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Summary 

Background: The unfavorable prognosis for locally advanced and metastatic head and neck 

squamous cell carcinoma (HNSCC) is primarily due to the resistance of cancer stem cells (CSCs) 

to radio-chemotherapy. ALDH (Aldehyde Dehydrogenase) has been used as a marker to identify 

CSCs in several tumors including HNSCC. Disulfiram (DSF) is a pan-ALDH inhibitor, which 

has been found to have remarkable anti-cancer activity. Moreover, DSF is a strong bivalent metal 

ion chelator, which binds copper (Cu
2+

) and is responsible for enhanced cytotoxicity.  

Methods: Cell viability was assessed using proliferation and apoptosis assays. A synergistic 

effect was defined by calculating the combination index (CI). ALDH activity was determined by 

ALDELUOR assay. Stemness-related transcription factors (TFs) were detected by qRT-PCR 

(Quantitative Real-time Polymerase Chain Reaction), and cellular self-renewal was measured by 

sphere- and colony-formation. Migration ability was performed by wound healing assay. Cell 

cycle and Reactive Oxygen Species (ROS) activity were analyzed by flow cytometry. 

Results: Our results showed a strong anti-proliferative effect of DSF in a dose- and time-

dependent manner, and Cu
2+

 addition dramatically enhanced cytotoxicity. DSF or DSF/Cu
2+

 

significantly reduced the proportion of ALDH 
high

 CSCs (e.g. from 59.8% to 33% and 30.0% in 

UM-SCC9) and stemness-related TFs. They reduced colony formation (e.g. from 145 to 72 and 

70 in UM-SCC9), spheroid formation (e.g. from 39 to 18 and 20 in UM-SCC9), and migration 

ability (e.g. from 71.85% to 42.1% and 43.49% in UM-SCC9). DSF or DSF/Cu
2+

 induced ROS 

generation and triggered cellular apoptosis. DSF or DSF/Cu
2+ 

abolished the cisplatin-induced 

cell cycle G2/M phase arrest (e.g. from 52.9% to 41.2% and 42.2% in UM-SCC9), overcame the 

resistance of cisplatin in ALDH 
high

 cells, and showed a synergistic effect in combination with 

cisplatin (CI<1). Combining radiation (IR) with DSF or DSF/Cu
2+

 showed a growth inhibition 

and attenuated the cell cycle G2/M phase arrest (e.g. from 53.6% to 40.2% and 41.9% in UM-

SCC9). Moreover, the triple treatment with DSF or DSF/Cu
2+

, cisplatin, and IR enhanced radio-

chemo sensitivity by inducing apoptosis (e.g. 42.04% and 32.21% in UM-SCC9) and ROS 

activity (e.g. 46.3% and 37.4% in UM-SCC9).  

Conclusions: Our data demonstrate that DSF or DSF/Cu
2+

 inhibits CSC properties by blocking 

ALDH enzymatic function. Furthermore, DSF or DSF/Cu
2+

 in combination with cisplatin and IR 

enhance cytotoxicity and induce ROS activity. Thus, our findings hold promise for pre- and 

further clinical evaluation by repurposing DSF as a radio-chemo sensitizer. 
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Zusammenfassung 

Hintergrund: Die ungünstige Prognose des lokal fortgeschrittenen und metastasierten 

Plattenepithelkarzinoms im Kopf-Halsbereich (HNSCC) ist vor allem auf die Resistenz von 

Krebsstammzellen (CSCs) gegen die Radiochemotherapie zurückzuführen. ALDH (Aldehyde 

Dehydrogenase) wurde als Marker verwendet, um CSCs unterschiedlichen Tumoren, 

einschließlich HNSCC, zu identifizieren. Disulfiram (DSF) ist ein pan-ALDH-Hemmer, der eine 

bemerkenswerte Aktivität gegen viele Arten von Krebsarten aufweist. Darüber hinaus ist DSF 

ein starker bivalenter Metallionen-Chelator, der Kupfer (Cu
2+

) bindet und für eine erhöhte 

Zytotoxizität verantwortlich ist. 

Methoden: Die Zellvitalität wurde mit Hilfe von Proliferation - und Apoptose-Assays bewertet. 

Ein synergistischer Effekt wurde durch die Berechnung des Kombinationsindex (CI) definiert. 

Die ALDH-Aktivität wurde mittels ALDELUOR-Assay und FACS-Sortierung bestimmt. 

Stemness-related transcription factors (TFs) wurden mittels qRT-PCR (Quantitative Real-time 

Polymerase Chain Reaction) nachgewiesen und die zelluläre Selbsterneuerung mittels Spheroid- 

und Koloniebildungstests gemessen. Die Migrationsfähigkeit wurde durch einen 

Wundheilungstest bestimmt. Zellzyklus und Aktivität der Reaktiven Sauerstoffspezies (ROS) 

wurden mittels Durchflusszytometrie analysiert. 

Ergebnisse: Unsere Ergebnisse zeigten eine starke antiproliferative Wirkung von DSF in dosis- 

und zeitabhängiger Weise. Hunzufügen von Cu
2+

 führte zu einer drastisch erhöhten Zytotoxizität. 

DSF oder DSF/Cu
2+

 reduzierten den Anteil an ALDH-Hoch-CSCs (z.B. von 59,8% auf 33,0% 

und 30,0% in UM-SCC9) und stemnessbezogenen TFs deutlich. Sie reduzierten auch die 

Koloniebildung (z.B. von 145 auf 72 und 70 in UM-SCC9), die Sphäroidbildung (z.B. von 39 

auf 18 und 20 in UM-SCC9) und die Migrationsfähigkeit (z.B. von 71,85% auf 42,1% und 43,49% 

in UM-SCC9). DSF oder DSF/Cu
2+

 induzierten ROS-Bildung und lösten Apoptose aus. DSF 

oder DSF/Cu
2+

 haben den Cisplatin-induzierten Zellzyklus G2/M-Phasenstopp (z.B. von 52,9% 

auf 41,2% und 42,2% bei UM-SCC9) gestoppt, die Resistenz von Cisplatin in ALDH-

Hochzellen überwunden und einen synergistischen Effekt in Kombination mit Cisplatin (CI<1) 

gezeigt. Die Kombination von Strahlung (IR) mit DSF oder DSF/Cu
2+

 zeigte eine signifikante 

Wachstumshemmung und reduzierte den Zellzyklus G2/M-Phasenstopp (z.B. von 53,6% auf 

40,2% und 41,9% bei UM-SCC9). Darüber hinaus resultierte die Dreifachb ehandlung mit DSF 

oder DSF/Cu
2+

, Cisplatin und IR in einer erhöhte Radiochemosensitivität durch Induktion von 

Apoptose (z.B. 42,04% und 32,21% in UM-SCC9) und ROS-Aktivität (z.B. 46,3% und 37,4% in 
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UM-SCC9). 

Schlussfolgerung: Unsere Daten zeigen, dass DSF oder DSF/Cu
2+

 die CSCs-Eigenschaften 

hemmen, indem sie die enzymatische ALDH-Funktion blockieren. Darüber hinaus erhöhten DSF 

oder DSF/Cu
2+

 in Kombination mit Cisplatin und IR die Zytotoxizität und induzierten ROS-

Aktivität. Daher ermutigen unsere Ergebnisse DSF als Radio-Chemosensitizer in prä-klinischen 

und klinischen Studien zu bewerten. 
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1. Introduction 

1.1 Head and neck squamous cell carcinoma (HNSCC) treatment 

Head and neck cancer is the sixth-most common cancer, accounting for over 550,000 new cases 

and 380,000 deaths worldwide per year [1], which can arise in the oral cavity, pharynx, larynx, 

nasal cavity, paranasal sinuses, thyroid, and salivary glands, and include a variety of 

histopathologic tumors. Among these pathological types, head and neck squamous cell cancer 

(HNSCC) is the most common one [2]. Despite HNSCC being highly curable at early stages, 

about 60% of HNSCC patients are diagnosed with loco-regionally advanced disease (stage III–

IV), which is still associated with poor curative prognoses, therefore, definitive local therapies, 

such as surgery, followed by radiation therapy (RT), with or without concomitant chemotherapy 

(CT), are the key components in the initial treatment of locally advanced (LA) HNSCC [3]. 

Although general treatment protocols and new advances are being optimized and intensified in 

the therapy of LA HNSCC, survival rates have remained largely unchanged over the past 30 

years, with a five-year overall survival rate of less than 50%, and treatment resistance as well as 

tumor recurrence remain the critical problems [4]. Thus, there is an urgent need for identification 

and development of novel therapeutic strategies, which are more effective and have fewer side 

effects than the currently used treatment regimens.  

The organ preservation protocol with chemo-radiation has been developed during recent years 

and is also increasingly being applied to LA HNSCC, whereby cisplatin-based chemotherapy is 

combined with concurrent loco-regional radiotherapy [5]. Cisplatin is a potent inducer of 

apoptosis in several cell types, and is also one of the most effective and widely used 

chemotherapeutic drugs for the treatment of human cancers, including HNSCC, especially at the 

advanced stage [6]. Biologically, cisplatin binds to DNA, forming adducts, and also favors the 

accumulation of intracellular free radicals [7]. Even though it has long history of successful use, 

cisplatin therapy has two major limitations — severe toxicity and acquired resistance [8]. 

Consequently, acquiring a better understanding of the molecular basis of cisplatin resistance is 

warranted in order to elucidate the underlying mechanisms of this drug resistant phenotype, 

which is the current primary obstacle to the clinical utility of this drug and improving the clinic 

outcome [9]. 

RT, either alone or in combination with concurrent systemic chemotherapy as appropriate, 

remains the mainstay standard of treatment in the curative-intent management of LA and 
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metastatic HNSCC, both in the definitive non-surgical and post-operative adjuvant settings [10, 

11]. Several types of DNA lesion are induced by IR, including changes in the bases of nucleic 

acids, single-strand breaks, double-strand breaks, and abnormal cross-links in DNA or between 

DNA and cellular proteins [12]. In response to DNA damage, proliferating cells arrest at specific 

checkpoints along the cell cycle, by activating a network of signaling pathways. Such pauses 

allow time for DNA repair and prevent the damaged DNA being replicated and transmitted to the 

next generation, either by reparation or by induction of cell death. The successful repair of DNA 

lesions is essential for clonogenic survival and the restoration of genome integrity. If not totally 

repaired, such lesions might be lethal for the cell, or may impair the integrity of genomic DNA. 

