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Abstract
Convection-permittingmodels (CPMs)—the newest generationof high-resolution climatemodels—
have been shown to greatly improve the representationof subdaily andhourlyprecipitation, inparticular
for extreme rainfall. Intense precipitation events, however, oftenoccur on subhourly timescales. The
distributionof subhourly precipitation, extremeorotherwise, during a rain event can furthermore have
important knock-on effects onhydrological processes. Little is knownabout howwellCPMs represent
precipitation at the subhourly timescale, compared to the hourly.Hereweperformmulti-decadalCPM
simulations centredoverCatalonia and, comparingwith a high temporal-resolution gauge network,
find that theCPMsimulates subhourly precipitation at least aswell as hourly precipitation is simulated.
While theCPM inherits a dry bias found in its parentmodel, across a range of diagnostics and
aggregation times (5, 15, 30 and 60min)wefindno consistent evidence that theCPMprecipitationbias
worsenswith shortening temporal aggregation.We furthermore show that theCPMexcels in its
representation of subhourly extremes, extending previousfindings at the hourly timescale.Ourfindings
support the use ofCPMs formodelling subhourly rainfall and add confidence toCPM-based climate
projections of future changes in subhourly precipitation, particularly for extremes.

1. Introduction

Short-duration, high-intensity precipitation events are
a leading cause of flash flooding, posing health and
economic risks to society. Realistic modelling of such
events is thus important in both weather forecasting
and climate projections. Such heavy precipitation
events typically, though not always, result from atmo-
spheric convection and are in Europemost common in
summer or autumn, dependent on regional factors [1].
Realistic modelling of such extremes has in the past
been hindered by inadequate spatial resolution in
models,meaning that deep convective processes cannot
be resolved and must instead be estimated via parame-
trization schemes [2], e.g. Such lower-resolution cli-
mate models produce subdaily extremes which are in
general too spatially diffuse, too temporally persistent
andwith too-low local intensitymaxima [3], as well as a
diurnal convective cyclewhich peaks prematurely [4].

With increasing computational power, the use of
‘convection-permitting models’ (CPMs)—that is,

high-resolution atmospheric models (grid spacing
<4 km) which can directly simulate deep-convective
processes—has become more common in meteorol-
ogy and climate science. This is driven by the added
value of CPMs over lower-resolution models which
require convective parametrization schemes [5]. The
greatest added value of CPMs is found in their repre-
sentation of precipitation [6], in particular subdaily
convective extremes. At the hourly scale, CPMs greatly
improve the representation of intense summertime
precipitation events: in terms of their spatial patterns,
intensities and temperature scaling [3, 7–13]. While
CPMs have been shown to reduce the wet hour fre-
quency bias [13], they may still overestimate the frac-
tional contribution of intense events to total
precipitation, with biases in the fractional contribu-
tions of light to moderate events seemingly regionally
dependent [8]. CPMs also reduce the ‘drizzle problem’

found in coarser models [7], whereby light rainfall is
too persistent, and tend to more realistically represent
the frequency of short intense events [3, 8]. In addition
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to a better representation of vertical mixing [14], the
added value of CPMs may extend to future changes in
precipitation extremes: CPMs have shown enhanced
intensification of extremes in response to warming
[15–17] and diurnal differences in future scaling [18]
for certain regions.

