
An Examination of Parameter Recovery Using 
Different Multiple Matrix Booklet Designs 

Fachbereich Erziehungswissenschaft und Psychologie 

der Freien Universität Berlin 

Dissertation  

zur Erlangung des akademischen Grades 

 Doktor der Philosophie (Dr. phil.)  

vorgelegt von 

Anta Akuro, M.Ed. 

Berlin, 2020 



ii 

 Gutachter/in: 1. Prof. Dr. Martin Brunner 

2. Prof Dr. Steffi Pohl

Datum der Einreichung: 13. Januar 2020 

Tag der Disputation: 24. April 2020 

Gemeinsame Promotionsordnung zum Dr. phil. / Ph.D. der Freien Universität Berlin vom 2. Dezember 2008 (FU-Mitteilungen 60/2008) 



iii 

Acknowledgements 

The Acknowledgments is not included in the Online version due to data protection reasons.



iv 



v 

Summary 

Educational large-scale assessments examine students’ achievement in various content 

domains and thus provide key findings to inform educational research and evidence-based 

educational policies. To this end, large-scale assessments involve hundreds of items to test 

students’ achievement in various content domains. Administering all these items to single 

students will over-burden them, reduce participation rates, and consume too much time and 

resources. Hence multiple matrix sampling is used in which the test items are distributed into 

various test forms called “booklets”; and each student administered a booklet, containing a 

subset of items that can sensibly be answered during the allotted test timeframe. However, 

there are numerous possibilities as to how these booklets can be designed, and this manner of 

booklet design could influence parameter recovery precision both at global and sub-

population levels. One popular booklet design with many desirable characteristics is the 

Balanced Incomplete 7-Block or Youden squares design. Extensions of this booklet design 

are used in many large-scale assessments like TIMSS and PISA. This doctoral project 

examines the degree to which item and population parameters are recovered in real and 

simulated data in relation to matrix sparseness, when using various balanced incomplete 

block booklet designs. To this end, key factors (e.g., number of items, number of persons, 

number of items per person, and the match between the distributions of item and person 

parameters) are experimentally manipulated to learn how these factors affect the precision 

with which these designs recover true population parameters. In doing so, the project expands 

the empirical knowledge base on the statistical properties of booklet designs, which in turn 

could help improve the design of future large-scale studies. 

Generally, the results show that for a typical large-scale assessment (with a sample size of at 

least 3,000 students and more than 100 test items), population and item parameters are 
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recovered accurately and without bias in the various multi-matrix booklet designs. This is 

true both at the global population level and at the subgroup or sub-population levels.  Further, 

for such a large-scale assessment, the match between the distribution of person abilities and 

the distribution of item difficulties is found to have an insignificant effect on the precision 

with which person and item parameters are recovered, when using these multi-matrix booklet 

designs.  

These results give further support to the use of multi-matrix booklet designs as a reliable test 

abridgment technique in large-scale assessments, and for accurate measurement of 

performance gaps between policy relevant subgroups within populations. However, item-

position effects were not fully considered, and different results are possible if similar studies 

are performed (a) with conditions involving items that poorly measure student abilities (e.g., 

with students having skewed ability distributions); or, (b) simulating conditions where there 

is a lot of missing data because of non-response, instead of just missing by design. This 

should be further investigated in future studies.  
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Zusammenfassung 

Die Erfassung des Leistungsstands von Schülerinnen und Schülern in verschiedenen 

Domänen durch groß angelegte Schulleistungsstudien (sog. Large-Scale Assessments) liefert 

wichtige Erkenntnisse für die Bildungsforschung und die evidenzbasierte Bildungspolitik. 

Jedoch erfordert die Leistungstestung in vielen Themenbereichen auch immer den Einsatz 

hunderter Items. Würden alle Testaufgaben jeder einzelnen Schülerin bzw. jedem einzelnen 

Schüler vorgelegt werden, würde dies eine zu große Belastung für die Schülerinnen und 

Schüler darstellen und folglich wären diese auch weniger motiviert, alle Aufgaben zu 

bearbeiten. Zudem wäre der Einsatz aller Aufgaben in der gesamten Stichprobe sehr zeit- und 

ressourcenintensiv. Aus diesen Gründen wird in Large-Scale Assessments oft auf ein Multi-

Matrix Design zurückgegriffen bei dem verschiedene, den Testpersonen zufällig zugeordnete, 

Testheftversionen (sog. Booklets) zum Einsatz kommen. Diese enthalten nicht alle Aufgaben, 

sondern lediglich eine Teilmenge des Aufgabenpools, wobei nur ein Teil der Items zwischen 

den verschiedenen Booklets überlappt. Somit wird sichergestellt, dass die Schülerinnen und 

Schüler alle ihnen vorgelegten Items in der vorgegebenen Testzeit bearbeiten können. Jedoch 

gibt es zahlreiche Varianten wie diese Booklets zusammengestellt werden können. Das 

jeweilige Booklet Design hat wiederum Auswirkungen auf die Genauigkeit der 

Parameterschätzung auf Populations- und Teilpopulationsebene. Ein bewährtes Booklet 

Design ist das Balanced-Incomplete-7-Block Design, auch Youden-Squares Design genannt, 

das in unterschiedlicher Form in vielen Large-Scale Assessments, wie z.B. TIMSS und PISA, 

Anwendung findet. Die vorliegende Arbeit untersucht sowohl auf Basis realer als auch 

simulierter Daten die Genauigkeit mit der Item- und Personenparameter unter Anwendung 

verschiedener Balanced-Incomplete-Block Designs und in Abhängigkeit vom Anteil 

designbedingt fehlender Werte geschätzt werden können. Dafür wurden verschiede 

Designparameter variiert (z.B. Itemanzahl, Stichprobenumfang, Itemanzahl pro Booklet, 
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Ausmaß der Passung von Item- und Personenparametern) und anschließend analysiert, in 

welcher Weise diese die Genauigkeit der Schätzung von Populationsparametern beeinflussen. 

Die vorliegende Arbeit hat somit zum Ziel, das empirische Wissen um die statistischen 

Eigenschaften von Booklet Designs zu erweitern, wodurch ein Beitrag zur Verbesserung 

zukünftiger Large-Scale Assessments geleistet wird. 

Die Ergebnisse der vorliegenden Arbeit zeigten, dass für ein typisches Large-Scale 

Assessment (mit einer Stichprobengröße von mindestens 3000 Schülerinnen und Schülern 

und mindestens 100 Items) die Personen- und Itemparameter sowohl auf Populations- als 

auch auf Teilpopulationsebene mit allen eingesetzten Varianten des Balanced-Incomplete-

Block Designs präzise geschätzt wurden. Außerdem konnte gezeigt werden, dass für 

Stichproben mit mindestens 3000 Schülerinnen und Schülern die Passung zwischen der 

Leistungsverteilung und der Verteilung der Aufgabenschwierigkeit keinen bedeutsamen 

Einfluss auf die Genauigkeit hatte, mit der verschiedene Booklet Designs Personen- und 

Itemparameter schätzten. 

Die Ergebnisse untermauern, dass unter Verwendung von multi-matrix Designs 

bildungspolitisch relevante Leistungsunterschiede zwischen Gruppen von Schülerinnen und 

Schülern in der Population reliabel und präzise geschätzt werden können. Eine 

Einschränkung der vorliegenden Studie liegt darin, dass Itempositionseffekte nicht umfassend 

berücksichtigt wurden. So kann nicht ausgeschlossen werden, dass die Ergebnisse abweichen 

würden, wenn (a) Items verwendet werden würden, welche die Leistung der Schülerinnen 

und Schüler schlecht schätzen (z.B. bei einer schiefen Verteilungen der Leistungswerte)  oder 

(b) hohe Anteile an fehlenden Werten vorliegen, die nicht durch das Multi-Matrix Design

erzeugt wurden. Dies sollte in zukünftigen Studien untersucht werden.
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Chapter 1 Introduction 

Large-scale assessments provide key findings to inform educational research and evidence-

based educational policies. Multiple matrix booklet designs in conjunction with item response 

theory models form a bedrock to the state-of-the-art methodology in these assessments. 

However, a central issue with data treated with multi-matrix designs and item response 

models, is precision of estimated parameters. Factors such as test length, sample size, matrix 

sparseness in booklet design, and item-person match could affect the precision with which 

item and population parameters are recovered when using these multiple matrix booklet 

designs. It thus becomes important to investigate conditions under which very accurate item 

and population parameters are recovered (both at the global and subpopulation levels), when 

using these multi-matrix booklet designs. 

This chapter begins with a discussion of what large-scale assessments are. This will involve, 

a description of several large-scale educational assessments—applied both at national and 

international levels. This will be followed by a brief  summary on multi-matrix booklet 

designs as applied in large-scale assessments. Particularly, emphasis will be given to the 

balanced incomplete block design, which is a popular multi-matrix booklet design, and used 

in many large-scale assessments like PISA. The chapter will thus end with a brief discussion 

on the issue of parameter recovery accuracy in item response models; and, a summary of the 

aims and scope of this doctoral project. 

