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participate in her research on calcium channel inhibitors.

I also want to thank Prof. Dr. Johannes Kirchmair for reviewing this thesis.

Lastly, I want to thank my family for being great and for their support, especially

Romy and Karl Oke.





Abstract

The continuing epidemic of overweight and obesity faces a lack of appropriate phar-

maceutical treatment options to support health care systems. Although studied for

decades, currently available drugs only show low efficacy but serious or at least un-

pleasant side effects. Multi-target drugs hold promise to overcome the limitations of

traditional pharmaceutics by modulating several nodes of the disease-relevant biolog-

ical network. In this thesis, the multi-target concept was applied to macromolecular

targets involved in obesity.

In order to identify target pairs useful as starting points for multi-target drug

design, we applied a systematic data mining approach employing publicly available

bioactivity data of small molecules binding to targets involved in obesity. The target

pair with the highest molecular similarity among known active ligands was found to

comprise of histamine H3 receptor (H3R) and melanin-concentrating hormone receptor

1 (MCHR1). Both proteins are part of the G-protein coupled receptor (GPCR) family

and were extensively studied as potential obesity targets. Although antagonizing either

receptor was efficient in rodent models of obesity, drug candidates failed to proof

efficacy in clinical studies. To test the potential of H3R and MCHR1 in multi-target

drug development, a shape-based virtual screening campaign was conducted resulting

in the selection of three small molecules. A subsequent in vitro evaluation revealed

nanomolar affinity for all three molecules at both receptors.

Lead optimization against multiple targets can dramatically benefit from integra-

tion of structural data. Since H3R and MCHR1 lack experimental structural data

for structure-based drug design, two novel methods were developed that support drug

design campaigns based on homology models. H3R is part of the aminergic family

of GPCRs, which share a conserved charged interaction between ligand and protein.

This crucial interaction was incorporated into a ligand-guided homology modeling

campaign revealing valuable insights into side chain conformations critical for appro-

priate ligand placement in H3R. A subsequent virtual screening campaign followed by

in vitro validation revealed two novel ligands with nanomolar affinity at H3R. MCHR1

is less well characterized and was found to contain several highly flexible residues in

the ligand binding pocket, which hindered the translation of the ligand-guided ho-

mology modeling strategy to MCHR1. To include the high flexibility of binding site

residues, the protein environment of water molecules in molecular dynamics simula-

tions was analyzed to derive 3D pharmacophores for virtual screening. Generated 3D

pharmacophores were highly successful in a retrospective virtual screening campaign

in discriminating active MCHR1 ligands from decoys. This method was translated

into a Python package (PyRod), where the source code was released publicly.

The results and methods developed in this thesis provide valuable tools to support

the development of more efficient and safe anti-obesity medications. We show that
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the simultaneous inhibition of H3R and MCHR1 with a single high affinity binder

is possible. We developed novel computational methods to support structure-based

virtual screening campaigns against both receptors.
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Zusammenfassung

Die ständig ansteigende Prävalenz für Übergewicht und Adipositas offenbart einen

dramatischen Mangel an geeigenten pharmazeutischen Behandlungsoptionen. Obwohl

seit Jahrzenten an einer Behandlung geforscht wird, weisen derzeitig verfügbare Phar-

mazeutika nur eine geringe Wirksamkeit und schwere oder zumindest unangenehme

Nebenwirkungen auf. Wirkstoffe, welche die Aktivität mehrerer Zielstrukturen mod-

ulieren können, versprechen die Limitationen traditioneller Medikamente zu über-

winden, indem sie das biologische Netzwerk hinter einer Krankheit an verschiedenen

Stellen simultan beeinflussen. In dieser Dissertation wurde das Konzept zur Mod-

ulierung mehrerer Zielstrukturen auf Adipositas angewendet.

Um Adipositas-relevante Zielstruktur-Paare zu identifizieren, deren Aktivität mit

einem Molekül moduliert werden könnte, wurde ein systematischer Ansatz zur Anal-

yse von öffentlich zugänglichen Aktivitätsdaten kleiner Moleküle durchgeführt. Das

Zielstruktur-Paar mit der größten Ähnlichkeit zwischen bekannten Liganden beinhaltet

den Histamine H3 Rezeptor (H3R) und den Rezeptor 1 des Melanin-konzentrierenden

Hormons (MCHR1). Beide Proteine sind Teil der G-Protein gekoppelten Rezeptor

Familie und wurden intensiv für die Behandlung von Adipositas untersucht. Ob-

wohl Antagonisten für beide Rezeptoren bei Nagetier-Modellen für Adipositas wirksam

waren, konnten diese vielversprechenden Ergebnisse nicht auf den Menschen übertragen

werden. Um das Potential von H3R und MCHR1 als Zielstruktur-Paar zu überprüfen,

wurde eine 3D Ähnlichkeitssuche durchgeführt, welche in der Identifizierung von drei

Molekülen resultierte. Eine anschließende in vitro Validierung zeigte nanomolare

Affinitäten für alle drei Moleküle an beiden Rezeptoren.

Die Optimierung von Wirkstoffkandidaten gegen mehrere Zielstrukturen kann er-

heblich von der Integerierung von Strukturdaten profitieren. Da für H3R und MCHR1

keine experimentel bestätigten Strukturen zur Verfügung standen, wurden zwei neue

Methoden entwickelt, welche auf Homologie Modellen-basierende Projekte zur Wirk-

stoffentwicklung unterstützen können. H3R ist Teil der aminergen Familie von GPCRs,

welche eine konservierte geladene Interaktion zwischen Ligand und Protein aufweisen.

Diese entscheidende Interaktion wurde in einem Liganden-geleiteten Homologie Mode-

lierungs-Ansatz ausgenutzt und ermöglichte die Charakterisierung von Seitenketten-

Konformationen, die eine korrekte Platzierung der Liganden ermöglichen. Ein virtu-

elles Screening gefolgt von einer in vitro Validierung identifizierte zwei neue Moleküle

mit nanomolarer Affinität am H3R. MCHR1 wurde weniger stark untersucht und bein-

haltet mehrere hoch flexible Seitenketten in der Bindetasche, welche eine Übertragung

des Liganden-geleiteten Homologie Modelierungs-Ansatzes verhindern. Um die hohe

Flexibilität der Bindetasche zu berücksichtigen, wurde die Protein-Umgebung von

Wasser-Molekülen in Simulationen zur Moleküldynamik analysiert um 3D Pharmako-

phore für virtuelles Screening abzuleiten. Die generierten 3D Pharmakophore waren
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in einem retrospektiven Screening in der Lage aktive MCHR1 Liganden von inaktiven

Molekülen zu unterscheiden. Diese Methode wurde in ein Python Packet (PyRod)

übertragen, dessen Quellcode öffentlich zugänglich gemacht wurde.

Die in dieser Arbeit entstandenen Ergebnisse und Methoden bieten wertvolle Werk-

zeuge für die Entwicklung von effektiven und sicheren Adipositas-Wirkstoffen. Wir

konnten zeigen, dass die simultane Inhibition von H3R und MCHR1 mit einem einzi-

gen Molekül möglich ist. Wir entwickelten neue computergestütze Methoden, um

strukturbasiertes virtuelles Screening für beide Rezeptoren zu unterstützen.
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Introduction

1.1 The Obesity Epidemic

Obesity and overweight have evolved into significant threats of human health account-

ing for 4 Mio deaths in 2015 [1]. These medical conditions are characterized by an

abnormal or excessive accumulation of fat, and are associated with various serious

diseases including type 2 diabetes, hypertension, myocardial infarction, stroke, venous

thromboembolism and certain types of cancer [2]. Since 1980 the prevalence of obesity

has constantly increased affecting the health of 13 % of adults world-wide in 2016

(Fig 1) [3]. Although studied for decades, health care systems still lack an effective

treatment to stop the obesity epidemic.

Figure 1: Prevalence of obesity among adults. Data from World Health Organization [3].
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Introduction

1.2 Regulation of Energy Homeostasis

Main causes for overweight and obesity are genetic susceptibility, increased consump-

tion of high-energy food and insufficient physical activity, resulting in the the excess

of energy intake over energy expenditure [2].

Energy homeostasis is regulated by a multitude of hormones such as leptin, insulin

and ghrelin mainly secreted by gut, pancreas and adipose tissue. These peripheral

signals either act as appetite stimulant (orexigenic) or appetite suppressant (anorectic)

by binding to their cognate receptors and thus stimulate the central nervous system

(CNS), notably the arcuate nucleus (ARC) of the hypothalamus (Fig 2). Within the

ARC, two types of neurons exist that either co-express the orexigenic neurotransmitters

neuropeptide Y (NPY) and agouti-related Protein (AgRP) or co-express the anorectic

neurotransmitters pro-opiomelanocortin (POMC) as well as cocaine and amphetamine-

related transcript (CART) [4, 5].

The orexigenic NPY/AgRP neurons can inhibit anorectic POMC neurons by se-

creting γ-aminobutyric acid (GABA). Both types of neurons more widely project into

the CNS including the paraventricular nucleus (PVN) and the lateral hypothalamic

area (LHA). These areas home putative second-order neurons that also interact with

other anorectic and orexigenic signals from gut and CNS mediating behavioral, en-

docrine and autonomous effects of changes in energy status by acting on neurons of

the nucleus tractus solitaries (NTS) [4, 5].

1.3 Targets for Obesity Treatment

The major challenge for developing drugs against obesity is the complexity of metabolic

body weight control. It is maintained by an equilibrium between three major pathways:

food intake, energy generation and fat storage [6]. Consequently, this model provides

different opportunities for pharmaceutical intervention: (i) agents that decrease ap-

petite through central action, (ii) agents that affect metabolism through peripheral

action, (iii) agents modulating the gastrointestinal (GI) tract and (iv) agents that not

only affect obesity, but also reduce mortality and morbidity of associated disorders.

Current research on obesity related pathways reveals a plethora of receptors, enzymes

and transcription factors that might be useful as targets for anti-obesity agents (Tab

1). In the following sections, examples are provided highlighting several targets for

drug development against obesity.

1.3.1 Decreasing Appetite Through Central Action

Leptin is a hormone expressed and secreted by adipocytes in proportion to body fat

stores [33]. It acts anorectic through its interaction with the leptin receptor, a single

membrane-spanning class I cytokine receptor with tyrosine kinase activity. Among
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Figure 2: Regulation of energy homeostasis by neuronal circuits and extrinsic influences.

AgRP - agouti-related Protein, ARC - arcuate nucleus, CART - cocaine and amphetamine-

related transcript, GLP1 - Glucagon-like peptide 1, LHA - lateral hypothalamic area, NPY -

neurotransmitters neuropeptide Y, POMC - pro-opiomelanocortin, PP - pncreatic polypep-

tide, PVN - paraventricular nucleus, PYY - peptide YY.

rare individuals who are obese because of the lack of this peptide, administration of

physiological doses of leptin decreases food intake and causes weight loss. However,

common obese patients are leptin-resistant and have elevated circulating levels of this

peptide. Experimental studies in animals have identified two intracellular proteins that

terminate receptor signaling, acting as potent mediators of leptin resistance: cytokine

signaling- 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B). Therefore, inhi-

bition of either of these proteins could increase leptin sensitivity. However, inhibition

of SOCS3 as therapeutic strategy for obesity treatment is highly advised because this

protein is implicated in several biological processes [35]. In contrast, PTP1B is a viable

anti-obesity drug target, since PTP1B knockout rats are sensitive to leptin and insulin

and resistant to diet-induced obesity. Moreover, it has been shown that the selective

blockade of the PTP1B expression results in decreases in food intake and reduction of

body weight by increasing the action of leptin and insulin in the hypothalamus [36].

These results validate PTP1B inhibitors as promising anti-obesity agents.
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Table 1: Obesity-relevant targets retrieved from a literature research covered in the sys-

tematic data mining workflow presented in section 4.1 [7]. Only targets were included, for

which ligand data has been deposited in the ChEMBL database [8] to the time of the study.

Required

Modulation
Receptors Enzymes

Transcription

factors

Activation 5HT1BR [9] 5HT2CR [9] SIRT1 [10] PPARα [11]

AMY1 [12] AMY3 [12] PPARδ [11]

β3AR [13] BRS3 [14] PPARγ [11]

CCKAR [15] GLP1R [15] THRβ [16]

MCR3 [17] MCR4 [17]

NPYR2 [18] NPYR4 [18]

OX1R [19] OX2R [19]

Deactivation 5HT6R [20] CB1 [21] 11βHD1 [22]

CRHR2 [23] GALR1 [24] ACC1 [25]

GHSR [15] H3R [26] ACC2 [25]

MCHR1 [27] µOR [28] CPT1L [29]

NPYR1 [18] NPYR5 [18] CPT1M [29]

DGAT1 [30]

FAS [31]

PLIP [32]

PTP1B [33]

SCD1 [34]

1.3.2 Affecting Metabolism Through Peripheral Action

Activation of the β3 adrenergic receptor (β3AR) induces both catecholamine-stimulated

lipolysis and thermogenesis in adipose tissue [13]. It appears that thermogenesis is

primarily responsible for the removal of stored fat in animal models. Treatment with

molecules selectively activating β3AR markedly increases energy expenditure and de-

creases obesity in rodents [37]. These observations demonstrate the potential of β3AR

activators as anti-obesity agents.

1.3.3 Modulating the Gastrointestinal Tract

Cholecystokinin (CCK) inhibits food intake in all mammalian species in which it has

been tested, including human [15]. This peptide is rapidly released from L cells in

the upper intestine in response to the intraluminal presence of digestive products,

resulting in the earlier termination of the meal. The effect of CCK on feeding is

mediated by its interaction with the CCK A receptor (CCKAR), which is expressed
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in the GI tract as well as in several areas of the CNS. Infusion of the C-terminal

octapeptide of CCK, the shortest bioactive form, reduces food intake in obese men

[38]. In contrast, administration of CCKAR inhibitors results in increased food intake

through increasing meal size [39].

1.3.4 Reducing the Morbidity of Associated Disorders

The peroxisome proliferator-activated receptors (PPAR) are transcription factors re-

sponsible for the transcription of genetic information important to the metabolic sig-

naling network [11]. Three PPAR isoforms are known, i.e. α, γ and δ. PPARα is

a regulator of fatty acid metabolism and energy homeostasis and is mainly expressed

in the metabolically active tissues like liver, heart, skeletal muscle and adipose tissue.

Molecules activating this receptor can reduce weight gain by increasing thermogenesis

but also improve blood lipid levels important in several cardiovascular diseases [40].

PPARδ acts as central regulator of fat burning and thermogenesis. Activation of this

isoform increases fatty acid oxidation and energy expenditure but has also shown to

improve lipid and glucose levels in mouse models of type II diabetes [41]. PPARγ is

mainly expressed in the adipose tissue and is a key mediator of adipogenesis. Activa-

tion of this receptor results in transforming fat storing white adipose tissue into fat

burning brown adipose tissue and thus increased energy expenditure [42]. Further-

more, PPARγ activators were found to sensitize type II diabetes patients for insulin

[43]. Taken together, agents that activate PPARs have great potential in obesity

treatment by increasing energy expenditure and improving associated disorders.

1.4 Current Treatment Approaches for Obesity

Weight loss of just 5 to 10 % achieved by lifestyle intervention leads to significant

improvements of cardiovascular disease risk factors [44]. However, most patients with

obesity undergoing a lifestyle intervention will regain much of their lost weight on

the long-term [45]. Another treatment option for patients with obesity is bariatric

surgery. Although being one of the most effective treatments, bariatric surgery is

reserved for patients with severe or complex obesity and additionally, carries risks of

surgical complications and weight regain [46–49]. Combining lifestyle intervention with

pharmacological treatment proved to be the most effective approach [50].

Currently, six drugs are approved by the federal drug administration (FDA) for

treatment of obesity (Fig 3) [5]. Phentermine monotherapy is affecting the release of

catecholamines in the hypothalamus causing reduced appetite and food consumption.

Although phentermine has already been approved in 1959 for obesity management, the

exact mechanism is still unclear [5]. The combination of phentermine with GABA-

releasing properties of topiramate was found to be more effective than phentermine
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monotherapy [51, 52]. Orlistat reduces systemic fat absorption by inhibition of gas-

tric and pancreatic lipases, ultimately decreasing energy intake [32]. Lorcaserin is a

selective agonist of the 5-HT2C receptor stimulating anorectic POMC/CART neurons

[53]. The drugs naltrexone and bupropion act synergistically by antagonizing the µ
opioid receptor and by inhibiting the reuptake of dopamine and norepiniphrine [54].

Liraglutide is the most recently approved obesity medication and acts via activation

of the GLP-1 receptor increasing the insulin release from the pancreas [55].

According to clinical trials phentermine/topiramate is the most effective pharma-

ceutical obesity therapy causing on average an additional weight loss of only 7 %

compared to placebo after one year of treatment [5]. Beside low efficacy, all currently

approved medications show serious or at least unpleasant side effects underlining a

dearth for efficient and safe anti-obesity medications [5].

Figure 3: Medications currently approved by the federal drug administration for treatment

of obesity [5].

1.5 GPCRs Targeted in This Thesis

Members of the G-protein coupled receptor (GPCR) family represent the key target for

one third of FDA approved drugs rendering GPCRs an extremely important protein

family for drug discovery [56]. Numerous hormones and neurotransmitters associated

with obesity act via binding to GPCRs, e.g. ghrelin, NPY, AgRP and POMC [57].
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Notably, except for orlistat, all currently approved anti-obesity medications target

GPCRs.

The GPCR protein family consists of 800 members sharing a common motif of 7

transmembrane helices connected by alternating extracellular and intracellular loops

(Fig 4A). They are responsible for transmitting extracellular signals into the cell and,

ultimately, trigger cellular responses. The activity of GPCRs can be modulated by

ligands with different size, ranging from photons, over small molecules like histamine

to bigger peptides like NPY [57].

The binding of agonists induces a conformational change in the intracellular domain

increasing the ligand-dependent recruitment of signal transducers like G-proteins, ar-

restins and extracellular signal-regulated kinases (ERKs) among others. In contrast,

neutral antagonists block receptor signaling at the naturally imprinted basal level.

Inverse agonists, can reduce the basal signaling level providing further therapeutic

opportunities [58].

Fundamental research by Ballesteros and Weinstein on GPCR amino acid sequences

has revealed conserved amino acid residues in each of the transmembrane helices [59].

This finding progressed into a generic residue numbering scheme that describes each

residue of GPCR transmembrane helices with a helix number and a number indicating

the distance to the most conserved residue of this helix [60]. By definition, the most

conserved residue of a helix retrieves the number 50. All other residues of a helix are

numbered according to the distance to this residue, e.g. the residue V3.32 describes a

valine of helix 3 that is 18 positions before the most conserved residue of helix 3 (Fig

4B). This numbering scheme has been proven extremely useful in comparing subtype

specific effect of mutations and ligand interactions [60]. For instance, ligand binding

to aminergic GPCRs commonly involves a charged interaction with residue D3.32 [61].

Such information is indispensable for discovery of novel ligands targeting GPCRs.

1.5.1 Histamine H3 Receptor

The histamine receptor family is a class of GPCRs with four known subtypes binding

the endogenous biogenic amine histamine (Fig 5) [64]. The histamine H3 receptor

(H3R) is mainly expressed in the CNS acting as presynaptic auto-receptor providing

negative feedback for histamine release via Gi/o-protein dependent signaling. Addi-

tionally, H3R was found to be involved in the regulation of other neurotransmitters

including acetylcholine, norepinephrine, dopamine, glutamate, γ-aminobutyric acid

and serotonin which raised interest for drug development against several neurologic

and psychatric disorders [65]. The inverse agonist Pitolisant is the only currently ap-

proved drug that was developed to specifically target H3R and is used for treatment

of narcolepsy [66].

The histamine system was also investigated for its role in energy homeostasis and

7
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Figure 4: Structure of G-Protein coupled receptors. (A) 3D representation of cannabinoid

receptor 1 crystal structure in complex with antagonist AM6538 (blue surface) [62]. (B)

Snake plot of cannabinoid receptor 1 generated with a GPCRdb web service [63]. The most

conserved residue for each transmembrane helix are highlighted in yellow.

as potential target of anti-obesity treatments. Administration of histamine reduces

not only food intake but also increases thermogenesis in rodents [67]. In contrast,

decreasing histamine levels induces body weight gain [68]. H3R antagonists which

block the negative feedback for histamine release showed anti-obesity effects in rodents,

pigs and monkeys [69–73] (Fig 5). However, promising pre-clinical results could not

be translated to human obesity treatment yet [74].

1.5.2 Melanin-Concentrating Hormone Receptor 1

The neurotransmitter melanin-concentrating hormone (MCH) and its G-protein cou-

pled receptors MCHR1 and MCHR2 are expressed in several brain areas implicated in

energy balance as well as sleep and arousal [75, 76]. MCHR1 signaling involves Gi/o

and Gq-proteins as well as ERK phosphorylation [77]. In contrast, MCHR2 was found

to only recruit Gq-proteins [78].

Mice lacking either MCHR1, MCH or complete MCH neurons show increased loco-

motor activity, have an increased energy expenditure and are resistant to diet-induced

obesity [79–82]. The function of MCHR2 and its implication in energy balance is

less well understood, since MCHR2 is not found in rodents complicating the study

of animal models for obesity [83]. However, a transgenic mouse model indicates that

MCHR2 might oppose the endogenous role of MCHR1, thus, favoring selective MCHR1

antagonists [84].

Several MCHR1 antagonists were already developed and showed promising pre-

8
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clincial results in rodents [85–89] (Fig 5). However, non of the studied molecules was

found to be effective in clinical trials in human [90]. Also, partially conflictive results

have been published about the importance of MCHR1 antagonist CNS exposure. Sev-

eral studies discontinued development of clinical candidates due to a low CNS exposure

[89]. However, another study in rodents found an effective peptidomimetic antagonist

selective for MCHR1 that is theoretically not able to enter the CNS [91]. The authors

hypothesize that their studied MCHR1 antagonist is acting via binding to MCHR1

at adipocytes. These results underline the still limited understanding of pathways

involved in obesity and demand further investigations.

Figure 5: Endogenous ligands of H3R and MCHR1 as well several drug candidates with

promising pre-clinical results [67–73, 80, 85–89].

1.6 Rational Multi-Target Drug Design: An

Emerging Paradigm

Driven by the experience that unwanted side effects often originate from binding to

undesired off-targets, rational drug design traditionally focused on maximizing the

9
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selectivity of ligands for a particular molecular target [92]. However, several ”selective”

drugs were later shown to be effective because of previously unknown activities towards

other disease-relevant drug targets [93]. Also, our knowledge about possible target

modulation by approved drugs is far from complete, since testing each drug against

each known target is practically infeasible. Thus, many drugs that are being considered

selective, may posses a yet unknown multi-target character [94].

Multi-target approaches question the dogma of maximizing selectivity for one tar-

get, suggesting that the effective adjustment of a phenotype might require the modu-

lation of multiple targets, since biological networks can often find alternative routes to

bypass the inhibition of a single target [92, 95]. Additionally, it is assumed that multi-

target drugs can be used in smaller doses causing milder side effects, and furthermore

decrease the possibility for drug resistance [95]. Especially drug design campaigns

against complex diseases like obesity or psychiatric disorders that depend on several

pathways may benefit from such approaches. Notably, most medications for mood

disorders modulate the activity of multiple targets in the CNS [96].

Taken together, these characteristics render multi-target approaches a promising

strategy to develop effective and safe anti-obesity pharmaceuticals.

10



Aim and Objectives

The constantly increasing prevalence of obesity indicates a large unmet of suitable

medications to fight the obesity epidemic. Currently, available pharmaceuticals only

show low efficacy and serious or at least unpleasant side effects. The complex etiology

of obesity represents a challenge for traditional drug design campaigns and calls for

novel approaches considering the multitude of pathways involved. This thesis aims

at applying the multi-target concept to obesity drug development with the following

steps:

• Identification of obesity-relevant target pairs that are modulated by molecules

with high chemical similarity.

• Validation of the most promising target pair by in vitro evaluation of small

molecules for potential multi-target character.

• Development of mechanistic structural 3D models to investigate key residues for

ligand binding.

• Development as well as statistical and experimental validation of predictive 3D

pharmacophores that allow for virtual screening of compound databases.

• Development of novel computational methods to overcome current limitations.

In this thesis, current methods in computational drug design were applied. The

concepts behind these methods are described in the next chapter. The presented in

vitro results for experimental validation were generated in close collaboration with the

group of Prof. Dr. Holger Stark at the Heinrich-Heine-University in Düsseldorf.
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Computational Methods

Computational techniques offer unique opportunities to accelerate the drug discovery

process by providing access to highly efficient virtual screening as well as by rational-

izing lead optimization efforts [97]. Depending on the employed data, computational

methods can be classified into ligand- and structure-based approaches.

3.1 Ligand-Based Approaches

3.1.1 Molecular Similarity-Based Virtual Screening Methods

The utilization of molecular similarity measures in the drug discovery process is based

on the observation that similar molecules often posses a similar property, e.g. affinity

against a certain target [98]. Such measures can be categorized into three types,

differing in the complexity of the underlying data, computational costs and accuracy

(Tab 2).

The most simple, yet widely used similarity measure is the comparison of molecular

properties. Lipinski’s rule of five is a prominent example estimating the oral bioavail-

ability of a molecule with the number of hydrogen bond donors and acceptors, molec-

ular weight and computationally estimated octanol-water partition coefficient [99]. It

has been intensively employed in the last two decades influencing decision making in

the pharmaceutical industry. However, the concept of estimating oral bioavailability

with molecular properties is nowadays being challenged [100].

Initially being developed for substructure searches, molecular fingerprints formed

the basis of additional methods for assessing the similarity of molecular structures

on the two-dimensional level [101]. Most molecular fingerprints store the presence of

chemical substructures in a binary vector. For example, the molecular access system

(MACCS [102]) fingerprint searches for 166 substructures and sets corresponding bits

to one if a substructure was found. In contrast, the extended-connectivity fingerprint

records the identity and connectivity of each atom. This fingerprint was further de-

veloped classifying atoms into atom types (e.g. hydrogen bond donors and acceptors

or hydrophobic and aromatic moieties) to increase the chance of scaffold hopping in

similarity searches [103]. Corresponding bit vectors can be efficiently compared with
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similarity coefficients, e.g. Tanimoto coefficient ranging from 0 (no similarity) to 1

(highest similarity) [104].

The development of molecular fingerprints enabled researchers to screen molecular

databases for chemically similar molecules in a highly efficient manner [101]. Other

prominent examples of fingerprint usage are the identification of protein targets binding

similar molecules for multi-target or off-target analysis [105] and the identification of

matched molecular pairs to rationalize structure-activity relationships [106].

Similarity measurements at the three-dimensional level are often less successful in

retrospective virtual screening experiments than similarity measurements employing

molecular fingerprints [107]. Also, 3D similarity is computational more expensive, since

it requires the generation and comparison of multiple 3D conformations to achieve a

reasonable performance. However, methods employing 3D similarity show more scaf-

fold hopping, which is important to extend the chemical space of a hit series [107]. A

prominent tool for assessing 3D similarity is ROCS (rapid overlay of chemical struc-

tures), which defines the volume of a molecule with atom-centered Gaussian functions

[108]. The employed algorithms superpose conformations by maximizing the overlap

of the molecule volumes. Additionally, implemented alignment and scoring routines

analyze the chemical functionality of the molecules (e.g. hydrogen bond donors and

acceptors or aromatic rings) to improve screening performance.

Table 2: Types of molecular similarity measures. HBA - hydrogen bond acceptor, HBD

- hydrogen bond donor, MW - molecular weight, clogP - calculated octanol-water partition

coefficient, Ro5 - rule of 5, ECFP - extended-connectivity fingerprint, ROCS - rapid overlay

of chemical structures.

