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1 Introduction

Computing the algebraic K-theory of group rings is of great importance in

geometric topology. Given a topological space X many problems can be reduced

to statements about the K-theory of the integral group ring Zπ1(X) where

π1(X) denotes the fundamental group of X. For example, the s-cobordism

theorem states that an h-cobordism over a manifold M is trivial, if and only

if its Whitehead torsion vanishes. The Whitehead torsion is an element in

the Whitehead group of M , which is defined as a quotient of the K-group

K1(Zπ1(M)).

In general, for a group G and a ring R with unit one would like to be able to

compute the K-groups Km(RG) with m ∈ Z using information about the group

G and the K-theory of the ring R separately. An approach to the computation of

the K-theory of group rings in this way is given by the Farrell-Jones conjecture.

It predicts that the so called assembly map

HG
∗ (EVCYCG,KR)→ HG

∗ (pt,KR) = K∗(RG)

is an isomorphism where HG
∗ (−,KR) denotes the equivariant homology theory

satisfying HG
m(G/H;KR) ∼= HH

m (pt;KR) ∼= Km(RH) for a subgroup H of G.

The space EVCYCG is a model for the classifying G-CW-complex for the family

VCYC of virtually cyclic subgroups of G. A family of subgroups of G is a set of

subgroups of G which is closed under taking subgroups and conjugation. The

G-CW-complex EVCYCG has the property that all isotropy groups belong to

VCYC. The assembly map stated in the conjecture is induced by the projection

EVCYCG → pt. For a comprehensive report on the Farrell-Jones conjecture the

reader is referred to [LR05].

Although the left-hand side of the above assembly map is more accessible,

it is not easy to compute either. By making the following assumptions we can

simplify it further. We take the ring R to be the integers Z and tensor both sides

with Q. In this case we have an additional tool at hand, the equivariant chern

character introduced by Lück in [Lüc02]. For a finite cyclic subgroup C of G

denote by ZGC and NGC the centralizer and normalizer of C in G, respectively.

The quotient WGC = NGC/ZGC is called the Weyl group of C in G. Further,
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1 Introduction

let FCY be the set of conjugacy classes of finite cyclic subgroups of G. The

equivariant chern character is an isomorphism

HG
q (EVCYCG,KZ)⊗Z Q→

⊕
k+m=q

⊕
(C)∈FCY

Hk(BZGC;Q)⊗Q[WGC] Sm(C)

where

Sm(C) = coker

(⊕
D�C

Km(ZD)⊗Z Q→ Km(ZC)⊗Z Q

)
is called the Artin defect of C in degree m ∈ Z. Since a finite cyclic group is

unique up to isomorphism, we will write Sm(n) for the Artin defect where n is

the order of C. The inclusion of a subgroup D of C defines an inclusion of rings

ZD → ZC and the above maps Km(ZD) ⊗Z Q → Km(ZC) ⊗Z Q are the ones

induced from these inclusions. The Weyl group acts on the Artin defect in the

following way. Denote by Aut(C) the automorphism group of C. There is an

injective group homomorphism

WGC → Aut(C), [g] 7→ (c 7→ gcg−1)

and so we can consider the Weyl group as a subgroup of Aut(C). Since the K-

groups are functors, the action of Aut(C) on C induces an action on Km(ZC)⊗Z
Q. This action commutes with the maps induced from inclusion of subgroups

of C and hence gives a well-defined action on the Artin defect.

The purpose of this thesis is to compute the dimension of the Artin defect as a

Q-vector space for all finite cyclic groups in all degrees and to describe the action

of the automorphism group on it. We will use different methods to achieve this

in the different degrees of K-theory. In negative K-theory degrees our main

tool will be the localization sequence for lower K-theory. In degree 1 we have

a more explicit description of the Artin defect using bases of the rationalized

units of the ring of integers in cyclotomic extension of Q. In higher degrees we

apply Borel’s results on the computation of the ranks of the K-groups of the

ring of integers in a an algebraic number field to our situation. Denote by ϕ

Euler’s phi function, which is defined as ϕ(n) = |{1 ≤ k ≤ n | gcd(k, n) = 1}|
for n ∈ N and by µn the set of n-th roots of unity in C. The main result can be

stated as follows.
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Theorem. Let C be a finite cyclic group of order n > 1. For m ∈ Z denote by

Sm(n) the cokernel of the map⊕
D�C

Km(ZD)⊗Z Q −→ Km(ZC)⊗Z Q

induced by the inclusion of proper subgroups D of C. For a prime p denote by Gp

the Galois group of the cyclotomic extension Qp(µn)/Qp of the p-adic numbers

and by I the subgroup of Aut(C) generated by the automorphism φ(c) = c−1.

As an element in K0(QAut(C)) we have

[Sm(n)] =



[
⊕

p|nQ[Aut(C)/Gp]]− [Q] if m = −1

[Q[Aut(C)/I]]− [Q] if m = 1

[Q[Aut(C)/I]] if m > 1,m ≡ 1 mod 4

[Q[Aut(C)]]− [Q[Aut(C)/I]] if m > 1,m ≡ 3 mod 4

[0] else

and in particular,

dimQ(Sm(n)) =



ϕ(n)/2 if m > 1,m ≡ 1 mod 2 and n > 2

ϕ(n)/2− 1 if m = 1 and n > 2

s(n)− 1 if m = −1

1 if m > 1,m ≡ 1 mod 4 and n = 2

0 else

with

s(n) =
s∑
i=1

ϕ(n/peii )/fpi

where fpi is the smallest number such that p
fpi
i ≡ 1 mod n/pei and n =

∏s
i=1 p

ei
i

is the prime factorization of n.

In some of the cases we give an even more explicit description of the defect as

a QAut(C)-module. In the course of proving the main result we also compute

an analogous defect for any field of characteristic 0 in K-theory degree 0.
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Theorem. Let C be a finite cyclic group of order n ∈ N and F a field of

characteristic 0. Denote by GF the Galois group of the cyclotomic extension

F (µn)/F . There is an isomorphism of QAut(C)-modules

coker

(⊕
D�C

K0(FD)⊗Z Q→ K0(FC)⊗Z Q

)
∼= Q[Aut(C)/GF ]

where GF can be identified in a canonical way as a subgroup of Aut(C).

Additionally, we also get a description of higher K-theory of the integral group

ring of a finite cyclic group C tensored with R as a functor from the subgroup

category of C. The subgroup category has as objects the subgroups of C and

as morphisms the inclusion of subgroups.

Theorem. Let C be a finite cyclic group and m ∈ N with m > 1. There is an

isomorphism

Km(ZC)⊗Z R ∼=


R[C]+ if m ≡ 1 mod 4

R[C]− if m ≡ 3 mod 4

0 else,

which defines a natural transformation of functors from the subgroup category

of C with

R[C]+ = {x ∈ R[C] | φ(x) = x},
R[C]− = {x ∈ R[C] | φ(x) = −x}

and φ is the automorphism of R[C] induced by φ(c) = c−1 for c ∈ C.
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Organization

The thesis is divided into the different degrees of K-theory for which the com-

putation of the Artin defect can be treated simultaneously. These are put into

four chapters corresponding to the degrees lower than 0, degree 0, degree 1 and

degrees greater than 1. In each chapter we start with setting up the necessary

preliminaries to describe the corresponding rational K-groups of the integral

group ring of a finite cyclic group with emphasis on naturality as functors from

the subgroup category. This provides the basis for the computation of the Artin

defect. At the end of each chapter we determine the dimension of the Artin

defect and its structure as a module over the automorphism group. We assume

that the reader is familiar with the definition and basic properties of algebraic

K-theory as treated for example in [Ros94].
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2 The Artin Defect in Degrees m < 0

In this chapter we treat the Artin defect in negative K-theory degrees. In

the first section we explain the localization sequence for lower K-theory. This

sequence is our main tool to approach the relevant negative K-groups. We will

conclude that the only case where the Artin defect is not trivial is in degree

m = −1. In this case, the defect can be expressed in terms of K0 of group rings

over the rational and the p-adic numbers. Therefore, in the second section we

examine K0 of group rings of finite cyclic groups over fields of characteristic 0

with emphasis on functoriality with respect to inclusion of finite cyclic groups

and field extensions. In the last section of this chapter we apply these results to

compute the Artin defect as a Q-vector space and describe the corresponding

action of the automorphism group.

2.1 The Localization Sequence in Lower K-Theory

A computational approach to negative K-theory of group rings has been intro-

duced by Carter in [Car80] where he proves a localization sequence for lower

K-Theory. In this section we give an outline of his construction. The start-

ing point is the localization sequence in degrees 1 and 0 introduced by Bass in

[Bas68, Chapter IX, Theorem 6.3]. For a commutative ring R, an R-algebra Λ

and a subset S ⊆ R such that multiplication by an element s ∈ S is injective

Bass constructed an exact sequence

K1(Λ) // K1(S−1Λ) δ // K0(HS(Λ)) // K0(Λ) // K0(S−1Λ)

where HS(Λ) denotes the category of S-torsion left Λ-modules which admit a

finite resolution by finitely generated projective left Λ-modules. For i ∈ {0, 1}
the map Ki(Λ) → Ki(S

−1Λ) is the one induced from the inclusion Λ ⊆ S−1Λ.

Hence, the main work goes into constructing the map δ. Carter uses this se-

quence to prove the exactness of the analog sequences

Km+1(Λ) // Km+1(S−1Λ) // Km(HS(Λ)) // Km(Λ) // Km(S−1Λ)

13



2 The Artin Defect in Degrees m < 0

for all m ≤ −1. He proceeds with considering noetherian algebras over Dedekind

rings. For these one can get rid of the groups Km(HS(Λ)) with the help of P -

adic completions in the following way. Let R be a Dedekind ring, S the set of

nonzero elements of R and K its field of fractions. Further, let Λ be a noetherian

R-algebra that is R-torsion free. For a prime ideal P of R we set ΛP = RP ⊗RΛ

where RP denotes the P -adic completion of R at P . Carter shows that the

induced map

HS(Λ)→
∐
P

HS(ΛP )

is an equivalence of categories. Splitting the long localization sequence into

short exact sequences and mapping them into the corresponding local versions

yields a commutative diagram

0 // Km+1(Λ) //

��

Km(HS(Λ)) //

��

K̃m(Λ) //

��

0

0 //
⊕

P Km+1(ΛP ) //
⊕

P Km(HS(ΛP )) //
⊕

P K̃m(ΛP ) // 0

where K̃m(Λ) = ker(Km(Λ) → Km(A)), Km(Λ) = Km(A)/Im(Km(Λ)) and

A = S−1Λ ∼= K ⊗R Λ. The vertical map in the middle is an isomorphism and

so applying the snake lemma gives an exact sequence

0 // Km+1(Λ) //
⊕

P Km+1(ΛP ) // K̃m(Λ) //
⊕

P K̃m(ΛP ) // 0 .

Last, Carter takes Λ = RG to be the group ring of a finite group G over a

Dedekind ring R, for which further simplifications are possible. This is also the

situation we are interested in. Again, a result by Bass (see [Bas68, Chapter XII,

Prop. 10.1]) shows that the negative K-groups of A = KG and AP = KPG

vanish. Therefore, the above exact sequences simplify to

0 // K0(RG) //
⊕

P K0(RPG) // K−1(RG) //
⊕

P K−1(RPG) // 0

and

0 // K−m(RG) //
⊕

P K−m(RPG) // 0

for m > 1. Under the condition that the field of fractions of R has characteristic

zero one can show that the groups K−m(RG) for m > 1 and K−1(RPG) are also

14



2.1 The Localization Sequence in Lower K-Theory

trivial leaving us with an exact sequence

0 // K0(RG) //
⊕
P

K0(RPG) // K−1(RG) // 0 .

This sequence can be rearranged into the exact sequence

K0(RG) // K0(KG)⊕
⊕
P

K0(RPG) //
⊕
P

K0(KPG) // K−1(RG) // 0

where the first map is given by the maps induced by the inclusions R → RP

and by the negative of the map induced by the inclusion R → K. The second

map in the diagram is given by the maps induced by the inclusions K → KP

and RP → KP . We apply this to R = Z and note that by results of Swan (see

[Swa70, Theorem 4.2 and 2.21]) it follows that the image of the first map of

the above sequence is equal to the image generated by free RG-modules. Since

these are all distinct we get the exact sequence

0 // K0(Z) // K0(QG)⊕
⊕
p

K0(ZpG) //
⊕
p

K0(QpG) // K−1(ZG) // 0

where Qp and Zp denote the p-adic numbers and integers, respectively and

the direct sums are taken over all primes p in Z. Further, it is known from

representation theory that the naturally induced map K0(ZpG) → K0(QpG) is

an isomorphism, if G is a finite group of order prime to p (see [Ser77, Section

15.5]). This means that we can exclude the summands in the above sequence

corresponding to primes not dividing the order n of G without harming the

exactness. Now we consider the following maps induced from subgroups of G.

In general, for a ring R with unit denote by indR the map⊕
H�G

K0(RH)→ K0(RG)

induced from the inclusions H → G for subgroups H of G. These commute

with the localization sequence and so for a finite cyclic group C of order n we

15



2 The Artin Defect in Degrees m < 0

get a commutative diagram

0 //
⊕
D�C

K0(Z)

��

//
⊕
D�C

(K0(QD)⊕
⊕
p|n
K0(ZpD))

indQ⊕
⊕
p indZp

��

//
⊕
D�C

⊕
p|n
K0(QpD)

⊕
p indQp

��

//
⊕
D�C

K−1(ZD)

��

// 0

0 // K0(Z) // K0(QC)⊕
⊕
p|n
K0(ZpC) //

⊕
p|n
K0(QpC) // K−1(ZC) // 0

(2.1)

where we excluded all summands corresponding to primes not dividing the order

of C according to the previous comment. This diagram will play a crucial role

in determining the Artin defect in degree −1.

2.2 Functoriality of K0 of Group Rings Over Fields

The purpose of this section is to get a better understanding of the groups

K0(FC) ⊗Z Q as functors in the finite cyclic group C for a field F of char-

acteristic 0. This is important, because the Artin defect in degree −1 can be

expressed in terms of above K-groups as we will see. Let us make this precise

by introducing the subgroup category of a group.

Definition 2.1. Let G be a group. Denote by Sub(G) the category whose objects

are the subgroups of G. Further, for subgroups H and K of G define the set

conG(H,K) = {f : H → K | ∃ g ∈ G : f(h) = ghg−1 ∀ h ∈ H}.

The group of inner automorphisms Inn(K) acts from the left on conG(H,K) by

composition and we define the set of morphisms from H to K in Sub(G) to be

the set Inn(K)\ conG(H,K).

Note that if G is abelian, then Sub(G) boils down to the category of subgroups

of G and inclusions of groups as morphisms. Next, we introduce dual groups.

Definition 2.2. Let G be a finite abelian group and let S1 = {z ∈ C | |z| = 1},
then the set

Ĝ = Hom(G,S1)

of group homomorphisms from G to S1 is called the dual group of G. The group

multiplication is given by pointwise multiplication of maps.

16



2.2 Functoriality of K0 of Group Rings Over Fields

A first observation is that a finite cyclic group is isomorphic to its dual group,

although not in a canonical way.

Lemma 2.3. Let C be a finite cyclic group. The choice of a generator c of C

defines an isomorphism Ĉ → C by σ 7→ σ(c).

Proof. Let n ∈ N be the order of C. The map σ 7→ σ(c) is injective, because

c is a generator and a group homomorphism from a cyclic group is determined

by the image of a generator. Further, the order Ĉ is also n, because c can be

mapped to any of the n different n-th roots of unity and so the map must also

be bijective.

This result holds more general for finite abelian groups, but for our purposes

it suffices to have it for finite cyclic groups. Note that a different choice of a

generator defines a different isomorphism and there is no canonical isomorphism.

For the remaining part of this section let F be a field of characteristic 0, let C

be a finite cyclic group of order n ∈ N and denote by µn the set of n-th roots of

unity in C. We consider the two F (µn)-algebras

F (µn)C and map(Ĉ, F (µn))

which denote the group ring of C over F (µn) and the space of all maps in the

category of sets from the dual group Ĉ to F (µn), respectively. The ring struc-

ture of the latter is given by pointwise multiplication of maps. The Galois group

G(F (µn)/F ) of the extension F (µn)/F acts on µn by automorphisms. Since the

n-th roots of unity form a cyclic group of order n, there is an isomorphism

µn ∼= C. This induces an action of G(F (µn)/F ) on C. Although the identifica-

tion µn ∼= C depends on choices of generators in each group, the induced action

of the Galois group does not depend on these choices. More precisely, an au-

tomorphism φ ∈ G(F (µn)/F ) is uniquely determined by the fact that it maps

a and then any primitive n-th root of unity ζn to ζtn for some t ∈ {1, . . . , n}
coprime to n. The action on C is defined similarly by φ(c) = ct for c ∈ C.

Hence, the Galois group G(F (µn)/F ) can be considered in a canonical way as a

subgroup of the automorphism group of C, which we denote by Aut(C). Note

that this action commutes with elements in the dual group in the sense that

φ(σ(c)) = σ(φ(c)) for all σ ∈ Ĉ and c ∈ C. Further, the action of G(F (µn)/F )

on C restricts to an action on every subgroup D of C, because it preserves the

order of elements. The inclusion D → C is G(F (µn)/F )-equivariant. With this

in mind we have the following group actions on the algebras.
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2 The Artin Defect in Degrees m < 0

Lemma 2.4. Let C be a finite cyclic group and n ∈ N a multiple of the order

of C. Denote by G = G(F (µn)/F ) the Galois group of the extension F (µn)/F ,

then G×G acts on

F (µn)C by (φ, ψ) · (
∑
c∈C

λcc) =
∑
c∈C

φ(λc)ψ
−1(φ(c))

and on

map(Ĉ, F (µn)) by ((φ, ψ) · f)(σ) = φ(f(ψ−1 ◦ σ)).