1.1 Large-scale assessments in Education 

According to data collected by UNESCO in 2006 and 2007, large-scale educational 

assessments are becoming a rapidly growing phenomenon in virtually all world regions, with 

the number of countries carrying out these assessments more than doubling from 28 to 67 
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between the years 1995 and 2005 (Benavot & Tanner, 2007). Further, although developed 

countries continued having the highest participation rates, developing countries almost 

doubled their rate of participation from 28 to 51 percent (Benavot & Tanner, 2007).  

In the broadest sense, large-scale assessments can be considered as surveys of knowledge, 

skills, or behaviours in a given domain, with an objective to describe a population(s) of 

interest, for instance countries, states or regions (Kirsch et al., 2013; Cordero, Christobal & 

Santin, 2017). Simon, Ercikan, and Rosseau (2013) define them as standardized assessments 

conducted on a regional, national or international scale and involving large populations. The 

assessments focus on group scores and can be differentiated from large-scale testing 

programs (like the General Certificate of Secondary Education, GCSE; or the Scholastic 

Achievement Test, SAT) which focus on assessing individuals.  

Initially, their function was to help examine students’ grades in their academic courses, and to 

act as a monitor of provincial education systems (Klinger, DeLuca, & Miller, 2008).  More 

recently, they have become more widespread—with many provinces in the United States 

using them for educational system accountability (Klinger & Rogers, 2011; Linn, 2003).  One 

explanation for such growing interest in large-scale assessments at the provincial and state 

level is the need for policymakers to find tools for gathering information about their own 

system’s performance—considering increased globalization—and, the common belief that 

these assessments are necessary to bring about change to improve the quality of schools and 

student learning (Dolin, 2011).   

A very classic example of a large-scale assessment at the national level is the National 

Assessment of Educational Progress (NAEP) carried out in the United States.  Since the late 

1960’s, samples of students within the U.S. have taken part in this assessment. NAEP is 

administered to children at the fourth, eighth and twelfth grades, and covers a wide range of 

subjects like mathematics, science, reading, writing, history and civics (Naemi et al., 2013).  

Other examples of large-scale assessments at the national level are the evaluation of national 

standards, i.e., the “IQB-Ländervergleich” and the “IQB-Bildungstrend” in Germany (Pant, 

Stanat, Schroeders, Roppelt, Siegel, & Pöhlmann, 2013); and the Pan-Canadian Assessment 

Program (PCAP) in Canada (Gonzalez & Rutkowski, 2010). 
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At the international level, the most popular large-scale assessment studies (Koehler, 2015) are 

the Programme for International Student Assessment (PISA), the Third International 

Mathematics and Science Study (TIMSS), and the Progress in International Reading Literacy 

Study (PIRLS). PISA assesses the mathematics, science and reading performance of 15-year-

olds every three years since the year 2000. TIMSS assesses the mathematics and science 

achievement of fourth and eighth graders every four years since 1995; while PIRLS focuses 

on the reading literacy of fourth graders, who have been surveyed every five years since 2001 

(Cordero et al, 2017). Other less popular international large-scale assessments include (Tobin, 

Lietz, Nugroho, Vivekanandan, & Nyamhuu, 2015): The Southern and Eastern African 

Consortium for Monitoring Educational Quality (SACMEQ); Conference of the Ministers of 

Education of French Speaking Countries’ (CONFEMEN), Programme for the Analysis of 

Education Systems (PASEC); Latin American Laboratory for the Assessment of the Quality 

of Education; and, Pacific Islands Literacy and Numeracy Assessment (PILNA). 

 SAQMEQ was created in 1995 and consists of a voluntary and collaborative grouping of 15 

ministers of education from southern and eastern African states1. The education ministry of 

each participating country collects information on baseline indicators for educational inputs, 

general conditions of schooling, equity assessments for human inputs, material resource 

allocations, and literacy levels among grade 6 students (Kellaghan & Greaney, 2008). 

PASEC on the other hand was established in 1991 as a network for sharing educational 

evaluation instruments and results amongst French speaking African countries2. Initially, this 

assessment collected data for pupils in grades 2 and 5 only; though, this has been expanded to 

include pupils in all grades from grades 2 to 6, as well as additional background data on 

teachers and a variety of school factors (Kulpoo & Coustère 1999). Similarly, PILNA has 

been conducted twice (in 2012 and 2015) by 13 pacific countries; with the aim of establishing 

a regional baseline for the literacy and numeracy achievement of students at the end of Year 4 

and Year 6 (Belisle, Cassity, Kacilala, Seniloli, & Taoi, 2016). 

1 These countries include Botswana, Lesotho, Kenya, Malawi, Mauritius, Seychelles, South Africa, Swaziland, 
Tanzania, Tanzania-Zanzibar, Uganda, Zambia, and Zimbabwe (Heyneman & Lee, 2014) 
2 These francophone countries include Mauritania, Cameroon, Senegal, Cape Verde, Guinea Bissau, Guinea, the 
Ivory Coast, Togo, Benin, Burkina-Faso, Niger, Central African Republic, Congo (Brazzaville), Gabon, 
Madagascar, Comoros, the Seychelles, Mauritius, Djibouti, and Burundi (Heyneman & Lee, 2014) 
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One interesting development in large-scale assessments is that they no longer collect 

information on cognitive measures only; but have expanded in scope to collect information 

on non-cognitive outcomes and skills (Kaplan & Su, 2016). This is achieved using context or 

background questionnaires which provide important information on variables used in models 

to predict cognitive outcomes. The reason for this development could be increasing concerns 

about the distribution of human capital, and growing recognition that such non-cognitive 

skills also contribute to the prosperity of individuals and nations (Kirsch, Lennon, von 

Davier, Gonzalez & Yamamoto, 2013).  

Further, the rise in participation rates at LSA’s has resulted in a drift from their traditional use 

of examining differences between educational systems—to evaluating how education 

services are delivered and the outcomes from such delivery (Kamens & McNeely, 2009). 

They keep track of the education outcomes for examinees in particular sub-groups, especially 

those that have been known to suffer educational disadvantages—like boys (Younger & 

Warrington, 2005; Hannover & Kessels, 2011); children from poor socio-economic 

backgrounds (APA Task Force on Socioeconomic Status, 2007; Bradley & Corwyn, 2002); 

or, children from rural or less-developed areas (Roscigno & Crowle, 2009)—and use this to 

inform initiatives aimed at addressing such inequity. Large-scale assessments therefore offer 

a means of giving a common reference to all stakeholders involved with an education system. 

A common benchmark is used in the assessment ensuring that every student is measured in 

the same way. This is unlike the case of classroom assessments where students in different 

schools are sometimes tested with different instruments hence disfavouring fairness and 

equity. 

Large-scale assessments are therefore indispensable for any data-driven or student-centred 

education system since, they provide data that increase policy-makers’ understanding of 

crucial school and non-school factors that may impact teaching and learning; serve as 

resource for finding areas of concern and action used in preparing and evaluating resulting 

educational reforms; as well as, play a key role in developing and improving the capacity of 

education systems to partake in national programmes for educational monitoring and 

improvement (Rutkowski & Gonzalez, 2010; Wagemaker, 2014).  
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1.2 Multiple matrix booklet designs 

Multiple matrix booklet designs in combination with IRT (Item Response Theory) analyses 

represent the state-of-the-art methodology used in large-scale assessment studies. Typically, 

in these large-scale assessments, several hundred questions are used to measure students’ 

performance or achievement in several content domain(s). This ensures sufficient construct 

representation (of broad skill domains, like mathematics, reading or science); which in turn 

leads to better content validity since elements of the assessment instrument become more 

relevant and representative of the targeted construct for the assessment (Haynes, Richard & 

Kubany, 1995). For instance, in PISA, about 150 to 200 items are used to measure students’ 

achievement in mathematics, reading, and science in each assessment (Frey & Bernhardt, 

2012). With such a large number of test items in a LSA, presenting every question to each 

test taker could over burden them, reduce participation rates, increase administration costs, or 

even take too much time (Wolf 2006).  

To remedy this situation, large scale assessments utilize multiple matrix sampling, wherein 

every examinee is presented only a subset of overall test items. Before administering these 

items, they are distributed into test forms (known as “booklets” in large scale assessment 

terminology), with every booklet containing only an adequate number of items an examine 

can sensibly answer within the allotted test duration. The manner of distributing these items 

into booklets is referred to as a multiple matrix booklet design (Frey, Hartig, & Rupp, 2009; 

Gonzalez & Rutkowski, 2010; Yousfi & Böhme, 2012). Also, having constructed all 

booklets, examinees are presented with one booklet; and, though each examinee answers only 

a subset of the entire test, after collecting all booklets from all examinees, it becomes possible 

to get information on all items in the overall test. 