On the other hand, excessive and persistent DNA damage leads to premature senescence, 

apoptosis, necrosis or mitotic catastrophe [13-15]. In practice, one of the major challenges in RT 

is the prediction of the patients’ tumor radio-resistance in response to IR, in order to optimize the 

given dose for maximal tumor cell killing effect, and minimal normal tissue damage [16]. An 

adaptive response sometimes appears in cancer cells during the treatment process, and tumors 

showing an adaptive response tend to be more resistant, aggressive, and invasive [17]. Therefore, 

identifying the underlying mechanisms of radioresistance should a promising strategy to 

personalize therapy where necessary, thereby achieving better treatment success rates [18]. 

1.2 Cancer stem cells (CSCs) and stemness-related markers 

Cancer stem cells (CSCs) or cancer stem-like cells are a small population in the majority of 

tumor cells, which are responsible for tumor development, dissemination and recurrence [19]. 

They display high tumorigenicity and might associate with chemo-radio-therapy resistance in 

HNSCC. Although CSCs constitute a small minority of neoplastic cells, they are still believed to 

possess pluripotent and self-renewal capacity, thereby generating a heterogeneous cell population 

of the originating tumor, seeding at distant sites and driving the formation of macro metastasis 

[20]. Consequently, it is urgent to identify and develop unique agents to target CSCs, with 

potentially allows for increased specificity and efficiency in the clinic therapy, thereby enhancing 

patient survival. 

Based on the observations that CSCs contribute to cancer tumorigenicity, it has been suggested 

that the expression level of stemness genes, or core related factors to CSCs, may be associated 

with tumor progression. Recently, in vitro and in vivo research has also highlighted a number of 

stem-cell surface markers including CD44 and CD133, which could be isolated and measured by 

flow cytometry, and attribute tumorigenic properties to these CSCs, correlating with recurrence 
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and diagnosis in HNSCC [21]. Among these genes, the stemness-related TFs Oct3/4, Sox2, and 

Nanog form primary regulatory networks that coordinate to determine the self-renewal and 

differentiation of embryonic CSCs [22]. Studies demonstrate that Oct3/4 is highly expressed in 

human bladder cancer, and is associated with disease progression, increased metastasis, and 

lower survival [23]. Moreover, Nanog is over-expressed in numbers of cancer types, such as 

breast, lung, pancreas and ovary [24-27].  

Even though the survival of cells with CSC-specific properties in some carcinomas has been 

attributed to an enhanced ability for drug removal, decreased DNA damage, or increased DNA 

repair, the mechanisms behind their differential resistance to apoptosis are not yet completely 

clear, nor have they been investigated in a broad range of carcinomas or in normal human 

epithelium [28]. Therefore, it is crucial to get more information for their general applicability, 

especially in HNSCC, which is characterized by particularly high recurrence rates. 

1.3 Aldehyde dehydrogenase (ALDH) is a CSC marker and target for 

potential treatment 

The ALDH (Aldehyde dehydrogenase) family is a group of cytosolic isoenzymes that catalyze 

the oxidation of aldehydes and retinol in cells, and play significant roles in the cellular 

detoxification and controlling metabolism of retinoic acid (RA), primary for normal growth, 

differentiation, and development of adult organs and tissues in vertebrates [29]. Bertland et al. 

found that HNSCC with increased ALDH activity were more resistant to RT, and that the 

inhibition of ALDH activity increased sensitivity to IR [30]. Prince et al. also suggested that 

ALDH is a more specific marker for the CSC population than CD44 in HNSCC, which indicates 

that ALDH 
high

 cells comprise a cell subpopulation that are tumorigenic and capable of initiating 

tumors at very low numbers, and that ALDH on its own is a highly selective marker for CSCs 

[31].  

ALDH1A1, a core member of ALDH family, is a CSC cell-associated protein in various 

malignant cancers and its level correlates with the patient’s outcome [32]. Recently, ALDH1A1 

was found to be increased in tumor spheres [33], and in three-dimensional cultured cancer stem-

like cells [34] in esophageal squamous cell carcinoma cells, suggesting that ALDH1A1 might be 

a more reliable marker for the identification and isolation of CSCs. Furthermore, consistent with 

our findings, compared with other isoforms (ALDH1A3 and ALDH3A1), over-expression of 

ALDH1A1 enhanced lung cancer cell transformation. Additioinally, up-regulated expression of 
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ALDH1A1 is positively associated with the stage and grade of the lung cancer patients, and 

related to a poor prognosis [35].  

1.4 Anti-cancer effect of DSF or DSF/Cu
2+

 

Disulfiram (tetraethylthiuram disulfiram, DSF), a member of dithiocarbamate family with a 297 

Da molecular weight, is an ALDH inhibitor that was used as a vermicide in the 1930s and for 

alcoholism in the 1940s [36, 37]. Accumulating evidence indicates that this existing drug has 

promising applications, exhibiting potent anti-cancer properties by enhancing conventional 

anticancer drug-induced apoptosis, decreasing angiogenesis, attenuating tumor growth, and 

reversing drug-resistance [20, 38]. In  the last few years, several both in vitro and in vivo studies 

have demonstrated that DSF is highly effective against a number of cancer types such as breast 

[39], glioblastoma [40], prostate [41], colorectal [38], and melanoma [42]. Furthermore, DSF 

also enhances the cytotoxicity of several anticancer drugs as well as RT, suggesting it as a 

potential chemo-radio-therapeutic agent [43]. Additionally, inhibition of ALDH activity has been 

demonstrated as a potential strategy to suppress CSCs, and the findings indicate that DSF may 

specifically target CSC subpopulations [44, 45].  

As a strong bivalent metal ion chelator, DSF converts to diethyldithiocarbamate (deDTC), and 

two molecules of deDTC bind to one molecule of copper (Cu
2+

) to form a complex Cu (deDTC)2 

(DSF/Cu) which improves the intracellular trafficking of copper and may probably responsible 

for DSF-induced apoptosis [46, 47]. Regarding the overall stoichiometry of reaction with respect 

to Cu
2+

, the DSF molar ratio is 0.9:1.0, which presumably could be a reference for ratio when 

DSF acts as a copper ionophore in the substance combination. It is likely that this may be the 

mechanism for the reaction of DSF with copper (II) ions under biological conditions [48]. 

Copper is indispensable in life processes, acting with an important effect in inflammation, tumor 

growth, and stimulating the proliferation and migration of endothelial cells at high 

concentrations [49, 50]. Moreover, Cu is an important trace element for life as it plays a core role 

in redox reactions, and triggers generation of reactive oxygen species (ROS) in human cells [47]. 

In comparison with their normal counterpart, head and neck tumor tissues contain higher levels 

of Cu [51]. Since basal Cu and intrinsic ROS levels are higher in the tumor cells, the use of DSF 

represents a potentially new approach to selectively target the cancer cells, limiting the cytotoxic 

effect associated with Cu overload against normal cells [52]. Consequently, the cytotoxicity of 

DSF/Cu
2+

 leads to the generation of oxidative stress, inhibition of DNA replication, or 

modulation of the activity of other critical cellular regulatory pathways [53]. 
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2. Aim of the study 

The objective of this thesis was to investigate the cytotoxicity of DSF or DSF/Cu
2+

 in HNSCC, 

their inhibitory effect on CSCs, and the promising mechanism involving the combination of 

chemotherapeutic agents (cisplatin) and IR in vitro. Therefore, the following aims were pursued: 

1. To explore the cytotoxic effect in HNSCC. 

2. To compare the expression of ALDH and stemness-related TFs (Oct3/4, Sox2, and Nanog) 

between monolayer-derived cells and their corresponding spheroid-derived cells. 

3. To characterize the inhibitory effect of DSF or DSF/Cu
2+

 on self-renewal capacity and CSC 

properties in HNSCC cell lines. 

4. To assess the combination effect of DSF or DSF/Cu
2+

, cisplatin, and IR in HNSCC cell lines 

and the potential mechanism for this combination through cell cycle distribution, cytotoxicity 

and ROS generation in vitro. 
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3. Materials 

3.1 Laboratory Equipment 

Freezer (-80°C, -150°C) Sanyo, Japan 

Axiovert 40C Microscope Carl ZEISS, Jena, Germany 

BD FACS Calibur System BD Biosciences, Germany 

Incubator Heraeus, Thermo Fisher Scientific, Germany 

Centrifuge Heraeus, Thermo Fisher Scientific, Germany 

Pipettes Eppendorf, Hamburg, Germany 

Thermocycler Julabo, Germany 

Vortex-genie 2 Scientific Industries, N.Y., USA 
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3.2 Chemicals and Reagents 

Universal Agarose Bio&SELL, GmbH, Nuremberg, 

Germany 

Dimethyl Sulfoxide (DMSO) Sigma-Aldrich, Steinheim, Germany 

70% Ethanol Carl Roth, GmbH, Germany 

Epidermal Growth Factor (EGF) Biochrom GmbH, Berlin, Germany 

Fetal Bovine Serum (FBS) Biochrom AG, Berlin, Germany 

Fibroblast Growth Factor-basic (bFGF) Biochrom GmbH, Berlin, Germany 

Penicillin/Streptomycin Biochrom GmbH, Berlin, Germany 

Phosphate Buffered Saline (PBS) Biochrom GmbH, Berlin, Germany 

Trypsin/EDTA Biochrom GmbH, Berlin, Germany 

Chloroform Merck KGaA, Darmstadt, Germany 

Isopropanol Biochrom GmbH, Berlin, Germany 

Trizol Reagent Ambion, Life Technologies, USA 

 

3.3 Human HNSCC Cell lines 

UM-SCC9, UM-SCC47, UMSCC11B: University of Michigan, MI, USA 

UT-SCC33: University of Turku, Finland 

3.4 Cell Culture Medium 

RPMI Medium 1640+GlutaMAX                                                                               Gibco, UK 
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Quantum 263                                                                      PAA Laboratories GmbH, Germany 

3.5 Kits and Other Material 

ALDEFLUOR Assay Kit Stemcell Technologies, Vancouver, Canada 

Annexin-V-FLUOS Staining Kit Roche, Mannheim, Germany 

Power SYBR Green Master Mix Thermo Fisher Scientific, MA, USA 

RevertAid First Strand cDNA Synthesis Kit Thermo Fisher Scientific, MA, USA 

Cell Proliferation Kit I (MTT) Roche, Mannheim, Germany 

MitoSOX Red Mitochondrial Superoxide 

Indicator 

Molecular Probes, Oregon, USA 

Caspase-3 Apoptosis Kit,  BD Bioscience, USA 

Cellstar Cell Culture Flasks Greiner Bio-One, Austria 

Corning Falcon Tissue Culture Dish Corning, NY, USA 

Falcon Polyptopylene Conical Tubes Corning, NY, USA 

Costar Cell Culture Plates (6-, 12-, 24, 96-

well) 

Corning, NY, USA 

Costar Ultra-low Attachment Cell Culture 

Plate (24-, 96-well) 

Corning, NY, USA 

Falcon Cell Strainer (40 μM) Corning, NY, USA 
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4. Methods 

4.1 Cell Culture 

Four HNSCC cell lines UM-SCC9, UM-SCC47, UMSCC11B, and UT-SCC33 were cultured in 

RPMI 1640 medium supplemented with 10% FBS (heat-inactivated at 56°C for 30 min) and 1% 

penicillin/streptomycin. Cells were maintained in a 37°C humidified incubator with 95% air and 

5% CO2. All cell experiments were performed in culture for experiments at 70-80% confluence. 