At the subhourly temporal scale, there is a lack of
CPM evaluation studies and less is known about
how well CPMs simulate subhourly precipitation
(extreme or non-extreme), primarily due to a lack of
appropriate observations. Subhourly precipitation,
however, can play a crucial role in incidents of flash-
flooding. Hydrological models also benefit greatly
from high spatiotemporal resolution input [19] for
stress testing of hydraulic infrastructure, process-
orientated case studies [20] and future climate-change
‘storylines’ [21]. While there have been tentative stu-
dies looking at future changes in extreme subhourly
precipitation [22, 23], without evaluation of CPM sub-
hourly precipitation for the present climate we cannot
have confidence in the future projections. Evaluation
ofmodelled subhourly rainfall has thus been identified
as a key effort in climatemodelling [22]. The improved
performance of CPMs in representing hourly
extremes need not necessarily translate to the sub-
hourly scale. It could be, for example, that events of
subhourly duration are too weak and too long-lasting
in models, or too intense and too short-lived, giving
accurate hourly totals for the wrong reasons and mis-
representing subhourly totals. The same amount of
precipitation spread over different time periods will
affect many land surface processes [19], such as the
amount of precipitation absorbed by the soil, con-
verted to runoff, and re-evaporated by the atmos-
phere, all of which are important considerations in
hydrological modelling and climate modelling in gen-
eral. Future changes in the intermittency of rainfall
may be masked at hourly timescales, leading to flawed
estimates of changes in precipitation intensities and
their impacts [24]. Identifying shortcomings in the
character of modelled subhourly precipitation is thus
important for ongoing CPM development. To assess
the realism of subhourly rainfall in a CPM, we make
use of a high temporal-resolution rain-gauge network
from the city of Barcelona, Spain. The precipitation
climatology of our study region is characterised by
relatively benign conditions in winter and spring, with
the risk of intense rainfall increasing as the Mediterra-
nean Sea warms, and peaking during August, Septem-
ber and October (ASO; figure 1(a)) [25]. Intense ASO
rainfall here is typically associated with either (i)loca-
lised thermal convection, or (ii)low pressure systems
over the north-western Mediterranean advecting
warm moist air, often with embedded convection,
towards north-eastern Spain [26]. Ocean-atmosphere
heat and moisture exchange is a dominant factor in
event intensities [26, 27] and intense events can be
either of synoptic- or meso-scale origin. Focusing our
analyses on ASO thus encapsulates the months with

the most intense events, as well as extremes of large-
and local-scale origin.

2.Methods

2.1.Observational data
We utilise a network of rain gauges from the greater
Barcelona region [29–32], e.g. The network consists of
0.1 mm tipping bucket rain gauges; the brand is
GeónicaSA and gauges have a 400cm2 collector
funnel. The homogeneity of the series has been verified
in Lana et al (2019) [30] via the Wald-Wolfowitz run
test of randomness and the Mann-Kendall trend test.
From this network we select 19 gauges (figure 1(c),
supporting table 1) with continuous measurements
between 1.8.1996 and 31.10.2018, giving 23 years of
ASO data with on average 2.6% missing values. For 3
of the 19 stations, coverage ends with ASO 2015, 2016
and 2017, respectively. 5, 15, 30 and 60 min totals are
derived for each station. Tipping bucket gauges are
subject to errors associated with splashing, evapora-
tion and wind; such systematic errors are largest for
low rain rates and at temporal aggregations less than
10 minutes, becoming negligible above 15 min time-
scales [33, 34]. For the temperature scaling of daily
precipitation maxima presented in figure 8, we use
daily mean temperatures from the 0.11° Spain02 data
set [35].

2.2.Model and simulations
Convection-permitting simulations at 0.02° resolu-
tion are performed with version 5.00_clm9 of the
COSMO regional model in climate mode (CCLM)
[36]. CCLM is the community model of the German
regional climate research community jointly further
developed by the CLM-Community (https://clm-
community.eu/). The simulation domain is centred
on Barcelona (figure 1(b)) and has horizontal dimen-
sions of 241× 241 grid cells and 60 unevenly spaced
terrain-following vertical levels, with the lowest model
level at 20 m and a model top at 22 km. The high
resolution of the 0.02° CCLM (CCLM-02) allows
parametrization of deep convection to be switched off,
while shallow convection is parametrized based on the
Tiedtke scheme [2]. The model time step is 20 s and
the microphysics scheme which produces grid-scale
precipitation is called at every time step.