Multi-matrix sampling (Shoemaker, 1973), or, item-sampling (Lord, 1962) in older literature, 

is therefore the sampling technique used generally in booklet designs and comes from the 

procedure of sampling both items and examinees; that is, giving a subset of items to a subset 

of examinees (Gonzalez & Ruthowski, 2010).  In other words, it is a method of assembling 

and administering a survey or assessment where each respondent is measured on a sample of 



1.2 Multiple matrix booklet designs 6

the total assessment (Rutkowski, Gonzalez, von Davier, & Zhou, 2014). For example, a 

Mathematics proficiency test consisting of 40 items could be sub-divided into four subsets of 

ten items each; and samples of the population of students are each randomly given three of 

the item subsets to answer. This implies that each student will answer thirty out of the total of 

40 test items. Moreover, although each examinee tested is presented with only a portion of 

the total number of 40 items, the results from each subtest may be used to estimate the 

statistic that could have been obtained—from the complete test—that is, in the case where all 

40 items are given to all participating students. (Gressard & Loyd, 1991, Shoemaker, 1973).  

Although multiple matrix booklet designs are constructed to match each testing situation, 

Gonzalez and Rutkowski (2010) describe two major classifications: complete and incomplete 

multi-matrix booklet designs. In the complete designs (Figure 1.1a) each booklet contains all 

different blocks of the test (A, B, and C), meaning each student answers all items in the 

complete test. The advantage is that by rotating the various blocks across booklets, block 

order effects could be checked, and examinees prevented from copying from one another. 

Figure 1.1. Different Booklet Designs: (a) Complete (b) incomplete booklet design with     
each comprising three booklets and (c) Balanced incomplete block (Youden squares) design. 

Note. Figure adapted from “Principles of multiple matrix booklet designs and parameter recovery in large-scale 
assessments” by E. Gonzalez and L. Rutkowski (2010), IERI Monograph Series: Issues and Methodologies in 
large-scale assessments, 3, p. 136-137. Copyright 2010 by Educational Testing Service (ETS). 
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The disadvantage is however that since each student answers all assessment items, the design 

offers no reduction in respondent burden (i.e., total number of items an examinee ought to 

answer). Because of this shortcoming, large-scale assessments seldom make use of complete 

multi-matrix booklet designs, where minimizing respondent burden is often a much-desired 

objective.   

On the other hand, incomplete booklet designs (Figure 1.1b) are constructed such that each 

booklet does not contain all the blocks in the test. In the incomplete block in Figure 1.1b, 

each booklet contains only two blocks allowing for test time to be reduced by 33 percent. A 

major disadvantage of the design being that correlations cannot be calculated between all 

pairs of item blocks. This short coming is removed by the balanced incomplete 7-block (BIB-

7) or Youden squares design (Preece, 1990; Johnson, 1992). BIB-7 designs can only be

constructed with item blocks that are a multiple of 7, thus the use of seven item blocks (i.e.,

item blocks A to G) in the BIB-7 design in Figure 1.1c above. The balance ensures that each

block of items appears an equal number of times in each position across the entire booklet

design. This makes controlling for two factors possible (booklet and item or cluster

position—in large scale-assessment terminology) which could have an undesirable impact on

relevant parameter estimates (Frey, Hartig & Rupp, 2009; Frey & Bernhardt, 2012).

Further, since each item pair occurs together an equal number of times, it makes it feasible to 

get a full inter-item correlation matrix necessary for computing parameter estimates; and 

improves measurement precision, since design balance and replication reduce standard 

deviation and variability of recovered item and person parameters (Cochran & Cox, 1992). 

Because of these numerous advantages, the BIB design was successfully implemented for the 

first time in an educational setting at the 1983/1984 NAEP assessment (Beaton, 1987; Beaton 

& Zwick, 1992; Johnson, 1992); with extensions of the design used in important large-scale 

assessments like TIMSS and PISA (Frey, Hartig, & Rupp, 2009; Gonzalez & Rutkowski, 

2010; Rutkowski, Gonzalez, von Davier, & Zhou, 2014). 

An extended balanced incomplete block design according to Frey, Hartig and Rupp (2009) is 

one in which: (1) Every cluster of items (t) occurs at most once in a booklet (b). (2) Every 

cluster appears equally often (r) across all booklets. (3) Every booklet is of identical length, 
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containing the same number of clusters (k). (4) Every pair of clusters occurs together in the 

booklets with equal frequency (λ). Thus, t, b, r, k, and λ are called the parameters of the 

design and characterize any extended incomplete block design. For example, the balanced 

incomplete 7-block as displayed in Figure 1c above is characterized by the parameters t = 7 

clusters, b = 7 booklets, r = 3 occurrences in each booklet, and λ = 1 occurrence of each 

cluster pair. 

Multiple matrix designs (especially the balanced incomplete block designs) therefore play a 

vital role in the current methodology of large-scale assessments, since they help in the 

leverage of resources by permitting fewer items to be answered per student, while allowing 

yet so many questions to be asked in the test to cover broad content domains. Such a 

technique of test construction and design is important sincein principleit allows the 

estimation of achievement distributions for target populations and sub-populations; and full 

coverage of the assessment framework, while also simultaneously keeping examinee burden 

and testing time at the school reduced (Gonzalez & Rutkowski, 2010). Their disadvantage 

however is, they are unsuitable when estimating individual student proficiencies since each 

student answers not enough items to ensure sufficient test score reliability (Rutkowski, 

Gonzalez, von Davier, & Zhou, 2014). 

1.3 IRT and parameter recovery accuracy 

Parameter recovery refers to how well an estimate of a population parameter is obtained. This 

parameter could be a person parameter (for instance, a person’s ability on a latent trait), or an 

item parameter (such as an item’s difficulty). Further, Item response theory (IRT) serves as 

the modern statistical framework for handling fundamental testing challenges imposed by 

multi-matrix designs. Other important test settings where this framework is applied include 

determining examinee proficiency for certification purposes; test item assembly; equating 

different tests; and, examining potential bias that test items could express towards certain 

minority or focal groups (Swaninathan, Hambleton, Sireci, Xing, & Rivazi, 2003). IRT 

models make it possible to describe the probability of giving a correct response to an item 

based on the underlying ability of an examinee (i.e., the person parameter) and item difficulty 
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(i.e., the item parameter) (Foley, 2010). The main benefit of this measurement framework is 

that, (when the model fits reasonably well to the data) estimates of item parameters are 

examinee or sample independent; and, estimates of person ability independent of the items 

(Hambleton, Swaninathan, & Rogers, 1991). This is not the case with test-based classical test 

theory, where there is no possibility to predict how an examinee will perform on a given test 

item. Further, classical test theory (CTT) also known as the true score theory, is based on the 

idea that each person has a true score, T, which would be obtained in the absence of any error 

in measurement (Cappelleri, Lundy, & Hays, 2014). IRT is therefore often preferred over 

CTT because it provides greater flexibility—as a broader range of interpretations are made at 

the item level; and, permits to predict the likelihood of a given examinee answering any 

chosen item correctly (Hambleton & Jones, 1993).  

However, to get the full advantages IRT offers, it is of utmost importance to ensure that IRT 

model parametersperson and item parametersbe accurately estimated. As emphasized by 

Kieftenbeld and Natesan (2012, p.399), “Accurate recovery of model parameters from 

response data is a central problem in item response theory.” An important requirement to 

utilizing IRT models is therefore ensuring the accuracy and stability of model parameters (He 

& Wheadon, 2013). Stability and accuracy play a key role in the development and design of 

IRT-based tests.  

Accuracy and stability of parameter recovery is typically examined using bias and root mean 

squared error (RMSE) between the estimated and true parameters. Bias and RMSE are 

chosen because these are the most popular indices used in studies examining parameter 

recovery accuracy with item response models (e.g., see Custer, 2015; Svetina et al., 2013; 

Hecht, Weirich, Siegle, & Frey, 2015a; Toland, 2008). The bias describes the mean 

difference of the estimated parameters and the true parameters—in other words, mean 

inaccuracy of the parameter estimate. The RMSE is the root of the averaged squared 

difference between the estimated and corresponding true parameter. Hence, the RMSE takes 

the variability of the estimate into account—with smaller values for bias and smaller values 

of the RMSE indicating better parameter recovery. The lower the variance of estimated 

values of a given parameter, the lower the resulting RMSE irrespective of the direction of the 
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variance; however, a high variance could result in low bias, if the recovered parameter 

estimates lie on both sides of the true parameter value—thus cancelling out (See Figure 1.2). 

Figure 1.2. Difference between low bias and high bias during parameter recovery 

Note. Predicted or estimated values may differ from the true scores in two ways, (a) being biased by 
systematically deviating from the true scores, or (b) portraying an unsystematic but high degree of imprecision 
or variance. Figure adapted from “Choosing prediction over explanation in Psychology: Lessons from machine 
learning” by T. Yarkoni and J. Westfall, 2017, Perspect Psychol Sci, 12(6), p. 1105. Copyright 2017 by The 
Authors. 

