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In this review article, we highlight several disparate ideas that are linked to changes in
brain state (i.e., sleep to arousal, Down to Up, synchronized to de-synchronized). In
any discussion of the brain state, we propose that the cortical pyramidal neuron has a
central position. EEG recordings, which typically assess brain state, predominantly reflect
the activity of cortical pyramidal neurons. This means that the dominant rhythmic activity
that characterizes a particular brain state ultimately has to manifest globally across the
pyramidal neuron population. During state transitions, it is the long-range connectivity
of these neurons that broadcast the resultant changes in activity to many subcortical
targets. Structures like the thalamus, brainstem/hypothalamic neuromodulatory systems,
and respiratory systems can also strongly influence brain state, and for many decades
we have been uncovering bidirectional pathways that link these structures to state
changes in the cerebral cortex. More recently, movement and active behaviors have
emerged as powerful drivers of state changes. Each of these systems involve different
circuits distributed across the brain. Yet, for a system-wide change in brain state, there
must be a collaboration between these circuits that reflects and perhaps triggers the
transition between brain states. As we expand our understanding of how brain state
changes, our current challenge is to understand how these diverse sets of circuits and
pathways interact to produce the changes observed in cortical pyramidal neurons.

Keywords: pyramidal neuron, brain state, cortico-thalamocortical, neuromodulation, active behavior, respiration

INTRODUCTION

‘‘Brain state,’’ particularly as it relates to consciousness, is usually recorded via EEG electrodes
that predominantly measure the rhythmic activity of the cerebral cortex. Nevertheless, many
circuits distributed across the brain contribute to and are related to the transition in brain
states, and in this sense, the rhythmic activity of the cortex is a function of its bidirectional
interaction with a host of subcortical structures. We know that changes in alertness, attention,
arousal, and consciousness are associated with specific changes in levels and patterns of neuronal
activity throughout the brain (Steriade and McCarley, 2005; Harris and Thiele, 2011). Explaining
why and how the brain is in a given state at any given time is a formidable task. Like blind
men considering the elephant (Ireland, 2007), this task has traditionally been approached
from very different perspectives and has left the literature fragmented. A popular view is
that system-wide transitions in brain state arise from ascending neuromodulatory input from
the reticular activating system (reviewed in, Steriade andMcCarley, 2005). Here, we offer a different
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perspective. We bring together several disparate ideas and
discuss: (1) specific and non-specific thalamic nuclei;
(2) neuromodulation and hypothalamus; (3) behavior; and
(4) respiration as paradigms for explaining brain state
transitions. Although each paradigm involves very different
systems, weaving them together are the cortical pyramidal
neurons. We propose that both the effect of input to the cortical
pyramidal neurons and the effect of their output, especially the
layer 5 pyramidal neurons, are key to understanding system-wide
brain state transitions.

CORTEX, THALAMUS AND THE LOOP
THAT LINK THEM TO BRAIN STATES

There are two overriding reasons to focus on pyramidal neurons.
Firstly, the brain state as detected by the EEG signal is almost
entirely determined by the electrical field dipoles across the
apical dendritic axis of pyramidal neurons (Buzsáki et al.,
2012; Larkum, 2013; Suzuki and Larkum, 2017). But even
more importantly, pyramidal neurons make up the majority
(80%) of all cortical neurons and are the principal long-range
cortico-cortically and subcortically projecting neurons in the
brain (DeFelipe and Fariñas, 1992; Molyneaux et al., 2007).
Their aggregate activity is therefore central to both the local
manifestation of the brain state and the causal explanation for
system-wide transitions between brain states.

