Development and Application of an Organocatalytic [3,3]-Sigmatropic Rearrangement

Inaugural-Dissertation
to obtain the academic degree
Doctor rerum naturalium (Dr. rer. nat.)

submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin

Caroline Apel

Hiermit versichere ich, die vorliegende Dissertation selbstständig und ohne unerlaubte Hilfe angefertigt zu haben. Beim Verfassen der Dissertation wurden keine anderen als die im Text aufgeführten Hilfsmittel verwendet. Ein Promotionsverfahren zu einem früheren Zeitpunkt an einer anderen Hochschule oder bei einem anderen Fachbereich wurde nicht beantragt.

The present work was carried out in the period from October 2015 to October 2019 at the Institute of Chemistry and Biochemistry of the Freie Universität Berlin, Department of Biology, Chemistry, and Pharmacy under the direction of Prof. Dr. Mathias Christmann.

Parts of this project have already been published in:
C. Apel, S. Hartmann, D. Lentz, M. Christmann, Angew. Chem. Int. Ed. 2019, 58, 5075-5079.
C. Apel, M.-A. Kasper, C. Stieger, C. P. R. Hackenberger, M. Christmann, Org. Lett. 2019, 21, 10043-10047.

[^0]
Danksagung

An erster Stelle möchte ich mich bei Herrn Prof. Dr. Mathias Christmann für die Aufnahme in seine Arbeitsgruppe und dieses interessante und herausfordernde Thema bedanken.

Bei Herrn Prof. Dr. Christian Hackenberger möchte ich mich zum einen für die Übernahme des Zweitgutachtens und zum anderen für die ergebnisreiche Zusammenarbeit bei dem Lysin-Thema bedanken.

Der gesamten Arbeitgruppe Christmann gilt mein Dank für die gute Arbeitsathmosphäre und viele spannende Disskussionen. Ein besonderer Dank gilt dabei dem Mädelslabor: Vielen Dank für die ganze Unterstützung, die lustige Zeit im und außerhalb des Labors und die Aufmunterung, wenn es einmal nicht so lief, wie es sollte. Auch das Herrenlabor sollte nicht unerwähnt bleiben: Vielen Dank für die Erkenntnis, dass ein Labor nicht ordentlich sein muss, um sicher und produktiv arbeiten zu können, zudem vermisse ich es jetzt schon, kreative Sprüche bereits in der Tür zu bekommen. Eure ganze Unterstützung hat mir sehr weitergeholfen. Stefan und Thomas danke ich für sehr viel gute Laune, gute Ratschläge und lange Kochabende. Dem neueren Teil der Gruppe danke ich für viele witzige Abende und genauso viel fachliche Unterstützung.

Ein besonderer Dank gilt auch Dr. Volker Schmiedel. Ohne ihn wäre ich wohl nicht in dieser Arbeitsgruppe gelandet und hätte auch nur halb so viel gelernt.

Meinen Studenten Thomas Hohmann, Alexandra Tsouka, Sören Hartmann und Lilian Maas sowie Julius Dahl danke ich für die gute Zusammenarbeit im Labor sowie für die Unterstützung meiner Forschung.

Dr. Reinhold Zimmer und Regine Blühdorn danke ich für die Organisation der Arbeitsgruppe, Luise Schefzig für ihre Hilfe im Labor, Steven Giese und Prof. Dr. Dieter Lentz für das Messen der Kristalle und vor allem das Lösen der Strukturen! Christiane Groneberg gilt mein herzlichster Dank für das Messen von GC, HPLC und IR Spektren, für die Einweisung in die Geräte und für viele anregende Gespräche und interessante Perspektiven in den frühen Morgenstunden.

Für das Korrekturlesen der Arbeit bedanke ich mich bei Dr. Thomas Siemon, Stefan Leisering, Merlin Kleoff, Fransiska Reuß, Fenja Dücker, Dr. Reinhold Zimmer und Tobias Olbrisch.

Dem Verband der deutschen chemischen Industrie danke ich für die finanzielle Unterstützung, die mir diese Promotion ermöglicht hat, so wie für anregende Treffen.

Meinen Freunden außerhalb der Arbeitsgruppe danke ich für die Unterstützung und vor allem die Ablenkung während dieser Zeit. Besonders Sara danke ich für unendlich viel Geduld und Unterstützung, nicht nur während meines Unverständnisses der Biologie. Der Kayakgruppe gilt auch ein besonderer Dank, die Zeit mit euch war der perfekte Ausgleich.

Abschließend gilt mein Dank meiner Familie, die mich während meines Studiums und meiner Promotion unterstützt haben sowie Tobi, der mir so viel Unterstützung und Motivation geschenkt hat und ohne dessen Geduld ich diese Promotion wahrscheinlich nicht durchgestanden hätte.

Abstract

This thesis deals with the development of an organocatalytic [3,3]-sigmatropic rearrangement of divinylcyclopropanes to cycloheptadienes. The reactive motif was formed in situ by condensation of α, β-unsaturated aldehydes with secondary amines. After optimisation of the reaction, a variety of cycloheptadienes with diverse substituents was obtained in high yields and with excellent diastereoselectivities. Furthermore, the reaction was demonstrated to be stereospecific and proceeded under mild conditions.

Hereby, the synthesis of a broad substrate library posed a formidable challenge. A synthetic strategy was devised in which the key transformation was the late-stage introduction of diversity in the final step by $\mathrm{C}-\mathrm{C}$ cross coupling followed by one-pot deprotection. This strategy allowed most substrates to be derived from one common precursor. Individual substrates could be obtained by nickel catalysed reductive cross-coupling in a step efficient manner.

Method C:

Intermediates of the substrate synthesis were applied to the selective modification of proteinogenic lysine residues. In coorporation with the group of Hackenberger, a protocol to modify the green fluorescent protein
was established. MS-MS results indicated that the aldehyde used is only attached to lysine. Subsequent functionalisation of the modified protein by "click" reaction of an azide functionality was also possible.

eGFP C70M S147C

Fluorophore

Zusammenfassung

Das Ziel dieser Arbeit war die Entwicklung einer organokatalytischen [3,3]-sigmatropen Umlagerung von Divinylcyclopropanen zu Cycloheptadienen. Das reaktive Divinylcyclopropan wurde dabei in situ durch die Kondensation eines sekundären Amins mit einem α, β-ungesättigten Aldehyd erhalten. Nach der Optimierung der Reaktion konnten zahlreiche Cycloheptadiene mit unterschiedlichen Substituenten in guten Ausbeuten und mit exzellenter Diastereoselektivität erhalten werden. Die Reaktion war zudem stereospezifisch und verlief unter milden Bedingungen.

Die effiziente Entwicklung einer umfassenden Substratbibliothek stellte die größte Herausforderung dar. Es wurde eine Synthesestrategie entwickelt, bei der die Einführung verschiedener Substituenten im letzten Schritt durch C-C-Kreuzkupplung und anschließender Entschützung erfolgte. Dies ermöglichte die Darstellung der meisten Substrate ausgehend von einem gemeinsamen Vorläufer. Einzelne Substrate konnten durch eine Nickel-katalysierte reduktive Kreuzkupplung in wenigen Schritten erhalten werden.

Methode C:

Ausgewählte Syntheseintermediate wurden als Reagenzien verwendet, um proteinogene Lysinreste selektiv zu modifizieren. In Zusammenarbeit mit der Arbeitsgruppe Hackenberger wurde ein Protokoll entwickelt, um grün fluoreszierendes Protein zu modifizieren. MS-MS Messungen zeigten, dass der Aldehyd nur mit den Lysinresten des Proteins reagierte. Die Verwendung eines Azid-Derivats erlaubte zudem eine spätere Funktionalisierung des modifizierten Proteins mittels "Click"-Chemie.

Contents

1 Introduction 1
1.1 Cyclopropanes 1
1.1.1 Properties of Cyclopropanes 1
1.1.2 Reactivity of Cyclopropanes 3
1.1.3 Divinylcyclopropane-Cycloheptadiene Rearrangement 6
1.1.4 Synthesis of Cyclopropanes 8
1.2 Asymmetric Aminocatalysis 10
1.2.1 Enamine Catalysis 12
1.2.2 Iminium Catalysis 15
1.2.3 Dienamine Catalysis 16
1.3 Sigmatropic Rearrangements 17
1.4 Cyclopropanes in Aminocatalysis 19
1.4.1 Organocatalytic Reactions Forming Cyclopropanes 19
1.4.2 Organocatalytic Activation of Cyclopropanes 21
1.5 Covalent Modification of Lysine 22
2 Objectives 25
2.1 Development of a Dienamine-Induced DVCPR 25
2.2 Application of the Developed Methodology to the Covalent Modification of Proteins 26
3 Results 27
3.1 Dienamine-Induced Divinylcyclopropane-Cycloheptadiene Rearrangement 27
3.1.1 First Generation Synthesis of Substrates 27
3.1.2 Rearrangement of Enal 109a 29
3.1.3 Synthesis of α, β-Unsaturated Aldehydes 109 by Nickel-Catalysed Reductive Coupling of Tetrahydropyrans 34
3.1.4 Improved Synthesis of α, β-Unsaturated Aldehydes 109 37
3.1.5 Preparation of Substrates That Could Not Be Prepared by Suzukı Coupling 47
3.1.6 Scope and Limitations of the Dienamine-Induced DVCPR 51
3.1.7 Follow-Up Reactions 54
3.2 Selective Protein-Modification of Lysine 57
4 Conclusion and Outlook 65
4.1 Conclusion 65
4.2 Outlook 67
5 Experimental Section 69
5.1 General Information 69
5.2 Preparation of Reagents 70
5.2.1 5-(Benzylsulfonyl)-1-phenyl-4,5-dihydro-1H-tetrazole (122) 70
5.2.2 ((1,3-Dioxolan-2-yl)methyl)triphenyl- λ^{5}-phosphonium Bromide (124) 71
5.2.3 Ethyl 2-(Bis(2,2,2-trifluoroethoxy)phosphoryl)acetate (171) 71
5.2.4 (S)-5-Benzyl-2,2,3-trimethylimidazolidin-4-one (48b) 72
5.2.5 (S)-Diphenyl(pyrrolidin-2-yl)methanol (61) 73
5.2.6 (S)-2-(Diphenyl((trimethylsilyl)oxy)methyl)pyrrolidine (48c) 74
5.2.7 Methylmagnesium lodide 74
5.2.8 (E)-2-Styryl-1,3,2-dioxaborinane (153) 75
5.2.9 2-(Dichloromethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (155) 75
5.2.10 Bis((pinacolato)boryl)methane (197) 76
5.3 First Generation Synthesis of Substrates 76
5.3.1 (But-3-yn-1-yloxy)(tert-butyl)dimethylsilane (198) 76
5.3.2 5-((tert-Butyldimethylsilyl)oxy)pent-2-yn-1-ol (119) 77
5.3.3 (Z)-5-((tert-Butyldimethylsilyl)oxy)pent-2-en-1-ol (114) 78
5.3.4 2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropyl)methanol (120) 78
5.3.5 2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropane-1-carbaldehyde (113) 79
5.3.6 tert-Butyldimethyl(2-(2-styrylcyclopropyl)ethoxy)silane (121) 80
5.3.7 tert-Butyldimethyl(2-(2-vinylcyclopropyl)ethoxy)silane (123) 81
5.3.8 2-(2-((E)-Styryl)cyclopropyl)acetaldehyde (116b) 81
5.3.9 (E)-4-(2-((E)-Styryl)cyclopropyl)but-2-enal (109a) 82
5.3.10 (trans-2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropane-1-carbaldehyde (200) 83
5.3.11 (tert-Butyldimethyl(2-(trans-2-((E)-styryl)cyclopropyl)ethoxy)silane (201) 84
5.3.12 2-(trans-2-((E)-Styryl)cyclopropyl)acetaldehyde (202) 85
5.3.13 (E)-4-(trans-2-((E)-Styryl)cyclopropyl)but-2-enal (203) 85
5.4 Optimisation of Reaction Conditions for the DVCPR of α, β-Unsaturated Aldehydes 86
5.5 Nickel-catalysed Reductive Coupling of Tetrahydropyrans 91
5.5.1 (Z)-3-Pentene-1-ol (129) 91
5.5.2 4-Chloro-3-methyl-2((E)-styryl)tetrahydro-2H-pyran (125a) 92
5.5.3 2-(2-Methyl-3-((E)-styryl)cyclopropyl)ethan-1-ol (131) 92
5.5.4 2-(2-Methyl-3-((E)-styryl)cyclopropyl)acetaldehyde (204) 93
5.5.5 (E)-4-(2-Methyl-3-((E)-styryl)cyclopropyl)but-2-enal (109b) 94
5.5.6 4-Fluoro2-((E)-3-methylbut-1-en-1-yl)tetrahydro-2H-pyran (125b) 94
5.5.7 2-(2-((E)-3-Methylbut-1-en-1-yl)cyclopropyl)ethan-1-ol (132) 95
5.5.8 2-(2-((E)-3-Methylbut-1-en-1-yl)cyclopropyl)acetaldehyde (205) 96
5.5.9 (E)-4-(2-((E)-3-Methylbut-1-en-1-yl)cyclopropyl)but-2-enal (109c) 96
5.6 Improved Synthesis of Substrates 97
5.6.1 (E)-4-Bromobut-2-enal (143) 97
5.6.2 (E)-2-(3-Bromoprop-1-en-1-yl)-1,3-dioxolane (138) 98
5.6.3 (E)-6-(1,3-Dioxolan-2-yl)hex-5-en-2-yn-1-ol (140) 98
5.6.4 (2Z,5E)-6-(1,3-Dioxolan-2-yl)hexa-2,5-dien-1-ol (139) 99
5.6.5 tert-Butyl(2-(-2-((E)-2-iodovinyl)cyclopropyl)ethoxy)dimethylsilane (148) 99
5.6.6 2-(2-((E)-2-Iodovinyl)cyclopropyl)acetaldehyde (149) 100
5.6.7 2-((E)-3-(2-((E)-2-lodovinyl)cyclopropyl)prop-1-en-1-yl)-1,3-dioxolane (133) 101
5.6.8 2-((E)-3-(2-((E)-Styryl)cyclopropyl)prop-1-en-1-yl)-1,3-dioxolane (150) 101
5.6.9 tert-Butyl(2-(2-(iodomethyl)cyclopropyl)ethoxy)dimethylsilane (152) 102
5.6.10 (tert-Butyldimethyl(2-(2-((E)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl- cyclopropyl)ethoxy)silane (154) 103
5.6.11 2-(2-((E)-2-(4,4,5,5-Tetramethyl-1,3,2-dioxa-borolan-2-yl)-vinyl)-cyclo-propyl)-ethan- 1-ol (206) 103
5.6.12 2-(2-((E)-2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)cyclopropyl)acet- aldehyde (156) 104
5.6.13 2-((E)-2-(-2-((Z)-3-(1,3-Dioxolan-2-yl)allylcyclopropyl)vinyl)-4,4,5,5-tetramethyl-1,3,2- dioxaborolane (157) 105
5.6.14 Preparation of Substrates by Suzuki Coupling 106
5.6.15 1-(4-Methoxyphenyl)octahydro-1H-cyclopropa[4,5]cyclopenta[1,2-c]pyran-3-ol (158) 113
5.6.16 1-(Thiophen-2-yl)octahydro-1H-cyclopropa-[4,5]cyclopenta[1,2-c]pyran-3-ol (159) 114
5.6.17 2-((E)-3-(2-((E)-4-Methoxystyryl)cyclopropyl)prop-1-en-1-yl)-1,3-dioxolane (160) 115
5.6.18 (E)-4-(2-((E)-4-Methoxystyryl)cyclopropyl)but-2-enal (109q) 115
5.6.19 2-((E)-3-(2-((E)-2-(Thiophen-2-yl)vinyl)cyclopropyl)prop-1-en-1-yl)-1,3-dioxolane (161) 1165.6.20 2-(E)-4-(2-((E)-2-(Thiophen-2-yl)vinyl)cyclopropyl)but-2-enal (109s)117
5.6.21 Ethyl (E)-3-(2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropyl)acrylate (162) 117
5.6.22 Ethyl (E)-3-(2-(2-Oxoethyl)cyclopropyl)acrylate (116d) 118
5.6.23 Ethyl (E)-3-(2-((E)-4-Oxobut-2-en-1-yl)cyclopropyl)acrylate (109t) 119
5.6.24 3-(2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropyl)acrylonitrile (163) 119
5.6.25 3-(2-(2-Oxoethyl)cyclopropyl)acrylonitrile (164) 120
5.6.26 (E)-3-(2-((E)-4-Oxobut-2-en-1-yl)cyclopropyl)acrylonitrile (109u) 121
5.6.27 (Z)-3-(2-((E)-4-Oxobut-2-en-1-yl)cyclopropyl)acrylonitrile (109v) 122
5.6.28 tert-Butyldimethyl(2-(2-(4-phenylbut-1-en-1-yl)cyclopropyl)ethoxy)silane (166) 122
5.6.29 2-(2-((E)-4-Phenylbut-1-en-1-yl)cyclopropyl)ethan-1-ol (169) 123
5.6.30 2-(2-((E)-4-Phenylbut-1-en-1-yl)cyclopropyl)acetaldehyde ((E)-168) 124
5.6.31 (E)-4-(2-((E)-4-Phenylbut-1-en-1-yl)cyclopropyl)but-2-enal (109y) 125
5.6.32 tert-Butyldimethyl(2-(2-((Z)-prop-1-en-1-yl)cyclopropyl)ethoxy)silane (165) 125
5.6.33 2-(2-((Z)-Prop-1-en-1-yl)cyclopropyl)acetaldehyde (167) 126
5.6.34 (E)-4-(2-((Z)-Prop-1-en-1-yl)cyclopropyl)but-2-enal (109w) 127
5.6.35 2-(2-((Z)-4-Phenylbut-1-en-1-yl)cyclopropyl)acetaldehyde ((Z)-168) 127
5.6.36 (E)-4-(2-((Z)-4-Phenylbut-1-en-1-yl)cyclopropyl)but-2-enal (109x) 128
5.6.37 2-(2-((Z)-Styryl)cyclopropyl)acetaldehyde (170) 129
5.6.38 (E)-4-(2-((Z)-Styryl)cyclopropyl)but-2-enal (109z) 130
5.6.39 Ethyl (Z)-3-(2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropyl)acrylate (172) 130
5.6.40 Ethyl (Z)-3-(2-(2-Oxoethyl)cyclopropyl)acrylate (173) 131
5.6.41 Ethyl (Z)-3-(2-((E)-4-Oxo-but-2-en-1-yl)-cyclo-propyl)-acrylate (109aa) 132
5.6.42 Ethyl (E)-2-Methyl-4-(2-((E)-styryl)cyclopropyl)but-2-enoate (175) 132
5.6.43 (E)-2-Methyl-4-(2-((E)-styryl)cyclopropyl)but-2-enal (109bb) 133
5.6.44 1-(2-((E)-Styryl)cyclopropyl)propan-2-one (176) 134
5.7 DVCPR of α, β-Unsaturated Cyclopropylcarbaldehydes 135
5.7.1 General Procedure for Enamine-Induced DCVPR of E-Vinyl Cyclopropylcarbalde- hydes (GP2) 135
5.7.2 General Procedure for Enamine-Induced DCVPR of Z-Vinyl Cyclopropylcarbalde- hydes (GP3) 144
5.8 Follow-Up Reactions 146
5.8.1 Ethyl (1,7-cis)-7-(2-Hydroxyethyl)cyclohepta-2,5-diene-1-carboxylate (181) 146
5.8.2 4,4a,7,9a-Tetrahydrocyclohepta[c]pyran-1(3H)-one (182) 147
5.8.3 Ethyl 7-(2-((3,5-Dinitrobenzoyl)oxy)ethyl)cyclohepta-2,5-diene-1-carboxylate (183) 147
5.8.4 Ethyl 7-((E)-2-((triiso-propylsilyl)oxy)vinyl)cyclohepta-2,5-diene-1-carboxylate (185) 148
5.8.5 2-(7-Phenylcyclohepta-2,5-dien-1-yl)acetic Acid (186) 148
5.9 Selective Modification of Lysine 149
5.9.1 tert-Butyldimethyl(2-(2-styrylcyclopropyl)ethoxy)silane (121) 149
5.9.2 ((2-(2-((E)-4-Azidostyryl)cyclopropyl)ethoxy)(tert-butyl)dimethylsilane (188) 150
5.9.3 2-(2-((E)-4-Azidostyryl)cyclopropyl)acetaldehyde (116c) 150
5.9.4 Ethyl Cyclohepta-1,3,6-triene-1-carboxylate (207) 151
5.9.5 4-(7-Phenylcyclohepta-2,5-dien-1-yl)morpholine (118c) 152
5.9.6 N-Phenethyl-7-phenylcyclohepta-2,5-dien-1-amine (118d) 152
5.9.7 7-Phenyl- N-(1-phenylethyl)cyclohepta-2,5-dien-1-amine (118e) 153
5.9.8 Comparison Between the Reaction of Aldehyde $\mathbf{1 1 6 b}$ With a Primary and a Secondary Amine 154
5.9.9 (7-Phenylcyclohepta-2,5-dien-1-yl)-L-proline (118f) 154
5.9.10 Methyl-(7-phenylcyclohepta-2,5-dien-1-yl)-L-prolinate (118g) 155
5.9.11 Methyl- N^{2}-(tert-butoxycarbonyl)- N^{6}-(7-phenylcyclohepta-2,5-dien-1-yl)-L- lysinate (118h) 155
5.9.12 $\quad N^{6}$-(7-Phenylcyclohepta-2,5-dien-1-yl)-L-lysine (118i) 156
Bibliography xvii
Appendix xxix
List of Abbreviations xxix
InChl codes of synthesised compounds xxxiii
NMR spectra of all compounds xliii
Crystallographic Data clxxi

1.1 Cyclopropanes

Cyclopropanes are a versatile compound class whose reactivity excels that of other cyclic hydrocarbons. They are not only valuable synthetic intermediates ${ }^{[1-4]}$ but also a structural motif in a variety of natural products with biological activity that ranges from anticancerous/antibacterial to neurotoxical effects. ${ }^{[5-7]}$ For instance, trans-chrysanthemic acid (1), which was one of the first cyclopropanes isolated from plants, is a powerful insecticide (Figure 1.1). ${ }^{[8]}$ The natural phytotoxin (+)-coronatine (2) possesses an interesting amide cyclopropyl moiety, and is involved in the jasmonic acid, ethylene, and auxin signalling pathways. ${ }^{[9]}$ In medicinal chemistry, compounds bearing cyclopropane motifs are commonly used in structure-activityrelationship studies due to the ability to lock a certain conformation, ${ }^{[10]}$ often leading to more stable or potent derivatives. ${ }^{[11-17]}$

1
trans-chrysanthemic acid

2
(+)-coronatine

Figure 1.1: trans-Chrysanthemic acid (1) and (+)-coronatine (2) are representative examples for structures containing cyclopropanes in natural products.

1.1.1 Properties of Cyclopropanes

Cyclopropane represents the smallest possible carbocycle. It shows a high ring strain of $115.4 \frac{\mathrm{~kJ}}{\mathrm{~mol}}{ }^{[18]}$ composed of BAEYER strain, which describes the strain due to deviation of the bonding angles from the ideal tetrahedral angle and the Pitzer strain, a torsional strain due to ecliptic interactions of the hydrogen atoms. However, the reactivity of cyclopropanes resembles much more the reactivity of olefins than other cyclic hydrocarbons. This behaviour can be best explained by their bonding situation. It has been proposed that vinyl cyclopropane exhibits a conjugation similar to α, β-unsaturated systems as early as $1916{ }^{[19]}$ but the unique reactivity of cyclopropanes has been described later essentially by two models: In their valence bond model, Coulson and Moffit suggested that the central $\mathrm{C}-\mathrm{C}$ bond of cyclopropanes is formed by an overlap of atomic sp ${ }^{3}$-hybrid orbitals (Figure 1.2a). ${ }^{[20]}$ The overlap is located outside of the $\mathrm{C}-\mathrm{C}$ axis and leads to bent and shortened bonds. On the one hand, this assumption nicely explains the experimental observation that the density of
bonding electrons is indeed localised more off the $\mathrm{C}-\mathrm{C}$ axis ${ }^{[21]}$ but on the other hand it would result in an $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle of 113° which deviates from experimental values of $115^{\circ}{ }^{[22]}$ A model suggested by Walsh in 1949 takes the molecular orbitals of cyclopropane into account (Figure 1.2b). ${ }^{[23]}$ In close analogy to ethylene, one can describe the bonding situation of cyclopropanes by three occupied molecular orbitals. The σ-orbital is formed by a linear combination of three sp^{2}-hybrid molecular orbitals resulting in a 6-electron-3-centre bond that shows σ-aromaticity ($4+2$ electrons). ${ }^{[24]}$ The resulting ring current also provides a significant upfield shift of the protons in magnetic resonance spectra. ${ }^{[3]}$ The orbitals of next higher energy, e_{A} and e_{S}, are degenerate and are formed by linear combinations of three atomic p-orbitals. Therefore, they are sometimes termed "quasi- π-orbitals". The participation of sp^{2}-hybrid orbitals suggests an $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle close to 120° and also results in shortened $\mathrm{C}-\mathrm{H}$ bonds. ${ }^{[25]}$

Figure 1.2: a) Bonding situation of cyclopropane in the Coulson-Moffit model. b) MO diagram of cyclopropane (Walsh model) in comparison to the MO diagram of ethylene.

The analogies in the bonding properties of ethylene and cyclopropanes help to understand the similarities in their reactivity. The regions of high electron density off the $\mathrm{C}-\mathrm{C}$ axis for example determines the reactivity of cyclopropanes towards electrophiles. ${ }^{[26-30]}$ Additionally, both ethylene and cyclopropanes, can undergo electronic interactions with π - or p-orbitals which in the case of ethylene becomes apparent in large conjugated systems. These interactions are greatest when the axes of the interacting orbitals are parallel to each other, for example resulting in the periplanar configuration of 1,3-butadiene. In analogy and due to the anisotropy of the electron density distribution of cyclopropanes, its interaction with a suitable neighbouring group is greatest when the p-orbital axis of the neighbouring group is parallel to the plane of the three membered ring. ${ }^{[18]}$ This can be seen in the configuration of vinyl cyclopropane in which the antiperiplanar configuration is $4.6 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$ more stable than the synclinal configuration (Figure 1.3). ${ }^{[31-34]}$ This effect is not as distinct as for 1,3-butadiene but still significant enough that also the stabilisation of the cyclopropyl methyl cation depends on the torsion angle. ${ }^{[35]}$
synclinal (gauche):

antiperiplanar (s-trans):

energy difference $=4.6 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

Figure 1.3: Newman projection of the conformations of vinyl cyclopropane.

1.1.2 Reactivity of Cyclopropanes

Due to their specific bonding situation, the reactivity of cyclopropanes shows great similarity to that of olefins. Bromine radicals for instance, can add across the $\mathrm{C}-\mathrm{C}$ bond of $\mathbf{3}$ in an analogue fashion as they would add across a double bond, leading to 1,3-dibrominated products 4 (Scheme 1.1, top). ${ }^{[36]}$ This analogy between cyclopropanes and olefins has also been exploited by JULIA and co-workers in an olefination reaction leading to 1,3-funtionalised products (Scheme 1.1, bottom). ${ }^{[37]}$ The nucleophilic attack of bromide to protonated cyclopropyl alcohol 5 in a S_{N} '-like fashion leads to the cleavage of the leaving group and the formation of brominated olefin 6 which has been used in the synthesis of terpenes.

Scheme 1.1: 1,3-Bromination by bromine radicals (top) and S_{N} ' reaction (bottom) of cyclopropanes.

In general, the C1-C2 bond of cyclopropanes has to be broken either in a heterolytic or a homolytic fashion to enable ring opening. Heterolytic cleavage formally generates a zwitterionic structure that can be stabilised by substitution with an electron withdrawing group on one side and an electron donating group on the other end of the cyclopropane moiety. These so called donor-acceptor substituted cyclopropanes readily undergo reactions with either nucleophiles (Nu) or electrophiles (E). Additionally, they engage in [3+2]- as well as $[4+3]$-cycloadditions ${ }^{[38]}$ leading to five-membered and seven-membered products, respectively (Scheme 1.2). Donor-acceptor substituted cyclopropanes have been extensively studied and their reactivity has been exploited in the synthesis of complex organic molecules, ${ }^{[39-42]}$ especially alkaloids ${ }^{[43]}$ and terpenoids. ${ }^{[44-46]}$

Scheme 1.2: Overview of the reactivity of donor-acceptor substituted cyclopropanes.

The homolytic cleavage of the $\mathrm{C} 1-\mathrm{C} 2$ bond leads to the formation of a diradical. ${ }^{[47]}$ This reactivity is apparent in the 1,3-dibromination of 3 (Scheme 1.1) and finds broad application in so-called "radical clocks". ${ }^{[48,49]}$ The high ring strain of cyclopropanes is a driving force in these kind of ring opening reactions. This reactivity is accelerated if a neighbouring radical is present and the compound can produce a more stable radical by rearrangement. The reaction rates for these reactions are known ${ }^{[50,51]}$ and can be used either to indirectly measure the rate of another reaction or to generally indicate a radical mechanism of a given reaction. Common examples are the methyl cyclopropyl radical 7 used by Liu that arranges to the corresponding vinylic radical 8 (Scheme 1.3, top) or vinyl cyclopropane 10 used by MacMilLAN and co-workers to demonstrate that their α-alkylation of aldehyde 11 using organocatalyst $\mathbf{1 2}$ proceeds via a SOMO mechanism (Scheme 1.3, middle). ${ }^{[52]}$ The generated radical cation reacts with the vinyl radical group of radical clock substrate 10. By opening of the cyclopropane, a benzyl radical is formed that is trapped by a nitrate from the oxidant (ceric ammonium nitrate, CAN) leading to α-functionalised aldehyde 13. A cationic mechanism would have led to ring-opening of the cyclopropane so that the resulting cation would be stabilised by the alkoxy-group and to the formation of a different open-chain aldehyde. However, the open-chain is not always preferred to the cyclopropane. In these cases, a cis,trans-isomerisation can indicate a radical mechanism. For instance, Yoon and co-workers showed that the oxaziridine-mediated amino hydroxylation of olefins most likely proceeds via a radical mechanism by isomerisation of $\mathbf{1 4}$ to the trans-product $\mathbf{1 5}$ upon functionalisation (Scheme 1.3, bottom). ${ }^{[53]}$

LIU (1993):

Scheme 1.3: Selected examples for the application of radical clocks.

A biradical mechanism is also present in the rearrangement of vinylcyclopropane (16) to cyclopentene (17) (Scheme 1.4, top), although a concerted mechanism has long been discussed for related substrates. ${ }^{[2,54-57]}$ Today, the mechanism of this rearrangement is thought to proceed via a biradical intermediate in most cases. Numerous applications of the vinylcyclopropane-cyclopentene rearrangement in the synthesis of complex natural products are known and modifications with heterocyclic substrates led for instance to the formation of hydrofuranes ${ }^{[58,59]}$ or pyrrolines (Scheme 1.4, bottom). ${ }^{[60-62]}$

Scheme 1.4: The mechanism of the vinylcyclopropane-cyclopentene rearrangement (top) and heterocyclic variants of this reaction (bottom).

1.1.3 Divinylcyclopropane-Cycloheptadiene Rearrangement

An unique reactivity of divinylcyclopropanes is their [3,3]-sigmatropic rearrangement to cycloheptadienes. First observed in 1960 by VogeL, ${ }^{[63-65]}$ the divinylcyclopropane-cycloheptadiene rearrangement (DVCPR) had become focus of numerous studies in the following years. ${ }^{[66-79]}$ It could be demonstrated that the DVCPR proceeds via a concerted mechanism similar to the one of the Cope rearrangement. While the related Cope rearrangement passes through a chair-like transition state (Scheme 1.5, top), ${ }^{[80]}$ the DVCPR proceeds via a boat-like transition state (Scheme 1.5, bottom). ${ }^{[68]}$ Both vinyl groups are in endo configuration regarding the cyclopropyl moiety so that the double bonds of the resulting cycloheptadiene are Z-configurated.

COPE rearrangement:

Scheme 1.5: Mechanistic considerations of the CoPE rearrangement (top) and the DVCPR (bottom).

Substituents on the parent system have an influence on the kinetics as well as the stereochemical outcome of the reaction (Scheme 1.6). ${ }^{[70,72,81,82]}$ If both vinyl groups are additionally substituted and E-configurated, the resulting cycloheptadiene shows a cis-configuration of the substituents. However, if one of the substituted vinyl moieties possesses a Z-configuration, the substituents are trans to each other in the cycloheptadiene. Steric interactions between the Z-substituent and the axial proton of the cyclopropyl moiety result in an increased activation barrier so that these reactions require a higher temperature. This effect becomes even more pronounced if the cyclopropane carries additional substituents. Here, steric interactions also occur with E-configurated vinyl groups and the activation barrier is increased to such an extent that the compounds might not undergo DVCPR at all.

Scheme 1.6: Stereochemical considerations of the DVCPR (left) and steric interactions of substituted cyclopropane derivatives (right).

Following the mechanistic considerations (Scheme 1.5) it seems apparent that trans-cyclopropanes should not be able to undergo DVCPR. However, trans-cyclopropanes have been found to rearrange to the corresponding cycloheptadiene by cis,trans-isomerisation prior to the reaction. The parent compound trans-vinyl cyclopropane (26a) affords the corresponding cycloheptadiene at $190{ }^{\circ} \mathrm{C} .{ }^{[63]}$ Systems with a higher conjugation may show a decreased activation barrier. The cis,trans-isomerisation of divinyl cyclopropanes can proceed via two pathways (Scheme 1.7): The $\mathrm{C} 1-\mathrm{C} 2$ bond of 26a can be cleaved homolytically resulting in the allylic biradical 27a. ${ }^{[67,68,83,84]}$ Rotation around the C-C axis and radical recombination forms the cis-cyclopropane 26b. On the other hand, a single-centre epimerisation has also been considered. ${ }^{[69,70,85]}$ By heterolytic cleavage of the C1-C2 bond, allylic anion $\mathbf{2 8}$ is formed. Inversion of $\mathbf{2 8}$ leads to the formation of cis-cyclopropane 26b.
biradical mechanism

Scheme 1.7: The cis,trans-isomerisation of divinyl cyclopropanes can either proceed via formation of biradical 27 (top) or allylic anion 28 (bottom).

A prominent example for the appearance of the DVCPR in nature, is the deactivation of pheromone 30 (Scheme 1.8). ${ }^{[86]}$ This hormone is excreted by the female marine brown algae Ectocarpus siliculosus as a sex attractant and has long been thought to possess the structure of cycloheptadiene ectocarpene 31. However, the active structure could be eventually assigned to be that of divinyl cyclopropane $\mathbf{3 0}$ that arranges to its inactive form by DVCPR. ${ }^{[87]}$ With a half-life $\mathrm{t}_{1 / 2}$ of 21 min at $18^{\circ} \mathrm{C}$ or 56 min at $8^{\circ} \mathrm{C},{ }^{[88]}$ this process allows the algae to signal receptiveness without saturating the environment with active pheromone.

Scheme 1.8: The pheromone 30 is deactivated by DVCPR.

The DVCPR has been used in numerous syntheses of complex organic molecules. ${ }^{[89]}$ Recent examples include the total synthesis of schisanwilsonene A (32) by Echavarren and co-workers (Scheme 1.9). ${ }^{[90]}$ Schisanwilsonene A (32) was isolated in 2009 from starvine Schisandra wilsonia and shows promising antiviral
activity inhibiting the hepatitis virus proteins HBsAg and HBeAg. ${ }^{[91]}$ In the total synthesis of 32, aldehyde 33 was converted to divinyl cyclopropane 34 by WITtIG reaction. Divinyl cyclopropane 34 immediately rearranges to cycloheptadiene $\mathbf{3 5}$ which was converted to the natural product in 8 steps.

Scheme 1.9: The DVCPR of divinyl cyclopropane 34 enabled the total synthesis of schisanwilsonene A (32).

Other natural products have been prepared employing this rearrangement, including fatty acid metabolites, ${ }^{[92]}$ terpenoids, ${ }^{[93-98]}$ and alkaloids, ${ }^{[99-101]}$ especially cyclohepta[b]indoles. ${ }^{[102]}$ Additionally, heterocyclic variants of the DVCPR have been developed and well-studied. ${ }^{[103-106]}$

1.1.4 Synthesis of Cyclopropanes

Cyclopropanes are usually prepared either by the addition of carbenes or carbenoids to double bonds or by intramolecular substitution. Carbenes can for example be obtained in situ by thermolysis of diazomethane (Scheme 1.10). ${ }^{[107]}$

Scheme 1.10: Addition of methylene generated by thermolysis of diazomethane to an olefin results in cyclopropanation.

Instead of thermic energy, transition metal complexes are often used for the decomposition of diazoalkanes (Scheme 1.11, path I). The resulting carbene-metal complex shows a reactivity similar to that of free carbenes and can add to a double bond (path II), generating cyclopropanes. ${ }^{[108]}$ Additionally, this method allows for asymmetric cyclopropanations by the use of chiral ligands. ${ }^{[109-115]}$

Scheme 1.11: Catalytic cycle of the transition metal catalysed cyclopropanation with diazoalkanes.

In most cases the carbene or carbenoid adds to the double bond in a syn-fashion so that the stereochemical outcome of the reaction is governed by the geometry of the double bond: An E-configurated double bond leads to the trans-cyclopropane while the Z-olefin affords a cis-cyclopropane.

However, diazomethane and other diazoalkanes are toxic and highly explosive. Therefore, surrogates and substitutes have been developed. ${ }^{[116-121]}$ An alternative to take advantage of the reactivity of carbenoid species without the safety concern of diazoalkanes is the use of carbenoid species generated via a different route as for example in the Simmons-Smith reaction. In 1958, Simmons and Smith observed that the addition of diiodomethane to cyclohexene 36 in the presence of a zinc/copper couple led to the formation of cyclopropane 37 (Scheme 1.12, top). ${ }^{[122]}$ However, the reaction was slow (up to 70 h were required for full conversion) and gave the cyclopropanes only in moderate yields. Modification of the reaction by use of diethyl zinc instead of the zinc/copper couple allowed for a more efficient conversion (Scheme 1.12, bottom). ${ }^{[123,124]}$

Scheme 1.12: Simmons-Smith reaction (top) and Furukawa modification thereof (bottom).

In the course of the reaction, the carbenoid zinc organyl 38 is generated from diiodomethane and the applied zinc source. ${ }^{[125]}$ The carbenoid adds in a concerted [2+1]-cycloaddition to the double bond, passing through a so called "butterfly-transition state" (Scheme 1.13).

Scheme 1.13: The Simmons-Smith reaction proceeds via a concerted [2+1]-cycloaddition.

Allylic alcohols have been established as substrates for the Simmons-Smith reaction because the neighbouring oxygen atoms direct the zinc organyl and accelerate the reaction, allowing numerous regio- and enantioselective variants. ${ }^{[114]}$

Another approach to cyclopropanes are intramolecular substitution reactions. Especially, irreversible MichaElinitiated ring closures (MIRC) have become highly popular. The term MIRC was coined in 1980 by LItTLE, ${ }^{\text {[126] }}$ but the reaction has been used earlier, for instance by McCoy in 1958. ${ }^{[127]}$ McCoy demonstrated that the reaction of α-chloroester 39 with methacrylate 40 delivers the cyclopropyl diester 41 (Scheme 1.14). The chloroester 39 is deprotonated and the enolate adds to the Michael-system of methacrylate in a 1,4-fashion.

The resulting enolate then adds intramolecularly in α-position to the ester, substituting the chloride. For a MIRC reaction to occur, either the nucleophile or the electrophile has to carry a leaving group that can be substituted by the intermediate enolate. Additionally, these reactions are only stereospecific when the ring-closure is faster than the rotation around the single bond in the second enolate. ${ }^{[114]}$ Asymmetric variants have been developed in particular by the use of organocatalysts. ${ }^{[128-136]}$

Scheme 1.14: Synthesis of cyclopropanes by MIRC.

Ylides are common nucleophiles in the MIRC reactions, for example in the Corey-Chayкovsкy reaction (Scheme 1.15). ${ }^{[137]}$ In general, this reaction describes the addition of stabilised ylides 42 to different electrophiles. The ylide is formed by deprotonation of sulfonium 43. If the ylide 42 adds to an α, β-unsaturated system 44 in a 1,4-addition, the resulting enolate 45 can undergo intramolecular nucleophilic substitution and release of DMSO delivers cyclopropane 46. In open-chain systems, the more stable trans-product is favoured.

Scheme 1.15: Mechanism of the Corey-Chaykovsky reaction.

1.2 Asymmetric Aminocatalysis

Asymmetric aminocatalysis has become a reliable and powerful tool for modern organic chemistry. It is one of the main activation modes of organocatalysis, which describes the catalysis by small organic molecules. It is used to complement enzyme and metal catalysed processes in the directed synthesis of chiral molecules. The catalysts employed are generally stable, fairly easy to design and to synthesise and are based on nontoxic compounds. Organocatalysis actually looks back on a long history as it is believed to have played a significant role in the formation of prebiotic building blocks, for instance sugars, and thereby allowed for the introduction and spread of homochirality in living organisms. ${ }^{[138]}$ Enantiomerically enriched amino acids such as L-alanine or L-isovaline were present in carbonaceous meteorites with up to $15 \% e e$. They can catalyse the dimerisation of glycal and aldol-type reactions between glycal and formaldehyde forming sugars with significant enantiomeric excess. In synthetic organic chemistry, the first proline-catalysed asymmetric aldol reaction was discovered independently by the groups of Hajos and Wiechert in the 1970's (Scheme 1.16). ${ }^{[139,140]}$ The intramolecular aldol reaction of triketone 47 catalysed by L-proline (48a) delivered annulation product 49 in quantitative yield and 93% enantiomeric excess. Surprisingly, the reaction remained
a laboratory curiosity for a long time and was used only occasionally in syntheses. ${ }^{[141]}$ The scope had not been explored and the mechanism was poorly understood, but is today believed to proceed via highly organised enamine 50. ${ }^{[142-150]}$

Scheme 1.16: Hajos-Parrish-Eder-Sauer-Wiechert reaction.

The revival of organocatalysis began 30 years later, when the potential of small molecule catalysts for synthetic problems was demonstrated by the groups of Shi, Denmark, and Yang by asymmetric epoxidation of simple alkenes by enantiomerically pure ketones ${ }^{[151-153]}$ and by the groups of Jacobsen and Corey by hydrogen-bonding catalysis. ${ }^{[154,155]}$ However, organocatalysis as a concept was established by seminal works by Barbas, List and co-workers who developed an intermolecular aldol reaction of acetone and different aldol donors by enamine catalysis (Scheme 1.17, top) ${ }^{[156]}$ and by MacMilLAN and co-workers who realised the first organocatalytic Diels-ALDER reaction under iminium ion catalysis (Scheme 1.17, bottom). ${ }^{[157]}$ These contributions resulted in an explosive growth of the field. ${ }^{[134,158-170]}$

Scheme 1.17: The first organocatalytic intermolecular aldol reaction (top) and the first organocatalytic Diels-Alder reaction (bottom).

Some of the most commonly used secondary amines for organocatalysis were developed by the groups of Jørgensen and MacMillan (Figure 1.4). Apart from aminocatalysis, also catalysis by hydrogen-bonding
donors, especially thioureas, by chiral bases and by phase-transfer agents as well as N-heterocyclic carbenes has been developed.

Figure 1.4: Selected examples of common aminocatalysts.

Today, several types of activation by aminocatalysis can be distinguished (Scheme 1.18). The reaction of secondary amines 48 with aldehydes typically delivers an intermediate enamine 57 that either attacks an electrophile E (enamine catalysis) or undergoes oxidation to form a radical cation which then reacts even with weak nucleophiles Nu (SOMO catalysis), both leading to α-functionalisation of the carbonyl compound. Additionally, reaction of the secondary amine with an α, β-unsaturated aldehyde leads to formation of an intermediate iminium ion 58 that can be attacked by nucleophiles in β-position (iminium ion catalysis). Alternatively, tautomerisation of iminium ion 58 delivers the corresponding dienamine, which incorporates electrophiles in γ-position (dienamine catalysis). Today, also various domino- and tandem reactions, pericyclic reactions and transformations via tri- and tetraenamine catalysis have been developed. ${ }^{[171-177]}$
enamine catalysis: iminium ion catalysis:

Scheme 1.18: Main aminocatalytic pathways for carbonyl functionalisation.

1.2.1 Enamine Catalysis

After pioneering work by the groups of Barbas and List, the mechanism of enamine catalysis has been extensively studied. The secondary amine 48 condenses with the carbonyl substrate to form an iminium ion 59 (Scheme 1.19). The LUMO energy of this iminium is decreased compared to the carbonyl which
also results in enhanced $\alpha-\mathrm{C}-\mathrm{H}$ acidity. Fast deprotonation of the iminium 59 leads to the formation of an enamine 57. Since the nitrogen lone pair has a higher energy than the oxygen lone pair, the HOMO energy of the enamine is increased compared to an enol. Also, the tautomeric equilibrium is shifted: The keto/enol equilibrium strongly lies on the side of the keto form but the iminium/enamine equilibrium is shifted towards the enamine. Overall, this results in a high reactivity of the formed enamine which reacts in the stereoinducing step with an electrophile affording another iminium ion $\mathbf{6 0}$. This iminium ion releases the α-functionalised carbonyl and liberates the catalyst upon hydrolysis.

Scheme 1.19: Catalytic cycle of α-functionalisation of carbonyl compounds by enamine catalysis (left) and depiction of the HOMO of the enamine (right).

The enantioselectivity of these transformations arises from the highly organised transition state during the enamine addition to the electrophile. Calculations of the transition state geometry obtained from the reaction of trimethylsilyl diarylprolinol ethers and aldehydes indicated that the (E-s-trans)-configuration of the enamine is favoured. ${ }^{[178]}$ For proline-derived catalysts carrying a free hydroxyl group, an accepted hypothesis proposes that the hydroxyl group activates and directs the electrophile to the "upper" side of the enamine by hydrogen bonding (Scheme 1.20, left). ${ }^{[146]}$ Alternatively, Seebach and co-workers proposed that enamine formation and subsequent attack of the electrophile is potentially assisted by concerted oxazolidinone formation (Scheme 1.20, right). ${ }^{[179]}$ The stereochemical outcome would then result from the formation of the more stable oxazolidinone even though this pathway would be electronically disfavoured.

Stereoinduction by H-bonding:

A = hydrogen bond acceptor

 anti-addition

electronically disfavoured anti-addition
less stable oxazolidinone

more stable oxazolidinone, observed product configuration

Scheme 1.20: Origin of stereochemistry in proline-catalysed reactions by H-bond direction (left) and by the Seebachmodel (right).

Modified proline derivatives have been developed in order to improve the solubility and the acidity of the directing proton. ${ }^{[166]}$ They indeed resulted in major improvements in reactivity or selectivity in specific transformations but lacked the general applicability of proline. The direction of the electrophile by hydrogen bonding also requires the electrophile to have an electron lone pair which puts serious limitations to this methodology. Hence, the concept to induce stereoselectivity by shielding one side of the enamine by bulky substituents has emerged (Scheme 1.21, left). Especially, diarylprolinol silyl ethers employed by the groups of Jørgensen ${ }^{[180]}$ and Hayashi ${ }^{[181]}$ turned out to give outstanding enantiomeric excesses and consistent absolute configuration of the α-functionalised carbonyl independent of the nature of the electrophile. Today, a plethora of electrophiles and also nucleophiles when used in iminium catalysis, has been employed in catalysis with diarylprolinol silyl ethers. ${ }^{[166]}$ Diphenylprolinol was first synthesised in $1934{ }^{[182]}$ and was used by Enders as a chiral auxiliary ${ }^{[183]}$ and by Corey as a ligand in Lewis acid catalysed transformations ${ }^{[184]}$ but rarely showed satisfying results in enamine catalysis. It was proposed that this is due to hemiaminal formation of the oxazolidine $\mathbf{6 2}$ as a parasitic equilibrium in the catalytic cycle (Scheme 1.21, right). ${ }^{[185]}$ This problem was solved by protection of the free hydroxyl group which restored the catalytic activity.

Oxazolidine formation:

$R^{\prime}=H$, electrophilic group

Scheme 1.21: The origin of stereochemistry in reactions catalysed by diarylprolinol silyl ethers by steric shielding of the $S i$-face of the enamine (left). Catalyst deactivation by oxazolidine formation (right).

1.2.2 Iminium Catalysis

The condensation of α, β-unsaturated aldehydes with secondary amines 48 results in formation of a conjugated iminium ion 58 (Scheme 1.22). The electronic structure of this iminium closely resembles the π-orbitals in Lewis-acid catalysis and the energy of the LUMO is significantly lowered compared to the carbonyl, facilitating nucleophilic additions, conjugate additions, and pericyclic reactions. The conjugate addition of a nucleophile to the iminium in a stereoselective fashion results in the formation of an enamine 63 that after tautomerisation and hydrolysis delivers the β-functionalised carbonyl compound and liberates the catalyst.

Scheme 1.22: Catalytic cycle of β-functionalisation of carbonyl compounds by iminium activation (left) and depiction of the LUMO of the reactive iminium (right).

Determination of electrophilicity parameters $\left(E_{p}\right)$ of different iminium ions 58 by kinetic measurements using nucleophiles with known nucleophilicity by MAYR and co-workers indicated that different iminium ions can show a significant variation in their electrophilicity (Figure 1.5). ${ }^{[186]}$ In their studies, the simple pyrrolidine derived iminium 58a showed the least electrophilicity while the electrophilicity of the iminium ion derived from trimethylsilyl-protected diphenylprolinol 58c was 20-times higher. This was attributed to the electron withdrawing effects of the substituents. The iminium derived from imidazolidinones 58d employed by MACMILLAN ${ }^{[157]}$ showed the highest electrophilicity, explaining the variations in reactivity observed in the activation of enals with different aminocatalysts.

Figure 1.5: Relative electrophilicity of selected iminium ions.

The iminium ions derived from imidazolidinones also show very high configurational stability and π-face discrimination leading to excellent enantiomeric excesses in these transformations (Scheme 1.23). Therefore, the imidazolidinones have been employed in numerous reactions proceeding under LUMO activation following the report by MacMilLan and even show useful reactivity in enamine catalysis. ${ }^{\text {[166] }}$

Scheme 1.23: The configurational control of the $\mathrm{C}-\mathrm{N}$ double bond in imidazolidinone derived iminiums only allows $R e$-face attack of nucleophiles, resulting in high stereocontrol.

1.2.3 Dienamine Catalysis

In presence of a base, the iminium ion derived from α, β-unsaturated aldehydes and secondary amines can also tautomerise to the corresponding dienamine, which again shows nucleophilic character. During studies of the structure of iminium ions, dienamines were actually found to be the prevalent species in the reaction of trimethylsilyl diarylprolinol ether 48e and trans-2-pentenal (65) (Scheme 1.24). ${ }^{[187]}$

Scheme 1.24: Deprotonation of the iminium ion leads to formation of a nucleophilic dienamine.

The resulting dienamine has been shown to be functionalised in α - or γ-position by diethyl azodicarboxylate (DEAD) ${ }^{[187-191]}$ (Scheme 1.25) and to undergo intramolecular Diels-Alder cyclisations. ${ }^{[192]}$

Scheme 1.25: Organocatalytic γ-functionalisation of α, β-unsaturated aldehydes.

Overall, the popularity of catalysis with small organic molecules is based on their general stability compared to metal complexes so that processes become more operationally simple as the need to work under strict exclusion of air and water can be omitted. Furthermore, organocatalysts are based on non-toxic compounds making this approach attractive to pharmaceutical industry. In contrast to enzymes, organocatalysts are also easy to design and synthesise. The transformations are almost ideally step and atom economic, significantly enlarging the repertoire of the synthetic chemist.

1.3 Sigmatropic Rearrangements

Pericyclic reactions represent an efficient and reliable strategy in the synthesis of organic molecules. ${ }^{\text {[193-195] }}$ They allow for straightforward construction of complex carbon frameworks. The stereochemical outcome can be easily predicted because bonds are broken and formed in a concerted, one-step mechanism via a cyclic transition state. ${ }^{[196]}$ This has been described by three models: The Woodward-Hoffmann rules comprise a set of rules describing the feasability and stereochemistry by the consideration of the conservation of orbital symmetry. ${ }^{[197]}$ Dewar and Zimmerman applied the concept of Hückel- and Möbius-aromaticity to predict the circumstances under which a reaction is possible. ${ }^{[198,199]}$ Alternatively, FUKUI demonstrated that also the frontier molecular orbitals can be used to describe pericyclic reactions. ${ }^{[200]}$ Their contributions earned Hoffmann and Fukui the Nobel prize in 1981.

Pericyclic reactions include cycloadditions, cheletropic reactions, electrocyclisations and sigmatropic rearrangements. A sigmatropic rearrangement is a reaction where one σ-bond is intramolecularly converted into another. One substituent moves from one part of a π-system to another with simultaneous rearrangement of the π-system. Prominent examples of sigmatropic rearrangements are the CLAISEN rearrangement of allyl vinyl ethers to homoallyl carbonyl compounds ${ }^{[201-203]}$ or the Cope rearrangement of 1,5 -dienes (Scheme 1.26). ${ }^{[204]}$ While the formation of a carbonyl moiety is the driving force for the CLAISEN rearrangement, the Cope rearrangement is virtually energy neutral. Both transformations are [3,3]-sigmatropic rearrangements
and therefore predicted by the Woodward-Hoffmann rules to proceed suprafacially. This means that the migrating group remains on the same side of the π-system. Especially the chair- and boat-like transition state have been extensively discussed. ${ }^{[205-208]}$ Experiments indicated that the chair-like transition state is favoured, but the energy difference is small so that substrates that cannot adopt a chair-like transition state, undergo [3,3]-sigmatropic rearrangements via the boat-like transition state. ${ }^{[209]}$
chair-like transition state

Scheme 1.26: [3,3]-Sigmatropic rearrangements and their frontier molecular orbitals.

As for most pericyclic reactions, the concerted mechanism and the well-defined transition state allow for a high predictability of the stereochemical outcome of [3,3]-sigmatropic rearrangements. This led to a broad application in total synthesis, ${ }^{[210-214]}$ especially of terpenes and terpenoids. ${ }^{[215]}$ Furthermore, the accelerating effects of protic solvents and acids on the CLAISEN rearrangement has been observed ${ }^{[201,216-225]}$ leading also to the development of numerous catalytic and asymmetric variants. ${ }^{[226,227]}$

For example, the groups of Hiersemann and Jacobsen independently developed organocatalytic Claisen rearrangements by hydrogen-bonding catalysis (Scheme 1.27). ${ }^{[228,229]}$ The accelerating effect of either the thiourea catalyst 74a employed by Hiersemann or the guanidine catalyst $\mathbf{7 4 b}$ employed by Jacobsen is based on the stabilisation of developing charge on the oxygen atom by hydrogen-bonding.

Scheme 1.27: Organocatalytic Claisen rearrangement.

More recently, an organocatalytic Cope rearrangement was reported by Gleason and co-workers (Scheme 1.28). ${ }^{[230]}$ They demonstrated that the rearrangement of 1,5 -hexadiene-2-carboxyaldehydes 76 can be effectively catalysed by diazepane carboxylate (77). While they initially envisaged an accelerating effect in the CoPE rearrangement by LUMO lowering upon formation of iminium 78, preliminary calculations suggested that also a stepwise mechanism would be plausible.

Scheme 1.28: Organocatalytic Cope rearrangement developed by Gleason and co-workers.

1.4 Cyclopropanes in Aminocatalysis

1.4.1 Organocatalytic Reactions Forming Cyclopropanes

Aminocatalysis has become a versatile tool in organic synthesis. However, exploiting the unique properties of cyclopropanes in this field has been limited to a few examples. The cyclopropyl motif has been utilised more often in the field of N-heterocyclic carbenes ${ }^{[231-234]}$ and aminocatalysts have become more popular for the asymmetric synthesis of cyclopropanes by MIRC reactions (see section 1.1.4). Ylides are prominent nucleophiles, for instance in a Corey-Chaykovsky type cyclopropanation reported by MacMillan and KUnz in 2005 (Scheme 1.29). ${ }^{[235]}$ The cyclopropanation of α, β-unsaturated aldehydes $\mathbf{8 0}$ with sulfonium ylides $\mathbf{8 1}$ delivered the corresponding cyclopropanes $\mathbf{8 2}$ in good yields and high enantiomeric excesses and proceeds via a $(Z)-\mathrm{C}=\mathrm{N}$ iminium intermediate $\mathbf{8 3}$. The corresponding E-iminium is disfavoured due to steric clash with the aryl $\mathrm{C}-\mathrm{H}$ of the fused benzene ring. The approach of the ylid is thought to be governed by attractive electrostatic interactions with the carboxylate group in the catalyst $\mathbf{8 4}$. A similar catalyst was later developed by Arvidsson, replacing the carboxylic group in 84 with a tetrazole. The catalyst 85 delivered somewhat improved diastereo- and enantioselectivities. ${ }^{[236]}$ Also, peptides ${ }^{[237,238]}$ and diamines ${ }^{[239]}$ have been used as organocatalysts for the cyclopropanation of α, β-unsaturated aldehydes with stabilised sulphur ylides. Related cyclopropanations have also been reported employing for instance arsonium ${ }^{[129]}$ or tertiary amine ylides. ${ }^{[240,241]}$

Scheme 1.29: Asymmetric cyclopropanation of α, β-unsaturated aldehydes with sulfonium ylides.

In addition to stabilised ylides, alkyl halides have become common amphiphiles in Michael/alkylation cascades. The cyclopropanation of enals 86 with bromomalonate (87) yielding the corresponding cyclopropanes 88 has been developed independently by Córdova and co-workers and by Wang and co-workers (Scheme 1.30). ${ }^{[128,242-244]}$ The only difference in their reactions was the utilised base. While Wang used 2,6-lutidine, Córdova and co-workers employed triethyl amine. Vicario and co-workers later expanded the scope of the reaction using water as the solvent ${ }^{[245]}$ and the reaction has also been realised in a flow set-up. ${ }^{[246]}$ These results could be further improved by employing 2-bromo keto esters as amphiphiles. ${ }^{[247]}$ A cyclopropanation of α-substituted α, β-unsaturated aldehydes with bromomalonate (87) was developed by CAMPAGNE and co-workers. ${ }^{[248]}$

Scheme 1.30: Asymmetric cyclopropanation developed by Córdova and co-workers.

Other amphiphiles in MIRC cyclopropanations include bromonitromethane, ${ }^{[249-254]} 3$-chlorooxindole, ${ }^{[255]}$ benzyl chloride, ${ }^{[256]} \alpha$-alkyl- α-diazoesters, ${ }^{[257]}$ or 4-alkenyl sulfamidates. ${ }^{[258]}$ Furthermore, the organocatalytic cyclopropanation of nitroalkenes ${ }^{[259,260]}$ and vinyl selenones ${ }^{[261]}$ by addition of malonates as well as a Michael addition following a 1,6-conjugate addition ${ }^{[262]}$ have been reported.

Besides MIRC reactions other alkylation cascades have been employed to afford cyclopropanes. For example, the catalytic alkylation of enamines using proline derived catalysts had been a long-standing problem in organocatalysis until List and Vignola achieved the first intramolecular asymmetric α-alkylation to form chiral cycloalkanes (Scheme 1.31). ${ }^{[263]}$ The key to their success was the geminal disubstitution to accelerate the desired ring closure and to shut down undesired pathways. Using $20 \mathrm{~mol} \%$ of 2-methylproline (89) as catalyst and alkyl iodide 90 as substrate, cyclopropane 91 could be obtained in high yield and high
enantioselectivity. A similar method was employed by Huang and co-workers to obtain a variety of chiral bicyclo[3.1.0]hexanes by an α-iodination/double alkylation cascade. ${ }^{[264]}$

Scheme 1.31: List's intramolecular α-alkylation.

1.4.2 Organocatalytic Activation of Cyclopropanes

The spring-loaded character of cyclopropanes accounts for several reactivities. In the investigation of reaction mechanisms they are used as radical clocks to detect free radicals with their centre adjacent to the cyclopropane (see section 1.1.2). Despite their use as mechanistic tool, cyclopropylcarbaldehydes have been proven to be useful substrates for aminocatalysis in general. In 2009, WANG and co-workers were able to show that the reaction of cyclopropylcarbaldehydes with aryl thiols in the presence of proline leads to a ring-opening reaction. ${ }^{[265]}$ Interestingly, even though a chiral catalyst was employed, the corresponding products were only obtained as racemic mixtures. Nevertheless, a similar concept was applied by the group of GILMOUR to achieve the first asymmetric 1,3-dichlorination of symmetric cyclopropylcarbaldehydes $\mathbf{9 2}$ by cyclopropyl-iminium-activation (Scheme 1.32). ${ }^{[266]}$ The cyclopropylcarbaldehydes 92 condense with an enantioenriched imidazolidinone $\mathbf{4 8 d}$ to form chiral iminium ions. The attack of a chloride in β-position then leads to an opening of the cyclopropane moiety. Due to racemisation of the monochlorinated products 93 the intermediate enamines are intercepted by a chloronium electrophile. The corresponding dichlorinated aldehydes 94 can be obtained in good yields and with an enantiomeric ratio up to 96:4. Later, Reyes and Merino could show that also γ-acyloxy-substituted aldehydes can be obtained if the chiral iminium ion is attacked by carboxylic acids. ${ }^{[267]}$

Scheme 1.32: Asymmetric 1,3-dichlorination of symmetric aldehydes.

Recently, Jørgensen and co-workers developed a method that allows for the activation of cyclopropanes by enamine catalysis (Scheme 1.33). ${ }^{[268]}$ The condensation of an acceptor substituted cyclopropyl substituted aldehyde 95 with a proline-based catalyst 48c leads to the formation of a donor-acceptor substituted cyclopropane 96 in situ (not shown). Subsequent formal [2+2]-cycloaddition of $\mathbf{9 6}$ to suitable substrates 97
results in the enantioselective formation of cyclobutanes $\mathbf{9 8}$ with good yields and high enantiomeric excesses. It has proven to be essential that the cyclopropylcarbaldehyde carries two identical acceptors, otherwise an additional stereogenic centre is generated without selectivity. A similar concept was applied by Reyes and Vicario who could show that dihydroquinolines can be obtained by domino reaction of aminobenzaldehydes with donor-acceptor substituted cyclopropanes formed in situ. ${ }^{[269]}$

Scheme 1.33: Synthesis of enantioenriched cyclobutanes 98 via formal [2+2]-cycloaddition of 95 to 97 .

1.5 Covalent Modification of Lysine

Covalent modifications of proteins are important for studying their function, developing targeted covalent inhibitors and for the synthesis of drug delivery constructs. ${ }^{[270,271]}$ In general, protein modification can be achieved by incorporation of unnatural reactive entities, which yields homogeneously modified proteins but requires tedious biochemical processes. ${ }^{[272-275]}$ On the other hand, the specific reactivity of proteinogenic amino acid residues can be exploited. The latter being a less complicated approach, especially when uniform or selective modification is not necessary. ${ }^{[276,277]}$ Cysteine is an attractive target as its thiol group is usually the strongest nucleophile under physiologic conditions and off-target as well as non-specific tagging is minimised. ${ }^{[278-281]}$ Unfortunately, cysteine constitutes only 2% of the human proteome and is found in only 15% of the protein pockets ${ }^{[282,283]}$ which limits the applicability of this method. However, with 6% of the human proteome, lysine is three times more abundant and is typically found on protein surfaces, on interfaces mediating protein-protein interactions, and in binding cavities. Lysine plays an important role in catalysis, by acting either as a base or by activating substrates via hydrogen bonds. It is therefore often indispensable in protein active sites and resistance mutations as they occur for cysteine are much less likely. ${ }^{[270]}$

The most common covalent modification of lysine includes N-hydroxysuccinimide (NHS) esters 99 (Scheme $1.34, a),{ }^{[284]}$ isocyanates and isothiocyanates $\mathbf{1 0 0}(b)^{[270]}$ or sulfonyl fluorides $\mathbf{1 0 1}(c)^{[285]}$ but selectivity might be problematic when stronger nucleophiles are present. In general, the selectivity of the presented methods is governed by the fact that hard nucleophiles are used, reacting preferably with the harder amino group of lysine than with the softer sulfhydryl group of cysteine. ${ }^{[273]}$ Aldehydes have also been used for the selective modification of lysine ${ }^{[286,287]}$ but the reversibility of the formed Schiff base requires imine reductions which are often incompatible with the protein's function $(d) .{ }^{[288,289]}$

Scheme 1.34: Classical methods for the modification of lysine.

Recently, more sophisticated examples of lysine modification have been reported (Scheme 1.35). The ε-amino group can be modified by either formation of amidines $\mathbf{1 0 3}$ (a) $)^{[290,291]}$ or triazones from diazonium terephthalates 104 (b). ${ }^{[292]}$ It was shown that the imine can be stabilised by an adjacent boronate (c). ${ }^{[293,294]}$ Also, amine formation by a reaction with sulfonyl acrylates $\mathbf{1 0 6}(d)^{[295]}$ and amide formation by a reaction with β-lactams 107 is possible (e). ${ }^{[296,297]}$ In addition, the group of TANAKA developed an $\alpha, \beta, \gamma, \delta$-unsaturated aldehyde 108. Upon condensation with lysine, an imine is formed that rapidly undergoes 6π-aza-electrocyclisation. Subsequent autoxidation then generates stable pyridinium salts $(f) .{ }^{[298-300]}$

2. autoxidation

lysine

Scheme 1.35: Recent site-selective modifications of the ε-amino group of lysine.

These examples demonstrate that, even though there are numerous methods for covalent modification of proteins established, new reagents are still needed to extend the possibilities to study the function of different proteins.

Objectives

2.1 Development of a Dienamine-Induced DVCPR

Based on the organocatalytic Cope rearrangement developed by Gleason and co-workers (Scheme 1.28) a new approach for organocatalytic pericyclic reactions was pursued. Generating a 1,5-diene in situ by dienamine activation would constitute a mechanistically new approach for [3,3]-sigmatropic rearrangements. The Cope-like rearrangement of divinylcyclopropanes into cycloheptadienes was chosen as a model reaction as it also benefits from the additional driving force of ring-strain release (Scheme 2.1). It was anticipated that treatment of cis-4-(2-vinylcyclopropyl)but-2-enals 109 with secondary amine catalyst 48 would generate reactive cis-divinylcyclopropanes $\mathbf{1 1 0}$. Their spontaneous [3,3]-sigmatropic rearrangement was expected to result in the formation of cycloheptadienes 111. Hydrolysis of enamine 111 would then release the catalyst and the desired cycloheptadienals 112.

Scheme 2.1: Planned transformation of cis-divinylcyclopropylcarbaldehydes to cycloheptadienals.

At the beginning of these studies, no general methodology was known for the synthesis of 4-(2-vinylcyclo-propyl)but-2-enals 109. Therefore, the development of an efficient synthetic strategy was a key challenge. Substrates for this transformation should be obtained from aldehyde 113 by olefination of the carbonyl moiety by either Wittig ${ }^{[301,302]}$ or Horner-Wadsworth-Emmons ${ }^{[303]}$ reaction and subsequent cleavage of the silyl ether (Scheme 2.2). The resulting alcohol could then be oxidised to the aldehyde and converted to the desired α, β-unsaturated system 109 by one-pot WITTIG reaction/acetal cleavage. ${ }^{[304]}$ Aldehyde 113 should be accessible from Z-olefin 114 by Simmons-Smith reaction and oxidation of the alcohol. ${ }^{[122,123]}$ Olefin 114 would result from partial hydrogenation of the alkyne obtained from addition of protected 3-butyn-1-ol to formaldehyde.

Scheme 2.2: Retrosynthetic analysis of α, β-unsaturated aldehydes 109.

2.2 Application of the Developed Methodology to the Covalent Modification of Proteins

The synthesis of α, β-unsaturated aldehydes $\mathbf{1 0 9}$ delivered 2-(2-vinylcyclopropyl)ethanals $\mathbf{1 1 6}$ as intermediates. Previous studies demonstrated that these react with secondary amines in a condensation reaction (Scheme 2.3). ${ }^{[305]}$ The resulting enamine 117 still underwent DVCPR but this time, a stable tertiary amine 118 was obtained. For example, the condensation of unsubstituted vinylcyclopropyl aldehyde 116a with morpholine (48h) afforded tertiary amine $\mathbf{1 1 8 a}$ in 58% yield and without erosion of the enantiomeric excess.

Scheme 2.3: Reaction of vinylcyclopropyl ethanal 116a with morpholine (48h).

This concept should be utilised to selectively modify lysine residues in proteins in a similar fashion to the 6π-azaelectrocyclisation developed by TANAKA and co-workers (Scheme $1.35, f$). ${ }^{[298-300]}$ Unfortunately, previous studies showed that the unsubstituted vinylcyclopropyl aldehyde 116a is extremely volatile and therefore not suited for such an application. Larger substituents on the double bond should raise the boiling point of the compounds and their addition to free lysine ε-amino groups should deliver stable adducts (Scheme 2.4).

Scheme 2.4: Planned modification of proteinogenic lysine residues with cyclopropyl aldehydes.

3.1 Dienamine-Induced Divinylcyclopropane-Cycloheptadiene Rearrangement

3.1.1 First Generation Synthesis of Substrates

A general approach to 4-(2-vinylcyclopropyl)but-2-enals 109 for the DVCPR was pursued starting from aldehyde 113. The aldehyde 113 was synthesised from 3-butyn-1-ol (115, Scheme 3.1). Silylation of the hydroxyl group gave the silyl ether in 95% yield. The alkyne was deprotonated by n-butyllithium. Addition of the so generated carbanion to paraformaldehyde gave the desired propargylic alcohol 119 in 85% yield. ${ }^{\text {[306] }}$ Partial hydrogenation of the alkyne gave olefin 114. Although, excellent yields could be achieved using LINDLAR's catalyst, ${ }^{[307]} 114$ was obtained as an inseparable mixture of E / Z-isomers. Hydration with Ni P2 complex ${ }^{[308]}$ circumvented this problem and delivered solely the Z-olefin in an equally good yield. The allylic alcohol 114 was then converted to the cyclopropane 120 by Simmons-Smith reaction. ${ }^{[122,123]}$ Stahl oxidation finally gave the desired aldehyde 113 in almost quantitative yield. ${ }^{[309]}$

Scheme 3.1: Synthesis of aldehyde 113.