Importantly, accuracy and stability of parameter recovery in IRT modelling could be affected 

by a myriad of conditions and factors like researcher’s choice among IRT models, estimation 

methods, software programs, test length, sub-groups within the population, and shapes of 

item and person parameter distributions (Hambleton, 1989; Wollack, Sung, & Kang, 2006). 

Further, most studies investigating the influence of these factors on parameter recovery when 

using item response models use simulated data (e.g., Svetina, Crawford, Levy, Green, Scott, 

Thompson, Gorin, Fay, & Kunze, 2013; Jiang, Wang, & Weiss, 2016; Montgomery & 

Skorupski, 2012). Importantly, extremely few studies have investigated this subject when 

using multi-matrix designs3. 

3 This was validated using a google search done in March 2019 with the keywords: (1) multi-matrix designs, 
parameter recovery accuracy; (2) multiple matrix booklet designs, parameter recovery precision 
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Using multi-matrix designs is important because, they involve sparse or missing data and 

effects that were negligible when using complete data could become significant when using 

sparse data. For example, in one of the recent studies examining parameter recovery when 

using an IRT model, Svetina et al. (2013) carried out a simulation to investigate how the 

match between person and item parameter distributions influenced parameter recovery when 

short tests were given to small samples. The data used was complete (with no missingness); 

and factors manipulated were the match between person and item parameter distributions, test 

length, sample size, and item discrimination. Their results showed that mismatch between 

person and item parameter distributions had little impact on parameter recovery; and that 

parameter estimation accuracy reduced as sample size and test length became smaller. 

Moreover, the question on parameter recovery and match between item difficulty and student 

ability distributions is interesting because, most large-scale assessments assume both 

distributions to be standard normal (i.e., with a mean of 0, and a standard deviation of 1) 

whereas, it is possible to have populations where this is not true—for instance, one region or 

country in a large-scale assessment having students with very high abilities, with the mean 

ability being largely greater than 1; or having students with very low ability, with a mean 

ability greatly less than one. Such a situation clearly results in a mismatch in the ability 

distribution and item difficulty distribution of students from such regions or countries; and 

could have undesirable effects on recovery of person or item parameters.  

Further, though multi-matrix designs play such a key role in large-scale assessments, the 

empirical knowledge base on multi-matrix booklet designs and parameter recovery is still 

very limited, with “much of the discussions around multi-matrix sampling having been 

relegated to the pages of technical manuals” (Rutkowski, Gonzalez, von Davier, & Zhou, 

2014, p.76). This limited knowledgebase includes the studies of Gressard and Loyd (1991) 

and that of Gonzalez & Rutkowski (2010). 

 Gressard and Loyd (1991) used achievement data and a Monte Carlo approach to investigate 

the effect of item sampling by item stratification on parameter estimation, when using 

different multi-matrix booklet designs. The designs were created based on matrix sparseness 

(i.e., total number of items answered per student), with each design having a different number 
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of subtests and items per subtest. Their results showed that the item sampling method and 

booklet design which is a practical compromise in terms of precision and sample size is one 

where the items are stratified with respect to how well they distinguished between high and 

low achieving students; and the sampling plan that has a modest number of subsets. This 

sampling condition gives reasonable precision of the mean and variance estimates but needs 

only a moderately sized sample. 

Gonzalez and Ruthowski (2010) used balanced incomplete block designs4 to carry out a 

simulation study. They examined the extent to which item and population parameters were 

recovered given sample size and matrix sparseness; and simulated mathematics data for 4000 

cases on 56 items crossed with two background characteristics that were known – school type 

and socio-economic status. Response data was simulated using the 2-PL IRT model with 

items calibrated using marginal maximum likelihood estimation procedures. Their results 

showed that when the booklets had fewer items, person ability estimates became less 

accurate; and differences that existed between sub-groups became underestimated when these 

existed. Moreover, as test participants increased, recovery precision for the item difficulties 

increased. Yet, the gain in precision was more for the difficult items than was for the easier 

items.    

Importantly, even though a dearth of literature exists investigating parameter recovery with 

the use of multi-matrix booklet designs, most of the few studies carried out use completely 

simulated data. This raises questions about the generalizability of the results to real life test 

data, especially as simulated data often fit perfectly to underlying IRT models used. 

1.4 Aims and scope 

As discussed above, large-scale educational assessments are becoming indispensable, and 

multi-matrix designs in combination with item response models form the state-of-the-art 

methodology in such assessments. A key objective in these large-scale assessments is 

4 The different booklet designs were created in the same way as in von Davier, Gonzalez & Mislevy (2009) in 
which they showed the adverse effects of not using plausible values correctly when analysing LSA data. 
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accurate estimation of population and item parameters (Beaton & Barone, 2017). Accurate 

estimation of these parameters is not only required at the global population level, but, 

importantly, also required at the level of subgroups within the population. This is crucial for 

educational policy making, since it provides accurate information about performance 

differences between population subgroups or subpopulations, which can thus guide evidence-

based educational interventions (Seatrom, 2017). Importantly,  although multi-matrix designs 

in conjunction with IRT remain state-of-the art methodology applied in these large scale 

educational studies, relatively less research  has been carried out on these designs, with most 

information on them “relegated to the pages of technical manuals” (Rutkowski, Gonzalez, 

von Davier & Zhou, 2014, p.76). Further, factors such as test length, sample size, and item-

person match have been found to relate with the precision with which person and item 

parameters are recovered in an IRT context (Finch & Edwards, 2015; Gershon, 1992; Svetina 

et al, 2003, Wollack et al, 2006). 

This notwithstanding, a dearth of literature exists on how the above factors relate to the 

precision with which person and item parameters are recovered when using multi-matrix 

booklet designs. For instance, it is interesting to know the minimum sample size and test 

length requirements for obtaining accurate parameter estimates when using different multi-

matrix booklet designs. Similarly, it can be interesting to investigate the extent to which item-

person match relates to the precision with which person and item parameters are recovered 

when using various multi-matrix booklet designs. 

Hence, using different multiple matrix booklet designs, this PhD project seeks to answer the 

following broad research questions: (1) How do test length or sample size influence 

parameter recovery precision (a) at the global population level and (b) concerning the mean 

performance difference between various policy-relevant subgroups? (2) Considering test 

length or sample size, how does the degree to which person and item parameter distributions 

match with each other affect parameter recovery precision?  

These research questions are investigated under two large studies. Study 1 (an empirical 

study) seeks to answer the first research question, while Study 2 (a simulation study) tackles 

the last research question. In Study 1, real and partly simulated data are used. The partly 
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simulated data is used because some of the experimental conditions need a data structure that 

is not satisfied by the real dataset (e.g., the requirement for longer tests). However, the partly 

simulated data are got from the real dataset, hence preserving some of its original 

characteristics. 

On the other hand, real data is used to simulate data for Study 2—since it is not possible to 

get real data where match between item and population parameter distributions is 

experimentally manipulated. Further, although  the study of  Svetina et al. (2013) mentioned 

earlier, also used simulated data, this study complements their study as it uses large samples 

with sparse data. In the former study, small samples with complete data were used; hence 

effects that were considered negligible with complete data, could now turn significant with 

sparse data. 

In both Study one and study two, the balanced incomplete block design is considered 

especially as variants of it are currently used in many large-scale assessments (e.g. in PISA 

and TIMSS).  

In the next three chapters (chapters 2 - 4),  the conceptual and theoretical framework of the  

dissertation are further developed. Chapter two describes the Rasch item response theory 

model, especially as a multi-dimensional Rasch model was applied, for scaling item and 

person parameters in this dissertation project. Chapter three describes various techniques used 

in estimating person and item parameters in large-scale assessments. Emphasis is given to 

Maximum likelihood estimation and plausible value imputation, which are commonly used in 

large-scale assessments. Chapter four discusses the concept of missing data in planned 

sampling plans (multi-matrix booklet designs being good examples of planned sampling 

plans). Chapter five and Chapter six each present one of the two large studies carried out in 

this dissertation project (Study 1 the empirical study, and Study 2 the simulation study). The 

dissertation closes with chapter seven which is a general discussion of the entire doctoral 

project. 
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Chapter 2 The Rasch Item response Theory Model 

The studies carried out in this dissertation used the Mixed Coefficient Multinomial Logit 

Model (MCMLM) for scaling item and person parameters. The MCMLM is a multi-

dimensional Rasch IRT model. This chapter thus briefly introduces item response theory, 

spells out some of the very important assumptions of IRT models; and, concludes  with a 

discussion on the dichotomous Rasch model (giving special emphasis to the MCMLM which 

is a multidimensional form of the dichotomous Rasch model). 

