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Abstract

The energy transfer between surfaces and adsorbates is a key aspect to gain a deeper

insight into many processes at surfaces, such as dissociation, adsorption and others

which are important in heterogeneous catalysis. The purpose of this thesis is to pro-

vide a better understanding of the energy transfer between adsorbate vibrations and

electron-hole pairs for the scattering of NO from a Au(111) surface. In the first part

of this dissertation the NO/Au(111) system is described in static terms. A new six-

dimensional representation of the potential energy surface of the adiabatic ground

state is constructed based on elecronic structure calculations in a density functional

theory framework. This representation employs a site-based strategy that rests upon

a global, physically-motivated, analytic form which is able to account for a partial

charge transfer between surface and adsorbate. The system is spectroscopically char-

acterized by the anharmonic eigenstates of the constructed potential energy surface.

These full-dimensional vibrational eigenstates reveal a distinct coupling between the

system modes, especially between the tilt angle and the molecule-surface distance.

In the second part of this thesis a wave function based quantum dynamical model in

reduced dimensions is developed. It employs a stochastic propagator that accounts

for the coupling of molecular vibrations to electron-hole pairs of the surface by a

specially designed relaxation basis. That basis guides the wave packet towards the

surface during quantum jumps induced by the system’s excitonic environment. The

associated anharmonic transition rates are obtained from first-order perturbation

theory. These rates are ensured to vanish asymptotically reflecting the evanescent

coupling strength far away from the surface. Test calculations for the NO/Au(111)

system show the favourable convergence behaviour of the model as well as its abil-

ity to capture typical processes on metal surfaces, such as trapping or vibrational

relaxation.

Finally, the developed potential energy surface and the quantum dynamical model

are utilized to study the scattering of NO(ν = 3) from Au(111) in detail. It is

demonstrated for the first time that by considering the coupling to electron-hole

pairs the experimentally observed trend of increasing relaxation probability as a

function of the initial kinetic energy can be qualitatively reproduced. Additionally,

the energy transfer between the different modes is analyzed showing a strong redis-

tribution from translation to rotations leading to rotationally highly excited states.

The translational mode is also found to be of major importance for the energy trans-

fer between molecule and surface. The comparison between classical and quantum

dynamical simulations shows the former to yield wrong trends compared to exper-

iment. That emphasizes the importance of quantized relaxation in the scattering

dynamics of NO from Au(111).
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Kurzzusammenfassung

Der Energieaustausch zwischen Oberflächen und Adsorbaten ist ein zentraler Aspekt

um tiefere Einblicke in zahlreiche Prozesse auf Oberflächen zu erhalten, wie z.B.

Dissoziation, Adsorption und weitere Prozesse mit besonderer Relevanz für hetero-

gene Katalyse. Das Ziel dieser Arbeit ist es ein besseres Verständnis für den Ener-

gieaustausch zwischen Adsorbatschwingungen und Elektron-Loch-Paaren während

der Streuung von NO auf Au(111) zu erlangen. Im ersten Teil dieser Dissertation

werden die statischen Eigenschaften des NO/Au(111)-Systems beschrieben. Für den

adiabatischen Grundzustand wird eine neue Darstellung der Potentialenergiefläche

in sechs Dimensionen konstruiert, welche auf Dichtefunktional-basierten Elektro-

nenstrukturrechnungen fußt. Für diese Darstellung wird ein Adsorptionsstellen-

basierter Ansatz gewählt, welcher auf einer globalen, physikalisch motivierten, an-

alytischen Form beruht, die in der Lage ist den teilweisen Ladungstransfer zwi-

schen Oberfläche und Adsorbat zu berücksichtigen. Mit Hilfe der anharmonischen

Eigenzustände der erstellten Potentialenergiefläche wird das System charakterisiert.

Diese sechsdimensionalen Schwingungseigenzustände offenbaren eine ausgeprägte

Kopplung zwischen den Moden des Systems, insbesondere zwischen dem Kippwinkel

und dem Abstand des Moleküls zur Oberfläche.

Im zweiten Teil dieser Arbeit wird ein quantendynamisches Modell in reduzierten Di-

mensionen entwickelt, das auf einer Beschreibung mittels Wellenfunktionen beruht.

Dabei wird ein stochastischer Propagator verwendet, der die Kopplung der Molekül-

schwingungen und Elektron-Loch-Paare mit Hilfe einer speziellen Relaxationsbasis

berücksichtigt. Bei Quantensprüngen, welche durch die exzitonische Umgebung in-

duziert werden, lenkt diese Basis das Wellenpacket in Richtung der Oberfläche.

Die dazugehörigen anharmonischen Übergangsraten werden mit Hilfe von Störungs-

rechnung erster Ordnung erhalten. Es ist gewährleistet, dass diese Raten asymp-

totisch verschwinden und damit die verschwindende Kopplungsstärke weit weg von

der Oberfläche modellieren. In Testrechnungen wird das vorteilhafte Konvergenz-

verhalten des Modells gezeigt, sowie seine Fähigkeit typische Oberflächenprozesse

wie Trapping oder Schwingungsrelaxation zu beschreiben.

Zum Abschluss werden die Potentialenergiefläche und das Quantenmodell verwen-

det, um die Streuung von NO(ν = 3) auf Au(111) detailliert zu untersuchen. Es wird

zum ersten Mal gezeigt, dass der experimentelle Trend der steigenden Relaxations-

wahrscheinlichkeit als Funktion der kinetischen Anfangsenergie qualitativ repro-

duziert werden kann, wenn die Kopplung zu Elektron-Loch-Paaren berücksichtigt

wird. Zusätzlich wird der Energieaustausch zwischen den Moden analysiert, bei

welchem eine deutliche Umverteilung von Translation zu Rotationen beobachtet

wird, die zu hoch angeregten Rotationszuständen führt. Des Weiteren zeigt es
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sich, dass die Translationsmode von großer Bedeutung für den Energieaustausch

zwischen Molekül und Oberfläche ist. Der Vergleich zwischen klassischen und quan-

tendynamischen Simulationen zeigt, dass erstere falsche Trends produzieren. Dies

unterstreicht die Bedeutung der quantisierten Relaxation für die Streudynamik von

NO auf Au(111).
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Chapter 1

Introduction

Heterogeneous catalysis is a central process in many chemical reactions ranging

from industrial syntheses (Haber-Bosch process,1–3 Fischer-Tropsch process4–6) to

electrochemical reactions.7–9 A microscopic understanding of the relevant processes

is essential to design and control these catalytic reactions. Due to their good con-

trollability small molecules like CO, NO, NH3 or CH4
10 are used as model systems to

yield a deeper insight into relevant aspects of catalytic processes. Of special interest

is the energy transfer between the adsorbate vibrations and the surface degrees of

freedom which often plays an important role in diffusion, trapping, dissociation, ad-

sorption, and desorption processes.11 In these the surface acts as a reservoir which

transfers energy to and absorbs energy from the adsorbate, respectively.12 For many

systems there are two main mechanisms describing how the energy transfer proceeds.

The first involves the coupling of the adsorbate vibrations to surface phonons and

is typically found in semiconductors and insulators for which the vibrational energy

lies in the band gap.13–16 It is also observed for low-frequency modes at metals,

e.g. in the inelastic scattering of NH3 from Au(111),17 the desorption of CO from

Ru(0001),18,19 the dissociative chemisorption of N2 on Ru(0001)20 or the scattering

of HCl from Au(111) at low temperatures.21,22 In metals, the missing band gap of-

fers a second energy exchange mechanism: the coupling of molecular vibrations to

electron-hole pairs of the surface.23–28 This was first reported for the scattering of

NO from Ag(111)29,30 and was since discovered for many more processes and sys-

tems like inelastic scattering of diatomic molecules from metals,22,31–34 adsorption

of hydrogen on metal surfaces,35–41 chemicurrents42–45 or vibrational promotion of

electron emission.46–50 The coupling to electron-hole pairs also results in vibrational

lifetimes in the picosecond regime,51–57 e.g. for CO on Cu(100) where a vibrational

lifetime of 2±1 ps53 was observed compared to phonon-induced lifetimes in the mi-

crosecond regime found for CO on NaCl.58

The scattering of NO from a gold (111) surface is perhaps one of the most promi-

nent and extensively studied systems for which an electron-mediated energy trans-
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CHAPTER 1. INTRODUCTION

fer is supposed. In 2000 Huang et al. observed for the scattering of NO(ν = 15)

from Au(111) a significant redistribution of vibrational states leading to a broad-

ening and a shift of seven to eight quanta, which corresponds to an energy loss

of ∼150 kJ mol−1.59 They attributed this vibrational relaxation mainly to electron-

hole pairs since only a small relaxation was found in comparable scattering ex-

periments on an insulating LiF(001) surface. Besides, the relaxation on Au(111)

proceeds on a rather short time scale in the sub-picosecond regime which is too

short for typical phonon-mediated processes. Further indications for nonadiabatic-

ity of the NO/Au(111) system were found in studies of the excitation probability

for NO(ν = 0). In these studies an Arrhenius-like temperature dependence shows

an activated process with an activation energy on the scale of the vibrational en-

ergies.60–62 In contrast, phonon-mediated excitations are often weakly affected by

temperature17,22 or have an activation energy dependent on the initial energy.63,64

An increase in initial translational energy increases the excitation probability but

the missing energy threshold excludes internal energy conversion as an excitation

channel. The scattering of NO(ν = 3) reveals the same trend for the relaxation

probabilities,65 as well as a strong orientational dependence of these probabilities.

When the molecules are oriented with the O atom pointing to the surface the relax-

ation probabilities are strongly diminished.66,67 In addition, the Au(111) surface was

shown to act as an energy reservoir to which a significant amount of translational

energy of the molecule is transferred.12

The theoretical description of the mentioned transfer mechanisms can be a compli-

cated task, especially for the electron-mediated coupling. For the vibration-phonon

coupling it is comparatively straightforward since it only requires a potential en-

ergy surface (PES) in the adiabatic ground state. Based on this, due to the large

masses and the approximately harmonic behaviour of the surface atoms, the dynam-

ics is typically described in a classical fashion, where the motion of surface atoms

can be included either explicitly20,68–70 or implicitly by generalized Langevin oscil-

lators.71–75 By using the Multiconfigurational Time-Dependent Hartree (MCTDH)

method76 it is even feasible to perform quantum simulations. In contrast to phonon-

mediated processes, the correct description of electron-mediated dynamics on sur-

faces is a much more challenging task since the excitation of electron-hole pairs

creates electronically excited states and thus violates the Born-Oppenheimer ap-

proximation.24,28 Therefore it is necessary to go beyond an adiabatic description.

That is typically done by considering two limiting cases: the strong coupling and

the weak coupling limits.77 In the former an excited state which is of different char-

acter than the ground state is explicitly included in the description. That can

be done by using model systems77–80 or by calculating ab initio potential energy

surfaces. The dynamical description is usually performed by classical hopping sim-
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CHAPTER 1. INTRODUCTION

ulations.81–83 However, even though it is by now possible to calculate excited states

rather accurately, as shown e.g. for H2 on Au84,85 and CO on Cu(111)86 by using

embedded cluster models,87–90 it is still a challenging task to obtain a complete PES

in many dimensions. The second limiting case does not require an explicit inclusion

of the excited state since in the weak coupling limit it is assumed that the state’s

character stays the same during the electronic excitation. If the nuclei are described

classically, the electronic excitations lead to a frictional force acting on the system

which moves on the adiabatic ground state PES.91–93 If the nuclei are described

quantum mechanically the coupling to the electron-hole pairs induces transitions

between the molecule’s vibrational states described by transition rates reflecting the

strength of the coupling.94

Such a quantum mechanical description is employed in Paper B. In this paper a

quantum dynamical model is constructed which describes the scattering of a di-

atomic molecule from a metal surface in reduced dimensions. The time evolution is

based on a stochastic propagator including anharmonic transition rates and specially

designed relaxation operators which describe the effect of the excitonic environment

on the system states.

Over the last twenty years, the inelastic scattering of vibrationally excited NO

from Au(111) was investigated by classical as well as quantum mechanical ap-

proaches in order to assess the importance of vibrational coupling to electron-hole

pairs. In a Monte-Carlo wave packet approach based on a semiempirical two-state

model in two dimensions Li and Guo could demonstrate the electron-mediated pro-

cess to be capable of explaining the experimental findings qualitatively.79 These qual-

itative findings were also confirmed by Shenvi et al. performing a kinetic study by

means of a Pauli master equation.80 Tully and coworkers constructed a diabatic two-

state model in six dimensions from density functional theory (DFT) calculations.

On these surfaces they performed surface hopping as well as molecular dynamics

with electronic friction (MDEF) simulations for several initial conditions.62,65,95–98

They found a shift and a broadening of the vibrational distribution for highly excited

NO (ν = 11, ν = 15) but it was significantly smaller than observed in experiment.98

In a study of inelastic scattering of NO(ν = 3) with different initial kinetic energies

they could not reproduce the experimental trend of increasing relaxation probability

as a function of these energies. Krüger et al. claimed the experimental and theo-

retical differences to be caused by inaccuracies of the PES.98 In their model the NO

molecule stays on the surface too long contradicting the experimentally observed di-

rect scattering.59 Only if trajectories that undergo multiple bounces are deselected

they can provide the correct trend.

For that reason a new adiabatic representation of the six-dimensional PES is con-
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CHAPTER 1. INTRODUCTION

structed in Paper A. It provides a global description of the potential energy land-

scape by using physically-motivated potential terms. That ensures a correct char-

acterization of the asymptotic region of the configurational space. Furthermore, it

diminishes the number of required fitting points without the occurence of underfit-

ting issues. In contrast to the PES of Roy et al.95 it also contains the top site of the

(111) surface.

