × Age Group (Older) 0.25
[0.1, 0.38]

0.63
[0.53, 0.73]

Problem Type (Risky) 0.4
[0.33, 0.47]

0.34
[0.24, 0.44]

0.23
[0.17, 0.29]

0.18
[0.11, 0.26]

Problem Type (Risky) × Age Group (Older) 0.12
[-0.02, 0.26]

0.1
[0, 0.2]

Problem Type (Simple Safe Zero) -0.14
[-0.21, -0.07]

-0.1
[-0.2, 0]

0.02
[-0.04, 0.08]

-0.18
[-0.25, -0.11]

Problem Type (Simple Safe Zero) × Age Group (Older) -0.08
[-0.22, 0.06]

0.4
[0.3, 0.5]

Problem Type (Simple Safe) -0.13
[-0.2, -0.06]

-0.1
[-0.2, 0]

-0.21
[-0.27, -0.15]

-0.15
[-0.22, -0.08]

Problem Type (Simple Safe) × Age Group (Older) -0.06
[-0.2, 0.09]

-0.12
[-0.22, -0.02]

α (outcome sensitivity)

(Intercept) 0.81
[0.76, 0.86]

0.68
[0.62, 0.74]

1.04
[0.98, 1.11]

0.96
[0.88, 1.04]

Age Group (Older) -0.01
[-0.05, 0.03]

0.25
[0.17, 0.34]

0.1
[0.04, 0.15]

0.26
[0.15, 0.37]

Problem Type (Complex Safe Zero) 0.16
[0.09, 0.22]

0.25
[0.16, 0.33]

0.15
[0.07, 0.23]

0.15
[0.04, 0.27]

Problem Type (Complex Safe Zero) × Age Group (Older) -0.19
[-0.31, -0.06]

0
[-0.16, 0.15]

Problem Type (Risky) -0.55
[-0.61, -0.48]

-0.34
[-0.42, -0.25]

-0.26
[-0.34, -0.17]

-0.01
[-0.13, 0.11]

Problem Type (Risky) × Age Group (Older) -0.42
[-0.55, -0.3]

-0.49
[-0.65, -0.33]

Problem Type (Simple Safe Zero) -0.11
[-0.18, -0.05]

0.1
[0.01, 0.18]

0.01
[-0.07, 0.09]

0.11
[0, 0.23]

Problem Type (Simple Safe Zero) × Age Group (Older) -0.42
[-0.54, -0.29]

-0.21
[-0.37, -0.04]

Problem Type (Simple Safe) -0.18
[-0.24, -0.11]

-0.04
[-0.12, 0.05]

-0.14
[-0.23, -0.05]

-0.08
[-0.2, 0.03]

Problem Type (Simple Safe) × Age Group (Older) -0.28
[-0.41, -0.16]

-0.11
[-0.27, 0.05]

Next, we evaluated differences in probability weighting (γ parameter) due to the availabil-
ity of a safe option. In the main effect models for both domains and in both studies, the credible
and positive main effect of problem type (risky) indicates that participants showed more linear
probability weighting in the condition with two risky options than in the condition with a com-
plex safe option. That is, when a safe option was available, probability weighting was less linear,
irrespective of the complexity of the safe option. This indicates an enhanced the overweighting of
certainty, typically assumed to accommodate the certainty effect. Was this effect more pronounced
in older adults? In Study 1, the interaction between age group and problem type (risky) was
not credible for the domain of gains, but credible in the domain of losses. This indicates that in
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the domain of losses the effect of certainty on probability weighting that persists after control-
ling for complexity may be more pronounced in younger (not older) adults. That is, across all
participants we find evidence for a certainty effect on probability weighting beyond the effect of
complexity. Nevertheless, the results do not support Mather et al.’s (2012) notion of an increased
certainty effect in older adults—since only one interaction was credible and pointed in the opposite
direction).

Finally, we evaluated how the availability of a safe option affected outcome sensitivity (α
parameter). The main effect models show a negative effect of problem type (risky) on outcome
sensitivity in both domains and in both studies, indicating that participants’ outcome sensitivity
parameters were lower when both options were risky than when a complex safe option was available.
This effect was less pronounced in older adults in both domains in Study 2 and more pronounced
in older adults in the domain of losses in Study 1, indicated by credible interaction terms. This
indicates that outcome sensitivity may be differently affected by the availability of a safe outcome
in both age groups, but there is no consistent evidence as to the direction of this effect.

In conclusion, these results suggest that the availability of a safe option affects several
aspects of decision making under risk, as reflected by CPT, even after controlling for differences
in the complexity of safe and risky options.
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A.5 Analysis of Decision Quality
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Figure A.4: Empirical and posterior predictive (i.e., predicted by CPT based on the estimated
parameters) decision quality (choice proportions of the option with the higher EV) for the nondom-
inated problems in all conditions and age groups by domain. Error bars indicate 95% confidence
intervals. CPT = cumulative prospect theory.

We tested whether decision quality, that is, the tendency to choose the option with the
higher EV, was associated with the manipulation of option complexity, using the data from the
risky choice task of both Study 1 and Study 2. Empirical choice proportions of the higher EV
option in both domains, age groups, studies, and in all conditions are displayed in Figure A.4.
Figure A.4 also displays the CPT posterior predictive decision quality. As can be seen, the model
reproduces the patterns observed in the data well.

We conducted Bayesian mixed-effect logistic regressions to predict the choice of the option
with the higher EV, using problem type and age group (main effect model) as well as their inter-
action (interaction model) as fixed effects. The models further included fixed effects for the EV
difference between options, a dummy variable indicating whether the option with the higher EV
was also more risky, each participants’ numeracy score, their self-reported risk preference and gen-
der. The model included a random intercept for each participant. Separate models were calculated
for the gain and loss domain, for each study.

We fist evaluate the main effect models: Decision quality did not differ between younger
and older adults in both domains in Study 1 and in the loss domain in Study 2. Older adults’
decision quality was credibly lower in the gain domain in Study 2. In both studies, decision quality
was higher in participants with higher numeracy scores, and in trials with greater EV differences
between the options. In the domain of gains, participants were less likely to choose the option with
the higher EV if it was also the more risky option (reflecting risk aversion in the domain of gains),
in both studies. In the domain of losses, participants were more likely to choose the option with
the higher EV if it was also the more risky option (reflecting risk seeking in the domain of losses),
in both studies. There was no main effect of gender on decision quality, in both studies. Decision
quality decreased when the complexity of the safe option increased, as indicated by credible main
effects of problem type (complex safe) in both domains and in both studies.

The interaction models further show that the effect of option complexity on decision quality
was equally pronounced in both age groups in both studies, as indicated by the interaction effect
between problem type (complex safe) and age group not being credible.
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Table A.9: Regression Coefficients From the Mixed-Effects Logistic Regression of Decision Quality
(Measured as Percentage Choices of the Option With the Higher EV) in the Risky Choice Task

Outcome Variable: Choice of Option with Higher EV (Study 1) Main effect model Interaction model
Predictor Gain Loss Gain Loss

(Intercept) -0.04
[-0.56, 0.44]

-0.17
[-0.67, 0.36]

-0.04
[-0.56, 0.46]

-0.12
[-0.62, 0.39]

Problem Type (Complex Safe) -0.55
[-0.7, -0.4]

-0.62
[-0.78, -0.47]

-0.59
[-0.81, -0.37]

-0.65
[-0.87, -0.42]

Problem Type (Risky) 0.16
[0, 0.31]

-0.08
[-0.25, 0.08]

0.14
[-0.08, 0.37]

-0.22
[-0.46, 0.01]

Age Group (Older) -0.15
[-0.4, 0.09]

-0.2
[-0.45, 0.05]

-0.18
[-0.49, 0.12]

-0.31
[-0.62, 0.02]

Higher EV Choice = Higher CV Choice -1.13
[-1.26, -1]

0.38
[0.25, 0.5]

-1.13
[-1.26, -1]

0.38
[0.24, 0.51]

EV Difference 0.08
[0.07, 0.08]

0.06
[0.05, 0.06]

0.08
[0.07, 0.08]

0.06
[0.05, 0.06]

Numeracy 0.34
[0.23, 0.45]

0.37
[0.26, 0.48]

0.34
[0.24, 0.45]

0.37
[0.26, 0.48]

Self-reported Risk Preference -0.01
[-0.06, 0.05]

-0.02
[-0.07, 0.04]

-0.01
[-0.06, 0.05]

-0.02
[-0.07, 0.04]

Gender (Male) 0.23
[-0.02, 0.5]

0.22
[-0.03, 0.48]

0.23
[-0.03, 0.49]

0.22
[-0.04, 0.47]

Problem Type (Complex Safe) × Age Group (Older) 0.07
[-0.22, 0.36]

0.05
[-0.25, 0.36]

Problem Type (Risky) × Age Group (Older) 0.02
[-0.29, 0.32]

0.27
[-0.05, 0.59]

Outcome Variable: Choice of Option with Higher EV (Study 2) Main effect model Interaction model
Predictor Gain Loss Gain Loss

(Intercept) 0.49
[0.16, 0.81]

0.11
[-0.2, 0.42]

0.67
[0.31, 1.01]

0.31
[-0.02, 0.64]

Problem Type (Simple Safe Zero) 0.19
[0.03, 0.35]

0.07
[-0.09, 0.23]

-0.12
[-0.33, 0.09]

-0.28
[-0.5, -0.06]

Problem Type (Complex Safe) -0.19
[-0.34, -0.06]

-0.39
[-0.53, -0.25]

-0.18
[-0.4, 0.03]

-0.44
[-0.66, -0.22]

Problem Type (Complex Safe Zero) 0.35
[0.18, 0.5]

0.05
[-0.1, 0.22]

-0.02
[-0.23, 0.19]

-0.29
[-0.52, -0.08]

Problem Type (Risky) 0.11
[-0.04, 0.26]

0.07
[-0.08, 0.22]

0.04
[-0.18, 0.26]

0.01
[-0.22, 0.24]

Age Group (Older) -0.32
[-0.51, -0.14]

-0.17
[-0.34, 0.01]

-0.67
[-0.93, -0.39]

-0.54
[-0.82, -0.28]

Higher EV Choice = Higher CV Choice -1.31
[-1.4, -1.22]

0.31
[0.23, 0.39]

-1.31
[-1.4, -1.23]

0.31
[0.23, 0.39]

EV Difference 0.06
[0.05, 0.06]

0.06
[0.05, 0.06]

0.06
[0.05, 0.06]

0.06
[0.05, 0.06]

Numeracy 0.14
[0.06, 0.22]

0.14
[0.07, 0.22]

0.14
[0.06, 0.22]

0.15
[0.07, 0.22]

Self-reported Risk Preference 0.04
[0, 0.08]

0
[-0.04, 0.03]

0.04
[0, 0.08]

0
[-0.04, 0.03]

Gender (Male) 0.22
[0.03, 0.4]

0.01
[-0.16, 0.18]

0.22
[0.04, 0.4]

0.01
[-0.15, 0.18]

Problem Type (Simple Safe Zero) × Age Group (Older) 0.61
[0.35, 0.88]

0.67
[0.39, 0.93]

Problem Type (Complex Safe) × Age Group (Older) -0.02
[-0.3, 0.26]

0.08
[-0.21, 0.36]

Problem Type (Complex Safe Zero) × Age Group (Older) 0.7
[0.44, 0.96]

0.67
[0.4, 0.93]

Problem Type (Risky) × Age Group (Older) 0.13
[-0.15, 0.42]

0.11
[-0.2, 0.4]
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A.6 Posterior Predictives for GLMER Analyses of Risk

Attitude

How well did the Bayesian GLMER analyses of risky choice capture the data? A Bayesian analogue
to the frequentist testing of overall model significance is inspecting posterior predictives. If posterior
predictives resemble the behavioral patterns found in the data closely, a good fit can be inferred
(Gabry et al., 2019). Hence, we assess fit for our GLMER analyses (cf. Table 2.4) of risky choice
behavior by comparing empirical choice behavior to posterior predictive choice behavior generated
from the posterior parameter estimates. Posterior predictives were generated both for the main
effect models and interaction models reported in the main text, using the posterior_predict()
function in rstanarm.
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Figure A.5: Empirical and posterior predictive (i.e., predicted from the GLMERs on risk attitude
based on the estimated parameters) choice proportions for the nondominated problems in all
conditions and age groups by domain. Error bars indicate 95% confidence intervals.

As can be seen, the Bayesian GLMER Models for both studies and domains capture the
empirical data to a high degree, indicating good fit. Comparing the posterior predictives from
the main effect model (which includes fixed predictors for age group and condition, but not their
interaction) to those from the interaction model (which includes the interaction between age group
and condition) highlights that the interaction term crucially contributes to the models’ ability to
capture the key regularities found in the data. This can be interpreted as further evidence for the
necessity to account for age differences in the response to option complexity.
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A.7 Screenshots and Timeline for the Risky Choice Task

Figure A.6: Screenshots and timelines for the risky choice task in both studies. In Study 1,
participants made self-paced choices with frames for individual trials immediately succeeding each
other. In Study 2, individual trials were separated by a fixation period. The verbal prompt for
each choice problem was “Please indicate which lottery you prefer and how confident you are in
this preference” in Study 1 and the German equivalent “Welche Lotterie würden Sie lieber spielen
und wie sicher sind Sie sich?” in Study 2.

Figure A.6 displays screenshots and timelines for the risky choice task in both studies.
The verbal prompt for each choice problem was “Please indicate which gamble you prefer and
how confident you are in this preference” in Study 1 and the German equivalent “Welche Lotterie
würden Sie lieber spielen und wie sicher sind Sie sich?” in Study 2. Slight deviations in format
(e.g., font, boldface) are due to programming the studies in Unipark and PsychoPy, respectively.
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A.8 CPT Parameter Recovery
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Figure A.7: Recovery of all CPT parameters for the choice problems used in the different conditions.
The green points and blue crosses mark the mean and median recovered parameter value across
all synthetic data. The dashed diagonal marks the parameter estimates expected under perfect
parameter recovery.

To measure and disentangle different candidate mechanisms potentially underlying the
effect of option complexity on age differences in risky choice, we used CPT as a computational
modeling framework. In order to make valid inferences based on this approach CPT estimates
need to be able to accurately distinguish the influence of the different model parameters on choice.
Whether this requirement is fulfilled can be tested via parameter recovery. Several previous studies
have shown that CPT parameters can be recovered robustly (Broomell & Bhatia, 2014; Glöckner
et al., 2016; Kellen et al., 2016; Nilsson et al., 2011), especially when using large and diverse sets of
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choice problems (Broomell & Bhatia, 2014; Kellen et al., 2016) and when relying on the hierarchical
Bayesian framework (Kellen et al., 2017; Nilsson et al., 2011). Both of these conditions are met
in our experiments and analyses. In particular, the hierarchical Bayesian approach to estimating
CPT parameters has been found preferable to maximum likelihood estimation (MLE), in recovering
parameter values more accurately and with less variability (Nilsson et al., 2011; see also Murphy
and ten Brincke). The hierarchical approach is particularly powerful since it exploits statistical
regularities of nested experimental data: On top of the information provided by each individual it
exploits population level information.

To test whether CPT parameters can also be recovered properly when our implementation
of CPT is applied to the set of choice problems used in our experiments, we conducted parameter
recovery analyses with this material. Specifically, we varied the three parameters of CPT within a
range of reasonable settings: γ and α were varied within [0.20, 0.65, 1.10, 1.55, 2.00] and ρ was varied
within [0.0100, 0.0825, 0.1550, 0.2275, 0.3000]. The five possible settings for all three parameters
were fully permuted with each other, resulting in 5 × 5 × 5 = 125 parameter sets. For each
parameter set, we first generated choices with CPT for 80 synthetic participants, for each of the
conditions of the risky choice task of Study 2 (which include also the replicated conditions that
already were part of Study 1). We then applied the same hierarchical Bayesian implementation of
CPT used for the analyses presented in the main text to each of the resulting 125 simulated choice
sets.

To what extent did the resulting parameter estimates recover the specific parameter values
that were used to generate the choices? Figure A.7 displays the mean and median of the average
individual-level recovered posterior distributions, separately for all three parameters, both domains,
and five conditions. The dashed diagonal marks the parameter estimates expected under perfect
parameter recovery. As can be seen, the recovered parameter values closely follow this diagonal
for all parameters. This supports the adequacy of our computational modeling approach and the
choice problems used to detect and disentangle the mechanisms assumed in CPT. The recovery
shows that it is unlikely that the empirical choice patterns were generated by a different parameter
configuration of CPT than the one identified by our modeling approach.
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A.9 Choice Proportions by Problem