We perform four-month time slice simulations
from July 1st to October 31st each year from 1996 to
2018. Initial and boundary conditions come from
0.11°CCLM (CCLM-11) simulations over the EURO-
CORDEX domain nested in ERA-Interim reanalysis
[37]; these forcing data exhibit a dry bias of about
−30% in our study region (figure 1(b)). Years
1996–2008 of the CCLM-11 runs were simulated con-
tinuously by the CLM-Community [38] as part of
EURO-CORDEX [39], while years 2009–2018 were
simulated by the present authors [20, 40]. Neither
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CCLM-11 nor CCLM-02 use nudging. From the
CCLM-02 simulations, the month of July is discarded
for soil-moisture spinup, leaving ASO as the analysis
months; soil moisture is of lower-order importance,
compared to the maritime influence, for ASO pre-
cipitation in Barcelona. Precipitation totals are saved
at 5 min intervals.

For comparison with observations, CCLM-02
5 min precipitation data are interpolated to the station
coordinates using the nearest-neighbour method and
rounded to 0.1mm precision, before totals for longer
aggregation times are summed. While a synchronous
reproduction of observed day-to-day variability at
each station is not expected from the regional model,
individual locations should be climatologically repre-
sentative [41], all the more so with our CPM domain
not being too far from theCCLM-11 inflowboundary.

2.3. Analyses
Analyses are focused on accumulation periods of 5, 15,
30 and 60 min and begin by considering modelled
biases in standard diagnostics (figures 2, 3). Here
intensity diagnostics are computed for ‘wet periods’,
where a ‘wet period’ is an accumulation period with at
least 0.1mm of precipitation (the record precision in

the observations); return levels (figure 2) are estimated
by fitting a generalized extreme value distribution [42]
to annual ASO maxima using the ‘ismev’ [43]
R-package. We then look in more detail at biases
across the entire precipitation spectrum (figure 4)
using the ‘Analysing Scales of Precipitation (ASoP)’
method of Klingaman et al (2017) [44]; see also
Berthou et al (2018) [8] for further elucidation. The
focus then shifts to the temporal characteristics of
modelled precipitation (figures 5, 6), by looking at
combined wet-spell and intensity biases, as well as
biases in event ‘wet time fraction’ (WTF) [45], where
the ‘wet time fraction’ is the fraction of 5 min intervals
within an accumulation period in which precipitation
occurs. The spatial realism ofmodelled precipitation is
then considered by comparing the conditional prob-
abilities of wet-event thresholds being exceeded
between stations (figure 7); this type of analysis is
sometimes called ‘Event Coincidence Analysis’ [46].
The statistical significance with respect to interannual
variability of the biases presented in figures 4–7 is
estimated via bootstrap resampling of ASOblockswith
replacement, similar to [3, 15, 47]. We conclude by
considering the scaling of extreme precipitation with
temperature [48], e.g. in observations and CCLM-02

Figure 1.Regional climatology and simulation domain. (a)Annual cycle ofmonthly 5 minmaxima (1996–2018), compositemedian
across all stations. (b)CCLM-02 simulation domain (red box), with Barcelonamarked (red star), shading shows the bias in annual
ASOprecipitation totals in the parent CCLM-11with respect to E-OBS (1996–2018, version 19e) [28]. (c)Zoom-in over Barcelona
region showingCCLM-02 orography and location of 19 stations. The numbers of the stations correspond to those shown infigure 7
and supporting table 1, available online at stacks.iop.org/ERL/15/034031/mmedia.
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(figure 8; further details in figure caption); analysis
here is restricted to the years 1996–2015 due to the
length of the Spain02 data set [35]. Note that all biases
presented are computed by calculating the individual
biases for each station and taking the mean of these
biases, as opposed to pooling all stations together and
computing biases based on diagnostics of the
pooled data.

3. Results and discussion

In the following sub-sections we present our results
with an emphasis on differences in model perfor-
mance at different aggregation times (5, 15, 30 and
60 min).