The elaborate long-range connectivity of layer 5 pyramidal
neurons means that when cortical activity does change, activity
in many subcortical areas follows the cortical rhythm. This
effect of cortical activity is especially easy to monitor during
slow-wave sleep, when activity spanning the entire cortical
mantle fluctuates, and when sensory input and movement
is minimal. When cortical activity fluctuates, the subcortical
activity also shows phasic slow rhythmic activity in most
targets of cortical axons (direct and multisynaptic) including
thalamus (Steriade et al., 1993a,b; Contreras and Steriade,
1995; Contreras et al., 1996; Sherman and Guillery, 2011);
striatum (Cowan and Wilson, 1994; Wilson and Kawaguchi,
1996); zona incerta (Barthó et al., 2007); subthalamus (Magill
et al., 2004); globus pallidus (Magill et al., 2000; Tseng
et al., 2001; Kasanetz et al., 2002); inferior olive (Rowland
et al., 2010); locus coeruleus (Sara and Hervé-Minvielle,
1995); cholinergic pedunculopontine neurons (Roš et al., 2010;
Motelow et al., 2015; Petzold et al., 2015); cerebellum and
deep cerebellar nuclei (Ros et al., 2009; Rowland et al.,
2010; Figure 1A). Most targets of pyramidal neurons show
activity that is correlated with cortical slow waves, suggesting
that in the quietly sitting animal, when input from the
sensory world is negligible, these axons can drive changes
in membrane potential, local field potentials, and even
action potentials.

The thalamus is intimately connected to the cortex
(Figure 1A): it is central to the thalamocortical loop, gates
sensory input, and as mentioned above its activity fluctuates with
cortical activity. However, the thalamus is not a unitary entity.
For areas like the somatosensory cortex, multiple thalamic nuclei
can affect cortical activity, including the ventroposterior medial

(VPM), the posterior medial nucleus (POm), and the midline
intra-laminar thalamic nuclei (Sherman and Guillery, 2011;
Saalmann, 2014). Neurons in these nuclei also receive cortical
input and project back to the cortex. The close bidirectional
connection with the cortex and the heterogeneity of the
thalamus suggests that at least some thalamic inputs could
trigger fast changes in the cortical state (Steriade, 2006)—and
so argue against a cortico-centric view. In contrast to the
original studies that ablated the thalamus (Gloor et al., 1977;
Steriade et al., 1993c; Timofeev et al., 2000), subsequent loss-
of-function studies have shown that thalamic inactivation
(i.e., pharmacologically or lesioning inputs to the thalamus)
can deactivate the persistent depolarization in the cortex and
enhance slow cortical rhythms (Aguilar et al., 2010; Poulet et al.,
2012; Zagha et al., 2013). Furthermore, whisker stimuli working
through the thalamus or direct activation of the thalamus
can trigger changes in cortical state (Petersen et al., 2003;
Sachdev et al., 2004; Hasenstaub et al., 2007; Poulet et al., 2012;
Poulet and Crochet, 2019).

The work mentioned above does not fully capture the
role of the thalamus in modulating, triggering or maintaining
changes in the brain-state. A substantial amount of recent
evidence implicates a variety of midline thalamic nuclei in
changing brain states globally, primarily in awakening the
brain. Activating cholinergic input to reticular thalamus, which
inhibits the reticular neurons, promotes slow-wave sleep (Ni
et al., 2016), but remarkably direct inhibition of the reticular
thalamus does not have the same effect. Neurons in the
paraventricular thalamus increase their firing before mice wake
up and optogenetic inhibition of these neurons lowers epochs
of wakefulness. These effects of the paraventricular thalamic
neurons are mediated by the nucleus accumbens pathway,
not the prefrontal cortex pathway (Ren et al., 2018). The
ventromedial thalamus, in particular the calbindin-positive
layer 1 projecting matrix neurons, increase their firing before
behavioral arousal and before changes in the EEG. The activity
of these neurons can trigger arousal from slow-wave sleep or
anesthesia (Honjoh et al., 2018). In the whisker system, POm
and VPM neurons increase firing during active states, and
firing specifically in the VPM neurons (compared with POm)
is more correlated with whisking behavior (Urbain et al., 2015).
Recently, similar findings have been extended to sleeping mice,
where spikes of VPM neurons are correlated with a stronger
impact on the cortical LFP than spikes of POm neurons during
NREM sleep (Urbain et al., 2019). In non-human primates,
stimulation of the central lateral thalamus, a higher-order
thalamic nucleus, has recently been shown to drive lamina
specific (in infragranular cortical layers) changes in cortical
states (Redinbaugh et al., 2020).