Type Data Tool

Molecular

properties

HBD HBA MW clogP

Ro5 [99]1 4 431 4.2

2 3 342 3.4

2D structure

N N

N NH

O

O

ECFP [103]

N O

H
N

H
N

O

3D structure ROCS [108]
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3.2 Structure-Based Approaches

3.2.1 3D Models of Proteins at Atomistic Resolution

Atomistic models of proteins are essential for computer-aided drug design campaigns

to understand the interactions formed between ligand and protein, and to suggest

novel molecules for in vitro testing [97]. Advancements in nuclear magnetic resonance

spectroscopy, X-ray crystallography and cryogenic electron microscopy drove the re-

lease of more than 140.000 experimentally resolved protein structures freely accessible

at the Protein Data Bank [109, 110].

Despite this progress, many important drug targets still lack structural data. Es-

pecially membrane proteins such as GPCRs proved challenging to crystallize [111].

In such a situation, researchers rely on homology modeling, a method that exploits

structural information from closely related proteins with resolved structures to com-

putationally develop an atomistic model of the protein of interest [112]. Software tools

like MODELLER [113] and MOE [114] provide algorithms to generate homology mod-

els with a defined workflow: (i) Template selection based on sequence similarity using

efficient alignment algorithms like BLAST [115], (ii) alignment of template and target

sequence with more accurate algorithms like Needleman-Wunsch [116], (iii) mutating

residue mismatches into the corresponding residue of the target sequence, (iv) de novo

modeling of target sequences without a corresponding template structure and (v) re-

solving severe atom clashes. Finally, specialized programs and web-servers like WHAT

IF [117] can be employed to identify structural problems of the homology model, e.g.

atom clashes or wrong dihedral angle distributions [Fig 6].

Figure 6: Ramachandran plots reporting the dihedral angle distribution for general (A)

and glycine residues (B). Blue dots are inside the the area of dihedral angles observed in

high resolution crystallographic structures, red dots outside.
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3.2.2 Ligand-Protein Docking

Molecular docking is a frequently used method in structure-based drug design to pre-

dict the conformation of a small molecule inside a target binding site [118] (Fig 7).

Several docking programs have been developed including GOLD [119], AutoDock [120],

FlexX [121] and Glide [122]. Implemented algorithms sample the conformational space

of ligands and evaluate the quality of each predicted pose with scoring functions [118].

GOLD, for instance, employs a genetic algorithm mimicking the process of natural

selection by altering parameters based on mutation, crossover and migration [119].

Parameters describing the torsional, translational and rotational degrees of freedom

are distributed over different chromosomes and each round of evolution results in a

new combination of these parameters (docking pose), which is subsequently scored to

allow a bias towards the fittest parameters. Scoring functions of docking programs

significantly differ and typically involve the evaluation of several binding pose proper-

ties, e.g. steric and electrostatic complementarity, van der Waals attractive potential,

desolvation energy and internal energy of the ligand [118].

Retrospective studies found that docking programs are successful in generating the

binding conformation observed in experimentally resolved protein-ligand complexes

[123, 124]. However, the calculated docking scores do not correlate with binding affin-

ity for most of the studied targets. Despite this limitation, docking studies are an

integral part of computational drug design campaigns aiding the rational explanation

and exploitation of structure-activity relationships as well as the virtual screening of

compound libraries for novel chemical entities [97].

Figure 7: Predicted conformations of a small molecule inside a protein binding pocket.
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3.2.3 3D Pharmacophores for Virtual Screening

The chemical space of small organic molecules for drug discovery is estimated to con-

tain at least 1060 possible molecules [125]. The enormous improvements in computing

power and artificial intelligence enables researchers to generate virtual compound li-

braries with billions of synthesizable molecules [126]. These resources can advance

drug design campaigns but cannot be handled sufficiently with traditional in vitro

high-throughput screenings [127]. Three-dimensional pharmacophore models describe

the arrangement of electrostatic and chemical features required for a small molecule

to bind its macromolecular target and can be used to screen such virtual compound

libraries in a highly efficient manner [128]. Virtual screenings employing 3D pharma-

cophores typically achieve hit rates higher than 10 % rendering 3D pharmacophores

an invaluable tool for drug design [129]. In the following review, the principles of 3D

pharmacophores are described and recent developments in the field are highlighted.
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Abstract

3D pharmacophore models are three-dimensional ensembles of chemically

defined interactions of a ligand in its bioactive conformation. They represent an

elegant way to decipher chemically encoded ligand information and have there-

fore become a valuable tool in drug design. In this review, we provide an overview

on the basic concept of this method and summarize key studies for applying 3D

pharmacophore models in virtual screening and mechanistic studies for protein

functionality. Moreover, we discuss recent developments in the field. The combi-

nation of 3D pharmacophore models with molecular dynamics simulations could

be a quantum leap forward since these approaches consider macromolecule–
ligand interactions as dynamic and therefore show a physiologically relevant

interaction pattern. Other trends include the efficient usage of 3D pharmacophore

information in machine learning and artificial intelligence applications or freely

accessible web servers for 3D pharmacophore modeling. The recent developments

show that 3D pharmacophore modeling is a vibrant field with various applications

in drug discovery and beyond.

This article is categorized under:
Computer and Information Science > Chemoinformatics
Computer and Information Science > Computer Algorithms and
Programming
Molecular and Statistical Mechanics > Molecular Interactions
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3D pharmacophores, artifical intelligence, machine learning, virtual screening, web services

1 | INTRODUCTION

Macromolecular biological structures such as proteins or DNA bind small organic molecules triggering functional modula-
tion and biological response. The way in which ligands bind to their macromolecular targets is based on a small set of chem-
ical interactions (chemical features), such as hydrogen bonds, charges, or lipophilic contacts. 3D pharmacophores represent
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an intuitive and powerful description of these interaction patterns. The high degree of abstraction in 3D pharmacophores
enables the rationalization of binding modes for chemically diverse ligands and, subsequently, rapid and highly efficient vir-
tual screening of molecular databases. Although the concept of 3D pharmacophores was developed at the beginning of the
19th century, virtual screening experiments were not performed until the late 80s and early 90s, when the first software
packages for database searches were released.1 The chemical space for molecules with a molecular weight below 500 Da is
estimated to contain at least 1060 organic molecules.2 Additionally, current developments in machine learning algorithms
allow for in silico generation of billions of theoretically synthesizable molecules.3 3D pharmacophores present a unique
opportunity to harvest the enormous available chemical space for drug-like molecules.

In this review, we give a comprehensive overview of 3D pharmacophore models, their usage in drug design, and
current developments in the field. We introduce the basic concept and summarize the underlying methodology for
describing binding modes and for applying 3D pharmacophore models in virtual screening. We highlight the power of
3D pharmacophore models in drug discovery by showcasing key studies for virtual screening as well as studies that aim
at a mechanistic understanding of protein functions. Moreover, we present and discuss current developments such as
the integration of molecular dynamics, the combination with machine learning, and freely accessible web services.

2 | THE PRINCIPLES OF 3D PHARMACOPHORES

3D pharmacophores capture the nature and three-dimensional arrangement of chemical functionalities in ligands that
are relevant for molecular interactions with the macromolecular target. Chemical functionalities are thereby classified
into more general pharmacophore features, for example, hydrophobic areas, aromatic ring systems, hydrogen bond
acceptors, hydrogen bond donors, negatively ionizable groups, and positively ionizable groups.4 Less common interac-
tion types that contribute to the binding of ligands, such as metal coordination and halogen bonds, are either already
implemented in most software packages or require user definition.5–7 Besides chemical nature and spatial arrangement,
3D pharmacophores can capture feature directionality in the case of hydrogen bonds and aromatic interactions.8 Addi-
tionally, spatial tolerance and weight can be fine-tuned for each pharmacophore feature to adjust its size and impor-
tance in the 3D pharmacophore. In order to describe the preferable shape of molecules in the binding site,
pharmacophore features are often combined with exclusion volume constraints (also referred to as excluded volume
constraints). For instance, an exclusion volume constraint may consist of a set of spheres that represent the protein resi-
dues imposing a barrier for binding of potential ligands.

Several 3D pharmacophore modeling programs have been developed, of which several are free for academic users
(Table 1). Although the exact definition and implementation of pharmacophore features and their characteristics may differ
between different 3D pharmacophore modeling programs, the underlying concept of 3D pharmacophores remains the same.

2.1 | 3D pharmacophore elucidation

3D pharmacophore elucidation methods can be classified as feature-based, substructure pattern-based, or molecular
field-based, depending on how the pharmacophore features are derived. Feature-based methods derive pharmacophore
features by filtering for geometric descriptors that match the characteristics of molecular interactions. Pattern-based
methods, such as those implemented in PHASE, LigandScout, and Catalyst, detect substructures for chemical features
in molecules. For example, all hydroxyl groups are defined as hydrogen bond donors and acceptors. In contrast, molec-
ular field-based methods such as FLAP and Forge sample the molecular surface of either ligand or macromolecular tar-
get with different chemical probes and calculate interaction energy maps which can be translated into pharmacophore
features. An additional distinction between 3D pharmacophore generation methods is based on the type of employed
data. This could be a set of active ligands, structural data on the ligand in complex with its macromolecular target, or
structural data of the macromolecular target alone (Figure 1).

2.1.1 | Ligand-based 3D pharmacophores

Ligand-based 3D pharmacophores are used when no structural information on the macromolecular target is available.
They are composed of chemical features shared by a set of active compounds that are important for the interaction with
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the target (Figure 1). Shared pharmacophore features are usually derived from the 3D alignment of different conforma-
tions of active compounds. 3D structures of the conformers are aligned so that the same pharmacophoric features are
located in similar positions. If all the aligned molecules share a certain feature at a specific position, a pharmacophoric
feature is placed at this position.18 3D alignments are often preceded by prefiltering steps based on quick distance
checks, which substantially reduce computational time. For instance, the HipHop algorithm in Catalyst uses “pruned
exhaustive search” and gradually builds-up shared 3D pharmacophores from the two-feature pharmacophores found in
conformers of molecules.12 In order to identify a shared 3D pharmacophore at each step, a precomputed list of all the
interfeature distances in the molecule is first checked to see whether the specific feature combination is present. This
prefiltering step is followed by alignment by least-squares fit of the features. LigandScout identifies optimal alignment
by first checking best pairings between two sets of pharmacophore features based on interfeature distances, followed by
alignment using the Kabsch algorithm.19 In some software packages, such as HypoGen in Catalyst, the derived three-
dimensional arrangement of chemical features can be correlated with biological activities of known actives.14,20,21 This
step can help to determine the importance of each feature for small molecule bioactivity.

However, it is important to note that bioactive conformations of the molecules are usually not known. Therefore,
ligand-based 3D pharmacophore software considers a set of low energy conformations for each molecule. Although
commercial conformer generation algorithms are generally successful in reproducing bioactive conformations, the
ligand-based 3D pharmacophore generation procedure is not guaranteed to yield an alignment with the bioactive con-
formations.22 Another limitation of ligand-based 3D pharmacophores is the dependence on structurally similar mole-
cules, since structurally more diverse molecules may not share the same binding mode and hence, require separate
pharmacophore models. But even if different molecules share a common binding mode, a correct alignment becomes
more challenging to the ligand-based algorithms the more diverse the molecules are.8

TABLE 1 3D pharmacophore modeling software, their components, and availability of free academic licenses

Software Input Identification methods
Virtual screening
capability

Free for
academic usea

FLAP9 Ligand, complex, apo Molecular field Yes No

Pharmer10 Ligand, complex Substructure pattern, feature Yes Yes (GPLv2)

LigandScout11 Ligand, complex, apo Substructure pattern, feature, molecular field Yes No

Catalyst12 Ligand, complex, apo Substructure pattern, feature, molecular field Yes No

MOE13 Ligand, complex, apo Substructure pattern, feature, molecular field Yes No

PHASE14 Ligand, complex, apo Substructure pattern, feature, molecular field Yes No

Pharao15 Ligand Substructure pattern Yes Yes (GPLv2)

UNITY16 Ligand, complex Substructure pattern, feature Yes No

Forge17 Ligand Molecular field Yes Free for PhD students

Note: Software name describes virtual screening component. Names of 3D pharmacophore generation components in respective software suite may vary. 3D
pharmacophores are commonly derived from an overlay of small molecules (ligand), from a ligand bound to its macromolecular target (complex) or from the

macromolecular target alone (apo). Pharmacophore features are identified by analyzing molecular fields describing the potential interaction energy toward
molecular probes (molecular field), by searching for substructure patterns able to perform the respective interaction (substructure pattern) or by filtering for
geometric descriptors fulfilling the criteria for molecular interactions (feature).
aThe software website was searched, or holder of rights was asked for academic license conditions.

FIGURE 1 3D pharmacophore

generation approaches based on the

available data. 3D pharmacophores

can be generated from either a set of

known ligands, atomistic models of

ligand-macromolecular target

complexes or the sole

macromolecular (apo) target
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2.1.2 | Structure-based 3D pharmacophores

Structure-based 3D pharmacophore elucidation can be performed on atomistic models of two types of structures. In
macromolecule–ligand complexes, a ligand is present in the binding site of the target molecule (Figure 1). Ligands in
complex with a macromolecular structure are primarily either co-crystallized or docked into the target site. If there is
no available structure of a macromolecule–ligand complex, or no known ligands at all for a binding site, programs can
derive 3D pharmacophore models from atomistic models of apo structures (Figure 1; Table 1). These apo structures are
atomistic models of macromolecules bound to no ligand.

Apo 3D pharmacophore elucidation techniques are especially useful in cases where there are no known ligands,
necessitating a de novo approach to pharmacophore feature placement within the cavity. However, apo 3D
pharmacophore generation methods can also be useful when applied to structures of macromolecule–ligand complexes.
In this instance, they can be used to generate a novel 3D pharmacophore for the same active site that is unbiased by the
existing ligand. This can be used to explore a novel region of chemical space for the same binding cavity. Accordingly,
one of the strengths of 3D pharmacophore-based virtual screening is the potential for scaffold hopping afforded by the
arrangement of abstract features not bound to any specific ligand structure.

Though they are the most common drug targets, proteins are not the only macromolecular structures analyzed in
3D pharmacophore development. Programs including LigandScout and Catalyst (Table 1) can generate 3D
pharmacophore models based on nucleic acids. For example, Spitzer et al. generated a 3D pharmacophore hypothesis
for minor groove binders based on a DNA–ligand complex.23

Feature-based methods can be employed on macromolecule–ligand complexes as well as on empty binding sites.
Feature-based programs analyze a target–ligand complex and employ a set of chemical and geometric rules to identify
and classify target–ligand interactions, which then comprise the pharmacophore features.19 In an example of a feature-
based method being applied to an apo structure, a strategy was developed by Schrödinger whereby fragments are
docked into an apo binding site using the Glide XP docking program.24,25 The most energetically favorable fragment
docking poses are selected to construct the 3D pharmacophore hypothesis using Phase (Table 1).14

Molecular field-based methods, such as FLAP (Table 1), employ molecular interaction fields (MIFs) to identify hot-
spots for pharmacophore feature placement.9 A prominent tool for generating MIFs is the GRID software, which is well
known for its role in the discovery of the antiviral drug zanamivir.26,27 In principle, an evenly spaced grid is placed over
a predefined binding cavity, and probes are placed to sample the binding site. These probes take the form of moieties
representing the interactions most likely to occur between the macromolecule and ligand functional groups. As a next
step, the energy between probe and target structure atom is calculated to define interaction sites. Thus, these probes
can identify sites of favorable interactions with the macromolecule. These interaction energies generate MIFs, which
are contoured by energy to generate maps that describe how the interaction energy between the target and a given
probe varies over the surface of the target. Molecular field-based programs take the points where the energy of a MIF
represents a local minimum, termed “hotspots,” and convert them into pharmacophore features according to the type
of probe that forms the most energetically favorable interaction at this point. Molecular field-based hotspot detection
can also be performed by employing noncommercial software such as AutoGrid within AutoDock which provides
access to energy grid maps for various atom types.28,29

Programs creating pharmacophore features for apo binding sites generate a surplus of possible features. These must
be reduced to a reasonable number for virtual screening; a balance between enough features to allow for specificity, but
not too many features, as this would be too restrictive and could lead to false negatives. Some programs include a fea-
ture reduction functionality, but other programs output an initial, unrefined 3D pharmacophore. The initial unrefined
3D pharmacophore composed of many features must then be reduced by the user. Feature selection can be based on
information about the binding site and binding site-lining atoms, and according to which features of the binding site
the user would like the ligands to exploit. Feature reduction must not only be performed manually; HS-Pharm30 is an
example of a program that uses machine learning to reduce the number of initial 3D pharmacophore features, as dis-
cussed in the advanced section later.

2.2 | Pharmacophore-based virtual screening

In pharmacophore-based virtual screening, 3D pharmacophores developed from either a set of active ligands, a target–
ligand complex or the apo target, are screened against virtual libraries of molecules. Molecules that satisfy the query
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pharmacophore requirements are retrieved from the libraries. The prioritization of compounds by virtual screening can
dramatically increase the hit rate compared to in vitro high-throughput screenings and hence reduce the number of
compounds for experimental testing (Figure 2).

To address conformational flexibility of the molecules, conformer libraries for the screened compounds are prepared
before the screening step. It is worth mentioning that conformation generation is handled differently by screening soft-
ware packages. Some software packages, such as LigandScout, Catalyst, or MOE perform virtual screening on a pre-
generated set of conformations for each library molecule, while other software packages, such as PHASE, allow on-the-
fly conformer generation during the screening step sacrificing virtual screening speed.19,31,32 For more information on
conformer generation for virtual screening, the reader is encouraged to read available publications on this
topic.8,22,32–36

In the screening step, pharmacophoric features in the query pharmacophore are compared to pharmacophoric fea-
tures present in the molecules of the screened library. Comparison methods can be divided into two distinct
approaches: fingerprint-based and 3D alignment-based. Fingerprint-based methods, such as FLAP, primarily extract
information about feature presence and/or interfeature geometries into fingerprint-like descriptors, which enables
time-efficient similarity (e.g., using the Tanimoto coefficient) comparison between the query pharmacophore and the
conformer library. Alignment-based methods including LigandScout, Catalyst, and PHASE perform 3D alignment of
the pharmacophore feature set. A match is reported if the pharmacophoric feature set of a distinct conformation of a
molecule can be aligned to the feature set of the query pharmacophore. 3D alignment is computationally expensive and
time consuming, especially in the context of large molecular library screening. In order to reduce computational time,
3D alignment is often preceded by a fast prefiltering step based on feature-types, feature-counts, or fast distance checks.

FIGURE 2 Virtual screening

workflow. 3D pharmacophores are

generated with either structure- or

ligand-based approaches. State-of-the

art retrospective validation is

performed by plotting ROC curves

with elaborated sets of actives and

decoys. Pharmacophore-based virtual

screening is often followed by

computationally more expensive

methods such as docking or

molecular dynamics simulations to

get more differentiated structural

insights. ROC, receiver operating

characteristics
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LigandScout is the only program that provides loss-less prefiltering steps, providing the most geometrically most accu-
rate screening algorithm. Additionally, its unique pattern-matching 3D alignment algorithm results in screening hit
lists that are orthogonal to other programs, mainly relying on interfeature distance fingerprints.37

In cases where experimental data for binding ligands is available, derived 3D pharmacophore models can be vali-
dated. Usually, a validation set for 3D pharmacophores contains reported active, inactive and decoy molecules. Two
points should be taken into consideration when preparing the validation set: Firstly, 3D pharmacophores describe a
unique binding pose. Therefore, the active set should include molecules that share the same binding mode within the
target protein. Secondly, reported inactives should be included with caution, as observed inactivity may result from
other factors, for example, insolubility or inability to reach the target in cell-based assays. Therefore, the use of carefully
selected decoys is encouraged over inactive molecules. A decoy is a compound presumed to be inactive and showing a
high similarity in physicochemical properties to the active compounds. The Directory of Useful Decoys (DUD-E) pro-
vides a convenient web-based tool for the generation of decoys.38 Subsequent screening against a validation set can be
used to assess the quality of the developed 3D pharmacophore, and to further optimize it (Figure 2).

When evaluating the quality of a 3D pharmacophore model by its performance in virtual screening, various metrics,
or enrichment parameters, are employed (Figure 2). 3D pharmacophore performance is evaluated in terms of how
many actives the 3D pharmacophore can retrieve from a data set, and how well the 3D pharmacophore is able to cor-
rectly classify compounds as active or inactive. Enrichment parameters classify the compounds in the data set into one
of four categories: active (true positive, TP); inactive but identified as active (false positive, FP); inactive (true negative,
TN); active but classed as inactive (false negative, FN). Different metrics measure different aspects of 3D
pharmacophore performance. These metrics include the yield of actives (YA), which describes the number of true posi-
tives present in the list of total hits retrieved by the 3D pharmacophore.39 Receiver operating characteristics (ROC) cur-
ves plot the rate of true positives identified over the rate of false positives, thus displaying the sensitivity and specificity
of the 3D pharmacophore model, characterizing how many active hits the 3D pharmacophore can identify in relation
to how many inactive compounds it misidentifies as active.39–41 For a comprehensive list of enrichment parameters,
how they are calculated, and their uses, the reader is referred to Braga and Andrade.40

After a 3D pharmacophore has been developed and retrospectively validated, it can be used to screen available com-
mercial or in-house compound libraries (Figure 2). Depending on the complexity of the 3D pharmacophore and the size
of the library, hit lists of various sizes will be retrieved by pharmacophore screening. 3D pharmacophore-based screen-
ing is often followed by further characterization of the binding mode with methods like molecular docking, targeted
molecular dynamics simulations, or other methods to gain more structural information to rationally prioritize mole-
cules for experimental testing (Figure 2).

3 | APPLICATION CASE STUDIES

3.1 | Virtual screening

Besides molecular docking, 3D pharmacophores are widely applied for virtual screening. In this section, we highlight
and discuss recent success stories of virtual screening campaigns covering different target classes and methodologies.

3.1.1 | Balancing the immune system with small molecule modulators

Toll-like receptors (TLRs) act as key players in the activation of the innate immune response by recognizing molecular
patterns associated with infections and nonphysiological tissue damage.42 Rational design of small molecule TLR mod-
ulators is a promising strategy to treat autoimmune inflammation, cancer, or allergies, or to identify adjuvants for
vaccines.43

In 2014, Murgueitio and colleagues were facing a sparse data scenario with no small organic TLR2 inhibitors avail-
able.44 Therefore, they generated a 3D pharmacophore based on MIFs to define key interactions necessary for ligand
binding. A structure-based pharmacophore model was carefully developed. Subsequent virtual screening revealed novel
antagonists in the low micromolar range with biological activity for 20% of their virtual hits. With more small organic
TLR2 ligands reported later on, Murgueitio and colleagues continued their efforts in searching for novel TLR2
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modulators and used a combined 3D pharmacophore and shape-based approach to discover a novel pyrogallol-based
compound (MMG-11) through virtual screening.45,46

In 2019, Šribar and co-workers conducted a structure-based virtual screening followed by in vitro experimental vali-
dation in seeking novel TLR8 modulators.47 Molecular docking was performed to explore different binding modes able
to explain the activity of known modulators. The most descriptive binding mode was translated into a 3D
pharmacophore that was subsequently employed for virtual screening. This approach finally led to a novel chemotype
for TLR8 inhibitors, where 36% of the molecules retrieved by this virtual screening approach showed activity in vitro.

3.1.2 | Discovery of novel covalent binding ligands

The design of covalent-binding ligands has gained increased popularity in the drug discovery community.48,49 Pro-
longed residence time on targets and pharmacodynamic effects independent from pharmacokinetics allow for lower
doses or longer dosage intervals, making covalently binding drugs attractive for many therapies.50,51 Covalent docking
and quantum mechanics (QM) calculations represent the “gold-standard” for the development of covalent binders.52,53

Docking is suitable for screening of small compound libraries, whereas QM calculations can be applied for single com-
pounds only, due to high computational costs and time. For virtual screening of large databases, a pharmacophore-
based approach is more applicable. Schulz and colleagues introduced a novel feature called “residue bonding point,”
which recognizes drug-like warheads, such as ketones, nitriles, or Michael acceptors, to the LigandScout
framework.11,54

They employed the residue bonding point feature, also referred to as “covalent feature,” for the de novo design of
viral 3C protease inhibitors.54 A selective and specific 3D pharmacophore was generated that included noncovalent
interactions crucial for substrate-recognition, as well as the novel covalent feature. The obtained 3D pharmacophore
was used for virtual screening of a fragment library. Compounds showing a high similarity of docking poses in covalent
and noncovalent form were selected for in vitro testing. Compound F1, a heterocyclic aromatic ketone, showed the
highest inhibitory activity in an enzymatic assay (Figure 3). The covalent binding to the Coxsackievirus (CV) B3 prote-
ase was proven with protein mass spectrometry. Compound F1 was optimized using a scaffold-hopping strategy, yield-
ing in the more stable and active hit C5, a phenylthiomethyl ketone. This compound was modified using synthetic
approaches to produce 7a, a selective and irreversible covalent inhibitor of CV B3 and Enterovirus (EV) D68 protease.
This example illustrates the ability of 3D pharmacophore models to not only identify novel ligands, but also their suit-
ability for hit and lead optimization. Additionally, this study highlights the applicability of 3D pharmacophores for
increasingly popular fragment-based drug discovery campaigns.55

3.1.3 | Targeting GPCRs with 3D pharmacophores

G protein-coupled receptors (GPCR) are important drug targets due to their omnipresence in human tissues, accessibil-
ity to drugs, and regulatory roles in many physiological and pathophysiological processes.56 Therefore, they are widely
targeted by virtual screening campaigns in search of novel bioactive ligands.

In 2017, Frandsen and colleagues used an in-house developed method to build a histamine H3 receptor (H3R)
pharmacophore model for virtual screening campaigns.57 Ligand-residue fragments were extracted from available
GPCR crystal structures and mapped to the same conserved binding pocket residues of the target receptor.58 This
method allows for structure-based modeling of orphan receptors with insufficient structural data or unknown ligands.
Due to its reliance on existing ligand-receptor fragments from only 62 GPCR crystal structures, the initial H3R
pharmacophore model missed an important cationic feature, which was added through docking studies and the
matching of known H3R ligands to the apo pharmacophore model. Pharmacophore features were placed with Phase.14

Virtual screening, hit selection, and generation of analogue from potent ligands amounted to 76 compounds being phar-
macologically tested with an IP1 accumulation and radioligand binding assay. Five neutral antagonists and one inverse
agonist showed binding in the low micromolar range, resulting in a hit rate of 8%.

Another approach was followed by Schaller and co-workers using a ligand-guided homology modeling strategy to
discover novel H3R ligands.59 A key aspect of this approach is the prioritization of a set of 1,000 homology models based
on their ability to explain the binding of nine known antagonists. The selected homology model was subsequently used
for 3D pharmacophore model generation with LigandScout.11 Complementarily, 10 diverse H3 receptor ligands were
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docked and evaluated by their interaction pattern. Resulting 3D pharmacophore models were iteratively optimized and
validated with a set of 100 diverse active compounds and 3,051 decoys, using the three best performing 3D
pharmacophore models for parallel virtual screening. Subsequently, eight hit molecules were selected for biological test-
ing of which two showed nanomolar affinities in a radioligand depletion assay, resulting in a hit rate of 25%.