Further, we have fixed point F -vector subspaces

(F (µn)C)G×G = (FC)1×G and map(Ĉ, F (µn))G×G = map(Ĉ, F )1×G.

Proof. Knowing that G×G is abelian it is straight forward to show that both

actions are well-defined. Now let us determine the fixed point subspaces. An

element in (F (µn)C)G×G must satisfy in particular∑
c∈C

λcc = (φ, φ) · (
∑
c∈C

λcc) =
∑
c∈C

φ(λc)c

for all φ ∈ G. This means that the coefficients λc are invariant under automor-

phisms of the Galois group and so λc ∈ F (µn)G = F for all c ∈ C. Additionally,

we have the condition∑
c∈C

λcc = (id, ψ−1) · (
∑
c∈C

λcc) =
∑
c∈C

λcψ(c)

for all ψ ∈ G and so λc = λψ(c), which implies that coefficients belonging to the

same orbit under the G-action must be equal. Both conditions together yield

(F (µn)C)G×G ⊆ (FC)1×G. On the other hand, given an element in (FC)1×G we

check that

(φ, ψ) · (
∑
c∈C

λcc) =
∑
c∈C

φ(λc)φ(c) =
∑
c∈C

λcφ(c) = (id, φ) · (
∑
c∈C

λcc) =
∑
c∈C

λcc

which shows equality. Considering the fixed point space map(Ĉ, F (µn))G×G we

see that being fixed under the subgroup G × 1 implies that such a map must

have values in F and being fixed under 1×G means that a map is constant on

18



2.2 Functoriality of K0 of Group Rings Over Fields

G-orbits of Ĉ. Any element in G×G can be written as a product of elements in

1×G and G×1 and so combining both conditions yields the desired results.

Since Ĉ and C have the same order, it is obvious that the two algebras

introduced above are isomorphic as vector spaces over F (µn). But we will show

that they are even equivariantly isomorphic as algebras and functors. For a

field F denote by VSF the category of finite dimensional F -vector spaces and

F -linear maps. We have the following result.

Lemma 2.5. Keep the notations of the previous lemma. The map

F (µn)C → map(Ĉ, F (µn)), c 7→ fc

with fc(σ) = σ(c) for c ∈ C and σ ∈ Ĉ is a G×G-equivariant isomorphism of

F (µn)-algebras. Further, it is a natural transformation of functors from Sub(C)

to VSF (µn) and natural with respect to automorphisms of C.

Proof. It is straight forward to check that this map defines a homomorphism

of algebras, so we proceed with showing that it is an isomorphism. Since both

spaces have F (µn)-dimension m = |C| it is sufficient to show injectivity. We

have an inner product on map(Ĉ, F (µn)) defined by 〈f, g〉 = 1
m

∑
σ∈Ĉ f(σ)g(σ).

We will use this to show that the vectors fc for c ∈ C are orthogonal, which

implies injectivity. Fix a generator x of C, then for k, l ∈ {0, . . . ,m − 1} with

k 6= l and d = gcd(m, k − l) we compute

〈fxk , fxl〉 =
1

m

∑
σ∈Ĉ

σ(xk−l) =
1

m

∑
ζ∈µm

ζk−l =
d

m

∑
ξ∈µm/d

ξ(k−l)/d = 0.

In the last step we used the fact that the sum of all m/d-th roots of unity is 0.

We proceed with proving equivariance. Since the action commutes with taking

sums, it is enough to check equivariance on an element of the form λcc for c ∈ C
and λc ∈ F (µn). Let (φ, ψ) ∈ G×G, then the element φ(λc)ψ

−1(φ(c)) is mapped

to φ(λc)fψ−1(φ(c)). Evaluation on σ ∈ Ĉ gives

φ(λc)fψ−1(φ(c))(σ) = φ(λc)σ(ψ−1(φ(c))).

On the other hand, we have

((φ, ψ) · (λcfc))(σ) = φ(λcfc(ψ
−1 ◦ σ)) = φ(λc)φ(ψ−1(σ(c))).
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2 The Artin Defect in Degrees m < 0

Since G is abelian and the action of G on C commutes with all σ ∈ Ĉ the map

is indeed equivariant. Last, we have to show naturality. We will show slightly

more than stated. Let C, C ′ be finite cyclic groups and β : C → C ′ any group

homomorphism. We claim that the induced diagram

F (µn)C
∼= //

β∗

��

map(Ĉ, F (µn))

β∗
��

F (µn)C ′
∼= // map(Ĉ ′, F (µn))

commutes. The vertical map β∗ on the right maps f ∈ map(Ĉ, F (µn)) to

β∗(f)(σ) = f(σ ◦ β) for σ ∈ Ĉ ′. For c ∈ C we see that fc(σ ◦ β) = σ(β(c)) =

fβ(c)(σ). This finishes the proof, because β∗ is in both cases a homomorphism

of algebras and so it is enough to check naturality on a basis.

Now the rational K-groups in degree 0 come into play. The next lemma shows

that they are compatible with a certain action of a Galois group.

Lemma 2.6. Let L/K be a Galois extension of fields of characteristic 0 and H

a finite group. The Galois group G of the extension L/K acts on the group ring

LH by acting on L as automorphisms. This induces an action of G on K0(LH)

and there is an isomorphism of Q-vector spaces

K0(LH)G ⊗Z Q −→ K0(KH)⊗Z Q, [M ]⊗ q 7→ [resLHKHM ]⊗ q

where resLHKHM denotes the KH-module we obtain by restricting scalar multi-

plication from LH to KH.

Proof. Denote by indLHKH : K0(KH) → K0(LH) the map [M ] 7→ [M ⊗KH LH]

and consider the map

K0(KH)→ K0(KH), [M ] 7→ [resLHKH(indLHKH(M))].

For a KH-module M we compute

resLHKH(LH ⊗KH M) ∼= resLHKH(L⊗K M) ∼= K [L:K] ⊗K M ∼= M⊕[L:K]

and see that it is multiplication with [L : K]. Similarly, we also have the map

K0(LH)→ K0(LH), [M ] 7→ [indLHKH(resLHKH(M))]
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2.2 Functoriality of K0 of Group Rings Over Fields

and for an LH-module M we get

LH ⊗KH M ∼= L⊗K M ∼= (L⊗K L)⊗LM ∼=
⊕
σ∈G

σL⊗LM ∼=
⊕
σ∈G

σM.

Further, for a KH-module M we have σL ⊗K M ∼= L ⊗K M as LH-modules.

In particular, the image of the induction map is contained in K0(LH)G. In

summary, we get a commutative diagram

K0(LH)G
∑
σ∈G σ∗ //

res

&&

K0(LH)G

K0(KH)
·[L:K] //

ind
88

K0(KH)

ind
88

The lower horizontal map is rationally an isomorphism which implies that re-

striction is rationally surjective. Since we restricted to K0(LH)G the upper

horizontal map is again multiplication with [L : K] and thus also rationally an

isomorphism. Hence, restriction is rationally also injective yielding the desired

isomorphism. Note that if we don’t tensor with Q we still get an injective map

K0(KH)→ K0(LH)G, because these Z-modules are free.

We get the following corollary which will be of use in a later chapter.

Corollary 2.7. Let K and L be fields with K ⊆ L ⊆ C and H a finite group.

The group homomorphism

K0(KH)→ K0(LH), [P ] 7→ [P ⊗K L]

is injective.

Proof. Let n be the order of H and denote by µn the set of n-th roots of unity

in C. Consider the diagram

K0(KH) //

++

K0(LH) // K0(CH)

K0(K(µn)H),

∼=

OO

where each map is the obvious one induced by inclusion of fields. The fact that

the vertical map is an isomorphism is well known from representation theory (see

[Ser77, Chapter 12.3, Theorem 24]). The diagonal map is injective according to
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2 The Artin Defect in Degrees m < 0

the proof of the previous lemma, because the extension K(µn)/K is Galois. It

follows that the composition of the horizontal maps is injective and hence also

the map stated in the corollary.

We can finally determine the object we were initially interested in, namely

the rational K-group K0(FC)⊗ZQ as functor from the subgroup category of a

finite cyclic group.

Theorem 2.8. Let F be a field of characteristic 0 and C a finite cyclic group

of order n ∈ N. Denote by GF and GQ the Galois groups of the extensions

F (µn)/F and Q(µn)/Q, respectively. For every subgroup D of C there is an

isomorphism

K0(FD)⊗Z Q ∼= (Q(µn)D)GQ×GF .

This defines a natural transformation of functors from Sub(C) to VSQ. Addi-

tionally, it is natural with respect to automorphisms of C.

Proof. We have isomorphisms

K0(FD)⊗Z Q ∼= K0(F (µn)D)GF ⊗Z Q (1)

∼= K0(map(D̂, F (µn)))GF ⊗Z Q (2)

∼= map(D̂,K0(F (µn)))GF ⊗Z Q (3)

∼= map(D̂,Z)GF ⊗Z Q (4)

∼= map(D̂,Q)GF (5)

∼= map(D̂,Q(µn))GQ×GF (6)

∼= (Q(µn)D)GQ×GF (7)

In (1) we applied Lemma 2.6. Isomorphisms (2) and (7) are a direct consequence

of Lemma 2.5 and they are natural as functors from the subgroup category. In

(3) and (4) we make use of the fact that K0 respects products. Also, K0 of a

field is isomorphic to Z and injective field homomorphisms induce the identity

on K0. Step (5) is obvious and for (6) we used Lemma 2.4. The crucial steps to

check for compatibility with an automorphism of C are (2) and (7). But in the

proof of Lemma 2.5 we showed that the isomorphism is compatible with any

group homomorphism between finite cyclic groups and this obviously includes

automorphisms.
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Remark 2.9. Let F and F ′ be fields of characteristic 0 with F ⊆ F ′ and denote

by GF and GF ′ the Galois groups of the F (µn)/F and F ′(µn)/F ′, respectively.

The Galois group GF ′ can be canonically identified with a subgroup of GF and

it is straight forward to check that the isomorphism from the previous theorem

is natural with respect to inclusion of fields in the sense that the map

K0(FC)⊗Z Q→ K0(F ′C)⊗Z Q, [P ] 7→ [P ⊗F F ′]

induces the obvious inclusion of fixed point subspaces

(Q(µn)C)GQ×GF → (Q(µn)C)GQ×GF ′ .

2.3 The Artin Defect and the Action of the

Automorphism Group

In this last section we will apply the previous results to compute the Artin defect

in negative degrees and understand the action of the automorphism group. As

usual, C denotes a finite cyclic group of order n ∈ N. Recall that the Artin

defect is defined as

Sm(n) = coker

(⊕
D�C

Km(ZD)⊗Z Q −→ Km(ZC)⊗Z Q

)

and in this chapter we consider the degrees m < 0. We have seen in the first

section that Km(ZC) = 0 for all m < −1, because Z is a Dedekind ring.

This holds for every finite cyclic group and so the maps on K-theory induced

from inclusion of subgroups are the zero maps. Consequently, the Artin defect

vanishes in this case. Thus, it remains to treat the defect in degree m = −1.

Our main tool is the diagram

0 //
⊕
D�C

K0(Z)

��

//
⊕
D�C

(K0(QD)⊕
⊕
p|n
K0(ZpD))

indQ⊕
⊕
p indZp

��

//
⊕
D�C

⊕
p|n
K0(QpD)

⊕
p indQp

��

//
⊕
D�C

K−1(ZD)

��

// 0

0 // K0(Z) // K0(QC)⊕
⊕
p|n
K0(ZpC) //

⊕
p|n
K0(QpC) // K−1(ZC) // 0
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2 The Artin Defect in Degrees m < 0

we constructed in the first section. We see that the main ingredients in de-

termining the Artin defect in degree −1 are the torsion-free abelian groups

K0(QC), K0(ZpC), K0(QpC) and the corresponding induction maps. Note that

the vertical map on the very left is surjective, because the free ZD-module

ZD is mapped to the free ZC-module ZC under the map on K0 induced by

ZD → ZC. We proceed with computing the cokernels of the induction maps

indQ, indQp and indZp for each prime divisor p of n. It is sufficient to consider

the rational versions. We start with the K-groups of the group ring over Zp, for

which we will use the following result. It can be found in [Ser77, Section 14.4,

Corollary 3].

Theorem 2.10. Let G be a finite group and K a discrete valuation field of

characteristic 0. Denote by A the valuation ring, m the maximal ideal and

k = A/m the corresponding residue field of characteristic p > 0. The quotient

map A→ A/m induces an isomorphism K0(AG) ∼= K0(kG).

We apply this to K = Qp, A = Zp and k = Zp/pZp ∼= Fp to get an isomor-

phism K0(ZpC) ∼= K0(FpC) induced by the projection Zp → Zp/pZp. We use it

to show that the induction map indZp is surjective.

Lemma 2.11. Let C be a finite cyclic group of order n ∈ N and p a prime

dividing n, then the map

indFp :
⊕
D�C

K0(FpD) −→ K0(FpC)

is surjective.

Proof. Write n = plm with p - m and l ∈ N. We have a decomposition C ∼=
Cpl × Cm where Cpl and Cm are the unique subgroups of C of order pl and

m, respectively. It is known from modular representation theory (see [Ser77,

Example 15.7]) that a finitely generated FpC-module E is projective, if and

only if E ∼= F ⊗Fp FpCpl for some FpCm-module F . Since F ⊗Fp FpCpl ∼=
F ⊗FpCm FpC this means that E is in the image of the induction map. Note that

since p - m the ring FpCm is semisimple due to Maschke’s Theorem and so every

module is projective. Now p divides n and so Cm is always a proper subgroup

of C. Combining this with the previous statement that every projective FpC-

module is induced from an FpCm-module shows that the induction map is indeed

surjective.
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2.3 The Artin Defect and the Action of the Automorphism Group

In particular, using the isomorphism from Theorem 2.10, which commutes

with the maps induced from subgroups, we see that coker(indZp) = 0 for every

prime p dividing the order of C. Now we turn to K0 of the algebras QC and

QpC. More general, we consider the rational induction map⊕
D�C

K0(FD)⊗Z Q −→ K0(FC)⊗Z Q

for any field F of characteristic 0. We have treated these groups in the previous

section and we will use the results to compute the cokernel of the above induction

maps as modules over QAut(C). But before let us make one remark. We have

canonically identified the Galois group G(F (µn)/F ) of the extension F (µn)/F

with a subgroup of Aut(C). Therefore, an action of Aut(C) on a set M can

be restricted to an action of G(F (µn)/F ) on M . Since Aut(C) is abelian, both

actions commute and we get a well-defined action of Aut(C) on the fixed point

set MG(F (µn)/F ).

Theorem 2.12. Let C be a finite cyclic group of order n ∈ N and F a field of

characteristic 0. Denote by µn the set of n-th roots of unity in C and by G the

Galois group of the extension F (µn)/F . Further, let indF ⊗Q be the induction

map
⊕

D�C K0(FD) ⊗Z Q → K0(FC) ⊗Z Q. The choice of a generator of C

defines an isomorphism of QAut(C)-modules

coker(indF ⊗Q) ∼= Q[Aut(C)]GF .

In particular, dimQ(coker(indF ⊗Q)) = ϕ(n)/|GF | where ϕ is Euler’s phi func-

tion.

Proof. We use the isomorphism from Theorem 2.8 to get the corresponding map⊕
D�C

(Q(µn)D)GQ×GF −→ (Q(µn)C)GQ×GF

induced by the inclusion of subgroups D of C. The group C is the disjoint union

C =
⋃
d|n

Ed(C)

of the sets Ed(C) = {c ∈ C | ord(c) = d}. Since the action of the Galois group

GQ on C preserves the order of an element, we have an isomorphism of Q-vector
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2 The Artin Defect in Degrees m < 0

spaces

(Q(µn)C)GQ×GF ∼=
⊕
d|n

Q(µn)[Ed(C)]GQ×GF .

For each divisor d 6= n there exists a proper subgroup D of C such that Ed(C) =

Ed(D). Therefore, the image of the induction map is precisely the sum over all

d 6= n and so the cokernel is isomorphic to Q(µn)[En(C)]GQ×GF . We claim that

a choice of a generator c′ of C defines an isomorphism

Q(µn)[En(C)]GQ×GF → Q(µn)GF ,
∑

c∈En(C)

λcc 7→ λc′ .

We have Q(µn)[En(C)]GQ×GF = Q(µn)[En(C)]GQ×1 ∩Q(µn)[En(C)]1×GF and so

we determine the fixed point set of each action separately. The Galois group

GQ acts transitively on the generators of C. This means that for all c ∈ En(C)

there is a φ ∈ GQ, such that φ(c′) = c. The fixed point condition∑
c∈En(C)

λcc =
∑

c∈En(C)

φ(λc)φ(c)

thus implies that λc = φ(λc′). Hence, the choice of λc′ ∈ Q(µn) determines all

other coefficients and the map defined above is injective. On the other hand,

we have the fixed point condition under GF which acts on the basis given by

the generators of C. This means that coefficients belonging to the same orbit of

En(C)/GF must be equal. Therefore, an element being fixed under both actions

must additionally satisfy λc′ = φ(λc′) for all φ ∈ GF which means that λc′ lies

in Q(µn)GF and this implies surjectivity. Now since Q(µn)/Q is a finite Galois

extension, there exists a normal basis of the Q-vector space Q(µn) (see [Nar04,

Theorem 4.28]). More specifically, there is an element α ∈ Q(µn), such that the

set Bα = {φ(α) | φ ∈ GQ} is a Q-basis of Q(µn). Via the canonical isomorphism

GQ ∼= Aut(C) described previously we get an isomorphism of Q-vector spaces

Q(µn)GF ∼= Q[Aut(C)]GF defined by φ(α) 7→ φ on the basis.