3.1. Climatology and standard diagnostics
CCLM-02 displays a bias of −18% in the mean
intensities of 5 min wet-events, which decreases to
the±5% range at 15 and 30min aggregations, slightly
less than at hourly aggregation (figures 2(a), (b)). For
stronger (2 year (ASO) return level) events, a clear
negative intensity bias in CCLM-02 appears, which
decreases with increasing aggregation time (figures 2(c),
(d)). For 20 year (ASO) return levels, subhourly model

performance improves, with the negative intensity bias
eliminated and a 5min bias of <5% (figures 2(e), (f)).
Themean-strong-intense diagnostics all paint a picture
of model biases in event intensity trending positively
with increasing aggregation time.

While simple event-intensity diagnostics suggest
somewhat degradedmodel performance formean and
2 year return level events (figures 2(a)–(d)) as aggrega-
tion times shorten, the constraint of total ASO pre-
cipitation—which is independent of aggregation time
—implies that the opposite is true for the occurrence
frequency of wet events (figures 3(a), (b)). The wet
fraction is negatively biased for all aggregation times
(indicating too infrequent precipitation), with biases
increasing from −15% at 5 min to over −30% at
aggregations 15 min. The combination of too infre-
quent precipitation and mean precipitation being
either too weak or similar to observations largely
explains the dry bias in summed ASO precipitation
totals which CCLM-02 produces (roughly −30%, not
shown). The influence of the dry bias in the forcing
model (figure 1(b))must here be kept inmind. A simi-
lar, though less decisive, reversal in the bias-aggrega-
tion trends from figure 2 is found for the fraction of
total precipitation accounted for by events above the
wet 0.9- and 0.99-quantiles (figures 3(c)–(f)). For the

Figure 2.Diagnostics as a function of aggregation time (5, 15, 30, 60 min), dashed lines show the interquartile range. (a), (b)Mean
Precipitation (wet periods) in obs. andCCLM-02, andCCLM-02 relative bias. (c), (d)2 year return levels andCCLM-02 relative bias.
(e), (f)20 year return levels andCCLM-02 relative bias. Note that each ‘year’ comprises themonths August, September, October.

Figure 3.Diagnostics as a function of aggregation time (5, 15, 30, 60 min), dashed lines show the interquartile range. (a), (b)Wet
fraction (i.e. fraction of time-periodswith precipitation) andCCLM-02 relative bias. (c), (d)Fractional contribution of events above
0.9-quantile (wet periods) to total precipitation andCCLM-02 relative bias. (e), (f)Fractional contribution of events above 0.99-
quantile (wet periods) to total precipitation andCCLM-02 relative bias.
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Figure 4.Biases in (a)contribution and (b)fractional contribution (FC) across precipitation spectrum, for each aggregation time. For
ease of comparison, all intensities are scaled to 5 min resolution. Computations are for discrete precipitation bins based on themethod
proposed inKlingaman et al (2017) [44], see also Berthou et al (2018) [8], except that we only use one bin for all events with
P�0.1mm (the record precision of the observations). The ‘contribution’ encompasses all periods (wet and dry) and represents the
actual contribution (mm/5 min) of each bin tomean all-period precipitation; differences in precipitation frequency are thus
represented therein and the integrated biases sum to the bias inmean all-period precipitation (mm/5 min). FC,meanwhile, represents
the fractional contribution of each bin tomeanwet-period precipitation and integrated biases thus sum to zero. Dashed lines show the
interquartile range, solid lines themean. The actual values underlying the presented biases can be seen in supporting figure 2.

Figure 5. Joint probability distribution function (JPDF) of ‘wet time fraction’ and event intensity. (a), (c), (e)JPDFs for observations at
15, 30 and 60 min resolution. (b), (d), (f)Bias of CCLM-02with respect to observed JPDF at 15, 30 and 60 min resolution. Biases
which are not statistically significant at the 0.05 level with respect to interannual variability are crossed through inwhite. For ease of
comparison, all precipitation intensities are scaled to 5 min resolution.
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Figure 6. JPDF ofwet-spell duration and intensity. (a), (c), (e), (g)JPDFs for observations at 5, 15, 30 and 60 min resolution. (b), (d),
(f), (h)Bias of CCLM-02with respect to observed JPDF at 5, 15, 30 and 60 min resolution. Biases which are not statistically significant
at the 0.05 level with respect to interannual variability are crossed through inwhite. For ease of comparison, all precipitation intensities
are scaled to 5 min resolution.