3.1.4 | Design of multitarget ligands for controlling inflammation

The arachidonic acid (AA) cascade is a key biochemical pathway for the inflammatory response involving the produc-
tion of pro-inflammatory lipid mediators such as leukotrienes via 5-lipoxygenase-activating (FLA) protein, but also for
anti-inflammatory mediators like epoxyeicosatrienoic acids. The latter are hydrolyzed by soluble epoxide hydrolase
(sEH). The simultaneous inhibition of both enzymes therefore represents a promising approach for controlling inflam-
mation mediators derived from AA. Schuster and co-workers applied a pharmacophore-based virtual screening to dis-
cover the first dual inhibitor of FLA protein and sHE with activities in the nanomolar range.60 In a first step, they
virtually screened the SPECS library with two different ligand-based pharmacophore models both derived from known
FLA protein inhibitors. Twenty selected hit molecules were further prioritized by previously reported structure-based
sHE models and resulted in one novel and potent dual FLA protein/sHE inhibitor.61 Since multitarget approaches are
getting more and more attention, this example shows that ligand-based pharmacophores could have some benefits
when applying on multiple targets that bind chemically similar physiological ligands. Moreover, it highlights the poten-
tial of combining ligand and structure-based models in multitarget approaches, in which one 3D pharmacophore serves
as a prioritization tool for the hitlist derived by the other model.

3.1.5 | Design and optimization of novel agents in crop science

A successful application of ligand-based design in crop sciences was demonstrated by Yao et al. by targeting an enzyme
in plant-pathogenic fungi.62 The group performed pharmacophore-based virtual screening to find inhibitors of succi-
nate dehydrogenase (SDH). This protein is involved in the electron transport chain in eukaryotic mitochondria and rep-
resents a validated target for pesticides. All marketed SDH inhibitors consist of a carboxylate and amine-moiety
coupled to an aromatic amide. Yao et al. generated a ligand-based 3D pharmacophore containing aromatic, lipophilic,
and amide features applying Catalyst. The 3D pharmacophore was validated and used for a virtual screening campaign
of a focused amide library developed in-house. To construct the focused amide library, diverse commercially available
carboxylate moieties were linked to aniline using Discovery Studio's Enumerate Library by Reaction protocol to explore

FIGURE 3 Discovery of

covalent inhibitors of viral 3C

protease. The initial fragment was

identified with a 3D pharmacophore

and further optimized by scaffold

hopping and subsequent fragment

growing. Green arrow—hydrogen

bond donor, red arrow—hydrogen

bond acceptor, yellow sphere—
lipophilic contact, orange sphere—
residue binding point
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the chemical space of carboxylate-cores. After virtual screening of the focused library, 16 compounds were selected for
in vivo testing. Eight compounds showed more than 50% inhibition when tested against three different fungi species at
a concentration of 100 mg/L. The ligand showing the highest and broadest activity was optimized via synthesis. In a
second focused amide library, diverse amine moieties were linked to the best carboxylate core and screened against the
3D pharmacophore. The resulting collection of derivatives was tested in vitro on SDH. By combining in silico and
experimental optimization steps, a broadly active novel amidic SDH inhibitor with low micromolar activity was
developed.

3.2 | Understanding protein functionality

Besides describing ligand binding modes and virtual screening applications, 3D pharmacophores are powerful tools to
investigate ligand-dependent protein functionality on a mechanistic level. The following paragraphs showcase examples
where 3D pharmacophore models play an essential role in contributing to the mechanistic understanding of pharmaco-
logical effects.

3.2.1 | Modeling metabolism

Sulfotransferases (SULTs) play an important role in phase II metabolism, but represent challenging targets due to their
high flexibility and broad substrate specificity. Rakers and colleagues developed a pharmacophore-based SULT predic-
tion model to discriminate between substrates, inhibitors, and ligands that show both characteristics dependent on their
concentration.63 This study is remarkable for two reasons. Firstly, it uses an ensemble of different enzyme conforma-
tions derived from molecular dynamics (MD) simulations to generate conformation-specific 3D pharmacophore models.
Secondly, the pharmacophore fit score was incorporated into a machine learning approach based on support-vector
machines for post-filtering of screening results. The resulting pharmacophore-based prediction model was successfully
applied to the screening and classification of ligand types for SULT1E1 and enhances our understanding of SULT
enzyme specificity.

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor controlling the metabolism of phys-
iological substances and xenobiotics. Based on carefully validated homology models, Tkachenko and colleagues applied
3D pharmacophore models to study differences between physiological ligands and xenobiotics with regard to AHR
transport to the nucleus and subsequent induction of CYP1A1.64 Histidine 291 was identified as a key residue, which
controls both functionalities, but with different roles in binding of physiological ligands such as kynurenine and xenobi-
otics such as β-naphtoflavone.

3.2.2 | Investigating ligand-dependent receptor function

GPCRs represent an important drug target class with highly complex pharmacology and various possibilities to modu-
late receptor function in a ligand-dependent manner. One major issue in this field is receptor selectivity, especially for
closely related subtypes of the same family. In order to understand subtype selectivity of bitopic (dualsteric) ligands at
muscarinic receptors, Bermudez and co-workers used 3D pharmacophore models to identify subtype-specific interac-
tion patterns.65 This rationally explained, on the one hand, how ligands achieve selectivity for a certain subtype, and,
on the other, identified key residues in the extracellular loop regions (e.g., a M3-specific salt bridge) that account for
subtype-specific receptor functionality. Some of the aforementioned bitopic ligands for the M2 receptor showed some
unexpected yet interesting pharmacological properties, such as partial agonism and pathway-specific receptor activation
(biased signaling). In order to understand these effects, 3D pharmacophore models were combined with other modeling
techniques and pharmacological experiments.66,67 The partial agonism could be explained by the existence of multiple
binding modes, which stabilize different activation states of the receptor. This concept was validated by experiments
and resulted in the rational design of a full agonist, which can only adopt the binding mode stabilizing active receptor
states.66 The pathway-specificity of the biased ligands was studied in a similar setting and resulted in a mechanistic
model whose key concept resides in the conformational restriction of the extracellular loop region.67–69 In another
study, the effect of fluorination of the photoswitchable azobenzene core was investigated in muscarinic agonists. This
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study shows that fluorination of the photoswitch alters not only the photochromic behavior but also the pharmacologi-
cal profile at the M1 receptor, due to additional interaction possibilities.70 In all of these GPCR studies, 3D
pharmacophores were key to understanding ligand-dependent receptor functions and, moreover, turned out to serve as
the optimal instrument for communication with synthetic chemists and pharmacologists.

4 | ADVANCED APPROACHES EMPLOYING 3D PHARMACOPHORE
PRINCIPLES

In the previous sections, we gave an overview of the concept of 3D pharmacophores and on which established software
is available. Additionally, we presented several state-of-the-art application case studies employing 3D pharmacophores
for prospective virtual screening and for understanding protein functionality. But what could be considered an
advanced approach? Typically, 3D pharmacophores are generated from atomistic models of macromolecules or from an
alignment of multiple ligand conformations and are employed for analysis of structure–activity relationships or virtual
screening campaigns. Moreover, a local installation of software and the availability of a high-performance computer are
usually mandatory to perform virtual screening experiments. In the following section, we introduce advanced
approaches that integrate conformations from MD simulations, employ machine learning algorithms, and provide
access to 3D pharmacophore searches without the requirement of expensive licenses and high-performance computers
(Table 2).

4.1 | Integration of information from molecular dynamics simulations

Since both macromolecules and ligands are dynamic entities, it becomes apparent that this also holds true for
macromolecule–ligand complexes and the underlying interactions. Following this idea, Carlson and colleagues inte-
grated information from MD simulations in the development of an enhanced 3D pharmacophore model to virtually
screen for novel HIV-1 integrase inhibitors.92 Later, Carlson used the HIV-1 protease to show that a 3D pharmacophore
generated from an ensemble of 28 NMR conformations performs better than a 3D pharmacophore generated from
90 X-ray structures.93 This pioneering work inspired other researchers and kick-started the development of several
methods employing conformations from MD simulations for 3D pharmacophore generation.

Hydration-site-restricted pharmacophore (2012). Unrefined 3D pharmacophore models generated from apo binding
cavities usually contain too many features for efficient virtual screening. The hydration-site-restricted pharmacophore
(HSRP) approach aims at reducing the number of pharmacophore features by identifying hydration sites on the protein
surface, whose water molecules suffer from unfavorable thermodynamic properties as calculated from MD simula-
tions.71 These restricted 3D pharmacophores also should be more likely to retrieve entropically favorable ligands. The
HSRP approach was evaluated for three pharmaceutically relevant target proteins, showing a successful reduction of
pharmacophore feature space with a simultaneous decrease in required computing power.

SILCS-Pharm (2014). SILCS-Pharm exploits binding hotspots of probe molecules in MD simulations for 3D
pharmacophore generation.72,73 The SILCS (site identification by ligand competitive saturation) method is employed to
sample the surface of proteins in MD simulations with different probe molecules reassembling properties known from
pharmacophore features, for example, benzene carbons for aromatic features.94 The resulting probability maps of the
different probe molecules (FragMaps) are Boltzmann-transformed into free energy representations. These free energy
FragMaps are finally converted to pharmacophore features and the associated free energies can be used to prioritize fea-
ture selection in 3D pharmacophore model generation. The authors showed that 3D pharmacophores generated with
SILCS-Pharm often perform better than various docking approaches and 3D pharmacophores generated with the HSRP
method described above. SILCS-Pharm was already employed in guiding binding pose predictions of novel inhibitors
targeting the oncoproteins Mcl-1 and Bcl-xL.95

Dynophores (dynamic pharmacophores) (2015). Contrary to approaches that gather pharmacophore information
from ensembles of different protein conformations based on MD, the dynophore app represents a fully automated
implementation of chemical feature-based interaction patterns with MD-based conformational sampling.66,74

Dynophores (dynamic pharmacophores) sequentially extract interaction points (such as hydrogen bonds, charges, or
lipophilic contacts) from each frame of a trajectory according to the ligand atoms involved and their feature type. The
resulting super-features can be statistically characterized by occurrence frequency and interaction patterns with the
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protein. Three-dimensional volumetric feature density clouds provide information about the spatial distribution of
interactions and barcode plots show the feature occurrence in a time-resolved manner. The dynophore app was
implemented within the ilib/LigandScout framework11 and addresses two shortcomings of classical 3D pharmacophore
models: their static character and the geometric simplification of the features.

The application of dynophores proved essential in several studies for rationally explaining phenomena which could
not have been unveiled by classical 3D pharmacophores alone. Dynophores were first used to explain an activity cliff of
two ligands at the M2 receptor, which differ in structure by a single double bond (dihydroisoxazole vs. isoxazole moiety)
and therefore show the same static 3D pharmacophore.66 Based on the occurrence frequency and the respective geo-
metric properties of a hydrogen bond acceptor, different strengths of the resulting hydrogen bond between the two
ligands could be rationalized. In another example, dynophores were able to unveil a mechanism to overcome drug resis-
tance for HIV-1 reverse transcriptase (RT). In this study, the RT inhibitor rilpivirine was shown to bypass resistance
mutations by interacting with alternate residues, stabilizing the inhibitor in the binding pocket.96 In a virtual screening
campaign against the metalloenzyme arginase, dynophores were employed to explore the plasticity of the binding
pocket in the presence of small molecule inhibitors and suggested the possibility for additional lipophilic contacts. This
resulted in two novel fragment arginase inhibitors that could aid the development of anticancer drugs.97 The dynophore
methodology enables researchers to escape the static nature of classical 3D pharmacophore approaches and provides

TABLE 2 Advanced approaches employing the 3D pharmacophore concept

Category Approach Description

MD integration Hydration-site
restricted
pharmacophore71

Thermodynamic properties of water molecules are used to reduce the number
of features in apo-based 3D pharmacophore models

SILCS-Pharm72,73 Binding hot spots of probe molecules in MD simulations are exploited for 3D
pharmacophore generation

Dynophore74 Fully automated combination of 3D pharmacophores and MD simulations
with statistics on spatiotemporal feature occurrency

Common hits
approach75

3D pharmacophore models from MD simulations are grouped according to
interaction pattern and used for parallel screening

MYSHAPE76 Interaction patterns in MD simulations are analyzed to refine shared-feature
pharmacophores

GRAIL77 Molecular interaction fields are abstracted to the pharmacophoric level and
averaged over an MD simulation

Water
pharmacophore78

Water thermodynamics, docking, and molecular interaction fields are used to
generate a single 3D pharmacophore model

PyRod79 Protein environment of water molecules is analyzed to generate dynamic
molecular interaction fields for visualization and 3D pharmacophores for
virtual screening

AutoDock Bias80 Cosolvent simulations are used to bias a docking algorithm

Pharmmaker81 Cosolvent simulations are analyzed to generate 3D pharmacophores for
virtual screening

Machine learning HSPharm30 Random forest decision tree is trained on pharmacophoric fingerprints to
reduce the number of features in apo-based 3D pharmacophore models

PharmIF82 Support vector machine is trained on pharmacophoric fingerprints to rank
docking poses

DeepSite and related
softwares83–86

Convolutional neural network is trained on pharmacophoric descriptors to
detect cavities, predict binding affinities, and to design new molecules

Web applications PharmaGist87 Ligand-based 3D pharmacophore generation

PharmMapper88 Target prediction of small molecules employing a database of 3D
pharmacophores

Pharmer related
applications89–91

3D pharmacophore generation and virtual screening of small molecule
databases
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new opportunities to describe and analyze ligand binding modes as dynamic events (Figure 4).47,66,96–101 The probability
density functions representing the feature distribution of the super-features can be directly used for virtual screening,
providing new possibilities for efficiently incorporating information from molecular dynamics simulations into fast and
efficient virtual screening.

Common hits approach and MYSHAPE (2017). These two approaches select and optimize 3D pharmacophores based
on MD simulations. The Common Hits Approach (CHA) groups 3D pharmacophore models obtained from protein–
ligand conformations of MD simulations according to their interaction pattern.75 Representative 3D pharmacophores
are subsequently used for computationally costly virtual screening. CHA was retrospectively evaluated on 40 protein–
ligand systems, showing improved virtual screening performance for many of the protein–ligand complexes compared
to the use of single 3D pharmacophore models. In contrast, MYSHAPE optimizes shared-feature pharmacophores by
focusing on pharmacophore features observed during MD simulations of different protein–ligand complexes. This
approach was found in a retrospective evaluation against PPARɑ to perform better than 3D pharmacophores derived
from X-ray structure.76

GRAIL (2018). The GRids of phArmacophore Interaction fieLds (GRAIL) approach depicts MIFs on the
pharmacophore level in MD simulations.77 Beside pharmacophoric interaction fields, this approach generates informa-
tion on atom densities for protein, water, and ligand if present. GRAIL was applied to MD simulations of heat shock
protein 90 showing that the pharmacophoric interaction fields can contribute to the understanding of the structure–
activity relationship of a complexed ligand series.

Water pharmacophore (2018). The Water Pharmacophore (WP) method aims at generating 3D pharmacophores
based on thermodynamic properties of hydration sites, similar to the HSPR approach described above.71,78 WPs are gen-
erated for hydration sites by a combination of thermodynamic analysis, MIFs, and docking-based strategies. However,
in contrast to HSPR, the WP method generates a single 3D pharmacophore in a highly automated fashion with a com-
parably low number of involved features granting high performance in virtual screening campaigns. After optimizing
parameters for the 3D pharmacophore generation procedure against seven pharmaceutically relevant targets, the
authors were able to generate successful 3D pharmacophores for four out of seven targets.

PyRod (2019). Similar to WP and HSRP, the free and open-source software PyRod focuses on water molecules in
protein binding pockets to generate 3D pharmacophores for virtual screening.79 However, instead of determining ther-
modynamic properties of hydration sites, PyRod analyzes the protein environment of water molecules in protein bind-
ing pockets based on fast-to-calculate pharmacophore inspired heuristic scoring functions. This information is further
processed to visualize pharmacophoric binding pocket characteristics in the form of dynamic dMIFs and to generate
pharmacophore features for virtual screening (Figure 5). Since scoring is only performed in the presence of water mole-
cules, pharmacophore features are preferentially placed at hydration sites with high water occupancy. Replacing such
water molecules with a ligand moiety results in a gain of entropy and hence increases the chance for discovery of high
affinity ligands. Similar to other apo-based pharmacophore methods, the unrefined 3D pharmacophore contains too
many features for efficient virtual screening. Hence, the user must first preselect pharmacophore features based on
dMIFs and their arrangement in the binding pocket. The features of this focused 3D pharmacophore are subsequently
combined to generate a pharmacophore library based on user-defined characteristics, for example, maximal and

FIGURE 4 Dynophores (dynamic pharmacophores) unveil dynamic binding mode changes of the sphingosine-1-phosphate receptor

ligand ML056 during a 100 ns MD simulation. The yellow point clouds indicate lipophilic contacts, the red and green features represent

hydrogen bond acceptor or donor, respectively, and a positively charged area is shown as a blue point cloud. The percentages next to the

features refer to their occurrence frequency during the simulation. In the example shown, a major part of the molecule remains in its initial

orientation resulting in nearly sphere-like distributions of the according feature point clouds (right part). The lipophilic tail is much more

flexible within the binding site as indicated by the banana-shaped feature cloud (left part). MD, molecular dynamics
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minimal number of independent features or hydrophobic contacts. A Python script is provided allowing for evaluation
of the generated pharmacophore library using LigandScout.11 PyRod pharmacophores performed better than docking
for three out of five pharmaceutically relevant targets, according to ROC analysis in a retrospective evaluation and pro-
vides a directly usable workflow for efficient virtual screening.

AutoDock Bias with Solvent Sites (2019) employs cosolvent based pharmacophores to bias docking algorithms toward
hotspots of probe molecule binding for improving virtual screening performance.80,102,103 First, the authors performed
cosolvent MD simulations of proteins in the presence of water and ethanol. Next, the trajectories were analyzed to iden-
tify hotspots for binding of the ethanol hydroxyl- and methyl-group. Finally, the calculated free energies of ethanol hot-
spots were used to introduce an additional energy term to the docking algorithm of AutoDock 4.28,80 The biased
docking performance was retrospectively evaluated, showing improved performance compared to the standard docking
procedure in the majority of investigated test systems.103

Pharmmaker (2020) analyzes cosolvent simulations to generate 3D Pharmacophores for virtual screening.81 In the
presented case study, cosolvent simulations were performed using six different probe molecules and subsequently
employed to assess the druggability of different binding sites with DruGUI.104 The most druggable binding site was sub-
sequently processed with Pharmmaker by selecting protein residues with high probe-specific affinities and by identify-
ing snapshots that show the most frequent interactions between protein residues and probe molecules. Finally, 3D
pharmacophores were generated from selected snapshots and employed for virtual screening with Pharmit,89 a web
application for pharmacophore screening described later in this review.

In addition to 3D pharmacophore modeling, the benefit of multiple protein conformations in enhancing the performance
of molecular docking is also frequently discussed.105 However, ensemble docking in multiple X-ray structures revealed minor
improvements in screening performance in only some test systems, which hardly justifies the increased computational
costs.106 Clustering protein conformations could be a solution to reduce the computational costs, but fails to identify the most
relevant protein conformations from MD simulations.107 In contrast to molecular docking, the presented 3D pharmacophore
approaches show clear advantages over traditional static pharmacophore modeling. Dynophores, for example, provide a sta-
tistical characterization of interactions in the form of volumetric feature density clouds. Escaping from the spherical nature
of traditional pharmacophore features in conjunction with the representation of pharmacophore features as probability den-
sity functions represents a strong opportunity to boost virtual screening performance. Furthermore, approaches like PyRod
consider entropic contribution of ligand binding which can only be poorly estimated by static methods. In comparison to
these advanced pharmacophore approaches, ensemble docking represents a computationally expensive parallelization of the
same underlying algorithms. Hence, important information contained in MD simulations is not properly considered,
resulting in comparably poor improvement of performance.

4.2 | Training machine learning models with pharmacophoric descriptors

In recent years, machine learning and artificial intelligence have witnessed tremendous amount of attention in the pub-
lic media. The simultaneous improvement in computing power and increase of available data have heavily influenced

FIGURE 5 PyRod applied to the binding pocket of cyclin-dependent kinase 2. (a) The protein environment of water molecules is

analyzed to generate (b) dynamic molecular interaction fields (dMIFs) describing the pharmacophoric characteristics of the binding pocket,

(c) which can be translated into pharmacophore features for virtual screening. Yellow—hydrophobic contact, green—hydrogen bond donor,

red—hydrogen bond acceptor
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the modern drug discovery process.108 Moreover, the concept of 3D pharmacophores was employed to develop several
new machine learning methods.

HS-pharm (2008). The Hot-Spots-Guided Receptor-Based Pharmacophores (HS-Pharm) approach trains machine
learning models to reduce the number of features from apo-based 3D pharmacophore models.30 The binding cavities of
~3,500 resolved protein–ligand complexes were analyzed and over 600 k atoms were distributed into interacting and
noninteracting groups. Atom-based cavity fingerprints were generated from the gathered cavity atoms, collecting data
about pharmacophoric and torsional properties, involved residues, and their protein environment. Decision trees and
Bayesian classifiers were trained and tested on these fingerprints to detect cavity atoms important for ligand binding.
Evaluation of the approach identified random forest decision trees to perform best according to enrichment and ROC
analysis. Finally, this approach was applied to three pharmaceutical relevant drug targets resulting in the generation of
3D pharmacophores performing better than docking in two out of three cases.

Pharm-IF (2010). The pharmacophore-based interaction fingerprint Pharm-IF was evaluated as input for several
machine learning algorithms to rank docking poses of small molecules.82 Interaction fingerprints encoding the type
and distance of interaction partners were generated for all available atomistic models of five pharmaceutically relevant
drug targets. These were subsequently used to train several machine learning algorithms to rank docking poses of
known actives and decoys. In a retrospective evaluation, Pharm-IF fingerprints in combination with support-vector
machines showed the best enrichment, outperforming other machine learning algorithms and a docking scoring func-
tion. Employing Pharm-IF to train machine learning algorithms resulted in better enrichment compared to employing
PLIF, a protein–ligand interaction fingerprint implemented in MOE.13 In contrast to Pharm-IF, this fingerprint does
not encode the distance, which suggests an important contribution of the distance to successful predictions. Interest-
ingly, learning on more than five crystal structures enabled models to predict activity better than docking scores for all
studied targets.

DeepSite and related softwares (2017). The DeepSite software employs convolutional neural networks typically used
for analyzing visual imagery to predict the druggability of protein binding pockets.83 Atomic-based pharmacophoric
descriptors were assigned to grid points covering the protein of approximately 7,000 protein–ligand complexes. These
grids were subsequently divided into subgrids, which were labeled as a binding site if their geometric center was within
4 Å of the binding site's geometric center. These 3D images of the binding pocket represented by 3D grids of
pharmacophoric descriptors were used to train a convolutional neural network. The DeepSite cavity detection was
found to perform better than other state-of-the-art detection algorithms. Similar approaches that also use
pharmacophoric descriptors to train convolutional neural networks were later used to predict binding affinities of small
molecules (KDEEP

84) and to guide the design of novel molecules (LigVoxel,85 LigDream86). All of the aforementioned
approaches are implemented in software packages for local installation but can also be used free of charge as web
applications.

4.3 | Web applications employing 3D pharmacophores

Although web applications do not necessarily represent an advancement of the 3D pharmacophore concept itself, they
do advance their usability, bringing 3D pharmacophores into the internet age. Since a local installation of software is
not needed and all web applications presented are freely available for academic research, users can circumvent license
fees and screen databases with millions of molecules without the need for high-performance computational resources.
Thus, 3D pharmacophore searches become available to a larger number of users.

PharmaGist (2008). The PharmaGist web application allows for ligand-based 3D pharmacophore generation.87 Each
submitted ligand is analyzed for rotatable bonds important for flexible molecule alignment and for pharmacophoric fea-
tures used for alignment to a reference ligand. A user-specified maximal number of 3D pharmacophores is generated,
and the output comprising 3D pharmacophores and aligned molecules can be downloaded.

PharmMapper (2010). The PharmMapper web application can be used for target fishing of small molecules impor-
tant for off-target prediction and polypharmacology studies.88 More than 53,000 3D pharmacophore models were gener-
ated from approximately 23,000 protein database (PDB) crystal structures based on protein–ligand interactions or
involving a cavity detection algorithm to identify potential allosteric binding sites. Submitted molecules are scored by
their match to all deposited 3D pharmacophore models.

Pharmer-based web applications (2012). The Pharmer virtual screening software10 was employed for several web
applications enabling the efficient virtual screening of several small molecule databases. AnchorQuery is specialized for
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the identification of protein–protein interaction inhibitors.90 The user uploads a protein–protein complex and specifies
an anchor residue that is likely to be important for protein–protein interaction. This anchor residue will become part of
a 3D pharmacophore that is used to screen a multimillion compound library of synthesizable small molecules.
ZINCPharmer can be used to perform a virtual screening of the ZINC database, a free virtual library collecting commer-
cially available compounds from different vendors.91,109 The web application supports the import of 3D
pharmacophores but can also be used to generate 3D pharmacophore models from scratch. Lastly, Pharmit enables the
virtual screening of several commercial vendors as well as other noncommercial databases including ChEMBL and
PubChem.89,110,111 The 3D pharmacophores can be either designed from a protein–ligand complex or, a ligand. The
import of 3D pharmacophore models in several data formats is also supported.

5 | CONCLUSION

In this review, we have given an overview of the principles of 3D pharmacophores and their role in drug discovery. The
fact that 3D pharmacophore models are universal, editable, and comprehensive allows them to be applied in different
scenarios.

A major application field is the identification of novel ligands through virtual screening. For this purpose, 3D
pharmacophore models are the sole technique that can be applied in either a ligand-based or a structure-based manner.
In both ways, 3D pharmacophore models are computationally very efficient, enabling the virtual screening of very large
databases. The basic concept of abstracting chemical functionality allows for scaffold hopping and enriches the chemi-
cal diversity of hit lists. Altogether, this grants researchers more flexibility regarding available data, computational
resources, and testing capabilities. The case studies that we selected highlight the power of pharmacophore-based vir-
tual screening for drug discovery and show their applicability to challenging targets. Also, increasingly popular
fragment-based drug discovery campaigns can benefit from pharmacophore screening by a dramatic reduction of frag-
ments tested in vitro and by rationalizing fragment growing with constant fragment core interactions.54,55

Besides virtual screening, 3D pharmacophores are well suited to study and visualize binding modes of drug-like
molecules. Their composition of a limited number of chemically defined interaction features make them understand-
able and intuitive. This represents a major advantage in interdisciplinary projects, since 3D pharmacophore models are
able to rationalize various pharmacological effects. For this objective, 3D pharmacophores are typically combined with
other methods such as docking, MD simulations, or machine learning. The selected case studies for this field underline
the power of 3D pharmacophores to mechanistically explain and understand protein functionality. Additionally, 3D
pharmacophores are an excellent tool for communication between researchers, a factor that is often underestimated.

However, besides the aforementioned advantages and possibilities, classic 3D pharmacophore models also have cer-
tain drawbacks. They represent static models for highly dynamic systems and their interaction features are restricted to
simple geometries (e.g., spherical features). Moreover, they share a shortcoming with other modeling techniques, which
all are focused on estimating the enthalpy of molecular interactions but are suboptimal for the description of entropic
effects. However, enthalpy and entropy both contribute to the change in free energy of ligand binding to a macromole-
cule. Although the basic concept of 3D pharmacophore generation and its application to virtual screening has not chan-
ged in the last 30 years, there are various developments in the field that aim at addressing these shortcomings.

The combination of 3D pharmacophore models with MDs is therefore a consequent evolution with great potential.
Different approaches to integrating MDs into 3D pharmacophore modeling have been reported and described in this
review.71–75,77–79,81,103 However, only the dynophore method represents a fully automated approach, which tackles two
drawbacks of classical 3D pharmacophores at a time.74 The dynophore application reveals a new perspective on ligand
binding by providing visualization of pharmacophoric features that escape from the traditional spherical geometry and
by delivering statistics that report feature occurrence frequencies and different binding modes over the course of a tra-
jectory. The direct usage of these property-density functions for virtual screening would represent a true paradigm shift
in 3D pharmacophore modeling.