To harvest and passage them, cells were washed with PBS twice and detached with 0.5%/0.02% 

Trypsin/EDTA solution. Complete culture medium was added to stop the reaction. After 

centrifugation at 200*g for 5 min, cells were resuspended into new culture medium for future 

experiments.  

4.2 Drug preparation 

Free DSF and copper were dissolved in DMSO and distilled water, respectively, at a stock 

concentration of 10 mM, and stored at -20°C. Cisplatin was kept at a 3.3 mM concentration at 

room temperature. All drugs were freshly diluted into working concentrations with culture 

medium before use. A 1:1 ratio of DSF and Cu
2+

 was chosen for all the experiments. 

4.3 Spheroid formation assay 

First of all, the ultra-low attachment flasks were prepared. 8-10 ml of 1.5% agarose (dissolved in 

PBS) was filled into cell culture flasks. Then the monolayer cells were cultured in serum-free 

Quantum 263 supplemented with 10 ng/ml EGF and 10 ng/ml bFGF. 12-15 ml of the cell 

suspension was added into the cell plates and half of the new culture medium was supplied every 

2-3 days. For the passage, the culture medium was removed and the spheroids were harvested 

into a 40 μM cell strainer, followed by washing twice with PBS. The spheroids were dissociated 

into single cells using 0.5%/0.02% Trypsin/EDTA in 37°C water bath. After 5-10 min, complete 

culture medium was added to stop the reaction. All cells were filtered through the 40 μM cell 

strainer again and reseeded into fresh culture medium under the same conditions for the 

subsequent experiments.  

For the spheroid formation inhibition assay, cells were exposed to DSF or DSF/Cu
2+

 in a 24-well 

ultra-low attachment plate at a density of 2*10
4
 cells/ml for 3 days. Spheroids of 300 μM or 

more in diameter were calculated and photographed at 50-fold magnification. 
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4.4 MTT cytotoxicity assay and CI-isobologram analysis 

Assessment of the cytotoxic effect of DSF, DSF/Cu
2+

 or a combination with cisplatin or IR was 

performed, following 24-72 h of incubation at different drug concentrations, in all tested HNSCC 

cell lines. Single cells were seeded in triplicate into a 96-well plate at a density of 4000 cells/well 

in the 100 μl culture medium. Cells without any drug treatments were considered as controls. 

After the various treatment periods, 10 μl of MTT labeling reagent was added, including to 

controls, followed by incubation in a 37°C humidified atmosphere incubator with 95% air and 5% 

CO2 for 4 h. When the precipitate was clearly observed at the bottom of the plates, 100 μl of 

solubilization solution was added to all wells, mixed gently, and was finally incubated overnight. 

The solution absorbance was quantified at a wavelength of 595 nm using a Bio-Rad microplate 

reader.  

Cellular viability (%) was averaged and normalized against the untreated controls. Dose response 

curves and IC50 values were evaluated using GraphPad Prism 5.0 Software. The cytotoxic 

relationship between DSF and cisplatin was measured by Chou-Talalay method for drug 

combination, which is based on the median-effect equation. It provides the theoretical basis for 

the combination index (CI)-isobologram equation that allows quantitative determination of drug 

interactions, where CI<1, =1, >1 indicates synergism, additive effect, and antagonism, 

respectively. CompuSyn software was used for calculation at all doses or effect levels that were 

simulated automatically [54].  

4.5 Flow cytometric analysis for cellular apoptosis 

Cells were exposed to different treatments at a density of 3*10
4
/ml for various time intervals in a 

24-well plate. The apoptotic effect was measured using the Annexin-V-FLUOS staining kit 

according to the manufacturer’s guidelines. Cells were collected and resuspended in 100 μl 

labeling solution which contained 20 μl Annexin-V and 20 μl PI at a density of 1*10
7
 cells/ml. 

Subsequently, cells were incubated at room temperature for 15 min in the dark.  

Cellular apoptosis and necrosis were determined using FL3 (PI) and FL1 (Annexin-V) by flow 

cytometry and measured using FlowJo V10 software. All the cells were divided into 4 quadrants: 

live cells, lower left (Annexin-V
-
/PI

-
); early apoptosis, lower right (Annexin-V

+
/PI

-
); late 

apoptosis, upper right (Annexin-V
+
/PI

+
); and necrotic cells, upper left (Annexin-V

-
/PI

+
).  

4.6 Flow cytometric analysis for Caspase-3 activity 
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Cells were exposed to different concentrations of DSF or DSF/Cu
2+

 at a density of 3*10
4
/ml in a 

24-well plate. After 48 h, the apoptosis effect was defined by assessing Caspase-3 activity based 

on the manufacturer’s protocols. In brief, cells were incubated in BD Cytofix/Cytoperm
TM

 

solution for 20 min on ice. After washing twice, resuspend cells were labeled with specific 

antibody for 30 min at room temperature and were then analyzed by flow cytometry. 

4.7 Flow cytotmetric analysis for cell cycle 

Cells were treated with different concentrations of DSF, DSF/Cu
2+

, cisplatin, IR, or a 

combination at a density of 3*10
4
/ml in a 24-well plate for 48 h. Cells without any drug were 

used as controls. After the incubation time, cells were collected and washed with PBS twice and 

fixed in 70% cold ethanol at 4°C overnight. After washing with PBS again, cells were stained 

with 1 mg/ml PI, 10 mg/ml RNase, and 1% Triton at room temperature for 30 min in the dark. 

Specifically, in order to avoid cell lose after ethanol fixation, discarding the supernatant was 

done especially carefully and centrifuging was increased to 3000 rpm for 5 min.  

Flow cytometry was used to define the DNA content for all the samples. FlowJo software was 

used to analyze the percentage of cell cycle distribution in the G0/G1, S, and G2/M phases. 

4.8 Flow cytometric analysis for ROS activity 

After exposing to various drug treatments for 24 h, the cells were collected and incubated with 

MitoSOX Red reagent following the manufacturer’s instructions in a 37°C humidified incubator 

with 95% air and 5% CO2 for 15 min. Fluorescently labeled ALDH 
high

 and ALDH 
low 

samples, 

after cell sorting from Aldefluor stained populations, were immediately stained with MitoSOX 

Red reagent as described above. 

After the incubation time and washing with PBS twice, the mean fluorescence intensity was 

measured by flow cytometry. Cells without any drugs, but incubated with MitoSOX Red reagent, 

were used as controls. 

4.9 Irradiation (IR) 

Cells were pre-treated for 4-5 h with different exposures. Subsequently, IR was established with 

various dosages of 2, 4, 6, or 10 Gy using a medical linear accelerator with a 6 MV photon beam 

(2.76 Gy/min, Clinac 600 C/D, Varian, Palo Alto, CA, USA). All the cells, maintained in the cell 

culture plates, were positioned on a plastic foundation for backscatter saturation of the beam to 
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the plates. An 8 cm-thick solid block of a water-equivalent material was put on the top of the 

plates to ensure the photon dose exposure to the cells was homogenous. After 24 h, colony 

formation and ROS activity were determined, and 48 h later, the cell cycle distribution and 

apoptosis effect were analyzed. 

4.10 Clonogenic assay 

In the colony formation inhibition assay, cells were treated with DSF or DSF/Cu
2+

 for 24 h at a 

density of 3*10
4
/ml in 24-well plates. In the IR survival experiments, different treatments of cells 

were incubated in a 37°C humidified incubator with 95% air and 5% CO2 for an additional 24 h 

after IR. Then, cells were harvested and washed twice with PBS to make sure all the added drugs 

were completely removed. Single cells were reseeded in the fresh culture medium in 6-well 

plates. Cells without any treatment were included as controls. After 9-12 days, the medium was 

removed and colonies were washed with PBS twice before fixation by methanol and staining 

with 0.5% crystal violet. 

A cell population was defined as a colony by consisting of at least 50 cells. Plating efficiency 

(PE) was assessed as the number of colonies counted/ number of control cells planted. The 

survival fraction (SF) was the number of colonies observed, divided by the number of cells 

seeded, with a correction for the PE. The survival curves were determined using the linear-

quadratic-model (LQ-Model) and were calculated in the formula Y=exp(-(a*x+b*(x^2))) using 

GraphPad Prism software. 

4.11 Flow cytometric analysis for ALDH activity and cell sorting 

Assessment of ALDH enzymatic activity was performed by measuring the ALDH-mediated 

intracellular reaction of fluorescent compound ALDH substrate BODIPY-aminoacetaldehyde 

(BAAA), using the Aldefluor assay following the manufacturer’s protocols. In brief, all cells 

were harvest and resuspended in the buffer containing BAAA (1 μmol/L) at a density of 1*10
6
 

cells in a 37°C humidified incubator with 95% air and 5% CO2 for 35 min. After the incubation 

time, cells were washed with PBS twice and analyzed by flow cytometry. 