Table A.10: Individual Choice Problems and Proportions of the Risky Option in Younger and
Older Adults for Study 1 (Gains). Choice proportion of the Risky Option in Younger adults:
%risky YA. Choice proportion of the Risky Option in Older adults: %risky OA

pA1 pA2 oA1 oA2 pB1 pB2 oB1 oB2 oB1 (formatted) Condition Domain %risky YA %risky OA
0.02 0.98 98 57 1.00 0.00 91 0.00 (0.7 97) + (0.377) Complex Safe gain 0.07 0.22
0.03 0.97 51 88 1.00 0.00 67 0.00 (0.07 91) + (0.9365) Complex Safe gain 0.79 0.74
0.03 0.97 92 70 1.00 0.00 91 0.00 (0.81 99) + (0.1957) Complex Safe gain 0.22 0.16
0.16 0.84 23 97 1.00 0.00 55 0.00 (0.12 17) + (0.8860) Complex Safe gain 0.83 0.70
0.17 0.83 13 72 1.00 0.00 37 0.00 (0.96 35) + (0.0485) Complex Safe gain 0.77 0.72
0.17 0.83 96 37 1.00 0.00 82 0.00 (0.08 52) + (0.9285) Complex Safe gain 0.06 0.08
0.18 0.82 96 34 1.00 0.00 51 0.00 (0.38 12) + (0.6275) Complex Safe gain 0.50 0.54
0.19 0.81 25 95 1.00 0.00 47 0.00 (0.03 49) + (0.9747) Complex Safe gain 0.82 0.75
0.39 0.61 79 20 1.00 0.00 52 0.00 (0.44 71) + (0.5637) Complex Safe gain 0.07 0.16
0.43 0.57 77 79 1.00 0.00 75 0.00 (0.03 53) + (0.9776) Complex Safe gain 0.66 0.58
0.45 0.55 53 97 1.00 0.00 65 0.00 (0.68 69) + (0.3257) Complex Safe gain 0.65 0.62
0.45 0.55 66 17 1.00 0.00 64 0.00 (0.68 67) + (0.3258) Complex Safe gain 0.07 0.07
0.46 0.54 4 85 1.00 0.00 39 0.00 (0.67 21) + (0.3376) Complex Safe gain 0.39 0.33
0.47 0.53 43 85 1.00 0.00 77 0.00 (0.04 19) + (0.9679) Complex Safe gain 0.48 0.45
0.72 0.28 64 68 1.00 0.00 60 0.00 (0.16 57) + (0.8461) Complex Safe gain 0.78 0.66
0.73 0.27 39 83 1.00 0.00 45 0.00 (0.74 59) + (0.265) Complex Safe gain 0.51 0.53
0.77 0.23 40 97 1.00 0.00 83 0.00 (0.22 78) + (0.7884) Complex Safe gain 0.15 0.17
0.91 0.09 94 38 1.00 0.00 56 0.00 (0.27 5) + (0.7375) Complex Safe gain 0.85 0.87
0.02 0.98 96 55 0.70 0.30 95 75.00 0 Risky gain 0.89 0.91
0.03 0.97 53 90 0.07 0.93 93 67.00 0 Risky gain 0.06 0.04
0.03 0.97 88 66 0.81 0.19 95 53.00 0 Risky gain 0.84 0.72
0.16 0.84 19 93 0.12 0.88 13 56.00 0 Risky gain 0.99 0.99
0.17 0.83 11 70 0.96 0.04 33 83.00 0 Risky gain 0.88 0.76
0.17 0.83 98 39 0.08 0.92 54 87.00 0 Risky gain 0.04 0.05
0.18 0.82 94 32 0.38 0.62 10 73.00 0 Risky gain 0.59 0.50
0.19 0.81 23 93 0.03 0.97 47 45.00 0 Risky gain 0.87 0.79
0.39 0.61 77 18 0.44 0.56 69 35.00 0 Risky gain 0.10 0.11
0.43 0.57 75 77 0.03 0.97 51 74.00 0 Risky gain 0.32 0.39
0.45 0.55 55 99 0.68 0.32 71 59.00 0 Risky gain 0.77 0.64
0.45 0.55 64 15 0.68 0.32 65 56.00 0 Risky gain 0.01 0.03
0.46 0.54 6 87 0.67 0.33 23 78.00 0 Risky gain 0.35 0.36
0.47 0.53 45 87 0.04 0.96 21 81.00 0 Risky gain 0.22 0.17
0.72 0.28 66 70 0.16 0.84 59 63.00 0 Risky gain 0.84 0.80
0.73 0.27 35 79 0.74 0.26 55 1.00 0 Risky gain 0.18 0.25
0.77 0.23 42 99 0.22 0.78 80 86.00 0 Risky gain 0.06 0.07
0.91 0.09 96 40 0.27 0.73 7 77.00 0 Risky gain 0.01 0.00
0.02 0.98 100 59 1.00 0.00 93 0.00 0 Simple Safe gain 0.01 0.00
0.03 0.97 55 92 1.00 0.00 71 0.00 0 Simple Safe gain 0.82 0.75
0.03 0.97 90 68 1.00 0.00 89 0.00 0 Simple Safe gain 0.02 0.00
0.16 0.84 21 95 1.00 0.00 53 0.00 0 Simple Safe gain 0.83 0.71
0.17 0.83 15 74 1.00 0.00 39 0.00 0 Simple Safe gain 0.80 0.75
0.17 0.83 94 35 1.00 0.00 80 0.00 0 Simple Safe gain 0.04 0.00
0.18 0.82 92 30 1.00 0.00 47 0.00 0 Simple Safe gain 0.38 0.17
0.19 0.81 27 97 1.00 0.00 49 0.00 0 Simple Safe gain 0.84 0.67
0.39 0.61 75 16 1.00 0.00 48 0.00 0 Simple Safe gain 0.18 0.08
0.43 0.57 73 75 1.00 0.00 71 0.00 0 Simple Safe gain 0.73 0.66
0.45 0.55 51 95 1.00 0.00 63 0.00 0 Simple Safe gain 0.76 0.53
0.45 0.55 62 13 1.00 0.00 60 0.00 0 Simple Safe gain 0.05 0.00
0.46 0.54 8 89 1.00 0.00 43 0.00 0 Simple Safe gain 0.32 0.21
0.47 0.53 41 83 1.00 0.00 75 0.00 0 Simple Safe gain 0.02 0.03
0.72 0.28 68 72 1.00 0.00 64 0.00 0 Simple Safe gain 0.68 0.58
0.73 0.27 37 81 1.00 0.00 43 0.00 0 Simple Safe gain 0.71 0.49
0.77 0.23 38 95 1.00 0.00 81 0.00 0 Simple Safe gain 0.02 0.01
0.91 0.09 98 42 1.00 0.00 60 0.00 0 Simple Safe gain 0.89 0.80
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Table A.11: Individual Choice Problems and Proportions of the Risky Option in Younger and
Older Adults for Study 1 (Losses). Choice proportion of the Risky Option in Younger adults:
%risky YA. Choice proportion of the Risky Option in Older adults: %risky OA

pA1 pA2 oA1 oA2 pB1 pB2 oB1 oB2 oB1 (formatted) Condition Domain %risky YA %risky OA
0.02 0.98 -100 -59 1.00 0.00 -93 0.00 (0.7 99) + (0.379) Complex Safe loss 0.84 0.78
0.03 0.97 -92 -70 1.00 0.00 -91 0.00 (0.81 99) + (0.1957) Complex Safe loss 0.85 0.82
0.03 0.97 -51 -88 1.00 0.00 -67 0.00 (0.07 91) + (0.9365) Complex Safe loss 0.16 0.20
0.16 0.84 -21 -95 1.00 0.00 -53 0.00 (0.12 15) + (0.8858) Complex Safe loss 0.15 0.22
0.17 0.83 -94 -35 1.00 0.00 -80 0.00 (0.08 50) + (0.9283) Complex Safe loss 0.89 0.88
0.17 0.83 -13 -72 1.00 0.00 -37 0.00 (0.96 35) + (0.0485) Complex Safe loss 0.21 0.29
0.18 0.82 -96 -34 1.00 0.00 -51 0.00 (0.38 12) + (0.6275) Complex Safe loss 0.68 0.68
0.19 0.81 -27 -97 1.00 0.00 -49 0.00 (0.03 51) + (0.9749) Complex Safe loss 0.10 0.28
0.39 0.61 -79 -20 1.00 0.00 -52 0.00 (0.44 71) + (0.5637) Complex Safe loss 0.79 0.80
0.44 0.56 -72 -70 1.00 0.00 -74 0.00 (0.46 73) + (0.5475) Complex Safe loss 0.74 0.75
0.45 0.55 -62 -13 1.00 0.00 -60 0.00 (0.68 63) + (0.3254) Complex Safe loss 0.89 0.88
0.45 0.55 -53 -97 1.00 0.00 -65 0.00 (0.68 69) + (0.3257) Complex Safe loss 0.28 0.30
0.46 0.54 -4 -85 1.00 0.00 -39 0.00 (0.67 21) + (0.3376) Complex Safe loss 0.48 0.50
0.47 0.53 -41 -83 1.00 0.00 -75 0.00 (0.04 17) + (0.9677) Complex Safe loss 0.78 0.76
0.68 0.32 -66 -60 1.00 0.00 -69 0.00 (0.02 67) + (0.9869) Complex Safe loss 0.80 0.82
0.73 0.27 -35 -79 1.00 0.00 -41 0.00 (0.74 55) + (0.261) Complex Safe loss 0.30 0.46
0.77 0.23 -42 -99 1.00 0.00 -85 0.00 (0.22 80) + (0.7886) Complex Safe loss 0.76 0.72
0.91 0.09 -96 -40 1.00 0.00 -58 0.00 (0.27 7) + (0.7377) Complex Safe loss 0.10 0.21
0.02 0.98 -98 -57 0.70 0.30 -97 -77.00 0 Risky loss 0.09 0.11
0.03 0.97 -88 -66 0.81 0.19 -95 -53.00 0 Risky loss 0.12 0.24
0.03 0.97 -53 -90 0.07 0.93 -93 -67.00 0 Risky loss 0.89 0.86
0.16 0.84 -23 -97 0.12 0.88 -17 -60.00 0 Risky loss 0.04 0.01
0.17 0.83 -96 -37 0.08 0.92 -52 -85.00 0 Risky loss 0.91 0.91
0.17 0.83 -11 -70 0.96 0.04 -33 -83.00 0 Risky loss 0.12 0.11
0.18 0.82 -92 -30 0.38 0.62 -8 -71.00 0 Risky loss 0.40 0.38
0.19 0.81 -25 -95 0.03 0.97 -49 -47.00 0 Risky loss 0.04 0.11
0.39 0.61 -75 -16 0.44 0.56 -67 -33.00 0 Risky loss 0.82 0.80
0.44 0.56 -74 -72 0.46 0.54 -75 -77.00 0 Risky loss 0.94 0.91
0.45 0.55 -64 -15 0.68 0.32 -65 -56.00 0 Risky loss 0.93 0.95
0.45 0.55 -55 -99 0.68 0.32 -71 -59.00 0 Risky loss 0.21 0.16
0.46 0.54 -8 -89 0.67 0.33 -25 -80.00 0 Risky loss 0.39 0.47
0.47 0.53 -45 -87 0.04 0.96 -21 -81.00 0 Risky loss 0.85 0.87
0.68 0.32 -62 -56 0.02 0.98 -63 -65.00 0 Risky loss 0.93 0.92
0.73 0.27 -37 -81 0.74 0.26 -57 -3.00 0 Risky loss 0.72 0.67
0.77 0.23 -40 -97 0.22 0.78 -78 -84.00 0 Risky loss 0.90 0.87
0.91 0.09 -94 -38 0.27 0.73 -5 -75.00 0 Risky loss 0.95 1.00
0.02 0.98 -96 -55 1.00 0.00 -89 0.00 0 Simple Safe loss 0.96 0.93
0.03 0.97 -90 -68 1.00 0.00 -89 0.00 0 Simple Safe loss 0.98 1.00
0.03 0.97 -55 -92 1.00 0.00 -71 0.00 0 Simple Safe loss 0.10 0.17
0.16 0.84 -19 -93 1.00 0.00 -51 0.00 0 Simple Safe loss 0.06 0.18
0.17 0.83 -98 -39 1.00 0.00 -84 0.00 0 Simple Safe loss 0.95 0.97
0.17 0.83 -15 -74 1.00 0.00 -39 0.00 0 Simple Safe loss 0.11 0.28
0.18 0.82 -94 -32 1.00 0.00 -49 0.00 0 Simple Safe loss 0.55 0.62
0.19 0.81 -23 -93 1.00 0.00 -45 0.00 0 Simple Safe loss 0.13 0.21
0.39 0.61 -77 -18 1.00 0.00 -50 0.00 0 Simple Safe loss 0.84 0.91
0.44 0.56 -76 -74 1.00 0.00 -78 0.00 0 Simple Safe loss 0.95 0.97
0.45 0.55 -66 -17 1.00 0.00 -64 0.00 0 Simple Safe loss 0.98 0.97
0.45 0.55 -51 -95 1.00 0.00 -63 0.00 0 Simple Safe loss 0.11 0.25
0.46 0.54 -6 -87 1.00 0.00 -41 0.00 0 Simple Safe loss 0.30 0.47
0.47 0.53 -43 -85 1.00 0.00 -77 0.00 0 Simple Safe loss 0.83 0.95
0.68 0.32 -64 -58 1.00 0.00 -67 0.00 0 Simple Safe loss 0.90 0.92
0.73 0.27 -39 -83 1.00 0.00 -45 0.00 0 Simple Safe loss 0.20 0.34
0.77 0.23 -38 -95 1.00 0.00 -81 0.00 0 Simple Safe loss 0.96 0.95
0.91 0.09 -98 -42 1.00 0.00 -60 0.00 0 Simple Safe loss 0.09 0.14
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Table A.12: Individual Choice Problems and Proportions of the Risky Option in Younger and
Older Adults for Study 2 (Gains). Choice proportion of the Risky Option in Younger adults:
%risky YA. Choice proportion of the Risky Option in Older adults: %risky OA

pA1 pA2 oA1 oA2 pB1 pB2 oB1 oB2 oB1 (formatted) Condition Domain %risky YA %risky OA
0.02 0.98 98.00 57 1.00 0.00 91.00 0.00 (0.7 x 97) + (0.3 x 77) Complex Safe gain 0.17 0.28
0.03 0.97 51.00 88 1.00 0.00 66.82 0.00 (0.07 x 91) + (0.93 x 65) Complex Safe gain 0.85 0.64
0.03 0.97 92.00 70 1.00 0.00 91.02 0.00 (0.81 x 99) + (0.19 x 57) Complex Safe gain 0.09 0.24
0.16 0.84 23.00 97 1.00 0.00 54.84 0.00 (0.12 x 17) + (0.88 x 60) Complex Safe gain 0.72 0.59
0.17 0.83 13.00 72 1.00 0.00 37.00 0.00 (0.96 x 35) + (0.04 x 85) Complex Safe gain 0.85 0.64
0.17 0.83 96.00 37 1.00 0.00 82.36 0.00 (0.08 x 52) + (0.92 x 85) Complex Safe gain 0.05 0.20
0.18 0.82 96.00 34 1.00 0.00 51.06 0.00 (0.38 x 12) + (0.62 x 75) Complex Safe gain 0.34 0.39
0.19 0.81 25.00 95 1.00 0.00 47.06 0.00 (0.03 x 49) + (0.97 x 47) Complex Safe gain 0.81 0.68
0.39 0.61 79.00 20 1.00 0.00 51.96 0.00 (0.44 x 71) + (0.56 x 37) Complex Safe gain 0.15 0.24
0.43 0.56 77.00 79 1.00 0.00 75.31 0.00 (0.03 x 53) + (0.97 x 76) Complex Safe gain 0.70 0.42
0.45 0.55 53.00 97 1.00 0.00 65.16 0.00 (0.68 x 69) + (0.32 x 57) Complex Safe gain 0.70 0.45
0.45 0.55 66.00 17 1.00 0.00 64.12 0.00 (0.68 x 67) + (0.32 x 58) Complex Safe gain 0.03 0.12
0.46 0.54 4.00 85 1.00 0.00 39.15 0.00 (0.67 x 21) + (0.33 x 76) Complex Safe gain 0.30 0.33
0.47 0.53 43.00 85 1.00 0.00 76.60 0.00 (0.04 x 19) + (0.96 x 79) Complex Safe gain 0.12 0.21
0.72 0.28 64.00 68 1.00 0.00 60.36 0.00 (0.16 x 57) + (0.84 x 61) Complex Safe gain 0.84 0.57
0.73 0.27 39.00 83 1.00 0.00 44.96 0.00 (0.74 x 59) + (0.26 x 5) Complex Safe gain 0.62 0.53
0.77 0.23 40.00 97 1.00 0.00 82.68 0.00 (0.22 x 78) + (0.78 x 84) Complex Safe gain 0.10 0.21
0.91 0.09 94.00 38 1.00 0.00 56.10 0.00 (0.27 x 5) + (0.73 x 75) Complex Safe gain 0.91 0.75
0.01 0.99 80.00 0 1.00 0.00 0.98 0.00 (0.86 x 0) + (0.14 x 7) Complex Safe Zero gain 0.56 0.40
0.01 0.99 100.00 0 1.00 0.00 0.84 0.00 (0.58 x 0) + (0.42 x 2) Complex Safe Zero gain 0.62 0.51
0.05 0.95 16.00 0 1.00 0.00 0.95 0.00 (0.81 x 0) + (0.19 x 5) Complex Safe Zero gain 0.45 0.44
0.05 0.95 20.00 0 1.00 0.00 0.75 0.00 (0.85 x 0) + (0.15 x 5) Complex Safe Zero gain 0.62 0.49
0.10 0.90 8.00 0 1.00 0.00 0.97 0.00 (0.03 x 0) + (0.97 x 1) Complex Safe Zero gain 0.68 0.56
0.10 0.90 10.00 0 1.00 0.00 0.80 0.00 (0.6 x 0) + (0.4 x 2) Complex Safe Zero gain 0.71 0.61
0.20 0.80 50.00 0 1.00 0.00 12.48 0.00 (0.74 x 0) + (0.26 x 48) Complex Safe Zero gain 0.21 0.21
0.20 0.80 62.50 0 1.00 0.00 10.01 0.00 (0.09 x 0) + (0.91 x 11) Complex Safe Zero gain 0.49 0.40
0.40 0.60 25.00 0 1.00 0.00 12.48 0.00 (0.61 x 0) + (0.39 x 32) Complex Safe Zero gain 0.12 0.24
0.40 0.60 31.25 0 1.00 0.00 10.00 0.00 (0.98 x 0) + (0.02 x 500) Complex Safe Zero gain 0.49 0.41
0.60 0.40 16.67 0 1.00 0.00 12.46 0.00 (0.86 x 0) + (0.14 x 89) Complex Safe Zero gain 0.21 0.26
0.60 0.40 20.83 0 1.00 0.00 9.96 0.00 (0.17 x 0) + (0.83 x 12) Complex Safe Zero gain 0.51 0.50
0.80 0.20 12.50 0 1.00 0.00 12.50 0.00 (0.75 x 0) + (0.25 x 50) Complex Safe Zero gain 0.06 0.11
0.80 0.20 15.62 0 1.00 0.00 10.00 0.00 (0.9 x 0) + (0.1 x 100) Complex Safe Zero gain 0.57 0.59
0.90 0.10 11.11 0 1.00 0.00 12.50 0.00 (0.98 x 0) + (0.02 x 625) Complex Safe Zero gain 0.20 0.25
0.90 0.10 13.89 0 1.00 0.00 9.99 0.00 (0.63 x 0) + (0.37 x 27) Complex Safe Zero gain 0.59 0.68
0.95 0.05 10.53 0 1.00 0.00 12.53 0.00 (0.93 x 0) + (0.07 x 179) Complex Safe Zero gain 0.25 0.29
0.95 0.05 13.16 0 1.00 0.00 10.01 0.00 (0.09 x 0) + (0.91 x 11) Complex Safe Zero gain 0.56 0.64
0.99 0.01 10.10 0 1.00 0.00 12.47 0.00 (0.57 x 0) + (0.43 x 29) Complex Safe Zero gain 0.14 0.24
0.99 0.01 12.63 0 1.00 0.00 10.01 0.00 (0.23 x 0) + (0.77 x 13) Complex Safe Zero gain 0.70 0.78
0.02 0.98 96.00 55 0.70 0.30 95.00 75.00 95 Risky gain 0.95 0.64
0.03 0.97 53.00 90 0.07 0.93 93.00 67.00 93 Risky gain 0.09 0.15
0.03 0.97 88.00 66 0.81 0.19 95.00 53.00 95 Risky gain 0.82 0.59
0.16 0.84 19.00 93 0.12 0.88 13.00 56.00 13 Risky gain 0.96 0.85
0.17 0.83 11.00 70 0.96 0.04 33.00 83.00 33 Risky gain 0.81 0.66
0.17 0.83 98.00 39 0.08 0.92 54.00 87.00 54 Risky gain 0.00 0.04
0.18 0.82 94.00 32 0.38 0.62 10.00 73.00 10 Risky gain 0.47 0.36
0.19 0.81 23.00 93 0.03 0.97 47.00 45.00 47 Risky gain 0.88 0.68
0.39 0.61 77.00 18 0.44 0.56 69.00 35.00 69 Risky gain 0.05 0.10
0.43 0.56 75.00 77 0.03 0.97 51.00 74.00 51 Risky gain 0.19 0.46
0.45 0.55 55.00 99 0.68 0.32 71.00 59.00 71 Risky gain 0.71 0.65
0.45 0.55 64.00 15 0.68 0.32 65.00 56.00 65 Risky gain 0.01 0.05
0.46 0.54 6.00 87 0.67 0.33 23.00 78.00 23 Risky gain 0.29 0.35
0.47 0.53 45.00 87 0.04 0.96 21.00 81.00 21 Risky gain 0.39 0.26
0.72 0.28 66.00 70 0.16 0.84 59.00 63.00 59 Risky gain 0.91 0.64
0.73 0.27 35.00 79 0.74 0.26 55.00 1.00 55 Risky gain 0.16 0.31
0.77 0.23 42.00 99 0.22 0.78 80.00 86.00 80 Risky gain 0.00 0.07
0.91 0.09 96.00 40 0.27 0.73 7.00 77.00 7 Risky gain 0.00 0.05
0.02 0.98 100.00 59 1.00 0.00 93.00 0.00 93 Simple Safe gain 0.00 0.03
0.03 0.97 55.00 92 1.00 0.00 71.00 0.00 71 Simple Safe gain 0.78 0.65
0.03 0.97 90.00 68 1.00 0.00 89.00 0.00 89 Simple Safe gain 0.01 0.05
0.16 0.84 21.00 95 1.00 0.00 53.00 0.00 53 Simple Safe gain 0.68 0.51
0.17 0.83 15.00 74 1.00 0.00 39.00 0.00 39 Simple Safe gain 0.74 0.60
0.17 0.83 94.00 35 1.00 0.00 80.00 0.00 80 Simple Safe gain 0.01 0.04
0.18 0.82 92.00 30 1.00 0.00 47.00 0.00 47 Simple Safe gain 0.29 0.23
0.19 0.81 27.00 97 1.00 0.00 49.00 0.00 49 Simple Safe gain 0.78 0.50
0.39 0.61 75.00 16 1.00 0.00 48.00 0.00 48 Simple Safe gain 0.07 0.07
0.43 0.56 73.00 75 1.00 0.00 71.00 0.00 71 Simple Safe gain 0.76 0.47
0.45 0.55 51.00 95 1.00 0.00 63.00 0.00 63 Simple Safe gain 0.79 0.42
0.45 0.55 62.00 13 1.00 0.00 60.00 0.00 60 Simple Safe gain 0.01 0.03
0.46 0.54 8.00 89 1.00 0.00 43.00 0.00 43 Simple Safe gain 0.25 0.19
0.47 0.53 41.00 83 1.00 0.00 75.00 0.00 75 Simple Safe gain 0.03 0.09
0.72 0.28 68.00 72 1.00 0.00 64.00 0.00 64 Simple Safe gain 0.82 0.46
0.73 0.27 37.00 81 1.00 0.00 43.00 0.00 43 Simple Safe gain 0.68 0.39
0.77 0.23 38.00 95 1.00 0.00 81.00 0.00 81 Simple Safe gain 0.00 0.03
0.91 0.09 98.00 42 1.00 0.00 60.00 0.00 60 Simple Safe gain 0.88 0.57
0.01 0.99 80.00 0 1.00 0.00 1.00 0.00 1 Simple Safe Zero gain 0.53 0.36
0.01 0.99 100.00 0 1.00 0.00 0.80 0.00 0.8 Simple Safe Zero gain 0.69 0.38
0.05 0.95 16.00 0 1.00 0.00 1.00 0.00 1 Simple Safe Zero gain 0.50 0.39
0.05 0.95 20.00 0 1.00 0.00 0.80 0.00 0.8 Simple Safe Zero gain 0.74 0.49
0.10 0.90 8.00 0 1.00 0.00 1.00 0.00 1 Simple Safe Zero gain 0.51 0.35
0.10 0.90 10.00 0 1.00 0.00 0.80 0.00 0.8 Simple Safe Zero gain 0.64 0.49
0.20 0.80 50.00 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.10 0.20
0.20 0.80 62.50 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.40 0.30
0.40 0.60 25.00 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.07 0.10
0.40 0.60 31.25 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.42 0.33
0.60 0.40 16.67 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.04 0.06
0.60 0.40 20.83 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.34 0.33
0.80 0.20 12.50 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.00 0.05
0.80 0.20 15.62 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.38 0.41
0.90 0.10 11.11 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.00 0.04
0.90 0.10 13.89 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.31 0.38
0.95 0.05 10.53 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.00 0.05
0.95 0.05 13.16 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.42 0.38
0.99 0.01 10.10 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.04 0.03
0.99 0.01 12.63 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.62 0.72
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Table A.13: Individual Choice Problems and Proportions of the Risky Option in Younger and
Older Adults for Study 2 (Losses). Choice proportion of the Risky Option in Younger adults:
%risky YA. Choice proportion of the Risky Option in Older adults: %risky OA