Several advanced approaches also consider entropic effects of ligand binding for 3D pharmacophore
modeling.71–73,78,79,81,103 PyRod, for instance, analyzes the protein environment of water molecules in MD simulations,
which allows for placement of pharmacophore features at hydration sites with certain thermodynamic characteristics.79

Such hydration sites may harbor water molecules in a highly hydrophobic protein environment or heavily restrain
water molecules via hydrogen bonds and the shape of the binding pocket. The restriction of 3D pharmacophores to
entropically and enthalpically important sites render such approaches valuable tools for virtual screening campaigns,
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especially for those generating 3D pharmacophores from an apo structure. Importantly, PyRod is a free and open-access
tool making such strategies accessible to a broader user base.

The combination of 3D pharmacophore concept and machine learning/artificial intelligence is only in its beginning
stages. Although some approaches already exist,30,82–86 we predict an increasing number of studies and methods that
aim to use pharmacophore features as descriptors or try to generate 3D pharmacophores from big data. Another trend
that we observe is the availability of freely available web services for pharmacophore-based virtual screening.87–91

The recent developments in the field of 3D pharmacophores are promising and afford the opportunity to employ 3D
pharmacophores in ever-increasing ways and more challenging situations, such as multitarget prediction, modeling
binding kinetics, or pathway-specific receptor activation. Overall, 3D pharmacophores represent an essential part of the
toolbox for computer-aided drug design and are perfectly apt to identify novel ligands and understand their interaction
with the macromolecular target.
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3.2.4 Molecular Dynamics Simulations

Structure-based drug design and virtual screening campaigns typically rely on crys-

tal structures representing a single conformation of a very dynamic system (Fig 8).

Molecular dynamics (MD) simulations provide access to the structural flexibility of

the drug-target system making it an increasingly popular tool in the drug discovery

process [130, 131].

MD simulation programs like Desmond [132], Amber [133], CHARMM [134] and

GROMACS [135] use force fields that describe each atom of the studied system with

parameters for (partial) charge, mass and van der Waals radius [136]. The energies

of bonded and non-bonded interactions between the atoms of the system can be ac-

cessed with potential energy functions. The positions and velocities of atoms over time

are calculated by integration of Newton’s laws of motions generating a trajectory of

successive system configurations [136].

Popular applications of MD simulations in drug design include the local sampling

of protein conformations for docking studies, monitoring the association, residence and

dissociation of small molecules at their macromolecular target, analyzing the role of

water molecules in drug target association and predicting thermodynamic properties

for free energy calculations [130, 131].

Figure 8: Snapshots of a molecular dynamics simulation of A2A adenosine receptor (5IU4

[137]). The secondary structure and protein backbone can stay stable over a long period of

simulation time. In contrast, side chains can adopt various conformation.
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3.3 Evaluation of Virtual Screening Performance

The aim of virtual screening experiments is to identify active molecules in databases

containing active and inactive molecules. Typically, the performance of a virtual

screening protocol is evaluated before the actual experiment by screening a test set

comprising of known active and inactive molecules. The resulting hit list is analyzed

and hits are classified into four categories (Fig 9), .i.e. true positives (TP), false posi-

tives (FP), false negatives (FN) and true negatives (TN) [138]. Several metrices were

developed to evaluate and compare virtual screening performance [128, 138, 139].

Figure 9: Classification of results from a virtual screening protocol. Blue and yellow areas

correspond to the active and inactive molecules of the test, respectively. The dark shaded

area represents the molecules predicted to be active by a virtual screening protocol.

The Sensitivity (Se, Eq 1) and Specificity (Sp, Eq 2) report the fraction of active

molecules correctly classified as active and the fraction of inactive molecules correctly

classified as inactive, respectively [138].

Se =
TP

P
(1)

Sp =
TN

N
(2)

The Yield of Actives (YA, Eq 3) describes the proportion of actives among all

retrieved molecules of the test set. Hence, it can be used to estimate the probability

to identify actives in the virtual screening experiment [139].

Y A =
TP

TP + FP
(3)

The Enrichment Factor (EF, Eq 4) allows to determine the enrichment of active

molecules in the hit list compared to a random selection [139].
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EF =
Y A

P/(P +N)
(4)

The receiver operating characteristics (ROC) plot graphically depicts virtual screen-

ing performance by describing Se as a function of 1 - Sp (Fig 10) [139]. An ideal vir-

tual screening protocol retrieving 100 % of actives and no inactives would yield a ROC

curve, which initially rises vertically from the origin to the maximum of Se, and than

extends to the right horizontally. In contrast, a virtual screening protocol randomly

picking active and inactive molecules would be represented by a diagonal spanning the

ROC plot from the origin to the top right [128].

Besides a visual interpretation, the ROC plot additionally provides another per-

formance descriptor. The Area Under the Curve (AUC, Eq 5) describes the area

corresponding to the sum of rectangles formed by Se and 1 - Sp values. Moreover, the

AUC calculation can be restricted to a fraction of the ROC plot, e.g. first 10 % of

retrieved active and inactive molecules, to better capture the performance of highly

scored hits [139].

AUC =
∑
i

[(Sei+1)x(Spi+1 − Spi)] (5)

Figure 10: Receiver operating characteristic curves for evaluation of virtual screening per-

formance. TP - true positives, FP - false positives, EF - enrichment factor, AUC - area under

the curve.
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Results

4.1 Systematic Data Mining Reveals Synergistic

H3R/MCHR1 Ligands

The constantly increasing public availability of bioactivity data together with com-

putationally efficient 2D similarity searches allows for rapid identification of similar

molecules with associated activity results. In the following study, bioactivity data was

systematically analyzed to identify obesity-relevant target pairs that could be mod-

ulated with the same ligand. The most promising target pair comprises H3R and

MCHR1 and was validated in vitro by the group of Prof. Dr. Holger Stark at the

Heinrich-Heine-University in Düsseldorf, which resulted in the identification of three

small molecules with nanomolar affinity for both receptors.

Contribution:

Conceptual design (80 %)

Computational experiments (100 %)

In vitro experiments (0 %)

Visualization (100 %)

Manuscript preparation (80 %)

Reprinted with permission from Schaller, D. et al. Systematic Data Mining Reveals

Synergistic H3R/MCHR1 Ligands. ACS Med Chem Lett 8, 648-53 (2017). Copyright

2017 American Chemical Society. [Link to Publisher]

41

http://dx.doi.org/10.1021/acsmedchemlett.7b00118


Systematic Data Mining Reveals Synergistic H3R/MCHR1 Ligands
David Schaller,† Stefanie Hagenow,‡ Gina Alpert,‡ Alexandra Naß,† Robert Schulz,† Marcel Bermudez,†

Holger Stark,‡ and Gerhard Wolber*,†

†Pharmaceutical and Medicinal Chemistry, Freie Universitaẗ Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
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ABSTRACT: In this study, we report a ligand-centric data mining approach that
guided the identification of suitable target profiles for treating obesity. The newly
developed method is based on identifying target pairs for synergistic positive effects
and also encompasses the exclusion of compounds showing a detrimental effect on
obesity treatment (off-targets). Ligands with known activity against obesity-relevant
targets were compared using fingerprint representations. Similar compounds with
activities to different targets were evaluated for the mechanism of action since
activation or deactivation of drug targets determines the pharmacological effect. In
vitro validation of the modeling results revealed that three known modulators of
melanin-concentrating hormone receptor 1 (MCHR1) show a previously unknown
submicromolar affinity to the histamine H3 receptor (H3R). This synergistic activity
may present a novel therapeutic option against obesity.

KEYWORDS: Multitarget drugs, fingerprints, histamine H3 receptor, melanin-concentrating hormone receptor 1, obesity

Rational drug design has traditionally focused on the
discovery of selective ligands for specific molecular targets.

It was assumed that by increasing the selectivity of a ligand for
the desired target, undesired side effects arisen from binding to
off-targets would be minimized. In recent years, multitarget
approaches (often termed “polypharmacology”) challenged this
dogma proposing that the modulation of multiple targets in the
biological network simultaneously may be required to
effectively modify a phenotype.1 Particularly diseases with a
complex etiology gained attention for development of multi-
target drugs.2 For instance, several anticancer agents were
designed to inhibit certain kinases involved in different aspects
of apoptosis and angiogenesis.3 Also the most effective
medications for central nervous system disorders modulate
various neurotransmitter levels by targeting several GPCRs or
enzymes involved.4

Research on databases for ligand activity data indicates that
most drugs bind to multiple targets.5 Furthermore, these drug-
target networks are far from being complete since testing each
drug against each possible target is economically not favorable.
Computational approaches present a suitable option to close
this gap and can support the rational multitarget drug design
process.6−9 Analyzing chemical similarities of already known
drug-like molecules proved to be particularly successful. Keiser
and colleagues were the pioneers in this research field using
fingerprint representations of small molecules to predict
potential off-targets of approved drugs.10 Later, Besnard and
colleagues calculated Bayesian models for 784 proteins and
were able to optimize ligands to a wide array of targets and
potential off-targets.11 Continuously growing public databases

for ligand activity data (e.g., ChEMBL12) support these ligand-
centric approaches.
In this study, we focused on the first step of rational

multitarget drug design, the identification of target pairs that
can be modulated by the same ligand. Obesity was chosen as
model disease since it is known to bear a complex etiology and
single-target medications still lack efficacy and safety.13 To
achieve our goal, we implemented a data mining workflow in
KNIME that clusters obesity-relevant targets based on the
chemical similarity of ligands from the ChEMBL database.12,14

Despite its significance for the pharmacological effect, the
mechanism of action is still missing for the majority of
compounds in public bioactivity databases. For instance, when
antagonism of a certain receptor is discussed for obesity
treatment, agonism will be ineffective or even induce obesity.
Thus, special emphasis was placed on evaluating the
mechanism of action of ligand data in terms of activation or
deactivation. This strategy led to the identification of several
potential target pairs and off-targets that should be considered
in obesity treatment. The most promising target pair
comprising histamine H3 receptor (H3R) and melanin-
concentrating hormone receptor 1 (MCHR1) could be
confirmed in vitro.
A literature research yielded 39 obesity-relevant targets with

associated activity data stored in the ChEMBL 21 database.12

These targets can be classified into 25 receptors (24 GPCRs, 1
nuclear receptor), 11 enzymes of the lipid metabolism, and
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three transcription factors. The multitude of targets discussed
in literature underlines the complex etiology of obesity and the
necessity to address several targets in the signaling network. A
complete list can be found in the Supporting Information
(Table S3).
The activity range of ligands in the ChEMBL database can be

dramatically different for each target (Figure 1A−C). Thus, a
single threshold (e.g., 1 μM) for all targets may not present the
most suitable option to extract and focus on the most
interesting and active ligands. For instance, a well explored
GPCR may require a lower activity threshold than a less well
explored protein−protein interaction. Consequently, a protocol
has been implemented setting the activity threshold three
orders of magnitude above the most active compound. In
certain cases, this procedure would result in activity thresholds
below 100 nM and subsequently would exclude potentially
interesting compounds. Thus, we decided to limit the
thresholds to a minimum of 100 nM. Furthermore, a maximum
was introduced at 10 μM to exclude poorly active compounds.
Targets with a lower activity threshold include several well
explored GPCRs, like serotonin receptors, histamine H3
receptor (H3R), and melanin-concentrating hormone receptor

1 (MCHR1), whereas higher thresholds were commonly
assigned to enzymes like carnitine palmitoyltransferase 1
(muscle isoform) and less well explored GPCRs like amylin
receptor 1 (Figure 1D). Applying these thresholds to our data
set resulted in the selection of 20841 compounds for similarity
analysis.
Multitarget action can frequently be observed within a target

family since target subtypes bind the same endogenous ligand
or substrate and thus share similarities in the binding pocket.2

Therefore, target subtypes were grouped into target families to
allow the identification of more distant relations (structure file
activity_data.sdf with assigned target families is provided as
Supporting Information).
Subsequently, chemical similarities between compounds of

different target families were investigated using Morgan Feature
circular fingerprints as implemented in RDKit.15,16 Compounds
were considered similar if they belong to different target
families and if the Tanimoto score is 0.7 or higher.
From the initial data set (20841 compounds) only 204

compounds with 233 activities against 19 obesity-relevant
targets fulfilled the similarity criteria (Tanimoto score ≥ 0.7) to
a compound of a different target family.

Figure 1. Assignment of activity thresholds for each target separately based on activity data stored in the ChEMBL database. Activity ranges for
ligands of (A) histamine H3 receptor, (B) protein-tyrosine phosphatase 1B, and (C) carnitine palmitoyltransferase 1 (muscle isoform). Activity
threshold is set three orders of magnitude above the most active compound and limited to a minimum of 100 nM and a maximum of 10 μM.
Compounds satisfying the activity threshold are highlighted in dark gray. (D) Distribution of activity thresholds for targets included in this study.
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For each target pair, similar compounds were analyzed for
diversity by using an in-house implementation of the Taylor−
Butina clustering algorithm.17 This step allows a quality

assessment since a higher number of shared similar clusters
indicates an increased probability to identify multitarget drugs
against this target pair. The identified target pairs are gathered

Figure 2. Similarity matrices for obesity-relevant targets based on the chemical similarity of known ligands. Only target pairs are considered that
belong to different target families. Ligands were clustered to allow a quality assessment of the target pairs. (A) Similarity matrix without validation of
mechanism of action. (B) Similarity matrix with the desired antiobese mechanism of action for both elements of the target pair. (C) Similarity matrix
for target pairs, whereas one of the elements of a target pair has a conflictive mechanism of action and thus presents a potential off-target in obesity
treatment.

ACS Medicinal Chemistry Letters Letter

DOI: 10.1021/acsmedchemlett.7b00118
ACS Med. Chem. Lett. 2017, 8, 648−653

650



in a similarity matrix, whereas each target pair is rated based on
the number of similar clusters (Figure 2A). The target pairs
MCHR1/5HT2CR, μ1OR/H3R, and H3R/MCHR1 are rated the
best sharing three similar clusters.
Next, the mechanism of action for each cluster was retrieved

from literature. This evaluation resulted in the generation of
two similarity matrices (Figure 2B,C). One holds information
about possible synergistic effects with the desired antiobese
mechanism of action for both elements of the target pair
(Figure 2B). The target pair comprising H3R and MCHR1 is
the only one with more than one similar cluster. The second
similarity matrix shows potential off-targets (Figure 2C). For
instance, MCHR1 antagonists (desired mechanism of action)
show similarities to serotonin receptor 2C (5HT2CR)
antagonists (conflictive mechanism of action). Noteworthy,
several screening campaigns against MCHR1 have reported
5HT2CR as off-target.18 A full list of clusters with associated
mechanism of action can be found in the Supporting
Information (Table S4).
The identified similar clusters for H3R/MCHR1 (Table 1)

share a positively charged amine function that is known to be
involved in Coulomb interactions with a conserved aspartate
for many aminergic GPCRs but also for MCHR1.18,19

Considering the high Morgan Feature fingerprint similarity
of known ligands, H3R and MCHR1 were chosen for further
validation. A shape-based screening campaign using ROCS led
to the selection of three known MCHR1 antagonists for a
radioligand displacement assay at H3R.

20 All three tested
compounds show submicromolar activity against both receptors
(Table 2). Compounds 1 and 2 were already described to have
antiobesity effects in rodents.21−24 To our knowledge,
compound 3 with the most balanced activity against both
receptors (Ki/IC50 < 20 nM) has not yet been tested in vivo.
The ligand efficiency (LE) for compound 3 of 0.34 lies above
the limit for drug-like molecules (LE > 0.3) and thus indicates a
good starting point for further development.25 The lip-

ophilicity-corrected ligand efficiency (LELP) includes lip-
ophilicity for quality assessment as this property has been
shown to accompany with promiscuity.25 The LELP of 12.40
for compound 3 points to potential promiscuity issues. Indeed,
closely related compounds of this series show moderate affinity
at 5HT2CR, emphasizing the consideration of this receptor as
off-target.26

Only two studies were found describing compounds with a
multitarget character against H3R and MCHR1.27,28 However,
the authors did not aim at developing compounds with
balanced activity against both receptors. Screening campaigns
for selective antagonists of H3R or MCHR1 did not yet result in
development of an effective antiobesity treatment. Though,
there is evidence for a possible synergistic effect. A recent study
revealed that activation of H3R leads to the inhibition of MCH
expression.29 This inhibition could be avoided through
administration of a H3R antagonist resulting in expression of
MCH. A concurrent expression of the appetite stimulant MCH
might explain why the ongoing effort in designing H3R
antagonists for obesity treatment did not lead to an effective
therapy yet. Although this study focused on sleep and arousal,
translating these results into obesity research indicates a
promising synergistic effect of dual antagonism of H3R and
MCHR1.
In this study, we have successfully applied a ligand-centric

data mining approach to identify target pairs that have the
potential to drive future multitarget drug research for obesity
treatment. The most promising target pair comprising H3R and
MCHR1 was validated in vitro. Three compounds have been
confirmed to hold a multitarget character in the submicromolar
activity range. Evaluating the mechanism of action not only
allowed the identification of potential target pairs but
additionally pointed to several off-targets that should be
considered in antiobesity drug development.
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Davies, M.; Krüger, F. A.; Light, Y.; Mak, L.; McGlinchey, S.;
Nowotka, M.; Papadatos, G.; Santos, R.; Overington, J. P. The
ChEMBL Bioactivity Database: An Update. Nucleic Acids Res. 2014,
42, D1083.
(13) Saltiel, A. R. New Therapeutic Approaches for the Treatment of
Obesity. Sci. Transl. Med. 2016, 8 (323), 323rv2.
(14) Berthold, M. R.; Cebron, N.; Dill, F.; Gabriel, T. R.; Kötter, T.;
Meinl, T.; Ohl, P.; Sieb, C.; Thiel, K.; Wiswedel, B. KNIME: The
Konstanz Information Miner. Data Analysis, Machine Learning and
Applications 2008, 319−326.
(15) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J.
Chem. Inf. Model. 2010, 50 (5), 742−754.
(16) RDKit: Open-Source Cheminformatics. http://www.rdkit.org.
(17) Butina, D. Unsupervised Data Base Clustering Based on
Daylight’s Fingerprint and Tanimoto Similarity: A Fast and Automated
Way To Cluster Small and Large Data Sets. J. Chem. Inf. Comput. Sci.
1999, 39 (4), 747−750.
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Experimental Procedures 

Data mining 

The PubMed database was searched for reviews that contain the keywords “obesity” and 

“treatment” in the title or abstract.1 Discussed targets were further reviewed and checked for 

available activity data in the ChEMBL 21 database.2 This procedure yielded 39 obesity-relevant 

targets (Tab. S3). 

The following workflow was conducted in KNIME if not specified else.3 The activity data of 

studied targets was extracted from the ChEMBL 21 database.2 Several criteria were applied to 

exclude ambiguous data. Compounds were filtered for confidence score (≥7), organism (homo 

sapiens), activity type (Ki, KD, IC50 or EC50), standard units (nM) and operator (=). Additionally, 

a molecular weight cutoff was set to 700 Da. In total 36626 compounds with 56740 activity data 

points were included in this study. If multiple data points were available for one compound 

against the same target, binding data (Ki, KD) was preferred over functional data (IC50, EC50) and 

more recent published data was preferred over older data. This procedure condensed the activity 

data to 41545 activities. 

Activity thresholds were set for each target separately based on the available data in the 

ChEMBL 21 database.2 The threshold was set three orders of magnitude above the most active 

compound. However, if a threshold would fall below 100 nM or above 10 µM, this threshold is 

set to 100 nM or 10 µM respectively (Fig. 2). 20841 compounds with 22018 activities against 38 

targets remained for further analysis. The pancreatic lipase was excluded because the compounds 

did not match the filtering criteria. 

38 target subtypes were grouped into 26 target families to focus on more distant relations. For 

instance, 5HT2CR, 5HT1BR and 5HT6R are part of 5HTR. 
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Compounds were protonated and fragments removed by using the database wash application in 

MOE (structure file activity_data.sdf is provided as supporting information).4 MorganFeat 

fingerprints (diameter = 4) were generated using the RDKit.5,6 Compounds were considered 

similar if the Tanimoto score was at least 0.7 and if they belong to different target families. This 

procedure resulted in the retrieval of 204 compounds with 233 activities. 

To allow quality assessment, similar molecules for each target pair were clustered using an in-

house implementation of the Taylor-Butina algorithm with a Tanimoto cutoff at 0.5.7 First, the 

number of neighbors (similar molecules with a Tanimoto score of at least 0.5) is calculated for 

each molecule. Next, the molecule with the most neighbors and all its neighbors are used to 

define the first cluster. Then, the prior steps are run a second time without the molecules of the 

first cluster to define the second cluster. These steps are repeated until all molecules are assigned 

to a cluster. Cluster pairs are defined in each cluster separately by identifying those molecules 

that show activity against different targets and are the most similar for the investigated cluster. 

Finally, each element of the cluster pairs was evaluated for their mechanism of action in terms of 

activation or deactivation (e.g. agonist or antagonist, Tab. S4). Furthermore, target pairs were 

investigated for potential synergistic effects. 

Virtual Screening 

Based on our results MCHR1 and H3R presented the most promising target pair and were chosen 

for further investigation. Scientific literature has been screened for publications to compile 

manually curated databases of known H3R and MCHR1 antagonists. Structures were downloaded 

from ChEMBL or if not available using the Sdf-Export tool from Scifinder.2,8 Six known 

MCHR1 antagonists (Ki/IC50 <= 100 nM) were found in the ZINC database to be purchasable 

from different vendors (structure file ZINC_MCHR1.sdf is provided as supporting information).9 

These compounds were used as query in a shape-based screening campaign against 342 known 
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H3R antagonists (Ki/IC50 <= 1 nM, structure file H3R_1nM.sdf is provided as supporting 

information). First, MCHR1 and H3R antagonists were protonated and energy minimized with the 

MMFF94 forcefield in MOE.4,10 Next, conformations of the H3R antagonists were generated 

using OMEGA with default settings.11 Finally, each purchasable MCHR1 antagonist was 

screened against H3R antagonist conformations using ROCS with default settings.12 Results were 

analyzed using the TanimotoCombo score as implemented in ROCS (Tab. S1). 

Compound 1 – 5 possess a TanimotoCombo score higher than 1.0 and were considered for in-

vitro validation. Compound 3 and 4 are nearly identical. Thus, compound 4 with the lower score 

was excluded. Compound 5 turned out to be not in stock and was not purchased. Compound 6 

had a score below 1.0 and hence was not considered for in-vitro validation. 

Table S1: Purchasable MCHR1 antagonists (Ki/IC50 <= 100 nM) and the most similar H3R antagonist (Ki/IC50 <= 1 nM) 
according to the TanimotoCombo score.  

 MCHR1 TanimotoCombo H3R 

1 

 

1.441 

 

2 

 

1.295 

 

3 

 

1.165 
 

4 

 

1.099 
 

5 

 

1.386 

 

6 

 
0.979 

 

 



S5 

Ordered compounds were analyzed with LC-MS and possess a purity of at least 95 % (Tab. S2). 

Table S2. Purity and activity of tested compounds analyzed with LC-MS and radioligand depletion experiment, respectively. 

 structure purity MW [g/mol] m/z [M+H]
+
 pKi ± SEM 

1 

 

> 95 % 408.2 409.0 6.34 ± 0.14 

2 

 

> 95 % 481.1 481.8 6.70 ± 0.07 

3 

 

> 95 % 430.2 431.0 7.97 ± 0.64 

 

Ligand efficiency calculations 

Ligand efficiency (LE) and lipophilicity-corrected ligand efficiency (LELP) were calculated as 

published previously.13 The clogP of 4.217 for compound 3 used for LELP was calculated using 

MOE.4 

Histamine H3 receptor in-vitro assay 

For preparation of crude hH3R membrane extracts HEK-293 cells stably expressing the hH3R 

were cultivated, harvested and processed as described previously.14 

For the radioligand depletion experiments cell membranes were thawed and homogenized by 

sonication in ice-cold binding buffer (12.5mM MgCl2,1mM EDTA and 75mM Tris/HCl, pH 

7.4). Crude membrane extracts (20 µg/well; final volume of 0.2 ml) were incubated (90 min; 

room temperature) with various concentrations of test ligands (between 0.01 nM and 100 µM) 

and [3H]-N-alpha-methylhistamine (2 nM final concentration; 78.3 Ci/mmol). Nonspecific 

binding was obtained by using pitolisant (10 µM final concentration). Membrane extracts were 

separated from unbound components by filtration through GF/B filters pre-treated with 0.3% 

(m/v) polyethyleneimine using an Inotech cell harvester. Liquid scintillation counting was used 
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for measuring bound radioligand. Data analysis were performed with GraphPad Prism 6 using 

non-linear regression. The Ki values for each experiment were obtained by using an incorporated 

equation of GraphPad Prism according to Cheng-Prusoff. Statistical analysis was conducted on 

pKi values. Mean values were calculated from at least three independent experiments, each 

performed at least in duplicates (Tab. S1). Confidence intervals (95%) were calculated and 

converted to nanomolar concentrations. 
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Obesity-relevant targets 

Table S3. Obesity-relevant targets included in this study categorized by the desired mechanism of action to induce an anti-obese 
effect. 