Diethylaminobenzaldehyde (DEAB), a specific ALDH inhibitor, was acted as negative control to 

establish the base line of fluorescence and to define the ALDH 
high

 population. 

For the cell sorting, cells were resuspended at a concentration of 1*10
7
 cells/ml after staining and 

sorted on an Aria cell sorter. The cells were kept on ice during all the procedures. The negative 
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controls treated with DEAB were assessed for background fluorescence and sorting gates. 

4.12 Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) 

Cells were collected following lysis in the trizol reagent, and total RNA was extracted with 

chloroform and isopropyl alcohol. Then the RNA was converted to cDNA using the RevertAid 

First Strand cDNA Synthesis Kit, flowing the manufacturer’s guidelines. qRT-PCR was 

established in a total 50 μl reaction volume including 1 μl cDNA and 25 μl Power SYBR Green 

Master Mix running on the StepOne system in triplicate. GAPDH was employed as a reference 

gene and the relative expression levels were calculated using the modified delta-delta method. 

The designed primer sequences of stemness-related TFs Oct3/4, Sox2, and Nanog were as 

follows: 

Oct-3/4: Forward: GACAGGGGGAGGGGAGGAGCTAGG 

Reverse: CTTCCCTCCAACCAGTTGCCCCAAAC 

Sox2: Forward: GGGAAATGGGAGGGGTGCAAAAGAGG 

Reverse: TTGCGTGAGTGTGGATGGGATTGGTG 

Nanog: Forward: TGCGTCACACCATTGCTATTCTTC 

Reverse: AATACCTCAGCCTCCAGC AGATG 

4.13 Wound healing assay 

In vitro wound healing assay, or so called scratch assay, is a popular, technically non-demanding 

and low-cost assay, which could be assessed with any readily available plates to measure the 

migration ability of the monolayer [55]. A confluent 24-well plate of monolayer cells was 

prepared, and then a “wound” was established by scraping off an area of cells using 1 ml plastic 

pipette tip. The non-attached cells were removed with PBS, and then covered with fresh medium 

containing 1% FBS and various exposures. 

All the samples were incubated in a 37°C humidified incubator with 95% air and 5% CO2, and 

wound areas were captured at 0 h and 24 h after scratching with an inverted microscope at 50-

fold magnification. Photographs were performed to measure the percentage of wound closure 

using Image J software as follows: Migrated surface area / Total surface area * 100%. 
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4.14 Statistical analysis  

GraphPad Prism 5.0 software was used for all statistical analysis. Values were represented as 

mean ± standard deviation (SD). Two-group comparison was evaluated using a two-tailed t-test. 

Comparison among multiple groups was quantified by one-way ANOVA. Two different 

categorical independent variables were calculated by two-way ANOVA. A probability level of 

P<0.05 was regarded as statistically significant. 
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5. Results 

5.1 ALDH expression is higher in spheroid-derived cells (SDCs) versus monolayer-derived 

cells (MDCs) in HNSCC cell lines 

The Aldefluor assay has been successfully applied to detect the ALDH expression of CSCs in 

various cancer cells including HNSCC. Here, MDCs and SDCs from UM-SCC9, UM-SCC47, 

and UM-SCC11B were used to analyze ALDH enzymatic activity. As shown in Figures 1A and 

1B, cells treated with the specific ALDH inhibitor DEAB were used as internal negative controls 

to determine the background fluorescence, and to quantify the ALDH 
high

 population. We found 

that SDCs established a remarkably higher percentage of ALDH
 high

 cells versus parental MDCs. 

The proportion of ALDH 
high 

cells
 
in SDCs was 49.8%, 45.6%, and 33.0% in the indicated cell 

lines, respectively, which had an approximately 2-3 fold increased expression compared to 

MDCs. 

5.2 Stemness-related TFs over-expressed in SDCs 

Recently, one study has shown that increased expression of Sox2 and Nanog was related to 

radio-resistance in HNSCC, which may be associated with the CSC-specific properties [56]. To 

determine if SDCs derived from HNSCC cell lines also share this stemness-related feature, we 

measured the TFs mRNA levels in SDCs and parental MDCs. As shown in Figure 1C, the 

expression of Oct3/4, Sox2, and Nanog were all observed as dramatically enhanced in SDCs 

versus MDCs. The highest increase was found in UM-SCC47 cell line, with an average increase 

of 11.64, 6.97, and 11.69 fold in the indicated TFs, respectively. Taken together, these findings 

proved that spheroid culture could enrich the CSCs and the increased stemness-related feature, 

which might reasonable for maintaining cell-renewal and tumorigenesis capacity. 

 

 

 

 



 

19 
 

 

Fig. 1: Expression of ALDH and stemness-related TFs in MDCs and SDCs. 

(A) Quantitation of CSCs by Aldefluor analysis. The region gate of ALDH 
high

 cells in MDCs (M) 

and SDCs (S) of the population is acquired by flow cytometry. DEAB, a specific ALDH inhibitor, 

was used as control. (B) Graphical representation of the statistical analysis of ALDH activity. 

*P<0.05, **P<0.01, t-test, compared to monolayer. (C) Relative increase of expression of TFs 

by qRT-PCR of SDCs. Bars in the diagram represent the increased fold in SDCs compared to 

MDCs. *P<0.05, **P<0.01, two-way ANOVA. 
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5.3 DSF exhibits dose- and time-dependent cytotoxicity in HNSCC cell lines 

To explore the inhibitory effect of DSF in vitro, UM-SCC9, UM-SCC47, UM-SCC11B, and UT-

SCC33 were used for exposure to different concentrations of DSF from 0.001 to 100 μM for 72 h. 

No significant cytotoxicity was observed when the concentration was lower than 1 μM (Figure 

2A). Relative viability of the cells had a sharp drop at a concentration of 10 μM, and all cells 

were dead at 100 μM. The viability of cells was inhibited in a dose-dependent manner, and the 

cytotoxic effect enhanced linearly with increasing concentration of DSF in all indicated cell lines. 

The IC50 values were calculated: UM-SCC9: 13.96 μM; UM-SCC47: 13.43 μM; UM-SCC11B: 

11.24 μM; and UT-SCC33: 15.06 μM. 

We next measured the relationship between time and cytotoxicity by DSF in HNSCC cell lines. 

Cells were treated with various concentrations of DSF from 0.1 to 30 μM for 24 h, 48 h, and 72 h. 

We found that the average IC50 values in UM-SCC9 were 24.94, 18.74, and 15.32 μM; 21.91, 

16.62, and 15.69 μM in UM-SCC47; 32.10, 20.05, and 14.43 μM in UM-SCC11B; and 41.95, 

23.89, and 15.19 μM in UT-SCC33 in the different time courses, respectively. As shown in 

Figure 2B, a greatly higher value of IC50 than other time points was observed at 24 h in all tested 

cell lines. Collectively, these results indicate that DSF itself exhibits cytotoxicity in a dose- and 

time-dependent manner. 

5.4 DSF/Cu
2+

 significantly increases cytotoxicity of HNSCC cell lines in a dose- and time-

dependent manner 

Although DSF alone had no obvious cytotoxicity until the concentration to 10 μM, as shown in 

Figure 1A, the cytotoxic effect of DSF was substantially increased with the supplement of Cu
2+

 

(Figure 2C). A significant decrease was found in the relative viability of the cells at a 

concentration of 0.3 μM in DSF/Cu
2+

. The DSF/Cu
2+

 complex showed remarkable increasing 

cytotoxicity, with the IC50 value of 0.24 μM in UM-SCC9, 0.193 μM in UM-SCC47, 0.267 μM 

in UM-SCC11B, and 0.27 μM in UT-SCC33, respectively, which  is nearly 50-fold lower versus 

DSF alone. 

We next assessed the apoptosis effect by DSF/Cu
2+

 exposure from 4 h to 72 h, with Annexin-V-

FLUOS staining kit using flow cytometry. The Annexin-V
+ 

population (upper-right and lower-

right quadrants) represent apoptotic cells. After treatment for 24 h or even longer, the 

dramatically enhanced cytotoxic effect was observed in all tested cell lines (Figure 2D and 2E). 

Taking together, these data suggested that the addition of Cu
2+

 to DSF significantly increases the 
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cytotoxicity compared to DSF alone in a dose- and time-dependent manner. 
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Fig. 2: Cytotoxicity of DSF or DSF/Cu
2+

 in HNSCC cell lines. 

(A) Cells were treated with various concentrations of DSF for 72 h and assessed by MTT assay. 

(B) Cells were treated with various concentrations of DSF (0.1-30 μM) at the indicated time 

intervals. The levels of IC50 were detected by MTT assay. *P<0.05, **P<0.01, one-way ANOVA, 

compared to 24 h. (C) Cells were treated with various combinations for 72 h and the viability 

was analyzed by MTT assay. (D) Cells were treated with DSF/Cu
2+ 

(1 µM/1 µM) at the indicated 

time intervals. The apoptosis population was measured by Annexin-V assay. **P<0.01, one-way 

ANOVA, compared to 4 h. (E) The percentage of the different cell populations discriminated by 

Annexin-V assay is given in each quadrant (Q). The Annexin-V
+
 populations (upper-right and 

lower-right) represent apoptotic cells. 
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5.5 DSF or DSF/Cu
2+

 induces apoptosis in HNSCC cell lines 

For the further measurement of cytotoxicity by DSF or DSF/Cu
2+

, the Caspase-3 activity was 

analyzed using flow cytometry. Cells were treated for 48 h with various concentrations of DSF 

from 1 to 100 μM and DSF/Cu
2+

 complex from 0.1 to 1 μM. The no drug control treatment 

induced a low apoptosis percentage of 10.3%, 16.0%, 11.6%, and 10.2% in the four indicated 

cell lines, respectively. As is shown in Figure 3A and 3B, after exposure to 10 μM DSF, the 

Caspase-3 activity was induced to 24.4%, 35.3%, 32.6% and 21.6%, respectively. When the 

concentration of DSF was enhanced to 100 μM, a significantly high expression of Caspase-3 was 

detected as 82.2%, 84.0%, 88.8%, and 77.4%, respectively. Furthermore, the supplement of Cu
2+

 

induced Caspase-3 activity to 61.8% in UM-SCC9, 67.7% in UM-SCC47, 74.5% in UM-

SCC11B, and 53.0% in UT-SCC33, respectively. In conclusion, these findings confirm again that 

DSF itself enhances apoptosis in a dose-dependent manner, while the Cu
2+

 supplementation 

further increases this cytotoxicity. 
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Fig. 3: DSF or DSF/Cu
2+ 

induces apoptosis in HNSCC cell lines. 