pA1 pA2 oA1 oA2 pB1 pB2 oB1 oB2 oB1 (formatted) Condition Domain %risky YA %risky OA
0.02 0.98 98.00 57 1.00 0.00 91.00 0.00 (0.7 x 97) + (0.3 x 77) Complex Safe gain 0.17 0.28
0.03 0.97 51.00 88 1.00 0.00 66.82 0.00 (0.07 x 91) + (0.93 x 65) Complex Safe gain 0.85 0.64
0.03 0.97 92.00 70 1.00 0.00 91.02 0.00 (0.81 x 99) + (0.19 x 57) Complex Safe gain 0.09 0.24
0.16 0.84 23.00 97 1.00 0.00 54.84 0.00 (0.12 x 17) + (0.88 x 60) Complex Safe gain 0.72 0.59
0.17 0.83 13.00 72 1.00 0.00 37.00 0.00 (0.96 x 35) + (0.04 x 85) Complex Safe gain 0.85 0.64
0.17 0.83 96.00 37 1.00 0.00 82.36 0.00 (0.08 x 52) + (0.92 x 85) Complex Safe gain 0.05 0.20
0.18 0.82 96.00 34 1.00 0.00 51.06 0.00 (0.38 x 12) + (0.62 x 75) Complex Safe gain 0.34 0.39
0.19 0.81 25.00 95 1.00 0.00 47.06 0.00 (0.03 x 49) + (0.97 x 47) Complex Safe gain 0.81 0.68
0.39 0.61 79.00 20 1.00 0.00 51.96 0.00 (0.44 x 71) + (0.56 x 37) Complex Safe gain 0.15 0.24
0.43 0.56 77.00 79 1.00 0.00 75.31 0.00 (0.03 x 53) + (0.97 x 76) Complex Safe gain 0.70 0.42
0.45 0.55 53.00 97 1.00 0.00 65.16 0.00 (0.68 x 69) + (0.32 x 57) Complex Safe gain 0.70 0.45
0.45 0.55 66.00 17 1.00 0.00 64.12 0.00 (0.68 x 67) + (0.32 x 58) Complex Safe gain 0.03 0.12
0.46 0.54 4.00 85 1.00 0.00 39.15 0.00 (0.67 x 21) + (0.33 x 76) Complex Safe gain 0.30 0.33
0.47 0.53 43.00 85 1.00 0.00 76.60 0.00 (0.04 x 19) + (0.96 x 79) Complex Safe gain 0.12 0.21
0.72 0.28 64.00 68 1.00 0.00 60.36 0.00 (0.16 x 57) + (0.84 x 61) Complex Safe gain 0.84 0.57
0.73 0.27 39.00 83 1.00 0.00 44.96 0.00 (0.74 x 59) + (0.26 x 5) Complex Safe gain 0.62 0.53
0.77 0.23 40.00 97 1.00 0.00 82.68 0.00 (0.22 x 78) + (0.78 x 84) Complex Safe gain 0.10 0.21
0.91 0.09 94.00 38 1.00 0.00 56.10 0.00 (0.27 x 5) + (0.73 x 75) Complex Safe gain 0.91 0.75
0.01 0.99 80.00 0 1.00 0.00 0.98 0.00 (0.86 x 0) + (0.14 x 7) Complex Safe Zero gain 0.56 0.40
0.01 0.99 100.00 0 1.00 0.00 0.84 0.00 (0.58 x 0) + (0.42 x 2) Complex Safe Zero gain 0.62 0.51
0.05 0.95 16.00 0 1.00 0.00 0.95 0.00 (0.81 x 0) + (0.19 x 5) Complex Safe Zero gain 0.45 0.44
0.05 0.95 20.00 0 1.00 0.00 0.75 0.00 (0.85 x 0) + (0.15 x 5) Complex Safe Zero gain 0.62 0.49
0.10 0.90 8.00 0 1.00 0.00 0.97 0.00 (0.03 x 0) + (0.97 x 1) Complex Safe Zero gain 0.68 0.56
0.10 0.90 10.00 0 1.00 0.00 0.80 0.00 (0.6 x 0) + (0.4 x 2) Complex Safe Zero gain 0.71 0.61
0.20 0.80 50.00 0 1.00 0.00 12.48 0.00 (0.74 x 0) + (0.26 x 48) Complex Safe Zero gain 0.21 0.21
0.20 0.80 62.50 0 1.00 0.00 10.01 0.00 (0.09 x 0) + (0.91 x 11) Complex Safe Zero gain 0.49 0.40
0.40 0.60 25.00 0 1.00 0.00 12.48 0.00 (0.61 x 0) + (0.39 x 32) Complex Safe Zero gain 0.12 0.24
0.40 0.60 31.25 0 1.00 0.00 10.00 0.00 (0.98 x 0) + (0.02 x 500) Complex Safe Zero gain 0.49 0.41
0.60 0.40 16.67 0 1.00 0.00 12.46 0.00 (0.86 x 0) + (0.14 x 89) Complex Safe Zero gain 0.21 0.26
0.60 0.40 20.83 0 1.00 0.00 9.96 0.00 (0.17 x 0) + (0.83 x 12) Complex Safe Zero gain 0.51 0.50
0.80 0.20 12.50 0 1.00 0.00 12.50 0.00 (0.75 x 0) + (0.25 x 50) Complex Safe Zero gain 0.06 0.11
0.80 0.20 15.62 0 1.00 0.00 10.00 0.00 (0.9 x 0) + (0.1 x 100) Complex Safe Zero gain 0.57 0.59
0.90 0.10 11.11 0 1.00 0.00 12.50 0.00 (0.98 x 0) + (0.02 x 625) Complex Safe Zero gain 0.20 0.25
0.90 0.10 13.89 0 1.00 0.00 9.99 0.00 (0.63 x 0) + (0.37 x 27) Complex Safe Zero gain 0.59 0.68
0.95 0.05 10.53 0 1.00 0.00 12.53 0.00 (0.93 x 0) + (0.07 x 179) Complex Safe Zero gain 0.25 0.29
0.95 0.05 13.16 0 1.00 0.00 10.01 0.00 (0.09 x 0) + (0.91 x 11) Complex Safe Zero gain 0.56 0.64
0.99 0.01 10.10 0 1.00 0.00 12.47 0.00 (0.57 x 0) + (0.43 x 29) Complex Safe Zero gain 0.14 0.24
0.99 0.01 12.63 0 1.00 0.00 10.01 0.00 (0.23 x 0) + (0.77 x 13) Complex Safe Zero gain 0.70 0.78
0.02 0.98 96.00 55 0.70 0.30 95.00 75.00 95 Risky gain 0.95 0.64
0.03 0.97 53.00 90 0.07 0.93 93.00 67.00 93 Risky gain 0.09 0.15
0.03 0.97 88.00 66 0.81 0.19 95.00 53.00 95 Risky gain 0.82 0.59
0.16 0.84 19.00 93 0.12 0.88 13.00 56.00 13 Risky gain 0.96 0.85
0.17 0.83 11.00 70 0.96 0.04 33.00 83.00 33 Risky gain 0.81 0.66
0.17 0.83 98.00 39 0.08 0.92 54.00 87.00 54 Risky gain 0.00 0.04
0.18 0.82 94.00 32 0.38 0.62 10.00 73.00 10 Risky gain 0.47 0.36
0.19 0.81 23.00 93 0.03 0.97 47.00 45.00 47 Risky gain 0.88 0.68
0.39 0.61 77.00 18 0.44 0.56 69.00 35.00 69 Risky gain 0.05 0.10
0.43 0.56 75.00 77 0.03 0.97 51.00 74.00 51 Risky gain 0.19 0.46
0.45 0.55 55.00 99 0.68 0.32 71.00 59.00 71 Risky gain 0.71 0.65
0.45 0.55 64.00 15 0.68 0.32 65.00 56.00 65 Risky gain 0.01 0.05
0.46 0.54 6.00 87 0.67 0.33 23.00 78.00 23 Risky gain 0.29 0.35
0.47 0.53 45.00 87 0.04 0.96 21.00 81.00 21 Risky gain 0.39 0.26
0.72 0.28 66.00 70 0.16 0.84 59.00 63.00 59 Risky gain 0.91 0.64
0.73 0.27 35.00 79 0.74 0.26 55.00 1.00 55 Risky gain 0.16 0.31
0.77 0.23 42.00 99 0.22 0.78 80.00 86.00 80 Risky gain 0.00 0.07
0.91 0.09 96.00 40 0.27 0.73 7.00 77.00 7 Risky gain 0.00 0.05
0.02 0.98 100.00 59 1.00 0.00 93.00 0.00 93 Simple Safe gain 0.00 0.03
0.03 0.97 55.00 92 1.00 0.00 71.00 0.00 71 Simple Safe gain 0.78 0.65
0.03 0.97 90.00 68 1.00 0.00 89.00 0.00 89 Simple Safe gain 0.01 0.05
0.16 0.84 21.00 95 1.00 0.00 53.00 0.00 53 Simple Safe gain 0.68 0.51
0.17 0.83 15.00 74 1.00 0.00 39.00 0.00 39 Simple Safe gain 0.74 0.60
0.17 0.83 94.00 35 1.00 0.00 80.00 0.00 80 Simple Safe gain 0.01 0.04
0.18 0.82 92.00 30 1.00 0.00 47.00 0.00 47 Simple Safe gain 0.29 0.23
0.19 0.81 27.00 97 1.00 0.00 49.00 0.00 49 Simple Safe gain 0.78 0.50
0.39 0.61 75.00 16 1.00 0.00 48.00 0.00 48 Simple Safe gain 0.07 0.07
0.43 0.56 73.00 75 1.00 0.00 71.00 0.00 71 Simple Safe gain 0.76 0.47
0.45 0.55 51.00 95 1.00 0.00 63.00 0.00 63 Simple Safe gain 0.79 0.42
0.45 0.55 62.00 13 1.00 0.00 60.00 0.00 60 Simple Safe gain 0.01 0.03
0.46 0.54 8.00 89 1.00 0.00 43.00 0.00 43 Simple Safe gain 0.25 0.19
0.47 0.53 41.00 83 1.00 0.00 75.00 0.00 75 Simple Safe gain 0.03 0.09
0.72 0.28 68.00 72 1.00 0.00 64.00 0.00 64 Simple Safe gain 0.82 0.46
0.73 0.27 37.00 81 1.00 0.00 43.00 0.00 43 Simple Safe gain 0.68 0.39
0.77 0.23 38.00 95 1.00 0.00 81.00 0.00 81 Simple Safe gain 0.00 0.03
0.91 0.09 98.00 42 1.00 0.00 60.00 0.00 60 Simple Safe gain 0.88 0.57
0.01 0.99 80.00 0 1.00 0.00 1.00 0.00 1 Simple Safe Zero gain 0.53 0.36
0.01 0.99 100.00 0 1.00 0.00 0.80 0.00 0.8 Simple Safe Zero gain 0.69 0.38
0.05 0.95 16.00 0 1.00 0.00 1.00 0.00 1 Simple Safe Zero gain 0.50 0.39
0.05 0.95 20.00 0 1.00 0.00 0.80 0.00 0.8 Simple Safe Zero gain 0.74 0.49
0.10 0.90 8.00 0 1.00 0.00 1.00 0.00 1 Simple Safe Zero gain 0.51 0.35
0.10 0.90 10.00 0 1.00 0.00 0.80 0.00 0.8 Simple Safe Zero gain 0.64 0.49
0.20 0.80 50.00 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.10 0.20
0.20 0.80 62.50 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.40 0.30
0.40 0.60 25.00 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.07 0.10
0.40 0.60 31.25 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.42 0.33
0.60 0.40 16.67 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.04 0.06
0.60 0.40 20.83 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.34 0.33
0.80 0.20 12.50 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.00 0.05
0.80 0.20 15.62 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.38 0.41
0.90 0.10 11.11 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.00 0.04
0.90 0.10 13.89 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.31 0.38
0.95 0.05 10.53 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.00 0.05
0.95 0.05 13.16 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.42 0.38
0.99 0.01 10.10 0 1.00 0.00 12.50 0.00 12.5 Simple Safe Zero gain 0.04 0.03
0.99 0.01 12.63 0 1.00 0.00 10.00 0.00 10 Simple Safe Zero gain 0.62 0.72
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B | Supplemental Materials to Chapter 3

B.1 Self-report Items

After completing the cognitive tasks, participants were asked to indicate their introspective risk
preference on the one-item general risk question (cf. Dohmen et al., 2011), which reads as follows:

How do you see yourself: are you generally a person who is fully prepared to take risks
or do you try to avoid taking risks? Please tick a box on the scale, where the value 0
means: “not at all willing to take risks” and the value 10 means: “very willing to take
risks.”

They were also asked for a self-report regarding their impulsivity:

Do you generally think things over for a long time before acting – in other words, are
you not impulsive at all? Or do you generally act without thinking things over a long
time – in other words, are you very impulsive? Please tick a box on the scale, where
the value 0 means “not at all impulsive” and the value 10 means “very impulsive”. You
can use the values in between to make your estimate.

Moreover participants were asked for a self-report regarding their patience:

Are you generally an impatient person, or someone who always shows great patience?
Please tick a box on the scale, where the value 0 means “very impatient” and the value
10 means “very patient”. You can use the values in between to make your estimate.

These three items are standard questions also used in the German Socio-Economic Panel
(SOEP, cf. Richter et al., 2013).



Appendix B

B.2 Additional Analyses of Loss Aversion Task Choice Data

B.2.1 Choice Behavior on Non-distractor Trials with Advantageous
Safe Options

Here we present results for the Bayesian GLMER models on choice behavior in the non-distractor
loss aversion trials, where the safe option had a higher EV. Note that these trials are not diagnostic
regarding loss aversion, since both loss averse participants and participants who simply maximize
EVs are expected to choose the safe option. The tendency to choose the safe option in these trials
(which can indicate both loss aversion and maximization) is displayed in Figure B.1.

