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Abstract: The syntheses of novel amphiphilic 5,5’,6,6’-tetra-

chlorobenzimidacarbocyanine (TBC) dye derivatives with
aminopropanediol head groups, which only differ in stereo-
chemistry (chiral enantiomers, meso form and conformer),

are reported. For the achiral meso form, a new synthetic
route towards asymmetric cyanine dyes was established. All

compounds form J aggregates in water, the optical proper-
ties of which were characterised by means of spectroscopic

methods. The supramolecular structure of the aggregates is

investigated by means of cryo-transmission electron micros-

copy, cryo-electron tomography and AFM, revealing extend-

ed sheet-like aggregates for chiral enantiomers and nano-
tubes for the mesomer, respectively, whereas the conformer
forms predominately needle-like crystals. The experiments

demonstrate that the aggregation behaviour of compounds
can be controlled solely by head group stereochemistry,

which in the case of enantiomers enables the formation of
extended hydrogen-bond chains by the hydroxyl functional-

ities. In case of the achiral meso form, however, such chains

turned out to be sterically excluded.

Introduction

Cyanine dyes represent a class of organic dyes that are able to
self-assemble in polar solvents and on solid surfaces.[1] Strong
dipole–dipole coupling between the dye monomers leads to

an electronically excited state shared by several monomers.
Such exciton states cause a dramatic change in optical proper-

ties of the dye assemblies compared with the isolated mole-
cules.[2] Depending on the relative orientation between neigh-
bouring monomers, different types of assemblies can be ob-
served. A “head-to-tail” configuration of transition dipoles

leads to a red-shifted absorption band with large absorption
cross section and super-radiance.[2] Such assemblies are called
J or Scheibe aggregates after their discoverers, Jelly[1a] and
Scheibe.[1b] The exceptional optical characteristics make J ag-
gregates interesting tools for many applications, ranging from

dye-sensitised silver halide photography, light harvesting, pho-
tovoltaics and sensing to biomedical imaging.[3]

Aggregation in polar solvents is a common feature of dye
molecules containing extended planar p-electron systems. Fur-
ther competing non-covalent interactions, such as hydrogen

bonding, halogen bonding or solvophobic forces, support the
aggregation and control the formation of complex supra-

molecular structures. Because dipole–dipole coupling strength,
and thus, photophysical properties of the aggregates are
highly sensitive to the particular arrangement of the chromo-
phores, controlled structuring of dye assemblies by tuning

supramolecular interactions between individual building blocks

facilitates the design of novel materials with desired properties.
Powerful approaches in this regard are specific alterations of
the chromophore side groups, incorporation of additives or
modifications of the solvent polarity. In this context, a class of

derivatives of the well-known 5,5’,6,6’-tetrachlorobenzimidacar-
bocyanine (TBC) chromophore[4] have been investigated in

detail by several groups.[5] The chromophore was functional-

ised by attaching different polar or non-polar substituents at
the nitrogen atoms in the 1,1’- and 3,3’-position. This allows

for the tailored design of a large variety of supramolecular
structures with interesting optical characteristics. By introduc-

ing 1,1’-dioctyl substituents, D-hne and co-workers advanced a
class of amphiphilic dyes.[5a]

A fundamental prerequisite for studying dye assemblies is

the availability of appropriate characterisation methods. Cryo-
genic transmission electron microscopy (cryo-TEM) turned out

to be an excellent technique to elucidate their morphology in
the native environment of the solvent on the nano- to micro-
metre scale.[6] Depending on the substituents of the TBC chro-
mophore, one-dimensional fibres, two-dimensionally extended
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sheet-like aggregates, and single- or multi-layered tubular ar-
chitectures with a helical molecular organisation were detect-

ed. The last of these became a matter of particular interest be-
cause the shape and size of such tubular aggregates resemble

the natural light-harvesting system in green sulfur bacteria.[7]

Thorough optical characterisations by means of linear optical

spectroscopy, usefully supplemented by nonlinear techniques[8]

or theoretical structure modelling,[5e, 9] are mandatory for a pro-
spective use of photophysical characteristics. Although the un-

derstanding of dye assemblies has made excellent progress in
recent years, a substantial challenge remains: how does a par-
ticular molecular modification control the morphological, and
thus, optical characteristics of the final supramolecular struc-
ture? So far, empirical approaches are still necessary due to a
missing conclusive concept.

The most extensively investigated representatives of tube-

forming TBC-based cyanine dyes are amphiphilic C8O3, bear-
ing two carboxylic acid groups, and C8S3, bearing two sulfonic

acid groups.[5a, 10] (For abbreviations of TBC-based dyes, see
Table 1.) In aqueous media, they are converted into their con-

jugate bases, yielding negatively charged aggregate surfaces.
Moreover, previous studies revealed that the helicity of C8O3

tubes could be tuned upon the addition of chiral alcohols.[11]

The goal of the present study was to prevent surface charge
effects and to investigate the impact of chiral head groups on

the supramolecular architecture of assemblies.
To achieve this goal, we selected C8O3 as the parent TBC

derivative and functionalised both its carboxyl groups with

aminopropanediol, which provided a well-balanced amphiphil-
ic character to allow for the formation of aggregates. Since

there are two conformations of aminopropanediol, chiral 1-
amino-2,3-propanediol and non-chiral 2-amino-1,3-propane-

diol, amidation of the two symmetrically situated carboxyl
groups in C8O3 renders the formation of four different isomers

possible, namely, two enantiomers with either R,R or S,S config-
uration, a meso form with R,S configuration and the non-chiral

conformer derived from 1-amino-2,3-propanediol (Scheme 1).

Hence, our approach allowed for versatile molecular altera-
tions, while the hydrophilic–lipophilic balance (HLB) of the

dyes and the spatial demand of the head groups remained un-
changed. Moreover, it enables studies on the impact of the

molecular chirality. With this structural diversity, we were able
to elucidate the specific influence of head group stereochemis-
try and/or conformation on the aggregation behaviour of the

novel amphiphilic cyanine dyes.
Studies of the C8O3 and C8S3 derivatives were used as

guidelines for the present investigations and provided the
basis for comparisons. The new derivatives were first character-

ised as monomers in organic solvents by means of absorption
and fluorescence spectroscopy. Subsequently, aggregation in

pure water was followed by absorption, circular dichroism

(CD), linear dichroism (LD), and fluorescence spectroscopy and
structurally monitored by cryo-TEM, cryogenic electron tomog-

raphy (cryo-ET) and AFM. Structure models are presented and
discussed.

Results and Discussion

Synthesis

The synthesis of aminopropanediol cyanine dyes (compounds

1 a–c and 2) has been achieved by two different synthetic ap-
proaches. A straightforward synthetic route was followed to

obtain isomers with uniform head groups, that is, the R,R or
S,S enantiomers from 3-amino-1,2-propanediol (Scheme 2), and

the non-chiral symmetric serinol derivative (Scheme S4 in the
Supporting Information). To achieve and preserve the desired

stereochemistry and conformation of the chiral head groups,

Table 1. Abbreviations for TBC-based dyes discussed herein.

Z n m

TDBC (C2O4) @SO3 1 4
C8S3 @SO3 7 3
C8O3 @COOH 7 3

Scheme 1. Chemical structure of the parent dye C8O3 and the family of newly synthesised aminopropanediol isomers.
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commercially available enantiopure solketal, that is, the acetal
of 1,2,3-propane diol, was chosen as a starting material. This

solketal (R or S) was converted into the respective solketal
amine 4 in two steps (Scheme 2) and was then coupled to the

acid groups of C8O3, followed by deprotection of the acetal

groups under mild acidic conditions. The achiral serinol deriva-
tive 2 was synthesised accordingly by using commercially avail-

able 2-amino-1,3-propanediol (serinol) without protection of
the OH groups, following the same coupling procedure

(Schemes S1–S3 in the Supporting Information).
Despite the convenient synthetic route outlined above, a dif-

ferent strategy was necessary to synthesise the enantiopure

meso form (1 c ; Scheme 3). This mirror-symmetrical dye deriva-
tive was synthesised from two different monomers to attain its

specific R,S conformation selectively. For that, 5,6-dichloro-2-
methylbenzimidazole was subsequently treated with ethyl 4-
bromobutanoate and 1-bromooctane followed by hydrolysis in
the presence of aqueous HBr to yield benzimidazole 8. Benz-
imidazole 11 was obtained by ester hydrolysis of 6, amidation

with (S)-solketal amine, and finally N-alkylation with 1-bro-
mooctane (Scheme 3).

Both benzimidazoles 8 and 11 were coupled in methanolic
solution in the presence of DBU and CH3I. As expected, three

different combinations of these two monomers led to the for-
mation of three different dyes (Scheme S3 in the Supporting

Information). From their polarity order, however, it was possi-

ble to extract the desired cyanine dye 12 by performing
column chromatography. Amidation with (R)-solketal amine

and subsequent acetal deprotection finally yielded the meso-
mer (1 c).

Spectroscopic characterisation

The aminopropanediol dyes (1 a–c and 2) are readily soluble in
MeOH and DMSO. In MeOH, they all show an identical absorp-

tion band with a maximum at l= 520 nm (full-width at half-

maximum (fwhm) = 932 cm@1) and a vibronic shoulder at l

&485 nm (see Figure 1 for the R enantiomer (1 a)). The fluores-

cence emission spectrum reveals a mirror image of the absorp-
tion band with a maximum at l= 544 nm, yielding a Stokes

shift of 24 nm. The corresponding excitation spectrum resem-
bles the absorption spectrum. The spectra are in good agree-

ment with those of the parent derivative C8O3, indicating that

Figure 1. Normalised absorption (blue) and fluorescence spectra, excitation
(green) and emission (red) of the new aminopropanediol R enantiomer (1 a)
in methanol. The spectra are representative for all four compounds 1 a–c
and 2. Concentrations are 0.1 mm for UV and 0.01 mm for fluorescence
measurements. The excitation spectrum was collected at l = 550 nm; the
emission spectrum was collected after excitation at l= 480 nm.