If n is square-free, then a normal basis of Q(µn) is given by all Galois con-

jugates of a primitive n-th root of unity. This does not hold in general for

arbitrary n. To see that assume there is a prime p with p2 | n. Let ζn be a
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2.3 The Artin Defect and the Action of the Automorphism Group

primitive n-th root of unity and set ζp = ζ
n/p
n . We have

p−1∑
i=0

ζn · ζ ip = ζn ·
p−1∑
i=0

ζ ip = ζn · 0 = 0,

but for all i = 1, . . . , p − 1 the product ζn · ζ ip = ζ
1+i(n/p)
n is a primitive n-th

root of unity, because gcd(n, 1 + i(n/p)) = 1 since n/p is divisible by all prime

divisors of n.

The following lemma shows how the combination of all previous results can

be used to determine the Artin defect in degree −1.

Lemma 2.13. Let Ai and Bi, i = 1, . . . , 4 be abelian groups and let the diagram

0 // A1

f1
��

// A2

f2
��

// A3

f3
��

// A4

f4
��

// 0

0 // B1
// B2

f // B3
// B4

// 0

be commutative with exact rows. If f1 is surjective and f denotes the map

coker(f2)→ coker(f3) induced by f , then

coker(f4) ∼= coker(f).

Proof. Define A′ and B′ to be the cokernels of the maps A1 → A2 and B1 → B2,

respectively. We split above diagram into the two commutative diagrams

0 // A1

f1
��

// A2

f2
��

// A′

f ′

��

// 0

0 // B1
// B2

// B′ // 0

and

0 // A′

f ′

��

// A3

f3
��

// A4

f4
��

// 0

0 // B′ // B3
// B4

// 0

where the rows are again exact. Since f1 is surjective, applying the snake lemma

to the first diagram yields coker(f2) ∼= coker(f ′). Using this and applying the
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2 The Artin Defect in Degrees m < 0

snake lemma once more to the second diagram gives

coker(f4) ∼= coker(f3)
/

Im(coker(f ′)→ coker(f3)) ∼= coker(f3)
/

Im(f) .

Now we have all ingredients to determine the Artin defect in degree −1.

Theorem 2.14. Let C be a finite cyclic group of order n ∈ N and denote by

S−1(n) the cokernel of the map⊕
D�C

K−1(ZD)⊗Z Q −→ K−1(ZC)⊗Z Q

induced by the inclusion of subgroups D of C. Further, for a prime p dividing

n denote by Gp the Galois group of the extension Qp(µn)/Qp. There is an

isomorphism of QAut(C)-modules

S−1(n) ∼= coker(Q ∆−−→
⊕
p|n

Q[Aut(C)]Gp)

where Q is the trivial QAut(C)-module and ∆ denotes the diagonal map on the

sum and on each summand. Here, Aut(C) acts on each summand by acting on

the basis given by Aut(C) itself. In particular,

dimQ S−1(n) =
∑
p|n

np − 1

with np = ϕ(n/pνp)/fp where νp denotes the p-adic valuation on Z and fp is

the order of p in the multiplicative group of units (Z/(n/pνp))× of the ring of

integers modulo n/pνp.

Proof. We apply Lemma 2.13 to the rational version of diagram 2.1. Hence, the

square of interest is⊕
D�C

(KQ
0 (QD)⊕

⊕
p|n
KQ

0 (ZpD))

(indQ⊗Q)⊕
⊕
p(indZp ⊗Q)

��

//
⊕
D�C

⊕
p|n
KQ

0 (QpD)

⊕
p indQp ⊗Q

��

KQ
0 (QC)⊕

⊕
p|n
KQ

0 (ZpC) //
⊕
p|n
KQ

0 (QpC)
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2.3 The Artin Defect and the Action of the Automorphism Group

where KQ
0 denotes the rational K-groups. First, note that according to Theorem

2.10 and Lemma 2.11 the induction map indZp is surjective for all primes dividing

n and so the corresponding cokernel is 0. It remains to determine the cokernels

of the maps indQ⊗Q and indQp ⊗Q. To do that we apply Lemma 2.12. In the

first case it is well known that the Galois group GQ of the extension Q(µn)/Q
can be identified with the full group of units (Z/n)× of the ring of integers

modulo n, which has order ϕ(n). Therefore, we have

coker(indQ⊗Q) ∼= Q[Aut(C)]GQ ∼= Q,

since GQ acts transitively on Aut(C). In the second case we have

coker(indQp ⊗Q) ∼= Q[Aut(C)]Gp .

Cyclotomic extensions of Qp are treated for example in [Ser79, Chapter IV, §4].

We just give the results. Write |C| = n = pl ·m with p - m and l ∈ N, then

G(Qp(µn)/Qp) ∼= G(Qp(µpl)/Qp)×G(Qp(µm)/Qp)

∼= G(Q(µpl)/Q)×G(Fp(µm)/Fp)
∼= (Z/pl)× × 〈ζm 7→ ζpm〉
≤ (Z/pl)× × (Z/m)× ∼= (Z/n)×,

where ζm is a primitive m-th root of unity. So in general this Galois group

is not the full group of units and thus does not act transitively on the set of

generators. More specifically, denote by fp the order of p in the multiplicative

group (Z/m)×, then we have

dimQ(coker(indQp ⊗Q)) =
ϕ(n)

ϕ(pl) · fp
=
ϕ(m)

fp
.

Denote by f the map coker(indQ⊗Q)→
⊕

p|n coker(indQp ⊗Q) induced by the

natural map K0(QC)→
⊕

p|nK0(QpC), then applying Lemma 2.13 yields

S−1(n) ∼=
(⊕

p coker(indQp ⊗Q)
)/

f(coker(indQ⊗Q))

∼=
(⊕

p|nQ[Aut(C)]Gp
)/

f(Q) .
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2 The Artin Defect in Degrees m < 0

According to Remark 2.9, on Q the map f is given by the inclusion

Q ∼= Q[Aut(C)]GQ → Q[Aut(C)]Gp

for each p, thus inducing the diagonal map on each summand. In particular, we

have dimQ(S−1(n)) =
∑

p|n np− 1. Finally, the Aut(C)-action is indeed the one

induced by the action on the basis Aut(C), because we proved in Theorem 2.8

that the isomorphisms used to determine the cokernels of the different induction

maps are natural with respect to automorphisms of C.

The number np appears in the study of the factorization of prime ideals of

Z in the ring of integers of Q(µn). Since the extension Q(µn)/Q is Galois, the

fundamental identity of extensions of Dedekind domains simplifies to

[Q(µn) : Q] = efr,

where e is the ramification index, f the inertia degree and r the number of

distinct primes in the factorization of the ideal (p) in Q(µn). Using the previous

notation we have [Q(µn) : Q] = ϕ(n), e = ϕ(pνp) and f = fp and so np = r

is the number of distinct prime ideals appearing in the factorization of (p). It

is also the number of distinct extensions of the p-adic valuation of Q to the

cyclotomic field Q(µn). For more details see [Neu99, Chapter II, §8].
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3 The Artin Defect in Degree m = 0

This case can be answered quite briefly. Let C be a finite cyclic group. Since

finitely generated projective Z-modules are free and up to isomorphism deter-

mined by their rank, we have K0(Z) ∼= Z. The natural inclusion i : Z → ZC
splits via the augmentation map, which maps an element in the group ring to

the coefficient of the identity element of C. Hence, the induced map i∗ : Z →
K0(ZC) is also a split injection. The reduced K0-group of ZC is defined as the

quotient

K̃0(ZC) = K0(ZC)/i∗(Z)

and according to the previous comments it measures the part of K0(ZC) which

does not come from finitely generated free ZC-modules. Swan proved in [Swa60,

Prop. 9.1] that K̃0(RG) is finite for R a ring of algebraic integers and any finite

group G. Thus, tensoring with Q yields

K0(ZC)⊗Z Q ∼= Q

for all finite cyclic groups C. In particular, given a subgroup D of C the map

Q ∼= K0(ZD)⊗Z Q→ K0(ZC)⊗Z Q ∼= Q

induced from the inclusion D → C is an isomorphism, since [M ]→ [M⊗ZDZC]

is obviously not the zero map. It follows that the induction map⊕
D�C

K0(ZD)⊗Z Q→ K0(ZC)⊗Z Q

is surjective if the order of C is greater than 1 and the Artin defect in degree

0, which is defined as the cokernel of this map, vanishes. If C is the trivial

group there are no proper subgroups of C and hence the cokernel of the above

induction map is isomorphic to K0(Z)⊗Z Q ∼= Q.
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The goal of this chapter is to determine the Artin defect in degree 1. We will

see that K1 of the integral group ring of a finite cyclic group is isomorphic to

the units of the group ring. This yields an explicit description of the K-groups

we are interested in. In order to compute the dimension of the Artin defect in

degree 1 we construct a filtered basis of the rationalized units (ZC)×⊗ZQ. That

is a basis which contains a basis of the subspace (ZD)×⊗ZQ for each subgroup

D of C. This is done in the first three sections. In the last section we determine

the structure of the Artin defect as a module over QAut(C) with the help of

a well-known basis of the rationalized cyclotomic units. The cyclotomic units

are a finite index subgroup of the full group of units of the ring of integers in a

cyclotomic field.

4.1 A Filtered Basis of the Cyclotomic Units

In order to construct a filtered basis of the rationalized units of the integral

group ring of a finite cyclic group we use the existence of a filtered basis of

the cyclotomic units. Such a basis was constructed by M. Conrad in [Con00]

and we want to describe it in this section. We keep the description as brief as

possible, but with enough details so that one can comprehend the construction.

For further details the reader is referred to the original article. We start with

the definition of cyclotomic integers and cyclotomic units.

Definition 4.1. For n ∈ N denote by µn the set of n-th roots of unity in C and

let ζn ∈ µn be a primitive n-th root of unity. The n-th cyclotomic numbers are

defined as the multiplicative group generated by elements of the form 1− ζkn with

k ∈ {1, . . . , n−1} inside Q[µn] and denoted by W (n). The n-th cyclotomic units

are defined as U (n) = W (n)∩Z[µn]×. Further, define the relative n-th cyclotomic

numbers and relative n-th cyclotomic units as

Ŵ (n) = coker

 ∏
d|n,d 6=n

W (d) → W (n)


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and

Û (n) = coker

 ∏
d|n,d 6=n

U (d) → U (n)

 ,

respectively using the inclusions of subsets W (d) → W (n) and U (d) → U (n) for a

divisor d of n.

The cyclotomic numbers are introduced as a tool to construct a basis for the

cyclotomic units. These two objects are connected as follows.

Lemma 4.2. For n ∈ N the inclusion of U (n) into W (n) induces isomorphisms

Û (n) ∼=

{
Ŵ (n) if n 6= pα

∆Ŵ (n) if n = pα

where ∆Ŵ (n) denotes the subgroup of Ŵ (n) generated by elements of the form

(1− ζan)/(1− ζn) with a ∈ Gn = {1 ≤ a < n | gcd(a, n) = 1}.

Conrad constructs a basis Bn of U (n) which contains a basis of Bd of U (d)

for every divisor d of n. He does it by constructing a basis of the relative

cyclotomic units Û (d) for each divisor d of n and proving that the union of these

form the desired basis. In order to do that he introduces weak σ-bases and the

cyclotomic module. Let us see what these are precisely. Throughout this section

every module is a Z-module together with an involution σ. We start with the

definition of weak σ-bases.

Definition 4.3. A weak σ-basis of a module M is a triple [E0, E+, E−] of subsets

of M such that the union B = E0 ∪ σE0 ∪ E+ ∪ E− is disjoint and a basis of

M with

(i) σe− e ∈ 〈E0 ∪ σE0〉 for e ∈ E+

(ii) σe+ e ∈ 〈E0 ∪ σE0〉 for e ∈ E−.

Next, we define the cyclotomic module, a basis of which will lead to a basis

of the cyclotomic units. For a subset S of a module M we set Σ(S) =
∑

s∈S s.

Definition 4.4. For n > 1 define the cyclotomic module Z(n) as follows. Let

Gd = {1 ≤ a < d | gcd(a, d) = 1} and for a prime p let Ap = {0, . . . , p − 1}.
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We define

Z(n) =


Z[Gp]

/
〈Σ(Gp)〉Z if n = p prime

Z[Gq/p]⊗Z Z[Ap]
/
〈Σ(Ap)〉Z if n = q = pα, α > 1.

If n = q1 · . . . · qr where qi are powers of distinct primes, then we define Z(n) =

Z(q1)⊗Z . . .⊗Z Z(qr). A σ-operation is defined on Gd by σb = d− b for b ∈ Gd

and on Ap by σa = p − 1 − a for a ∈ Ap, which defines a σ-operation on the

cyclotomic module.

Conrad also shows that the module Z(n) is isomorphic to Z[Gn]/Rn for some

submodule Rn. We proceed with describing weak σ-bases for the modules Z(n)

where n is a power of a prime. Such a basis Bn is given by

Bn =


[∅,∅,∅] if n = 2

[∅,∅, {(1, 0)}] if n = 4

[{2, . . . , (p− 1)/2},∅, {1}] if 2 6= n = p prime

[{(b, a) | 1 ≤ b < 1
2
n/p, p - b, 1 ≤ a < p},∅,∅] if 4 6= n = pα, α > 1.

In order to get a weak σ-basis of the cyclotomic module Z(n) for arbitrary n

one can use the following lemma. It also tells us how to get a Z-basis for the

module M/ ker(1 + σ) from a weak σ-basis of M .

Lemma 4.5. Let B = [E0, E+, E−] and C = [F 0, F+, F−] be weak σ-bases of

modules M and L, respectively. Then [G0, G+, G−] ⊆M × L with

G0 = (E0 × (F 0 ∪ σF 0 ∪ F+ ∪ F−)) ∪ (E+ × F 0) ∪ (E− × F 0),

G+ = (E+ × F+) ∪ (E− × F−),

G− = (E+ × F−) ∪ (E− × F+)

induces a weak σ-basis of M ⊗Z L. Additionally, E0 ∪ E+ induces a basis of

M/ ker(1 + σ).

The next theorem shows the connection between cyclotomic modules and

cyclotomic numbers.

Theorem 4.6. For n ∈ N with n 6= 4 the map Gn → W (n), a 7→ 1− ζan induces

an isomorphism
Yn
/

ker(1 + σ) −→ Ŵ (n)
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4 The Artin Defect in Degree m = 1

where

Yn =


0 if n = 1

Z[Gn] if n = p prime

Z(n) else

The last ingredient for constructing a filtered basis of the cyclotomic units is

the following result by Conrad.

Theorem 4.7. Let n ∈ N. If B̂d ⊆ U (n) induces a basis of Û (d) for all divisors

d of n, then Bn =
⋃
d|n B̂d is a basis of U (n).

Let us summarize the construction process for a basis of U (n). According to

the last result, once we have basis of Û (d) for each divisor d of n, we just have

to take the union of all these to get a filtered basis of U (n). We get a basis of

Û (d) in the following way. If d is not a power of a prime, we can use Theorem

4.6 in combination with Lemma 4.2 to get isomorphisms

Û (d) ∼= Ŵ (d) ∼= Z(d)/ ker(1 + σ).

Lemma 4.5 explains how to construct a basis of Z(d)/ ker(1 + σ), which we

use to get a basis of Û (d) via above isomorphism. On the other hand, if d is a

prime we have Û (d) ∼= U (d) and in this case there is a well-known basis for the

cyclotomic units given by {
1− ζan
1− ζn

∣∣∣∣ 1 < a <
p

2

}
.

Finally, if d is a power of a prime pα with α > 1 one uses the isomorphism

Û (d) ∼= ∆Ŵ (d) ∼= ∆(Z(d)/ ker(1 + σ))

to deduce a basis, where ∆M = 〈e− e′ | e ∈ E〉Z for a module M with basis E.

It is explicitly given by{
1− ζap

α−1+b
d

1− ζd

∣∣∣∣∣ (b, a) ∈ {b ∈ Gd/p | 1 ≤ b ≤ d

2p
} × {1, . . . , p− 1}

}

and this completes the construction.
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4.2 A Filtered Basis of the Units of the Integral Group

Ring of a Finite Cyclic Group

We will use the filtered basis of the cyclotomic units described in the previous

section to construct a filtered basis of the rationalized units of the integral group

ring ZC. By that we mean a basis Bn of (ZC)×⊗ZQ which contains a basis of the

subspace (ZD)×⊗ZQ for any subgroup D of C. This is related to K1(ZC)⊗ZQ
and thus to the Artin defect in degree 1 in the following way.

For a commutative ring R with unit we set

GL(R) =
⋃
n∈N

GLn(R) and SL(R) =
⋃
n∈N

SLn(R)

where GLn(R) and SLn(R) are the general and special linear group of degree n,

respectively. Further, we denote by En(R) the subgroup of GLn(R) generated by

matrices which have 1’s on the diagonal and at most one non-zero off-diagonal

entry. A matrix of this form is called an elementary matrix and we set E(R) =

∪n∈NEn(R). Note that E(R) is a subgroup of SL(R). Therefore, we can define

SK1(R) = SL(R)/E(R),

which is a subgroup of K1(R) = GL(R)/E(R). Consequently, we obtain a short

exact sequence

1 // SK1(R) // K1(R) det // R× // 1

where det denotes the determinant map. This sequence splits via the identifi-

cation R× = GL1(R) and we have a decomposition

K1(R) ∼= R× × SK1(R).

We are interested in R = ZC, the integral group ring of a finite cyclic group.

Bass, Milnor and Serre proved in [BMS67] that the group SK1(ZC) is trivial in

this case. Hence, the determinant map yields an isomorphism

K1(ZC) ∼= (ZC)×.

This holds more general for the group ring of a finite cyclic group over the ring
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4 The Artin Defect in Degree m = 1

of integers in an algebraic number field. For a proof and a complete treatment

of K1 of integral group rings of finite groups the reader is referred to [Oli88].

Next, we want to see what the map on K1 induced from the inclusion of

subgroups of C yields on the corresponding units via the above isomorphism.