●
●

●

●
●

●

Safe option has higher EV

Simple
safe

Complex
safe

Risky

0.00

0.25

0.50

0.75

1.00

Condition

P
ro

po
rt

io
n 

of
 s

af
e 

ch
oi

ce
s

Age Group

●● Younger

Older

Figure B.1: Choice proportions in the loss aversion task, in non-distractor trials where the safe
option has a higher EV than the safe option, conditional on the complexity manipulation. Behavior
in these trials is not diagnostic regarding loss aversion. Error bars indicate 95 % confidence
intervals.

Table B.1: Coefficients and 95 % Posterior Intervals for the Bayesian Logistic GLMERs for Re-
sponses on the Loss Aversion Task, in Non-distractor Trials where the Safe Option had the higher
EV

Outcome: Safe choice (when risky option has lower EV)
Predictor Main effect model Interaction model

(Intercept) 1.81
[1, 2.66]

1.85
[1.04, 2.7]

Age group (older) -0.4
[-0.92, 0.1]

-0.42
[-1.04, 0.17]

Condition (complex safe) -0.13
[-0.39, 0.14]

-0.23
[-0.62, 0.16]

Condition (risky) 1.29
[1, 1.57]

1.4
[0.99, 1.83]

Self-report (risk) -0.21
[-0.34, -0.07]

-0.21
[-0.35, -0.08]

Age group (older) × Condition (complex safe) 0.18
[-0.32, 0.73]

Age group (older) × Condition (risky) -0.21
[-0.77, 0.35]

‚

We calculated Bayesian logistic GLMERs on the choice of the safe option as the outcome
variable, including fixed predictors for age group, the complexity condition, as well as each par-
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B.2. Additional Analyses of Loss Aversion Task Choice Data

ticipant’s self-reported risk preference, and a random intercept for each participant (main effect
model). We also calculated an analogue model including the interaction between the complexity
condition and age group (interaction model). Results for trials where the safe option had a higher
EV—which are not diagnostic regarding loss aversion—are displayed in Table B.1.

There was no credible main effect of age group and condition (complex safe) on the ten-
dency to choose the safe option in these trials. There was a positive main effect of condition (risky),
indicating that participants chose the safe (i.e., low risk) option more in choices between two risky
options than in choices between a safe and a risky option. There were no credible interactions be-
tween age group and condition, indicating that younger and older adults were similarly insensitive
to the complexity manipulation.

B.2.2 Choice Behavior on Distractor Trials

We analysed behavior on the distractor trials of the loss aversion task, where the safe option’s EV
was unequal zero (either -3 or +3). These trials do not correspond to commonly used choice lists
for measuring loss aversion.

Advantageous and disadvantageous safe option choices
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Figure B.2: Choice proportions of the safe option in the loss aversion task, in distractor trials
where the safe options’ EVs were not zero, conditional on the complexity manipulation. Left
panel: Behavior on distractor trials where the risky option had a higher EV. Right panel: Behavior
on distractor trials where the safe option had a higher EV. Error bars indicate 95 % confidence
intervals.

The proportion of safe option choices in the distractor trials is shown in Figure B.2,
separate for trials where the safe option was disadvantageous (left panel) and where the safe
option was advantageous (right panel). We calculated Bayesian GLMERs to investigate whether
the tendency to choose the safe option was affected by increasing the complexity of the safe option.
The models used the choice of the safe (or low risk) option as the outcome variable, and included
fixed predictors for age group, condition, and participants’ self-reported risk preferences, as well as
a random intercept for each participant (main effect model). We calculated an analogue model also
including the interaction between age group and condition (interaction model). Both models were
calculated separately for distractor trials where the safe option was disadvantageous, and where
the safe option was advantageous. Results are displayed in Table B.2.
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Table B.2: Coefficients and 95 % Posterior Intervals for the Bayesian Logistic GLMERs for Safe
Option Choices on the Loss Aversion Task, in Distractor Trials where the Risky Option had the
Higher EV (Upper Table), and where the Safe Option had the Higher EV (Lower Table)

Outcome: Safe choice (when risky option has higher EV)
Predictor Main effect model Interaction model

(Intercept) -3.84
[-4.8, -2.95]

-3.67
[-4.64, -2.76]

Age group (older) 0.83
[0.27, 1.39]

0.47
[-0.21, 1.13]

Condition (complex safe) 0.61
[0.32, 0.9]

0.38
[-0.06, 0.84]

Condition (risky) -0.79
[-1.16, -0.43]

-1.52
[-2.24, -0.86]

Self-report (risk) 0.08
[-0.07, 0.23]

0.08
[-0.07, 0.23]

Age group (older) × Condition (complex safe) 0.41
[-0.17, 0.98]

Age group (older) × Condition (risky) 1.09
[0.29, 1.94]

Outcome: Safe choice (when risky option has lower EV)
Predictor Main effect model Interaction model

(Intercept) 4.75
[3.68, 5.9]

4.38
[3.25, 5.55]

Age group (older) -0.5
[-1.15, 0.17]

0.44
[-0.37, 1.22]

Condition (complex safe) -0.8
[-1.11, -0.47]

-0.22
[-0.68, 0.22]

Condition (risky) 0.96
[0.52, 1.4]

2.19
[1.49, 3.06]

Self-report (risk) -0.19
[-0.37, -0.01]

-0.19
[-0.38, -0.01]

Age group (older) × Condition (complex safe) -1.17
[-1.82, -0.51]

Age group (older) × Condition (risky) -2.16
[-3.19, -1.26]

In trials where the risky option had a higher EV, that is, where safe choices were disad-
vantageous, there was a positive main effect of age, indicating that older adults were overall more
likely to make disadvantageous safe (or low risk) choices. There was also a positive main effect of
condition (complex safe) indicating that increasing the complexity of safe options increased disad-
vantageous safe choices. Note that this finding speaks against complexity aversion. Increasing the
complexity of disadvantageous safe options did not make them even less attractive (as expected
under complexity aversion), but less un-attractive. Rather, the finding suggests that participants
had less insight into the value of safe options when they were presented in a more complex format,
and hence made more errors. There was a negative main effect of condition (risky), indicating
that participants made overall less disadvantageous low risk choices when both options were risky,
compared to when one option was safe. A credible interaction between condition (risky) and age
group suggests that this effect was more pronounced in younger adults.

In trials where the risky option had a lower EV, that is, where safe choices were advan-
tageous, increasing the complexity of safe option decreased participants’ tendency to choose these
options. This finding, too, is consistent with the interpretation that participants had less insight
into the value of safe options when they were presented in a more complex format, and hence made
more errors. There was also a credible interaction between age group and condition (complex safe):
In older adults, the tendency to choose advantageous safe options decreased more strongly than
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B.2. Additional Analyses of Loss Aversion Task Choice Data

in younger adults, when these options were presented in a more complex format. That is, older
adults showed a stronger increase in disadvantageous risk taking when safe options’ complexity
was increased.

Overall, these findings suggest that the complexity manipulation had effects on choice be-
havior in trials where the safe option’s EV was unequal zero. These effects indicate that increasing
safe options’ complexity was detrimental for decision quality, and this effect was—to some extent—
more pronounced in older adults. In particular, older adults were especially prone to engage in
disadvantageous risk taking when safe options’ complexity increased. This replicates findings by
Mamerow et al. (2016), who also report that older participants are particularly prone to engage
in disadvantageous risk taking, and link this to the computational demands of the employed risky
choice task.

However, note that overall, participants chose safe options in a majority of trials when they
were advantageous, and rejected them in a majority of trials when they were disadvantageous. This
indicates overall very high decision quality.

Analyses of decision quality
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Figure B.3: Choice proportions of the option with the higher EV in distractor trials of the loss
aversion task, where the safe option had an EV unequal to zero, conditional on the complexity
manipulation. Error bars indicate 95 % confidence intervals.

We also directly analysed decision quality (the tendency to choose the option with the
higher EV) across all distractor trials, without separating between trials where the safe or the risky
option had the higher EV. Decision quality is implicit in the tendency to choose (dis-)advantageous
safe options, illustrated in Figure B.2. A more direct illustration of the tendency to choose the
option with the higher EV is provided in Figure B.3.

We calculated Bayesian GLMERs with the choice of the option with the higher EV as
the outcome variable, including fixed predictors for age group, condition, participants self-reported
risk preference, as well as a random intercept for each participant (main effect model). We also
calulated an analogue model including the interaction between age group and condition (interaction
model). Results are displayed in Table B.3. Further supporting our previous results, increasing
safe options’ complexity had a credible negative main effect on decision quality. There was also a
credible interaction between safe options’ complexity and age group, indicating that the decrease in
decision quality due to higher option complexity was more pronounced in older adults. Hence, we
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Table B.3: Coefficients and 95 % Posterior Intervals for the Bayesian Logistic GLMERs for Re-
sponses on the Loss Aversion Task, in Distractor Trials

Outcome: Higher EV choice (distractor trials)
Predictor Main effect model Interaction model

(Intercept) 3.86
[3.15, 4.63]

3.57
[2.86, 4.36]

Age group (older) -0.59
[-1.05, -0.14]

-0.02
[-0.55, 0.52]

Condition (complex safe) -0.64
[-0.84, -0.43]

-0.26
[-0.56, 0.05]

Condition (risky) 0.81
[0.54, 1.09]

1.75
[1.29, 2.3]

Self-report (risk) -0.12
[-0.24, 0]

-0.12
[-0.24, 0]

Age group (older) × Condition (complex safe) -0.7
[-1.12, -0.3]

Age group (older) × Condition (risky) -1.51
[-2.13, -0.9]

‚

obtain evidence that older adults showed a stronger response to option complexity, similar to our
previous findings. However, in the task employed here, this greater response to option complexity
affected decision quality, not as hypothesized, the tendency to choose safe options indicative of loss
aversion.
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B.3. Additional Analyses of Intertemporal Choice Data

B.3 Additional Analyses of Intertemporal Choice Data

We used data from the attention check trials in the intertemporal choice task to assess how increas-
ing immediate options’ complexity affected violations of dominance. In these trials, the option that
could be obtained sooner also offered the larger amount. We calculated a Bayesian GLMER with
the choice of the larger sooner option as the outcome variable, and age group, condition as well
as the self-reported patience and impulsivity as fixed predictors, and a random intercept for each
participant (main effect model). We also calculated an analogue model including the interaction
of age group an condition (interaction model). As Table B.4 shows, increasing immediate options’
complexity had a credible negative main effect on the tendency to choose the dominant immediate
option. This affected both younger and older adults alike, as indicated by the interaction between
age group and condition (complex immediate) not being significant. This result provides further
evidence that option complexity negatively affected decision quality (similar to the findings on the
distractor trials of the loss aversion task).

Table B.4: Coefficients and 95 % Posterior Intervals for the Bayesian Logistic GLMERs for Re-
sponses on the Attention Check Trials in the Intertemporal Choice Task

Outcome: Larger sooner choice
Predictor Main effect model Interaction model

(Intercept) 5.36
[4.16, 6.7]

5.16
[3.85, 6.57]

Age group (older) -0.49
[-1.02, 0.02]

-0.05
[-1.25, 1.17]

Condition (complex immediate) -2.85
[-3.53, -2.25]

-2.58
[-3.51, -1.78]

Condition (delayed) -0.3
[-1.11, 0.52]

-0.3
[-1.39, 0.79]

Self-report (patience) 0.03
[-0.08, 0.15]

0.03
[-0.08, 0.15]

Self-report (impulsivity) -0.05
[-0.18, 0.09]

-0.05
[-0.19, 0.09]

Age group (older) × Condition (complex immediate) -0.54
[-1.75, 0.67]

Age group (older) × Condition (delayed) -0.02
[-1.52, 1.47]
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B.4 Additional Analyses of Framing Task Choice Data

Using the choice data from the framing task, we also tested whether the complexity manipulation
affected choice behavior within each age group and frame. We tested this by calculating Bayesian
logistic GLMERs with the choice of the manipulated option the framing task as the outcome
variable, and condition as a fixed predictor, as well as a random intercept for each participant.
Such a model was calculated separately for the positively and negatively framed trials. As Table
B.5 shows, the manipulation of option complexity had no credible main effect on choice behavior
in any age group or frame.

Table B.5: Coefficients and 95 % Posterior Intervals for the Bayesian Logistic GLMERs for Re-
sponses on the Framing Task, by Age Group, within each Frame

Outcome: Safe choice Younger Older
Predictor Positive Frame Negative Frame Positive Frame Negative Frame

(Intercept) 1.59
[1.14, 2.08]

-0.7
[-1.13, -0.27]

1.89
[1.48, 2.36]

-0.7
[-1.06, -0.35]

Condition (complex safe) -0.18
[-0.55, 0.2]

-0.04
[-0.39, 0.29]

0.28
[-0.13, 0.68]

-0.2
[-0.52, 0.14]

Condition (risky) -0.11
[-0.47, 0.27]

0.03
[-0.3, 0.37]

-0.04
[-0.42, 0.35]

0.04
[-0.27, 0.35]
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B.5. Analyses of Response Time Data

B.5 Analyses of Response Time Data

Besides analysing choice proportions in each paradigm, we also conducted an exploratory analysis
of response times (RTs). In our previous experiments on the effect of option complexity (Zilker
et al., 2019; Zilker & Pachur, 2019, see chapter 2 and 4), increasing the complexity of one or
both options in the choice set was very consistently linked to higher RTs. We tested whether the
manipulation of option complexity also entailed longer RTs in the tasks employed here.

B.5.1 Response Times in the Loss Aversion Task

Response times in the non-distractor trials of the loss aversion task are depicted in Figure B.4. We
calculated Bayesian GLMERs on RT as the outcome variable, including fixed predictors for age
group, condition and participants’ self-reported risk preference, as well as a random intercept for
each participant (main effect model). We also calculated analogue models including the interaction
between age group and condition (interaction model). These models were calculated separately for
the trials where the risky option had a higher EV and for trials where the safe option had a higher
EV. The results are displayed in Table B.6. Older adults generally responded slower. Increasing
the complexity of safe options had a credible positive main effect on RTs. In trials where the risky
option had a lower EV this effect interacted with age group. That is, participants took more time
to respond to trials with more complex safe options, and this effect was more pronounced in older
adults.

●

● ●
●

●
●

●

● ●

●

● ●

Risky option has higher EV Safe option has higher EV

Simple
safe

Complex
safe

Risky Simple
safe

Complex
safe

Risky

0

5

10

15

20

Condition

R
T

 (
lo

ss
 a

ve
rs

io
n)

Age Group

●● Younger

Older

Figure B.4: Response times in the non-distractor trials in the loss aversion task. Error bars indicate
95 % confidence intervals.

B.5.2 Response Times in the Framing Task

Using RT data from the framing task, we tested whether increasing safe options’ complexity also
increased RTs, and whether this depended on frame. RTs in each condition, both age groups and
frames are displayed in Figure B.5. We calculated Bayesian GLMERs with RT as the outcome
variable, including frame and condition as fixed predictors, and a random intercept for each partic-
ipant (main effect model). We also calculated analogue models including the interaction between
frame and condition (interaction model). These models were calculated separately for each age
group. Results are displayed in Table B.7.
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Table B.6: Coefficients and 95 % Posterior Intervals for the Bayesian Logistic GLMERs for Re-
sponse Times on the Loss Aversion Task

Outcome: RT (when risky option has higher EV)
Predictor Main effect model Interaction model

(Intercept) 4.34
[1.91, 6.89]

4.82
[2.02, 7.32]

Age group (older) 6.43
[4.83, 8.13]

5.52
[3.57, 7.62]

Condition (complex safe) 3.42
[2.26, 4.59]

2.38
[0.75, 4.06]

Condition (risky) 2.11
[0.83, 3.37]

1.78
[-0.03, 3.61]

Self-report (risk) 0
[-0.44, 0.41]

-0.01
[-0.42, 0.44]

Age group (older) × Condition (complex safe) 2.14
[-0.22, 4.43]

Age group (older) × Condition (risky) 0.6
[-1.94, 3.18]

Outcome: RT (when risky option has lower EV)
Predictor Main effect model Interaction model

(Intercept) 4.44
[2.3, 6.52]

4.87
[2.6, 7.04]

Age group (older) 6.89
[5.41, 8.34]

6.04
[4.42, 7.75]

Condition (complex safe) 3.44
[2.66, 4.25]

2.61
[1.54, 3.79]

Condition (risky) 2.66
[1.92, 3.42]

2.27
[1.22, 3.37]

Self-report (risk) 0
[-0.36, 0.37]

0
[-0.37, 0.37]

Age group (older) × Condition (complex safe) 1.68
[0.12, 3.26]

Age group (older) × Condition (risky) 0.81
[-0.69, 2.32]

Older adults’ RTs were generally longer in the negative than in the positive frame, indicated
by the main effects of frame (negative). This effect was not credible in younger adults. Moreover,
in both age groups, RTs were overall longer when the second option was a complex safe option
or a second risky option, than when it was a simple safe option. Finally, there was a credible
interaction between frame and condition (complex safe) in both age groups. That is, increasing
the complexity of safe options entailed a stronger increase in RTs in the domain of losses, than in
the domain of gains, in both age groups.
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Figure B.5: Response times in the framing task. Error bars indicate 95 % confidence intervals.

Table B.7: Coefficients and 95 % Posterior Intervals for the Bayesian Logistic GLMERs for Re-
sponse Times on the Framing Task, by Age Group, within each Frame

Outcome: RT Younger Older
Predictor Main effect model Interaction model Main effect model Interaction model

(Intercept) 15.83
[13.64, 18.14]

16.94
[14.34, 19.49]

33.66
[28.84, 38.24]

34.37
[29.01, 40.02]

Frame (negative) 1.31
[-0.02, 2.65]

-0.86
[-3.13, 1.38]

6.55
[4.03, 9.08]

4.52
[0.13, 9.02]

Condition (complex safe) 12.32
[10.75, 13.91]

8.65
[6.41, 10.89]

19.32
[16.16, 22.41]

14.1
[9.81, 18.5]

Condition (risky) 7.31
[5.71, 8.88]

7.7
[5.49, 9.99]

12.06
[8.89, 15.19]

14.32
[9.94, 18.69]

Frame × Condition (complex safe) 7.35
[4.28, 10.56]

10.51
[4.29, 16.56]

Frame × Condition (risky) -0.8
[-4.05, 2.36]

-4.37
[-10.52, 1.82]

B.5.3 Response Times in the Intertemporal Choice Task

Response times in the intertemporal choice task are depicted in Figure B.6. We analysed re-
sponse times in the intertemporal choice task, in the non-dominated trials. We calculated Bayesian
GLMERs on RT as the outcome variable, including fixed predictors for age group, condition and
participants’ self-reported patience and impulsivity, as well as a random intercept for each partic-
ipant (main effect model). We also calculated analogue models including the interaction between
age group and condition (interaction model). The results are displayed in Table B.8. Increasing
the complexity of immediate options had a credible positive main effect on RTs, and this effect was
more pronounced in older adults. That is, participants took more time to respond to trials with
more complex options, and this effect was more pronounced in older adults.
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Figure B.6: Response times in the intertemporal choice task. Error bars indicate 95 % confidence
intervals.