Scheme 2. Synthesis of cyanine dye tetrahydroxy derivatives. i) PPh3, phthalimide, diethyl azodicarboxylate (DEAD), THF, RT, 20 h; ii) NH2@NH2, H2O, MeOH,
reflux, 4–5 h; iii) 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU), N,N-diisopropylethylamine (DIPEA),
DMF, RT, 2 h; iv) HCl, MeOH, RT, 2–5 h.
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the introduction of the non-ionic aminopropanediol head

groups with their particular chirality does not affect the spec-
troscopic properties of the chromophore. The spectroscopic

features are typical for cyanine dye monomers.[12]

The spectra of the dyes in water differ significantly from the

monomer spectra in organic solvents (Figure 2). Remarkable
bathochromic shifts of the absorption band indicate the forma-
tion of J aggregates[1c] in all cases (1 a–c, 2), and the influence

of the chirality of the compounds becomes clearly visible by
the differing absorption spectra of the enantiomers (1 a and

1 b) and meso form (1 c).
Spectra of both enantiomers (1 a and 1 b) are identical. The

absorbance is characterised by a single narrow band at l=

583 nm (fwhm = 413 cm@1) with a shoulder at l= 535 nm
(shown for the R enantiomer (1 a) in Figure 2 A as an example).

The fluorescence emission has its maximum at l= 585 nm.
This nearly resonant emission is another typical feature of J ag-

gregates.[1c] The related excitation spectrum is in good agree-
ment with the absorption spectrum. With respect to their

shape, all of these spectra are similar to those found for the J
aggregates of the closely related cyanine dyes TDBC (C2S4)[5b]

and C8O4.[13]

In contrast, the mesomer (1 c) shows a split absorption spec-
trum (Figure 2 B) with a sharp and intense sub-band at l=

603 nm (fwhm = 165 cm@1) and a second narrow and intense
sub-band at l= 572 nm; a third broader band of lower intensi-
ty is located at l&543 nm. The emission spectrum shows only

one sharp band in resonance with the absorption band at l=

603 nm (fwhm = 247 cm@1), regardless of the excitation wave-

length.
Figure 3 A shows a family of spectra from three individual

mesomer sample preparations of 1 c. The comparison reveals

differences in the intensity of the third absorption band at l=

543 nm, which clearly exceeds experimental error limits. Also,

the maximum position of the longest wavelength band varies
slightly from sample to sample, but to a much lesser extent

(between l= 603 and 606 nm). It is noticeable, however, that
the intensity ratio of the first and second sub-bands remains

Scheme 3. Synthesis of asymmetrical benzimidazoles. i) Ethyl bromoacetate, NaOH, DMSO, RT, 48 h; ii) 1-bromodecane, 150 8C, 6 h; iii) HBr (48 %), water,
120 8C; iv) KOH, ethanol, reflux, 12 h; v) N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC·HCl), 4-dimethylaminopyridine (DMAP), DMF,
24 h, RT; vi) 1-bromodecane, 150 8C, 6 h; vii) 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), CH3I, methanol, RT, 48 h; viii) (R)-solketal, EDC·HCl, DMAP, DMF, 24 h, RT;
ix) HCl, methanol, 6 h, RT. (see the complete synthetic scheme in the Supporting Information).
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almost constant. If the mesomer was dissolved in aqueous HCl
at low pH (lower than 4), the solution displayed a spectrum
with a maximum at l= 543 nm (purple dotted line), which re-

sembled that of monomers (Figure 1), but was clearly broader
(fwhm = 1295 cm@1) and red-shifted by about 23 nm. After ap-

propriate scaling and subtraction of this band from the spectra
in Milli-Q water (Figure 3 A), roughly identical, two-banded

spectra are obtained for all three preparations (Figure 3 B). This

simple fit procedure suggests that the remaining longer wave-
length bands belong to the aggregate, whereas the variable

third band at l&543 nm might indicate the presence of a fur-
ther independent species (probably dimers or smaller oligo-

mers).

The conformer (2) displays a split absorption spectrum in

water (Figure 2 C, blue), as described for 1 c. In the case of 2,
the bands became broader and their intensity weakens within
a period of minutes, which indicates precipitation. The fluores-

cence behaviour, however, is similar to that of the mesomer.
Due to rapid precipitation, the conformer was not investigated
in more detail by means of spectroscopy.

In previous studies, we demonstrated that the achiral parent

dye C8O3 formed optically active helical J aggregates by ap-
plying CD spectroscopy and cryo-TEM. Moreover, we were able

to tune the handedness of aggregates by adding chiral alco-

hols.[10a, 11] Therefore, we were interested to see whether the
use of chiral head groups affected the supramolecular assem-

bly in a similar way. The absence of CD signals from methanol-
ic solutions of the dyes indicates that the chirality of head

groups has, at best, a negligible effect on the conformation of
the monomeric (non-aggregated) chromophores.[14] In contrast,

the aggregated mesomer (1 c) shows negative and positive

Cotton effects at l= 577 and 605 nm, respectively (Figure 4,
red line). Phenomenologically, this behaviour is in line with cor-

responding CD results of the parent C8O3 dye and indicates a
similar molecular architecture of aggregates. For this dye, a

tubular architecture was detected, with the tube wall being
composed of two helically twisted chromophore layers.[5b] The

Figure 2. Absorption (blue) and fluorescence spectra, excitation (green) and
emission (red) of A) the R enantiomer (1 a), B) the mesomer (1 c) and C) the
conformer (2) in water. Matured stock solutions were diluted to concentra-
tions of 0.1 mm for UV/Vis and 0.01 mm for fluorescence immediately prior
to measurements. The fluorescence excitation spectra were collected at
A) l = 527, B) 604 and C) 604 nm and the emission spectra were collected
after excitation at A) l= 488, B) 530 and C) 550 nm, respectively.

Figure 3. Three individual preparations from three different batches of the
mesomer 1 c in Milli-Q water (yellow, green and blue) show different
strengths of the third sub-band at l&543 nm, whereas the two longer
wavelength bands remain almost stable (A). The individual spectra are nor-
malised to the same absorbance at l&603 nm. The dotted spectrum was
derived from a solution of 1 c in HCl at pH<4. After appropriate scaling and
subtraction of this low-pH spectrum from the three spectra in Milli-Q water,
two-banded spectra are obtained for all preparations (B).
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observed Cotton effects were ascribed to molecular excitons.

In the case of the related C8S3 dye, the helical architecture of
tubes was even proven directly from highly resolved cryo-TEM

images.[6, 15] For the enantiomers (1 a and 1 b), however, we did

not obtain spectra with mirror symmetry, which indicated the
absence of a chiral supramolecular organisation. Morphological

investigations proved this claim (see below).
LD spectroscopy is a highly sensitive method that can give

valuable information about the molecular packing orientation
within aggregates. Isotropically oriented molecules give no LD

signal, whereas anisotropic aggregates with a high aspect ratio

give characteristic LD signals. To measure the LD, the aggre-
gates dispersed in the sample have to be aligned.[16] For fi-

brous aggregates (cf. Figures 8 and 9, below), this can simply
be accomplished in the streaming field of a Couette flow cell.

Solutions of 1 c show LD spectra (Figure 4, green line) consist-
ing of two strong sub-bands, the locations of which coincide

with the two strongest absorption bands. The positive LD

signal of the longest wavelength band (l= 604 nm) indicates a
parallel polarisation of the associated transition with respect to
the long axis of the aggregates. The other band (l= 571 nm) is
polarised perpendicularly. This polarisation pattern is character-

istic for single-layered tubular J aggregates.[5e, 17]

Analog LD measurements of the enantiomer solutions gave

only one small positive band. This finding is difficult to inter-
pret because the sheet-like structure of these aggregates (cf.
Figure 6, below, as evidence) casts serious doubts on their abil-

ity to be directionally oriented in the Couette cell.
Due to the solubility of dyes in methanol, disaggregation

can simply be monitored by means of absorption spectroscopy
upon methanol titration. Such measurements provide addition-

al information about the stability of aggregates and the kinet-

ics of disaggregation. In the experiments reported herein, we
added a methanolic dye solution to the respective aqueous so-

lution of the aggregated dyes to keep the dye concentration
constant.

Figure 5 displays sets of absorption spectra for the R enan-
tiomer (1 a ; Figure 5 A) and the mesomer (1 c ; Figure 5 B). The

absorbance of 1 a remains almost unchanged in an admixture

of up to 30 vol % methanol. Further increasing the methanol
content to 60 vol % promotes the gradual formation of mono-

mers at the expense of J aggregates. A defined isosbestic
point at l = 540 nm indicates disassembly of J aggregates di-

rectly into monomers without the appearance of intermedi-

ates.
A slightly different result was obtained for the mesomer

(Figure 5 B). Here, the isosbestic point is located at l= 535 nm.
In contrast to the R enantiomer, the J bands remain almost un-

changed up to 20 vol % methanol. Complete disassembly of
the aggregates is accomplished at 50 vol % methanol. Notice-
able is the appearance of a hump at l&540 nm prior to com-

plete disassembly. By deconvolution of the spectra into mono-
mer and aggregate components (not shown), a corresponding

band could indeed be extracted, but an associated aggregate
species could not be detected by means of cryo-TEM.