Wittic-olefination ${ }^{[301,302]}$ of aldehyde 113 gave the desired alkene 121 in excellent yield albeit with poor E / Z selectivity (Table 3.1, entry 1). Since both isomers could possibly react in the desired rearrangement, it was attempted to improve the selectivity either towards the E - or the Z-isomer. The Schlosser modification ${ }^{[310]}$ indeed enhanced the E / Z-selectivity to $4: 1$ but the yield dropped drastically (entry 2). In this reaction, addition of phenyllithium should result in the formation of a β-oxide ylide accounting for the stereoselectivity. However, conduction of the GILMAN-test for detection of organolithium species ${ }^{[311]}$ indicated that this transformation did not take place. Decreased yield and poor stereoselectivity could arise because of that. The Julia-Kocienski
reaction with sulfone $\mathbf{1 2 2}$ led to an improved E / Z-selectivity of $3.5: 1$ but only in a moderate yield (entry 3). ${ }^{[312]}$ By JULIA olefination, ${ }^{[313]}$ the Z-isomer of 121 could be obtained but only in 2% yield (entry 4).

Table 3.1: Conditions for the olefination of aldehyde 113.

Entry	Reagents	Solvent	Temperature	Time	Yield	E / Z
1	$\mathrm{BnPPh}_{3} \mathrm{Br}$ (1.5 equiv.), n-BuLi (1.5 equiv.)	THF	$-78 \rightarrow 20^{\circ} \mathrm{C}$	3 h	93\%	2:1
2	$\mathrm{BnPPh}_{3} \mathrm{Br}$ (1.0 equiv.), PhLi (1.5 equiv.), HCl (1.1 equiv.), KOt - Bu (1.5 equiv.)	THF/Et ${ }_{2} \mathrm{O}$	$-78 \rightarrow 20^{\circ} \mathrm{C}$	2 h	22\%	4:1
3	122 (1.0 equiv.), KHMDS (1.1 equiv.)	DME	$-60 \rightarrow 20^{\circ} \mathrm{C}$	18 h	57\%	3.5:1
4	$\mathrm{PhCH}_{2} \mathrm{SO}_{2}$ py (1.0 equiv.), KHMDS (2.0 equiv.)	PhMe	$20^{\circ} \mathrm{C}$	18 h	2%	1:2

It was also attempted to obtain the desired olefin by a metathesis reaction (Scheme 3.2). Therefore, aldehyde 113 was converted to the terminal olefin 123 by WITTIG olefination. However, reaction of $\mathbf{1 2 3}$ with styrene and Schroск's catalyst gave only traces of the desired product. ${ }^{[314]}$

Scheme 3.2: Synthesis of olefin 123 and attempted olefin metathesis.

Since the synthesis of $\mathbf{1 2 1}$ could not be optimised towards a single double bond isomer, the E / Z-mixture was separated by preparative HPLC. The silyl ether of $E-121$ was cleaved, and the resulting alcohol was oxidised with 2-iodoxybenzoic acid (IBX) to deliver the aldehyde $\mathbf{1 1 6 b}$ (Scheme 3.3). 116b could then be converted
into the desired α, β-unsaturated aldehyde 109a in a one-pot sequence consisting of Wittig reaction with the phosphonium salt 124 and subsequent cleavage of the acetal under acidic conditions. ${ }^{[304]}$

Scheme 3.3: Completion of the synthesis of 109a.

3.1.2 Rearrangement of Enal 109a

With the α, β-unsaturated aldehyde 109a in hand, the dienamine-induced DVCPR was investigated. Subjection of 109a to different secondary amines led to moderate conversion to the desired cycloheptadiene 112 a (Table 3.2). Although a moderate conversion was achieved with pyrrolidine (48f) and piperidine $\mathbf{(4 8 g})$, cis/trans-selectivity was low (entries 1 and 2). When morpholine ($\mathbf{4 8 h}$) was used, the reaction rate was drastically reduced, and the selectivity did not improve (entry 3). Pleasantly, when the Jørgensen-Hayashi catalyst 48c ${ }^{[185]}$ was used, 112a was obtained in an excellent yield of 96% and with high diastereoselectivity (entry 4). While the reaction rate could be increased by conducting the rearrangement at $40^{\circ} \mathrm{C}$ the yield was decreased to 72% (entry 5). This might be due to the thermal instability of 48c. ${ }^{[315]}$ When the sterically more encumbered diaryl prolinol ether 48d was used, the yield dropped to 60% (entry 6). Use of the MacMillan imidazolidinone 48b ${ }^{[316]}$ virtually gave no conversion.

Table 3.2: Reaction of 109a with different secondary amines.

$\mathrm{Ar}^{\mathrm{F}}=3,5-\left(\mathrm{CF}_{3}\right)_{2}-\mathrm{C}_{6} \mathrm{H}_{3}$
[a] Determined by GC-MS using methoxynaphthalene as standard.
[b] Conversion was complete after 24 h .

Although 48c was used as a single enantiomer, no kinetic resolution was observed. However, it was possible to show that use of enantioenriched starting material leads to the formation of a likewise enantioenriched cycloheptadiene (Scheme 3.4). Enantioenriched 109a was obtained by chiral HPLC from racemic 109a.

Scheme 3.4: Conversion of enantiopure 109a.

The yield of 112a and the diastereoselectivity of the reaction proved to be highly solvent dependent (Table 3.3). The use of a very polar solvent led to decreased yield (DMSO, entry 1). In ethereal solvents as well as in ethyl acetate and acetonitrile, the reaction rate was significantly lowered (entries $2,3,5$, and 8). It has been shown that cleavage of the silyl ether of $\mathbf{4 8 c}$ is faster in these solvents ${ }^{[315]}$ but this can only partly explain the poor yields as the use of unpolar solvents (cyclohexane and PhMe) also led to decreased yields (entries 10 and 11). The use of chlorinated solvents (1,2-dichloroethane and dichloromethane, entries 4 and 6) resulted in yields over 70%. Surprisingly, chloroform and chlorobenzene led again to moderate yields of 112a (entries 7 and 9). In cyclohexane, diethyl ether, chlorobenzene, and 1,2-dichloroethane formation of polar side-products was observed but they could not be identified.

Table 3.3: Effect of different solvents on the DVCPR of 109a.

Entry	Solvent	$\text { Yield }^{[a]}$	cis/trans ${ }^{\text {[a] }}$
1	DMSO	9\%	>20:1
2	MeCN	47\%	>20:1
3	EtOAc	31%	>20:1
4	1,2-DCE	78\%	>20:1
5	THF	29\%	>20:1
6	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	96\%	>20:1
7	chlorobenzene	34\%	5:1
8	$\mathrm{Et}_{2} \mathrm{O}$	41\%	>20:1
9	CHCl_{3}	38\%	>20:1
10	PhMe	34\%	>20:1
11	cyclohexane	26\%	3:1

[a] Determined by GC-MS using methoxynaphthalene as standard.

It has been shown that additives can have a significant effect on organocatalytic transformations, especially on the reaction rate. ${ }^{[317,318]}$ Attempting shorter reaction times, different additives were surveyed (Table 3.4). The use of $1 \mathrm{~mol} \%$ of acid proved to be beneficial for the reaction rate but the yield of 112 a dropped to about $70 \%(\mathrm{HCl}, \mathrm{AcOH}$ and BzOH , entries 1,7 and 13). The yield further decreased when more acid was added or when the reaction time was prolonged (entries $2-4,8-12$ and 14-16), suggesting that one of the reagents or the product is not stable under these conditions. Furthermore, it was sufficient to use $0.1 \mathrm{~mol} \%$ of acetic acid
to increase the reaction rate but the yield remained moderate (entries 5 and 6). The highest reaction rate was observed using $1 \mathrm{~mol} \%$ of m-nitrobenzoic acid which showed complete conversion in 2 h with a yield of 72% (entry 17). Again, use of more equivalents of this acid or prolonged reaction time led to significant decomposition (entries 18-22). Methanol and potassium carbonate have also been reported to accelerate enamine formation. ${ }^{[319]}$ Using these additives, it was possible to obtain complete conversion in 24 h with a yield of 71% and 81%, respectively (entries 23 and 24). As lower yields for 112 were obtained in all cases, the use of additives was omitted.

Table 3.4: Effect of different additives on the DVCPR of 109a.

Entry	Additive	mol\%	Time [h]	Yield ${ }^{[a]}$
1	HCl	1.0	24	65\%
2	HCl	5.0	24	49\%
3	HCl	10	24	34\%
4	HCl	20	24	$5 \%{ }^{[\mathrm{b}]}$
5	AcOH	0.1	8	68\%
6	AcOH	0.1	24	71\%
7	AcOH	1.0	8	68\%
8	AcOH	5.0	8	61\%
9	AcOH	10	4	83\%
10	AcOH	10	8	50\%
11	AcOH	20	4	64\%
12	AcOH	20	8	45\%
13	BzOH	1.0	8	71\%
14	BzOH	5.0	8	50\%
15	BzOH	10	8	32\%
16	BzOH	20	8	28\%
17	$m-\mathrm{NO}_{2}-\mathrm{BzOH}$	1.0	2	72\%
18	$m-\mathrm{NO}_{2}-\mathrm{BzOH}$	5.0	2	54\%
19	$m-\mathrm{NO}_{2}-\mathrm{BzOH}$	10	2	51\%
20	$m-\mathrm{NO}_{2}-\mathrm{BzOH}$	10	7	44\%
21	$m-\mathrm{NO}_{2}-\mathrm{BzOH}$	20	2	42\%
22	$m-\mathrm{NO}_{2}-\mathrm{BzOH}$	20	7	41\%
23	MeOH	20	24	71\%
24	$\mathrm{K}_{2} \mathrm{CO}_{3}$	20	24	81\%

[a] Determined by GC-MS using methoxynaphthalene as standard.
[b] d.r. 8:1.

Control reactions confirmed that the organocatalyst is vital in this transformation since no conversion was observed without the amine catalyst (Table 3.5). Also, under general acidic or basic conditions no conversion could be detected (entries 1,2 and 4). The DVCPR of silyl enol ethers was demonstrated by Piers and co-workers in 1986. ${ }^{[73]}$ However, attempts to form the corresponding silyl enol ether of 109a with potassium bis(trimethylsilyl)amide (KHMDS) and trimethylsilyl chloride were not successful (entry 3). When the trans-isomer of $\mathbf{1 0 9 a}$ was used no conversion could be observed after 48 h at either $20^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$.

Table 3.5: Control reactions.

Entry	Reagents (equiv.)	Conditions	Time [h]	Result
1	$\mathrm{AcOH}(1.0)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$	24	n.c.
2	$\mathrm{KHMDS}(1.0)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}$	24	n.c.
3	$\mathrm{KHMDS}(1.0)$,	$\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}$	24	n.c.
4	$\mathrm{TMSCl}(1.0)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$	24	n.c.
$5^{[\mathrm{a}]}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.0)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$	48	n.c.
$6^{[\mathrm{a}]}$	$\mathbf{4 8 c}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50^{\circ} \mathrm{C}$	48	n.c.

n.c.: no conversion; [a] The trans-cyclopropane was used instead of 109a.

3.1.3 Synthesis of α, β-Unsaturated Aldehydes 109 by Nickel-Catalysed Reductive Coupling of Tetrahydropyrans

As described in section 3.1.1, the synthesis of 109a was achieved in 9 steps from 3-butyn-1-ol (115) with an overall yield of 29%. In addition, the phenyl group was introduced in a relatively early stage of the synthesis, which would render the synthesis of a comprehensive substrate library tedious. Therefore, it was desirable to shorten the synthesis and to introduce the different substituents in the latest stage possible so that most derivatives of $\mathbf{1 0 9}$ would be accessible from one common precursor.

In 2016, the group of Jarvo developed a nickel-catalysed reductive cross-coupling reaction of 2-vinyl-4-halotetrahydropyrans 125 to vinylcyclopropanes 126. ${ }^{[320]}$ This transformation was reported to be stereospecific and to proceed with high yields. The resulting di- or trisubstituted vinylcyclopropyl alcohols could possibly be converted to the desired α, β-unsaturated aldehydes 109 in two already established steps (Scheme 3.5). Furthermore, by introduction of a substituent R' on the cyclopropane moiety the influence of this substitution pattern on the DVCPR could be studied as additional substituents at this position have been shown to have a major effect on the reaction kinetics of the DVCPR. ${ }^{[82]}$

Scheme 3.5: The nickel-catalysed reductive cross-coupling of 2-vinyl-4-halotetrahydropyrans $\mathbf{1 2 5}$ for the synthesis of 109.

It was proposed that the stereospecific outcome of the nickel-catalysed reductive coupling would be rationalised by an initial oxidative addition to the vinyl ether I with retention of the stereochemistry while the second oxidative addition to the halide and the reductive elimination would proceed under inversion of the configuration leading to the cis-configurated cyclopropane III (Scheme 3.6). ${ }^{[321]}$

Scheme 3.6: Proposed mechanism for the stereospecificity of the nickel-catalysed reductive cross-coupling.

The tetrahydropyrans 125 were obtained by Prins cyclisation of the α, β-unsaturated aldehydes 127 and 128 with the homoallyl alcohols 129 and 130, respectively (Scheme 3.7). While the Prins reaction of cinnamaldehyde 127 with 129 delivered the desired ether $\mathbf{1 2 5 a}$ in a good yield of $\mathbf{7 5 \%}$, the cyclisation of $\mathbf{1 2 8}$ with homoallyl alcohol 130 was attempted several times. The best yield was 23% with an d.r. of $6: 1$ but the tetrahydropyran 125b showed significant impurities. However, purification of $\mathbf{1 2 5 b}$ proved to be difficult and could not be achieved by column chromatography, bulb-to-bulb distillation or combinations thereof.

Scheme 3.7: Synthesis of tetrahydropyrans 125a and 125b.

The synthesis of 131 was described using XantPhos as a ligand. Attempts to reproduce the results of Jarvo and co-workers delivered 131 only in a yield of 43% and with a d.r. of $7: 1$ (Table 3.6, entry 1). Methyl magnesium iodide which was used as a reductant in this reaction was freshly prepared by a procedure which
was also described by the authors but only when this reagent was filtered over celite instead of the described fritted Schlenk filter the yield could be increased to 67% (entry 2). The reductive coupling of $\mathbf{1 2 5 b}$ to $\mathbf{1 3 2}$ was performed using BPhen as a ligand. The published procedure gave 132 on a 3.6 mmol scale in a yield of 6% as a diastereomeric mixture that was not further determined (entry 3). Running the reaction on a smaller scale and with a slightly prolonged reaction time gave 132 in 8% yield, but the product could not be purified by column chromatography (entry 4). By use of methyl magnesium iodide which was filtered over celite the yield of $\mathbf{1 3 2}$ could be increased to 12% but purification was still not possible (entry 5). On a larger scale, the yield dropped again to 9% (entry 6). However, when the reaction was run on a small scale of 0.3 mmol 132 was obtained in 34% yield albeit with a d.r. of $4: 1$ (entry 7). Running the cross-coupling at higher concentration or at elevated temperatures did not increase the yield (entries 8 and 9). Exhaustive degassing of the solvent made it possible to obtain a yield of 21% of 132 also on a larger scale (entry 10) but overall the results of Jarvo and co-workers could not be completely reproduced.

Table 3.6: Nickel-catalysed reductive coupling of tetrahydropyrans 125.

Entry	R	R'	X	Ligand	Scale	Time	Result
1	Ph	Me	Cl	XantPhos	0.4 mmol	18 h	43\% yield, d.r. 7:1
$2^{[a]}$	Ph	Me	Cl	XantPhos	0.4 mmol	20 h	67\% yield, d.r. > 20:1
3	$i-\mathrm{Pr}$	H	F	BPhen	3.6 mmol	18 h	6% yield, diastereomeric mixture
4	$i-\mathrm{Pr}$	H	F	BPhen	0.6 mmol	20 h	8% yield, impurities
$5^{[\mathrm{a}]}$	$i-\mathrm{Pr}$	H	F	BPhen	0.6 mmol	20 h	12\% yield, impurities
$6^{[a]}$	$i-\mathrm{Pr}$	H	F	BPhen	3.7 mmol	20 h	9\% yield, impurities
7	$i-\mathrm{Pr}$	H	F	BPhen	0.3 mmol	24 h	34% yield, d.r. 4:1
$8^{[b]}$	$i-\mathrm{Pr}$	H	F	BPhen	0.3 mmol	24 h	16% yield, d.r. 4:1
$9{ }^{\text {[c] }}$	$i-\mathrm{Pr}$	H	F	BPhen	0.3 mmol	24 h	11% yield, d.r. 4:1
$10^{\text {[d] }}$	$i-\mathrm{Pr}$	H	F	BPhen	1.7 mmol	24 h	21% yield, d.r. 4:1

[a] MeMgI was filtered over Celite.
[b] 0.1 m instead of 1.0 m .
[c] The reaction was run at $30^{\circ} \mathrm{C}$.
[d] PhMe was degassed 3 times by freeze-pump-thaw.

Nevertheless, 132 was separated from the unwanted stereoisomer by means of preparative HPLC. Alcohols 131 and 132 could be converted to the desired cyclopropanes $\mathbf{1 0 9 b}$ and $\mathbf{1 0 9 c}$ by oxidation with Dess-Martin periodinane (DMP) and subsequent homologation in 45% and 34%, respectively (Scheme 3.8). It could be
demonstrated that the nickel-catalysed cross-coupling described by Jarvo and co-workers is a viable method to shorten the synthesis of aryl vinyl cyclopropanes, since $\mathbf{1 0 9 b}$ could be synthesised in 4 steps starting from cinnamic aldehyde. However, different substituents still would have to be introduced in the starting material, rendering this synthetic route unattractive for a large substrate library. Additionally, the results concerning the alkyl substituted compound $\mathbf{1 3 2}$ could not be reproduced so that a general route towards the vinyl substituted cyclopropanes is still sought after.

Scheme 3.8: Synthesis of $\mathbf{1 0 9 b}$ and 109c.

3.1.4 Improved Synthesis of α, β-Unsaturated Aldehydes 109

It was envisaged that the diversity of enals $\mathbf{1 0 9}$ could be introduced in the last step of the synthesis by transition metal catalysed cross coupling of iodide 133 and subsequent cleavage of the acetal (Scheme 3.9). lodide $\mathbf{1 3 3}$ could be accessible from 134 either by Taкai or by Storк-Zнао reaction, depending on the desired stereoisomer. ${ }^{[322]}$

Scheme 3.9: Retrosynthetic analysis of 109.

Aldehyde 134 could be prepared by reduction of the ester 135 which would be formed by carbometalation of cyclopropene 136 by metal organyl 137 (Scheme 3.10, path A). ${ }^{[323]} 137$ can be obtained by metal-halogen exchange of the bromide 138. On the other hand, aldehyde 134 could also result from Simmons-Smith reaction and subsequent oxidation of the allylic alcohol 139 (path B). Alcohol 139 could be obtained by hydrogenation of the alkyne 140 which could be formed by coupling of bromide 138 and propargyl alcohol (141). ${ }^{[324,325]}$

Scheme 3.10: Retrosynthetic analysis of aldehyde 134.

The acetal 138 which was the starting point for both synthetic pathways was prepared from methyl-4bromocrotonate (142, Scheme 3.11). Reduction with lithium aluminium hydride and oxidation of the resulting alcohol delivered the corresponding aldehyde 143 in 82% yield over 2 steps. ${ }^{[326]}$ The aldehyde 143 was converted to the desired acetal 138 in 52% yield by transacetalisation.

Scheme 3.11: Synthesis of acetal 138.

It was attempted to prepare the cyclopropene ester 136 by cyclopropenation of acetylene (144) under rhodium catalysis (Scheme 3.12). ${ }^{[327,328]}$ Unfortunately, exclusively the carbene dimer could be isolated and only traces of $\mathbf{1 3 6}$ were detected by GC-MS. Also, extremely slow addition of the carbene precursor to a saturated solution of acetylene did not result in the formation of 136. It was reasoned, that $\mathbf{1 3 6}$ could further be obtained by desilylation of 145. ${ }^{[329]}$ But also the cyclopropenation of bis(trimethylsilyl)acetylene (146) by rhodium catalysed carbene addition delivered only traces of the desired cyclopropene. Due to these difficulties, path A in the synthesis of aldehyde 134 was abandoned.

Scheme 3.12: Attempted synthesis of ester 136 by cyclopropanation of acetylene (144) or bis(trimethylsilyl)acetylene (146).

For the proposed pathway B, bromide 138 was coupled with propargyl alcohol (141) delivering the desired alkyne $\mathbf{1 4 0}$ in a good yield of 84% (Scheme 3.13). $\mathbf{1 4 0}$ could be converted to the corresponding alkene $\mathbf{1 3 9}$ by partial hydrogenation with LindLAR's catalyst in 80% yield. However, Simmons-Smith cyclopropanation of 139 only led to decomposition of the starting material. Also, when the Simmons-Smith reaction was performed without the addition of trifluoroacetic acid (TFA) or when a samarium catalysed cyclopropanation ${ }^{[330]}$ was used only complex mixtures could be obtained. Cyclopropanation with trimethylsilyldiazomethane under palladium catalysis failed as well.

Scheme 3.13: Attempt to synthesise $\mathbf{1 4 7}$ by path B.

As the attempts of an efficient synthesis of iodide 133 were not successful, 133 was synthesised from the aldehyde 113 (Scheme 3.14). Aldehyde 113 was converted to the vinyl iodide 148 by E-selective Taкai olefination in 84% yield and with a d.r. of 11:1. ${ }^{[331-333]}$ Cleavage of the silyl ether and subsequent oxidation of the resulting alcohol delivered aldehyde 149. Wittig reaction of aldehyde 149 with phosphonium salt $\mathbf{1 2 4}$ then resulted in the formation of iodide $\mathbf{1 3 3}$ in 4 steps from aldehyde $\mathbf{1 1 3}$ and an overall yield of 31%.

Scheme 3.14: Synthesis of $\mathbf{1 3 3}$ by Taкai olefination.

With iodide 133 in hand, different conditions for the transition metal catalysed coupling were surveyed (Table 3.7). The addition of the Gilman cuprate, lithium diphenyl cuprate, to iodide 133 led to fast decomposition of the starting material (entry 1). ${ }^{[334,335]}$ NMR analysis suggested that both the acetal and the cyclopropane moiety were cleaved and that a significant amount of biphenyl was formed. Conducting the experiment at a lower temperature and decreasing the amount of cuprate led to the same result (entry 2). $\mathrm{PhCuMgBr}_{2}$ as a coupling partner produced a complex product mixture (entry 3) and when the reagent was formed in situ by lithium tetrachloro cuprate and phenyl magnesium bromide, only traces of $\mathbf{1 5 0}$ could be observed by GC-MS analysis (entry 4). ${ }^{[336-338]}$ The SuzUKı coupling of iodide 133 with phenylboronic acid delivered the desired product in 20% yield but with significant amounts of impurities that could not be separated (entry 5). Performing this reaction under modified conditions developed by MARSDEN and co-workers ${ }^{[339]}$ with phenyl boronate 151 delivered the desired product in 32% yield (entry 6). The Negishi coupling of iodide 133 proved to be rather slow and was stopped when only low conversion was observed at $70^{\circ} \mathrm{C}$ after 24 h (entry 7). In 2017, Feringa and co-workers developed an ultrafast cross-coupling of organolithium compounds that was reported to proceed under palladium nanoparticle catalysis. ${ }^{[340]}$ Unfortunately, when their conditions were applied to the coupling of 133 with phenyllithium no conversion took place and the iodide $\mathbf{1 3 3}$ could be reisolated completely (entry 8).

Table 3.7: Transition metal catalysed couplings of 133.

Entry	Reagent (equiv.)	Conditions	Result
1	$\mathrm{Ph}_{2} \mathrm{CuLi}$ (4.0)	$\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$	complex mixture
2	$\mathrm{Ph}_{2} \mathrm{CuLi}$ (1.2)	$\mathrm{Et}_{2} \mathrm{O},-100^{\circ} \mathrm{C}, 5 \mathrm{~min}$	complex mixture
3	PhCuMgBr 2 (2.0)	THF, $-78^{\circ} \mathrm{C}, 5 \mathrm{~min}$	complex mixture
4	$\mathrm{Li}\left[\mathrm{CuCl}_{4}\right](1.0)+$ PhMgBr (2.0)	$\mathrm{Et}_{2} \mathrm{O},-100^{\circ} \mathrm{C}, 5 \mathrm{~min}$	traces
5	$\mathrm{PhB}(\mathrm{OH})_{2}(2.0)$	$\begin{gathered} \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(10 \mathrm{~mol} \%), \\ \mathrm{NaOH}(2.0 \text { equiv. }), \mathrm{THF}, 4 \rightarrow 80^{\circ} \mathrm{C}, 48 \mathrm{~h} \end{gathered}$	20% yield $^{\text {[a] }}$
6		$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(50 \mathrm{~mol} \%), \mathrm{KO} t-\mathrm{Bu}$ (2.0 equiv.), DME, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$	32% yield
7	PhZnI•LiCl (1.1)	Pd (amphos) $\mathrm{Cl}_{2}(2 \mathrm{~mol} \%)$, TMEDA (1.1 equiv.), THF, $70^{\circ} \mathrm{C}, 24 \mathrm{~h}$	incomplete conversion
8	PhLi (1.5)	$\mathrm{Pd}\left(\mathrm{Pt} \text { - } \mathrm{Bu}_{3}\right)_{2}(5 \mathrm{~mol} \%), \mathrm{O}_{2}, \mathrm{PhMe}, 20^{\circ} \mathrm{C}, 4 \mathrm{~h}$	reisolation of 133

[a] The product contained significant amounts of impurities.

As the SuzUki coupling was the only reaction to produce olefin 150 in preferable amounts, the reaction was optimised. At first, iodide 152 was used as precursor (Scheme 3.15). Iodide 152 was synthesised by Appel reaction from 120 (Scheme 3.15). Unfortunately, SuzUKı coupling of iodide 152 and boronate 153 under the conditions used above only resulted in decomposition of the starting materials.

Scheme 3.15: Attempted synthesis of olefin 121 from iodide 152.

Since the previous attempts did not give the desired products in satisfying yields, an exchange of the polarities of the coupling partners was envisioned. In a model reaction, boronate 154 was reacted with iodobenzene
under the established reaction conditions (Scheme 3.16). Satisfyingly, the coupling product 121 could be obtained in only 10 min and a yield of 92%.

Scheme 3.16: Suzuki coupling of boronate $\mathbf{1 5 4}$ with iodobenzene.

The pinacol boronate 154 was synthesised by a chromium-mediated olefination developed by TAKAI and co-workers (Scheme 3.17). ${ }^{[341]}$ However, boronate 154 was obtained as a mixture of the cis- and transcyclopropane. Subjecting the starting material to reaction conditions without the dichloromethylboronic ester 155 revealed that the aldehyde 113 isomerises when exposed to a mixture of lithium iodide and chromium dichloride.

Scheme 3.17: Synthesis of $\mathbf{1 5 4}$ by chromium-mediated olefination.

As a consequence, for further studies boronate 154 was obtained by an E-selective bora-Wittic reaction developed by Morken and co-workers (Scheme 3.18). ${ }^{[342]}$ Subsequently, 154 was converted to the aldehyde 156 by silyl ether cleavage and oxidation of the resulting alcohol. Cleavage of the silyl ether with hydrochloric acid led to fast decomposition of the starting material, so an acidic proton exchange resin was used. Aldehyde 156 was then converted to the Suzukı precursor 157 by the previously established methods.

Scheme 3.18: Synthesis of the Suzuki precursor 157.

With precursor 157 in hand, a variety of different aryl substituted enals could be synthesised (Table 3.8). Utilisation of aryl iodides with electron withdrawing substituents (EWG) in ortho, meta, and para position
gave the desired enals in good to excellent yields. Compounds 109i, 109k, 109I, 109o, and 109p were obtained in cooperation with S. HARTMANN as part of his bachelor thesis. ${ }^{[343]}$ As exception, the nitro compound 109g could only be obtained in 41% yield. Heteroaromatic 109 m was delivered in good yield as well as enal 109n and 109o bearing electron donating alkyl groups. The coupling of boronate 157 and (E)-(4-iodobut-3-en-1-yl)benzene, obtained from the TAKAI reaction of hydrocinnamaldehyde, only led to the formation of the desired enal 109p in 21% yield. Serendipitously, the coupling of resorcinol iodide with boronate $\mathbf{1 5 7}$ delivered enal 109r bearing a terminal vinyl group. The unsubstituted enal 109r was probably formed by protonation of an intermediate. The actually desired enal bearing two hydroxyl groups could not be isolated.

Table 3.8: Synthesis 4-(2-(E)-vinylcyclopropyl)but-2-enals 109 by Suzuki coupling.

			 109f, 59% yield
	 1091, quant.		

[a] Obtained with ArI $=2$-iodobenzene-1,3-diol.

The methoxy substituted enal 109q was not observed at all. Instead of enal 109 q lactol 158 was isolated from the SUZUKI coupling of boronate 157 and 4-methoxyiodobenzene and subsequent reaction with oxalic acid (Scheme 3.19). The same happened when iodothiophene was used as coupling partner. The structure of lactol 158 was unambiguously confirmed by X-Ray analysis.

Scheme 3.19: Formation of lactols $\mathbf{1 5 8}$ and $\mathbf{1 5 9}$ from precursor 157. Displacement ellipsoids of ORTEP of $\mathbf{1 5 8}$ set at 50% probability, hydrogens are calculated.

It is possible that the strong electron donating effect of the methoxy group in enal $\mathbf{1 0 9 q}$ triggers an intramolecular Michael addition of the styrene to the α, β-unsaturated aldehyde (Scheme 3.20). The anion in I would then add to the quinoid system to form ether II. Ether II could also be obtained from enal 109q by hetero-Diels-Alder reaction. Under acidic conditions it is imaginable that II isomerises to the oxocarbenium ion III and addition of water would then result in the formation of lactol 158.

Scheme 3.20: Proposed mechanism for the formation of lactols 158 and 159.

To support the hypothesis, that the enal $\mathbf{1 0 9 q}$ is formed but undergoes subsequent cyclisation, acetal $\mathbf{1 6 0}$ was synthesised by Suzuki coupling of boronate 157 with 4-methoxyiodobenzene in 92% yield and also the thiophene derivative 161 could be obtained under similar conditions in 99% yield (Scheme 3.21).

Scheme 3.21: Synthesis of acetals $\mathbf{1 6 0}$ and 161.

Different conditions were tested for the cleavage of the acetal in $\mathbf{1 6 0}$ (Table 3.9). ${ }^{[343]}$ For this purpose, the reactions were performed on a small scale ($75 \mu \mathrm{~mol}$) and evaluated qualitatively by GC-MS analysis. Interestingly, when acetal 160 was subjected to oxalic acid at lower temperatures, only the trans-isomer of $\mathbf{1 0 9 q}$ was detected and the lactol 158 could not be observed (entry 1). Attempts to cleave the acetal with para-toluenesulfonic acid ($p \mathrm{TSA}$) or hydrochloric acid under literature known procedures led to the same result (entries 2 and 3). ${ }^{[344]}$ When pyridinium para-toluenesulfonate ($p \mathrm{PTS}$) was used the desired enal 109q was formed together with lactol 158 (entry 4). ${ }^{[345]}$ Reaction with perchloric acid or wet silica gel did not give any conversion (entries 5 and 6) ${ }^{[346,347]}$ and with catalytic amounts of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) only lactol 158 was observed (entry 7). ${ }^{[348]}$ Cleavage of acetal 160 with bis(acetonitrile)dichloropalladium(II) or tetrabromomethane led to the formation of a cis/trans mixture of enal 109q with very low signal intensity (entries 8 and 10$)^{[349,350]}$ and the reaction with tetrabromomethane and triphenylphosphine again delivered only the trans-isomer of $\mathbf{1 0 9 q}$ (entry 11). ${ }^{[351]}$ However, promising results were made with wet DMSO which delivered 109q as the only detectable product (entry 9) ${ }^{[352]}$ and with a combination of 2,6-lutidine and trimethylsilyl trifluoromethanesulfonate which gave $\mathbf{1 0 9 q}$ together with small amounts of its trans-isomer (entry 12). ${ }^{[353]}$

				 158
Entry	Reagents (equiv.)	Solvent	Conditions	Result
1	oxalic acid (10.0)	THF	$4^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$	trans-109q
2	$p \mathrm{TSA} \cdot \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$	acetone	$70^{\circ} \mathrm{C}, 48 \mathrm{~h}$	trans-109q
3	$\mathrm{HCl}(30 \mathrm{~mol} \%)$	THF	$20^{\circ} \mathrm{C}, 2 \mathrm{~h}$	trans-109q
4	pPTS (2 mol\%)	acetone	$70^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$	109q + 158
5	$\mathrm{HClO}_{4}(10 \mathrm{~mol} \%)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0 \rightarrow 20^{\circ} \mathrm{C}, 48 \mathrm{~h}$	-
6	SiO_{2} (3.0 equiv.)	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$	$20^{\circ} \mathrm{C}, 48 \mathrm{~h}$	-
7	DDQ (3 mol\%)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$	$20^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$	158
8	$\begin{gathered} \mathrm{PdCl}_{2}(\mathrm{MeCN})_{2} \\ (5 \mathrm{~mol} \%) \end{gathered}$	acetone	$20^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$	$\begin{gathered} \mathbf{1 0 9 q}+ \\ \text { trans-109q } \end{gathered}$
9	-	DMSO (wet)	$180{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$	109q
10	$\mathrm{CBr}_{4}(5 \mathrm{~mol} \%)$	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$	$20^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$	$\begin{gathered} \mathbf{1 0 9 q}+ \\ \text { trans-109q} \end{gathered}$
11	$\begin{aligned} & \mathrm{CBr}_{4}(50 \mathrm{~mol} \%), \\ & \mathrm{PPh}_{3}(50 \mathrm{~mol} \%) \end{aligned}$	THF	$0 \rightarrow 20^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$	trans-109q
12	2,6-lutidine (23 equiv.), TMSOTf (18 equiv.)	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} -30 \rightarrow 20^{\circ} \mathrm{C}, \\ 48 \mathrm{~h} \end{gathered}$	$\begin{gathered} \mathbf{1 0 9 q}+ \\ \text { trans-109q } \end{gathered}$

The reactions with pyridinium para-toluenesulfonate, wet DMSO and with 2,6-lutidine and trimethylsilyl trifluoromethanesulfonate were repeated on a larger scale (0.5 mmol). At this scale, conversion with pyridinium para-toluenesulfonate and wet DMSO led to decomposition and the formation of complex mixtures. However, conversion with 2,6-lutidine and trimethylsilyl trifluoromethanesulfonate delivered the desired enal 109q in 41% yield (Scheme 3.22). The trans-isomer of 109q was not detected. Additionally, these conditions could be also applied to the acetal cleavage of thiophene 161 delivering enal 109 s in 42% yield.

Scheme 3.22: Cleavage of acetals $\mathbf{1 6 0}$ and $\mathbf{1 6 1}$ with a procedure developed by Inoue and co-workers.

3.1.5 Preparation of Substrates That Could Not Be Prepared by Suzukı Coupling

Some substrates like the Z-configurated vinyl cyclopropyl enals, the ester $\mathbf{1 0 9 t}$, the nitrile $\mathbf{1 0 9 u}$ or the linear alkyl substrate 109y where not suitable for a synthesis by nickel catalysed cross-coupling or by Suzuki reaction from boronate 157 (Figure 3.1). Their syntheses starting from aldehyde $\mathbf{1 1 3}$ shall be discussed in the following section.

Figure 3.1: Substrates that could not be prepared by Suzuki-coupling or nickel-catalysed cross-coupling.

For the synthesis of ester 109t, aldehyde 113 was converted to the E-configurated olefin 162 by Horner-Wadsworth-Emmons reaction with triphenylphosphonoacetate in 79% yield and isolated as a single diastereoisomer (Scheme 3.23). ${ }^{[303]}$ The silyl ether 162 was cleaved under acidic conditions and the resulting alcohol was oxidised to deliver aldehyde $\mathbf{1 1 6 d}$ in 81% yield over 2 steps. Subjection of aldehyde $\mathbf{1 1 6 d}$ to established homologation conditions gave the enal $\mathbf{1 0 9 t}$ in 59% yield and with an overall yield of 37% starting from aldehyde 113.

Scheme 3.23: Synthesis of ester substituted enal 109t.

Horner-Wadsworth-Emmons reaction of aldehyde 113 with triethylphosphono acetonitrile led to the formation of nitrile 163 in an inseparable E / Z-mixture with a ratio of $1: 1$ (Scheme 3.24). After cleavage of the silyl ether and oxidation of the resulting alcohol the stereoisomers could be separated by column chromatography. $E-164$ was obtained in 21% yield over 2 steps and $Z-\mathbf{1 6 4}$ in 22% yield. Both isomers were converted to the corresponding enals $\mathbf{1 0 9 u}$ and $\mathbf{1 0 9 v}$ in 55% and 45% yield, respectively.

Scheme 3.24: Synthesis of nitrile substituted enals $\mathbf{1 0 9 u}$ and $\mathbf{1 0 9 v}$.

The Z-alkyl substituted enals $109 w$ and $109 x$ were synthesised from aldehyde 113 by Wittig reaction with the corresponding phosphonium salts (Scheme 3.25). The Z-configurated olefins 165 and 166 were obtained with good Z / E ratios. Cleavage of the silyl ether and subsequent oxidation delivered the aldehydes $\mathbf{1 6 7}$ and 168 . For the purification of aldehyde 167 by column chromatography some fractions of the Z-isomer had to be discarded due to significant impurities. Homologation of aldehydes 167 and 168 delivered enals 109w and 109x in 52% and 79% yield, respectively. Some fractions of the undesired E-isomers could be separated.

Scheme 3.25: Synthesis of Z-alkyl substituted enals $\mathbf{1 0 9 w}$ and $\mathbf{1 0 9 x}$.

A fraction of the diastereomeric mixture of olefin 166 was deprotected under acidic conditions and the resulting alcohols separated by preparative HPLC delivering the E-alkyl substituted alcohol 169. Alcohol

169 could be converted to the aldehyde $E-168$ in 91% by oxidation with DMP (Scheme 3.26). The aldehyde was then subjected to homologation to deliver enal 109 y in 58% yield.

Scheme 3.26: Synthesis of E-alkyl substituted enal $\mathbf{1 0 9 y}$.

The Z-phenyl substituted olefin Z - 121 was obtained by separation of the double bond isomers by HPLC (see 3.1.1). It could be converted to the aldehyde $\mathbf{1 7 0}$ by cleavage of the silyl ether under acidic conditions and oxidation of the resulting alcohol by IBX in 87% yield over 2 steps (Scheme 3.27). Aldehyde 170 was then converted to the desired enal $\mathbf{1 0 9 z}$ by homologation in 75% yield.

Scheme 3.27: Synthesis of Z-phenyl substituted enal 109z.

The Z-ester substituted enal 109aa was synthesised from aldehyde 113 by Still-GenNARI reaction ${ }^{[82]}$ with phosphonate 171 which was obtained via a procedure by Oberthür and co-workers. ${ }^{[354]}$ The olefination delivered ester 172 in 54% yield as a single diastereoisomer (Scheme 3.28). The silyl ether of $\mathbf{1 7 2}$ was cleaved under acidic conditions and the resulting alcohol was oxidised using DMP to obtain the aldehyde 173 in 49% yield over 2 steps. Aldehyde 173 was then subjected to established homologation conditions and enal 109aa was isolated in 69% yield.

Scheme 3.28: Synthesis of Z-ester substituted enal 109aa.

To study the influence of steric bulk on the enamine induced DVCPR enals $\mathbf{1 0 9 b b}$ and 109cc, bearing an additional substituent in α - and β-position of the unsaturated system were synthesised starting from aldehyde 116b. Enal 109bb was synthesised by Wittig reaction of aldehyde 116b with ethyl methyltriphenylphosphoranylideneacetate (174) ${ }^{[355]}$ which delivered ester 175 in 78% yield (Scheme 3.29). The E-configuration of the newly formed double bond could be confirmed by NOE experiments. Reduction of the ester with DIBAL-H and oxidation of the resulting allylic alcohol with manganese dioxide afforded enal 109bb in 78% yield.

Scheme 3.29: Synthesis of α-branched enal 109bb.

Enal 109cc bearing the methyl substituent in β-position of the unsaturated system was attempted to be obtained from ketone 176. Ketone 176 was delivered by methylation of aldehyde $\mathbf{1 1 6 b}$ and subsequent oxidation of the resulting alcohols. When ketone 176 was subjected to the established homologation conditions only decomposition could be observed (Table 3.10, entry 1). Since lowering the reaction temperature did not change the outcome of the reaction (entry 2), different ylides were tested for the Wittig reaction to the corresponding C_{2}-elongated products. Unfortunately, conversion of ketone 176 with triphenyl(phosphoranylidene)acetaldehyde (177), ${ }^{[356]}$ tert-butyl(triphenylphosphoranylidene)acetate (178), ${ }^{[357]}$ or ethyl(triphenylphosphoranylidene)acetate (179) ${ }^{[358]}$ gave either no conversion (entries 3, 5-7, 9, and 10) or led to decomposition of the starting materials at elevated temperature (entries 4,8 , and 11). In addition to that, reaction with diethyl(cyanomethyl)phosphonate $\mathbf{1 8 0}$ also only resulted in decomposition. Therefore, the synthesis of enal 109cc was abandoned.

Table 3.10: Synthesis of ketone 176 and attempted synthesis of enal 109cc.

Entry	Reagents (equiv.)	Solvent	Conditions	Result
1		THF	$0 \rightarrow 20^{\circ} \mathrm{C}, 24 \mathrm{~h}$	decomposition
2	$\underset{\mathrm{KO} t-\mathrm{Bu}(2.6)}{\left.\mathrm{BrPh}_{3} \mathrm{P} \sim_{0}\right\rangle_{124}(2.7),}$ then oxalic acid (10)	THF	$\begin{gathered} -30^{\circ} \mathrm{C}, 8 \mathrm{~h} \\ \text { then } 20^{\circ} \mathrm{C}, 18 \mathrm{~h} \end{gathered}$	decomposition
3	$\mathrm{Ph}_{3} \mathrm{P}=0177$ (1.1)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$40^{\circ} \mathrm{C}, 12 \mathrm{~h}$	no conversion
4	$\mathrm{Ph}_{3} \mathrm{P}^{2}=00177$ (1.1)	PhMe	$120^{\circ} \mathrm{C}, 12 \mathrm{~h}$	decomposition
5	$\begin{gathered} \mathrm{CPP}_{3} \mathrm{P} \sim{ }^{\circ}(1.1), \\ \mathrm{KO} t-\mathrm{Bu}(1.0) \end{gathered}$	THF	$70^{\circ} \mathrm{C}, 1 \mathrm{~h} \mathrm{~h}$	no conversion
6		$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$45^{\circ} \mathrm{C}, 18 \mathrm{~h}$	no conversion
7		THF	$70^{\circ} \mathrm{C}, 18 \mathrm{~h}$	no conversion
8		PhMe	$120^{\circ} \mathrm{C}, 18 \mathrm{~h}$	decomposition
9		$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$45^{\circ} \mathrm{C}, 18 \mathrm{~h}$	no conversion
10		THF	$70^{\circ} \mathrm{C}, 18 \mathrm{~h}$	no conversion
11		PhMe	$120^{\circ} \mathrm{C}, 18 \mathrm{~h}$	decomposition
12	$\begin{gathered} (\mathrm{EtO})_{2} \stackrel{\circ}{\mathrm{P}} \mathrm{CN} \mathbf{1 8 0}(1.1), \\ \mathrm{NaH}(1.1) \end{gathered}$	THF	$0 \rightarrow 20^{\circ} \mathrm{C}, 18 \mathrm{~h}$	decomposition

3.1.6 Scope and Limitations of the Dienamine-Induced DVCPR

With a variety of differently substituted enals 109 in hand, and the optimal reaction conditions being established (see 3.1.2) the scope of the dienamine-induced DVCPR was investigated (Table 3.11). The most 4-(2-(E)-vinylcyclopropyl)but-2-enals E - $\mathbf{1 0 9}$ were converted to the corresponding cis-disubstituted cycloheptadienes $\mathbf{1 1 2}$ in good to moderate yields with excellent diastereoselectivity. In case of the styrene derivatives, substitution at either position of the aryl system present in $\mathbf{1 0 9 d} \mathbf{~ 1 0 9 o}$ is allowed and does not hinder the reaction. Both, electron donating and electron withdrawing groups are tolerated. Interestingly,
the thiophene substituted cycloheptadiene 112s could be isolated in 66% yield whereas the corresponding pyridine derivative $\mathbf{1 1 2 m}$ only showed rapid decomposition. The alkenyl substituted cycloheptadiene 112p was obtained in a moderate yield of only 41%. Thus it was demonstrated, that an aryl group is not required for the rearrangement to proceed. Cycloheptadienes $\mathbf{1 1 2 t}$ and $\mathbf{1 1 2 u}$ bearing an ester and a nitrile group could be isolated in good yields as well. However, the nitrile $\mathbf{1 1 2 u}$ could only be obtained as a 2:1 diastereomeric mixture. The monosubstituted cycloheptadiene $\mathbf{1 1 2 r}$ could also be isolated, albeit in low yield due to its volatility. Compound $\mathbf{1 1 2 y}$ bearing an alkyl substituent required a prolonged reaction time of 72 h but could be isolated in 62% yield. The cycloheptadiene 112 c with a branched alkyl substituent could not be obtained since only slow decomposition of the starting material was observed. The enal 109b bearing an additional substituent on the cyclopropyl moiety did not show any conversion with catalyst 48c and when the more reactive amine 48d was used only slow decomposition could be observed with traces of the diene $\mathbf{1 1 2 b}$ being detectable by GC-MS analysis. The additional methyl substituent in α-position of enal 109bb probably hampers the condensation of the aminocatalyst with the enal, so that no conversion could be observed after 48 h . The same holds true when secondary amine catalysts 48 d or $\mathbf{4 8 i}$ were employed. Compounds $\mathbf{1 1 2 i}$, 112k, 112I, and $\mathbf{1 1 2 o}$ were obtained in cooperation with S. Hartmann as part of his bachelor thesis. ${ }^{[343]}$

Table 3.11: Scope and limitations of the DVCPR of 4-(2-(E)-vinylcyclopropyl)but-2-enals E-109.

(tas
[a] Determined by GC-MS using methoxynaphthalene as standard.
[b] Catalyst 48 i was used instead of 48 c .

It had been demonstrated that a Z-configuration within the substrates can result in a significant increase in the activation barrier for the DVPCR. ${ }^{[70-72,81,359]}$ These rearrangements usually require higher reaction temperatures not compatible with the temperature sensitive organocatalyst 48c. Therefore, the more stable diarylprolinol silyl ether 48d was used for the rearrangement of 4-(2-(Z)-vinylcyclopropyl)but-2-enals Z-109 (Table 3.12). However, the alkylated cycloheptadienes 112 w and $\mathbf{1 1 2 x}$ could not be obtained under these conditions. Nevertheless, utilisation of a electron withdrawing groups such as a nitrile or an ester or a phenyl group afforded the trans-cycloheptadienes $\mathbf{1 1 2 v}, 112 z$, and 112aa in good to excellent yields and with high diastereoselectivity.

Table 3.12: DVCPR of 4-(2-(Z)-vinylcyclopropyl)but-2-enals Z-109.

3.1.7 Follow-Up Reactions

The aldehyde functionality represents a useful handle for further functionalisation of dienes 112. As an example, the aldehyde $112 t$ was reduced to the corresponding alcohol 181 and could be either converted to the lactone 182 or to the benzoate 183 (Scheme 3.30). Diester 183 was a crystalline solid that formed crystals suitable for X-Ray analysis so that the structure and configuration of $\mathbf{1 1 2 t}$ could be indirectly confirmed.

Scheme 3.30: Synthesis of lactone $\mathbf{1 8 2}$ and of benzoate $\mathbf{1 8 3}$ whose structure is depicted by the ORTEP drawing bottom left. Ellipsoids are drawn with 95% probability. Hydrogens are calculated.

The 6/7-fused lactone $\mathbf{1 8 2}$ is an interesting structure but 5/7-membered lactones are a more common structural motif in natural products, e.g. in tremulanes ${ }^{[360-362]}$ or certain caryophyllane sesquiterpenes. ${ }^{[363]}$ A recently developed method by IWASAWA and co-workers should deliver the precursor $\mathbf{1 8 4}$ for the 5-membered lactone from the aldehyde $\mathbf{1 1 2 t}$ by oxidative deformylation and in situ reduction of the resulting hydroperoxide
in one step (Scheme 3.31). ${ }^{[364]}$ Subjecting aldehyde $112 t$ to the reported reaction conditions however, only led to decomposition. The corresponding hydroperoxide could also not be isolated. Therefore, aldehyde 112t was converted to the corresponding silyl enol ether 185. Unfortunately, ozonolysis of 185 led to rapid decomposition in under one minute even though N-methylmorpholine N-oxide (NMO) was used for immediate decomposition of the ozonide. ${ }^{[365]}$ Due to these difficulties this path was abandoned.

Scheme 3.31: Attempted synthesis of alcohol 184.

In an attempt to form a hardly accessible 4/5-membered bicyclic core from the cycloheptadienes by Nazarov cyclisation, the oxidation of dienes 112a and 112 t at their double allylic position was surveyed (Table 3.13). Unfortunately, various oxidation methods using ruthenium, chromium, or manganese based reagents gave either no conversion or led to decomposition. Only pyridinium dichromate (PDC) gave traces of the oxidised ester (entry 4). But when the equivalents of PDC were doubled and the reaction time was prolonged again only decomposition was observed (entry 5).

Table 3.13: Attempted allylic oxidation of dienes 112a and 112t.

Entry	R	Reagents (equiv.)	Solvent	Conditions	Result
1	Ph	$\begin{gathered} \text { TPAP (10 mol\%), } \\ \text { NMO (6.0), } 4 \AA \text { MS } \end{gathered}$	MeCN	$20^{\circ} \mathrm{C}, 18 \mathrm{~h}$	no conversion
2	$\mathrm{CO}_{2} \mathrm{Et}$	TPAP ($10 \mathrm{~mol} \%$), NMO (6.0), $4 \AA$ MS	MeCN	$20^{\circ} \mathrm{C}, 18 \mathrm{~h}$	no conversion
3	Ph	PDC (3.0)	CHCl_{3}	$70^{\circ} \mathrm{C}, 12 \mathrm{~h}$	no conversion
4	$\mathrm{CO}_{2} \mathrm{Et}$	PDC (3.0)	CHCl_{3}	$70^{\circ} \mathrm{C}, 12 \mathrm{~h}$	traces
5	$\mathrm{CO}_{2} \mathrm{Et}$	PDC (6.0)	CHCl_{3}	$70^{\circ} \mathrm{C}, 24 \mathrm{~h}$	decomposition
6	Ph	PDC(4.0), t - BuOOH (4.0)	benzene	$20^{\circ} \mathrm{C}, 6 \mathrm{~h}$	decomposition
7	$\mathrm{CO}_{2} \mathrm{Et}$	PDC(4.0), t - BuOOH (4.0)	benzene	$20^{\circ} \mathrm{C}, 6 \mathrm{~h}$	decomposition
8	Ph	$\begin{gathered} \text { 3,5-dimethylpyrazole (10), } \\ \mathrm{CrO}_{3}(10) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-20^{\circ} \mathrm{C}, 30 \mathrm{~min}$	decomposition
9	$\mathrm{CO}_{2} \mathrm{Et}$	$\begin{gathered} \text { 3,5-dimethylpyrazole (10), } \\ \mathrm{CrO}_{3}(10) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-20^{\circ} \mathrm{C}, 30 \mathrm{~min}$	decomposition
10	Ph	$\begin{gathered} \mathrm{Mn}(\mathrm{OAc})_{3}(1.0) \\ \operatorname{TBHP}(10) \end{gathered}$	EtOAc	$40^{\circ} \mathrm{C}, 4 \mathrm{~h}$	decomposition + reisolated starting material

Finally, it was studied if the acid chloride of aldehyde 112a could undergo an intramolecular Friedel-Crafts acylation (Table 3.14). Therefore, aldehyde 112a was oxidised to the corresponding carboxylic acid 186 by Jones oxidation. ${ }^{[366]}$ Acid 186 was converted to the acid chloride either with oxalyl chloride or by reaction with 1,1-dichloromethylether. However, upon subsequent reaction with aluminium trichloride only traces of the desired tricycle 187 could be observed by GC-MS (entries 1 and 2). If the acid chloride was synthesised in 1,1-dichloromethylether without another solvent and the following reaction with aluminium trichloride was performed in 1,2-dichloroethane (1,2-DCE) traces of the desired product were detected by GC-MS together with several signals suggesting the additional chlorination of the product (entry 3). The same could be observed when acid 186 was stirred in 1,1-dichloromethylether for a prolonged time at elevated temperature or when cyanuric chloride (TCT) was used as chlorinating agent (entries 5 and 6). If aluminium trichloride was added to the solvent free reaction of acid 186 with 1,1-dichloromethylether rapid decomposition was observed (entry 4). Overall, the intramolecular Friedel-Crafts acylation of $\mathbf{1 8 6}$ did not seem to be easily accessible and was therefore abandoned.

Table 3.14: Attempted intramolecular Friedel-Crafts reaction of 186.

		$\begin{array}{r} \mathrm{HO}_{2} \mathrm{C} \\ \mathrm{Ph} \\ \\ \\ 186 \end{array}$	reagents solvent, conditions	
Entry	Reagents (equiv.)	Solvent	Conditions	Result
1	1. oxalyl chloride (1.1), DMF 2. AlCl_{3} (3.0)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\begin{aligned} & \text { 1. } 20^{\circ} \mathrm{C}, 1 \mathrm{~h} \\ & \text { 2. } 20^{\circ} \mathrm{C}, 2 \mathrm{~h} \end{aligned}$	traces
2	1. 1,1-dichloromethyl ether (1.0) 2. AlCl_{3} (3.0)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\begin{gathered} \text { 1. } 60^{\circ} \mathrm{C}, 1 \mathrm{~h} \\ \text { 2. } 20 \rightarrow 60^{\circ} \mathrm{C}, 48 \mathrm{~h} \end{gathered}$	traces
3	1. 1,1-dichloromethyl ether 2. AlCl_{3} (3.0)	1. neat 2. 1,2-DCE	$\begin{aligned} & \text { 1. } 80^{\circ} \mathrm{C}, 1 \mathrm{~h} \\ & \text { 2. } 80^{\circ} \mathrm{C}, 2 \mathrm{~h} \\ & \text { then } 20^{\circ} \mathrm{C}, 18 \mathrm{~h} \end{aligned}$	complex mixture
4	1. 1,1-dichloromethyl ether 2. AlCl_{3} (3.0)	neat	$\begin{aligned} & \text { 1. } 80^{\circ} \mathrm{C}, 1 \mathrm{~h} \\ & \text { 2. } 80^{\circ} \mathrm{C}, 5 \mathrm{~min} \end{aligned}$	decomposition
5	1,1-dichloromethyl ether	neat	$80^{\circ} \mathrm{C}, 18 \mathrm{~h}$	complex mixture
6	$\begin{gathered} \mathrm{TCT}(1.6), \mathrm{py}(1.0) \\ \text { then } \mathrm{AlCl}_{3} \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then PhMe	$20^{\circ} \mathrm{C}, 15 \mathrm{~min}$ then $20^{\circ} \mathrm{C}, 18 \mathrm{~h}$	complex mixture

3.2 Selective Protein-Modification of Lysine with

Cyclopropylaldehydes by

Divinylcyclopropane-Cycloheptadiene Rearrangement

Due to their distinctive reactivity towards either amines or nucleophiles, selected intermediates of the former project were tested for their suitability as reagents to modify proteins selectively. Inspired by the procedure developed by TANAKA and co-workers (see section 1.5) who employed a 6π-aza-electrocyclisation for the formation of stable lysine-adducts, the DVCPR should be used in a similar fashion.

The model substrates were obtained from the boronate 154 by SUZUKI coupling under established conditions delivering the styryl derivatives 121 and 188 in good and excellent yields (Scheme 3.32). In case of the azide 188, preformation of the catalytic species was necessary to suppress the competing Staudinger reaction. After cleavage of the silyl ether and oxidation of the resulting alcohol, aldehydes $\mathbf{1 1 6 b}$ and $\mathbf{1 1 6 c}$ were obtained in 85% and 60% yield over 2 steps.

Scheme 3.32: Synthesis of model substrates $\mathbf{1 1 6 b}$ and $\mathbf{1 1 6 c}$.

The synthesis of aldehyde $\mathbf{1 1 6 d}$ has been described before (see 3.1.5). When the aldehyde $\mathbf{1 1 6 d}$ was reacted with proline (48a) under acidic conditions, it was not possible to detect the desired adduct 118b, instead the elimination product 189 was isolated in 61% yield (Scheme 3.33). Therefore, further studies were conducted with the phenyl substituted aldehyde $\mathbf{1 1 6 b}$ which proved to be more stable.

Scheme 3.33: Reaction of $\mathbf{1 1 6 d}$ with proline (48a)

The model aldehyde $\mathbf{1 1 6 b}$ bearing a phenyl substituent readily reacted with secondary and primary amines to form the amine substituted cycloheptadienes 118 c and 118 d in moderate to good yields (Table 3.15, entries 1 and 2). However, the yield decreases if the reaction was run in a mixture of ethanol and water, probably due to the low solubility of the starting materials (entry 3). Furthermore, the sterically encumbered benzylamine 118e could be obtained as well, albeit with prolonged reaction time (entry 4).

Table 3.15: Conversion of aldehyde $\mathbf{1 1 6 b}$ with different amines.
Entry
[a] The reaction was run in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$.

A competition experiment between morpholine (48h) and phenethylamine (48j) with aldehyde $\mathbf{1 1 6 b}$ showed the rearrangement to be significantly faster with the primary amine (Scheme 3.34). The tertiary amine 118c was obtained in 17% yield while the secondary amine $\mathbf{1 1 8 d}$ was formed in 50% yield.

Scheme 3.34: Competition experiment with morpholine and phenethylamine.

With these promising results in hand, the reactivity of aldehyde $\mathbf{1 1 6 b}$ with different proteinogenic amino acid derivatives was investigated (Table 3.16). Initially, reaction at the α-amino group should be excluded. Therefore, the studies were performed with N-Boc-protected amino acids (entries 3-8). As shown in section 3.1.2, the DVCPR is quite sensitive towards acidic conditions. This behaviour could also be observed in the reaction of $\mathbf{1 1 6 b}$ with proline which showed complete conversion in 2 h but was low yielding, and gave cycloheptadiene $\mathbf{1 1 8 f}$ only in 32% yield (entry 1). In contrast, the adduct $\mathbf{1 1 8 g}$ of aldehyde $\mathbf{1 1 6 b}$ and proline methyl ester could be obtained in almost quantitative yield (entry 2). As a consequence, the methyl esters of the amino acids were used for further studies. No conversion of aldehyde $\mathbf{1 1 6 b}$ was observed when Boc-Trp-OMe, Boc-His-OMe, Boc-Cys-OMe, Boc-Ser-OMe, and Boc-Tyr-OMe were used in the reaction (entries 3-7). Satisfyingly, the condensation product $\mathbf{1 1 8 h}$ of $\mathbf{1 1 6 b}$ and Boc-Lys-OMe could be obtained in
65% yield (entry 8). When unprotected lysine was used, rapid conversion was observed, but only a complex mixture could be obtained (entry 9). However, an adduct of aldehyde $\mathbf{1 1 6 b}$ and lysine could be detected by high resolution mass spectrometry but it could not be resolved to be the desired ε-amino adduct $\mathbf{1 1 8 i}$ or the corresponding α-amino adduct. When aldehyde $\mathbf{1 1 6 b}$ was reacted with aspartic acid under neutral conditions in MeOH , no conversion could be observed due to low solubility of the reactant (entry 10). The same reaction in a mixture of methanol and water under basic conditions however, led to rapid decomposition (entry 11). These results indicate that the reaction of aldehyde $\mathbf{1 1 6 b}$ is selective towards primary and secondary amines and shows no cross-reactivity with other nucleophilic amino acid derivatives.

Table 3.16: Conversion of aldehyde $\mathbf{1 1 6 b}$ with different amino acid derivatives.

[a] Boc-Cys-OMe was reisolated.
[b] Both starting materials were reisolated.
[c] The reaction was run in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ and NaOH (2.0 equiv.).

After these promising initial results, the suitability of the amine-selective functionalisation as a general tool for the modification of lysine residues and the N-terminus on proteins was investigated by the group of Hackenberger.

As a model substrate, a previously established eGFP C70M S147C mutant, ${ }^{[367]}$ carrying all nucleophilic amino acids, including a reactive cysteine residue, was selected. The Hackenberger group established a protocol for the modification of proteins by initially incubating eGFP with aldehyde $\mathbf{1 1 6 b}$ at a concentration of $86 \mu \mathrm{~m}$ in phosphate-buffered saline (PBS) for 18 h at $20^{\circ} \mathrm{C}$ over a range of $2-100$ equivalents of the aldehyde (Figure 3.2 a). This resulted in a decent degree of 1.2 modifications per protein for 50 equivalents of aldehyde 116b (Figure 3.2 b,c).

Figure 3.2: a) Reaction of eGFP with aldehyde 116b. b) Average degree of modification after incubation with different equivalents of aldehyde $\mathbf{1 1 6 b}$ estimated from MS analysis. c) Deconvoluted MS-spectrum after reaction with 50 equivalents aldehyde $\mathbf{1 1 6 b}$.

Due to decreased solubility under aqueous conditions at higher concentrations, the studies were continued with 50 equivalents of the aldehyde $\mathbf{1 1 6 b}$. Time resolved measurements revealed that the reaction does not significantly progress after 18 h of incubation (Figure 3.3 a). In line with the small molecule studies, it was observed that the protein modification is significantly less efficient under acidic conditions. In contrast to this, basic conditions could be applied and increased the conjugation efficiency, even though the reaction temperature had to be lowered to $4^{\circ} \mathrm{C}$ to avoid protein precipitation (Figure 3.3 b).

Figure 3.3: a) Time resolved monitoring of the reaction with 50 equivalents of aldehyde $\mathbf{1 1 6 b}$ in PBS . b) pH-dependence of the reaction. *No protein masses detected at room temperature under basic conditions due to protein precipitation.

Fluorescence measurements of the eGFP before and after the reaction suggested that the protein structure is not affected by the labelling procedure (Figure 3.4).

Figure 3.4: Spectra were recorded before and after the modification of eGFP with aldehyde 116b. Measurements were performed in a 96 -well plate (Corning 3615, black with clear, flat bottom) on a Tecan Safire plate reader. a) Absorption of $100 \mu \mathrm{~L}$ eGFP solutions with a concentration of $50 \mu \mathrm{~m}$. b) Emission spectra of $100 \mu \mathrm{~L}$ eGFP solutions with a concentration of $5 \mu \mathrm{~m}$. Excitation: 450 nm , bandwidth: 5 nm at $20^{\circ} \mathrm{C}$.

With a protocol for the modification of proteins in hand, the selectivity of the reaction for lysine residues was evaluated by mass spectrometry (LC-MS/MS) after trypsin ingestion of the modified eGFP. For peptide fragmentation during MS/MS electron transfer/higher energy collision dissociation had to be applied to preserve the modification during the fragmentation. Thus, modification sites could clearly be identified and in accordance with the small molecule studies, solely modified lysine residues were identified. Successful cysteine labelling with an ethynylphosphonamidate reagent ${ }^{[367]}$ after modification with aldehyde $\mathbf{1 1 6 b}$ confirmed that the reactivity of the sulfhydryl group of the eGFP mutant is retained.

To compare the developed strategy with other protein modification procedures, the reaction rate with a model amine 481 was measured by the HACKENBERGER group under the optimised reaction conditions in PBS (Scheme 3.35). Even though, the measured second order rate constant of $0.33 \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ is slightly lower than that for instance for modification with NHS esters, ${ }^{[368]}$ the reaction rate is still in the range of many other commonly applied protein labelling procedures. ${ }^{[369]}$

Scheme 3.35: The reaction of aldehyde 116b with 3-phenyl-1-propylamine (48I) under buffered conditions in PBS was used to determine a second order rate constant to compare the developed labelling strategy with existing methods.

Additionally, the far red fluorescent Cy5 handle was incorporated to eGFP, following a two step modification protocol: First, optimised reaction conditions were used to modify eGFP with the azide substituted aldehyde 116c. Subsequently, the resulting azide was selectively modified with a commercially available Cy5-dibenzocyclooctyne (190) via Strain-Promoted-Azide-Alkyne-Cycloaddition (SPAAC, Scheme 3.36). ${ }^{[370]}$ Successful Cy5-labelling was confirmed by MS-analysis of the intact proteins and in gel fluorescence after SDS-PAGE separation showed selective Cy5-labelling of proteins modified with aldehyde 116c over proteins modified with aldehyde $\mathbf{1 1 6 b}$ or unmodified proteins.

Scheme 3.36: Reaction of eGFP with aldehyde $\mathbf{1 1 6 b}$ or $\mathbf{1 1 6 c}$ followed by SPAAC with fluorescent dye $\mathbf{1 9 0}$.

This clearly demonstrates that the lysine selective protein modification protocol is able to incorporate bioorthogonal azide-handles into proteins that can be subsequently modified with chemoselective SPAAC to incorporate highly functional modifications.

Conclusion and Outlook

4.1 Conclusion

The dienamine-induced DVCPR represents a mechanistically new approach for 3,3-sigmatropic rearrangements. A general method for the synthesis of 4-(2-vinylcyclopropyl)but-2-enals 109 was not known at the beginning of these studies. Therefore, a synthetic strategy was developed and the substrates for the DVCPR could be obtained via three different pathways. A broad substrate library could be obtained from one common precursor 157 by Suzuki coupling with aryl iodides (Scheme 4.1). The boronate 157 was delivered by bora-Wittig-reaction of aldehyde 113. Diversification in the last step of the synthesis makes this approach especially attractive for the creation of numerous substrates.

Scheme 4.1: Synthesis of α, β-unsaturated aldehydes $\mathbf{1 0 9}$ via Suzuki-coupling.

The substrates that could not be prepared via the Suzuki-coupling were obtained from aldehyde 113 by Wittig- or Horner-Wadsworth-Emmons reaction and subsequent homologation to the enal (Scheme 4.2).

Scheme 4.2: Preparation of substrates by olefination of aldehyde 113.

A step efficient synthesis of enals 109 was developed employing the nickel-catalysed reductive cross-coupling demonstrated by Jarvo and co-workers (Scheme 4.3). The tetrahydropyrans 125a and 125b were obtained by Prins cyclisation of the corresponding α, β-unsaturated aldehydes with homoallylic alcohols. The nickelcatalysed reductive cross coupling of the tetrahydropyrans then delivered the cyclopropyl alcohols 131 and 132 in good yields. The alcohols could be converted to the desired enals 109b and 109c by oxidation and homologation. As this approach relies on the diverse substituents being already contained in the starting material it is attractive especially in the synthesis of individual enals.

$$
\begin{aligned}
& \mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{Me} \\
& \mathrm{R}=i-\mathrm{Pr}, \mathrm{R}^{\prime}=\mathrm{H}
\end{aligned}
$$

Scheme 4.3: Synthesis of substrates by nickel-catalysed reductive cross-coupling of tetrahydropyrans 125.

With the substrates in hand, the reaction conditions for the dienamine-induced DVCPR were optimised and the E-vinyl enals $E-109$ were converted to the cis-cycloheptadienes 112 in good yields and high stereoselectivity under catalysis using the Jørgensen-Hayashi amine 48c (Scheme 4.4). It was shown that different acids can be used as additives to shorten the reaction time but should be handled with care since the product decomposed under acidic conditions and prolonged reaction time. Therefore, the exploration of the reaction scope was conducted without additives.

Scheme 4.4: DVCPR of E-vinyl enals 109.

It could be also demonstrated that the reaction is sensitive to steric bulk on the substrates. The Z-vinyl enals $\mathbf{1 0 9}$ underwent cyclisation to the trans-cycloheptadienes $\mathbf{1 1 2}$ only if they carried an activating substituent (Ph, $\mathrm{CO}_{2} \mathrm{Et}$ or CN) and at elevated reaction temperature (Scheme 4.5).

Scheme 4.5: DVCPR of Z-vinyl enals 109.

The influence of the steric bulk on the cyclisation becomes even more apparent when enals $\mathbf{1 0 9}$ were additionally substituted at the α-position or the cyclopropyl moiety. These substrates did not undergo the rearrangement under any conditions applied (Scheme 4.6).

b: $\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{Me}, \mathrm{R}^{\prime \prime \prime}=\mathrm{H}$
c: $R=M e, R^{\prime}=M e, R^{\prime \prime}=H, R^{\prime \prime}=H$
bb: $R=P h, R^{\prime}=H, R^{\prime \prime}=H, R^{\prime \prime \prime}=M e$

Scheme 4.6: Attempted rearrangement of highly substituted enals 109.

Aldehydes 116 that were obtained as intermediates in the synthesis of α, β-unsaturated aldehydes 109 were tested for their suitability as reagents for the covalent modification of proteinogenic lysine residues. In coorporation with the group of HACKENBERGER it was demonstrated that proteins can be modified selectively at the ε-amino group of lysine with the aldehydes $\mathbf{1 1 6 b}$ and 116c. A protocol for the modification of eGFP was established (Scheme 4.7). The azide functionality of $\mathbf{1 1 6 c}$ also allowed for further modification with functional molecules. The fluorescent dye Cy5 was attached by SPAAC as an example.

Scheme 4.7: Modification of eGFP with aldehydes $\mathbf{1 1 6 b}$ and $\mathbf{1 1 6 c}$.