(A) Cells were treated with various concentrations of DSF or DSF/Cu
2+

 for 48 h, and then 

Caspase-3 activity was detected by flow cytometry. *P<0.05, **P<0.01, one-way ANOVA, 

compared to control. (B) The Caspase-3 activity was assessed by flow cytometry. The red lines 

represent the controls, and the blue graphs represent the different treatments. 
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5.6 No significant cell cycle distribution effect by DSF or DSF/Cu
2+

 in HNSCC cell lines 

The underlying mechanism of DSF or DSF/Cu
2+

 cytotoxicity is still not fully clear, therefore the 

cell cycle distribution was performed to measure the effect of DNA damage. Because the cell 

cycle phases could be compromised and disappear at high drug dosages, the concentrations used 

were set based on the IC50 values of each cell line required to avoid excessive apoptosis. Cells 

were exposed to various concentrations of DSF from 0.1 to 3 μM, or DSF/Cu
2+

 complex from 

0.01 to 0.1 μM for 72 h, then the cell cycle was established by flow cytometry. Cells cultured 

without any treatment were used as controls. No significant changes were observed in the 

proportion of cells in the G1, S, and G2/M phases (Figure 4). Therefore, these findings 

demonstrate that DSF or DSF/Cu
2+

 could not act in a core role in altering the cell cycle in the 

chosen settings. 

 

Fig. 4: No significant cell cycle distribution effect by DSF or DSF/Cu
2+ 

in HNSCC cell lines. 

The cell cycle distribution of cells after DSF or DSF/Cu
2+ 

exposure for 72 h was detected using 

flow cytometry. The numbers in the graphs represent proportions as percentages of sub-G1 

(<2N); G1 (2N); S-phase (S); G2/M phase (4N); and aneuploid cells (>4N). 
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5.7 DSF or DSF/Cu
2+ 

triggers ROS generation in HNSCC cell lines 

Because DSF could inhibit ALDH activity, which acts as a ROS scavenger, we hypothesize that 

the cytotoxic effect of DSF or DSF/Cu
2+

 might be based on the generation of ROS in HNSCC 

cell lines. To test this hypothesis, cells were treated with various concentrations of DSF from 1 to 

100 μM, or DSF/Cu
2+

 complex from 0.1 to 1 μM. 24 h later, all cells were harvested and 

analyzed using flow cytometry. Similar to the induction cytotoxicity, the ROS activity was 

induced by increasing the concentration of DSF or DSF/Cu
2+

 (Figure 5A and 5B). After exposure 

to 10 μM of DSF, the ROS generation was increased to 33.1% in UM-SCC9, 35.1% in UM-

SCC47, 36.9% in UM-SCC11B, and 31.2% in UT-SCC33, respectively. When the concentration 

was enhanced to 100 μM, a remarkably high ROS activity was detected: 98.1% in UM-SCC9, 

97.6% in UM-SCC47, 97.9% in UM-SCC11B, and 98.5% in UT-SCC33, respectively. In 

addition, 1 μM DSF/Cu
2+

 complex could significantly increase the accumulation of ROS, which 

was seen to have the equivalent effect at the concentration of 100 μM DSF. Based on these 

observations, we conclude that the cytotoxic effect of DSF corresponds to intracellular ROS 

generation, while DSF/Cu
2+

 enhanced this effect nearly 100-fold compared to DSF alone. 
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Fig. 5: DSF or DSF/Cu
2+ 

triggers ROS generation in HNSCC cell lines. 

(A) Cells were treated with various concentrations of DSF or DSF/Cu
2+

 for 24 h, and then ROS 

activity was detected using flow cytometry. *P<0.05, **P<0.01, one-way ANOVA, compared to 

control. (B) The numbers in the graphs represent the ROS activity. 
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5.8 DSF or DSF/Cu
2+

 inhibits ALDH enzyme activity in SDCs 

To evaluate the effective targeting of CSCs by DSF or DSF/Cu
2+

, the ALDH activity was 

determined in SDCs derived from tested HNSCC cell lines. As shown in Figure 6A and 6B, cells 

were treated with 10 μM DSF or 0.15 μM DSF/Cu
2+

 for 72 h, and then the percentage of ALDH 

high
 cells was significantly decreased from 59.8% to 33% and 30.0% in UM-SCC9, 41.8% to 21.2% 

and 20.0% in UM-SCC47, and 44.5% to 30.8% and 29.4% in UM-SCC11B, respectively. DEAB, 

a specific ALDH inhibitor, acted as a negative control to establish the ALDH 
high

 population and 

the background of fluorescence intensity. 

5.9 DSF or DSF/Cu
2+

 inhibits the expression of stemness-related TFs in SDCs 

As we had demonstrated that the SDCs expressed significantly higher levels of stemness-related 

TFs in HNSCC cell lines, we further investigated the inhibition effect of DSF or DSF/Cu
2+

 on 

SDCs by analyzing the CSC markers of Oct3/4, Sox2 and Nanog. From the analysis described in 

Figure 6C, it is clear that the TFs expression is remarkably decreased compared to untreated 

samples after treatment with 10 μM DSF or 0.15 μM DSF/Cu
2+

 for 72 h. The highest drop was 

detected in UM-SCC9, with an average of 0.33 or 0.39 fold in Oct3/4; 0.20 or 0.63 fold in Sox2; 

and 0.39 or 0.25 fold in Nanog, in DSF or DSF/Cu
2+

, respectively. Collectively, these results 

provide strong evidence that DSF reduce CSC-associated features, and the addition of Cu
2+

 

could increase this inhibition, leading to therapy sensitizing effects. 
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Fig. 6: DSF or DSF/Cu
2+ 

inhibits ALDH expression and stemness-related TFs expression of 

SDCs in HNSCC cell lines. 

(A) The ALDH expression of SDCs was measured by Aldefluor analysis after DSF or DSF/Cu
2+
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exposure for 72 h. DEAB, a specific ALDH inhibitor, was used as control. The numbers in the 

graph represent percent of ALDH 
high

 cells in the population acquired by flow cytometry. (B) 

Graphical representation of the statistical analysis of ALDH activity. **P<0.01, one-way 

ANOVA, compared to untreated control. (C) SDCs were exposed to DSF 10 µM or DSF/Cu
2+

 

0.15 µM for 72 h, mRNA was quantified for expression of the indicated panel of TFs. *P<0.05, 

**P<0.01, two-way ANOVA, compared to untreated control. 

5.10 Inhibition of colony formation by DSF or DSF/Cu
2+

 in HNSCC cell lines 

The clonogenicity assay was established to explore the cellular reproductive stemness capacity 

of cancer cells after various exposures. In this study, we investigated whether DSF or DSF/Cu
2+

 

could inhibit this clonogenic capacity. Compared to no-drug treatment controls, the numbers of 

colony-formation units were decreased from an average of 145 to 72 and 70 in UM-SCC9, 140 

to 80 and 68 in UM-SCC47, and 138 to 75 and 67 in UM-SCC11B, respectively, after exposure 

to 3 μM DSF or 0.1 μM DSF/Cu
2+ 

complex in all tested cell lines (Figure 7A). This result may 

be due to a slower growth of the surviving cells, leading to lower cell amounts, which do not 

reach the minimum standard that defines a colony. Taken together, these findings demonstrate 

that DSF could able to suppress clonogenicity in HNSCC cell lines and the Cu
2+

 supplement 

could reduce the concentration of DSF to increase this effect. 

5.11 Inhibition of spheroid formation by DSF or DSF/Cu
2+

 in HNSCC cell lines 

Spheroid-derived cells (SDCs) are considered to enrich CSCs or cells with stemness-related 

characteristics. To investigate the proliferative potential of CSCs and the ability of epithelial cells 

to grow anchorage independently, spheroid formation assay was performed. As shown in Figure 

7B, a large amount of spheroids were grown in untreated control cells in all tested cell lines. To 

gain a better understanding of the inhibition ability of DSF or DSF/Cu
2+

, cells were treated with 

10 μM DSF or 0.15 μM DSF/Cu
2+

 complex for 3-5 days and photographs were taken at 50-fold 

magnification. After the incubation time, small and inattentive spheroids and loose cellular 

aggregates were captured, this indicated that the ability of spheroid formation was significantly 

reduced. The average spheroid number was remarkably decreased from 39 to 18 and 20 in UM-

SCC9; from 42 to 21 and 24 in UM-SCC47; and from 36 to 19 and 17 in UM-SCC11B, 

compared to untreated controls, respectively. These results suggest that stemness inhibition could 

be achieved by DSF or DSF/Cu
2+

 exposure to reduce the self-renewal capacity in HNSCC cell 

lines. 
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5.12 Inhibition of migratory ability by DSF or DSF/Cu
2+

 in HNSCC cell lines 

Cell migration plays a core role in various pathologic and physiologic processes across varieties 

of disciplines of biology including wound healing, inflammation, tumor growth and 

differentiation [57]. Consequently, we further evaluated whether DSF or DSF/Cu
2+

 exposure 

could inhibit cell migration ability in HNSCC cell lines using the wound healing assay. After 

exposure to 10 μM DSF or 0.15 μM DSF/Cu
2+

 complex, the percentage of wound area closure 

was analyzed at an interval 20 h in UM-SCC9 and UM-SCC47, and at 24 h in UM-SCC11B. 

Figure 7C summaries the noteworthy inhibitions of migration ability in all tested cell lines. The 

no-drug treated cells had closed the scratch by 71.85% in UM-SCC9, 73.78% in UM-SCC47, 

and 73.51% in UM-SCC11B. However, after treatment with DSF or DSF/Cu
2+

, the cells reduced 

the percentage of wound closure by only 42.1% and 43.49% in UM-SCC9; by 45.86% and 43.00% 

in UM-SCC47; and by 43.97% and 41.2% in UM-SCC11B, respectively, which demonstrated 

that DSF or DSF/Cu
2+

 could inhibit the migration ability of cells in vitro. 
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Fig. 7: DSF or DSF/Cu
2+ 

inhibits colony formation, spheroid formation and migratory 

ability in HNSCC cell lines. 