Structural characterisation

Spectroscopic investigations of all aqueous solutions of amino-

propanediol dyes (1 a–c, 2) were complemented by direct
structural characterisation through cryo-TEM, cryo-ET and AFM

imaging techniques.

Figure 4. CD (red line) and LD (green line) spectra of an aqueous solution of
the achiral mesomer 1 c. To compare the band positions, a normalised iso-
tropic absorption spectrum (blue broken line) is added to the graph without
a dedicated ordinate.

Figure 5. Disaggregation of J aggregates of A) the R enantiomer 1 a and
B) the mesomer 1 c upon MeOH titration. The equilibration time between
each titration step was 5 min. Starting solution: 0.1 mm dye in pure water.
Arrows indicate the effect of increasing MeOH concentration: A) [MeOH]: 0,
10, 20, 30, 40, 50 and 60 %; B) [MeOH]: 0, 10, 20, 30, 40, 45, 50 and 60 %.
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Sheet-like assemblies of the enantiomers

Both enantiomers (1 a and 1 b) assemble into sheets with di-
mensions in the micrometre range (Figure 6). The sheets are

separated without any tendency to form stacks. Occasionally
emerging wrinkles (dark lines marked by white arrowheads)

were used to estimate a sheet thickness of approximately
6 nm. This value, however, is only a rough estimate due to in-

homogeneous folding events and blurring at the edges of the

folds.

For a more accurate determination of the thickness, AFM
measurements were exemplarily performed on R-enantiomer

sheets deposited on mica support in a water-filled liquid cham-

ber. Sheets with a thickness of 4–4.5 nm were imaged in Peak-
Force mode (Figure 7 A, B). Even smaller sheets deposited on

top provided additional plateaus of about 4.5 nm high. The
value corresponds approximately to twice the length of the

molecule, and thus, indicates a bilayer arrangement of dye
molecules (Figure 7 C). Despite a high level of order, as sug-

gested by the narrow absorption band (cf. Figure 2), ultra-

structuring of the surface of sheets could not yet be resolved.

Tubular assemblies of the mesomer

Other than the enantiomers, the mesomer (1 c) forms tubular
supramolecular aggregates. In one particular preparation, we

found almost exclusively individual tubes with maximum

lengths reaching several micrometres, whereas other prepara-
tions predominantly showed tube bundles with varying de-

grees of twist. Once formed, the particular proportions of
tubes and bundles in either sample persisted over time (Fig-

ure S2 in the Supporting Information). The heterogeneity in
preparation-dependant structural varieties, however, remains

unexplained.

Figure 8 displays a sample of 1 c in which almost exclusively
individual tubes were formed. The high spatial image resolu-

tion reveals the double-layer architecture of the tube walls.
The line plot (right) averages the grey values of a 41 nm long

straight tube section (red area) along its central axis, and thus,
provides the cross-sectional electron density with enhanced

signal-to-noise ratio of the tubes. The labelled tube has an

outer diameter of about 12.9 nm and an inner diameter of
about 4.9 nm. The total thickness of the wall is about 4.0 nm

(dark dashed lines) and the peak to peak distance (highest
densities) between the layers measures 2.1 nm (light dashed

lines) and corresponds to previous data of C8O3 tubes.[5b, 18]

The peaks mark the positions of the electron-rich dye skeleton
(chromophore). Thus, the profile of the bent double layer of

the tubes is in good agreement with that of the flat double
layer (cf. Figure 7 C) and matches the molecular dimensions.

To look for long-term changes in morphology, we re-exam-
ined the 1 mm solution after 2, 21 and 125 days. Statistical

Figure 6. The cryo-TEM image of a 0.1 mm solution of the R,R enantiomer
1 a in pure water reveals the formation of sheet-like aggregates. Their ap-
proximate thickness can be roughly estimated from wrinkles (arrowheads)
to measure (6:1) nm. Scale bar : 200 nm.

Figure 7. A) AFM image revealing the deposition of sheet-like aggregates
from the R enantiomer 1 a on mica. B) The height profiles measured along
the trajectories depicted by dashed lines in the top-view image show recur-
ring 4.5 nm steps, even if smaller aggregates are deposited on top of the
large sheets (red and green lines). C) Space-filling model of the aminopro-
panediol cyanine dye and a schematic representation of a J-type bilayer ar-
rangement thereof. The model reproduces the distance between opposing
chromophores and the overall thickness of the sheet-like aggregates from
the enantiomers, as elucidated from the AFM measurements. TBC chromo-
phores in a brickwork arrangement are represented by green blocks, diol
head groups by red ovals and hydrocarbon chains by grey rods.
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analysis of a total of 344 line plots (Figure 8), that is, approxi-
mately 100 from each sample, yielded mean diameters of 12.7,

12.5 and 12.7 nm, with standard deviations of 0.76, 0.97 and
0.64 nm, respectively, for each subset. This proves a robust ge-

ometry of the individual tubes, even upon long-term storage.

The (outer) tube diameter is a little larger than that of the
parent dye C8O3 (for pure dye: &10.0 nm,[5b] for poly(vinyl al-

cohol)-stabilised tubes: 11.5 nm[18]) and comparable with that
of the sulfonic acid analogue, C8S3, prepared by the alcoholic

route (13 nm[9a, 19]). The wall thickness of about 4 nm, however,
is almost identical for all tubes.

Figure 9 A displays a cryo-TEM image of a 1 mm solution of

the mesomer (1 c). Here, next to short individual tubes tube
bundles, such as those often found for the parent dyes

C8O3[5b, 21] and C8S3,[5e, 19] are also obtained.

To elucidate the three-dimensional volume structure of the
twisted bundles, we subjected the sample to cryo-ET. The to-

mogram was reconstructed from 65 single exposures taken at
angles from @65 to 638 in 28 tilt increments. Slices of the to-

mogram along the boxed bundle (Figure 9 A) provide five
tubes that are hexagonally arranged around a sixth central
tube (Figure 9 B). This composition leaves a void at the outer
face of the aggregate, which permits the continuous displace-
ment of this pattern to be followed along the long axis of the

bundle by scrolling through slices of the tomogram (see Fig-
ure S4 in the Supporting Information). A complete 3608 cycle,
corresponding to the pitch of the bundle, is 400 nm. A total of
232 extracted slices were used to calculate the mean cross sec-
tion of the bundle with an enhanced signal-to-noise ratio (Fig-
ure 9 B). Due to the complete 3608 rotation of the motif along

the long axis of the bundle, a complete and accurate density
profile is averaged without restriction of the missing wedge ar-
tefact. This motif was used for the reconstruction of the com-

plete volume of the bundle (Figure 9 C). It becomes apparent
that the wall thickness between the tubes and towards the ex-

terior of the bundle is the same, which reveals that the
double-layer construction of the tube walls is absent in the in-

terior of the bundles, where tubes should form two double

layers at their contact faces.
Recently, Eisele et al. elucidated the same deviation of tube

layers for bundles of C8S3 by using cryo-ET volume reconstruc-
tions.[5e] They assumed that, upon bundling, the originally bi-

layered tubes lose their outer layer. In the following, we de-
scribe an image-based approach to reveal an even more de-

tailed insight into this unusual molecular tube layer organisa-

tion.

Modelling of tube bundles

Due to the limited resolution in cryo-ET data, more detailed in-
formation about the supramolecular construction can be ob-

tained by analysing individual cryo-TEM projection images re-
corded at higher magnification by a geometry-based simula-

tion approach. We were particularly interested in the structural
organisation at the interfaces of adjacent tubes. Hereby, the

hexagonal arrangement of tubes, as observed by cryo-ET (cf.
Figure 9 B), provided the basic motif.

The projection pattern along the twisted bundle in Fig-

ure 10 D was used as an experimental reference. Because the
changes in the pattern along the bundle axis are a structural

equivalent of rotation around the bundle axis (as proven by
the cryo-ET data), we compare the systematic variation in the
experimental projection pattern with that of a rotated hexago-
nally packed bundle of tubes, the multiplicity and tube diame-
ter of which can be determined directly from the cryo-TEM

image (cf. Figure S5 in the Supporting Information). For the
case at hand (see Figure 10 D), we determined multiplicities of
4, 4 and 5 layers in the directions of 0, 60 and 1208, respective-
ly, and a tube diameter of 8.4 nm from line distances at 30, 90
or 1508. These values indicate a tube arrangement, as shown
in Figure 10 C.

Figure 8. Left) The cryo-TEM image of a two-day-old 1 mm solution of the
mesomer 1 c in pure water displays uniform individual tubes. Their lengths
often exceed several micrometres. The line plot (right) across the highlight-
ed tube section provides the cross-sectional density, and thus, allows for the
precise characterisation of the double-layer structure of the tubes and their
dimensions. Scale bar: 50 nm.

Figure 9. A) Cryo-TEM image of the mesomer 1 c in a 1 mm aqueous solu-
tion, which was subjected to cryo-ET, showing individual tubes and twisted
tube bundles. Scale bar : 200 nm. B) A summed image of aligned slices ex-
tracted perpendicular to the long axis of the labelled bundle from the recon-
structed volume provides a mean cross-sectional density with enhanced
signal-to-noise ratio (note the inverted contrast necessary for image process-
ing). Due to rotation of the motif upon following the long axis of the bun-
dles, the missing wedge artefact of the tomography reconstruction can be
overcome. Scale bar: 50 nm. C) The averaged cross section was used to re-
construct a 3D model of the bundle, which is presented in voltex[20] repre-
sentation to illustrate the twisted course of the constituent tubes.
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We calculated the back-projections of the respective 3D
volume and compared them with the experimental data. The

back-projection patterns of the side-by-side arranged tube
bundle (Figure 10 E, row 1) coincide fairly well with the data. A

compressed (interdigitated) arrangement of monolayered
tubes (Figure 10 B, right), however, revealed a much better fit
(Figure 10 E, row 2). Moreover, in this arrangement, unfavour-

able voids at the trigonal contact interfaces of the tubes
(arrow in Figure 10 B, left) are largely diminished (right).