The issue of an accurate adiabatic PES was recently adressed by Yin et al. who

included the surface atoms to construct a high-dimensional PES. Their work, which

was done in parallel to the study in Paper A, demonstrates that the explicit consid-

eration of phonons can reproduce the experimental trends for NO(ν = 3) in a clas-

sical simulation without including coupling to electron-hole pairs.99 However, there

is still a discrepancy between the theoretical results and the experimental findings

which leaves the question about the importance of coupling to electron-hole pairs

still open. A quantum dynamical study only based on electron-hole pair coupling

was performed by Monturet and Saalfrank. They employed the coupled-channel den-

sity matrix method for NO(ν = 15) by considering only two dimensions (the bond

length r, and the molecule-surface distance z).100 Quantized vibrational relaxations

were only considered along r with z-dependent harmonic transition rates. Mon-

turet and Saalfrank could show a broadening of the vibrational distribution and a

shift to lower-lying states but as in previous studies the obtained shift was too small.

It is still an open question how important the coupling to electron-hole pairs is

to describe the trends for scattering of NO(ν = 3) from Au(111) and how important

a quantum dynamical treatment is. Therefore a detailed study of the scattering pro-

cess is performed in Paper C where the four-dimensional quantum model developed

in Paper B is employed. Additionally, the quantum simulations are compared to

classical simulations. That is done to adress the importance of quantized relaxations

and to investigate how justified the application of classical methods in previous stud-

ies98,99 is.

This thesis is organised as follows: Chapter 2 offers an overview of the theoretical

models and approaches which were employed in this thesis. It begins with a brief

introduction to the Schrödinger equation, its formulation in different pictures and

the Born-Oppenheimer approximation in Sec. 2.1. The following section covers a

short presentation of the Hartree-Fock method, density functional theory and the

general description of periodic systems. In Sec. 2.3 the derivation of the quantum

master equation in the weak coupling limit and its unravelling by a piecewise deter-

ministic process (PDP) is reviewed. Besides, the coupling of molecular vibrations to

electron-hole pairs within a classical friction framework and a quantum mechanical
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perturbative treatment is discussed. That is followed by Chapter 3 which summa-

rizes and discusses the central results of the publications listed in Chapter 4.
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Chapter 2

Theory

2.1 Basic principles

This section will deal with some fundamental aspects of quantum mechanics. At

first, the time-dependent Schrödinger equation and its alternative formulations will

be introduced and explained. Afterwards, the separation of electronic and nuclear

wave functions by the Born-Oppenheimer approximation will be presented. If not

stated otherwise the textbooks of Tannor101 and Nolting102 were used as references.

Apart from Sec. 2.3.4 atomic units will be employed in the complete chapter.

2.1.1 Schrödinger equation and quantum mechanical pic-

tures

In non-relativistic quantum mechanics, the time-dependent Schrödinger equation103

i
∂

∂t
Ψ( ~Q, t) = ĤΨ( ~Q, t) (2.1)

is the central equation of motion. It describes the evolution of a system characterized

by its wave function Ψ( ~Q, t). The Hamilton operator Ĥ in Eq. (2.1) defines the

system’s constituents and its interactions. In general, the Hamiltonian as well as

the wave function depend on the time t and the non-temporal degrees of freedom ~Q.

However, there are systems whose Hamiltonians are not explicitely time-dependent,

making it possible to employ a product ansatz for the wave function and simplifying

Eq. (2.1) to the time-independent Schrödinger equation,

ĤΦ( ~Q) = EΦ( ~Q). (2.2)

The total wave function can be expressed as a product of a time-dependent part

and the solution of Eq. (2.2), i.e. Ψ( ~Q, t) = e−iEtΦ( ~Q), where the time-dependent
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2.1. BASIC PRINCIPLES CHAPTER 2. THEORY

part is just a phase factor determined by the energy eigenvalue E.

In the formalism of Eq. (2.1) it is assumed that the wave function Ψ( ~Q, t) = |Ψ(t)〉
is time-dependent and the operators Â are at most explicitely time-dependent. This

so-called Schrödinger picture is the most common way to describe the evolution

of quantum mechanical systems, but it is not the only one. A different approach

represents the Heisenberg picture, in which the operators ÂH are time-dependent

and linked to the operators Â in the Schrödinger picture by

ÂH = eiĤtÂe−iĤt. (2.3)

Based on Eq. (2.3) it is possible to define an equation of motion of the operators

d

dt
ÂH = i

[
ĤH, ÂH

]
+
∂

∂t
ÂH. (2.4)

In contrast to the Schrödinger picture, the wave function in the Heisenberg picture

is time-independent

|Ψ(t)〉H = eiĤt |Ψ(t)〉 = |Ψ(0)〉 . (2.5)

There is a third representation, the Dirac or interaction picture. Here, both the wave

function |Ψ(t)〉I as well as the operators ÂI(t) contain parts of the time evolution.

They are defined as

|Ψ(t)〉I = eiĤ0t |Ψ(t)〉 (2.6)

and

ÂI(t) = eiĤ0tÂ(t)e−iĤ0t (2.7)

for a system whose Hamiltonian is

Ĥ = Ĥ0 + V̂ (t). (2.8)

The corresponding equations of motion are

i
∂

∂t
|Ψ(t)〉I = V̂I(t) |Ψ(t)〉I (2.9)

and

d

dt
ÂI(t) = i

[
Ĥ0, ÂI(t)

]
+
∂

∂t
ÂI(t). (2.10)

8



CHAPTER 2. THEORY 2.1. BASIC PRINCIPLES

All three representation are physically equivalent, i.e. they all yield the same ex-

pectation values.

2.1.2 Born-Oppenheimer approximation

In quantum chemistry a Hamiltonian of a field-free molecular system with N elec-

trons and M nuclei can be written as

Ĥ =−
N∑
i=1

1

2
∆i +

N∑
i=1

N∑
j>i

1

|~ri − ~rj|
−

M∑
α=1

N∑
i=1

Zα

|~Rα − ~ri|
+

M∑
α=1

M∑
β>α

ZαZβ

|~Rα − ~Rβ|

−
M∑
α=1

1

2Mα

∆α (2.11)

=T̂e + V̂ee + V̂eN + V̂NN + T̂N, (2.12)

whereMα denotes the mass of nucleus α and Zα its charge. The Hamiltonian consists

of the kinetic operators (T̂ ) of nuclei (N) and electrons (e) as well as the potential

operators (V̂ ) describing their interactions.

For a many-particle system (electrons as well as nuclei) Eq. (2.2) cannot be solved

analytically and even numerical treatment might be quite difficult due to the cou-

pling between both the electronic and the nuclear degrees of freedom, {~ri} and {~Rα}.
To circumvent this issue, the coupling between the electronic and nuclear degrees

of freedom is neglected by employing the Born-Oppenheimer approximation.104 It

permits the successive evaluation of first the electronic and second the nuclear wave

function.

The starting points for that approach is the large mass ratio between the nuclei and

the electrons, resulting in different time scales of motion for both species. From

the electrons’ perspective the nuclei stay at rest and the electrons instantaneously

adjust to the changing nuclear configuration. Therefore, in the first step of the

Born-Oppenheimer approximation the Hamiltonian in Eq. (2.12) is separated in an

electronic part Ĥe and a nuclear part ĤN,

Ĥ = Ĥe + ĤN, (2.13)

with the nulcear part

ĤN(~R) = T̂N + V̂NN, (2.14)

and the electronic Hamiltonian

Ĥe(~r; ~R) = T̂e + V̂ee + V̂eN, (2.15)

9



2.1. BASIC PRINCIPLES CHAPTER 2. THEORY

which just depends parametrically on the nuclear configuration (clamped nuclei

approximation). Now, a time-independent electronic Schrödinger equation can be

defined which is solved separately for a fixed ~R,

Ĥeφn(~r; ~R) = En(~R)φn(~r; ~R). (2.16)

Since for every nuclear configuration ~R the electronic wave functions {φn} form a

complete basis (which is assumed to be discrete), the total wave function Φ(~r, ~R)

can be expanded in this basis (Born-Huang-expansion),

Φ(~r, ~R) =
∑
n

φn(~r; ~R)ψn(~R), (2.17)

where the expansion coefficients {ψn} depend on the nuclear coordinates. The basis

in Eq. (2.17) can now be inserted in Eq. (2.2) and 〈φm| is projected from the left

onto the resulting equation,

∑
n

[
(T̂N + Vn(~q))δmn −

1

2
(T (2)

mn + 2~T (1)
mn · ~∇)

]
ψn(~q) = Eδnmψm(~q), (2.18)

with the potential

Vn(~q) = En(~q) + 〈φn| V̂NN(~q) |φn〉 , (2.19)

and the nonadiabatic coupling elements

~T (1)
mn = 〈φm| ~∇ |φn〉 (2.20)

T (2)
mn = 〈φm|∆ |φn〉 . (2.21)

Eq. (2.18) is formulated in mass-weighted coordinates ~q and the operators in Eq. (2.20)

and Eq. (2.21) contain multidimensional derivatives with respect to these coordi-

nates. In the Born-Oppenheimer approximation the nonadiabatic coupling elements

are neglected which simplifies Eq. (2.18) to(
T̂N + Vn

)
ψn(~q) = Eψn(~q). (2.22)

Now it becomes obvious that ψn represents a nuclear wave function. Vn is called

the potential energy surface and equals the mean electronic potential in which the

nuclei move. Eq. (2.22) makes it possible to evaluate the nuclei’s wave function

separately for every electronic state n. Therefore, the first task is to solve the

electronic eigenvalue problem in Eq. (2.16).

10
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2.2 Electronic structure

In the following section different methods to solve the electronic Schrödinger equa-

tion will be presented. At first, the Hartree-Fock (HF) method, as a wave function

based ansatz, is going to be discussed. At second, the idea of density functional

theory and several functionals, as well as their (dis-)advantages will be introduced

and debated. Finally, the section will be concluded by a brief presentation of the

principles of periodic bulk calculation. In the whole section the nuclear coordinates
~R, on which the electronic wave function depends parametrically, are omitted. If

not stated otherwise the textbooks of Jensen,105 Szabo and Ostlund,106 Koch and

Holthausen107 as well as of Ashcroft and Mermin108 were used as references.

2.2.1 Hartree-Fock method

Every fermionic wave function has to obey the Pauli principle, stating that the wave

function is antisymmetric with respect to the interchange of two particles. A way

to include this prerequisite in the mathematical expression of the N -electron wave

function, is by using a determinant,

ΨSD(~x1, ..., ~xN) =
1√
N !

∣∣∣∣∣∣∣∣
χ1(~x1) · · · χN(~x1)

...
. . .

...

χ1(~xN) · · · χN(~xN)

∣∣∣∣∣∣∣∣ . (2.23)

These Slater determinants are built up from spin orbitals

χ(~x) = φ(~r) · g(ω) (2.24)

with the spin function

g(ω) =

{
α(ω)

β(ω)
(2.25)

and a spatial part φ. α(ω) and β(ω) in Eq. (2.25) describe the two possible orien-

tations of a single electron’s spin, and ~x in Eq. (2.24) denotes both spin and space

coordinates, ω and ~r.

The Hartree-Fock method starts with the assumption that the total wave function

can be described by a single Slater determinant, or a single configuration state func-

tion for open-shell systems. For the sake of convenience a closed-shell system is

assumed in the following. The energy expectation value for a Hartree-Fock wave

11
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function can be written as

E0 [{χa}] =
N∑
a=1

[a|h|a] +
1

2

N∑
a=1

N∑
b=1

[aa|bb]− [ab|ba] (2.26)

with the one-, and two-electron integrals in chemist’s notation

[i|h|j] =

∫
d~xχ∗i (~x)ĥ(~r)χj(~x) (2.27)

[ij|kl] =

∫
d~x1d~x2χ

∗
i (~x1)χj(~x1)

1

r12

χ∗k(~x2)χl(~x2), (2.28)

and the one-particle operator

ĥ(i) = −1

2
∆i −

∑
α

Zα
riα

. (2.29)

Interparticle distances are denoted as |~Rα−~ri| = riα and |~r1−~r2| = r12, respectively.

According to Eq. (2.26) the total energy is a functional of the set of spin orbitals

{χa}. Following the Rayleigh-Ritz variational principle, the best wave function, i.e.

the optimal set of spin orbitals, minimizes Eq. (2.26). This set can be obtained by

using the method of Lagrange multipliers, with the constraint 〈a | b〉 = δab, which

finally leads to the canonical Hartree-Fock equations,

f̂(i) |χa〉 =
(
ĥ(i) + v̂HF(i)

)
|χa〉 = εa |χa〉 , (2.30)

where f̂ is called Fock operator and εa can be associated with a spin orbital energy.

Eq. (2.30) is basically a Schrödinger equation of an electron moving in the Hartree-

Fock potential v̂HF,

v̂HF(i) =
∑
b 6=a

(
Ĵb(i)− K̂b(i)

)
, (2.31)

which describes the effective potential experienced by an electron i due to the pres-

ence of the remaining (N − 1) electrons. The two terms in Eq. (2.31) are called

Coulomb and exchange operators. The Coulomb operator

Ĵb(1)χa(1) =

[∫
d~x2χ

∗
b(2)

1

r12

χb(2)

]
χa(1) (2.32)

can be interpreted as the interaction of an electron in χa with the total averaged

potential arising from the (N − 1) electrons in the remaining spin orbitals. The

12
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second term, the exchange operator

K̂b(1)χa(1) =

[∫
d~x2χ

∗
b(2)

1

r12

χa(2)

]
χb(1), (2.33)

describes the possibility of two electrons with parallel spin to interchange. It is a

consequence of the Pauli principle and in contrast to the Coulomb operator, the

exchange operator is nonlocal since the result of acting with K̂b on χa depends on

the value of χa throughout all space.