(A) Cells were treated with various concentrations of DSF or DSF/Cu
2+

 for 24 h and then 

reseeded in drug-free medium for 9-12 days. Colonies with minimum of 50 cells or more were 

counted. Graphical representation of the statistical analysis. **P<0.01, one-way ANOVA, 
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compared to control. (B) Cells were exposed to DSF or DSF/Cu
2+

 for 72 h and representative 

images are shown (x50 magnification). The histogram shows the statistical analysis of spheroid 

numbers. **P<0.01, one-way ANOVA, compared to control. (C) Representative pictures indicate 

the migratory cells under different treatment conditions and time points (x 50 magnification). 

The graphical representation shows the statistical analysis of migratory ability. **P<0.01, one-

way ANOVA, compared to control. 

5.13 Increase of colony formation, spheroid formation, and decrease of ROS activity in 

ALDH 
high

 cells versus ALDH 
low

 cells 

Since ALDH has been reported previously as an important stem cell marker in HNSCC, the 

FACS-sorted ALDH 
high

 and ALDH 
low

 population were treated and analyzed for further 

investigation of CSC-features. The colony formation and the spheroid formation were 

established to measure the cell-renewal capacity of ALDH 
high

 and ALDH 
low

 cells. As shown in 

Figure 8A and 8B, the ALDH 
high

 population could form significantly greater numbers of 

colonies and spheroids compared to the ALDH 
low

 population in standard culture conditions, 

which indicates a property relating to tumor initiating ability. 

Furthermore, we evaluated the ROS activity in both ALDH 
high

 and ALDH 
low

 sorted cells. As 

shown in Figure 8C, ALDH 
high

 cells indicated a lower basal level of ROS accumulation because 

of higher expression of ALDH, which is a ROS scavenger to protect cells against oxidative stress. 

Additional, this difference between two population cells also suggested that ALDH 
low 

cell with 

rapid metabolism while ALDH 
high

 cells were more quiescent. In conclusion, these findings 

indicate that ALDH activity plays an essential role in HNSCC CSCs. 

5.14 DSF overcomes the resistance of cisplatin in ALDH 
high

 cells 

To investigate the significance role of ALDH in chemo-resistance, the relative viability of FACS-

sorted ALDH 
high

 and ALDH 
low

 cells were measured after treated with different concentrations 

of cisplatin. A significant difference of growth capacity between two populations was detected in 

Figure 8D. The ALDH 
high

 cell fractions showed more resistant to cisplatin treatment, particularly 

starting from lower concentration (1.25 μM), compared to the ALDH 
low

 cells. Nevertheless, 

when combined with 5 μM DSF, the cytotoxic effect of cisplatin in ALDH 
high 

cells was greatly 

enhanced. In conclusion, these findings prove that DSF could target HNSCC CSCs in the 

specifically highly enriched ALDH 
high

 population and increase the effectiveness treatment of 

cisplatin leading to chemo-sensitizing. 
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Fig. 8: Analysis of stemness, ROS activity, and cisplatin sensitivity in ALDH-sorted cells. 

(A) ALDH 
high

 and ALDH 
low

 cells were cultured for 9-12 days. Colonies with minimum of 50 

cells or more were calculated. Histogram shows the statistical analysis of colony numbers. 

**P<0.01, t-test, compared to ALDH 
high

 cells. (B) ALDH 
high

 and ALDH 
low 

cells were cultured 

for 3-5 days. The graphical representation of the statistical analysis shows the spheroid numbers. 

**P<0.01, t-test, compared to ALDH 
high

 cells. (C) ROS activity of ALDH 
high

 and ALDH 
low

 

cells was detected by flow cytometry. **P<0.01, t-test, compared to ALDH 
high

 cells. (D) ALDH 

high
 and ALDH 

low
 cells were exposed to various concentrations of cisplatin, or in a combination 

of 5 µM DSF for 72 h and the viability was assessed by MTT assay. 

5.15 DSF and cisplatin combination induce synergistically cytotoxicity 

The combination of drugs could abolish treatment resistance compared to a single compound, 

thus it is meaningful to define the drugs that act synergistically. Next, we attempted to assess 

whether DSF could improve the sensitivity of HNSCC cell lines to cisplatin treatment. As shown 

in Figure 9A, when 5 μM DSF was added to different concentrations of cisplatin, the cytotoxic 

effect was increased substantially. 

To gain a better understating of the essence of these results, the combination index (CI) 

according to Chou-Talalay method was performed. As shown in Table 1, the combination of DSF 

and cisplatin established a synergistic effect in all tested HNCC cell lines at a broad level of 

ED50 and ED75 with CI<1. Taken together, these findings demonstrate that DSF decreases 

cellular viability synergistically and improves the cytotoxic effect of cisplatin treatment. 

5.16 DSF or DSF/Cu
2+

 abolishes cisplatin-induced G2/M phase arrest 

Based on the combination cytotoxicity affection in the previous experiments, we hypothesized 

that the mechanism might be related to the abolishment of the G2/M phase following the drug 

treatment. Therefore, the cell cycle distribution was performed after 48 h of exposure to cisplatin 

in the presence of DSF or DSF/Cu
2+

. As shown in Figure 9B and 9C, cisplatin (0.3 μM for UM-

SCC9 and UM-SCC47, 0.6 μM for UT-SCC33) increased G2/M activation, which was due to 

more cell blocking in the G2/M phase, and less in G1/G0. We observed a prominent G2/M phase 

increase from 30.0% to 52.9% in UM-SCC9, 31.3% to 56.4% in UM-SCC47, and 23.6% to 54.7% 

in UT-SCC33, respectively. Nevertheless, when cells combined with 5 μM DSF or 0.1 μM 

DSF/Cu
2+

, a significant reduction of the G2/M phase was recognized, with a parallel induction of 



 

37 
 

cells in the G1 phase. A dramatic attenuation was detected from 52.9% to 41.2% and 42.2% in 

UM-SCC9, 56.4% to 43.1% and 44.9% in UM-SCC47, and 54.7% to 42.3% and 45.6% in UT-

SCC33, respectively. Therefore, these results suggest that DSF or DSF/Cu
2+

 could abolish 

cisplatin-induced arrest, which is responsible for lower cell blocking in the G2/M phase resulting 

in apoptosis induction. 

 

Table 1: Combination treatment with DSF and cisplatin results in synergistic cytotoxic 

effect in HNSCC cell lines. 

 

Cisplatin + DSF Combination Index 
a
 at 

ED50 ED75 

UM-SCC 9 0.560 0.447 

UM-SCC47 0.676 0.624 

UM-SCC11B 0.543 0.551 

UT-SCC33 0.645 0.507 

 

a) Combination Index (CI) for the combination of DSF and cisplatin. CI=1 indicates an additive 

effect; CI<1 indicates a synergistic effect; CI>1 indicates an antagonistic effect. 
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Fig. 9: Combination with DSF or DSF/Cu
2+

 and cisplatin in HNSCC cell lines. 

(A) Cells were treated with various concentrations of cisplatin and 5 µM DSF 
 
for 72 h and the 

cytotoxic effect was determined by MTT assay. (B) Cells were treated with DSF (5 µM), 

DSF/Cu
2+ 

(0.1 µM), cisplatin (UM-SCC9 and UM-SCC47: 0.3 µM; UT-SCC33: 0.6 µM) or a 

combination of both for 48 h. The cell cycle distribution was detected by flow cytometry. The 

numbers in the graph represent proportions as a percentage of sub-G1 (<2N); G1 (2N); S-phase 

(S); G2/M phase (4N); and aneuploid cells (>4N). (C) The percentage of cells in the G2/M phase 

is compared. 
##

P<0.01: cisplatin vs. control; *P<0.05: cisplatin vs. cisplatin+DSF or 

cisplatin+DSF/Cu
2+

; one-way ANOVA. 

5.17 Radio-sensitizing effect of DSF or DSF/Cu
2+

 

The cellular viability was evaluated to investigate the combination cytotoxicity of IR and DSF or 

DSF/Cu
2+

. Cells were pre-treated with various concentrations of DSF or DSF/Cu
2+

, then exposed 

to IR (10 Gy) and subsequently cultured for 72 h. The combined treatment was compared, and 

the results are shown in Figure 10A. When a combination of DSF or DSF/Cu
2+

 with IR was 

applied, the dose response curves showed a significantly enhanced cytotoxic effect. 

Furthermore, to determine whether DSF or DSF/Cu
2+

 could potentiate a radio-sensitizing effect 

in HNSCC cell lines, the cells pre-treated with 1 μM DSF or 0.1 μM DSF/Cu
2+

 were exposed to 

a graded dosage of IR. Cell survival fraction was performed using colony formation, which is a 

primary assay to define cellular “reproductive death” after drug exposure. As shown in Figure 

10B, combination with DSF or DSF/Cu
2+

 and IR inhibits cell survival at the indicated dosage. In 

conclusion, these findings indicate that DSF or DSF/Cu
2+

 could increase the cytotoxicity of IR 

leading to radio-sensitizing effects. 

5.18 Combination of DSF or DSF/Cu
2+

 attenuate IR-induced G2/M phase arrest 

One of the hallmarks of cellular responses to IR is the activation of the G2/M checkpoint to 

prevent cells with DNA damage from entering mitosis. Firstly, we investigated the cell cycle 

distribution with the increasing dosage of IR. As is shown in Figure 10C, after a relatively high 

dosage exposure, starting from 10 Gy, large amounts of cells were blocked in the G2/M phase 

(41.9% in UM-SCC9, 40.8% in UM-SCC47, and 45.4% in UM-SCC11B, respectively) 

compared to 0 Gy controls (28.2% in UM-SCC9, 27.7% in UM-SCC47, and 30.6% in UM-

SCC11B, respectively). 