To obtain information about the assembly process for the
tube bundles, we prepared early states of aggregation. A cryo-

preparation 6 h after dissolution of the dye shows short, only

50–100 nm long, bundles (Figure 11), which already exhibit the
typical patterns of a twisted bundle (cf. Figure 9). Its existence

at this early stage of the aggregation process, as well as the
persistence of individual tubes, indicates a new aspect of as-

sembly growth, that is, the hierarchical organisation of tubes
into bundles clearly results from intrinsic supramolecular inter-

actions at the start of aggregation and contravenes the as-

sumption that bundling and twisting is caused in a multi-stage
process over time.

Needle-shaped crystals of the conformer

The conformer (2) showed macroscopically visible needle-like
aggregates that were too large to prepare for cryo-TEM. Upon

addition of methanol, however, the needles became signifi-

cantly smaller, and thus, enabled cryo-TEM investigations.
In contrast to 1 c, cryo-TEM images of aqueous solutions of

2 revealed very few individual tubes or tube bundles
(Figure 12, black arrowheads); predominantly, the formation of

smooth, elongated structures occurs. The latter can reach
lengths of several micrometres and widths of hundreds of

nanometres. Despite their dimensions, the large assemblies

seem to preserve some flexibility because many of them are
slightly bent. Nevertheless, frequently occurring very narrow

line patterns suggest a repetitive crystalline order. These mor-
phological findings are in line with the observed spontaneous

precipitation of dye 2 and the remarkably broad absorption
bands. Although tube-like aggregates were formed in negligi-

ble amounts, crystallisation seems to dominate over supra-

molecular aggregation in case of 2.

Figure 10. Modelling of a twisted tube bundle. A) Cross-sectional view of a
model tube with a monolayered wall. Constituent dye molecules are orient-
ed with their head groups (red) towards a central channel, whereas octyl
chains (grey) point outwards. B) Packing motifs for tubes in a bundle. Side-
by-side arrangement of the tubes (left), leaving voids at the interfaces. Com-
pressed packing of the tubes (right) diminishes interspaces. C) Cross section
of a bundle of monolayered tubes (see A), reproducing the number and ori-
entation of the tubes in the original bundle in D). This cross section was
used to generate a 3D model of the respective bundle (cf. Figure S6 in the
Supporting Information). D) Cryo-TEM image of a twisted bundle with the
marked positions of characteristic line patterns. E) Back projection patterns
in 108 steps of 3D models calculated for the side-by-side arrangement
(row 1), the compressed packing (row 2) and the experimental cryo-TEM
data (row 3). Projection images of the compressed arrangement reveal a
much better match with the experimental data.

Figure 11. Twisting and bundling starts at the early state of the aggregation
process. This micrograph shows a vitrified sample prepared 6 h after the dis-
solution of solid matter in water. Next to short individual tubes, a short
(&100 nm length) twisted bundle can be found. Scale bar: 100 nm.

Figure 12. Cryo-TEM image of an aqueous solution of the conformer 2, con-
taining 30 vol % of methanol, displaying a few tube bundles (black arrow-
heads) and predominantly wide, elongated and non-twisted crystalline as-
semblies. Scale bar: 100 nm.
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Discussion

Monomer spectra of all novel dyes coincide with the respective
data of the parent dye C8O3, which proves that modifications

in the head group chemistry have no effect on the electronic
properties of the chromophore. In water, red-shifted absorp-

tion spectra indicate the formation of J aggregates for all four
dyes. Spectral differences among the new dyes, as well as in

relation to C8O3 or C8S3, which only differ in hydrophilic head

groups, indicate different molecular organisations.
Structural investigations showed that the enantiomers (1 a

and 1 b) formed sheet-like aggregates, as observed earlier for
related dyes C2S4 and C8O4.[8] Absorbance and fluorescence

spectra are similar and in line with the supramolecular struc-
ture of the aggregates. Brickwork-like arrangements of mole-

cules in flat, two-dimensionally extended sheets can explain

this behaviour.[22] In contrast, spectra of the mesomer (1 c) re-
semble those of special preparations of the reference dyes

C8O3 and C8S3, in which bundles of tubes dominate.
Isolated tubes show two longitudinally polarised transitions

on the low-energy side of the absorption spectrum. Thereby,
both transitions are radiative. In addition, perpendicularly po-

larised transitions are observed at higher energy. This results

from the double-layer architecture of the tube walls.[5f, 18, 23] In
contrast, single-layered tubes show only one longitudinally po-

larised, low-energy transition accompanied by a perpendicular-
ly polarised transition at higher energy and only one emission

band in resonance with the low-energy absorption band.[17]

Eisele et al. explained this interesting effect by the loss of the

outer dye monolayer during the bundling process.[5e] A similar

spectral single-layer signature was observed for preparations
of the mesomer (cf. Figures 2 B and 4). Because tube bundles

were also detected for 1 c, we suggest that the same mecha-
nism is valid for this derivative. Volume reconstruction from

cryo-ET data and modelling of highly resolved tube bundle
projection images support this concept and provide additional

details. The observation of a spectral single-layer signature for

the preparation, with exclusively isolated double-layered tubes,
however, cannot be explained at present.

Amphiphilic dye aggregation in water is driven by a multi-
tude of different forces: amphiphilic and dispersive interactions
of alkyl chains, chromophores, and the extended planar p sys-
tems, as well as interactions and steric demand of the head

groups. Because both the hydrophobic part of the molecules
and the chemical composition of the head groups are identical
for all new dyes, the differing aggregation behaviour must
result from differing interactions of the head groups due to
their stereochemistry. Our results reveal that inversion of one

stereocentre (enantiomer vs. mesomer) induces the formation
of completely different architectures, that is, sheets (Figure 6)

and tubes (Figures 8 and 9), respectively, which are associated
with particular spectroscopic characteristics.

The chiral enantiomers (1 a and 1 b) form planar, and hence,

achiral aggregates, which is a rather unexpected result given
the multitude of chiral ultra-structures reported for chiral com-

pounds in the literature. Thickness measurements indicate that
the sheets of the enantiomers are formed by molecular double

layers, as expected from the amphiphilic character of the
dyes.

According to theory, the spectroscopic properties of J aggre-
gates can be explained by a head-to-tail arrangement of the

transition dipoles of the chromophores. Such an arrangement
is realised in a two-dimensional layer of dye molecules, in

which neighbouring molecules are shifted against each other
in a brickwork-like pattern (Figure 13 A).[2, 22] The model explains
the occurrence of a single, sharp absorption band and the

quasi-resonant emission. This simple spectroscopic behaviour
is observed for many sheet-like J aggregates, including the re-
lated cyanine dyes C2S4 and C8O4, which form extended
monolayers and double-layered sheets, respectively.[5b] Consid-

ering their similar spectroscopic and structural features, we
assume a comparable brickwork arrangement for the enantio-

mers (Figure 13).

The fact that 1 a and 1 b form planar structures upon aggre-
gation seems all the more surprising because the related achi-

ral dyes C8O3 and C8S3 form double-layered tubular struc-
tures instead. Some of these tubular structures reveal even hel-

Figure 13. Top: The brickwork arrangement of cyanine dyes constitutes the
basic arrangement of molecules in the sheet-like J aggregates. Bottom: If
rolled up into tubes, a helical arrangement of the constituent dyes results,
which causes a strong CD signal of the superficially achiral structure.
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ical packing patterns,[6, 15] and the tubes show generally a
strong tendency to assemble into twisted rope-like bundles.[5b]

Hence, such tubes possess a chiral structure and their absorp-
tion behaviour can be modelled on this basis.[5f, 8c, 9a, 23] The abili-

ty of the presented non-chiral derivatives, that is, the achiral
mesomer (1 c) and the non-chiral conformer (2), to form tubes

suggests a comparable architecture. Considering the Cotton
effect of their CD spectra (Figure 4), at least the tubular assem-

blies of 1 c are organised in a chiral molecular arrangement

(Figure 13 B).
The clear inverse relationship between molecular chirality

and helicity of supramolecular architecture asks for a model
that can explain the various structures and is consistent with

the detected spectra.
The formation of chiral supramolecular structures from achi-

ral or non-chiral molecules in solution has been reported, but

remains rare.[24] This may derive from the even probabilities to
form right- or left-handed assemblies, resulting in a net zero

CD signal. Only homochirality can be detected unambiguously
by means of CD spectroscopy. Examples include the non-chiral

cyanine dye C8O3[10a, 11] or the generation of a [1.0] polyglycerol
amphiphile reported by Kumar et al.[25] In the latter case, chiral

ultra-structuring of the self-assembled tubes was detected by

CD only in the case of the meso form. The origin of this supra-
molecular chirality was explained to result from the coopera-

tion of a fixed lateral arrangement of molecules and specific in-
termolecular hydrogen-bonding patterns of the hydroxyl

groups, which produce a strong helical twist of the molecular
stacks only in case of the meso form.