2.1 Introduction to item response theory 

After several years of slow and unsystematic growth, item response theory has grown into a 

fully developed and robust substitute to the classical theory of test scoring and item analysis 

(Bock, 1997). Attention first became drawn on such a measurement framework in the 1970’s 

when standardized tests like the Scholastic Aptitude test applied it in their development (Polit 

& Yang, 2014). IRT eventually turned out to be the key psychometric method in scale 

validation since it offered pragmatic solutions to several measurement challenges met in the 

construction of tests or scales (Samejima, 1969). In IRT, item parameters in a scale are 

estimated based on a model where persons’ latent ability levels, on the measured construct, 

are separated from their responses to scale items (Yang & Kao, 2014). A monotonically 

increasing function is used to express the relationship between a person’s response pattern (to 

a set of test items) and their ability level (Price, 2017). 

On the other hand, Classical Test Theory—the older and more traditional approach in the 

field of education—gives results which depend greatly on the test and sample used 
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(Embretson & Reise, 2000). In this measurement framework, the raw score stands for the 

total responses of a person to a test or scale—signifying the person’s average score given 

they had responded to the test an infinite number of times—plus, a random error of the 

summed scores from the test items (Yang & Kao, 2014). Further, since it is not possible to 

respond to an item an infinite number of times, this raw score can be considered a 

hypothetical measure of ability. Such CTT tests were often used in situations where the 

sample of persons taking the test had characteristics like those of persons used during initial 

test development (De Ayala, 2009; Yang & Kao, 2014). A major disadvantage of this is that, 

if the test items are difficult, calculated person abilities will tend to be low; while the same 

persons will have high abilities when easier items are used. For this reason, IRT was 

developed in which test characteristics depend solely on the characteristics of the test and not 

on the sample used (Yang & Kao, 2014). Consequently, estimates of item parameters remain 

constant irrespective of the group to which these items are administered and likewise 

estimates of person parameters remain constant irrespective of the tested group (Toland, 

2008). This remarkable property of IRT models is referred to as the invariance property and 

is considered the keystone of IRT (Embretson & Reise, 2000; Hambleton et al, 1991; Lord, 

1980). A further advantage of this is that it allows the construction of tests through judicious 

choice of items to derive very precise measurement for individuals taking the test (as in 

computerized adaptive testing, CAT); and offering mechanisms for putting together different 

tests on the same scale as in tests linking and scaling (Carlson & von Davier, 2013).  

2.1.1 The dichotomous Rasch Model 

Several IRT models exist. However, the model with the simplest specification is the 

dichotomous Rasch model (with each item scored as either correct or wrong, 0 or 1). This 

model was first proposed by the Danish statistician Georg Rasch for educational tests, at the 

same time with related models which he called models for measurement (Rasch, 1960; 

Kreiner, 2013). Since then, the Rasch model has grown to include several other statistical 

models. 
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 IRT models use mathematical functions in modelling probabilities of students responding to 

test items. Graphs displaying these probability functions typically have an S-shape and are 

called item characteristic curves, ICC (Baker & Kim, 2017; Wu, Tam, & Jen, 2016).  

Fig. 2.1. An example of an item characteristic curve 

 Note. Figure adapted from Educational Measurement for Applied Researchers: Theory into Practice, p. 95 by 
M. Wu, H. P. Tam and T.-H. Jen, 2016, Singapore: Springer. Copyright 2016 by Springer Nature Singapore Pte
Ltd.

Consider  0,1niX x  is a dichotomous random variable with, for instance, 0x  signifying 

an incorrect response and 1x  signifying a correct response to a given test item. Using the 

Rasch model for dichotomous data, the probability of the outcome 1niX   will be given by: 
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where n is the ability of person n  and i is the difficulty of item i  (Wu, Tam, & Jen, 2016).

 Pr 1niX  thus, denotes the probability of a given test taker succeeding at a given item. The 



2.1 Introduction to item response theory 18

Rasch model is often referred to as the one parameter (1PL) model since only one item 

parameter, the item difficulty (or delta, δ, parameter) is used in describing person ability. 

Further, several psychological tests are based on the Rasch model, some of the most popular 

examples including (Kubinger & Draxler, 2007, p.294): The BAS II (British Ability Scales 

II; Elliot et al, 1996) and its American version DAS (Differential Ability Scales; Elliot, 

1990); the K-ABC (Kaufmann Assessment Battery for Children; Kaufmann & Kaufmann, 

1983); and, the AID2 (Adaptive Intelligence Diagnosticum – v 2.1; Kubinger & Wurst, 2000) 

within nations speaking German.  

The preference of the Rasch model over other alternative IRT models is mainly for two major 

reasons. First, the model is very simple, making use of just one item parameter to describe a 

test taker’s proficiency. This results—when the Rasch model fits to the data—in accurate 

parameter estimation with the use of fewer items than in other IRT models (Birnbaum, 1968). 

Second, the Rasch model has a very useful characteristic in that, examinee observed item 

scores can be summed up to represent an adequate statistic: This property is called 

sufficiency of the unweighted raw score (Fischer, 1995). This gives a fair and sufficient 

description of the empirical association between proficiencies of examinees who took the test 

and those who did not, on condition that the dichotomous Rasch model (or a monotone 

transformation of it) is true for the set of items under consideration (Kubinger & Draxler, 

2007).  

The Rasch measurement model is one out of a group of models that could be used to model 

data, reflecting the structure of the observations. Depending on the nature of item responses 

or assumptions of the composition of the total population (e.g., one general population vs. a 

mixture of several latent subpopulations) a suitable model can be chosen from the family of 

Rasch models (Tolonen, 2005). This family of Rasch models include the original 

dichotomous Rasch model (Rasch, 1960/1980), the Rating scale model (Andrich, 1978; 

Wright & Masters, 1982), the partial credit model (Masters, 1982; Wright and Masters, 1982) 

an extension of the rating scale model; and later several developments like the facets model 

(Linacre, 1989) and the Saltus model (Wilson, 1989; Draney, Wilson, Glück, & Spiel, 2008). 

Distinguishing characteristics of the Rasch family of models include separable item and 
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person parameters, sufficient statistics, and conjoint additivity—since item and person 

parameters can be concatenated (Masters & Wright, 1997, p. 101). 

On the other hand, the original concept of the dichotomous Rasch model is expanded and 

modified to include a large family of other Rasch models. Wright and Mok (2004) give a 

description of four of these additional Rasch models: binomial trials, Poisson counts, rating 

scale models, and partial credit models. Binomial counts involve a situation in which an 

individual makes several independent trails at an item and the total number of successes 

recorded; however, when the number of trials gets infinitely large and the success probability 

very small, the binomial distribution approximates the Poisson distribution (Wright & 

Master, 1982, Wright & Mok, 2004). However, the rating scale model is a special case of a 

polytomous model, that is, a model having more than two response categories like , “strongly 

agree”, “agree”, “disagree”, “strongly disagree” in a four-category Likert-type scale (Wu & 

Adams, 2007). Further, threshold parameters are added to describe the relative difficulty of 

changing from one category of the rating scale to the other (Eckes, 2015). The partial credit 

model differs from it (i.e., the rating scale model) in that the threshold parameters are 

different for each item and the model is most suitable when test items contain different 

number of response categories for the items; or, when the relative difficulty between response 

categories could change from one item to the other (Masters, 1982, 2010; Wright & Mok, 

2004). 

2.1.2 Mixed coefficient multinomial logit model (MCMLM) 

A requirement for IRT models used in most current applications is that the tests be 

unidimensional (Kang, 2006). However, most psychological and educational tests are to some 

degree multidimensional (Ackerman, 1994; Luecht & Miller, 1992; Reckase, 1979, 1997; 

Traub, 1983). There is thus a need to inspect test dimensionality when applying IRT models 

(De Ayala & Hertzog, 1991); and to apply multidimensional item response theory (MIRT) 

models when it is necessary to take into consideration such observed multidimensionality 

(Crichton, 2016). 
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Simply defined, MIRT models are generalizations of unidimensional models with the 

inclusion of additional trait or ability parameters, with the multiple traits or abilities 

oftentimes matched with specific problem types (Kang, 2006). An example could be when 

evaluating students’ performance on a mathematics problem that allows for multiple solution 

strategies; with the possibility of a lower arithmetic knowledge being compensated for by 

stronger geometric knowledge. MIRT models therefore offer a perfect basis for modelling 

performance in complex domains, while considering multiple basic abilities at the same time 

and showing various ability mixtures needed for different test items (Hartig & Höhler, 2009). 

Ever since the Rasch model (Rasch, 1960) was put forward, numerous extensions and 

alternatives have surfaced. The proliferation of these models, in some ways, has hindered test 

practitioners, as oftentimes, each model has its own parameter estimation techniques and 

dedicated software programs (Adams, Wilson & Wang, 1997).  The MCMLM (Adams, 

Wilson & Wang, 1997; Adams & Wu, 2007) bridges this gap by offering a generalized item 

response model, providing a unified framework for a large class of Rasch-type models. 