4.2 Outlook

With the optimised conditions for the dienamine-induced DVCPR established and the influence of substituents on the reaction studied, further investigations could deal with the application of this rearrangement in natural product synthesis. The DVCPR has already been used to gain access to cycloheptadienes with a skipped diene moiety that are otherwise difficult to synthesise (see 1.1.3). This structural motif is contained in several natural products like the benzotropolone petradoriolone (191), isolated 2018 from petradoria pumila, ${ }^{[371]}$ or in form of cyclohepta[b]indoles like exotine $A(192)$ and exotine $B(193)$ which has been synthesised for the first time in 2018 by Trauner and co-workers. ${ }^{[372]}$ It is also imaginable that a cycloheptadiene obtained by the dienamine induced DVCPR could serve as an intermediate in the synthesis of chrysanthemulides (194) which have been isolated from chrysanthemum indicum the same flower, transchrysanthemic acid (1) has been isolated from. ${ }^{[373]}$

petradoriolane (191)

$\mathrm{R}=\mathrm{H}$: exotine A (192) $R=O M e$: exotine B (193)

chrysanthemulides (194)

Figure 4.1: Selected examples for natural products containing a cycloheptadiene or derivatives thereof.

The covalent protein modification by aldehydes $\mathbf{1 1 6}$ discussed in 3.2 is another interesting starting point for further studies. The influence of different aryl substituents on the reaction still needs to be studied in order to increase the reaction rate and to lower the reagent loading. In coorporation with Hacker and co-workers, the synthesis of aldehyde $\mathbf{1 1 6 e}$ carrying an alkyne is currently under investigation. Similar to the azide in $\mathbf{1 1 6} \mathbf{c}$, the alkyne shall serve as a handle for further functionalisation of modified proteins by cycloaddition chemistry. However, preliminary studies showed that the Suzuki coupling of boronate 154 with 4-iodophenylacetylene or 1-trimethylsilyl-2-(4-iodophenyl)acetylene gives very poor yields of the coupling products 195 and 196 (Scheme 4.8). For future studies, the synthesis should be conducted via Suzuki coupling of 154 with 4 -chloroiodobenzene and subsequent Sonogashira coupling. The silylether 196 can then be converted to aldehyde $\mathbf{1 1 6 e}$ whose application to different proteins is currently under investigation.

Scheme 4.8: Proposed synthesis of aldehyde 116e and the reaction with proteinogenic lysine residues.

Experimental Section

5.1 General Information

The analytical data was obtained with the help of the following equipment:
${ }^{\mathbf{1}} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR spectra were acquired on a JEOL ECX $400(400 \mathrm{MHz})$, JEOL ECP $500(500 \mathrm{MHz})$, Bruker Avance $500(500 \mathrm{MHz})$, Varian Inova $600(600 \mathrm{MHz})$ and a Bruker Avance $700(700 \mathrm{MHz})$ in $\mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{D}_{6}$, or $\mathrm{CD}_{3} \mathrm{OD}$ as solvent. The chemical shifts were reported relative to $\mathrm{CDCl}_{3}\left(\delta={ }^{1} \mathrm{H}: 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}: 77.16 \mathrm{ppm}\right)$, $\mathrm{C}_{6} \mathrm{D}_{6}\left(\delta={ }^{1} \mathrm{H}: 7.16 \mathrm{ppm},{ }^{13} \mathrm{C}: 128.06 \mathrm{ppm}\right)$, or $\mathrm{CD}_{3} \mathrm{OD}\left(\delta={ }^{1} \mathrm{H}: 3.31 \mathrm{ppm},{ }^{13} \mathrm{C}: 49.00 \mathrm{ppm}\right)$. The multiplicities of the signals are described using the following abbreviations: $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=q u a r t e t$, $\mathrm{p}=$ quintet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet, $\mathrm{m}_{\mathrm{c}}=$ centred multiplet.

The spectra were evaluated with the software MestReNova 10.0.2.

High resolution mass spectra were obtained on an ESI-FTICR-MS: Ionspec QFT-7 (Agilent/Varian), or a HR-EI-MS: Autospec Premier (Waters). Low resolution mass spectra (GC-MS) were recorded on a GC system Agilent Technologies 7890-A series/Mass selective detector, Agilent Technologies 5975 C (Column: HP-5MS (J\&W Scientific, Agilent); $30 \mathrm{~m}, 0.250 \mathrm{~mm}$ i.D., Film $0.25 \mu \mathrm{~m}$).

Enantiomeric ratios were determined by chiral HPLC (Agilent Series 1200 with DAD) or by GC (Agilent 7890B) on a chiral column. The specific conditions are given in each case.

IR spectra were measured on a JASCO FT/IR-4100 spectrometer. Characteristic absorption bands are displayed in wavelength \tilde{v} in cm^{-1} and were analysed with the software Spectral Manager from JASCO.

Optical rotations were measured on a JASCO P-2000 polarimeter at 589 nm using 100 mm cells. The solvent, temperature and concentration $(\mathrm{g} / 100 \mathrm{~mL})$ of the measurement are indicated.

Thin Layer Chromatography (TLC): Reaction progress was monitored by thin layer chromatography on aluminium backed silica gel plates (silica gel 60 F 254 from E. Merck), visualizing with UV light ($\lambda=254 \mathrm{~nm}$). The plates were developed using anisaldehyde dip solution ($135 \mathrm{~mL} \mathrm{EtOH}, 5 \mathrm{~mL}$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 1.5 \mathrm{~mL} \mathrm{AcOH}$ and $3.7 \mathrm{~mL} p$-anisaldehyde).

Flash chromatography was performed using silica gel M60 from Macherey \& Nagel (particle size: $40-63 \mu \mathrm{~m})$.

Automated Medium Pressure Liquid Chromatography (MPLC) was performed with a Teledyne ISCO Combiflash Rf.

Reagents and Solvents: Reactions with air or moisture-sensitive substances, if not otherwise indicated, were carried out under an argon atmosphere with the help of Schlenk technique. Anhydrous DMF and DMSO were purchased from Acros Organics in AcroSeal ${ }^{\ominus}$-bottles under Argon atmosphere with molecular sieves ($4 \AA$) . CHCl_{3} was filtrated over NaHCO_{3} prior to use. THF was freshly distilled over Na /benzophenone prior to use. DME was dried over CaH_{2}, distilled and degassed three times by freeze-pump-thaw-technique prior to use. All other anhydrous solvents were purified by the solvent purification system MB-SPS-800 (Braun). Catalyst 48d was synthesised by V. Schmiedel. Catalyst 48i was synthesised by J. Dahl. All other reagents and solvents were used as purchased from commercial suppliers unless otherwise noted. The solvents (ethyl acetate, diethyl ether, pentane) used for column chromatography and work up were purified from commercially available technical grade solvents by distillation under reduced pressure with the help of rotatory evaporators (Heidolph or IKA) at $40^{\circ} \mathrm{C}$ water bath temperature.

Compound names are derived from ChemDraw and are not necessarily identical with the IUPAC nomenclature.

5.2 Preparation of Reagents

5.2.1 5-(Benzylsulfonyl)-1-phenyl-4,5-dihydro-1H-tetrazole (122)

1. BnBr (1.2 equiv.), NEt_{3} (1.2 equiv.) THF, $67^{\circ} \mathrm{C}, 6 \mathrm{~h}$
2. $m-\mathrm{CPBA}$ (3.2 equiv.)
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 24 \mathrm{~h}$
85\%

A solution of 1-phenly- $1 H$-tetrazol-5-thiol ($1.0 \mathrm{~g}, 5.6 \mathrm{mmol}, 1.0$ equiv.) in THF ($20 \mathrm{~mL}, 0.3 \mathrm{~m}$) was treated with NEt_{3} ($0.96 \mathrm{~mL}, 6.9 \mathrm{mmol}$, 1.2 equiv.). The reaction mixture was stirred for 40 min before benzyl bromide $\left(0.80 \mathrm{~mL}, 6.7 \mathrm{mmol}, 1.2\right.$ equiv.) was added. The mixture was stirred for 6 h at $67^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and the resulting biphasic mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried over MgSO_{4}, filtrated, and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{~mL}, 0.15 \mathrm{~m})$ and treated with meta-chloroperoxybenzoic acid (m-CPBA, $70 \%, 4.4 \mathrm{~g}, 18.0 \mathrm{mmol}, 3.2$ equiv.) at $0^{\circ} \mathrm{C}$. The resulting solution was allowed to reach $20^{\circ} \mathrm{C}$ and was stirred for 24 h . The reaction was quenched with sat. aq. $\mathrm{NaHSO}_{4}(100 \mathrm{~mL})$. The phases were separated and the organic phase was washed with sat. aq. $\mathrm{NaHCO}_{3}(3 \times 100 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvent was removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=2: 1$) delivered the title compound 122 as a colourless solid ($1.4 \mathrm{~g}, 4.8 \mathrm{mmol}, 85 \%$)
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=2: 1\right)=0.5 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.27-7.38(\mathrm{~m}, 5 \mathrm{H}$, H-Ar), 7.39-7.43 (m, 1H, H-Ar), 7.45-7.50 (m, 2H, H-Ar), 7.53-7.59 (m, 1H, H-Ar) ppm; ${ }^{13}$ C NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=62.5,124.9,125.4(2 C), 129.3(2 C), 129.5(2 C), 129.9,131.5,131.8(2 C), 132.9,153.0 \mathrm{ppm}$.

The spectroscopic data agree with previously published results. ${ }^{[374]}$

5.2.2 ((1,3-Dioxolan-2-yl)methyl)triphenyl- λ^{5}-phosphonium Bromide (124)

In a pressure tube, 2-bromomethyl-1,3-dioxolane ($8.07 \mathrm{~g}, 48.3 \mathrm{mmol}, 1.0$ equiv.) and triphenylphosphine ($12.7 \mathrm{~g}, 48.3 \mathrm{mmol}, 1.0$ equiv.) were stirred at $100^{\circ} \mathrm{C}$ for 18 h . The reaction was cooled to $20^{\circ} \mathrm{C}$ afterwards and the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The resulting clear solution was added to dry $\mathrm{Et}_{2} \mathrm{O}$ $(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the precipitate was filtrated, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo. The title compound 124 was obtained as a colourless solid ($13.8 \mathrm{~g}, 32.2 \mathrm{mmol}, 67 \%$)
${ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.4 \mathrm{ppm} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.61-3.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.54$ $\left(\mathrm{dd},{ }^{3} J=13.2 \mathrm{~Hz},{ }^{4} J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.47\left(\mathrm{dt},{ }^{3} J=13.2 \mathrm{~Hz},{ }^{2} J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH}\right.$) , 7.62-7.69 (m, 6H, H-Ar), 7.72-7.78 (m, 3H H-Ar), 7.83-7.90 (m, 6H, H-Ar) ppm; ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=65.2(2 \mathrm{C}), 112.4,119.4$ $(\mathrm{d}, J=88 \mathrm{~Hz}, 3 C), 130.2(\mathrm{~d}, J=13 \mathrm{~Hz}, 6 C), 134.2(\mathrm{~d}, J=11 \mathrm{~Hz}, 6 C), 134.8(\mathrm{~d}, J=3 \mathrm{~Hz}) \mathrm{ppm}$. The carbon adjacent to the phosphor atom could not be detected.

The spectroscopic data agree with previously published results. ${ }^{[375]}$

5.2.3 Ethyl 2-(Bis(2,2,2-trifluoroethoxy)phosphoryl)acetate (171)

In a pressure tube, ethyl 2-(diethoxyphosphoryl)acetate ($1.0 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1.0$ equiv.) was added to chlorotrimethylsilane ($3.2 \mathrm{~mL}, 25 \mathrm{mmol}, 5.0$ equiv.). The mixture was stirred at $100^{\circ} \mathrm{C}$ for 7 d . The volatile components were removed under reduced pressure. The residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($12 \mathrm{~mL}, 0.4 \mathrm{~m}$) and one drop of DMF was added. Oxalyl chloride ($1.3 \mathrm{~mL}, 22 \mathrm{mmol}, 4.3$ equiv.) was added dropwise under vigorous gas evolution. The pale-yellow reaction mixture was stirred for 1 h at $20^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}, 1.0 \mathrm{~m})$. A solution of trifluoroethanol
(1.5 mL , $21 \mathrm{mmol}, 4.0$ equiv.) and triethylamine ($4.2 \mathrm{~mL}, 30 \mathrm{mmol}, 6.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($5 \mathrm{~mL}, 4.0 \mathrm{~m}$ regarding the alcohol) was added dropwise at $0^{\circ} \mathrm{C}$. 4-Dimethylaminopyridine (DMAP, $12 \mathrm{mg}, 98 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%$) was added and the reaction mixture was stirred for 16 h at $20^{\circ} \mathrm{C}$. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with brine (50 mL), and dried over MgSO_{4}. After filtration, the solvent of the filtrate was removed in vacuo. The crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=2: 1$) affording the title compound 171 ($1.2 \mathrm{~g}, 3.5 \mathrm{mmol}, 65 \%$ over 3 steps) as a pale-yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=2: 1$) $=0.6 ;{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(161 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.1 \mathrm{ppm} ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=-75.3 \mathrm{ppm} ;{ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.14\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}, \mathrm{P}}=21.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PCH} \mathrm{H}_{2}\right)$, $4.21\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.50-4.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CF}_{3}\right) \mathrm{ppm}$.

The spectroscopic data agree with previously published results. ${ }^{[354]}$

5.2.4 (S)-5-Benzyl-2,2,3-trimethylimidazolidin-4-one (48b)

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}(218.30)$
(S)-Phenylalanine methyl ester hydrochloride ($5.00 \mathrm{~g}, 23.2 \mathrm{mmol}, 1.0$ equiv.) was added to a solution of methyl amine in $\mathrm{EtOH}(33 \%, 11.5 \mathrm{~mL}, 92.7 \mathrm{mmol}, 4.0$ equiv.) and the reaction mixture was stirred for 48 h . Volatile components were removed in vacuo and the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}$. The solvent was evaporated under reduced pressure to remove remaining methyl amine. These steps were repeated until the residue formed a colourless solid which was dissolved in sat. aq. $\mathrm{NaHCO}_{3}(48 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtrated, and the solvent was removed under reduced pressure. The residue was taken up in $\mathrm{CHCl}_{3}(230 \mathrm{~mL}, 0.1 \mathrm{~m})$ and treated with ytterbium(III) trifluoromethanesulfonate ($137 \mathrm{mg}, 220 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%$) and acetone ($20.0 \mathrm{~mL}, 272 \mathrm{mmol}$, 12 equiv.). The reaction mixture was stirred at $61^{\circ} \mathrm{C}$ for 22 h . The solvents were removed under reduced pressure afterwards. Purification of the crude product by column chromatography (silica gel, ethyl acetate) delivered the title compound $\mathbf{4 8 b}$ as yellow oil ($4.50 \mathrm{~g}, 20.6 \mathrm{mmol}, 89 \%$).
$\mathbf{R}_{\mathbf{f}}$ (ethyl acetate) $=0.3 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$, $2.73\left(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.99\left(\mathrm{dd},{ }^{2} J=14.2 \mathrm{~Hz},{ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.13\left(\mathrm{dd},{ }^{2} J=14.2 \mathrm{~Hz},{ }^{3} J=4.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{PhCH} \mathrm{H}_{2}$, $3.77\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right), 7.18-7.22(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.26-7.29$ (m, 2H,H-Ar) ppm; ${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.3,25.4,27.3,37.4,59.4,75.6,126.9,128.7,129.6,137.3,173.5 \mathrm{ppm}$.

The spectroscopic data agree with previously published results. ${ }^{[376]}$

5.2.5 (S)-Diphenyl(pyrrolidin-2-yl)methanol (61)

A solution of L-proline ($6.90 \mathrm{~g}, 60.0 \mathrm{mmol}, 1.0$ equiv.) and potassium carbonate ($8.31 \mathrm{~g}, 60.0 \mathrm{mmol}, 1.0$ equiv.) in dry methanol ($120 \mathrm{~mL}, 0.5 \mathrm{~m}$) was carefully treated with ethyl chloroformate ($12.5 \mathrm{~mL}, 132 \mathrm{mmol}$, 2.2 equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 18 h before the solvent was removed under reduced pressure. The residue was taken up in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 90 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried over MgSO_{4}, and filtrated. The solvent was removed under reduced pressure to deliver the N, O-protected proline as crude product which was used in the next step without further purification ($12.3 \mathrm{~g}, 60.0 \mathrm{mmol}$, quant.). Magnesium ($11.7 \mathrm{~g}, 480 \mathrm{mmol}, 8.0$ equiv.) was flame-dried under an argon atmosphere. At $20^{\circ} \mathrm{C}$, THF (180 mL , 2.7 m) was added. To the resulting suspension, bromobenzene ($25.1 \mathrm{~mL}, 240 \mathrm{mmol}, 4.0$ equiv.) in THF (90 mL , 2.7 m) was added dropwise. After complete addition, the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h and added to a solution of the N, O-protected proline ($12.3 \mathrm{~g}, 60.0 \mathrm{mmol}, 1.0$ equiv.) in THF ($120 \mathrm{~mL}, 0.5 \mathrm{~m}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 18 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(120 \mathrm{~mL})$. The resulting precipitate was filtered off and the filtrate was extracted with $\mathrm{CHCl}_{3}(2 \times 90 \mathrm{~mL})$. The combined organic phases were washed with brine ($2 \times 100 \mathrm{~mL}$), dried over MgSO_{4}, and filtrated. The solvent of the filtrate was removed under reduced pressure. The residue was taken up in dry methanol ($120 \mathrm{~mL}, 0.5 \mathrm{~m}$) and treated with potassium hydroxide ($33.7 \mathrm{~g}, 600 \mathrm{mmol}, 10$ equiv.). The reaction mixture was stirred at $65^{\circ} \mathrm{C}$ for 6 h and the solvent was removed under reduced pressure afterwards. The residue was taken up in $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 90 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and filtrated. The solvents of the filtrate were removed under reduced pressure and the crude product was purified by column chromatography (silica gel, dichloromethane/methanol/triethylamine $=20: 1: 0.1$). The resulting yellow oil was recrystalised from hexane delivering the title compound $\mathbf{6 1}$ as colourless crystals ($5.52 \mathrm{~g}, 21.8 \mathrm{mmol}, 36 \%$).
$\mathbf{R}_{\mathbf{f}}$ (dichloromethane/methanol/triethylamine $\left.=20: 1: 0.1\right)=0.3 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.52-1.78$ (m, 4H, CH2 $), 2.88-3.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.98-3.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.26\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right), 7.11-7.23$ (m, 2H, H-Ar), 7.23-7.33 (m, 4H, H-Ar), 7.47-7.53 (m, 2H, H-Ar), 7.55-7.60 (m, 2H, H-Ar) ppm; ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=25.6,26.4,46.9,64.6,77.2,125.7$ (2C), 126.0 (2C), 126.5, 126.6, 128.1 (2C), 128.4 (2C), 145.5, 148.3 ppm .

The spectroscopic data agree with previously published results. ${ }^{[377]}$

5.2.6 (S)-2-(Diphenyl((trimethylsilyl)oxy)methyl)pyrrolidine (48c)

A solution of $61(3.77 \mathrm{~g}, 14.9 \mathrm{mmol}, 1.0$ equiv. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}, 0.15 \mathrm{~m})$ was treated with triethylamine ($2.70 \mathrm{~mL}, 19.3 \mathrm{mmol}, 1.3$ equiv.) and trimethylsilyl trifluoromethanesulfonate ($3.50 \mathrm{~mL}, 19.3 \mathrm{mmol}, 1.3$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 1 h before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 90 \mathrm{~mL})$. The combined organic phases were washed with brine (150 mL), dried over MgSO_{4}, and filtrated. The solvent of the filtrate was removed under reduced pressure and the crude product was purified by column chromatography (silica gel, dichloromethane/methanol $=9: 1 \rightarrow 4: 1$) affording the title compound 48 c as a colourless oil (3.06 g , $9.40 \mathrm{mmol}, 63 \%$).
$\mathbf{R}_{\mathbf{f}}($ dichloromethane/methanol $=9: 1)=0.3 ;[\alpha]_{D}^{20}=+32.3\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right){ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $-0.09\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33-1.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.57-1.73\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCHCH}_{2}+\mathrm{NCH}_{2}\right), 2.71-2.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, 2.85-2.97 (m, 1H, NCH2 CH_{2}), 3.47 (br s, $1 \mathrm{H}, \mathrm{NH}$), $4.16\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right.$), 7.18-7.35 (m, 6H, H-Ar), $7.34-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.43-7.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.2(3 \mathrm{C}), 25.0,27.6$, 47.2, 65.8, 83.0, 127.2, 127.3, 127.8, (2C) 127.9 (2C), 127.9 (2C), 128.5 (2C), 145.2, 145.9.ppm.

The spectroscopic data agree with previously published results. ${ }^{[180]}$

5.2.7 MethyImagnesium Iodide

To a suspension of flame-dried magnesium ($2.30 \mathrm{~g}, 94.6 \mathrm{mmol}, 1.5$ equiv.) and iodine ($2.0 \mathrm{mg}, 7.9 \mu \mathrm{~mol}$, cat.) in $\mathrm{Et}_{2} \mathrm{O}(14 \mathrm{~mL}, 6.6 \mathrm{M})$ iodomethane ($3.90 \mathrm{~mL}, 62.6 \mathrm{mmol}, 1.0$ equiv.) was added dropwise over a period of 30 min . The reaction mixture was stirred for 2 h at $20^{\circ} \mathrm{C}$. The solution was filtered over celite under an argon atmosphere, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$, and stored under argon as a solution $\left(1.73 \mathrm{~m}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$. The concentration of the solution was determined by Knochel's titration method. ${ }^{[378]}$

24\%

A solution of borane dimethylsulfide (10 m in THF, $0.49 \mathrm{~mL}, 4.9 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($4.9 \mathrm{~mL}, 1.0 \mathrm{~m}$) was treated with α-pinene ($1.6 \mathrm{~mL}, 9.8 \mathrm{mmol}, 2.0$ equiv.) at $0^{\circ} \mathrm{C}$. The solution was stirred for 2 h at $20^{\circ} \mathrm{C}$ before it was cooled to $-35^{\circ} \mathrm{C}$. Phenylacetylene ($0.50 \mathrm{~g}, 4.9 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($4.9 \mathrm{~mL}, 1.0 \mathrm{~m}$) was added dropwise over a period of 30 min and the reaction mixture was stirred at this temperature for 15 min . The reaction was allowed to warm to $20^{\circ} \mathrm{C}$ and acetaldehyde ($5.5 \mathrm{~mL}, 98 \mathrm{mmol}, 20$ equiv.) was added. The reaction mixture was heated at $78^{\circ} \mathrm{C}$ for 12 h . The solvents were removed under reduced pressure afterwards, the residue was taken up in THF ($4.9 \mathrm{~mL}, 1.0 \mathrm{~m}$) and treated with 1,3-propanediol ($1.8 \mathrm{~mL}, 25 \mathrm{mmol}$, 5.0 equiv.). The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 6 h , and the volatile components were removed under reduced pressure. The crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=10: 1 \rightarrow 4: 1 \rightarrow 0: 1$) affording the title compound 153 as a colourless oil ($0.22 \mathrm{~g}, 1.2 \mathrm{mmol}, 24 \%$).
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.9 \mathrm{ppm} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.96\left(\mathrm{p},{ }^{3} \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right)$, $4.04\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.02\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{B}, \mathrm{H}}=18.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BCH}\right), 7.19-7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}, \mathrm{BCHCH}), 7.26-7.30$ (m, 2H, H-Ar), 7.40-7.48 (m, 2H, H-Ar) ppm; ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=27.6,62.0,127.1,128.6,128.6$, 138.0, 147.0 ppm . The olefinic carbons could not be detected due to line broadening

The spectroscopic data agree with previously published results. ${ }^{[379]}$

5.2.9 2-(Dichloromethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (155)

77\%

A solution of dichloromethane ($0.35 \mathrm{~mL}, 5.5 \mathrm{mmol}, 1.1$ equiv.) in dry THF ($10 \mathrm{~mL}, 0.5 \mathrm{~m}$) was cooled to $-100^{\circ} \mathrm{C}$ and treated dropwise with $n-\operatorname{BuLi}(2.5 \mathrm{M}$ in hexane, $2.0 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1.0$ equiv.) over a period of 40 min . After complete addition the reaction mixture was stirred for 30 min at this temperature before trimethyl borate ($0.63 \mathrm{~mL}, 5.5 \mathrm{mmol}$, 1.1 equiv.) was added. The reaction mixture was stirred again for 30 min , treated with hydrochloric acid (5 m in $\mathrm{H}_{2} \mathrm{O}, 1.0 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1.0$ equiv.), and allowed to reach room temperature. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and the solvents of the extract were removed under reduced pressure. The residue was taken up in benzene $(11.0 \mathrm{~mL}, 0.45 \mathrm{M})$ and treated with pinacol ($0.65 \mathrm{~g}, 5.5 \mathrm{mmol}$,
1.1 equiv.). The mixture was heated at $80^{\circ} \mathrm{C}$ for 48 h . The solvent was removed under reduced pressure and the residue was purified by bulb-to-bulb distillation ($20 \mathrm{mbar}, 110^{\circ} \mathrm{C}$) affording the title compound $\mathbf{1 5 5}$ as a colourless oil which solidified upon standing ($0.89 \mathrm{~g}, 4.2 \mathrm{mmol}, 77 \%$).
${ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.1 \mathrm{ppm} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.33\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 5.35(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{Cl}_{2} \mathrm{CH}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.6(4 \mathrm{C}), 25.0(2 \mathrm{C}), 85.9 \mathrm{ppm}$.

The spectroscopic data agree with previously published results. ${ }^{[380]}$

5.2.10 Bis((pinacolato)boryl)methane (197)

In a glovebox, pinacolborane ($1.0 \mathrm{~g}, 3.9 \mathrm{mmol}, 1.0$ equiv.), copper(I) iodide ($38 \mathrm{mg}, 0.20 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and lithium methanolate ($0.22 \mathrm{~g}, 5.9 \mathrm{mmol}, 1.5$ equiv.) were added to a Schlenk flask. The solids were dissolved in dry DMF ($4.0 \mathrm{~mL}, 1.0 \mathrm{~m}$) and the black solution was carefully treated with dibromomethane $(0.27 \mathrm{~mL}$, $3.9 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was stirred for 12 h at $20^{\circ} \mathrm{C}$ before the solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and filtrated over silica gel. The solvents of the filtrate were removed under reduced pressure and the residue was taken up in hexane $(50 \mathrm{~mL})$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvent of the filtrate was removed in vacuo affording the title compound 197 as a colourless oil which solidified upon standing ($0.46 \mathrm{~g}, 1.7 \mathrm{mmol}, 44 \%$).
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=32.6 \mathrm{ppm} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.22(\mathrm{~s}, 24 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.8(8 \mathrm{C}), 82.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{B}}=7 \mathrm{~Hz}, 4 \mathrm{C}\right), 83.0 \mathrm{ppm}$.

The spectroscopic data agree with previously published results. ${ }^{[381]}$

5.3 First Generation Synthesis of Substrates

5.3.1 (But-3-yn-1-yloxy)(tert-butyl)dimethylsilane (198)

A solution of 3-butyn-1-ol ($5.00 \mathrm{~mL}, 66.2 \mathrm{mmol}$, 1.0 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(220 \mathrm{~mL}, 0.3 \mathrm{~m}$) was treated successively with 4-dimethylaminopyridine ($800 \mathrm{mg}, 6.62 \mathrm{mmol}, 10 \mathrm{~mol} \%$), triethylamine ($11.0 \mathrm{~mL}, 79.4 \mathrm{mmol}$,
1.2 equiv.) and t-butyldimethylsilyl chloride ($11.0 \mathrm{~g}, 72.7 \mathrm{mmol}, 1.1$ equiv.) at $0^{\circ} \mathrm{C}$. After complete addition the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . An aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$ was added and the phases were separated afterwards. The organic phase was washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvent was removed under reduced pressure. The crude product was filtrated over a plug of silica gel eluting with pentane/ethyl acetate $=60: 1$ to obtain the silyl ether 198 as a colourless oil ($11.6 \mathrm{~g}, 62.7 \mathrm{mmol}, 95 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=40: 1\right)=0.9$; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.07\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.96\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}\right), 2.40\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CCH}\right), 3.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right) \mathrm{ppm}$;
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.2(2 C), 18.4,22.9,26.0(3 C), 61.8,69.4,81.6 \mathrm{ppm}$.
The spectroscopic data agree with previously published results. ${ }^{[382]}$

5.3.2 5-((tert-Butyldimethylsilyl)oxy)pent-2-yn-1-ol (119)

$n-\mathrm{BuLi}(2.5 \mathrm{~m}$ in hexanes, $21.6 \mathrm{~mL}, 54.1 \mathrm{mmol}, 1.0$ equiv.) was added dropwise to a solution of the silyl ether 198 ($9.97 \mathrm{~g}, 54.1 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($100 \mathrm{~mL}, 0.5 \mathrm{~m}$) at $-40^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min at this temperature and then transferred to a suspension of paraformaldehyde $(4.80 \mathrm{~g}, 160 \mathrm{mmol}$, 3.0 equiv.) in dry THF (50 mL) at $-45^{\circ} \mathrm{C}$ via transfer cannula. After complete addition, the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, washed with brine (200 mL), dried over MgSO_{4}, and filtrated. The solvents were evaporated under reduced pressure and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=4: 1$). The alkyne 119 was obtained as a colourless oil ($9.68 \mathrm{~g}, 45.2 \mathrm{mmol}, 85 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=4: 1\right)=0.4 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.07\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.72\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right), 2.43\left(\mathrm{tt},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz},{ }^{5} \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CC}-\mathrm{CH}_{2}\right), 3.72\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2, \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiOCH}\right)$, $4.23\left(\mathrm{dt},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz},{ }^{5} \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.1(2 C), 18.5,23.3,26.0$ (3C), 51.4, 62.0, 79.6, 83.5 ppm .

The spectroscopic data agree with previously published results. ${ }^{[382]}$
5.3.3 (Z)-5-((tert-Butyldimethylsilyl)oxy)pent-2-en-1-ol (114)

$\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(1.13 \mathrm{~g}, 4.54 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was dissolved in $\mathrm{EtOH}(95 \%, 67 \mathrm{~mL}) . \mathrm{H}_{2}$ was passed through the reaction mixture for 10 min before a solution of $\mathrm{NaBH}_{4}(1 \mathrm{~m}$ in dry $\mathrm{EtOH}, 4.54 \mathrm{~mL}, 4.54 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added dropwise. The reaction mixture immediately turned black and H_{2} was passed through it again for 30 min . Ethylenediamine ($683 \mathrm{mg}, 11.4 \mathrm{mmol}, 25 \mathrm{~mol} \%$) and a solution of alkyne 119 ($9.74 \mathrm{~g}, 45.4 \mathrm{mmol}$, 1.0 equiv.) in dry $\mathrm{EtOH}(120 \mathrm{~mL}, 0.4 \mathrm{~m})$ were added. The reaction mixture was stirred under an H_{2}-atmosphere for 3 h . The solvent was evaporated under reduced pressure and the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine (200 mL), dried over MgSO_{4}, and filtrated. The solvent was removed under reduced pressure. The crude product was purified using column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) yielding the allyl alcohol 114 as a colourless oil ($8.89 \mathrm{~g}, 41.1 \mathrm{mmol}, 91 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=4: 1\right)=0.8 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.05-2.09 (m, 1H, OH), $2.34\left(\mathrm{dtd},{ }^{3} J=7.6,6.1 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 3.64\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiOCH}_{2}\right), 4.14$ $\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HOCH}_{2}\right), 5.55-5.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.78-5.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=-5.2(2 C), 18.6,26.1(3 C), 31.1,58.2,62.4,129.9,131.0 \mathrm{ppm}$.

The spectroscopic data agree with previously published results. ${ }^{[306]}$

5.3.4 2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropyl)methanol (120)

Diethylzinc (1.0 m in hexane, $100 \mathrm{~mL}, 100 \mathrm{mmol}$, 2.0 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and a solution of TFA ($7.70 \mathrm{~mL}, 100 \mathrm{mmol}$, 2.0 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}, 2 \mathrm{M})$ was carefully added over a period of 30 min . The reaction mixture was stirred for 20 min at this temperature before a solution of $\mathrm{CH}_{2} \mathrm{I}_{2}(8.04 \mathrm{~mL}$, 100 mmol , 2.0 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}, 2 \mathrm{M})$ was added over a period of 20 min . The mixture was again stirred for 20 min at $0^{\circ} \mathrm{C}$ and a solution of allyl alcohol 114 ($10.8 \mathrm{~g}, 50.0 \mathrm{mmol}, 1.0$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL}, 1 \mathrm{~m})$ was added to the reaction mixture over a period of 20 min . The resulting clear solution was stirred for 45 min at $20^{\circ} \mathrm{C} . \mathrm{HCl}\left(0.1 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 180 \mathrm{~mL}\right)$ was added to the reaction mixture before the phases were separated. The aqueous phase was extracted with ethyl acetate $(3 \times 500 \mathrm{~mL})$ and the combined organic phases were washed with brine (500 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under
reduced pressure and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=6: 1$) to yield the homocyclopropyl alcohol 120 as a colourless oil ($10.9 \mathrm{~g}, 47.3 \mathrm{mmol}, 89 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=4: 1$) $=0.8$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{NaO}_{2} \mathrm{Si}, 253.1600$, found: 253.1615; IR (ATR): $\tilde{v}=3375,3065,2954,2929,2885,2857,1471,1389,1254,1096,1043,1006,835,775 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.08\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}\right.$-cyclopropyl$), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}), 0.66\left(\mathrm{~m}_{\mathrm{c}}\right.$, 1H, H-cyclopropyl), 0.75-0.80 (m, 1H, H-cyclopropyl), $0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.47 $\left(m_{c}, 1 \mathrm{H}, \mathrm{TBSOCH}_{2} \mathrm{CH}_{2}\right), 1.82\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{TBSOCH}_{2} \mathrm{CH}_{2}\right), 3.23\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{HOCH}_{2}\right), 3.47\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{OH}\right), 3.70\left(\mathrm{~m}_{\mathrm{c}}\right.$, $\left.1 \mathrm{H}, \mathrm{TBSOCH}_{2}\right), 3.83\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{HOCH}_{2}\right), 3.87\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{TBSOCH}_{2}\right) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.3$, $-5.2,7.6,13.8,18.7,18.8,26.2$ (3C), 30.8, 62.6, 64.6 ppm.

5.3.5 2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropane-1-carbaldehyde (113)

To a solution of homocyclopropyl alcohol 120 ($9.07 \mathrm{~g}, 39.4 \mathrm{mmol}, 1.0$ equiv.) in MeCN ($200 \mathrm{~mL}, 0.2 \mathrm{~m}$) were added $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]$ OTf ($742 \mathrm{mg}, 1.97 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $2,2^{\prime}-\mathrm{bpy}(308 \mathrm{mg}, 1.97 \mathrm{mmol}, 5 \mathrm{~mol} \%$), acetamido-TEMPO ($420 \mathrm{mg}, 1.97 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and NMI ($310 \mu \mathrm{~L}, 3.94 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The resulting brown solution was stirred under an O_{2}-atmosphere for 45 min until it turned to dark green. $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 300 \mathrm{~mL})$. The combined organic phases were washed with brine (300 mL), dried over MgSO_{4}, and filtrated. The solvent was evaporated under reduced pressure and the crude product filtrated through a plug of silica gel eluting with pentane/ethyl acetate $=10: 1$. The solution was washed with $\mathrm{HCl}\left(1 \mathrm{~m}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 2 \times 100 \mathrm{~mL}\right)$, dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure to yield the cyclopropylcarbaldehyde 113 as a colourless oil (8.79 g , $38.5 \mathrm{mmol}, 98 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.2$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NaO}_{2} \mathrm{Si}, 251.1443$, found: 251.1455; IR (ATR): $\tilde{v}=3003,2953,2928,2886,2857,1704,1471,1463,1443,1390,1254,1101,988,835,811,776$, $689 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right.$, H-cyclopropyl$)$, 1.24 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.60 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), $1.67-1.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{TBSOCH}_{2} \mathrm{CH}_{2}\right), 1.82\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right.$, TBSOCH ${ }_{2} \mathrm{CH}_{2}$), 1.89-1.93 (m, 1H, H-cyclopropyl), 3.62-3.69 (m, 2H, TBSOCH$\left.)_{2}\right), 9.42\left(\mathrm{~d},{ }^{3} J=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHO) ppm; ${ }^{13}$ C NMR (176 MHz, CDCl_{3}): $\delta=-3.4(2 C), 14.2,21.8,26.1$ (3C), 27.4, 31.2, 63.1, 201.6 ppm.

A suspension of benzyltriphenylphosphonium bromide ($2.9 \mathrm{~g}, 6.6 \mathrm{mmol}, 1.5$ equiv.) in dry THF ($21 \mathrm{~mL}, 0.2 \mathrm{~m}$) was treated with $n-\mathrm{BuLi}\left(2.5 \mathrm{~m}\right.$ in hexanes, $2.6 \mathrm{~mL}, 6.6 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and cooled to $-78^{\circ} \mathrm{C}$, afterwards. A solution of aldehyde $113(1.0 \mathrm{~g}, 4.4 \mathrm{mmol}$, 1.0 equiv.) in dry THF ($7.0 \mathrm{~mL}, 0.6 \mathrm{~m}$) was added dropwise over a period of 30 min . After complete addition the reaction mixture was allowed to reach $20^{\circ} \mathrm{C}$ and stirred at this temperature for 3 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and the phases were separated. The aqueous phase was extracted with pentane ($3 \times 100 \mathrm{~mL}$). The combined organic phases were washed with brine (100 mL), dried over MgSO_{4}, filtrated, and concentrated in vacuo. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=100: 1$) delivered the silyl ether 121 as a colourless oil ($1.2 \mathrm{~g}, 4.1 \mathrm{mmol}, 93 \%, E / Z=2: 1$). The diastereomers were separated by preparative HPLC (Nu 50-5, $32 \times 50 \mathrm{~mm}$, hexane, flow: $64 \mathrm{ml} / \mathrm{min}$).
(\boldsymbol{E})-121: $\mathbf{R}_{\mathbf{f}}$ (pentane/diethyl ether $=100: 1$) = 0.5; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaOSi}, 325.1964$, found: 325.1958; IR (ATR): $\tilde{v}=3063,3024,2953,2926,2855,1737,1645,1602,1494,1470,1463,1449,1381$, 1361, 1254, 1216, 1159, 1096, 1030, 1006, 957, 908, 890, 834, 810, 774, 755, 692, $666 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.39\left(\mathrm{ddd},{ }^{2} J=5.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), $\left.0.90(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCCH})_{3}\right)$, 1.01 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.08-1.18 (m, 1H, H-cyclopropyl), $1.59-1.71$ (m, 3H, CH ${ }_{2}$, H-cyclopropyl), 3.69 (ddt, $\left.{ }^{2} J=10.0 \mathrm{~Hz},{ }^{3} J=6.1 \mathrm{~Hz},{ }^{4} J=3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.97\left(\mathrm{dd},{ }^{3} J=15.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 6.50\left(\mathrm{~d},{ }^{3} J=15.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH), 7.15-7.20 (m, 1H, H-Ar), 7.26-7.34 (m, 4H, H-Ar) ppm; ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.1$ (2C), 13.3, 16.3, 18.5, 19.3, 26.1 (3C), 32.9, 63.4, 125.8 (2C), 126.7, 128.6 (2C), 129.9, 130.8, 138.0 ppm.
(Z)-121: $\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=100: 1$) $=0.5$; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaOSi}, 325.1964$, found: 325.1958; IR (ATR): $\tilde{v}=3063,3024,2953,2926,2855,1737,1645,1602,1494,1470,1463,1449,1381$, 1361, 1254, 1216, 1159, 1096, 1030, 1006, 957, 908, 890, 834, 810, 774, 755, 692, $666 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H} \mathbf{N M R}(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.31\left(\mathrm{ddd},{ }^{2} J=5.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), $0.90(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CCH})$, $1.03\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.07-1.20 (m, 1H, H-cyclopropyl), $1.64\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90$ (dddt, ${ }^{3} \mathrm{~J}=9.3,9.3$, $8.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), $3.72\left(\mathrm{td},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiOCH}\right)_{2}$, 5.37 (dd, ${ }^{3} \mathrm{~J}=11.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{ArCH}=\mathrm{CH}), 6.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}\right), 7.19-7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.33\left(\mathrm{dd},{ }^{3} J=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right)$, 7.41-7.47 (m, 2H, H-Ar) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}_{2} \mathrm{CDCl}_{3}$): $\delta=-5.1$ (2C), 15.3, 15.8, 16.6, 18.5, 26.1 (3C), 33.1, 63.3, 126.6, 128.3 (2C), 128.9 (2C), 129.6, 132.5, 138.0 ppm.
5.3.7 tert-Butyldimethyl(2-(2-vinylcyclopropyl)ethoxy)silane (123)

A suspension of methyltriphenylphosphonium bromide ($16.2 \mathrm{~g}, 45.5 \mathrm{mmol}, 1.5$ equiv.) in dry THF (60.0 mL , $0.5 \mathrm{~m})$ was treated with $n-\operatorname{BuLi}\left(2.5 \mathrm{~m}\right.$ in hexanes, $18.2 \mathrm{~mL}, 45.5 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was cooled to $-78^{\circ} \mathrm{C}$ and a solution of aldehyde $113(6.92 \mathrm{~g}, 30.3 \mathrm{mmol}$, 1.0 equiv.) in dry THF ($20.0 \mathrm{~mL}, 1.5 \mathrm{~m}$) was added dropwise over a period of 30 min . After complete addition the reaction mixture was allowed to reach $20^{\circ} \mathrm{C}$ and stirred at this temperature for 18 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and the phases were separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The combined organic phases were washed with brine (200 mL) , dried over MgSO_{4}, filtrated, and concentrated in vacuo. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=60: 1$) delivered the silyl ether 123 as a colourless oil ($5.94 \mathrm{~g}, 26.2 \mathrm{mmol}, 87 \%$)
$\mathbf{R}_{\mathbf{f}}$ (pentane/diethyl ether $=40: 1$) = 0.9; ESI-TOF $(m / z):[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{OSi}$, 227.1826, found: 227.1825; IR (ATR): $\tilde{v}=3082,3068,2998,2954,2928,2895,2857,2361,2342,1634,1471,1463,1433,1389,1361$, 1319, 1294, 1254, 1185, 1159, 1140, 1097, 1062, 1030, 1006, 985, 964, 938, 894, 833, 810, 773, 737, 677, $661 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.05\left(\mathrm{~d},{ }^{4} J=1.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.22-0.34(\mathrm{~m}, 1 \mathrm{H}, H$-cyclopropyl), 0.82-0.89 (m, 1H, H-cyclopropyl), $0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CCH}_{3}\right) 0.96-1.06(\mathrm{~m}, 1 \mathrm{H}, H$-cyclopropyl), 1.46-1.52 (m, 1H, H-cyclopropyl), 1.53-1.56 (m, 2H, C H 2), 3.60-3.72 (m, 2H, C H ${ }_{2}$), $4.98\left(\mathrm{ddd},{ }^{2} J=2.0 \mathrm{~Hz},{ }^{3} J=10.3 \mathrm{~Hz},{ }^{4} J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}\right.$), 5.11 (ddd, ${ }^{2} J=2.0 \mathrm{~Hz},{ }^{3} J=17.0 \mathrm{~Hz},{ }^{4} J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}$), 5.56 (ddd, ${ }^{3} J=17.0,10.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$) ppm; ${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.1(2 C), 12.4,15.5,18.5,19.5,26.1(3 C), 32.6,63.4,114.3,138.4 \mathrm{ppm}$.

5.3.8 2-(2-((E)-Styryl)cyclopropyl)acetaldehyde (116b)

A solution of silyl ether 113 ($2.2 \mathrm{~g}, 7.1 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(71 \mathrm{~mL}, 0.1 \mathrm{~m})$ was treated with $\mathrm{HCl}(10 \mathrm{wt}-\%$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.12 \mathrm{~mL}, 0.36 \mathrm{mmol}, 5 \mathrm{~mol} \%\right)$ at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h and the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$ and the combined organic phases were washed with brine (100 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. The residue was taken up in DMSO ($71 \mathrm{~mL}, 0.1 \mathrm{~m}$) and treated with IBX ($3.0 \mathrm{~g}, 11 \mathrm{mmol}, 1.5$ equiv.). The reaction mixture was stirred for 18 h and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$ and the combined organic phases were washed with brine $(3 \times 100 \mathrm{~mL})$ thoroughly. The organic phase was dried over MgSO_{4}, filtrated and
the solvents were removed in vacuo. The crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=40: 1 \rightarrow 20: 1$) to deliver the aldehyde $\mathbf{1 1 6 b}$ as a colourless oil $(1.1 \mathrm{~g}, 6.1 \mathrm{mmol}, 85 \%$ over 2 steps).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) = 0.6; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}, 209.0937$, found: 209.0934; IR (ATR): $\tilde{v}=3060,3023,2956,2921,2822,2723,1721,1644,1598,1542,1493,1448,1415,1385,1297$, 1262, 1220, 1180,1156, 1142, 1074, 1029, 957, 915, 841, 795, 749, $69 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.50$ (dt, ${ }^{2} J=5.4 \mathrm{~Hz},{ }^{3} J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 1.14 (td, ${ }^{2} J=5.4 \mathrm{~Hz},{ }^{3} J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 1.39 (me, $1 \mathrm{H}, H$-cyclopropyl), 1.81 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), $2.45\left(\mathrm{ddd},{ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), 2.51 (ddd, $\left.{ }^{2} J=17.6 \mathrm{~Hz},{ }^{3} J=7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.95\left(\mathrm{dd},{ }^{3} J=15.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 6.51\left(\mathrm{dd},{ }^{3} J=15.8 \mathrm{~Hz},{ }^{4} J=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}), 7.18-7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.27-7.33(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 9.81\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=12.4,12.5,18.5,43.7,125.9(2 C), 127.2,128.7(2 C), 128.8,131.4,137.5,202.2 \mathrm{ppm}$.

5.3.9 (E)-4-(2-((E)-Styryl)cyclopropyl)but-2-enal (109a)

KOt - $\mathrm{Bu}(0.16 \mathrm{~g}, 1.4 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt $124(0.63 \mathrm{~g}, 1.5 \mathrm{mmol}$, 2.7 equiv.) in dry $\operatorname{THF}(5.8 \mathrm{~mL}, 0.25 \mathrm{~m})$ at $0^{\circ} \mathrm{C}$. The resulting slurry was stirred for 1 h at $0^{\circ} \mathrm{C}$ before a solution of the aldehyde $116 \mathbf{b}(0.10 \mathrm{~g}, 0.54 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($1.4 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 6 h . Oxalic acid $\left(0.9 \mathrm{~m}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 6.0 \mathrm{~mL}$, $5.4 \mathrm{mmol}, 10.0$ equiv.) was added and the biphasic mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. NaHCO_{3} $(60 \mathrm{~mL})$ and brine $(60 \mathrm{~mL})$ subsequently, dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the title compound 109a as a colourless oil ($96 \mathrm{mg}, 0.45 \mathrm{mmol}, 84 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.4$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}, 235.1093$, found: 235.1106; IR (ATR): $\tilde{v}=3060,3024,2995,2914,2815,2727,1690,1683,1633,1595,1492,1421,1308,1135$, 1114, 1099, 1078, 1032, 1011, 968, 915, 880, 813, 795, 788, 749, 724, 692, $678 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.49\left(m_{c}, 1 H, H\right.$-cyclopropyl), $1.10\left(\mathrm{ddd},{ }^{2} J=5.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.16-1.23(m, 1 H , H-cyclopropyl), 1.79 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), 2.34-2.47 (m, 2H, CH2), 5.98 ($\mathrm{dd},{ }^{3} \mathrm{~J}=15.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}$), 6.24 (ddt, ${ }^{3} J=15.7,7.9 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, H \mathrm{CCHO}$), $6.52\left(\mathrm{dd},{ }^{3} J=15.7 \mathrm{~Hz},{ }^{4} J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}\right), 6.91(\mathrm{dt}$, $\left.{ }^{3} J=15.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}, H \mathrm{C}=\mathrm{CHCHO}\right), 7.17-7.22(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 7.27-7.33(\mathrm{~m}, 4 \mathrm{H}, H-\mathrm{Ar}), 9.52\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHO) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.8,17.2,19.3,32.4,125.9$ (2C), 127.1, 128.7 (2C), 128.9, 131.2, 133.1, 137.6, 157.8, 194.2 ppm.

An enantiomerically pure sample was obtained by preparative HPLC. $[\alpha]_{D}^{20}=+0.99\left(\mathrm{c}=1.13, \mathrm{CHCl}_{3}\right)$

HPLC: $0.55 \% \mathrm{EtOH} /$ pentane, Chiralpak IA, $1 \mathrm{~mL} / \mathrm{min}, 28$ bar.

5.3.10 (trans-2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropane-1-carbaldehyde (200)

To a solution of homocyclopropyl alcohol $199(2.0 \mathrm{~g}, 8.7 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeCN}(43 \mathrm{~mL}, 0.2 \mathrm{~m})$ were added $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{OTf}(0.16 \mathrm{~g}, 0.43 \mathrm{mmol}, 5 \mathrm{~mol} \%), 2,2^{\prime}-$ bpy $(67 \mathrm{mg}, 0.43 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, acetamido-TEMPO (92 mg , $0.43 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathrm{NMI}(69 \mu \mathrm{~L}, 0.87 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The resulting brown solution was stirred under an
O_{2}-atmosphere for 45 min until it turned to dark green. $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine $(100 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvent was evaporated under reduced pressure and the crude product filtrated through a plug of silica gel eluting with pentane/ethyl acetate $=10: 1$. The solvents were removed under reduced pressure to yield the cyclopropylcarbaldehyde 200 as a colourless oil ($1.9 \mathrm{~g}, 8.5 \mathrm{mmol}, 98 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.5$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}, 229.1619$, found: 229.1610; IR (ATR): $\tilde{v}=2953,2929,2886,2857,2725,1709,1472,1434,1406,1389,1361,1255,1197,1168,1101$, 1030, 1007, 939, 918, 836, 811, 776, $730 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.01-0.11\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right)$, 0.89-0.89 (m, 9H, SiCCH ${ }_{3}$), 0.95-0.98 (m, 1H, H-cyclopropyl), 1.27-1.32 (m, 1H, H-cyclopropyl), 1.53-1.58 (m, 2H, cyclopropyICH2 $), 1.59-1.61$ (m, 1H, H-cyclopropyl), 1.64-1.69 (m, 1H, H-cyclopropyl), 3.66-3.70 (m, 2H, $\left.\mathrm{SiOCH} \mathrm{H}_{2}\right), 9.00\left(\mathrm{dd},{ }^{3} \mathrm{~J}=5.6 \mathrm{~Hz},{ }^{4} J=0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.2(2 \mathrm{C}), 14.6$, 18.4, 19.8, 26.1 (3C), 30.2, 35.9, 62.5, 201.1 ppm .

5.3.11 (tert-Butyldimethyl(2-(trans-2-((E)-styryl)cyclopropyl)ethoxy)silane (201)

A suspension of benzyltriphenylphosphonium bromide ($5.26 \mathrm{~g}, 12.2 \mathrm{mmol}, 2.7$ equiv.) in dry THF (27.0 mL , 0.2 M) was treated with $n-\operatorname{BuLi}\left(2.5 \mathrm{~m}\right.$ in hexanes, $4.90 \mathrm{~mL}, 12.2 \mathrm{mmol}, 2.7$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . A solution of aldehyde $200(1.10 \mathrm{~g}, 4.60 \mathrm{mmol}, 1.0$ equiv.) in dry THF (14.0 mL , 0.6 m) was added dropwise over a period of 30 min . After complete addition the reaction mixture was allowed to reach $20^{\circ} \mathrm{C}$ and stirred at this temperature for 3 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(20 \mathrm{~mL})$ and the phases were separated. The aqueous phase was extracted with pentane $(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried over MgSO_{4}, filtrated, and concentrated in vacuo. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=100: 1$) delivered the silyl ether 201 as a colourless oil ($1.08 \mathrm{~g}, 3.56 \mathrm{mmol}, 78 \%, E / Z=2: 1$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/diethyl ether $=100: 1$) $=0.5$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{OSi}$, 303.2139, found: 303.2138; IR (ATR): $\tilde{v}=3062,3024,2998,2953,2927,2897,2856,1650,1598,1493,1471,1463,1448,1388,1361$, 1254, 1099, 1045, 1027, 1007, 956, 938, 908, 888, 834, 810, $774,741 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.07$ (d, ${ }^{5} J=1.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{SiCH} \mathrm{S}_{3}$), 0.65 (dddd, ${ }^{2} J=4.7 \mathrm{~Hz},{ }^{3} J=9.7,7.3 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 0.70 (ddd, $\left.{ }^{2} J=4.7 \mathrm{~Hz},{ }^{3} J=8.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCCH}_{3}\right), 0.93-0.95(\mathrm{~m}, 1 \mathrm{H}, H$-cyclopropyl), 1.32-1.37(m,1H, H-cyclopropyl), 1.48-1.53 (m, 1H, SiOCH CH_{2}), $1.58\left(\mathrm{dt},{ }^{2} J=13.5 \mathrm{~Hz},{ }^{3} J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SiOCH}_{2} \mathrm{CH}_{2}\right), 3.71(\mathrm{t}$, $\left.{ }^{3} J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiOCH}_{2} \mathrm{CH}_{2}\right), 5.78\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.42\left(\mathrm{~d},{ }^{3} J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right)$, 7.13-7.18 (m, 1H, H-Ar), 7.24-7.31 (m, 4H, H-Ar) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.1(2 C), 14.3,18.6$, 18.6, 22.1, 26.1 (3C), 37.3, 63.1, 125.7 (2C), 126.6, 127.2, 128.6 (2C), 134.6, 138.0 ppm.
5.3.12 2-(trans-2-((E)-Styryl)cyclopropyl)acetaldehyde (202)

A solution of the silyl ether $201(906 \mathrm{mg}, 2.99 \mathrm{mmol}, E: Z=2: 1,1.0$ equiv.) in $\mathrm{MeOH}(30.0 \mathrm{~mL}, 0.1 \mathrm{~m})$ was treated with $\mathrm{HCl}\left(10 \mathrm{wt}-\%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 52.1 \mu \mathrm{~L}, 159 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%\right)$ at $20^{\circ} \mathrm{C}$. The reaction solution was stirred at this temperature for 3 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried over MgSO_{4}, and filtrated. The residue was dissolved in dry DMSO ($30.0 \mathrm{~mL}, 0.1 \mathrm{~m}$). IBX ($1.26 \mathrm{~g}, 4.49 \mathrm{mmol}$, 1.5 equiv.) was added to the solution and the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine $(100 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvents were removed in vacuo and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=40: 1 \rightarrow 20: 1$) to obtain the aldehyde 202 as a colourless oil ($346 \mathrm{mg}, 1.86 \mathrm{mmol}, 62 \%, E / Z>20: 1$) and the Z-isomer of 202 ($114 \mathrm{mg}, 0.61 \mathrm{mmol}, 20 \%, Z / E>20: 1$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) = 0.6; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}, 209.0937$, found: 209.0944; IR (ATR): $\tilde{v}=3073,3060,3024,2924,2717,1722,1649,1596,1492,1448,1392,1072,1038,959$, 913, $746 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=0.75\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $0.88\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.14-1.23 (m, 1H, H-cyclopropyl), 1.44 (dddd, ${ }^{3} J=8.7,8.7,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 2.36 (ddd, ${ }^{2} J=17.1 \mathrm{~Hz}$, $\left.{ }^{3} J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{2}\right), 2.50\left(\mathrm{ddd},{ }^{2} J=17.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{2}\right), 5.81\left(\mathrm{dd},{ }^{3} J=15.8,8.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}), 6.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 7.15-7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.26-7.31(\mathrm{~m}, 4 \mathrm{H}, H-\mathrm{Ar}), 9.82$ $\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,14.6,21.8,47.9,125.8,126.9$ (2C), 128.4, 128.6 (2C), 132.7, 137.6, 201.7 ppm.

5.3.13 (E)-4-(trans-2-((E)-Styryl)cyclopropyl)but-2-enal (203)

83\%

KOt - Bu ($525 \mathrm{mg}, 4.68 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt 124 (2.09 g , $4.87 \mathrm{mmol}, 2.7$ equiv.) in dry THF ($20 \mathrm{~mL}, 0.25 \mathrm{~m}$) at $0^{\circ} \mathrm{C}$. The resulting slurry was stirred for 1 h at $0^{\circ} \mathrm{C}$ before a solution of the aldehyde $202(335 \mathrm{mg}, 1.80 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($4.5 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 6 h . Oxalic acid (0.9 M
in $\mathrm{H}_{2} \mathrm{O}, 20.0 \mathrm{~mL}, 18.0 \mathrm{mmol}$, 10.0 equiv.) was added and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the title compound 203 as a pale yellow oil $(318 \mathrm{mg}, 1.50 \mathrm{mmol}, 83 \%)$.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.4$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}, 213.1274$, found: 213.1285; IR (ATR): $\tilde{v}=3024,2998,2817,2732,1685,1636,1598,1492,1448,1415,1306,1140,1117,1096,1075,1025$, 958, 872, 821, $745 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.64-0.71(\mathrm{~m}, 1 \mathrm{H}, H$-cyclopropyl), 0.76-0.79(m,1H, H-cyclopropyl), 0.96-1.00 (m, 1H, H-cyclopropyl), 1.36 (dddd, ${ }^{3} J=8.7,8.6,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 2.27-2-35 (m, 2H, CH2), $5.74\left(\mathrm{ddd},{ }^{3} J=15.7,8.7 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}=\mathrm{CH}\right), 6.18\left(\mathrm{ddd},{ }^{3} J=15.3,7.9 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}=\mathrm{CH}\right), 6.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.85\left(\mathrm{dt},{ }^{3} \mathrm{~J}=15.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}=\mathrm{CH}\right)$, 7.11-7.14 (m, 1H, H-Ar), 7.19-7.26 (m, 4H, H-Ar), $9.49\left(d,{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.3,19.1,22.2,36.7,125.8(2 C), 126.9,128.2,128.7(2 C), 132.9,133.3,137.6,157.0,194.1 \mathrm{ppm}$.

5.4 Optimisation of Reaction Conditions for the DVCPR of α, β-Unsaturated Aldehydes

A solution of aldehyde $\mathbf{1 0 9 a}$ ($10.6 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 1.0$ equiv.) in the indicated solvent (0.1 m) was treated with the corresponding catalyst ($10.0 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) and additive. The reaction was stirred at $20^{\circ} \mathrm{C}$. An aliquot $(10.0 \mu \mathrm{~L})$ was taken at the indicated reaction times, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield a volume of $190 \mu \mathrm{~L}$, and treated with a solution of 2-methoxynaphthalene ($10.0 \mu \mathrm{~L}, 0.025 \mathrm{~m}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The conversion as well as the diastereomeric ratio were determined via GC-MS with 2-methoxynaphthalene as standard.

Entry	Catalyst	Additive	Solvent	Time [h]	Conv. [\%]	d.r.
1	pyrrolidine (48f)	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20	30	$3: 1$
2	pyrrolidine (48f)	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	43	31	$3: 1$
3	piperidine (48g)	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20	20	$3: 1$

Entry	Catalyst	Additive	Solvent	Time [h]	Conv. [\%]	d.r.
4	piperidine (48g)	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	43	38	3:1
5	morpholine (48h)	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20	2	4:1
6	morpholine (48h)	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	43	7	2:1
7	48c	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20	75	>20:1
8	48c	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	43	96	>20:1
9*	48c	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	43	>20:1
10*	48c	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	62	>20:1
11*	48c	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	72	>20:1
12	48d	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20	32	>20:1
13	48d	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	43	60	>20:1
14	48b	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20	2	>20:1
15	48b	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	43	2	>20:1
16*	48c	-	CHCl_{3}	4	16	>20:1
17*	48c	-	CHCl_{3}	23	38	>20:1
18*	48c	-	CHCl_{3}	51	26	>20:1
19	48c	-	CHCl_{3}	4	19	>20:1
20	48 c	-	CHCl_{3}	8	38	>20:1
21	48c	-	CHCl_{3}	29	21	>20:1
22	48c	-	1,2-DCE	4	43	>20:1
23	48c	-	1,2-DCE	20	68	>20:1
24	48c	-	1,2-DCE	44	78	>20:1
25	48c	-	MeCN	4	16	>20:1
26	48c	-	MeCN	20	33	>20:1
27	48c	-	MeCN	44	47	>20:1
28	48c	-	PhMe	4	19	>20:1
29	48c	-	PhMe	20	25	>20:1
30	48c	-	PhMe	44	34	>20:1
31	48c	-	cyclohexane	4	18	8:1
32	48c	-	cyclohexane	20	26	4:1
33	48c	-	cyclohexane	44	23	3:1
34	48c	-	$\mathrm{Et}_{2} \mathrm{O}$	4	12	>20:1
35	48c	-	$\mathrm{Et}_{2} \mathrm{O}$	20	31	>20:1

Entry	Catalyst	Additive	Solvent	Time [h]	Conv. [\%]	d.r.
36	48c	-	$\mathrm{Et}_{2} \mathrm{O}$	44	41	>20:1
37	48c	-	EtOAc	4	11	>20:1
38	48c	-	EtOAc	20	24	>20:1
39	48c	-	EtOAc	44	31	>20:1
40	48c	-	DMSO	4	5	12:1
41	48c	-	DMSO	20	4	>20:1
42	48c	-	DMSO	44	7	>20:1
43	48c	-	THF	4	9	>20:1
44	48c	-	THF	20	20	>20:1
45	48c	-	THF	44	29	>20:1
46	48c	-	chlorobenzene	4	11	12:1
47	48c	-	chlorobenzene	23	25	6:1
48	48c	-	chlorobenzene	51	35	5:1
49	48c	$\begin{gathered} \mathrm{HCl} \\ (1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	62	>20:1
50	48c	$\begin{gathered} \mathrm{HCl} \\ (1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	60	>20:1
51	48c	$\begin{gathered} \mathrm{HCl} \\ (1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	65	>20:1
52	48c	HCl ($5 \mathrm{~mol} \%$)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	36	>20:1
53	48c	$\begin{gathered} \mathrm{HCl} \\ (5 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	45	>20:1
54	48c	$\begin{gathered} \mathrm{HCl} \\ (5 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	49	>20:1
55	48c	HCl (10 mol\%)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	25	>20:1
56	48c	$\begin{gathered} \mathrm{HCl} \\ (10 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	31	>20:1
57	48c	HCl ($10 \mathrm{~mol} \%$)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	34	>20:1
58	48c	$\begin{gathered} \mathrm{HCl} \\ (20 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	5	10:1
59	48c	$\begin{gathered} \mathrm{HCl} \\ (20 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	5	9:1

Entry	Catalyst	Additive	Solvent	Time [h]	Conv. [\%]	d.r.
60	48c	$\begin{gathered} \mathrm{HCl} \\ (20 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	5	8:1
61	48c	$\begin{gathered} \mathrm{AcOH} \\ (0.1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1	24	>20:1
62	48c	$\begin{gathered} \mathrm{AcOH} \\ (0.1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2	49	>20:1
63	48c	$\begin{gathered} \mathrm{AcOH} \\ (0.1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	63	>20:1
64	48c	$\begin{gathered} \mathrm{AcOH} \\ (0.1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	68	>20:1
65	48c	AcOH (0.1 mol\%)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	71	>20:1
66	48c	$\begin{gathered} \mathrm{AcOH} \\ (1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	73	>20:1
67	48c	$\begin{gathered} \mathrm{AcOH} \\ (1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	68	>20:1
68	48c	$\begin{gathered} \mathrm{AcOH} \\ (5 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	48	>20:1
69	48c	$\begin{gathered} \mathrm{AcOH} \\ (5 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	61	>20:1
70	48c	AcOH ($10 \mathrm{~mol} \%$)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	83	>20:1
71	48c	AcOH (10 mol\%)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	50	>20:1
72	48c	AcOH (20 mol\%)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	64	>20:1
73	48c	AcOH (20 mol\%)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	45	>20:1
74	48c	$\begin{gathered} \mathrm{BzOH} \\ (1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	70	>20:1
75	48c	$\begin{gathered} \mathrm{BzOH} \\ (1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	71	>20:1
76	48c	$\begin{gathered} \mathrm{BzOH} \\ (5 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	45	>20:1
77	48c	$\begin{gathered} \mathrm{BzOH} \\ (5 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	50	>20:1
78	48c	$\begin{gathered} \mathrm{BzOH} \\ (10 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	33	>20:1

Entry	Catalyst	Additive	Solvent	Time [h]	Conv. [\%]	d.r.
79	48c	BzOH ($10 \mathrm{~mol} \%$)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	32	>20:1
80	48c	$\begin{gathered} \mathrm{BzOH} \\ (20 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	29	>20:1
81	48c	$\begin{gathered} \mathrm{BzOH} \\ (20 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	28	>20:1
82	48c	$\begin{gathered} 3-\mathrm{NO}_{2}- \\ \mathrm{BzOH} \\ (1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2	72	>20:1
83	48c	$\begin{gathered} 3-\mathrm{NO}_{2}- \\ \mathrm{BzOH} \\ (5 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2	54	>20:1
84	48c	$\begin{gathered} 3-\mathrm{NO}_{2}- \\ \mathrm{BzOH} \\ (10 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2	51	>20:1
85	48c	$\begin{gathered} 3-\mathrm{NO}_{2}- \\ \mathrm{BzOH} \\ (10 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	7	44	>20:1
86	48c	$\begin{gathered} 3-\mathrm{NO}_{2}- \\ \mathrm{BzOH} \end{gathered}$ (20 mol\%)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2	42	>20:1
87	48c	$\begin{gathered} 3-\mathrm{NO}_{2}- \\ \mathrm{BzOH} \end{gathered}$ (20 mol\%)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	7	41	>20:1
88	48c	MeOH (20 mol\%)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	55	>20:1
89	48c	$\begin{gathered} \mathrm{MeOH} \\ (20 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	69	>20:1
90	48c	MeOH (20 mol\%)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	71	>20:1
91	48c	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (20 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	71	>20:1
92	48c	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ (20 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	74	>20:1
93	48c	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (20 mol\%)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	81	>20:1
94	-	$\begin{gathered} \mathrm{AcOH} \\ (0.1 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	no conversion	-

Entry	Catalyst	Additive	Solvent	Time [h]	Conv. [\%]	d.r.
95	-	AcOH $(0.1 \mathrm{~mol} \%)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	no	-
96	-	AcOH $(0.1 \mathrm{~mol} \%)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	conversion	no

*The reaction was run at $40^{\circ} \mathrm{C}$

5.5 Nickel-catalysed Reductive Coupling of Tetrahydropyrans

5.5.1 (Z)-3-Pentene-1-ol (129)

58\%
$\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.30 \mathrm{~g}, 1.1 \mathrm{mmol}$, $10 \mathrm{~mol} \%)$ was dissolved in $\mathrm{EtOH}(95 \%, 11 \mathrm{~mL}) . \mathrm{H}_{2}$ was passed through the reaction mixture for 10 min before a solution of NaBH_{4} (1 m in dry $\mathrm{EtOH}, 1.1 \mathrm{~mL}, 1.1 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added dropwise. The reaction mixture immediately turned black and H_{2} was passed through it again for 30 min . Ethylenediamine ($0.18 \mathrm{~mL}, 2.7 \mathrm{mmol}, 25 \mathrm{~mol} \%$) and a solution of alkyne 3-pentyne-1-ol (1.0 mL , $11 \mathrm{mmol}, 1.0$ equiv.) in dry $\mathrm{EtOH}(22 \mathrm{~mL}, 0.4 \mathrm{~m})$ were added. The reaction mixture was stirred under an H_{2}-atmosphere for 18 h . The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and filtrated over celite. The solvent was removed under reduced pressure (150 mbar). The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried over MgSO_{4}, and filtrated. The filtrate was purified by fractioned distillation ($\mathrm{bp}=134^{\circ} \mathrm{C}$, $1 \mathrm{bar})$ to afford the title compound as a colourless oil ($0.54 \mathrm{~g}, 6.3 \mathrm{mmol}, 58 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/diethyl ether $=5: 1$) $=0.3$; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.64\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.33\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.64\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 5.39\left(\mathrm{dtq},{ }^{3} J=11.0,7.4 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}\right.$), $5.58-5.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.1,30.6,62.4,126.2,127.4 \mathrm{ppm}$.

The spectroscopic data agree with previously published results. ${ }^{[383]}$

Zinc chloride ($158 \mathrm{mg}, 1.16 \mathrm{mmol}$, 1.1 equiv.), was flame-dried at $240^{\circ} \mathrm{C}$ and treated with p-toluenesulfonic acid monohydrate ($221 \mathrm{mg}, 1.16 \mathrm{mmol}$, 1.1 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}, 0.23 \mathrm{~m})$. At $0{ }^{\circ} \mathrm{C}$, a solution of freshly distilled cinnamaldehyde ($130 \mu \mathrm{~L}, 1.05 \mathrm{mmol}, 1.0$ equiv.) and alcohol 129 ($100 \mathrm{mg}, 1.16 \mathrm{mmol}, 1.1$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}, 0.23 \mathrm{~m})$ was added dropwise over 10 min . The reaction mixture was stirred for 36 h at $0^{\circ} \mathrm{C}$ afterwards. The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The phases were separated, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvent was removed in vacuo and purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=40: 1$) afforded the title compound 125a as a pale-yellow oil ($196 \mathrm{mg}, 0.820 \mathrm{mmol}, 75 \%$, d.r. > 20:1).
$\mathbf{R}_{\mathbf{f}}$ (pentane/diethyl ether $\left.=20: 1\right)=0.7 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.85$ (ddd, ${ }^{3} J=12.7,4.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 2.08-2.24 (m, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}, \mathrm{CHCH}_{3}$), $3.55\left(\mathrm{td},{ }^{3} \mathrm{~J}=12.7,2.6 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.08-4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}, \mathrm{OCH}\right), 4.34\left(\mathrm{dt},{ }^{3} \mathrm{~J}=12.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCl}\right), 6.16\left(\mathrm{dd},{ }^{3} \mathrm{~J}=16.1,5.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{OCHCH}), 6.62\left(\mathrm{dd},{ }^{3} \mathrm{~J}=16.1 \mathrm{H},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}\right), 7.23-7.43(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=6.9,31.4,40.9,61.3,67.5,80.6,126.6(2 C), 127.8,128.2,128.7(2 C), 130.6,136.9 \mathrm{ppm}$.