We consider a similar reason here. In a brickwork arrange-

ment of the enantiomers forming the planar double layer, the
rows of molecules are positioned in a way that neighbouring

rows are staggered approximately by half of the chromophore
length (Figure 14). The distance between the rows results from

the space demand of the chromophore skeletons, which is
0.35–0.4 nm. By placing the enantiomers accordingly, continu-

ous strings of hydroxyl groups can be observed running trans-

versely with respect to the rows of the chromophores
(Figure 14, top). A more detailed presentation (below) shows

that all OH groups within a row are connected by endless hy-
drogen-bond chains. Thus, each dye molecule interacts strong-
ly with four neighbouring molecules to stabilise the planar ar-
rangement. In the case of the mesomer (Figure 14, bottom),
however, the inversion of one of the chiral centres prevents

linear hydrogen bonds of hydroxyl groups due to their alter-
nating orientation (marked by a red circle). The curved molecu-

lar arrangement upon rolling of the sheets into tubes is stabi-
lised by enhanced chromophore interactions.

This comparison gives a good explanation not only of how
the introduction of hydrogen-bonding OH groups can direct
the formation of planar sheets in the case of a chiral com-

pound, but also of why the formation of tubular aggregates is
preferred by the achiral mesomer. In this respect, as well as re-
garding the aggregation behaviour of the parent C8O3/S3
dyes, which both only form tubular aggregates, one can sus-
pect that the formation of tubes may be an intrinsic property
of the hydrophobic dye skeletons, with their hydrocarbon

chains, rather than being provoked by the hydrophilic head

groups. The observation that the diameter of monolayered

tubes (of the bundles) and of the inner cylinders of the bilay-
ered tubes are identical points at comparable chromophore in-

teractions in both architectures. The initial twist in the mono-
layered inverted tube bundles, however, gives direct structural

evidence for chiral packing in both tubular assembly struc-
tures. It is, however, still not clear what drives the assembly

process of the mesomer into two structurally different species

(individual tubes and bundles).

Conclusion

We have synthesised a new group of TBC-based amphiphilic
cyanine dye derivatives by converting the anionic carboxylic

Figure 14. Top: The brickwork arrangement of the S enantiomers gives rise
to continuous strings of hydroxyl groups (red) running transversely to the
chromophore skeletons (coloured in the background). The close up (lower
image) shows the OH groups properly situated to form endless hydrogen-
bridge chains. Hence, all dye molecules are connected to four neighbouring
molecules (coloured). This stable two-dimensional arrangement is the
unique feature for the chiral enantiomers and cannot be realised by the
meso form (bottom) due to the different orientation of the respective OH
group at the chiral centre (red circles).
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acid groups into non-ionic hydroxyl functionalities. The com-
pounds contain aminopropanediol groups, which provide suffi-

cient water solubility and defined chirality. To produce the
achiral meso form of the dye, a new synthetic route towards

asymmetrically functionalised TBC dyes was established.
All compounds formed J aggregates in water. Cryo-TEM re-

vealed the formation of extended sheet-like aggregates for the
chiral enantiomers 1 a and 1 b and individual tubes, with a di-

ameter of 12–13 nm, as well as tube bundles for the mesomer

1 c. In the case of the conformer 2, needle-like crystals pre-
dominate by far.

Our findings demonstrate that the supramolecular aggrega-
tion behaviour of cyanine dyes can be controlled solely by ste-

reochemistry. The surprising aspect is the inverse relationship
between molecular chirality and helicity of the supramolecular
architecture. The reason is clearly the special interaction of the

non-ionic hydroxyl functionalities. In the case of the chiral
enantiomers 1 a and 1 b, extended hydrogen-bond chains can

interconnect molecules in a brickwork arrangement. This yields
a two-dimensional planar network that prevents the spontane-
ous formation of curved assemblies, such as the tubes and
tube bundles formed by 1 c, which are not capable of forming

comparable hydrogen-bond chains.

Absorption, LD and fluorescence spectra of the tubes indi-
cate a monolayered architecture, although single tubes clearly

show a double-layer wall geometry. In a recent report,[5e] this
apparent contradiction was resolved by the evidence of a

dominating population of tube bundles. Supported by cryo-ET,
it was observed that during the hierarchical assembly of the bi-

layered C8S3 tubes into bundles the outer monolayer was lost.

The present cryo-ET investigation and structural analysis of
similar bundled aggregates not only affirms this interpretation,

but adds evidence for tight packing of the hydrophobic cylin-
ders.

New insights into the interdependence of stereochemistry
and supramolecular aggregation behaviour of cyanine dyes

might contribute to the development of specialised, dye-based

materials with predictable properties.

Experimental Section

Materials

Dry solvents and chemicals were purchased from Sigma–Aldrich,
TCI and abcr Chemicals. Ethyl acetate, hexane and dichlorome-
thane were distilled before use in reactions and in compound puri-
fications. Enantiopure (R)- and (S)-solketal were purchased from TCI
with 98 % ee optical purity. C8O3 was obtained from FEW chemi-
cals (Wolfen, Germany). Reactions were monitored by using TLC on
silica-coated aluminium sheets with 60 F254 silica gel or 60 RP-18
F254S silica gel for reverse-phase analysis. All intermediates were
purified by using normal-phase column chromatography and auto-
mated flash chromatography on a combi Flash Rf column (Teledyne
ISCO) packed with normal silica gel (30 mm). The final products
were purified by using reverse-phase preparative HPLC.

NMR spectroscopy

1H and 13C NMR spectra were recorded on a JEOL ECP 500 spec-
trometer (500 MHz).

Mass spectrometry

Mass spectra were recorded by using an Agilent 6210 ESI-TOF
spectrometer.

Sample preparation

Dye stock solutions were prepared from dried solid matter and the
respective solvent by vigorously shaking the samples. For spectro-
scopic measurements, the solutions were diluted, if necessary.

Spectroscopic measurements

Isotropic absorption spectra (UV/Vis) were measured on a Varian
Cary 50 spectrophotometer (Agilent Technologies Inc. , Santa Clara,
USA); fluorescence spectra were measured on an LS 50B lumines-
cence spectrometer (PerkinElmer, Rodgau, Germany). CD and LD
were measured on a J-810 spectropolarimeter (Jasco Corp., Tokyo,
Japan), which could be equipped with a microvolume Couette
flow LD cell (Dioptica Scientific Limited, Rugby, Warwickshire, UK)
with a 0.5 mm optical path length for the LD measurement.[26] The
LD spectra were independent of the angular velocity of the rotat-
ing cell. Rotating velocities up to 3000 rpm, corresponding to
shear forces of about 1200 s@1, were used. CD measurements were
carried out at 20 8C; all other spectroscopic measurements were
performed at room temperature ((22:1) 8C). Cuvettes for UV/Vis,
fluorescence and CD spectroscopy were siliconised before mea-
surements, according to the “Siliconization of Glassware” protocol
by using a silicone solution in isopropanol (SERVA Electrophoresis
GmbH, Heidelberg, Germany).

cryo-TEM

The 200 mesh grids covered with perforated carbon film (R1/4
batch of Quantifoil, MicroTools GmbH, Jena, Germany) were
cleaned with chloroform and hydrophilised upon 60 s glow dis-
charging at 8 W in a BAL-TEC MED 020 device (Leica Microsystems,
Wetzlar, Germany). After applying aliquots (5 mL) of the dye solu-
tion to the grids, the samples were vitrified by automated blotting
and plunge freezing into liquid ethane by using an FEI Vitrobot
Mark IV device (Thermo Fisher Scientific Inc. , Waltham, MA, USA).
The vitrified specimens were transferred under liquid nitrogen to
an FEI TALOS L120C electron microscope (Thermo Fisher Scientific
Inc. , Waltham, MA, USA) by using a Gatan cryo-holder and stage
(model 626, Gatan, Inc. , Pleasanton, CA, USA). The microscope was
equipped with an LaB6 cathode and operated at 120 kV accelerat-
ing voltage. Micrographs were acquired on an FEI Ceta CMOS
camera (Thermo Fisher Scientific Inc. , Waltham, MA, USA) at a
nominal magnification of 36 000 V , corresponding to a calibrated
pixel size of 4.09 a per pixel.

cryo-ET

Vitrified specimens (see above) intended for cryo-ET were trans-
ferred to the autoloader of an FEI TALOS ARCTICA electron micro-
scope (Thermo Fisher Scientific Inc. , Waltham, MA, USA). This mi-
croscope is equipped with a high-brightness field-emission gun
(XFEG) operated at an acceleration voltage of 200 kV. Micrographs
were acquired on an FEI Falcon 3 direct electron detector (Thermo
Fisher Scientific Inc. , Waltham, MA, USA) at a nominal magnifica-
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tion of 28 000 V , corresponding to a calibrated pixel size of 3.64 a
per pixel.
Tomography series were recorded in the context of FEI Tomogra-
phy Software V 4.3.1. The 4096 V 4096 pixel images were recorded
in the tilt angle range of :658 in 28 increments, with a total elec-
tron dose of 180 e a@2. The 3D volume reconstructions were calcu-
lated with the help of INSPECT3D Software V4.4 (Thermo Fisher
Scientific Inc. , Waltham, MA, USA) and visualised with Imod
V4.9.10.[27]

Image processing

Every three consecutive slices of the tomogram along the tube
bundle were summed and cropped by using the slicer of Imod
V4.9.10.[27] The cross-sectional motif of the bundle was boxed off
these images by using the boxer module of the EMAN software
package.[28] Alignments, multivariate statistical analysis (MSA) of a
total of 232 such motifs, summing, and finally construction of a
twisted 3D volume of the bundle with a pitch of 400 nm was per-
formed with the Imagic 5 software package (Image Science Soft-
ware GmbH, Berlin, Germany). The resulting 3D volume was visual-
ised by using AMIRA Software V2019.1 (Thermo Fisher Scientific
Inc. , Waltham, MA, USA).