Taken together, these heterogenous thalamic nuclei have a
role in changing cortical activity. However, for this activity to be
manifested as a change in brain state the corticothalamic loop
must be engaged to broadcast any effect globally to the rest of
the brain (Aru et al., 2019). These effects of the thalamus on
arousal, on changing cortical state also has to occur in concert
with inputs from the hypothalamus (hypocretin/orexinergic) and
from the locus coeruleus (noradrenergic), both of which can
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FIGURE 1 | Neural pathways influencing brain state changes. (A) Rhythmic excitatory activity reverberates within local and intracortical circuits in the neocortex
(NCx). The aggregate cortical activity collaborates with thalamic activity to form a thalamocortical loop. The resultant spiking activity in phase with brain state is
broadcasted to the rest of the brain via many subcortical projections of layer 5 pyramidal neurons. (B) Noradrenergic (red), cholinergic (orange), and orexinergic
(purple) neuromodulatory pathways project widely across the brain to influence brain state changes. Respiratory activity in the preBötzinger complex (preBötC) is
coupled to the noradrenergic system to influence arousal and wakefulness. (C) Neocortical circuits and brainstem central pattern generators drive movement which
can change brain state. Movement itself generates sensorimotor information that sends feedback to the cortex via the thalamus and contributes to
cortico-thalamocortical activity. (D) preBötC sets the rhythm of nasal airflow, which in turn entrains respiration-related slow oscillatory activity via the olfactory system.
This activity propagates across the neocortex and contributes to rhythmic cortical activity. Respiration can be under either voluntary or involuntary control, however,
the pathways linking the neocortex and the piriform cortex (PC) to the preBötC are unclear (dashed lines). Note that for simplicity arrows do not indicate direct

(Continued)
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FIGURE 1 | Continued
connectivity, and the line thickness does not indicate connection strength.
BF, basal forebrain; Cb, cerebellum; Hip, hippocampus; CL, central lateral
thalamus; IO, inferior olive; LC, locus coeruleus; LH, lateral hypothalamus;
OB, olfactory bulb; PFC, prefrontal cortex; pFRG, parafacial respiratory
group; Po, posterior medial thalamic nucleus; PPT, pedunculopontine
nucleus; PV, paraventricular thalamic nucleus; Rt, reticular thalamic nucleus;
STn, subthalamic nucleus, Str, striatum; Thl, thalamus; VM, ventromedial
thalamic nucleus; VPM, ventroposterior medial thalamic nucleus; vRT,
vibrissal reticular formation; ZI, zona incerta.

trigger arousal (Adamantidis et al., 2007; Carter et al., 2010;
Eban-Rothschild et al., 2018).

NEUROMODULATION AND THE
HYPOTHALAMUS

By the middle of the last century, it was increasingly clear
that structures in the brainstem have a substantial role
in the modulation of cortical states (Jones, 2008, 2020).
Early experiments of Moruzzi and Magoun (1949) showed
that electrical stimulation of the brainstem i.e., the reticular
activating system, and other subcortical structures could
abolish cortical synchrony in the EEG, replacing it with
low amplitude fast activity. Lesioning some of the same
regions abolished fast EEG activity (Lindsley et al., 1949).
We now understand that many of the deep structures in
the brainstem, midbrain, and hypothalamus are part of a
large, interconnected neuromodulatory network that acts both
directly and indirectly on the cortex to change brain states
(Figure 1B). Collectively, these structures, which include the
locus coeruleus, pedunculopontine nucleus, tuberomammillary
nucleus, and others constitute the reticular activating system
(reviewed in Jones, 2008, 2020).

Each structure is associated with a particular
neuromodulatory transmitter, and stimulation of each of
these structures can induce cortical state changes. The
ascending cholinergic projections from the brainstem, for
example, when stimulated optogenetically, produce powerful
changes in brain state, increasing gamma and reducing slow
wave rhythms in the cortex; and optogenetic stimulation of
the locus coeruleus causes transitions from sleep to wake
(Carter et al., 2010; Scammell et al., 2017; Cissé et al., 2018).
Many of these subcortical and brainstem nuclei contain
diverse neuronal types and transmit multiple transmitters,
and therefore the roles that each structure play are still
being updated. For example, the basal forebrain, known for its
cholinergic neurons, also contains cortical projecting GABAergic
neurons that powerfully affect brain states and initiate cortical
gamma-band oscillations (Anaclet et al., 2015; Kim et al.,
2015; Xu et al., 2015). In the locus coeruleus phasic but not
tonic activation differentially encodes saliency in the cortex
(Vazey et al., 2018), further highlighting the complexity of these
neuromodulatory systems.