In the Hartree-Fock approach, the original N -particle Schrödinger equation is trans-

formed to the N one-particle Hartree-Fock equations. Solving these one-particle

problems is much easier than the general N -electron equation. Since the solutions

of Eq. (2.30) are contained in the Fock operator via the Coulomb- and exchange-

operators these equations have to be solved iteratively until self-consistency. How-

ever, it can be rather difficult to solve these integro-differential equations. Therefore,

Roothaan109 and Hall110 proposed an expansion of the spatial molecular orbitals {φi}
into a set of K atomic orbitals {ϕk},

φi =
K∑
k=1

Ckiϕk. (2.34)

After integrating the spin coordinate out that MO-LCAO (molecular orbitals as

linear combination of atomic orbitals) ansatz leads to the Roothaan-Hall equations,

FC = SCε (2.35)

with the Fock matrix, Fkk′ = 〈ϕk| f̂ |ϕk′〉 and the overlap matrix, Skk′ = 〈ϕk |ϕk′〉.
The matrix C contains the coefficients from Eq. (2.34), and the orbital energies

appear in the diagonal matrix ε. The MO-LCAO ansatz makes it possible to sys-

tematically improve the results by increasing the basis set size K. However, due

to the single determinant ansatz the electronic interactions are only treated in an

averaged way. Therefore the Hartree-Fock energy is always greater than the exact

energy of a given state. The difference between the two is called correlation en-

ergy. In more advanced wave-function based methods (CASSCF, coupled cluster,

Møller-Plesset perturbation theory) as well as DFT methods, one tries to include

correlation effects (see Ref. [105–107, 111] for a more detailed discussion).

2.2.2 Density functional theory

The Hartree-Fock approach belongs to a class of methods which describe a system

by its wave function. For an N-particle system this function depends on 4N co-

13
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ordinates and thus quickly reaches unmanageable sizes. However, the Hamiltonian

only contains one- and two-electron terms, i.e. there are only integrals depending

on at most six spatial coordinates in the energy expression. Apparently, the wave

function contains more information than necessary to evaluate energies and other

observables of interest. Hence, it should be possible to obtain these properties by

using a function depending on a smaller set of coordinates. And indeed, in the early

days of quantum mechanics it was shown by Thomas112 and Fermi113 that the energy

of a uniform electron gas can be expressed as a functional of the density

ρ(~r) = N

∫
· · ·
∫

d~ω1d~x2...d~xN |Ψ(~x1, ..., ~xN)|2. (2.36)

In 1964 Hohenberg and Kohn introduced and proved two theorems stating that

the density can be used to calculate quantum mechanical properties of general sys-

tems.114 Their first theorem states that the energy E0 of a non-degenerate ground

state is a unique functional of the ground state density ρ0,

E0 = E0[ρ0]. (2.37)

As a consequence, all terms contributing to the ground state energy can be written

as functionals of the ground state density,

E0[ρ0] = T̄ [ρ0] + V̄eN [ρ0] + V̄ee[ρ0], (2.38)

where T̄ [ρ0] denotes the average kinetic energy, V̄eN [ρ0] the average electron-nuclei in-

teraction and V̄ee[ρ0] the average electron-electron interaction. The second Hohenberg-

Kohn theorem states that the variational theorem can be applied to the density, i.e.

for every trial density ρ̃ (which obeys
∫

d~rρ̃(~r) = N and ρ̃ ≥ 0, ∀~r) it holds that

E[ρ̃] ≥ E0. (2.39)

These theorems show that it is possible to reformulate the procedure to obtain

ground state energies by using densities instead of wave functions. However, they

do not explain how that density can be obtained in practice. In orbital-free DFT, it

is the density which is variationally optimized. But the often insufficient description

of the kinetic energy causes large errors in the total energy. Therefore, the usual

method to evaluate ground state densities and the corresponding energies is based

on an idea proposed by Kohn and Sham.115 They start with a hypothetical system

14
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of non-interacting particles with a total Hamiltonian

ĤKS =
N∑
i=1

ĥKS
i =

N∑
i=1

(
−1

2
∆i + vS(~r)

)
, (2.40)

where vS(~r) denotes a one-electron potential. An eigenfunction of Eq. (2.40) is a

Slater determinant whose spatial orbitals are solutions of the Kohn-Sham equations,

ĥKS
i φKS

i = εKS
i φKS

i . (2.41)

The system’s density ρS can be reconstructed from the Kohn-Sham orbitals {φKS
i },

ρS =
N∑
i=1

|φKS
i |2. (2.42)

Now, the potential vS should be chosen such that the density ρS of the non-

interacting systems equals the exact ground state density ρ0. In order to see which

terms contribute to the potential vS it is best to start from the expression of the first

Hohenberg-Kohn theorem in Eq. (2.38). There, the first term, the average kinetic

energy, can be decomposed in a part

T̄S[ρ] = −1

2

N∑
i

〈
φKS
i

∣∣∆ ∣∣φKS
i

〉
, (2.43)

which describes the average kinetic energy of a non-interacting system and a correc-

tion term ∆T̄ accounting for correlation effects on the average kinetic energy. The

second term in Eq. (2.38) can easily be rewritten as a functional of the density,

V̄eN [ρ] = −
∑
α

Zα

∫
d~r1

ρ(~r1)

r1α

. (2.44)

The last energy contribution comes from the electron-electron interaction and is

decomposed to

V̄ee[ρ] =
1

2

∫ ∫
d~r1d~r2

ρ(~r1)ρ(~r2)

r12

+ ∆V̄ee[ρ], (2.45)

where the first term (Hartree term) describes the Coulomb repulsion and the second

accounts for exchange and correlation parts. Hence, the total energy in Eq. (2.38)
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can be rewritten as

E0 =− 1

2

N∑
i

〈
φKS
i

∣∣∆ ∣∣φKS
i

〉
−
∑
α

Zα

∫
d~r1

ρ(~r1)

r1α

+
1

2

∫ ∫
d~r1d~r2

ρ(~r1)ρ(~r2)

r12

+ EXC [ρ]. (2.46)

Here, the kinetic and potential correction terms are summed up to the exchange-

correlation functional,

EXC [ρ] = ∆T̄ [ρ] + ∆V̄ee[ρ]. (2.47)

Now, similar to the Hartree-Fock method the energy in Eq. (2.46) is minimized,

but with respect to the Kohn-Sham orbitals, leading to a new formulation of the

Kohn-Sham equations[
−1

2
∆1 −

∑
α

Zα
r1α

+

∫
d~r2

ρ(~r2)

r12

+ vXC(~r1)

]
φKS
i (~r1) = εKS

i φKS
i (~r1), (2.48)

with the exchange-correlation potential

vXC(~r) =
δEXC [ρ(~r)]

δρ(~r)
. (2.49)

Thus the original task of finding vS was reduced to find an expression for the

exchange-correlation potential vXC which would yield the exact ground state den-

sity and energy. However, since for most systems the exact exchange-correlation

potential vXC is not known the main difficulty in DFT is to find an appropriate

approximation to vXC .

One of the simplest expressions for the exchange-correlational functional is based

on the local-density approximation (LDA). In that approach, the density is treated

locally as a uniform electron gas. In that case the exchange-correlation functional

can be written exactly as

EXC[ρ] =

∫
d~rρ(~r)εXC[ρ], (2.50)

where εXC is the exchange-correlation energy per electron in a homogeneous electron

gas with density ρ. The exchange-correlation energy can be decomposed in an

exchange part εX and a correlation part εC,

εXC[ρ] = εX[ρ] + εC[ρ]. (2.51)
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For the exchange part there is an analytic expression given by

εX[ρ] = −3

4

(
3ρ

π

) 1
3

. (2.52)

For the correlation part there are analytic expressions in the low and high density

limit.116,117 Furthermore, Vosko, Wilk and Nusair developed an analytical fit εVWN
C

to cover the whole density range.118 The LDA exactly describes a unifrom electron

gas. For systems with slowly varying density, e.g. metallic systems, that approach

can yield reasonable results. However, for most molecular systems LDA produces

very inaccurate results due to the inhomogeneous density distributions in molecules.

The inhomogeneous density distribution can be taken into account by expressing

the exchange-correlation energy as a functional of the density as well as of the gra-

dient of the density,

EXC[ρ, ~∇ρ] =

∫
d~rf(ρ(~r), ~∇ρ(~r)). (2.53)

There are different flavours of this generalized gradient approximation (GGA), many

of them contain empirical parameters. A very popular functional, based on analyt-

ical parameters, was developed by Perdew, Burke and Enzerhof (PBE119). They

start with the LDA expressions and rescale the exchange part with a function F (x),

εPBE
X = εLDA

X F (x) (2.54)

and shift the correlation part by a function H(t),

εPBE
C = εLDA

C +H(t). (2.55)

The functions F (x) and H(t) depend on non-empirical parameters, which are de-

rived by demanding the functional to obey some fundamental properties of DFT

functionals (see Ref. [105] for more information).

Due to the approximation of the Hamilton operator in DFT, the functionals gener-

ally do not capture effects which naturally arise in (accurate) wave-function based

methods, e.g. cancellation of self-interaction and long-range electron correlation

(dispersion).

In order to partly correct for the self-interaction error hybrid functionals were de-

veloped which use some amount of Hartree-Fock exchange energy to correct for

the insufficient description of exchange in many DFT functionals. There are many

different hybrid approaches which differ in the amount of exact exchange and the

underlying functional,120–123 e.g. the PBE0 hybrid functional is based on the PBE
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functional and mixes DFT and Hartree-Fock exchange in a 3:1 ratio,124,125

EPBE0
XC = EPBE

C +
1

4
EHF

X +
3

4
EPBE

X . (2.56)

The inclusion of dispersive effects in DFT is usually performed semiempirically with

an ansatz suggested by Grimme,126 who corrects the DFT energy of a certain func-

tional with a dispersive term,

EDFT−D3 = EDFT + Edisp, (2.57)

with Edisp = E(2) + E(3). The two-body contribution is given by

E(2) = −
∑
AB

∑
n=6,8,...

CAB
n

rnAB
fd,n(rAB), (2.58)

where the first sum runs over all atom pairs AB with a nuclear distance of rAB.

CAB
n is the averaged nth-order dispersion coefficient of the pair AB and fd,n(rAB) is

a damping function defining the range of the dispersion correction. The three-body

term is calculated by

E(3) =
∑
ABC

fd,(3)(r̄ABC)EABC (2.59)

with the geometrically averaged radii r̄ABC and the dispersion term EABC derived

from third-order perturbation theory.

2.2.3 Periodic bulk calculations

The description of periodic structures is typically done by means of a Bravais lattice,

which is defined as a set of all points ~R in position space given by

~R = n1~a1 + n2~a2 + n3~a3, n1, n2, n3 ∈ Z. (2.60)

The lattice is spanned by the primitive vectors ~a1,~a2,~a3, whose choice is not unique

for a given Bravais lattice. In order to describe periodic systems it is only necessary

to consider the lattice’s unit cell, defined as the smallest possible volume in position

space which can be used to build up the whole lattice by translating this cell along
~R. If the unit cells contains only one atom it is called primitive. It is possible

that the chosen primitive cell does not represent the whole symmetry of the system.

However, it is always possible to find a unit cell with the whole symmetry (Wigner-

Seitz cell).

Usually, the theoretical description of periodic systems is not performed in position
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(real) but in momentum (reciprocal) space. For a given Bravais lattice {~R} it is

possible to find a reciprocal space { ~K} whose points also form a Bravais lattice and

are given by

~K = h~b1 + k~b2 + l~b3 h, k, l ∈ Z, (2.61)

where h, k, l are called Miller indices. Since the real and reciprocal space are con-

nected by e
~K ~R = 1, the primitive basis in reciprocal space is written as

~b1 = 2π
~a2 × ~a3

~a1 (~a2 × ~a3)
, (2.62)

~b2 = 2π
~a3 × ~a1

~a1 (~a2 × ~a3)
, (2.63)

~b3 = 2π
~a1 × ~a2

~a1 (~a2 × ~a3)
. (2.64)

(2.65)

The Wigner-Seitz cell in this reciprocal lattice is called first Brillouin zone.

The quantum mechanical description of periodic systems is usually done in a one-

electron picture as in Eq. (2.30) or Eq. (2.40). If the effective potential obeys the

system’s translational symmetry, i.e. V (~r) = V (~r+ ~R), the Bloch theorem127 states

that every single-particle wave function can be written as

φn~k(~r) = ei
~k~run~k(~r) (2.66)

with the amplitude function un~k(~r) satisfying the periodicity of the lattice, i.e.

un~k(~r) = un~k(~r + ~R). (2.67)

The index n is called band and describes the fact that for every ~k there are several

independent eigenstates. Since in practical calculations it is not possible to consider

an infinite crystal but only a finite number of unit cells one has to impose Born-

von-Kármán boundary conditions

Ψ(~r) = Ψ(~r +Ni~ai), i = 1, 2, 3 (2.68)

with the integers Ni linked to the total number of primitive cells N by N = N1N2N3.
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2.3 Open Quantum Systems

The following sections begin with a brief introduction of the concept of density

operators and reduced density operators. Based on that concept, a quantum master

equation of the reduced density operator will be derived for a system weakly coupled

to an environment. Afterwards, the principle of a piecewise deterministic process

will be explained and the equivalence between the quantum master equation and

the PDP will be shown. In the last part, the coupling of molecular vibrations to

surface electrons in the classical as well as the quantum mechanical regime will be

explained by means of the concept of electronic friction. If not stated otherwise

the textbooks of Breuer and Petruccione,128 Tannor,101 Nolting,102 Zwanzig129 and

Joswig and Springborg130 were used as references.