Table B.8: Coefficients and 95 % Posterior Intervals for the Bayesian Logistic GLMERs for Re-
sponse Times on the Non-dominated Trials of the Intertemporal Choice Task

Outcome: RT
Predictor Main effect model Interaction model

(Intercept) 2
[-0.15, 4.28]

2.61
[0.55, 4.9]

Age group (older) 3.08
[1.96, 4.19]

2.07
[1.04, 3.23]

Condition (complex immediate) 6.03
[5.75, 6.3]

5.14
[4.75, 5.53]

Condition (delayed) 1.16
[0.87, 1.44]

0.64
[0.23, 1.04]

Self-report (patience) 0.09
[-0.15, 0.32]

0.09
[-0.14, 0.29]

Self-report (impulsivity) 0.05
[-0.23, 0.31]

0.02
[-0.25, 0.26]

Age group (older) × Condition (complex immediate) 1.77
[1.21, 2.35]

Age group (older) × Condition (delayed) 1.06
[0.48, 1.61]
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C | Supplemental Materials to Chapter 4

C.1 Behavioral Analyses: Figure for Behavior in Choices

Between Two Risky Options

In the main text we focused on reporting the results of the behavioral analyses for choices between
safe and risky options. The behavioral patterns for choices between two risky options are displayed
in Figure C.1.
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Figure C.1: Effects of option complexity on risky choice, gaze behavior, response times in choices
between two risky options. Error bars indicate 95% CI.



Appendix C

C.2 Behavioral Analyses: Tables for GLMERs on Risky

Choice Behavior

We calculated Bayesian GLMERs on choices of the high risk option as the outcome variable.
The models included fixed effects for option complexity (separate for both options), age group,
the interaction between option complexity and age group, the absolute difference in EV between
the options, a dummy variable indicating whether the more risky option had a higher EV, and
a random intercept for each participant. All models are estimated separately for each domain
(gains and losses) and type of choice problem (safe vs. risky and risky vs. risky). We also
calculated analogue models for the main effects of complexity on each outcome within each age
group (including all predictors listed above, except for age group and its interaction with option
complexity).

Table C.1 displays the GLMER results for the analysis of choices of the high risk option
as the outcome variable, in each domain and type of choice problem, testing for the interaction
between option complexity and age. Table C.2 displays the respective results for the model testing
for the main effect of complexity within each age group. Tables include β coefficients and the
respective 95% posterior intervals for all fixed effects in these models.

Table C.1: GLMER Results (β Coefficients and 95% Posterior Intervals) for Choices of the High
Risk Option as the Outcome Variable

Risky vs. Safe Risky vs. Risky
Predictor Gain Loss Gain Loss

Intercept -0.05
[-0.7, 0.64]

-0.63
[-1.05, -0.21]

-1.05
[-1.32, -0.78]

-0.63
[-0.86, -0.4]

Age Group (Older) -0.38
[-0.96, 0.18]

-0.03
[-0.57, 0.49]

0.11
[-0.15, 0.37]

-0.03
[-0.3, 0.22]

Complexity high risk (medium) -0.5
[-0.8, -0.2]

0.1
[-0.18, 0.4]

-0.14
[-0.36, 0.06]

-0.19
[-0.39, 0.02]

Complexity high risk (high) -0.56
[-0.87, -0.25]

-0.18
[-0.47, 0.12]

-0.62
[-0.84, -0.41]

0.19
[-0.02, 0.39]

Complexity low risk (medium) -0.26
[-0.62, 0.11]

-0.29
[-0.6, 0]

0.29
[0.1, 0.48]

0.03
[-0.17, 0.22]

Complexity low risk (high) 0.03
[-0.29, 0.34]

0.17
[-0.13, 0.47]

0.66
[0.45, 0.87]

-0.13
[-0.33, 0.06]

EV difference -0.1
[-0.13, -0.06]

0.05
[0.03, 0.08]

0.01
[-0.01, 0.02]

0.01
[-0.01, 0.02]

Higher EV equals higher Risk (True) 1.25
[0.98, 1.53]

1.2
[1.01, 1.4]

1.49
[1.37, 1.61]

1.4
[1.28, 1.52]

Age Group (Older) × Complexity high risk (medium) 0.14
[-0.31, 0.58]

-0.04
[-0.47, 0.38]

-0.4
[-0.71, -0.11]

0.23
[-0.04, 0.51]

Age Group (Older) × Complexity high risk (high) -0.12
[-0.57, 0.34]

0.01
[-0.41, 0.43]

0.4
[0.1, 0.7]

0.02
[-0.27, 0.31]

Age Group (Older) × Complexity low risk (medium) -0.02
[-0.52, 0.45]

-0.02
[-0.45, 0.41]

0.2
[-0.09, 0.47]

-0.19
[-0.46, 0.09]

Age Group (Older) × Complexity low risk (high) 0.64
[0.16, 1.1]

0.13
[-0.3, 0.55]

-0.39
[-0.67, -0.1]

0.16
[-0.11, 0.43]
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C.2. Behavioral Analyses: Tables for GLMERs on Risky Choice Behavior

Table C.2: GLMER Results (β Coefficients and 95% Posterior Intervals) for Choices of the High
Risk Option as the Outcome Variable, within each Age Group, by Type of Choice Problem

Risky vs. Safe Risky vs. Risky
Predictor Younger Older Younger Older
Gains

Intercept 0.085
[-0.8, 0.971]

-0.391
[-1.292, 0.52]

-1.34
[-1.666, -1.021]

-0.681
[-1.001, -0.363]

Complexity high risk (medium) -0.568
[-0.898, -0.245]

-0.326
[-0.655, -0.002]

-0.117
[-0.333, 0.108]

-0.554
[-0.771, -0.333]

Complexity high risk (high) -0.611
[-0.941, -0.291]

-0.64
[-0.978, -0.303]

-0.61
[-0.818, -0.395]

-0.261
[-0.464, -0.051]

Complexity low risk (medium) -0.415
[-0.831, 0.006]

-0.174
[-0.601, 0.237]

0.31
[0.111, 0.514]

0.459
[0.27, 0.642]

Complexity low risk (high) -0.009
[-0.356, 0.344]

0.654
[0.31, 0.98]

0.658
[0.451, 0.871]

0.296
[0.102, 0.496]

EV difference -0.131
[-0.182, -0.081]

-0.07
[-0.118, -0.023]

0.014
[-0.004, 0.034]

0.001
[-0.017, 0.019]

Higher EV equals higher Risk (True) 1.789
[1.394, 2.201]

0.628
[0.249, 1.023]

1.847
[1.667, 2.018]

1.149
[0.982, 1.318]

Losses

Intercept -0.981
[-1.426, -0.52]

-0.301
[-0.786, 0.187]

-0.88
[-1.157, -0.601]

-0.426
[-0.71, -0.156]

Complexity high risk (medium) 0.111
[-0.192, 0.41]

0.063
[-0.267, 0.382]

-0.144
[-0.359, 0.072]

-0.009
[-0.219, 0.208]

Complexity high risk (high) -0.194
[-0.525, 0.133]

-0.146
[-0.474, 0.185]

0.225
[0.019, 0.441]

0.17
[-0.035, 0.377]

Complexity low risk (medium) -0.328
[-0.638, -0.014]

-0.305
[-0.623, 0.002]

-0.015
[-0.227, 0.194]

-0.11
[-0.31, 0.085]

Complexity low risk (high) 0.183
[-0.151, 0.514]

0.276
[-0.045, 0.606]

-0.184
[-0.394, 0.026]

0.064
[-0.14, 0.261]

EV difference 0.061
[0.026, 0.095]

0.048
[0.013, 0.084]

0.015
[-0.006, 0.035]

0
[-0.019, 0.021]

Higher EV equals higher Risk (True) 1.815
[1.527, 2.115]

0.538
[0.259, 0.828]

1.752
[1.589, 1.919]

1.045
[0.892, 1.207]
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C.3 Behavioral Analyses: Tables for GLMERs on RTs

We calculated Bayesian GLMERs on RTs as the outcome variable. The models included fixed
effects for option complexity (separate for both options), age group, the interaction between option
complexity and age group, the absolute difference in EV between the options, a dummy variable
indicating whether the more risky option had a higher EV, and a random intercept for each
participant. All models were estimated separately for each domain (gains and losses) and type of
choice problem (safe vs. risky and risky vs. risky). We also calculated analogue models for the
main effects of complexity on each outcome within each age group (including all predictors listed
above, except for age group and its interaction with option complexity).

Table C.3 displays the GLMER results for the analysis of response time as the outcome
variable, in each domain and type of choice problem, testing for the interaction between option
complexity and age. Table C.4 displays the respective results for the model testing for the main
effect of complexity within each age group. Tables include β coefficients and the respective 95%
posterior intervals for all fixed effects in these models.

Table C.3: GLMER Results (β Coefficients and 95% Posterior Intervals) for RT as the Outcome
Variable

Risky vs. Safe Risky vs. Risky
Predictor Gain Loss Gain Loss

Intercept 8.51
[5.47, 11.65]

10.28
[7.55, 12.94]

13.03
[9.97, 16.15]

15.23
[11.96, 18.66]

Age Group (Older) 3.04
[-0.2, 6.42]

2.7
[-0.57, 6.3]

4.27
[0.23, 8.13]

4.01
[-0.7, 8.43]

Complexity high risk (medium) 4.74
[3.47, 5.98]

3.9
[2.63, 5.26]

4.5
[3.52, 5.48]

3.26
[2.22, 4.32]

Complexity high risk (high) 8.15
[6.93, 9.37]

7.64
[6.31, 8.96]

7.87
[6.9, 8.83]

6.17
[5.15, 7.24]

Complexity low risk (medium) 3.03
[1.63, 4.42]

3.68
[2.39, 4.97]

3.6
[2.7, 4.48]

3.15
[2.14, 4.15]

Complexity low risk (high) 7.72
[6.5, 8.95]

6.66
[5.29, 7.96]

5.73
[4.8, 6.62]

7.19
[6.15, 8.18]

EV difference -0.09
[-0.21, 0.03]

-0.08
[-0.18, 0.03]

-0.12
[-0.18, -0.06]

-0.14
[-0.21, -0.07]

Higher EV equals higher Risk (True) 0.03
[-0.95, 1.05]

0.49
[-0.38, 1.37]

-0.05
[-0.6, 0.51]

0.11
[-0.49, 0.72]

Age Group (Older) × Complexity high risk (medium) -2.25
[-3.98, -0.42]

-1.71
[-3.67, 0.14]

-1.46
[-2.91, -0.09]

-1.31
[-2.89, 0.13]

Age Group (Older) × Complexity high risk (high) -3.21
[-5.05, -1.43]

-2.94
[-4.77, -1.08]

-2.18
[-3.56, -0.8]

-0.84
[-2.34, 0.67]

Age Group (Older) × Complexity low risk (medium) -1.03
[-2.83, 0.78]

-2.55
[-4.46, -0.65]

-0.88
[-2.14, 0.36]

-0.49
[-1.91, 0.98]

Age Group (Older) × Complexity low risk (high) -1.89
[-3.63, -0.18]

-2.1
[-4.04, -0.29]

-0.72
[-2.01, 0.58]

-2.04
[-3.44, -0.67]
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Table C.4: GLMER Results (β Coefficients and 95% Posterior Intervals) for RT as the Outcome
Variable, within each Age Group, by Type of Choice Problem

Risky vs. Safe Risky vs. Risky
Predictor Younger Older Younger Older
Gains

Intercept 10.17
[6.6, 13.95]

9.78
[6.17, 13.65]

13.08
[10.52, 15.52]

17.17
[13.79, 20.68]

Complexity high risk (medium) 4.62
[3.35, 5.93]

2.58
[1.34, 3.82]

4.42
[3.33, 5.44]

3.1
[2.17, 4.05]

Complexity high risk (high) 8.05
[6.67, 9.32]

5.06
[3.82, 6.29]

7.87
[6.84, 8.93]

5.69
[4.79, 6.58]

Complexity low risk (medium) 2.45
[0.89, 4.02]

2.59
[1.1, 4.04]

3.58
[2.63, 4.53]

2.72
[1.92, 3.55]

Complexity low risk (high) 7.52
[6.25, 8.84]

5.99
[4.76, 7.24]

5.68
[4.71, 6.65]

5.06
[4.21, 5.91]

EV difference -0.2
[-0.37, -0.03]

0.02
[-0.14, 0.18]

-0.15
[-0.24, -0.06]

-0.09
[-0.17, -0.02]

Higher EV equals higher Risk (True) -0.52
[-1.98, 1.01]

0.64
[-0.73, 1.99]

0.1
[-0.75, 0.92]

-0.21
[-0.93, 0.52]

Losses

Intercept 9.74
[6.95, 12.53]

13.55
[10.77, 16.36]

15.5
[12.66, 18.36]

19.35
[15.51, 23.27]

Complexity high risk (medium) 3.91
[2.46, 5.33]

2.21
[1.01, 3.39]

3.2
[2.06, 4.36]

1.96
[0.96, 3]

Complexity high risk (high) 7.47
[5.93, 8.92]

4.9
[3.69, 6.21]

6.15
[5.03, 7.25]

5.35
[4.33, 6.34]

Complexity low risk (medium) 3.69
[2.23, 5.11]

1.13
[-0.07, 2.34]

3.14
[2.09, 4.22]

2.67
[1.69, 3.65]

Complexity low risk (high) 6.85
[5.33, 8.37]

4.23
[2.93, 5.56]

7.24
[6.16, 8.29]

5.11
[4.11, 6.09]

EV difference -0.01
[-0.17, 0.17]

-0.15
[-0.3, -0.01]

-0.16
[-0.27, -0.05]

-0.12
[-0.21, -0.02]

Higher EV equals higher Risk (True) 0.19
[-1.13, 1.51]

0.83
[-0.35, 1.98]

0.4
[-0.49, 1.29]

-0.18
[-0.99, 0.62]
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C.4 Behavioral Analyses: Tables for GLMERs on Decision

Quality

We calculated Bayesian GLMERs on choice of the option with the higher EV as the outcome
variable as the outcome variable. The models included fixed effects for option complexity (separate
for both options), age group, the interaction between option complexity and age group, the absolute
difference in EV between the options, a dummy variable indicating whether the more risky option
had a higher EV, and a random intercept for each participant. All models are estimated separately
for each domain (gains and losses) and type of choice problem (safe vs. risky and risky vs. risky).
We also calculated analogue models for the main effects of complexity on each outcome within
each age group (including all predictors listed above, except for age group and its interaction with
option complexity).

Table C.5 displays the GLMER results for the analysis of decision quality, that is, the
tendency to choose the option with the higher EV, in each domain and type of choice problem,
testing for the interaction between option complexity and age. Table C.6 displays the respective
results for the model testing for the main effect of complexity within each age group. Tables include
β coefficients and the respective 95% posterior intervals for all fixed effects in these models.

Table C.5: GLMER Results (β Coefficients and 95% Posterior Intervals) for Choices of the Option
with the Higher EV as the Outcome Variable

Risky vs. Safe Risky vs. Risky
Predictor Gain Loss Gain Loss

Intercept 3.11
[2.48, 3.71]

0.91
[0.57, 1.26]

1.39
[1.11, 1.69]

1.19
[0.93, 1.45]

Age Group (Older) -1.25
[-1.69, -0.79]

-1.06
[-1.47, -0.67]

-0.76
[-1.08, -0.44]

-0.8
[-1.08, -0.5]

Complexity high risk (medium) -0.72
[-1.04, -0.4]

-0.29
[-0.59, 0.01]

-0.7
[-0.93, -0.46]

-0.54
[-0.76, -0.32]

Complexity high risk (high) -0.88
[-1.19, -0.57]

-0.34
[-0.64, -0.03]

-0.56
[-0.8, -0.33]

-0.68
[-0.9, -0.46]

Complexity low risk (medium) -0.62
[-0.99, -0.26]

-0.65
[-0.96, -0.36]

-0.31
[-0.52, -0.1]

-0.3
[-0.51, -0.08]

Complexity low risk (high) -0.49
[-0.81, -0.16]

-0.41
[-0.73, -0.1]

-0.17
[-0.38, 0.05]

-0.47
[-0.68, -0.26]

EV difference -0.02
[-0.05, 0.01]

0.04
[0.01, 0.06]

0.04
[0.03, 0.05]

0.03
[0.02, 0.05]

Higher EV equals higher Risk (True) -1.73
[-1.98, -1.47]

0.48
[0.3, 0.66]

-0.4
[-0.52, -0.29]

0.19
[0.07, 0.31]

Age Group (Older) × Complexity high risk (medium) 0.35
[-0.09, 0.79]

0.13
[-0.28, 0.53]

0.39
[0.06, 0.7]

0.42
[0.12, 0.71]

Age Group (Older) × Complexity high risk (high) 0.66
[0.23, 1.1]

0.15
[-0.25, 0.55]

0.28
[-0.04, 0.6]

0.47
[0.18, 0.77]

Age Group (Older) × Complexity low risk (medium) 0.17
[-0.25, 0.6]

0.59
[0.18, 1]

0.2
[-0.08, 0.48]

0.09
[-0.21, 0.38]

Age Group (Older) × Complexity low risk (high) 0.4
[-0.01, 0.85]

0.43
[0.04, 0.84]

0.2
[-0.08, 0.51]

0.18
[-0.1, 0.46]
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Table C.6: GLMER Results (β Coefficients and 95% Posterior Intervals) for Choices of the Option
with the Higher EV as the Outcome Variable, within each Age Group, by Type of Choice Problem

Risky vs. Safe Risky vs. Risky
Predictor Younger Older Younger Older
Gains

Intercept 3.35
[2.48, 4.26]

1.67
[0.95, 2.44]

1.36
[1.01, 1.71]

0.68
[0.36, 0.99]

Complexity high risk (medium) -0.76
[-1.11, -0.42]

-0.34
[-0.64, -0.04]

-0.69
[-0.93, -0.44]

-0.33
[-0.56, -0.1]

Complexity high risk (high) -0.93
[-1.27, -0.6]

-0.19
[-0.5, 0.1]

-0.58
[-0.81, -0.34]

-0.28
[-0.5, -0.07]

Complexity low risk (medium) -0.67
[-1.1, -0.26]

-0.41
[-0.76, -0.04]

-0.32
[-0.53, -0.11]

-0.11
[-0.3, 0.08]

Complexity low risk (high) -0.52
[-0.86, -0.19]

-0.07
[-0.38, 0.23]

-0.16
[-0.37, 0.06]

0.03
[-0.17, 0.23]

EV difference -0.02
[-0.07, 0.03]

-0.01
[-0.05, 0.03]

0.05
[0.03, 0.07]

0.03
[0.02, 0.05]

Higher EV equals higher Risk (True) -1.9
[-2.3, -1.52]

-1.57
[-1.94, -1.23]

-0.49
[-0.67, -0.31]

-0.32
[-0.49, -0.16]

Losses

Intercept 0.8
[0.39, 1.19]

-0.03
[-0.39, 0.35]

1.12
[0.82, 1.46]

0.47
[0.19, 0.74]

Complexity high risk (medium) -0.32
[-0.62, -0.02]

-0.15
[-0.43, 0.12]

-0.52
[-0.75, -0.3]

-0.15
[-0.36, 0.06]

Complexity high risk (high) -0.4
[-0.72, -0.07]

-0.15
[-0.43, 0.14]

-0.68
[-0.92, -0.46]

-0.22
[-0.42, -0.02]

Complexity low risk (medium) -0.68
[-0.99, -0.37]

-0.06
[-0.34, 0.21]

-0.31
[-0.54, -0.09]

-0.19
[-0.4, 0]

Complexity low risk (high) -0.39
[-0.7, -0.07]

-0.02
[-0.31, 0.27]

-0.5
[-0.72, -0.29]

-0.26
[-0.46, -0.07]

EV difference 0.05
[0.02, 0.09]

0.02
[-0.01, 0.06]

0.04
[0.02, 0.07]

0.02
[0, 0.04]

Higher EV equals higher Risk (True) 0.54
[0.26, 0.82]

0.44
[0.18, 0.69]

0.13
[-0.04, 0.3]

0.24
[0.09, 0.4]
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C.5 Behavioral Analyses: Tables for GLMERs on Gaze

Behavior

We calculated Bayesian GLMERs on proportion of time spent fixating on the high risk option
as the outcome variable. The models included fixed effects for option complexity (separate for
both options), age group, the interaction between option complexity and age group, the absolute
difference in EV between the options, a dummy variable indicating whether the more risky option
had a higher EV, and a random intercept for each participant. All models are estimated separately
for each domain (gains and losses) and type of choice problem (safe vs. risky and risky vs. risky).
We also calculated analogue models for the main effects of complexity on each outcome within
each age group (including all predictors listed above, except for age group and its interaction with
option complexity).