In general, for a subring S of R the induced map K1(S) → K1(R) is given by

considering matrices with entries in S as matrices with entries in R. Thus, for a

subgroup D of C the induced inclusion of rings ZD → ZC yields a commutative

diagram

K1(ZD) det //

��

(ZD)×

��
K1(ZC) det // (ZC)×

and we see that the vertical map on the right is just the inclusion of units as

a subset. Remember that we are only interested in rational K-theory, so let

us summarize what is known about the rank of the group of units of ZC. We

consider ZC as a subring of QC, for which we have the following decomposition.

Lemma 4.8. Let C be a finite cyclic group of order n ∈ N. For a divisor d of

n denote by µd the set of d-th roots of unity in C. The choice of a generator

c of C and a primitive d-th root of unity ζd for each divisor d of n defines an

isomorphism of Q-algebras

QC →
∏
d|n

Q(µd), c 7→ (ζd)d|n.

Proof. Denote by Φd the d-th cyclotomic polynomial. We have isomorphisms

QC ∼= Q[X]/(Xn − 1) ∼=
∏
d|n

Q[X]/Φd(X) ∼=
∏
d|n

Q(µd)

defined by c 7→ X + (Xn − 1) 7→ (X + Φd(X))d|n 7→ (ζd)d|n. The second map

is an isomorphism by the chinese remainder theorem and the last isomorphism

depends on the choice of a primitive d-th root of unity for each d.

Restriction of this decomposition to the subring ZC of QC yields an injective

map

ZC →
∏
d|n

Z[µd]

and Higman showed in [Hig40, Theorem 5] that the rank of
∏

d|n Z[µd]
× is equal
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4.2 A Filtered Basis of the Units of the Integral Group Ring of a Finite Cyclic Group

to the rank of (ZC)×. As a consequence, we get an isomorphism of Q-vector

spaces

(ZC)× ⊗Z Q ∼=
⊕
d|n

Z[µd]
× ⊗Z Q.

Since our goal is to determine the Artin defect, we have to understand the maps

K1(ZD)⊗Z Q→ K1(ZC)⊗Z Q

induced from the inclusion of subgroups D of C. Given such a subgroup of

order |D| = d and identifying K1 of the corresponding group rings with the

units yields a commutative diagram

(ZD)× ⊗Z Q //

∼=
��

(ZC)× ⊗Z Q

∼=
��⊕

k|d
Z[µk]

× ⊗Z Q
ind //

⊕
k|n
Z[µk]

× ⊗Z Q.

and we want to describe the map ind next. We have mentioned that the vertical

isomorphisms depend on choices and for the remaining part of this chapter

we make the following ones. Fix a generator c of C, then a generator of the

subgroup D of C of order d is given by cn/d. Further, choose a primitive n-th

root of unity ζn, then a primitive d-th root of unity is given by ζ
n/d
n for a divisor

d of n and we set ζd = ζ
n/d
n . With these choices the above isomorphisms are

defined by c 7→ (ζk)k|n and cn/d 7→ (ζk)k|d. All other possible isomorphisms are

obtained by composition with Galois automorphisms of cyclotomic fields. For

reasons of convenience we abbreviate

Zn = Z[µn]× ⊗Z Q

for n ∈ N. Further, for t ∈ N with gcd(n, t) = 1 we define

ft : Zn → Zn

to be the automorphism induced by ζn 7→ ζtn, which does not depend on our

choice of ζn. Also, note that for a divisor d of n we have an inclusion

incnd : Zd → Zn
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4 The Artin Defect in Degree m = 1

induced by the inclusion of sets µd ⊆ µn. It is sufficient to understand the map

ind for d = n/p where p is a prime, because all other such maps can be written

as a composition of these.

Lemma 4.9. Let d be a divisor of n/p with n ∈ N and p a prime dividing n.

Further, let xd be an element in the summand Zd of
⊕

k|n
p
Zk. We have

inn/p(xd) =

incdpd (xd) ∈ Zdp if p | d
(fp(xd), incdpd (xd)) ∈ Zd ⊕ Zdp if p - d.

Proof. The map inn/p is Q-linear and so it is enough to consider an element of

the form xd = g(ζd) ⊗ 1 in the summand Zd where g is an integer polynomial

such that g(ζd) is a unit. Denote by i the isomorphism from Lemma 4.8. Since

the map

(ZD)× ⊗Z Q
i⊗Q−−→

⊕
k|n
p

Z[µk]
× ⊗Z Q

is an isomorphism, there exists an integer m such that g(ζd)
m lies in the image

of i and a polynomial h ∈ Z[X] such that h(ζd) = g(ζd)
m and h(ζk) = 1 for all

divisors k of n/p with k 6= d. In particular, we have

(i⊗Q)(h(cp)⊗m−1) = g(ζd)
m ⊗m−1 = xd

where cp ∈ C is a generator of the subgroup D of order n/p. We consider

h(cp)⊗m−1 as an element in (ZC)×⊗ZQ using the natural inclusion (ZD)×⊗Z
Q ⊆ (ZC)× ⊗Z Q. It remains to determine its image under the isomorphism

(ZC)× ⊗Z Q →
⊕

k|n Z[µk]
× ⊗Z Q. It is given by (h(ζpk))k|n ⊗m−1 and if p | d

we have

h(ζpk) =

g(ζd)
m if k = dp

1 else.

On the other hand, if p - d we get

h(ζpk) =


g(ζd)

m if k = dp

g(ζpd)m if k = d

1 else

and this implies the desired result.
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Now that we have understood the map induced by the inclusion on the product

decomposition we proceed with constructing a filtered basis of the Q-vector

space (ZC)×⊗ZQ. In other words, for all n ∈ N we will construct a basis En of

(ZC)× ⊗Z Q which contains a basis for each subspace (ZD)× ⊗Z Q where D is

a subgroup of C. In order to do that we need some more notation. For a prime

p let νp : Z→ N ∪ {∞} be the p-adic valuation on Z. Further, for n ∈ N and a

divisor d of n we define the set

T nd = {d · l | gcd(d, l) = 1 and l divides n}

and the number nd to be the biggest divisor of n which is coprime to d. Ad-

ditionally, if S is a subset of the set of all divisors of n, we denote by (xs)s∈S
the element in

⊕
d|n Zd with xs ∈ Zs and xd = 1 for all d 6∈ S. Now we can

construct the filtered basis.

Theorem 4.10. Let C be a finite cyclic group of order n ∈ N. For a divisor d

of n denote by Bd the filtered basis of Zd introduced in the first section of this

chapter. We define the set

Nd =
{

(fnd
kd

(v))k∈Tnd

∣∣∣ v ∈ Bd

}
⊆
⊕
l|n

Zl ∼= (ZC)× ⊗Z Q,

then En =
⋃
d|nNd is a filtered basis of (ZC)× ⊗Z Q.

Proof. We consider En a subset of (ZC)× ⊗Z Q via the above isomorphism and

for a subgroup D of order d we have Ed ⊆ (ZD)×⊗ZQ ⊆ (ZC)×⊗ZQ. We want

to show that Ed is contained in En. It suffices to show that for all n and all

primes p dividing n we have En
p
⊆ En, then the statement follows inductively.

Let w ∈ En
p

so that w ∈ Nk for some divisor k of n/p and we can write

w =

(
f (n/p)k

lk

(v)

)
l∈Tn/pk

for some v ∈ Bk. We distinguish between the two cases p | k and p - k. First,

assume p | k. Applying Lemma 4.9 yields

inn/p(w) =

(
f (n/p)k

(l/p)k

(v)

)
l∈pTn/pk

=

(
fnkp
lkp

(v)

)
l∈Tnkp

∈ Nkp ⊆ En
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4 The Artin Defect in Degree m = 1

where we used (n/p)k = nkp, (l/p)k = lkp and T nkp = {pm | m ∈ T n/pk }. These

equalities hold, because p divides k. Also, note that inn/p(Nk) is contained in

Nkp ⊆ En since Bk ⊆ Bkp. Now assume p - k. For i ∈ N we define the sets

T nk (pi) = {l ∈ T nk | pi divides l}
T nk (p) = {l ∈ T nk | p does not divide l}.

and apply once again Lemma 4.9 to get

inn/p(w) = inn/p

(
(wl)l∈Tn/pk (p)

)
+ inn/p

(
(wl)l∈Tn/pk (p)

)
=

(
f (n/p)k

(l/p)k

(v)

)
l∈pTn/pk (p)

+

(
fp(f (n/p)k

lk

(v))

)
l∈Tn/pk (p)

+

(
f (n/p)k

(l/p)k

(v)

)
l∈pTn/pk (p)

=
(
fnk
lk

(v)
)
l∈Tnk (p2)

+
(
fnk
lk

(v)
)
l∈Tn/pk (p)

+
(
fnk
lk

(v)
)
l∈pTn/pk (p)

=
(
fnk
lk

(v)
)
l∈Tnk
∈ Nk ⊆ En.

We used the fact that T nk is the disjoint union of the sets T nk (p2), T
n/p
k (p) and

pT
n/p
k (p) and we also have (n/p)k/(l/p)k = nk/lk and p · (n/p)k/lk = nk/lk.

Further, we see that in this case inn/p(Nk) = Nk ⊆ En holds and this completes

the proof.

4.3 The Dimension of the Artin Defect

In this section we compute the dimension of the Artin defect in degree 1 as a

Q-vector space. Recall that the Artin defect S1(n) in degree 1 is defined as the

cokernel of the induction map⊕
D�C

K1(ZD)⊗Z Q→ K1(ZC)⊗Z Q

where C is a finite cyclic group of order n ∈ N. Using the results of the previous

sections we have

S1(n) ∼= coker

(⊕
D�C

(ZD)× ⊗Z Q→ (ZC)× ⊗Z Q

)
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with the obvious inclusions (ZD)× ⊗Z Q → (ZC)× ⊗Z Q. The advantage of

the filtered basis En of (ZC)× ⊗Z Q we constructed is that a basis of the above

cokernel is easily given by En \
⋃
d|n,d 6=nEd. Let us describe this basis precisely.

Lemma 4.11. For n ∈ N let Bn be the previously introduced filtered basis of

Z[µn]× ⊗Z Q and En the filtered basis of (ZC)× ⊗Z Q. There is a bijection of

sets

En \
⋃

d|n,d 6=n

Ed ∼= Bn.

Proof. Since En is a filtered basis we have
⋃
d|n,d 6=nEd =

⋃
p|nEn

p
where p is

prime. In the proof of Theorem 4.10 we noted that for a prime p dividing n and

a divisor l of n/p the inclusion⋃
d|n
p

Nd = En
p
⊆ En =

⋃
k|n

Nk

is given by

inn/p(Nl) =

Nl ⊆ Nlp if p | l
Nl if p - l.

We define the set Fn = {d | n : νp(d) ≥ 1 ∀ primes p | n} and write

En \
⋃
p|n

En
p

=
⋃
d∈Fn

Nd \
⋃
p2|d

N d
p

 =
⋃
d∈Fn

Bd \
⋃
p2|d

B d
p

 ,

where the union over all d ∈ Fn is a disjoint union, because the corresponding ba-

sis Bd is contained in the summand Zd. The last equality is a direct consequence

of the definition of the sets Nd, because for d ∈ Fn we have Nd = Bd ⊆ Zd.

Denote by M the right hand side of the above equalities. It is obviously a

subset of the disjoint union
⋃
d∈Fn Bd and since every set Bd is contained in

Bn we can define the map M → Bn, (x, d) 7→ x and we will show that this is

a bijection. We start with injectivity. Assume the map is not injective, then

there exists an x ∈ Bn such that for d, d′ ∈ Fn with d 6= d′ the element x is

contained in the intersection (Bd\
⋃
p2|dBd/p)∩(Bd′ \

⋃
p2|d′ Bd′/p). It follows that

x ∈ Bd ∩Bd′ = Bgcd(d,d′), since the basis is filtered. Now either gcd(d, d′) < d or

gcd(d, d′) < d′ and hence there exists a prime p such that x ∈ Bd/p with p2 | d
or x ∈ Bd′/p with p2 | d′. In both cases, x cannot lie in the above intersection

and this is a contradiction. Last, we show surjectivity. Let x ∈ Bn and choose
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the smallest d ∈ Fn such that x ∈ Bd, then x lies in Bd \
⋃
p2|dB d

p
and (x, d) is

mapped to x.

As a consequence we get a description of the Artin defect in degree 1 as a

Q-vector space. We can express the dimension using Euler’s phi function.

Theorem 4.12. Let C be a finite cyclic group of order n ∈ N and denote by

S1(n) the cokernel the induction map⊕
D�C

K1(ZD)⊗Z Q→ K1(ZC)⊗Z Q.

There is an isomorphism of Q-vector spaces

S1(n) ∼= Z[µn]× ⊗Z Q

and in particular

dimQ(S1(n)) =


ϕ(n)

2
− 1 if n > 2

0 if n ∈ {1, 2}

Proof. The isomorphism as Q-vector spaces is defined by the bijection of bases

from Lemma 4.11. The dimension is given by Dirichlet’s unit theorem, which

states that the ring of integers in an algebraic number field F has rank r+s−1,

where r is the number of embeddings F → R and s is the number of pairs

of embeddings F → C which are not already contained in R (see [Neu99] for a

proof). Obviously, for n = 1, 2 there is exactly one real embedding of Q(µn) and

no complex ones. For n > 2 there are exactly ϕ(n) complex embeddings, one

for each primitive n-th root of unity and no real ones. This yields the desired

dimension formula.

4.4 The Action of the Automorphism Group

In this last section we describe the action of the automorphism group of a finite

cyclic group on the Artin defect in degree 1. The induced Aut(C)-action on

K1(ZC) ∼= (ZC)× is given by restriction of the induced action on ZC to the

units of the group ring. Since an automorphism of a cyclic group restricts to

an automorphism of each subgroup D of C we also get an action on the Artin
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defect. Further, if n is the order of C, then there is an isomorphism

(Z/nZ)× → Aut(C), t 7→ φt

where φt denotes the automorphism c 7→ ct for c ∈ C. Thus, we can think of

the automorphisms of C as elements indexed over the units of the ring Z/nZ.

Note that the induced action on each summand of the decomposition

(ZC)× ⊗Z Q ∼=
⊕
d|n

Z[µd]
× ⊗Z Q

is given by φt(ζd) = ζtd. Working with a filtered basis of Z[µn]× ⊗Z Q was

very helpful in previous computations, but it is not apparent where the basis

elements are mapped under the above automorphisms. Therefore, in this section

we will use a different basis for which we can better understand the Aut(C)-

action. More precisely, we will prove that there exist Aut(C)-sets T, S and a

short exact sequence

0 // Q[T ] // Q[S] // S1(n) // 0

so that the Artin defect is the quotient of permutation modules. The basis we

introduce is well-known and for more details see [Was97].

Theorem 4.13. Let n ∈ N with prime factorization n =
∏s

i=1 p
ei
i , ζn a primitive

n-th root of unity and a ∈ Z. Define

ξa =
∏
I

1− ζanIn

1− ζnIn

where I runs over all subsets of {1, . . . , s} except {1, . . . , s} and ni =
∏

i∈I p
ei
i .

The set Dn = {ξa | 1 < a < n
2
, gcd(a, n) = 1} is a Q-basis for Z[µn]× ⊗Z Q.

The advantage of this particular basis is that we can understand where an

element is mapped under an automorphism as the next lemma shows.

Lemma 4.14. Let φt ∈ Aut(C) and a ∈ Z, then

(1) ξ1 = 1

(2) ξa = ξ−a

(3) φt(ξa) = ξat · ξ−1
t .
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Proof. The first statement follows directly from the definition. For the second

one we use the fact that elements of finite order are equal to 1 in Z[µn]× ⊗Z Q
and hence

1− ζ−anI = −ζ−anI (1− ζanI ) = (1− ζanI ).

Finally, for the last statement we compute

φt · ξa =
∏
I

1− ζtanI
1− ζtnI

=
∏
I

1− ζtanI
1− ζnI

· 1− ζnI
1− ζtnI

= ξat · ξ−1
t .

In particular, we have φ−1(ξa) = ξa for any ξa ∈ Dn and so the automorphism

φ−1 fixes all basis elements. We have seen in the previous section that the Artin

defect is isomorphic to the rationalized group of units of Z[µn]. Therefore, our

strategy is to understand Zn = Z[µn]× ⊗Z Q as an QAut(C)-module first and

then show that the same holds for the defect. But first, let us recall some facts

about the units of Z/n, the ring of integers modulo some n ∈ N. Let n have

prime factorization n =
∏

p|n p
ep , then there is a decomposition

(Z/n)× ∼=
∏
p|n

(Z/pep)×,

where the groups (Z/pep)× are cyclic of order ϕ(pep), except if pep = 2k with k ≥
3. In the latter case we have (Z/2k)× ∼= Z/2×Z/2k−2 and we can choose −1 mod

2k and 5 mod 2k as generators of the factors Z/2 and Z/2k−2, respectively. For

a divisor d of n denote by Cd the unique subgroup of C order d. We have

mentioned before that an automorphism of Cn restricts to an automorphism

of Cd. This defines a surjective group homomorphism Aut(Cn) → Aut(Cd).

Hence, Aut(Cd) becomes a transitive Aut(Cn)-set. If d satisfies νp(d) = νp(n)

for all primes dividing d, then Aut(Cd) can be considered in a canonical way as

a subgroup of Aut(Cn) and there is an Aut(Cn)-equivariant group isomorphism

Aut(Cn)/Aut(Cn/d) ∼= Aut(Cd). Next, we construct the short exact sequence

announced before.

Lemma 4.15. Let n ∈ N with prime factorization n =
∏s

i=1 p
ei
i and let C be

a finite cyclic group of order n. Let I be the subgroup of Aut(C) generated by

the automorphism c 7→ c−1 for c ∈ C. Further, for i = 1, . . . , s let gi be a

generator of the maximal cyclic subgroup of (Z/peii )× and define ni =
∏s

j=i p
ej
j .
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The Q-linear map

π :
s⊕
i=1

Q[Aut(Cni)/I] −→ Zn, [φti ] 7→ φti(ξgi)⊗ 1, [φti ] ∈ Aut(Cni)/I

is an Aut(C)-equivariant surjective map and there is an isomorphism of QAut(C)-

modules

ker(π) ∼= Q⊕
s⊕
i=2

Q[Aut(Cni)/I].