2.3.1 Density operators

Until now we only considered quantum systems in pure states, i.e. states which can

be described by a vector |Ψ〉 in Hilbert space. However, for most macroscopic, and

even some microscopic, systems the exact state is often not known. Therefore, the

system is described in a statistical fashion by means of the density operator,

ρ(t) =
∑
m

pm |Ψm(t)〉 〈Ψm(t)| , (2.69)

where pm is the probability to find the system in a pure state |Ψm(t)〉. By expanding

the pure states in a time-independent basis {ψi} the incoherent superposition of

states in Eq. (2.69) can be reformulated as

ρ(t) =
∑
ij

Pij(t) |ψi〉 〈ψj| , (2.70)

where Pij(t) denotes the density matrix. The diagonal elements of that matrix

are the populations of the basis {ψi} and the non-diagonal elements describe the

coherences between these states. Taking the time-derivative of Eq. (2.69) and using

Eq. (2.1) leads to the Liouville-von-Neumann equation

d

dt
ρ(t) = −i

[
Ĥ(t), ρ(t)

]
, (2.71)

which characterizes the dynamical behaviour of the density operator. Any expecta-

tion value of an operator Â can be calculated by〈
Â
〉

= tr(Âρ), (2.72)
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where tr() denotes the trace over all basis functions of ρ. When describing complex

systems it is often useful to decompose the complete system in subsystems. For ex-

ample, in the case of two subsystems the complete Hilbert space H can be expressed

as a tensor product of the two subspaces, H = H1 ⊗H2. The expectation value of

an operator Â(1) only acting on subspace H1 is then given by〈
Â(1)

〉
= tr1(Â(1)ρ1), (2.73)

where the trace is performed over the basis of subspace H1. The density operator in

Eq. (2.73) is called reduced density operator and it is extracted from the complete

density operator ρ by tracing over all basis functions of subsystem H2,

ρ1 = tr2(ρ). (2.74)

In general, the reduced density operator describes a mixed ensemble even if the

complete system is in a pure state.

2.3.2 Quantum master equation in the weak coupling limit

A system S which can exchange energy and particles with an environment (or bath)

B is called an open system. In general, the composite system S + B is assumed to

be closed. The Hamiltonian for such a system is given by

Ĥ(t) = ĤS ⊗ IB + IS ⊗ ĤB + ĤI(t), (2.75)

where ĤS (ĤB) is the system (bath) Hamiltonian and ĤI(t) describes the generally

time-dependent interaction between system and bath. The identity matrix in the

Hilbert space of the system (bath) is denoted by IS (IB). In the interaction picture,

the Liouville-von Neumann equation for the complete system is simply

d

dt
ρSB(t) = −i

[
ĤI(t), ρSB(t)

]
, (2.76)

which has the formal solution

ρSB(t) = ρSB(0)− i
∫ t

0

ds
[
ĤI(s), ρSB(s)

]
. (2.77)

However, for many phenomena the description of the complete system S + B is

much too complicated because the bath may have (infinitely) many degrees of free-

dom leading to a hierarchy of (infinitely) many coupled equations of motion. Besides,

often the bath modes are not known exactly nor can they be controlled experimen-

tally. And even if the complete solution ρSB can be found, the relevant information
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about the open system S has to be extracted from that solution.

Therefore, one tries to formulate an equation of motion for the open system S only

by inserting Eq. (2.77) in Eq. (2.76) and tracing over the bath modes. After that,

an equation of motion for the open system S is obtained,

d

dt
ρS(t) = −i trB

[
ĤI(t), ρSB(0)

]
−
∫ t

0

ds trB

[
ĤI(t),

[
ĤI(s), ρSB(s)

]]
, (2.78)

with the density matrix of the open system given by

ρS(t) = trB{ρSB(t)}. (2.79)

The first term in Eq. (2.78) is neglected since it is assumed that in the initial

density no interaction is present. However, the aim is to have an equation of motion

depending on ρS. But in Eq. (2.78) the density ρSB still appears. To eliminate it

from the expression in Eq. (2.78) the total density is replaced by a tensor product,

ρSB(t) ≈ ρS(t)⊗ ρB. (2.80)

This approximation is known as the Born approximation. It replaces the total

density by a tensor product of the subsystems because they are assumed to interact

only weakly. Due to the weak coupling there is no induced change of the bath’s

density on the time scale of the system’s evolution. Therefore, the bath stays in its

initial state, which is chosen to be the thermal equilibrium. The resulting equation

of motion,

d

dt
ρS(t) = −

∫ t

0

ds trB

[
ĤI(t),

[
ĤI(s), ρS(s)⊗ ρB

]]
, (2.81)

can be modified further by employing the Markov approximation. At first, it is

assumed that the change of the density at time t only depends on the density at

that time which leads to the Redfield equation,

d

dt
ρS(t) = −

∫ t

0

ds trB

[
ĤI(t),

[
ĤI(s), ρS(t)⊗ ρB

]]
. (2.82)

However, this equation is local in time but it is not Markovian since its time evolution

still depends on the preparation at t = 0. Thus, the system’s dynamics is not

described by a dynamical semigroup1, i.e. the diagonal elements of the density

matrix could be negative. Two further steps are necessary to get an equation of

1The transformation of a reduced density matrix at time t = 0 to a fixed time t > 0 can
be formulated as ρS(t) = V (t)ρS(0) = trB{U(t, 0) [ρS(0)⊗ ρB]U†(t, 0)}, with the time-evolution
operator U . For fixed time t and bath density ρB the operator V (t) defines a dynamical map. If t
is varied the one-parameter family {V (t)|t ≥ 0} of maps forms a dynamical semigroup.
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motion fulfilling the properties of such a semigroup. At first, the integration variable

s is substituted by t− s and the upper integration limit is extended to infinity,

d

dt
ρS(t) = −

∫ ∞
0

ds trB

[
ĤI(t),

[
ĤI(t− s), ρS(t)⊗ ρB

]]
. (2.83)

This is possible if the integrand decays sufficiently fast for s � τB, where τB is

the time scale over which the bath correlation function decays. This implies that

τR � τB with the time scale τR over which the system changes significantly. All

approximations employed so far are known as Born-Markov approximation. The

second approximative step is the rotating wave approximation which finally guar-

antees a probabilistic interpretation of ρS. It starts with a spectral decomposition

of the interaction term in the Schrödinger picture into

ĤI =
∑
α

Âα(t)⊗ B̂α(t), (2.84)

where Âα and B̂α are the unitary system and bath operators, respectively. The

system operators can be expanded in a complete basis {Âα(ω)} with

Âα(ω) =
∑

ε′−ε=ω

Π(ε)ÂαΠ(ε′), (2.85)

where Π(ε) is a projection operator onto an eigenspace of the system S with eigenen-

ergy ε. The spectrum of ĤS is supposed to be discrete. It follows from Eq. (2.85)

that the system operators can be expressed in the interaction picture as

eiĤStÂα(ω)e−ĤSt = e−iωtÂα(ω). (2.86)

Now, with Eq. (2.84) and Eq. (2.86) the interaction term can be written in the

interaction picture,

ĤI(t) =
∑
ω,α

e−iωtÂα(ω)⊗ B̂α(t), (2.87)

with the bath operator

B̂α(t) = eiĤBtB̂αe
−iĤBt. (2.88)
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Next, Eq. (2.87) can be inserted into Eq. (2.83) leading to,

d

dt
ρS(t) =

∫ ∞
0

ds trB{ĤI(t− s)ρS(t)ρBĤI(t)− ĤI(t)ĤI(t− s)ρS(t)ρB}+ h.c.

(2.89)

=
∑
ω,ω′

∑
α,β

ei(ω
′−ω)tΓαβ(ω)

[
Âβ(ω)ρS(t)Â†α(ω′)− Â†α(ω′)Âβ(ω)ρS(t)

]
+ h.c.,

(2.90)

with the hermitean conjugate h.c. and the one-sided Fourier transform

Γαβ(ω) =

∫ ∞
0

ds eiωs〈B̂†α(t)B̂β(t− s)〉 (2.91)

=

∫ ∞
0

ds eiωs〈B̂†α(s)B̂β(0)〉. (2.92)

Since ρB is stationary the correlation function in Eq. (2.92) is homogeneous in time

and hence the correlation tensor Γαβ is time-independent. It can decomposed in a

real and an imaginary part,

Γαβ(ω) =
1

2
γαβ(ω) + iSαβ(ω). (2.93)

Usually, the time scale of the system’s relaxation τR is considered to be large com-

pared to the time scale of the system’s intrinsic dynamics τS ∼ |ω − ω′|−1, i.e.

τR � τS. In that case, all terms with ω 6= ω′ in Eq. (2.90) can be neglected since

they oscillate very fast on the time scale τR and hence average out. This rotating

wave approximation leads to the final equation of motion,

d

dt
ρS(t) =

∑
ω

∑
α,β

Γαβ(ω)
[
Âβ(ω)ρS(t)Â†α(ω)− Â†α(ω)Âβ(ω)ρS(t)

]
+ h.c. (2.94)

= −i
[
ĤLS, ρS(t)

]
+D(ρS(t)). (2.95)

Eq. (2.95) is a dissipative Liouville-von Neumann equation in the interaction picture

with the Lamb shift Hamiltonian

ĤLS =
∑
ω

∑
αβ

Sαβ(ω)Â†α(ω)Âβ(ω), (2.96)
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which leads to a renormalization of the system’s unperturbed eigenstates, and a

dissipator

D(ρS) =
∑
ω

∑
αβ

γαβ(ω)

[
Aβ(ω)ρSA

†
α(ω)− 1

2
{A†α(ω)Aβ(ω), ρS}

]
. (2.97)

The last term in Eq. (2.97) is an anticommutator. By diagonalizing γαβ in Eq. (2.97)

the expression can be brought into Lindblad form. Additionally, when transforming

Eq. (2.95) back to the Schrödinger picture the dissipative Liouville-von-Neumann

equation takes the form

d

dt
ρS(t) = −i

[
ĤS, ρS(t)

]
+
∑
α

γα

[
ÂαρS(t)Â†α −

1

2
{Â†αÂα, ρS(t)}

]
, (2.98)

where, in the spirit of weak coupling, the Lamb-shift Hamiltonian was neglected.

2.3.3 Piecewise Deterministic Processes

A system’s state x(t) that follows a deterministic time evolution can be described

by a differential equation of the form

d

dt
x(t) = g(x(t)) (2.99)

where g is a D-dimensional vector field, which in the following is assumed to be not

explicitely time-dependent. When dealing with stochastic processes, the system’s

evolution is typically described by means of the propagator T (x, t|x′, t′) which is

defined as the probability to find the system in state x at time t under the condition

that it was in state x′ at time t′. As a special case of a stochastic process, also the

deterministic time evolution can be reformulated with a propagator. For a short

time interval ∆t = t− t′ it is simply given by

T (x, t|x′, t′) = δ(x− x′ − g(x′)∆t) +O(∆t2), (2.100)

where the flow of Eq. (2.99) is expanded to first order. The propagator in Eq. (2.100)

can be used to construct the propagator of a piecewise deterministic process (PDP).

The latter is defined as a stochastic process in which a system follows a deterministic

time evolution subjected to instantaneous jumps. In order to account for the jump

process the expression of Eq. (2.100) has to be modified,

T (x, t+ ∆t|x′, t) = (1− Γ(x′)∆t)δ(x− x′ − g(x′)∆t) +W (x|x′)∆t+O(∆t2),

(2.101)
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where W (x|x′) is the jump rate from x′ to x and Γ(x′) =
∫

dxW (x|x′) describe the

total jump rate out of state x′. Thus, the first term in Eq. (2.101) is the probability

that no jump occurs in ∆t, whereas the second term is the probability that a jump

from x′ to x occurs in ∆t. Differentiation of Eq. (2.101) leads to the Liouville master

equation,

∂

∂t
T (x, t|x′, t′) =−

∑
i

∂

∂xi
[gi(x)T (x, t|x′, t′)]

+

∫
dx′′ [W (x|x′′)T (x′′, t|x′, t′)−W (x′′|x)T (x, t|x′, t′)] , (2.102)

where the sum describes the deterministic drift and the integral is a balance term

of jumps in and from state x. From Eq. (2.102) an expression for the evolution of

the probability density P (x, t) can be derived,

∂

∂t
P (x, t) = −

∑
i

∂

∂xi
[gi(x)P (x, t)] +

∫
dx′′ [W (x|x′′)P (x′′, t)−W (x′′|x)P (x, t)] ,

(2.103)

where the probability density and the propagator are connected via

P (x, t) =

∫
dx′T (x, t|x′, t0)P (x′, t0). (2.104)

If the PDP is described in Hilbert space Eq. (2.103) takes the following form,

∂

∂t
P [Ψ, t] =− i

∫
dx

{
δ

δΨ(x)
G(Ψ)(x)− δ

δΨ∗(x)
G(Ψ)∗(x)

}
P [Ψ, t]

+

∫
DΨ̃DΨ̃∗

{
W [Ψ|Ψ̃]P [Ψ̃, t]−W [Ψ̃|Ψ]P [Ψ, t]