Figure 7.Probability of a precipitation threshold being exceeded at a given station conditional on an exceedance at another station (see
figure 1(c) for station locations). (a), (c)Observed conditional probabilities forwet (P  0.1 mm) and 0.999-quantile events,
respectively. (b), (d)CCLM-02 bias for wet and 0.999-quantile events, respectively. Each square is divided into 4 triangles which
represent, clockwise from top, 5, 15, 30 and 60 min temporal aggregations. For each station (x-axis), the probability that a given
precipitation threshold is exceeded, conditional on that threshold also being exceeded at the same time at another station (y-axis), is
computed. At 5, 15, 30 and 60 min resolutions respectively: (1)average observed values forwet (0.999-quantile) events are 0.63, 0.70,
0.73, 0.75 (0.31, 0.36, 0.39, 0.43), (2)average of statistically significant biases for wet (0.999-quantile) events are 0.11, 0.08, 0.08, 0.08
(0.18, 0.18, 0.21, 0.25). Averages are computed excluding the values along the diagonal (where the station and conditional station are
the same). The absolute values for CCLM-02 can be found in supporting figure 4.
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former, model biases are below±5%. For events
above the 0.99-quantile, a bias of at least 20% in their
contribution to total precipitation is found, hinting
that overly-heavy intense events (figures 3(e), (f))may
be partly mitigating negative biases at lesser intensities
(figures 2(a)–(d)).

3.2.Observed andmodelled distributions
To look in more detail at the contributors to the mean
model bias, we consider differences in the contrib-
ution and fractional contribution (FC) of bins of
discrete precipitation intensity to mean precipitation
(figure 4), following the ASoP method of Klingaman
et al (2017) [44]; see figure 4 caption and Berthou et al
(2018) [8] for further explanation. The contribution to
mean precipitation of intensities from 0.2 to 2mm/

5 min shows a clear dry bias across all aggregation
times (figure 4(a)); this negative bias for the bulk is also
found in the FCs (figure 4(b)). While light and drizzle-
like events (P  0.1 mm/5 min) also show a negative
bias in their contribution to mean precipitation, their
FC is positively biased. Taken together, this could
suggest that in CCLM-02 light events are too persistent
or that moderate (0.2  P  2 mm/5 min) events are
too short-lived. An often cited advantage of CPMs is
that they ameliorate the ‘drizzle problem’ [49, 50], e.g.
—i.e. excessive persistent light rain—found in coarser
models with convective parametrizations [3, 7], mak-
ing the former less likely. Additionally, at the 60 min
timescale CCLM-02 shows a mostly reduced contrib-
ution bias for event intensities below 2mm/60 min
compared to its parent CCLM-11 (supporting figure
1(a)); verification at subhourly aggregations is not
possible due to an absence of subhourly CCLM-11
data. CPMs with parametrized shallow convection, as

here in CCLM-02 [2], often produce precipitation
which is more persistent in character than those
without [8]. Additional experiments, however, suggest
that the shallow convection scheme is not the source of
the positive FC bias for light precipitation (supporting
figure 3 and accompanying discussion), but rather that
the FC bias results from an insufficient contribution of
event intensities between 0.2 and 2mm/5 min to
mean precipitation, as speculated above and further
supported by the negative wet fraction bias
(figures 3(a), (b)). Alsoworth noting is that the CCLM-
02 FC biases for event intensities below 9mm/hour
are generally less than those in CCLM-11 (supporting
figure 1(b)).