Table C.7 displays the GLMER results for the analysis of proportion of time fixating on
the high risk option as the outcome variable, in each domain and type of choice problem, testing
for the interaction between option complexity and age. Table C.8 displays the respective results
for the model testing for the main effect of complexity within each age group. Tables include β
coefficients and the respective 95% posterior intervals for all fixed effects in these models.

Table C.7: GLMER Results (β Coefficients and 95% Posterior Intervals) for the Proportion of
Time Spent Fixating on the High Risk Option as the Outcome Variable

Risky vs. Safe Risky vs. Risky
Predictor Gain Loss Gain Loss

Intercept 0.44
[0.36, 0.51]

0.42
[0.38, 0.47]

0.47
[0.44, 0.5]

0.52
[0.49, 0.55]

Age Group (Older) 0.04
[-0.02, 0.09]

0
[-0.05, 0.05]

0.01
[-0.02, 0.04]

-0.03
[-0.06, 0]

Complexity high risk (medium) -0.06
[-0.1, -0.02]

-0.06
[-0.09, -0.02]

0.06
[0.04, 0.09]

0.01
[-0.02, 0.03]

Complexity high risk (high) -0.08
[-0.12, -0.04]

-0.07
[-0.11, -0.04]

0.02
[0, 0.05]

0.01
[-0.02, 0.03]

Complexity low risk (medium) 0.08
[0.04, 0.12]

0.1
[0.06, 0.13]

-0.02
[-0.05, 0]

-0.02
[-0.05, 0]

Complexity low risk (high) 0.17
[0.13, 0.2]

0.14
[0.11, 0.18]

-0.02
[-0.05, 0]

-0.01
[-0.04, 0.01]

EV difference 0
[-0.01, 0]

0
[0, 0]

0
[0, 0]

0
[0, 0]

Higher EV equals higher Risk (True) 0
[-0.03, 0.03]

0.01
[-0.02, 0.03]

0.01
[-0.01, 0.02]

-0.01
[-0.02, 0.01]

Age Group (Older) × Complexity high risk (medium) 0
[-0.05, 0.05]

0.02
[-0.02, 0.08]

-0.05
[-0.09, -0.02]

0.03
[0, 0.07]

Age Group (Older) × Complexity high risk (high) 0.01
[-0.04, 0.06]

0.01
[-0.04, 0.06]

-0.01
[-0.05, 0.03]

0.03
[0, 0.06]

Age Group (Older) × Complexity low risk (medium) -0.01
[-0.07, 0.04]

-0.03
[-0.08, 0.02]

0.02
[-0.02, 0.05]

0.02
[-0.01, 0.05]

Age Group (Older) × Complexity low risk (high) -0.06
[-0.11, -0.01]

-0.01
[-0.07, 0.03]

0.01
[-0.03, 0.04]

-0.02
[-0.05, 0.01]
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Table C.8: GLMER Results (β Coefficients and 95% Posterior Intervals) for the Proportion of
Time Spent Fixating on the High Risk Option as the Outcome Variable, within each Age Group,
by Type of Choice Problem

Risky vs. Safe Risky vs. Risky
Predictor Younger Older Younger Older
Gains

Intercept 0.43
[0.35, 0.52]

0.48
[0.38, 0.57]

0.49
[0.45, 0.53]

0.46
[0.42, 0.5]

Complexity high risk (medium) -0.06
[-0.1, -0.03]

-0.06
[-0.1, -0.02]

0.06
[0.03, 0.09]

0.02
[-0.01, 0.05]

Complexity high risk (high) -0.08
[-0.12, -0.05]

-0.07
[-0.11, -0.03]

0.02
[-0.01, 0.05]

0.02
[-0.01, 0.04]

Complexity low risk (medium) 0.07
[0.03, 0.12]

0.06
[0.01, 0.11]

-0.02
[-0.05, 0]

-0.01
[-0.03, 0.02]

Complexity low risk (high) 0.17
[0.13, 0.2]

0.11
[0.07, 0.15]

-0.02
[-0.04, 0]

-0.02
[-0.04, 0.01]

EV difference 0
[-0.01, 0]

0
[-0.01, 0]

0
[0, 0]

0
[0, 0]

Higher EV equals higher Risk (True) 0.03
[-0.01, 0.06]

-0.03
[-0.07, 0.02]

0
[-0.02, 0.02]

0.02
[0, 0.04]

Losses

Intercept 0.43
[0.38, 0.48]

0.42
[0.36, 0.47]

0.52
[0.48, 0.55]

0.5
[0.47, 0.53]

Complexity high risk (medium) -0.06
[-0.09, -0.02]

-0.03
[-0.07, 0.01]

0.01
[-0.01, 0.03]

0.04
[0.01, 0.06]

Complexity high risk (high) -0.07
[-0.11, -0.04]

-0.06
[-0.1, -0.03]

0.01
[-0.02, 0.03]

0.03
[0.01, 0.06]

Complexity low risk (medium) 0.1
[0.06, 0.13]

0.07
[0.03, 0.1]

-0.03
[-0.05, 0]

0
[-0.03, 0.02]

Complexity low risk (high) 0.14
[0.11, 0.18]

0.13
[0.09, 0.17]

-0.02
[-0.04, 0.01]

-0.03
[-0.05, -0.01]

EV difference 0
[0, 0]

0
[0, 0]

0
[0, 0]

0
[0, 0]

Higher EV equals higher Risk (True) 0
[-0.03, 0.03]

0.02
[-0.02, 0.05]

-0.01
[-0.03, 0.01]

0
[-0.02, 0.02]
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C.6 Computational Modeling: Specification of Other

Diffusion Parameters

When describing the computational model in the main text we focused on the definition of the drift
rate δ, since this parameter is used to test our hypotheses about age differences in the link between
attention and choice. The drift diffusion model has further parameters, which are described below.

C.6.1 Boundary Separation

Because δ is defined based on a comparison between the options—that is, it tracks the relative
evidence in favor of one option over the other option—the model has a relative choice boundary.
That is, evidence in favor of one option has to exceed evidence in favor of the other option by a
threshold amount. The parameter α captures how much excess evidence in favor of one option over
the other option is required to make a choice. Higher values on the parameter α indicate greater
conservatism, and—all else remaining equal—entail longer RTs. The parameter α is estimated
for each participant. Since the behavioral analyses show that participants took more time under
higher option complexity, the α parameter could vary across different levels of option complexity.
Otherwise, α could not vary across trials.

C.6.2 Response Bias

The parameter γ defines the starting point of the accumulation process, that is, potential response
biases that exist before information on the options is actively processed. The response bias is
conventionally referred to as β. We avoided this conventional notation to avoid confusion, since we
refer to coefficients on the drift rate as β. We use the letter γ instead to refer to the response bias.
As participants had no information about the options prior to trial onset, and the presentation
side of high and low risk options on screen was randomized across trials and participants, we fixed
γ at .5. Hence, the two response boundaries were at equal distance from the starting point. Note
that forcing this parameter to be constant across conditions and trials allows for a stronger test of
the architecture of the diffusion model (Lewandowsky & Farrell, 2018).

C.6.3 Non-decision Time

The non-decision time τ accounts for the component of the RT that is not spent deliberating about
the options but, for instance, on stimulus encoding, memory access, or implementing a motor
response (cf. Ratcliff & Tuerlinckx, 2002). The parameter τ is estimated for each participant, but
does not vary by trial. This is because τ , by definition, should be independent of the evaluation
and comparison of the options, and the factors shaping these processes (which may vary across
trials). Moreover, as in the case of the bias parameter, forcing this parameter to be constant across
conditions and trials allows for a stronger test of the model’s architecture (Lewandowsky & Farrell,
2018).
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C.7 Computational Modeling: Results in Choices Between

Safe and Risky Options

Here we provide tables of the coefficients and 95% posterior intervals for the GLMER analysis
testing for age differences (Table C.9) and effects of option complexity (Table C.10) on the different
components of the drift rate, in choices between safe and risky options. The estimates are depicted
conditional on the complexity of risky options in Figure C.2.
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Figure C.2: Parameter estimates from the computational model in choices between safe and risky
options, conditional on the complexity of safe options. Top panel: Estimates for attentional gains
in processing efficiency βgaze:EV,j . Bottom Panel: Estimates for the drift rate. The total height of
the stacked bars represents the overall drift towards the safe option. The overall drift consists of
the attentional drift δattention and the non-attentional baseline drift δbaseline. The relative impact
of these components on the overall drift—that is, overall risk preferences—is color-coded.
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Table C.9: GLMER Results on Age Differences in Parameter Estimates from Computational Mod-
eling. How do Attentional Efficiency Gains, Attentional Drift and Baseline Drift Differ between
Younger and Older Adults, in Choices between Safe and Risky Options, in each Domain and
Condition? GLM Coefficients and 95% Posterior Intervals

Complexity of Safe Option (Gains) Complexity of Safe Option (Losses)
Outcome Low Medium High Low Medium High
Attentional Efficiency Gains

Intercept (Younger) 0.00078
[0.00049, 0.00106]

3e-04
[-0.00015, 0.00074]

0.00032
[5e-05, 0.00058]

0.00065
[0.00037, 0.00092]

0.00037
[1e-05, 0.00072]

0.00046
[9e-05, 0.00084]

Older -0.00085
[-0.00127, -0.00045]

-0.00067
[-0.00132, -4e-05]

-2e-04
[-0.00058, 0.00015]

-0.00066
[-0.00104, -0.00027]

-1e-05
[-5e-04, 5e-04]

7e-05
[-0.00046, 0.00059]

Attentional Drift

Intercept (Younger) 0.01292
[0.01009, 0.0156]

0.00514
[0.00275, 0.00753]

0.00139
[-0.00069, 0.00352]

-0.00993
[-0.01194, -0.00805]

-0.00289
[-0.0049, -0.00093]

-0.00093
[-0.00338, 0.00163]

Older -0.01018
[-0.01441, -0.00605]

-0.00119
[-0.00455, 0.0021]

-0.00128
[-0.00421, 0.00176]

0.00843
[0.00567, 0.01116]

0.00111
[-0.00181, 0.00398]

-0.00168
[-0.00523, 0.00181]

Baseline Drift

Intercept (Younger) 0.00902
[0.00395, 0.01424]

0.00802
[0.00228, 0.0136]

0.01174
[0.00657, 0.01732]

0.00123
[-0.00316, 0.00562]

-0.00427
[-0.00974, 0.00106]

-0.00988
[-0.01471, -0.00499]

Older 0.01477
[0.00798, 0.02226]

0.01257
[0.00403, 0.0206]

-0.00098
[-0.00881, 0.00686]

-0.00947
[-0.01591, -0.00301]

-0.00176
[-0.00939, 0.00586]

0.00109
[-0.0057, 0.00839]

Complexity of Risky Option (Gains) Complexity of Risky Option (Losses)
Outcome Low Medium High Low Medium High
Attentional Efficiency Gains

Intercept (Younger) 0.00059
[4e-04, 0.00079]

0.00053
[0.00032, 0.00073]

0.00057
[0.00038, 0.00076]

0.00048
[3e-04, 0.00066]

0.00048
[0.00031, 0.00064]

0.00047
[3e-04, 0.00064]

Older -0.00056
[-0.00085, -0.00028]

-0.00049
[-0.00078, -2e-04]

-0.00054
[-0.00083, -0.00027]

-0.00032
[-0.00056, -7e-05]

-0.00029
[-0.00053, -7e-05]

-0.00028
[-0.00054, -5e-05]

Attentional Drift

Intercept (Younger) 0.01041
[0.0077, 0.013]

0.0043
[0.00236, 0.00622]

0.00142
[-0.00125, 0.00405]

-0.00846
[-0.01052, -0.00644]

-0.00247
[-0.00419, -0.00079]

-0.00175
[-0.00373, 0.00041]

Older -0.00602
[-0.00968, -0.00216]

-0.00355
[-0.00639, -0.00074]

-0.00103
[-0.00483, 0.00276]

0.00584
[0.0029, 0.00876]

0.00145
[-0.00099, 0.00391]

-1e-04
[-0.00313, 0.00293]

Baseline Drift

Intercept (Younger) 0.01038
[0.00734, 0.01345]

0.01053
[0.00739, 0.01353]

0.01039
[0.0073, 0.01345]

-0.00509
[-0.00789, -0.00217]

-0.0051
[-0.00797, -0.00239]

-0.00509
[-0.00785, -0.00223]

Older 0.00764
[0.00362, 0.01211]

0.00703
[0.0025, 0.01135]

0.00696
[0.0025, 0.01145]

-0.00261
[-0.00671, 0.00143]

-0.00267
[-0.00664, 0.00146]

-0.00262
[-0.00665, 0.00133]

Table C.10: GLMER Results on Effects of Complexity on Parameter Estimates from Computa-
tional Modeling. How does the Manipulation of Option Complexity Affect attentional Efficiency
Gains, the Attentional Drift and the Baseline Drift, in Younger and Older Adults, in Choices
between Safe and Risky Options? GLM Coefficients and 95% Posterior Intervals

Attentional Efficiency Gains Attentional Drift Baseline Drift
Domain Younger Older Younger Older Younger Older
Gains

Intercept 0.00079
[0.00043, 0.00115]

-8e-05
[-0.00042, 0.00026]

0.01293
[0.01028, 0.01561]

0.00275
[0.00012, 0.0052]

0.009
[0.00472, 0.01347]

0.02387
[0.01743, 0.02996]

Complexity Safe (Medium) -0.00048
[-0.00098, -1e-05]

-0.00029
[-0.00078, 0.00018]

-0.00779
[-0.01145, -0.00395]

0.00123
[-0.00234, 0.00482]

-0.00098
[-0.00706, 0.00458]

-0.00336
[-0.0124, 0.00589]

Complexity Safe (High) -0.00048
[-0.00098, 2e-05]

0.00019
[-0.00028, 0.00067]

-0.01154
[-0.01528, -0.00768]

-0.00259
[-0.00613, 0.00109]

0.00264
[-0.00343, 0.00842]

-0.0129
[-0.02202, -0.00376]

Losses

Intercept 0.00065
[0.00033, 0.00098]

-1e-05
[-0.00035, 0.00034]

-0.00994
[-0.01193, -0.008]

-0.00155
[-0.00402, 0.00095]

0.00111
[-0.00375, 0.00628]

-0.00834
[-0.01314, -0.00325]

Complexity Safe (Medium) -0.00028
[-0.00076, 0.00018]

0.00036
[-0.00012, 0.00083]

0.00707
[0.00435, 0.0098]

-0.00025
[-0.00375, 0.00331]

-0.00535
[-0.01238, 0.00173]

0.00229
[-0.00484, 0.0091]

Complexity Safe (High) -0.00021
[-0.00066, 0.00025]

0.00053
[4e-05, 0.00102]

0.00904
[0.00634, 0.01186]

-0.00107
[-0.0046, 0.00245]

-0.01092
[-0.0179, -0.00403]

-0.00042
[-0.0078, 0.00678]

Attentional Efficiency Gains Attentional Drift Baseline Drift
Domain Younger Older Younger Older Younger Older
Gains

Intercept 0.00062
[0.00025, 0.00098]

0.00035
[2e-05, 0.00067]

0.00275
[2e-05, 0.00526]

4e-04
[-0.00197, 0.00272]

0.01065
[0.00715, 0.01422]

0.01582
[0.0091, 0.02245]

Complexity Risky (Medium) 0.00011
[-0.00042, 0.00064]

-0.00034
[-0.00077, 0.00014]

0.00394
[0.00033, 0.00753]

0.00234
[-0.00087, 0.00575]

-0.00139
[-0.00681, 0.00377]

0.00057
[-0.00872, 0.01]

Complexity Risky (High) -0.00037
[-9e-04, 0.00015]

-0.00064
[-0.0011, -0.00016]

0.004
[0.00047, 0.00757]

0.00184
[-0.00127, 0.00524]

0.00067
[-0.00439, 0.0055]

0.0043
[-0.00497, 0.01355]

Losses

Intercept 0.00062
[0.00033, 0.00089]

0.00065
[0.00033, 0.00094]

-0.00173
[-0.00354, 0.00013]

-0.001
[-0.00314, 0.00122]

-0.00636
[-0.01076, -0.00216]

-0.00754
[-0.01289, -0.00224]

Complexity Risky (Medium) -4e-04
[-8e-04, -2e-05]

-0.00091
[-0.00131, -0.00047]

-0.0032
[-0.00591, -0.00052]

-0.0022
[-0.00537, 8e-04]

-7e-05
[-0.00622, 0.00622]

-0.00123
[-0.00866, 0.0063]

Complexity Risky (High) -5e-05
[-0.00042, 0.00035]

-0.00049
[-0.00091, -6e-05]

-0.0043
[-0.00688, -0.00168]

-0.00031
[-0.00347, 0.00263]

0.00383
[-0.00209, 0.01007]

-9e-05
[-0.00768, 0.00744]
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C.8. Computational Modeling: Posterior Predictive Behavior in Choices Between Two Risky
Options

C.8 Computational Modeling: Posterior Predictive

Behavior in Choices Between Two Risky Options

Here we provide more information on the computational modeling results for choices between two
risky options. Like in choices between safe and risky options, we evaluated whether the compu-
tational model could reproduce the patterns found in the data by inspecting posterior predictive
choice behavior and RTs. To obtain posterior predictives we simulated a synthetic version of our
experiment, in the rwiener function from the RWiener package (Wabersich & Vandekerckhove,
2014), using the subject level posterior mean estimates for all parameters and the original ex-
perimental task materials and fixation patterns. The simulated behavior for choices between two
risky options is displayed in Figure C.3. Comparing the posterior predictive choice behavior to
the original data (cf. Figure C.1) shows that the model reproduced the key behavioral regularities
appropriately: Options were chosen less when they became more complex in the domain of gains,
and RTs increased with complexity in both domains. The model also reproduces the interaction
between age group and option complexity in the domain of gains.
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Figure C.3: Posterior predictive choice probabilities and RTs for choices between two risky options.
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Appendix C

C.9 Computational Modeling: Results in Choices Between

Two Risky Options

We also conducted parameter inference on the components of the drift rate, like in choices between
safe and risky options. Here we provide Tables of the coefficients and 95% posterior intervals
for the GLMER analysis testing for age differences (Table C.11) and effects of option complexity
(Table C.12) on the different components of the drift rate, in choices between two risky options.