The spectroscopic data agree with previously published results. ${ }^{[320]}$
5.5.3 2-(2-Methyl-3-((E)-styryl)cyclopropyl)ethan-1-ol (131)

The pyran 125 ($0.67 \mathrm{~g}, 2.8 \mathrm{mmol}, 1.0$ equiv.) was added to a solution of bis(1,5-cyclooctadiene)nickel(0) ($39 \mathrm{mg}, 0.14 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene ($81 \mathrm{mg}, 0.14 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in dry $\mathrm{PhMe}(2.8 \mathrm{~mL}, 1 \mathrm{~m})$. The reaction mixture was treated dropwise with methyl magnesium iodide (1.67 M in $\mathrm{Et}_{2} \mathrm{O}, 3.4 \mathrm{~mL}, 5.6 \mathrm{mmol}, 2.0$ equiv.) over a period of 15 min . The solution was stirred for 20 h afterwards before the reaction was quenched with $i-\mathrm{PrOH}(5.0 \mathrm{~mL})$, diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, and filtered over silica gel. The solvents were removed under reduced pressure and purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) delivered the title compound as a yellow oil $(0.38 \mathrm{~g}$,
$\mathbf{R}_{\mathbf{f}}$ (pentane/diethyl ether $=4: 1$) $=0.4 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.08-1.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3}, \boldsymbol{H}\right.$-cyclopropyl), 1.21-1.30 (m, 1H, H-cyclopropyl), 1.40 (br s, 1H, OH), 1.63-1.80 (m, 3H, H-cyclopropyl, $\mathrm{HOCH}_{2} \mathrm{CH}_{2}$), 3.73 (t, $\left.{ }^{3} J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HOCH}_{2}\right), 6.01\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.7,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}\right), 6.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}\right), 7.18(\mathrm{t}$, $\left.{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 7.23-7.39(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.8,16.0,19.3,22.2,27.4$, 63.3, 125.8, 126.8, 127.1, 128.6 (2C), 128.6 (2C), 131.5 ppm.

The spectroscopic data agree with previously published results. ${ }^{[320]}$

5.5.4 2-(2-Methyl-3-((E)-styryl)cyclopropyl)acetaldehyde (204)

The primary alcohol 131 ($47 \mathrm{mg}, 0.23 \mathrm{mmol}$, 1.0 equiv.) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL}, 0.1 \mathrm{M}$) and treated with DMP ($0.15 \mathrm{~g}, 0.35 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 15 min , allowed to warm to $20^{\circ} \mathrm{C}$, and stirred for $2 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure and the residue was filtrated over celite. The crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) to afford the aldehyde 204 as a colourless oil ($29 \mathrm{mg}, 0.14 \mathrm{mmol}, 61 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.2$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}, 223.1093$, found: 223.1097; IR (ATR): $\tilde{v}=3024,2955,2931,2879,2821,2721,2360,1722,1646,1599,1494,1450,1389,1074,965$, $751,694 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.36\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}\right.$-cyclopropyl), 1.42-1.48 (m, 1H, H-cyclopropyl), $1.83\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H \text {-cyclopropyl), 2.48-2.58 (m, 2H, CH2 }\right)^{2} 5.92\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.7\right.$, $9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}), 6.61\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}\right), 7.18-7.21$ (m, 1H, H-Ar), 7.28-7.33 (m, 4H, H-Ar), 9.84 $\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=8.9,15.6,15.8,21.8,39.0,125.6,125.9$ (2C), 127.1, 128.7 (2C), 132.7, 137.8, 202.2 ppm.

73\%

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}(226.32)$

KOt - Bu ($210 \mathrm{mg}, 1.87 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt 124 (837 g , $1.95 \mathrm{mmol}, 2.7$ equiv.) in dry THF ($7.8 \mathrm{~mL}, 0.25 \mathrm{~m}$) at $0^{\circ} \mathrm{C}$. The resulting slurry was stirred for 1 h at $0^{\circ} \mathrm{C}$ before a solution of the aldehyde $204(145 \mathrm{mg}, 0.720 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($1.8 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 6 h . Oxalic acid (0.9 m in $\mathrm{H}_{2} \mathrm{O}, 1.50 \mathrm{~mL}, 1.70 \mathrm{mmol}, 2.4$ equiv.) was added and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) delivered the title compound $\mathbf{1 0 9 b}$ as a pale yellow oil ($119 \mathrm{mg}, 0.530 \mathrm{mmol}, 73 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) = 0.2; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}, 227.1430$, found: 227.1430; IR (ATR): $\tilde{v}=3024,3001,2927,2815,2732,1685,1635,1143,1119,968,752 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=1.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21-1.26\left(\mathrm{~m}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.33\left(\mathrm{td},{ }^{3} \mathrm{~J}=8.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.77-1.83 (m, 1H, H-cyclopropyl), 2.46-2.49 (m, 2H, CH2 $), 5.98\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}\right), 6.26$ (ddt, ${ }^{3} J=15.7,7.9 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHO}$), $6.61\left(\mathrm{~d},{ }^{3} J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}\right), 6.94\left(\mathrm{dt},{ }^{3} J=15.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHCHCHO), 7.14-7.25 (m, 1H, H-Ar), 7.27-7.34 (m, 4H, H-Ar), $9.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.6,16.0,20.3,22.2,27.5,125.8,125.8(2 C), 127.0,128.7(2 C), 132.5,133.2,137.9,158.1$, 194.2 ppm.

5.5.6 4-Fluoro2-((E)-3-methylbut-1-en-1-yl)tetrahydro-2 H-pyran (125b)

23\% yield, d.r. 6:1

To a solution of 4-methyl-2-pentene-1-al ($1.50 \mathrm{~mL}, 18.2 \mathrm{mmol}, 1.0$ equiv.) and 3-butene-1-ol ($1.60 \mathrm{~mL}, 18.2 \mathrm{mmol}$, 1.0 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(73 \mathrm{~mL}, 0.25 \mathrm{~m})$ at $0^{\circ} \mathrm{C}$ tetrafluoroboronic acid diethyl ether complex (2.50 mL , $18.2 \mathrm{mmol}, 1.0$ equiv.) was added dropwise over a period of 20 min . The reaction mixture was stirred for 1 h before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine (100 mL), dried over MgSO_{4}, filtrated, and concentrated in vacuo. Purification of the crude product by column chromatography (silica gel, pentane/diethyl ether $=40: 1$) afforded the title
compound $\mathbf{1 2 5 b}$ as yellow oil ($715 \mathrm{mg}, 4.15 \mathrm{mmol}, 23 \%$, d.r. $6: 1$)
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=40: 1\right)=0.5 ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}^{2}, \mathrm{CDCl}_{3}\right): \delta=-170.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}, \mathrm{F}}=50 \mathrm{~Hz}\right) \mathrm{ppm}$. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} \mathrm{H}_{3}\right), 1.46-1.61(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2}\right), 1.65-1.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.99-2.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.10-2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.22-2.36$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.42\left(\mathrm{tt},{ }^{3} \mathrm{~J}=12.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.69-3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 4.01-4.13(\mathrm{~m}, 1 \mathrm{H}$, OCH_{2}), $4.68\left(\mathrm{dddd},{ }^{2} J_{\mathrm{H}, \mathrm{F}}=50 \mathrm{~Hz},{ }^{3} J=16.0,10.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}\right), 5.44\left(\mathrm{ddd},{ }^{3} J=15.6,6.3 \mathrm{~Hz},{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHCH}\right), 5.69\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=15.6,6.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=22.3(2 C), 30.8,33.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=18 \mathrm{~Hz}\right), 39.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=17 \mathrm{~Hz}\right), 65.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=12 \mathrm{~Hz}\right), 76.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=12 \mathrm{~Hz}\right)$, $89.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=176 \mathrm{~Hz}\right), 126.7,140.1 \mathrm{ppm}$.

The spectroscopic data agree with previously published results. ${ }^{[320]}$

5.5.7 2-(2-((E)-3-Methylbut-1-en-1-yl)cyclopropyl)ethan-1-ol (132)

The pyran 125 b ($0.29 \mathrm{~g}, 1.7 \mathrm{mmol}, 1.0$ equiv.) was added to a solution of bis(1,5-cyclooctadiene)nickel(0) ($24 \mathrm{mg}, 87 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and bathophenanthroline ($30 \mathrm{mg}, 87 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) in dry, degassed $\mathrm{PhMe}(1.7 \mathrm{~mL}$, 1 m). The reaction mixture was treated dropwise with methyl magnesium iodide (1.80 m in $\mathrm{Et}_{2} \mathrm{O}, 1.9 \mathrm{~mL}$, $3.4 \mathrm{mmol}, 2.0$ equiv.) over a period of 15 min . The solution was stirred for 24 h afterwards before the reaction was quenched with $i-\operatorname{PrOH}(5.0 \mathrm{~mL})$, diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, and filtered over silica gel. The solvents were removed under reduced pressure and purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) delivered the title compound as a yellow oil $(55 \mathrm{mg}, 0.35 \mathrm{mmol}, 21 \%$, d.r. $4: 1)$. An analytically pure sample was obtained by preparative TLC.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=4: 1\right)=0.5 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.20\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl $), 0.86$ ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), $0.91-0.95\left(\mathrm{~m}, 1 \mathrm{H}, H\right.$-cyclopropyl), 0.97 (d, ${ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}$), 1.39 (br s, 1 H , $\mathrm{OH}), 1.45\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.59\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2}\right), 2.27\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{CH}\right), 3.70\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{HOCH}_{2}\right), 5.13\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=15.4,8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.53\left(\mathrm{ddd},{ }^{3} J=15.4,6.8 \mathrm{~Hz},{ }^{4} J=0.8 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=11.9,15.1,18.0,22.9(2 \mathrm{C}), 31.4,32.3,63.4,126.1$, 138.8 ppm .

The spectroscopic data agree with previously published results. ${ }^{[320]}$

The primary alcohol 132 ($42 \mathrm{mg}, 0.27 \mathrm{mmol}$, 1.0 equiv.) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.7 \mathrm{~mL}, 0.1 \mathrm{~m})$ and treated with DMP ($0.17 \mathrm{~g}, 0.41 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 15 min , allowed to warm to $20^{\circ} \mathrm{C}$, and stirred for $2 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure and the residue was filtrated over celite. The crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=40: 1$) to afford the aldehyde 205 as a colourless oil ($23 \mathrm{mg}, 0.15 \mathrm{mmol}, 56 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.6$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NaO}, 175.1093$, found: 175.1096; IR (ATR): $\tilde{v}=3070,3003,2958,2869,2817,2719,2359,2342,1725,1466,1416,1383,1333,1300$, 1261, 1212, 1141, 1100, 1036, 966, 916, 836, 810, $734,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.30\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right.$, H-cyclopropyl), 0.96 (d, ${ }^{3} J=6.8 \mathrm{~Hz}, 7 \mathrm{H}, H$-cyclopropyl, CH_{3}), $1.13-1.26$ (m, $1 \mathrm{H}, H$-cyclopropyl), $1.52-1.63$ (m, $1 \mathrm{H}, H$-cyclopropyl), $2.25\left(\mathrm{dtd},{ }^{3} J=13.6,6.8 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right.$), $2.30-2.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\right.$), 5.13 (ddd, ${ }^{3} J=15.4$, $\left.7.6 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.52\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 9.78\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHO) ppm; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.4,17.5,22.8(3 C), 31.3,43.4,77.2,124.8,140.0,202.8 \mathrm{ppm}$.

5.5.9 (E)-4-(2-((E)-3-Methylbut-1-en-1-yl)cyclopropyl)but-2-enal (109c)

$\mathrm{KO} t$ - Bu ($40 \mathrm{mg}, 0.31 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt 124 (0.14 mg , $0.32 \mathrm{mmol}, 2.7$ equiv.) in dry THF ($1.3 \mathrm{~mL}, 0.25 \mathrm{~m}$) at $0^{\circ} \mathrm{C}$. The resulting slurry was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ before a solution of the aldehyde 205 ($19 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($0.30 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 5 h . Oxalic acid (0.9 m in $\mathrm{H}_{2} \mathrm{O}, 1.3 \mathrm{~mL}, 1.2 \mathrm{mmol}, 10$ equiv.) was added and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=40: 1$) delivered the title compound $\mathbf{1 0 9}$ c as a pale yellow oil ($13 \mathrm{mg}, 73 \mu \mathrm{~mol}, 61 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.5$; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}, 179.1431$, found: 179.1429; IR (ATR): $\tilde{v}=3070,3003,2958,2868,2809,2727,1690,1636,1465,1382,1362,1306,1142,1116,1032,972$, $831 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.28\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $0.91\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $0.96(\mathrm{~d}$, ${ }^{3} J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}$), 0.99-1.05 (m, 1H, H-cyclopropyl), 1.51-1.57 (m, 1H,H-cyclopropyl), 2.23-2.30 (m, 2H, $\mathrm{CH}, \mathrm{CH}_{2}$), 2.35 (dddd, ${ }^{2} J=16.9 \mathrm{~Hz},{ }^{3} J=7.0,6.2 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $5.15\left(\mathrm{ddd},{ }^{3} J=15.3,7.8 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CHCHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.53\left(\mathrm{ddd},{ }^{3} J=15.3,6.8 \mathrm{~Hz},{ }^{4} J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.21\left(\mathrm{ddt},{ }^{3} J=15.6,7.9 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}\right), 6.90\left(\mathrm{dt},{ }^{3} \mathrm{~J}=15.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCHCH}\right), 9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.7,16.0,18.3,22.8(2 C), 31.3,32.2,124.9,133.1,139.7,158.4,194.3 \mathrm{ppm}$.

5.6 Improved Synthesis of Substrates

5.6.1 (E)-4-Bromobut-2-enal (143)

Lithium aluminium hydride ($466 \mathrm{mg}, 12.3 \mathrm{mmol}$, 1.1 equiv.) was suspended in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL}, 0.6 \mathrm{M})$, cooled to $-50^{\circ} \mathrm{C}$, and treated with aluminium trichloride ($551 \mathrm{mg}, 4.13 \mathrm{mmol}, 37 \mathrm{~mol} \%$). The slurry was stirred for 30 min at $20^{\circ} \mathrm{C}$ and cooled to $-78^{\circ} \mathrm{C}$ afterwards. A solution of methyl (E)-4-bromobut-2-enoate $(2.00 \mathrm{~g}$, $11.2 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(8.0 \mathrm{~mL}, 1.4 \mathrm{~m})$ was added dropwise over a period of 20 min and the resulting reaction mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{SO}_{4}\left(1 \mathrm{~m}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 10 \mathrm{~mL}\right)$ at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to reach $20^{\circ} \mathrm{C}$. The phases were separated and the aqueous phase was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic phases were washed with sat. aq. NaHCO_{3} $(100 \mathrm{~mL})$ and brine (100 mL), dried over MgSO_{4}, and filtrated. The solvents of the filtrate were removed in vacuo and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL}, 0.07 \mathrm{~m}) . \mathrm{MnO}_{2}(29.0 \mathrm{~g}, 335 \mathrm{mmol}, 30$ equiv.) was added and the slurry was stirred for 2 h before it was filtrated over celite. The filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent of the filtrate was carefully removed under reduced pressure to afford the aldehyde 143 as a yellow oil ($1.37 \mathrm{~g}, 9.20 \mathrm{mmol}, 82 \%$ over 2 steps).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.4 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.26$ (dd, ${ }^{3} J=15.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}$), 6.83-6.93 (m, 1H, CHOCHCH), 9.61 (d, $\left.{ }^{3} \mathrm{~J},=, 7.9, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.7,134.3,149.5,192.8 \mathrm{ppm}$.

The spectroscopic data agree with previously published results. ${ }^{[384]}$

The aldehyde $\mathbf{1 4 3}$ ($1.37 \mathrm{~g}, 9.20 \mathrm{mmol}, 1.0$ equiv.), 2-ethyl-2-methyl-1,3-dioxolane ($5.70 \mathrm{~mL}, 46.0 \mathrm{mmol}, 5.0$ equiv.) and p-toluene sulfonic acid monohydrate $\left(87.0 \mathrm{mg}, 0.46 \mathrm{mmol}, 5 \mathrm{~mol} \%\right.$) were stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvent of the filtrate was removed in vacuo and the residue was purified by column chromatography (aluminium oxide, pentane/ethyl acetate = 20:1) affording the acetal 138 as a colourless oil ($925 \mathrm{mg}, 4.80 \mathrm{mmol}, 52 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.4 ; \mathbf{I R}(\mathbf{A T R}): \tilde{v}=2961,2886,1665,1473,1436,1395,1345,1300,1268,1207$, 1131, 1054, 1031, 962, 937, 877, $804 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=3.29-3.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{BrCH}_{2}, \mathrm{OCH}_{2}\right)$, $3.42-3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.09\left(\mathrm{~d},{ }^{3} J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}\right), 5.52\left(\mathrm{ddt},{ }^{3} J=15.3,5.4 \mathrm{~Hz},{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}\right)$, $5.81\left(\mathrm{dtd},{ }^{3} \mathrm{~J}=15.3,7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=30.8,64.8(2 \mathrm{C}), 102.5$, 130.8, 131.5 ppm .

Mass spectrometry of the compound was not successful.
5.6.3 (E)-6-(1,3-Dioxolan-2-yl)hex-5-en-2-yn-1-ol (140)

i-Propylmagnesium chloride (2 m in THF, $20.0 \mathrm{~mL}, 38.6 \mathrm{mmol}$, 4.0 equiv.) was added dropwise to a solution of freshly distilled propargylic alcohol ($1.10 \mathrm{~mL}, 19.3 \mathrm{mmol}, 2.0$ equiv.) in freshly distilled dry THF (10 mL , 2 m) over a period of 20 min at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at $70^{\circ} \mathrm{C}$ before it was cooled to $0^{\circ} \mathrm{C}$ and treated with copper(I) chloride ($191 \mathrm{mg}, 1.93 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The acetal 138 (1.86 g , 9.64 mmol , 1.0 equiv.) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}, 1 \mathrm{~m})$ was added dropwise over a period of 20 min . The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, the phases separated and the aqueous phase was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic phases were washed with brine (100 mL), dried over MgSO_{4}, and filtrated. The solvents of the filtrate were removed and the residue was purified by column chromatography (silica gel, deactivated with 1% NEt_{3}, pentane/ethyl acetate $=1: 1$) affording the title compound 140 as a colourless oil ($1.37 \mathrm{~g}, 8.15 \mathrm{mmol}, 84 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=1: 1$) = 0.4; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3}$ 169.0859, found: 169.0859; IR (ATR): $\tilde{v}=3430,2923,2853,1683,1507,1457,1417,1397,1222,1151,1067,1019,966,758 \mathrm{~cm}^{-1} ; \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.03\left(\mathrm{dt},{ }^{3} \mathrm{~J}=5.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.85-3.92(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.98-4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.26\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.25\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.79\left(\mathrm{ddt},{ }^{3} J=15.4,6.1 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}\right), 5.91\left(\mathrm{dtd},{ }^{3} J=15.4,5.3 \mathrm{~Hz},{ }^{4} J=0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=21.7,51.4,65.1(2 C), 81.2,82.3,103.4,128.4,130.8 \mathrm{ppm}$.

5.6.4 (2Z,5E)-6-(1,3-Dioxolan-2-yl)hexa-2,5-dien-1-ol (139)

A solution of the alkyne 140 ($1.60 \mathrm{~g}, 9.51 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{EtOH}(9.5 \mathrm{~mL}, 1 \mathrm{~m})$ was treated with potassium hydroxide ($21.0 \mathrm{mg}, 380 \mu \mathrm{~mol}, 4 \mathrm{~mol} \%$) and Lindlar's catalyst ($380 \mathrm{mg}, 40 \mathrm{mg} / \mathrm{mmol}$) at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h under an H_{2}-atmosphere and was filtrated over celite afterwards. The solvent of the filtrate was removed under reduced pressure and the crude product was purified by column chromatography (silica gel, deactivated with $1 \% \mathrm{NEt}_{3}$, pentane/ethyl acetate $=1: 1$) delivering the title compound 139 as a colourless oil ($1.29 \mathrm{~g}, 7.58 \mathrm{mmol}, 80 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=1: 1\right)=0.4$; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{3}$ 171.0943, found: 171.1025; IR (ATR): $\tilde{v}=3397,3017,2952,2920,2883,1718,1676,1473,1397,1346,1303,1260,1212,1144,1033,946,802$, $735 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=1.22-1.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.56\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$), 3.38-3.41 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.54-3.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HOCH}_{2}\right), 5.18-5.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.29-5.34$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 5.53-5.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.61-5.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.73-5.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=30.1,58.4,64.9(2 C), 104.3,127.9(2 C), 131.4,134.4 \mathrm{ppm}$.

5.6.5 tert-Butyl(2-(-2-((E)-2-iodovinyl)cyclopropyl)ethoxy)dimethylsilane (148)

$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}(228.41)$

$84 \%, E / Z=11: 1$

$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{IOSi}(352.33)$

Chromium(II) chloride ($3.22 \mathrm{~g}, 26.3 \mathrm{mmol}$, 6.0 equiv.) was flame dried at $200^{\circ} \mathrm{C}$ for 30 min and suspended in dry THF/1,4-dioxane ($6: 1,84 \mathrm{~mL}, 0.3 \mathrm{~m}$). The mixture was sonicated for 10 min and then cooled to $-10^{\circ} \mathrm{C}$. A solution of the aldehyde 113 ($1.00 \mathrm{~g}, 4.38 \mathrm{mmol}, 1.0$ equiv.) and iodoform ($3.45 \mathrm{~g}, 8.76 \mathrm{mmol}, 2.0$ equiv.) in dry

THF/1,4-dioxane ($6: 1,70 \mathrm{~mL}, 0.06 \mathrm{~m}$) was added dropwise over a period of 1 h and the mixture was stirred for 24 h afterwards. The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(100 \mathrm{~mL})$ and extracted with pentane $(3 \times 250 \mathrm{~mL})$. The combined organic phases were washed with brine $(250 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvents of the filtrate were removed under reduced pressure and the residue was purified by column chromatography (silica gel, pentane/ethyl acetate $=100: 1$) affording the iodide 148 as a yellow oil (1.30 g , $3.69 \mathrm{mmol}, 84 \%, E / Z=11: 1$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/diethyl ether $\left.=100: 1\right)=0.8$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NaIOSi} 375.0611$, found: 375.0631; IR (ATR): $\tilde{v}=3064,2997,2952,2929,2890,2857,2359,2338,1700,1603,1540,1469,1389,1360,1320$, 1254, 1189, 1099, 1065, 1034, 1006, 943, 888, 834, 776, $733 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.06(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{SiCH}_{3}\right), 0.34\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.92-0.95(\mathrm{~m}, 1 \mathrm{H}, H$-cyclopropyl), 1.04-1.12 (m, $1 \mathrm{H}, H$-cyclopropyl), $1.50-1.58\left(\mathrm{~m}, 3 \mathrm{H}, H\right.$-cyclopropyl, CH_{2}), $3.66\left(\mathrm{td},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}\right.$), 5.99 $\left(\mathrm{d},{ }^{3} J=14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ICH}\right), 6.23\left(\mathrm{dd},{ }^{3} \mathrm{~J}=14.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ICHCH}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.1$ (2C), 12.6, 15.8, 18.5, 22.0, 26.1 (3C), 32.8, 63.1, 72.4, 146.2 ppm.

5.6.6 2-(2-((E)-2-Iodovinyl)cyclopropyl)acetaldehyde (149)

A solution of the silyl ether 148 ($391 \mathrm{mg}, 1.11 \mathrm{mmol}, 1.0$ equiv.) in THF ($7.4 \mathrm{~mL}, 0.15 \mathrm{~m}$) was treated with TBAF (1.0 m in THF, $1.67 \mathrm{~mL}, 1.67 \mathrm{mmol}, 1.5$ equiv.) at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 4 h . The solvents were removed under reduced pressure and the residue was filtrated over silica gel (pentane/ethyl acetate $=4: 1$) delivering the crude alcohol as a colourless oil ($249 \mathrm{mg}, 1.04 \mathrm{mmol}, 94 \%$) which was used in the next step without further purification. The alcohol ($249 \mathrm{mg}, 1.04 \mathrm{mmol}, 1.0$ equiv.) was dissolved in DMSO ($10 \mathrm{~mL}, 0.1 \mathrm{~m}$). The solution was treated with IBX ($437 \mathrm{mg}, 1.56 \mathrm{mmol}, 1.5$ equiv.) at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 5 h before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvent of the filtrate was removed in vacuo and the residue was purified by column chromatography (silica gel, pentane/ethyl acetate $=40: 1$) affording the aldehyde 149 as a colourless oil ($148 \mathrm{mg}, 630 \mu \mathrm{~mol}, 60 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.7$; ESI-TOF $(m / z):[M+N a]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NaIOSi} 258.9590$, found: 258.9586; IR (ATR): $\tilde{v}=3055,2998,2883,2817,2720,2359,2342,1869,1720,1653,1635,1599,1558,1541$, 1522, 1507, 1472, 1446, 1416, 1385, 1288, 1220, 1191, 1127, 1104, 1040, 944, 915, 860, 829, 785, 764, 741, 722, $712 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.43\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}\right.$-cyclopropyl), $1.07\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=8.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.3,5.3 \mathrm{~Hz}\right.$, 1H. H-cyclopropyl), 1.33 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.68 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), 2.37-2.53 (m,2H, CH2), $6.09\left(\mathrm{dd},{ }^{3} J=14.4 \mathrm{~Hz},{ }^{4} J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ICH}\right), 6.23\left(\mathrm{dd},{ }^{3} \mathrm{~J}=14.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ICHCH}\right), 9.79\left(\mathrm{t},{ }^{3} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHO) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.8,11.9,21.3,43.6,74.8,144.5,201.4 \mathrm{ppm}$.

KOt - Bu ($155 \mathrm{mg}, 1.38 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt 124 (617 mg , $1.43 \mathrm{mmol}, 2.7$ equiv.) in dry THF ($6.0 \mathrm{~mL}, 0.25 \mathrm{~m}$) at $0{ }^{\circ} \mathrm{C}$. The resulting slurry was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ before a solution of the aldehyde $149(125 \mathrm{mg}, 0.530 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($1.3 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . Oxalic acid (0.9 m in $\mathrm{H}_{2} \mathrm{O}, 30.0 \mathrm{~mL}, 27.1 \mathrm{mmol}, 10.0$ equiv.) was added and the biphasic mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvent of the filtrate was removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=40: 1$) delivered the title compound 133 as a colourless oil ($104 \mathrm{mg}, 0.340 \mathrm{mmol}, 64 \%$). A clean fraction of the E-acetal was used for analysis.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) = 0.7; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{IO}_{2}, 307.0190$, found: 307.0189; IR (ATR): $\tilde{v}=3062,2994,2948,2881,1665,1473,1423,1346,1288,1215,1190,1131,1115,1066$, 1008, 944, 827, 802, 750, $735 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=0.39\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $0.94\left(\mathrm{~m}_{\mathrm{c}}\right.$, $1 \mathrm{H}, H$-cyclopropyl), $1.07\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.53-1.64\left(\mathrm{~m}, 1 \mathrm{H}, H\right.$-cyclopropyl), $2.20\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.86-3.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.98-4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.44-5.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}, \mathrm{OCHCH})$, $5.81\left(\mathrm{dt},{ }^{3} J=9.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 6.02\left(\mathrm{dd},{ }^{3} J=14.3 \mathrm{~Hz},{ }^{4} J=0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ICH}\right), 6.28\left(\mathrm{dd},{ }^{3} J=14.3,8.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ICHCH}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $: \delta=12.3,18.6,22.3,27.6,65.1,65.1,73.3,99.3,126.5,136.0$, 145.5 ppm .

5.6.8 2-((E)-3-(2-((E)-Styryl)cyclopropyl)prop-1-en-1-yl)-1,3-dioxolane (150)

The iodide 133 ($50 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0$ equiv.) and 2-phenyl-2-bora-1,3-dioxane ($29 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.1$ equiv.) were dissolved in degassed DME ($2.00 \mathrm{~mL}, 0.08 \mathrm{~m}$) and treated with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.0 \mathrm{mg}, 16 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(21 \mathrm{mg}, 80 \mu \mathrm{~mol}, 50 \mathrm{~mol} \%)$. The resulting solution was degassed and heated to $80^{\circ} \mathrm{C}$. At this temperature,

KOt - Bu (1 m in t - $\mathrm{BuOH}, 0.32 \mathrm{~mL}, 0.32 \mathrm{mmol}, 2.0$ equiv.) was added dropwise over a period of 15 min . After complete addition, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 min . After cooling to $20^{\circ} \mathrm{C}$, the reaction mixture was diluted with pentane $(20 \mathrm{~mL})$ and filtrated over silica gel. The solvents of the filtrate were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate = 20:1) afforded the title compound 150 as colourless oil ($13 \mathrm{mg}, 51 \mu \mathrm{~mol}, 32 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.4$; ESI-TOF $(m / z):[M+K]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{KO}_{2}, 295.1110$, found: 295.1157; IR (ATR): $\tilde{v}=3069,2997,2883,2360,2342,1734,1716,1666,1633,1558,1542,1508,1474,1423$, 1346, 1281, 1221, 1119, 1073, 1030, 1006, 990, 956, 897, 797, 785, 695, 669, $608 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=0.45\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.01\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.13 (dddd, ${ }^{3} J=15.8,8.5,7.4,5.8 \mathrm{~Hz}$, 1H, H-cyclopropyl), 1.65-1.77 (m, 1H, H-cyclopropyl), 2.23-2.32 (m, 2H, CH2 $)$, 3.75-3.87 (m, 2H, OCH2), 3.93-4.03 (m, 2H, OCH ${ }_{2}$), 5.41-5.53 (m, 2H, OCH, OCHCH), 5.87 (dt, $\left.{ }^{3} J=10.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCHCH}\right), 6.01$ $\left(\mathrm{dd},{ }^{3} J=15.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}\right), 6.50\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}\right), 7.15-7.21(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 7.27-7.37(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (176 MHz, CDCl_{3}) : $\delta=13.0,19.3,19.6,27.8,65.1,99.4,125.9(2 C), 126.1,126.9,128.6$ (2C), 130.1, 130.4, 136.7, 137.9 ppm .

5.6.9 tert-Butyl(2-(2-(iodomethyl)cyclopropyl)ethoxy)dimethylsilane (152)

A solution of the alcohol $120(0.10 \mathrm{~g}, 0.43 \mathrm{mmol}$, 1.0 equiv.) in dry THF ($7.2 \mathrm{~mL}, 0.06 \mathrm{~m}$) was treated with triphenylphosphine ($0.14 \mathrm{~g}, 0.52 \mathrm{mmol}, 1.2$ equiv.), iodine ($132 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.2$ equiv.), and imidazole (59 mg , $0.86 \mathrm{mmol}, 2.0$ equiv.) at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 4 h before the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvents of the filtrate were removed in vacuo and the residue was purified by column chromatography (silica gel, pentane/ethyl acetate $=100: 1$) affording the title compound $\mathbf{1 5 2}$ as a colourless oil ($0.12 \mathrm{~g}, 0.34 \mathrm{mmol}, 79 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/diethyl ether $=100: 1$) = 0.5; ESI-TOF $(m / z):[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{26}$ IOSi 341.0792, found: 341.0787; IR (ATR): $\tilde{v}=3066,2994,2953,2928,2886,2856,1471,1463,1387,1361,1254,1172,1140,1100,1024$, 1006, $989,967,938,893,834,810,775,735,684,664 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.02-0.04(\mathrm{~m}$, 1H, H-cyclopropyl), 0.07 (s, 6H, SiCH $)_{3}$, 0.86-0.92 (m, 1H, H-cyclopropyl), $0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.13\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right.$, H-cyclopropyl), $1.33-1.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.79\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $3.17\left(\mathrm{dd},{ }^{2} J=9.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{IC} \mathrm{H}_{2}\right), 3.32\left(\mathrm{dd},{ }^{2} \mathrm{~J}=9.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ICH} \mathrm{H}_{2}\right), 3.73\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=-5.1(2 C), 9.4,15.9,18.5,18.6,20.3,26.1(3 C), 31.0,63.6 \mathrm{ppm}$.
5.6.10 (tert-Butyldimethyl(2-(2-((E)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinylcyclopropyl)ethoxy)silane (154)

At $0^{\circ} \mathrm{C}$, a solution of LiTMP ($3.75 \mathrm{~g}, 25.5 \mathrm{mmol}$, 1.2 equiv.) in dry THF ($25 \mathrm{~mL}, 1 \mathrm{~m}$) was treated with a solution of $\mathrm{CH}_{2}(\mathrm{Bpin})_{2}(\mathbf{1 9 7}, 6.83 \mathrm{~g}, 25.5 \mathrm{mmol}$, 1.2 equiv.) in dry THF ($50 \mathrm{~mL}, 0.5 \mathrm{~m}$). The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min and then cooled to $-78^{\circ} \mathrm{C}$. A solution of aldehyde $113(4.85 \mathrm{~g}, 21.2 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($25 \mathrm{~mL}, 0.8 \mathrm{~m}$) was added dropwise over a period of 30 min . After complete addition, the reaction mixture was allowed to warm to $20^{\circ} \mathrm{C}$ over 18 h . Silica gel (10 g) was added, the solvent removed under reduced pressure and the crude product purified by column chromatography (silica gel, pentane/ethyl acetate $=80: 1 \rightarrow 20: 1$). The vinyl borane 154 was obtained as a colourless oil ($6.48 \mathrm{~g}, 18.4 \mathrm{mmol}, 87 \%$, d.r. $>20: 1$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=80: 1$) $=0.5$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{BO}_{3} \mathrm{Si}, 353.2678$, found: 353.2696; IR (ATR): $\tilde{v}=2995,2978,2954,2929,2857,1631,1471,1409,1370,1320,1255,1214,1146,1101$, 1044, 1005, 990, 972, 889, 835, 775, $660 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1 1}} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.1 \mathrm{ppm} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.03-0.07\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.43\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}\right.$-cyclopropyl$), 0.85-0.89(\mathrm{~m}, 9 \mathrm{H}, \mathrm{SiCCH}), 0.97\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right.$, H-cyclopropyl), 1.07-1.16 (m, 1H, H-cyclopropyl), 1.25 (s, 12H, CH H_{3}-Bpin), 1.53-1.68 (m,3H, TBSOCH CH_{2}, H-cyclopropyl), $3.64\left(\mathrm{t},{ }^{3} J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{TBSOCH} \mathrm{H}_{2}\right.$, $5.54\left(\mathrm{dt},{ }^{3} J=17.7 \mathrm{~Hz},{ }^{4} J=0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BCH}=\mathrm{CH}\right), 6.32$ (dd, $\left.{ }^{3} J=17.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BCH}=\mathrm{CH}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.1,-5.1,14.1,17.4,18.5,22.0,24.9$ (2C), 24.9 (2C), 26.1 (3C), 32.7, 63.3, 83.0 (2C), 120.1, 154.7 ppm.

5.6.11 2-(2-((E)-2-(4,4,5,5-Tetramethyl-1,3,2-dioxa-borolan-2-yl)-vinyl)-cyclo-propyl)-ethan-1-ol (206)

The vinyl borane 154 ($5.98 \mathrm{~g}, 17.0 \mathrm{mmol}$, 1.0 equiv.) was dissolved in dry MeOH ($19 \mathrm{~mL}, 0.9 \mathrm{~m}$) and treated with DOWEX 50 WX 8 (proton form, $1.60 \mathrm{~g}, 94.0 \mathrm{mg} / \mathrm{mmol}$). The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 24 h . The resin was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvents of the combined organic phases were removed under reduced pressure and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=2: 1$) to obtain the primary alcohol 206 as a colourless oil ($3.33 \mathrm{~g}, 14.0 \mathrm{mmol}, 82 \%, 92 \% \mathrm{brsm}$) together with recovered starting material ($632 \mathrm{mg}, 1.79 \mathrm{mmol}$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=2: 1\right)=0.4$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{BO}_{3}, 239.1812$, found: 239.1815; IR (ATR): $\tilde{v}=3425,3073,2979,2929,2361,2341,1631,1455,1368,1320,1273,1215,1144,1107,1034$, 991, $970,899,849,745,695,669 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1 1}} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.4 \mathrm{ppm} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=0.45\left(\mathrm{ddd},{ }^{2} J=5.4 \mathrm{~Hz},{ }^{3} J=5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.01\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.12-1.16 (me, $1 \mathrm{H}, H$-cyclopropyl), $1.25\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60-1.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}, H\right.$-cyclopropyl, OH), $3.70\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{HOCH}_{2}\right), 5.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BCH}\right), 6.31\left(\mathrm{dd},{ }^{3} \mathrm{~J}=17.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BCH}=\mathrm{CH}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}(176 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=13.9,17.3,21.8,24.7,24.9(4 C), 32.4,63.2,83.1(2 C), 154.2 \mathrm{ppm}$.
5.6.12 2-(2-((E)-2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)cyclopropyl)acetaldehyde (156)

The primary alcohol 206 ($1.46 \mathrm{~g}, 6.13 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(62 \mathrm{~mL}, 0.1 \mathrm{~m})$ and treated with DMP ($3.91 \mathrm{~g}, 9.22 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 15 min , allowed to warm to $20^{\circ} \mathrm{C}$, and stirred for $2 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added and the reaction mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The combined organic phases were washed with brine (150 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) to yield the aldehyde 156 as a colourless oil ($1.04 \mathrm{~g}, 4.40 \mathrm{mmol}, 72 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=10: 1\right)=0.4$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BNaO}_{3}, 259.1476$, found: 259.1489; IR (ATR): $\tilde{v}=3073,2978,2929,2724,1725,1631,1447,1407,1389,1371,1353,1328,1317,1300$, 1272, 1205, 1165, 1144, 1108, 1046, 996, 971, 926, 894, 871, 849, 835, 792, 776, 735, 720, 700, 691, 679, 665, $652 \mathrm{~cm}^{-1} ;{ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.3 \mathrm{ppm} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.51\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-\right.$ cyclopropyl), 1.12 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.25 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{CH}_{3}$-Bpin), 1.38 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.69-1.79 (m, 1H, H-cyclopropyl), 2.43 (ddd, ${ }^{2} J=17.7 \mathrm{~Hz},{ }^{3} J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}$), 2.54 (dd, ${ }^{2} J=17.7 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 5.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}=17.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BCH}=\mathrm{CH}\right), 6.28\left(\mathrm{dd},{ }^{3} \mathrm{~J}=17.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BCH}=\mathrm{CH}\right), 9.78$ (br s, $1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=13.3,13.5,21.1,24.9$ (4C), 43.5, 83.2 (2C), 120.1, 152.5, 202.1 ppm.
5.6.13 2-((E)-2-(-2-((Z)-3-(1,3-Dioxolan-2-yl)allylcyclopropyl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (157)

KOt - Bu ($790 \mathrm{mg}, 7.05 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt 124 (3.16 g , $7.33 \mathrm{mmol}, 2.7$ equiv.) in dry THF ($30 \mathrm{~mL}, 0.25 \mathrm{~m}$) at $0{ }^{\circ} \mathrm{C}$. The resulting slurry was stirred for 1 h at $0^{\circ} \mathrm{C}$ before a solution of aldehyde 156 ($640 \mathrm{mg}, 2.71 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($7.0 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for $18 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added and the resulting biphasic system was separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=10: 1$). The acetal 157 was obtained as a colourless oil ($626 \mathrm{mg}, 2.04 \mathrm{mmol}, 75 \%$) in an inconsequential E / Z-mixture at the acetal part of the molecule. A clean fraction of the Z-configured acetal was used for analytical purpose.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=10: 1$) = 0.4; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{BO}_{4}, 307.2075$, found: 307.2062; IR (ATR): $\tilde{v}=2976,2926,2886,1628,1469,1408,1389,1370,1329,1315,1299,1272,1210,1142$, 1069, 1029, 995, 970, 899, 870, 850, 832, 821, 731, 710, 691, 678, 669, $659 \mathrm{~cm}^{-1} ;{ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=28.4 \mathrm{ppm} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.47\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.00\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.11 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.25 (s, 12H, CH3 -Bpin), 1.59-1.69 (m, 1H, H-cyclopropyl), 2.25 ($\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{CH}$), 3.84-3.92 (m, 2H, CH2 $), 3.96-4.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.45\left(\mathrm{ddt},{ }^{3} \mathrm{~J}=10.6,7.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right.$), 5.51-5.53 (m, 1H, CHO $), 5.55\left(\mathrm{~d},{ }^{3} J=17.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BpinCH}=\mathrm{CH}\right), 5.82\left(\mathrm{dt},{ }^{3} J=10.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO} 2\right)$, 6.33 (dd, ${ }^{3} \mathrm{~J}=17.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BpinCH}=\mathrm{CH}$) ppm; ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=14.0,20.3,22.3,24.9(2 C)$, 24.9(2C), 27.7, 65.1, 83.1(2C), 99.4 (2C), 120.1, 126.1, 136.6, 153.9 ppm .

General Procedure for the Coupling of 157 with Different Aryl Iodides (GP1)

The pinacolborane 157 (1.1 equiv.) and the corresponding iodide (1.0 equiv.) were dissolved in degassed DME (0.08 m) and treated with $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(50 \mathrm{~mol} \%)$. The resulting solution was degassed and heated to $80^{\circ} \mathrm{C}$. At this temperature, $\mathrm{KO} t-\mathrm{Bu}(1 \mathrm{~m}$ in t - $\mathrm{BuOH}, 2.0$ equiv.) was added dropwise over a period of 15 min . After complete addition, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ until TLC showed complete conversion of the starting materials. The mixture was cooled to $20^{\circ} \mathrm{C}$, treated with oxalic acid (0.9 m in $\mathrm{H}_{2} \mathrm{O}$, 10 equiv.), and stirred for 18 h . The reaction mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$ and the combined organic phases were washed with sat. aq. NaHCO_{3} and brine. The organic phases were dried over MgSO_{4}, filtrated, and the solvents were removed under reduced pressure. The crude products were purified by column chromatography.

(E)-4-(2-((E)-Styryl)cyclopropyl)but-2-enal (109a)

The title compound was derived from $157(1.01 \mathrm{~g}, 3.30 \mathrm{mmol})$ and iodobenzene ($340 \mu \mathrm{~L}$, 3.00 mmol) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the aldehyde 109a as a colourless oil ($492 \mathrm{mg}, 2.32 \mathrm{mmol}, 70 \%$).

The spectroscopic data agree with the ones mentioned in 5.3.9.

(E)-4-(2-((E)-4-(Trifluoromethyl)styryl)cyclopropyl)but-2-enal (109d)

The title compound was derived from $157(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ and 4-iodobenzotrifluoride ($82 \mathrm{mg}, 0.30 \mathrm{mmol}$) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) delivered the aldehyde 109 d as a yellow oil (58 mg , 0.21 mmol, 69\%).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=10: 1$) $=0.5$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}, 303.0967$, found: 303.0959; IR (ATR): $\tilde{v}=3001,2953,2924,2851,2733,2360,2342,1686,1644$, 1614, 1587, 1507, 1456, 1436, 1417, 1376, 1322, 1261, 1185, 1161, 1107, 1065, 1014, 970, 952, 904, 879, 860, 820, $751,693 \mathrm{~cm}^{-1} ;{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.7 \mathrm{ppm} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.53\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-\right.$ cyclopropyl), 1.15 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.20-1.33 (m, 1H, H-cyclopropyl), 1.73-2.02 (m, 1H, H-cyclopropyl), $2.32-2.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.06\left(\mathrm{dd},{ }^{3} J=15.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.24\left(\mathrm{ddt},{ }^{3} J=15.6,7.9 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$,
$\mathrm{CH}=\mathrm{CHCHO}), 6.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.91\left(\mathrm{dt},{ }^{3} \mathrm{~J}=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCHO}\right), 7.39(\mathrm{~d}$, $\left.{ }^{3} J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, H-\mathrm{Ar}\right), 7.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, H-\mathrm{Ar}\right), 9.52\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=13.2,17.5,19.5,32.4,124.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=272 \mathrm{~Hz}\right), 125.7(2 C), 126.0(2 C), 128.9\left(\mathrm{q},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=33.0 \mathrm{~Hz}\right), 129.9$, 132.1, 133.2, 141.0, 157.3, 194.1 ppm .

(E)-4-(2-((E)-3-(Trifluoromethyl)styryl)cyclopropyl)but-2-enal (109e)

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}(280.29)$

The title compound was derived from $157(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ and 3-iodobenzotrifluoride ($82 \mathrm{mg}, 0.30 \mathrm{mmol}$) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) delivered the aldehyde 109e as a brown oil (72 mg , $0.26 \mathrm{mmol}, 86 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=10: 1\right)=0.5$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}, 303.0967$, found: 303.0972; IR (ATR): $\tilde{v}=3001,2924,2816,2736,2362,2335,1686,1637,1591$, 1489, 1438, 1365, 1328, 1258, 1199, 1161, 1119, 1095, 1070, 1040, 1011, 966, 901, 830, 794, 751, 727, 696, $661 \mathrm{~cm}^{-1}$; ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-62.3 \mathrm{ppm} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.53\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl $)$, 1.14 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.21-1.29 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.81 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 2.37-2.48 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.04\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.25\left(\mathrm{ddt},{ }^{3} \mathrm{~J}=15.7,7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right.$), $6.55\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.92\left(\mathrm{dt},{ }^{3} \mathrm{~J}=15.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 7.38-7.41(\mathrm{~m}$, 1H, H-Ar), 7.43-7.48 (m, 2H, H-Ar), 7.53-7.54 (m, 1H, H-Ar), $9.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.1,17.5,19.4,32.4,122.4,123.6,124.3\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=272 \mathrm{~Hz}\right), 129.0,129.1,129.8,131.1(\mathrm{q}$, ${ }^{2} J_{\mathrm{C}, \mathrm{F}}=32 \mathrm{~Hz}$), 131.2, 133.2, 138.3, 157.4, 194.1 ppm .

(E)-4-(2-((E)-2-(Trifluoromethyl)styryl)cyclopropyl)but-2-enal (109f)

The title compound was derived from $157(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ and 2-iodobenzotrifluoride ($82 \mathrm{mg}, 0.30 \mathrm{mmol}$) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) delivered the aldehyde $\mathbf{1 0 9 f}$ as a yellow oil $(50 \mathrm{mg}$, $0.18 \mathrm{mmol}, 59 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=10: 1\right)=0.5$; ESI-TOF $(\mathrm{m} / \mathrm{z}): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}$, 303.0967, found: 303.0973; IR (ATR): $\tilde{v}=3069,3001,2923,2815,2733,1686,1638,1604$, 1575, 1487, 1454, 1436, 1312, 1282, 1266, 1152, 1105, 1059, 1035, 1011, 968, 903, 880, 849, 819, 763, 745, 725, 693, $655 \mathrm{~cm}^{-1} ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-59.6 \mathrm{ppm} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.54\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right.$, H-cyclopropyl), 1.14 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), $1.18-1.30\left(\mathrm{~m}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.84 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 2.37 (dddd, ${ }^{2} J=17.0 \mathrm{~Hz},{ }^{3} J=7.7,5.9 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.46\left(\mathrm{dddd},{ }^{2} J=17.0 \mathrm{~Hz},{ }^{3} J=7.1,6.3 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.23\left(\mathrm{ddt},{ }^{3} \mathrm{~J}=15.6,7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCHO}\right)$, 6.84-6.94 (m, 2H, $\mathrm{ArCH}=\mathrm{CH}, \mathrm{HC}=\mathrm{CHCHO}$), 7.28-7.32 (m, 1H, H-Ar), 7.44-7.52 (m, 2H, H-Ar), 7.59-7.62 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.0,17.6,19.5,32.3,124.5(\mathrm{q}$, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{F}}=273 \mathrm{~Hz}\right), 125.9,126.6-126.9(\mathrm{~m}, 2 C), 127.2,131.9,133.2,133.5,135.1,136.7,157.5,194.1 \mathrm{ppm}$.

The title compound was derived from $157(70 \mathrm{mg}, 0.23 \mathrm{mmol})$ and 4-nitroiodobenzene ($52 \mathrm{mg}, 0.21 \mathrm{mmol}$) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) delivered the aldehyde $\mathbf{1 0 9 g}$ as a yellow oil $(22 \mathrm{mg}$, $86 \mu \mathrm{~mol}, 41 \%)$.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=4: 1$) $=0.5$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NNaO}_{3}, 280.0944$, found: 280.0951; IR (ATR): $\tilde{v}=3069,2998,2926,2819,2734,2446,2360,2342$, 1683, 1637, 1592, 1508, 1446, 1335, 1181, 1142, 1109, 1037, 1011, 969, 860, 841, 748, 691, $658 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.58\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.18-1.22 (m, $1 \mathrm{H}, H$-cyclopropyl), 1.32 (dddd ${ }^{3} \mathrm{~J}=15.7,8.4$, $7.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {-cyclopropyl }}$), 1.81-1.88 (m, 1H, H-cyclopropyl), 2.29-2.63 (m, 2H, CH2 $), 6.15$ (dd, ${ }^{3} \mathrm{~J},=, 15.7$, $8.9, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}), 6.24\left(\mathrm{ddt},{ }^{3} \mathrm{~J}=15.7,7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCHO}\right), 6.59\left(\mathrm{~d},{ }^{3} J=15.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\operatorname{ArCH}=\mathrm{CH}), 6.91\left(\mathrm{dt},{ }^{3} \mathrm{~J}=15.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCHO}\right), 7.36-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.10-8.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, $9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,18.0,19.9,32.4,124.2$ (2C), 126.2 (2C), 129.2, 133.3, 134.9, 143.9, 146.6, 157.0, 194.0 ppm .

(E)-4-(2-((E)-4-Chlorostyryl)cyclopropyl)but-2-enal (109h)

The title compound was derived from $157(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ and 4-chloroiodobenzene ($72 \mathrm{mg}, 0.30 \mathrm{mmol}$) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the aldehyde $\mathbf{1 0 9 h}$ as a yellow oil (57 mg , $0.23 \mathrm{mmol}, 77 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=10: 1\right)=0.7$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{CINaO}, 269.0703$, found: 269.0716; IR (ATR): $\tilde{v}=3070,3020,2997,2924,2814,2732,2360,2342$, 1685, 1641, 1592, 1490, 1435, 1408, 1366, 1308, 1258, 1197, 1178, 1141, 1115, 1088, 1030, 1011, 968, 905, 877, 852, 810, 745, 726, 702, 691, $672 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.49\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.11\left(\mathrm{~m}_{\mathrm{c}}\right.$, 1H, H-cyclopropyl), 1.18-1.24 (m, 1H, H-cyclopropyl), 1.78 (dddd, ${ }^{3} J=8.4,8.3,8.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 2.33-2.49 (m, 2H, CH2), $5.94\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.24$ (ddd, ${ }^{3} \mathrm{~J}=15.7,8.0 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}), 6.47\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.91\left(\mathrm{dt},{ }^{3} \mathrm{~J}=15.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 7.22(\mathrm{~d}$, $\left.{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 7.25\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=12.9,17.3,19.4,32.4,127.1,128.8(2 C), 129.8(2 C), 130.0,132.6,133.2,136.0,157.6,194.1 \mathrm{ppm}$.

The title compound was derived from $157(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ and 4-fluoroiodobenzene ($66 \mathrm{mg}, 0.30 \mathrm{mmol}$) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=0: 1$) delivered the aldehyde $\mathbf{1 0 9 i}$ as a yellow oil $(54 \mathrm{mg}, 0.23 \mathrm{mmol}$, 77%).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=10: 1\right)=0.3 ; \quad$ ESI-TOF $(m / z) \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FNaO}$, 253.1005, found: 253.1010; IR (ATR): $\tilde{v}=3070,2998,2918,2814,2734,1685,1507,1226,968$, $819, \mathrm{~cm}^{-1} ;{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-115.3 \mathrm{ppm} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.36-0.52(\mathrm{~m}, 1 \mathrm{H}$, H-cyclopropyl), 1.10 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.20 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.77 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 2.36-2.44 (m, 2H, CH ${ }_{2}$), $5.88\left(\mathrm{dd},{ }^{3} J=15.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.24\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right)$, $6.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.89-6.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}), 6.95-7.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.16-7.37$ (m, 2H, H-Ar), $9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.7,17.1,19.3,32.4$, $115.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=22 \mathrm{~Hz}, 2 C\right), 127.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=8 \mathrm{~Hz}, 2 C\right), 128.7,130.0,133.2,133.7,157.7,162.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=245 \mathrm{~Hz}\right)$, 194.2 ppm.

(E)-4-(2-((E)-3-Chlorostyryl)cyclopropyl)but-2-enal (109j)

The title compound was derived from $157(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ and 3-chloroiodobenzene ($72 \mathrm{mg}, 0.30 \mathrm{mmol}$) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the aldehyde $\mathbf{1 0 9}$ j as a yellow oil $(44 \mathrm{mg}$, $0.18 \mathrm{mmol}, 59 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.3$; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClO}$, 247.0884, found: 247.0882; IR (ATR): $\tilde{v}=3065,2998,2915,2815,2733,2360,2342,1684,1643,1592,1562,1474$, 1447, 1425, 1365, 1307, 1254, 1201, 1140, 1115, 1094, 1077, 1035, 1009, 970, 876, 826, 777, 722, $685 \mathrm{~cm}^{-1} ;{ }^{1}$ H NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}^{3}\right): \delta=0.50\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.12\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.23\left(\mathrm{dddd},{ }^{3} \mathrm{~J}=15.9,8.5,7.3\right.$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 1.79 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 2.36-2.48 (m,2H, CH2), $5.97\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\operatorname{ArCH}=\mathrm{CH}), 6.24\left(\mathrm{ddt},{ }^{3} J=15.7,7.9 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 6.46\left(\mathrm{~d},{ }^{3} J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.91$ ($\mathrm{dt},{ }^{3} \mathrm{~J}=15.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}$), $7.15-7.17(\mathrm{~m}, 2 \mathrm{H}, H-\mathrm{Ar}), 7.19-7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.29\left(\mathrm{t},{ }^{4} J=1.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 9.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.1,17.4,19.4,32.4,124.2$, 125.7, 127.0, 129.8, 129.9, 130.8, 133.2, 134.6, 139.4, 157.5, 194.1 ppm .

The title compound was derived from $157(0.13 \mathrm{~g}, 0.42 \mathrm{mmol})$ and 3-fluoroiodobenzene ($86 \mathrm{mg}, 0.39 \mathrm{mmol}$) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the aldehyde 109 k as a yellow oil $(71 \mathrm{mg}$, $0.31 \mathrm{mmol}, 79 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.2 ; \quad$ ESI-TOF $(m / z) \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FNaO}$, 253.1005, found: 253.1000; IR (ATR): $\tilde{v}=3067,2998,2923,2820,2734,1684,1644,1610,1580$, $1445,1265,1244,1142,972,778,753 \mathrm{~cm}^{-1} ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}\right): \delta=-113.6 \mathrm{ppm},{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.50\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.12\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.23\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.78 (dddd, ${ }^{3} J=8.5,8.5,8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 2.36-2.45 (m, 2H, CH2), 5.97 (dd, ${ }^{3} J=15.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{ArCH}=\mathrm{CH}), 6.24\left(\mathrm{ddd},{ }^{3} J=15.7,8.0 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 6.48\left(\mathrm{~d},{ }^{3} J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right)$, 6.85-6.95 (m, 2H, HC=CHCHO, H-Ar), 6.97-7.02 (m, 1H, H-Ar), 7.05-7.06 (m, 1H, H-Ar), 7.22-7.26 (m, 1H, $H-A r), 9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0,17.4,19.3,32.3,112.2$ (d, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{F}}=22 \mathrm{~Hz}\right), 113.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=21 \mathrm{~Hz}\right), 121.7,130.1,130.1,130.6,133.2,139.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=8 \mathrm{~Hz}\right), 157.5,162.6(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{F}}=245 \mathrm{~Hz}\right), 194.1 \mathrm{ppm}$.

(E)-4-(2-((E)-2-Fluorostyryl)cyclopropyl)but-2-enal (109I)

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}(230.28)$

The title compound was derived from $157(0.13 \mathrm{~g}, 0.42 \mathrm{mmol})$ and 2-fluoroiodobenzene ($86 \mathrm{mg}, 0.39 \mathrm{mmol}$) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the aldehyde $\mathbf{1 0 9 1}$ as a yellow oil $(90 \mathrm{mg}, 0.39 \mathrm{mmol}$, quant.).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.2$; ESI-TOF $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FNaO}$, 253.1005, found: 253.1003; IR (ATR): $\tilde{v}=3001,2916,2816,2733,1685,1636,1487,1229,967,750 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-118.5 \mathrm{ppm} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.51\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.11\left(\mathrm{~m}_{\mathrm{c}}\right.$, 1H, H-cyclopropyl), 1.17-1.28 (m, 1H, H-cyclopropyl), 1.81 (dddd, ${ }^{3} J=8.5,8.5,8.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), $2.34-2.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.06\left(\mathrm{dd},{ }^{3} J=15.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.23\left(\mathrm{ddt},{ }^{3} J=15.7,7.9 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $H C=C H C H O), 6.64\left(d,{ }^{3} J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.91\left(\mathrm{dt},{ }^{3} \mathrm{~J}=15.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 6.99-7.02(\mathrm{~m}$, 1H, H-Ar), 7.05-7.07 (m, 1H, H-Ar), 7.13-7.19 (m, 1H, H-Ar), 7.34-7.36 (m, 1H, H-Ar), $9.52\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CHO}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0,17.4,19.8,32.4,115.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=22 \mathrm{~Hz}\right), 123.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=3 \mathrm{~Hz}\right)$, $124.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=3 \mathrm{~Hz}\right), 125.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=12 \mathrm{~Hz}\right), 127.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=4 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=8 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=5 \mathrm{~Hz}\right)$, 133.1, $157.7,160.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=248 \mathrm{~Hz}\right), 194.2 \mathrm{ppm}$.

(E)-4-(2-((E)-2-(Pyridin-2-yl)vinyl)cyclopropyl)but-2-enal (109m)

The title compound was derived from $157(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ and 2-iodopyridine (62 mg , $0.30 \mathrm{mmol})$ according to GP1. The aqueous phase was neutralised with $\mathrm{HCl}(10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, \mathrm{pH}=7$) before extraction. Column chromatography (silica gel, pentane/ethyl acetate $=1: 1$) delivered the aldehyde $\mathbf{1 0 9 m}$ as a yellow oil ($47 \mathrm{mg}, 0.22 \mathrm{mmol}, 73 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=2: 1$) $=0.2$; ESI-TOF $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NNaO}$, 236.1046, found: 236.1058; IR (ATR): $\tilde{v}=3066,3001,2924,2816,2734,2358,2342,1684,1645,1584,1561,1470$, 1432, 1367, 1302, 1265, 1227, 1197, 1145, 1116, 1093, 1048, 1010, 970, 881, 854, 818, 769, 743, 722, 699, $675 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.57\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.15 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), $1.24-1.29$ (m, $1 \mathrm{H}, H$-cyclopropyl), 1.83 (dddd, ${ }^{3} \mathrm{~J}=8.6,8.6,8.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), $2.46\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{CH}\right.$) , 6.23 (ddt, $\left.{ }^{3} J=15.7,7.9 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, H \mathrm{C}=\mathrm{CHCHO}\right), 6.53\left(\mathrm{dd},{ }^{3} J=15.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.60\left(\mathrm{~d},{ }^{3} J=15.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}), 6.91\left(\mathrm{dt},{ }^{3} \mathrm{~J}=15.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 7.06-7.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.14-7.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, 7.57-7.60 (m, 1H, H-Ar), 8.49-8.51 (m, 1H, H-Ar), $9.50\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=13.6,17.9,19.5,32.4,121.3,121.7,130.7,133.1,134.3,136.6,149.6,155.5,157.7,194.2 \mathrm{ppm}$.

(E)-4-(2-((E)-4-Methylstyryl)cyclopropyl)but-2-enal (109n)

The title compound was derived from $157(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ and 4-iodotoluene ($65 \mathrm{mg}, 0.30 \mathrm{mmol}$) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the carbaldehyde $\mathbf{1 0 9 n}$ as a yellow oil (48 mg , $0.21 \mathrm{mmol}, 71 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=10: 1$) $=0.7$; ESI-TOF $(\mathrm{m} / \mathrm{z}): \quad[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}, 249.1250$, found: 249.1243; IR (ATR): $\tilde{v}=3019,2996,2920,2813,2733,2361,2337,1685,1635$, 1513, 1447, 1417, 1386, 1306, 1260, 1200, 1181, 1140, 1113, 1034, 1010, 966, 903, 877, 850, 801, 772, 750, 732, 722, 710, 696, 684, 661, $652 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.48\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.08\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right.$, H-cyclopropyl), 1.19 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), 1.77 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), 2.33 (s, 3H, C H ${ }_{3}$), 2.35-2.45 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.93\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.24\left(\mathrm{ddt},{ }^{3} \mathrm{~J}=15.6,7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right)$, $6.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.91\left(\mathrm{dt},{ }^{3} \mathrm{~J}=15.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 7.07-7.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, $7.17-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.7,17.1,19.3$, $21.3,32.4,125.8(2 C), 127.8,129.4(2 C), 131.1,133.1,134.8,136.9,158.0,194.2 \mathrm{ppm}$.

The title compound was derived from $157(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ and 4-(tert-butyl)iodobenzene ($78 \mathrm{mg}, 0.30 \mathrm{mmol}$) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the aldehyde $\mathbf{1 0 9}$ as a yellow oil (41 mg , $0.15 \mathrm{mmol}, 51 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=10: 1\right)=0.5$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NaO}, 291.1725$, found: 291.1733; IR (ATR): $\tilde{v}=2961,2901,2866,2811,2730,1686,1637,1269,1140,1111$, 968, $817 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=0.48\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.08\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.14-1.20 (m, 1H, H-cyclopropyl), 1.31 (s, 9H, CH3), 1.75-1.80 (m, 1H, H-cyclopropyl), 2.34-2.45 (m, 2H, $\left.\mathrm{CH}_{2}\right), 5.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.24\left(\mathrm{ddt},{ }^{3} \mathrm{~J}=15.7,7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 6.49$ (d, ${ }^{3} J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}$), 6.91 (ddd, ${ }^{3} J=15.7,6.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}$), $7.23-7.29$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), $7.30-7.35$ (m, 2H, H-Ar), $9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.6,17.1,19.3$, 31.4 (3C), 32.4, 34.7, 125.6 (4C), 128.0, 131.0, 133.1, 134.8, 150.2, 158.0, 194.2 ppm .

(E)-4-(2-((1E,3E)-6-Phenylhexa-1,3-dien-1-yl)cyclopropyl)but-2-enal (109p)

The title compound was derived from $157(77 \mathrm{mg}, 0.33 \mathrm{mmol})$ and (E)-(4-iodobut-3-en-1-yl)benzene ($77 \mathrm{mg}, 0.30 \mathrm{mmol}$) according to GP1. Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the aldehyde $\mathbf{1 0 9}$ p as a yellow oil ($17 \mathrm{mg}, 0.06 \mathrm{mmol}, 21 \%$). An analytically pure sample was obtained by preparative HPLC (Chiralpak IA $5 \mu \mathrm{~m}, 4.6 \times 250 \mathrm{~mm}$, hexane $/ \mathrm{EtOAc}=96: 4$, flow: $1.0 \mathrm{~mL} / \mathrm{min}$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.3$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}, 289.1569$, found: 289.1571; IR (ATR): $\tilde{v}=3062,3023,3002,2923,2852,2730,1686,1636,1604,1496,1454,1416,1306,1199,1142$, $1115,1075,1030,1009,977,944,903,876,843,733 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.36\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=5.5 \mathrm{~Hz}\right.$, ${ }^{3} J=5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), $1.03\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.13\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.65 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}$, H-cyclopropyl), 2.28-2.38 (m, 2H, cyclopropylC H_{2}), 2.51 (dtd, ${ }^{3} J=9.0,7.4 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $2.70\left(\mathrm{td},{ }^{3} J=7.4 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 5.32-5.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 5.41\left(\mathrm{dd},{ }^{3} J=15.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, cyclopropyICH), 5.93-5.99 (m, 1H, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.21$ (ddt, ${ }^{3} J=15.6,7.9 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCCHO}$), $6.40\left(\mathrm{ddt},{ }^{3} J=15.0,11.1 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, cyclopropylCH=CH$), 6.89\left(\mathrm{dt},{ }^{3} J=15.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right)$, 7.17-7.22 (m, 3H, H-Ar), 7.27-7.30 (m, 2H, H-Ar), $9.53\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=12.9,17.2,19.1,29.7,32.3,36.0,126.0,127.0,128.5(2 C), 128.6(2 C), 128.9,129.0,132.7,133.1,142.0$, 157.9, 194.3 ppm .

(E)-4-(2-Vinylcyclopropyl)but-2-enal (109r)

$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}$ (136.19)

The title compound was derived from $157(0.20 \mathrm{~g}, 0.66 \mathrm{mmol})$ and 2-iodobenzene-1,3-diol ($0.14 \mathrm{~g}, 0.60 \mathrm{mmol}$). Column chromatography (silica gel, pentane/ethyl acetate $=40: 1$) delivered the aldehyde $\mathbf{1 0 9 r}$ as a yellow oil ($15 \mathrm{mg}, 0.11 \mathrm{mmol}, 18 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.8$; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NaO}$, 159.0780, found: 159.0792; IR (ATR): $\tilde{v}=3014,2924,2857,1732,1644,1596,1441,1370,1208,1124,971,831$, $765 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $: \delta=0.37\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $0.98\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.10 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), $1.63\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 2.30 (ddd, ${ }^{2} J=17.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$) , 2.38 $\left(\mathrm{ddd},{ }^{2} J=17.0 \mathrm{~Hz},{ }^{3} J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.04\left(\mathrm{~d},{ }^{3} J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.14\left(\mathrm{~d},{ }^{3} J=17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH} \mathrm{H}_{2}\right)$, $5.59\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=17.3,10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}, H \mathrm{C}=\mathrm{CH}_{2}\right), 6.22\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 6.90\left(\mathrm{dt},{ }^{3} J=15.6\right.$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}$), $9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.9,16.4$, 19.6, 32.1, 115.7, 133.1, 136.8, 158.0, 194.3 ppm.

5.6.15 1-(4-Methoxyphenyl)octahydro-1 H-cyclopropa[4,5]cyclopenta[1,2-c]pyran-3ol (158)

$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{BO}_{4}$ (306.21)

27\%

$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}(260.33)$

The pinacolborane 157 ($0.10 \mathrm{~g}, 0.33 \mathrm{mmol}, 1.1$ equiv.) and 4 -iodoanisole ($69 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv.) were dissolved in degassed DME ($3.75 \mathrm{~mL}, 0.08 \mathrm{~m}$) and treated with $\mathrm{Pd}(\mathrm{OAc})_{2}\left(7.0 \mathrm{mg}, 30 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%\right.$) and PPh_{3} ($39 \mathrm{mg}, 0.15 \mathrm{mmol}, 50 \mathrm{~mol} \%$). The resulting solution was degassed and heated to $80^{\circ} \mathrm{C}$. At this temperature, $\mathrm{KO} t$ - Bu (1 m in t - $\mathrm{BuOH}, 0.60 \mathrm{~mL}, 0.60 \mathrm{mmol}, 2.0$ equiv.) was added dropwise over a period of 15 min . After complete addition the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min . The mixture was cooled to $20^{\circ} \mathrm{C}$, treated with oxalic acid (0.9 m in $\mathrm{H}_{2} \mathrm{O}, 3.3 \mathrm{~mL}, 3.0 \mathrm{mmol}, 10$ equiv.), and stirred for 14 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$ and the combined organic phases were washed with sat. aq. NaHCO_{3} $(15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$. The organic phases were dried over MgSO_{4}, filtrated and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) affording the title compound 158 as a colourless oil ($21 \mathrm{mg}, 80 \mu \mathrm{~mol}, 27 \%$). Single crystals suitable for diffraction analysis were obtained by diffusion of pentane into a solution of $\mathbf{1 5 8}$ in ethyl acetate.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=4: 1\right)=0.3$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NaO}_{3}, 283.1304$, found: 283.1312; IR (ATR): $\tilde{v}=3390,3064,3031,3002,2927,2854,2360,2341,1718,1613,1586,1513,1450,1378,1302$,

1243, 1174, 1124, 1108, 1093, 1070, 1054, 1023, 975, 936, 910, 892, 880, 859, 825, 811, 792, 769, 736, 702, $675 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.12-0.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$-cyclopropyl), $0.59-0.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$-cyclopropyl), 0.83-0.86 (m, 1H, H-cyclopropyl), 1.07-1.14 (m, 1H, H-cyclopropyl), 1.37-1.41 (m, 1H, CH2), 1.46-1.54 (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67-1.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.82-1.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.00-2.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.73(\mathrm{~d}$, $\left.{ }^{3} J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}\right), 5.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HOCH}), 6.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 7.30-7.37$ (m, 2H,$\left.H-\mathrm{Ar}\right) \mathrm{ppm}$; ${ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.0,12.9,16.1,28.8,32.2,36.3,51.9,55.4,81.1,92.7,113.8$ (2C), 127.9 (2C), $134.0,159.2 \mathrm{ppm}$. Only the signals of the major diastereoisomer are indicated.