For intensities above 3mm/5 min, CCLM-02
performs much better. It is only at intensities above
5mm/5 min that for all aggregation times CCLM-02
shows contribution and FC biases whose interquartile
ranges include zero. When interpreting the biases for
all intensities, the dry bias in the parent CCLM-11
(figure 1(b)) should be kept in mind. Furthermore,
caution should be exercised when interpreting the
light precipitation O(0.1 mm/5 min) biases, because
at these intensities the record precision of the gauge
(0.1 mm), and hence uncertainty, is large relative to
the precipitation totals and systematic gauge errors are
also highest [33]. The key finding is, however, inde-
pendent of the magnitude of the biases: for a given set
of lateral boundary conditions (CCLM-11), the
CCLM-02 precipitation bias does not worsen with
shortening temporal aggregation.

3.3. Event intensities and temporal characteristics
The high temporal resolution data allow us to consider
the ‘wet time fraction’ [45], i.e. the fraction of 5 min

Figure 8.Temperature scaling ofmoderate to intense precipitation. (a), (b), (c), (d)Temperature scaling of the 0.95-, 0.99- and 0.999-
quantiles at 5, 15, 30 and 60 min aggregations, respectively; note logarithmic y-axis. To compute these curves, daily precipitation
maxima from all stations are combined and placed in overlapping dailymean temperature bins of 2Kwidth and bin centres every
0.1K. For fair comparison, CCLM-02 temperatures are first aggregated to the Spain02 grid. 0.95, 0.99 and 0.999 quantiles are then
computed for each temperature bin, as long as at least 20, 100, or 1000 data points are present, respectively, thus avoiding erroneous
artefacts associatedwith inadequate sample size [55]. The resulting curves are smoothed over awidth of 1.5K.
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intervals within an aggregation period in which
precipitation is registered (P  0.1 mm), which can
give insight into the intermittence and persistence of
observed andmodelled precipitation. Considering the
joint probability distribution function (JPDF) of WTF
and intensity, observations indicate that the most
frequent class of wet-event is short-lived light pre-
cipitation with the minimum possible WTF (i.e. one
5 min interval) within its accumulation period
(figures 5(a), (c), (e)). This class of wet-event is system-
atically underrepresented amongst CCLM-02 wet
periods—across all aggregation times (figures 5(b),
(d), (f)). Instead, precipitation intensities of 0.1mm/
5 min or lower which persist across a higher fraction of
the accumulation period are too prevalent. This over-
representation is also evident in slightly stronger
events (P< 0.3 mm/5 min), which are much more
likely to feature continuous precipitation (WTF= 1)
in CCLM-02 than in observations. As intensities
increase above 0.3mm/5 min, WTF biases are either
reduced or insignificant, perhaps because such events,
by their nature, tend to have longer lifespans.

To learn more about the persistence and inter-
mittency of modelled precipitation, we consider the
JPDF of wet-spell duration and intensity, where a wet-
spell is defined as one or more successive aggregation
periods in which precipitation is registered. Observa-
tions suggest that the most common class of wet-spell
is a single accumulation period with P 0.1mm
when scaled to 5 min resolution (figures 6(a), (c), (e),
(g)). Multi-hour wet-spells with P 0.1mm/5 min
or single-period wet-spells with P 2mm/5 min are
the most rare. As might be expected from the WTF
results, wet-spells of single-aggregation-period
duration and low intensity (P 0.1 mm/5 min) are
underrepresented amongst CCLM-02 wet-spells
(figures 6(b), (d), (f), (h)). The wet-spell duration and
intensity JPDF additionally shows that this persistence
of light precipitation in CCLM-02 extends beyond sin-
gle aggregation periods and results in multi-hour low-
intensity (P 0.2 mm/5 min) wet-spells having
increased probability, particularly for subhourly
aggregation times. Wet-spells of moderate intensity
(0.2< P 1.0 mm/5 min) are, on the other hand,
generally too infrequent at 15, 30 and 60 min aggrega-
tions, supporting the conclusion from section 3.2 that
such events are too short-lived in CCLM-02. At 5 min
aggregation, however, significant negative frequency
biases for intensities below 1mm/5 min are restricted
to single-period (5 min) wet-spells. For the least com-
mon intensity-duration combinations the model bia-
ses are lower and often non-significant, painting a less
clear picture, though echoing the better performance
for extremes shown in figure 4. Overall, and consider-
ing equivalent wet-spell durations, there is no clear
sign that shorter aggregation times increase biases. It is
worth noting that for both JPDF analyses, the stron-
gest biases at each aggregation are found for the short-
est WTF/duration and lowest intensity, precisely the

conditions under which tipping bucket errors are lar-
gest [33, 34] and, hence, uncertainty highest.