AFM

AFM was carried out with a Multimode 8 nanoscope with Nano-
controller V (Bruker, Billerica, MA, USA) and equipped with ultra-
sharp PEAKFORCE-HIRS-F-B tips (Bruker), providing a nominal
radius of 1 nm and maximum radius of 2 nm. The sample was pre-
pared by deposition of the 0.1 mm aqueous solution of dye (10 mL)
on cleaved mica, which was fixed on a circular metal disk with
double-sided tape. The dye assemblies were allowed to settle for
about 5 min before the solution was blotted with filter paper until
only a thin solution film was left. The sample was then immediate-
ly mounted on the AFM scanner and a liquid chamber was assem-
bled and carefully filled with Milli-Q water to prevent drying of the
sample. Imaging was performed with a calibrated cantilever[29] in
PeakForce quantitative nanomechanics (QNM) mode,[30] to control
the loading force on the sample at all times. The maximum loading
force used was 500 pN, the resolution was 512 points per line, and
the scan rate was 0.7 Hz.

Synthesis

Compounds 3 a and 3 b : Enantiopure solketal (R or S) was convert-
ed into the corresponding phthalimide according to the published
procedure from Goubert et al.[31]

Compound 3 a : From (R)-(@)-2,2-dimethyl-1,3-dioxolane-4-metha-
nol (4.2 g, 31.8 mmol), the corresponding phthalimide 3 a was ob-
tained as a colourless solid (7.6 g, 92 %). 1H NMR (500 MHz, CDCl3):
d= 7.84 (dd, J = 5.4, 3.0 Hz, 2 H), 7.71 (dd, J = 5.5, 3.0 Hz, 2 H), 4.49–
4.38 (m, 1 H), 4.06 (dd, J = 8.7, 6.2 Hz, 1 H), 3.92 (dd, J = 13.8, 6.9 Hz,
1 H), 3.84 (dd, J = 8.7, 5.1 Hz, 1 H), 3.71 (dd, J = 13.8, 5.3 Hz, 1 H),
1.43 (s, 3 H), 1.30 ppm (s, 3 H); 13C NMR (126 MHz, CDCl3): d= 168.3,
134.2, 132.1, 123.5, 110.0, 73.4, 67.5, 41.1, 27.0, 25.5 ppm; HRMS:
m/z calcd for C14H15NNaO4

+ : 284.0893; found: 284.0898.
Compound 3 b : From (S)-(++)-2,2-dimethyl-1,3-dioxolane-4-metha-
nol (2.0 g, 15.1 mmol), the corresponding phthalimide 3 b was ob-
tained as a colourless solid (3.3 g, 83 %). 1H NMR (500 MHz, CDCl3):
d= 7.84 (dd, J = 5.5, 3.0 Hz, 2 H), 7.71 (dd, J = 5.5, 3.0 Hz, 2 H), 4.49–
4.38 (m, 1 H), 4.06 (dd, J = 8.7, 6.2 Hz, 1 H), 3.92 (dd, J = 13.8, 6.9 Hz,
1 H), 3.84 (dd, J = 8.7, 5.1 Hz, 1 H), 3.71 (dd, J = 13.8, 5.3 Hz, 1 H),
1.43 (s, 3 H), 1.30 ppm (s, 3 H); 13C NMR (126 MHz, CDCl3): d= 168.3,

134.2, 132.1, 123.5, 110.0, 73.4, 67.5, 41.1, 27.0, 25.5 ppm; HRMS
m/z calcd for C14H15NNaO4

+ : 284.0893; found: 284.0891.
Compounds 4 a and 4 b : 2-[(2,2-Dimethyl-1,3-dioxolan-4-yl)meth-
yl]isoindoline-1,3-dione 3 (a or b) were reacted according to a pro-
cedure published in the literature.[31]

Compound 4 a : From (S)-phthalimide 3 a (1.4 g, 5.4 mmol), the cor-
responding amine 4 a was obtained as a pale-yellow liquid (0.3 g,
43 %). 1H NMR (500 MHz, CD3OD): d= 4.14 (qd, J = 6.4, 4.8 Hz, 1 H),
4.05 (dd, J = 8.3, 6.4 Hz, 1 H), 3.65 (dd, J = 8.3, 6.3 Hz, 1 H), 2.81–2.64
(m, 2 H), 1.39 (s, 3 H), 1.33 ppm (s, 3 H); 13C NMR (126 MHz, CD3OD):
d= 110.3, 78.1, 68.0, 45.2, 27.2, 25.6 ppm; HRMS: m/z calcd for
C6H14NO2

+ : 132.1019; found: 132.1008.
Compound 4 b : From (R)-phthalimide 3 b (1.0 g, 3.9 mmol), the
corresponding amine 4 b was obtained as a pale-yellow liquid
(0.28 g, 55 %). 1H NMR (500 MHz, CD3OD): d= 4.13 (qd, J = 6.4,
4.8 Hz, 1 H), 4.04 (dd, J = 8.2, 6.4 Hz, 1 H), 3.65 (dd, J = 8.2, 6.4 Hz,
1 H), 2.80–2.64 (m, 2 H), 1.39 (s, 3 H), 1.33 ppm (s, 3 H); 13C NMR
(126 MHz, CD3OD): d= 110.3, 78.2, 68.1, 45.3, 27.2, 25.6 ppm;
HRMS: m/z calcd for C6H14NO2

+ : 132.1019; found: 132.1037.
Compounds 5 a and 5 b : DIPEA (0.518 mmol) was added to a solu-
tion of C8O3 (30 mg, 0.037 mmol), HATU (48 mg, 0.126 mmol) and
solketal amine 4 (a or b ; 48.5 mg, 0.370 mmol) in DMF (3 mL) and
the mixture was stirred at RT for 2 h. After removal of the solvent
in vacuum, the residue was dissolved in CH2Cl2 and washed with
water three times. The combined organic phases were concentrat-
ed, and the residue was purified by automated column chromatog-
raphy (CH2Cl2/methanol, 0–5 %).
Compound 5 a : Solketal amine 4 a was reacted according to the
above-described procedure and dye 5 a was obtained as a red
solid (36 mg, 91 %). 1H NMR (700 MHz, CD3OD): d= 8.00 (s, 1 H),
7.76 (s, 2 H), 7.73 (s, 2 H), 4.31 (dt, J = 14.9, 7.5 Hz, 8 H), 4.10 (p, J =
5.8 Hz, 2 H), 3.97 (dd, J = 8.4, 6.3 Hz, 2 H), 3.60 (dd, J = 8.4, 5.9 Hz,
2 H), 3.28–3.20 (m, 4 H), 2.39 (t, J = 6.7 Hz, 4 H), 2.14 (p, J = 6.9 Hz,
4 H), 1.87 (p, J = 7.4 Hz, 4 H), 1.45–1.21 (m, 32 H), 0.86 ppm (t, J =

7.0 Hz, 6 H); 13C NMR (176 MHz, CD3OD): d= 174.4, 151.4, 144.1,
133.8, 133.6, 128.7, 116.6, 112.6, 110.5, 75.9, 68.2, 46.3, 45.7, 43.0,
32.9, 32.7, 30.8, 30.4, 29.1, 27.7, 27.2, 25.6, 24.6, 23.7, 14.4 ppm;
HRMS: m/z calcd for C53H77Cl4N6O6

+ : 1035.4624; found: 1035.4713.
Compound 5 b : Solketal amine 4 b (48.5 mg, 0.370 mmol) was re-
acted according to the above-described procedure and dye 5 b
was obtained as a red solid (32 mg, 81 %). 1H NMR (700 MHz,
CD3OD): d= 8.01 (s, 1 H), 7.76 (s, 2 H), 7.73 (s, 2 H), 5.82 (d, J =
13.3 Hz, 2 H), 4.31 (dt, J = 14.0, 8.0 Hz, 8 H), 4.10 (p, J = 5.8 Hz, 2 H),
3.97 (dd, J = 8.4, 6.3 Hz, 2 H), 3.60 (dd, J = 8.4, 5.9 Hz, 2 H), 3.26–3.21
(m, 4 H), 2.38 (t, J = 6.8 Hz, 4 H), 2.14 (p, J = 7.0 Hz, 4 H), 1.87 (p, J =
7.3 Hz, 4 H), 1.45–1.21 (m, 32 H), 0.85 ppm (t, J = 6.9 Hz, 6 H);
13C NMR (176 MHz, CD3OD): d= 174.5, 151.3, 133.8, 133.6, 128.9,
128.6, 112.5, 110.5, 75.9, 68.2, 46.3, 45.7, 43.0, 32.9, 32.7, 30.4, 30.3,
29.1, 27.6, 27.2, 25.6, 24.6, 23.7, 14.4 ppm; HRMS: m/z calcd for
C53H77Cl4N6O6

+ : 1035.4624; found: 1035.4797.
Compounds 1 a and 1 b : Hydrogen chloride (1.301 mmol) was
added to a solution of dye 5 (a or b ; 0.033 mmol) in methanol
(100 mL) and the mixture was stirred at RT for 3 h. The solvents
were removed under vacuum by distillation with toluene and the
crude product was lyophilised. The obtained residue was purified
by means of reversed-phase column chromatography with water/
acetonitrile (75 %) and 50 mm ammonium formate.
Compound 1 a : Dye 5 a (35 mg, 0.033 mmol) was reacted accord-
ing to the procedure described above. Dye 1 a was obtained as a
red solid (31.4 mg, 96 %). 1H NMR (700 MHz, CD3OD): d= 8.46 (m,
1 H), 8.40–8.38 (m, 2 H), 8.36 (m, 1 H), 7.25 (s, 1 H), 4.71–4.53 (m,
8 H), 3.65–3.58 (m, 3 H), 3.49–3.43 (m, 3 H), 3.20 (m, 2 H), 3.01–2.99
(m, 1 H) 2.88–2.86 (m, 1 H), 2.52–2.41 (m, 4 H), 2.29–2.15 (m, 4 H),
2.04–1.91 (m, 4 H), 1.42–1.30 (m, 20 H), 0.92–0.88 ppm (m, 6 H);
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13C NMR (176 MHz, MeOD): d= 173.2, 150.5, 148.0, 141.4, 136.5,
131.8, 131.6, 131.4, 131.2, 131.1, 130.7, 115.4, 115.1, 70.5, 63.6, 55.8,
42.0, 31.5, 29.2, 28.8, 26.3, 22.4, 13.1 ppm; HRMS: m/z calcd for
C47H69Cl4N6O6