A more recent addition to the neuromodulatory subcortical
network is the orexin/hypocretin neurons, which were
discovered in 1998 by two groups at the same time (Sakurai et al.,

1998; de Lecea et al., 1998). Orexin/hypocretin neurons reside
in the lateral hypothalamus and, like other neuromodulatory
structures, send projections far and wide across the brain,
including to most of the other neuromodulatory centers in the
brain, with the densest innervation to the locus coeruleus, which
strongly promotes wakefulness (Peyron et al., 1998; Scammell
et al., 2017).

Many recent studies suggest that the orexin/hypocretin
system functions to coordinate and potentiate other
neuromodulatory systems that stabilize arousal (Alexandre
et al., 2013). Orexin/hypocretin neurons were found to be
the underlying cause of the sleep/wake disorder, narcolepsy
(Chemelli et al., 1999; Peyron et al., 2000; Thannickal et al.,
2000), strongly implicating orexin/hypocretin neurons in
cortical state changes and arousal (de Lecea, 2015). Optogenetic
and chemogenetic stimulation of these neurons promotes the
transition to wakefulness (Adamantidis et al., 2007; Sasaki et al.,
2011), whereas their inhibition promotes sleep (Tsunematsu
et al., 2013). Orexin/hypocretin neurons also innervate the
thalamus and neocortex. But unlike other cortical projecting
neuromodulatory centers that diffusely innervate and affect a
wide range of neurons across many layers of the neocortex,
orexin/hypocretin neurons appear to exclusively target deep
layer 6 (layer 6b). Application of orexin/hypocretin to cortical
brain slices specifically depolarizes these deep-layer 6b neurons
(Bayer et al., 2004; Wenger Combremont et al., 2016).

Although the indirect but powerful effects of
orexin/hypocretin on arousal are clear, the direct pathway
linking orexinergic activation to cortical activity has not been
studied. Since deep-layer 6 neurons are strongly and specifically
activated by orexin/hypocretin, these cortical neuronsmight help
induce the arousal effects of orexinergic neurons. Deep-layer
6 neurons were recently shown to project to cortical and
thalamic regions commonly associated with cortical arousal,
including neocortical layer 5 and the non-specific thalamic
nuclei (Viswanathan et al., 2017; Hoerder-Suabedissen et al.,
2018). However, unlike layer 6a which is a key component
of the cortico-thalamocortical loop, the deeper sublayer
6b is best driven by cortico-cortical projection pathways,
suggesting two separate pathways that interact differently
with the thalamus (Zolnik et al., 2020). These neurons
are genetically diverse and the exact relationship between
orexin/hypocretin sensitivity and their projections is not
yet worked out. Nevertheless, it is interesting to note that
many of the thalamic structures that deep layer 6 targets
are also orexin/hypocretin sensitive (Bayer et al., 2002). For
example, the thalamic neurons are targets of deep layer 6 and
as noted above is a powerful driver and regulator of cortical
state; and many of the other subcortical neuromodulatory
centers, including the pedunculopontine nucleus, project
to non-specific thalamic nuclei and exert their influence
on cortex by thalamocortical projections. The role of the
lateral hypothalamus in stabilizing cortical arousal might
be assisted by deep layer 6 neurons that act both on the
ascending thalamocortical projections and directly on layer
5 cortical pyramidal neurons that have numerous long-range
intracortical targets.
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Orexin/hypocretin neurons also make descending projections
and target several key structures in the brainstem. Among
these is the respiratory rhythm generator, pre-Bötzinger nucleus
in the medulla, which contains neurons that are excited by
orexin/hypocretin application (Young et al., 2005). Breathing
is an active mechanism, that is in part modulated by the
action of hypothalamic neurons. Breathing is often correlated
with brain state (see below). Injection of orexin/hypocretin into
the pre-Bötzinger nucleus increases inspiratory tidal volume,
and knock-out of orexin/hypocretin receptor gene in mice
reduces the CO2 induced increases in breathing and increases
the occurrence of sleep apnea (Young et al., 2005). Taken
together, these findings show that neuromodulatory circuits can
interdependently promote cortical state changes in a complex
and diverse manner.