Proof. Without loss of generality we can assume p1 < . . . < ps. The map π is

well-defined, because statements 2 and 3 from the previous lemma ensure that

φti(ξgi) = φ−ti(ξgi). If n ∈ {1, 2}, then π is the map Q → 0, which obviously

has kernel isomorphic to Q and so we can assume n > 2. We will show that

every ξa ∈ Dn lies in the image of π, where Dn is the basis of Zn introduced

previously. Let 1 < a < n/2 with gcd(a, n) = 1, then for i = 1, . . . , s there

exist ri ∈ N0, such that either a or −a is congruent gr11 · . . . · grss mod n, because

the gi’s generate (Z/n)× ∼=
∏s

i=1(Z/peii )× modulo the subgroup generated by

−1 mod n. Since ξa = ξ−a it is sufficient to show that on of these lies in the

image. For fixed i ∈ {1, . . . , s} we set gi = grii · . . . · grss and gs+1 = 1, then π

maps the element

xi =

ri−1∑
l=0

φgilgi+1
∈ Q[Aut(Cni)/I]

to
ri−1∏
l=0

φgilgi+1
(ξgi) =

ri−1∏
l=0

ξgil+1gi+1
· ξ−1

gilgi+1
= ξgrii gi+1

· ξ−1
gi+1

= ξgi · ξ
−1
gi+1

and so (xi)i=1,...,s is mapped to

s∏
i=1

ξgi · ξ
−1
gi+1

= ξg1 = ξa

and this shows surjectivity. Now let us determine the kernel of π. Again, fix

i ∈ {1, . . . , s} and let t ∈ (Z/ni+1)× ≤ (Z/ni)×. Denote by mi the multiplicative

order of gi modulo n, then the element

xi,t =

mi−1∑
l=0

φglit ∈ Q[Aut(Cni)/I]
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4 The Artin Defect in Degree m = 1

is mapped to
mi−1∏
l=0

φglit(ξgi) =

mi−1∏
l=0

ξgl+1
i t · ξ

−1
gilt

= 1

and therefore lies in the kernel. We define the set

Ti = {xi,t | t ∈ (Z/ni)×} ⊆ Q[Aut(Cni)/I]

and note that xi,t = xi,t′ , if and only if t′ = ±gki t for some k ∈ N0, which

means that t and t′ are congruent modulo ni+1. We get an isomorphism of

Aut(Cn)-sets Ti ∼= Aut(Cni+1
)/I defined by xi,t 7→ [φt], where we set ns+1 = 1.

Additionally, the set Ti is linear independent, because cosets are disjoint. The

space Ki = 〈Ti〉Q lies in the kernel of π and dimQ(Ki) = |Ti| = ϕ(ni+1)/2, if

i < s and dimQ(Ks) = 1. Consequently, we have

s⊕
i=1

Ki ⊆ ker(π)

and dimQ(
⊕s

i=1Ki) = 1+
∑s−1

i=1 ϕ(ni+1)/2. On the other hand, since π is surjec-

tive we have dimQ(ker(π)) = (
∑s

i=1 ϕ(ni)/2)− (ϕ(n)/2− 1) = 1 +
∑s

i=2 ϕ(ni)/2

and so equality must hold. In summary, we have

ker(π) ∼=
s⊕
i=1

Q[Aut(Cni+1
)/I].

We will use this result describe the Artin Defect in degree 1 as a QAut(C)-

module.

Theorem 4.16. Let C be a cyclic group of order n ∈ N and denote by S1(n)

the Artin defect in degree 1. As an element in K0(QAut(C)) we have

[S1(n)] = [Q[Aut(C)/I]]− [Q],

where Q is the trivial QAut(C)-module and I is the subgroup generated by the

automorphism c 7→ c−1 for c ∈ C.

Proof. We will show that the isomorphism from Theorem 4.12 is equivariant

with respect to the Aut(C)-action and apply Lemma 4.15. Using the defini-
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tions introduced previously, we recall that the isomorphism was defined by the

bijection of bases

⋃
d∈Fn

Bd \
⋃
p2|d

B d
p

→ Bn, (x, d) 7→ x.

We remarked in the beginning of this section that the action on the product

decomposition of (ZC)× ⊗Z Q is given by φt · (x, d) = (φt · x, d) for an auto-

morphism φt and so the above projection is indeed Aut(C)-equivariant. Finally,

applying the previous lemma yields

[S1(n)] =

[
s⊕
i=1

Q[Aut(Cni)/I]

]
−

[
Q⊕

s⊕
i=2

Q[Aut(Cni)/I]

]
= [Q[Aut(C)/I]]− [Q]

as an element in K0(QAut(C)).
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5 The Artin Defect in Degrees m > 1

In this last chapter we treat the Artin defect in degrees greater than 1. As

before, our goal is to determine its dimension as a Q-vector space and describe

the action of the automorphism group of the corresponding finite cyclic group.

The ranks of the groups Km(O) ⊗Z Q where O is the ring of integers of an

algebraic number field have been computed by Borel in [Bor74]. His methods

can be used to get similar results for Km(ZG) ⊗Z Q for any finite group G as

described in [Jah09].

In the first five sections of this chapter we establish the necessary preliminaries

in order to be able to describe the computation of the ranks of higher rational

K-groups of the group ring ZC where C is a finite cyclic group. Afterwards,

we describe the decomposition of the real algebra RC and induced maps by

subgroups of C, which will play an important part in describing the higher

K-groups we are interested in as functors from the subgroup category of C

in a more accessible way. This is done in sections six and seven. This will

enable us to compute the dimension of the Artin defect as a Q-vector space and

determine its structure as a QAut(C)-module in the last section. We assume

that the reader is familiar with the definition of higher K-Theory which can be

found for example in [Ros94].

5.1 Classifying Spaces and Fibrations

In this section we recall the definition of classifying spaces and fibrations and

show that a short exact sequence of groups induces a homotopy fibration of

the associated classifying spaces. Further, we state a condition under which

a fibration remains a fibration after applying the plus construction. We will

assume basic knowledge in topology as can be found for example in [Ros94] in

the context of higher K-theory, although we will state some definitions explicitly.

Definition 5.1. Let G be a group and X a contractible Hausdorff topological

space such that G acts freely and properly discontinuously by homeomorphisms

on X and such that X/G is paracompact. We write EG for X and call BG =

X/G a classifying space of G.
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5 The Artin Defect in Degrees m > 1

One can show that a classifying space always exists and that it is well defined

up to homotopy equivalence (see [Ros94, Theorem 5.1.15]). Therefore, we will

sometimes say that a space is a model of BG. Also, there is a construction

by Eilenberg and Mac Lane such that EG and BG are CW-complexes (see

[EML86, p. 369]) and such that B defines a functor from the category of groups

and group homomorphisms to the category of topological spaces and homotopy

classes of continuous maps. Throughout this section we will always use this

particular construction when we refer to classifying spaces. We proceed with

the definition of a fibration.

Definition 5.2. A fibration is a continuous map of topological spaces p : E → B

which satisfies the homotopy lifting property. This means that for any space X,

any homotopy h : X× [0, 1]→ B and any continuous map H0 : X → E such that

h0 = p◦H0, there is a continuous map H : X× [0, 1]→ E with H(x, 0) = H0(x)

and p ◦H = h. For b ∈ B, p−1(b) is called the fibre of p over b, B is called the

base space and E the total space of the fibration.

Next, we will see that a short exact sequence of groups induces a fibration of

the associated classifying spaces up to homotopy.

Lemma 5.3. Let

1 // N
i // G

p // G/N // 1

be an exact sequence of groups, where N is a normal subgroup of G and i is the

inclusion map. Then, up to homotopy, there is a fibration of classifying spaces

BG→ B(G/N) with fibre BN .

Proof. Since E(G/N) is contractible by definition, the space EG×GE(G/N) is

a model for BG and the map

EG×G E(G/N) −→ E(G/N)/(G/N) = B(G/N)

induced from EG→ pt is a model for Bp. We take EG/N as a model for BN

and use EG/G = (EG/N)/(G/N) to identify the model for Bp with the fibre

bundle

BN ×G/N E(G/N) −→ B(G/N),

which has homotopy fibre BN .

We would also like to know when a fibrations remains a fibration after ap-

plying the plus construction. Given a connected CW-complex X with a fixed
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base point x0, the plus construction is a way to construct a new CW-complex

X+ containing X and having the same homology and cohomology groups, but

changing the fundamental group to π1(X+, x0) = π1(X, x0)/π where π is a per-

fect maximal subgroup of π1(X, x0). For all details see [Ros94, Theorem 5.2.2].

In [Ber83] Berrick proves the following condition under which the plus construc-

tion respects fibrations.

Theorem 5.4. Let

F // E // B

be a fibration, where F denotes the fibre, E the total space and B the base space.

Then F+ // E+ // B+ is again a fibration, if and only if Pπ1(B) acts on F+

by maps homotopic to the identity. Here, Pπ1(B) denotes the maximal perfect

subgroup of π1(B) and its action on F+ is induced by the one on F .

5.2 H-Spaces, Hopf Algebras and the Hurewicz Map

In this section we mention some basic facts about H-spaces and Hopf algebras.

We start with the definitions, which can also be found in [Hat01] together with

a broader discussion of these topics.

Definition 5.5. An H-space is a topological space X together with a continuous

map µ : X × X → X and an identity element e ∈ X such that the two maps

X → X given by x 7→ µ(x, e) and x 7→ µ(e, x) are homotopic to the identity.

One specific H-space we will be particularly interested in is the following. For

more details see [Cor11].

Example 5.6. Let R be a ring with unit and denote by GL(R) = ∪n∈NGLn(R)

the infinite general linear group of R. We want to see that BGL(R)+ is an

H-space. First, there is a sum operation

⊕ : GL(R)×GL(R)→ GL(R)

defined by

M ⊕N =

(
M 0

0 N

)
for M,N ∈ GL(R). Up to conjugation with permutation matrices the sum is

associative, commutative and the identity matrix is an identity element. Fur-
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5 The Artin Defect in Degrees m > 1

ther, the projections of GL(R)×GL(R) onto the first and second factor induce

a homotopy equivalence

φ : B(GL(R)×GL(R))+ → BGL(R)+ ×BGL(R)+

and using this we can define a continuous map

µ : BGL(R)+ ×BGL(R)+ → BGL(R)+

by µ = BGL(⊕)+ ◦ φ−1 where φ−1 is the homotopy inverse of φ. One can show

that conjugation with permutation matrices induces a map on BGL(R)+ which

is homotopic to the identity. It follows that BGL(R)+ is a commutative and

associative H-space. The same argument can be used to show that BSL(R) is

also an H-space.

Having this kind of multiplication on a space X gives additional structure to

its cohomology. We will see below that if X satisfies some additional conditions

its cohomology becomes a Hopf algebra. But first, let us define what a Hopf

algebra is.

Definition 5.7. A graded algebra A = ⊕n≥0A
n over a commutative ring R is

called a Hopf algebra, if

(i) there is an identity 1 ∈ A0 such that the map R → A0, r 7→ r · 1 is an

isomorphism,

(ii) there is a coproduct ∆: A→ A⊗R A which is a homomorphism of graded

algebras satisfying ∆(α) = α⊗ 1 + 1⊗ α+
∑

i α
′
i ⊗ α′′i where |α′i| > 0 and

|α′′i | > 0 for all α with |α| > 0. The multiplication on A⊗R A is given by

(α⊗ β)(γ ⊗ δ) = (−1)|β||γ|(αγ ⊗ βδ).

Further, set Q(A) = ⊕n≥1A
n and define the primitive and indecomposable ele-

ments of a Hopf algebra as

P (A) = {α ∈ A | ∆(α) = α⊗ 1 + 1⊗ α},
I(A) = Q(A)/(Q(A))2

respectively. Note that the primitives are a subspace of A, whereas the indecom-

posables are a quotient.
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One can show that if An is a finitely generated projective R-module for all n,

then A∗ = HomR(A,R) is also a Hopf algebra called the dual Hopf algebra of

A. We have the following connection between primitives and indecomposables.

Lemma 5.8. Let A = ⊕n≥0A
n be a Hopf algebra such that An is a finitely

generated free R-module for all n, then P (A∗) ∼= I(A)∗.

Again, we consider an example, which is of particular interest to us.

Example 5.9. For an H-space X the singular homology H∗(X;R) is a Hopf

algebra. If the homology groups are finite dimensional, then its dual Hopf

algebra is H∗(X;R). The coproduct is induced from the diagonal map X →
X ×X. Hence, the primitive elements of Hm(X;R) are given by

PHm(X;R) = {x ∈ Hm(X;R) | ∆∗(x) = x⊗ 1 + 1⊗ x}

where

∆∗ : Hm(X;R)→ Hm(X ×X;R) ∼=
⊕
s+t=m

Hs(X;R)⊗R Ht(X;R)

is the map induced from the diagonal map. The space of indecomposables of

Hm(X;R) is the quotient

IHm(X;R) = Hm(X;R)/{x ^ y | deg(x), deg(y) > 0}.

If X is path-connected and Hn(X;R) is finite dimensional for each n, we have

PHm(X;R) ∼= (IHm(X;R))∗ according to Lemma 5.8 where V ∗ = homR(V,R)

is the dual vector space.

One tool to examine the relationship between homotopy and homology groups

is the Hurewicz homomorphism, which connects these two objects.

Definition 5.10. Let X be a topological space and x0 ∈ X. For n ∈ N denote

by Sn the n-sphere and let xn be a generator of Hn(Sn;Z) ∼= Z. The Hurewicz

map is the group homomorphism

h : πn(X, x0)→ Hn(X;Z), f 7→ f∗(xn)

where f∗ : Hn(Sn;Z) → Hn(X;Z) denotes the induced map on singular homol-

ogy.
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5 The Artin Defect in Degrees m > 1

The Hurewicz map is natural with respect to inclusion of spaces. We are

interested in the precise image, which is given by the following Theorem. For a

proof see [MM65, Appendix].

Theorem 5.11. Let X be an H-space which is also a CW-complex. The

Hurewicz map defines an isomorphism πm(X)⊗Z R→ PHm(X;R).

5.3 Lie Algebra Cohomology

In this section we recall the definition of Lie algebra cohomology and explain

its connection to singular cohomology. Lie algebra cohomology is motivated by

considering the de Rham cohomology of compact connected Lie groups, because

in this case these two cohomology theories coincide and that is where Lie algebra

cohomology originates from.

We assume that the reader is familiar with the very basic definitions of

Lie group theory. During this section g denotes a real Lie algebra and g∗ =

HomR(g,R) the dual vector space. We will define Lie algebra cohomology of g

with coefficients in R. There is a definition using more general coefficients, but

for our purposes using the field of real numbers will suffice.

Definition 5.12. Let g be a finite dimensional Lie algebra. For n ∈ N define

cochains

Cn(g) = Λng∗

where Λng∗ denotes the n-th exterior power of g∗. Further, define coboundary

maps

dn : Λng∗ → Λn+1g∗

by

dnω(X0, . . . , Xn) =
∑
i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xn).

One checks that dn+1 ◦ dn = 0 and so (C∗(g), d) is a differential graded algebra.

The Lie algebra cohomology of g is defined as the cohomology of the complex

(C∗(g), d∗) and denoted by H∗(g).

Note that Λng∗ can be identified with Altn(g;R), the space of alternating

multilinear forms of n variables on g. To return to our comment in the beginning
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of this section let us see how this is connected to de Rham cohomology. Let M

be a smooth manifold and for n ∈ N0 denote by Ωn(M) the space of real valued

n-forms on M . The de Rham cohomology of M is defined as the cohomology of

the complex

0→ R→ Ω0(M)→ Ω1(M)→ Ω2(M)→ . . .

with the exterior differential as boundary map. Given a compact connected Lie

group G which acts smoothly on M integration on G can be used to show that

the inclusion of the G-invariant forms Ωn(M)G ⊆ Ωn(M) induces an isomor-

phism in cohomology. Hence, as graded algebras the de Rham cohomology is

isomorphic to the cohomology of the complex

0→ R→ Ω0(M)G → Ω1(M)G → Ω2(M)G → . . .

of G-invariant forms (see [FOT08, Theorem 1.28]). The action of G on Ωn(M) is

induced from the action on M . In the special case M = G we have an action of

G on itself by left multiplication. Let e ∈ G be the identity, then the restriction

of differentials to the identity given by Ωn(G)G → Λng∗, ω 7→ ωe defines an

isomorphism of chain complexes yielding the same cohomology.

Given a pair of Lie algebras (g, h), where h ⊆ g is a Lie subalgebra, there is

also a relative version of Lie algebra cohomology. Before making the definition

we have to introduce actions of Lie algebras.

Definition 5.13. Let g be a Lie algebra and V a vector space over R. A Lie

algebra homomorphism g→ End(V ) is called an action of g on V . We also say

that g acts on V . The space End(V ) of endomorphisms of V is a Lie algebra

via [f, g] = f ◦ g − g ◦ f .

We consider the following example of a Lie algebra action. Given a Lie sub-

algebra h of g we define the following action of h on Λn(g/h)∗. First, h acts on

the vector space g/h by the adjoint action

(X, Y + h) 7→ adX(Y ) + h = [X, Y ] + h

for X ∈ h and Y ∈ g. It is well-defined, because h is a Lie subalgebra of g. This

action can be extended to an action on Λn(g/h)∗ = Altn(g/h;R) by setting

X · ω(X1 + h, . . . , Xn + h) =
n∑
i=1

ω(X1 + h, . . . , [Xi, X] + h, . . . , Xn + h)
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5 The Artin Defect in Degrees m > 1

for X ∈ h. This action is used in the definition of relative Lie algebra cohomol-

ogy.

Definition 5.14. For n ∈ N define cochains

Cn(g, h) = (Λn(g/h)∗)h = {ω ∈ Λn(g/h) | X · ω = 0 ∀ X ∈ h}.