+ : 955.3998; found: 955.4044.
Compound 1 b : Dye 5 b (30 mg, 0.028 mmol) was reacted accord-
ing to the procedure described above. Dye 1 b was obtained as a
red solid (26.1 mg, 94 %). 1H NMR (700 MHz, CD3OD): d= 8.44 (s,
1 H), 8.38 (s, 1 H), 8.37 (s, 1 H), 8.33 (s, 1 H), 7.23 (s, 1 H), 4.68–4.49
(m, 8 H), 3.62–3.56 (m, 2 H), 3.44–3.42 (m, 4 H), 3.26–3.25 (m, 1 H)
3.17–3.14 (m, 1 H), 3.00–2.97 (m, 1 H), 2.86–2.83 (m, 1 H), 2.52–2.42
(m, 4 H), 2.25–2.13 (m, 4 H), 1.99–1.90 (m, 4 H), 1.52–1.29 (m, 20, H),
0.90–0.88 ppm (m, 6 H); 13C NMR (176 MHz, CD3OD): d= 174.6,
174.1, 151.9, 149.4, 143.0, 132.9, 132.9, 132.8, 132.7, 132.4, 132.4,
132.4, 132.3, 116.4, 116.3, 116.2, 71.9, 71.8, 65.0, 47.9, 47.3, 47.0,
43.4, 43.1, 33.0, 32.4, 32.1, 30.5, 30.4, 30.4, 30.3, 27.7, 25.9, 25.4,
23.7, 14.4 ppm; HRMS: m/z calcd for C47H69Cl4N6O6

+ : 955.3998;
found: 955.4044.
Compound 2 : DIPEA (88.2 mL, 0.518 mmol) was added to a solu-
tion of C8O3 (30 mg, 0.037 mmol), HATU (48 mg, 0.126 mmol) and
serinol (34 mg, 0.370 mmol) in DMF (3 mL) and the mixture was
stirred at RT for 2 h. After removal of the solvent under vacuum,
the residue was purified by means of reversed-phase column chro-
matography with water/acetonitrile (75 %) and 50 mm ammonium
formate to give compound 2 as a red solid (16 mg, 44 %). 1H NMR
(700 MHz, CD3OD): d= 8.50 (s, 1 H), 7.99 (s, 1 H), 7.78 (s, 2 H), 7.74 (s,
2 H), 4.35–4.28 (m, 12 H), 3.92 (p, J = 5.6 Hz, 2 H), 3.60 (dd, J = 11.0,
5.4 Hz, 4 H), 3.57 (dd, J = 11.1, 5.8 Hz, 4 H), 2.42 (t, J = 6.9 Hz, 4 H),
2.14 (p, J = 7.2 Hz, 4 H), 1.87 (p, J = 6.9 Hz, 4 H), 1.44–1.21 ppm (m,
20 H), 0.86 (t, J = 6.9 Hz, 6 H); 13C NMR (176 MHz, CD3OD): d= 174.4,
170.3, 151.33, 151.27, 133.8, 133.6, 128.7, 112.6, 62.1, 54.5, 46.3,
45.7, 33.0, 32.9, 30.4, 30.3, 29.1, 27.7, 24.8, 23.7, 14.4 ppm; HRMS
m/z calcd for C47H69Cl4N6O6

+ : 955.3998; found: 955.4007.
Compound 6 : The required amount of NaOH (1.09 g, 27.3 mmol,
1.1 equiv) was added to a stirred solution of 5,6-dichlorobenzimid-
azole (5 g, 24.8 mmol, 1 equiv) in DMSO. The reaction solution was
stirred for 2 h at room temperature. Thereafter, the calculated
amount of ethyl 4-bromobutanoate (5.82 g, 28.5 mmol, 1.2 equiv)
was added and the reaction mixture was left to stir for 48 h at
room temperature. Progress of the reaction was monitored by TLC
with methanol/dichloromethane as the eluent. On completion of
the reaction, the mixture was suspended in water and ethyl ace-
tate (3 V 30 mL). The combined organic layers were dried over an-
hydrous sodium sulfate and the solvent was evaporated to yield
the crude product, which was purified through column chromatog-
raphy with CH2Cl2 and methanol to give compound 6 as a white
solid (95 %). 1H NMR (500 MHz, [D3]methanol): d= 7.66 (s, 1 H), 7.61
(s, 1 H), 4.20 (t, J = 7.45, 3 H), 4.07–4.02 (q, 2 H), 2.59 (s, 3 H), 2.41 (t,
J = 6.70, 2 H), 2.08–2.02 (m, 2 H), 1.20 ppm (t, J = 7.15, 3 H); 13C NMR
(126 MHz, [D3]methanol): d= 174.2, 156.0, 142.3, 135.6, 127.1,
126.8, 120.1, 112.7, 61.7, 44.2, 31.5, 25.4, 14.4, 13.5 ppm; HRMS:
m/z calcd for C14H17Cl2N2O2

+ : 315.0361; found: 315.0589.
Compound 7: Compound 6 (2 g, 6.34 mmol, 1 equiv) was liquefied
at 150 8C. 1-Bromodecane (7.0 g, 31.7 mmol, 5 equiv) was added to
the reaction flask and the reaction mixture was left stirring at
150 8C for 6 h. After completion of the reaction (as indicated by
TLC with methanol/dichloromethane as the eluent), the reaction
mixture was extracted with water and dichloromethane (3 V
50 mL). The combined organic layers were dried over anhydrous
sodium sulfate and the solvent was evaporated to yield the crude
product, which was further purified through column chromatogra-
phy with CH2Cl2 and methanol as the eluent to give compound 7
as a light-yellowish solid (72 %). 1H NMR (500 MHz, CDCl3): d= 8.22
(s, 1 H), 7.81 (s, 1 H), 4.66 (t, J = 7.75, 3 H), 4.44 (t, J = 7.45, 3 H), 3.99–
3.95 (q, 2 H), 2.55 (t, J = 6.50, 2 H), 2.13–2.07 (m, 2 H), 1.82–1.76 (m,

2 H), 1.36–1.30 (m, 2 H), 1.25–1.11 (m, 13 H), 0.77 ppm (t, J = 4.55,
3 H); 13C NMR (126 MHz, CDCl3): d= 172.7, 153.1, 131.4, 131.3,
130.3, 130.1, 114.9, 114.0, 77.4, 77.2, 76.9, 60.7, 47.1, 45.9, 31.6, 30.2,
29.0, 28.9, 26.6, 23.9, 22.4, 14.0, 13.9, 13.0 ppm; HRMS: m/z calcd
for C22H34Cl2N2O2

+ : 428.1914; found: 428.1876.
Compound 8 : Compound 7 (1 g 1.8 mmol, 1 equiv) was stirred
with a 1:1 mixture of HBr (48 %) and water at 120 8C for 15 h. Prog-
ress of the reaction was monitored by TLC with methanol/dichloro-
methane as the eluent. On completion of the reaction, the reaction
mixture was cooled to room temperature. The precipitate was fil-
tered and washed with aqueous hydrobromic acid (5 % w/w) to
yield compound 8 as a light-yellowish solid (98 %). 1H NMR
(500 MHz, [D3]methanol): d= 8.35 (s, 1 H), 8.30 (s, 1 H), 4.55 (t, J =
7.77 Hz, 2 H), 4.48 (t, J = 7.65 Hz, 2 H), 2.98 (s, 3 H), 2.54 (t, J =
6.45 Hz, 2 H), 2.19–2.13 (m, 2 H), 1.93–1.86 (m, 2 H), 1.48–1.32 (m,
12 H), 0.91 ppm (t, J = 6.85 Hz, 3 H); 13C NMR (126 MHz,
[D3]methanol): d= 174.7, 153.2, 130.7, 114.6, 46.0, 45.0, 31.6, 29.6,
28.9, 28.7, 26.2, 23.5, 22.4, 13.0, 9.8 ppm; HRMS: m/z calcd for
C20H30Cl2N2O2