5.6.16 1-(Thiophen-2-yl)octahydro-1 H-cyclopropa-[4,5]cyclopenta[1,2-c]pyran-3ol (159)

$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{BO}_{4}$ (306.21)

56\%

The pinacolborane 157 ($0.10 \mathrm{~g}, 0.33 \mathrm{mmol}, 1.1$ equiv.) and 2-iodothiophene ($63 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv.) were dissolved in degassed DME ($3.75 \mathrm{~mL}, 0.08 \mathrm{~m}$) and treated with $\operatorname{Pd}(\mathrm{OAc})_{2}(7.0 \mathrm{mg}, 30 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) and PPh_{3} ($39 \mathrm{mg}, 0.15 \mathrm{mmol}, 50 \mathrm{~mol} \%$). The resulting solution was degassed and heated to $80^{\circ} \mathrm{C}$. At this temperature, $\mathrm{KO} t-\mathrm{Bu}(1 \mathrm{~m}$ in $t-\mathrm{BuOH}, 0.60 \mathrm{~mL}, 0.60 \mathrm{mmol}, 2.0$ equiv.) was added dropwise over a period of 15 min . After complete addition the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 min . The mixture was cooled to $20^{\circ} \mathrm{C}$, treated with oxalic acid (0.9 m in $\mathrm{H}_{2} \mathrm{O}, 3.3 \mathrm{~mL}, 3.0 \mathrm{mmol}, 10$ equiv.), and stirred for 18 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$ and the combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and brine (15 mL). The organic phases were dried over MgSO_{4}, filtrated and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=20: 1 \rightarrow 10: 1$) affording the title compound 159 as a colourless oil $(40 \mathrm{mg}, 0.17 \mathrm{mmol}$, 56%).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=10: 1\right)=0.6$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{2} \mathrm{~S}, 259.0763$, found: 259.0765; IR (ATR): $\tilde{v}=3384,3067,3031,3004,2926,2855,2360,2342,1717,1448,1314,1278,1239,1201,1123$, 1093, 1066, 1054, 1035, 1019, 975, 933, 911, 850, 825, 812, $774,697,669 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=0.17-0.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} 2$-cyclopropyl), 0.61-0.70(m,1H, CH2-cyclopropyl), 1.03-1.05 (m, 1H, H-cyclopropyl), 1.15-1.18 (m, 1H, H-cyclopropyl), 1.19-1.26 (m, 1H, CH2 $)$ 1.39-1.44 (m, 1H, CH2 $), 1.50-1.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $\left.1.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.80-1.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.88\left(\mathrm{dd},{ }^{2} \mathrm{~J}=11.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right)_{2}\right), 1.98-2.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, $5.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}\right), 5.43-5.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HOCH}), 6.95-7.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.08-7.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, $7.26-7.27$ (m, 1H, H-Ar) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.1,13.0,16.2,28.7,32.1,36.1,52.5,73.5,92.7$, $124.6,124.7,126.6,145.2 \mathrm{ppm}$. Only the signals of the major diastereoisomer are indicated.

The pinacolborane 157 ($500 \mathrm{mg}, 1.64 \mathrm{mmol}, 1.1$ equiv.) and 4-iodoanisole ($390 \mathrm{mg}, 1.49 \mathrm{mmol}, 1.0$ equiv.) were dissolved in degassed DME ($19.5 \mathrm{~mL}, 0.08 \mathrm{~m}$) and treated with $\mathrm{Pd}(\mathrm{OAc})_{2}(34.0 \mathrm{mg}, 150 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) and PPh_{3} ($195 \mathrm{mg}, 0.750 \mathrm{mmol}, 50 \mathrm{~mol} \%$). The resulting solution was degassed and heated to $80^{\circ} \mathrm{C}$. At this temperature, KOt - Bu (1 m in $t-\mathrm{BuOH}, 3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}, 2.0$ equiv.) was added dropwise over a period of 15 min . After complete addition the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 90 min . The mixture was cooled to $20^{\circ} \mathrm{C}$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, filtrated, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) to deliver the acetal coupling product 160 as a red oil ($466 \mathrm{mg}, 1.37 \mathrm{mmol}, 92 \%$) as an inconsequential E / Z mixture on the acetal part of the molecule.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=5: 1$) $=0.4$; ESI-TOF $(m / z):[M+N a]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{3}, 309.1467$, found: 309.1468; IR (ATR): $\tilde{v}=3066,2999,2952,2886,2364,1606,1509,1242,955,819 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}): $\delta=0.44\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.01\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.12 (dddd, ${ }^{3} \mathrm{~J}=13.0,8.5,7.3,7.3 \mathrm{~Hz}$, 1H, H-cyclopropyl), 1.65-1.75 (m, 1H, H-cyclopropyl), 2.21-2.33 (m, 2H, CH ${ }_{2}$), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 3.84-3.93 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.96-4.06 (m, 2H, CH2), 5.42-5.57 (m, 2H, CH), 5.84-5.95 (m, $\left.2 \mathrm{H}, \mathrm{CH}\right), 6.47\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right)$, 6.78-6.98 (m, 2H, H-Ar), 7.16-7.43 (m, 2H, H-Ar) ppm; ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.8,19.0,19.5,27.7$, 55.4, 65.1 (2C), 99.4, 114.0 (2C), 126.0 (2C), 127.0, 127.7, 129.9, 130.8, 136.8, 158.7 ppm.
5.6.18 (E)-4-(2-((E)-4-Methoxystyryl)cyclopropyl)but-2-enal (109q)

A solution of acetal $160(0.13 \mathrm{~g}, 0.46 \mathrm{mmol}, 1.0$ equiv.) and 2,6 -lutidine ($1.4 \mathrm{~mL}, 11 \mathrm{mmol}, 23$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(46 \mathrm{~mL}, 0.01 \mathrm{~m})$ was treated with TMSOTf $(1.8 \mathrm{~mL}, 8.4 \mathrm{mmol}, 18$ equiv. $)$ at $-30^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at this temperature. $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the resulting biphasic system was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$.

The combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, filtrated, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) to deliver the aldehyde $\mathbf{1 0 9 q}$ as a colourless oil ($46 \mathrm{mg}, 0.19 \mathrm{mmol}, 41 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=10: 1\right)=0.4$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{2}, 265.1205$, found: 265.1207; IR (ATR): $\tilde{v}=3062,2997,2933,2835,2733,2360,1684,1606,1509,1241,818 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.46\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.06\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.17\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.76 (m_{c}, 1H, H-cyclopropyl), $2.39\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.84\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right.$), 6.24 (dd, $\left.{ }^{3} J=15.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 6.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.83\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, H-\mathrm{Ar}\right), 6.91$ ($\mathrm{dt},{ }^{3} \mathrm{~J}=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}$), $7.23-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.5,17.0,19.2,32.4,55.5,114.1(2 C), 126.6,127.0(2 C), 130.5,130.7,133.1,158.0,158.9$, 194.2 ppm.

5.6.19 2-((E)-3-(2-((E)-2-(Thiophen-2-yl)vinyl)cyclopropyl)prop-1-en-1-yl)-1,3-dioxolane (161)

2-iodothiophene, $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, PPh_{3} (50 mol\%), KOt-Bu

DME, $80^{\circ} \mathrm{C}, 90 \mathrm{~min}$ 99\%

The pinacolborane 157 ($0.20 \mathrm{~g}, 0.66 \mathrm{mmol}, 1.1$ equiv.) and 2-iodothiophene ($0.26 \mathrm{~g}, 0.60 \mathrm{mmol}, 1.0$ equiv.) were dissolved in degassed DME ($7.5 \mathrm{~mL}, 0.08 \mathrm{~m}$) and treated with $\mathrm{Pd}(\mathrm{OAc})_{2}(14 \mathrm{mg}, 60 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and PPh_{3} ($78 \mathrm{mg}, 0.30 \mathrm{mmol}, 50 \mathrm{~mol} \%$). The resulting solution was degassed and heated to $80^{\circ} \mathrm{C}$. At this temperature, KOt - Bu (1 m in t - $\mathrm{BuOH}, 1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}, 2.0$ equiv.) was added dropwise over a period of 15 min . After complete addition the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 h . The mixture was cooled to $20^{\circ} \mathrm{C}$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ was added. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and the combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, filtrated, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) to deliver the acetal 161 as a red oil $(0.16 \mathrm{~g}, 0.59 \mathrm{mmol}, 99 \%)$ in an inconsequential E / Z-mixture on the acetal part of the molecule.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) = 0.4; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}, 263.1101$, found: 263.1106; IR (ATR): $\tilde{v}=3106,3070,2992,2882,2360,2342,1670,1636,1473,1425,1396,1346,1281,1263,1205$, 1116, 1067, 1040, 1028, 1006, 946, 873, 852, 828, 810, 777, 746, 691, $617 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=0.42\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.01\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.07-1.16$ (m, 1H,H-cyclopropyl), 1.65 (dddd, ${ }^{3} J=8.5,8.5,8.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), 2.24-2.27 (m, 2H, CH2$), 3.79-3.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.94-4.03(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.41-5.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{O}_{2} \mathrm{CHCH}=\mathrm{CH}\right), 5.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}_{2}\right), 5.79-5.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{O}_{2} \mathrm{CHCH}=\mathrm{CH}\right.$, $\operatorname{ArCH}=\mathrm{CH}), 6.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.85\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 6.93\left(\mathrm{dd},{ }^{3} \mathrm{~J}=5.2 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 7.04-7.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.0,19.4,19.4,27.7,65.1$
(2C), 99.4, 123.0, 123.7, 124.0, 126.2, 127.4, 130.0, 136.6, 143.1 ppm . Only the signals of the major diastereomer are indicated.
5.6.20 2-(E)-4-(2-((E)-2-(Thiophen-2-yl)vinyl)cyclopropyl)but-2-enal (109s)

A solution of acetal 161 ($0.14 \mathrm{~g}, 0.55 \mathrm{mmol}, 1.0$ equiv.) and 2,6-lutidine ($1.5 \mathrm{~mL}, 13 \mathrm{mmol}, 23$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL}, 0.1 \mathrm{~m})$ was treated with TMSOTf $\left(2.3 \mathrm{~mL}, 13 \mathrm{mmol}, 23\right.$ equiv.) at $-30^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at this temperature. $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the resulting biphasic system was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, filtrated, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) to deliver the aldehyde 109s as a colourless oil ($51 \mathrm{mg}, 0.23 \mathrm{mmol}, 42 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.4$; ESI-TOF $(m / z):[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{OS}, 219.0838$, found: 219.0844; IR (ATR): $\tilde{v}=3106,3068,2995,2917,2815,2733,2360,1683,1635,1520,1447,1434,1389,1306,1262$, 1202, 1141, 1116, 1040, 1010, 972, 951, 902, 876, 852, 814, 747, $694 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.47$ ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.08 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.19 (dddd, ${ }^{3} \mathrm{~J}=15.9,8.6,7.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 1.69-1.79 (m, 1H, H-cyclopropyl), 2.36-2.42 (m, 2H, CH2) $5.82\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.23$ (ddt, $\left.{ }^{3} J=15.6,7.9 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 6.63\left(\mathrm{dd},{ }^{3} J=15.6 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.86(\mathrm{~d}$, $\left.{ }^{3} J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, H-\mathrm{Ar}\right), 6.89-6.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCHO}), 6.91-6.94(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 7.07\left(\mathrm{~d},{ }^{3} J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right)$, $9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.8,17.3,19.2,32.4,123.3,124.4,124.4$, 127.5, 128.8, 133.2, 142.8, 157.7, 194.2 ppm.

5.6.21 Ethyl (E)-3-(2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropyl)acrylate (162)

Triethyl phosphonoacetate ($460 \mu \mathrm{~L}, 2.30 \mathrm{mmol}, 1.05$ equiv.) was added dropwise to a suspension of $\mathrm{NaH}(60 \%$ in mineral oil, $93.0 \mathrm{mg}, 2.32 \mathrm{mmol}, 1.06$ equiv.) in dry THF ($3.0 \mathrm{~mL}, 0.75 \mathrm{~m}$) at $0^{\circ} \mathrm{C}$ over a period of 15 min . The resulting solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and warmed to $20^{\circ} \mathrm{C}$ over 1 h . The mixture was treated
with aldehyde 113 ($500 \mathrm{mg}, 2.19 \mathrm{mmol}, 1.00$ equiv.) and stirred at $68^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was diluted with pentane $(6 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ was added. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtrated, and concentrated in vacuo. Purification of the residue by column chromatography (silica gel, pentane/ethyl acetate $=100: 1$) delivered the silyl ether 162 as a colourless oil ($518 \mathrm{mg}, 1.74 \mathrm{mmol}, 79 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=40: 1$) = 0.6; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}$, 299.2037, found: 299.2042; IR (ATR): $\tilde{v}=3071,2953,2929,2896,2857,2362,2341,1716,1644,1471,1464,1447,1389,1375,1362$, 1308, 1261, 1186, 1142, 1098, 1039, 1006, 978, 950, 921, 894, 834, 810, 775, 741, 705, 678, $661 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.04\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.53\left(\mathrm{ddd},{ }^{2} J=4.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), $0.89(\mathrm{~s}, 9 \mathrm{H}$, SiCCH H_{3}), 1.12 (ddd, ${ }^{2} J=4.9 \mathrm{~Hz},{ }^{3} J=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), $1.28\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28-1.32(\mathrm{~m}$, 1H, H-cyclopropyl), 1.57-1.68 (m, 3H, CH3 $-\mathrm{CH}_{2}, H$-cyclopropyl), 3.62-3.68 (m, 2H, CH2), 4.14-4.20 (m, 2H, CH_{2}), $5.92\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 6.67\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=-5.2(2 C), 14.5,15.2,18.4,18.5,19.2,26.1(3 C), 32.8,60.1,63.0,120.3,150.6,166.7 \mathrm{ppm}$.
5.6.22 Ethyl (E)-3-(2-(2-Oxoethyl)cyclopropyl)acrylate (116d)

A solution of the silyl ether $162(471 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.0$ equiv. $)$ in $\mathrm{MeOH}(16.0 \mathrm{~mL}, 0.1 \mathrm{~m})$ was treated with HCl ($10 \mathrm{wt}-\%$ in $\mathrm{H}_{2} \mathrm{O}, 25.5 \mu \mathrm{~L}, 80.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) at $20^{\circ} \mathrm{C}$. The reaction solution was stirred at this temperature for 4 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvents were removed in vacuo and the residue was dissolved in dry DMSO ($16.0 \mathrm{~mL}, 0.1 \mathrm{~m}$). IBX ($664 \mathrm{mg}, 2.37 \mathrm{mmol}, 1.5$ equiv.) was added to the solution and the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvents were removed in vacuo and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) to obtain the aldehyde $116 \mathbf{d}$ as a colourless oil ($234 \mathrm{mg}, 1.28 \mathrm{mmol}, 81 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=4: 1$) = 0.6; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NaO}_{3}, 205.0835$, found: 205.0839; IR (ATR): $\tilde{v}=2982,2937,2903,2825,2726,2359,2341,1706,1643,1465,1447,1418,1387,1374$, 1308, 1262, 1226, 1187, 1149, 1136, 1095, 1035, 980, 915, 884, 856, 831, 807, 790, 734, 704, $668 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}}$ H NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=0.58\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.22-1.27\left(\mathrm{~m}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.27\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, CH_{3}), $1.52\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}\right.$-cyclopropyl), 1.75-1.81 (m, 1H, H-cyclopropyl), 2.48-2.59 (m, 2H, CH CH_{2}), $4.16\left(\mathrm{~m}_{\mathrm{c}}\right.$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.94\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 6.59\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 9.78\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHO) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=14.2,14.4(2 \mathrm{C}), 18.4,43.6,60.3,121.7,148.4,166.4,201.0 \mathrm{ppm}$.

72\%

KOt - Bu ($466 \mathrm{mg}, 4.15 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt 124 (1.86 g , $4.32 \mathrm{mmol}, 2.7$ equiv.) in dry THF ($17 \mathrm{~mL}, 0.25 \mathrm{M}$) at $0^{\circ} \mathrm{C}$. The resulting slurry was stirred for 1 h at $0^{\circ} \mathrm{C}$ before a solution of the aldehyde $\mathbf{1 1 6 d}(292 \mathrm{mg}, 1.6 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($4.0 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 4 h . Oxalic acid $\left(0.9 \mathrm{~m}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 30.0 \mathrm{~mL}$, 27.1 mmol , 10.0 equiv.) was added and the biphasic mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ and brine (60 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) delivered the title compound $\mathbf{1 0 9 t}$ as a colourless oil ($221 \mathrm{mg}, 0.940 \mathrm{mmol}, 59 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=4: 1\right)=0.6$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{3}, 231.0991$, found: 231.1008; IR (ATR): $\tilde{v}=2982,2932,2905,2817,2733,2359,2341,2252,1708,1686,1641,1464,1446,1420$, 1394, 1373, 1307, 1263, 1186, 1146, 1115, 1095, 1035, 978, 913, 881, 852, 832, 816, 730, 692, $667 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.61\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.22\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.27\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\right.$), 1.35 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.77 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 2.40 (dddd, ${ }^{2} J=17.2 \mathrm{~Hz},{ }^{3} J=7.6,6.0 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), 2.48 (dddd, $\left.{ }^{2} J=17.2 \mathrm{~Hz},{ }^{3} J=7.6,6.0 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.17\left(\mathrm{qd},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J=0.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$), $5.95\left(\mathrm{dd},{ }^{3} J=15.3 \mathrm{~Hz},{ }^{4} J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{EtCH}\right), 6.21\left(\mathrm{ddt},{ }^{3} J=15.7,7.9 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCCHO}\right.$), $6.64\left(\mathrm{dd},{ }^{3} J=15.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{EtCH}=\mathrm{CH}\right), 6.86\left(\mathrm{dt},{ }^{3} \mathrm{~J}=15.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 9.52\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHO) ppm; ${ }^{13} \mathbf{C}$ NMR (176 MHz, CDCl_{3}): $\delta=14.4,14.8,18.9,19.2,32.3,60.3,121.6,133.3,148.6,156.6,166.5$, 194.0 ppm .

5.6.24 3-(2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropyl)acrylonitrile (163)

A suspension of NaH (60% in mineral oil, $93.0 \mathrm{mg}, 2.32 \mathrm{mmol}, 1.06$ equiv.) in dry THF ($3.0 \mathrm{~mL}, 0.75 \mathrm{~m}$) was treated with triethylphosphono acetonitrile ($370 \mu \mathrm{~L}, 2.30 \mathrm{mmol}, 1.05$ equiv.) at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at $20^{\circ} \mathrm{C}$ for 1 h and cooled again to $0^{\circ} \mathrm{C}$. The aldehyde $113(500 \mathrm{mg}, 2.19 \mathrm{mmol}, 1.00$ equiv.) was added dropwise. After complete addition, the reaction mixture was heated to $68^{\circ} \mathrm{C}$ for 18 h . The mixture
was diluted with pentane (5 mL) and sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$ and the combined organic phases washed were with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtrated, and concentrated in vacuo. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the silyl ether 163 as a colourless oil ($431 \mathrm{mg}, 1.71 \mathrm{mmol}, 78 \%$, $E / Z=1: 1)$.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) = 0.5; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NOSi}, 252.1778$, found: 252.1791; IR (ATR): $\tilde{v}=2999,2953,2928,2857,2218,1624,1471,1389,1362,1254,1098,1006,960,917,885$, 833, 811, 775, 751, 728, 717, 682, $666 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.05\left(\mathrm{~s}, 2 \times 6 \mathrm{H}, \mathrm{SiCH}_{3}, \mathrm{SiCH}_{3}{ }^{*}\right)$, 0.57 (dddd, ${ }^{2} J=9.9 \mathrm{~Hz},{ }^{3} J=6.5,5.0,5.0 \mathrm{~Hz}, 2 \times 1 \mathrm{H}, H$-cyclopropyl, $\mathrm{H}^{\text {-cyclopropyl }}$) , $0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CCH}_{3}{ }^{*}\right), 0.90(\mathrm{~s}$, 9H, CCH_{3}), 1.19 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), $1.27\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl*), 1.34-1.44 (m, $2 \times 1 \mathrm{H}, H$-cyclopropyl, H-cyclopropyl*), 1.52-1.67 (m, 3H $+2 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{CH}_{2}, H$-cyclopropyl, $\mathrm{SiCH}_{2} \mathrm{CH}_{2}{ }^{*}$), 2.06 (dtd, ${ }^{3} J=10.9,8.3$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {-cyclopropyl*}}$), 3.54-3.72 (m, 2 x $2 \mathrm{H}, \mathrm{SiCH}_{2}, \mathrm{SiCH}_{2}{ }^{*}$), $5.25\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}{ }^{*}\right), 5.38$ $\left(\mathrm{d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}\right), 6.11\left(\mathrm{dd},{ }^{3} J=10.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}=\mathrm{CH} H^{*}\right), 6.38\left(\mathrm{dd},{ }^{3} J=16.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{NCCH}=\mathrm{CH}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (176 MHz, CDCl_{3}) : $\delta=-5.2\left(2 C, 2 C^{*}\right), 15.6^{*}, 16.1,18.5^{*}, 19.0,19.1,19.4^{*}, 20.4(C$, $\left.C^{*}\right), 26.1\left(3 C, 3 C^{*}\right), 32.7^{*}, 33.0,62.8^{*}, 62.8,97.4^{*}, 97.8,117.0^{*}, 118.1,156.2^{*}, 157.0 \mathrm{ppm}$. *The signals of the Z-isomer are indicated.
5.6.25 3-(2-(2-Oxoethyl)cyclopropyl)acrylonitrile (164)

A solution of the silyl ether $163(0.42 \mathrm{~g}, 1.7 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(17.0 \mathrm{~mL}, 0.1 \mathrm{~m})$ was treated with HCl ($10 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, 29 \mu \mathrm{~L}, 90 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 2 h before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtrated, and concentrated in vacuo. The residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(17.0 \mathrm{~mL}, 0.1 \mathrm{~m})$ and $\mathrm{DMP}\left(1.1 \mathrm{~g}, 2.5 \mathrm{mmol}, 1.5\right.$ equiv.) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, filtrated, and concentrated in vacuo. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=2: 1$) delivered the E-isomer of the aldehyde 164 (47 mg , $0.35 \mathrm{mmol}, 21 \%, E / Z=12: 1$) as well as the Z-isomer ($50 \mathrm{mg}, 0.37 \mathrm{mmol}, 22 \%, Z / E=6: 1$) as colourless oils.
\boldsymbol{E}-164: $\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=2: 1$) $=0.8$; ESI-TOF $(m / z):[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}, 136.0757$, found: 136.0751; IR (ATR): $\tilde{v}=3060,3016,2903,2825,2727,2218,1720,1625,1389,1254,1169,1054,969,922,830,711$, $683 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.58-0.64\left(\mathrm{~m}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.30 (ddd, ${ }^{2} J=8.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.3$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 1.53-1.63 (m, 1H, H-cyclopropyl), 1.77-1.83 (m, 1H, H-cyclopropyl), 2.43-2.57 (m,
$\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}\right), 6.30\left(\mathrm{dd},{ }^{3} \mathrm{~J}=16.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}=\mathrm{CH}\right), 9.78\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHO) ppm; ${ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.7,14.7,19.6,43.5,99.4,117.6,155.0,200.2 \mathrm{ppm}$.

Z-164: $\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=2: 1$) = 0.7; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NaNO}, 158.0576$, found: 158.0576; IR (ATR): $\tilde{v}=3077,3005,2916,2830,2731,2214,1720,1611,1447,1385,1323,1302,1247$, 1136, 1101, 1050, 1016, 965, 919, 872, 855, 822, 748, 704, 694, 667, $659 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=0.65\left(\mathrm{ddd},{ }^{2} J=5.3 \mathrm{~Hz},{ }^{3} J=6.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.41\left(\mathrm{ddd},{ }^{2} J=5.3 \mathrm{~Hz},{ }^{3} J=8.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}, H-\right.$ cyclopropyl), 1.64-1.71 (m, 1H, H-cyclopropyl), 2.13-2.23 (m, 1H, H-cyclopropyl), 2.45-2.56 (m, 2H, CH2), $5.32\left(\mathrm{dd},{ }^{3} J=10.8 \mathrm{~Hz},{ }^{4} J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}\right), 6.02\left(\mathrm{dd},{ }^{3} J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}=\mathrm{CH}\right), 9.78\left(\mathrm{t},{ }^{3} J=1.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (176 MHz, CDCl_{3}): $\delta=14.7,15.5,18.7,43.6,99.1,116.5,154.1,200.3 \mathrm{ppm}$.

5.6.26 (E)-3-(2-((E)-4-Oxobut-2-en-1-yl)cyclopropyl)acrylonitrile (109u)

55\%

KOt - $\mathrm{Bu}(0.10 \mathrm{~g}, 0.91 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt $124(0.41 \mathrm{~g}$, $0.95 \mathrm{mmol}, 2.7$ equiv.) in dry $\mathrm{THF}(3.8 \mathrm{~mL}, 0.25 \mathrm{~m})$ at $0^{\circ} \mathrm{C}$. The resulting slurry was stirred for 30 min at $0^{\circ} \mathrm{C}$ before a solution of the E-isomer of aldehyde $164(47 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($0.9 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise at this temperature over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 8 h . Oxalic acid (0.9 m in $\mathrm{H}_{2} \mathrm{O}, 3.9 \mathrm{~mL}, 3.5 \mathrm{mmol}, 10.0$ equiv.) was added and the biphasic mixture was stirred at $20^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) delivered the α, β-unsaturated aldehyde $\mathbf{1 0 9 u}$ as a colourless oil ($31 \mathbf{m g}$, $0.19 \mathrm{mmol}, 55 \%, E / Z=16: 1$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=2: 1\right)=0.7$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NNaO}_{3}, 184.0733$, found: 184.0737; IR (ATR): $\tilde{v}=2952,2920,2848,2724,2306,2217,2179,2136,2094,2053,1979,1683,1624,1419,1308$, $1144,1115,1008,966,927,904,897,874,845,827,817,800,786,775,766,756,733,723,707,695,681,669$, $658 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.64\left(\mathrm{ddd},{ }^{2} J=5.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.29 (ddd, ${ }^{2} J=5.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 1.41 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.78 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 2.36 (dddd, ${ }^{2} J=17.4 \mathrm{~Hz},{ }^{3} J=7.5,5.8 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.45\left(\mathrm{dddd},{ }^{2} J=17.4 \mathrm{~Hz},{ }^{3} J=7.5,6.0 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH_{2}), $5.44\left(\mathrm{dd},{ }^{3} J=16.0 \mathrm{~Hz},{ }^{4} J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}\right), 6.20\left(\mathrm{ddt},{ }^{3} J=15.8,7.8 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCCHO}\right), 6.35$ $\left(\mathrm{dd},{ }^{3} J=16.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}=\mathrm{CH}\right), 6.85\left(\mathrm{dt},{ }^{3} J=15.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 9.53\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHO) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=15.1,19.3,20.3,32.1,99.3,117.6,133.4,155.1,155.6,193.7 \mathrm{ppm}$.

KOt - $\mathrm{Bu}(0.11 \mathrm{~g}, 0.96 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt $124(0.43 \mathrm{~g}$, $1.0 \mathrm{mmol}, 2.7$ equiv.) in dry THF ($4.0 \mathrm{~mL}, 0.25 \mathrm{~m}$) at $0^{\circ} \mathrm{C}$. The resulting slurry was stirred for 30 min at $0^{\circ} \mathrm{C}$ before a solution of the Z-isomer of aldehyde 164 ($50 \mathrm{mg}, 0.37 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($1.0 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise at this temperature over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 8 h . Oxalic acid (0.9 m in $\mathrm{H}_{2} \mathrm{O}, 4.1 \mathrm{~mL}, 3.7 \mathrm{mmol}, 10.0$ equiv.) was added and the biphasic mixture was stirred at $20^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) delivered the α, β-unsaturated aldehyde $\mathbf{1 0 9 v}$ as a colourless oil (27 mg , $0.17 \mathrm{mmol}, 45 \%, Z / E=6: 1)$.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=2: 1$) $=0.7$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NNaO}_{3}, 184.0733$, found: 184.0739; IR (ATR): $\tilde{v}=3006,2918,2818,2730,2253,2215,1684,1634,1611,1558,1507,1425,1308,1247$, $1140,1115,1094,1042,1011,972,909,873,824,727,682,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.66(\mathrm{ddd}$, ${ }^{2} J=5.2 \mathrm{~Hz},{ }^{3} J=6.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), $1.38\left(\mathrm{ddd},{ }^{2} J=5.2 \mathrm{~Hz},{ }^{3} J=8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.50 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 2.18 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 2.39 (dddd, ${ }^{2} J=17.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.7,6.2 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), $2.46\left(\mathrm{dddd},{ }^{2} J=17.0 \mathrm{~Hz},{ }^{3} J=7.6,6.1 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.32\left(\mathrm{dd},{ }^{3} J=10.8 \mathrm{~Hz},{ }^{4} J=0.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{NCCH}), 6.08\left(\mathrm{dd},{ }^{3} J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}=\mathrm{CH}\right), 6.19\left(\mathrm{ddt},{ }^{3} J=15.7,7.8 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCCHO}\right)$, $6.84\left(\mathrm{dt},{ }^{3} \mathrm{~J}=15.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 9.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=15.8,19.4(2 C), 32.5,98.9,116.6,133.5,154.3,155.5,193.7 \mathrm{ppm}$.
5.6.28 tert-Butyldimethyl(2-(2-(4-phenylbut-1-en-1-yl)cyclopropyl)ethoxy)silane (166)

A solution of triphenyl(3-phenylpropyl) phosphonium bromide ($1.52 \mathrm{~g}, 3.29 \mathrm{mmol}, 1.5$ equiv.) in dry THF $(17.0 \mathrm{~mL}, 0.2 \mathrm{~m})$ was treated with $n-\mathrm{BuLi}\left(2.5 \mathrm{M}\right.$ in hexanes, $1.30 \mathrm{~mL}, 3.29 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction
mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and cooled to $-78^{\circ} \mathrm{C}$ afterwards. A solution of the aldehyde $113(500 \mathrm{mg}$, 2.19 mmol , 1.0 equiv.) in dry THF ($3.5 \mathrm{~mL}, 0.6 \mathrm{~m}$) was added dropwise over a period of 30 min . After complete addition the reaction mixture was allowed to reach $20^{\circ} \mathrm{C}$ and stirred for 18 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and the phases separated. The aqueous phase was extracted with pentane $(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, filtrated, and concentrated in vacuo. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=100: 1$) delivered the silyl ether 166 as a colourless oil ($525 \mathrm{mg}, 1.59 \mathrm{mmol}, 73 \%, Z / E=5: 1$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=100: 1\right)=0.5$; ESI-TOF $(m / z):[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{OSi}, 331.2452$, found: 331.2454; IR (ATR): $\tilde{v}=3060,2954,2927,2856,2359,2342,1734,1470,1463,1436,1379,1362,1264,1210,1160$, 1094, 1062, 1029, 1006, 962, 938, 908, 835, 811, 776, 735, 703, $662 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.06(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{SiCH}_{3}, \mathrm{SiCH}_{3}{ }^{*}\right), 0.14$ (ddd, ${ }^{2} J=5.4 \mathrm{~Hz},{ }^{3} J=5.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 0.17 (ddd, ${ }^{2} J=5.4 \mathrm{~Hz},{ }^{3} J=5.5$, $\left.5.4 \mathrm{~Hz}, 1 \mathrm{H}, H^{-c y c l o p r o p y l}{ }^{*}\right), 0.80-0.83\left(\mathrm{~m}, 1 \mathrm{H}, H\right.$-cyclopropyl$\left.{ }^{*}\right), 0.90\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{CCH}, H\right.$-cyclopropyl, $\mathrm{CCH}_{3}{ }^{*}$, H-cyclopropyl*), 0.95-1.01 (m, 1H, H-cyclopropyl), 1.40-1.44 (m, 3H, CH ${ }_{2}{ }^{*}$, H-cyclopropyl*), 1.47-1.58 (m, $3 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{H}$-cyclopropyl), 2.32-2.35 (m, 2H, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}{ }^{*}$), 2.46-2.51 (m, 2H, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.67\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{ArCH}_{2}^{*}$), $2.71\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right.$), 3.61-3.69 (m, 2H, SiOCH $\left.2, \mathrm{SiOCH}_{2}^{*}\right), 5.07\left(\mathrm{ddt},{ }^{3} \mathrm{~J}=11.0\right.$, $\left.9.5 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.22\left(\mathrm{dd},{ }^{3} J=14.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}^{*}\right), 5.47\left(\mathrm{dtd},{ }^{3} J=11.0,7.3 \mathrm{~Hz}\right.$, ${ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}$), $5.57\left(\mathrm{dt},{ }^{3} J=14.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}^{*}\right), 7.18-7.20\left(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}, H-\mathrm{Ar}^{*}\right)$, 7.21-7.23 (m, 2H, H-Ar, H-Ar*), 7.27-7.31 (m, 2H, H-Ar, H-Ar*) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.1$ $\left(2 C, 2 C^{*}\right), 12.1^{*}, 13.7\left(C, C^{*}\right), 14.0,14.9^{*}, 15.1,18.2^{*}, 18.6,26.2\left(3 C, 3 C^{*}\right), 29.6,32.7^{*}, 32.9,34.7^{*}, 36.1,36.4^{*}$, $63.4,63.5^{*}, 125.9^{*}$, 125.9, $128.4\left(2 C, 2 C^{*}\right)$, $128.6\left(2 C, 2 C^{*}\right), 129.5,129.9^{*}, 130.1,130.2^{*}, 142.3^{*}, 142.3 \mathrm{ppm}$. ${ }^{*}$ The signals of the E-isomer are indicated.

5.6.29 2-(2-((E)-4-Phenylbut-1-en-1-yl)cyclopropyl)ethan-1-ol (169)

A solution of 166 ($4.32 \mathrm{~g}, 14.0 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(65.0 \mathrm{~mL}, 0.2 \mathrm{~m})$ was treated with $\mathrm{HCl}(3 \mathrm{~m}$ in $\mathrm{H}_{2} \mathrm{O}, 220 \mu \mathrm{~L}, 0.650 \mathrm{mmol}, 5 \mathrm{~mol} \%$) at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 2 h before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(35 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried over MgSO_{4}, filtrated, and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, pentane/ ethyl acetate $=6: 1$) to deliver the alcohol 169 as a colourless oil (2.73 g , $12.6 \mathrm{mmol}, 96 \%, E / Z=1: 5$). A fraction of 169 was subjected to preparative HPLC (Nu $50-5,32 \times 50 \mathrm{~mm}$, hexane $/ i-\mathrm{PrOH}=95: 5$, flow: 64 ml min) to deliver the pure E-isomer of 169.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=4: 1\right)=0.6$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}, 239.1406$, found: 239.1416; IR (ATR): $\tilde{v}=3322,3062,3024,2996,2927,2855,1665,1603,1496,1453,1393,1335,1201,1132,1043$, 959, 824, $745 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.19$ (ddd, ${ }^{2} J=4.7 \mathrm{~Hz},{ }^{3} J=5.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), 0.86 (ddd, ${ }^{2} J=4.7 \mathrm{~Hz},{ }^{3} J=8.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), $0.88-0.97$ (m, 1H, H-cyclopropyl), 1.41-1.52 (m, 3H, H-cyclopropyl, $\mathrm{HOCH}_{2} \mathrm{CH}_{2}, \mathrm{OH}$), 1.53-1.60 (m, $1 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2}$), 2.32-2.45 (m, 2H, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 2.66-2.73 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.64\left(\mathrm{td},{ }^{3} J=6.6 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HOCH}_{2}\right), 5.21\left(\mathrm{ddt},{ }^{3} J=15.2,8.4 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, cyclopropyICH=CH), $5.59\left(\mathrm{dtd},{ }^{3} J=15.2,6.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, cyclopropylCH=CH$), 7.15-7.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, 7.26-7.30 (m, 2H, H-Ar) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.9,15.0,18.0,32.2,34.5,36.2,63.3,77.2,125.8$, $128.4(2 C), 128.6(2 C), 130.0,130.3,142.1 \mathrm{ppm}$.

5.6.30 2-(2-((E)-4-Phenylbut-1-en-1-yl)cyclopropyl)acetaldehyde ((E)-168)

The alcohol (\boldsymbol{E})-169 ($0.11 \mathrm{~g}, 0.52 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL}, 0.1 \mathrm{~m})$ and treated with DMP ($0.33 \mathrm{~g}, 0.78 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtrated, and concentrated in vacuo. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) delivered the aldehyde $(E) \mathbf{- 1 6 8}(0.10 \mathrm{~g}, 0.47 \mathrm{mmol}, 91 \%)$ as a colourless oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.6$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}, 237.1250$, found: 237.1257; IR (ATR): $\tilde{v}=3063,3025,2925,2853,2720,1820,1724,1603,1496,1454,1414,1388,1308,1182$, 1133, 1031, 1002, 966, 914, 827, $746 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=0.26-0.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), 0.95 (ddd, ${ }^{2} J=5.0 \mathrm{~Hz},{ }^{3} J=8.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 1.12-1.21 (m, 1H, H-cyclopropyl), 1.55-1.59 (m, 1H, H-cyclopropyl), 2.25-2.27 (m, 2H, CHOCH 2$), 2.33-2.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.68\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\operatorname{ArCH})_{2}$, $5.19\left(\mathrm{ddt},{ }^{3} J=15.3,7.5 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, cyclopropylCH=CH$), 5.57\left(\mathrm{dtd},{ }^{3} J=15.3,6.8 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}\right.$, 1 H , cyclopropylCH=CH), 7.13-7.20 (m, 3H, H-Ar), 7.26-7.30 (m, 2H, H-Ar), $9.69\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.4,11.4,17.6,34.4,36.1,43.4,125.9,128.4(2 C), 128.6$ (2C), 128.8, 131.6, 141.9, 202.6 ppm.

oxalic acid, $20^{\circ} \mathrm{C}, 24 \mathrm{~h}$
58\%

$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}(240.35)$
$\mathrm{KO} t-\mathrm{Bu}(0.12 \mathrm{~g}, 1.1 \mathrm{mmol}, 2.6$ equiv. $)$ was added to a suspension of the phosphonium salt $124(0.49 \mathrm{~g}, 1.2 \mathrm{mmol}$, 2.7 equiv.) in dry THF ($4.60 \mathrm{~mL}, 0.25 \mathrm{~m}$) at $0^{\circ} \mathrm{C}$. The resulting slurry was stirred for 1 h at $0^{\circ} \mathrm{C}$ before a solution of (\boldsymbol{E}) $\mathbf{- 1 6 8}(91 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($1.05 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise at this temperature over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 8 h . Oxalic acid (0.9 M in $\mathrm{H}_{2} \mathrm{O}, 4.6 \mathrm{~mL}$, $4.2 \mathrm{mmol}, 10.0$ equiv.) was added and the biphasic mixture was stirred at $20^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the α, β-unsaturated aldehyde $\mathbf{1 0 9 y}$ as a colourless oil ($59 \mathrm{mg}, 0.25 \mathrm{mmol}, 58 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.5$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}, 263.1406$, found: 263.1417; IR (ATR): $\tilde{v}=3063,3025,2921,2850,2730,1686,1635,1604,1496,1454,1307,1142,1116,1030$, $970,912,822,747 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}^{3}$): $\delta=0.24-0.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), $0.89-0.92(\mathrm{~m}$, $1 \mathrm{H}, H$-cyclopropyl), 1.00 (ttd, ${ }^{3} \mathrm{~J}=8.5,7.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), $1.50-1.56$ (m, 1H, H-cyclopropyl), 2.18 (dddd, $\left.{ }^{2} J=17.0 \mathrm{~Hz},{ }^{3} J=7.4,6.1 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}=\mathrm{CHCH}_{2}\right), 2.25\left(\mathrm{dddd},{ }^{2} J=17.0 \mathrm{~Hz}^{3} J=7.4\right.$, $\left.6.1 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}=\mathrm{CHCH}_{2}\right), 2.33-2.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.65-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$, $5.22\left(\mathrm{ddt},{ }^{3} J=15.3,7.7 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right.$), $5.58\left(\mathrm{dtd},{ }^{3} J=15.3,6.8 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), 6.18 (ddt, ${ }^{3} J=15.6,8.0 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, H \mathrm{CCHO}$), $6.82\left(\mathrm{dt},{ }^{3} J=15.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}=\mathrm{CHCHO}$), 7.14-7.20 (m, 3H, H-Ar), $7.24-7.29$ (m, 2H, $\mathrm{H}-\mathrm{Ar}$), 9.51 (d, ${ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.7,16.0,18.3,32.1,34.4,36.1,125.9,128.4(2 C), 128.6(2 C), 128.8,131.3,133.0,141.9$, 158.4, 194.3 ppm .

5.6.32 tert-Butyldimethyl(2-(2-((Z)-prop-1-en-1-yl)cyclopropyl)ethoxy)silane (165)

A suspension of ethyltriphenylphosphonium bromide ($3.26 \mathrm{~g}, 8.76 \mathrm{mmol}, 4.0$ equiv.) in dry THF (10.0 mL , 0.9 m) was treated with KOt - $\mathrm{Bu}\left(983 \mathrm{mg}, 8.76 \mathrm{mmol}, 4.0\right.$ equiv.) and stirred at $20^{\circ} \mathrm{C}$ for 1 h . The aldehyde 113 ($500 \mathrm{mg}, 2.19 \mathrm{mmol}, 1.0$ equiv.) was added and the reaction mixture was stirred at $68^{\circ} \mathrm{C}$ for 2 h . The reaction
was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The reaction mixture was extracted with pentane $(3 \times 50 \mathrm{~mL})$ and the combined organic phases were washed with brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated in vacuo. The residue was taken up in pentane/ethyl acetate ($20: 1,30 \mathrm{~mL}$) and the precipitate was filtered off. The mother liquor was concentrated in vacuo and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=100: 1$) to obtain the silyl ether 165 as a pale yellow oil $(336 \mathrm{mg}, 1.40 \mathrm{mmol}$, $64 \%, Z / E=7: 1)$.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=100: 1$) = 0.4; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{OSi}$, 241.1982, found: 241.1983; IR (ATR): $\tilde{v}=3065,3020,2994,2953,2928,2886,2857,2360,2341,1652,1471,1463,1448,1436,1417$, 1389, 1361, 1311, 1254, 1187, 1159, 1096, 1062, 1029, 1006, 983, 962, 938, 884, 833, 810, 773, 732, 679, $661 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.12-0.18(\mathrm{~m}, 1 \mathrm{H}, H$-cyclopropyl), $0.89-0.90(\mathrm{~m}, 10 \mathrm{H}$, CCH_{3}, H-cyclopropyl), 0.91-0.94 (m, 1H, H-cyclopropyl), 0.97-1.04 (m, 1H, H-cyclopropyl), 1.51-1.56 (m, $\left.\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.72\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \text {), 3.61-3.70(m,2H, SiOCH}\right)_{2}\right), 5.06\left(\mathrm{ddt},{ }^{3} J=9.5,9.5 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.48-5.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.1,-5.1$, 13.3, 13.6, 13.7, 15.0, 18.6, 26.1 (3C), 33.0, 63.4, 124.6, 130.2 ppm.
5.6.33 2-(2-((Z)-Prop-1-en-1-yl)cyclopropyl)acetaldehyde (167)

The silyl ether 165 ($512 \mathrm{mg}, 2.13 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry THF ($14.0 \mathrm{~mL}, 0.15 \mathrm{~m}$) and treated with TBAF (1.0 m in THF, $3.20 \mathrm{~mL}, 3.20 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 4 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and the combined organic phases were washed with brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated in vacuo. The residue was dissolved in dry DMSO ($11.0 \mathrm{~mL}, 0.2 \mathrm{~m}$) and IBX ($896 \mathrm{mg}, 3.20 \mathrm{mmol}$, 1.5 equiv.) was added. The resulting solution was stirred at $20^{\circ} \mathrm{C}$ for 18 h and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(11 \mathrm{~mL})$, subsequently. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and the combined organic phases were washed thoroughly with brine (50 mL), dried over MgSO_{4}, and concentrated in vacuo. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) delivered the aldehyde 167 as a pale yellow oil $(117 \mathrm{mg}, 0.940 \mathrm{mmol}, 44 \%, Z / E=3: 1)$.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) = 0.5; ESI-TOF $(m / z):[M+N a]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NaO}, 147.0780$, found: 147.0782; IR (ATR): $\tilde{v}=3069,3019,2999,2959,2916,2884,2818,2721,2363,2342,2329,1723,1651,1445,1416$, 1386, 1318, 1297, 1267, 1162, 1142, 1037, 962, 942, 912, 852, 820, 788, 773, 734, 697, 686, 676, $661 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.25$ (ddd, ${ }^{2} J=5.5 \mathrm{~Hz},{ }^{3} J=5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 1.09 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.24-1.34 (m, 1H, H-cyclopropyl), 1.66-1.74 (m, 3H, CH3), 1.73-1.77 (m, 1H, H-cyclopropyl), 2.25-2.45 (m, 2H, CH_{2}), 4.99 (ddq, ${ }^{3} \mathrm{~J}=10.7,8.9 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}$), $5.52-5.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 9.78\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}): $\delta=11.5,13.3,13.4,17.6,43.9,126.7,128.9,202.6 \mathrm{ppm}$.
5.6.34 (E)-4-(2-((Z)-Prop-1-en-1-yl)cyclopropyl)but-2-enal (109w)

KOt - $\mathrm{Bu}(0.23 \mathrm{~g}, 2.1 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt $\mathbf{1 2 4}(0.92 \mathrm{~g}, 2.1 \mathrm{mmol}$, 2.7 equiv.) in dry THF ($8.5 \mathrm{~mL}, 0.25 \mathrm{~m}$) at $0^{\circ} \mathrm{C}$. The resulting slurry was stirred for 30 min at $0^{\circ} \mathrm{C}$ before a solution of aldehyde 167 ($98 \mathrm{mg}, 0.79 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($2.0 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise at this temperature over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 8 h . Oxalic acid (0.9 m in $\mathrm{H}_{2} \mathrm{O}, 8.8 \mathrm{~mL}, 7.9 \mathrm{mmol}$, 10.0 equiv.) was added and the biphasic mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the title compound $\mathbf{1 0 9 w}$ as a colourless oil $(61 \mathrm{mg}, 0.41 \mathrm{mmol}, 52 \%$, the compound was isolated as a single diastereomer).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=4: 1\right)=0.4$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NaO}, 173.0937$, found: 173.0946; IR (ATR): $\tilde{v}=3073,3019,2997,2917,2816,2734,2360,2338,2252,1685,1636,1418,1375,1306,1141$, 1115, 1098, 1033, 1010, 974, 909, 866, 819, $729 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.24$ (ddd, ${ }^{2} J=5.3 \mathrm{~Hz}$, ${ }^{3} J=5.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 1.04 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.10 (dddd, ${ }^{3} J=15.7,8.5,7.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}$, H-cyclopropyl), 1.68-1.76 (m, 1H, H-cyclopropyl), 1.72 (dd, $\left.\left.{ }^{3} J=6.8 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\right)_{3}\right), 2.28-2.33(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), $2.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.04\left(\mathrm{ddq},{ }^{3} J=10.8,8.9 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.55\left(\mathrm{dqd},{ }^{3} J=10.8,6.8 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 6.21\left(\mathrm{ddt},{ }^{3} J=15.7,7.9 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCCHO}\right), 6.90\left(\mathrm{dt},{ }^{3} J=15.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{HC}=\mathrm{CHCHO}), 9.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.4,13.5,14.0,16.1,32.6$, 126.2, 128.9, 133.0, 158.2, 194.3 ppm.
5.6.35 2-(2-((Z)-4-Phenylbut-1-en-1-yl)cyclopropyl)acetaldehyde ((Z)-168)

The silyl ether 169 ($517 \mathrm{mg}, 1.56 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry THF ($11.0 \mathrm{~mL}, 0.15 \mathrm{~m}$) and treated with TBAF (1.0 m in THF, $2.34 \mathrm{~mL}, 2.34 \mathrm{mmol}$, 1.5 equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$
for 4 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and the combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated in vacuo. The residue was dissolved in dry DMSO ($8.0 \mathrm{~mL}, 0.2 \mathrm{~m}$) and at $20^{\circ} \mathrm{C}$, IBX (655 mg , 2.34 mmol , 1.5 equiv.) was added. The resulting solution was stirred at this temperature for 18 h and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$, subsequently. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$ and the combined organic phases were washed thoroughly with brine (50 mL), dried over MgSO_{4}, and concentrated in vacuo. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the aldehyde $(Z)-168$ as a pale yellow oil $(244 \mathrm{mg}, 1.13 \mathrm{mmol}, 73 \%, Z / E=5: 1)$.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) = 0.6; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}, 237.1250$, found: 237.1261; IR (ATR): $\tilde{v}=3063,3025,2923,2854,2821,2719,2359,2341,1723,1651,1603,1496,1454,1415,1384$, 1317, 1302, 1266, 1211, 1177, 1142, 1126, 1108, 1076, 1031, 963, 914, 841, 815, 768, 741, 698, 667, $657 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.22$ (ddd, ${ }^{2} J=5.5 \mathrm{~Hz},{ }^{3} J=5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), $1.06\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H-\right.$ cyclopropyl), 1.24 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.67 (ddddd, ${ }^{3} \mathrm{~J},=, 8.6,8.6,8.6,5.5, \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), 2.29-2.40 (m, 2H, $\mathrm{H}_{2} \mathrm{CCHO}$), 2.47-2.51 (m, 2H, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 2.69-2.73 (m, 2H, ArCH2), 4.99 (ddt, ${ }^{3} \mathrm{~J}=10.7$, $\left.9.0 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.53\left(\mathrm{dtd},{ }^{3} J=10.7,7.3 \mathrm{~Hz},{ }^{4} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 7.15-7.23(\mathrm{~m}, 3 \mathrm{H}$, H-Ar), $7.27-7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 9.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.6,13.5$, 13.6, 29.7, 35.9, 43.8 , 126.0, 128.4 (2C), 128.6 (2C), 128.8, 131.4, 142.0, 202.5 ppm.

5.6.36 (E)-4-(2-((Z)-4-Phenylbut-1-en-1-yl)cyclopropyl)but-2-enal (109x)

KOt - Bu ($315 \mathrm{mg}, 2.81 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt 124 (1.26 g , 2.92 mmol , 2.7 equiv.) in dry $\operatorname{THF}(12.0 \mathrm{~mL}, 0.25 \mathrm{~m})$ at $0^{\circ} \mathrm{C}$. The resulting slurry was stirred for 30 min at $0^{\circ} \mathrm{C}$ before a solution of aldehyde (Z)-168 ($232 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($2.7 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise at this temperature over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 8 h . Oxalic acid (0.9 M in $\mathrm{H}_{2} \mathrm{O}, 12.0 \mathrm{~mL}, 10.8 \mathrm{mmol}, 10.0$ equiv.) was added and the biphasic mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (50 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the title compound $\mathbf{1 0 9 x}$ as a colourless oil ($205 \mathrm{mg}, 0.852 \mathrm{mmol}, 79 \%$, $Z / E=8: 1$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.5$; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}, 263.1406$, found: 263.1405; IR (ATR): $\tilde{v}=3062,3025,2996,2918,2854,2735,1716,1686,1635,1603,1541,1496,1453,1304$, 1262, 1141, 1114, 1094, 1077, 1030, 1009, 972, $907,872,845,814,770,741 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$\delta=0.21$ (ddd, ${ }^{2} J=5.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}, H$-cyclopropyl), $0.98-1.08$ (m, 2H, H-cyclopropyl), 1.66 (dddd, ${ }^{3} J=8.7,8.6,8.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), 2.25-2.32(m,2H, CH2HC=CHCHO$), 2.50\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$, $2.71\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 5.04\left(\mathrm{dd},{ }^{3} \mathrm{~J}=10.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, cyclopropyICH$), 5.52\left(\mathrm{dt},{ }^{3} J=10.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $6.20\left(\mathrm{dd},{ }^{3} J=15.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCCHO}\right), 6.87\left(\mathrm{dt},{ }^{3} J=15.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}\right), 7.11-7.23$ (m, 3H, H-Ar), 7.26-7.30 (m, 2H, H-Ar), $9.52\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7,14.2,16.2,29.7,32.5,36.0,126.0,128.4(2 C), 128.6(2 C), 128.8,131.0,133.0,142.1,158.1,194.3 \mathrm{ppm}$.

5.6.37 2-(2-((Z)-Styryl)cyclopropyl)acetaldehyde (170)

A solution of the silyl ether 121 ($412 \mathrm{mg}, 1.36 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(14.0 \mathrm{~mL}, 0.1 \mathrm{~m})$ was treated with HCl ($10 \mathrm{wt}-\%$ in $\mathrm{H}_{2} \mathrm{O}, 23.7 \mu \mathrm{~L}, 68.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 3 h before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, filtrated, and concentrated in vacuo. The residue was filtered over silica gel before it was used in the next step without further purification. The alcohol ($230 \mathrm{mg}, 1.22 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry DMSO ($12.0 \mathrm{~mL}, 0.1 \mathrm{~m}$). IBX ($512 \mathrm{mg}, 1.83 \mathrm{mmol}, 1.5$ equiv.) was added to the solution and the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with sat. aq. NaHCO_{3} $(12 \mathrm{~mL})$ and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvents were removed in vacuo and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) to obtain the aldehyde 170 as a colourless oil $(197 \mathrm{mg}, 1.06 \mathrm{mmol}, 87 \%, Z / E=14: 1)$.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.6$; ESI-TOF $(m / z):[M+N a]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}, 209.0943$, found: 209.0934; IR (ATR): $\tilde{v}=3062,3023,2922,2820,2721,1721,1645,1600,1576,1541,1493,1448,1417,1385,1299$, 1262, 1216, 1180, 1155, 1071, 1029, 957, 915, 877, 838, 795, 749, 715, 694, 672, $663 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}) : $\delta=0.39$ ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}$, H-cyclopropyl), $1.19\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.44 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 2.04 (m_{c}, $1 \mathrm{H}, H$-cyclopropyl), 2.41-2.61 (m, 2H, CH2 $), 5.29\left(\mathrm{dd},{ }^{3} \mathrm{~J}=11.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}\right), 6.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}=11.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ArCH}$), 7.21-7.27 (m, 1H, H-Ar), 7.33-7.37 (m, 2H, H-Ar), 7.41-7.46 (m, 2H, H-Ar), $9.83\left(\mathrm{t},{ }^{3} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHO) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.0,15.1,15.5,44.0,126.9,128.3$ (2C), 128.9 (2C), 130.7, 131.3, 137.5, 202.1 ppm.

KOt - Bu ($166 \mathrm{mg}, 1.48 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt 124 (660 mg , $1.54 \mathrm{mmol}, 2.7$ equiv.) in dry $\mathrm{THF}(6.2 \mathrm{~mL}, 0.25 \mathrm{~m})$ at $0^{\circ} \mathrm{C}$. The resulting slurry was stirred for 30 min at $0^{\circ} \mathrm{C}$ before a solution of aldehyde $170(106 \mathrm{mg}, 56.9 \mu \mathrm{~mol}, 1.0$ equiv.) in dry THF ($1.4 \mathrm{~mL}, 0.4 \mathrm{M}$) was added dropwise at this temperature over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 8 h . Oxalic acid (0.9 m in $\mathrm{H}_{2} \mathrm{O}, 6.30 \mathrm{~mL}, 5.69 \mathrm{mmol}$, 10.0 equiv.) was added and the biphasic mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 12 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=40: 1 \rightarrow 20: 1$) delivered the title compound $\mathbf{1 0 9 z}$ as a colourless oil $(91.0 \mathrm{mg}, 0.429 \mathrm{mmol}$, $75 \%)$.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.4$; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}, 235.1093$, found: 235.1106; IR (ATR): $\tilde{v}=3057,3017,2995,2915,2815,2734,2358,2342,1685,1634,1599,1574,1558,1541,1493$, 1448, 1419, 1396, 1306, 1254, 1181, 1145, 1127, 1094, 1076, 1029, 1010, 973, 916, 874, 845, 796, 785, 764, 697, $669,654 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.38\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.15\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.23\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $\left.2.02\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H \text {-cyclopropyl), 2.36-2.47(m,2H, CH}\right)_{2}\right), 5.36\left(\mathrm{dd},{ }^{3} \mathrm{~J}=11.5,9.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}), 6.23\left(\mathrm{ddt},{ }^{3} J=15.7,7.9 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCCHO}\right), 6.51\left(\mathrm{~d},{ }^{3} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}\right), 6.92(\mathrm{dt}$, ${ }^{3} J=15.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}$), 7.21-7.26 (m, 1H, H-Ar), 7.32-7.38 (m, 2H, H-Ar), 7.42-7.44 (m, 2H, H-Ar), $9.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.2,16.1,17.7,32.7,126.9,128.4$ (2C), 128.9 (2C), 130.8, 131.0, 133.2, 137.6, 157.7, 194.2 ppm.

5.6.39 Ethyl (Z)-3-(2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropyl)acrylate (172)

Aldehyde 113 ($605 \mathrm{mg}, 2.65 \mathrm{mmol}$, 1.0 equiv.) in THF ($24 \mathrm{~mL}, 0.1 \mathrm{~m}$) was added slowly to a mixture of phosphonate 171 ($1.15 \mathrm{~g}, 3.45 \mathrm{mmol}$, 1.3 equiv.), KHMDS (0.7 m in $\mathrm{PhMe}, 4.20 \mathrm{~mL}, 2.92 \mathrm{mmol}$, 1.1 equiv.), and 18-crown-6 ($2.00 \mathrm{~g}, 7.70 \mathrm{mmol}, 2.9$ equiv.) at $-78^{\circ} \mathrm{C}$. After complete addition, the reaction mixture was stirred
for 2.5 h at this temperature before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) delivered the silyl ether $\mathbf{1 7 2}$ as a colourless oil ($424 \mathrm{mg}, 1.42 \mathrm{mmol}, 54 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=40: 1\right)=0.6$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}, 299.2037$, found: 299.2046; IR (ATR): $\tilde{v}=2953,2929,2857,1715,1631,1471,1434,1388,1254,1180,1097,1034,954,833,775 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.45\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $0.88(\mathrm{~s}$, 9H, SiCCH ${ }_{3}$), 1.19 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), $1.29\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23-1.36(\mathrm{~m}, 1 \mathrm{H}, H$-cyclopropyl), 1.61-1.66 (m, 2H, CH2), $2.91\left(\mathrm{dtd},{ }^{3} J=10.6,8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), $3.66\left(\mathrm{t},{ }^{3} J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiOCH}\right)$, $4.18\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3} \mathrm{CCH}_{2}\right), 5.72-5.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.2(2 \mathrm{C})$, $14.5,16.5,16.5,18.5,18.5,26.1$ (3C), 32.9, 59.8, 63.1, 118.8, 151.7, 167.2 ppm.

5.6.40 Ethyl (Z)-3-(2-(2-Oxoethyl)cyclopropyl)acrylate (173)

A solution of the silyl ether 172 ($372 \mathrm{mg}, 1.24 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(12.0 \mathrm{~mL}, 0.1 \mathrm{~m}$) was treated with $\mathrm{HCl}(10 \mathrm{wt}-\%, 20.3 \mu \mathrm{~L}, 62.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ at $20^{\circ} \mathrm{C}$. The reaction solution was stirred at this temperature for 3 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvents were removed in vacuo and the residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12.0 \mathrm{~mL}, 0.1 \mathrm{M})$. DMP ($789 \mathrm{mg}, 1.86 \mathrm{mmol}$, 1.5 equiv.) was added to the solution and the reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 1.5 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvents were removed in vacuo and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) to obtain the aldehyde 173 as a pale yellow oil ($110 \mathrm{mg}, 0.604 \mathrm{mmol}, 49 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=4: 1$) $=0.6$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NaO}_{3}, 205.0835$, found: 205.0841; IR (ATR): $\tilde{v}=2984,2822,2725,1711,1632,1437,1386,1183,1031,826 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.50\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.28\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.57 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 2.44 (ddd, ${ }^{2} J=17.4 \mathrm{~Hz},{ }^{3} J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}$), 2.52 (ddd, ${ }^{2} J=17.4 \mathrm{~Hz},{ }^{3} J=7.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OHCCH}_{2}$), 3.03 (dtdd, ${ }^{3} \mathrm{~J}=10.8,8.6,5.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), 4.17 (q, ${ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}_{3} \mathrm{CCH}_{2}$), $5.70\left(\mathrm{dd},{ }^{3} \mathrm{~J}=11.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Et}_{2} \mathrm{OCCH}=\mathrm{CH}\right), 5.81\left(\mathrm{dd},{ }^{3} \mathrm{~J}=11.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Et}_{2} \mathrm{OCCH}=\mathrm{CH}\right)$, 9.77 (t, ${ }^{3} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4,14.4,15.8,16.0,43.6,60.0,120.3$, 149.5, 166.8, 201.3 ppm .

$\mathrm{KO} t$ - Bu ($175 \mathrm{mg}, 1.56 \mathrm{mmol}, 2.6$ equiv.) was added to a suspension of the phosphonium salt 124 (699 mg , $1.62 \mathrm{mmol}, 2.7$ equiv.) in dry THF ($6.5 \mathrm{~mL}, 0.25 \mathrm{~m}$) at $0{ }^{\circ} \mathrm{C}$. The resulting slurry was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ before a solution of the aldehyde 173 ($110 \mathrm{mg}, 0.604 \mathrm{mmol}, 1.0$ equiv.) in dry THF ($1.5 \mathrm{~mL}, 0.4 \mathrm{~m}$) was added dropwise at this temperature over a period of 20 min . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 4 h . Oxalic acid (0.9 M in $\mathrm{H}_{2} \mathrm{O}, 6.7 \mathrm{~mL}, 6.40 \mathrm{mmol}, 10.0$ equiv.) was added and the biphasic mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine (20 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) delivered the title compound 109 aa as a pale yellow oil $(86.0 \mathrm{mg}, 0.413 \mathrm{mmol}$, 69%).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=4: 1$) = 0.6; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{3}, 231.0992$, found: 231.1002; IR (ATR): $\tilde{v}=2979,1711,1687,1633,1436,1183,1135,1031,972,822 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.52\left(\mathrm{dt},{ }^{3} \mathrm{~J}=6.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.25-1.32\left(\mathrm{~m}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.29\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.35-1.43 (m, 1H, H-cyclopropyl), 2.38 (dddd, ${ }^{2} J=17.1 \mathrm{~Hz},{ }^{3} J=7.7,6.1 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, cyclopropylCH H_{2}), $2.48\left(\mathrm{dddd},{ }^{2} J=17.1 \mathrm{~Hz},{ }^{3} J=7.5,6.1 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, cyclopropylC $\left.H_{2}\right), 2.99-3.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ cyclopropyl), $4.18\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCH}_{3}\right), 5.76\left(\mathrm{dd},{ }^{3} \mathrm{~J}=11.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{EtO}_{2} \mathrm{CCH}\right), 5.81\left(\mathrm{dd},{ }^{3} \mathrm{~J}=11.5 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{EtO}_{2} \mathrm{CCH}=\mathrm{CH}\right), 6.21\left(\mathrm{ddt},{ }^{3} J=15.7,7.9 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCCHO}\right), 6.86\left(\mathrm{dt},{ }^{3} J=15.7,6.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCHO}$), $9.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.3,16.1,16.5,19.0$, 32.3, 59.9, 120.0, 133.2, 149.6, 156.5, 166.7, 193.9 ppm.

5.6.42 Ethyl (E)-2-Methyl-4-(2-((E)-styryl)cyclopropyl)but-2-enoate (175)

A solution of the aldehyde $\mathbf{1 1 6 b}(50 \mathrm{mg}, 0.27 \mathrm{mmol}, 1.0$ equiv.) and ethyl methyltriphenylphosphoranylideneacetate (174, $0.10 \mathrm{~g}, 0.28 \mathrm{mmol}$, 1.1 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL}, 0.15 \mathrm{~m})$ was heated to $45^{\circ} \mathrm{C}$ for 3 h . The solvent was removed under reduced pressure and purification of the crude product by column chromato-
graphy (silica gel, pentane/ethyl acetate $=40: 1$) delivered the title compound 175 as a colourless oil (57 mg , $0.21 \mathrm{mmol}, 78 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=40: 1\right)=0.8$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2}, 271.1693$, found: 271.1695; IR (ATR): $\tilde{v}=3062,3024,2986,2938,2904,1707,1649,1601,1493,1447,1389,1366,1285,1256,1217$, 1143, 1096, 1073, 1031, 960, 911, 768, $747 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.47\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}\right.$-cyclopropyl), $1.04\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.16\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.29\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.73\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right.$, H-cyclopropyl), $1.82\left(\mathrm{q},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.19-2.24\left(\mathrm{~m}, 1 \mathrm{H}\right.$, cyclopropylC $\left.\mathrm{H}_{2}\right), 2.26-2.31(\mathrm{~m}, 1 \mathrm{H}$, cyclopropylCH2 $), 4.19\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.00\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}\right), 6.52\left(\mathrm{~d},{ }^{3} J=15.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{PhCH}), 6.84\left(\mathrm{tq},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right.$), 7.16-7.21 (m, 1H, H-Ar), 7.27-7.30(m, 2H, H-Ar), 7.31-7.33 (m, 2H, H-Ar) ppm; ${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=12.6,13.1,14.4,18.5,19.5,28.6,60.6,125.8$ (2C), 126.9, 128.0, 128.6 (2C), 129.8, 130.7, 137.8, 141.3, 168.3 ppm.

5.6.43 (E)-2-Methyl-4-(2-((E)-styryl)cyclopropyl)but-2-enal (109bb)

A solution of the ester 175 ($57 \mathrm{mg}, 0.21 \mathrm{mmol}$, 1.0 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2.1 \mathrm{~mL}, 0.1 \mathrm{~m}$) was treated with DIBAL-H (1.0 m in hexanes, $0.42 \mathrm{~mL}, 0.42 \mathrm{mmol}, 2.0$ equiv.) at $-78^{\circ} \mathrm{C}$ and the reaction was stirred at this temperature for 4 h . The reaction was quenched with sat. aq. potassium sodium tartrate (20 mL) and stirred for 30 min at $20^{\circ} \mathrm{C}$. The phases were separated and the aqueous phase was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvents of the filtrate were removed in vacuo and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL}, 0.2 \mathrm{~m})$. The resulting solution was treated with $\mathrm{MnO}_{2}\left(0.55 \mathrm{~g}, 6.3 \mathrm{mmol}, 30\right.$ equiv.) and stirred for 18 h at $20^{\circ} \mathrm{C}$. The reaction mixture was filtrated over celite and the solvent of the filtrate was removed in vacuo. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=40: 1$) delivered the title compound 109bb as a colourless oil ($37 \mathrm{mg}, 0.16 \mathrm{mmol}, 78 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) = 0.4; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}$, 227.1431, found: 227.1430; IR (ATR): $\tilde{v}=3062,3023,3000,2969,2926,2818,2710,1683,1644,1601,1493,1448,1411,1357,1282,1198$, 1073, 961, 849, 805, $749 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.51\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.08\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right.$, H-cyclopropyl), 1.20 (dddd, ${ }^{3} J=15.9,8.4,7.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), 1.73 (dd, ${ }^{4} \mathrm{~J}=1.4,0.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.77 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}$-cyclopropyl), 2.34-2.49 (m, 2H, CH_{2}), $6.00\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}\right), 6.54\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 6.57\left(\mathrm{tq},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right.$), 7.13-7.22(m,1H,H-Ar),7.27-7.34(m,4H,H-Ar), $9.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.5,13.0,18.2,19.4,28.9,125.8(2 C), 127.1,128.7$ (2C), 129.3, 131.0, 137.6, 139.3, 153.7, 195.4 ppm.

A solution of the aldehyde $\mathbf{1 1 6 b}(200 \mathrm{mg}, 1.07 \mathrm{mmol}, 1.0$ equiv. $)$ in $\mathrm{Et}_{2} \mathrm{O}(5.40 \mathrm{~mL}, 0.2 \mathrm{~m})$ was treated dropwise with methyl magnesiumbromide (3.0 M in $\mathrm{Et}_{2} \mathrm{O}, 540 \mu \mathrm{~L}, 1.61 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$ over a period of 30 min . The reaction mixture was stirred at this temperature for 90 min before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvent of the filtrate was removed under reduced pressure and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.40 \mathrm{~mL}, 0.2 \mathrm{M})$. The solution was treated with DMP ($683 \mathrm{mg}, 1.61 \mathrm{mmol}$. 1.5 equiv.) and stirred for 18 h at $20^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the phases were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and filtrated. The solvent of the filtrate was removed in vacuo and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=40: 1 \rightarrow 10: 1$) affording the title compound 176 as a colourless oil ($145 \mathrm{mg}, 0.724 \mathrm{mmol}$, 68%).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.6$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}, 223.1093$, found: 223.1103; IR (ATR): $\tilde{v}=3020,2920,2368,2339,2185,2155,2027,1961,1713,1645,1601,1492,1448,1419$, $1355,1166,1128,1029,958,898,859,784,746,719 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.45\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{H}-\right.$ cyclopropyl), 1.11 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.39 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.72-1.91 (m, 1H, H-cyclopropyl), $2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43\left(\mathrm{dd},{ }^{2} \mathrm{~J}=17.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.52\left(\mathrm{dd},{ }^{2} \mathrm{~J}=17.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right.$), 5.94 (dd, $\left.{ }^{3} J=15.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHCH}\right), 6.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}\right), 7.18-7.21(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 7.27-7.33(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (176 MHz, CDCl_{3}): $\delta=12.8,14.5,18.9,29.9,43.7,125.9$ (2C), 127.1, 128.7 (2C), 129.2, 131.1, 137.6, 208.7 ppm.

5.7 DVCPR of α, β-Unsaturated Cyclopropylcarbaldehydes

5.7.1 General Procedure for Enamine-Induced DCVPR of E-Vinyl Cyclopropylcarbaldehydes (GP2)

A solution of the corresponding α, β-unsaturated cyclopropylcarbaldehyde $\mathbf{1 0 9}$ (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.1 m) was treated with diphenylprolinol trimethylsilyl ether (48c, $20 \mathrm{~mol} \%$). The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ until TLC or GC-MS showed complete conversion. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(0.5 \mathrm{~mL})$ and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), dried over MgSO_{4}, and filtrated. The solvent was removed in vacuo and the crude products were purified by column chromatography.