}
, (2.105)

with a non-linear operator G. Here, DΨ describes a functional volume element in

Hilbert space. After having introduced the concept of a piecewise deterministic pro-

cess it can be shown that such processes can be employed to unravel the quantum

master Eq. (2.98). Unravelling the master equation means that instead of propa-

gating the density matrix (covariance matrix)

ρS(x, x′, t) = E[Ψ(x, t)Ψ∗(x′, t)] =

∫
DΨDΨ∗P [Ψ, t]Ψ(x)Ψ∗(x′), (2.106)

with the help of the dissipative Liouville-von Neumann Eq. (2.98), it is possible

to propagate the probability density P [Ψ, t] via Eq. (2.105) and reconstruct the

covariance matrix from the realizations of the stochastic process (see Fig. (2.1)). The

equivalence between these two approaches can be shown by taking the derivative of
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ρS(t0) ρS(t)

P [Ψ0, t0] P [Ψ, t]

V (t,t0)

T [Ψ,t|Ψ0,t0]

E[|Ψ0〉〈Ψ0|] E[|Ψ(t)〉〈Ψ(t)|]

Figure 2.1: The density matrix ρS can be propagated a) directly with the help of
a superoperator V (t, t0) mapping the density from time t0 to t, or b) indirectly by
propagating the probability density P [Ψ, t] of a stochastic process and reconstructing
the density afterwards by means of the covariance matrix E[|Ψ〉 〈Ψ|]. The figure is
reproduced from Ref. [128]

Eq. (2.106) which leads to

∂

∂t
ρS(x, x′, t) =

∫
DΨDΨ∗

∂

∂t
P [Ψ, t]Ψ(x)Ψ∗(x′) =

∂

∂t
ρS

∣∣∣∣
L

+
∂

∂t
ρS

∣∣∣∣
J

, (2.107)

consisting of a rate of change of the density induced by the Liouvillian part (index

L) and a rate induced by the jump part in Eq. (2.105) (index J). According to

Eq. (2.105) the Liouvillian part becomes

∂

∂t
ρS

∣∣∣∣
L

= i

∫
DΨDΨ∗

∫
dyΨ(x)Ψ∗(x′)

{
δ

δΨ(y)
G (Ψ) (y)− δ

δΨ∗(y)
G(Ψ)∗(y)

}
P [Ψ, t]

= −i
∫
DΨDΨ∗

{
G(Ψ)(x)Ψ∗(x′)−Ψ(x)G∗(Ψ)(x′)

}
P [Ψ, t]

= −i
(
ĤρS − ρSĤ

†
)

+
∑
i

γiE
[
||ÂiΨ||2Ψ(x)Ψ∗(x′)

]
, (2.108)

where a non-linear operator G is defined by

G(Ψ) = ĤΨ +
i

2

∑
i

γi||ÂiΨ||2Ψ, (2.109)

with the linear operator

Ĥ = H − i

2

∑
i

γiÂ
†
i Âi. (2.110)

Here, H describes the Hamiltonian of the Lindblad Eq. (2.98). The jump part is

described by

∂

∂t
ρS

∣∣∣∣
J

=

∫
DΨDΨ∗

∫
DΨ̃DΨ̃∗Ψ(x)Ψ∗(x′)

{
W [Ψ|Ψ̃]P [Ψ̃, t]−W [Ψ̃|Ψ]P [Ψ, t]

}
=
∑
i

γiÂiρSÂ
†
i −
∑
i

E
[
||ÂiΨ||2Ψ(x)Ψ∗(x′)

]
. (2.111)
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When adding Eq. (2.108) and Eq. (2.111) the correlation terms of fourth order

cancel and the quantum master Eq. (2.98) in Lindblad form is obtained. Hence, it

is possible to circumvent the numerically expensive solution of the quantum master

equation by describing the system’s evolution by a PDP.

When unravelling the master equation with a PDP it is often more convenient to

reformulate the propagation of the system by employing the stochastic variable Ψ(t)

itself, instead of the probability density. That leads to the stochastic differential

equation

dΨ(t) = −iG (Ψ(t)) dt+
∑
i

(
ÂiΨ(t)

||ÂiΨ(t)||
−Ψ(t)

)
dNi(t), (2.112)

where a discrete set of jumps, Ψ(t) → ÂiΨ(t)

||ÂiΨ(t)|| , is assumed to take place. It can be

shown that Eq. (2.102) and a differential equation of the form in Eq. (2.112) lead

to the same dynamical behaviour. In Eq. (2.112) the number of jumps for the ith

transition in dt is denoted by dNi(t) and obeys

E[dNi(t)] = γi(t)||ÂiΨ(t)||2dt (2.113)

dNi(t)dNj(t) = δijdNi(t). (2.114)

Thus, for small dt the increments dNi(t) behave like independent, inhomogeneous

Poisson processes with transition rates γi(t). According to Eq. (2.114) in a time dt

either no jump occurs (dNi(t) = 0 ∀i), or dNi = 1 for only one i and the remaining

are zero. In the first case, only the first term in Eq. (2.112) appears and the system

evolves deterministically. In the second case, a deterministic drift followed by a

certain jump i takes place.

The probability for a jump to occur out of state Ψ in the interval [t, t + τ ] is given

by

F [Ψ, τ ] = 1− ||e−iĤτΨ||2, (2.115)

where τ is the waiting time. According to Eq. (2.115) the jump probability is deter-

mined by the decrease of norm of the state obeying the linear part of Eq. (2.112).

2.3.4 Vibration-Electron coupling

One of the most important dissipative channels for adsorbates on metallic surfaces

is the coupling of molecular vibrations to surface electrons. Due to the missing band

gap in metallic systems the conduction electrons around the Fermi level can be ex-

cited resonantly by an arbitrarily low amount of energy, thus creating an electron-
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hole pair.28,43 The creation of such electron-hole pairs has a direct influence on the

adsorbate dynamics since it leads to new electronic states and associated new po-

tential energy surfaces which couple to each other. There are basically two coupling

regimes depending on the electronic states involved: the strong and weak coupling

limits. In order to understand both limits it is instructive to look at the molecular

electronic states on the surface. If the molecular electronic states of the gas phase

are embedded in the (quasi-)continuum of the conduction band they are shifted and

lifetime broadened. In a good approximation the former discrete states can be de-

scribed as bands. The coupling between states in different bands is called strong

because the character of the wave function changes significantly when going from

one wave function to another. Dynamics in the strong coupling regime are typically

described by surface hopping methods, where the system is propagated classically

and subjected to stochastic jumps between different PES.81–83 However, for small

amplitude motions around the equilibrium the fundamental band and the excited

bands are well separated so that strong coupling can be neglected.

The weak coupling occurs between electronic states within a band and involves wave

functions which are very similar in character. For classical nuclei {Rα} it can be

shown that in the weak coupling limit their dynamical evolution can be described

by a generalized Langevin equation91–93

mαR̈α = F̄α −
∑
ν

∫ t

0

dt′ηαν(t, t
′)Ṙν(t

′) + δFα(t). (2.116)

Eq. (2.116) describes a particle moving under an averaged force F̄α and a frictional

force, described by the friction tensor ηαν . In order to fulfil the equipartition theo-

rem at finite temperature there is a fluctuating force δFα obeying the fluctuation-

dissipation theorem.93 In many situations Eq. (2.116) can be simplified by assuming

a Markovian system, i.e. ηαν(t, t
′) = ηανδ(t − t′). Besides, in the weak coupling

regime the character of the electronic states is very similar, i.e. it is reasonable to

assume PES which are parallel to each other. Thus, the averaged force is replaced

by the force arising from the adiabatic ground state V . The final Langevin equation

becomes,

mαR̈α = − ∂V

∂Rα

−
∑
ν

ηανṘν(t) + δFα(t). (2.117)

Applying Eq. (2.117) in dynamical simulations is typically termed molecular dy-

namics with electronic friction (MDEF).

Dou et al. have given a general formula for the friction tensor but for most systems

it is not feasible to explicitely calculate that expression.92 Instead, there is a variety
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of different friction models, e.g. jellium-based models,131–133 orbital-dependent fric-

tion,57,91,134 or models based on time-dependent DFT calculations.135,136 Due to its

simplicity, a very popular model is the local-density friction approximation (LDFA).

In that model the friction tensor is diagonal with tensor elements

ηαα(~R) =
3~

r2
S(~R)

(
4

9π

)1/3 ∞∑
l=0

(l + 1) sin2[δl,α(rS)− δl+1,α(rS)], (2.118)

with the Wigner-Seitz radius rS. The atoms are embedded in a free electron gas

with embedding density ρemb = (4π
3
r3

S)−1 and the frictional force is caused by a mo-

mentum transfer from the atoms to the metal electrons, resulting in a phase shift

δl,α of the Kohn-Sham orbitals.

In a classical description, the coupling to the electronic manifold of the surface re-

sults in a damping of the adsorbate motion. The strength, represented by the friction

tensor, determines the damping rate of the total energy. In quantum mechanics the

coupling of the system to the (electronic) environment induces transitions between

the system’s vibronic states with corresponding rates Γm→n. Coupling between

different vibronic states means it is necessary to go beyond the Born-Oppenheimer

approximation. Usually, that is done by calculating the rates with first-order pertur-

bation theory since the coupling between electronic states within a band is assumed

to be weak. In the Born-Huang basis the resulting expression is

Γm→n =
2π

~
∑
αβ

|
∫

d~R

∫
d~r ψn(~R)φα(~r; ~R)T̂Nφβ(~r; ~R)ψm(~R)|2

× fβ(Eβ)(1− fα(Eα))δ(Eα,n − Eβ,m)

=
2π

~
∑
αβ

| 〈n| 〈eα| T̂N |eβ〉 |m〉 |2fβ(Eβ)(1− fα(Eα))δ(Eα,n − Eβ,m),

(2.119)

with the Fermi-Dirac distribution fα describing the electronic density of states and

|m〉 and |eβ〉 describing the nuclear and electronic wave functions. The above ex-

pression holds at 0 K, at finite temperatures the vibrational density of states has to

be included by a Bose-Einstein factor.137 In contrast to Eq. (2.17) the Born-Huang

basis in Eq. (2.119) has different indices for electronic and vibrational states be-

cause they are assumed to be separable within a band. For the kinetic operator

in Eq. (2.119) it is always possible to find a set of independent coordinates {q} for

which

T̂N = −~2

2

3N∑
q=1

1

Mq

∂2

∂q2
=
∑
q

T̂ (q). (2.120)
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By only considering first-order processes this leads to a summation of contributions

Γ
(q)
m→n of 3N independent dissipation channels,

Γm→n =
∑
q

Γ(q)
m→n. (2.121)

When neglecting higher-order terms94,138,139 the corresponding matrix in Eq. (2.119)

elements are given by

T
(q)
αβmn =

~2

Mq

〈n| 〈eα|
∂

∂q
|eβ〉

∂

∂q
|m〉 . (2.122)

The inner matrix element can be approximated by

〈eα|
∂

∂q
|eβ〉 = f(q) 〈eα|

∂

∂q
|eβ〉

∣∣∣∣
ref

, (2.123)

in order to fully separate electronic and vibrational coordinates.140 That leads to

T
(q)
αβmn =

~2

Mq

〈eα|
∂

∂q
|eβ〉

∣∣∣∣
ref

〈n| f(q)
∂

∂q
|m〉 . (2.124)

Here, f(q) scales the electronic contribution obtained at a reference position. When

comparing the above expression to friction based models, e.g. LDFA, it appears

physically reasonable to use the electronic embedding density to model f(q),

f(q) = ρ
1/3
emb(q). (2.125)

The final rate expression is given by

Γ(q)
m→n =

ζ(q)

ωmn
| 〈n| ρ1/3

emb

∂

∂q
|m〉 |2, (2.126)

where the scaling factor ζ(q) contains the information about the momentum transfer

between vibrations and electrons. It can be calculated explicitly depending on the

chosen model or it is obtained by comparing Eq. (2.126) to a known rate. In general,

the vibrational states in Eq. (2.126) are anharmonic. In the special case of harmonic

states only one-quantum transitions are allowed, with a linear scaling of the rates,

Γn→n−1 = nΓ1→0. (2.127)

Apparently, the probability to relax in lower-lying states increases with the excita-

tion of vibrational states. This trend is often even more pronounced for anharmonic

eigenstates especially since they allow multi-quantum transitions.
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Chapter 3

Summarized Results

The purpose of this thesis is to employ a quantum dynamical model to describe the

scattering of NO from a Au(111) surface. In the last twenty years this system was

extensively studied experimentally12,59–62,66,67 and it is nowadays considered as the

textbook example for the breakdown of the Born-Oppenheimer approximation at

surfaces.26,28 That system is chosen since the inclusion of the nonadiabatic character

in the theoretical description is a challenging task but at the same time it promises a

deeper understanding of many chemical and physical processes at metallic surfaces.

The existing theoretical studies of the NO/Au(111) system still leave some questions

open which are aimed to be adressed in this thesis.

This chapter recapitulates the results of the publications listed in Chapter 4 and

illustrates the importance of a quantum dynamical description of scattering pro-

cesses on metallic surfaces. It is organized along the three stages which were passed

in order to study the NO/Au(111) system. The starting point is the construction of

a new representation of the PES of the system and its spectroscopic characterization

by an anharmonic eigenstate analysis (Sec. 3.1). Afterwards, in order to simulate

the scattering in four dimensions at different surface sites a dissipative quantum

dynamical model is developed and tested on its reliability (Sec. 3.2). In the last

stage the newly constructed PES and the quantum model are combined to study

the scattering dynamics of NO(ν=3) from Au(111) and these results are compared

to MDEF simulations (Sec. 3.3).