BEHAVIOR, ACTIVE SENSATION AND
BRAIN STATES

‘‘The behaving organism embedded in a particular environment
is what generates feelings’’ (Koch, 2004, p. 9). In the ‘‘enactive or
sensorimotor’’ account of consciousness, the body (i.e., behavior)
is closely linked to conscious perception. While this link is not
explicit and can be easily argued against (see Koch, 2004), the link
between movement and changes in brain state is clear. In quietly
sitting, but awake mice, cortical activity is often dominated
by low frequency 1–5 Hz (similar to respiratory rhythm, see
below), fluctuations in the membrane potential (Wilson and
Groves, 1981; Petersen et al., 2003; Ferezou et al., 2007), or
fluctuations in multiunit activity (Ros et al., 2009). Intracranial
EEG from human beings show similar low-frequency oscillations
(Sachdev et al., 2015).

Movement (e.g., whisking or locomotion) abolishes the
low frequencies and puts cortical circuits into a depolarized,
persistently activated high gamma state (Petersen et al., 2003;
Poulet et al., 2012; Polack et al., 2013; Zagha et al., 2013; Urbain
et al., 2015). In the whisker system, even after the sensory nerve is
cut, whisking initiates state changes (Poulet and Petersen, 2008;
Poulet et al., 2012).

Even though movement can change brain state, two
additional consequences of movement should be noted. One
is that movement activates a variety of cortical circuits, and
as mentioned above, the cortical pyramidal neuron links many
sensorimotor brain systems together (Figure 1C). Thus, the
interaction between these cortical circuits alone, without overt
movement or the participation of the thalamus, can change brain
state (Zagha et al., 2013). Second, movement is related to the
phase and frequency of respiration. The latter point is important
to consider because movement—at least orofacial movements in
rats and mice—are modulated by respiration. Respiration can
serve as a ‘‘common clock’’ for aligning diverse processes and
behaviors (Cao et al., 2012; Moore et al., 2013; Ranade et al., 2013;
Kleinfeld et al., 2014; McElvain et al., 2018).

While each breath does not reach conscious perception, it
can be brought under voluntary control (Davenport et al., 2007).
In this instance, sensorimotor processing is contingent upon
a shift from autonomous respiratory rhythm to active sniffing

bouts (from 1–5 Hz basal rate to 5–14 Hz in rodents). Active
sensing by sniffing is coordinated with attentional processes
and rhythmic movements (e.g., head direction or fine orofacial
movements like whisking) that enable selective sampling routines
(Schroeder et al., 2010; Moore et al., 2013; Jordan et al., 2018).
This view seems paradigmatic in rodents as they are macrosmatic
animals that sniff to sample their environment. Humans on
the other hand favor vision and audition as a major source
of information about the outside world and are less reliant on
sniffing. However, studies in human beings have shown that
cognitive processing of non-olfactory tasks is closely tied to
the respiratory cycle (Nakamura et al., 2018; Perl et al., 2019),
and that artificial puffs of air directed at the nares can change
the subjective sensation of an altered state of consciousness
(Piarulli et al., 2018).

Global brain oscillations, coupled to breathing, are coming
into light as a general neural principle that may provide
a configuration for temporally organizing brain activity
across distant brain regions. Often these respiration-related
brain rhythms are discussed in the context of the olfactory
system—that they are driven by entrainment to nasal airflow.
Though this is perfectly reasonable, as discussed below, there
could also be other pathways that carry respiration-related
information to link breathing behavior to brain-state.