2-((1,7-cis)-7-Phenylcyclohepta-2,5-dien-1-yl)acetaldehyde (112a)

Derived from 109a ($386 \mathrm{mg}, 1.77 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{c}(115 \mathrm{mg}, 353 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 48 h . Column Chromatography (silica gel, pentane/ethyl acetate $=40: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 a}$ as a pale yellow oil ($296 \mathrm{mg}, 1.39 \mathrm{mmol}, 79 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=10: 1\right)=0.8$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}, 235.1093$, found: 235.1095; IR (ATR): $\tilde{v}=3421,3082,3059,3022,2955,2857,2818,2719,2362,1950,1879,1720,1650,1601,1582$, 1492, 1451, 1426, 1389, 1348, 1304, 1279, 1238, 1182, 1156, 1112, 1078, 1058, 1032, 1001, 960, 938, 914, 868, 797, $765,724,702,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=2.32-2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.75\left(\mathrm{ddd},{ }^{2} J=20.1 \mathrm{~Hz}\right.$, ${ }^{3} J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.15-3.33(s,1H, CH2), $3.55\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right), 3.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{PhCH}), 5.35-5.40$ (m, 1H, CH), 5.73-5.75 (m, 1H, CH), 5.77-5.80 (m, 1H, CH), 5.86-5.92 (m, 1H, CH), 7.21-7.25 (m, 3H, H-Ar), 7.28-7.30 (m, 2H, H-Ar), $9.72\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.4,37.1,47.4$, 47.6, 126.9, 127.3, 128.1 (2C), 129.7 (2C), 130.2, 132.3, 133.2, 141.1, 202.3 ppm . Chiral chromatography showed that the substrate is racemic.

Reaction of enantiopure (+)-109a ($5.00 \mathrm{mg}, 23.6 \mu \mathrm{~mol}, 1.0$ equiv.) with 48 c ($1.5 \mathrm{mg}, 4.71 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) delivered the cycloheptadiene (-)-112a $\left(4.00 \mathrm{mg}, 18.8 \mu \mathrm{~mol}, 80 \%\right.$) with 98% ee. $[\alpha]_{D}^{20}=-0.43\left(\mathrm{c}=0.33, \mathrm{CHCl}_{3}\right)$.

GC: Hydrodex- β-6TBDAc, $120^{\circ} \mathrm{C}, 1.5 \mathrm{ml} / \mathrm{min} \mathrm{He}$, FID300${ }^{\circ}$, Split 50:1.

2-((1,7-cis)-7-(4-(Trifluoromethyl)phenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112d)

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}$ (280.29)

Derived from 109d ($28 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{c}(6.6 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 d}$ as a yellow oil ($18 \mathrm{mg}, 64 \mu \mathrm{~mol}, 64 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=10: 1\right)=0.8$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}, 303.0967$, found: 303.0976; IR (ATR): $\tilde{v}=3016,2823,2723,1921,1723,1651,1617,1582,1418$,

1389, 1322, 1243, 1161, 1109, 1067, 1017, 958, 914, 841, 823, 802, 775, 755, 714, $673 \mathrm{~cm}^{-1} ;{ }^{19}$ F NMR (376 MHz, CDCl_{3} : $\delta=-62.3 \mathrm{ppm},{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.35-2.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.77\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=20.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.18-3.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.62\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right), 3.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}), 5.31$ (dd, $\left.{ }^{3} J=8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.69\left(\mathrm{ddd},{ }^{3} J=11.7,5.6 \mathrm{~Hz},{ }^{4} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.80-5.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.88-5.94$ (m, 1H, CH), $7.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 7.54\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 9.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.3,36.6,47.4,47.5,124.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=272 \mathrm{~Hz}\right), 125.0\left(\mathrm{q},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=4 \mathrm{~Hz}, 2 C\right), 127.9$, $129.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=32 \mathrm{~Hz}\right), 130.1(2 C), 130.7,131.4,132.9,145.0,201.7 \mathrm{ppm}$.

2-((1,7-cis)-7-(3-(Trifluoromethyl)phenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112e)

Derived from 109 e ($28 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{c}(6.6 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=40: 1$) delivered the cycloheptadiene 112 e as a yellow oil ($21 \mathrm{mg}, 75 \mu \mathrm{~mol}, 75 \%$).

Rf (pentane/ethyl acetate $=20: 1)=0.5$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}, 303.0967$, found: 303.0978, IR (ATR): $\tilde{v}=3018,2821,2721,1723,1652,1613,1595,1490,1443$, 1390, 1323, 1266, 1160, 1119, 1095, 1073, 1035, 1003, 922, 907, 868, 848, 835, 802, 777, 742, $706 \mathrm{~cm}^{-1} ;{ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.7 \mathrm{ppm},{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.33-2.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.78$ (ddd, $\left.{ }^{2} J=19.8 \mathrm{~Hz},{ }^{3} J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.26\left(\mathrm{~d},{ }^{2} J=19.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.61\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right), 3.75(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}), 5.29-5.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.68-5.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.78-5.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.91-5.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 7.39-7.43 (m, 2H, H-Ar), 7.49-7.50 (m, 2H, H-Ar), $9.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=28.3,36.6,47.4,123.8,123.6-125.1$ (m) 126.4, 128.0, 128.5, 130.2-130.7 (m) 130.7, 130.8, 131.4, 132.8, 133.2, 141.9, 201.7 ppm .

2-((1,7-cis)-7-(2-(Trifluoromethyl)phenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112f)

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}$ (280.29)

Derived from 109 f ($28 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{c}(6.6 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 f}$ as a yellow oil ($17 \mathrm{mg}, 61 \mu \mathrm{~mol}, 61 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.4$; ESI-TOF $(\mathrm{m} / \mathrm{z}): \quad[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}, 303.0967$, found: 303.0982; IR (ATR): $\tilde{v}=3077,3018,2925,2822,2722,1724,1653,1606,1580$, $1490,1454,1413,1389,1352,1308,1155,1112,1061,1036,957,937,914,883,866,817,802,771,722,708,696$, $673 \mathrm{~cm}^{-1} ;{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-57.7 \mathrm{ppm},{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.42\left(\mathrm{ddd},{ }^{2} J=17.0 \mathrm{~Hz}\right.$, ${ }^{3} J=9.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}$), $2.50\left(\mathrm{dd},{ }^{2} J=17.0 \mathrm{~Hz},{ }^{3} J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right.$), $2.80\left(\mathrm{ddd},{ }^{2} J=20.4 \mathrm{~Hz},{ }^{3} J=6.6\right.$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.14-3.31 (m, 1H, CH2), $3.44\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right), 4.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}), 5.68$ (ddd, $\left.{ }^{3} J=11.8,4.5 \mathrm{~Hz},{ }^{4} J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.72\left(\mathrm{ddd},{ }^{3} J=10.8,6.5 \mathrm{~Hz},{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.76$ (dddd, ${ }^{3} J=11.8$, $\left.5.9 \mathrm{~Hz},{ }^{4} J=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.87-5.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.33\left(\mathrm{t},{ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, H-\mathrm{Ar}\right), 7.49\left(\mathrm{t},{ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-Ar), $7.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 7.71\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 9.38-9.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR
$\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.6,37.0,42.4,46.2,124.5\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=274 \mathrm{~Hz}\right), 126.1\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=7 \mathrm{~Hz}\right), 126.7,127.3,128.7(\mathrm{q}$, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{F}}=29 \mathrm{~Hz}\right), 130.2,131.0,131.5,131.9,133.4,141.5,201.8 \mathrm{ppm}$.

2-((1,7-cis)-7-(4-Nitrophenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112g)

Derived from 109 g ($19 \mathrm{mg}, 74 \mu \mathrm{~mol}, 1.0$ equiv.) and $48 \mathrm{c}(4.8 \mathrm{mg}, 15 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%)$ according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=6: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 g}$ ($11 \mathrm{mg}, 43 \mu \mathrm{~mol}$, 58%) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=4: 1$) $=0.8$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NNaO}_{3}, 280.0944$, found: 280.0955; IR (ATR): $\tilde{v}=3108,3077,3015,2923,2851,2820,2724,2452$, 1934, 1720, 1651, 1596, 1515, 1416, 1389, 1342, 1314, 1180, 1108, 1060, 1014, 962, 916, 852, 824, 798, 737, 704, $676 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.31-2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.73-2.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.13-3.35(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), $3.67\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right.$), $3.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}), 5.24-5.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.67$ (dddd, ${ }^{3} \mathrm{~J}=11.7$, $\left.5.6 \mathrm{~Hz},{ }^{4} J=2.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.79-5.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.88-6.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.36-7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, 8.09-8.19 (m, 2H, H-Ar), $9.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.2,36.3,47.2$, 47.3, 123.1 (2C), 128.2, 130.5 (2C), 130.6, 130.9, 132.4, 147.0, 148.4, 201.1 ppm.

2-((1,7-cis)-7-(4-Chlorophenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112h)

Derived from 109h ($25 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and 48 c ($6.6 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 h}(17 \mathrm{mg}, 69 \mu \mathrm{~mol}$, 69%) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.5$; ESI-TOF $(\mathrm{m} / \mathrm{z}): \quad[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClNaO}, 269.0703$, found: 269.0710; IR (ATR): $\tilde{v}=3420,3014,2957,2925,2858,2819,2724,1904$, $1720,1650,1593,1574,1489,1409,1388,1352,1294,1262,1229,1215,1180,1091,1014,961,938,925,872,816$, $800,768,746,722 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.33-2.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.74$ (ddd, ${ }^{2} J=19.9 \mathrm{~Hz}$, $\left.{ }^{3} J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.18-3.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.47-3.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right), 3.59-3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArCH})$, 5.19-5.34 (m, 1H, CH), $5.67\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=11.8,5.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.77-5.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.88-5.91(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 7.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, H-\mathrm{Ar}\right), 7.25\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, H-\mathrm{Ar}\right), 9.72\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.3,36.7,46.9,47.5,127.5,128.2(2 C), 130.6,131.1$ (2C), 131.8, 132.8, 133.0, 139.3, 201.9 ppm .

Derived from 109i ($23 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{c}(6.6 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the cycloheptadiene $\mathbf{1 1 2} \mathbf{~ (~} 20 \mathrm{mg}, 87 \mu \mathrm{~mol}$, 87%) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.2$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FNaO}, 253.1005$, found: 253.1007; IR (ATR): $\tilde{v}=3014,2958,2924,1723,1602,1507,1438,1222$, $840,754 \mathrm{~cm}^{-1} ;{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-115.0 \mathrm{ppm},{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.33-2.48$ (m, 2H, $\mathrm{H}_{2} \mathrm{CCHO}$), $2.74\left(\mathrm{ddd},{ }^{2} J=19.9 \mathrm{~Hz},{ }^{3} J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), 3.20-3.27(m,1H, CH2), 3.56(br s, 1H, $\mathrm{HCCH}_{2} \mathrm{CHO}$), $3.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}), 5.31\left(\mathrm{ddd},{ }^{3} J=9.9,6.0 \mathrm{~Hz},{ }^{4} J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.68\left(\mathrm{ddd},{ }^{3} J=11.7,5.4 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.77\left(\mathrm{dddd},{ }^{3} J=11.7,5.4 \mathrm{~Hz},{ }^{4} J=3.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.86-5.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.93-7.00(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.16-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 9.72\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (176 MHz, CDCl $\left.{ }_{3}\right): \delta=28.3$, $36.8,46.8,47.5,114.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=21 \mathrm{~Hz}, 2 C\right), 127.2,130.5,131.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=8 \mathrm{~Hz}, 2 C\right), 132.2,133.1,136.5,162.0(\mathrm{~d}$, ${ }^{1} J_{\mathrm{C}, \mathrm{F}}=245 \mathrm{~Hz}$), 202.0 ppm .

2-((1,7-cis)-7-(3-Chlorophenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112j)

Derived from 109j ($25 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{c}(6.6 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 j}$ ($19 \mathrm{mg}, 77 \mu \mathrm{~mol}$, 77%) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.5$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{CINaO}, 269.0703$, found: 269.0708; IR (ATR): $\tilde{v}=3432,3014,2956,2854,2818,2720,1939,1720$, 1650, 1593, 1570, 1474, 1428, 1389, 1350, 1298, 1263, 1240, 1183, 1166, 1081, 1060, 1032, 999, 946, 889, 867, 836, $788,761,738,706 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=2.35-2.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.76$ (ddd, ${ }^{2} J=19.9 \mathrm{~Hz}$, $\left.{ }^{3} J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.19-3.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.57\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right), 3.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}), 5.33-5.36$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 5.68\left(\mathrm{ddd},{ }^{3} J=11.7,5.5 \mathrm{~Hz},{ }^{4} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.76-5.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.87-5.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 7.10-7.11 (m, 1H, H-Ar), 7.19-7.22 (m, 2H, H-Ar), 7.23-7.24 (m, 1H, H-Ar), $9.73\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.3,36.7,47.3,47.5,127.1,127.7,128.0,129.3,129.8,130.6,131.6,132.9,134.0$, 143.1, 201.9 ppm.

2-((1,7-cis)-7-(3-Fluorophenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112k)

Derived from 109k ($23 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{c}(6.6 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 k}(11 \mathrm{mg}, 48 \mu \mathrm{~mol}$, 48%) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.3$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FNaO}$, 253.1005, found: 253.1011; IR (ATR): $\tilde{v}=3016,2923,2856,2820,2724,1721,1612,1586$, 1240, $780 \mathrm{~cm}^{-1} ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-113.4 \mathrm{ppm},{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.28-2.57$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}$), 2.75 (ddd, ${ }^{2} \mathrm{~J}=20.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.10-3.36 (m, 1H, CH2), 3.57 (br s, 1 H , $\mathrm{HCCH}_{2} \mathrm{CHO}$), 3.69 (br s, $1 \mathrm{H}, \mathrm{ArCH}$), $5.34-7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.69\left(\mathrm{ddd},{ }^{3} J=11.9,5.1 \mathrm{~Hz},{ }^{4} J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right)$, 5.74-5.81 (m, 1H, CH), 5.86-5.92 (m, 1H, CH), 6.78-6.96 (m, 1H, H-Ar), 6.95-7.02 (m, 2H, H-Ar), 7.15-7.32 (m, 1H, H-Ar), $9.73\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.3,36.7,47.3,47.5,113.8$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=21 \mathrm{~Hz}\right), 116.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=21 \mathrm{~Hz}\right), 125.4,127.7,129.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=8 \mathrm{~Hz}\right), 130.5,131.7,133.0,143.7,162.3(\mathrm{~d}$, ${ }^{1} J_{\mathrm{C}, \mathrm{F}}=245 \mathrm{~Hz}$), 201.9 ppm . Chiral chromatography showed that the substance is racemic.

HPLC: 5% ethyl acetate/hexane, Chiralpak IC, $1 \mathrm{~mL} / \mathrm{min}, 34$ bar

2-((1,7-cis)-7-(2-Fluorophenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112l)

Derived from 1091 ($23 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{c}(6.6 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the cycloheptadiene $1121(11 \mathrm{mg}, 48 \mu \mathrm{~mol}$, 48%) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=10: 1$) $=0.5$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FNaO}, 253.1005$, found: 253.1012; IR (ATR): $\tilde{v}=3018,2922,2853,1723,1486,1454,1228,1093,755 \mathrm{~cm}^{-1}$;
${ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-117.7 \mathrm{ppm},{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}^{3}\right): \delta=2.37\left(\mathrm{dd},{ }^{2} J=17.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}$), $2.56\left(\mathrm{dd},{ }^{2} \mathrm{~J}=17.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right.$), $2.75\left(\mathrm{ddd},{ }^{2} J=19.9 \mathrm{~Hz},{ }^{3} J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH_{2}), 3.19-3.36 (m, 1H, CH2), $3.63\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right), 4.16$ (br s, $1 \mathrm{H}, \mathrm{ArCH}$), $5.26-5.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, $5.64\left(\mathrm{ddd},{ }^{3} J=11.8,5.5 \mathrm{~Hz},{ }^{4} J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.74-5.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.85-5.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.02$ (dd, $\left.{ }^{3} J=10.2 \mathrm{~Hz},{ }^{4} J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H-\mathrm{Ar}\right), 7.07$ (dd, $\left.{ }^{3} J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, H-\mathrm{Ar}\right), 7.18-7.22$ (m, 1H,H-Ar), 7.36 (dd, $\left.{ }^{3} J=7.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 9.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.3,36.3,38.8$, $47.2,115.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=23 \mathrm{~Hz}\right), 123.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}, \mathrm{F}}=4 \mathrm{~Hz}\right), 127.9,128.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{F}}=8 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=12 \mathrm{~Hz}\right), 130.5$, 131.3, 131.9, 133.2, $160.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=244 \mathrm{~Hz}\right), 201.9 \mathrm{ppm}$.

2-((1,7-cis)-7-(p-Tolyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112n)

Derived from 109n ($23 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{c}(6.6 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 n}$ as a pale yellow oil ($15 \mathrm{mg}, 66 \mu \mathrm{~mol}, 66 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.6$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}, 249.1250$, found: 249.1243; IR (ATR): $\tilde{v}=3012,2922,2860,2817,2719,1903,1721,1650,1510$, 1451, 1422, 1388, 1349, 1301, 1238, 1213, 1186, 1112, 1082, 1059, 1022, 961, 936, 915, 869, 811, 781, 746, $727 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37-2.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.74\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=20.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.1\right.$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.17-3.27 (m, 1H, CH2), $3.52\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right), 3.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}), 5.34-5.40(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 5.71-5.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.75-5.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.86-5.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.09\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right)$, $7.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 9.71\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.1,28.4$, $37.1,47.2,47.5,127.1,128.8(2 C), 129.6$ (2C), 130.2, 132.5, 133.3, 136.4, 138.0, 202.4 ppm.

2-((1,7-cis)-7-(4-(tert-Butyl)phenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112o)

Derived from 109 o ($27 \mathrm{mg}, 0.10 \mathrm{mg}, 1.0$ equiv.) and $48 \mathrm{c}(6.6 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the cycloheptadiene 1120 (17 mg , $63 \mu \mathrm{~mol}, 63 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.4$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NaO}, 291.1725$, found: 291.1734; IR (ATR): $\tilde{v}=3013,2959,2868,2713,1724,1363,837 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.31\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37-2.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.70-2.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.19-3.26(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), $3.52\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right), 3.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}), 5.39-5.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.69-5.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH})$, 5.83-5.93 (m, 1H, CH), 7.15-7.17 (m, 2H, H-Ar), 7.29-7.31 (m, 2H, H-Ar), $9.72\left(t,{ }^{3} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.4,31.5(3 C), 34.5,37.2,47.1,47.5,125.0(2 C), 127.1,129.3(2 C), 130.1,132.6$, 133.3, 138.0, 149.6, 202.5 ppm .

Derived from 109p ($6.0 \mathrm{mg}, 22 \mu \mathrm{~mol}, 1.0$ equiv.) and $48 \mathrm{c}(1.4 \mathrm{mg}, 4.5 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=40: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 p}$ as a colourless oil ($2.5 \mathrm{mg}, 9.4 \mu \mathrm{~mol}, 42 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.8$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}, 289.1563$, found: 289.1559; IR (ATR): $\tilde{v}=3010,2954,2924,2852,2822,2714,1724,1655,1603,1496,1455,1387,1261,1188,1084$, $1030 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=2.28-2.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.58-2.77\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArCH} \mathrm{Cl}_{2}, \mathrm{CH}_{2}\right)$, 3.05-3.12 (m, 1H, CH2), 3.18 (br s, 1H, $\mathrm{HCCH}_{2} \mathrm{CHO}$), 3.26 (br s, 1H, CH), 5.33-5.36 (m, 1H, CH), 5.36-5.40 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 5.43-5.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.49\left(\mathrm{dtd},{ }^{3} J=10.9,7.4 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.53-5.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 5.68-5.75 (m, 1H, CH), 7.16-7.20 (m, 3H, H-Ar), 7.26-7.30 (m, 2H, H-Ar), $9.68\left(t,{ }^{3} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}^{3}\right): \delta=29.0,29.7,36.1,36.2,40.6,48.0,126.0,126.8,128.5(2 C), 128.7(2 C), 129.6$, 130.1, 130.5, 132.6, 133.0, 141.9, 202.4 ppm .

2-((1,7-cis)-7-(4-Methoxyphenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112q)

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ (242.32)

Derived from 109q ($16 \mathrm{mg}, 66 \mu \mathrm{~mol}, 1.0$ equiv.) and $48 \mathrm{c}(4.3 \mathrm{mg}, 13 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 q}(8.0 \mathrm{mg}$, $33 \mu \mathrm{~mol}, 50 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) = 0.4; $\operatorname{ESI}-\mathbf{T O F}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2}$, 243.1380, found: 243.1385; IR (ATR): $\tilde{v}=009,2953,2928,2834,2719,2360,2342,1720,1650,1608,1580,1508$, 1463, 1442, 1422, 1389, 1347, $1302 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.39\left(\mathrm{dd},{ }^{2} J=16.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}$), $2.45\left(\mathrm{dd},{ }^{2} J=16.8 \mathrm{~Hz},{ }^{3} J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.73\left(\mathrm{ddd},{ }^{2} J=19.8 \mathrm{~Hz},{ }^{3} J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH_{2}), 3.16-3.27 (m, 1H, CH2), $3.53\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right), 3.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}), 3.79\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.35(\mathrm{dd}$, $\left.{ }^{3} J=8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.71\left(\mathrm{ddd},{ }^{3} J=9.8,5.1 \mathrm{~Hz},{ }^{4} J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.73-5.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.87-5.90(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 6.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 7.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 9.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.3,37.1,46.8,47.6,55.4,113.5(2 C), 126.9,130.3,130.7(2 C), 132.7,133.0,133.3,158.6$, 202.4 ppm.

2-(Cyclohepta-2,5-dien-1-yl)acetaldehyde (112r)

$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}$ (136.19)

Derived from 109r ($14 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and 48 c ($6.6 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 48 h . Column chromatography (silica gel, pentane/ethyl acetate $=80: 1$) delivered the cycloheptadiene $112 \mathrm{r}(4.0 \mathrm{mg}, 29 \mu \mathrm{~mol}, 29 \%)$ as a colourless oil. The product seemed to form azeotropic mixtures with the solvents used.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.8$; ESI-TOF $(m / z):[M+N a]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NaO}, 159.0780$, found: 159.0788; IR (ATR): $\tilde{v}=3015,2960,2925,2854,2822,2720,2360,2342,1724,1658,1447,1428,1404,1389,1315$, 1277, 1258, 1177, 1106, 1082, 1031, 792, 705, $669 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.18-2.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.30-2.34 (m, 1H, CH2 $), 2.51\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.75-2.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.96-3.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$), 3.04-3.07 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right), 5.55-5.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.63-5.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.70-5.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 9.78\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR (176 MHz, CDCl_{3}): $\delta=28.7,32.4,32.7,50.1,128.7,129.0,129.4,134.1,202.3 \mathrm{ppm}$.

2-((1,7-cis)-7-(Thiophen-2-yl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112s)

Derived from 109s ($25 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{c}(7.4 \mathrm{mg}, 22 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 48 h . Column chromatography (silica gel, pentane/ethyl acetate $=40: 1$) delivered the cycloheptadiene $112 \mathrm{~s}(17 \mathrm{mg}, 78 \mu \mathrm{~mol}$, 66%) as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) $=0.7$; ESI-TOF $(m / z): \quad[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaOS}$, 241.0657, found: 241.0667; IR (ATR): $\tilde{v}=3104,3068,3013,2958,2852,2818,2720,2359,2342$, 1719, 1651, 1528, 1433, 1404, 1389, 1351, 1295, 1239, 1203, 1150, 1100, 1078, 1061, 1040, 915, 866, 849, 825, $781,698 \mathrm{~cm}_{-1} ;{ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.46-2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.73\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=20.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.1\right.$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.20\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.52\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right.$), $4.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}), 5.50-5.52(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 5.72-5.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.81\left(\mathrm{ddd},{ }^{3} J=11.4,5.5 \mathrm{~Hz},{ }^{4} J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.87-5.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.85(\mathrm{~d}$, $\left.{ }^{3} J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 6.93-6.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 9.73\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=28.5,37.2,43.3,47.7,124.4,125.9,126.5,127.8,130.5,132.5,133.1,144.9$, 201.9 ppm.

Ethyl (1,7-cis)-7-(2-Oxoethyl)cyclohepta-2,5-diene-1-carboxylate (112t)

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}(208.26)$

Derived from 109t ($0.22 \mathrm{~g}, 0.94 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{c}(61 \mathrm{mg}, 0.19 \mathrm{mmol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) delivered the cycloheptadiene 112t as a colourless oil ($0.17 \mathrm{~g}, 0.81 \mathrm{mmol}, 86 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.3$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{3}, 209.1172$, found: 209.1179; IR (ATR): $\tilde{v}=3429,3018,2980,2918,2848,2820,2723,2363,2338,1722,1655,1465,1446,1390$, 1367, 1317, 1303, 1287, 1178, 1124, 1096, 1066, 1030, 979, 951, 926, 863, 812, 790, 777, 768, 756, 740, $727 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.26\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.54-2.78\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}, \mathrm{CH}_{2}\right), 2.97-3.19(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), 3.35-3.38 (m, 1H, $\mathrm{HCCH}_{2} \mathrm{CHO}$), $3.71-3.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{EtO}_{2} \mathrm{CCH}\right), 4.15\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 5.58-5.63 (m, 1H, CH), 5.75 (dddd, ${ }^{3} J=11.5,6.5 \mathrm{~Hz},{ }^{4} J=2.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 5.81-5.85 (m, 1H, CH), 5.92 (dddd, $\left.{ }^{3} J=11.1,5.6 \mathrm{~Hz},{ }^{4} J=2.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 9.75\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=14.3,29.0,34.4,47.0,47.2,61.0,127.4,127.7,130.3,132.2,173.0,201.4 \mathrm{ppm}$.

Derived from 109u ($30 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0$ equiv., $E / Z=16: 1$) and $48 \mathrm{c}(12 \mathrm{mg}, 38 \mu \mathrm{~mol}$, $20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 u}$ as yellow oil ($22 \mathrm{mg}, 0.14 \mathrm{mmol}, 72 \%$, cis/trans $=2: 1$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=2: 1\right)=0.8$; ESI-TOF $(m / z):[M+N a]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NNaO}, 184.0733$, found: 184.0741; IR (ATR): $\tilde{v}=3034,2953,2923,2851,2733,2367,2236,1719,1460,1377,1192,1082,1037,969,914$, $849,838,806,776,745,722,692,670,653 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.79-2.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right)$, 2.88-2.97 (m, 1H, CH2), 3.06 (ddddd, $\left.\left.{ }^{2} J=21.1 \mathrm{~Hz},{ }^{3} J=4.3,4.3 \mathrm{~Hz},{ }^{4} J=2.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right)_{2}\right), 3.35-3.38(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{HCCH}_{2} \mathrm{CHO}$), $3.57-3.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCCH}), 5.56\left(\mathrm{ddd},{ }^{3} J=11.3,5.1 \mathrm{~Hz},{ }^{4} J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.68\left(\mathrm{ddd},{ }^{3} J=8.2\right.$, $\left.4.0 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.76-5.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.87-5.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 9.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.9,34.0,34.3,47.9,119.1,123.4,129.9,130.9,132.9,199.8 \mathrm{ppm}$. Only the signals of the major diastereomer are indicated.

2-((1,7-cis)-7-Phenethylcyclohepta-2,5-dien-1-yl)acetaldehyde (112y)

$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}(240.35)$

Derived from 109y ($24 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{c}(6.6 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP2. The reaction was stirred for 72 h . Column chromatography (silica gel, pentane/ethyl acetate $=40: 1$) delivered the cycloheptadiene $112 y(15 \mathrm{mg}, 62 \mu \mathrm{~mol}$, 62%) as a colourless oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.7$; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}, 263.1406$, found: 263.1415; IR (ATR): $\tilde{v}=3021,2923,2857,2717,1721,1653,1603,1496,1454,1390,1340,1191,1081,1030,910$, $856,801,749 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.63\left(\mathrm{dddd},{ }^{2} J=13.2 \mathrm{~Hz},{ }^{3} J=10.0,6.8 \mathrm{~Hz},{ }^{4} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\operatorname{ArCH})_{2}\right), 1.74\left(\mathrm{dtd},{ }^{2} J=13.2 \mathrm{~Hz},{ }^{3} J=9.9 \mathrm{~Hz},{ }^{4} J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 2.48\left(\mathrm{ddd},{ }^{2} J=16.5 \mathrm{~Hz},{ }^{3} J=5.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHOCH_{2}), 2.51-2.61 (m, 2H, CHOCH $\mathrm{CH}_{2}, \mathrm{CH}=\mathrm{CHCH}_{2}$), 2.62-2.75 (m, 2H, CH=CHCH $\left.2, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.98(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{CHOCH}_{2} \mathrm{CH}$), 3.07 (ddt, ${ }^{3} \mathrm{~J}=20.6,5.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $5.56-5.69(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{CH}$), 5.74-5.77 (m, 1H, CH), 7.15-7.21 (m, 3H, H-Ar), 7.27-7.30 (m, 2H, H-Ar), $9.78\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=29.4,34.1,35.6,37.0,40.7,46.6,126.0,127.8,128.5$ (2C), 128.5 (2C), 129.1, 133.0, 134.3, 142.3, 202.6 ppm.

5.7.2 General Procedure for Enamine-Induced DCVPR of Z-Vinyl Cyclopropylcarbaldehydes (GP3)

A solution of the corresponding α, β-unsaturated cyclopropylcarbaldehyde (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.1 m) was treated with (S)-2-(bis(3,5-bis(trifluoromethyl)phenyl)((methyldiphenylsilyl)oxy)methyl)pyrrolidine (48d, $20 \mathrm{~mol} \%$). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ until TLC or GC-MS showed complete conversion. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic phases were washed with brine, dried over MgSO_{4}, and filtrated. The solvent was removed in vacuo and the crude products were purified by column chromatography.

(1,7-trans)-7-(2-Oxoethyl)cyclohepta-2,5-diene-1-carbonitrile (112v)

Derived from 109v ($26 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0$ equiv., $Z / E=6: 1$) and $48 \mathrm{~d}(23 \mathrm{mg}, 32 \mu \mathrm{~mol}$, $20 \mathrm{~mol} \%$) according to GP3. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) delivered the cycloheptadiene 112 v (15 mg , $93 \mu \mathrm{~mol}, 58 \%$, trans $/$ cis $=6: 1$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=2: 1$) $=0.8$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NNaO}, 184.0733$, found: 184.0741; IR (ATR): $\tilde{v}=3034,2953,2923,2851,2733,2367,2236,1719,1460,1377,1192,1082,1037,969,914$, 849, 838, 806, 776, 745, 722, 692, 670, $653 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.64-2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right)$, 2.88-2.95 (m, 1H, C H 2), $3.14\left(\mathrm{dddd},{ }^{2} J=21.6 \mathrm{~Hz},{ }^{3} J=4.2,4.2 \mathrm{~Hz},{ }^{4} J=2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right)_{2}, 3.24\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right.$, $\mathrm{HCCH}_{2} \mathrm{CHO}$), $3.61\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}\right), 5.61-5.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 5.69-5.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.87-5.99$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 9.77\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=29.4,33.3,34.9,47.8,119.7$, 122.9, 129.2, 130.2, 134.0, 199.7 ppm.

2-((1,7-trans)-7-Phenylcyclohepta-2,5-dien-1-yl)acetaldehyde (112z)

Chin

Derived from 109z ($21 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and 48 d ($14 \mathrm{mg}, 20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP3. The reaction was stirred for 24 h . Column chromatography (silica gel, pentane/ethyl acetate $=20: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 z}(15 \mathrm{mg}, 71 \mu \mathrm{~mol}$, 71%) as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=10: 1\right)=0.7$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}, 235.1093$, found: 235.1095; IR (ATR): $\tilde{v}=3022,2954,2925,2854,2717,2317,1722,1689,1652,1491,1454,1279,1141,773 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.35-2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.89\left(\mathrm{ddddd},{ }^{2} J=20.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.3,5.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4\right.$, $\left.1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.02-3.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.25-3.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HCCH}_{2} \mathrm{CHO}\right), 3.53\left(\mathrm{ddd},{ }^{3} J=8.9,4.5 \mathrm{~Hz},{ }^{4} J=2.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ArCH}), 5.55\left(\mathrm{dddd},{ }^{3} J=10.9,5.8 \mathrm{~Hz},{ }^{4} J=1.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.66\left(\mathrm{dddd},{ }^{3} J=11.6,4.7 \mathrm{~Hz},{ }^{4} J=2.1,1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}$), 5.75-5.80 (m, 1H, CH), $5.83\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{CH}\right), 7.21-7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.29-7.32(\mathrm{~m}, 3 \mathrm{H}, H-\mathrm{Ar}), 9.59(\mathrm{dd}$, $\left.{ }^{3} J=2.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.8,38.8,49.0,49.1,126.8,127.9,128.5$ (2C), 128.7 (2C), 130.3, 132.9, 133.1, 144.1, 201.9 ppm.

Derived from 109aa ($49 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv.) and $48 \mathrm{~d}(34 \mathrm{mg}, 47 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) according to GP3. The reaction was stirred for 48 h . Column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) delivered the cycloheptadiene $\mathbf{1 1 2 a a}(31 \mathrm{mg}, 0.15 \mathrm{mmol}$, 62%) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=4: 1\right)=0.8$; ESI-TOF $(m / z):[M+\mathrm{Na}]_{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NNaO}, 184.0733$, found: 184.0741; IR (ATR): $\tilde{v}=3019,2980,2927,2850,1724,1367,1174,1031 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.26\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.52-2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{CCHO}\right), 2.82-2.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.91-3.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.33-3.41 (m, 2H, $\left.\mathrm{HCCH}_{2} \mathrm{CHO}, \mathrm{EtO}_{2} \mathrm{CH}\right), 4.15\left(\mathrm{qd},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz},{ }^{5} \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.59-5.69(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH})$, $5.79-5.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 9.75\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.3,29.7,34.5$, 48.5, 48.7, 61.0, 126.0, 129.1, 131.3, 131.5, 172.9, 201.3 ppm.

5.8 Follow-Up Reactions

5.8.1 Ethyl (1,7-cis)-7-(2-Hydroxyethyl)cyclohepta-2,5-diene-1-carboxylate (181)

A solution of $112 \mathrm{t}\left(0.15 \mathrm{~g}, 0.72 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{EtOH}(7.2 \mathrm{~mL}, 0.1 \mathrm{~m})$ was cooled to $-30^{\circ} \mathrm{C}$ and treated with NaBH_{4} ($33 \mathrm{mg}, 0.86 \mathrm{mmol}, 1.2$ equiv.). The reaction was stirred at this temperature for 15 min before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the organic phases were washed with brine $(10 \mathrm{~mL})$, dried over MgSO_{4}, and filtrated. The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) delivering the title compound 181 as a colourless oil ($0.12 \mathrm{~g}, 0.57 \mathrm{mmol}, 79 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=4: 1$) = 0.3; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3}, 211.1329$, found: 211.1334; IR (ATR): $\tilde{v}=3419,3014,2979,2931,2874,2818,2360,2338,1729,1654,1392,1367,1300,1177,1124,1093$, 1055, 1028, 914, 862, 811, $746 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.27\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.54$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.70\left(\mathrm{dddd},{ }^{2} \mathrm{~J}=13.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.2,6.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2}\right.$), $1.77\left(\mathrm{dddd},{ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} J=9.0\right.$, $\left.6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2}\right), 2.71\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=20.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, 3.03-3.09 (m, 1H, CH2 $), 3.62-3.69\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{HOCH}_{2}, \mathrm{EtO}_{2} \mathrm{CCH}\right), 4.17\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 5.60-5.63$ (m, 1H, CH), 5.74-5.77 (m, 1H, CH), 5.78-5.81 (m, 1H, CH), 5.94-5.97 (m, 1H, CH) ppm; ${ }^{13} \mathbf{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.4,29.2,36.0,36.4,47.6,60.9,61.2,127.4,127.6,129.6,133.3,173.6 \mathrm{ppm}$.

5.8.2 4,4a,7,9a-Tetrahydrocyclohepta[c]pyran-1(3H)-one (182)

38\%

A solution of alcohol 181 ($33 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0$ equiv.) in THF ($1.6 \mathrm{~mL}, 0.1 \mathrm{~m}$) was treated with potassium trimethylsilanolate ($41 \mathrm{mg}, 0.32 \mathrm{mmol}, 2.0$ equiv.) at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 30 min before $\mathrm{HCl}\left(1 \mathrm{~m}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 3.0 \mathrm{~mL}\right)$ was added. The mixture was stirred again for 1 h at $20^{\circ} \mathrm{C}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ afterwards. The combined organic phases were washed with brine (10 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. Purification of the crude product by column chromatography (silica gel, pentane/ethyl acetate $=4: 1$) delivered the title compound $\mathbf{1 8 2}$ as colourless oil ($10 \mathrm{mg}, 61 \mu \mathrm{~mol}, 38 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=4: 1$) $=0.6$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}, 165.0910$, found: 165.0918; IR (ATR): $\tilde{v}=3016,2918,2851,1721,1652,1477,1402,1296,1267,1188,1158,1101,1072,1031,992,955$, 917, 892, 877, 869, 852, 845, 809, 798, 787, 770, 759, 744, 724, 711, 695, 683, $653 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.79-1.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.99-2.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.73-3.02\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}, \mathrm{CH}_{2}\right), 3.29-3.47(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{O}=\mathrm{CCH}), 4.31\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=11.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.42\left(\mathrm{ddd},{ }^{2} J=11.4 \mathrm{~Hz},{ }^{3} J=4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2}\right), 5.49-5.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.65-5.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.75-5.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.14-6.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) \mathrm{ppm}$; ${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.4,30.4,36.5,45.4,68.3,128.6,128.8,129.1,133.7,172.5 \mathrm{ppm}$.

5.8.3 Ethyl 7-(2-((3,5-Dinitrobenzoyl)oxy)ethyl)cyclohepta-2,5-diene-1-carboxylate (183)

A solution of alcohol 181 ($38 \mathrm{mg}, 0.18 \mathrm{mmol}$, 1.0 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL}, 0.02 \mathrm{~m}$) was treated with 4dimethylaminopyridine ($0.22 \mathrm{~g}, 1.8 \mathrm{mmol}, 10$ equiv.) and 3,5-dinitrobenzoylchloride ($83 \mathrm{mg}, 0.36 \mathrm{mg}, 2.0$ equiv.). The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h . The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, pentane/ethyl acetate $=10: 1$) to deliver the title compound 183 as colourless oil which turned solid at $-30^{\circ} \mathrm{C}(60 \mathrm{mg}, 0.15 \mathrm{mmol}, 82 \%)$. Single crystals suitable for diffraction analysis were obtained by diffusion of pentane into a solution of 183 in ethyl acetate (CCDC: 1877358).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=10: 1\right)=0.6$; ESI-TOF $(m / z):[M+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{8}, 427.1112$, found: 427.110; IR (ATR): $\tilde{v}=3099,3017,2970,2937,2906,1729,1629,1598,1545,1463,1345,1278,1218,1167,1076$, 1030, 974, 922, 863, 827, 774, $721 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.94-2.09$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.78\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=21.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00-3.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.05-3.12(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), $3.72\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{EtO}_{2} \mathrm{CCH}\right), 4.19\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 4.49\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}\right.$), 5.67-5.71 (m, 1H, CH), 5.78-5.85 (m, 2H, $2 \times \mathrm{CH}$), $5.99\left(\mathrm{ddd},{ }^{3} J=11.2,5.4 \mathrm{~Hz},{ }^{4} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 9.16(\mathrm{~d}$, $\left.{ }^{4} J=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 9.23\left(\mathrm{t},{ }^{4} \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.4,29.4,31.8,37.0$, $47.7,61.0,65.7,122.5,127.3,128.4,129.6$ (2C), 129.8, 132.0, 134.2 (2C), 148.8, 162.6, 173.0 ppm .

5.8.4 Ethyl 7-((E)-2-((triiso-propylsilyl)oxy)vinyl)cyclohepta-2,5-diene-1-

 carboxylate (185)

A solution of triisopropylsilyl trifluoromethanesulfonate ($0.15 \mathrm{~g}, 0.48 \mathrm{mmol}, 2.0$ equiv.) and triethylamine ($49 \mathrm{mg}, 0.48 \mathrm{mmol}, 2.0$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL}, 0.15 \mathrm{~m}$) was treated with the aldehyde $\mathbf{1 0 9 t}$ (50 mg , $0.24 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 18 h before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and filtrated. The solvent of the filtrate was removed under reduced pressure, the residue was taken up in pentane/ethyl acetate ($40: 1,20 \mathrm{~mL}$), and filtrated over silica gel. The solvents of the filtrate were removed in vacuo affording the title compound $\mathbf{1 8 5}$ as a colourless oil, that was used in the next step without further purification ($75 \mathrm{mg}, 0.21 \mathrm{mmol}, 86 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=40: 1\right)=0.7 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.99-1.16\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{SiCH}, \mathrm{SiCH}_{3}\right)$, $1.27\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.58-2.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.94-3.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.34-3.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCHCH})$, $3.75-3.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{EtO}_{2} \mathrm{CH}\right), 4.15\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 4.99\left(\mathrm{dd},{ }^{3} \mathrm{~J}=11.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}\right), 5.52-5.59$ (m, 2H, CH), 5.81-5.87 (m, 1H, CH), 6.00-6.05 (m, 1H, CH), 6.32 (d, $\left.{ }^{3} \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}\right) \mathrm{ppm}$. The compound decomposed readily so that further analysis could not be obtained. The signals were assigned in analogy to the other cycloheptadienes.
5.8.5 2-(7-Phenylcyclohepta-2,5-dien-1-yl)acetic Acid (186)

A solution of the aldehyde 109a ($55 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.0$ equiv.) in acetone ($0.70 \mathrm{~mL}, 0.4 \mathrm{~m}$) was treated with Jones reagent (2.5 m in $\mathrm{H}_{2} \mathrm{O}, 0.10 \mathrm{~mL}, 0.27 \mathrm{mmol}, 1.1$ equiv.) at $20^{\circ} \mathrm{C}$ and was stirred at this temperature
for 15 min . The reaction was quenched with $i-\mathrm{PrOH}(10 \mathrm{~mL})$ and diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, the combined organic phases were dried over MgSO_{4}, and filtrated. The solvents of the filtrate were removed under reduced pressure and the residue was purified by column chromatography (silica gel, pentane/ethyl acetate/acetic acid $=100: 10: 1$) affording the title compound 186 as a colourless oil ($40 \mathrm{mg}, 0.18 \mathrm{mmol}, 69 \%$) .
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=4: 1$) $=0.7$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2}, 229.1223$, found: 229.1221; IR (ATR): $\tilde{v}=3023,2924,2818,2668,1703,1653,1601,1492,1451,1413,1288,1227,1167,1078,1031,933,878$, 826, 795, 762, $702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.29\left(\mathrm{dd},{ }^{2} J=15.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HO}_{2} \mathrm{CH}_{2}\right), 2.40$ (dd, ${ }^{2} J=15.7 \mathrm{~Hz},{ }^{3} J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HO}_{2} \mathrm{CH}_{2}$), $2.73\left(\mathrm{ddd},{ }^{2} J=20.1 \mathrm{~Hz},{ }^{3} J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.18-3.26(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.45-3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 3.69-3.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}), 5.34\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=9.5,6.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.71$ (ddd, $\left.{ }^{3} J=11.7,5.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.74-5.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.84-5.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.17-7.30(\mathrm{~m}, 4 \mathrm{H}$, H-Ar) ppm; ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.3,37.8,38.7,47.4,126.8$ (2C), 127.1, 128.0 (2C), 129.9, 130.1, 132.2, 133.2, 140.9, 179.2 ppm .

5.9 Selective Modification of Lysine

5.9.1 tert-Butyldimethyl(2-(2-styrylcyclopropyl)ethoxy)silane (121)

A solution of pinacol boronate $157(50 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.1$ equiv.) and phenyl iodide ($26 \mathrm{mg}, 0.13 \mathrm{mmol}$, 1.0 equiv.) in degassed DME ($1.60 \mathrm{~mL}, 0.08 \mathrm{M}$) was treated with $\mathrm{Pd}(\mathrm{OAc})_{2}\left(3.0 \mathrm{mg}, 13 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%\right.$) and PPh_{3} $(17 \mathrm{mg}, 65 \mu \mathrm{~mol}, 50 \mathrm{~mol} \%)$. The resulting solution was degassed and heated to $80^{\circ} \mathrm{C}$. At this temperature, $\mathrm{KO} t-\mathrm{Bu}(1 \mathrm{~m}$ in $t-\mathrm{BuOH}, 0.26 \mathrm{~mL}, 0.26 \mathrm{mmol}, 2.0$ equiv.) was added dropwise over a period of 5 min . After complete addition, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 min . The mixture was cooled to $20^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5.0 \mathrm{~mL})$, and extracted with pentane ($3 \times 15 \mathrm{~mL}$). The combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=200: 1$). The silyl ether 121 was obtained as a colourless oil ($36 \mathrm{mg}, 0.12 \mathrm{mmol}$, 92%).

The spectroscopic data agree with those described in 5.3.6.

A solution of pinacol boronate $157(0.20 \mathrm{~g}, 0.57 \mathrm{mmol}, 1.1$ equiv.) in degassed DME ($6.5 \mathrm{~mL}, 0.08 \mathrm{~m}$) was treated with $\operatorname{Pd}(\mathrm{OAc})_{2}(14 \mathrm{mg}, 62 \mu \mathrm{~mol}, 12 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(75 \mathrm{mg}, 0.29 \mathrm{mmol}, 50 \mathrm{~mol} \%) .4$-lodophenylazide (0.13 mg , $0.52 \mathrm{mmol}, 1.0$ equiv.) was added. The solution was degassed and heated to $80^{\circ} \mathrm{C}$. At this temperature, $\mathrm{KO} t$ - Bu (1 M in $t-\mathrm{BuOH}, 1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 2.0$ equiv.) was added dropwise over a period of 5 min . After complete addition, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 min . The mixture was cooled to $20^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, and extracted with pentane $(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure and the crude product purified by column chromatography (silica gel, pentane/ethyl acetate $=100: 1$). The silyl ether 188 was obtained as a colourless oil ($36 \mathrm{mg}, 0.12 \mathrm{mmol}, 73 \%$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/diethyl ether $\left.=100: 1\right)=0.4$; ESI-TOF $(m / z):[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{OSi}, 344.2153$, found: 344.2157; IR (ATR): $\tilde{v}=3066,3021,2996,2953,2928,2885,2856,2413,2256,2110,1645,1603,1573,1505$, 1471, 1388, 1361, 1285, 1254, 1181, 1157, 1128, 1097, 1031, 1006, 957, 938, 892, 834, 809, 775, $734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR $\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.04(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH})_{3}\right), 0.38\left(\mathrm{dt},{ }^{2} J=5.3 \mathrm{~Hz},{ }^{3} J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), 0.89 (s, 9H, CCH $)_{3}$, 0.97-1.03 (m, 1H, H-cyclopropyl), 1.09-1.16 (m, 1H, H-cyclopropyl), 1.55-1.70 (m, 3H, CH_{2}, H-cyclopropyl), $3.68\left(\mathrm{td},{ }^{3} J=7.0 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.92\left(\mathrm{dd},{ }^{3} J=15.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 6.45(\mathrm{~d}$, ${ }^{3} J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 6.89-6.99 (m, 2H, H-Ar), 7.24-7.33 (m, 2H, H-Ar) ppm; ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.1(2 C), 13.4,16.4,18.5,19.3,26.1(3 C), 32.9,63.4,119.3(3 C), 127.1(2 C), 128.9,130.8,135.0,138.1 \mathrm{ppm}$.

5.9.3 2-(2-((E)-4-Azidostyryl)cyclopropyl)acetaldehyde (116c)

A solution of silyl ether $188(0.27 \mathrm{~g}, 0.79 \mathrm{mmol}, 1.0$ equiv. $)$ in $\mathrm{MeOH}(7.9 \mathrm{~mL}, 0.1 \mathrm{~m})$ was treated with HCl ($10 \mathrm{wt}-\%$ in $\mathrm{H}_{2} \mathrm{O}, 14 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 5 \mathrm{~mol} \%$) at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h and the reaction quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, and the combined organic phases were washed with brine (20 mL), dried over MgSO_{4}, and filtrated. The solvents were removed under reduced pressure. The residue was taken up in DMSO ($7.9 \mathrm{~mL}, 0.1 \mathrm{~m}$) and treated with IBX ($0.33 \mathrm{~g}, 1.1 \mathrm{mmol}, 1.5$ equiv.) at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 18 h and the reaction was quenched
with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic phases were washed with brine $(3 \times 20 \mathrm{~mL})$ thoroughly. The organic phase was dried over MgSO_{4}, filtrated, and the solvents were removed in vacuo. The crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=40: 1 \rightarrow 20: 1$) to deliver the aldehyde $\mathbf{1 1 6 c}$ as a colourless oil $(0.11 \mathrm{~g}, 0.48 \mathrm{mmol}$, 60% over 2 steps).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $=20: 1$) = 0.3; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}, 228.1132$, found: 228.1138; IR (ATR): $\tilde{v}=3034,2999,2875,2818,2719,2415,2259,2109,1721,1646,1601,1572,1504,1449,1421$, 1387, 1284, 1216, 1177, 1128, 1038, 957, 919, 850, 808, 781, 717, 688, $65 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=0.49\left(\mathrm{dt},{ }^{2} J=5.4 \mathrm{~Hz},{ }^{3} J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), $1.14\left(\mathrm{td},{ }^{2} J=5.4 \mathrm{~Hz},{ }^{3} J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H\right.$-cyclopropyl), 1.39 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, H$-cyclopropyl), 1.74-1.84 (m, 1H, H-cyclopropyl), 2.42-2.53 (m, 2H, CH2), $5.89\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.7,8.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}), 6.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 6.93-6.96(\mathrm{~m}, 2 \mathrm{H}, H-\mathrm{Ar}), 7.27-7.30(\mathrm{~m}, 2 \mathrm{H}, H-\mathrm{Ar}), 9.80\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHO) ppm; ${ }^{13}$ C NMR (126 MHz, CDCl_{3}): $\delta=12.5,12.6,18.6,43.7,119.3(2 C), 127.2(2 C), 128.8,130.4,134.5$, 138.6, 202.0 ppm.

5.9.4 Ethyl Cyclohepta-1,3,6-triene-1-carboxylate (207)

A solution of aldehyde $116 \mathbf{d}$ ($18 \mathrm{mg}, 99 \mu \mathrm{~mol}, 1.0$ equiv.), L-proline ($12 \mathrm{mg}, 99 \mu \mathrm{~mol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL}, 0.1 \mathrm{M})$ was treated with $\mathrm{HCl}\left(3 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 1.7 \mathrm{uL}, 5.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%\right)$ and stirred for 24 h at $20^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, dichloromethane/methanol = 10:1) affording the title compound 207 as a colourless oil ($10 \mathrm{mg}, 61 \mu \mathrm{~mol}$, 61\%).
$\mathbf{R}_{\mathbf{f}}$ (dichloromethane/methanol $\left.=10: 1\right)=0.4 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.35\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.30\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 4.29\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.45-5.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.61-5.72(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 6.21-6.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.72\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=9.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 7.64-7.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) \mathrm{ppm} ;$ ${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=14.4,28.1,61.1,121.2,125.2,126.1,126.9,133.1,137.2,167.8 \mathrm{ppm}$.

The spectroscopic data agree with previously published results. ${ }^{[385]}$

A solution of aldehyde $\mathbf{1 1 6 b}$ ($37 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and morpholine ($\mathbf{4 8 h}, 17.4 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{EtOH}(2.0 \mathrm{~mL}, 0.1 \mathrm{~m})$ was stirred for 48 h at $20^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica gel, dichloromethane/methanol =60:1) to deliver the tertiary amine $\mathbf{1 1 8 c}$ as a colourless oil ($40 \mathrm{mg}, 0.16 \mathrm{mmol}, 78 \%$).
$\mathbf{R}_{\mathbf{f}}$ (dichloromethane/methanol $\left.=40: 1\right)=0.6$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}$, 256.1696, found: 256.1689; IR (ATR): $\tilde{v}=3087,3056,3024,3008,2955,2889,2850,2807,1647,1601,1494,1450,1407,1392,1347$, 1326, 1265, 1206, 1133, 1117, 1070, 1032, 1017, 955, 921, 881, 795, 763, $725 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=2.54-2.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.64-2.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HCCH}_{2}\right), 3.15-3.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HCCH}_{2}\right), 3.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NCH})$, 3.64-3.70 (m, 4H, OCH ${ }_{2}$), 4.00-4.01 (m, 1H, ArCH), $5.55\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=10.9,6.1 \mathrm{~Hz},{ }^{4} J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.73-5.78$ (m, 2H, $2 \times \mathrm{CH}$), 5.89-5.93 (m, 1H, CH), 7.19-7.22 (m, 1H, H-Ar), 7.25-7.27 (m, 2H, H-Ar), 7.35-7.36 (m, 2H, H-Ar) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=27.8,45.0,52.2(2 C), 66.7,67.4$ (2C), 126.5, 127.2, 127.7 (2C), 128.6, 130.1 (2C), 132.1, 132.7, 141.3 ppm.

5.9.6 N-Phenethyl-7-phenylcyclohepta-2,5-dien-1-amine (118d)

Method A (Table 3.15, entry 2): A solution of aldehyde $\mathbf{1 1 6 b}$ ($37 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and phenethylamine ($\mathbf{4 8 j}, 25 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{EtOH}\left(2.0 \mathrm{~mL}, 0.1 \mathrm{~m}\right.$) was stirred for 48 h at $20^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica gel, dichloromethane $/$ methanol $=40: 1$) to deliver the secondary amine $\mathbf{1 1 8 d}$ as a colourless oil ($31 \mathrm{mg}, 0.11 \mathrm{mmol}$, 54%).

Method B (Table 3.15, entry 3): A solution of aldehyde 116 b ($37 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and phenethylamine ($\mathbf{4 8 j}$, $25 \mathrm{uL}, 0.20 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,2.0 \mathrm{~mL}, 0.1 \mathrm{~m})$ was stirred for 48 h at $20^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica gel, dichloromethane/methanol $=40: 1$) to deliver the secondary amine $\mathbf{1 1 8 d}$ as a colourless oil ($17 \mathbf{m g}$,
$\mathbf{R}_{\mathbf{f}}$ (dichloromethane/methanol $\left.=20: 1\right)=0.8$; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNa}, 312.1722$, found: 312.1732; IR (ATR): $\tilde{v}=3734,3709,3648,3627,3310,3082,3060,3024,2924,2854,2815,2359,2341,1944,1648$, 1601, 1582, 1541, 1493, 1452, 1385, 1365, 1309, 1180, 1155, 1123, 1079, 1051, 1030, 1003, 961, 930, 910, 866, 795, 747, $724,697,667 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=1.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.65-2.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HCCH}_{2}\right)$, $2.79\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 2.92\left(\mathrm{ddd},{ }^{2} J=11.4 \mathrm{~Hz},{ }^{3} J=7.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.98\left(\mathrm{dt},{ }^{2} J=11.4 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 3.10-3.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HCCH}_{2}\right), 3.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right), 4.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{PhCH})$, 5.25 (br s, 1H, CH), 5.68 (dddd, ${ }^{3} J=11.7,6.0 \mathrm{~Hz},{ }^{4} J=2.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 5.73-5.78 (m, 1H, CH), 5.79-5.84 (m, 1H, CH), 7.15-7.23 (m, 8H, H-Ar), 7.25-7.30 (m, 2H, H-Ar) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.2$, $36.8,47.4,49.1,58.9,126.3(2 C), 126.7(2 C), 127.1(2 C), 127.8,128.0,128.6$ (2C), 128.9 (2C), 130.0, 131.5, 135.9, 140.3 ppm .

5.9.7 7-Phenyl-N-(1-phenylethyl)cyclohepta-2,5-dien-1-amine (118e)

A solution of aldehyde $\mathbf{1 1 6 b}(75 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{L}-\alpha-$ methyl-benzylamine ($52 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{EtOH}(4.0 \mathrm{~mL}, 0.1 \mathrm{~m})$ was stirred for 5 d at $20^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica gel, pentane/ethyl acetate $=40: 1$) to deliver the title compound $\mathbf{1 1 8 e}$ as a colourless oil ($83 \mathrm{mg}, 0.29 \mathrm{mmol}, 72 \%$, d.r. 1:1).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=40: 1\right)=0.4$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}, 290.1903$, found: 290.1915; IR (ATR): $\tilde{v}=3734,3709,3675,3648,3627,3329,3082,3060,3023,2958,2922,2868,2817,2602,2359,2341$, $1945,1877,1809,1749,1685,1648,1601,1583,1541,1491,1465,1450,1385,1368,1354,1326,1308,1269,1243$, 1202, 1181, 1123, 1078, 1055, 1029, 1006, 956, 938, 911, 866, 829, 796, 759, 743, 721, 698, $666 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.25\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}{ }^{*}\right), 1.42\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}, \mathrm{NH} H^{*}\right)$, 2.63-2.71 (m, 2H, CH2, CH ${ }_{2}^{*}$), 2.95-3.00 (m, 1H, CH2), 3.00-3.04 (m, 1H, CH ${ }_{2}^{*}$), $3.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{PhCH}), 3.71$ (br s, $1 \mathrm{H}, \mathrm{PhCH}^{*}$), 3.86-3.93 (m, 3H, NCH, NCH* NCHCH_{3}), $4.02\left(\mathrm{q},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{3}{ }^{*}\right.$), 5.24-5.27 (m, 1H, CH), $5.48\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}^{*}\right), 5.64-5.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}, \mathrm{CH}^{*}\right), 5.70-5.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$) , 5.73-5.77 (m, 1H, $\mathrm{CH}), 5.82-5.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}^{*}\right), 7.21-7.35\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}-\mathrm{Ar}, H-\mathrm{Ar}^{*}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.5$, $25.2^{*}, 28.3,28.4^{*}, 46.7,49.0^{*}, 54.7,55.0^{*}, 55.8,56.0^{*}, 126.6,126.7(2 C), 126.8(2 C)^{*}, 126.8^{*}, 126.9$ (2C), 127.0 $(2 C)^{*}, 127.3,127.3^{*}, 127.8(2 C), 127.9(2 C)^{*}, 128.4,128.5^{*}, 128.5(2 C), 128.5,130.1(2 C)^{*}, 131.5^{*}, 131.8,136.2(C$, C^{*}), 136.3, 140.6*, 145.9, 146.2* ppm. *The signals of the diastereoisomers are indicated. Signals might be exchanged.
5.9.8 Comparison Between the Reaction of Aldehyde 116b With a Primary and a Secondary Amine

A solution of aldehyde 116 b ($37 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), morpholine ($\mathbf{4 8 h}, 17 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), and phenethylamine ($\mathbf{4 8} \mathbf{j}, 25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{EtOH}(2.0 \mathrm{~mL}, 0.1 \mathrm{M})$ was stirred for 48 h at $20^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica gel, dichloromethane/methanol $=60: 1$) to deliver a mixed fraction of the amines $\mathbf{1 1 8 c}$ and $\mathbf{1 1 8 d}(30 \mathbf{m g}$, 118c:118d = 1:3), the amine $118 \mathrm{c}(2.0 \mathrm{mg}$, combined: $9.0 \mathrm{mg}, 35 \mu \mathrm{~mol}, 17 \%$) and the amine $\mathbf{1 1 8 d}(6.0 \mathrm{mg}$, combined: $29 \mathrm{mg}, 0.10 \mathrm{mmol}, 50 \%$).

5.9.9 (7-Phenylcyclohepta-2,5-dien-1-yl)-L-proline (118f)

A solution of aldehyde $\mathbf{1 1 6 b}$ ($37 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and L-proline ($46 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0$ equiv.) in $\mathrm{MeOH}(2.0 \mathrm{~mL}, 0.1 \mathrm{~m})$ was stirred for 2 h at $20^{\circ} \mathrm{C}$. The solvents were removed under reduced pressure and the crude product was purified by column chromatography (silica gel, dichloromethane/methanol/ammonia 7 N in $\mathrm{MeOH}=40: 3: 1$) to deliver the title compound 118 f as a yellow oil ($18 \mathrm{mg}, 64 \mu \mathrm{~mol}, 32 \%$, d.r. $1: 1$). 118f was found to decompose under air for longer than two days and was therefore stored under an argon atmosphere.
$\mathbf{R}_{\mathbf{f}}$ (dichloromethane/methanol/ 7 N ammonia in $\mathrm{MeOH}=40: 3: 1$) $=0.4$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}, 284.1645$, found: 284.1652; IR (ATR): $\tilde{v}=3388,3062,2952,2920,2885,2853,1769,1727,1491$, 1440, 1366 1341, 1268, 1178, 1117, 1056, 1033, 986, 920, 849, 798, $734 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta=1.74-1.87\left(\mathrm{~m}, 2 \mathrm{H}\right.$, pyrrolidine- CH_{2}, pyrrolidine $\left.-\mathrm{CH}_{2}{ }^{*}\right), 1.92-1.99\left(\mathrm{~m}, 1 \mathrm{H}\right.$, pyrrolidine- $\left.\mathrm{CH}_{2}{ }^{*}\right), 2.07-2.11(\mathrm{~m}$, 2 H , pyrrolidine $-\mathrm{CH}_{2}$, pyrrolidine- $\mathrm{CH}_{2}{ }^{*}$), 2.19-2.30 (m,3H, $2 \times$ pyrrolidine- CH_{2}, pyrrolidine- $\mathrm{CH}_{2}{ }^{*}$), 2.83-2.94 (m, 2H, CH2, CH ${ }_{2}{ }^{*}$), 2.96-3.00 (m, 1H, NCH ${ }_{2}{ }^{*}$), 3.24-3.29 (m, 3H, N-CH2, CH, $\mathrm{CH}_{2}{ }^{*}$), 3.38-3.46 (m, 1H, $\mathrm{NCH}_{2}{ }^{*}$), $3.83\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{H}^{*}\right), 4.01-4.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}, \mathrm{CHCO}_{2} \mathrm{H}\right), 4.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}$), $4.24(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NCH}$), 4.84 (br s under $\mathrm{H}_{2} \mathrm{O}$ signal, $1 \mathrm{H}, \mathrm{PhCH}^{*}$), 4.90 (br s, $1 \mathrm{H}, \mathrm{PhCH}$), 5.55 (br s, $1 \mathrm{H}, \mathrm{CH} H^{*}$), 5.74 (br s, 1H, CH), 5.75-5.80 (m, 1H, CH), 5.81-5.91 (m, 3H, CH, $\left.2 \times \mathrm{CH}^{*}\right), 6.24-6.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$) , 6.29-6.36 (m, 1H, CH), 7.29-7.35 (m, 2H, H-Ar, H-Ar*), 7.33-7.40 (m, 4H, H-Ar, H-Ar*), 7.43-7.49 (m, 4H, H-Ar, H-Ar*) ppm; ${ }^{13} \mathbf{C}$ NMR (176 MHz, CD 3 OD): $\delta=25.1,25.5^{*}, 28.0^{*}, 28.7,29.9^{*}, 30.8,46.1^{*}, 47.4,53.4^{*}, 56.4,66.5,67.2^{*}, 69.2^{*}$,
71.0, 124.1, 126.1*, 128.7*, $129.2(2 C)^{*}$, $129.3(2 C), 129.9(2 C)^{*}, 129.9(2 C), 130.7,130.9\left(C, C^{*}\right), 131.1,131.2^{*}$, $135.4^{*}, 136.4,137.7^{*}, 139.0,172.8,173.6^{*} \mathrm{ppm}$. ${ }^{*}$ The signals of the diastereoisomers are indicated. Signals might be exchanged.

5.9.10 Methyl-(7-phenylcyclohepta-2,5-dien-1-yl)-L-prolinate (118g)

A solution of aldehyde $116 \mathbf{b}(75 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.0$ equiv.) and L-proline methyl ester ($0.10 \mathrm{~g}, 0.80 \mathrm{mmol}$, 2.0 equiv.) in $\mathrm{MeOH}\left(4.0 \mathrm{~mL}, 0.1 \mathrm{~m}\right.$) was stirred for 24 h at $20^{\circ} \mathrm{C}$. The solvents were removed under reduced pressure and the crude product was purified by MPLC (silica gel, NP4, cyclohexane/ethyl acetate $=95: 5 \rightarrow 90: 10$) to deliver the title compound $\mathbf{1 1 8 g}$ as a yellow oil ($118 \mathrm{mg}, 0.40 \mathrm{mmol}, 99 \%$, d.r. $1: 1$).
$\mathbf{R}_{\mathbf{f}}$ (pentane/ethyl acetate $\left.=20: 1\right)=0.3$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2}$, 298.1802, found: 298.1814; IR (ATR): $\tilde{v}=3066,3024,3008,2950,2871,1734,1647,1601,1550,1492,1452,1434,1365,1277,1196$, 1166, 1088, 1032, 1002, 869, 797, 758, $721 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.71-1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}{ }^{*}\right), 1.81-1.87\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCHCH}_{2}, \mathrm{NCHCH}_{2}{ }^{*}, \mathrm{NCH}_{2} \mathrm{CH}_{2}{ }^{*}\right), 1.88-2.01\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCHCH}_{2}, \mathrm{NCHCH}_{2}{ }^{*}\right.$, $\left.\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}{ }^{*}\right), 2.61-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}, \mathrm{C}=\mathrm{CH}^{*}\right), 2.75-2.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}{ }^{*}\right), 2.86-2.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH})_{2}\right), 3.07-3.11$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2}{ }^{*}\right), 3.12-3.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 3.15-3.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}{ }^{*}\right), 3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}{ }^{*}\right), 3.57\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.1\right.$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.63-3.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}^{*}\right), 3.88-3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.93-3.94(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCH}^{*}\right), 4.00(\mathrm{brs}, 1 \mathrm{H}, \mathrm{PhCH}), 4.14\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{PhCH} H^{*}\right), 5.54-5.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}, \mathrm{CH} H^{*}\right), 5.68-5.73(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}$, $\left.2 \times C H^{*}\right), 5.83-5.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{C} H^{*}\right), 7.15-7.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}, H-\mathrm{Ar}^{*}\right), 7.21-7.28\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times H-\mathrm{Ar}, 2 \times H-\mathrm{Ar}^{*}\right)$, $7.31-7.35$ (m, 2H, H-Ar*), 7.39-7.43 (m, 2H, $\mathrm{H}-\mathrm{Ar}$) ppm; ${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.8^{*}, 24.5,27.9^{*}$, 28.0, 29.4*, 30.7, 47.8, 48.0*, 49.9, 51.4, 51.5*, 52.3*, 62.5*, 62.6*, 63.4, 63.9, 126.3*, 126.4, 126.9*, 127.1, 127.6 ($2 C^{*}$), $127.8(2 C), 128.5^{*}, 129.2,129.8(2 C), 130.1\left(2 C^{*}\right), 130.7,132.2^{*}, 133.1,133.3^{*}, 141.8,141.9^{*}, 175.2,176.0^{*} \mathrm{ppm}$. *The signals of the diastereoisomers are indicated. Signals might be exchanged.

5.9.11 Methyl- \boldsymbol{N}^{2}-(tert-butoxycarbonyl)- \boldsymbol{N}^{6}-(7-phenylcyclohepta-2,5-dien-1-yl)-Llysinate (118h)

A solution of aldehyde $\mathbf{1 1 6 b}(37 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Boc-Lys-OMe ($0.10 \mathrm{~g}, 0.40 \mathrm{mmol}, 2.0$ equiv.) in $\mathrm{MeOH}(2.0 \mathrm{~mL}, 0.1 \mathrm{~m})$ was stirred for 48 h at $20^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and
the crude product was purified by column chromatography (silica gel, dichloromethane/methanol = 20:1) to deliver the title compound $\mathbf{1 1 8 h}$ as a yellow oil ($56 \mathrm{mg}, 0.13 \mathrm{mmol}, 65 \%$, d.r. could not be determined since there are no isolated signals in the proton spectrum available).
$\mathbf{R}_{\mathbf{f}}$ (dichloromethane/methanol $\left.=20: 1\right)=0.6$; ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4}, 429.2748$, found: 429.2764; IR (ATR): $\tilde{v}=3331,3014,2977,2931,2865,1745,1697,1603,1495,1470,1454,1436,1418,1390,1365$, 1335, 1297, 1249, 1216, 1162, 1095, 1054, 1019, 941, 905, 867, 826, $753,703 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=1.32-1.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.47-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.59-1.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.74-1.78(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.61-2.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HNCH}_{2}\right), 2.73\left(\mathrm{ddd},{ }^{2} J=19.6 \mathrm{~Hz},{ }^{3} J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCCH}_{2}\right), 3.16-3.20(\mathrm{~m}, 1 \mathrm{H}$, HCCH_{2}), $3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}), 4.07-4.09$ (m, 2H, HNCH,HNCH), 5.30-5.33 (m, 1H, CH), 5.65 (ddd, $\left.{ }^{3} J=11.9,6.0 \mathrm{~Hz},{ }^{4} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.73-5.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.91-5.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.19-7.24(\mathrm{~m}$, $1 \mathrm{H}, H-\mathrm{Ar}), 7.25-7.28$ (m, 2H, H-Ar), 7.29-7.31 (m, 2H, H-Ar) ppm; ${ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=24.7,28.6$, 28.7 (3C), 29.7, 32.4, 32.4, 47.9, 52.6, 54.9, 59.9, 80.5, 127.8, 128.0, 128.9 (2C), 130.1, 131.2 (2C), 132.3, 135.4, $140.6,158.1,174.9 \mathrm{ppm}$. Only the signals of the major diastereoisomer are indicated.

5.9.12 \boldsymbol{N}^{6}-(7-Phenylcyclohepta-2,5-dien-1-yl)-L-lysine (118i)

A solution of aldehyde $\mathbf{1 1 6 b}\left(5 \mathrm{mg}, 27 \mu \mathrm{~mol}, 1.0\right.$ equiv.) and H -Lys- $\mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}(8.8 \mathrm{mg}, 54 \mu \mathrm{~mol}, 2.0$ equiv. $)$ in $\mathrm{MeOH}(0.3 \mathrm{~mL}, 0.1 \mathrm{~m})$ was stirred for 1 h at $20^{\circ} \mathrm{C}$. TLC and GC-MS showed complete conversion but only a complex mixture could be obtained.