3.1 Potential energy surface and spectroscopic anal-

ysis

In Paper A a new representation of the PES for the NO/Au(111) system in

six dimensions is constructed. Previous quantum dynamical studies were based

on two-dimensional PES resting upon ab initio calculations (periodic DFT100) or
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z

Figure 3.1: Definition of the coordinates (left panel) and surface sites (right panel)
used in the construction of the PES. The configuration of the adsorbate is described
by the cartesian coordinates of the center-of-mass given as {x, y, z}, the internal NO
stretch coordinate as r, and the tilt and azimuthal angles as {θ, ϕ}, respectively.
Additionally, the axes along the skewed coordinates s1 and s2 are shown. The
oxygen is depicted in red and the nitrogen in blue colour. The ab initio points were
calculated at the top site (labelled “t”), the fcc hollow site (label “f”, full triangle),
the hcp hollow site (label “h”, inverted empty triangle) as well as at the bridge site
(label “b”, full diamond). The figure is taken from Paper A.

semiempirical functions (two-state model79), where only the bond length r and the

molecule-surface distance z were included. However, experimental findings imply

an important role of the orientation of NO upon scattering by showing a clearly

decreased relaxation probability for scattering with the oxygen pointing towards the

surface.66,67 Therefore, the aim is to characterize the potential energy landscape in

full dimensions, i.e. including all six degrees of freedom by assuming a rigid surface

(see Fig. 3.1). Tully and co-workers constructed such a six-dimensional PES for a

diabatic two-state model95 which was employed in several dynamical studies.62,96–98

However, there are two reasons why we did not use that PES and decided to con-

struct a new representation. First, the PES of Tully and co-workers completely

neglects the top site of the (111) surface, whereas test calculations in the course

of this thesis revealed the top site to be the most stable, in agreement with other

periodic141,142 as well as cluster143–145 studies. Second, Tully et al. described the

scattering dynamics in the strong-coupling limit (see Sec. 2.3.4), i.e. they used a

diabatic two-state model including the ground states of the neutral and anionic

diatomic, respectively. However, the quantum dynamical description envisaged in

the later stage of this thesis is based on the weak coupling limit. As discussed in

Sec. 2.3.4, the weak coupling limit only requires the adiabatic ground state onto

which the system moves perturbed by the coupling to electron-hole pairs of the sur-

34



CHAPTER 3. SUMMARIZED RESULTS 3.1. PES AND SPECTROSCOPY

face. Thus, the new ab initio points are only calculated for the adiabatic ground

state of neutral NO adsorbed on Au(111).

Periodic DFT (PW91) is chosen for these calculations since it is so far the only fea-

sible method to calculate the large amount of points needed for a high-dimensional

PES. Of course it would be desirable to employ a more accurate and systematically

improvable electronic structure method. In particular, since it is known that for cer-

tain diatomics adsorbed on different metal surfaces current DFT functionals yield

rather inaccurate adsorption energies146 and for CO/Pt(111) they are not capable

to reproduce the experimentally observed adsorption site.147,148 Embedded cluster

calculations employing accurate wave function based methods (CISD, CASSCF,

CASPT2) are shown to yield good results84–86 but aside from the large computa-

tional effort they demand a carefully chosen embedding technique.87–90 Instead of

using such a highly sophisticated embedding scheme we tried to improve upon the

periodic DFT calculations by a subtractive scheme149 where DFT and post-HF cal-

culations on small clusters provide a correction which is then added to the periodic

calculations. Cluster models of ten and six gold atoms were chosen to model top

and hollow sites and a local coupled cluster method150 was used to calculate accu-

rate energies. Unfortunately, the unrestricted calculations (HF and DFT) suffered

from a large spin contamination (< Ŝ2 >≈ 1.4). Restricted open-shell calculations

were employed to clearly define the spin state and two electronic structure packages

(Gaussian,151 Molpro152) were tested. However, for the top-cluster the two programs

did not produce the same results. At HF level, a ground state determinant was ob-

tained with Gaussian but with Molpro the program always converged to an excited

determinant. In addition, in subsequent calculations a T1 diagnostic around 0.03

(even > 0.04 in some regions) was observed indicating at least some multireference

character. Due to these difficulties and the large computational time for the local

coupled cluster calculations the idea of a correction term was abandoned and the

PES was merely based on periodic DFT calculations.

These calculations are performed for NO at the three high symmetry sites as well

as at the bridge site (see the right panel in Fig. 3.1). NO is found to favourably

adsorb on top of a gold atom with an adsorption energy of −373 meV which lies

in the experimental range and indicates a weakly chemisorbed molecule.153,154 On

the top adsorption site the NO molecule is strongly tilted by ∼ 60° since a back

donation from the metal to the π∗-orbitals of NO takes place and the tilted con-

figuration increases the overlap between the π∗ orbitals and gold’s d-orbitals. As

will be disccused in Sec. 3.3 in more detail, this localization around ∼60° will lead

to a large population of rotational states which result in strongly enhanced relax-

ation rates (see Sec. 3.3). The adsorption at the hollow sites is found to be nearly

150 meV less favourable than atop and as expected, the structural and energetic
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characteristics between fcc and hcp are rather similar. As for the top site, NO is

tilted when adsorbing at the hollows, even though less strongly at ∼50°. For all

adsorption sites the potential along the azimuthal angle ϕ was found to be almost

barrierless, especially at the top site.

The calculated ab initio points are fitted to an analytical representation (SAP-

PES) consisting of two- and three-body terms, originally developed by Marquardt et

al..155 We choose that form since it is physically motivated and therefore correctly

describes the system in the asymptotic limit. Besides, it allows a smaller set of

points compared to numerical fitting strategies156–164 since it reduces overfitting

issues between the calculated points. The analytic form proposed by Marquardt et

al. contains a switch function

p(3D)(x, y, z) = p(∞) + (p(2D)(x, y)− p(∞))(1− e−(Zs/z)6), (3.1)

which describes the dependence of the parameters {p} of the internal (Morse) po-

tential with respect to the location of the NO on the surface. In the original work

the switch function p(2D) was designed to incorporate the translational symmetry of

a (100) surface. Hence, for the hexagonal gold surface a new form has to be found.

However, a different approach was chosen after various attempts to design a new

switch function p(2D) that correctly describes the translational symmetry along the

surface and is flexible enough to describe the different sites. Instead of switching the

parameters of the internal potential in a six-dimensional function a site-based strat-

egy was employed where four dimensional potentials V site
4D are fitted independently

at all three high-symmetry sites and switch functions Ssite interpolate between these

four-dimensional potentials,

V 6D = [V top
4D (r, zN, θ, ϕ)Stop(xN, yN) + V fcc

4D (r, zN, θ, ϕ)Sfcc(xN, yN)

+ V hcp
4D (r, zN, θ, ϕ)Shcp(xN, yN)][Stop(xN, yN) + Sfcc(xN, yN) + Shcp(xN, yN)]−1.

(3.2)

The potential is expressed by means of the cartesian coordinates of the nitrogen

atom {xN, yN, zN}. The parameters of the switch functions are determined by fit-

ting the ab initio points at the bridge site to the form in Eq. (3.2). Apart from the

site-based strategy and the switch function the original SAP-PES is further modi-

fied by adding an image-charge term to the four-dimensional potential which shall

account for the charge transfer from the surface to the adsorbate. It is a physically

motivated term to model the binding situation more realistically. As mentioned

earlier, the binding is characterized by a π∗-backbonding, i.e. electron density of

the metal is shifted in the π∗-orbitals of NO. Especially for the adsorption at the top
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site that additional term improves the analytical description of the ab initio points

which might indicate a partial charge transfer during the adsorption.

The final analytical representation of the PES is then investigated by a spectroscop-

ical analysis in order to further characterize the static properties of the NO/Au(111)

system. In the analysis of the anharmonic eigenstates two basic observations can

be made. At first, an anharmonic character even for low-lying eigenstates is re-

vealed. And second, there is a distinct coupling between different modes (intermode

coupling, IMC). The IMC is found to be largely responsible for the observed anhar-

monicity, especially for higher-lying states. In principle, it does not have to be that

way. It is possible to have an anharmonic system without IMC, e.g. by a set of inde-

pendent Morse oscillators. Therefore, in order to see if the IMC is largely responsible

for the anharmonicity the vibrational density of states (VDOS) of the fully coupled

system is compared to the VDOS of a ficticious system of uncoupled Morse oscilla-

tors. The parameters of the latter are obtained by fits of the lower-lying states of the

coupled system. That comparison shows a significantly larger increase in the VDOS

for the coupled system compared to the uncoupled Morse oscillators demonstrating

the strong effect of IMC on the anharmonicity of higher-lying vibrational states.

The IMC of the system is further revealed by looking at the anharmonic eigenstates

which cannot be characterized as pure overtones or combinational modes. Due to

the IMC there is no possibility to use a coordinate transformation to uncouple the

coordinates, i.e. the IMC is an intrinsic property and no artefact of the chosen

coordinates. Whereas the IMC between the stretch coordinate r and the remaining

degrees of freedom is rather weak, there is a significant coupling between the θ and

z coordinate. The coupling between both coordinates supports the initial decision

that an inclusion of the tilt angle in the PES is necessary for a correct description

of the system. The later dynamical studies in Sec. 3.3 reveal the coupling to be

vital for the relaxation process by providing more transfer channels for an energy

redistribution within the system. The tilt angle θ as well as the z coordinate were

also found to couple the translational degrees of freedom along the surface.

The structural properties of the NO/Au(111) system were observed to be quite

sensitive with respect to the lattice constant. In Paper A the experimental lattice

constant of 4.08�A is employed in all calculations.165 For that choice the adsorption

of NO on the hollow sites is a transition state with a tilted NO rather high above

the surface (zsurf−N ≈ 2.9�A). In later work the lattice constant is relaxed with the

same setup (functional, k-grid) adopted in Paper A. Even though the relaxation

only increases the lattice constant by ∼ 2 % from 4.08�A to 4.17�A the NO adopts a

perpendicular configuration at the hollow site at an equilibrium distance of zsurf−N ≈
1.8�A. Now, the adsorption at the hollows describes a local minimum. For NO
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adsorbed atop only very small changes were found when relaxing the lattice. Since

we believe the perpendicular adsorption of NO on Au(111) to describe a physically

more realistic situation, in which a π∗-backdonation from all three surrounding gold

atoms contributes equally to the binding situation, the relaxed lattice constant is

employed in the following. A perpendicular orientation is also in accordance with

other comparable systems.166 The ab initio points were recalculated with the relaxed

lattice constant and refitted afterwards. This new representation is the basis for the

following studies. It shows similar root-mean-square errors (∼ 40 meV for energies

up to ∼ 900 meV above the minimum) which demonstrates the high flexibility of

the analytical form to adapt to different structural situations. Also the new fits of

the hollow sites reveal a distinct IMC which can be seen in the potential itself which

again shows coordinates that cannot be uncoupled by a coordinate transformation.

Furthermore, the study presented in Section 3.3 also demonstrates the IMC by

means of a strong energy transfer between the modes.

3.2 Quantum model

The second stage of this thesis is embarked upon in Paper B where a dynamical

model is developed in order to describe the scattering process of diatomic molecules

on metal surfaces in a quantum mechanical and dissipative fashion. For such scatter-

ing processes there are basically two dissipative channels: the coupling of molecular

vibrations to electron-hole pairs and to phonons of the surface. The phononic chan-

nel was excluded in the following considerations since the experimental findings

suggest a significant role of the former and only a minor importance of the latter,59

at least for small-amplitude motion.24 In order to have a computationally afford-

able model only the degrees of freedom which are most important for the dynamics

should be included. Next to the center-of-mass coordinate z and the bond length

r which were already used in previous studies, the orientational coordinates {θ, ϕ}
are incorporated because, as already discussed in Sec. 3.1, there is a strong coupling

between the tilt angle θ and the z coordinate (scattering coordinate). The {x, y}
coordinates which describe the lateral movement of the scatterer are not included in

the dynamical model for two reasons. First, it is known from experiment that the

scattering of NO from Au(111) is a direct process,59 i.e. the NO molecule spends

only a short time interval on the surface and thus diffusion is a negligible process.

Second, the spectroscopic analysis in Paper A shows that there is a large VDOS

of the lateral modes and the inclusion of that large amount of states would be com-

putationally rather difficult to handle.

Typically, scattering processes on metal surfaces are performed by classical dynam-

ics, e.g. by a Langevin equation which includes the coupling to electron-hole pairs
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via an electronic friction tensor (see Eq. (2.117) in Chapter 2). However, such a

description has proven itself insufficient to correctly describe the inelastic scattering

of NO/Au(111) and the related vibrational relaxation.65,98 A quantum dynamical

treatment is promising since it can lead to increased dissipation rates, described by

Eq. (2.126), which then result in stronger relaxation. The usual quantum dynamical

approaches like surrogate Hamiltonians167–169 or Multilayer MCTDH76,170–172 are in

the moment not suitable for dissipation to electron-hole pairs. Instead, in cases

where that coupling shall be included the dynamic simulations are performed by

means of density matrices,100,173–175 typically in the weak coupling limit discussed

in Chapter 2. However, a density matrix description in four dimensions with an

unbound coordinate is computationally rather expensive due to the unfavourable

scaling of O(N3), with the dimension N of the Hilbert space.176 Therefore, as dis-

cussed in more detail in Sec. 2.3.3 in Chapter 2, it is useful to unravel the quantum

master equation for the density matrix by using a piecewise deterministic process.