Benefits of a single framework include mathematical elegance, generality in a single software 

package, and facilitation in developing, testing, and comparing new models (Adams & Wu, 

2007). This model (the MCMLM) contains mixed coefficients, with items characterized by a 

fixed set of unknown parameters ξ, and student outcome levels (the latent variable), θ, 

considered a random effect (Monseur & Adams, 2009). Also, because of its several 

advantages, the MCMLM is used in the scaling of PISA data (OECD, 2012). 

In OECD (2012, p.129-130) a detailed description of the MCMLM model is presented, which 

is summarized (adopting the notation of OECD, 2012) below as follows:  

Assuming we have I = 1, …, I  items and k = 0, …, Ki  possible response categories 

per item. 

Consider  1 2, ,...,
i

T

i i i iKX X X X and 

1, if response to item  is in category  
0, otherwise

i j
ijX 

  (2.21) 
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The vector with zeros (that is, the zero category) serves as the reference category, and 

is required to identify the model. The probability of responding in category j to an 

item i is considered to have the form: 
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Where the vector 1( ,..., )T
p     represents the items, with ξ describing the empirical 

characteristics of the response categories per item; 
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where Ω represents the set of all response vectors possible and x a given case of X. 

Due to the several advantages of the MCMLM (as described above), and its popularity in 

many large-scale assessments, for example in PISA; this model was applied throughout this 

dissertation project, for the scaling of person and item parameters. 
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Chapter 3 Estimation of person and item 

parameters 

Several techniques and procedures exist for estimating person and item parameters within an 

IRT framework. Si and Schumacher (2004, p. 154) list several of these techniques, which 

include: maximum likelihood method (Baker, 1992); logistic regression (Reynolds, Pekins 

and Brutten, 1994); Bayesian modal estimation (Mislevy, 1986; Baker, 1992); and the 

minimum chi-quadrant estimation technique (Zwinderman & van der Wollenberg, 1990). I 

will emphasize on the maximum likelihood procedure since this was utilized in this 

dissertation project. This will be followed by a description of the plausible values 

methodology, which is state-of-the-art methodology used in large-scale assessments, for 

estimating population statistics of student proficiencies. The chapter will conclude with a 

discussion on efficiency measurement in IRT. 

3.1 Maximum likelihood method 

Maximum likelihood is the second most widely used missing data treatment method, after 

multiple imputation, with many modern statistical techniques largely depending on it (Baraldi 

& Enders, 2010; Enders, 2004; Schafer & Graham, 2002). The basic principle behind 

maximum likelihood involves choosing estimates that maximize the probability of getting the 

results that are observed (Allison, 2002). This is done by identifying population parameter 

values with the greatest likelihood of producing the sample data, using a mathematical 

function—known as the log likelihood—to quantify the standardized distance between 

observed data points and parameters of interest (Baraldi & Enders, 2010).   
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Baraldi & Enders (2010, p.19) summarized the basic principle of maximum likelihood 

estimation as follows: 

 Using a mathematical function known as the log likelihood to quantify standardized

distances between observed data points and parameters of interest (e.g. means).

 For a sample of scores, this log likelihood is given by
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  (3.1) 

Where the term in brackets represents the probability density function and describes 

the shape of the normal curve. 

 In combination, the term in brackets in (3.1) specifies the relative probability of

getting a unique score with a given mean and standard deviation from a normally

distributed population; with the summation symbol including relative probabilities

into the sample log likelihood (a summary measure quantifying the likelihood of

choosing the entire sample from a population that is normally distributed).

 Using an iterative algorithm to repeatedly substitute various parameter values into the

log likelihood equation to obtain the highest value or probability (in other words,

continuing with the iterative process until estimates that minimize the distance to the

data are obtained).

Three kinds of maximum likelihood estimations are often applied in IRT parameter 

estimation. These include Joint Maximum Likelihood, JML (Birnbaum, 1968); Conditional 

Maximum Likelihood, CML (Andersen, 1972); and, Marginal Maximum Likelihood, MML 

(Bock & Liberman, 1970). In JML, item and person ability parameters are estimated 

simultaneously using a two-staged iterative procedure. This is done by treating both person 

and item parameters as unknown but fixed model parameters and estimating them together by 

solving an optimization problem (Chen, Li, & Zhang, 2018). Although a major advantage of 

JML estimation is its simplicity and straightforwardness, it yields inconsistent, estimated 
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parameters for fixed length tests, with person parameters being infinite when no or all test 

items are correctly endorsed (Embretson & Reise, 2000). It is thus not suitable with items or 

examiners having perfect scores and cannot be used in small scale studies; as long tests with 

large samples are needed to minimize parameter estimation bias (Le & Adams, 2013). 

In CML, item and person ability parameters are estimated separately by conditioning the 

likelihood function on examinee ability (Si & Schumacher, 2004). In this estimation 

technique, maximization of the log-likelihood function  is simplified by treating some of the 

parameters as if they are known—with these parameters either fixed by theoretical 

assumptions or, more often, replaced by estimates (Palmer, 2011). However, CML is unable 

to compute parameter estimates for perfect or zero scores and can assign different scores to 

examinees having the same number of correct responses (Si & Schumacher, 2004). Also, 

although CML estimates for item difficulties are consistent, an ad hoc technique ought to be 

implemented to estimate person abilities—thus, CML is appropriate only when a simple 

sufficient statistic such as a raw score for a Rasch model is available (Johnson, 2007).  

Conversely, while CML uses the likelihood function conditioned on examinee ability, MML 

utilizes the unconditional likelihood function—which  is the probability of obtaining a given 

pattern of scores from an examinee with unknown ability, randomly chosen from the 

population (Si & Schumacher, 2004). MML thus handles the problem of unknown person 

abilities by using the unconditional likelihood function instead of the conditional likelihood 

(as in CML). Unlike in JML where person parameters are treated as fixed effect parameters 

and kept in the likelihood function, MML treats person parameters as random effects and 

integrates them out from the likelihood function (Chen, Li, & Zhang, 2018; Si, 2002).  

Importantly, Bock and Lieberman (1970) used a general procedure which involved 

maximizing the likelihood in the marginal distribution, after having performed a numerical 

integration over the latent distribution. However, the computational complexity of the 

estimation technique made it impractical for lengthy tests (Baker & Kim, 2004; Bock & 

Moustaki, 2007; Si & Schumacher, 2004). Thus, Bock & Aitkin (1981) proposed a feasible 

approach for estimating the item parameters in large scale tests by applying a reformulation 

of the Expectation-Maximization (EM) algorithm (Chalmers, 2012; Dempster, Laird, & 



3.1 Maximum likelihood method 25

Rubin, 1977; Si & Schumacher, 2004). The EM algorithm consists of two steps—The 

Expectation (E) and the Maximization (M) steps. At the E stage, the expected score function 

of model parameters are calculated—with expectations being with respect to posterior 

distributions of given observations; while at the M stage, obtained parameters are updated by 

applying them in the marginal likelihood estimation equations (Bock & Moustaki, 2007). The 

expectation and the maximization phases are rerun severally until convergence of the 

estimates with the maximum likelihood equation occurs—this achieved by applying the 

Newton-Gauss procedure to solve the equations (Si & Schumacher, 2004). 

However, MML estimation has some short comings. For instance, the technique is not 

suitable for analyses in non-regular distributions—where a maximum likelihood may be non-

existent, or several maximum likelihoods present, thus invalidating the idea of maximizing 

the likelihood (Cousineau & Allan, 2015). Further, the technique is computationally intensive 

and requires an assumption being made about the nature of the ability distribution—if this is 

initially not ascertained, a normal distribution is often assumed (Si & Schumacher, 2004). 

Lastly, though using the EM algorithm remedies the issue of unstable item parameters with 

JML estimation, an unsolved problem remains aberrant ability estimates when using certain 

datasets, with parameter estimation for irregular response patterns being impossible (Baker, 

1992; Si & Schumacher, 2004).  

Despite the above short comings, MML still remains a technique highly recommended by 

methodologists for the estimation of item and population parameters in IRT (Toland, 2008). 

First, it gives consistent estimates of item parameters irrespective of the sample size, as 

greater sample sizes do not demand more examinee parameters to be estimated (Baker & 

Kim, 2004). Second, MML provides item standard error estimates which efficiently 

approximate the expected sampling variance, and can be used to compute ability and item 

parameter estimates for test takers with perfect or zero scores; hence no information loss due 

to deleting items and persons with such scores (Si & Schumacher, 2004). Third, MML solves 

some of the problems with the JML method by introducing an assumption on the latent 

variable distribution (Le & Adams, 2013). Lastly, the estimation technique is currently well-

implemented in most popular statistical software packages, thus reducing challenges due to 
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its computational complexity. Due to these numerous advantages, MML estimation was used 

in this dissertation for the estimation of item and population parameters. 