ESI-TOF $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}, 315.2067$, found: 315.2064.

Bibliography

[1] W. A. Donaldson, Tetrahedron 2001, 57, 8589-8627.
[2] Z. Goldschmidt, B. Crammer, Chem. Soc. Rev. 1988, 17, 229-267.
[3] H. N. C. Wong, M. Y. Hon, C. W. Tse, Y. C. Yip, J. Tanko, T. Hudlicky, Chem. Rev. 1989, 89, 165-198.
[4] H. M. Davies, Tetrahedron 1993, 49, 5203-5223.
[5] R. Faust, Angew. Chem. Int. Ed. 2001, 40, 2251-2253.
[6] L. A. Wessjohann, W. Brandt, T. Thiemann, Chem. Rev. 2003, 103, 1625-1648.
[7] D. Y.-K. Chen, R. H. Pouwer, J.-A. Richard, Chem. Soc. Rev. 2012, 41, 4631.
[8] H. Staudinger, L. Ruzicka, Helv. Chim. Acta 1924, 7, 177-201.
[9] M. Okada, S. Ito, A. Matsubara, I. Iwakura, S. Egoshi, M. Ueda, Org. Biomol. Chem. 2009, 7, 3065.
[10] A. Gagnon, M. Duplessis, L. Fader, Org. Prep. Proced. Int. 2010, 42, 1-69.
[11] H. Fukuda, R. Muromoto, Y. Takakura, K. Ishimura, R. Kanada, D. Fushihara, M. Tanabe, K. Matsubara, T. Hirao, K. Hirashima, H. Abe, M. Arisawa, T. Matsuda, S. Shuto, Org. Lett. 2016, 18, 6224-6227.
[12] P. Bajaj, G. Sreenilayam, V. Tyagi, R. Fasan, Angew. Chem. Int. Ed. 2016, 55, 16110-16114.
[13] K. Matsui, Y. Kido, R. Watari, Y. Kashima, Y. Yoshida, S. Shuto, Chem. Eur. J. 2017, 23, 3034-3041.
[14] A. Mizuno, T. Kameda, T. Kuwahara, H. Endoh, Y. Ito, S. Yamada, K. Hasegawa, A. Yamano, M. Watanabe, M. Arisawa, S. Shuto, Chem. Eur. J. 2017, 23, 3159-3168.
[15] P. Panchaud, J.-P. Surivet, S. Diethelm, A.-C. Blumstein, J.-C. Gauvin, L. Jacob, F. Masse, G. Mathieu, A. Mirre, C. Schmitt, M. Enderlin-Paput, R. Lange, C. Gnerre, S. Seeland, C. Herrmann, H. H. Locher, P. Seiler, D. Ritz, G. Rueedi, J. Med. Chem. 2019, 63, 88-102.
[16] R. Nirogi, A. R. Mohammed, A. K. Shinde, S. R. Ravella, N. Bogaraju, R. Subramanian, V. R. Mekala, R. C. Palacharla, N. Muddana, J. B. Thentu, G. Bhyrapuneni, R. Abraham, V. Jasti, J. Med. Chem. 2020, DOI 10.1021/ acs.jmedchem. 9b00790.
[17] Z. Časar, Synthesis 2020, DOI 10.1055/s-0039-1690058.
[18] A. de Meijere, Angew. Chem. Int. Ed. Engl. 1979, 18, 809-826.
[19] R. Robinson, J. Chem. Soc. Trans. 1916, 109, 1038-1046.
[20] C. A. Coulson, W. E. Moffitt, J. Chem. Phys. 1947, 15, 151-151.
[21] A. Hartman, F. L. Hirshfeld, Acta Crystallogr. 1966, 20, 80-82.
[22] E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books, U.S., 2005, 1104 pp.
[23] A. D. Walsh, Trans. Faraday Soc. 1949, 45, 179.
[24] M. J. S. Dewar, J. Am. Chem. Soc. 1984, 106, 669-682.
[25] M. Charton in The Chemistry of Alkenes, Vol. 2, J. Zabricky, Interscience, London, 1970, p. 524.
[26] C. J. Collins, Chem. Rev. 1969, 69, 543-550.
[27] C. C. Lee, Prog. Phys. Org. Chem. 1970, 7, 129.
[28] C. H. DePuy in Three-Membered Rings, Springer Berlin Heidelberg, 1973, pp. 73-101.
[29] C. H. DePuy, A. A. Harry, P. C. Fünfschilling, J. Am. Chem. Soc. 1974, 96, 948-950.
[30] R. T. LaLonde, A. D. Debboli, J. Org. Chem. 1973, 38, 4228-4232.
[31] A. D. Meijere, W. Lüttke, Tetrahedron 1969, 25, 2047-2058.
[32] H. Günther, H. Klose, D. Wendisch, Tetrahedron 1969, 25, 1531-1543.
[33] V. R. Salares, W. F. Murphy, H. J. Bernstein, J. Raman Spectrosc. 1978, 7, 147-153.
[34] H. Braun, W. Lüttke, J. Mol. Struct. 1976, 31, 97-129.
[35] M. Suzuki, S.-I. Murahashi, A. Sonoda, I. Moritani, Chem. Lett. 1974, 3, 267-270.
[36] V. Nair, S. B. Panicker, S. Mathai, Res. Chem. Intermed. 2003, 29, 227-231.
[37] M. Julia, R. G. S. Julia, Bull. Soc. Chim. Fr. 1960, 5, 1072-1079.
[38] A. U. Augustin, J. L. Merz, P. G. Jones, G. Mlostoń, D. B. Werz, Org. Lett. 2019, 21, 9405-9409.
[39] H.-U. Reißig, R. Zimmer, Chem. Rev. 2003, 103, 1151-1196.
[40] T. F. Schneider, J. Kaschel, D. B. Werz, Angew. Chem. Int. Ed. 2014, 53, 5504-5523.
[41] A. J. Craig, B. C. Hawkins, Synthesis 2019, 27-39.
[42] D. B. Werz, A. T. Biju, Angew. Chem. Int. Ed. 2019, 59, 3385-3398.
[43] M. E. Kuehne, J. B. Pitner, J. Org. Chem. 1989, 54, 4553-4569.
[44] B. Frey, J. Schnaubelt, H.-U. Reißig, Eur. J. Org. Chem. 1999, 1385-1393.
[45] H. Nagaoka, A. Baba, Y. Yamada, Tetrahedron Lett. 1991, 32, 6741-6744.
[46] J. Adams, C. Lepine-Frenette, D. M. Spero, J. Org. Chem. 1991, 56, 4494-4498.
[47] E. W. Schlag, B. S. Rabinovitch, J. Am. Chem. Soc. 1960, 82, 5996-6000.
[48] D. Griller, K. U. Ingold, Acc. Chem. Res. 1980, 13, 317-323.
[49] M. Newcomb, Tetrahedron 1993, 49, 1151-1176.
[50] V. W. Bowry, J. Lusztyk, K. U. Ingold, J. Am. Chem. Soc. 1991, 113, 5687-5698.
[51] M. L. Grimm, N. K. Suleman, A. N. Hancock, J. N. Spencer, T. Dudding, R. Rowshanpour, N. Castagnoli, J. M. Tanko, J. Am. Chem. Soc. 2020, 142, 2640-2652.
[52] T. D. Beeson, A. Mastracchio, J. B. Hong, K. Ashton, D. W. C. Macmillan, Science 2007, 316, 582-585.
[53] T. Benkovics, J. Du, I. A. Guzei, T. P. Yoon, J. Org. Chem. 2009, 74, 5545-5552.
[54] T. Hudlicky, T. M. Kutchan, S. M. Naqvi in Organic Reactions, American Cancer Society, 2004, Chapter 2, pp. 247-335.
[55] J. E. Baldwin, Chem. Rev. 2003, 103, 1197-1212.
[56] K. N. Houk, M. Nendel, O. Wiest, J. W. Storer, J. Am. Chem. Soc. 1997, 119, 10545-10546.
[57] T. Hudlicky, J. Reed, Angew. Chem. Int. Ed. 2010, 49, 4864-4876.
[58] J. Paladini, J. Chuche, Tetrahedron Lett. 1971, 12, 4383-4386.
[59] C. L. Wilson, J. Am. Chem. Soc. 1947, 69, 3002-3004.
[60] J. B. Cloke, J. Am. Chem. Soc. 1929, 51, 1174-1187.
[61] R. S. Atkinson, C. W. Rees, J. Chem. Soc. Chem. Commun. 1967, 1232a.
[62] A. Mishra, S. N. Rice, W. Lwowski, J. Org. Chem. 1968, 33, 481-486.
[63] E. Vogel, Angew. Chem. 1960, 72, 4-26.
[64] E. Vogel, K.-H. Ott, K. Gajek, Justus Liebigs Ann. Chem. 1961, 644, 172-188.
[65] E. Vogel, Angew. Chem. Int. Ed. Engl. 1963, 2, 1-11.
[66] T. Hudlicky, R. Fan, J. W. Reed, K. G. Gadamasetti in Organic Reactions, American Cancer Society, 2004, Chapter 1, pp. 1-133.
[67] W. von E. Doering, W. Roth, Tetrahedron 1963, 19, 715-737.
[68] W. von E. Doering, W. R. Roth, Angew. Chem. Int. Ed. Engl. 1963, 2, 115-122.
[69] C. Ullenius, P. W. Ford, J. E. Baldwin, J. Am. Chem. Soc. 1972, 94, 5910-5911.
[70] J. E. Baldwin, C. Ullenius, J. Am. Chem. Soc. 1974, 96, 1542-1547.
[71] J. M. Brown, B. T. Golding, J. J. Stofko, J. Chem. Soc. Perkin Trans. 2 1978, 436-441.
[72] M. P. Schneider, A. Rau, J. Am. Chem. Soc. 1979, 101, 4426-4427.
[73] E. Piers, M. S. Burmeister, H.-U. Reißig, Can. J. Chem. 1986, 64, 180-187.
[74] D. Sperling, H.-U. Reißig, J. Fabian, Justus Liebigs Ann. Chem. 1997, 2443-2449.
[75] D. Sperling, H.-U. Reißig, J. Fabian, Eur. J. Org. Chem. 1999, 1107-1114.
[76] i. Özkan, M. Zora, J. Org. Chem. 2003, 68, 9635-9642.
[77] M. Zora, í. Özkan, M. F. Danışman, J. Mol. Struct. THEOCHEM 2003, 636, 9-13.
[78] M. Zora, J. Mol. Struct. THEOCHEM 2004, 681, 113-116.
[79] F.-G. Klärner, M. Jones, R. M. Magid, Acc. Chem. Res. 2009, 42, 169-181.
[80] D. J. Tantillo, R. Hoffmann, J. Org. Chem. 2002, 67, 1419-1426.
[81] H. Günther, J.-B. Pawliczek, J. Ulmen, W. Grimme, Chem. Ber. 1975, 108, 3141-3150.
[82] J. D. Osler, W. P. Unsworth, R. J. K. Taylor, Org. Biomol. Chem. 2013, 11, 7587-7594.
[83] M. P. Schneider, B. Csacsko, J. Chem. Soc., Chem. Commun. 1977, 330-331.
[84] M. Arai, R. J. Crawford, Can. J. Chem. 1972, 50, 2158-2162.
[85] J. E. Baldwin, K. E. Gilbert, J. Am. Chem. Soc. 1976, 98, 8283-8284.
[86] D. G. Müller, L. Jaenicke, M. Donike, T. Akintobi, Science 1971, 171, 815-817.
[87] W. Boland, G. Pohnert, I. Maier, Angew. Chem. Int. Ed. Engl. 1995, 34, 1602-1604.
[88] G. Pohnert, W. Boland, Tetrahedron 1997, 53, 13681-13694.
[89] S. Krüger, T. Gaich, Beilstein J. Org. Chem. 2014, 10, 163-193.
[90] M. Gaydou, R. E. Miller, N. Delpont, J. Ceccon, A. M. Echavarren, Angew. Chem. Int. Ed. 2013, 52, 6396-6399.
[91] W.-H. Ma, H. Huang, P. Zhou, D.-F. Chen, J. Nat. Prod. 2009, 72, 676-678.
[92] H. Ito, S. Takeguchi, T. Kawagishi, K. Iguchi, Org. Lett. 2006, 8, 4883-4885.
[93] P. A. Wender, M. A. Eissenstat, M. P. Filosa, J. Am. Chem. Soc. 1979, 101, 2196-2198.
[94] E. Piers, N. Moss, Tetrahedron Lett. 1985, 26, 2735-2738.
[95] L. E. Overman, D. J. Ricca, V. D. Tran, J. Am. Chem. Soc. 1997, 119, 12031-12040.
[96] J. L. Roizen, A. C. Jones, R. C. Smith, S. C. Virgil, B. M. Stoltz, J. Org. Chem. 2017, 82, 13051-13067.
[97] P.-P. Zhang, Z.-M. Yan, Y.-H. Li, J.-X. Gong, Z. Yang, J. Am. Chem. Soc. 2017, 139, 13989-13992.
[98] R. A. Craig, R. C. Smith, J. L. Roizen, A. C. Jones, S. C. Virgil, B. M. Stoltz, J. Org. Chem. 2018, 83, 3467-3485.
[99] H. M. Davies, N. J. Huby, Tetrahedron Lett. 1992, 33, 6935-6938.
[100] F. W. Ng, H. Lin, S. J. Danishefsky, J. Am. Chem. Soc. 2002, 124, 9812-9824.
[101] E. T. Newcomb, P. C. Knutson, B. A. Pedersen, E. M. Ferreira, J. Am. Chem. Soc. 2016, 138, 108-111.
[102] E. Stempel, T. Gaich, Acc. Chem. Res. 2016, 49, 2390-2402.
[103] M. Zora, J. Org. Chem. 2005, 70, 6018-6026.
[104] A. Y. Belyy, A. A. Levina, D. N. Platonov, R. F. Salikov, M. G. Medvedev, Y. V. Tomilov, Eur. J. Org. Chem. 2019, 4133-4138.
[105] W. Zhang, E. Baudouin, M. Cordier, G. Frison, B. Nay, Chem. Eur. J. 2019, 25, 8643-8648.
[106] W. Zhang, B. Nay, Eur. J. Org. Chem. 2020, DOI 10.1002/ejoc. 202000136.
[107] P. S. Skell, R. C. Woodworth, J. Am. Chem. Soc. 1956, 78, 4496-4497.
[108] H. M. L. Davies, E. G. Antoulinakis in Organic Reactions, American Cancer Society, 2004, Chapter 1, pp. 1-326.
[109] S. Fantauzzi, E. Gallo, E. Rose, N. Raoul, A. Caselli, S. Issa, F. Ragaini, S. Cenini, Organometallics 2008, 27, 6143-6151.
[110] M. Nakada, M. Honma, H. Takeda, M. Takano, Synlett 2009, 1695-1712.
[111] G. Özüduru, T. Schubach, M. M. K. Boysen, Org. Lett. 2012, 14, 4990-4993.
[112] V. N. G. Lindsay, W. Lin, A. B. Charette, J. Am. Chem. Soc. 2009, 131, 16383-16385.
[113] J.-I. Ito, S. Ujiie, H. Nishiyama, Chem. Eur. J. 2010, 16, 4986-4990.
[114] H. Pellissier, A. Lattanzi, R. Dalpozzo in Asymmetric Synthesis of Three-Membered Rings, Wiley-VCH Verlag GmbH \& Co. KGaA, 2017, pp. 1-204.
[115] H. Inoue, N. P. T. Thanh, I. Fujisawa, S. Iwasa, Org. Lett. 2020, DOI 10.1021/acs.orglett.0c00050.
[116] A. F. McKay, J. Am. Chem. Soc. 1948, 70, 1974-1975.
[117] J. Podlech, J. prakt. Chem. 1998, 340, 679-682.
[118] T. Bug, M. Hartnagel, C. Schlierf, H. Mayr, Chem. Eur. J. 2003, 9, 4068-4076.
[119] G. Maas, Angew. Chem. Int. Ed. 2009, 48, 8186-8195.
[120] B. Morandi, E. M. Carreira, Science 2012, 335, 1471-1474.
[121] R. L. Svec, P. J. Hergenrother, Angew. Chem. Int. Ed. 2019, 59, 1857-1862.
[122] H. E. Simmons, R. D. Smith, J. Am. Chem. Soc. 1958, 80, 5323-5324.
[123] J. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron Lett. 1966, 7, 3353-3354.
[124] J. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron 1968, 24, 53-58.
[125] H. E. Simmons, T. L. Cairns, S. A. Vladuchick, C. M. Hoiness in Organic Reactions, American Cancer Society, 1973, Chapter 1, pp. 1-131.
[126] R. Little, J. R. Dawson, Tetrahedron Lett. 1980, 21, 2609-2612.
[127] L. L. McCoy, J. Am. Chem. Soc. 1958, 80, 6568-6572.
[128] I. Ibrahem, G.-L. Zhao, R. Rios, J. Vesely, H. Sundén, P. Dziedzic, A. Córdova, Chem. Eur. J. 2008, 14, 7867-7879.
[129] Y.-H. Zhao, G. Zhao, W.-G. Cao, Tetrahedron: Asymmetry 2007, 18, 2462-2467.
[130] X.-L. Sun, Y. Tang, Acc. Chem. Res. 2008, 41, 937-948.
[131] L.-X. Dai, X.-L. Hou, Y.-G. Zhou, Pure Appl. Chem. 1999, 71, 369-376.
[132] A.-H. Li, L.-X. Dai, V. K. Aggarwal, Chem. Rev. 1997, 97, 2341-2372.
[133] E. M. McGarrigle, E. L. Myers, O. Illa, M. A. Shaw, S. L. Riches, V. K. Aggarwal, Chem. Rev. 2007, 107, 5841-5883.
[134] M. J. Gaunt, C. C. Johansson, A. McNally, N. T. Vo, Drug Discov. Today 2007, 12, 8-27.
[135] H. Lebel, J.-F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev. 2003, 103, 977-1050.
[136] X.-M. Deng, P. Cai, S. Ye, X.-L. Sun, W.-W. Liao, K. Li, Y. Tang, Y.-D. Wu, L.-X. Dai, J. Am. Chem. Soc. 2006, 128, 9730-9740.
[137] E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353-1364.
[138] S. Pizzarello, Science 2004, 303, 1151-1151.
[139] U. Eder, G. Sauer, R. Wiechert, Angew. Chem. Int. Ed. Engl. 1971, 10, 496-497.
[140] Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974, 39, 1615-1621.
[141] B. List, Tetrahedron 2002, 58, 5573-5590.
[142] C. Agami, F. Meynier, C. Puchot, J. Guilhem, C. Pascard, Tetrahedron 1984, 40, 1031-1038.
[143] C. Agami, C. Puchot, H. Sevestre, Tetrahedron Lett. 1986, 27, 1501-1504.
[144] S. Bahmanyar, K. N. Houk, J. Am. Chem. Soc. 2001, 123, 12911-12912.
[145] S. Bahmanyar, K. N. Houk, J. Am. Chem. Soc. 2001, 123, 11273-11283.
[146] S. Bahmanyar, K. N. Houk, H. J. Martin, B. List, J. Am. Chem. Soc. 2003, 125, 2475-2479.
[147] B. List, L. Hoang, H. J. Martin, Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5839-5842.
[148] F. R. Clemente, K. N. Houk, Angew. Chem. Int. Ed. 2004, 43, 5766-5768.
[149] P.-Y. Cheong, K. Houk, J. Warrier, S. Hanessian, Adv. Synth. Catal. 2004, 346, 1111-1115.
[150] C. Allemann, R. Gordillo, F. R. Clemente, P. H.-Y. Cheong, K. N. Houk, Acc. Chem. Res. 2004, 37, 558-569.
[151] Y. Tu, Z.-X. Wang, Y. Shi, J. Am. Chem. Soc. 1996, 118, 9806-9807.
[152] S. E. Denmark, Z. Wu, C. M. Crudden, H. Matsuhashi, J. Org. Chem. 1997, 62, 8288-8289.
[153] D. Yang, Y.-C. Yip, M.-W. Tang, M.-K. Wong, J.-H. Zheng, K.-K. Cheung, J. Am. Chem. Soc. 1996, 118, 491-492.
[154] M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901-4902.
[155] E. J. Corey, M. J. Grogan, Org. Lett. 1999, 1, 157-160.
[156] B. List, R. A. Lerner, C. F. Barbas, J. Am. Chem. Soc. 2000, 122, 2395-2396.
[157] K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243-4244.
[158] B. List, Synlett 2001, 1675-1686.
[159] P. I. Dalko, L. Moisan, Angew. Chem. Int. Ed. 2004, 43, 5138-5175.
[160] J. Seayad, B. List, Org. Biomol. Chem. 2005, 3, 719-724.
[161] B. List, Chem. Commun. 2006, 819-824.
[162] B. List, J. W. Yang, Science 2006, 313, 1584-1586.
[163] S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471-5569.
[164] H. Pellissier, Tetrahedron 2007, 63, 9267-9331.
[165] D. W. C. MacMillan, Nature 2008, 455, 304-308.
[166] P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Angew. Chem. Int. Ed. 2008, 47, 6138-6171.
[167] S. Bertelsen, K. A. Jørgensen, Chem. Soc. Rev. 2009, 38, 2178-2189.
[168] M. Nielsen, D. Worgull, T. Zweifel, B. Gschwend, S. Bertelsen, K. A. Jørgensen, Chem. Commun. 2011, 47, 632-649.
[169] B. S. Donslund, T. K. Johansen, P. H. Poulsen, K. S. Halskov, K. A. Jørgensen, Angew. Chem. Int. Ed. 2015, 54, 13860-13874.
[170] V. Marcos, J. Alemán, Chem. Soc. Rev. 2016, 45, 6812-6832.
[171] Z.-J. Jia, H. Jiang, J.-L. Li, B. Gschwend, Q.-Z. Li, X. Yin, J. Grouleff, Y.-C. Chen, K. A. Jørgensen, J. Am. Chem. Soc. 2011, 133, 5053-5061.
[172] K. S. Halskov, T. K. Johansen, R. L. Davis, M. Steurer, F. Jensen, K. A. Jørgensen, J. Am. Chem. Soc. 2012, 134, 12943-12946.
[173] C. V. Gómez, D. C. Cruz, R. Mose, K. A. Jørgensen, Chem. Commun. 2014, 50, 6035-6038.
[174] H. Jiang, D. C. Cruz, Y. Li, V. H. Lauridsen, K. A. Jørgensen, J. Am. Chem. Soc. 2013, 135, 5200-5207.
[175] J.-X. Liu, Q.-Q. Zhou, J.-G. Deng, Y.-C. Chen, Org. Biomol. Chem. 2013, 11, 8175.
[176] J. Stiller, P. H. Poulsen, D. C. Cruz, J. Dourado, R. L. Davis, K. A. Jørgensen, Chem. Sci. 2014, 5, 2052.
[177] Q.-Q. Zhou, Y.-C. Xiao, X. Yuan, Y.-C. Chen, Asian J. Org. Chem. 2014, 3, 545-549.
[178] P. Dinér, A. Kjaersgaard, M. Lie, K. Jørgensen, Chem. Eur. J. 2007, 14, 122-127.
[179] D. Seebach, A. Beck, D. Badine, M. Limbach, A. Eschenmoser, A. Treasurywala, R. Hobi, W. Prikoszovich, B. Linder, Helv. Chim. Acta 2007, 90, 425-471.
[180] M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen, Angew. Chem. Int. Ed. 2005, 44, 794-797.
[181] Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212-4215.
[182] J. Kapfhammer, A. Matthes, Hoppe-Seylers Z. Physiol. Chem. 1934, 223, 43-52.
[183] D. Enders, H. Kipphardt, P. Gerdes, L. J. Breña-Valle, V. Bushan, Bull. Soc. Chim. Belg. 1988, 100, 1580-1581.
$[184] \quad$ E. J. Corey, T. Shibata, T. W. Lee, J. Am. Chem. Soc. 2002, 124, 3808-3809.
[185] J. Franzén, M. Marigo, D. Fielenbach, T. C. Wabnitz, A. Kjærsgaard, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 18296-18304.
[186] S. Lakhdar, T. Tokuyasu, H. Mayr, Angew. Chem. Int. Ed. 2008, 47, 8723-8726.
[187] S. Bertelsen, M. Marigo, S. Brandes, P. Dinér, K. A. Jørgensen, J. Am. Chem. Soc. 2006, 128, 12973-12980.
[188] S.-H. Chen, B.-C. Hong, C.-F. Su, S. Sarshar, Tetrahedron Lett. 2005, 46, 8899-8903.
[189] E. Marqués-Lopéz, R. P. Herrera, T. Marks, W. C. Jacobs, D. Könning, R. M. de Figueiredo, M. Christmann, Org. Lett. 2009, 11, 4116-4119.
[190] N. Utsumi, H. Zhang, F. Tanaka, C. Barbas, Angew. Chem. Int. Ed. 2007, 46, 1878-1880.
[191] J. Vesely, P. Dziedzic, A. Córdova, Tetrahedron Lett. 2007, 48, 6900-6904.
[192] R. M. deFigueiredo, R. Fröhlich, M. Christmann, Angew. Chem. Int. Ed. 2008, 47, 1450-1453.
[193] K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, J. Uenishi, J. Am. Chem. Soc. 1982, 104, 5555-5557.
[194] B. M. Trost, W. Pfrengle, H. Urabe, J. Dumas, J. Am. Chem. Soc. 1992, 114, 1923-1924.
[195] B. M. Trost, Y. Shi, J. Am. Chem. Soc. 1992, 114, 791-792.
[196] K. N. Houk, Y. Li, J. D. Evanseck, Angew. Chem. Int. Ed. Engl. 1992, 31, 682-708.
[197] R. B. Woodward, R. Hoffmann, Angew. Chem. Int. Ed. Engl. 1969, 8, 781-853.
[198] M. J. S. Dewar, Angew. Chem. Int. Ed. Engl. 1971, 10, 761-776.
[199] H. E. Zimmerman, Acc. Chem. Res. 1971, 4, 272-280.
[200] K. Fukui, Acc. Chem. Res. 1971, 4, 57-64.
[201] L. Claisen, Ber. Dtsch. Chem. Ges. 1912, 45, 3157-3166.
[202] L. Claisen, E. Tietze, Ber. Dtsch. Chem. Ges. 1925, 58, 275-281.
[203] L. Claisen, E. Tietze, Ber. Dtsch. Chem. Ges. 1926, 59, 2344-2351.
[204] A. C. Cope, E. M. Hardy, J. Am. Chem. Soc. 1940, 62, 441-444.
[205] W. E. Doering, W. Roth, Tetrahedron 1962, 18, 67-74.
[206] R. K. Hill, N. W. Gilman, Chem. Commun. (London) 1967, 619.
[207] M. J. Goldstein, M. S. Benzon, J. Am. Chem. Soc. 1972, 94, 7147-7149.
[208] M. J. Goldstein, M. R. DeCamp, J. Am. Chem. Soc. 1974, 96, 7356-7358.
[209] N. Graulich, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 172-190.
[210] F. E. Ziegler, Chem. Rev. 1988, 88, 1423-1452.
[211] E. A. Ilardi, C. E. Stivala, A. Zakarian, Chem. Soc. Rev. 2009, 38, 3133.
[212] G. Huang, Y. Dong, Synth. Commun. 2019, 49, 3101-3111.
[213] R. Qamar, A. Saeed, Curr. Org. Synth. 2018, 15, 438-486.
[214] B. Seashore-Ludlow, P. Somfai in Stereoselective Synthesis of Drugs and Natural Products, Wiley: Hoboken, NJ, 2013, pp. 1-26.
[215] J. Nowicki, Molecules 2000, 5, 1033-1050.
[216] J. F. Kincaid, D. S. Tarbell, J. Am. Chem. Soc. 1939, 61, 3085-3089.
[217] W. N. White, D. Gwynn, R. Schlitt, C. Girard, W. Fife, J. Am. Chem. Soc. 1958, 80, 3271-3277.
[218] H. L. Goering, R. R. Jacobson, J. Am. Chem. Soc. 1958, 80, 3277-3285.
[219] W. N. White, E. F. Wolfarth, J. Org. Chem. 1970, 35, 2196-2199.
[220] W. N. White, E. F. Wolfarth, J. Org. Chem. 1970, 35, 3585-3585.
[221] L. Bagnell, T. Cablewski, C. R. Strauss, R. W. Trainor, J. Org. Chem. 1996, 61, 7355-7359.
[222] A. A. Ponaras, J. Org. Chem. 1983, 48, 3866-3868.
[223] R. M. Coates, B. D. Rogers, S. J. Hobbs, D. P. Curran, D. R. Peck, J. Am. Chem. Soc. 1987, 109, 1160-1170.
[224] J. J. Gajewski, J. Jurayj, D. R. Kimbrough, M. E. Gande, B. Ganem, B. K. Carpenter, J. Am. Chem. Soc. 1987, 109, 1170-1186.
[225] P. A. Grieco, E. B. Brandes, S. McCann, J. D. Clark, J. Org. Chem. 1989, 54, 5849-5851.
[226] M. Hiersemann, L. Abraham, Eur. J. Org. Chem. 2002, 1461-1471.
[227] U. Nubbemeyer, Synthesis 2003, 0961-1008.
[228] M. Kirsten, J. Rehbein, M. Hiersemann, T. Strassner, J. Org. Chem. 2007, 72, 4001-4011.
[229] C. Uyeda, A. R. Rötheli, E. N. Jacobsen, Angew. Chem. Int. Ed. 2010, 49, 9753-9756.
[230] D. Kaldre, J. L. Gleason, Angew. Chem. Int. Ed. 2016, 55, 11557-11561.
[231] D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307-9387.
[232] L. Candish, R. M. Gillard, J. E. M. Fernando, A. Levens, D. W. Lupton, Isr. J. Chem. 2016, 56, 522-530.
[233] X.-Y. Chen, S. Li, F. Vetica, M. Kumar, D. Enders, iScience 2018, 2, 1-26.
[234] R. Dalpozzo, G. Bartoli, G. Bencivenni, Synthesis 2014, 979-1029.
[235] R. K. Kunz, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 3240-3241.
[236] A. Hartikka, P. I. Arvidsson, J. Org. Chem. 2007, 72, 5874-5877.
[237] K. Akagawa, S. Takigawa, I. S. Nagamine, R. Umezawa, K. Kudo, Org. Lett. 2013, 15, 4964-4967.
[238] K. Akagawa, K. Kudo, Acc. Chem. Res. 2017, 50, 2429-2439.
[239] J. Wang, X. Liu, S. Dong, L. Lin, X. Feng, J. Org. Chem. 2013, 78, 6322-6327.
[240] C. D. Papageorgiou, S. V. Ley, M. J. Gaunt, Angew. Chem. Int. Ed. 2003, 42, 828-831.
[241] C. D. Papageorgiou, M. A. C. de Dios, S. V. Ley, M. J. Gaunt, Angew. Chem. Int. Ed. 2004, 43, 4641-4644.
[242] R. Rios, H. Sundén, J. Vesely, G.-L. Zhao, P. Dziedzic, A. Córdova, Adv. Synth. Catal. 2007, 349, 1028-1032.
[243] H. Xie, L. Zu, H. Li, J. Wang, W. Wang, J. Am. Chem. Soc. 2007, 129, 10886-10894.
[244] G.-L. Zhao, A. Córdova, Tetrahedron Lett. 2007, 48, 5976-5980.
[245] J. Vicario, U. Uria, D. Badía, L. Carrillo, E. Reyes, A. Pesquera, Synthesis 2010, 701-713.
[246] P. Llanes, C. Rodríguez-Escrich, S. Sayalero, M. A. Pericàs, Org. Lett. 2016, 18, 6292-6295.
[247] X. Companyó, A.-N. Alba, F. Cárdenas, A. Moyano, R. Rios, Eur. J. Org. Chem. 2009, 2009, 3075-3080.
[248] V. Terrasson, A. van der Lee, R. Marcia de Figueiredo, J. Campagne, Chem. Eur. J. 2010, 16, 7875-7880.
[249] J. Vesely, G.-L. Zhao, A. Bartoszewicz, A. Córdova, Tetrahedron Lett. 2008, 49, 4209-4212.
[250] H. M. Hansen, D. A. Longbottom, S. V. Ley, Chem. Commun. 2006, 4838-4840.
[251] M. Yan, L.-t. Dong, Q.-s. Du, C.-I. Lou, J.-m. Zhang, R.-j. Lu, Synlett 2009, 266-270.
[252] Q.-s. Du, L.-t. Dong, J.-j. Wang, R.-j. Lu, M. Yan, Arkivoc 2009, 191-199.
[253] Y.-n. Xuan, S.-z. Nie, L.-t. Dong, J.-m. Zhang, M. Yan, Org. Lett. 2009, 11, 1583-1586.
[254] A. Zaghi, T. Bernardi, V. Bertolasi, O. Bortolini, A. Massi, C. D. Risi, J. Org. Chem. 2015, 80, 9176-9184.
[255] J.-H. Li, T.-F. Feng, D.-M. Du, J. Org. Chem. 2015, 80, 11369-11377.
[256] M. Meazza, M. Ashe, H. Y. Shin, H. S. Yang, A. Mazzanti, J. W. Yang, R. Rios, J. Org. Chem. 2016, 81, 3488-3500.
[257] S. Y. Shim, J. Y. Kim, M. Nam, G.-S. Hwang, D. H. Ryu, Org. Lett. 2016, 18, 160-163.
[258] I. Riaño, U. Uria, E. Reyes, L. Carrillo, J. L. Vicario, J. Org. Chem. 2018, 83, 4180-4189.
[259] S. H. McCooey, T. McCabe, S. J. Connon, J. Org. Chem. 2006, 71, 7494-7497.
[260] A. Russo, A. Lattanzi, Tetrahedron: Asymmetry 2010, 21, 1155-1157.
[261] F. Marini, S. Sternativo, F. D. Verme, L. Testaferri, M. Tiecco, Adv. Synth. Catal. 2009, 351, 1801-1806.
[262] A. Silva, J. Sousa, Synlett 2016, 316-322.
[263] N. Vignola, B. List, J. Am. Chem. Soc. 2004, 126, 450-451.
[264] C. Luo, Z. Wang, Y. Huang, Nat. Commun. 2015, 6, 10041.
[265] Q. Wang, L. Li, Z. Li, Synlett 2009, 1830-1834.
[266] C. Sparr, R. Gilmour, Angew. Chem. Int. Ed. 2011, 50, 8391-8395.
[267] E. Díaz, E. Reyes, U. Uria, L. Carrillo, T. Tejero, P. Merino, J. L. Vicario, Chem. Eur. J. 2018, 24, 8764-8768.
[268] K. S. Halskov, F. Kniep, V. H. Lauridsen, E. H. Iversen, B. S. Donslund, K. A. Jørgensen, J. Am. Chem. Soc. 2015, 137, 1685-1691.
[269] E. Sanchez-Diez, D. L. Vesga, E. Reyes, U. Uria, L. Carrillo, J. L. Vicario, Org. Lett. 2016, 18, 1270-1273.
[270] O. Boutureira, G. J. L. Bernardes, Chem. Rev. 2015, 115, 2174-2195.
[271] O. Koniev, A. Wagner, Chem. Soc. Rev. 2015, 44, 5495-5551.
[272] Y. Takaoka, A. Ojida, I. Hamachi, Angew. Chem. Int. Ed. 2013, 52, 4088-4106.
[273] C. D. Spicer, B. G. Davis, Nat. Commun. 2014, 5, DOI 10.1038/ncomms5740.
[274] D. Schumacher, C. Hackenberger, Curr. Opin. Chem. Biol. 2014, 22, 62-69.
[275] K. Lang, J. W. Chin, Chem. Rev. 2014, 114, 4764-4806.
[276] C. Hackenberger, D. Schwarzer, Angew. Chem. Int. Ed. 2008, 47, 10030-10074.
[277] E. Baslé, N. Joubert, M. Pucheault, Chem. Biol. 2010, 17, 213-227.
[278] J. Chalker, G. Bernardes, Y. Lin, B. Davis, Chem. Asian J. 2009, 4, 630-640.
[279] C. Jöst, C. Nitsche, T. Scholz, L. Roux, C. D. Klein, J. Med. Chem. 2014, 57, 7590-7599.
[280] S. Wu, H. L. (Howard), H. Wang, W. Zhao, Q. Hu, Y. Yang, Biochem. Biophys. Res. Commun. 2016, 478, 1268-1273.
[281] S. B. Gunnoo, A. Madder, ChemBioChem 2016, 17, 529-553.
[282] K. Chen, L. Kurgan, PLoS ONE 2009, 4, e4473.
[283] A. Jones, X. Zhang, X. Lei, Cell Chem. Biol. 2017, 24, 537-539.
[284] R. Wetzel, R. Halualani, J. T. Stults, C. Quan, Bioconjugate Chem. 1990, 1, 114-122.
[285] A. Dondoni, A. Marra, Org. Biomol. Chem. 2017, 15, 1549-1553.
[286] I. Migneault, C. Dartiguenave, M. J. Bertrand, K. C. Waldron, BioTechniques 2004, 37, 790-802.
[287] S. R. Adusumalli, D. G. Rawale, U. Singh, P. Tripathi, R. Paul, N. Kalra, R. K. Mishra, S. Shukla, V. Rai, J. Am. Chem. Soc. 2018, 140, 15114-15123.
[288] R. J. Spears, M. A. Fascione, Org. Biomol. Chem. 2016, 14, 7622-7638.
[289] J. M. McFarland, M. B. Francis, J. Am. Chem. Soc. 2005, 127, 13490-13491.
[290] M. A. Robinson, S. T. Charlton, P. Garnier, X.-t. Wang, S. S. Davis, A. C. Perkins, M. Frier, R. Duncan, T. J. Savage, D. A. Wyatt, S. A. Watson, B. G. Davis, Proc. Natl. Acad. Sci. USA 2004, 101, 14527-14532.
[291] T. Bavaro, M. Filice, C. Temporini, S. Tengattini, I. Serra, C. F. Morelli, G. Massolini, M. Terreni, RSC Adv. 2014, 4, 56455-56465.
[292] S. Diethelm, M. A. Schafroth, E. M. Carreira, Org. Lett. 2014, 16, 3908-3911.
[293] P. M. S. D. Cal, J. B. Vicente, E. Pires, A. V. Coelho, L. F. Veiros, C. Cordeiro, P. M. P. Gois, J. Am. Chem. Soc. 2012, 134, 10299-10305.
[294] P. M. S. D. Cal, R. F. M. Frade, V. Chudasama, C. Cordeiro, S. Caddick, P. M. P. Gois, Chem. Commun. 2014, 50, 5261-5263.
[295] M. J. Matos, B. L. Oliveira, N. Martínez-Sáez, A. Guerreiro, P. M. S. D. Cal, J. Bertoldo, M. Maneiro, E. Perkins, J. Howard, M. J. Deery, J. M. Chalker, F. Corzana, G. Jiménez-Osés, G. J. L. Bernardes, J. Am. Chem. Soc. 2018, 140, 4004-4017.
[296] R. Pérez-Ruíz, E. Lence, I. Andreu, D. Limones-Herrero, C. González-Bello, M. A. Miranda, M. C. Jiménez, Chem. Eur. J. 2017, 23, 13986-13994.
[297] A. R. Nanna, X. Li, E. Walseng, L. Pedzisa, R. S. Goydel, D. Hymel, T. R. Burke, W. R. Roush, C. Rader, Nat. Commun. 2017, 8, 1112.
[298] K. Tanaka, M. Kamatani, H. Mori, S. Fujii, K. Ikeda, M. Hisada, Y. Itagaki, S. Katsumura, Tetrahedron 1999, 55, 1657-1686.
[299] K. Tanaka, Y. Fujii, K. Fukase, ChemBioChem 2008, 9, 2392-2397.
[300] K. Tanaka, K. Fukase, S. Katsumura, Synlett 2011, 2115-2139.
[301] G. Wittig, U. Schöllkopf, Chem. Ber. 1954, 87, 1318-1330.
[302] G. Wittig, W. Haag, Chem. Ber. 1955, 88, 1654-1666.
[303] W. S. Wadsworth Jr. in Organic Reactions, American Cancer Society, 2005, Chapter 2, pp. 73-253.
[304] R. de Figueiredo, M. Voith, R. Fröhlich, M. Christmann, Synlett 2007, 391-394.
[305] C. Apel, MA thesis, Freie Universität Berlin, 2015.
[306] Z. Al-Shuhaib, H. Böckemeier, L. Coghlan, E. Dörksen, I. V. Jones, P. J. Murphy, R. Nash, J. M. Page, Tetrahedron Lett. 2013, 54, 6716-6718.
[307] H. Lindlar, Helv. Chim. Acta 1952, 35, 446-450.
[308] S. Durand, Synthesis 1998, 1015-1018.
[309] J. E. Steves, S. S. Stahl, J. Am. Chem. Soc. 2013, 135, 15742-15745.
[310] M. Schlosser, K. F. Christmann, Angew. Chem. Int. Ed. Engl. 1966, 5, 126-126.
[311] H. Gilman, F. Schulze, J. Am. Chem. Soc. 1925, 47, 2002-2005.
[312] P. R. Blakemore, W. J. Cole, P. J. Kocieński, A. Morley, Synlett 2000, 26-28.
[313] M. Julia, J.-M. Paris, Tetrahedron Lett. 1973, 14, 4833-4836.
[314] W. E. Crowe, Z. J. Zhang, J. Am. Chem. Soc. 1993, 115, 10998-10999.
[315] M. H. Haindl, M. B. Schmid, K. Zeitler, R. M. Gschwind, RSC Adv. 2012, 2, 5941-5943.
[316] M. P. Brochu, S. P. Brown, D. W. C. MacMillan, J. Am. Chem. Soc. 2004, 126, 4108-4109.
[317] Z. I. Günler, X. Companyó, I. Alfonso, J. Burés, C. Jimeno, M. A. Pericàs, Chem. Commun. 2016, 52, 6821-6824.
[318] L. Hong, W. Sun, D. Yang, G. Li, R. Wang, Chem. Rev. 2016, 116, 4006-4123.
[319] M. P. Patil, R. B. Sunoj, J. Org. Chem. 2007, 72, 8202-8215.
[320] L. W. Erickson, E. L. Lucas, E. J. Tollefson, E. R. Jarvo, J. Am. Chem. Soc. 2016, 138, 14006-14011.
[321] E. J. Tollefson, L. W. Erickson, E. R. Jarvo, J. Am. Chem. Soc. 2015, 137, 9760-9763.
[322] H. Kim, W. J. Choi, J. Jung, S. Kim, D. Kim, J. Am. Chem. Soc. 2003, 125, 10238-10240.
[323] D. Didier, P.-O. Delaye, M. Simaan, B. Island, G. Eppe, H. Eijsberg, A. Kleiner, P. Knochel, I. Marek, Chem. Eur. J. 2014, 20, 1038-1048.
[324] K. J. Bonney, D. C. Braddock, J. Org. Chem. 2012, 77, 9574-9584.
[325] O. Loreau, A. Maret, D. Poullain, J. Chardigny, J. Sébédio, B. Beaufrère, J. Noël, Chem. Phys. Lipids 2000, 106, 65-78.
[326] M. Kinoshita, H. Takami, M. Taniguchi, T. Tamai, Bull. Chem. Soc. Jpn. 1987, 60, 2151-2161.
[327] M. P. Doyle, D. V. Leusen, W. H. Tamblyn, Synthesis 1981, 787-789.
[328] M. P. Doyle, Acc. Chem. Res. 1986, 19, 348-356.
[329] H. Zhang, B. Wang, H. Yi, T. Sun, Y. Zhang, J. Wang, Chem. Commun. 2016, 52, 13285-13287.
[330] M. Lautens, P. H. M. Delanghe, J. Org. Chem. 1993, 58, 5037-5039.
[331] K. Takai, K. Nitta, K. Utimoto, J. Am. Chem. Soc. 1986, 108, 7408-7410.
[332] T. Okazoe, K. Takai, K. Utimoto, J. Am. Chem. Soc. 1987, 109, 951-953.
[333] K. Takai, H. Nozaki, Proc. Japan. Acad. Ser. B 2000, 76, 123-131.
[334] H. Gilman, R. G. Jones, L. A. Woods, J. Org. Chem. 1952, 17, 1630-1634.
[335] H. O. House, C.-Y. Chu, J. M. Wilkins, M. J. Umen, J. Org. Chem. 1975, 40, 1460-1469.
[336] P. Four, P. L. Tri, H. Riviere, J. Organomet. Chem. 1977, 133, 385-392.
[337] E. Ashby, A. Goel, R. Smith, J. Organomet. Chem. 1981, 212, C47-C50.
[338] E. C. Ashby, A. B. Goel, J. Org. Chem. 1983, 48, 2125-2130.
[339] J. P. Hildebrand, S. P. Marsden, Synlett 1996, 893-894.
[340] D. Heijnen, F. Tosi, C. Vila, M. C. A. Stuart, P. H. Elsinga, W. Szymanski, B. L. Feringa, Angew. Chem. Int. Ed. 2017, 56, 3354-3359.
[341] K. Takai, N. Shinomiya, H. Kaihara, N. Yoshida, T. Moriwake, K. Utimoto, Synlett 1995, 963-964.
[342] J. R. Coombs, L. Zhang, J. P. Morken, Org. Lett. 2015, 17, 1708-1711.
[343] S. S. Hartmann, Bachelor Thesis, Freie Universität Berlin, 2018.
[344] P. A. Grieco, Y. Yokoyama, G. P. Withers, F. J. Okuniewicz, C. L. J. Wang, J. Org. Chem. 1978, 43, 4178-4182.
[345] H. Hagiwara, H. Uda, J. Chem. Soc., Chem. Commun. 1987, 1351.
[346] P. A. Grieco, T. Oguri, S. Gilman, G. T. DeTitta, J. Am. Chem. Soc. 1978, 100, 1616-1618.
[347] F. Huet, A. Lechevallier, M. Pellet, J. Conia, Synthesis 1978, 63-65.
[348] K. Tanemura, T. Suzuki, T. Horaguchi, J. Chem. Soc. Chem. Commun. 1992, 979.
[349] A. Chanu, I. Safir, R. Basak, A. Chiaroni, S. Arseniyadis, Org. Lett. 2007, 9, 1351-1354.
[350] A. S.-Y. Lee, C.-L. Cheng, Tetrahedron 1997, 53, 14255-14262.
[351] C. Johnstone, W. J. Kerr, J. S. Scott, Chem. Commun. 1996, 341.
[352] T. Kametani, H. Kondoh, T. Honda, H. Ishizone, Y. Suzuki, W. Mori, Chem. Lett. 1989, 18, 901-904.
[353] S. Ogawa, D. Urabe, Y. Yokokura, H. Arai, M. Arita, M. Inoue, Org. Lett. 2009, 11, 3602-3605.
[354] M. Oberthür, F. Messik, Synthesis 2013, 167-170.
[355] S. E. Denmark, T. Kobayashi, C. S. Regens, Tetrahedron 2010, 66, 4745-4759.
[356] I. Hagedorn, W. Hohler, Angew. Chem. 1975, 87, 486-486.
[357] P. L. Stotter, K. A. Hill, Tetrahedron Lett. 1975, 16, 1679-1682.
[358] S. T. D. Gough, S. Trippett, J. Chem. Soc. 1962, 2333.
[359] G. Ohloff, W. Pickenhagen, Helv. Chim. Acta 1969, 52, 880-886.
[360] H. M. Davies, B. D. Doan, Tetrahedron Lett. 1996, 37, 3967-3970.
[361] W. A. Ayer, E. R. Cruz, J. Org. Chem. 1993, 58, 7529-7534.
[362] M. Jonassohn, H. Anke, O. Sterner, C. Svensson, Tetrahedron Lett. 1994, 35, 1593-1596.
[363] L. Evans, J. Hedger, G. O’Donnell, B. W. Skelton, A. H. White, R. T. Williamson, S. Gibbons, Tetrahedron Lett. 2010, 51, 5493-5496.
[364] E. Watanabe, A. Kaiho, H. Kusama, N. Iwasawa, J. Am. Chem. Soc. 2013, 135, 11744-11747.
[365] C. Schwartz, J. Raible, K. Mott, P. H. Dussault, Org. Lett. 2006, 8, 3199-3201.
[366] K. Bowden, I. M. Heilbron, E. R. H. Jones, B. C. L. Weedon, J. Chem. Soc. 1946, 39.
[367] M.-A. Kasper, M. Glanz, A. Stengl, M. Penkert, S. Klenk, T. Sauer, D. Schumacher, J. Helma, E. Krause, M. C. Cardoso, H. Leonhardt, C. P. R. Hackenberger, Angew. Chem. Int. Ed. 2019, 58, 11625-11630.
[368] E. A. Castro, P. Campodonico, A. Toro, J. G. Santos, J. Org. Chem. 2003, 68, 5930-5935.
[369] F. Saito, H. Noda, J. W. Bode, ACS Chem. Biol. 2015, 10, 1026-1033.
[370] M. F. Debets, S. S. van Berkel, S. Schoffelen, F. P. J. T. Rutjes, J. C. M. van Hest, F. L. van Delft, Chem. Commun. 2010, 46, 97-99.
[371] Y. Du, A. L. Valenciano, M. Goetz, M. B. Cassera, D. G. I. Kingston, J. Nat. Prod. 2018, 81, 1260-1265.
[372] B. Cheng, G. Volpin, J. Morstein, D. Trauner, Org. Lett. 2018, 20, 4358-4361.
[373] G.-M. Xue, X.-Q. Li, C. Chen, K. Chen, X.-B. Wang, Y.-C. Gu, J.-G. Luo, L.-Y. Kong, J. Nat. Prod. 2018, 81, 378-386.
[374] Â. de Fátima, L. K. Kohn, M. A. Antônio, J. E. de Carvalho, R. A. Pilli, Bioorg. Med. Chem. 2005, 13, 2927-2933.
[375] Sigma-Aldrich (Spectral data were obtained from Advanced Chemistry Development, Inc.)
[376] L. Samulis, N. C. Tomkinson, Tetrahedron 2011, 67, 4263-4267.
[377] R. Gilmour, C. Sparr, E.-M. Tanzer, J. Bachmann, Synthesis 2010, 1394-1397.
[378] A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040-6044.
[379] B. Marciniec, M. Jankowska, C. Pietraszuk, Chem. Commun. 2005, 663.
[380] P. G. Wuts, P. A. Thompson, J. Organomet. Chem. 1982, 234, 137-141.
[381] Z.-Q. Zhang, C.-T. Yang, L.-J. Liang, B. Xiao, X. Lu, J.-H. Liu, Y.-Y. Sun, T. B. Marder, Y. Fu, Org. Lett. 2014, 16, 6342-6345.
[382] J. Efskind, C. Römming, K. Undheim, J. Chem. Soc. Perkin Trans. 12001, 2697-2703.
[383] T. Šmejkal, B. Breit, Angew. Chem. Int. Ed. 2008, 47, 311-315.
[384] M. S. C. Pedras, A. Abdoli, Bioorg. Med. Chem. 2013, 21, 4541-4549.
[385] K. Saito, M. Kozaki, K. Takahashi, Chem. Pharm. Bull. 1993, 41, 2187-2189.
[386] M. Burnett, C. Johnson, ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for crystal structure illustrations, tech. rep., 1996.
[387] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565-565.
[388] TWINABS, Bruker AXS scaling for twinned crystals - Version 2012/1.
[389] G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3-8.
[390] G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3-8.
[391] G. M. Sheldrick, CELL_NOW - Version 2008/4.

Appendix

List of Abbreviations

d.r.	diastereomeric ratio
pPTS	pyridinium para-toluenesulfonate
pTSA	para-toluenesulfonic acid
1,2-DCE	1,2-dichloroethane
AcOH	acetic acid
aq.	aqueous
Asp	aspartic acid
ATR	attenuated total reflection
bp	boiling point
BPhen	bathophenanthroline
bpy	bipyridine
br	broad
brsm	based on recovered starting material
BzOH	benzoic acid
calcd	calculated
CAN	cer ammonium nitrate
CCDC	Cambridge Crystallographic Data Centre

d	doublet
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DEAD	diethyl azodicarboxylate
DIBAL-H	diisobutylaluminium hydride
DMAP	4-dimethylaminopyridine
DME	dimethoxyethane
DMF	dimethylformamide
DMP	Dess-Martin periodinane
DMSO	dimethylsulfoxide
DVCPR	divinylcyclopropane-cycloheptadiene rearrangement
E	electrophile(s)
E_{P}	electrophilicity parameter(s)
ee	enantiomeric excess
eGFP	enhanced green fluorescent protein
equiv.	equivalent(s)
ESI	electrospray ionisation
EtOAc	ethyl acetate
EWG	electron withdrawing group(s)
GC-MS	gas chromatography/ mass spectrometry
GP	general procedure
h	hour(s)
HBeAg	hepatitis B viral protein
HBsAg	hepatitis B virus surface antigen
His	histidine
HOMO	highest occupied molecular orbital
HPLC	high-performance liquid chromatography

IBX	2-iodoxybenzoic acid
IR	infrared
KHMDS	potassium bis(trimethylsilyl)amide
LC-MS/MS	liquid chromatography-mass spectrometry/mass spectrometry
LUMO	lowest unoccupied molecular orbital
Lys	lysine
m	multiplet
m_{c}	centred multiplet
min	minute(s)
MIRC	Michael-initiated ring closure
MPLC	medium pressure liquid chromatography
NHS	N-hydroxysuccinimide
NMI	N-methyl imidazole
NMO	N-methylmorpholine N-oxide
NOE	nuclear Oberhauser effect
NP	normal phase
Nu	nucleophile(s)
p	quintet
PBS	phosphate-buffered saline
PDC	pyridinium dichromate
ppm	parts per milion
Pro	proline
q	quartet
quant.	quantitative
R_{f}	retention factor
S	singlet

S_{N}	nucleophilic substitution
sat.	saturated
SDS-PAGE	sodium dodecyl sulfate polyacrylamide gel electrophoresis
Ser	serine
SOMO	single occupied molecular orbital
SPAAC	strain-promoted-azide-alkyne-cycloaddition
t	triplett
$t_{1 / 2}$	half-life
TBAF	tetrabutyl ammonium fluoride
TCT	cyanuric chloride
TEMPO	(2,2,6,6-tetramethylpiperidin-1-yl)oxyl
TFA	trifluoroacetic acid
THF	tetrahydrofurane
TLC	thin layer chromatography
TMP	2,2,6,6-tetramethylpiperidine
TOF	time of flight
Trp	tryptophan
Tyr	tyrosine
wt-\%	weight-\%
XantPhos	4,5-bis(diphenylphosphino)-9,9-dimethylxanthene

InChl codes of synthesised compounds

Compound

InChI code

122 OSGGKOOYEDWDJN-UHFFFAOYSA-N

InChI=1S/C14H12N4O2S/c19-21(20,11-12-7-3-1-4-8-12)14-15-16-17-18(14)13-9-5-2-6-10-13/h1$10 \mathrm{H}, 11 \mathrm{H} 2$

48c RSUHWMSTWSSNOW-IBGZPJMESA-N

$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 20 \mathrm{H} 27 \mathrm{NOSi} / \mathrm{c} 1-23(2,3) 22-20(19-15-10-16-21-19,17-11-6-4-7-12-17) 18-13-8-5-9-14-18 / \mathrm{h} 4-$ $9,11-14,19,21 \mathrm{H}, 10,15-16 \mathrm{H} 2,1-3 \mathrm{H} 3 / \mathrm{t} 19-/ \mathrm{m} 0 / \mathrm{s} 1$

48d UJBVRSVKZAQAMP-LJAQVGFWSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 34 \mathrm{H} 27 \mathrm{~F} 12 \mathrm{NOSi} / \mathrm{c} 1-49(27-9-4-2-5-10-27,28-11-6-3-7-12-28) 48-30(29-13-8-14-47-29,21-15-$ $23(31(35,36) 37) 19-24(16-21) 32(38,39) 40) 22-17-25(33(41,42) 43) 20-26(18-22) 34(44,45) 46 / h 2-7,9-12,15-$ $20,29,47 \mathrm{H}, 8,13-14 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{t} 29-/ \mathrm{m} 0 / \mathrm{s} 1$

48b UACYWOJLWBDSHG-UHFFFAOYSA-N
$\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 13 \mathrm{H} 18 \mathrm{~N} 2 \mathrm{O} / \mathrm{c} 1-13(2) 14-11(12(16) 15(13) 3) 9-10-7-5-4-6-8-10 / \mathrm{h} 4-8,11,14 \mathrm{H}, 9 \mathrm{H} 2,1-3 \mathrm{H} 3$
48b YLBWRMSQRFEIEB-VIFPVBQESA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 9 \mathrm{H} 18 \mathrm{~N} 2 / \mathrm{c} 1-2-7-11(6-1) 8-9-4-3-5-10-9 / \mathrm{h} 9-10 \mathrm{H}, 1-8 \mathrm{H} 2 / \mathrm{t} 9-/ \mathrm{m} 0 / \mathrm{s} 1$
153 BYLXGCMSNMEIEM-BQYQJAHWSA-N
InChI=1S/C11H13BO2/c1-2-5-11(6-3-1)7-8-12-13-9-4-10-14-12/h1-3,5-8H,4,9-10H2/b8-7+
GQFQFYFLABSDDS-UHFFFAOYSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 7 \mathrm{H} 13 \mathrm{BCl} 2 \mathrm{O} 2 / \mathrm{c} 1-6(2) 7(3,4) 12-8(11-6) 5(9) 10 / \mathrm{h} 5 \mathrm{H}, 1-4 \mathrm{H} 3$
MQYZGGWWHUGYDR-UHFFFAOYSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 13 \mathrm{H} 26 \mathrm{~B} 2 \mathrm{O} 4 / \mathrm{c} 1-10(2) 11(3,4) 17-14(16-10) 9-15-18-12(5,6) 13(7,8) 19-15 / \mathrm{h} 9 \mathrm{H} 2,1-8 \mathrm{H} 3$

NUZBJLXXTAOBPH-UHFFFAOYSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 20 \mathrm{OSi} / \mathrm{c} 1-7-8-9-11-12(5,6) 10(2,3) 4 / \mathrm{h} 1 \mathrm{H}, 8-9 \mathrm{H} 2,2-6 \mathrm{H} 3$
HHKHLMZEHVBXRG-UHFFFAOYSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 11 \mathrm{H} 22 \mathrm{O} 2 \mathrm{Si} / \mathrm{c} 1-11(2,3) 14(4,5) 13-10-8-6-7-9-12 / \mathrm{h} 12 \mathrm{H}, 8-10 \mathrm{H} 2,1-5 \mathrm{H} 3$

XPMXAAGISRJZIU-SREVYHEPSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 11 \mathrm{H} 24 \mathrm{O} 2 \mathrm{Si} / \mathrm{c} 1-11(2,3) 14(4,5) 13-10-8-6-7-9-12 / \mathrm{h} 6-7,12 \mathrm{H}, 8-10 \mathrm{H} 2,1-5 \mathrm{H} 3 / \mathrm{b} 7-6-$

120	RYCABMPYBHYKIB-GHMZBOCLSA-N
	$\begin{aligned} & \mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 12 \mathrm{H} 26 \mathrm{O} 2 \mathrm{Si} / \mathrm{c} 1-12(2,3) 15(4,5) 14-7-6-10-8-11(10) 9-13 / \mathrm{h} 10-11,13 \mathrm{H}, 6-9 \mathrm{H} 2,1-5 \mathrm{H} 3 / \mathrm{t} 10-, 11- \\ & / \mathrm{m} 1 / \mathrm{s} 1 \end{aligned}$
113	NOOWXHOKVIQAFQ-GHMZBOCLSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 12 \mathrm{H} 24 \mathrm{O} 2 \mathrm{Si} / \mathrm{c} 1-12(2,3) 15(4,5) 14-7-6-10-8-11(10) 9-13 / \mathrm{h} 9-11 \mathrm{H}, 6-8 \mathrm{H} 2,1-5 \mathrm{H} 3 / \mathrm{t} 10-, 11-/ \mathrm{m} 1 / \mathrm{s} 1$
$(E)-121$	RZOWPXOVPDFYRL-AAIOHFERSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 19 \mathrm{H} 30 \mathrm{OSi} / \mathrm{c} 1-19(2,3) 21(4,5) 20-14-13-18-15-17(18) 12-11-16-9-7-6-8-10-16 / \mathrm{h} 6-12,17-$
	18H, 13-15H2,1-5H3/b12-11+/t17-, 18+/m0/s 1
(Z)-121	RZOWPXOVPDFYRL-IXTIOBCPSA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 19 \mathrm{H} 30 \mathrm{OSi} / \mathrm{c} 1-19(2,3) 21(4,5) 20-14-13-18-15-17(18) 12-11-16-9-7-6-8-10-16 / \mathrm{h} 6-12,17-$
	$18 \mathrm{H}, 13-15 \mathrm{H} 2,1-5 \mathrm{H} 3 / \mathrm{b} 12-11-/ \mathrm{t} 17-, 18+/ \mathrm{m} 0 / \mathrm{s} 1$
123	MDCNDVKFCLXITF-NWDGAFQWSA-N
	InChI=1S/C13H26OSi/c1-7-11-10-12(11)8-9-14-15(5,6)13(2,3)4/h7,11-12H,1,8-10H2,2-6H3/t11-
	, 12+/m0/s 1
116b	HFHBKGZYQSGLIK-VFZNBBLXSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 13 \mathrm{H} 14 \mathrm{O} / \mathrm{c} 14-9-8-13-10-12(13) 7-6-11-4-2-1-3-5-11 / \mathrm{h} 1-7,9,12-13 \mathrm{H}, 8,10 \mathrm{H} 2 / \mathrm{b} 7-6+/ \mathrm{t} 12-$
	, 13+/m0/s 1
109a	ZGQZRVUKTQCRGP-RHPSVNQBSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 16 \mathrm{O} / \mathrm{c} 16-11-5-4-8-14-12-15(14) 10-9-13-6-2-1-3-7-13 / \mathrm{h} 1-7,9-11,14-15 \mathrm{H}, 8,12 \mathrm{H} 2 / \mathrm{b} 5-$
	$4+, 10-9+/ \mathrm{t} 14-, 15+/ \mathrm{m} 1 / \mathrm{s} 1$
200	NOOWXHOKVIQAFQ-MNOVXSKESA-N
	$\mathrm{lnChl}=1 \mathrm{~S} / \mathrm{C} 12 \mathrm{H} 24 \mathrm{O} 2 \mathrm{Si} / \mathrm{c} 1-12(2,3) 15(4,5) 14-7-6-10-8-11(10) 9-13 / \mathrm{h} 9-11 \mathrm{H}, 6-8 \mathrm{H} 2,1-5 \mathrm{H} 3 / \mathrm{t} 10-, 11+/ \mathrm{m} 1 / \mathrm{s} 1$
201	WUSYOXMBHSPDCG-QJPMGVOCSA-N
	$\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 19 \mathrm{H} 30 \mathrm{OSi} . \mathrm{C} 12 \mathrm{H} 24 \mathrm{O} 2 \mathrm{Si} / \mathrm{c} 1-19(2,3) 21(4,5) 20-14-13-18-15-17(18) 12-11-16-9-7-6-8-10-16 ; 1-$
	$12(2,3) 15(4,5) 14-7-6-10-8-11(10) 9-13 / \mathrm{h} 6-12,17-18 \mathrm{H}, 13-15 \mathrm{H} 2,1-5 \mathrm{H} 3 ; 9-11 \mathrm{H}, 6-8 \mathrm{H} 2,1-5 \mathrm{H} 3 / \mathrm{b} 12-11+; / \mathrm{t} 17-$
	, 18-; $10-, 11+/ \mathrm{m} 11 / \mathrm{s} 1$
202	HFHBKGZYQSGLIK-AMRKSYTLSA-N
	$\begin{aligned} & \operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 13 \mathrm{H} 14 \mathrm{O} / \mathrm{c} 14-9-8-13-10-12(13) 7-6-11-4-2-1-3-5-11 / \mathrm{h} 1-7,9,12-13 \mathrm{H}, 8,10 \mathrm{H} 2 / \mathrm{b} 7-6+/ \mathrm{t} 12-, 13- \\ & / \mathrm{m} 1 / \mathrm{s} 1 \end{aligned}$
203	LDCVUAPPMDTKOY-BHRPGFAJSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 16 \mathrm{O} . \mathrm{C} 13 \mathrm{H} 14 \mathrm{O} / \mathrm{c} 16-11-5-4-8-14-12-15(14) 10-9-13-6-2-1-3-7-13 ; 14-9-8-13-10-12(13) 7-$
	6-11-4-2-1-3-5-11/h1-7,9-11,14-15H,8,12H2;1-7,9,12-13H,8,10H2/b5-4+,10-9+;7-6+/t14-,15-;12-,13-
	$/ \mathrm{m} 11 / \mathrm{s} 1$
129	FSUXYWPILZJGCC-IHWYPQMZSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 5 \mathrm{H} 10 \mathrm{O} / \mathrm{c} 1-2-3-4-5-6 / \mathrm{h} 2-3,6 \mathrm{H}, 4-5 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 3-2-$
125a	OFDXEXATDZHVGU-VPNLLINDSA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 14 \mathrm{H} 17 \mathrm{ClO} / \mathrm{c} 1-11-13(15) 9-10-16-14(11) 8-7-12-5-3-2-4-6-12 / \mathrm{h} 2-8,11,13-14 \mathrm{H}, 9-$
	$10 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 8-7+/ \mathrm{t} 11-, 13+, 14+/ \mathrm{m} 0 / \mathrm{s} 1$

RIQSBRCEMVBEJE-NEDDKPEDSA-N $\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 14 \mathrm{H} 18 \mathrm{O} / \mathrm{c} 1-11-13(14(11) 9-10-15) 8-7-12-5-3-2-4-6-12 / \mathrm{h} 2-8,11,13-15 \mathrm{H}, 9-10 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 8-$ 7+/t11-,13-,14+/m0/s1

UVXYZMRNCYQWAV-NEDDKPEDSA-N
$\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 14 \mathrm{H} 16 \mathrm{O} / \mathrm{c} 1-11-13(14(11) 9-10-15) 8-7-12-5-3-2-4-6-12 / \mathrm{h} 2-8,10-11,13-14 \mathrm{H}, 9 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 8-$ 7+/t11-,13-,14+/m0/s1

BWUJIWJFFNFJIU-ZWWFZDCKSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 18 \mathrm{O} . \mathrm{C} 14 \mathrm{H} 16 \mathrm{O} / \mathrm{c} 1-13-15(9-5-6-12-17) 16(13) 11-10-14-7-3-2-4-8-14 ; 1-11-13(14(11) 9-10-$ 15) $8-7-12-5-3-2-4-6-12 / h 2-8,10-13,15-16 \mathrm{H}, 9 \mathrm{H} 2,1 \mathrm{H} 3 ; 2-8,10-11,13-14 \mathrm{H}, 9 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 6-5+, 11-10+; 8-7+/ \mathrm{t} 13-$,15-, 16+; $11-, 13-, 14+/ \mathrm{m} 10 / \mathrm{s} 1$

FGFYGXJZMVNWPB-HIHHVFROSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 17 \mathrm{FO} / \mathrm{c} 1-8(2) 3-4-10-7-9(11) 5-6-12-10 / \mathrm{h} 3-4,8-10 \mathrm{H}, 5-7 \mathrm{H} 2,1-2 \mathrm{H} 3 / \mathrm{b} 4-3+/ \mathrm{t} 9-, 10-/ \mathrm{m} 1 / \mathrm{s} 1$
QPIUCMITGZBTKC-FCVPOFOPSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 18 \mathrm{O} / \mathrm{c} 1-8(2) 3-4-9-7-10(9) 5-6-11 / \mathrm{h} 3-4,8-11 \mathrm{H}, 5-7 \mathrm{H} 2,1-2 \mathrm{H} 3 / \mathrm{b} 4-3+/ \mathrm{t} 9-, 10+/ \mathrm{m} 0 / \mathrm{s} 1$
HHCCMEBKRXQUBA-FCVPOFOPSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 16 \mathrm{O} / \mathrm{c} 1-8(2) 3-4-9-7-10(9) 5-6-11 / \mathrm{h} 3-4,6,8-10 \mathrm{H}, 5,7 \mathrm{H} 2,1-2 \mathrm{H} 3 / \mathrm{b} 4-3+/ \mathrm{t} 9-, 10+/ \mathrm{m} 0 / \mathrm{s} 1$
KQFCCAORUSPXAY-MXYKJOAXSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 12 \mathrm{H} 18 \mathrm{O} . \mathrm{C} 10 \mathrm{H} 16 \mathrm{O} / \mathrm{c} 1-10(2) 6-7-12-9-11(12) 5-3-4-8-13 ; 1-8(2) 3-4-9-7-10(9) 5-6-11 / \mathrm{h} 3-4,6-$ $8,10-12 \mathrm{H}, 5,9 \mathrm{H} 2,1-2 \mathrm{H} 3 ; 3-4,6,8-10 \mathrm{H}, 5,7 \mathrm{H} 2,1-2 \mathrm{H} 3 / \mathrm{b} 4-3+, 7-6+; 4-3+/ \mathrm{t} 11-, 12+; 9-, 10+/ \mathrm{m} 10 / \mathrm{s} 1$

JDTSGIGHGUYHME-OWOJBTEDSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 4 \mathrm{H} 5 \mathrm{BrO} / \mathrm{c} 5-3-1-2-4-6 / \mathrm{h} 1-2,4 \mathrm{H}, 3 \mathrm{H} 2 / \mathrm{b} 2-1+$
WKOCFKKBWSKFCI-OWOJBTEDSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 6 \mathrm{H} 9 \mathrm{BrO} 2 / \mathrm{c} 7-3-1-2-6-8-4-5-9-6 / \mathrm{h} 1-2,6 \mathrm{H}, 3-5 \mathrm{H} 2 / \mathrm{b} 2-1+$
WBZVZQXZHVPZPT-VLFPEWDESA-N
InChI=1S/C9H12O3.C6H9BrO2/c10-6-4-2-1-3-5-9-11-7-8-12-9;7-3-1-2-6-8-4-5-9-6/h3,5,9-10H,1,6-8H2;1-2,6H,3-5H2/b5-3+;2-1+