 

40 
 

To explore the potential nature of DSF or DSF/Cu
2+

 sensitized cells to IR, cell cycle distribution 

analysis was performed after combination exposure. Cells were pre-treated with 5 μM DSF or 

0.1 μM DSF/Cu
2+

 following exposure at 10 Gy IR. As shown in Figure 10D and 10E, a dramatic 

G2/M phase activation was detected after 48 h of IR with an increase from 27.7% to 53.6% in 

UM-SCC9 and from 28.2% to 50.0% in UM-SCC47, respectively, with a concomitant decrease 

in the G1 phase as well. However, when combined with DSF or DSF/Cu
2+

, it resulted in reducing 

the G2/M phase from 53.6% to 40.2% and 41.9% in UM-SCC9, and from 50.0% to 39.5% and 

39.7% in UM-SCC47, respectively. Taken together, these results provide strong evidence that 

DSF or DSF/Cu
2+

 could attenuate IR-induced G2/M phase arrest where checkpoints in the cell 

cycle or DNA repair signaling pathways might be involved. 
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Fig. 10: Radiosensitizing effect of DSF or DSF/Cu
2+

 in HNSCC cell lines. 

(A) Cells were pre-treated with various concentrations of DSF or DSF/Cu
2+ 

and then irradiated 

with 10 Gy. After 72 h, viability was analyzed using MTT assay. (B) Cells were pre-treated with 

DSF (1 µM) or DSF/Cu
2+ 

(0.1 µM) and then irradiated with 2-6 Gy. After 24 h, cells were 

reseeded in drug-free medium for 9-12 days. The surviving fraction at different dosages of IR 

was compared using the LQ-Model formula. (C) Cells were treated with the indicated dosages of 

IR. Cell cycle distributions were detected using flow cytometry 48 h later. The numbers in the 

graph represent proportions as a percentage of sub-G1 (<2N); G1 (2N); S-phase (S); G2/M phase 

(4N); and aneuploid cells (>4N). (D) Cells were pre-treated with DSF (5 µM) or DSF/Cu
2+ 

(0.1 

µM) and then irradiated with 10 Gy. 48 h later, the levels of each cell cycle phase were measured 

using flow cytometry. The numbers in the graph represent proportions as a percentage of sub-G1 

(<2N); G1 (2N); S-phase (S); G2/M phase (4N); and aneuploid cells (>4N). (E) The percentage 

of cells in G2/M phase is compared. 
##

P<0.01: IR vs. control; *P<0.05: IR vs. IR+DSF or 

IR+DSF/Cu
2+

; one-way ANOVA. 
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5.19 Cytotoxic effect by the triple treatment of DSF or DSF/Cu
2+

, cisplatin and IR in 

HNSCC cell lines 

In previous experiments, we proved that DSF or DSF/Cu
2+

 enhanced the cytotoxic effect of 

cisplatin and IR by abolishing the G2/M phase arrest in cell cycle. We next investigated the 

effect of triple exposure on the combination of DSF or DSF/Cu
2+

, cisplatin, and IR. As shown in 

Figure 11A and 11B, combining 5 μM DSF or 0.1 μM DSF/Cu
2+

 with 2.5 μM cisplatin increased 

apoptosis to 34.71% and 26.69% in UM-SCC9, 31% and 25.48% in UM-SCC47, 37.55%, and 

31.77% in UM-SCC11B, respectively, which indicated the induction of remarkably higher cell 

deaths compared to each treatment alone. Furthermore, the combination with IR indicated a 

significant enhancement of apoptotic cell death. A cytotoxic effect was detected in 

IR+cisplatin+DSF and IR+cisplatin+DSF/Cu
2+

 with 42.04% and 32.21%in UM-SCC9, 43.9% 

and 31.91% in UM-SCC47, 45.37% and 38.08% in UM-SCC11B, respectively. Collectively, this 

effect of suppressing cell growth and inducing apoptosis in triple combination provides a 

promising clinical treatment strategy to achieve a better chemo-radio-sensitizing effect in 

HNSCC. 

Fig. 11: DSF or DSF/Cu
2+ 

combined with cisplatin and IR enhance apoptosis in HNSCC cell 

lines. 

(A) Cells were pre-treated with DSF (5 µM), DSF/Cu
2+ 

(0.1 µM), cisplatin (2.5 µM), or a 

combination of both, then exposed to IR (10 Gy). After 48 h, apoptosis was detected using flow 

cytometry. (B) Graphical representation of the statistical analysis. **P<0.01: cisplatin+DSF vs. 

cisplatin or DSF; *P<0.05: cisplatin+DSF/Cu
2+ 

vs. cisplatin or DSF/Cu
2+

; 
#
P<0.05 or 

##
P<0.01: 

IR+cisplatin+DSF vs. cisplatin+DSF or IR+cisplatin+DSF/Cu
2+ 

vs. cisplatin+DSF/Cu
2+

, one-

way ANOVA. 
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5.20 Treatment with DSF or DSF/Cu
2+

, cisplatin, and IR induces ROS generation in 

HNSCC cell lines 

To gain a better understanding of the cytotoxicity in this triple treatment, we explored the 

generation of ROS after exposure to DSF or DSF/Cu
2+

, cisplatin and IR. As shown in Figure 12A 

and 12B, the combination 5 μM DSF with 2.5 μM cisplatin enhanced ROS activity to 38.7% in 

UM-SCC9, 35.8% in UM-SCC47, 35.9% in UM-SCC11B, respectively, compared to each 

treatment alone. IR also plays a core role in the accumulation of ROS. When combined with 10 

Gy IR, addition of cisplatin and DSF or DSF/Cu
2+

, further increasing ROS activity was observed 

with 46.3% and 37.4% in UM-SCC9, 44.0% and 32.5% in UM-SCC47, 46.3% and 34.7% in 

UM-SCC11B, respectively, compared to unirradiated samples. In conclusion, this evidence 

proves that the triple treatment of DSF or DSF/Cu
2+

, cisplatin and IR substantially enhance the 

ROS generation, which is responsible for the cytotoxic effect and might be emphasized as a 

potential method in HNSCC treatment. 

 

Fig. 12: DSF or DSF/Cu
2+ 

combined with cisplatin and IR induce ROS generation in 

HNSCC cell lines. 

(A) Cells were pre-treated with DSF (5 µM), DSF/Cu
2+ 

(0.1 µM), cisplatin (2.5 µM), or a 

combination of both, then exposed to IR (10 Gy). ROS activity was detected 24 h later using 

flow cytometry. The numbers in the graph represent the ROS activity. (B) Graphical 

representation of the statistical analysis of ROS activity. **P<0.01: cisplatin+DSF vs. cisplatin 

or DSF, 
#
P<0.05 or 

##
P<0.01: IR+cisplatin+DSF vs. cisplatin+DSF, or IR+cisplatin+DSF/Cu

2+ 
vs. 

cisplatin+DSF/Cu
2+

, one-way ANOVA.  

B

UM-SCC9

co
ntr

ol

D
SF 2+

D
SF/C

u

C
is
pla

tin IR

C
is
pla

tin
+D

SF 2+

C
is
pla

tin
+D

SF/C
u

IR
+C

is
pla

tin
+D

SF 2+

IR
+C

is
pla

tin
+D

SF/C
u

0

20

40

60

**

##

##

R
O

S
 A

ct
iv

it
y 

(%
)

UM-SCC47

co
ntr

ol

D
SF 2+

D
SF/C

u

C
is
pla

tin IR

C
is
pla

tin
+D

SF 2+

C
is
pla

tin
+D

SF/C
u

IR
+C

is
pla

tin
+D

SF 2+

IR
+C

is
pla

tin
+D

SF/C
u

0

20

40

60

**

#

#

UM-SCC11B

co
ntr

ol

D
SF 2+

D
SF/C

u

C
is
pla

in IR

C
is
pla

tin
+D

SF 2+

C
is
pla

tin
+D

SF/C
u

IR
+C

is
pla

tin
+D

SF 2+

IR
+C

is
pla

tin
+D

SF/C
u

0

20

40

60

**

##

#



 

46 
 

 

U
M

-S
C

C
9

U
M

-S
C

C
4

7
U

M
-S

C
C

1
1

B

FL2 (ROS Activity)

C
el

l 
C

o
u

n
ts

Control DSF DSF/Cu2+ Cisplatin IR

Cisplatin+DSF IR Cisplatin+DSF

Control DSF DSF/Cu2+ Cisplatin IR

Cisplatin+DSF IR Cisplatin+DSF

Control DSF DSF/Cu2+ Cisplatin IR

Cispaltin+DSF

Cisplatin+DSF/Cu2+

Cisplatin+DSF/Cu2+

IR Cisplatin+DSF/Cu2+

IR Cisplatin+DSF/Cu2+

Cisplatin+DSF/Cu2+ IR Cisplatin+DSF/Cu2+

IR Cisplatin+DSF

26.5 28.4 26.8

38.7

26.1

25.0

31.2

32.0

46.3 37.4

20.9 23.5 20.0 27.1

35.8 28.4 44.0

27.6

32.5

26.317.4

35.9 30.4

19.6 23.2

34.746.3

A



 

47 
 

6. Discussion 

Patients with head and neck cancer encompass a heterogeneous group, and even with 

advancements in treatment options, the overall survival rate for patients with advanced disease 

has not changed substantially over recent decades [58]. Therefore, there is a pressing need to 

improve therapeutic efficacy and develop novel treatment strategies involved in increasing radio-

chemotherapy response, counteracting resistance, reducing toxicity and improving clinical 

outcome. CSCs are identified as a distinct tumor cell population, which play an important role in 

inherent cancer resistance to conventional treatments, such as CT or RT [59], and in accelerated 

repopulation and acquired resistance post treatment. They are now being identified and 

characterized in numbers of solid cancers including HNSCC [60], and highlighting their 

potential functions and cellular properties is being considered as promising targeted therapy that 

might enhance treatment response [61]. ALDH activity has been used as a marker to identify and 

isolate CSCs in a variety of tumors including HNSCC [62]. In recent years, accumulating 

evidence indicates that ALDH may not only be a surrogate CSC marker but also a functional 

target for anti-CSC chemo-radio therapy [30, 40]. 