RESPIRATION AFFECTS RHYTHMIC
BRAIN ACTIVITY

Lord Adrian was the first to report that ‘‘Normal breathing
(without odor stimulation) produces a regular series of large
potential waves in the pyriform area at each inspiration’’ (Adrian,
1942, p. 472). Years later, Fontanini et al. (2003) demonstrated
that slow oscillations (<1.5 Hz) in the olfactory bulb and
piriform cortex correlated with respiration in anesthetized
rats (Fontanini and Bower, 2006). Subsequent studies in
anesthetized and awake rodents have shown that respiratory
rhythms modulate the oscillations (<5 Hz during anesthesia
or quiet awake; >5 Hz during active sniffing) in brain regions
downstream to the olfactory system (e.g., orbitofrontal cortex,
the prelimbic cortex, and the hippocampus; Yanovsky et al.,
2014; Lockmann et al., 2016; Biskamp et al., 2017; Liu et al.,
2017; Kszeghy et al., 2018; Moberly et al., 2018; Rojas-Líbano
et al., 2018), and also structures that are not associated with
the olfactory system (e.g., somatosensory, primary motor, and
primary visual cortices; Ito et al., 2014; Rojas-Líbano et al.,
2018; Tort et al., 2018b). The respiration-related oscillations
selectively modulate the 80–120 Hz gamma frequency band,
the power of which attenuates as it propagates away from
the olfactory bulb to cortical structures (Zhong et al., 2017).
These studies have been extended to the human brain showing
that respiratory rhythms are locked to nasal, but not oral
inhalation, suggesting that respiration modulates brain activity
even though humans rely less on olfactory information compared
with rodents (Zelano et al., 2016; Herrero et al., 2018;
Perl et al., 2019). The respiration-related modulation of low
frequency and gamma-band oscillations are often overlooked
because respiration frequency overlaps with both low frequencies
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(1–4 Hz) and with theta frequency bands (Tort et al., 2018a).
When respiration is monitored, it is possible to differentiate
between the respiration and theta coupling of spiking activity
of cortical and hippocampal neurons (Ito et al., 2014; Yanovsky
et al., 2014; Nguyen Chi et al., 2016; Biskamp et al., 2017; Zhong
et al., 2017). Together, these findings suggest that olfaction-
related respiratory rhythms are present globally across the brain,
that is, respiration modulates rhythmic activity in multiple
cortical areas.

One pathway that can generate respiration-related rhythms
involves sensory signals generated in response to external
nasal airflow that propagates to the cortex via olfactory
pathways (Figure 1D) and then reverberates within the
recurrent connections of the cortical network itself (Bagur and
Benchenane, 2018; Tort et al., 2018a). The nasal airflow drawn
by breathing is necessary for these rhythms because these
oscillations disappear once the nasal airway is bypassed using
tracheotomy (Fontanini et al., 2003; Phillips et al., 2012; Ito et al.,
2014; Yanovsky et al., 2014; Lockmann et al., 2016), and can be
reinstated with rhythmic artificial nasal air puffs (Phillips et al.,
2012; Lockmann et al., 2016). Furthermore, eliminating bulbar
activity, surgically or chemically, strongly reduces respiration-
related oscillations in brain regions downstream to the olfactory
bulb while sparing other frequency bands (i.e., theta, gamma;
Phillips et al., 2012; Biskamp et al., 2017; Liu et al., 2017;
Tantirigama et al., 2017).

A different pathway that is often overlooked in the discussion
of respiratory-related rhythms originates from the brainstem.
The act of respiration itself generates sensory signals not
only from the nasal epithelium as discussed earlier, but also
from mechanoreceptors in the chest, skin, and muscles that
are continually moved by respiration. Brain stem nuclei that
manage breathing connect with the thalamus, where thalamic
neurons fire in synchrony with respiration (Chen et al., 1992;
Pattinson et al., 2009; Yang and Feldman, 2018). From the
thalamus, these respiration-related signals echo to many brain
regions that are involved in respiratory proprioception and the
qualitative evaluation of respiration (e.g., diencephalon, limbic
structures, and neocortex; Chen et al., 1992; Davenport and
Vovk, 2009). Recently, a loss-of-function study showed that
silencing nucleus reuniens of the thalamus reduces the 2–5 Hz
coherence between the prefrontal cortex and hippocampus
without significantly affecting coherence for theta oscillation
(Roy et al., 2017). Additionally, recent causal evidence shows
that a set of neurons in the Pre-Botzinger complex can influence
the brain-state. Manipulation of these neurons does not affect
resting respiratory activity, however, it can dramatically change
arousal or vigilance via direct connections to noradrenergic
neurons in the locus coeruleus (Yackle et al., 2017). Asmentioned
earlier, orexin/hypocretin neurons also target the pre-Bötzinger
complex (Young et al., 2005), and are likely to coordinate with
the noradrenergic system in the locus coeruleus. Given that the
brainstem circuits managing respiration are ultimately setting the
rhythm of respiration (Ramirez and Baertsch, 2018), and thus
the rhythm of chest movement and entry of air into the nares,
these circuits are likely to play a role in modulating brain state in
collaboration with neuromodulatory pathways.