The projection g → g/h induces an inclusion Cn(g, h) ⊆ Cn(g) and the pre-

viously defined coboundary maps dn respect the action of h, so the complex

(C∗(g, h), d∗) is a subcomplex of (C∗(g), d∗). We define the relative Lie algebra

cohomology of a pair (g, h) to be the cohomology of the complex (C∗(g, h), d∗)

and denote it by H∗(g, h).

The following theorem by Chevalley and Eilenberg (see [CE48]) connects rel-

ative Lie algebra cohomology and singular cohomology.

Theorem 5.15. Let G be a compact connected Lie Group and K ⊆ G a con-

nected Lie subgroup with corresponding Lie algebras g and k. There is an iso-

morphism of graded algebras

H∗(g, k) ∼= H∗(G/K;R).

Proof. We will give a sketch of the proof with enough details for our purposes.

Note that since G is a Lie group and K is a Lie subgroup the space G/K is a

smooth manifold (see [BtD85, p.33]). It is known that for smooth manifolds the

cohomology of the de Rham complex

0→ R→ Ω0(G/K)→ Ω1(G/K)→ Ω2(G/K)→ . . .

is naturally isomorphic to singular cohomology (see [Lee03, Theorem 11.34]).

The group G acts on G/K by left multiplication xK 7→ gxK for x, g ∈ G and

thus induces an action on Ωn(G/K). Since G is compact and connected the

de Rham cohomology can be computed using G-invariant forms only. Last,

restricting a differential to the origin defines an isomorphism

Ωn(G/K)G ∼= (Λn(g/k)∗)k

which induces an isomorphism of complexes. Note that we have to take the

forms which are also invariant under the k action, because although the action
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of G restricted to the subgroup K fixes the identity eK ∈ G/K, it does not

induce the identity on the tangent space g/k.

If G is not compact there is still a way to compute relative Lie algebra coho-

mology. One has to replace G with some compact group Gu without changing

the Lie algebra cohomology. This is often referred to as the unitarian trick. In

the remaining part of this section we will describe how to find the compact twin.

In order to do that we have to introduce Cartan involutions first.

Definition 5.16. Let g be a real Lie algebra and denote by B(−,−) the Killing

form on g. An involution on g is a Lie algebra automorphism θ : g → g such

that θ2 = Idg. Further, an involution θ : g→ g is called a Cartan involution, if

Bθ(X, Y ) = −B(X, θ(Y ))

is a positive definite bilinear form. Two involutions are said to be equivalent, if

they only differ by an inner automorphism.

One can show that any real semisimple Lie algebra has a Cartan involution

and any two such involutions are equivalent (see [Kna02, Chapter VI, Section

2]). We will use this fact to define the Cartan decomposition for such a Lie

algebra.

Definition 5.17. Let g be a real semisimple Lie algebra and θ : g→ g a Cartan

involution and denote by

k = {X ∈ g | θ(X) = X}
p = {X ∈ g | θ(X) = −X}

the ±1 eigenspaces of θ. The decomposition g = k ⊕ p is called the Cartan

decomposition of g.

Note that k is a sub Lie algebra and p is just a subspace of g satisfying

[k, k] ⊆ k, [p, p] ⊆ k and [k, p] ⊆ p.

Further, k and p are orthogonal complements of each other with respect to the

Killing form on g. Remember that we want to associate a compact Lie group Gu

to a given semisimple Lie group G without changing the Lie algebra too much.

More precisely, we will define Gu in such a way that g⊗R C ∼= gu ⊗R C, where
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gu is the Lie algebra of Gu. Under certain conditions, which hold in the cases

we will consider in the following chapters, there is a complexification GC of the

real Lie algebra G. This is used to define the compact twin.

Definition 5.18. Let G be a semisimple Lie group with Lie algebra g and Cartan

decomposition g = k⊕p. Denote by GC a complex Lie group containing G, such

that its Lie algebra satisfies gC = g⊗R C. Define the Lie algebra

gu = k⊕ ip ⊆ g⊗R C

and let Gu be the real Lie subgroup of GC having gu as Lie algebra. We call Gu

the compact twin of G.

The Killing form is negative definite on k and positive definite on p. It follows

that it is negative definite on gu and so the compact twin is indeed compact.

The following lemma shows that we can substitute G by Gu without changing

the corresponding relative Lie algebra cohomology.

Lemma 5.19. Let G be a semisimple connected Lie Group and Gu its com-

pact twin. Denote by g and gu their corresponding Lie algebras. There is an

isomorphism of graded algebras

H∗(g, k) ∼= H∗(gu, k).

Proof. By definition of the compact twin we have decompositions g = k⊕ p and

gu = k⊕ ip, so g/k ∼= p and gu/k ∼= ip. There is an isomorphism

ιn : (Λn(ip)∗)k → (Λn(p)∗)k

defined by ιnω(X1, . . . , Xn) = ω(iX1, . . . , iXn) for Xi ∈ p. This is compatible

with the boundary maps and thus defines an isomorphism of complexes.

5.4 Continuous Cohomology

In order to formulate a result by Borel, which plays a key role in understanding

higher rational K-theory of ZC, we need to introduce continuous cohomology.

Given a topological group there are several ways to incorporate the topologi-

cal structure into a cohomology theory. One is continuous cohomology, which

was introduced by Hochschild and Mostow in [HM62]. In this section we give
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the definition where we strictly follow [HM62] and at the end compute some

examples with the help of the results of the previous section. The general idea

is to mimic the definition of group cohomology as the right derived functor of

taking fixed points, but for a category which includes the topological structure.

Throughout this section G will denote a locally compact topological group. We

start with the basic notions.

Definition 5.20. A continuous G-module V is a Hausdorff topological vector

space over R equipped with a continuous group action of G. This is a continuous

map G× V → V , (g, v) 7→ g · v such that v 7→ g · v is a linear automorphism of

V for all g ∈ G.

We need the following stronger definition of an exact sequence.

Definition 5.21. An exact sequence . . . // Vi
αi // Vi+1

// . . . of continuous

G-module homomorphisms is strongly exact, if there is a sequence of continuous

linear maps γi : Vi → Vi−1 such that for each i we have γi+1◦αi+αi−1◦γi = idVi.

The sequence (γi)i is called a continuous contracting homotopy.

Very similar to the definition of group cohomology we need to define what

the injective objects are.

Definition 5.22. A continuous G-module V is continuously injective, if for ev-

ery strongly exact sequence 0 // U
ρ // A //W // 0 of continuous G-modules

and every continuous G-module homomorphism α : U → V there is a continuous

G-module homomorphism β : A→ V such that β ◦ ρ = α.

Finally, in order to define resolutions we need a suiting notion of an embed-

ding.

Definition 5.23. If V and W are continuous G-modules, a strong embedding

of V into W is a continuous G-module homomorphism α : V → W such that

there is a continuous linear map β : W → V with β ◦ α = idV .

One can show that every continuous G-module has a strong embedding in a

continuously injective G-module. In particular, the category of continuous G-

modules has enough injectives. Hence, for every continuous G-module V there

is a strongly exact sequence of continuous G-module homomorphisms

0 // V // X0
// X1

// . . .

61



5 The Artin Defect in Degrees m > 1

where each Xi is continuously injective. Such a sequence is called a continuously

injective resolution of V .

Given such a resolution we obtain a complex of topological vector spaces

0 // XG
0

// XG
1

// . . . ,

where XG
i denotes the G-fixed points of Xi. The homology space of this complex

is up to natural isomorphism independent of the choice of the continuously

injective resolution of V . We denote it by Hc(G;V ) and call it the continuous

cohomology of G with coefficients in V .

Similar to group cohomology there is a standard resolution which always

exists. It is the same as in group cohomology with the only difference that

we want cochains to consist of just the continuous maps G × · · · × G → V

instead of all such maps. The boundary operator is defined exactly like in

group cohomology. It follows that continuous cohomology of a group equipped

with the discrete topology is just usual group cohomology.

The greatest success in computing continuous cohomology has been done

for Lie groups, because in this case continuous cohomology coincides with its

corresponding Lie algebra cohomology. More precisely, Van Est proved the

following result relating these two theories.

Theorem 5.24. Let G be a connected Lie Group and K ⊂ G a maximal compact

subgroup with corresponding Lie algebras g and k, then there is an isomorphism

of graded algebras

H∗c (G;R) ∼= H∗(g, k).

Proof. We will not explain all details, but enough for our purposes. Denote by

Ωn(G/K) the space of real-valued n-forms on the symmetric space G/K. One

can show that the de Rham complex

0→ R→ Ω0(G/K)→ Ω1(G/K)→ Ω2(G/K)→ . . .

is a continuously injective resolution of the trivial G-module R. The boundary

maps are given by the exterior derivative and G acts on forms by the pullback

of left multiplication with an element of G. Thus, the continuous cohomology of

G is the cohomology of the complex of G-invariant forms denoted by Ω∗(G/K)G

and we have identified this with relative Lie algebra cohomology previously.

Combining the results of this and the previous section we conclude that for a
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connected Lie group G and its maximal compact subgroup K ⊂ G we have an

algebra isomorphism H∗c (G;R) ∼= H∗(Gu/K;R), where Gu denoted the compact

twin of G. It is natural in the following sense. Given a Lie group homomorphism

G→ G′, then a maximal compact subgroup K of G is mapped into a maximal

compact subgroup K ′ of G′, because the continuous image of a compact set

is compact. This induces a well-defined map Gu/K → G′u/K
′ and thus on

singular cohomology. Further, using the above isomorphism a Künneth formula

for continuous cohomology of connected Lie groups can be derived from the

analog formula for singular cohomology. The singular cohomology of symmetric

spaces Gu/K for compact connected Lie groups is known in many cases and we

will present a computation for two examples, which will be of importance later

on.

Example 5.25 (G = SLn(R)). The group SLn(R) is a non-compact, connected

Lie group with Lie algebra

g = sln(R) = {M ∈Mn(R) | tr(M) = 0},

where Mn(R) is the vector space of n× n-matrices with real entries and tr(M)

denotes the trace of M . A Cartan involution on sln(R) is given by the negative

transpose θ(M) = −M>. We get the eigenspaces

k = {M ∈ sln(R) |M = −M>},
p = {M ∈ sln(R) |M = M>}.

Note that k = so(n) is the Lie algebra of the special orthogonal group SO(n),

which is a maximal compact subgroup of SLn(R). The complexification of g is

sln(R)⊗R C ∼= sln(C) = {M ∈Mn(C) | tr(M) = 0},

where the isomorphism is given by M ⊗ z 7→ zM and the complex structure is

the usual complex conjugation of matrices. The compact twin is given by

gu = k⊕ ip = {M ∈ sln(C) |M = −M>} ∼= su(n)

and so Gu = SU(n) is the special unitary group. Finally, applying the previous

results we get

H∗c (SLn(R);R) ∼= H∗(SU(n)/SO(n);R).
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The singular homology is known (see [MT91, Chapter 3, Theorem 6.7]) and for

odd n given by

H∗(SU(n)/SO(n);R) ∼= Λ∗R(e5, e9, e13, . . . , e4k+1)

where k = bn−1
2
c and the right hand-side is the exterior algebra on generators

eq ∈ Hq(SU(n)/SO(n);Z). The proof uses the Serre spectral sequence on the

homotopy fibration SU(n)→ SU(n)/SO(n)→ BSO(n).

Example 5.26 (G = SLn(C)). As a second example we take G = SLn(C)

considered as a real Lie group. Its Lie algebra is

g = sln(C) = {M ∈Mn(C) | tr(M) = 0}

and a Cartan involution is given by θ(M) = −M>
, the negative complex con-

jugate transpose of M . As previously, we have the ±1 eigenspaces

k = {M ∈ sln(C) |M = −M>},

p = {M ∈ sln(C) |M = M
>}.

We see that k = su(n) is the Lie algebra of the special unitary group K = SU(n).

The complexification of g is given by the isomorphism

sln(C)⊗R C ∼= sln(C)× sln(C), M ⊗ z 7→ z(M,M).

Hence, the inclusion sln(C)→ sln(C)× sln(C) is given by M 7→ (M,M). Note

that we have two different complex structures on the complexification. First,

there is the usual complex conjugation of matrices in sln(C). We ignored it

until now, because we considered SLn(C) as a real Lie group. It induces the

involution (M,N) 7→ (N,M) on sln(C)× sln(C). Second, there is the complex

conjugation on the factor C, which induces (M,N) 7→ (N,M) on the product.

As the compact twin we get

gu = k⊕ ip ∼= su(n)× su(n)

and Gu = SU(n) × SU(n). The map Gu/K → SU(n), [(M,N)] 7→ MN
−1

is a homeomorphism and so we can compute the continuous cohomology as
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previously getting

H∗c (SLn(C);R) ∼= H∗(SU(n);R).

It remains to compute the singular cohomology of SU(n) and we want to de-

scribe this in detail. It is done by induction on n using the fibration

SU(n− 1)→ SU(n)→ S2n−1,

where the inclusion of the fibre SU(n − 1) into SU(n) is given by adding 1

in the lower right corner and zeros elsewhere. The projection onto S2n−1 is

defined by mapping a matrix in SU(n) to its last column. The last column is a

vector of length 1 in Cn ∼= R2n and can thus be considered as an element in the

(2n− 1)-sphere. This fibration yields a long exact sequence

. . . // πi(SU(n− 1)) // πi(SU(n)) // πi(S
2n−1) // πi−1(SU(n− 1)) // . . .

and we know that πi(S
2n−1) = 0 for i < 2n − 1 and π2n−1(S2n−1) ∼= Z. In

particular, the map πi(SU(n − 1)) → πi(SU(n)) induced from the inclusion is

surjective and so πi(SU(n), SU(n− 1)) = 0 for i < 2n− 1. This means that the

pair (SU(n), SU(n − 1)) is (2n − 2)-connected. By the Hurewicz theorem the

relative cohomology of the pair (SU(n), SU(n−1)) vanishes in degrees i < 2n−1

and so the long exact sequence of cohomology groups of a pair

. . . // H i(X,A) // H i(X) // H i(A) // H i+1(X,A) // . . .

implies that the induced map H i(SU(n);Z) → H i(SU(n − 1);Z) is an iso-

morphism for all i ≤ 2n− 3. By the induction hypothesis we have H∗(SU(n−
1);Z) ∼= ΛZ(ε3, ε5, . . . , ε2n−3) and there exist c1, . . . , c2n−3 ∈ H∗(SU(n);Z) which

restrict to the generators εi. Since products of distinct εi form a basis of the

exterior algebra and these products are also restrictions from products of the

c′is, the Leray-Hirsch Theorem applies (see [Hat01, Theorem 4D.1]) which yields

isomorphisms

H∗(SU(n);Z) ∼= H∗(SU(n− 1);Z)⊗Z H∗(S2n−1;Z)

∼= Λ∗Z(ε3, ε5, ε7, . . . , ε2n−3)⊗Z ΛZ(ε2n−1)

∼= Λ∗Z(ε3, ε5, ε7, . . . , ε2n−1).

We used the fact that the cohomology of Sn with coefficients in Z vanishes
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except in degrees 0 and n, where it is Z.

Besides computing continuous cohomology of these two examples we also

want to determine what complex conjugation of matrices in SLn(C) induces on

continuous cohomology. In general, an involution T on a Lie Group G defines

an involution on its Lie algebra g by taking the derivative τ = dT. This can

be extended to an involution τ ⊗ id on the complexification g ⊗R C. Under

the assumption that the original involution T commutes with a given Cartan

involution on G, the restriction of τ⊗id to the compact twin gu = k⊕ip ⊆ g⊗RC
defines an involution on gu, which preserves k. Consequently, we get a well-

defined involution on gu/k and Gu/K. We want to apply this to G = SLn(C),

so T is complex conjugation of matrices and Gu/K = SU(n). Note that the

induced involution on SU(n) is not again complex conjugation of matrices.

Lemma 5.27. Let G = SLn(C) with maximal compact subgroup K = SU(n)

and compact twin Gu = SU(n) × SU(n). The involution T: G → G, T(M) =

M induces the involution Gu/K → Gu/K, M 7→ M> via the identification

Gu/K ∼= SU(n).

Proof. The derivation τ = dT is again complex conjugation on the Lie algebra

sln(C). We already saw that the complexification of sln(C) is sln(C) × sln(C),

where the inclusion is given by M 7→ (M,M) and the induced involution τ ⊗ id
on the complexification is given by (M,N) 7→ (N,M). Complex conjugation

commutes with the given Cartan involution, so τ ⊗ id preserves gu = su(n) ×
su(n) and k = su(n) and we get a well-defined involution on su(n)×su(n)/su(n).

The map

su(n) ∼= (su(n)× su(n))/su(n), M 7→ [(0,M)]

is a homeomorphism and so the involution on gu/k = su(n) under this identifi-

cation is given by M 7→ −M . Finally, on the Lie group level the involution on

Gu/K = SU(n) is given by M 7→M
−1

= M>.

Since the isomorphism H∗c (SLn(C);R) ∼= H∗(SU(n);R) is natural in the sense

we explained previously, it remains to compute what transposing induces on

singular cohomology. We will apply the following theorem, which follows from

the fact that for connected orientable closed manifolds the choice of a generator

of the top homology with integer coefficients is an orientation.
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Theorem 5.28. Let G be a connected Lie group of dimension n ∈ N and

τ : G→ G an involution with derivative dτ : g→ g, then Hn(G;Z) ∼= Z and the

induced map

τ ∗ : Hn(G;Z)→ Hn(G;Z)

is multiplication by 1 or −1. More precisely, it is multiplication by −1, if and

only if det(dτ) < 0.

We use this to compute the map induced on continuous cohomology.

Lemma 5.29. Complex conjugation of matrices in SLn(C) induces on

H∗c (SLn(C);R) ∼= Λ∗R(ε2k−1, k = 2, . . . , n) the map given by ε2k−1 7→ (−1)k+1ε2k−1.