PDSHOEHTTNOYDA-VOERYJCWSA-N
$\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 9 \mathrm{H} 14 \mathrm{O} 3 / \mathrm{c} 10-6-4-2-1-3-5-9-11-7-8-12-9 / \mathrm{h} 2-5,9-10 \mathrm{H}, 1,6-8 \mathrm{H} 2 / \mathrm{b} 4-2-, 5-3+$
MYPANVIEHPLGMQ-TXBNAWBVSA-N
InChl=1S/C13H25IOSi/c1-13(2,3)16(4,5)15-9-7-12-10-11(12)6-8-14/h6,8,11-12H,7,9-10H2,1-5H3/b8-6+/t11-, 12+/m0/s 1

VHPHMQOCEQNLKC-YPIXSHMWSA-N
lnChl=1S/C7H9IO/c8-3-1-6-5-7(6)2-4-9/h1,3-4,6-7H,2,5H2/b3-1+/t6-,7+/m0/s1
WRCPDPNORKHQGI-GXKCBUAXSA-N
$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 11 \mathrm{H} 15 \mathrm{IO} 2 / \mathrm{c} 12-5-4-10-8-9(10) 2-1-3-11-13-6-7-14-11 / \mathrm{h} 1,3-5,9-11 \mathrm{H}, 2,6-8 \mathrm{H} 2 / \mathrm{b} 3-1-, 5-4+/ \mathrm{t} 9-$,10+/m1/s 1

JSNBBWDLAWZBMX-PICDLYDTSA-N
$\operatorname{lnChl}=1 \mathrm{~S} / \mathrm{C} 17 \mathrm{H} 20 \mathrm{O} 2 / \mathrm{c} 1-2-5-14(6-3-1) 9-10-16-13-15(16) 7-4-8-17-18-11-12-19-17 / \mathrm{h} 1-6,8-10,15-$ $17 \mathrm{H}, 7,11-13 \mathrm{H} 2 / \mathrm{b} 8-4-, 10-9+/ \mathrm{t} 15-, 16+/ \mathrm{m} 1 / \mathrm{s} 1$

152	BVFIWFJYUCGITP-GHMZBOCLSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 12 \mathrm{H} 25 \mathrm{IOSi} / \mathrm{c} 1-12(2,3) 15(4,5) 14-7-6-10-8-11(10) 9-13 / \mathrm{h} 10-11 \mathrm{H}, 6-9 \mathrm{H} 2,1-5 \mathrm{H} 3 / \mathrm{t} 10-, 11-/ \mathrm{m} 1 / \mathrm{s} 1$
154	KCEVQRYEXFSRSO-AOOXPWSASA-N
	InChI=1S/C19H37BO3Si/c1-17(2,3)24(8,9)21-13-11-16-14-15(16)10-12-20-22-18(4,5)19(6,7)23-
	20/h10,12, 15-16H,11,13-14H2,1-9H3/b12-10+/t15-,16+/m0/s
206	SLXRMHKPUWDXEH-KKSDUGGKSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 13 \mathrm{H} 23 \mathrm{BO} 3 / \mathrm{c} 1-12(2) 13(3,4) 17-14(16-12) 7-5-10-9-11(10) 6-8-15 / \mathrm{h} 5,7,10-11,15 \mathrm{H}, 6,8-9 \mathrm{H} 2,1-$
	$4 \mathrm{H} 3 / \mathrm{b} 7-5+/ \mathrm{t} 10-, 11+/ \mathrm{m0} / \mathrm{s} 1$
156	FUFIVTNXFJJOSC-KKSDUGGKSA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 13 \mathrm{H} 21 \mathrm{BO} 3 / \mathrm{c} 1-12(2) 13(3,4) 17-14(16-12) 7-5-10-9-11(10) 6-8-15 / \mathrm{h} 5,7-8,10-11 \mathrm{H}, 6,9 \mathrm{H} 2,1-$
	4H3/b7-5+/t10-,11+/m0/s1
157	FMJIBKSDKVQMNR-HUEKLUQDSA-N
	$\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 17 \mathrm{H} 27 \mathrm{BO} 4 / \mathrm{c} 1-16(2) 17(3,4) 22-18(21-16) 9-8-14-12-13(14) 6-5-7-15-19-10-11-20-15 / \mathrm{h} 5,7-$
	9,13-15H,6,10-12H2,1-4H3/b7-5-,9-8+/t13-, 14+/m1/s 1
109d	QYHQXZFFFWSDMT-JXCUUXDUSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 15 \mathrm{~F} 3 \mathrm{O} / \mathrm{c} 17-16(18,19) 15-8-5-12(6-9-15) 4-7-14-11-13(14) 3-1-2-10-20 / \mathrm{h} 1-2,4-10,13-$
	$14 \mathrm{H}, 3,11 \mathrm{H} 2 / \mathrm{b} 2-1+, 7-4+/ \mathrm{t} 13-, 14+/ \mathrm{m} 1 / \mathrm{s} 1$
109e	GSHVDXRIYIOINO-FLECDUFJSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 15 \mathrm{~F} 3 \mathrm{O} / \mathrm{c} 17-16(18,19) 15-6-3-4-12(10-15) 7-8-14-11-13(14) 5-1-2-9-20 / \mathrm{h} 1-4,6-10,13-$
	$14 \mathrm{H}, 5,11 \mathrm{H} 2 / \mathrm{b} 2-1+, 8-7+/ \mathrm{t} 13-, 14+/ \mathrm{m} 1 / \mathrm{s} 1$
109 f	NMJXPLNQHAUWSM-MLBWORRFSA-N
	$\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 15 \mathrm{~F} 3 \mathrm{O} / \mathrm{c} 17-16(18,19) 15-7-2-1-5-12(15) 8-9-14-11-13(14) 6-3-4-10-20 / \mathrm{h} 1-5,7-10,13-$
	$14 \mathrm{H}, 6,11 \mathrm{H} 2 / \mathrm{b} 4-3+, 9-8+/ \mathrm{t} 13-, 14+/ \mathrm{m} 1 / \mathrm{s} 1$
109g	LRMNGRSOCOFMHE-JXCUUXDUSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 15 \mathrm{NO} 3 / \mathrm{c} 17-10-2-1-3-13-11-14(13) 7-4-12-5-8-15(9-6-12) 16(18) 19 / \mathrm{h} 1-2,4-10,13-$
	$14 \mathrm{H}, 3,11 \mathrm{H} 2 / \mathrm{b} 2-1+, 7-4+/ \mathrm{t} 13-, 14+/ \mathrm{m} 1 / \mathrm{s} 1$
109h	FFVZYDXPAFMNDW-JXCUUXDUSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 15 \mathrm{ClO} / \mathrm{c} 16-15-8-5-12(6-9-15) 4-7-14-11-13(14) 3-1-2-10-17 / \mathrm{h} 1-2,4-10,13-$
	$14 \mathrm{H}, 3,11 \mathrm{H} 2 / \mathrm{b} 2-1+, 7-4+/ \mathrm{t} 13-, 14+/ \mathrm{m} 1 / \mathrm{s} 1$
109 i	ZFHOBWJCQJYAPU-JXCUUXDUSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 15 \mathrm{FO} / \mathrm{c} 16-15-8-5-12(6-9-15) 4-7-14-11-13(14) 3-1-2-10-17 / \mathrm{h} 1-2,4-10,13-14 \mathrm{H}, 3,11 \mathrm{H} 2 / \mathrm{b} 2-$
	1+,7-4+/t13-, $14+/ \mathrm{m} 1 / \mathrm{s} 1$
109j	JYHFODNDPDGNLK-FLECDUFJSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 15 \mathrm{ClO} / \mathrm{c} 16-15-6-3-4-12(10-15) 7-8-14-11-13(14) 5-1-2-9-17 / \mathrm{h} 1-4,6-10,13-$
	$14 \mathrm{H}, 5,11 \mathrm{H} 2 / \mathrm{b} 2-1+, 8-7+/ \mathrm{t} 13-, 14+/ \mathrm{m} 1 / \mathrm{s} 1$
109k	KGHJKRHYJSNMED-FLECDUFJSA-N
	$\begin{aligned} & \operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 15 \mathrm{FO} / \mathrm{c} 16-15-6-3-4-12(10-15) 7-8-14-11-13(14) 5-1-2-9-17 / \mathrm{h} 1-4,6-10,13-14 \mathrm{H}, 5,11 \mathrm{H} 2 / \mathrm{b} 2- \\ & 1+, 8-7+/ \mathrm{t} 13-, 14+/ \mathrm{m} 1 / \mathrm{s} 1 \end{aligned}$

1091	IYMSIEMEBBVKIH-MLBWORRFSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 15 \mathrm{FO} / \mathrm{c} 16-15-7-2-1-5-12(15) 8-9-14-11-13(14) 6-3-4-10-17 / \mathrm{h} 1-5,7-10,13-14 \mathrm{H}, 6,11 \mathrm{H} 2 / \mathrm{b} 4-$
	$3+, 9-8+/ \mathrm{t} 13-, 14+/ \mathrm{m} 1 / \mathrm{s} 1$
109m	JXESFZYQSBJWRS-BGZYEUMYSA-N
	$\operatorname{lnChl}=1 \mathrm{~S} / \mathrm{C} 14 \mathrm{H} 15 \mathrm{NO} / \mathrm{c} 16-10-4-2-5-12-11-13(12) 7-8-14-6-1-3-9-15-14 / \mathrm{h} 1-4,6-10,12-13 \mathrm{H}, 5,11 \mathrm{H} 2 / \mathrm{b} 4-$
	2+, $8-7+/ \mathrm{t} 12-, 13+/ \mathrm{m} 1 / \mathrm{s} 1$
109n	LMEIRPXYVUSXCK-IHFQYPRESA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 18 \mathrm{O} / \mathrm{c} 1-13-5-7-14(8-6-13) 9-10-16-12-15(16) 4-2-3-11-17 / \mathrm{h} 2-3,5-11,15-$
	$16 \mathrm{H}, 4,12 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 3-2+, 10-9+/ \mathrm{t} 15-, 16+/ \mathrm{m} 1 / \mathrm{s} 1$
1090	QTGLKUMVMFQTND-CVDYVIDOSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 19 \mathrm{H} 24 \mathrm{O} / \mathrm{c} 1-19(2,3) 18-11-8-15(9-12-18) 7-10-17-14-16(17) 6-4-5-13-20 / \mathrm{h} 4-5,7-13,16-$
	$17 \mathrm{H}, 6,14 \mathrm{H} 2,1-3 \mathrm{H} 3 / \mathrm{b} 5-4+, 10-7+/ \mathrm{t} 16-, 17+/ \mathrm{m} 1 / \mathrm{s} 1$
109p	VKLYNBSLAKMLPR-OYYCDXOVSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 19 \mathrm{H} 22 \mathrm{O} / \mathrm{c} 20-15-9-8-14-19-16-18(19) 13-7-2-1-4-10-17-11-5-3-6-12-17 / \mathrm{h} 1-3,5-9,11-$
	13,15,18-19H,4,10,14,16H2/b2-1+,9-8+,13-7+/t18-, 19+/m0/s 1
109r	TWVJULVMIZUUHV-DXMIZCBPSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 9 \mathrm{H} 12 \mathrm{O} / \mathrm{c} 1-2-8-7-9(8) 5-3-4-6-10 / \mathrm{h} 2-4,6,8-9 \mathrm{H}, 1,5,7 \mathrm{H} 2 / \mathrm{b} 4-3+/ \mathrm{t} 8-, 9+/ \mathrm{m} 0 / \mathrm{s} 1$
158	MYMSNUXRUXQMEK-MXWNMBBBSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 20 \mathrm{O} 3 / \mathrm{c} 1-18-12-4-2-9(3-5-12) 16-15-11(8-14(17) 19-16) 6-10-7-13(10) 15 / \mathrm{h} 2-5,10-11,13-$
	$17 \mathrm{H}, 6-8 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{t} 10-, 11-, 13+, 14+, 15-, 16-/ \mathrm{m} 1 / \mathrm{s} 1$
159	MOQVCKPKTFZTSK-ITXLKETKSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 13 \mathrm{H} 16 \mathrm{O} 2 \mathrm{~S} / \mathrm{c} 14-11-6-8-4-7-5-9(7) 12(8) 13(15-11) 10-2-1-3-16-10 / \mathrm{h} 1-3,7-9,11-14 \mathrm{H}, 4-6 \mathrm{H} 2 / \mathrm{t} 7-$
	, $8-, 9+, 11+, 12-, 13-/ \mathrm{m} 1 / \mathrm{s} 1$
160	ZLNGRJBUELDXED-MFXKQFABSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 18 \mathrm{H} 22 \mathrm{O} 3 / \mathrm{c} 1-19-17-9-6-14(7-10-17) 5-8-16-13-15(16) 3-2-4-18-20-11-12-21-18 / \mathrm{h} 2,4-10,15-$
	16,18H,3,11-13H2,1H3/b4-2+,8-5+/t $15-, 16+/ \mathrm{m} 1 / \mathrm{s} 1$
109q	XTOAPEMAYBETND-UAGGOGPXSA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 18 \mathrm{O} 2 / \mathrm{c} 1-18-16-9-6-13(7-10-16) 5-8-15-12-14(15) 4-2-3-11-17 / \mathrm{h} 2-3,5-11,14-$
	$15 \mathrm{H}, 4,12 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 3-2+, 8-5+/ \mathrm{t} 14-, 15+/ \mathrm{m} 1 / \mathrm{s} 1$
161	KGTOAMVJSPTWEL-XNOXLNHLSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 18 \mathrm{O} 2 \mathrm{~S} / \mathrm{c} 1(5-15-16-8-9-17-15) 3-12-11-13(12) 6-7-14-4-2-10-18-14 / \mathrm{h} 1-2,4-7,10,12-$
	$13,15 \mathrm{H}, 3,8-9,11 \mathrm{H} 2 / \mathrm{b} 5-1+, 7-6+/ \mathrm{t} 12-, 13+/ \mathrm{m} 1 / \mathrm{s} 1$
109s	BRJYFXCQJDAERC-XYSARSPMSA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 13 \mathrm{H} 14 \mathrm{OS} / \mathrm{c} 14-8-2-1-4-11-10-12(11) 6-7-13-5-3-9-15-13 / \mathrm{h} 1-3,5-9,11-12 \mathrm{H}, 4,10 \mathrm{H} 2 / \mathrm{b} 2-1+, 7-$
	$6+/ \mathrm{t} 11-, 12+/ \mathrm{m} 1 / \mathrm{s} 1$
162	GVYNXASBLDMNPA-NYCDYWJRSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 30 \mathrm{O} 3 \mathrm{Si} / \mathrm{c} 1-7-18-15(17) 9-8-13-12-14(13) 10-11-19-20(5,6) 16(2,3) 4 / \mathrm{h} 8-9,13-14 \mathrm{H}, 7,10-$
	12H2,1-6H3/b9-8+/t13-,14+/m0/s

116d	OPQXFAQBYBCUHX-DXMIZCBPSA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 14 \mathrm{O} 3 / \mathrm{c} 1-2-13-10(12) 4-3-8-7-9(8) 5-6-11 / \mathrm{h} 3-4,6,8-9 \mathrm{H}, 2,5,7 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 4-3+/ \mathrm{t} 8-, 9+/ \mathrm{m} 0 / \mathrm{s} 1$
109t	HXLLQTJUOQFIGP-DWENZHRASA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 12 \mathrm{H} 16 \mathrm{O} 3 . \mathrm{C} 10 \mathrm{H} 14 \mathrm{O} 3 / \mathrm{c} 1-2-15-12(14) 7-6-11-9-10(11) 5-3-4-8-13 ; 1-2-13-10(12) 4-3-8-7-9(8) 5-$
	$6-11 / \mathrm{h} 3-4,6-8,10-11 \mathrm{H}, 2,5,9 \mathrm{H} 2,1 \mathrm{H} 3 ; 3-4,6,8-9 \mathrm{H}, 2,5,7 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 4-3+, 7-6+; 4-3+/ \mathrm{t} 10-, 11+; 8-, 9+/ \mathrm{m} 10 / \mathrm{s} 1$
163	LSUABYNHBZSUJN-VFZNBBLXSA-N
	$\operatorname{lnChl}=1 \mathrm{~S} / \mathrm{C} 14 \mathrm{H} 25 \mathrm{NOSi} / \mathrm{c} 1-14(2,3) 17(4,5) 16-10-8-13-11-12(13) 7-6-9-15 / \mathrm{h} 6-7,12-13 \mathrm{H}, 8,10-11 \mathrm{H} 2,1-$
	5H3/b7-6+/t12-, 13+/m0/s1
(E)-164	AHAIGWXQYODCFZ-PPYPBTKYSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 8 \mathrm{H} 9 \mathrm{NO} / \mathrm{c} 9-4-1-2-7-6-8(7) 3-5-10 / \mathrm{h} 1-2,5,7-8 \mathrm{H}, 3,6 \mathrm{H} 2 / \mathrm{b} 2-1+/ \mathrm{t} 7-, 8+/ \mathrm{m} 0 / \mathrm{s} 1$
(Z)-164	AHAIGWXQYODCFZ-WFWQCHFMSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 8 \mathrm{H} 9 \mathrm{NO} / \mathrm{c} 9-4-1-2-7-6-8(7) 3-5-10 / \mathrm{h} 1-2,5,7-8 \mathrm{H}, 3,6 \mathrm{H} 2 / \mathrm{b} 2-1-/ \mathrm{t} 7-, 8+/ \mathrm{m} 0 / \mathrm{s} 1$
109u	FQJBYLWIMXMFIT-XUQXPODJSA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 11 \mathrm{NO} . \mathrm{C} 8 \mathrm{H} 9 \mathrm{NO} / \mathrm{c} 11-6-3-5-10-8-9(10) 4-1-2-7-12 ; 9-4-1-2-7-6-8(7) 3-5-10 / \mathrm{h} 1-3,5,7,9-$
	$10 \mathrm{H}, 4,8 \mathrm{H} 2 ; 1-2,5,7-8 \mathrm{H}, 3,6 \mathrm{H} 2 / \mathrm{b} 2-1+, 5-3+; 2-1+/ \mathrm{t} 9-, 10+; 7-, 8+/ \mathrm{m} 10 / \mathrm{s} 1$
109v	FQJBYLWIMXMFIT-AVUDQOLYSA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 11 \mathrm{NO} . \mathrm{C} 8 \mathrm{H} 9 \mathrm{NO} / \mathrm{c} 11-6-3-5-10-8-9(10) 4-1-2-7-12 ; 9-4-1-2-7-6-8(7) 3-5-10 / \mathrm{h} 1-3,5,7,9-$
	$10 \mathrm{H}, 4,8 \mathrm{H} 2 ; 1-2,5,7-8 \mathrm{H}, 3,6 \mathrm{H} 2 / \mathrm{b} 2-1+, 5-3-; 2-1-/ \mathrm{t} 9-, 10+; 7-, 8+/ \mathrm{m} 10 / \mathrm{s} 1$
166	OUXRLSLKUKVTDR-OEUBYQANSA-N
	InChI=1S/C21H34OSi/c1-21(2,3)23(4,5)22-16-15-20-17-19(20)14-10-9-13-18-11-7-6-8-12-18/h6-8,10-
	12,14,19-20H, $9,13,15-17 \mathrm{H} 2,1-5 \mathrm{H} 3 / \mathrm{b} 14-10-/ \mathrm{t} 19-, 20+/ \mathrm{m} 0 / \mathrm{s} 1$
169	FYHIQEHDYRQHEA-KOMYPQRHSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 20 \mathrm{O} / \mathrm{c} 16-11-10-15-12-14(15) 9-5-4-8-13-6-2-1-3-7-13 / \mathrm{h} 1-3,5-7,9,14-16 \mathrm{H}, 4,8,10-$
	12H2/b9-5+/t14-, $15+/ \mathrm{m} 0 / \mathrm{s} 1$
(E)-168	FKNCXNISLCOOIK-KOMYPQRHSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 18 \mathrm{O} / \mathrm{c} 16-11-10-15-12-14(15) 9-5-4-8-13-6-2-1-3-7-13 / \mathrm{h} 1-3,5-7,9,11,14-$
	$15 \mathrm{H}, 4,8,10,12 \mathrm{H} 2 / \mathrm{b} 9-5+/ \mathrm{t} 14-, 15+/ \mathrm{m0} / \mathrm{s} 1$
109y	GDRNLCCZHKZILH-DFDWCSKVSA-N
	$\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 17 \mathrm{H} 20 \mathrm{O} . \mathrm{C} 15 \mathrm{H} 18 \mathrm{O} / \mathrm{c} 18-13-7-6-12-17-14-16(17) 11-5-4-10-15-8-2-1-3-9-15 ; 16-11-10-15-12-$
	$14(15) 9-5-4-8-13-6-2-1-3-7-13 / \mathrm{h} 1-3,5-9,11,13,16-17 \mathrm{H}, 4,10,12,14 \mathrm{H} 2 ; 1-3,5-7,9,11,14-15 \mathrm{H}, 4,8,10,12 \mathrm{H} 2 / \mathrm{b} 7-$
	$6+, 11-5+; 9-5+/ \mathrm{t} 16-, 17+; 14-, 15+/ \mathrm{m} 00 / \mathrm{s} 1$
165	BVIMVPDFGDULQN-PFKSKYCVSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 14 \mathrm{H} 28 \mathrm{OSi} . \mathrm{C} 12 \mathrm{H} 24 \mathrm{O} 2 \mathrm{Si} / \mathrm{c} 1-7-8-12-11-13(12) 9-10-15-16(5,6) 14(2,3) 4 ; 1-12(2,3) 15(4,5) 14-7-$
	6-10-8-11(10)9-13/h7-8, 12-13H, $9-11 \mathrm{H} 2,1-6 \mathrm{H} 3 ; 9-11 \mathrm{H}, 6-8 \mathrm{H} 2,1-5 \mathrm{H} 3 / \mathrm{b} 8-7-$;/t $12-, 13+; 10-, 11-/ \mathrm{m} 01 / \mathrm{s} 1$
167	OSIQMBWCPRFAKF-HZHJCBGQSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 8 \mathrm{H} 12 \mathrm{O} / \mathrm{c} 1-2-3-7-6-8(7) 4-5-9 / \mathrm{h} 2-3,5,7-8 \mathrm{H}, 4,6 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 3-2-/ \mathrm{t} 7-, 8+/ \mathrm{m} 0 / \mathrm{s} 1$
109w	QMVPTWWPNAEATM-OHFISBHESA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 14 \mathrm{O} . \mathrm{C} 8 \mathrm{H} 12 \mathrm{O} / \mathrm{c} 1-2-5-9-8-10(9) 6-3-4-7-11 ; 1-2-3-7-6-8(7) 4-5-9 / \mathrm{h} 2-5,7,9-$
	$10 \mathrm{H}, 6,8 \mathrm{H} 2,1 \mathrm{H} 3 ; 2-3,5,7-8 \mathrm{H}, 4,6 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 4-3+, 5-2-; 3-2-/ \mathrm{t} 9-, 10+; 7-, 8+/ \mathrm{m00/s} 1$

```
(Z)-168 FKNCXNISLCOOIK-HBXAWUERSA-N \(\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 18 \mathrm{O} / \mathrm{c} 16-11-10-15-12-14(15) 9-5-4-8-13-6-2-1-3-7-13 / \mathrm{h} 1-3,5-7,9,11,14-\) \(15 \mathrm{H}, 4,8,10,12 \mathrm{H} 2 / \mathrm{b} 9-5-/ \mathrm{t} 14-, 15+/ \mathrm{m} 0 / \mathrm{s} 1\)
109x GDRNLCCZHKZILH-XNACPBBMSA-N
InChI=1S/C17H20O.C15H18O/c18-13-7-6-12-17-14-16(17)11-5-4-10-15-8-2-1-3-9-15;16-11-10-15-12-14(15)9-5-4-8-13-6-2-1-3-7-13/h1-3,5-9,11,13,16-17H,4,10,12,14H2;1-3,5-7,9,11,14-15H,4,8,10,12H2/b7-6+,11-5-;9-5-/t16-,17+;14-,15+/m00/s1
HFHBKGZYQSGLIK-ASOISWSRSA-N
\(\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 13 \mathrm{H} 14 \mathrm{O} / \mathrm{c} 14-9-8-13-10-12(13) 7-6-11-4-2-1-3-5-11 / \mathrm{h} 1-7,9,12-13 \mathrm{H}, 8,10 \mathrm{H} 2 / \mathrm{b} 7-6-/ \mathrm{t} 12-\) , \(13+/ \mathrm{m} 0 / \mathrm{s} 1\)
109z LDCVUAPPMDTKOY-ILRFDMCGSA-N
InChI=1S/C15H16O.C13H14O/c16-11-5-4-8-14-12-15(14)10-9-13-6-2-1-3-7-13;14-9-8-13-10-12(13)7-6-11-4-2-1-3-5-11/h1-7,9-11,14-15H,8,12H2;1-7,9,12-13H,8,10H2/b5-4+,10-9-;7-6-/t14-, 15+;12,13+/m10/s1
172 GVYNXASBLDMNPA-WFNIXHHISA-N
\(\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 30 \mathrm{O} 3 \mathrm{Si} / \mathrm{c} 1-7-18-15(17) 9-8-13-12-14(13) 10-11-19-20(5,6) 16(2,3) 4 / \mathrm{h} 8-9,13-14 \mathrm{H}, 7,10-\) 12H2,1-6H3/b9-8-/t13-,14+/m0/s 1
OPQXFAQBYBCUHX-HNRDENNGSA-N
\(\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 14 \mathrm{O} 3 / \mathrm{c} 1-2-13-10(12) 4-3-8-7-9(8) 5-6-11 / \mathrm{h} 3-4,6,8-9 \mathrm{H}, 2,5,7 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 4-3-/ \mathrm{t} 8-, 9+/ \mathrm{m} 0 / \mathrm{s} 1\)
```


109aa HXLLQTJUOQFIGP-JNGYUHHRSA-N

```
\(\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 12 \mathrm{H} 16 \mathrm{O} 3 . \mathrm{C} 10 \mathrm{H} 14 \mathrm{O} 3 / \mathrm{c} 1-2-15-12(14) 7-6-11-9-10(11) 5-3-4-8-13 ; 1-2-13-10(12) 4-3-8-7-9(8) 5-\) \(6-11 / h 3-4,6-8,10-11 \mathrm{H}, 2,5,9 \mathrm{H} 2,1 \mathrm{H} 3 ; 3-4,6,8-9 \mathrm{H}, 2,5,7 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 4-3+, 7-6-; 4-3-/ \mathrm{t} 10-, 11+; 8-, 9+/ \mathrm{m} 10 / \mathrm{s} 1\)
SNTOIXAVNTYWLF-NVIXSHDYSA-N
\(\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 18 \mathrm{H} 22 \mathrm{O} 2 / \mathrm{c} 1-3-20-18(19) 14(2) 9-11-16-13-17(16) 12-10-15-7-5-4-6-8-15 / \mathrm{h} 4-10,12,16-\) 17H,3,11,13H2,1-2H3/b12-10+,14-9+/t16-,17+/m1/s 1
109bb YKDKUPLILCTUJO-QNIYXLKKSA-N
\(\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 18 \mathrm{O} / \mathrm{c} 1-13(12-17) 7-9-15-11-16(15) 10-8-14-5-3-2-4-6-14 / \mathrm{h} 2-8,10,12,15-\) \(16 \mathrm{H}, 9,11 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 10-8+, 13-7+/ \mathrm{t} 15-, 16+/ \mathrm{m} 1 / \mathrm{s} 1\)
XIQITUVJTIGMBQ-JYASZMECSA-N
\(\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 14 \mathrm{H} 16 \mathrm{O} / \mathrm{c} 1-11(15) 9-14-10-13(14) 8-7-12-5-3-2-4-6-12 / \mathrm{h} 2-8,13-14 \mathrm{H}, 9-10 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{b} 8-7+/ \mathrm{t} 13-\) ,14+/m0/s 1
112a UPMQTQAGRJIFCC-GICMACPYSA-N
\(\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 16 \mathrm{O} / \mathrm{c} 16-12-11-14-9-5-2-6-10-15(14) 13-7-3-1-4-8-13 / \mathrm{h} 1,3-10,12,14-15 \mathrm{H}, 2,11 \mathrm{H} 2 / \mathrm{t} 14-\) ,15?/m1/s1
112d LUBOHGMMYDCKAI-IUODEOHRSA-N
InChI= 1S/C16H15F3O/c 17-16(18,19)14-8-6-13(7-9-14)15-5-3-1-2-4-12(15)10-11-20/h2-9,11\(12,15 \mathrm{H}, 1,10 \mathrm{H} 2 / \mathrm{t} 12-, 15-/ \mathrm{m} 1 / \mathrm{s} 1\)
112e JODZBZDHTXWDRH-IUODEOHRSA-N
\(\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 15 \mathrm{~F} 3 \mathrm{O} / \mathrm{c} 17-16(18,19) 14-7-4-6-13(11-14) 15-8-3-1-2-5-12(15) 9-10-20 / \mathrm{h} 2-8,10-\) 12,15H, 1,9H2/t12-,15-/m1/s1
```

112 f	LBYNGMZUZXIIGC-CHWSQXEVSA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 15 \mathrm{~F} 3 \mathrm{O} / \mathrm{c} 17-16(18,19) 15-9-5-4-8-14(15) 13-7-3-1-2-6-12(13) 10-11-20 / \mathrm{h} 2-9,11-$
	13H, 1,10H2/t12-,13-/m1/s 1
112g	GIXCNKPPGPXEBE-IUODEOHRSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 15 \mathrm{NO} 3 / \mathrm{c} 17-11-10-12-4-2-1-3-5-15(12) 13-6-8-14(9-7-13) 16(18) 19 / \mathrm{h} 2-9,11-$
	12,15H, $1,10 \mathrm{H} 2 / \mathrm{t} 12-, 15-/ \mathrm{m} 1 / \mathrm{s} 1$
112h	GROUNJHCHJNWQT-IUODEOHRSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 15 \mathrm{ClO} / \mathrm{c} 16-14-8-6-13(7-9-14) 15-5-3-1-2-4-12(15) 10-11-17 / \mathrm{h} 2-9,11-12,15 \mathrm{H}, 1,10 \mathrm{H} 2 / \mathrm{t} 12-$
	,15-/m1/s1
112i	NRIPLSVMQFLBEQ-IUODEOHRSA-N
	$\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 15 \mathrm{FO} / \mathrm{c} 16-14-8-6-13(7-9-14) 15-5-3-1-2-4-12(15) 10-11-17 / \mathrm{h} 2-9,11-12,15 \mathrm{H}, 1,10 \mathrm{H} 2 / \mathrm{t} 12-$
112j	LGHCTIPVGPWQGI-IUODEOHRSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 15 \mathrm{ClO} / \mathrm{c} 16-14-7-4-6-13(11-14) 15-8-3-1-2-5-12(15) 9-10-17 / \mathrm{h} 2-8,10-12,15 \mathrm{H}, 1,9 \mathrm{H} 2 / \mathrm{t} 12-$
	,15-/m1/s 1
112k	QQTKQEXVGLDVPS-IUODEOHRSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 15 \mathrm{FO} / \mathrm{c} 16-14-7-4-6-13(11-14) 15-8-3-1-2-5-12(15) 9-10-17 / \mathrm{h} 2-8,10-12,15 \mathrm{H}, 1,9 \mathrm{H} 2 / \mathrm{t} 12-$
	,15-/m1/s 1
112I	MXYNOMKVVQPJKR-CHWSQXEVSA-N
	$\operatorname{InChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 15 \mathrm{FO} / \mathrm{c} 16-15-9-5-4-8-14(15) 13-7-3-1-2-6-12(13) 10-11-17 / \mathrm{h} 2-9,11-13 \mathrm{H}, 1,10 \mathrm{H} 2 / \mathrm{t} 12-, 13-$
112n	ZRCQSZDQVBSKPG-GDBMZVCRSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 18 \mathrm{O} / \mathrm{c} 1-13-7-9-15(10-8-13) 16-6-4-2-3-5-14(16) 11-12-17 / \mathrm{h} 3-$
	10,12,14, $16 \mathrm{H}, 2,11 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{t} 14-, 16-/ \mathrm{m} 1 / \mathrm{s} 1$
1120	ALBMNFMKHIGLTJ-CRAIPNDOSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 19 \mathrm{H} 24 \mathrm{O} / \mathrm{c} 1-19(2,3) 17-11-9-16(10-12-17) 18-8-6-4-5-7-15(18) 13-14-20 / \mathrm{h} 5-12,14-$
	15, $18 \mathrm{H}, 4,13 \mathrm{H} 2,1-3 \mathrm{H} 3 / \mathrm{t} 15-, 18-/ \mathrm{m} 1 / \mathrm{s} 1$
112q	PYNIAALGWQOWSW-CZUORRHYSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 16 \mathrm{H} 18 \mathrm{O} 2 / \mathrm{c} 1-18-15-9-7-14(8-10-15) 16-6-4-2-3-5-13(16) 11-12-17 / \mathrm{h} 3-10,12-$
	13,16H,2,11H2,1H3/t13-,16-/m1/s1
112s	RYZPKPDXGOEKRC-VXGBXAGGSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 13 \mathrm{H} 14 \mathrm{OS} / \mathrm{c} 14-9-8-11-5-2-1-3-6-12(11) 13-7-4-10-15-13 / \mathrm{h} 2-7,9-12 \mathrm{H}, 1,8 \mathrm{H} 2 / \mathrm{t} 11-, 12-/ \mathrm{m} 1 / \mathrm{s} 1$
$112 t$	FAPAVCJKSZVROX-NFJWQWPMSA-N
	$\operatorname{lnChl}=1 \mathrm{~S} / \mathrm{C} 12 \mathrm{H} 16 \mathrm{O} 3 / \mathrm{c} 1-2-15-12(14) 11-7-5-3-4-6-10(11) 8-9-13 / \mathrm{h} 4-7,9-11 \mathrm{H}, 2-3,8 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{t} 10-$
	, 11 ?/m1/s1
112u	GVKYFKGTMKBIEF-YHMJZVADSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 11 \mathrm{NO} / \mathrm{c} 11-8-10-5-3-1-2-4-9(10) 6-7-12 / \mathrm{h} 2-5,7,9-10 \mathrm{H}, 1,6 \mathrm{H} 2 / \mathrm{t} 9-, 10 ? / \mathrm{m} 1 / \mathrm{s} 1$

112p	ZTDVHBBYXKMVIP-YMJMCWPSSA-N
	InChI=1S/C19H22O/c20-16-15-19-13-6-2-5-12-18(19)14-8-7-11-17-9-3-1-4-10-17/h1,3-6,8-10,12-
	14,16,18-19H,2,7,11,15H2/b14-8+/t $18-$, 19+/m0/s 1
112r	LENZLCRVBFRBCB-UHFFFAOYSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 9 \mathrm{H} 12 \mathrm{O} / \mathrm{c} 10-8-7-9-5-3-1-2-4-6-9 / \mathrm{h} 1,3-4,6,8-9 \mathrm{H}, 2,5,7 \mathrm{H} 2$
112y	UFEQQFZJNFNUIG-DLBZAZTESA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 17 \mathrm{H} 20 \mathrm{O} / \mathrm{c} 18-14-13-17-10-6-2-5-9-16(17) 12-11-15-7-3-1-4-8-15 / \mathrm{h} 1,3-10,14,16-17 \mathrm{H}, 2,11-$
	13H2/t16-, 17+/m0/s 1
112 z	UPMQTQAGRJIFCC-GICMACPYSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 16 \mathrm{O} / \mathrm{c} 16-12-11-14-9-5-2-6-10-15(14) 13-7-3-1-4-8-13 / \mathrm{h} 1,3-10,12,14-15 \mathrm{H}, 2,11 \mathrm{H} 2 / \mathrm{t} 14-$
	,15?/m1/s1
112aa	FAPAVCJKSZVROX-NFJWQWPMSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 12 \mathrm{H} 16 \mathrm{O} 3 / \mathrm{c} 1-2-15-12(14) 11-7-5-3-4-6-10(11) 8-9-13 / \mathrm{h} 4-7,9-11 \mathrm{H}, 2-3,8 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{t} 10-$
	,11?/m1/s1
112v	GVKYFKGTMKBIEF-YHMJZVADSA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 11 \mathrm{NO} / \mathrm{c} 11-8-10-5-3-1-2-4-9(10) 6-7-12 / \mathrm{h} 2-5,7,9-10 \mathrm{H}, 1,6 \mathrm{H} 2 / \mathrm{t} 9-, 10 ? / \mathrm{m} 1 / \mathrm{s} 1$
181	QOQOMBWYCQXPPU-NFJWQWPMSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 12 \mathrm{H} 18 \mathrm{O} 3 / \mathrm{c} 1-2-15-12(14) 11-7-5-3-4-6-10(11) 8-9-13 / \mathrm{h} 4-7,10-11,13 \mathrm{H}, 2-3,8-9 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{t} 10-$
	,11?/m1/s1
182	MIMXUKPQZOAILY-RKDXNWHRSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 12 \mathrm{O} 2 / \mathrm{c} 11-10-9-5-3-1-2-4-8(9) 6-7-12-10 / \mathrm{h} 2-5,8-9 \mathrm{H}, 1,6-7 \mathrm{H} 2 / \mathrm{t} 8-, 9-/ \mathrm{m} 1 / \mathrm{s} 1$
183	KTWYJMDTHZWSPL-FWJOYPJLSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 19 \mathrm{H} 20 \mathrm{~N} 2 \mathrm{O} / \mathrm{c} 1-2-28-19(23) 17-7-5-3-4-6-13(17) 8-9-29-18(22) 14-10-15(20$ (24)25)12-16(11-
	14) $21(26) 27 / \mathrm{h} 4-7,10-13,17 \mathrm{H}, 2-3,8-9 \mathrm{H} 2,1 \mathrm{H} 3 / \mathrm{t} 13-, 17 ? / \mathrm{m} 1 / \mathrm{s} 1$
185	PSTJGTBMPBFOEJ-RKUIQBLJSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 21 \mathrm{H} 36 \mathrm{O} 3 \mathrm{Si} / \mathrm{c} 1-8-23-21(22) 20-13-11-9-10-12-19(20) 14-15-24-25(16(2) 3,17(4) 5) 18(6) 7 / \mathrm{h} 10-$
	$20 \mathrm{H}, 8-9 \mathrm{H} 2,1-7 \mathrm{H} 3 / \mathrm{b} 15-14+/ \mathrm{t} 19-$,20?/m1/s1
186	HGNPMUWSLMLJEU-KWCCSABGSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 15 \mathrm{H} 16 \mathrm{O} 2 / \mathrm{c} 16-15(17) 11-13-9-5-2-6-10-14(13) 12-7-3-1-4-8-12 / \mathrm{h} 1,3-10,13-$
	$14 \mathrm{H}, 2,11 \mathrm{H} 2,(\mathrm{H}, 16,17) / \mathrm{t} 13-14 ? / \mathrm{m} 1 / \mathrm{s} 1$
188	FQCBAZYBNYHKKF-RUZMYDRRSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 19 \mathrm{H} 29 \mathrm{~N} 3 \mathrm{OSi} / \mathrm{c} 1-19(2,3) 24(4,5) 23-13-12-17-14-16(17) 9-6-15-7-10-18(11-8-15) 21-22-20 /{ }^{\text {a }}$ - ${ }^{\text {- }}$
	11,16-17H, $12-14 \mathrm{H} 2,1-5 \mathrm{H} 3 / \mathrm{b} 9-6+/ \mathrm{t} 16-, 17+/ \mathrm{m} 0 / \mathrm{s} 1$
116c	KFGHAHPHSYYPHL-URUUNZHMSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 13 \mathrm{H} 13 \mathrm{~N} 3 \mathrm{O} / \mathrm{c} 14-16-15-13-5-2-10(3-6-13) 1-4-11-9-12(11) 7-8-17 / \mathrm{h} 1-6,8,11-12 \mathrm{H}, 7,9 \mathrm{H} 2 / \mathrm{b} 4-$
	1+/t11-, $12+/ \mathrm{m} 0 / \mathrm{s} 1$
207	UFEDSIGHACMCAJ-UHFFFAOYSA-N
	$\mathrm{lnChI}=1 \mathrm{~S} / \mathrm{C} 10 \mathrm{H} 12 \mathrm{O} 2 / \mathrm{c} 1-2-12-10(11) 9-7-5-3-4-6-8-9 / \mathrm{h} 3,5-8 \mathrm{H}, 2,4 \mathrm{H} 2,1 \mathrm{H} 3$

118c	LNKMABXRYGEWME-DJNXLDHESA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 17 \mathrm{H} 21 \mathrm{NO} / \mathrm{c} 1-3-7-15(8-4-1) 16-9-5-2-6-10-17(16) 18-11-13-19-14-12-18 / \mathrm{h} 1,3-10,16-$
	17H, $2,11-14 \mathrm{H} 2 / \mathrm{t} 16$?,17-/m0/s1
118d	ITMWSCXNKRZFJH-LBAQZLPGSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 21 \mathrm{H} 23 \mathrm{~N} / \mathrm{c} 1-4-10-18(11-5-1) 16-17-22-21-15-9-3-8-14-20(21) 19-12-6-2-7-13-19 / \mathrm{h} 1-2,4-$
	15,20-22H,3,16-17H2/t20?,21-/m0/s1
118e	HLWWSEBCRORLQV-UHFFFAOYSA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 21 \mathrm{H} 23 \mathrm{~N} / \mathrm{c} 1-17(18-11-5-2-6-12-18) 22-21-16-10-4-9-15-20(21) 19-13-7-3-8-14-19 / \mathrm{h} 2-3,5-$
	17,20-22H,4H2,1H3
118 f	BHFFUMIEACOCGZ-AEHNDQHQSA-N
	$\operatorname{lnChI}=1 \mathrm{~S} / \mathrm{C} 18 \mathrm{H} 21 \mathrm{NO} 2 . \mathrm{C} 13 \mathrm{H} 14 \mathrm{O} / \mathrm{c} 20-18(21) 17-12-7-13-19(17) 16-11-6-2-5-10-15(16) 14-8-3-1-4-9-$
	14;14-9-8-13-10-12(13)7-6-11-4-2-1-3-5-11/h1,3-6,8-11,15-17H,2,7,12-13H2,(H,20,21);1-7,9,12-
	$13 \mathrm{H}, 8,10 \mathrm{H} 2 / \mathrm{b} ; 7-6+/ \mathrm{t} ; 12-, 13+/ \mathrm{m} .0 / \mathrm{s} 1$
118g	HBEPIEWNIZIMJA-UHFFFAOYSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 19 \mathrm{H} 23 \mathrm{NO} 2 / \mathrm{c} 1-22-19(21) 18-13-8-14-20$ (18)17-12-7-3-6-11-16(17)15-9-4-2-5-10-15/h2,4-
	7,9-12,16-18H, $3,8,13-14 \mathrm{H} 2,1 \mathrm{H} 3$
118h	TYXXUCYFNNKHGO-UHFFFAOYSA-N
	$\mathrm{lnChl}=1 \mathrm{~S} / \mathrm{C} 25 \mathrm{H} 36 \mathrm{~N} 2 \mathrm{O} 4 / \mathrm{c} 1-25(2,3) 31-24(29) 27-22(23(28) 30-4) 17-11-12-18-26-21-16-10-6-9-15-$
	$20(21) 19-13-7-5-8-14-19 / \mathrm{h} 5,7-10,13-16,20-22,26 \mathrm{H}, 6,11-12,17-18 \mathrm{H} 2,1-4 \mathrm{H} 3,(\mathrm{H}, 27,29)$
118i	NSWKANZMOYHJQG-ADKAHSJRSA-N
	$\mathrm{InChI}=1 \mathrm{~S} / \mathrm{C} 19 \mathrm{H} 26 \mathrm{~N} 2 \mathrm{O} 2 / \mathrm{c} 20-17(19(22) 23) 12-7-8-14-21-18-13-6-2-5-11-16(18) 15-9-3-1-4-10-15 / \mathrm{h} 1,3-$
	6,9-11,13, 16-18,21H,2,7-8, 12, 14,20H2,(H,22,23)/t16?,17-,18?/m0/s1

NMR Spectra of All Compounds

5-(Benzylsulfonyl)-1-phenyl-4,5-dihydro-1 \mathbf{H}-tetrazole (122)

${ }^{1} \mathrm{H}$ NMR:

122

${ }^{13}$ C NMR:

${ }^{1}$ H NMR:
会

124

${ }^{13}$ C NMR:

蒦

Ethyl 2-(Bis(2,2,2-trifluoroethoxy)phosphoryl)acetate (171)

${ }^{1}$ H NMR:

${ }^{19}$ F NMR:
$\stackrel{\infty}{i}$

(S)-Diphenyl(pyrrolidin-2-yl)methanol (61)
${ }^{\mathbf{1}} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

(S)-5-Benzyl-2,2,3-trimethylimidazolidin-4-one (48b)
${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

(S)-2-(Diphenyl((trimethylsilyl)oxy)methyl)pyrrolidine (48c)

${ }^{13}$ C NMR:

(E)-2-Styryl-1,3,2-dioxaborinane (153)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

2-(Dichloromethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (155)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13} \mathrm{C}$ NMR:

Bis((pinacolato)boryl)methane (197)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

(But-3-yn-1-yloxy)(tert-butyl)dimethylsilane (198)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

5-((tert-Butyldimethylsilyl)oxy)pent-2-yn-1-ol (119)
${ }^{1}$ H NMR:
$\stackrel{m}{0}$
$\stackrel{0}{0}$
$\stackrel{0}{0}$
$\stackrel{\sim}{1}$ n
$\stackrel{0}{0}$
$\stackrel{0}{0}$
$\underset{i}{1}$

	NinnvinNiñ*

(Z)-5-((tert-Butyldimethylsilyl)oxy)pent-2-en-1-ol (114)

${ }^{13}$ C NMR:

2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropyl)methanol (120)

${ }^{1} \mathrm{H}$ NMR:

荷

120

${ }^{13}$ C NMR:

2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropane-1-carbaldehyde (113)

${ }^{1} \mathrm{H}$ NMR:

113

${ }^{13} \mathrm{C}$ NMR:
$\stackrel{\bullet}{\text { i }}$

(E)-tert-Butyldimethyl(2-(2-styrylcyclopropyl)ethoxy)silane ((E)-121)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

(Z)-tert-Butyldimethyl(2-(2-styrylcyclopropyl)ethoxy)silane ((Z)-121)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

tert-Butyldimethyl(2-(2-vinylcyclopropyl)ethoxy)silane (123)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13} \mathrm{C}$ NMR:

2-(2-((E)-Styryl)cyclopropyl)acetaldehyde (116b)
${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

(E)-4-(2-((E)-Styryl)cyclopropyl)but-2-enal (109a)

${ }^{1}$ H NMR:

109a

${ }^{13}$ C NMR:

(trans-2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropane-1-carbaldehyde (200)
${ }^{1}$ H NMR:

200

${ }^{13}$ C NMR:

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

2-(trans-2-((E)-Styryl)cyclopropyl)acetaldehyde (202)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13} \mathrm{C}$ NMR:

(E)-4-(trans-2-((E)-Styryl)cyclopropyl)but-2-enal (203)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

${ }^{13}$ C NMR:

4-Chloro-3-methyl-2((E)-styryl)tetrahydro-2H-pyran (125a)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

2-(2-Methyl-3-((E)-styryl)cyclopropyl)acetaldehyde (204)

${ }^{1}$ H NMR:

204

${ }^{13}$ C NMR:

(E)-4-(2-Methyl-3-((E)-styryl)cyclopropyl)but-2-enal (109b)

${ }^{13}$ C NMR:

4-Fluoro2-((E)-3-methylbut-1-en-1-yl)tetrahydro-2H-pyran (125b)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

2-(2-((E)-3-Methylbut-1-en-1-yl)cyclopropyl)ethan-1-ol (132)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

2-(2-((E)-3-Methylbut-1-en-1-yl)cyclopropyl)acetaldehyde (205)

${ }^{13}$ C NMR:

(E)-4-(2-((E)-3-Methylbut-1-en-1-yl)cyclopropyl)but-2-enal (109c)
${ }^{1} \mathrm{H}$ NMR:

109c

${ }^{13} \mathrm{C}$ NMR:

(E)-4-Bromobut-2-enal (143)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

(E)-2-(3-Bromoprop-1-en-1-yl)-1,3-dioxolane (138)

1HNMR:
${ }^{13}$ C NMR:

(E)-6-(1,3-Dioxolan-2-yl)hex-5-en-2-yn-1-ol (140)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

tert-Butyl(2-(-2-((E)-2-iodovinyl)cyclopropyl)ethoxy)dimethylsilane (148)

${ }^{1} \mathrm{H}$ NMR:

148

${ }^{13}$ C NMR:

2-(2-((E)-2-Iodovinyl)cyclopropyl)acetaldehyde (149)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13} \mathrm{C}$ NMR:

2-((E)-3-(2-((E)-2-lodovinyl)cyclopropyl)prop-1-en-1-yl)-1,3-dioxolane (133)
${ }^{1}$ H NMR:

${ }^{13}$ C NMR:
(

${ }^{1}$ H NMR:

150

${ }^{13} \mathrm{C}$ NMR:

[^1]tert-Butyl(2-(2-(iodomethyl)cyclopropyl)ethoxy)dimethylsilane (152)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

(tert-Butyldimethyl(2-(2-((E)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinylcyclopropyl)ethoxy)silane (154)
${ }^{1}$ H NMR:

${ }^{13} \mathrm{C}$ NMR:

2-(2-((E)-2-(4,4,5,5-Tetramethyl-1,3,2-dioxa-borolan-2-yl)-vinyl)-cyclo-propyl)-ethan-1-ol (206)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

2-(2-((E)-2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)cyclopropyl)acetaldehyde (156)
${ }^{1} \mathrm{H}$ NMR:

156

${ }^{13}$ C NMR:

2-((E)-2-(-2-((Z)-3-(1,3-dioxolan-2-yl)allylcyclopropyl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (157)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

(E)-4-(2-((E)-4-(Trifluoromethyl)styryl)cyclopropyl)but-2-enal (109d)
${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

(E)-4-(2-((E)-3-(Trifluoromethyl)styryl)cyclopropyl)but-2-enal (109e)

${ }^{1}$ H NMR:

高

${ }^{13}$ C NMR:

(E)-4-(2-((E)-2-(Trifluoromethyl)styryl)cyclopropyl)but-2-enal (109f)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13} \mathrm{C}$ NMR:

(E)-4-(-2-((E)-4-Nitrostyryl)cyclopropyl)but-2-enal (109g)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

(E)-4-(2-((E)-4-Chlorostyryl)cyclopropyl)but-2-enal (109h)
${ }^{1}$ H NMR:

${ }^{13} \mathrm{C}$ NMR:

(E)-4-(-2-((E)-4-Fluorostyryl)cyclopropyl)but-2-enal (109i)

${ }^{1}$ H NMR:

109i

${ }^{13}$ C NMR:

(E)-4-(2-((E)-3-Chlorostyryl)cyclopropyl)but-2-enal (109j)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13} \mathrm{C}$ NMR:

${ }^{1}$ H NMR:

109k

${ }^{13}$ C NMR:

(E)-4-(2-((E)-2-Fluorostyryl)cyclopropyl)but-2-enal (109I)
${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

(E)-4-(2-((E)-2-(Pyridin-2-yl)vinyl)cyclopropyl)but-2-enal (109m)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

(E)-4-(2-((E)-4-Methylstyryl)cyclopropyl)but-2-enal (109n)

${ }^{13} \mathrm{C}$ NMR:

(E)-4-(2-((E)-4-(tert-Butyl)styryl)cyclopropyl)but-2-enal (109o)

${ }^{1}$ H NMR:

${ }^{13} \mathrm{C}$ NMR:

(E)-4-(2-((1E,3E)-6-Phenylhexa-1,3-dien-1-yl)cyclopropyl)but-2-enal (109p)

${ }^{13} \mathrm{C}$ NMR:

$\stackrel{m}{\text { ¢ }}$	$\stackrel{\square}{\square}$	

(E)-4-(2-Vinylcyclopropyl)but-2-enal (109r)
${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

${ }^{1}$ H NMR:

158

${ }^{13} \mathrm{C}$ NMR:

1-(Thiophen-2-yl)octahydro-1 H-cyclopropa-[4,5]cyclopenta[1,2-c]pyran-3-ol (159)

${ }^{1}$ H NMR:

응
0
0

159

${ }^{13}$ C NMR:

${ }^{1} \mathrm{H}$ NMR:
-

${ }^{13} \mathrm{C}$ NMR:

(E)-4-(2-((E)-4-Methoxystyryl)cyclopropyl)but-2-enal (109q)

${ }^{13}$ C NMR:

${ }^{1}$ H NMR:

161

${ }^{13} \mathrm{C}$ NMR:

2-(E)-4-(2-((E)-2-(Thiophen-2-yl)vinyl)cyclopropyl)but-2-enal (109s)

${ }^{1}$ H NMR:

109s

${ }^{13}$ C NMR:

Ethyl (E)-3-(2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropyl)acrylate (162)
${ }^{1} \mathrm{H}$ NMR:

162

${ }^{13} \mathrm{C}$ NMR:

Ethyl (E)-3-(2-(2-Oxoethyl)cyclopropyl)acrylate (116d)

${ }^{1} \mathrm{H}$ NMR:


```
|
```


116d

${ }^{13}$ C NMR:

Ethyl (E)-3-(2-((E)-4-Oxobut-2-en-1-yl)cyclopropyl)acrylate (109t)

${ }^{13}$ C NMR:

${ }^{1}$ H NMR:

163

${ }^{13}$ C NMR:

(E)-3-(2-(2-Oxoethyl)cyclopropyl)acrylonitrile ((E)-164)
${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

(Z)-3-(2-(2-Oxoethyl)cyclopropyl)acrylonitrile ((Z)-164)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

(E)-3-(2-((E)-4-Oxobut-2-en-1-yl)cyclopropyl)acrylonitrile (109u)

${ }^{1} \mathrm{H}$ NMR:

$\frac{0}{0}$ 0 0

${ }^{13}$ C NMR:

(Z)-3-(2-((E)-4-Oxobut-2-en-1-yl)cyclopropyl)acrylonitrile (109v)

${ }^{1}$ H NMR:

응 0 0

${ }^{13}$ C NMR:

tert-Butyldimethyl(2-(2-(4-phenylbut-1-en-1-yl)cyclopropyl)ethoxy)silane (166)
${ }^{1} \mathrm{H}$ NMR:
$\underbrace{\text { ๗, }}$

166

${ }^{13} \mathrm{C}$ NMR:

${ }^{1} \mathrm{H}$ NMR:

169

${ }^{13}$ C NMR:

2-(2-((E)-4-Phenylbut-1-en-1-yl)cyclopropyl)acetaldehyde ((E)-168)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

(E)-4-(2-((E)-4-Phenylbut-1-en-1-yl)cyclopropyl)but-2-enal (109y)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

tert-Butyldimethyl(2-(2-((Z)-prop-1-en-1-yl)cyclopropyl)ethoxy)silane (165)
${ }^{1} \mathrm{H}$ NMR:

165

${ }^{13} \mathrm{C}$ NMR:

2-(2-((Z)-Prop-1-en-1-yl)cyclopropyl)acetaldehyde (167)
${ }^{1} \mathrm{H}$ NMR:

無

${ }^{13}$ C NMR:

(E)-4-(2-((Z)-Prop-1-en-1-yl)cyclopropyl)but-2-enal (109w)

${ }^{1} \mathrm{H}$ NMR:

응 0

${ }^{13}$ C NMR:

2-(2-((Z)-4-Phenylbut-1-en-1-yl)cyclopropyl)acetaldehyde ((Z)-168)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

(E)-4-(2-((Z)-4-Phenylbut-1-en-1-yl)cyclopropyl)but-2-enal (109x)
${ }^{1}$ H NMR:

${ }^{13} \mathrm{C}$ NMR:

2-(2-((Z)-Styryl)cyclopropyl)acetaldehyde (170)
${ }^{1}$ H NMR:

${ }^{13}$ C NMR:
in

肙

(E)-4-(2-((Z)-Styryl)cyclopropyl)but-2-enal (109z)
${ }^{1}$ H NMR:
范

${ }^{13} \mathrm{C}$ NMR:

Ethyl (Z)-3-(2-(2-((tert-Butyldimethylsilyl)oxy)ethyl)cyclopropyl)acrylate (172)
${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

Ethyl (Z)-3-(2-(2-Oxoethyl)cyclopropyl)acrylate (173)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

Ethyl (Z)-3-(2-((E)-4-Oxo-but-2-en-1-yl)-cyclo-propyl)-acrylate (109aa)

${ }^{1}$ H NMR:

0
0
0
0
0

109aa

${ }^{13}$ C NMR:

Ethyl (E)-2-Methyl-4-(2-((E)-styryl)cyclopropyl)but-2-enoate (175)
${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

(E)-2-Methyl-4-(2-((E)-styryl)cyclopropyl)but-2-enal (109bb)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

1-(2-((E)-Styryl)cyclopropyl)propan-2-one (176)

${ }^{1}$ H NMR:

208

${ }^{13}$ C NMR:

${ }^{\mathbf{1}} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

[^2]2-((1,7-cis)-7-(4-(Trifluoromethyl)phenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112d)
${ }^{1} \mathrm{H}$ NMR:

112d

${ }^{13}$ C NMR:

2-((1,7-cis)-7-(3-(Trifluoromethyl)phenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112e)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

2-((1,7-cis)-7-(2-(Trifluoromethyl)phenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112f)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

2-((1,7-cis)-7-(4-Nitrophenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112g)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

2-((1,7-cis)-7-(4-Chlorophenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112h)
${ }^{1} \mathrm{H}$ NMR:

112h

${ }^{13} \mathrm{C}$ NMR:

2-((1,7-cis)-7-(4-Fluorophenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112i)

${ }^{13}$ C NMR:

2-((1,7-cis)-7-(3-Chlorophenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112j)
${ }^{1} \mathrm{H}$ NMR:
$\stackrel{\text { \% }}{\stackrel{\circ}{2}}$
ºỉ

${ }^{13} \mathrm{C}$ NMR:

2-((1,7-cis)-7-(3-Fluorophenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112k)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

[^3]2-((1,7-cis)-7-(2-Fluorophenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112I)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13} \mathrm{C}$ NMR:

2-((1,7-cis)-7-(p-Tolyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112n)

${ }^{13}$ C NMR:

2-((1,7-cis)-7-(4-(tert-Butyl)-phenyl)-cyclo-hepta-2,5-dien-1-yl)-acet-alde-hyde (112o)
${ }^{1}$ H NMR:
-

1120

${ }^{13}$ C NMR:

(2-((1,7-cis)-7-((E)-4-Phenylbut-1-en-1-yl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112p)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

2-((1,7-cis)-7-(4-Methoxyphenyl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112q)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

2-(Cyclohepta-2,5-dien-1-yl)acetaldehyde (112r)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

2-((1,7-cis)-7-(Thiophen-2-yl)cyclohepta-2,5-dien-1-yl)acetaldehyde (112s)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13} \mathrm{C}$ NMR:

Ethyl (1,7-cis)-7-(2-Oxoethyl)cyclohepta-2,5-diene-1-carboxylate (112t)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

${ }^{1}$ H NMR:

若

${ }^{13}$ C NMR:

2-((1,7-cis)-7-Phenethylcyclohepta-2,5-dien-1-yl)acetaldehyde (112y)

${ }^{1} \mathrm{H}$ NMR:

112y

${ }^{13}$ C NMR:

2-((1,7-trans)-7-Phenylcyclohepta-2,5-dien-1-yl)acetaldehyde (112z)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

Ethyl (1,7-trans)-7-(2-Oxoethyl)cyclohepta-2,5-diene-1-carboxylate (112aa)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

(1,7-trans)-7-(2-Oxoethyl)cyclohepta-2,5-diene-1-carbonitrile (112v)
${ }^{1}$ H NMR:
을
0
0
0
А А А

${ }^{13}$ C NMR:

Ethyl (1,7-cis)-7-(2-Hydroxyethyl)cyclohepta-2,5-diene-1-carboxylate (181)

${ }^{1}$ H NMR:

爰

181

${ }^{13}$ C NMR:

${ }^{1}$ H NMR:

${ }^{13} \mathrm{C}$ NMR:

Ethyl 7-(2-((3,5-Dinitrobenzoyl)oxy)ethyl)cyclohepta-2,5-diene-1-carboxylate (183)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

Ethyl 7-((E)-2-((Triiso-propylsilyl)oxy)vinyl)cyclohepta-2,5-diene-1-carboxylate (185)

2-(7-Phenylcyclohepta-2,5-dien-1-yl)acetic Acid (186)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

[^4]((2-(2-((E)-4-Azidostyryl)cyclopropyl)ethoxy)(tert-butyl)dimethylsilane (188)
${ }^{1} \mathrm{H}$ NMR:

${ }^{13} \mathrm{C}$ NMR:

2-(2-((E)-4-Azidostyryl)cyclopropyl)acetaldehyde (116c)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

Ethyl Cyclohepta-1,3,6-triene-1-carboxylate (207)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

4-(7-Phenylcyclohepta-2,5-dien-1-yl)morpholine (118c)

${ }^{1} \mathrm{H}$ NMR:

${ }^{13}$ C NMR:

N-Phenethyl-7-phenylcyclohepta-2,5-dien-1-amine (118d)
${ }^{1}$ H NMR:

118d

${ }^{13}$ C NMR:

[^5]7-Phenyl- \boldsymbol{N}-(1-phenylethyl)cyclohepta-2,5-dien-1-amine (118e)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

(7-Phenylcyclohepta-2,5-dien-1-yl)-L-proline (118f)

${ }^{1} \mathrm{H}$ NMR:

$118 f$

${ }^{13}$ C NMR:

Methyl-(7-phenylcyclohepta-2,5-dien-1-yl)-L-prolinate (118g)

${ }^{1}$ H NMR:

${ }^{13}$ C NMR:

Methyl- N^{2}-(tert-butoxycarbonyl)- \boldsymbol{N}^{6}-(7-phenylcyclohepta-2,5-dien-1-yl)-L-lysinate (118h)
${ }^{1} \mathrm{H}$ NMR:

118h

${ }^{13}$ C NMR:

Crystallographic Data

Lactol 158

Crystal data und structure refinement of lactol 158.

Empirical Formula	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$
Formula Weight	260.33
Temperature [K]	100
Wavelength [pm]	154.178
Crystal System	Tetragonal
Space Group	$14_{1} / a$
Unit Cell Dimensions	$\begin{gathered} \mathrm{a}=33.3023(9) \AA, \alpha=90^{\circ} \\ \mathrm{b}=33.3023(9) \AA, \beta=90^{\circ} \\ \mathrm{c}=5.2359(2) \AA, \gamma=90^{\circ} \end{gathered}$
Volume [\AA^{3}]	5806.8(4)
Z	44
Calculated Density [g/ cm^{3}]	1.182
Absorption Coefficient [mm^{-1}]	0.651
$F(000)$	2208
Crystal Size [mm]	$0.32 \times 0.09 \times 0.09$
ϑ-Range for Data Collection	$3.754-68.333^{\circ}$

Crystal data und structure refinement of lactol 158.

Limiting Indices	$-37 \leq \mathrm{h} \leq 31,-38 \leq \mathrm{k} \leq 40,-6 \leq \mathrm{I} \leq 5$
Reflections Collected	6949
Independent Reflections	2648
Completeness to $\vartheta=67.67$	99.3%
Refinement Method	Full-matrix least-squares on F^{2}
Goodness-of-fit on F^{2}	1.171
Final R Indices [I>2 $\sigma(\mathrm{I})]$	$R_{1}=0.0656, w R_{2}=0.2429$
R Indices (all data)	$R_{1}=0.0790, w R_{2}=0.2554$
Extinction Coefficient	$0.00074(18)$
Largest diff. peak and hole	1.534 and $-0.237 \mathrm{e}^{-} / \AA^{-3}$

Bond lengths [\AA] of molecule 158.

O 1	C 9	$1.451(4)$
O 1	C 7	$1.452(3)$
O 2	C 9	$1.393(4)$
O 2	H 2	0.8400
O 3	C 15	$1.365(4)$
O 3	C 16	$1.434(4)$
C 11	C 12	$1.375(4)$
C 11	C 10	$1.387(4)$
C 11	C 7	$1.517(4)$
C 7	C 6	$1.520(4)$
C 7	H 7	1.0000
C 1	C 6	$1.506(4)$
C 1	C 2	$1.512(4)$
C 1	C 3	$1.524(4)$
C 1	H 1	1.0000
C 2	C 3	$1.506(4)$
C 2	H 2 A	0.9900
C 2	H 2 B	0.9900

Bond lengths [\AA] of molecule 158

C6	C5	1.537(4)
C6	H6	1.0000
C12	C13	1.396(5)
C12	H12	0.9500
C4	C3	1.525(4)
C4	C5	1.537(4)
C4	H4A	0.9900
C4	H4B	0.9900
C9	C8	1.526(5)
C9	H9	1.0000
C5	C8	1.515(4)
C5	H5	1.0000
C15	C13	1.385(5)
C15	C14	1.395(5)
C3	H3	1.0000
C13	H13	0.9500
C10	C14	1.373(4)
C10	H10	0.9500
C8	H8A	0.9900
C8	H8B	0.9900
C14	H14	0.9500
C16	H16A	0.9800
C16	H16B	0.9800
C16	H16C	0.9800

Bond angles [${ }^{\circ}$] of molecule 158.

C9	O1	C7	115.3(2)
C9	O2	H2	109.5
C15	O3	C16	117.5(3)
C12	C11	C10	118.1(3)
C12	C11	C7	119.4(3)
C10	C11	C7	122.4(3)
O1	C7	C11	108.1(2)
O1	C7	C6	107.4(2)
C11	C7	C6	113.6(2)
O1	C7	H7	109.2
C11	C7	H7	109.2
C6	C7	H7	109.2
C6	C1	C2	119.3(2)
C6	C1	C3	106.2(2)
C2	C1	C3	59.49(19)
C6	C1	H1	118.7
C2	C1	H1	118.7
C3	C1	H1	118.7
C3	C2	C1	60.65(19)
C3	C2	H2A	117.7
C1	C2	H2A	117.7
C3	C2	H2B	117.7
C1	C2	H2B	117.7
H2A	C2	H2B	114.8
C1	C6	C7	120.4(2)
C1	C6	C5	104.8(2)
C7	C6	C5	109.5(2)
C1	C6	H6	107.1
C7	C6	H6	107.1
C5	C6	H6	107.1
C11	C12	C13	121.5(3)
C11	C12	H12	119.2

Bond angles [${ }^{\circ}$] of molecule 158.

C13	C12	H12	119.2
C3	C4	C5	103.6(2)
C3	C4	H4A	111.0
C5	C4	H4A	111.0
C3	C4	H4B	111.0
C5	C4	H4B	111.0
H4A	C4	H4B	109.0
O 2	C9	O1	110.9(2)
O 2	C9	C8	108.2(2)
O1	C9	C8	112.5(2)
O 2	C9	H9	108.4
O1	C9	H9	108.4
C8	C9	H9	108.4
C8	C5	C6	108.9(2)
C8	C5	C4	120.6(3)
C6	C5	C4	103.6(2)
C8	C5	H5	107.7
C6	C5	H5	107.7
C4	C5	H5	107.7
O3	C15	C13	125.1(3)
O3	C15	C14	116.0(3)
C13	C15	C14	118.9(3)
C2	C3	C1	59.85(19)
C2	C3	C4	117.5(3)
C1	C3	C4	108.0(2)
C2	C3	H3	119.0
C1	C3	H3	119.0
C4	C3	H3	119.0
C15	C13	C12	119.6(3)
C15	C13	H13	120.2
C12	C13	H13	120.2
C14	C10	C11	121.4(3)

Bond angles [${ }^{\circ}$] of molecule 158.			
C14	C10	H10	119.3
C11	C10	H10	119.3
C5	C8	C9	108.1(2)
C5	C8	H8A	110.1
C9	C8	H8A	110.1
C5	C8	H8B	110.1
C9	C8	H8B	110.1
H8A	C8	H8B	108.4
C10	C14	C15	120.4(3)
C10	C14	H14	119.8
C15	C14	H14	119.8
O3	C16	H16A	109.5
O3	C16	H16B	109.5
H16A	C16	H16B	109.5
O3	C16	H16C	109.5
H16A	C16	H16C	109.5
H16B	C16	H16C	109.5

Formula: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{8}$

Unit Cell Parameters: monoclinic, $\mathrm{P}_{1} / \mathrm{c}, \alpha=39.309(2), \quad b=8.9525(5), \quad c=10.6436(6) \AA, \beta=93.009(2)^{\circ}$, $V=3740.4(4) \AA^{3}, Z=8, \mu=1.04 \mathrm{~mm}^{-1}$.

Multi-scan absorption correction (TWINABS ${ }^{[386-388]}$), structure solution using SHELXT ${ }^{[389]}$ and full-matrix least-squares refinement using SHELXL. ${ }^{[390,391]}$ Inspection of the data using cell now indicated a twinned crystal. The refinement converged at $R_{1}=0.063\left[F_{o}^{2}>2 \sigma\left(F_{o}^{2}\right)\right], w R_{2}=0.168$ (all reflections) $G O O F=1.073$ for 6432 observed unique reflections and 7423 unique reflections.

CCDC 1877358 contains the supplementary crystallographic data for this structure. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[^0]: $1^{\text {st }}$ reviewer: Prof. Dr. Mathias Christmann
 $2^{\text {nd }}$ reviewer: Prof. Dr. Christian Hackenberger

[^1]: $\left.\begin{array}{llllllllllllllllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { chemical shift }(\mathrm{ppm})\end{array}\right)$

[^2]: $\begin{array}{llllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \text { chemical shift }(\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

[^3]: $\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \text { chemical shift (ppm) }\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & & & \end{array}$

[^4]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \text { chemical shift (ppm)}\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^5]: $\left.\begin{array}{lllllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { chemical shift (ppm) }\end{array}\right)$