THE CORTICAL PYRAMIDAL
NEURON—THE KEY TO UNDERSTANDING
BRAIN STATE TRANSITIONS

Here, we have tackled the various cortical/subcortical
interactions that combine to influence brain rhythms (Figure 1).
The thalamocortical loops, neuromodulatory signals, activity
generated by movement and respiration all interact with each
other in a manner that is not yet completely understood.
However, their effect to produce a change in brain state is
ultimately manifested across the pyramidal neuron population.
The resultant signal associated with the system-wide firing of
various interacting neurons and brain areas results in specific
changes in the flow of extracellular cortical currents, which make
up the bulk of the signal finally referred to as ‘‘brain state’’ (or
EEG). This raises three interesting points that revolve around
cortical pyramidal neurons.

The first thing to consider is that pyramidal neurons are
not ‘‘point neurons’’ but rather large cells that span several
cortical layers (Larkum et al., 2018). This means that the
influence of inputs arriving at different lamina will engage
different compartments of pyramidal neurons that depend
exquisitely on both the precise locations of the input on
the dendritic tree and on the intrinsic properties of the
neuron. These synaptic interactions can be quite baroque under
certain spatiotemporal input distributions (Larkum, 2013; Stuart
and Spruston, 2015). A well-studied example of this is the
generation of NMDA spikes and calcium spikes in the distal
dendrites, which can couple with input to the soma and
trigger a burst output (Palmer et al., 2012, 2014; Stuart and
Spruston, 2015). Importantly, this input/output transformation
enabled by calcium spikes is strongly correlated to brain
state (Phillips et al., 2016; Suzuki and Larkum, 2017; Seibt
et al., 2017), and recent work shows that when the brain-
state changes, the coupling between the soma and dendrite
also changes (Suzuki and Larkum, 2020). This means that the
influence of input from subcortical structures on the cortex
must be gauged in the light of its specific effect on the
active dendritic properties of pyramidal neurons, and how
they can contribute to producing changes in the brain-state
(Phillips et al., 2016; Aru et al., 2019).

Second point is that the output of pyramidal neurons
and their subcortical targets interact in a complex way.
In particular, the intrinsic properties of pyramidal neurons
lead them to switch their firing mode (e.g., from sparse to
regular firing, or bursting) as a function of the spatiotemporal
pattern of inputs, which in turn is presumed to have a
variable influence on their target neurons as a function of
the short-term synaptic plasticity at their output synapses
(Williams, 2005). To reiterate, during state transitions, it is these
neurons that can modify and modulate the activity of many
subcortical targets that are involved in brain-state, including the
thalamus, brainstem/hypothalamic neuromodulatory systems,
motor systems and respiratory systems.

Third, as discussed above, many long-range influences on
brain-state are neuromodulatory in nature (e.g., cholinergic,
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orexinergic, noradrenergic, etc.), and arrive into specific layers
of the cortex (Jacob and Nienborg, 2018). This means that
at any moment a stereotypical, spatiotemporal pattern of
activity onto a pyramidal neuron can be modified under
the influence of neuromodulation. We are still only at
the beginning of understanding how neuromodulation can
modify the somatodendritic properties of pyramidal neurons
and influence the brain-state on a moment-to-moment basis
(e.g., Williams and Fletcher, 2019; Suzuki and Larkum, 2020).

All in all, there is a level of complexity in understanding and
explaining the precise rhythms encompassed by brain-states that
are rarely addressed in descriptions of system-wide interactions
usually involving simple ‘‘block diagrams.’’ We predict that
the key to understanding brain state transitions will require
experiments and models that include these intricacies about
pyramidal neurons.

CONCLUSION

Our understanding of how brain state changes, and the circuits
involved in producing these changes is rapidly expanding.
Many circuits related to changes in brain state—i.e., the
pathways through the thalamus, neuromodulatory systems in the
hypothalamus and brainstem, and the link between breathing
and orofacial behaviors, among them—have been revealed.

Although each of these pathways is important for changing
brain-state, perhaps each one alone is insufficient to trigger brain
state changes, unless they collaborate to produce a system-wide
change. The structural and functional interactions between them
are still not clear, and our current challenge is to understand
how these diverse set of cellular properties, circuits, and pathways
interact to modify brain state at different timescales.
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