Proof. According to Lemma 5.27 we have to compute what transposing of ma-

trices induces on H∗(SU(n);R) ∼= Λ∗R(ε3, ε5, ε7, . . . , ε2n−1). The dimension of

SU(n) is n2 − 1 and so according to Theorem 5.28 we have

Hn2−1(SU(n);R) = 〈ε3 · ε5 · ε7 · . . . · ε2n−1〉R ∼= R.

An R-basis of su(n) is given by {iEk, iAp,q, Bp,q ∈ Mn(C) | 1 ≤ k ≤ n − 1, 1 ≤
p < q ≤ n} where

Ek
i,j =


1 if i = j = k

−1 if i = j = n

0 else

Ap,qi,j =

1 if (i, j) = (p, q) or (i, j) = (q, p)

0 else

Bp,q
i,j =


1 if (i, j) = (p, q)

−1 if (i, j) = (q, p)

0 else.

Hence, the only basis elements which are not fixed by transposing are Bp,q for

1 ≤ p < q ≤ n, of which there are exactly n(n − 1)/2. These are mapped to

their negative, so

det(dτ) = (−1)n(n−1)/2 =

1 n ≡ 0, 1 mod 4

−1 n ≡ 2, 3 mod 4.
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where dτ denotes transposing of matrices. Again, we conclude from Theorem

5.28 that the map induced from transposing maps the element ε3 · ε5 · . . . · ε2n−1

to (−1)
n(n−1)

2 ·ε3 ·ε5 · . . . ·ε2n−1 and thus a generator ε2k−1 of the cohomology ring

must be mapped to (−1)k+1ε2k−1. We used the fact that the inclusion SU(n)→
SU(n+ 1) induces on H∗(SU(n+ 1);R)→ H∗(SU(n);R) the projection given

by εi 7→ εi for i 6= 2n+ 1 and ε2(n+1)+1 7→ 0.

5.5 Algebraic Groups and Arithmetic Subgroups

Besides continuous cohomology we also need the very basic definitions of alge-

braic and arithmetic groups. There are several different ways to define algebraic

groups. They can be defined as functors (see [Jan07]), as algebraic varieties

which have a compatible group structure (see [Hum75]) or in a more concrete

way as described for example by Borel in [Bor69]. We will introduce the latter

version, since it is sufficient for the groups we will consider.

Roughly speaking, an algebraic group is a group defined by zeros of a set of

polynomials. For n ∈ N we denote by Mn(C) the group of all n × n matrices

with entries in C and by GLn(C) the group of all invertible n × n matrices.

The Zariski topology defines a topology on the set Mn(C) = Cn2
, which induces

a topology on the open subset GLn(C). If not stated otherwise topological

properties always refer to this topology. The precise definition of an algebraic

group is given as follows.

Definition 5.30. An algebraic group G is a closed subgroup of GLn(C). In

other words, G is an algebraic group if there exist polynomials fα ∈ C[Xij | 1 ≤
i, j ≤ n] with α in some index set I, such that

G = {(xij) ∈ GLn(C) | fα(xij) = 0, α ∈ I}.

Further, for a subring R of C we define G(R) = G∩GLn(R), where GLn(R) is

the set of n× n-matrices with entries in R, such that the determinant is a unit

in R. For a subfield k of C we say that G is defined over k or G is a k-group,

if G is defined by a set of polynomials with coefficients in k. A closed subgroup

H of G is called a k-subgroup if it is defined over k as an algebraic group.

We also want to define what a semisimple algebraic group is.

Definition 5.31. An algebraic group is called solvable if it is solvable as an

68



5.5 Algebraic Groups and Arithmetic Subgroups

abstract group and it is called semisimple if it has no non-trivial normal solvable

connected closed subgroup.

Besides the Zariski topology on GLn(C) we have considered up to now, there

is also the topology induced by the usual topology on Cn2
and it can be shown

that an algebraic group is connected if and only if it is connected with respect to

the usual topology on GLn(C) (see [Bor69, 7.4]). Let us consider some examples

of algebraic groups.

Example 5.32. The group G = GLn(C) is an algebraic group defined over Q.

This is obvious, because we can choose the set of defining polynomials to be

empty.

Example 5.33. The group G = SLn(C) of invertible n × n matrices with

entries in C and determinant 1 is an algebraic group defined over Q. Denote

by det ∈ Q[Xij | 1 ≤ i, j ≤ n] the polynomial defined by the determinant of a

matrix, then we have

SLn(C) = {(xij) ∈ GLn(C) | det(xij)− 1 = 0}

and it is known that det has coefficients in Z. Further, we have G(k) = SLn(C)∩
GLn(k) = SLn(k) for a subfield k of C.

Since we are interested in group rings the following examples will be of great

importance.

Example 5.34. Let H be a finite abelian group, then G = GLn(CH) is an alge-

braic group defined over Q. Denote by m the order of H, then an isomorphism of

C-vector spaces CH ∼= Cm defines an injective map GLn(CH)→ GLN(C) with

N = nm and so GLn(CH) can be considered a subgroup of GLN(C). The con-

ditions imposed on the coefficients of a matrix in GLN(C) which is in the image

of the above inclusion can be expressed as polynomials in Q[Xij | 1 ≤ i, j ≤ N ]

and we denote these by fα with α ∈ I for some finite index set I. Hence, we

can write

GLn(CH) = {(xij) ∈ GLN(C) | fα(xij) = 0, α ∈ I}

and we have G(k) = GLn(CH)∩GLN(k) = GLn(kH). A similar argument can

be used to show that SLn(CH) is also an algebraic group defined over Q. We

want to see that SLn(CH) is semisimple. For our purposes it suffices to take
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H = C to be finite cyclic. Using the isomorphism of C-algebras CC ∼=
∏

σ∈Ĉ C
defined by c 7→ σ(c) for c ∈ C we write

SLn(CC) ∼=
∏
σ∈Ĉ

SLn(C)

and note that SLn(C) has no non-trivial normal solvable connected closed sub-

groups. Hence, SLn(CC) is semisimple.

We proceed with the definition of arithmetic groups.

Definition 5.35. Let G be an algebraic group defined over Q. A subgroup Γ

of G(Q) is called arithmetic if it is commensurable with G(Z) = G ∩ GLn(Z),

which means that Γ ∩G(Z) has finite index both in Γ and in G(Z). Given any

group Γ, it is called arithmetic if it can be embedded as an arithmetic subgroup

in G(Q) for some algebraic group G defined over Q.

We are interested in the following example.

Example 5.36. Let H be a finite abelian group and let G = GLn(CH) be the

algebraic group from the previous example. The subgroup Γ = GLn(ZH) of

G(Q) = GLn(QH) is an arithmetic group, since GLn(ZH) = G∩GLN(Z) with

N = n · |C|. Similarly, SLn(ZH) is an arithmetic subgroup of SLn(QH).

5.6 The Group Algebra RC

One crucial step in determining higher rational K-theory of the integral group

ring of a finite cyclic group C will be considering the map on continuous coho-

mology induced from the inclusion ZC → RC. The advantage of the R-algebra

RC is that it decomposes into a product of fields. Since we are particularly

interested in K-theory as a functor from the subgroup category of C and in the

action of Aut(C) on the Artin defect, we want to examine what inclusion of

subgroups and automorphisms induce on the decomposition of RC. We start

with introducing some notation. If we denote by γ : C → C complex conjuga-

tion in C, then the Galois group G(C/R) of the extension C/R is generated by

γ. The group G(C/R) acts on the dual group Ĉ by σ 7→ γ ◦ σ = σ for σ ∈ Ĉ
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and we split Ĉ/γ into the disjoint subsets

Ĉ+ = {[σ] ∈ Ĉ/γ | σ = σ},

Ĉ− = {[σ] ∈ Ĉ/γ | σ 6= σ}.

Note that Ĉ+ is the fixed point set under the G(C/R)-action and the fixed points

are exactly those group homomorphisms C → S1 whose image is contained in

{±1}. Further, for an element σ ∈ Ĉ we set

Kσ =

R if [σ] ∈ Ĉ+

C if [σ] ∈ Ĉ−.

Now we can describe the decomposition of the real algebra RC into a product

of fields.

Lemma 5.37. Choose one representative for each orbit of Ĉ/γ and denote by

C the set of the representatives. The map

RC →
∏
σ∈C

Kσ, c 7→ (σ(c))σ∈C

is an isomorphism of R-algebras.

Proof. Denote by µn the set of n-th roots of unity in C. There are isomorphisms

of C-algebras

CC ∼= C[X]/(Xn − 1) ∼=
∏
σ∈Ĉ

C[X]/(X − σ(c)) ∼=
∏
σ∈Ĉ

C

given by c 7→ X + (Xn− 1) 7→ (X + (X − σ(c))σ∈Ĉ 7→ (σ(c))σ∈Ĉ for a generator

c ∈ C. Now RC is the fixed point set of CC under the G(C/R)-action on the

coefficients. This induces a G(C/R)-action (zσ)σ∈Ĉ 7→ (zσ)σ∈Ĉ on the product

decomposition and we get the desired isomorphism

RC ∼= (
∏
σ∈Ĉ

C)G(C/R) ∼=
∏
σ∈Ĉ+

R×
∏
σ∈Ĉ−

C,

where we identified (C × C)G(C/R) = {(z, z) | z ∈ C} ∼= C. This depends on

a choice of a representative for each pair {σ, σ} ∈ Ĉ/γ and yields the desired

isomorphism RC ∼=
∏

σ∈C Kσ.
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Next, we want to determine the map on the product decomposition induced

by the inclusion of a subgroup D of C.

Lemma 5.38. Let D be a subgroup of a finite cyclic group C and denote by D
and C a system of representatives of Ĉ/γ and D̂/γ, respectively. The inclusion

D → C induces an inclusion RD → RC and a commutative diagram

RC
∼= //

∏
σ∈C
Kσ

RD

OO

∼= //
∏
τ∈D

Kτ

i

OO

where i is given by

i(z)σ =

zσ◦inc if σ ◦ inc ∈ D
zσ◦inc else

for an element z = (zτ )τ∈D.

Proof. Write z = (τ(x))τ∈D for some x ∈ RD. This is possible, because the

horizontal maps are isomorphisms. Applying the inclusion inc : RD → RC
and the upper isomorphism maps x to (σ(inc(x)))σ∈C. For those σ ∈ C with

σ ◦ inc ∈ D we have σ(inc(x)) = zσ◦inc. If σ ◦ inc 6∈ D, then σ ◦ inc ∈ D and so

σ(inc(x)) = zσ◦inc.

We want to note that in general it is not possible to choose the representatives

in such a way that σ ◦ inc ∈ D holds whenever σ ∈ C for all subgroups of C

simultaneously. Last, we describe the map on the decomposition induced by

automorphisms of C. Similarly, we get the following result.

Lemma 5.39. Let C be a finite cyclic group and C a system of representatives

for Ĉ/γ. An automorphism φ ∈ Aut(C) defines an automorphism of RC, which

induces the map

Φ:
∏
σ∈C

Kσ −→
∏
σ∈C

Kσ

given by

Φ(z)σ =

zσ◦φ if σ ◦ φ ∈ C
zσ◦φ else

for an element z = (zσ)σ∈C in the product.

72



5.7 Higher Rational K-Theory of ZC and Functoriality

Proof. As before we write z = (σ(x))σ∈C for some x ∈ RC. For those σ with

σ ◦ φ ∈ C we can write Φ(z)σ = σ(φ(x)) = zσ◦φ. But if σ ◦ φ /∈ C, then

σ ◦ φ = σ ◦ φ must lie in C and so we have Φ(z)σ = σ(φ(x)) = σ(φ(x)) = zσ◦φ,

which finishes the proof.

5.7 Higher Rational K-Theory of ZC and Functoriality

The purpose of this section is to determine the K-groups Km(ZC) ⊗Z R in

degrees m > 1 as functors from the subgroup category of a finite cyclic group C

as well as describe the action of the automorphism group on them. This will be

the basis for computing the Artin defect in higher degrees. The rank of Km(ZG)

for m > 1 can be computed for any finite group G using the following result by

Borel on the cohomology of arithmetic groups (see [Jah09]). For the proof of

Borel’s theorem see [Bor74].

Theorem 5.40. Let G be a semisimple algebraic group defined over Q such

that G(R) is connected and let Γ ≤ G(Q) be an arithmetic group. If q + 1 ≤
rankQ(G)/4, then the corestriction map Hq

c (G(R);R)→ Hq(Γ;R) is an isomor-

phism.

It will be necessary to consider the K-groups tensored with R in order to be

able to apply this result. Afterwards we explain what can be derived for the

rational version. Our approach is to check naturality with respect to the cyclic

group in each step of the computation of the groups Km(ZC)⊗Z R as a vector

space. This will allow us to determine functorial properties.

As we will see, computing the above K-groups can be reduced to computing

the group cohomology of SLn(ZC). Therefore, we have to apply Borel’s result

to Γ = SLn(ZC) and G = SLn(CC). We showed that SLn(CC) is a semisimple

algebraic group and we can choose n to be large enough such that the rank

condition is satisfied. It turns out that SLn(ZC) is cohomologically stable.

The isomorphism on cohomology is induced from the inclusion SLn(ZC) →
SLn(RC) and thus is natural. More precisely, we have the following result.

Lemma 5.41. Let n,m ∈ N with n� 0. There is an isomorphism

Hm(SLn(ZC);R) ∼= (
⊗
σ∈Ĉ+

Λ∗R(e5, e9, . . . , e4k+1)⊗R
⊗
σ∈Ĉ−

Λ∗R(ε3, ε5, . . . , ε2n−1))m

where k = b (n−1)
2
c. In particular, the cohomology stabilizes.
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Proof. First, we note that SLn respects products of rings. We already saw that

SLn(ZC) is an arithmetic subgroup of the semisimple algebraic group SLCn .

Since we can choose n to be arbitrary large the rank condition from Theorem

5.40 is also satisfied and thus in combination with Lemma 5.37 we get

Hm(SLn(ZC);R) ∼= Hm
c (SLn(RC);R) ∼= (

⊗
σ∈C

H∗c (SLn(Kσ);R))m,

where we used the Künneth formula for continuous cohomology in the last step.

The continuous cohomology of SLn(R) and SLn(C) has been computed in ex-

amples 5.25 and 5.26, which we apply to finish the proof.

No we can describe the computation of Km(ZC)⊗Z R as a vector space with

emphasis on naturality with respect to inclusion of subgroups of C.

Theorem 5.42. Let m > 1 and C a finite cyclic group. There is an isomor-

phism of R-vector spaces

Km(ZC)⊗Z R ∼=


⊕

Ĉ/γ R if m ≡ 1 mod 4⊕
Ĉ− R if m ≡ 3 mod 4

0 if m ≡ 0, 2 mod 4.

Proof. For n sufficiently large we have isomorphisms

Km(ZC)⊗Z R = πm(BGL(ZC)+)⊗Z R (1)

∼= πm(BSL(ZC)+)⊗Z R (2)

∼= PHm(BSL(ZC)+;R) (3)

∼= IHm(BSL(ZC)+;R)∗ (4)

∼= IHm(BSL(ZC);R)∗ (5)

∼= IHm(SL(ZC);R)∗ (6)

∼= IHm(SLn(ZC);R)∗ (7)

∼=
⊕
Ĉ+

IΛm
R (e5, e9, . . . , e4k+1)∗ ⊕

⊕
Ĉ−

IΛm
R (ε3, ε5, . . . , ε2n−1)∗. (8)

(1) This is just the definition of higher K-Theory using Quillen’s plus construc-

tion. The explicit construction of higher K-groups and further properties

can be found in [Ros94].
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(2) The short exact sequence

1 // SL(ZC) // GL(ZC) det // (ZC)× // 1

induces a fibration BSL(ZC) // BGL(ZC) // B(ZC)× according to

Lemma 5.3. Now π1(B(ZC)×) = (ZC)× is abelian and so its perfect

maximal subgroup is the trivial group, which can only act trivially on the

fibre. Hence, Theorem 5.4 shows that

BSL(ZC)+ // BGL(ZC)+ // (B(ZC)×)+

is again a fibration. As mentioned, π1(B(ZC)×) is abelian and so it is equal

to π1((B(ZC)×)+). Further, since the classifying space is a CW-complex

and the plus construction induces an isomorphism on cohomology, there

is a homotopy equivalence (B(ZC)×)+ ' B(ZC)×. In particular, the

higher homotopy groups of (B(ZC)×)+ are trivial and so the long ex-

act sequence of a fibration yields πm(BGL(ZC)+) ∼= πm(BSL(ZC)+) for

m > 1. The isomorphism is natural, since it is induced by the inclusion

SL(ZC) → GL(ZC), which commutes with maps induced from ring ho-

momorphisms. In particular, the ones induced from inclusion of subgroups

or automorphisms of C. We used the fact that taking homotopy groups,

the plus construction, the classifying space and tensoring with R are all

covariant functors.

(3) We saw in example 5.6 that BSL(ZC)+ is an H-space and so Lemma 5.11

applies. Also, the Hurewicz map is natural.

(4) Here we apply Lemma 5.8.

(5) The plus construction induces an isomorphism on cohomology. Since this

isomorphism is induced by the inclusion BSL(ZC) → BSL(ZC)+ it is

natural.

(6) The group cohomology of a group is naturally isomorphic to the singular

cohomology of its classifying space (see [Bro82, Chapter III, Section 1]).

(7) By definition we have SL(ZC) = lim−→SLn(ZC). It is known that direct

limits commute with group homology (see [Bro82, p.121]). Since we have

coefficients in a field the universal coefficient theorem can be used to see
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that Hm(lim−→SLn(ZC);R) ∼= lim←−H
m(SLn(ZC);R). Lemma 5.41 shows

that SLn(ZC) is cohomologically stable yielding the isomorphism for n suf-

ficiently large. Again, it is induced by the inclusion SLn(ZC)→ SL(ZC)

and thus natural.

(8) In this last step we apply the result of Lemma 5.41 and note that the inde-

composables of the tensor product is the direct sum of the indecomposable

elements.