Table C.11: How do Attentional Efficiency Gains, Attentional Drift and Baseline Drift Differ
between Younger and Older Adults, in Choices between two Risky Options, in each Domain and
Condition? GLM Coefficients and 95% Posterior Intervals

Complexity of Low Risk Option (Gains) Complexity of Low Risk Option (Losses)
Outcome Low Medium High Low Medium High
Attentional Efficiency Gains

Intercept (Younger) 0.00013
[4e-05, 0.00021]

8e-05
[-4e-05, 0.00021]

-3e-05
[-0.00014, 9e-05]

6e-05
[-5e-05, 0.00015]

1e-04
[-5e-05, 0.00025]

9e-05
[-3e-05, 0.00022]

Older -4e-05
[-0.00017, 7e-05]

-5e-05
[-0.00023, 0.00013]

-6e-05
[-0.00024, 1e-04]

-1e-05
[-0.00015, 0.00013]

-0.00014
[-0.00034, 7e-05]

-0.00014
[-0.00032, 4e-05]

Attentional Drift

Intercept (Younger) 0.00018
[-0.00052, 0.00087]

8e-05
[-0.00095, 0.00103]

-0.00085
[-0.00193, 0.00015]

-2e-05
[-0.00086, 0.00083]

-6e-04
[-0.00163, 0.00041]

-2e-04
[-0.00107, 0.00066]

Older 0.00018
[-0.00076, 0.00117]

-0.00146
[-0.00283, -7e-05]

0.00115
[-0.00031, 0.00264]

-0.00072
[-0.00192, 0.00044]

0.00067
[-0.00082, 0.00204]

0.00082
[-0.00044, 0.00208]

Baseline Drift

Intercept (Younger) 0.00763
[0.00671, 0.00859]

0.0035
[0.00229, 0.00476]

-0.00178
[-0.00321, -0.00036]

-0.001
[-0.00173, -0.00031]

-0.00238
[-0.00361, -0.00114]

0.00029
[-0.00102, 0.00157]

Older -0.00182
[-0.00314, -5e-04]

-0.00354
[-0.0053, -0.00189]

0.00114
[-0.00088, 0.00312]

-0.00082
[-0.00182, 0.00017]

0.00128
[-0.00054, 0.00302]

-0.0028
[-0.00464, -0.00101]

Complexity of High Risk Option (Gains) Complexity of High Risk Option (Losses)
Outcome Low Medium High Low Medium High
Attentional Efficiency Gains

Intercept (Younger) 5e-05
[-1e-05, 0.00011]

5e-05
[-1e-05, 0.00011]

4e-05
[-1e-05, 1e-04]

6e-05
[-1e-05, 0.00013]

6e-05
[0, 0.00012]

6e-05
[-1e-05, 0.00012]

Older -5e-05
[-0.00014, 3e-05]

-7e-05
[-0.00015, 2e-05]

-4e-05
[-0.00012, 5e-05]

-2e-05
[-0.00012, 7e-05]

-5e-05
[-0.00014, 3e-05]

-5e-05
[-0.00014, 4e-05]

Attentional Drift

Intercept (Younger) -2e-04
[-0.00101, 0.00057]

-0.00035
[-0.00119, 0.00049]

-0.0017
[-0.00275, -0.00061]

1e-04
[-0.001, 0.00124]

-0.00072
[-0.00167, 0.00021]

-0.00028
[-0.00119, 0.00062]

Older 0.00026
[-8e-04, 0.00135]

0.00047
[-7e-04, 0.00165]

0.00032
[-0.00111, 0.00187]

-0.00081
[-0.00242, 0.00079]

0.00027
[-0.00109, 0.00164]

0.00107
[-0.00022, 0.00235]

Baseline Drift

Intercept (Younger) 0.00265
[0.00183, 0.00346]

0.00271
[0.0019, 0.00354]

0.00267
[0.00187, 0.00348]

-0.00098
[-0.00166, -3e-04]

-0.00101
[-0.00171, -0.00034]

-0.00096
[-0.00163, -0.00029]

Older -0.00111
[-0.00229, 6e-05]

-0.00122
[-0.00235, -6e-05]

-0.00112
[-0.00238, 4e-05]

-0.00079
[-0.00178, 0.00017]

-8e-04
[-0.00176, 0.00018]

-0.00084
[-0.0018, 0.00016]

Table C.12: How does the Manipulation of Option Complexity Affect Attentional Efficiency Gains,
the Attentional Drift and the Baseline Drift, in Younger and Older Adults, in Choices between two
Risky Options? GLM Coefficients and 95% Posterior Intervals

Attentional Efficiency Gains Attentional Drift Baseline Drift
Domain Younger Older Younger Older Younger Older
Gains

Intercept 0.00013
[2e-05, 0.00023]

8e-05
[-4e-05, 0.00021]

0.00019
[-0.00046, 0.00084]

0.00036
[-0.00052, 0.00127]

0.0076
[0.00652, 0.00875]

0.0058
[0.00452, 0.00704]

Complexity Low Risk (Medium) -4e-05
[-0.00019, 1e-04]

-5e-05
[-0.00022, 0.00012]

-0.00013
[-0.00119, 0.00085]

-0.00174
[-0.00315, -0.00043]

-0.00409
[-0.0057, -0.0025]

-0.00583
[-0.00766, -0.00397]

Complexity Low Risk (High) -0.00015
[-3e-04, 0]

-0.00018
[-0.00036, -1e-05]

-0.001
[-0.00209, 4e-05]

-9e-05
[-0.00151, 0.00122]

-0.00937
[-0.01098, -0.00781]

-0.00642
[-0.00826, -0.00467]

Losses

Intercept 6e-05
[-4e-05, 0.00015]

5e-05
[-1e-04, 2e-04]

-3e-05
[-0.00076, 0.00069]

-0.00073
[-0.00176, 0.00028]

-0.00101
[-0.00203, 2e-05]

-0.00185
[-0.00303, -0.00072]

Complexity Low Risk (Medium) 5e-05
[-9e-05, 0.00018]

-9e-05
[-3e-04, 0.00013]

-0.00055
[-0.00163, 0.00054]

0.00076
[-0.00077, 0.00236]

-0.00132
[-0.0028, 0.00011]

0.00073
[-0.00081, 0.00241]

Complexity Low Risk (High) 4e-05
[-1e-04, 0.00017]

-1e-04
[-3e-04, 0.00012]

-0.00017
[-0.00121, 0.00089]

0.00135
[-8e-05, 0.00279]

0.00131
[-0.00014, 0.00281]

-0.00065
[-0.00227, 0.00101]

Attentional Efficiency Gains Attentional Drift Baseline Drift
Domain Younger Older Younger Older Younger Older
Gains

Intercept -2e-05
[-0.00012, 8e-05]

3e-05
[-9e-05, 0.00014]

-0.00118
[-0.00211, -0.00021]

-0.00178
[-0.00292, -0.00071]

-0.00143
[-0.00258, -0.00032]

-0.00239
[-0.00352, -0.00129]

Complexity High Risk (Medium) 8e-05
[-6e-05, 0.00022]

-0.00011
[-0.00027, 5e-05]

0.00021
[-0.00103, 0.00146]

0.00213
[0.00069, 0.00358]

0.00262
[0.001, 0.00428]

0.00675
[0.00516, 0.00833]

Complexity High Risk (High) 0.00014
[-1e-05, 0.00028]

3e-05
[-0.00014, 0.00019]

0.00114
[-1e-04, 0.00238]

0.0018
[0.00043, 0.00321]

0.00964
[0.00806, 0.01126]

0.00473
[0.00307, 0.00632]

Losses

Intercept 0.00012
[2e-05, 0.00023]

-2e-05
[-0.00016, 0.00012]

-0.00048
[-0.0013, 0.00035]

0.00015
[-0.00113, 0.00144]

-0.0021
[-0.0031, -0.00107]

-0.00187
[-0.00308, -0.00068]

Complexity High Risk (Medium) -2e-05
[-0.00017, 0.00012]

3e-05
[-0.00015, 0.00022]

8e-05
[-0.00104, 0.00119]

1e-05
[-0.00172, 0.00176]

0.00473
[0.00327, 0.00619]

0.0013
[-0.00042, 0.00296]

Complexity High Risk (High) -0.00017
[-0.00032, -3e-05]

0.00013
[-6e-05, 0.00032]

0.00055
[-0.00058, 0.00168]

-0.00087
[-0.00263, 0.00093]

-0.00128
[-0.00275, 0.00015]

-0.00096
[-0.00266, 0.00069]
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D | Supplemental Materials to Chapter 5

D.1 The Impact of Other Diffusion Parameters on Behavior

In the aDDM, evidence in favor of the safe option DVsafe and evidence in favor of the risky option
DVrisky evolve over time. On time-steps t where the safe option is attended to DVsafe and DVrisky
evolve according to

DVsafe(t) = DVsafe(t− 1) + d ∗ θattended ∗ osafe + ε

DVrisky(t) = DVrisky(t− 1) + d ∗ θunattended ∗ oi,risky + ε
(D.1)

and on time-steps t where the risky option is attended to DVsafe and DVrisky evolve
according to

DVsafe(t) = DVsafe(t− 1) + d ∗ θunattended ∗ osafe + ε

DVrisky(t) = DVrisky(t− 1) + d ∗ θattended ∗ oi,risky + ε
(D.2)

with ε ∼ N (0, σ2). In the simulation reported in the main text the diffusion parameters
θunattended and σ were set to specific invariant values. Here we show how the behavior of the
aDDM changes if these parameters are varied, and how this affects the mapping between aDDM
and CPT’s probability-weighting function.

D.1.1 Methods

Scaling the level of noise

The parameter σ defines the standard deviation of the Gaussian noise ε in the evidence accumula-
tion process, with higher values of σ indicating higher levels of noise. For the simulations reported
in the main text σ was set to 0.075. Here we show how the aDDM behaves in a noise-free process,
and under higher levels of noise, by simulating data with σ also set to 0 and 0.15.

Scaling the attentional weights

The parameter θunattended captures that evidence in favor of an option evolves at a slower rate on
steps where the other option is inspected. In the main text θunattended was set to .5, such that
evidence evolves twice as fast when an option is attended, compared to when it is unattended. Here
we show how the aDDM behaves when varying θunattended, by simulating data with θunattended set
to 0 and 1.

Simulation

Information search and choice patterns were simulated for the same 150 decision problems offering
a safe and a risky option, which were also used in the main text. The aDDM was used as a
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generative model. The probability pts of inspecting the safe option on each step was varied along
the same 11 levels also used in the main text. θunattended was varied between 0, 0.5 and 1. The
level of noise σ was varied between 0, 0.075 and 0.15. These values for all three parameters were
permuted with each other to obtain 99 possible parameter combinations. For each of these 99
combinations choices of 25 synthetic subjects on all 150 pairs of gambles were simulated, resulting
in 99 data-sets with 25× 150 choices each.

D.1.2 Results

Proportion of Safe Choices

Figure D.1 shows how the different diffusion parameters affect the tendency to choose the safe
option.

For θunattended = 1 evidence for an option accumulates at equal rates, irrespective of
whether the option is currently attended or not. In this case the aDDM reduces to a standard
DDM. Hence the relative attention pts has no effect on choice behavior. If θunattended is smaller
than 1, attentional biases do affect choice behavior: Greater relative attention pts to the safe option
increases the proportion of safe choices, and this effect is stronger for lower values of θunattended.
This is because the accumulation of evidence for the unattended option slows down more severely
for lower values of θunattended. How does the noise σ affect these behavioral patterns? In the
noise-free process with σ = 0, θunattended and pts have the most pronounced effect on safe option
choices. Under higher levels of noise, these effects are dampened, due to greater non-systematicity
in the data.
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Figure D.1: The impact of varying σ and θunattended on the tendency to choose the safe option.

238



D.1. The Impact of Other Diffusion Parameters on Behavior

Decision Quality

Figure D.2 shows how the different diffusion parameters affect the tendency to choose the option
with the higher EV, that is, maximizing behavior or decision quality.

For θunattended = 1 the aDDM reduces to a standard DDM. Hence attentional biases pts
have no effect on choice behavior, and thus decision quality. If this standard DDM process is noise
free (with σ = 0), decision quality is immaculate: The model always chooses the option with the
higher EV. Under higher levels of noise σ decision quality decreases. This is because non-systematic
errors perturb maximizing behavior.

If θunattended is smaller than 1, attentional biases do affect decision quality: Decision
quality decreases with more asymmetric attention pts 6= .5, because the evidence accumulation
process does not reflect differences between the options’ values in an objective manner anymore.
Instead the representation of differences between the options is distorted by attentional biases.
Hence, under extreme attentional biases, performance drops to chance level. The systematic effect
of asymmetric attention on decision quality is most pronounced in the noise free process with
σ = 0. This is because in this case, decision quality for the unbiased process (with pts = .5) is the
highest, and can hence decrease most dramatically due to attentional biases.
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Figure D.2: The impact of varying σ and θunattended on decision quality.
.

Response Time

Figure D.3 shows how the different diffusion parameters affect the RTs.
For θunattended = 1 the relative attention pts has no effect on RTs. The longest RTs emerge

if the process with θunattended = 1 is also noise free (σ = 0). Remember that in this case, decision
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quality is maximal. That is, the simulation illustrates a speed accuracy trade-off: more precise,
noise-free and unbiased processes achieve the highest performance, but take the most time.

If θunattended is smaller than 1, attentional biases do affect RTs: RTs decrease with more
extreme attentional biases pts 6= .5, because an evidence accumulation process biased towards one
option can reach the corresponding boundary faster. Note that, again, this decrease in RT is
associated with a decrease in decision quality, illustrating a speed-accuracy trade-off. The level of
noise in the process modulates the effects of θunattended on RTs.

● ● ● ●●
●

●● ●
● ●● ● ● ●

●
●

●
● ●

● ●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ● ●
●

●●
●● ● ● ●● ● ●

●
● ●

● ● ● ● ●

●
●

●

●
●●●●

●

●

●●

●

●

●
● ● ●

●

●

●

●

●
●

● ●●●●● ●
●

●●
●

●
●

●
● ● ●

●
●

●

● ● ● ●●●
●

● ●
●

●● ● ●
● ● ●

●
●

●
●

●

● ● ● ●●●●● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ●●●●● ● ● ●● ● ● ● ● ● ● ● ● ● ●

θunattended = 0 θunattended = 0.5 θunattended = 1

σ
=

0
σ

=
0.075

σ
=

0.15

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

0

1000

2000

3000

40

60

80

100

120

30

35

40

45

Relative Attention pts to Safe Option

R
T

 (
S

te
pc

ou
nt

)

Figure D.3: The impact of varying σ and θunattended on response times.

Summary

Varying the parameters σ and θunattended in the aDDM modulates the severity of the effect of
option specific attentional biases on all three aspects of choice behavior (risky choice, decision
quality and RTs). However, the key regularities—more extreme attentional biases towards either
option increase the tendency to choose this option, and thereby decrease both decision quality and
RTs—are very robust. These key regularities only disappear in the extreme case, where the aDDM
reduces to a standard DDM, and attention does not affect behavior.
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Figure D.4: Probability-weighting function by Goldstein & Einhorn (1987), based on CPT fitted
to data sets generated with varying diffusion parameters (pts , σ and θunattended) .
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D.2 Extension to Choices Between Two Risky Options

To test whether the link between attentional biases in the aDDM and probability weighting in
CPT can be extended to choice problems offering two risky options, information search and choice
patterns were simulated for 150 decision problems offering two risky options, using the aDDM,
while varying the attentional bias. A hierarchical Bayesian implementation of CPT was fitted to
the simulated choices for each level of attentional bias in the generative process.

D.2.1 Structure of the Lottery Problems

150 pairs of risky options A and B were generated using the following procedure: Both risky
outcomes were sampled from a uniform distribution ranging from 0 to 10, and rounded to 2 digits.
The higher outcome in each gamble is labelled ohigh and the lower outcome olow. The probability
phigh of the higher outcome was sampled from a uniform distribution ranging from 0 to 1, and the
probability of the lower risky outcome was defined as plow = 1 − phigh. The gamble on each pair
with the lower probability phigh was named gamble A, and the other gamble was named gamble B.
We eliminated dominated gamble pairs where both outcomes of one option were larger than both
outcomes of the other option. We randomly generated gamble pairs in this manner until we had
obtained 75 pairs on which option A had the higher EV, and 75 pairs on which option B had the
higher EV. The resulting 150 gamble pairs were used to generate simulated choices.

D.2.2 Simulation

The aDDM was used as a generative model. The probability pts of inspecting option B on each step
was systematically varied from .1 to .9 in increments of .1. To increase the resolution of our analysis
for moderate attentional biases we added two additional levels for pts in the mid-range (at .45 and
.55), resulting in a total of 11 levels of attentional bias. The parameter θunattended was set to 0.5,
such that evidence for each option accumulated at half the speed when it was unattended (versus
attended). The noise parameter σ was set to 0.075. For each level of pts choices of 25 synthetic
subjects on all 150 pairs of gambles were simulated, resulting in 11 data-sets with 25× 150 choices
each.