Agonists/activators 

Target Full name CHEMBLID Target family 

5HT1BR15 Serotonin 1B receptor 1898 5HTR 

5HT2CR15 Serotonin 2C receptor 225 5HTR 

AMY116 Amylin receptor 1 2111189 AMY 

AMY316 Amylin receptor 3 2111190 AMY 

β3AR Beta 3 adrenergic receptor 246 β3AR 

BRS317 Bombesin receptor subtype 3 4080 BRS3 

CCKAR18 Cholecystokinin A receptor 1901 CCKAR 

GLP1R18 Glucagon-like peptide 1 receptor 1784 GLP1R 

MCR319 Melanocortin receptor 3 4644 MCR 

MCR419 Melanocortin receptor 4 259 MCR 

NPYR220 Neuropeptide Y receptor 2 4018 NPYR 

NPYR420 Neuropeptide Y receptor 4 4877 NPYR 

OXR121 Orexin receptor 1 5113 OXR 

OXR221 Orexin receptor 2 4792 OXR 

PPARα22 Peroxisome proliferator-activated receptor alpha 239 PPAR 

PPARδ22 Peroxisome proliferator-activated receptor delta 3979 PPAR 

PPARγ22 Peroxisome proliferator-activated receptor gamma 235 PPAR 

SIRT123 Sirtuin 1 4506 SIRT1 

THRβ24 Thyroid hormone receptor beta 1947 THRβ 

Antagonists/inverse agonists/inhibitors 

Target Full name CHEMBLID Target family 

11βHD125 11-beta hydroxysteroid dehydrogenase 1 4235 11βHD1 

5HT6R
26 Serotonin 6 receptor 3371 5HTR 

ACC127 Acetyl-CoA carboxylase 1 3351 ACC 

ACC227 Acetyl-CoA carboxylase 2 4829 ACC 

SCD128 Stearoyl-CoA desaturase 1 5555 SCD1 

CB129 Cannabinoid receptor 1 218 CB1 

CPT1L30 Carnitine O-palmitoyltransferase 1, liver isoform 1293194 CPT1 
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CPT1M30 Carnitine O-palmitoyltransferase 1, muscle isoform 2216739 CPT1 

CRHR231 Corticotropin releasing hormone receptor 2 4096 CRHR2 

DGAT132 Diacylglycerol O-acyltransferase 6009 DGAT1 

FAS33 Fatty acid synthase 4158 FAS 

GALR134 Galanin receptor 1 4894 GAL1R 

GHSR18 Growth hormone secretory receptor 4616 GHSR 

H3R
35 Histamine H3 receptor 264 H3R 

MCHR136 Melanin-concentrating hormone receptor 1 344 MCHR1 

µ1OR37 Mu 1 opioid receptor 233 MOR 

NPYR120 Neuropeptide Y receptor 1 4777 NPYR 

NPYR520 Neuropeptide Y receptor 5 4561 NPYR 

PLIP38 Pancreatic lipase 1812 PLIP 

PTP1B39 Protein-tyrosine phosphatase 1B 335 PTP1B 
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Cluster pairs with mode of action 

Table S4. Similar cluster pairs with mechanism of action (MOA) and activity to different obesity-relevant targets. n/a – mode of 
action not available in literature. 

target CHEMBL ID MOA tanimoto MOA CHEMBL ID target 

5HT1BR 3126382 n/a 0.82 agonist 1814275 β3AR 

5HT1BR 194837 antagonist 1.00 antagonist 194837 MCHR1 

5HT2CR 723 n/a 1.00 antagonist 723 β3AR 

5HT2CR 127307 agonist 1.00 n/a 127307 H3R 

5HT2CR 1818901 antagonist 1.00 antagonist 1818800 MCHR1 

5HT2CR 216280 antagonist 1.00 antagonist 216280 MCHR1 

5HT2CR 383800 antagonist 0.71 antagonist 215508 MCHR1 

5HT2CR 482496 agonist 1.00 n/a 482496 µ1OR 

5HT6R 431298 antagonist 0.83 agonist 2364345 GHSR1a 

5HT6R 1079311 n/a 1.00 agonist 1079311 GHSR1a 

5HT6R 482496 agonist 1.00 n/a 482496 µ1OR 

β3AR 1814275 agonist 0.82 n/a 3126382 5HT1BR 

β3AR 723 antagonist 1.00 n/a 723 5HT2CR 

β3AR 12998 agonist 0.87 antagonist 1077617 GHSR1a 

BRS3 3144501 agonist 0.81 agonist 2178733 µ1OR 

CCKAR 327815 agonist 0.77 agonist 591041 MCR4 

CPT1L 3431630 inhibitor 0.85 agonist 522575 PPARδ 

CPT1M 3431628 inhibitor 0.76 agonist 496116 PPARδ 

GHSR 2364345 agonist 0.83 antagonist 431298 5HT6R 

GHSR 1079311 agonist 1.00 n/a 1079311 5HT6R 

GHSR 1077617 antagonist 0.87 agonist 12998 β3AR 

H3R 127307 n/a 1.00 agonist 127307 5HT2CR 

H3R 1094029 antagonist 0.88 antagonist 433591 MCHR1 

H3R 210291 antagonist 0.73 antagonist 1914860 MCHR1 

H3R 3094128 antagonist 0.76 antagonist 187916 MCHR1 

H3R 3092839 antagonist 0.83 antagonist 237294 µ1OR 

H3R 441705 antagonist 0.75 agonist 101454 µ1OR 

H3R 1627 antagonist 1.00 agonist 1627 µ1OR 
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MCR4 591041 agonist 0.77 agonist 327815 CCKAR 

MCHR1 194837 antagonist 1.00 antagonist 194837 5HT1BR 

MCHR1 1818800 antagonist 1.00 antagonist 1818901 5HT2CR 

MCHR1 216280 antagonist 1.00 antagonist 216280 5HT2CR 

MCHR1 215508 antagonist 0.71 antagonist 383800 5HT2CR 

MCHR1 433591 antagonist 0.88 antagonist 1094029 H3R 

MCHR1 1914860 antagonist 0.73 antagonist 210291 H3R 

MCHR1 187916 antagonist 0.76 antagonist 3094128 H3R 

MCHR1 217171 antagonist 0.72 antagonist 41457 NPYR1 

MCHR1 180003 antagonist 1.00 antagonist 193771 NPYR5 

µ1OR 482496 n/a 1.00 agonist 482496 5HT2CR 

µ1OR 482496 n/a 1.00 agonist 482496 5HT6R 

µ1OR 2178733 agonist 0.81 agonist 3144501 BRS3 

µ1OR 237294 antagonist 0.83 antagonist 3092839 H3R 

µ1OR 101454 agonist 0.75 antagonist 441705 H3R 

µ1OR 1627 agonist 1.00 antagonist 1627 H3R 

NPYR1 41457 antagonist 0.72 antagonist 217171 MCHR1 

NPYR5 193771 antagonist 1.00 antagonist 180003 MCHR1 

PPARα 1935608 agonist 1.00 inhibitor 1935608 PTP1B 

PPARδ 522575 agonist 0.85 inhibitor 3431630 CPT1L 

PPARδ 496116 agonist 0.76 inhibitor 3431628 CPT1M 

PPARδ 37495 agonist 0.74 inhibitor 282113 PTP1B 

PPARγ 1933093 agonist 1.00 inhibitor 1933093 PTP1B 

PTP1B 1935608 inhibitor 1.00 agonist 1935608 PPARα 

PTP1B 282113 inhibitor 0.74 agonist 37495 PPARδ 

PTP1B 1933093 inhibitor 1.00 agonist 1933093 PPARγ 
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Results

4.2 Ligand-Guided Homology Modeling Drives

Identification of Novel Histamine H3 Receptor

Ligands

The systematic data mining approach revealed several potential target pairs for anti-

obesity drug development (see section 4.1). The most promising target pair, con-

sisting of H3R and MCHR1, was validated in vitro. The testing of known MCHR1

antagonists for H3R binding resulted in the identification of three dual modulators

with nanomolar binding affinity. However, binding mode investigations, which could

facilitate rational lead optimization are hampered by the absence of experimentally

resolved atomistic models. Hence, we aimed at for predicting the atomistic structures

of both receptors, which could assist the challenging optimization against multiple tar-

gets. In the following study, the generation of H3R atomistic models was driven by a

ligand-guided homology modeling approach with subsequent 3D pharmacophore-based

virtual screening. Identified compounds were validated in vitro for H3R binding by

the group of Prof. Dr. Holger Stark at the Heinrich-Heine-University in Düsseldorf,

which resulted in the identification of two novel compounds with nanomolar affinity.
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Abstract
In this study, we report a ligand-guided homology modeling approach allowing the analysis

of relevant binding site residue conformations and the identification of two novel histamine

H3 receptor ligands with binding affinity in the nanomolar range. The newly developed

method is based on exploiting an essential charge interaction characteristic for aminergic G-

protein coupled receptors for ranking 3D receptor models appropriate for the discovery of

novel compounds through virtual screening.

Introduction

Virtual screening campaigns are typically classified into ligand-based approaches exploiting

the similarity of molecules to already known active ligands, and structure-based approaches,

where virtual screening models describe three-dimensional chemical interactions between

molecules and the target structure [1]. A literature survey revealed that structure-based

approaches are on average less successful in identifying highly active hits than ligand-based

approaches [2]. However, if active lead compounds are identified, structure-based approaches

hold the information for a subsequent rational optimization of interactions between ligand

and target structure.

Although the amount of publicly available data for ligand-protein complexes is constantly

increasing, structural data is not always available. In this situation researchers often rely on

homology modeling, a method for generating the protein structure of interest based on closely

related proteins with resolved crystal structures [3]. Including ligand information can aid the

homology modeling process and decrease the level of uncertainty by evaluating homology

models to enrich known actives from decoys in docking experiments and/or to allow docking

poses that match data from mutational studies (often termed ‘ligand-based’, ‘ligand-guided’,

‘ligand-steered’ or ‘ligand-supported homology modeling’). Especially G-protein coupled

receptors (GPCRs) were extensively studied using such approaches including serotonin recep-

tors [4], dopamine receptors [5], GABAB receptor [6] and neurokinin receptor 1 [7].
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Most of these approaches heavily depend on scoring algorithms employed by docking pro-

grams to rank ligand poses and to estimate binding affinity [4–6]. However, docking scores

often poorly corelate with binding affinity [8]. Also, searching for or optimizing a single

homology model to bind a diverse set of ligands is arguable, since very different ligands might

bind to or induce different protein conformations [9]. In contrast, Evers and Klebe avoided

the use of docking scores by optimizing a homology model of the neurokinin receptor 1 to

allow interactions with a single ligand that was extensively investigated including structure

activity relationship of the ligand and mutational studies of the receptor to identify interacting

amino acid chains [7]. Though, relying on mutational data can also be misleading, since muta-

tions distant from the protein binding pocket can also drastically affect ligand binding [10].

In this study, we were interested if a single, yet important and reliable interaction can be

exploited in a ligand-guided homology modeling workflow for the histamine H3 receptor

(H3R) to gain structural knowledge about the binding site and to guide the selection of a

homology model for subsequent virtual screening. We focused on an interaction of charged

functional groups between ligands and aminergic GPCRs, which is well characterized and has

been observed in multiple crystal structures of different GPCRs [11,12]. H3R was selected as

target for several reasons: (i) ligand data is publicly available, (ii) crystal structure is currently

still missing, (iii) H3R is an important drug target discussed for many severe diseases including

Alzheimer’s disease, schizophrenia, Parkinson’s disease, narcolepsy, pain, and obesity among

others [13,14] and (iv) a recent study of us revealed that H3R and melanin-concentrating hor-

mone receptor 1 can be inhibited by the same ligand which could be potentially used in obesity

treatment [15]. In this project, 1000 homology models were generated and evaluated for allow-

ing a charged interaction with a defined set of ligands. Best and worst performing models were

structurally investigated and revealed the importance of distinct binding site residue confor-

mations for proper ligand docking. The highest ranked model was used for a pharmacophore-

based virtual screening campaign and led to the identification of two novel H3R ligands with

nanomolar affinity.

Results and discussion

Ligand-guided homology modeling

A template search revealed that the crystal structure of H1R (3RZE [16]) does not show the

highest sequence similarity to H3R. Also, the extracellular loop 2 close to the orthosteric bind-

ing pocket is not resolved in the H1R structure. Hence, homology modeling was performed

with a multiple-template approach employing crystal structures of H1R, muscarinic M2 recep-

tor (M2R) and muscarinic M3 (M3R) receptor to generate 1000 homology models of H3R with

MODELLER 9.15 [17]. The average heavy atom RMSD of 1.2 Å was calculated with VMD

1.9.2 [18], whereat side chain heavy atoms were more flexible (1.6 Å) than backbone heavy

atoms (0.4 Å). A set of 9 antagonists [19] (Table C in S1 File) was chosen to guide the selection

of a homology model for later pharmacophore studies. We were specifically interested into

this ligand series, since we found highly similar molecules active against the melanin-concen-

trating hormone receptor 1 (MCHR1) and dual antagonism of H3R and MCHR1 might pres-

ent a potential treatment option for obesity [15]. Additionally, these ligands are rather big

showing Y-shaped conformations and thus should allow the selection of a homology model

with an open binding pocket able to harbor diverse ligands. Subsequently, models were scored

for presence of a charged interaction between the docked ligands and D3.32 (numbering from

Ballesteros-Weinstein numbering scheme [20]), that is known to be essential for ligand bind-

ing to aminergic GPCRs (Fig 1A) [11]. Docking and scoring have been performed twice to

control for variations introduced by the docking algorithm (Fig B in S1 File). The highest

Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands
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ranked model achieved an average score of 0.835 in both docking experiments. This means

that 83.5% of the docking poses allow for a charged interaction with D3.32. The predominant

binding mode of docked ligands involves a charged interaction with D3.32, hydrogen bonds

with D3.32, Y3.33, E5.46 and Y6.51 as well as several hydrophobic contacts (Fig 1B). Interestingly,

we found that 25% of generated models retrieved a score of 0.1 or lower. From these, 7 models

had a score of 0, which means that none of the docking poses was involved in the essential

charged interaction.

Thus, we got interested what determinants could be used to distinguish highly scored mod-

els from poorly scored models. First, 10 best and 10 worst performing models were tested for

geometric errors like phi-psi outliers and heavy atom clashes in MOE 2015 [24] as well as with

homology modeling evaluation programs including VERIFY 3D [25], ERRAT [26] and

PROVE [27]. However, none of the applied methods led to a successful discrimination (Fig C

in S1 File). Next, we analyzed structural differences by comparing the side chain atoms average

position of 10 best and 10 worst performing models (Fig 2). The atom with the highest differ-

ence (4.7 Å) in the average position is a carboxyl oxygen of E5.46 (Fig 2A). In the highly scored

models E5.46 is pointing inside the binding pocket (Fig 2B). This is in line with the predomi-

nant docking pose that is involved in a hydrogen bond with E5.46. In contrast, poorly scored

models show a conformation pointing outside the binding pocket. This conformation is also

energetically unfavorable, since it is pointing toward the lipophilic membrane and no amino

acid with opposite charge is present to compensate the negative charge. The importance of

E5.46 in ligand binding is in agreement with mutational studies [28] and was already described

in previous homology modeling studies for H3R [29,30]. Another atom with a rather high

Fig 1. Ligand-guided homology modeling workflow exploits essential charged interaction known from aminergic GPCRs. (A) Aminergic GPCRs show a common

charge interaction of highly diverse ligands with Aspartate 3.22 as illustrated for Eticlopride co-crystallized with the dopamine D3 receptor (3PBL [21]), Tiotropium co-

crystallized with the muscarinic M4 receptor (5DSG [22]) and Carazolol co-crystallized with the β2 adrenoceptor (5JQH [23]). (B) Predominant binding mode of ligand

series (Table C in S1 File) used for ligand-guided homology modeling. The depicted docking pose of CHEMBL1091834 involves a charged interaction with D3.32¸

hydrogen bonds to D3.32, Y3.33, E5.46 and Y6.51 as well as several hydrophobic contacts. Red arrows–hydrogen bond acceptors, green arrows–hydrogen bond donors, blue

star–positive ionizable, yellow sphere–hydrophobic contact.

https://doi.org/10.1371/journal.pone.0218820.g001

Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands
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difference in mean atom position (2.1 Å) is a distal side chain carbon of L7.42. However, we

were not able to draw a clear connection to the docking results.

Virtual screening

The highest scored homology model was used for a screening campaign to identify novel H3R

ligands. 10 diverse antagonists (Table A in S1 File) were docked into the homology model.

Constraints were added to focus on docking poses involved in interactions with the negatively

charged carboxyl-group of D3.32 and E5.46, since all inverse agonists contain at least one posi-

tively charged group. Docking poses with favorable interaction patterns were found for only 5

out of 10 compounds and additionally analyzed to agree with published structure activity rela-

tionship. Derivatives of CHEMBL1923737 (Fig 3, model A) tolerate differently sized pyridone

analogues indicating a location of the pyridone group outside the relatively narrow orthosteric

binding pocket [31]. The literature about CHEMBL2151197 (Fig 3, model B) has only sparse

structure active relationship data [32]. However, later pharmacophore modeling motivated us

to include this docking pose in virtual screening. Analogues of CHEMBL2387294 show that 1

positively charged group can be exchanged by hydrophobic groups without loss of activity

[33]. Hence, a docking pose was chosen that is extending outside the receptor with more space

for different interactions (Fig 3, model C). Data for CHEMBL1269844 report a decrease in

activity when attaching the naphthalene moiety in an extending fashion [34]. Concordantly,

such molecule would lead to clashes with the receptor in the selected binding mode (Fig D

part A in S1 File). The preferred docking pose of the histamine analogue CHEMBL214312 (Fig

D part B in S1 File) is complexed between D3.32 and E5.46 [35]. This binding mode agrees well

with several previous docking studies of histamine [29,30]. Each of the 5 chosen binding poses

is involved in an interaction with charged residues D3.32 and E5.46, which is agreement with the

common binding mode of aminergic GPCRs involving D3.32 and with the importance of E5.46

Fig 2. Best and worst scored homology models show distinct structural differences. Top view onto the orthosteric binding pocket of H3R. Extracellular loop 2 is

not shown for sake of clarity. (A) Structural differences were analyzed by calculating the difference in average side chain atom position of 10 highest and 10 lowest

ranked models. Blue color indicates low difference, yellow high difference. (B) Sidechain conformations of 10 highest and 10 lowest ranked homology models.

Yellow–high ranked models, blue–low ranked models.

https://doi.org/10.1371/journal.pone.0218820.g002
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for proper ligand placement in our homology modeling approach (Fig 2) that is further sup-

ported by mutational data [28] and previous docking studies [29,30]. Docking poses of

CHEMBL1923737, CHEMBL2151197 (Fig 3, model A and B) and CHEMBL1269844 (Fig D

part A in S1 File) only interact with D3.32 despite the already described importance of E5.46 in

ligand binding. However, CHEMBL1923737 has only a single moiety able to act as hydrogen

bond donor. Thus, it can only interact with one of such residues. Additionally, mutational data

from the histamine H1 receptor suggests that the amino acid at position 5.46 is only important

for some ligands [36,37]. Selected complexes were minimized using SZYBKI [38] to allow

binding site adaptation to the docked ligand. Pharmacophores were created and iteratively

optimized using actives and property-matched decoys generated with DUD-E [39]. Three

pharmacophores were found to efficiently discriminate between actives and decoys (Fig 3, Fig

E in S1 File). Only pharmacophore model C includes interactions with residue E5.46, whose

conformation was found to be important for proper ligand docking in prior homology model-

ing selection. However, the 10 diverse inverse agonists used for this docking differ significantly

from the shape of the Y-shaped compounds employed in ligand-guided homology modeling.

Thus, it is not surprising that binding modes and interaction partners are to some extent

different.

Fig 3. Virtual screening workflow results in 8 compounds out of 1.4 M for in-vitro validation. Workflow for virtual screening using 3 different pharmacophores

based on docking poses of CHEMBL1923737 (model A), CHEMBL2151197 (model B) and CHEMBL2387294 (model C). Model A led to identification of

compounds 3, 5, 6, 8, 9, model B to compounds 4, 7 and model C to compounds 1, 2, 10 (Fig 4, Table E in S1 File). � compounds 9 and 10 (model A and C) were

removed from experimental testing due to insufficient purity as determined by LC-MS. Red arrows–hydrogen bond acceptors, green arrows–hydrogen bond

donors, blue star–positive ionizable, yellow sphere–hydrophobic contact.

https://doi.org/10.1371/journal.pone.0218820.g003
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These pharmacophore models were used to screen a library of 1.4 M commercially available

compounds (Enamine Ltd., Kyiv, Ukraine, www.enamine.net) resulting in almost 16,000 hits.

The hits were docked into the respective minimized homology model and resulting docking

poses were assessed for matching the previously screened pharmacophores. This procedure

yielded 73 hits, which were visually inspected to identify hits complementing the receptor

binding pocket surface. To broaden the chemical space of H3R ligands, hits were also priori-

tized to cover positive ionizable head groups that are underrepresented or completely absent

in the H3R ligand data of the CHEMBL 20 database [40], i.e. terminal guanidino, 2,2,6,6-tetra-

methylpiperidino and secondary amino group (Fig 4). In total, 10 compounds were purchased

for in-vitro testing. However, two compounds had to be excluded due to insufficient purity as

determined by LC-MS (Table E in S1 File).

Two molecules (5 and 6) were found to bind H3R in nanomolar concentration ranges (Fig

5). The identified binding mode indicates very similar interaction patterns including a charged

interaction to D3.32, hydrogen bonds to D3.32 and Y3.33 as well as several hydrophobic contacts.

Moreover, we observed pi-cation interactions to D3.32 and Y3.33. Compound 6 shows an addi-

tional pi-cation interaction to F7.39 which may contribute to its superior activity towards H3R

compared to compound 5. Closest H3R ligand analogues in CHEMBL 24 [40] were identified

by employing Morgan fingerprints [41] implemented in RDKit [42] nodes for KNIME [43]

with a Tanimoto score of 0.53 for compound 5 and of 0.36 for compound 6 (Fig 4). The closest

analogues were characterized as inverse agonists indicating the same mode of action for the

newly identified compounds 5 and 6 [44,45]. According to Morgan fingerprints [41] both

compounds significantly differ from CHEMBL1923737 whose docking pose was used for

pharmacophore modeling (Table D in S1 File). This is in line with frequently observed scaffold

hopping in pharmacophore screening campaigns [46]. The thiazole motif of compound 5 has

recently also been incorporated in new lead findings for this receptor subtype [47]. Compound

6 is known as CHEMBL1433079 and was tested in different high throughput bioassays. How-

ever, none of the reported primary screen activities was further investigated hindering a proper

assessment of the data.

The remaining compounds bound H3R at a concentration of 10 μM less than 50% and were

not considered for in-depth activity characterization (Fig 4). Compounds 1–4 and 7 represent

a molecule class that does not carry a lipophilic moiety (e.g. ethyl, cyclopropyl) at the charged

head group like in compound 5 and 6 indicating an important role of this structural feature.

Compound 8 does carry such hydrophobic moiety at the positively charged amine but was

also found to be inactive. Hence, we speculate that the methyl group might be too small to

effectively fulfill this structural role.

Conclusion

In this study, we successfully applied a ligand-guided homology modeling workflow to H3R.

Therefore, 1000 homology models were generated and evaluated for allowing a charged inter-

action in ligand docking experiments. A structural analysis of best and worst performing mod-

els revealed an important conformation of the binding site residue E5.46 that is critical for

proper ligand placement by the docking program. The best performing model was subse-

quently used in a virtual screening campaign and resulted in the identification of 2 novel H3R

ligands scaffolds with nanomolar affinity. Although successful, we do not claim that the best

performing model is necessarily the most realistic one. However, we could show that many

models were generated that allowed none or only few docking poses with the characteristic

charged interaction. Thus, a single, easy-to-handle descriptor could be used to eliminate many

low-quality homology models from further analysis.

Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands
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Experimental section

Preparation of ligand data

The following workflow was conducted in KNIME [43] if not specified else. Histamine H3

receptor (H3R) ligand data was retrieved from Chembl 20 [40] database and filtered for

Fig 4. In-vitro validation of virtual screening hits identified 2 novel nanomolar H3R ligands. Activity results of radioligand depletion assay against H3R. Ki data

is presented as mean values calculated from at least three independent experiments, each performed in triplicates. aCHEMBL1172076 with Tanimoto score of 0.53

when comparing with compound 5 using Morgan fingerprints, bCHEMBL180478 with Tanimoto score of 0.36 when comparing with compound 6 using Morgan

fingerprints.

https://doi.org/10.1371/journal.pone.0218820.g004
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molecular weight (� 500 Da), confidence score (= 9), standard activity type (Ki, Kd, IC50 or

EC50), standard relation (=), standard activity value (� 10) and standard activity unit (nM).

Ligands with unclarified stereo centers were removed with a combination of RDKit [42] and

Indigo [48] nodes. If multiple activities were available for a single ligand, binding data (Ki, Kd)

was preferred over functional data IC50 or EC50) and more recent data was preferred over

older data. The literature of the remaining compounds was checked to remove agonists result-

ing in a final set of 632 inverse agonists. From this set 10 diverse inverse agonists (Table A in

S1 File) were selected using the RDKit diversity picker based on MorganFeat fingerprints [41]

(diameter = 4). This set was used for docking experiments to generate pharmacophores. Addi-

tionally, 100 diverse inverse agonists were selected for pharmacophore validation. Further-

more, the 100 diverse inverse agonists were used to generate decoys using the DUD-E decoy

generator [39] for pharmacophore validation. The decoy set contains 3051 unique molecules.

3D coordinates of all molecules used in this study were generated and energetically minimized

with the MMFF94s [49] force field using RDKit nodes[42]. Hydrogens were added, strong

acids deprotonated and strong bases protonated by using the molecule wash function in MOE

2015 [24].

Homology modeling

The amino acid sequence of human H3R was retrieved from Uniprot [50] (Q9Y5N1) and

employed for a homology model template search in the PDB[51] using the BLAST algorithm

[52]. Structure files of the top ranked templates in the inactive conformation were used for an

alignment in MOE 2015 [24]. Surprisingly, the crystal structure of H1R (3RZE [16]) did not

show the highest sequence similarity to H3R. Also, the extracellular loop 2 (ECL2) close to the

orthosteric binding pocket is not resolved in the H1R structure. Hence, homology modeling

was performed with a multiple-template approach. MODELLER 9.15 [17] was used to generate

1000 homology models using H1R (3RZE [16]), muscarinic M2 receptor (M2R, 3UON [53])

and muscarinic M3 receptor (M3R, 4U15 [54]) as templates. Since ECL2 is not completely

resolved in the H1R structure (3RZE), unresolved ECL2 parts were built by MODELLER solely

based on M2R (3UON) and M3R (4U15). The sequence alignment as well as changed parame-

ters of MODELLER functions can be found in the supporting information (Fig A and Table B

in S1 File).

Fig 5. Potential binding modes of active ligands are very similar. Observed interaction of screening hits 5 (A) and 6 (B). Red arrows–hydrogen bond acceptors, green

arrows–hydrogen bond donors, blue star–positive ionizable, yellow sphere–hydrophobic contact.

https://doi.org/10.1371/journal.pone.0218820.g005
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Docking experiments

A set of 9 inverse agonists [19] (Table C in S1 File) was chosen to guide the homology model

selection and docked into all homology models using GOLD 5.2 [55] with default settings if

not specified otherwise. The active site was defined by residues that are known from other ami-

nergic GPCRs to be involved in ligand binding (D3.32, Y3.33, Y4.56, E5.46, W6.48, Y6.51 and P7.39)

[11]. 10 conformations were generated per molecule with the genetic algorithm set to ’Library

Screening’. Early termination was disabled resulting in 90 conformations per homology

model. Docking results were analyzed for ionic interaction between the ligand and D3.32 that is

characteristic for aminergic GPCRs [11]. Less or equal than 6 Å between the carbon atom of

the carboxyl group of D3.32 and the positively charged amine of the ligand was considered to

be sufficient for ionic interaction. Docking and scoring have been performed to twice to con-

trol for variation introduced by the docking algorithm (Fig B in S1 File).

Homology model evaluation

10 best and 10 worst performing models were tested for geometric errors like phi-psi outliers

and heavy atom clashes in MOE 2015 [24] as well as with homology modeling evaluation pro-

grams including VERIFY 3D [25], ERRAT [26] and PROVE [27]. No statistically significant

difference was found (Fig C in S1 File).

Pharmacophore generation

The 10 diverse H3R inverse agonists generated as described above were docked into the

selected homology model using GOLD 5.2 [55] with default settings if not specified otherwise.

The active site was defined by residues that are known from other aminergic GPCRs to be

involved in ligand binding(D3.32, Y3.33, Y4.56, E5.46, W6.48, Y6.51 and P7.39) [11]. 10 conforma-

tions were generated per molecules with flip ring corners, flip pyramidal N and generate

diverse solutions settings enabled and early termination setting disabled. Protein HBond con-

straints with a constraint weight of 10 and a minimum H-bond geometry weight of 0.005 were

added to focus on conformations involving hydrogen bonds to carboxyl oxygens of D3.32 and

E5.46, since all docked ligands contain a positively charged group that should interact with neg-

atively charged carboxyl-group of D3.32 or E5.42. Docking results were analyzed in LigandScout

3.12 [56] for interactions explaining the structure-activity relationship. Selected complexes

were minimized using Szybki 1.8.0.1 [38] with the MMFF94s forcefield and the Poisson-Boltz-

mann model. Sidechains within 10 Å were set flexible to allow adaption of the binding site resi-

dues to the docked ligand. LigandScout 3.12 was used to generate pharmacophores of the

minimized complexes. Default pharmacophores generated with LigandScout 3.12 were opti-

mized against a set of 100 diverse active inverse agonists and 3051 decoys by removing features

or increasing the tolerance radius of selected features if supported by the structure activity rela-

tionship. Three pharmacophores were found to successfully discriminate between actives and

decoys according to receiver operating characteristic curves (Fig E in S1 File).