3.4. Spatial realism
One potential contributory factor to biases in precipi-
tation statistics is that the simulated precipitation
features may be too spatially diffuse (localized), result-
ing in the larger (smaller) precipitating cloud spending
extended (reduced) time over a given location and
hence precipitation falling over a longer (shorter)
period. The spatial coherence of observed precipita-
tion is typically lowest for extremes and shorter
aggregation times, and highest for large-scale events
(which tend to be less intense) and longer aggregation
times. This is confirmed (figures 7(a), (b)) for the
Barcelona gauge network [31]. For 0.999-quantile
events, only adjacent gauges show coincident prob-
ability scores over 0.6 (e.g. gauges 5/9, 3/16, 4/17/
18), whereas such high scores are ubiquitous
for wet-threshold (P  0.1 mm) events. Unsurpris-
ingly, gauges which occupy the same CCLM-02 grid
cell (gauges 5/9 and 3/16, see figure 1(c)) still show
scores well below unity, highlighting the issue of
location representativeness inmodels [41] (supporting
figure 4). For CCLM-02, analyses indicate that single
precipitation events tend to cover too large an area.
For the simple wet-event threshold, the probability of
a wet event occurring at a given station location,
conditional on a wet event at another station, is almost
uniformly higher in CCLM-02 than found in observa-
tions, for all aggregation times (figure 7(c)). This could
be partly because less intense (P 0.3 mm/5 min)
events—which are by nature typically diffuse—con-
stitute a higher fraction of total events in CCLM-02
than in observations (section 3.2, figure 4(b)). This
positive bias, indicating modelled events which cover
too large an area, however also exists for 0.999-
quantile events (figure 7(d)), telling us that even in the
high-resolution CCLM-02, precipitation events of all
intensities cover too large an area. This is perhaps not
surprising when considering that the precipitation
produced in themodel represents grid cell averages, in
our case over a grid cell of nearly 5km2, which has the
effect of smoothing-out subgrid-scale events over a
larger area [51]. Crucially, there is no evidence of the
bias worsening at shorter aggregations.

3.5. Temperature scaling ofmoderate to extreme
events
Analyses thus far suggest that the CCLM-02 subhourly
performance is best for extremes, consistent with the
main added value of CPMs [5]. We therefore conclude
our study by assessing the temperature scaling of
extreme precipitation—often referred to as ‘binning
scaling’ [52]. Theory suggests that precipitation
extremes should scale positively with increasing temp-
erature until moisture availability becomes limited, at
which point a negative scaling emerges [53]. The

8

Environ. Res. Lett. 15 (2020) 034031



CCLM-02 temperature-scaling curves (figure 8; see
caption for details) show closer agreement with
observations for higher quantiles. For the highest
(0.999) quantile, the agreement on extreme precipita-
tion temperature scaling is excellent for all aggregation
times. Above 15°C, the form of the observed and
model-simulated extreme scaling curves (0.99, 0.999-
quantile) additionally closely matches that found in
Drobinski et al (2018) [54] for extreme subhourly
precipitation at a station south-west of Barcelona:
intensification with increasing temperature, before a
levelling-off between 20 and 25°C, followed by a
downturn in precipitation intensity with further
temperature increase. Previous work [45] suggested
that such downturns in intensity at higher tempera-
tures are not a feature of subhourly precipitation
extremes, which can instead keep intensifying. For our
study region the observations disagree and CCLM-02
well replicates the observed scaling at all temporal
aggregations. Interestingly, CCLM-02 also shows an
uptick in precipitation at very high daily mean
temperatures, which is not found in observations.