The indecomposables in degree m of an exterior algebra are the generators

in degree m. We see that if m ≡ 1 mod 4, then in both exterior algebras there

is exactly one generator in that degree and we get one R summand for each

element in Ĉ+ ∪ Ĉ− = Ĉ/γ. If m ≡ 3 mod 4 there is no generator in the

exterior algebra coming from the cohomology of SLn(R) and we just get one R
summand for each element in Ĉ−.

As a next step we want to describe these K-groups as a functor from the sub-

group category of C in a more accessible way. In order to do that we can apply

results from section 2.2. Using the notation we introduced there we consider

F = R, so F (µn) = C and G = G(C/R) = 〈γ〉 where γ is complex conjugation.

The product G×G acts on the C-algebras CC and map(Ĉ,C) as described in

Lemma 2.4. Additionally, for a vector space V and an automorphism f : V → V

with f 2 = idV we define

V + = {v ∈ V | f(v) = v},
V − = {v ∈ V | f(v) = −v}

to be the eigenspaces to the eigenvalues 1 and −1, respectively. This yields a

decomposition V = V +⊕ V −. We are in particularly interested in the R-vector

spaces

V = (CC)G×1 and V = map(Ĉ,C)G×1.

In each case we have an automorphism V → V defined by v 7→ (1, γ) · v. Note

that γ2 = idC, so it has eigenvalues 1 or −1. Since map(Ĉ,C)G×1 = map(Ĉ,R)

we have

map(Ĉ,R)+ = {f ∈ map(Ĉ,R) | f(σ) = f(σ)},

map(Ĉ,R)− = {f ∈ map(Ĉ,R) | f(σ) = −f(σ)}.
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On the other hand we see that (CC)G×1 = {
∑

c∈C λcc ∈ CC | λc = λc−1} and so

((CC)G×1)+ = (CC)G×G = R[C]+

(C[C]G×1)− = {
∑
c∈C

λcc | λc = λc−1 , λc ∈ Ri} = Ri[C]− ∼= R[C]−

where R[C]+ and Ri[C]− are the 1 and −1 eigenspaces of the automorphism

defined by c 7→ c−1 on the R-vector spaces R[C] and Ri[C], respectively. We

have constructed the following functors.

Lemma 5.43. Let C be a finite cyclic group and ε ∈ {+,−}. The assignments

D 7→ map(D̂,R)ε,

D 7→ R[D]ε

define covariant functors from the category Sub(C) to the category VSR. Fur-

ther, we have natural isomorphisms

R[D]ε ∼= map(D̂,R)ε.

Proof. This is a direct consequence of Lemma 2.5.

Using these functors we can formulate the main result of this section.

Theorem 5.44. Let C be a finite cyclic group and m > 1. There is an isomor-

phism of R-vector spaces

Km(ZC)⊗Z R ∼=


R[C]+ if m ≡ 1 mod 4

R[C]− if m ≡ 3 mod 4

0 if m ≡ 0 mod 2

which defines a natural transformation of functors from the category Sub(C)

to VSR. Additionally, it is natural with respect to automorphisms of C. The

isomorphism in the case m ≡ 3 mod 4 depends on a choice of representatives of

Ĉ/γ.

Proof. We will show that the K-groups are isomorphic to map(Ĉ,R)± as a

functor in the corresponding cases and then apply the previous lemma. The

case m ≡ 0 mod 2 is obvious, because we have seen that in this case the K-

groups are 0. We proceed with the case m ≡ 1 mod 4. According to Theorem
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5.42 as R-vector spaces we have Km(ZC)⊗Z R ∼=
⊕

Ĉ/γ R. The right-hand side

can be identified with map(Ĉ,R)+ via the isomorphism

map(Ĉ,R)+ →
⊕
Ĉ/γ

R, f 7→ (f(σ))[σ]∈Ĉ/γ. (5.1)

It remains to prove functoriality. Let D be a subgroup of C and denote by inc

the inclusion D → C. Consider the diagram

map(Ĉ,R)+
∼= //
⊕

Ĉ/γ R

map(D̂,R)+

α

OO

∼= //
⊕

D̂/γ R

β

OO

where α is the naturally induced map given by α(f)(σ) = f(σ ◦ inc). We claim

that β is induced from the map Ĉ/γ → D̂/γ on the index sets defined by

[σ] 7→ [σ ◦ inc]. In order to see that and show that the diagram commutes,

we have to take a closer look at the proof of Theorem 5.42. We argued that

the isomorphisms involved are natural with respect to inclusion of subgroups

and automorphisms of C up to where we reached the continuous cohomology

Hm
c (SLn(RC);R). The inclusion RD → RC defines a map on the decomposition

of these algebras, which we described in Lemma 5.38. Using the notation we

introduced there, for a fixed τ ′ ∈ D and σ′ ∈ C with σ′◦inc = τ ′ the composition

Kτ ′ →
∏
τ∈D

Kτ →
∏
σ∈C

Kσ → Kσ′

is either the identity on R or C, the inclusion R → C or complex conjugation

in C. The covariant functor IHm(SLn(−))∗ respects products and we apply it

to the composition to get induced maps

IHm
c (SLn(Kτ ′);R)∗ → IHm

c (SLn(Kσ′);R)∗.

We know from the computation of continuous cohomology that both are 1-

dimensional R-vector spaces. The identity induces again the identity after ap-

plying the above functor. According to Lemma 5.29 complex conjugation also

induces the identity on the indecomposables in degrees congruent 1 modulo 4.

As for the inclusion R→ C we can fix a basis element of IHm
c (SLn(C);R)∗ and
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choose the preimage of this element as a basis of IHm
c (SLn(R);R)∗. With these

choices the map R → R after identification of the indecomposables with R on

both sides is also the identity. In summary, β is indeed the map induced from

the one on the index sets. We check that for f ∈ map(D̂,R)+

(α(f)(σ))[σ]∈Ĉ/γ = (f(σ ◦ inc))[σ]∈Ĉ/γ = β(f(τ)[τ ]∈D̂/γ)

and so the diagram commutes. As for automorphisms of C we use Lemma 5.39

to see that the induced Aut(C)-action on
⊕

Ĉ/γ R is given by the action on

the index set Ĉ/γ and note that the isomorphism 5.1 is Aut(C)-equivariant,

where an automorphism acts on the left-hand side by acting on Ĉ. Now assume

m ≡ 3 mod 4. The choice of representatives of Ĉ− denoted by C− defines an

isomorphism

map(Ĉ,R)− →
⊕
Ĉ−

R, f 7→ (f(σ))σ∈C− . (5.2)

Again, we consider the diagram

map(Ĉ,R)−
∼= //
⊕

Ĉ− R

map(D̂,R)−

α

OO

∼= //
⊕

D̂− R

β

OO

induced by a subgroup D of C and denote by D− a set of representatives of D̂−.

As before, α is the naturally induced map, but in order to determine β we have

to take into consideration that complex conjugation in C induces multiplication

with −1 on IHm(SLn(C);R)∗ according to Lemma 5.29. This occurs whenever

σ ◦ inc /∈ D− for σ ∈ C− and therefore β is given by

β(x)σ =

xσ◦inc if σ ◦ inc ∈ D−

−xσ◦inc else

for x = (xτ )τ∈D− . For f ∈ map(D̂,R)− and σ ∈ C− we have f(σ ◦ inc) =

−f(σ ◦ inc) and using this we compute

β(f(τ)τ∈D−)σ =

f(σ ◦ inc) if σ ◦ inc ∈ D−

−f(σ ◦ inc) else
= f(σ ◦ inc) = α(f)(σ)
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and thus the diagram commutes. Considering the naturality with respect to

automorphisms of C we use again Lemma 5.39 to see that the induced action

on
⊕

Ĉ− R is given by

φ(x)σ =

xσ◦φ if σ ◦ φ ∈ C−

−xσ◦φ else

for φ ∈ Aut(C). But isomorphism 5.2 is equivariant, where the action on

map(Ĉ,R)− is defined by the action on Ĉ. Last, we apply Lemma 5.43 in both

cases to finish the proof.

5.8 The Artin Defect and the Action of the

Automorphism Group

Having determined the groups Km(ZC)⊗ZR as functors from the subgroup cat-

egory of C provides the basis for computing the Artin defect in higher degrees.

Although we are interested in rational K-theory, we treated the K-groups ten-

sored with R until now. This was necessary in order to apply Borel’s theorem on

continuous cohomology. In this section we will formulate the results concerning

the Artin defect over R first and explain afterwards what can be derived for the

rational version.

Theorem 5.45. Let C be finite cyclic group of order n ∈ N and for m > 1

denote by Sm(n) the cokernel of the map⊕
D�C

Km(ZD)⊗Z Q→ Km(ZC)⊗Z Q

induced from inclusions of subgroups D of C, then there is an isomorphism of

R-vector spaces

Sm(n)⊗Q R ∼=


R[E(C)]+ if m ≡ 1 mod 4

R[E(C)]− if m ≡ 3 mod 4

0 if m ≡ 0 mod 2
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where E(C) is the set of generators of C. In particular,

dimR(Sm(n)⊗Q R) =


ϕ(n)

2
if n > 2 and m ≡ 1 mod 2

1 if n ∈ {1, 2} and m ≡ 1 mod 4

0 else

where ϕ is Euler’s phi function.

Proof. We apply Theorem 5.44 from the previous section. If m ≡ 0 mod 2, then

the K-groups are 0 and so is the cokernel of the induction map. We treat the

case m ≡ 1 mod 4 next and write the induction map tensored with R as⊕
D�C

R[D]+ → R[C]+

and recall that + denotes the subspace of all elements whose coefficients satisfy

λc = λc−1 for c ∈ C. Therefore, a basis of R[D]+ for any subgroup D of C is

given by the set {ec = 1
2
(c + c−1) | c ∈ D}. Of course, this also holds for the

choice D = C. The above map is induced by inclusions D → C and so the only

basis elements which do not lie in the image are those ec where c is a generator

of C. Hence, a basis of the cokernel is given by

E+ = {ec | c ∈ E(C)}.

Now assume m ≡ 3 mod 4. We want to make the same argument, but have to

describe a basis of R[D]− differently. Choose one c ∈ {x, x−1} for each set of

pairs {x, x−1} ⊆ D with x 6= x−1 and denote by D the set of those, then a basis

is given by

{ec = 1/2(c− c−1) | c ∈ D}.

We denote by C the choice corresponding to the group C itself. Again, the

basis elements which do not lie in the image of the induction map are those

corresponding to generators of C and thus a basis of the cokernel in this case is

given by E− = {ec | c ∈ C, c ∈ E(C)}. In order to determine the dimension of

the cokernel we just have to count the elements in the bases E+ and E− of the

defect in the two different cases. If C is of order 1 or 2, we have |E+| = 1 and

for n > 2 we have |E+| = ϕ(n)/2. On the other hand, if C is of order 1 or 2,

then |E−| = 0 and for n > 2 we have |E−| = ϕ(n)/2.
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The next step is to understand the action of the automorphism group of

C on the Artin defect. As mentioned we will once again consider the defect

tensored with R and treat the rational version afterwards. We start with the

case m ≡ 1 mod 4, where the Artin defect is a permutation module.

Theorem 5.46. Let C be a finite cyclic group and m > 1 with m ≡ 1 mod 4.

Denote by I the subgroup of Aut(C) generated by the automorphism c 7→ c−1

for c ∈ C. There is an isomorphism of RAut(C)-modules

Sm(n)⊗Q R ∼= R[Aut(C)/I].

Proof. The isomorphism from Theorem 5.45 ist Aut(C)-equivariant. Further,

the basis E+ = {ec | c ∈ E(C)} of R[C]+ introduced before is Aut(C)-invariant,

because

φ · ec = 1/2(φ(c) + φ(c)−1) = eφ(c)

holds for an automorphism φ of C and c ∈ E(C). Last, the choice of a generator

c of C defines an isomorphism of Aut(C)-sets

Aut(C)/I → E+, φ 7→ eφ(c).

Now we turn to the case m ≡ 3 mod 4. In this case the Artin defect cannot be

a permutation module. To see that assume there is an Aut(C)-invariant basis

T of Sm(n)⊗Q R ∼= R[C]−. For every element ec = 1/2(c− c−1) ∈ E− we have

φ−1 · ec = 1/2(c−1 − c) = −ec

where φ−1(c) = c−1. It follows that for each x ∈ T we have φ−1 · x = −x. But

this contradicts the fact that T is a basis, because x and −x cannot be both

elements of a basis. Nonetheless, we still have the following result.

Theorem 5.47. Let C be a finite cyclic group of order n ∈ N and m > 1 with

m ≡ 3 mod 4. Denote by I the subgroup of Aut(C) generated by the automor-

phism c 7→ c−1 for c ∈ C. There is a short exact sequence of RAut(C)-modules

0 // R[Aut(C)/I] i // R[Aut(C)]
p // Sm(n)⊗Q R // 0

with i([φ]) = φ+ φ ◦ φ−1 and p(φ) = eφ(c) where c is a generator of C.
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Proof. The map p is surjective, because the basis E− lies in the image of p.

Further, elements of the form φ + φ ◦ φ−1 ∈ R[Aut(C)] are contained in the

kernel of p, since p(φ + φ ◦ φ−1) = eφ(c) + eφ(c)−1 = eφ(c) − eφ(c) = 0. They are

linear independent and if n > 2 there are ϕ(n)/2 of those. We know that the

dimension of the Artin defect is ϕ(n)/2 and so they form a basis of the kernel

of p and the above sequence is indeed exact. If n ∈ {1, 2}, then the Artin defect

is trivial and i is an isomorphism.

Now we want to state results for rational K-theory, instead of tensored with

R. It was necessary to consider the latter, because one crucial step in deter-

mining higher K-groups of ZC as functors was Borel’s result stating that for an

arithmetic subgroup Γ of a semisimple algebraic group G the induced map

Hq
c (G(R);R)→ Hq(Γ;R)

is an isomorphism in certain degrees q. The definition of continuous cohomology

relies on having R as the coefficient field. Despite the fact that in our situation

the continuous cohomology of the group G(R) was isomorphic to singular coho-

mology of the symmetric space Gu/K where Gu is the compact twin, it is not

clear whether the resulting isomorphism Hq(Gu/K;R) → Hq(Γ;R) maps the

obvious rational subspace Hq(Gu/K;Q) to Hq(Γ;Q). In a subsequent paper to

his initial result Borel investigates this question and computes the determinant

of the induced map on the indecomposables of the cohomology with real coef-

ficients up to multiplication with a rational number (see [Bor77]). In general,

it is not rational and this implies that the natural rational subspaces are not

preserved. Nonetheless, we can still deduce results for the Artin defect from the

version tensored with R. We start with the dimension as a Q-vector space.

Lemma 5.48. We have dimQ(Sm(n)) = dimR(Sm(n) ⊗Q R) for n ∈ N and

m > 1 .

Proof. This follows from the fact that the functor −⊗Q R is exact.

Last, we describe the Artin defect as an element in K0(QAut(C)) using the

previous results for Sm(n)⊗Q R.

Theorem 5.49. Let C be a finite cyclic group of order n ∈ N and m > 1.

Denote by I the subgroup of Aut(C) generated by the automorphism c 7→ c−1 for
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c ∈ C. If m ≡ 1 mod 4, we have Sm(n) ∼= Q[Aut(C)/I] and if m ≡ 3 mod 4,

there is an exact sequence of QAut(C)-modules

0 // Q[Aut(C)/I] // Q[Aut(C)] // Sm(n) // 0 .

Proof. According to Corollary 2.7 the map

K0(QAut(C))→ K0(RAut(C)), [M ] 7→ [M ⊗Q R]

is injective. For m ≡ 1 mod 4 we showed that Sm(n) ⊗Q R ∼= R[Aut(C)/I]

and so [Sm(n) ⊗Q R] = [R[Aut(C)/I]] ∈ K0(RAut(C)). Since the above

map is injective we have [Sm(n)] = [Q[Aut(C)/I]] ∈ K0(QAut(C)) and thus

Sm(n) ∼= Q[Aut(C)/I], because QAut(C) is semisimple. The same argument

in the case m ≡ 3 mod 4 shows that [Sm(n)] = [Q[Aut(C)]] − [Q[Aut(C)/I]] ∈
K0(QAut(C)), which implies the existence of the exact sequence stated above.
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Abstract

The purpose of this thesis is to compute the Artin defect in algebraic K-theory.

For m ∈ Z the Artin defect of a finite cyclic group C in degree m is defined as

the cokernel of the naturally induced map⊕
D�C

Km(ZD)⊗Z Q→ Km(ZC)⊗Z Q

where ZC denotes the integral group ring of C. We compute its dimension as

a Q-vector space and describe the natural action of the automorphism group of

C on the defect. The Artin defect is of importance when computing rational

K-theory of integral group rings of any group using the Farrell-Jones conjecture.

The Farrell-Jones conjecture is an approach to compute algebraic K-theory of

group rings. It is known to be true for a large class of groups.

Zusammenfassung

Gegenstand dieser Dissertation ist die Berechnung des Artin Defektes in der

algebraischen K-Theorie. Der Artin Defekt einer endlichen zyklischen Gruppe C

im Grad m ∈ Z ist definiert als der Kokern der natürlich induzierten Abbildung⊕
D�C

Km(ZD)⊗Z Q→ Km(ZC)⊗Z Q

wobei ZC den ganzzahligen Gruppenring von C bezeichnet. Wir berechnen die

Dimension des Artin Defektes als Q-Vektorraum und beschreiben die natürliche

Wirkung der Automorphismengruppe von C auf dem Defekt. Der Artin Defekt

tritt bei der Berechnung der rationalen K-Theorie ganzzahliger Gruppenringe

beliebiger Gruppen mittels der Farrell-Jones Vermutung auf. Die Farrell-Jones

Vermutung ist ein Ansatz zur Berechnung der algebraischen K-Theorie von

Gruppenringen. Sie wurde bereits für eine große Klasse von Gruppen bewiesen.
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