Virtual screening and selection

The three selected pharmacophores were employed to screen a library of 1464080 molecules

(Enamine Ltd., Kyiv, Ukraine, www.enamine.net) using LigandScout 3.12 [56] resulting in

15965 hits. These hits were redocked into the respective minimized model using GOLD 5.2

with default settings if not specified otherwise. The active site was defined by residues that are

known from other aminergic GPCRs to be involved in ligand binding (D3.32, Y3.33, Y4.56, E5.46,

W6.48, Y6.51 and P7.39) [11]. 10 conformations were generated per molecules with flip ring

Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands

PLOS ONE | https://doi.org/10.1371/journal.pone.0218820 June 25, 2019 9 / 13



corners, flip pyramidal N and generate diverse solutions settings enabled. The redocked poses

were scored to match the features of the respective pharmacophore model resulting in 73 hits.

This set was visually inspected, and 10 molecules were selected for purchase. Ordered com-

pounds were analyzed for purity with LC-MS leading to exclusion of 2 molecules from further

analysis. The 8 remaining molecules possess purities of at least 95% and were tested in-vitro

for activity against H3R (Table E in S1 File).

In-vitro experiments

Radioligand depletion assays were performed as described previously using crude hH3R mem-

brane extracts obtained from HEK-293 cells stably expressing the hH3R [15,57]. Briefly, crude

membrane extracts were incubated with various concentrations of test ligands (between 0.01

nM and 100 μM) and [3H]-N-alpha-methylhistamine. Bound radioligand were harvested

through GF/B filters and measured using liquid scintillation counting. Data analysis were per-

formed with GraphPad Prism 6 using non-linear regression. The Ki values for each experi-

ment were obtained according to Cheng-Prusoff and converted to pKi values to allow

statistical analysis. Mean values were calculated from at least three independent experiments,

each performed in triplicates (Table E in S1 File).

Supporting information

S1 File. PDF File with used molecular structures as well as more detailed parameters and

results.

(PDF)
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1. Computational experiments 

1.1 Preparation of ligand data 

Table A: Diverse H3R ligands. 10 diverse ligands used for docking experiments in selected homology model. 

 
CHEMBL1222946, IC50=2.2 nM1 

 
CHEMBL2387294, IC50=6.5 nM2 

 
CHEMBL1269844, IC50=9 nM3 

 
CHEMBL2419581, Ki=4.3 nM4 

 
CHEMBL1923737, Ki=3.5 nM5 

 
CHEMBL257391, Ki=2.4 nM6 

 
CHEMBL214312, Ki=5.3 nM7 

 
CHEMBL3124968, IC50=8.3 nM8 

 
CHEMBL2151197, Ki=2.3 nM9 

 
CHEMBL362952, Ki=0.3 nM10 
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1.2 Homology modeling 

 

                  <-----------H1----------->      <-------------H2----------- 
  H3R        35  AVLAALMALLIVATVLGNALVMLAFVADSSLRTQNNFFLLNLAISDFLVGAFCIPLYVPY  94 
  H1R (3RZE)     MPLVVVLSTICLVTVGLNLLVLYAVRSERKLHTVGNLYIVSLSVADLIVGAVVMPMNILY 
  M2R (3UON)     VFIVLVAGSLSLVTIIGNILVMVSIKVNRHLQTVNNYFLFSLACADLIIGVFSMNLYTLY 
  M3R (4U15)     VFIAFLTGFLALVTIIGNILVIVAFKVNKQLKTVNNYFLLSLACADLIIGVISMNLFTTY 
                   :. : . : :.*:  * **: :.  :  *:*  * ::..*: :*:::*.. : :   * 
                                            <ICL1> 

                 ->      <----------------H3--------------->           <----- 
  H3R        95  VLTGRWTFGRGLCKLWLVVDYLLCTSSAFNIVLISYDRFLSVTRAVSYRAQQGDTRRAVR 154 
  H1R (3RZE)     LLMSKWSLGRPLCLFWLSMDYVASTASIFSVFILCIDRYRSVQQPLRYL-KYRTKTRASA 
  M2R (3UON)     TVIGYWPLGPVVCDLWLALDYVVSNASVMNLLIISFDRYFCVTKPLTYP-VKRTTKMAGM 
  M3R (4U15)     IIMNRWALGNLACDLWLSIDYVASNASVMNLLVISFDRYFSITRPLTYR-AKRTTKRAGV 
                  :   * :*   * :** :**: ..:* :.:.::. **: .: : : *    ...  *  
                   <ECL1>                                   <--ICL2---> 

                 ------H4--------------->                 <-------------H5--- 
  H3R        155 KMLLVWVLAFLLYGPAILSWEYLSGGSSIPEGHCYAEFFYNWYFLITASTLEFFTPFLSV 214 
  H1R (3RZE)     TILGAWFLSF-LWVIPILGWNH/----/RREDKCETDFYDVTWFKVMTAIINFYLPTLLM 
  M2R (3UON)     MIAAAWVLSFILWAPAILFWQFIVGVRTVEDGECYIQFFSNAAVTFGTAIAAFYLPVIIM 
  M3R (4U15)     MIGLAWVISFVLWAPAILFWQYFVGKRTVPPGECFIQFLSEPTITFGTAIAAFYMPVTIM 
                  :  .*.::* *:   ** *:.          .*  :*     . . ::   *: *   : 
                                         <-----ECL2------> 

                 ---------->    <--------------H6--------------->       <---- 
  H3R        215 TFFNLSIYLNIQR/LSRDRKVAKSLAVIVSIFGLCWAPYTLLMIIRAACHGHCVPDYWYE 395 
  H1R (3RZE)     LWFYAKIYKAVRQ/MNRERKAAKQLGFIMAAFILCWIPYFIFFMVIAFCKN-CCNEHLHM 
  M2R (3UON)     TVLYWHISRASKS/PSREKKVTRTILAILLAFIITWAPYNVMVLINTFCAP-CIPNTVWT 
  M3R (4U15)     TILYWRIYKETEK/LIKEKKAAQTLSAILLAFIITWTPYNIMVLVNTFCDS-CIPKTYWN 
                   :   *    .    :::*.:: :  *:  * : * ** ::.:: : *   * .      
                            <ICL3>                               <-ECL3-> 

                 -------H7----------> <---H8---> 
  H3R        396 TSFWLLWANSAVNPVLYPLCHHSFRRAFTKL 426 
  H1R (3RZE)     FTIWLGYINSTLNPLIYPLCNENFKKTFKRI 
  M2R (3UON)     IGYWLCYINSTINPACYALCNATFKKTFKHL 
  M3R (4U15)     LGYWLCYINSTVNPVCYALCNKTFRTTFKTL 
                    ** : **::**  * **. .*: :*. : 

Fig A: Sequence alignment. The depicted multiple sequence alignment was used for ligand-guided homology modeling of 

human H3R. The template sequences are illustrated according to structural properties. Red sections represent helices and 

underlined cysteines are involved in a disulfide bond. Furthermore, the multiple sequence alignment contains information about 

the naming of helices and loops and the sequence similarity. (H1) - helix 1, (ILC1) – intracellular loop 1, (ECL1) – extracellular 

loop 2, (*) - identical residues, (:) - residues with high similarity, (.) - residues with low similarity.  
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Table B: MODELLER parameters. Changed parameters of environ and allhmodel classes in homology modelling using 

MODELLER 9.1511. 

class parameter setting 

environ schedule_scale physical.values(default=1.0, soft_sphere=0.7) 

allhmodel library_schedule autosched.slow 

allhmodel max_var_iterations 300 

allhmodel md_level refine.slow 

allhmodel repeat_optimization 2 

allhmodel max_molpdf 1e6 
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1.3 Docking experiments 

Table C: Homology modeling ligand series. Structures of molecules used for guiding homology model selection. Provided 

activities are taken from the literature12.  

 

Ki=16 nM 

 

Ki=3 nM 

 

Ki=2 nM 

 

Ki=10 nM 

 

Ki=10 nM 
 

Ki=14 nM 

 

Ki=7 nM 

 

Ki=23 nM 

 

Ki=7 nM 
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Fig B: Scoring repeats. Scoring results from two independent docking experiments with linear regression line (R2 = 0.89). 
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1.4 Homology model evaluation 
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Fig C: Homology model evaluation. Model quality comparison of 10 best and 10 worst performing models using Mann-

Whitney U test as implemented in GraphPad Prism 6. 
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1.5 Additional binding modes not used for pharmacophore screening 

 

Fig D: Additional proposed binding modes of docked diverse antagonists for CHEMBL12698443 and 

CHEMBL2143127. Green arrows – hydrogen bond donors, blue star – positive ionizable, yellow sphere – hydrophobic contact. 
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1.6 ROC plot analysis of pharmacophores used for virtual screening 

 

 

 

Fig E: ROC plot analysis of pharmacophores for virtual screening. (Top) Model A, CHEMBL1923737, (Middle) Model 

B, CHEMBL2151197, (Bottom) CHEMBL2387294. 
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1.6 Similarity matrix 

Table D: Similarity matrix between 10 diverse already known H3R ligands and 2 newly identified H3R ligands. 

Similarities are represented as Tanimoto scores calculated with Morgan fingerprints13 as implanted in RDKit14 nodes in 

KNIME15. 

 

  

 

0.190 0.161 

 

0.109 0.125 

 

0.149 0.147 

 

0.127 0.139 

 

0.188 0.129 

 

0.09 0.121 

 

0.139 0.107 

 

0.200 0.118 

 

0.139 0.167 

 

0.151 0.136 
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2. In-vitro experiments 

Table E: In-vitro results and purity. Purity and affinity of tested compounds analyzed with LC-MS and radioligand depletion 

experiment, respectively. 

ID structure 
purity 

[%] 

MW 

[g/mol] 

m/z 

[M+H+] 

Binding  

at 10 µM [%] 

pKi  

𝒙 ± SEM 

1 

 

> 95  341.2 342.3 17.6  - 

2 

 

> 95 343.2 344.3 1.2 - 

3 

 

> 95 337.1 338.0 -0.3 - 

4 

 

> 95 339.1 340.0 16.2 - 

5 

 

> 95 327.1 328.0 74.4 6.83 ± 0.23 

6 

 

> 95 357.1 358.0 76.6 7.46 ± 0.11 

7 

 

> 95 286.2 287.3 31.3 - 

8 

 

> 95 301.1 302.0 5.4 - 

9 
 

< 90 202.1 203.0 a  

10 

 

< 90 369.3 370.3 a  

a Excluded due to insufficient purity. 
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Results

4.3 PyRod: Tracing Water Molecules in

Molecular Dynamics Simulations

The ligand-guided homology modeling workflow for H3R with subsequent 3D phar-

macophore virtual screening resulted in the characterization of critical binding site

residue orientations and the identification of two novel ligands with nanomolar ac-

tivity against H3R (see section 4.2). The presented workflow also delivers binding

modes that are essential for optimization of ligands against multiple targets. However,

the workflow exploits an essential and well characterized ligand-protein interaction for

docking, which is not available for MCHR1. Also, the MCHR1 binding pockets con-

tains several highly flexible binding site residues that complicate docking studies which

can be heavily affected by small conformational changes. Thus, a novel method termed

PyRod was developed that can derive pharmacophore features from MD simulations.

The following publication describes the implementation and algorithms of PyRod and

presents the results from a retrospective evaluation against five therapeutically relevant

drug targets with available atomistic models and ligand data.

Contribution:

Conceptual design (80 %)

Computational experiments (100 %)

Visualization (100 %)

Manuscript preparation (90 %)

Reprinted with permission from Schaller, D. et al. PyRod: Tracing Water Molecules in

Molecular Dynamics Simulations. J Chem Inf Model 59, 2818-2829 (2019). Copyright
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ABSTRACT: Ligands entering a protein binding pocket
essentially compete with water molecules for binding to the
protein. Hence, the location and thermodynamic properties of
water molecules in protein structures have gained increased
attention in the drug design community. Including corre-
sponding data into 3D pharmacophore modeling is essential
for efficient high throughput virtual screening. Here, we
present PyRod, a free and open-source Python software that
allows for visualization of pharmacophoric binding pocket
characteristics, identification of hot spots for ligand binding, and subsequent generation of pharmacophore features for virtual
screening. The implemented routines analyze the protein environment of water molecules in molecular dynamics (MD)
simulations and can differentiate between hydrogen bonded waters as well as waters in a protein environment of hydrophobic,
charged, or aromatic atom groups. The gathered information is further processed to generate dynamic molecular interaction
fields (dMIFs) for visualization and pharmacophoric features for virtual screening. The described software was applied to 5
therapeutically relevant drug targets, and generated pharmacophores were evaluated using DUD-E benchmarking sets. The best
performing pharmacophore was found for the HIV1 protease with an early enrichment factor of 54.6. PyRod adds a new
perspective to structure-based screening campaigns by providing easy-to-interpret dMIFs and purely protein-based
pharmacophores that are solely based on tracing water molecules in MD simulations. Since structural information about
cocrystallized ligands is not needed, screening campaigns can be followed, for which less or no ligand information is available.
PyRod is freely available at https://github.com/schallerdavid/pyrod.

■ INTRODUCTION

Unliganded protein binding pockets are occupied by water
molecules which obligates potential ligands to compete with
these water molecules for binding to the protein. Hydrogen
bonds between water and protein need to be broken, and
replaced water molecules will be released to the bulk solvent.
This process heavily affects the thermodynamic properties of
the system and renders water as one of the key elements to
understand and promote ligand binding.1,2 Several approaches
(e.g., 3D-RISM3 and GIST4) have been developed and
employed to estimate the enthalpic and entropic contribution
of replacing water molecules from protein binding sites which
proved to be useful in pinpointing hot spots for ligand binding
and in explaining structure−activity relationships. Including
data from molecular dynamics (MD) simulations was found to
improve such predictions.5 However, researchers at GSK
conclude in a recent perspective6 that many studies utilizing
water-based methods are of retrospective nature, and several
results could have been obtained by simply looking at the
atomistic models, e.g., growing a ligand into a hydrophobic
protein pocket will most likely increase the affinity.
Pharmacophores describe electrostatic and steric features

needed for a molecule to bind to a desired drug target and can
be employed in a truly prospective fashion in efficient high-
throughput virtual screening campaigns to identify novel active
entities.7 Recently, MD simulations were analyzed to generate
so-called water pharmacophores.8 The researchers analyzed the

thermodynamic characteristics of hydration sites in binding
pockets of several drug targets and were able to translate this
information into pharmacophores that were successfully
evaluated in retrospective screening campaigns. However, the
method makes use of commercial software and is not available
for public use.
Here, we present PyRod, a free and open-source Python

software that was built to translate the highly complex but
important information from MD simulations into simplistic
and highly efficient pharmacophore models suitable for virtual
screening. PyRod supports the 4 major force fields
CHARMM,9 AMBER,10 GROMOS,11 and OPLS12 granting
maximum flexibility for the user in choosing the simulation
package for generating MD simulation data. We applied PyRod
to 5 important drug targets and evaluated its capability to
generate successful pharmacophores for virtual screening.

■ IMPLEMENTATION

PyRod is available as open-source software written in Python
313 and employs the external packages MDAnalysis,14

NumPy,15 and SciPy.16 It is composed of several components
that can be executed individually via self-explainable config files
(Figure 1A). Additionally, a trajectory pharmacophore combo
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config file is provided which enables a one-step-execution of
several tasks.
Test Grid. This component facilitates the identification of

parameters for proper grid placement allowing the user to
focus on the protein area of interest in later trajectory analysis.
The x, y, and z center parameters are used to define the center
of the grid which can be retrieved from, e.g., a central atom in
the binding pocket with coordinates stored in the topology file
or by employing pocket detection algorithms externally. The x,
y, and z edge length parameters define the size of the grid and
are usually set between 20 and 30 Å but can be set higher if the
whole protein surface should be explored. The test grid will be
saved in pdb format with grid points as pseudoatoms. This file
can then be visualized together with the topology file to
improve parameters if required.

Trajectory Analysis. The implemented routines analyze
the protein environment of water molecules in MD simulations
to predict favorable sites for chemical feature placement, i.e.,
hydrogen bond, ionizable, hydrophobic, and aromatic inter-
actions. The employed heuristic scoring functions do not
calculate thermodynamic properties but instead estimate
favorable regions for chemical feature placement in each
frame based on fast-to-calculate geometric descriptors. Since
scoring is only performed in the presence of water, PyRod
favors regions with stable water molecules whose replacement
by ligands will result in a gain of entropy. Chemical feature
scores are summated throughout the trajectory in a NumPy15

representation of the 3D grid whose position and size can be
determined by using the test grid component. Spacing between
grid points is fixed to 0.5 Å. MDAnalysis14 is employed as a
topology and trajectory reader supporting various molecular

Figure 1. (A) Workflow diagram of PyRod. Each box represents a single component of PyRod that can be executed separately or in combination
using the trajectory pharmacophore combo. (B) Depiction of the exclusion volume sphere generation algorithm. Top: The neighborhood within
0.5 and 1 Å of each grid point is analyzed. Bottom: Only grid points with a shape score less than 1 are depicted, representing an area with low water
occupancy, e.g., within the protein. Grid points with a shape score of 1 or higher are not depicted and would fall into the white area corresponding
to a potential protein binding pocket. Gray grid points are at the grid boundaries and are not considered for exclusion volume placement. The
described algorithm favors exclusion volume spheres with a maximum number of neighbors within 0.5 Å, but a minimal number of neighbors within
1 Å and would generate 3 exclusion volumes in this example in the order described by the numbers. (C) Depiction of the iterative chemical feature
generation. (D−F) Examples for hydrophobic interaction (HI) scores scaled by buriedness. Each depiction represents a water oxygen with 4
hydrophobic atoms within 5 Å resulting in different HI scores. The buriedness algorithm evaluates the hydrophobic atom positions by calculating
angles with the water oxygen as vertex. (D) Water molecule is not buried. (E) Water molecule is buried between two hydrophobic centers. (F)
Water molecule is buried between 4 hydrophobic centers.
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data formats. Residue and atom names are standardized
enabling the support of widely used force fields CHARMM,9

AMBER,10 GROMOS,11 and OPLS.12 The gathered informa-
tion is transformed for each chemical feature type into dynamic
molecular interaction fields (dMIFs) and can be saved in
density map format (kont, cns, xplor) for visualization of
pharmacophoric binding pocket characteristics. The name
dMIF was chosen, since the generated maps introduce
dynamics to the concept of molecular interaction fields
(MIFs), an established tool in modern drug discovery
describing the interaction energy between a probe and a
molecular target. For an extensive review on molecular
interaction fields we would like to refer the reader’s attention
to a publication by Artese and coauthors.17

In a first step, the protein is analyzed for atoms and atom
groups corresponding to potential chemical feature interaction
partners (Supporting Information Table S1), e.g., oxygen
atoms of the aspartate carboxylate group are hydrogen bond
acceptors and part of a negatively charged group if
deprotonated. Next, water molecules are localized in each
trajectory frame, and their protein environment is analyzed for
the previously defined chemical feature interaction partners. If
certain geometrical criteria are met (Supporting Information
Table S2), grid points within 1.41 Å (radius of water
molecule18) of the water molecule are identified using fast
KDTree19 routines from SciPy16 and scored according to the
chemical feature type.
Water molecules have two lone pairs and two hydrogens

allowing the formation of hydrogen bond as acceptor as well as
donor. If water molecules at a certain position are half of the
time hydrogen bonded to the protein as donor and half of the
time as donor and acceptor, this could indicate two different
protein conformations which is important to pharmacophore
generation. Hence, hydrogen bonding interactions are split
into 6 categories, i.e., single hydrogen bond donor (HD),
single hydrogen bond acceptor (HA), double hydrogen bond
donor (HD2), double hydrogen bond acceptor (HA2), and
mixed hydrogen bond donor/acceptor (HDA). Water
molecules involved in more than two hydrogen bonds with
the protein are treated as trapped water (TW). Such water
molecules are typically deeply buried in the protein making
them barely accessible for ligands, and only a very few ligands
would be able to fulfill the geometric criteria to replace the
water molecule sufficiently. Thus, trapped waters are not
considered for later chemical feature generation. However,
trapped waters can be of interest in later screening hit
selection, since they might serve as a bridge between protein
and ligand. Water molecules near metal ions (e.g., Zn2+, Mn2+)
are treated as hydrogen bond acceptors and are included in the
hydrogen bond count to identify trapped waters. Positions of
the protein interaction partners are stored to allow later
chemical feature generation with directionality. Gathered
hydrogen bond scores are transformed into easy-to-interpret
occupancies, e.g., an HA score of 15 means that in 15% of the
frames there was a water molecule at this position being
involved as a single hydrogen bond acceptor with the protein.
Positive (PI) and negative ionizable interactions (NI) are

also scored as occupancies but are additionally scaled by
distance, since they represent long-range interactions whose
energy decays with increasing distance. Furthermore, PI and
NI quench each other. A PI score of 80 can describe very
different situations, e.g., there was a water molecule in 80% of
the frames in the optimal distance to 1 PI partner but no NI

partner or in 40% of the frames in the optimal distance to 3 PI
partners and 1 NI partner.
Aromatic interactions (AI) show a rather complex geometry

involving several angles and distances (Supporting Information
Table S2). Additionally, in contrast to hydrogen bond and
ionizable interactions, water molecules will not necessarily
accumulate at a favorable position for potential ligand
interaction partners. Thus, grid points close to such water
molecule are evaluated individually to satisfy the AI geometry
criteria and receive an individually distance scaled occupancy
score. Idealized positions for potential interaction partners are
stored for later feature generation with directionality.
Cation-π interactions are also recorded by the implemented

routines and included in PI and AI scores, e.g., water molecules
close to the aromatic ring of a phenylalanine will be scored for
PI and water molecules close to the positively charged amine
of a lysine will be scored for AI. However, they receive a
dedicated heuristic scoring function differing from earlier
presented PI and AI scoring (Supporting Information Table
S2).
Regions for potential hydrophobic interactions (HI) are

identified by counting hydrophobic atoms in the vicinity of
each water molecule. This crude atom count is additionally
scaled by buriedness to highlight regions with water molecules
deeply enclosed in a hydrophobic pocket (Figure 1D−F). In a
first step, positions of hydrophobic atoms within 5 Å of the
water oxygen are collected. If only one hydrophobic atom was
identified, the hydrophobic score is 1, and no further
calculation is performed. Otherwise, hydrophobic atom
positions are analyzed to estimate the buriedness of the
water molecule as follows. Two hydrophobic atom positions
are determined that form the maximal angle with the water
oxygen position as vertex, e.g., two hydrophobic atoms with a
water molecule exactly in between would lead to an angle of
180 degrees. If this maximal angle is less than 30 degrees, the
algorithm is terminated, and the hydrophobic score remains 1
(Figure 1D). Such a situation corresponds to a geometry,
where a water molecule is close to multiple hydrophobic atoms
but not buried. Otherwise, the hydrophobic score is increased
by 1, both hydrophobic atom positions are marked as accepted,
and one of the two hydrophobic atom positions forming the
maximal angle is randomly selected as the reference position
for further processing. The remaining hydrophobic atom
positions are analyzed in an iterative fashion as follows. First,
the hydrophobic atom position is identified that forms the
maximal angle with the reference position and the water
oxygen position as vertex. Next, this hydrophobic atom
position is evaluated for angles formed with the already
accepted positions and the water oxygen as vertex. If none of
the formed angle is smaller than 30 degrees, the hydrophobic
score is increased by 1, and the evaluated position is marked as
accepted position. Otherwise, this position is ignored. This
procedure is repeated until all hydrophobic atom positions
were evaluated resulting in a hydrophobic score that is strongly
dependent on the hydrophobic buriedness of the water
molecule. However, highly hydrophobic regions may not be
sampled well by water molecules and will be scored less
frequently and consequently may receive a lower absolute HI
score. Hence, a normalized score is provided as well (HInorm)
which reports the average hydrophobic score per occurrence,
e.g., an HInorm score of 5.3 means that when a water molecule
occurred at this position the near grid points retrieved on
average an HI score of 5.3.
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Exclusion Volume Spheres. During trajectory analysis
the presence of water is recorded to generate a shape dMIF. It
is used in this component to place exclusion volumes limiting
the binding pocket volume in later pharmacophores with the
following algorithm (Figure 1B). Grid points must have a
shape score less than 1 (corresponding to water occupancy of
1%, can be changed by the user) and are sorted for the number
of neighbors (grid points with a shape score less than 1) within
1 Å. Next, each grid point is evaluated as center of an exclusion
volume starting with the grid point with the lowest number of
neighbors within 1 Å. Grid points with very few neighbors
usually correspond to protein side chains pointing inside the
binding pocket and are prioritized by the algorithm. To be
accepted as the center of an exclusion volume, a grid point
must not be at the grid boundaries, must have exactly 7
neighbors within 0.5 Å but less than 33 neighbors within 1 Å
ensuring that exclusion volumes are placed only at the interface
of protein and water but not too close to the chemical features,
and finally, must not be within 4 Å (2 Å if restrictive mode is
enabled) of an already generated exclusion volume.
Chemical Features. A novel algorithm was implemented

translating dMIFs into corresponding chemical features for
pharmacophore virtual screening (Figure 1C). First, all grid
points become part of a pool of available grid points for the
respective chemical feature generation. Next, the grid points
with the highest feature score in the grid point pool are
determined. If this search results in a single grid point, its
position will be used as center of the chemical feature. The
tolerance radius of that chemical feature is identified by
iteratively increasing the search radius (minimum = 1.5 Å)
from the feature center in 0.5 Å steps. If the feature score of a
grid point within the search radius is below half of the current
highest feature score, the search is stopped, and the current
search radius will be used as a tolerance radius for the chemical
feature. If multiple grid points share the highest feature score in
the grid point pool, the following procedures are performed to
select a single grid point as the feature center. Tolerance radii
are calculated for each of the considered grid points. The grid
point with the highest tolerance radius will be used as center of
the chemical feature. If multiple grid points share the highest
tolerance radius, the sum of feature scores of the grid points
within the tolerance radius is calculated, and the grid point
with the highest sum of feature scores is selected as the feature
center. If this procedure does not lead to the selection of a
single grid point, a random pick of the remaining grid points is
performed. Grid points within the tolerance radius of a
chemical feature must not be part of an already generated
chemical feature of the respective chemical feature type. This
criterion prevents overlap of chemical features within chemical
feature types. In the case of hydrogen bond and aromatic
interactions, recorded positions of interaction partners are
clustered by searching for the interaction partner position with
the most neighboring interaction partner positions within 1.5
Å. This procedure allows the generation of chemical features
with directionality. Finally, grid points within the tolerance
radius of the feature center are removed from the pool of
available grid points, and a new iteration is started. The
chemical feature generation is terminated if 20 chemical
features (can be changed by the user) of the respective
chemical feature type were generated or if the highest feature
score of the grid point pool decreases below 1.
Pharmacophores. The output of exclusion volume and

chemical feature generation is merged and saved as a single

“super pharmacophore” containing all previously generated
chemical features and exclusion volumes. Additionally, a
pharmacophore can be saved containing only the highest
ranked features for each chemical feature class as specified by
the user, e.g., 20 highest scored hydrogen bonding features and
5 highest scored hydrophobic features. Currently, PyRod
supports LigandScout20 and pdb-like pharmacophore formats.
The pdb-like pharmacophore file uses the residue name
column to specify the chemical feature type and aims at
providing a pharmacophore format readable by human and
various molecular modeling softwares. However, directionality
is not included in the pdb-like pharmacophore format.