+ : 400.1608; found: 400.1601.
Compound 9 : The required amount of KOH (0.88 g, 15.8 mmol,
2 equiv) was added to a stirred solution of compound 6 (2.5 g,
7.9 mmol, 1 equiv) in ethanol. The reaction solution was stirred for
12 h at refluxing temperature. Progress of the reaction was indicat-
ed by TLC with methanol/dichloromethane as the eluent. On com-
pletion, the reaction mixture was neutralised by using Dowex-50
cation-exchange resin. The resin was filtered and the filtrate was
concentrated under reduced pressure to give compound 9 as an
off-white solid (95 %). 1H NMR (500 MHz, [D3]methanol): d= 7.76 (s,
1 H), 7.66 (s, 1 H), 4.24 (t, J = 7.55 Hz, 2 H), 2.60 (s, 3 H), 2.08, 2.06–
2.02 ppm (m, 2 H); 13C NMR (126 MHz, [D3]methanol): d= 174.8,
154.8, 140.9, 134.4, 125.8, 118.8, 111.5, 42.9, 29.9, 24.3, 12.1 ppm;
HRMS: m/z calcd for C12H13Cl2N2O2 : 287.0266; found: 287.0276.
Compound 10 : (S)-Solketal amine (4 b), EDC·HCl (2.0 g, 10.4 mmol,
1.5 equiv) and DMAP (0.45 g, 3.4 mmol, 0.5 equiv) were added to a
stirred solution of compound 9 (2.0 g, 6.94 mmol, 1 equiv) in DMF
(30 mL) at room temperature. The reaction mixture was left to stir
for 24 h. Progress of the reaction was monitored by TLC with
methanol/dichloromethane as the eluent. On completion, the mix-
ture was suspended in water and CH2Cl2 (3 V 30 mL). The combined
organic layers were dried over anhydrous sodium sulfate and the
solvent was evaporated to yield the crude product, which was pu-
rified through column chromatography with CH2Cl2 and methanol
as the eluent to give compound 10 as a white solid (75 %). 1H NMR
(500 MHz, CDCl3): d= 7.64, 7.37, 7.26, 6.11 (t, J = 5.6 Hz, 1 H), 4.19–
4.14 (m, 1 H), 4.10 (t, J = 7.2 Hz, 2 H) 4.02–3.99 (m, 1 H), 3.59–3.56
(m, 1 H), 3.55–3.51 (m, 1 H), 3.22–3.17 (m, 1 H), 2.52 (s, 3 H), 2.18 (t,
J = 6.8, 3 H), 2.08–2.03 (m, 2 H), 1.35 (s, 3 H), 1.28 ppm (s, 3 H);
13C NMR (126 MHz, CDCl3): d= 171.4, 153.8, 142.0, 134.5, 126.0,
125.8, 120.1, 110.7, 109.5, 77.4, 77.2, 76.9, 74.5, 66.8, 43.2, 42.0,
32.0, 26.9, 25.1, 24.9, 13.9 ppm; MS: m/z calcd for C18H24Cl2N3O3

+ :
400.1218; found: 400.1116.
Compound 11: Compound 10 (1.5 g, 6.34 mmol, 1 equiv) was liq-
uefied at 150 8C. 1-Bromodecane (7.0 g, 31.7 mmol, 5 equiv) was
added to the reaction flask and the reaction mixture was left to stir
at 150 8C for 6 h. Progress of the reaction was monitored by TLC
with methanol/dichloromethane as the eluent. Upon completion
of the reaction, the mixture was extracted with water and dichloro-
methane (3 V 50 mL). The combined organic layers were dried over
anhydrous sodium sulfate and the solvent was evaporated to yield
the crude product, which was further purified through column
chromatography with CH2Cl2 and methanol as the eluent to give
compound 11 as a white solid (65 %). 1H NMR (500 MHz, CDCl3):
d= 8.18 (s, 1 H), 7.77 (s, 1 H), 7.50 (t, J = 5.9 Hz, 1 H), 4.62 (t, J =
7.1 Hz, 2 H), 4.42 (t, J = 7.5 Hz, 2 H), 4.16–4.12 (m, 1 H), 3.98–3.95 (m,
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1 H), 3.66–3.64 (m, 1 H), 3.26 (t, J = 5.9 Hz, 2 H), 2.53 (t, J = 6.9 Hz,
2 H), 2.23–2.18 (m, 2 H), 1.87–1.81 (m, 2 H), 1.37–1.22 (m, 18 H),
0.83 ppm (t, J = 6.9 Hz, 3 H); 13C NMR (126 MHz, CDCl3): d= 172.2,
153.0, 131.8, 130.4, 130.3, 115.1, 114.0, 109.3, 77.4, 77.2, 76.9, 74.4,
67.6, 47.2, 46.3, 42.0, 32.1, 31.7, 29.09, 29.05, 27.0, 26.8, 25.4, 24.8,
22.6, 14.1, 12.9 ppm; HRMS: m/z calcd for C26H40Cl2N2O3

+ :
512.2455; found: 512.2441.
Compound 12 : Compounds 8 (0.5 g, 0.001 mmol, 1 equiv) and 11
(0.5 g, 0.008 mmol, 1 equiv) were weighed into a round-bottomed
flask. CHI3 (0.18 g, 0.0004 mmol, 0.45 equiv) and DBU (1.1 g, 0.007,
7 equiv) were added to the reaction flask followed by the addition
of methanol (25 mL) as a solvent. The reaction mixture was left to
stir at room temperature for 48 h. Progress of the reaction was
monitored by TLC with methanol/dichloromethane as the eluent.
Upon completion of the reaction, the mixture was the crude prod-
uct, which was purified through column chromatography with
CH2Cl2 and methanol to give compound 12 as a white solid (11 %).
1H NMR (500 MHz, [D4]MeOH): d= 8.34 (s, 2 H), 8.29 (s, 2 H), 4.55–
4.47 (m, 8 H), 4.12–4.07 (m, 1 H), 4.01–3.98 (m, 1 H), 3.62–3.60 (m,
1 H), 3.24–3.22 (d, 2 H), 2.45 (t, J = 6.7 Hz, 4 H), 2.21–2.16 (m, 4 H),
1.93–1.87 (m, 4 H), 1.50–1.45 (m, 4 H), 1.43–1.30 (m, 20 H), 0.90 ppm
(t, J = 6.8 Hz, 6 H); 13C NMR (126 MHz, [D3]methanol): d= 173.0,
130.79, 130.76, 130.72, 114.7, 114.6, 109.2, 74.5, 66.9, 48.2, 48.1,
48.0, 47.94, 47.93, 47.92, 47.91, 47.88, 47.85, 47.84, 47.83, 47.7, 47.5,
47.4, 47.2, 46.2, 45.4, 41.7, 31.6, 31.5, 29.0, 28.9, 28.8, 26.3, 25.9,
24.3, 24.0, 22.4, 13.1 ppm; HRMS: m/z calcd for C53H77Cl4N6O6

+ :
922.3783; found: 922.3812.
Compound 13 : (R)-Solketal amine (0.114 g, 0.086 mmol, 1.5 equiv),
EDC·HCl (0.172 g, 0.086 mmol, 1.5 equiv) and DMAP (0.035 g,
0.028 mmol, 0.5 equiv) were added to a stirred solution of 12
(0.060 g, 0.005 mmol, 1 equiv) in DMF (30 mL) at room tempera-
ture. The reaction mixture was left to stir for 24 h. Progress of the
reaction was monitored by TLC with methanol/dichloromethane as
the eluent. Upon completion of the reaction, the mixture was sus-
pended in water and CH2Cl2 (3 V 30 mL). The combined organic
layers were dried over anhydrous sodium sulfate and the solvent
was evaporated to yield the crude product, which was purified
through column chromatography with CH2Cl2 and methanol as the
eluent to give 13 as a red solid (77 %). 1H NMR (500 MHz,
[D4]MeOH): d= 8.01 (s, 1 H), 7.78 (s, 2 H), 7.75 (s, 2 H), 4.36–4.30 (m,
8 H), 4.13–4.11 (m, 2 H), 4.00–3.97 (dd, J = 8.4, 6.3 Hz, 2 H), 3.64–3.61
(dd, J = J = 8.4, 6.0 Hz, 2 H), 3.27–3.25 (m, 2 H), 2.41 (t, J = 6.7 Hz,
4 H), 2.19–2.13 (p, J = 6.7 Hz, 4 H), 1.92–1.86 (p, J = 6.4, 4 H), 1.42–
1.27 (m, 32 H), 0.87 ppm (t, J = 6.8 Hz, 6 H); 13C NMR (126 MHz,
CDCl3): d= 174.5, 133.8, 133.5, 128.6, 112.5, 110.5, 75.8, 68.2, 49.5,
49.2, 49.0, 48.8, 48.5, 46.4, 45.7, 43.0, 32.9, 32.8, 30.4, 30.3, 29.1,
27.6, 27.2, 25.6, 24.7, 23.7, 14.4 ppm; HRMS: m/z calcd for
C53H77Cl4N6O6

+ : 1035.4624; found: 1035.4696.
Compound 1 c : HCl (1.301 mmol) was added to a solution of 13
(0.033 mmol) in methanol (100 mL) and the mixture was stirred at
RT for 3 h. The solvents were removed under vacuum by distilla-
tion with toluene, and the crude product was lyophilised and fur-
ther purified by means of reverse-phase HPLC with 95 % MeCN
and water as the eluent and ammonium formate as a modifier. The
desired compound 1 c was obtained as a red solid (37 %). 1H NMR
(600 MHz, [D4]MeOH): d= 8.50 (s, 1 H), 7.96 (s, 1 H), 7.74 (s, 2 H),
7.71 (s, 2 H), 4.30–4.27 (m, 8 H), 3.99–3.98 (m, 1 H), 3.65–3.61 (m,
3 H), 3.43–3.42 (m, 4 H), 3.15–3.12 (m, 2 H), 2.38 (m, 4 H), 2.14 2.09
(m 4 H), 1.87–1.82, (m, 4 H), 1.36–1.24 (m, 20 H), 0.83 ppm (t, J =

6.8 Hz, 6 H); 13C NMR (176 MHz, MeOD): d= 173.3, 149.9, 147.9,
136.4, 132.8, 132.5, 132.3, 131.5, 131.1, 130.9, 127.4, 122.3, 115.2,
111.2, 70.5, 63.6, 45.0, 44.1, 42.0, 31.5, 29.3, 29.1, 29.0, 28.9, 28.7,
27.6, 26.4, 26.1, 25.1, 24.7, 23.4, 22.3, 13.0 ppm; HRMS: m/z calcd
for C47H69Cl4N6O6

+ : 955.3998; found: 955.3981.
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