D.2.3 Modeling

Each of the 11 data-sets was fitted separately in four hierarchical Bayesian implementations of
CPT. The four models only differed in terms of the weighting function, using either the function
by Goldstein and Einhorn (1987), Prelec (1998, both variants), or Tversky and Kahneman (1992).
In the hierarchical models, each synthetic subject had a separate value on each parameter, and
these subject-level parameters were informed by a group-level distribution. Parameter inference
(presented in the results section) was based on the group-level posterior estimates.

D.2.4 Results: Synthetic Choice Behavior

We first describe the impact of attentional biases in the aDDM on choice behavior, in terms of
choosing option B (the option that received more or less attention), decision quality and response
times. All three features are analysed with Bayesian Mixed Regression models implemented using
the rstanarm package in R (Goodrich et al., 2018), and all models include random intercepts for
each synthetic subject. We evaluate the credibility of the tested fixed effects by inspecting whether
the 95%CIs on the regression coefficients include zero.
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Figure D.5: Preference for option B, decision quality, and response times observed in the choice
patterns generated in the aDDM, conditional on the attentional bias to the option B pts .
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Figure D.6: Parameter estimates and weighting functions for the two-parameter weighting func-
tions for choices between two risky options. The color gradient represents the proportion of time
spent attending to option B. Darker colors represent a greater attentional bias to the option B.
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Figure D.7: Parameter estimates and weighting functions for the one-parameter weighting functions
for choices between two risky options. The color gradient represents the proportion of time spent
attending to option B. Darker colors represent a greater attentional bias to the option B.

Option B choices

The proportion of choices of option B increased with the attentional bias towards option B (cf.
left panel of Figure D.5). The statistical credibility of this effect was corroborated in a Bayesian
logistic mixed regression on the choice of option B as the outcome variable. The model included
the relative attention to option B pts as a fixed predictor. There was a strong credible effect of
attention to option B on the tendency to choose that option (β = 4.51, 95% CI [4.40, 4.62]).

Decision quality

The proportion of choices of the option with the higher EV (decision quality) decreased with
increasingly extreme attentional biases, regardless which option received more attention (cf. middle
panel of Figure D.5). The statistical credibility of this effect was corroborated in a Bayesian logistic
mixed regression of decision quality as the outcome variable.. The model included the absolute
magnitude of the attentional bias (calculated as the absolute deviation of pts from .5) as a fixed
predictor. There was a negative credible effect of the magnitude of the attentional bias on decision
quality (β = −3.18, 95% CI [−3.35− 3.02]): As pointed out earlier, introducing attentional biases
impairs maximization performance, because the probability of choosing the option that receives
more attention increases, irrespective of whether this option is objectively preferable.

Response times

The response times (RT, measured as the number of steps in the diffusion process until the bound-
ary is hit) decreased with increasingly extreme attentional biases, regardless which option received
more attention (cf. right panel of Figure D.5). The statistical credibility of this effect was cor-
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roborated in a Bayesian mixed regression of RT as the outcome variable. The model included the
absolute magnitude of the attentional bias (calculated as the absolute deviation of pts from .5) as
a fixed predictor. There was a negative credible effect of the magnitude of the attentional bias on
RT (β = −72.23, 95% CI [−77.73,−66.72]): Stronger attentional biases, regardless towards which
option, allow the model to make faster choices. However, as established previously, this increased
speed comes at the cost of lower decision quality.

D.2.5 Results: Parameter Inference

Parameter inference for two-parameter weighting functions

Did the mapping between attentional biases and weighting function parameters extend to choices
between two risky options? In the two-parameter weighting functions (Goldstein & Einhorn, 1987;
Prelec, 1998) a greater attentional bias pts towards the option with the higher probability phigh
(option B) is reflected in a less elevated and more strongly S-shaped weighting function (cf. Figure
D.6). S-shaped weighting functions with a low elevation tend to overweight higher probabilities
more than lower probabilities. Hence, because pB,high > pA,high, the decision weight πB,high tends
to increase the valuation of option B more than the decision weight πA,high increases the valuation
of option A. Such weighting functions thus shift the comparison between option A and B in favor
of option B—and can thus account for the attentional bias towards option B.

Parameter inference for one-parameter weighting functions

In the one-parameter weighting functions (Prelec, 1998; Tversky & Kahneman, 1992) a greater
attentional bias pts towards the option with the higher probability phigh is reflected in a more
strongly S-shaped weighting function (i.e. higher values on the curvature parameter γ, cf. Figure
D.7). This is due to the same mechanism as in the case of the two-parameter weighting functions.
S-shaped weighting functions tend to overweight higher probabilities more than lower probabilities.
Hence, because pB,high > pA,high, the decision weight πB,high amplifies the valuation of option B
more than the decision weight πA,high amplifies the valuation of option A. Thereby it shifts the
comparison between option A and B in favor of option B—and achieves the same effect as the
attentional bias towards option B.

D.2.6 Conclusion

The link between attentional biases in the aDDM and decision weights in CPT extends to choices
between two risky options. In this case especially the curvature of weighting functions affects the
comparison between the two options, by differentially modulating the decision weights assigned
to outcomes with higher or lower probabilities. Consequently, the curvature is very potent in
accounting for attentional biases, even in the less flexible one-parametric weighting functions.
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D.3 Details on CPT Modeling of Empirical Data

We fitted two versions of hierarchical Bayesian CPT to the DfE data from Wulff et al. (2018). The
models were designed to be sensitive to capturing the relationships between attentional biases and
probability weighting parameters which we identified in the simulation analysis. To this end, the
trial-level parameters δ and γ could co-vary with the empirically observed sampling bias towards
the safe option on each trial. The empirical sampling bias towards the safe option Xbias,s,i on each
trial i and in each subject s was measured as the proportion of samples from the safe option minus
.5. Hence a positive (negative) sampling bias expresses a bias towards the safe (risky) option, and
a sampling bias of 0 means that the both options were sampled equally often.

D.3.1 CPT with Prelec’s Weighting Function

Based on our results in the simulation and recovery analyses for the weighting function by Prelec
(1998), we expected a negative linear relationship between greater attention towards the safe
option and the curvature parameter γ, and a positive linear relationship between greater attention
towards the safe option and the elevation parameter δ. To test for these effects in the empirical
data, we regressed the weighting function parameters on the empirical sampling bias towards the
safe option Xbias,s,i . That is, the trial-level elevation and curvature parameters for the weighting
function by Prelec (1998) were defined as a linear combination of a subject-specific intercept and
a subject-specific slope on the sampling bias observed on each trial:

δs,i = βintercept,s,δ + βbias,s,δ ∗Xbias,s,i (D.3)

γs,i = βintercept,s,γ + βbias,s,γ ∗Xbias,s,i (D.4)

Hence a subject-specific slope βbias,s,δ of zero indicates that the empirical sampling bias
did not affect the elevation in subject s. A negative subject-specific slope βbias,s,δ indicates that
the participant’s elevation was lower on trials where the safe option was sampled predominantly,
compared to trials where the risky option was sampled predominantly. Defining the parameters
in this manner and estimating the β coefficients allows us to explicitly measure the impact of
attentional biases on the shape of the weighting function.

D.3.2 CPT with Goldstein and Einhorn’s Weighting Function

Based on our results in the simulation and recovery analyses for the weighting function by Goldstein
and Einhorn (1987), we expected a negative linear relationship between relative amount of attention
to the safe option and the elevation parameter δ, and an inverse-U shaped relationship between the
relative amount of attention towards the safe option and the curvature parameter γ. To test for
these effects in the empirical data, we regressed the weighting function parameters on the empirical
sampling bias towards the safe option. That is, the trial-level elevation and curvature parameters
for the weighting function by Goldstein and Einhorn (1987) were defined as a linear combination
of a subject-specific intercept and a subject-specific slope on the sampling bias observed on each
trial:

δs,i = βintercept,s,δ + βbias,s,δ ∗Xbias,s,i (D.5)
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γs,i = βintercept,s,γ + βbias,s,γ ∗X2
bias,s,i (D.6)

Note that this model can measure a quadratic relationship between sampling bias and γ, in
line with the inverse-U shaped relationship observed in the simulations, due to the quadratic term
X2
bias,s,i. Otherwise, the parameters can be interpreted in the same manner as the corresponding

parameters for the model with Prelec’s weighting function.

D.3.3 Hierarchical Structure of the Models

Both models were based on a hierarchical parameter structure: The subject-specific coefficients
βintercept,s are informed by paper-level distributions (for individual papers included in the meta-
analysis by Wulff et al., 2018), which were in turn informed by a top level distribution across all
papers. This modeling approach mimics the random-effects structure commonly used in meta-
analyses, and meets the concern expressed by Wulff et al. (2018) that aggregating across CPT
parameters from methodologically diverse studies would risk producing average parameters of
questionable value. The model was fitted to the experienced probabilities, such that potential
effects of attentional biases on γ and δ can not be trivially attributed to the over- or undersampling
of particular events relative to their objective probability.
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D.4 Quantifying Distortions in Probability Weighting

In the main text, we provided an intuition how nonlinear weighting functions can make risky
options appear more or less attractive, while maintaining a stable valuation for safe options, such
that the comparison between safe and risky options is either shifted in favor of or against risky
options. Here we address how we can quantify whether a particular weighting function, given
specific parameter settings, distorts the valuation of risky options.

To reiterate, the total valuation Vrisky of a risky option in CPT is

Vrisky = πhigh ∗ [v(ohigh)− v(olow)] + v(olow) (D.7)

Under linear probability weighting πhigh equals the objective probability phigh such that
CPT reduces to EU. Under nonlinear probability weighting πhigh can be smaller or larger than
phigh, such that the risky option appears less or more attractive than under linear weighting.
Whether a particular nonlinear probability-weighting function w makes a particular risky option
appear less or more attractive than a linear weighting function can be quantified by taking the
difference between πhigh − phigh. If this difference is smaller than zero, the nonlinear weighting
function makes risky options with the probability phigh appear less attractive, and if the difference
is larger than zero it makes such risky options appear more attractive. The difference πhigh−phigh
can thus quantify to which extent the weighting function w distorts the valuation of the set of
risky options with the particular probability phigh.

To measure how the weighting function w affects the valuation of risky options more
generally, in a manner that is not conditioned on the particular probability phigh, we can integrate
the difference between each objective probability and the assigned decision weight across the entire
probability range [0, 1]:

πdistortion =

∫ 1

0

[
w(p)− p

]
dp (D.8)

One thereby obtains the difference between the area under the diagonal (i.e. linear weight-
ing) and the area under the nonlinear weighting function w. How can this difference πdistortion be
interpreted? For weighting functions w with πdistortion = 0 the amount of overweighting and the
amount of underweighting cancel each other out, when considering the entire probability range.
That is, individual risky options may appear more or less attractive under this weighting function
than under linear weighting—depending on their probability phigh. However, viewed on average
across the entire set of conceivable risky options (with phigh distributed uniformly across all prob-
abilities in [0, 1]), a weighting function w with πdistortion = 0 does not systematically make risky
options appear more or less attractive.

For weighting functions with πdistortion < 0 the amount of underweighting exceeds the
amount of overweighting, when considering the entire probability range. This could, for instance,
be the case if the weighting function runs below the identity line across most of the probability
range. Hence, averaged across the entire set of conceivable risky options, such weighting functions
tend to make risky options appear less attractive. Generally speaking, they tend to shift the
comparison between risky and safe options in favor of the safe option. This qualifies them to
mimic attentional biases towards the safe over the risky option.

For weighting functions with πdistortion > 0 the amount of overweighting exceeds the
amount of underweighting, when considering the entire probability range. This could, for instance,
be the case if the weighting function runs above the identity line across most of the probability
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Table D.1: Range of πdistortion of Risky Options’ Valuation under each of the Weighting Functions
in CPT, Compared to EU, for Specific Ranges of the Parameters δ and γ

Vrisky,CPT < Vrisky,EU Vrisky,CPT > Vrisky,EU
Weighting Function Range of πdistortion Parameter range Range of πdistortion Parameter range
Goldstein and Einhorn (1987) [−0.50, 0] δ < 1 [0, 0.41] δ > 1
Prelec (1998)

- two-parameter [−0.50, 0] δ / 1 [0, 0.50] δ ' 1
- one-parameter (with δ = 1) [−0.13, 0] γ < 1 [0, 0.05] γ > 1

Tversky and Kahneman (1992) [−0.5, 0] γ < 1 none none

range. Hence, averaged across the entire set of conceivable risky options, such weighting functions
tend to make risky options appear more attractive. They hence tend to shift the comparison
between risky and safe options in favor of the risky option. This qualifies them to mimic attentional
biases towards the risky over the safe option.

D.4.1 Can Different Weighting Functions Distort the Valuation of
Risky Options?

Our argument posits that a weighting function’s capacity to mimic attentional biases depends
on its capacity to shift the comparison between safe and risky options either against, or in favor
of, risky options, by making them appear less or more attractive. To evaluate whether the four
different weighting functions discussed in this paper have this capacity, we inspect the range of
πdistortion across the entire parameter space of γ and δ. If this range includes values smaller than
zero, the weighting function can assume shapes that make risky options appear less attractive.
If it includes values larger than zero, the weighting function can assume shapes that make risky
options appear more attractive.

Two-parameter weighting functions

First we consider the two-parameter weighting functions by Goldstein and Einhorn (1987) and
Prelec (1998): Across all combinations of the parameters δ in the range [0, 10] and γ in the range
[0,2] the values of πdistortion vary within [−.49, .41] for the weighting function by Goldstein &
Einhorn (1987), and within [−.50, .49] for the weighting function by Prelec (1998). Hence, there
are parameter combinations for both weighting functions under which πdistortion is smaller than
zero, meaning that they are capable of systematically making risky options appear less attractive.
There are also parameter combinations for both functions under which πdistortion is larger than
zero, meaning that both weighting functions are also capable of systematically making risky options
appear more attracitve. Therefore both weighting functions should be able to mimic attentional
biases both towards the risky and towards the safe option.

One-parameter weighting functions

Next, we consider the weighting functions which are governed only by the curvature γ, ranging
within [0,2]: In the one-parameter variant of Prelec’s weighting function πdistortion varies within
[−.13, .05] across the entire range of γ. Thus it is capable of making risky options appear both less
and more attractive. However, the range of πdistortion is considerably narrower compared to the
two-parameter form. This indicates that the one-parameter form may be less capable of mimicking
extreme option-specific attentional biases, especially towards the risky option, which may require
a stronger distortion of risky options’ valuation.
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Figure D.8: Distortion of risky options’ valuation due to the weighting function across the param-
eter range of γ and δ for the two-parameter weighting functions by Goldstein and Einhorn (1987,
left panel) and Prelec (1998, right panel).

In the one-parameter weighting function by Tversky and Kahneman (1992) πdistortion
varies in [-0.5, 0] across the entire parameter range of γ. That is, this weighting function can make
risky options appear less attractive, but—because πdistortion never exceeds 0—it can not make
them appear more attractive. Hence this weighting function can shift the comparison between
risky and safe options against risky options, but not in their favor. Therefore we expect this
weighting function to be sensitive to attentional biases towards the safe option but not towards
the risky option.

D.4.2 Under which Parameter Settings do Weighting Functions
Distort the Valuation of Risky Options, and How?

Besides evaluating whether a weighting function is at all capable of shifting the comparison between
risky and safe options, we can also identify under which specific parameter combinations this is
the case. This allows us to formulate specific hypotheses regarding how each weighting function
is expected to mimic the option-specific attentional biases in the aDDM. To this end we mapped
πtotal on the parameter space of δ and γ for all four weighting functions.

Two-parameter weighting functions

Figure D.8 illustrates the distortion of risky options’ valuation πdistortion under each combination
of the parameters δ and γ for the two-parameter weighting functions by Goldstein and Einhorn
(1987) and Prelec (1998) . The color gradient represents πdistortion: Brighter (/darker) colors
indicate parameter combinations under which risky options appear more (/less) attractive.

In Goldstein and Einhorn’s (1987) weighting function the elevation parameter δ is the
main determinant of πdistortion. Risky options appear more attractive if δ > 1 and less attractive
if δ < 1. Hence we expect that attentional biases to the risky option are reflected in larger values
of δ in the range δ > 1, and that attentional biases to the safe option are reflected in smaller values
of δ in the range δ < 1. Moreover, given values of δ at a further distance from 1, lower values of
the curvature γ entail a more extreme distortion of risky options’ valuation (regardless whether
positive or negative). Therefore, for more extreme attentional biases (whether in favor of the safe
or the risky option), this weighting function may assume lower values of γ.

In the two-parameter variant of Prelec’s (1998) weighting function, the elevation parameter
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Figure D.9: Distortion of risky options’ valuation due to the weighting function across the param-
eter range of γ for the one-parameter form of the weighting function by Prelec (1998, left panel)
and the one-parameter weighting function by Tversky and Kahneman (1992, right panel).

δ is also the main determinant of πdistortion. Risky options appear less attractive under higher
values of δ ' 1 and more attractive under lower values of δ / 1. Hence stronger attentional
biases to the safe option may be mimicked in larger values of δ in the range δ ' 1, and that
stronger attentional biases to the risky option may be reflected in smaller values of δ in the range
δ / 1.1 Moreover, as in the case of Goldstein & Einhorn’s weighting function, given values of δ at
a further distance from 1, lower values of the curvature γ amplify the distortion of risky options’
valuation (regardless whether positive or negative). Therefore, given more extreme attentional
biases (whether in favor of the safe or the risky option), this weighting function may assume lower
values of γ.

One-parameter weighting functions

Next, let us consider the one-parameter weighting functions which are governed only by the curva-
ture γ. The distortion of risky options’ valuation πdistortion under each value of γ for one-parameter
variant of Prelec’s weighting function and the weighting function by Tversky and Kahneman (1992)
is illustrated in Figure D.9. Risky options appear less (/more) attractive if this black line (illus-
trating πtotal) runs below (/above) the horizontal grey line (marking a the valuation under linear
probability weighting). In both one-parameter weighting functions risky options are trated neu-
trally under γ = 1.

In the one-parameter variant of Prelec’s weighting function, risky options are appear less
attractive under γ < 1 and more attractive under γ > 1. Hence attentional biases to the safe
option may be reflected in lower values of γ in the range γ < 1, and attentional biases to the risky
option may be reflected in higher values of γ in the range γ > 1.

In the one-parameter weighting function by Tversky and Kahneman (1992) risky options
appear less attractive under γ < 1, but they never appear more attractive. Hence we predict
that attentional biases to the safe option are reflected in lower values of γ in the range γ < 1.
Since πtotal never exceeds zero, attentional biases to the risky option can not be mimicked by this

1In Prelec’s weighting function, lower values of δ entail a higher elevation, while in Goldstein and Einhorn’s
weighting function, higher values of of δ entail a higher elevation. Thus, while in both cases risky options appear
more attractive when the weighting function is more elevated, this feature is mapped on the parameter space
differently, explaining the different direction of the color gradients in Figure D.8.
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weighting function.
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