Combinatorial Library. The generated “super pharmaco-
phores” can contain more than 100 chemical features, which
remains computationally challenging to screen also with the
current progress in CPU performance. Thus, reducing the
number of chemical features is key to enable fast high-
throughput virtual screening. This component facilitates the
generation of a combinatorial library of pharmacophores with a
specified number of chemical features as defined by the user.
First, the user preselects chemical features of interest in
LigandScout20 and saves this pharmacophore for combinatorial
processing. Chemical features that should be present in every
generated pharmacophore have to be set mandatory, whereas
chemical features that should be added in a combinatorial
fashion have to be set optional. Next, the user can specify the
limits for minimal and maximal number of chemical features in
the config file, i.e., number of independent chemical features,
number of hydrogen bonding features, number of ionizable
features, number of aromatic features, and number of
hydrophobic features. Prior to library generation the user will
be informed about the number of possible pharmacophores
and prompted for execution. To further limit the library size,
each pharmacophore is evaluated for the following rules, i.e.,
(i) ionizable and hydrophobic features should not appear
within 3 Å, (ii) different hydrogen bonding features should not
be present within 1.5 Å, since such a situation implies two
different protein conformations, (iii) different ionizable
features should not be present within 3 Å, and (iv) hydrogen
bonding features of HA2, HD2, and HDA are not allowed to
be split. PyRod also provides a customizable pharmacophore
evaluation script written in Python performing receiver
operatic characteristics analysis with LigandScout.20

dMIF Excess. Selectivity within a protein family as well as
the occurrence of mutation-induced resistance remains a major
challenge in modern drug discovery.21,22 It would be desirable
to exploit such minor differences in protein binding pockets.
Thus, this component enables the comparison of dMIFs
between closely related proteins by generating dMIF excess
maps visualizing the excess of one system over the other.

■ TEST SYSTEMS
PyRod performance was evaluated on 5 important drug target
test systems, i.e., cyclin-dependent kinase 2-cyclin A complex
(CDK2, 5if123), HIV-1 protease (HIV1P, 1nh024), estrogen
receptor alpha (ERα, 1xpc25), dopamine D3 receptor (D3R,
3pbl26), and adenosine A2A receptor (A2AR, 5iu4

27). Protein
selection was based on therapeutic relevance, availability of
benchmarking sets from DUD-E,28 and crystal structures from
PDB29 as well as protein family diversity.

System Setup. Crystal structures were retrieved from
PDB29 and prepared in MOE 201530 as follows. Ligands were
deleted as well as water more than 5 Å away from the protein.
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Figure 2. (A) Shape dMIF of CDK2 (cutoff 1) with exclusion volumes present in each generated pharmacophore. (B, C) Characterized binding
pocket with dMIFs for single hydrogen bond donor (green, cutoff 38), single hydrogen bond acceptor (red, cutoff 17), mixed hydrogen bond
donor/acceptor (cyan, cutoff 14), positive ionizable (blue, cutoff 27), aromatic interaction (magenta, cutoff 36), and hydrophobic interaction
(yellow, cutoff 100). Cutoffs were chosen to visualize decision making in subsequent pharmacophore feature selection. (D) Selected
pharmacophore features based on chemical feature score and arrangement (green arrow−hydrogen bond donor, red arrow−hydrogen bond
acceptor, yellow sphere−hydrophobic interaction, blue star−positive ionizable, blue ring plane−aromatic interaction). (E) Performance evaluation
of pharmacophore library. (F) Pharmacophore with best early enrichment factor (EF1;5;10;100: 30.3;30.3;30.3;30.3, AUC1;5;10;100:
0.99;0.99;0.88;0.54).
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Errors were corrected with the Structure Preparation tool. The
low resolution D3R structure 3pbl misses a sodium ion that is
known to be crucial for inactive class A GPCR states.31 Hence
the sodium ion and 6 coordinating water molecules were
transferred from the high resolution structure of δ opioid
receptor (4n6h32) into the D3R system. Chain breaks were
capped with ACE and NME. Protonation states were assigned
using the Protonate 3D tool at pH 7. Nonmembrane proteins
(CDK2, HIV1P, and ERα) were solvated in a cubic box with
TIP4P water, 0.15 M NaCl, and 10 Å padding using Maestro
11.3.33 Membrane proteins (A2AR and D3R) were embedded
in a POPC bilayer according to the orientation provided by the
PPM server34 and solvated in an orthorhombic box with
TIP4P water, 0.15 M NaCl, and 10 Å padding.
Molecular Dynamics Simulation. Simulations were

performed with Desmond 5.135 and the OPLS 200536 force
field on a Nvidia GeForce GTX 1070 graphics card.
Minimization and equilibration were performed with default
settings. Ten replications of 10 ns simulation were performed
for each system with periodic boundary conditions in an NPT
ensemble. The temperature was retained at 300 K using the
Nose-Hoover thermostat, and the pressure was maintained at
1.01325 bar using the Martyna-Tobias-Klein barostat.
Coordinates were saved every 5 ps resulting in 2000 frames
per simulation. Trajectories were additionally processed in
VMD 1.9.2,37 i.e., the protein was centered in the water box by
using the pbc tool and trajectories were aligned on the protein
backbone heavy atoms using the RMSD Trajectory tool.
The CDK2 system (5if123) was also simulated with

OpenMM 7.2.238 on a Nvidia GeForce GTX 1070 graphics
card employing the Amber force field ff14SB10 with the
TIP4P-Ew water model to test the effect of restraining heavy
atoms. The same prepared protein structure was used as for
Desmond simulations described above. The protein was
solvated in a cubic water box with 10 Å padding and 0.15 M
NaCl. The Particle Mesh Ewald method was used to calculate
long-range electrostatic interactions with a 10 Å cutoff, and all
bonds involving hydrogens were constrained in length.
Langevin dynamics was performed at 300 K with 2 fs time
step. Ten replications of 10 ns simulations were performed
with periodic boundary conditions and an NPT ensemble.
Coordinates were saved every 5 ps resulting in 2000 frames per
simulation. The simulations were performed with and without
a custom force of 5 kcal restraining protein heavy atoms at
their initial position. Resulting trajectories were processed in
VMD37 as already described.

PyRod. Grid parameters were adjusted using the test grid
component to center the grid in the binding site. Grids were
cubic with edge lengths of 20 Å for ERα and CDK2, 25 Å for
D3R and HIV1P, and 30 Å for A2AR. Trajectories were
processed with PyRod 0.7.1 using the last 5 ns of each
replication resulting in 10,000 frames for analysis of each
system with default settings. Generated dMIFs were visualized
and analyzed in LigandScout 4.220 to preselect pharmacophore
features according to feature scores and their arrangement in
the binding pocket. Selected chemical features were subjected
to combinatorial processing with the combinatorial library
component of PyRod. Chemical feature limits for each target
can be found in the Supporting Information (Table S3).
Pharmacophore Screening. The ligand benchmarking

sets with actives and decoys for CDK2, HIV1P, ERα, D3R, and
A2AR were retrieved from the DUD-E server28 in SMILES
format. For CDK2, ERα, D3R, and A2AR 25 conformations

were generated per molecule with iCon as implemented in
LigandScout 4.2.20 For HIV1P 200 conformations were
generated per molecule, since the active set primarily contains
peptidomimetics with many rotatable bonds. These databases
were used for pharmacophore evaluation in LigandScout 4.220

employing receiver operating characteristic (ROC) curves.

■ RESULTS AND DISCUSSION
CDK2. The ATP binding pocket of CDK2 is a well

characterized site for inhibition with a plethora of crystal
structures deposited in the PDB. The most frequently observed
interactions include hydrogen bonds formed with the back-
bone of residues E81 and L83.39 Concordantly, PyRod
identified a hydration site at which water molecules act as a
single hydrogen bond donor to the backbone oxygen of E81 in
63% of all frames (Figure 2B). Besides being involved in a
single hydrogen bond, these water molecules are also in a very
hydrophobic environment (HI score = 420, HInorm score =
5.85). These characteristics render this hydration site as an
essential position for ligand binding, since replacing restrained
water molecules from a hydrophobic pocket by a correspond-
ing ligand moiety should be beneficial for the entropy and
enthalpy of the system. Adjacent to E81 are further hydration
sites at which water molecules are involved in hydrogen bonds
with the backbone of L83 in 40% of the frames as single donor,
in 19% of the frames as single acceptor, and in 15% of the
frames as mixed donor and acceptor (Figure 2B). Likewise,
these hydration sites lie in a hydrophobic environment (HI
score = 180−350, HInorm score = 3.5−6.25) highlighting these
positions for additional ligand interactions. Several hotspots
were identified for placing positive ionizable groups, i.e., at the
interface of D145 and F80 as well as next to D86 with PI
scores of 70 and 25, respectively, and aromatic moieties, i.e.,
close to the salt bridge formed by K33 and D145 as well as
adjacent to F80 with AI scores of 45 and 70, respectively
(Figure 2C). A hydrophobic band with HI scores ranging from
100 to 300 is spanning the binding pocket that resulted in the
generation of 6 hydrophobic features (Figure 2C). In total 15
chemical features were selected based on the corresponding
feature score and their arrangement in the binding pocket
(Figure 2D). By employing the combinatorial library
component of PyRod, these features were combined to 816
pharmacophores with 3 to 5 chemical features. The hydrogen
bonding donor feature pointing toward the backbone oxygen
of E81 was selected to be present in every pharmacophore.
Further parameters can be found in the Supporting
Information (Table S3). Using LigandScout20 all pharmaco-
phores were screened against an active set retrieved from the
DUD-E28 database and additionally evaluated against decoys if
5% of the actives were found. Hit lists were evaluated for early
enrichment factor (EF1%) and plotted against found actives to
select pharmacophores of interest (Figure 2E). The most
selective pharmacophore (EF1% = 30.3) consists of 2
hydrophobic features, 1 hydrogen bond donor, and 1 hydrogen
bond mixed donor/acceptor (Figure 2F).

D3R. Currently, only a single crystal structure of D3R is
available. However, this target was studied extensively with
many known ligands stored in public databases. A key
interaction shared across all aminergic GPCRs is a charged
interaction to an aspartate in the orthosteric binding pocket.40

PyRod located several hydration sites with water molecules
pointing as a single hydrogen bond donor toward D110 in 35−
50% of the frames with PI scores between 35 and 50 (Figure
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3B,C). Additionally, we found 2 sites with water molecules
acting as hydrogen bond acceptors with an HA score of 20 next

to the backbone nitrogen of I183 and to the imidazole ring of
H349. Hydrophobic hotspots (HI score = 140−225, HInorm

Figure 3. (A) Shape dMIF of D3R (cutoff 1) with exclusion volumes present in each generated pharmacophore. (B, C) Characterized binding
pocket with dMIFs for single hydrogen bond donor (green, cutoff 36), single hydrogen bond acceptor (red, cutoff 19), positive ionizable (blue,
cutoff 33), aromatic interaction (magenta, cutoff 14), and hydrophobic interaction (yellow, cutoff 160). Cutoffs were chosen to visualize decision
making in subsequent pharmacophore feature selection. (D) Selected pharmacophore features based on chemical feature score and arrangement
(green arrow−hydrogen bond donor, red arrow−hydrogen bond acceptor, yellow sphere−hydrophobic interaction, blue star−positive ionizable,
blue ring plane−aromatic interaction). (E) Performance evaluation of pharmacophore library. (F) Pharmacophore with best early enrichment
factor (EF1;5;10;100: 7.7;3.3;2.3;2.0, AUC1;5;10;100: 0.92;0.94;0.93;0.58).
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score = 3.80−4.25) were identified close to F345 and above
D110 as well as sites for aromatic interactions (AI score = 15)
next to F345. In total, 16 chemical features were selected and

combined to 2441 pharmacophores with 3 to 5 independent
features (Figure 3D). Further parameters can be found in the
Supporting Information (Table S3). The best performing

Figure 4. (A) Shape dMIF of HIV1P (cutoff 1) with exclusion volumes present in each generated pharmacophore. (B, C) Characterized binding
pocket with dMIFs for double hydrogen bond donor (dark green, cutoff 35), positive ionizable (blue, cutoff 90), hydrophobic interaction (yellow,
cutoff 110), single hydrogen bond acceptor (red, cutoff 13), double hydrogen bond acceptor (dark red, cutoff 4), and mixed hydrogen bond donor/
acceptor (cyan, cutoff 26). Cutoffs were chosen to visualize decision making in subsequent pharmacophore feature selection. (D) Selected
pharmacophore features based on chemical feature score and arrangement (green arrow−hydrogen bond donor, red arrow−hydrogen bond
acceptor, yellow sphere−hydrophobic interaction, blue star−positive ionizable). (E) Performance evaluation of pharmacophore library. (F)
Pharmacophore with best early enrichment factor (EF1;5;10;100: 54.6;54.6;54.6;54.6, AUC1;5;10;100: 1.00;1.00;0.93;0.54).
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pharmacophore (EF1% = 7.7) consists of 1 hydrophobic
feature, 1 hydrogen bond acceptor, and 1 positive ionizable
feature (Figure 3E,F).
HIV1P. The protease of HIV1 is a well characterized target

for inhibiting virus replication. Mature HIV1P exists as a
homodimer with two aspartates (D25, D25′) in the catalytic
center. The hydroxyl group of approved drugs mimics a water
molecule present in the transition state and results in inhibition
of the protease.41 PyRod located two hydration sites between
the two catalytic aspartates with HD2 scores of 40 and a PI
score of 110 (Figure 4B). Hydrophobic pockets are symmetri-
cally distributed around the catalytic center resulting in several
hydrophobic features (HI score = 120−270, HInorm score =
2.80−4.90). PyRod also found the hydration site (Figure 4C)
between the backbone nitrogens of I50 and I50′ where water
molecules are bound as a double or single hydrogen bond
acceptor (HA2 score = 5, HA score = 17). This water molecule
is observed frequently in inhibitor-bound crystal structures
serving as a bridge between ligand and protein but can also be
replaced.41 Finally, PyRod identified a hydration site next to
D29 and D30 with water molecules acting as double hydrogen
bond acceptor (HA2 score = 6), single hydrogen bond
acceptor (HA score = 15), or mixed hydrogen bond donor/
acceptor (HDA score = 27). A single hydrogen bond acceptor
feature was chosen at this position to represent all 3 observed
water conformations (Figure 4D). In total, 588 pharmaco-
phores were generated by combining 15 pharmacophore
features. The double hydrogen bond donor feature was
selected to be present in every pharmacophore. Further
parameters can be found in the Supporting Information (Table
S3). The best performing pharmacophore (EF1% = 54.6)
consists of 3 hydrophobic features, 2 hydrogen bond donors,
and 2 hydrogen bond acceptors (Figure 4E-F).

ERα and A2AR. Estrogen receptor alpha and adenosine A2A

receptor represent 2 test cases for which pharmacophore
generation based on water dynamics was not successful. ERα
contains a hydrophobic pocket25 that is collapsing upon
unrestrained molecular dynamics simulation. This ultimately
leads to the placement of exclusion volumes at a position
where cocrystallized ligands bind (Figure 5A). Agonists and
antagonists of A2AR share two key interactions with F168 and
N253.42 The aromatic interaction with F168 is completely
absent in the AI dMIF, since F168 is very flexible in the
unbound state and adapts a conformation differing from the
ligand bound state (Figure 5B). Also, N253 and E169 leave the
ligand bound conformation quickly upon initiating unre-
strained simulations and do not frequently interact with water
molecules at positions known from ligand interaction with
N253.

Discussion. An important decision to make when using
PyRod is the MD simulation length. To estimate the
equilibration process of water molecules in protein binding
pockets, the change of water occupancy in trajectory bins of 50
frames was analyzed for each test system and plotted together
with the RMSD of protein heavy atoms (Supporting
Information Figure S1). All test systems in this study were
equilibrated within the first 5 ns of unrestrained MD
simulation. However, this may be different for other systems.
Interestingly, these plots indicate a synchronous equilibration
of protein and water rendering the protein RMSD an easy-to-
use descriptor to estimate equilibration times of water
molecules in protein binding pockets. The total simulation
length was restricted to 10 ns for each replication to reduce
computational costs and to sample protein conformations close
to the crystallographic structure. Replications were performed
to expand sampling of protein conformations without

Figure 5. (A) Shape dMIF of ERα (cutoff 1) with an exclusion volume placed at a position where cocrystallized ligands bind. (B) Characterized
binding pocket of A2AR with dMIFs for hydrogen bond donor (green, cutoff 40), single hydrogen bond acceptor (red, cutoff 40), aromatic
interaction (magenta, cutoff 32), and hydrophobic interaction (yellow, cutoff 160). Essential key interactions known from cocrystallized ligands are
not represented in the dMIFs (green arrow−hydrogen bond donor, red arrow−hydrogen bond acceptor, blue ring plane−aromatic interaction,
yellow sphere−hydrophobic interaction).
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introducing artifacts from a single long MD simulation stuck in
a local minimum.43

Best PyRod pharmacophores of CDK2, D3R, and HIV1P
outperform the docking program DOCK 3.6 when comparing
early enrichment factors (EF1%) with the DUD-E benchmark28

(Supporting Information Table S4). However, PyRod
pharmacophores could not be generated for A2AR and ERα,
since both targets quickly leave the ligand-bound conformation
upon unrestrained MD simulation. Although restraining the
protein heavy atoms is tempting, this procedure would neglect
the contribution of the protein to the entropy of the system.44

When restraining heavy atoms of the CDK2 system, we
observed many more stable hydration sites with overall higher
feature scores, which may hinder prioritization of important
chemical features (Figure 6). Instead of restraining the protein
in MD simulations, it might be an option in such situations to
employ methods that generate pharmacophores based on the
static structure.45,46

An important difference between the already published
water pharmacophore method8 and our PyRod approach is the
number of generated pharmacophores. The water pharmaco-
phore method was designed to generate a single pharmaco-
phore in a highly automated fashion. Although retrospectively
successful with 4 out of 7 targets, it needs to be shown that the
parameters and cutoffs trained on the test systems also succeed
in a prospective study on a completely different target. PyRod
does not generate a single pharmacophore for virtual screening
but a combinatorial library. This agrees with the fact that
different ligands can show different interaction patterns for the
same binding pocket. However, it would be desirable to
develop only a few diverse pharmacophore models with PyRod
without the knowledge of any ligand data. Prospective studies
are forthcoming and are the only possibility to prove the
usefulness of PyRod in such situations. Nevertheless, we are
confident that we would have been able to generate successful
pharmacophores by only analyzing dMIFs and selecting
features for CDK2 and HIV1P.

■ CONCLUSION
In this study we show that water dynamics from MD
simulations can be used to generate highly usable 3D

pharmacophore models for virtual screening. Employing the
free and open-source software PyRod we were able to
successfully describe pharmacophoric binding pocket charac-
teristics and generate pharmacophores for three pharmaceuti-
cally relevant drug targets. The early enrichment factors from
the best performing models range from 7.7 for D3R to 54.6 for
HIV1P. Additionally, we found that restraining protein heavy
atoms dramatically affects the water dynamics in the binding
pocket hindering hot spot identification for ligand binding in
water-based methods.
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1. Feature Definition 
Table S1: Chemical feature definition and functional protein groups. 

protein 
chemical 
feature 

selection criteria 
corresponding ligand 
chemical features for 
interaction 

hydrogen bond 
acceptor 

• nitrogen, oxygen or sulfur with 
acceptor capabilities 

• imidazole nitrogen checked for 
protonation state 

• hydrogen bond donor 

hydrogen bond 
donor 

• nitrogen, oxygen or sulfur with 
donor capabilities 

• checked for protonation state 

• hydrogen bond acceptor 

hydrophobic 
interaction 

• uncharged carbon or sulfur atoms not 
bonded to oxygen or nitrogen 

• hydrophobic interaction 

positive 
ionizable 

• N-terminus, lysine amine, arginine 
guanidine, histidine imidazole 

• checked for protonation state 

• negative ionizable 
• aromatic interaction 

negative 
ionizable 

• C-terminus, aspartate carboxylate, 
glutamate carboxylate, cysteine 
thiolate, serine hydroxylate, 
threonine hydroxylate, tyrosine 
hydroxylate 

• checked for protonation state 

• positive ionizable 

aromatic 
interaction 

• phenylalanine benzene, tyrosine 
benzene, tryptophan indole (benzene 
and pyrrole), histidine imidazole 
(checked for protonation) 

• aromatic interaction 
• positive ionizable 

metal • name specified via config-file • hydrogen bond acceptor 
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2. Scoring Functions 
Table S2: Scoring functions for chemical features in PyRod. HB – hydrogen bond, HI – hydrophobic 
interaction, II – ionizable interaction, AI – aromatic interaction. * scored per grid point. 

type geometry cutoffs scoring function 

HB 

 

doxygen ≤ 3.2 
dnitrogen ≤ 3.3 
dsulfur ≤ 3.9 
α ≤ 130° 

occupancy 

Metal  d ≤ 3 
occupancy, part of 

hydrogen bond acceptor 
and negative ionizable 

HI  d ≤ 5 
number of hydrophobic 

atoms scaled by 
buriedness 

II  d ≤ 6 

occupancy scaled by 
distance 

 

Cation-π*  3.1 ≤ d ≤ 6 

occupancy scaled by 
distance 

 

π-Cation* 

 

α < 30° 
3.1< b ≤ 6.0 

occupancy scaled by 
distance 

 

AIπ-stacked* 

 

α < 45° 
3.3 ≤ b ≤ 4.7 

a ≤ 2.0 

occupancy scaled by 
distance 

0

1

2 3 4 5 6

sc
or

e

distance

0

1

2 3 4 5 6

sc
or

e

distance

0

1

2 3 4 5 6

sc
or

e

distance
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AIt-stacked* 

 

α < 45° 
4.7 < b ≤ 6.0 

a ≤ 0.5 
or 

α ≥ 45° 
4.6 ≤ a ≤ 6.0 

b ≤ 0.5 

occupancy scaled by 
distance 

 

0

1

3 4 5

sc
or

e

distance

0

1

4 5 6

sc
or

e

distance
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3. PyRod combinatorial library parameters 
Table S3: Parameters used for combinatorial library generation. 

 CDK2 D3R HIV1P 

minimal independent chemical features 3 3 3 
 hydrogen bonding features 1 1 2 
 ionizable features 0 1 0 
 aromatic features 0 0 0 
 hydrophobic features 1 1 2 
maximal independent chemical features 5 5 5 
 hydrogen bond features 4 4 4 
 ionizable features 1 1 1 
 aromatic features 2 2 2 
 hydrophobic features 3 3 3 
number of features in super pharmacophore 15 16 15 
number of generated combinations 816 2441 588 

4. Early enrichment factors 
Table S4: Early enrichment factors for best performing pharmacophore model generated by PyRod and for 
docking results from DOCK 3.61 as benchmarked in the DUD-E publication2. 

 PyRod Dock 3.6 

CDK2 30.3 14 
D3R 7.7 4 
HIV1P 54.6 5 
ERα - 15 
A2AR - 22 
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5. Equilibration 

 

Figure S1: RMSD and water occupancy difference plots for one replication of each system tested, i.e. cyclin-
dependent kinase 2 (5if13, A), dopamine D3 receptor (3pbl4, B), HIV-1 protease (1nh05, C), estrogen receptor α 
(1xpc6, D) and adenosine A2A receptor (5iu47, E). RMSD of protein heavy atoms is shown in black and was 
calculated using VMD 1.9.237. The water occupancy difference is shown in blue and was calculated as follows. 
The trajectory of each system was separated into trajectory bins of 50 frames. The first bin contains frames 1-50 
and the last bin contains frames 1951-2000. PyRod was used for each trajectory bin to calculate water occupancies. 
The water occupancies of each bin were then compared grid-point wise to the water occupancies of the first bin, 
whereas a grid point pair was classified as different if the water occupancy values differ by more than 5. A water 
occupancy difference of 0.3 corresponds to a situation where 30 % of the grid points of that bin show a different 
water occupancy compared to the first bin. 
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Results

4.4 Exploiting Water Dynamics Enables

Structure-Based Pharmacophore Searches

Against MCHR1

After successful evaluation of our novel method (see section 4.3) we applied PyRod

to MD simulations of an atomistic model of MCHR1. In the following study 3D

pharmacophores were derived for MCHR1 and validated with a set of active and decoy

molecules.
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Abstract: Several encouraging pre-clinal results highlight the 

melanin-concentrating hormone receptor 1 (MCHR1) as 

promising target for anti-obesity drug development. Currently 

however, experimentally resolved structures of MCHR1 are 

not available, which complicates rational drug design 

campaigns. In this study, we aimed at developing accurate, 

homology-model based 3D pharmacophores against MCHR1. 

We show that traditional approaches involving docking of 

small molecules are hindered by the flexibility of central  

binding pocket residues. Instead, we derived pharmacophore 

features from molecular dynamics simulations by employing 

our novel open-source software PyRod. The generated 3D 

pharmacophores were highly predictive returning up to 35 % 

of active molecules and showing an early enrichment (EF1) of 

up to 27.6. Furthermore, PyRod pharmacophores 

demonstrate higher sensitivity than ligand-based 

pharmacophores and deliver structural insights, which are key 

to rational lead optimization. 

Keywords: MCHR1, PyRod, 3D pharmacophore, homology modeling, MD simulation 

 
Obesity and overweight have progressed into major threats 

for human health causing 4 Mio deaths in 2015.[1] Beside 

bariatric surgery that is associated with several 

complications[2], pharmaceutical intervention in combination 

with lifestyle intervention proved to be the most promising 

treatment option for obesity.[3–5] However, currently approved 

anti-obesity agents lack efficacy and show severe or 

unpleasant side effects.[6] 

The melanin-concentrating hormone receptor 1 

(MCHR1) is a well characterized target for potential 

obesity treatment. Several rodent models of obesity 

showed encouraging results in knock-out experiments or 

in administration of MCHR1 antagonists. Unfortunately, 

these promising results could not be translated to human 

obesity treatment.[7] However, there is evidence that the 

simultaneous antagonism of MCHR1 and histamine H3 

receptor (H3R) might result in a synergistic effect that 

could be beneficial in obesity treatment. [8] Also, we 

recently found three ligands that bind both receptors in 

the nanomolar activity range validating this target pair 

for rational multi-target drug design campaigns.[9]  

Structure-based virtual screening campaigns 

employing atomistic models of the macromolecular 

target can be advantageous over ligand-based 

campaigns, since hits confirmed by in-vitro assays come 

with a potential binding hypothesis that can be exploited 

in subsequent lead optimization campaigns. [10] 

Especially multi-target drug design campaigns benefit 

from structural data, since lead molecules need to be 

optimized against multiple targets. Although the number 

of entries in the Protein Data Bank (PDB) is constantly 

increasing, many potential drug targets as well as 

validated drug targets still lack an experimentally 

resolved atomistic model.[11] In such situation, 

researchers often employ homology modeling, a method 

that is generating an atomistic model of the target of 

interest based on a closely related macromolecule.[12] 

However, performing structure-based virtual screening 

using homology models increases the chance for 

modeling artifacts, since even small modeling errors, 

such as a wrong side chain conformation essential for 

ligand binding, can impair docking performance.[13,14] 

Molecular dynamics (MD) simulation can be used to 

address such artifacts and additionally, provide valuable 

information about the flexibility and thermodynamic 

properties of the system. [15–17] PyRod, a free and open-

source Python software, combines the strength of MD 

simulations with structure-based 3D pharmacophore 

searches by analyzing the protein environment of water 

molecules in protein binding pockets and subsequently 

generates pharmacophore features for virtual 

screening.[18] 

In this study, we aimed at generating highly 

predictive structure-based 3D pharmacophore models 

for virtual screening against MCHR1. A highly flexible 

hydrogen bond network involving three glutamine 

residues in the binding pocket of MCHR1 hindered the 

use of conventional workflows employing docking 

algorithms for pose prediction. Hence, we applied the 

free and open-source software PyRod, that analyzes the 

protein environment of water molecules in protein 

binding pockets throughout an MD simulation for 

pharmacophore feature placement. The presented 

workflow (Fig 1) yielded 3D pharmacophores that were 

highly successful in discriminating actives from decoys 

in a retrospective virtual screening campaign. 

Furthermore, they provide structural insights for binding 
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to MCHR1 that are not obtainable by ligand-based 

pharmacophore modeling. 

 

Figure 1. Workflow diagram for generating homology model-

based 3D pharmacophores against MCHR1 with PyRod. 