4. Further discussion and conclusions

Extensive work evaluating hourly precipitation in
CPMs [3, 7–10, 12, 13] has enabled a growing number
of CPM studies of future hourly precipitation
[18, 56–58] and given confidence in the resulting
projections. To date, this has not been the case with
subhourly CPM precipitation. Our work firstly con-
firms previous findings [6–9, 13] at the hourly scale:
despite remaining biases, CCLM-02 reduces the pre-
cipitation bias across almost all intensity ranges
(supporting figure 1). While we cannot compare
subhourly CCLM-02 precipitation with that from the
coarser parent CCLM-11 (due to a lack of subhourly
CCLM-11 data), our findings broadly indicate that
biases in subhourly precipitation in CCLM-02 are no
worse than those found at the hourly scale. This result
should add confidence to future projections of sub-
hourly precipitation based onCPMs.

The forcing data (CCLM-11) for our study region
are dry-biased and this is reflected in an overall dry
bias in CCLM-02, most prominently characterized by
an insufficient contribution to mean precipitation
frommoderate-intensity events, which in turn leads to
light events having too high a fractional contribution
(Figure 4) and low-intensity persistent wet-spells
being overrepresented amongst all wet-spells
(figure 6), irrespective of the aggregation time. Addi-
tional tests without parametrized shallow convection
did not improve on these biases, despite reducing the
total amount of light precipitation. The reliability of
the observations must also be borne in mind: the
strongest model biases are often found for low inten-
sities and short durations/WTFs (figures 4–6), exactly
the conditions under which tipping bucket gauges

suffer most from systematic errors [33, 34]. Such
results therefore come with higher uncertainty and
should be treatedwith caution.

Between different diagnostics, our results occa-
sionally give mixed signals as to the best-modelled
aggregation time. For example, while the 2 year return
level bias decreases with increasing aggregation time,
the wet fraction bias increases with increasing aggrega-
tion time (figures 2, 3). On thewhole, however, there is
no conclusive evidence for a deterioration in model
performance at the subhourly aggregation times inves-
tigated. For the contributions and fractional contribu-
tions of different intensities to mean precipitation
(figure 4), biases for all aggregation times are low and
same-signed for moderate to intense events; sub-
hourly precipitations are at least as accurate as their
hourly counterpart. For the spatial representation of
precipitation events, even at 0.02° resolution CCLM
produces events which are too spatially diffuse, how-
ever this bias is again consistent across aggregation
times (figure 7).

Turning to precipitation extremes, the so far clear-
est source of added value identified in CPMs at the
subdaily scale [6, 7, 9], the performance of CCLM-02
at subhourly aggregations can be considered very
good. We have shown that CCLM-02 not only reliably
simulates extremes at hourly resolution, but also
across all subhourly aggregation times tested. The low-
est biases in the contribution and fractional contrib-
ution to mean precipitation are for intense to extreme
events over 5mm/5 min, across all aggregation times,
with biases smallest for the shortest aggregation times
(figure 4). Biases in intensity-WTF and intensity-wet-
spell JPDFs are also lowest for extremes and are of
similar magnitude across aggregation times (figures 5,
6). The temperature scaling of extreme precipitation
in CCLM-02 is highly realistic across all aggregation
times and well captures the observed downturn at
higher temperatures (figure 8).

Our study suggests that CPM users need not fear a
degradation in precipitation projections or forecasts
when moving from hourly to subhourly resolutions.
While biases still exist, we find no compelling evidence
that subhourly biases are any worse than those at the
hourly scale. This is emphatically the case for
extremes, the class of event for which higher spatio-
temporal resolutions are of most interest. We con-
clude by re-stating the utility of CPMs as a tool for
studying extreme precipitation, associated mechan-
isms and changes therein at the hourly scale [16, 18],
and by extending this endorsement to extreme pre-
cipitation at subhourly timescales.
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