As an irreversible pan-ALDH inhibitor, DSF is known to inhibit all currently identified cytosolic 

and mitochondrial ALDH isoforms. This inhibition is probably the basis of its property of 

sensitizing cells to cytotoxic treatment, and targeting this function might be a novel method for 

further clinical application, leading to abolish CSCs [63]. DSF and its derivative could form a 

DSF/Cu
2+

 complex which contributes to transporting Cu into cancer cells, thus overcoming the 

transporter-controlled regulation of intracellular Cu homoeostasis [40, 46]. Although the serum 

Cu concentration is elevated in cancer patients, the anticancer activity of DSF is dependent on 

Cu and many other researchers have demonstrated that Cu supplementation further enhances the 

antitumor effect of DSF in vitro and in vivo [64]. Our results show that the viability of HNSCC 

cells was inhibited by DSF, and the addition of Cu
2+

 further enhanced the cytotoxicity in a dose- 

and time-dependent manner. These findings were consistent with previous studies, in that DSF 

has anticancer activity, and cooper potentiates its activity in vitro and in vivo [65-67].  

It is accepted that stem-like cells usually over-express stemness-related markers such as Oct3/4, 

Sox2, and Nanog, where these genes play essential roles in the regulation of self-renewal and 

tumorigenicity in the CSC populations of many kinds of tumors [68]. In order to confirm the 

potential stemness phenotype, SDCs and parallel MDCs from HNSCC cell lines were performed 

to detect the expression of the CSC-specific markers. A significant up-regulation was detected in 
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SDCs, and furthermore, SDCs also displayed higher expression of ALDH. In conclusion, these 

findings proved the presence of a subpopulation of cells with stem-like properties has been 

identified in SDCs and DSF or DSF/Cu
2+

 complex could inhibit these CSC-features which is 

relevant for many properties of HNSCC CSCs, such as clonogenicity and spheroid-formation.  

Cell migration is defined as the movement of individual cells, cell sheets and clusters from one 

location to another [69]. The study of cell migration behavior in cancer research is of particular 

interest, as the main reason of death in cancer patients is related to metastatic progression. 

Consequently, methods in this investigating this are very useful research strategies for a wide 

range of disciplines in biomedical sciences, biology, bioengineering, and related fields [70]. 

Compared to other tools, the in vitro scratch assay is particularly suitable for studies on the 

effects of cell-matrix and cell-cell interactions on cell migration, mimicking cell migration 

during wound healing in vivo, and it is compatible with the imaging of live cells during 

migration to monitor intracellular events if desired [71]. Collectively, our current observations 

proved that DSF or DSF/Cu
2+

 could inhibit ALDH activity to abolish the proliferation and self-

renewal capacity of CSCs, and to suppress their migratory ability, resulting in the sensitizing of 

treatment in HNSCC cell lines. 

Furthermore, we characterized the ALDH-enriched population using Aldefluor assay followed by 

FACS sorting, to assess whether they display these CSC-features as well. We showed that ALDH 

high
 cell fractions have increased clonogenic ability, enhanced sphere-formation, lower ROS 

levels, and more cisplatin resistance compared to ALDH 
low

 cells. These findings indicate that 

ALDH activity plays an essential role in the drug-resistance and self-renewal capacity of CSCs. 

Our data has developed in conformity with the results from Raha’s group, who detected that the 

ALDH
 high

 populations share common properties with chemotherapy drug tolerant CSCs. They 

also suggest that ALDH activity might be one mechanism to protect the CSCs from toxic side 

effects of therapy and ROS [72]. Specifically, we additionally showed that a therapy-resistant 

subpopulation of CSCs, with a high expression of ALDH and cisplatin-resistance can 

preferentially be sensitized by DSF, which could be a chemo-sensitizer in HNSCC cell lines. 

Even though the therapeutic efficacy of DSF or DSF/Cu
2+

 was investigated in vivo and in vitro, 

complete remission was not achieved by mono treatment. To improve this therapeutic effect, 

drug combination might be considered, delivering a small molecular agent, DSF, to the tumor 

tissue to suppress CSCs, and standard anti-cancer reagent to target the bulk tumor cells. While 

cisplatin is currently one of the most common chemotherapeutic agents used in the treatment, its 
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success and efficacy wane because of therapeutic resistance. Our study showed a synergistic 

effect of DSF in the combination with cisplatin resulting in CI<1, and this associated with 

reduced cellular proliferation and enhanced cisplatin-induced cytotoxicity. 

Cancer cells show a deregulated cell cycle progression, with either overexpression of positive 

regulators, or inhibition of negative regulators, which provide them with unrestrained replication 

potential [73]. Deregulation of the cell cycle has been implicated in most human cancers and 

leads to cell proliferation, chromosome instability, and loss of genomic integrity [74]. The 

cytotoxicity of cisplatin is mediated by its interaction with DNA, resulting in the formation of 

DNA adducts which activate several signal transduction pathways and culminate in the 

activation of apoptosis [75]. IR induces various DNA-damage, but double-strand breaks are the 

most cytotoxic effects, which can perturb cell cycle progression at different stages, mainly 

inducing G2/M phase arrest [76]. This arrest provides time to repair DNA damage and to prevent 

mitotic catastrophes and apoptosis [77]. Many studies have shown that abrogation of the G2 

checkpoint can potentiate cell death induced by IR [78] or DNA-damaging agents [79], which 

supports the G2 checkpoint as a potential therapeutic target that may sensitize cells to chemo- 

and radio-therapy. 

We showed that the cell cycle was paused at the G2/M phase when cells were exposed to 

cisplatin, and additional treatment by DSF or DSF/Cu
2+

 could abolish this block leading to DNA 

damage, which is a mechanism for cell death. Moreover, after treatment with IR, the G2/M cell 

fractions were increased in a dose-dependent manner, which suggest elevated checkpoint 

activation in HNSCC cell lines in response to DNA damage. We next demonstrated that DSF or 

DSF/Cu
2+

 potentiated the efficacy of IR through abolishing the G2/M arrest, and then have the 

ability to inhibit IR-induced G2 checkpoint activation, which could lead more damaged cells to 

enter mitosis without appropriate repair, leading to cell death and thereby significantly enhancing 

the cytotoxic effect of IR. This hypothesis may contribute to an underlying mechanism for the 

radio-sensitization caused by DSF or DSF/Cu
2+

 in HNSCC cell lines. Furthermore, DSF or 

DSF/Cu
2+

 strongly inhibited HNSCC clonogenicity to such an effect that few colonies could be 

isolated, resulting in a linear response being shown with increasing dosage, and a curve 

established with this combination therapy. 

In comparison with normal tissues, cancer cells generally possess high ROS activity and can 

tolerate higher levels of ROS [80]. Our findings demonstrated that DSF or DSF/Cu
2+

 alone, or in 

a combination with cisplatin and IR, lead to a remarkable intracellular ROS burst, which may 



 

50 
 

result in the effect of reduced scavenging and less detoxification, and develop to be a novel 

method for treatment of CSC subpopulations and ultimately cancers. DSF or DSF/Cu
2+

 reduced 

the ROS tolerance by inhibiting ALDH and targeting CSCs in HNSCC cell lines. 

In addition, a number of clinical trials have been established to identify the promising anti-cancer 

activity of DSF. Phase II clinical trials were performed to investigate DSF in newly diagnosed 

glioblastoma multiform (NCT 01777919), and to measure the combination effect with cisplatin 

in metastatic non-small cell lung cancer (NCT 00312819). Other phase I trials in hormone 

refractory cancers with liver (NCT 00742911) and melanoma metastases (NCT 00256230), and 

prostate cancer (NCT 01118741), are still ongoing. 

Even though the impressive tolerance of DSF and its powerful anti-cancer capacity have been 

researched for years, very few successful cases had been reported in clinic [81]. The possible 

reason for this discrepancy might be that the pharmacokinetics and pharmacodynamics of DSF 

appear to highly variable among subjects. Surprisingly, clinical studies on the kinetics of DSF 

have shown that a single-dose administration of 250 mg DSF leads to a maximum serum 

concentration of approximately 1.3μM and can reach 1.4μM after repeated doses [82]. 

Consequently, the enrichment and metabolism of DSF in the liver become the bottleneck for its 

translation into the clinic therapy. The Nano-encapsulated DSF, such as liposomal- and poly 

lactic-co-glycolic acid (PLGA), were used to prevent these eliminations. The nano-precipitation 

method protects the thiol groups in DSF, extends its half-life in the blood from less than 2 min to 

over 7 h, and successfully delivers the intact DSF into tumor tissues [83, 84]. This modification 

of DSF would be a beneficial approach for its delivery and improve its stability during the 

process of position targeting. 

However, due to the time-consuming and high-cost procedures in the development of new 

therapeutic drugs, the rate of new approvals are still very low. Therefore, drug repurposing or 

drug repositioning, utilizing the previously unknown anti-cancer effects of “old” drugs, can be a 

promising strategy to identify prospective new therapeutic uses [85]. DSF has been used as an 

anti-alcoholism drug for over 60 years with acceptable pre-clinical and clinical acceptable side 

effects, and it could therefore be a valuable approach to repurpose it into a promising new anti-

cancer drug, or an adjuvant treatment for sensitization in combination with other therapies. 

In this study, we determined DSF or DSF/Cu
2+

 was cytotoxic by itself in a dose- and time- 

dependent manner, and investigated the effect of ROS generation, which might be the potential 
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underlying mechanism responsible for its anti-cancer activity in HNSCC cell lines. Moreover, 

we demonstrated significant inhibition of the expression in CSC markers, including Oct3/4, Sox2, 

and Nanog, decreasing the growth of CSCs as well as reducing their cellular self-renewal 

capacity. Of even greater interest, our comparative analysis assessed the inhibitory effect of DSF 

or DSF/Cu
2+

 on ALDH expression and migration ability, which may have also proved the 

systems for eliminating CSC-features. The combined DSF and cisplatin created a synergistic 

cytotoxicity in HNSCC cell lines, and DSF sensitized the cancer cells - especially the ALDH 
high

 

cells - effectively for cisplatin treatment, and reversed its resistance. Furthermore, we also 

demonstrated that DSF or DSF/Cu
2+

 could sensitize the effectiveness of IR and cisplatin 

treatment, which were associated with suppressing the survival fraction, abolishing the G2/M 

phase arrest in the cell cycle, improving the apoptotic rate and inducing ROS generation as well. 

Taken together, these observations indicated that DSF or DSF/Cu
2+

 could target CSCs and lead 

to stemness-related inhibition, which resulted in intrinsically cytotoxic, and chemo-radio-

sensitizing effects. Overall, our present work suggests that DSF has potentially important 

implications for future therapeutic approaches in head and neck cancers. 
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