A sequence search found the crystal structure 

4N6H[19] of the δ opioid receptor to be a suitable 

template for homology modeling of MCHR1 with a 

sequence similarity of 50.2 %. A homology model of 

MCHR1 in the inactive state was generated with MOE 

2018[20]. The sodium ion complexed by D2.50 was 

transferred from 4N6H into the MCHR1 homology model, 

since it was found to be structurally important for the 

inactive state of class A GPCRs.[21] A ramachandran plot 

analysis in MOE 2018 underlined the quality of the 

model with 95 % of dihedral angles located in the core 

region, 5 % in the allowed region and none outside.  

The orthosteric pocket residues Q3.36, Q5.42 and Q6.55 

are highly flexible allowing various conformations and 

interact with several neighboring residues in a complex 

hydrogen bonding network (Fig 2). Such situations 

complicate docking studies, since their performance can 

already be affected by small changes in side chain 

conformations.[13,14] Thus, this homology model was 

subjected to molecular dynamics simulations with 

Desmond 5.1[22] to explore side chain conformations and 

to relax artifacts introduced through homology modeling. 

The trajectories were analyzed using PyRod 0.7.2 [18] to 

identify potential hotspots for ligand binding and to 

generate 3D pharmacophores for virtual screening. 

The PyRod software describes pharmacophoric 

binding pocket characteristics in form of dynamic 

molecular interaction fields (dMIFs) for common 

pharmacophore features including hydrogen bonds, 

ionizable and aromatic interactions as well as 

hydrophobic contacts. PyRod suggests favorable regions 

for hydrogen bonding and charged interactions close to 

D3.32 and the sodium ion complexed by D2.50 (Fig 3A). 

Additional hotspots for hydrogen bonding are located 

next to Q3.36, Q5.42 and Q6.55 supporting our hypothesis 

on the potential participation of these residues for ligand 

binding. Several hydrophobic residues are present in the 

orthosteric binding pocket favoring hydrophobic contacts 

above D3.32, next to the sodium ion and close to the 

glutamines 3.36, 5.42 and 6.55 (Fig 3B). Sites for 

possible aromatic interactions can be found between 

residues W6.48 and F2.53 next to the sodium ion and in 

the upper part of the binding pocket next to extracellular 

loop residues R353 and F256. 

 

Figure 2. Top view into the binding pocket of the MCHR1 

homology modeling. The three flexible glutamines can adapt 

various conformations. 

PyRod generates a single super-pharmacophore by 

analyzing dMIFs for each pharmacophore feature type. 

However, this 3D pharmacophore consists of too many 

features for efficient virtual screening. Thus, 

prioritization and selection of pharmacophore features is 

mandatory for further processing and was performed by 

analyzing dMIFs for each respective pharmacophore 

feature type manually. Hotspots for interactions close to 

the sodium ions were ignored, since, to our knowledge, 

no ligands of GPCRs were reported to replace or interact 

with this sodium ion. Pharmacophore features were 

selected to have a high score according to the 

respective dMIF and to cover the orthosteric binding 

pocket. Additionally, pharmacophore features were 

included that are located close to extracellular loops, 

since these regions were found to frequently contribute 

to ligand binding.[23] The focused 3D pharmacophore 

model consists of 15 features (Fig 4A), i.e. two positive 

ionizable interaction features and two associated 

hydrogen bond donors pointing towards D3.32, four 

hydrogen bonding features close to glutamines 3.36, 

5.42 and 6.55, two hydrogen bond acceptors close to the 

extracellular loops of MCHR1, four hydrophobic features 

covering both pockets next to the three glutamines and 

above D3.32, and one aromatic feature next to R353.  
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Figure 3. PyRod analysis of MCHR1 orthosteric binding pocket. 

Depicted dMIFs represent favorable regions for (A) hydrogen 

bonding (cyan, cutoff=27.8) and positive ionizable interactions 

(blue, cutoff=25.3) as well as for (B) hydrophobic (yellow, 

cutoff=111.8) and aromatic features (magenta, cutoff=15.3). 

Cutoffs were chosen based on the half maximum of the 

respective feature class. Transmembrane helices 6 and 7 were 

set transparent to allow better visualization. 

The focused 3D pharmacophore was subjected to 

combinatorial processing with PyRod 0.7.2.[18] Feature 

combinations were restricted to 3D pharmacophores with 

minimal 3 and maximal 5 independent features to reduce 

the combinatorial space. Additionally, each 3D 

pharmacophore must contain one positive ionizable 

feature to further limit combinatorial space and to focus 

on ligands carrying a positive charge which would be 

beneficial for potential binding to H3R. This procedure 

resulted in 1136 different 3D pharmacophores against 

MCHR1. 3D pharmacophores were evaluated with 

LigandScout 4.2[24] for discrimination of a diverse set of 

100 actives retrieved from the ChEMBL 24 database [25] 

and 6350 matched decoys from the DUD-E server[26]. 

Altogether, 62 3D pharmacophores found at least 

5 % of the MCHR1 active set, which was the criteria to 

advance to the computational expensive decoy 

screening (Fig 4B). The results from actives and decoys 

screening were used for calculation of the early 

enrichment factor (EF1%). The 3D pharmacophore with 

the highest true positive hit rate finds 35 % of screened 

actives and consists of one positive ionizable feature 

next to D3.32, one hydrophobic feature above three 

glutamines 3.36, 5.42 and 6.55, as well as one hydrogen 

bond acceptor feature close to the extracellular loops 

(Fig 4C, supporting information Fig S1A). However, this 

3D pharmacophore achieves only considerably weak 

early enrichment (EF1% = 4.0). In contrast, the 3D 

pharmacophore with the best enrichment (EF1% = 27.6) 

also carries an aromatic feature next to R353 and 

additionally has the hydrophobic feature located above 

D3.32, but only picks 6 % of the active molecules (Fig 4D, 

supporting information Fig S1B). 

A popular approach in the absence of experimentally 

resolved atomistic models is the generation of 3D 

pharmacophores from alignments of known active 

molecules. Hence, we were interested if PyRod 

pharmacophores can achieve a similar performance 

compared to ligand-based pharmacophores. The 

complete active set, containing 695 unique MCHR1 

ligands ,was clustered with LigandScout 4.2 [24] resulting 

in 19 clusters comprising of at least 10 molecules. Each 

of these clusters was employed to generate a shared-

feature pharmacophore. In total, 12 pharmacophores 

contained the important positive ionizable feature and 

were evaluated for early enrichment and retrieval of 

known actives (Fig 4B, supporting information Fig S1C). 

All tested ligand-based shared-feature pharmacophores 

show very high early enrichment factors of up to 64.5. 

However, the ligand-based pharmacophores are not 

sensitive returning at most 6 % of actives from the test 

set. Furthermore, such 3D pharmacophores lack any 

information about the interactions with the receptor, 

which is essential to rational lead optimization. 

This is the first study applying PyRod on MD 

simulations of a homology model. By employing PyRod, 

we were able to generate several 3D pharmacophores 

against MCHR1 that are highly successful in 

discriminating active MCHR1 ligands from decoys. The 

3D pharmacophore generation is thereby not dependent 

on error-prone docking studies in homology models but 

instead exploits water dynamics from MD simulations. 

Hits identified with these structure-based 3D 

pharmacophores hold the information of a binding 

hypothesis that can be used for subsequent rational lead 

optimization. Furthermore, we show that PyRod 

pharmacophores present an attractive alternative to 

ligand-based pharmacophores that heavily dependent on 

correct ligand conformations as well as their alignment, 

and additionally, lack information essential for further 

lead optimization.[27] These characteristics render PyRod 

pharmacophores highly valuable tools for hit 

identification and optimization in anti-obesity drug design 

campaigns against MCHR1. Also, the presented 

workflow (Fig 1) can be easily transferred to other 
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projects that aim at performing homology model-based virtual screening campaigns. 

Figure 4. 3D pharmacophores and their performance. (A) Focused 3D pharmacophore from PyRod used for combinatorial 

processing. (B) Evaluation of 3D pharmacophores against a MCHR1 test set. The blue and yellow dots represent the performance 

of PyRod pharmacophores, red dots represent the performance of ligand-based shared feature pharmacophores generated with 

LigandScout 4.2. (C, D) 3D pharmacophores identifying the most actives from MCHR1 test set and showing the highest early 

enrichment respectively. Exclusion volumes were not depicted for the sake of clarity. Blue star – positive ionizable, yellow sphere – 

hydrophobic contact, purple ring – aromatic interaction, red arrow – hydrogen bond acceptor. 

Experimental Section 

A template search using the GPCRdb[28] and subsequent 

analysis in MOE 2018[20] revealed the high resolution 

crystallographic structure 4N6H[19] of the δ opioid receptor as 

suitable template for generating a homology model of 

MCHR1. The amino acid sequence of human MCHR1 

(Q99705) was retrieved from Uniprot[29] and aligned to the 

crystallographic structure 4N6H in MOE 2018 according to 

the proposed alignment from GPCRdb (supporting 

information Fig S2). The aligned sequences show a 

sequence identity of 29.4 % and a sequence similarity of 

50.2 %. 

Employing this alignment, a homology model of 

human MCHR1 was generated based on 10 main chain 

models with 10 side chain samples per main chain 
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model at 300 K in MOE 2018. Automatic model 

refinement was disabled. The structurally important 

sodium ion and 5 water molecules were transferred from 

the template structure 4N6H. The side chain 

conformation of S195 was refined to allow correct 

complexation of the sodium ion (supporting information 

Fig S3). Atom clashes were sequentially minimized with 

OPLS-AA force field[30] implemented in MOE 2018. 

Protonation was performed using the Protonate3D tool in 

MOE 2018. 

The homology model of MCHR1 was subjected to 

molecular dynamics simulation. Chain breaks were 

capped with NME and ACE in MOE 2018 [20]. The 

receptor was oriented using the PPM server [31] for 

subsequent membrane placement in a POPC bilayer 

using Maestro 11.3[32] and solvation in a orthorhombic 

box of TIP4P water with 10 Å padding containing 0.15 M 

NaCl. In total, 10 replica of 30 ns MD simulations were 

performed using Desmond 5.1 [22]. Frames were saved 

every 10 ps resulting in 3000 frames per simulation. The 

pbc wrap functionality implemented in VMD 1.9.3 [33] was 

employed to center the receptor in the periodic boundary 

box and the RMSD Trajectory Tool to align the trajectory 

on the heavy atoms of the protein backbone of the first 

frame. 

The test grid component of PyRod 0.7.2 [18] was used 

to identify appropriate parameters for grid placement. 

The identified parameters result in cubic grids with an 

edge length of 30 Å spanning the orthosteric binding 

pocket of MCHR1 (supporting information Fig S4). The 

last 10 ns of each simulation were analyzed using the 

trajectory pharmacophore combo of PyRod 0.7.2 with 

default parameters resulting in the generation of 

dynamic molecular interaction fields describing 

pharmacophoric binding pocket characteristics as well 

as a super pharmacophore describing potential 

interaction sites with the receptor.  

The CHEMBL 24 database[25] was used to retrieve 

activity data for MCHR1 (CHEMBL344). Ligands were 

filtered for molecular weight (≤ 700), confidence score (≥ 

9), standard relation (=), standard value (≤ 10) standard 

units (nM) and standard type (Ki, Kd, IC50 or EC50). 

RDKit[34] nodes implemented in KNIME 3.7.1[35] were 

used to remove molecules with unspecified stereo 

centers and to remove duplicates, whereat binding data 

was preferred over functional data and more recent data 

points were preferred over older. This procedure 

resulted in 695 unique ligands of MCHR1. 

MOE 2018[20] was used to identify the dominant 

protonation state at pH 7 and Corina 3.00 [36] to generate 

a low-energy 3D conformation. The RDKit diversity 

picker was employed in KNIME 3.7.1 to pick 100 diverse 

active ligands. The DUD-E server[26] was used to 

generate decoys for the selected diverse ligands. In total, 

6350 decoys were retrieved from DUD-E server, 

protonated at pH 7 in MOE 2018 and an initial 

conformation was generated with Corina 3.00. By 

employing iCon implemented in idbgen from 

LigandScout 4.2 [24] 25 conformations were generated for 

each of the molecules in the active and decoy sets for 

later 3D pharmacophore evaluation. 

LigandScout 4.2 was employed to visualize and 

analyze the previously generated dMIFs guiding the 

selection of pharmacophore features from the super 

pharmacophore for combinatorial library generation with 

PyRod 0.7.2[18]. Fifteen features were selected and 

combined to 1136 different 3D pharmacophores. The 

combinatorial space was limited by restricting 3D 

pharmacophores to contain 3 – 5 independent features, 

1 – 3 hydrogen bonds, 0 – 1 aromatic interaction and 

exactly 1 ionizable interaction. Each 3D pharmacophore 

was evaluated with LigandScout 4.2 for discrimination of 

actives from decoys which were generated as already 

described. 

Ligand-based shared-feature pharmacophores were 

generated in LigandScout 4.2. All 695 unique MCHR1 

ligands were clustered and clusters comprising of at 

least 10 molecules were subjected to shared-feature 

pharmacophore generation. 3D pharmacophores 

containing a positive ionizable feature were evaluated 

for early enrichment factor and retrieval of actives as 

already described. 
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1. ROC statistics 

 

Figure S1: ROC statistics for selected 3D pharmacophores generated with PyRod (A, B) and with the 
ligand-based mode in LigandScout 4.2 (C). Exclusion volumes are not depicted for the sake of clarity. 
Blue star – positive ionizable, yellow sphere – hydrophobic contact, purple ring – aromatic interaction, 
red arrow and sphere – hydrogen bond acceptor, green sphere - hydrogen bond donor. 

  



2. Sequence Alignment 
 

 

 

 

 

Figure S2: The depicted sequence alignment was used for homology modeling of human MCHR1. The 

template sequence is highlighted according to structural properties. Red sections represent helices, 

yellow sections represent β-sheets and underlined cysteines are involved in a disulfide bond. 

Furthermore, the sequence alignment contains information about the naming of helices and loops as 

well as the sequence similarity. (H1) - helix 1, (ICL1) - intracellular loop 1, (ECL1) - extracellular loop 2, 

(*) - identical residues, (:) - residues with high similarity, (.) - residues with low similarity. 

 

  



3. Optimization of Sodium Coordination 
 

 

 

 

 

 

 

 

 

 

Figure S3: Refinement of the homology model of MCHR1. The conformation of S195 was altered to 

allow correct complexation of the important sodium ion highlighted in orange. Carbon atoms prior 

refinement are colored in cyan, carbon atoms after refinement in magenta. 
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Discussion

After decades of research, health systems still lack an appropriate strategy to stop the

obesity epidemic. Rational drug design campaigns for compounds able to modulate

multiple obesity-relevant targets present a promising approach to overcome the low

efficacy and severe side effect of currently available medications. The increasing public

availability of small molecule bioactivity data presents a unique opportunity to iden-

tify targets for multi-target drug development. However, the lack of experimentally

resolved atomistic models limits our understanding of critical ligand-protein interac-

tions and consequently hampers the complex lead optimization towards the desired

activity profile against multiple obesity-relevant targets.

5.1 Identification of H3R/MCHR1 as Promising

Target Pair for Obesity Treatment

The reported data mining campaign (see section 4.1) assessed the similarity of publicly

available small molecule activity data for 39 obesity-relevant drug targets revealing 20

target pairs that show binding of similar ligands towards different targets. Taylor-

Butina [140] clustering was performed to prioritize target pairs by the number of

similar ligand clusters. The maximum of three similar ligand clusters was identified for

the target pairs H3R/MCHR1, H3R/µ1 opioid receptor (µ1OR) and MCHR1/serotonin

receptor 2C (5HTR2C). Notably, all these targets belong to the GPCR protein family.

Ligands of GPCRs can either activate (agonist) or inactivate (antagonist or inverse

agonist) receptor signaling. This mechanism of action is essential to the pharmacolog-

ical response. If activation of a certain receptor is attributed to anti-obesity effects,

inactivation of this receptor will be ineffective or even promote obesity. Since these

characteristics are not annotated in public databases, ligands were manually evaluated

for their mechanism of action by reviewing the primary literature. This resulted in

the identification of 11 target pairs with antiobese mechanism of action for both el-

ements of the target pair. Five target pairs were found, in which one element had a

conflictive mechanism of action and thus could be important as potential off-target.

Unfortunately, the mechanism of action for ligands of five target pairs were not prop-
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erly reported in the primary literature and thus could not be further evaluated.

Our data mining approach identified H3R/MCHR1 as the most interesting target

pair unveiling three similar ligand clusters with antiobese mechanism of action for

both elements of the target pair. A literature research only yielded two studies report-

ing compounds with activity towards both receptors [89, 141]. However, the studied

compounds show low potency for H3R, since the authors were mainly interested into

MCHR1 ligands.

A shape-based screening campaign with subsequent in vitro validation found three

small molecules with prior unknown multi-target character against H3R and MCHR1.

The most active compound shows a balanced profile with two digit nanomolar activity

at both receptors. The ligand efficiency of 0.34 characterizes this compound as good

starting point for further optimization [142]. However, the lipophilicity-corrected lig-

and efficiency of 12.40 indicates potential promiscuity, since high lipophilicity is often

associated with unspecific binding to many targets [142]. Indeed, closely related com-

pounds were already found to show affinity towards 5HTR2C. Notably, 5HTR2C was

also identified by the presented data mining workflow to be a potential off-target for

MCHR1 antagonists in anti-obesity drug development.

Both H3R and MCHR1 were extensively studied for the development of potential

anti-obesity drugs. However, drug candidates for both receptors failed to proof efficacy

in clinical studies. A recent study might explain why the efforts in targeting H3R for

anti-obesity treatment did not lead to an effective treatment yet. Parks and colleagues

found that H3R antagonists increase the expression of orexigenic MCH which may

abolish anti-obesity effects of H3R antagonist [143]. Hence, a concurrent inhibition of

MCHR1 might be essential for efficacy and lead to a synergistic effect.

Taken together, the applied data mining approach revealed several interesting tar-

get pairs binding similar ligands. The simultaneous antagonism of H3R and MCHR1

is a promising approach towards an effective anti-obesity treatment. Three small

molecules were identified that are able modulate both receptors simultaneously. The

included off-target analysis as well as closely related compounds of the most active

ligand indicate potential antagonistic activity at 5HTR2C which could decrease the

efficacy and should be considered in further development.

5.2 Advancing Rational Drug Design Against

H3R and MCHR1

Optimizing the activity of lead molecules against multiple targets is challenging, since

modifications increasing the activity for one target are likely to decrease the activity

for the other. Such lead optimization campaigns can dramatically benefit from includ-

ing atomistic models of the targets, since the synthesis of analogues can be rationally
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restricted to those showing favorable interactions to both targets. However, experi-

mentally resolved atomistic models for H3R and MCHR1 are currently not available.

Thus, homology models have to be employed to advance our understanding of ligand

binding which can ultimately promote lead optimization.

5.2.1 Ligand-Guided Homology Modeling of H3R

Investigations utilizing homology models come with a substantial risk of modeling

artifacts, since erroneous conformations of side chains critical for ligand interactions

can dramatically impair docking results [144, 145]. To overcome this challenge, the

presented workflow (see section 4.2) evaluates homology models of H3R to allow a

critical interaction between docked ligands and D3.32 which is well characterized for

aminergic receptors and can be observed in several experimentally resolved atomistic

models [146, 147].

An analysis of docking poses for 1000 homology models of H3R revealed that the

critical charged interaction towards D3.32 can be observed for 25 % of generated homol-

ogy models in only less than 10 % of docking poses. This indicates structural problems

that hinder a correct ligand placement. Noteworthy, 7 models were identified that do

not allow a single docking pose with an interaction towards D3.32. In contrast, the

best ranked homology model allows the critical interaction in 83.5 % of docking poses.

Thus, ligand data together with a single, yet reliable interaction could be utilized to

eliminate homology models unlikely to perform well in further computational studies.

The difference of best and worst performing models could thereby not be explained

by frequently employed scoring metrices, including dihedral angle outliers, heavy atom

clashes or scores by homology model evaluation programs. A detailed comparison of

side chain conformations of ten best and ten worst ranked models highlight the side

chain conformation of E5.46 to be critical for ligand placement. In the best performing

homology models E5.46 is pointing inside the binding pocket and is involved in a hy-

drogen bond with the docked ligands. In contrast, the worst performing models share

a side chain conformation of E5.46 that is pointing towards the lipophilic membrane.

Also, no side chains are present in this region to compensate for the negative charge

of E5.46. These results support other studies suggesting an important role of E5.46

for ligand binding [148–150]. The second most different side chain conformation was

found for L7.42. However, its different conformation could not be related to the docking

results.

The best performing homology model was employed for a structure-based virtual

screening campaign for novel ligands of H3R starting with docking of 10 diverse known

antagonists. Remarkably, the previously identified important residue E5.46 is not al-

ways involved in interactions with the docked antagonists. However, one of the docked

antagonists only contains a single hydrogen bond donor. Also, mutational studies for
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closely related histamine H1 receptor indicate an importance of residues at position

5.46 only for some ligands [151, 152]. Thus, docking poses were selected which interact

with critical residue D3.32. A 3D pharmacophore-based screening campaign employ-

ing selected docking poses of 3 known antagonist with subsequent in vitro validation

revealed two novel ligands of H3R in the nanomolar activity range. These hits deliver

rationalized binding modes that can ultimately aid the lead optimization process.

Taken together, the presented ligand-guided homology model workflow was able

to detect side chain conformations important to ligand docking without the use of

error prone docking scores. Instead, a single, yet reliable interaction was exploited to

guide the selection of a homology model for virtual screening. The in vitro validation of

virtual screening hits revealed two novel nanomolar inhibitors of H3R with rationalized

binding modes.

5.2.2 PyRod Enables Structure-Based Pharmacophore

Searches Against MCHR1

To our knowledge no high quality mutations are available for MCHR1 which was

essential to the ligand-guided homology workflow applied to H3R. Also, three highly

flexible glutamines Q3.36, Q5.42 and Q6.55 hinder docking studies which can be affected

by subtle conformational changes in the binding pocket. Hence, we shifted our focus

towards the dynamic nature of protein binding sites which ultimately let to the develop-

ment of PyRod, a program capable of generating structure-based pharmacophores from

molecular dynamics simulation (see section 4.3).

The implemented routines in PyRod trace water molecules throughout a trajectory

of protein-water conformations and analyze the protein environment of water molecules

in the binding site. The gathered information reports interactions between water

molecules and protein residues, e.g. hydrogen bonds, which could be exploited by

small molecules to perform interactions with the protein. Furthermore, hydrophobic

environments are captured which might be filled by complementing ligand moieties.

Importantly, the scoring scheme highlights areas with conformationally restricted water

molecules, whose replacement by a ligand is more likely to increase the entropy of the

system. These characteristics are subsequently translated into pharmacophore features

for efficient high-throughput virtual screening. A retrospective evaluation revealed a

successful 3D pharmacophore generation for three out of five pharmaceutically relevant

targets. Two targets changed the ligand bound conformation quickly after initiating

the ligand-bound conformation ultimately resulting in the absence of known important

features and misplaced exclusion volumes.

Since 3D pharmacophore generation with PyRod was successful in only one out of

two GPCR test systems, we were curious if PyRod can generate predictive 3D pharma-

cophores for MCHR1 (see section 4.4). Similar to H3R, MCHR1 contains an aspartate
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at position 3.32. PyRod suggests this area to be favorable for placing positive ionizable

features and associated hydrogen bond donor features. These shared characteristics

indicates interactions with D3.32 to be a prerequisite to identify dual modulators of

H3R and MCHR1. Additionally, areas close to the three flexible glutamines were pre-

dicted to be favorable for hydrogen bonding interactions highlighting their potential

importance for ligand binding. In total, 15 pharmacophore features were found to

be favorably arranged in the binding pocket and were highly rated according to the

corresponding features scores reported by PyRod. A combinatorial processing of this

super pharmacophore with subsequent retrospective validation revealed several 3D

pharmacophores able to discriminate between known actives and decoys.

The best 3D pharmacophore according to the early enrichment factor (EF1% = 27.1)

constitutes of a positive ionizable feature next to D3.32 accompanied by a hydrophobic

feature as well as an aromatic feature and a hydrogen bond acceptor next to the

extracellular loops. However, this 3D pharmacophore only finds 6 % of the actives and

thus shows low sensitivity towards diverse MCHR1 antagonists. In contrast, the 3D

pharmacophore with the highest hit rate among actives (35 %) has its hydrophobic

feature located next to the three flexible glutamines and does not contain the aromatic

feature. However, the increased sensitivity for actives coincides with a decrease in early

enrichment (EF1% = 4.0) indicating lower hit rates in prospective virtual screening.

In comparison to ligand-based 3D pharmacophores evaluated on the same data sets,

PyRod pharmacophores achieved a higher sensitivity which further underlines their

usefulness.

Taken together, PyRod was successfully employed to generate highly predictive

3D pharmacophore models for MCHR1. The pharmacophore generation procedure is

thereby not dependent on docking poses of known active ligands but on water dynamics

from MD simulation. Furthermore, these findings highlight the usefulness of PyRod

in virtual screening campaigns targeting protein binding sites with highly flexible side

chains.
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Conclusion

The continuously increasing prevalence of obesity and overweight reveals an unmet

challenge for public health care systems. The complex etiology of obesity hampered

the development of an effective pharmaceutical treatment. Multi-target drugs may

overcome the limitation of traditional pharmaceutics by modulating multiple nodes

in the biological network resulting in improved efficacy and reduced side effects. In

this thesis, the multi-target concept was applied to identify targets for potential mulit-

target drug development against obesity. Furthermore, novel computational tools were

developed to rationally gain and exploit information about the interactions of ligands

and their macromolecular target.

A systematic data mining approach employing freely available activity data of lig-

ands modulating obesity relevant targets enabled the identification of several promising

target pairs that could be exploited for the development of multi-target drugs against

obesity. The most promising target pair, H3R and MCHR1, was further character-

ized, since we found evidence for a possible synergistic effect when antagonizing both

receptors simultaneously. A virtual screening campaign assessing the 3D similarity of

molecules targeting the H3R and MCHR1 led to the identification of three molecules

with prior unknown multi-target character.

Understanding the molecular interactions formed between active ligands and their

macromolecular target is an integral part of modern drug design. However, struc-

tural data was not available for H3R and MCHR1 at the time of this thesis. Hence,

atomistic models were built for both receptors by homology modeling. Although fre-

quently successful, homology models hold the risk of modeling errors and similar to

x-ray structures only represent a single conformation of a dynamic system. Thus two

novel methods were developed to support drug design campaigns relying on homology

models.

The first method exploits a charged interactions towards D3.32 that is known to be

essential for ligand binding at the orthosteric binding pocket of aminergic receptors.

The analysis of docking poses of a distinct ligand series at 1000 homology models

of H3R resulted in the identification of a side chain conformation of E5.46 crucial for

appropriate ligand placement. A subsequent docking study followed by 3D pharma-

cophore screening yielded two novel ligands of H3R with nanomolar affinity. However,

127



Conclusion

this approach could not be applied to MCHR1, since required data about essential

interactions between ligands and receptor is currently not available.

The second method was developed to escape the dependence of structure-based vir-

tual screening campaigns on interactions formed between ligands and their molecular

target. PyRod analyzes the protein environment of water molecules in MD simula-

tions and allows the generation of highly efficient 3D pharmacophore models. Using

this method, we generated 3D pharmacophore models for MCHR1 that are able to

discriminate active molecules from decoys. This can be extremely useful, since con-

firmed hits deliver a potential binding hypothesis that can be exploited in subsequent

lead optimizations. Also, PyRod is not limited to this receptor and can be applied to

other macromolecular targets.

Taken together, this thesis reports the identification of H3R and MCHR1 as promis-

ing target pair for the development of multi-target drugs against obesity. Three novel

molecules were identified with prior unknown nanomolar affinity to both receptors.

Additionally, two novel methods were developed that can support homology modeling

studies and allow for generation of 3D pharmacophores from MD simulations.
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