3.2 Plausible values (PVs) imputation approach 

Large scale assessments often face the challenge of missing data values, since multiple matrix 

sampling is used in their design (Frey et al., 2009; Gonzalez & Rutkowski, 2010). These 

missing values make the uncertainty related to individual θ estimates to be large, resulting in 

seriously biased population estimates when individual scores are aggregated (Wingersky, 

Kaplan, & Beaton, 1987). Plausible values are a range of reasonable abilities a test taker can 

obtain given his/her responses to the test items and are randomly drawn from an estimated 

distribution of the test taker’s ability on the measured latent trait (Wu, 2005). The distribution 

from which abilities are drawn for a given test taker is called the posterior distribution 

(Mislevy, Beaton, Kaplan, & Sheehan, 1992). 

Plausible value methodology (Rubin, 1987; Mislevy, 1991) was introduced to solve the 

problem in which sets of scores (known as plausible values) are generated using students’ 

responses to all items and conditioned on available background data (Yamamoto & Kulick, 

2000). Conditioning on all background data ensures that relationships between background 

variables and the estimated person abilities are correctly accounted for in the PVs (Mislevy et 

al., 1992). Typical examples of LSAs in which PVs are used are PISA and TIMMS (see 

OEDC, 2012; Yamamoto & Kulick, 2000). 

Adopting the mathematical notation and discussion of the PV methodology from Laukaityte 

& Wiberg (2017, p.11344-11345), this method is summarised as follows: 

 Let iy  represent student i ’s responses to background questions, and ix  student i ’s item 

responses. Given that for each student i , 5 PVs are drawn from the conditional ability 

distribution then, 

( , , , ) ( , , , ) ( , , ) ( ), , ( , , )i i i i i i i i i i i ix y P x y P y P x P y                          (3.2) 



3.2 Plausible values (PVs) imputation approach 27

with ( )i iP x   being any chosen response model,  ( , , )i iP y    the regression of the 

background variables, a matrix of regression coefficients for the background variables, and 

 a variance matrix of residuals (Laukaityte & Wiberg, 2017). This results in a set of drawn 

values, ˆ
mD , with 1,...,m M and 1M  denoting the number of drawn PVs. Hence, the

analysis is performed for every ˆ
mD , with the final estimate got by taking the average of all M

estimates: 

ˆ
mm

D
D

M
  (3.3) 

The total variance of D is computed by adding up the within imputation variance and the 

between imputation-variance. The within imputation variance is got by taking the average of 

the estimated variances mV of PVs ˆ
mD , 
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where 21 ˆ( )
1M m mm

B D D
M

 
   (Mislevy, 1991; Schafer, 1997). It is noteworthy that, 

the PV methodology produces consistent5 population parameter estimates, provided the PVs 

are generated with an imputation model compatible with data analyses that follows 

(Laukaityte & Wiberg, 2017).  

Conversely, recent publications have raised concerns about the modelling approach used to 

generate ability measures in large-scale assessments like PISA and NAEP; and, whether or 

how to use PVs in secondary analyses (Braun & von Davier, 2017). Although in the past 

three decades, extensive research has been carried out on the fundamental principles and 

statistical methodology applied in these models (Mislevy 1984, 1985; Mislevy & Sheehan, 

1987); concerns continue to arise if the resulting PVs produce appropriate estimates of 

population estimates like means and variances (e.g., Goldstein, 2004; Cohen & Jiang, 1999). 

5 In Statistics, an estimator is said to be consistent if, the values of this estimator become closer to the true 
parameter value as the sample size is increased. 
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Further, Jacob & Rothstein (2016) question the suitability of using latent regression 

methodology and PVs to produce achievement scores, later used as inputs in secondary 

analyses in econometric modelling. Braun and von Davier (2017) however give a detailed 

response to all these concerns. They present a broad review of key literature, with emphasis 

on important journal articles describing the psychometric properties and derivations of PV 

values. A simulation study is then performed which compares statistical characteristics of 

estimated values derived using PVs with those derived using other often used methods. Their 

results show that PV methodology outperforms the other methods; and produces estimates of 

model parameters that are approximately unbiased when using them in regression analyses. 

Hence, PV methodology applied in reporting examinee performance in large-scale 

assessments, remains state-of-the-art for individuals performing secondary analyses from 

such databases (Braun & von Davier, 2017).  

3.3 Efficiency measurement based on item response theory 

For an examinee to be measured most effectively, the administered test items need not be too 

easy or difficult (Lord, 1980). The implication is that, ideally, for a student population with 

differing abilities, different item sets of varying difficulties or different test booklets need to 

be utilized to efficiently estimate each test taker’s ability (Braun & von Davier, 2017; Weiss, 

1982). That notwithstanding, though students respond to different items—as found in either 

an easy, average or even a difficult test booklet—the final test scores still need to be directly 

comparable (Berger, Verschoor, Eggen & Moser, 2019). By applying several test equating 

strategies (Kolen and Brennan, 2014), item response theory provides a powerful 

measurement framework for achieving this goal.  

Taking the simplest unidirectional IRT model, the Rasch model, an examinee’s likelihood to 

correctly respond to a specific item is defined by: 

exp( )
( 1 , )

1 exp( )
i j

ij i j ij
i j

P X p
 

     
  

 (3.6) 
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where θi denotes the ability of examinee i, and βj denotes item j’s difficulty (Rasch, 1960; 

Rost, 2004). Further, using maximum likelihood procedures, examinee abilities and their 

standard errors can be estimated.  According to Rost (2004), the standard error of the 

estimated ability for examinee i is given by  

1

1ˆ( )
(1 )

i k
ij ijj

SE
p p



 
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 (3.7) 

with ijp denoting the likelihood that examinee i responds to item j correctly, as described in 

equation (3.6). Further, judging from equation (3.7), it can be inferred that (a) k, which 

represents the total number of test items administered per examinee, plays a crucial role in 

how accurately an examinee’s ability is estimated when using the Rasch model; (b) the 

accuracy of estimated examinee abilities also depend on the relationship between an 

examinee’s ability and the difficulty of the administered items in the test (Lord, 1980; Rost, 

2004).  

In operational testing scenarios, test length (i.e., number of test items administered per 

student) is often determined in advance considering available testing time. The main option 

left for enhancing estimation of examinee ability, and of course test efficiency, is optimising 

the relationship between examinee ability and item difficulty (Berger et al., 2019). Thus, 

resulting in the concept of targeted testing.    

Targeted testing is a test construction technique where administration of test items is done to 

match examinee abilities, thus improving measurement efficiency. Further, choosing a 

suitable test design demands knowing the test purpose, and population of test takers. A test 

meant to classify examinees or a test targeting a specific population, demands measuring 

examinee ability most precisely around particular points along the ability continuum (Berger 

et al., 2019). A suitable test design will thus incorporate items that give large amounts of 

information, at the specific points that are of interest. Conversely, tests aimed at assessing 

student abilities in very diverse populations—like in formative assessments—demand test 

designs, which give results that are accurate over a broad range of student abilities. Usually, 

in such instances, it is inappropriate to use a single linear test with items having varying 
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difficulties. The reason being that typically, individual students are administered many 

questions that do not match their ability levels. This could thus result in reduced 

measurement efficiency, and also decreased student motivation during the test (Dong & Peng, 

2013; Lord, 1980).  

Generally, there are two ways of taking into consideration a wide variation in student ability 

through the targeted administration of items having varying difficulties (e.g., Mislevy and 

Wu, 1996). First, one could use information known in advance about examinees abilities to 

assign them to matching test forms. In school settings, it is often possible to get such 

preliminary or advance information from other similar tests, which could thus be used in 

assigning them to test forms that match their ability. Also, teachers assess their students in 

various tests and assign them to different school grades and sometimes, even to different 

school types or performance groups (Berger et al., 2019). Such information could be utilised 

to create ability groups into which examinees are distributed based on their ability. The 

problem with this approach though is that these background variables, which relate to student 

ability only approximate students’ true abilities. Thus, some students could greatly differ 

from the group mean, and consequently, from the target ability of the test (Bejar, 2014). 

Conversely, a step-by-step approach could be used to assign target items or item sets to 

students, based on how they perform in the course of the test. Thus, students who perform 

well are automatically administered more difficult test questions—allowing their full 

potential to be shown—while those who perform poorly automatically receive easier test 

items. This is the fundamental idea applied in targeted testing designs like computer adaptive 

testing and multi-stage testing. This concept of matching items to persons is further examined 

in one of the studies carried out in this dissertation project (See Chapter 6).  
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Chapter 4 Missing data in planned sampling plans 

Missing data are a common problem in quantitative research studies (Peugh & Enders, 2004); 

posing serious implications which could lead to biased parameter estimates, information loss, 

diminished statistical power, larger standard errors, or weaker generalizability of findings 

(Don & Peng, 2013). This became more remarkable within the last decades, with increased 

availability of data from large-scale assessments—where missing values occur inevitably 

(Pohl & Aßmann, 2015). This chapter reviews important concepts related to missing data as 

pertains to quantitative research in Education and Psychology. It begins with a description of 

several planned missing sampling designs, followed by an explanation of the theory behind 

the missingness in these sampling designs. The chapter concludes with an elaboration on 

multiple imputation, an important technique for treating missing data. 