The overall procedure for the PDP used in this work is sketched in Fig. 3.2. In that

approach a wave function is propagated deterministically for a certain time τ (step

1 in Fig. 3.2) after which it is decided (step 2 in Fig. 3.2) whether the wave packet

is simply renormalized (step 3, right path in Fig. 3.2) or whether a stochastically

chosen quantum jump occurs at the end of which the system is in a state localized

near the surface (step 3, left path in Fig. 3.2). Such a stochastic approach is chosen

for the quantum model in Paper B. For adsorbate/surface systems it was shown

that the stochastic, wave function based approach converges to a density matrix so-

lution with an affordable number of realizations,177 i.e. number of independent wave

function simulations. However, for the purposes of the inelastic scattering process

considered in this thesis the usual stochastic propagation procedure is modified in

two ways (see steps 2 and 4 in Fig. 3.2).

At first, a complex absorbing potential W (z) (CAP178) along the scattering coor-

dinate z is included in the deterministic propagation of the wave function in order to

avoid artificial reflection of the wave packet arising from the finite grid. Often, these

reflections are circumvented by very large grids which is however computational not

feasible in the four-dimensional description. But avoiding the artificial reflection by

using a CAP creates a new problem. As shown in Eq. (2.115) the probability of the

wave packet to undergo a quantum jump is determined by the loss of norm caused by

the dissipation operators in Eq. (2.97). If that loss is larger than a random number

ε ∈ [0, 1] a jump occurs, otherwise the wave packet is renormalized and propagated

deterministically for a further time step. The larger the loss of norm the more likely

a quantum jump occurs. Now, the CAP also decreases the norm which could lead

to a quantum jump even if there is no effect of the dissipation operators. In order

to avoid these unphysical jumps, the usual propagation procedure is modified (see
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3. Quantum jump

2. Jump probability

3. Renormalization

1. Deterministic evolution

4. Complex absorbing potential (CAP)

Figure 3.2: Pattern for the stochastic propagation scheme employed in Paper B.
Step 1: the wave packet is propagated for a time step τ by a Schrödinger equation
in the interaction picture (see Paper B for a detailed discussion of the partition of
the Hamiltonian). Step 2: The jump probability (loss of norm) is determined and
compared to a random number ε in order to decide whether a jump occurs or not.
Step 3: Depending on the choice in step 2 the wave packet is simply renormalized
(right path) or a specific dissipation channel k is stochastically chosen and the
associated dissipation operator Âk acts on the wave packet (left pattern). This
results in a wave function which is in a state of the relaxation basis. Step 4: A CAP
acts on the wave packet and removes the parts of the wave packet which are near
the right end of the z grid in the above picture. Afterwards the propagation starts
again at step 1 and proceeds.
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Fig. 3.2). A split-operator strategy is used, i.e. the CAP is applied not until the

wave packet is propagated under the Hamiltonian without CAP and the decision

concerning a jump is taken. This is reflected by step 4 in Fig. 3.2 which is newly

introduced. When deciding if a jump occurs the jump probability in Eq. (2.115)

has to be defined with respect to the norm a time step before (step 2 in Fig. 3.2)

and the random numbers must be rescaled to that norm. Furthermore, after the

decision whether a jump occurs or not the wave packet is renormalized with respect

to the norm a time step before, otherwise the absorption of the wave packet at the

previous time step would be reversed.

The second modification applies to the propagation and relaxation bases in which

the system’s Hamiltonian ĤS and the relaxation operators Âk are expressed. The

natural choice for these representations is the basis of the fully-coupled eigenstates of

ĤS. However, this choice has certain drawbacks. Even though the fully-coupled ba-

sis is ideal to describe the system’s evolution near the surface it is less suited further

away. In this region a large number of eigenstates is necessary to obtain converged

dynamics. In addition, extracting such a large number of multidimensional states

is a numerically challenging task, especially if the system shows a strong IMC lead-

ing to high VDOS even at lower energies. Besides, for that large number of states

the calculation of the associated transition rates by Eq. (2.126) constitutes an ad-

ditional computational obstacle due the many multidimensional integrals that have

to be calculated. For these reasons a different approach was employed in Paper B,

where the propagation is described in a tensor product basis. Along the internal

coordinates r and {θ, ϕ} Morse eigenstates and real spherical harmonics are used

which shall mimic the experimentally observed rovibrational states in the gas phase.

Along the scattering coordinate z a pseudospectral basis is chosen which enables a

block diagonal form of the potential matrix and thus reduces the numerical cost for

diagonalizing the Hamiltonian in the propagator.

Next, the basis for the relaxation operators has to be chosen. These operators are

of the general form

Âk = Âm→n = |n〉 〈m| . (3.3)

After acting with Âk on the wave packet the system is in state |n〉 of the relaxation

basis. The associated transition rates are calculated by Eq. (2.126) but the explicit

calculation of the scaling factors ζ(q) shall be avoided since it is a numerically quite

demanding approach.179 To circumvent that effort, the scaling factor for each mode

q is obtained by comparing Eq. (2.126) to known fundamental rates Γ
(0)
1→0 which are

calculated in the harmonic limit by means of the normal modes of the system.180

Since the stochastic representation of the quantum master Eq. (2.98) by means of
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a PDP is not unique a proper choice for the relaxation basis has to be made. In

the present case that means that the relaxation basis has to resemble the normal

modes. This basis directs the system towards the surface when a quantum jumps

occurs. The chosen propagation basis does not fulfill this requirement. Therefore, a

new basis in tensor product form is chosen for the relaxation. It consists of a one-

dimensional basis {|νz〉} for the z mode and a three-dimensional basis {|i〉} defining

the internal modes r, θ, ϕ. The respective functions are the eigenstates of certain cuts

of the PES which ensure the states to be localized near the surface. The associated

relaxation rates have to vanish asymptotically since there is no coupling to electron-

hole pairs far away from the surface. For the {|νz〉} basis that is accomplished by

only considering bound states. That guarantees that the coupling to electron-hole

pairs directs the wave packet towards the surface. In order to ensure asymptotically

vanishing rates between the internal relaxation basis functions {|i〉} these rates are

scaled by the relative electron density., i.e. the electron density with respect to a

reference position above the surface. Since the electron density is a measure for the

electronic density of states near the Fermi level it is used to modulate the strength

of the coupling to electron-hole pairs.

Based on that modified procedure, simulations in four dimensions are performed

at a chosen {x, y} location on the surface. After executing many of these wave

function propagations (realizations) the desired expectation values are obtained by

averaging over all realizations. Previous studies have demonstrated that it is possible

to average over the expectation values obtained at many different surface sites to

converge to observables of full-dimensional simulations.181–184 In this thesis a site-

average over the three high-symmetry sites (top, hcp, fcc) of the (111) surface is

done. That is of course a rather coarse-grained average but it corresponds to the

site-based strategy of the employed PES which is most trustworthy at these three

sites (see Sec. 3.1).

In summary, compared to previous models the quantum model developed in Paper

B is advanced in three ways:

• The orientational degrees of freedom {θ, ϕ} are included which allows a better

consideration of IMC in the dynamics.

• A CAP is included and the propagation as well as the decision about quantum

jumps are modified accordingly. By doing so unphysical interference effects

due to the finite grid can be avoided. Besides, it allows a smaller grid for the

propagation along z and thus decreases the computational effort significantly.

• A special relaxation basis is chosen which realistically models the vibrational

states near the surface and yields reasonable relaxation rates. Hence it ensures
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that the wave packet is directed towards the surface when it interacts with

electron-hole pairs.

The constructed quantum dynamical model is tested upon its efficiency and

physical soundness by performing some exemplary simulations with realistic initial

conditions for the scattering of NO from Au(111) based on the PES constructed in

Paper A. An essential criterion for the efficient application of the stochastic wave

function based method compared to a density matrix approach is a small number of

realizations. Convergence tests show that ∼ 50 realizations are sufficient to converge

the observables of interest, e.g. kinetic energies and expectation values of coordi-

nates. For observables which are associated with more rare events, e.g. dissociation

probabilities, the number of realizations needs to be higher but for observables like

the final rotational and vibrational distribution the developed quantum model is an

efficient alternative to a density matrix simulation.

Furthermore, the propagation is investigated in more detail to see the effect of

the environment on the system’s states and to understand in which circumstances

the friction induced jumps occur. One effect caused by the coupling to electron-hole

pairs is sticking or trapping, respectively. That describes a situation in which the

scatterer loses enough momentum along z so that it cannot escape the surface region

(sticking) or that it stays there for a considerable time (trapping). In a classical

picture that corresponds to a particle bouncing back and forth multiple times on the

surface. In a quantum mechanical friction picture sticking and trapping have their

respective origin in wave packets which are projected onto a state near the surface

or onto states with a small momentum along z (see the upper panel in Fig. 3.3). In

both cases after averaging over many such realizations the resulting wave packet is

more diffuse and at least parts of the wave packet stay considerably longer above

the surface when compared to the adiabatic description. For the test system of

NO/Au(111), without friction the wave packet stays a few hundred femtoseconds on

the surface whereas with friction parts of the wave packet remain some picoseconds

near the surface.

The effect of friction, i.e. the number of quantum jumps, is in general larger if

the wave packet is closer to the surface due to the larger electron density which is

connected to the coupling strength to electron-hole pairs. According to Eq. 2.126

a larger electron density increases the transition rate which increases the loss of

norm and thus enhances the jump probability (see step 2 in Fig. 3.2). However, as

exemplified in the upper panel of Fig. 3.3 jumps can also occur when the wave packet

is farther away from the surface in regions of lower electron density, i.e. in regions

where the coupling to electron-hole pairs is small and hence the single transition rates

are small. That is because the decrease in norm caused by the non-hermitean term in

the linear Hamiltonian in Eq. (2.110) depends on a sum over all transitions between
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Figure 3.3: Upper panel: Expectation value of z in time for an exemplary re-
alization with quantum jumps (solid line) and without jumps (dashed line). The
labels PDP and Dtm stand for Piecewise Deterministic Process and Deterministic
process, respectively. The decreasing curve at later time is due to the CAP because
the shown expectation value only considers the part of the wave packet that is still
in the box. Lower panel: Population of the asymptotic vibrational states integrated
over z, θ and ϕ for a realization with quantum jumps (solid line) and without jumps
(dashed line), respectively. The figure is taken from Paper B.

relaxation states. If many states are occupied there are many possible transitions.

These transitions may have small rates but the sum over all these small contributions

can lead to a non-negligible loss of norm and thus a finite jump probability. In the

case of NO/Au(111) many rotational states are occupied, even farther away from

the surface and these populated states can partially compensate for the smaller

electronic density, i.e. the smaller coupling to electron-hole pairs. Additionally,

that effect is amplified since the transition rates become larger the higher excited

the states are (see the linear increase for the harmonic case in Eq. (2.127)).

Another friction-induced effect is vibrational relaxation. Without friction-induced

quantum jumps the scattering of NO from Au(111) is vibrationally elastic. There are

only rotational excitations caused by the strong IMC (see Sec. 3.1) which enables

an internal energy transfer from translation to rotations. However, if quantum

jumps are considered it happens that they lock population in propagation states

which, in a purely adiabatic description, would decrease or increase upon their

initial value (see Fig. 3.3 as an example of a realization with quantum jumps and

without). That is crucial for the final vibrational distribution since at the expense

of the initial vibrational state it allows an asymptotic population of states which

are only transiently populated in an adiabatic simulation. In the chosen example

of NO/Au(111) that leads to the population of the neighbouring states (ν = 2
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and ν = 4). Interestingly, this shows that not only relaxation but also excitation

is possible. From a classical point of view that seems counterintuitive since the

friction tensor in the Langevin Eq. 2.117 leads to a damping force which drives the

system to lower energies. In a quantum mechanical description relaxation as well as

excitation are seen since on the surface the bond elongates and the initial vibrational

state becomes a linear combination of several (lower- and higher-lying) basis states,

which are defined with respect to the gas phase. If the population in these states

is locked by the quantum jumps, as described above, many possible vibrational

states, even excited ones, can be found in the final distribution. Accordingly, the

population of excited states is slightly stronger for scattering at the hollow sites

due to the stronger elongation of the bond caused by a deeper penetration of the

surface.

All simulations performed in Paper B show the constructed quantum model to

provide effects as sticking/trapping and vibrational relaxation which are also known

from experiments for scattering dynamics on metal surfaces. In combination with the

sufficiently small number of realizations to converge the considered observables the

model provides a good and less expensive alternative to a density matrix description.

Besides, the test simulations also show the constructed PES to be physically sound.

Both, quantum model and PES are thus appropriate to be employed in a more

systematic study of the scattering of NO from Au(111) in the following section.

3.3 Scattering of NO(ν=3) from Au(111)

In the last stage of this thesis, covered in Paper C, a detailed study of the scattering

dynamics of NO(ν = 3) from a Au(111) surface with different initial translational

energies is performed. For increasing initial kinetic energy along z experiments show

a trend of increasing depopulation of the initial vibrational state (ν = 3) and ac-

cordingly an increase of the population of ν = 2 and ν = 165 (see the black curve in

Fig. 3.4). Previous classical and semiclassical studies65,98 were not able to correctly

reproduce that trend without imposing empirical constraints in their simulations.

The dynamical simulations in Paper C are done in four dimensions (r, z, θ, ϕ) at all

three high-symmetry sites. For every observable of interest (branching ratio, popu-

lation of rotational states and others) the average over all three sites (site-average)

is taken in order to compare to experiment. This comparison is of course only ap-

proximate since a rather small number of positions along the surface is considered.

However, the considered surface sites are sufficient to reproduce the experimental

trend of increasing relaxation probability as a function of initial translational en-

ergy for state ν = 3 (see Fig. 3.4). Paper C is the first theoretical work considering

the coupling of molecular vibrations to electron-hole pairs that is able to reproduce
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(a) (b)

Figure 3.4: Branching ratio for scattering in vibrational states ν=1, 2, 3 at dif-
ferent initial translational energies. Values obtained from experiment are shown
with black circles. Part a) shows site averaged quantum dynamics (QD, blue
square), site averaged MDEF (green pentagon) and six-dimenional MDEF (red
hexagon) simulations. Part b) shows reduced-dimensional simulations at top (blue
square), hcp (red lower triangle) and fcc (green upper triangle). Site-averaged QD
as solid lines and reduced-dimensional MDEF as dashed lines. The branching ra-
tio in all figures is defined by means of the absolute state populations P (ν) as
P (ν)/[P (ν = 1) + P (ν = 2) + P (ν = 3)]. The figures are taken from Paper C.

this experimental trend. The agreement is qualitative, theory and experiment dif-

fer in absolute value as well as in the strenght of the trend. That might be due

to a missing inclusion of surface phonons. In a classical study Yin et al. have

recently shown that an explicit inclusion of surface motion in the adiabatic PES

can account for a large part of vibrational relaxation.99 An explicit treatment of

surface phonons would not be feasible in the current quantum dynamical treatment

but they could be included implicitly in the present model via an additional rate

describing the phonon-induced transitions. Apart from further dissipation channels

a full-dimensional treatment might also be essential for better agreement with ex-

periment. The characterization of the PES in Paper A suggests an IMC between

{x, y} and z and θ which will probably lead to stronger energy redistribution by

transfering energy in the lateral motion. The increased dimensionality would also

lead to more relaxation and excitation channels which can contribute to the sum in

Eq. (2.110) and the resulting enhanced dissipation could possibly lead to a stronger

relaxation.

Already in the reduced-dimensional system the IMC is of large importance, namely

for the distribution of rotational states. Especially at the top site the distribution

shows a rotational rainbow, i.e. a large number of rotationally excited states which

are populated. The distribution is broadened and shifted to higher energies when

increasing the initial translational energy (see the upper panel of Fig. 3.5). While

the former is a frictional effect the latter is founded in the potential’s topology.

The strong IMC between θ and z mode, observed and discussed in Paper A, en-
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ables a strong energy transfer from translation to rotations and thus a population

of many rotational states. In particular, for scattering at the top site the rotational

rainbow is rather pronounced due to the strongly tilted orientation around θ ≈ 60°
(see Sec. 3.1). That is not surprising since the rotational degrees of freedom are

described by spherical harmonics. The first spherical harmonic is a sphere and the

lower-lying of these functions are mainly localized around θ = 0° and θ = 180°, i.e.

many spherical harmonics have to be populated to describe a wave packet localized

around 60°. The coupling of molecular vibrations to electron-hole pairs enhances

that primarily topological effect by excitations in higher-lying states. As already

mentioned in Sec. 3.2 that effect is additionally supported since the transition rates

become larger for higher excited states. At the hollow sites the NO is favourably

adsorbed at 0°, accordingly the localization of the wave packet can be realized with

a considerably smaller number of spherical harmoncis. That is indeed observed in

the scattering simulations which show a less extensive rotational rainbow compared

to the scattering at the top site. The rainbows and their shift with changing trans-

lational energy are in qualitative accordance with experimental findings. Thus, the

PES and the quantum model developed in this thesis are able to confirm features of

the rotations during the scattering process. A detailed comparison between experi-

ment and simulations shows the latter to exaggerate the excitation of very high-lying

rotational states (j > 50). This overestimation is probably due to the reduced di-

mensionality of the employed dynamical model. The translational energy is virtually

exclusively transferred to rotations since in four dimensions there is no possibility

for the molecule to move sideways and thus convert the translational energy into

lateral motion.

Apart from the energy transfer within the system also a transfer from the molecular

vibrations to the bath (electron-hole pairs) can be observed. A look at the system’s

total energy reveals a loss of energy which happens on a tens of picoseconds time

scale. Interestingly, at the lowest initial translational energy (Ei = 0.2 eV) for the

scattering at the top site the reduced-dimensional model even shows a gain in energy

for the system. At first this seems surprising but it can be understood by a closer

look at the microscopic processes. Every transition between two states of the relax-

ation basis has to obey detailed balance, the quotient of excitation and relaxation

rate for every single transition is described by a Boltzmann distribution. Therefore,

for a single transition at finite temperature relaxation rates are always larger than

excitation rates. However, as discussed in Sec. 3.2 in the context of quantum jumps

in regions of small electron-hole pair coupling (low density), the probability of a

jump to occur depends on the sum over all possible transitions (channels). When

many excited states are populated their large number can compensate the smaller

excitation rates resulting in an excitation of the system. This overall excitation
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is a temperature effect and vanishes at 0 K where only relaxation is present. The

gain in total energy disappears for higher translational energies due to the shorter

contact time on the surface. But at the top site there is still a visible competition

between energy transfer from and to the system demonstrated by a minimum in

the time-dependent total energy. Apparently, the model is able to account for an

energy flow between system and bath in both directions. That energy transfer is

mainly mediated by the scattering coordinate z, along which kinetic energy is lost,

as known from experiments.12 The initial kinetic energy is transferred to the bath

as well as the rotations which is a further manifestation of the IMC found in Paper

A. The energy along r is basically unaffected. For the vibrational coordinate r there

is merely a conservative redistribution among the vibrational states visible in the

rather symmetric distribution of the scattered molecule.

In theoretical surface science, as already mentioned in Sec. 3.2, MDEF simulations

are the standard method for most dynamics studies, which consider electron-hole

pairs, due to their low computational effort compared to quantum dynamical ap-

proaches. However, for most systems it is not clear whether a classical approach is

justified. There are very little comparisons between classical and quantum dynamics

for processes on surfaces.185 In order to seize the opportunity for NO/Au(111) the

constructed PES is also used to perform MDEF simulations which can be compared

to the quantum dynamics discussed above. In a classical and a quantum picture the

coupling of molecular vibrations to electron-hole pairs of the surface is described

rather differently. As discussed in Sec. 2.3.4 of Chapter 2, in a classical treatment

a frictional force damps the scatterer’s motion. That is a continuous process with

a single rate per mode. In contrast, discrete jumps are induced in the quantum

picture with one rate for every pair of states. Besides, these rates are highly depen-

dent on the anharmonic character and degree of excitation of the involved states.

A direct comparison between MDEF simulations and the quantum model of Pa-

per B may shed light on the importance of quantized relaxations in the dynamical

description of scattering of NO from Au(111). And indeed, both descriptions dif-

fer quite substantially. Comparing the relaxation probabilities for different energies

the absolute values are rather similar in the quantum and MDEF simulations in

reduced dimensions at the respective sites (see Fig. 3.4b). However, the classical

description shows a wrong trend, as also observed by Golibrzuch et al. for their

PES,65 i.e. the relaxation becomes less likely with increasing initial kinetic energy

due to the smaller contact time on the surface. Yin et al. attribute the failure

of MDEF to the potential representation and show that a high-dimensional PES

including the surface atoms can yield the correct trend in a simple MD simulation.

Even though an inclusion of surface motion may be desirable that does not degrade

the finding that MDEF and QD do not yield a congruent dynamical description of
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the scattering process since both are based on the PES of Paper A. A possible

source of error is always the non-uniqueness of the friction tensor (see Sec. 2.3.4 in

Chapter 2). In order to exclude that the results are an artefact of the chosen LDFA

model (see Sec. 2.3.4 in Chapter 2) several MDEF simulations were performed in

which the friction coefficients were increased by some factors since the chosen LDFA

model is known to underestimate electronic friction.133 The general trend is still

wrong even when increasing the coefficients. Moreover, MDEF not only yields the

wrong trend it shows only one-quantum relaxation in contrast to both experiment

and quantum simulations (see Fig. 3.4). The quantum model is capable to describe

also two-quantum relaxation since, as explained before in Sec. 3.2, on the surface

along r the wave packet is a linear combination of many vibrational states in which

the system can be locked by quantum jumps.

The fundamental difference between the quantum and classical description can be

illustrated by the scattering from the top site. At that site the NO molecule is

rather far away from the surface, i.e. the coupling to electron-hole pairs and thus

the electronic density in that region is small. It is too small to create a significant

frictional force in the Langevin equation (2.117) which would damp the molecule’s

motion in the MDEF simulation. In the quantum model the same electronic density

is employed but, as mentioned earlier, the small individual transition rates in the

regions of small density can be compensated by the high population of excited states

along z and θ because the resulting large number of relaxation channels increases the

influence of the dissipative term in Eq. (2.110). That effect becomes stronger for in-

creasing initial kinetic energy because a) these populations increase with the kinetic

energy along z and b) the respective transition rates become larger for higher-lying

states. In contrast, for the MDEF simulations, the larger kinetic energy along z

leads to a smaller contact time at the surface. Thus there is a smaller damping

of the molecule’s motion. Also the rotational distribution in Fig. 3.5 reveals dis-

crepancies between MDEF and quantum simulations, especially at the top site. A

rotational rainbow, i.e. excitation of many excited states, and a shift of the peaks

with increasing kinetic energy can be seen in both simulations since as discussed

before that is a topological effect and both methods are based on the same PES.

In contrast, the broadening of the final rotational distributions is a frictional effect

and is much more different when comparing both methods. In the quantum model

the distribution broadens rather strongly with increasing kinetic energy whereas the

MDEF simulations yield much more compact distributions. As discussed earlier,

at the top site there is very little electronic density and thus only a minor clas-

sical, frictional effect. Therefore the rotational distribution is basically caused by

the potential topology. In the quantum simulation the large number of relaxation

and excitation channels increases the probability of quantum jumps which enables a
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Figure 3.5: Population of the rotational states upon scattering at the top site at
different initial kinetic energies. Top panel: quantum dynamics. Bottom panel:
classical MDEF. The figure is taken from Paper C.

stronger deviation from a deterministic dynamic, i.e. a dynamic without quantum

jumps. These quantum jumps lead to larger populations of states which results in

the broadened distribution in the upper panel of Fig. 3.5. At the hollow sites the

rotational distributions are more similar between both methods. That is because

the localization of the wave packet around θ = 0° at the surface requires signifi-

cantly less rotational states (spherical harmonics) than needed at the top site and

the respective rates are smaller, as discussed earlier. Therefore less relaxation and

excitation channels are available and there are less excited states which are likely to

be populated by quantum jumps. Thus the deviation from the deterministic prop-

agation, i.e. the propagation without quantum jumps, is less pronounced and the

distributions resemble the rotational distributions of the MDEF simulations.

Of course, the differences for NO/Au(111) between classical (MDEF) simulations

and the quantum dynamical model do not suspend classical methods when describ-

ing scattering dynamics, for system like H and H2 scattering from various metals

these methods are often rather successful.186–188 But the differences emphasize that

one has to be cautious when applying the MDEF approach to describe coupling to

electron-hole pairs and that for some systems the inclusion of quantized relaxation

might be essential to describe the main dynamical features correctly.
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Chapter 4

Publications

The subsequent chapter presents the scientific publications which form the basis of

this thesis. It contains three published works. For each of them, the contributions

of the individual authors are outlined.
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Paper A

”A new six-dimensional potential energy surface for NO/Au(111)”

T. Serwatka, B. Paulus and J. C. Tremblay

Mol. Phys. 117, 42–57 (2019)

DOI: 10.1080/00268976.2018.1492041

URL: https://doi.org/10.1080/00268976.2018.1492041
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Author contribution

The idea was conceived by Jean Christophe Tremblay. I did the test calculations

with advice from Beate Paulus. The calculations of the final ab initio points and the

fitting of these were done by me. The concept of the PES was developed by Jean

Christophe Tremblay and myself. I calculated the anharmonic eigenstates with a

program written by Jean Christophe Tremblay. The manuscript was mainly written

by Jean Christophe Tremblay and myself with advice from Beate Paulus.
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Paper B

”Stochastic wave packet approach to nonadiabatic scattering of diatomic molecules

from metals”

T. Serwatka and J. C. Tremblay

J. Chem. Phys. 150, 184105 (2019)

DOI: 10.1063/1.5092698

URL: https://doi.org/10.1063/1.5092698
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Author contribution

The idea was conceived by Jean Christophe Tremblay. The quantum dynamical

model was developed by Jean Christophe Tremblay and myself. I did the test

simulations. Both authors contributed to the analysis. I wrote the manuscript with

significant contributions from Jean Christophe Tremblay.
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Paper C

”Scattering of NO(ν=3) from Au(111): a stochastic dissipative quantum dynamical

perspective”

T. Serwatka, G. Füchsel and J. C. Tremblay

Phys. Chem. Chem. Phys. (2020), Advance Article

DOI: 10.1039/C9CP06084G

URL: https://doi.org/10.1039/C9CP06084G

Graphical Abstract[C](©2020 Royal Society of Chemistry.)

Author contribution

The idea was conceived by Jean Christophe Tremblay and myself. I performed all

quantum and classical calculations. The MDEF calculations were performed with

a program written by Gernot Füchsel. The analysis was done by Jean Christophe

Tremblay and myself. The manuscript was written by myself with contributions

from Jean Christophe Tremblay and Gernot Füchsel.
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(49) J. L. LaRue, T. Schäfer, D. Matsiev, L. Velarde, N. H. Nahler, D. J. Auerbach

and A. M. Wodtke, Phys. Chem. Chem. Phys., 2011, 13, 97–99.
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Wodtke and T. Schäfer, Proc. Natl. Acad. Sci. USA, 2013, 110, 17738–

17743.

(67) N. Bartels, K. Golibrzuch, C. Bartels, L. Chen, D. J. Auerbach, A. M.
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