4.1 Planned sampling plans 

Planned sampling plans have enjoyed a recent growth in popularity and involve researchers 

deliberately collecting only partial data (Wood, Matthews & Pellowski, 2018). Also, although 

the resulting missing data could be considered a challenge for applied researchers, the reverse 

could rather be true—for instance, when the degree of missing data on a particular variable is 

carefully controlled, a balance can be struck between statistical power and research costs 

(Rhemtulla & Hancock, 2016). In the early days of missing data analyses, missing 

observations were treated with some form of deletion or simple imputation; however, 

nowadays, sophisticated options (like multiple imputation and maximum likelihood) exist for 

analysing datasets with high levels of missingness, provided certain conditions are met 

(Enders, 2010; Silvia, Kwapil, Walsh & Myin-Bermeys, 2014).  
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However, a major challenge in creating these planned sampling plans is ensuring that the 

required amount of information is still successfully collected, and that valid and reliable 

statistical inferences on quantities of interest are derived from these partial datasets. Thus, 

several possibilities exist in the way these planned sampling plans can be created, some of the 

important examples including item sampling, item-examinee sampling, and survey 

questionnaire sampling. 

4.1.1 Item Sampling 

This is one of the oldest and simplest test abridgment methods and involves administering a 

portion of the test items to all test takers (Moy & Barcikowski, 1974). As an example, for a 

test of 80 items, only the first 40 test items are administered to all test takers. Further, this 

sampling method is usually applied in the abridgment of already existing test instruments, 

while ensuring optimal psychometric properties for items (Coste, Guillemin, Pouchot, and 

Fermanian, 1997). It was thus first applied in creating new Wechsler subtest combinations 

such as short forms and factor scales, in which Composite Measurement Scales (CMS) were 

shortened by eliminating some of the test items (Tellagen & Briggs, 1967; Wolf, 2006). 

According to Wolf (2006, p. 53), the advantages and disadvantages of this sampling method 

can be summarised as follows. For the advantages: 

 The method is very easy to administer (with every test taker responding to the same

test items).

 It offers a shorter test version of the same, or even higher validity and reliability.

 It provides maximum statistical power for the chosen test items (though this might not

be true for the entire measurement scale).

 The method uniquely makes it possible to compute and compare scores for subjects

on characteristics of interest.

For the disadvantages: 
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 The method is only suitable in rare instances, like where the original test or survey

instrument serves as the reference for measuring the characteristics or traits of

interest.

 Further, this technique is realistic only with short scales having well-defined

psychometric properties, since item selection is applied per scale.

However, it is noteworthy that in older literature (e.g. Lord, 1962), the term item-

sampling is used as an umbrella term to represent more specific sampling types like 

matrix sampling (Gonzalez & Rutkowski, 2010). These other sampling plans are 

presented below. 

4.1.2 Item-Examinee Sampling 

This approach involves randomly selecting items from the item universe and administering 

them to randomly selected subjects from the population. It is also referred to as multiple 

matrix sampling (MMS). Item-examinee sampling is not only used to shorten tests, but also 

to widen topical breath as it allows many more items to be included in the sample of 

administered test items (Gonzalez & Rutkowski, 2010). It is well-suited when estimating 

group or sub-population measures, but unsatisfactory for individual diagnostics. In classical 

non-overlapping item-examinee sampling, theoretical characteristics of the sampling 

distribution are unknown, making hypothesis testing or the creation of confidence intervals 

impossible (Thomas, Raghunathan, Schenker, Katzoff & Johnson, 2006). Thus, in modern 

MMS, information about inter-item relationships is integrated into parameter estimation 

procedures, resulting in significant efficiency increases. 

In the first chapter of this dissertation, an introduction was given to multiple matrix sampling 

in which the popular and most-often used Balanced Incomplete Block MMS Design was 

discussed. Below, is a description of some additional designs that use MMS. 

First, the Split Questionnaire Survey (SQS) Design was introduced by Raghunathan & 

Grizzle (1995). The sampling technique in this multi-matrix design makes it possible for 

different patterns, or sets, of data items to be collected from different sample respondents; 
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and contains item blocks which overlap though items are not randomly assigned into these 

blocks (Chipperfield, Barr & Steel, 2018). Here, pilot data is used to calculate partial 

correlations between pairs of variables, and this is used in assigning items to subsets 

(Rhemtulla & Hancock, 2016). This improves efficiency since items administered to the same 

individuals belong to the same item blocks and have weak correlations; while those not 

administered together (and belonging to different item blocks) have high correlations. 

Further, since variables measuring similar constructs tend to have high correlations with one 

another, the amount of information in  a planned missing design is better maximized when 

individual participants miss only some items on each scale while the other items are observed 

(Rhemtulla & Hancock, 2016). However, there is a likelihood that some item pairs fail to 

occur together making it difficult to estimate their corresponding associations; thus, the 

design dictates restrictions to be observed when assigning items to individuals sampled for 

use in desired population parameter estimation (Raghunathan & Grizzle, 1995). 

Second, the Three Form Design was introduced by Graham et al (1984) and has since then 

been used in several other studies (e.g., Graham, Johnson, Hansen, Flay, & Glee, 1990; 

Hansen, Johnson, Flay, Graham & Sobel, 1988; Graham, Taylor, & Cumsille, 2001).  The 

design’s aim is to reduce how long it takes to complete a survey, administer more test items 

than can be answered by an individual test taker, and ensure that all correlations, means and 

variances can be estimated (Graham, Taylor, Olchowski, & Cumsille, 2006). To do this, the 

test items to be used in the test are first distributed into four item sets (X, A, B, C). Using the 

X item set as a common set administered to all test takers, three test forms are created with 

each test form containing the X set of items and two other item sets from either the A, B or C 

item sets (i.e., Form 1 – XAB; Form 2 – XAC; Form 3 – XBC). Also, several variants of the 

Three Form design have been suggested. For example, XABC, XCAB and XBCA (Flay et al, 

1995); X1ABX2C, X1CAX2B, X1BCX2A (Taylor, Graham, Palmer, & Tatterson, 1998). In the 

Taylor et al (1998) variant of the Three Form design, the common set of items is split into 

two parts – with one part administered at the beginning of the test and the other part towards 

the end of the test. This is important because, it helps to mitigate order effects that could 

result from administering the common set of items only at the beginning of the test. Also, 

order effects are considered in the Flay et al (1995) variant because, although the common 



4.1 Planned sampling plans 35

item set is administered at the beginning of the test in all test forms, all other three booklets 

(A, B, C) are used, with their positions being fully rotated across all the test forms.  

Further, the fractional block design was proposed by McArdle (1994). This design improves 

upon simple matrix sampling making it possible to estimate means for all variables, as well as 

correlations for most—though not every—pair of variables (Graham et al., 2006). 

Considering a study collecting information on 8 variables and for a population randomly 

distributed into 8 groups, Figure 4.1 illustrates the implementation of a fractional block 

sampling design in this population (with each group measured on 4 out of 8 variables 

investigated in the study). The number of independent groups (G) used in this design depends 

on the number of measured variables and the desired spread of the various variable pairs; 

thus, in the above example, every variable is measured in four groups, resulting in an overall 

balance of sample sizes for means and standard deviations (McArdle, 1994).  

 Figure 4.1. A fractional block design for incomplete measurements 

Note. G1, G2, …, G8 represent the different groups in the population. The squares represent the measured 
variables while ‘X’ represent missing and unmeasured variables. Figure adapted from “Structural Factor 
Analysis Experiments with Incomplete Data” by J. J. McArdle, 1994, Multivariate Behavioural Research, 22 
(4), p. 424. Copyright 1994 by Lawrence Erlbaum Associates, Inc. 
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A disadvantage of the design is however that the overall balance does not hold for all 

correlations and the design demands using specialized structural equation modelling 

techniques (Graham et al., 2006). 

4.2 Missing data theory in sampling plans 

Before the 1980’s partial sampling plans were clearly not described as planned missing data 

procedures, since inferences were only based on available data. Nowadays, missing data are 

replaced with imputed datasets, making it safe to consider these designs as planned missing 

data designs (Shin, 2016). In earlier studies, simple missing data treatment methods like 

pairwise deletion were used. Simulations were carried out in which person and item 

characteristics were manipulated to discover conditions for optimal recovery of population 

estimates. 

However, with the emergence of sophisticated missing data techniques (Rubin, 1976, 1977) 

like maximum likelihood and multiple imputation, these sampling designs can now 

conveniently fall under the general category of planned missingness (Baraldi & Enders, 

2010). Further, this improved comprehension of procedures resulting in missing data and the 

advanced methods (like maximum likelihood and multiple imputation) resulted in sampling 

methods which produce more efficient population estimates for tests with partial data 

(Baraldi & Enders, 2010). In the following sub-section, a resumé of missing data theory will 

be given with emphasis on missing data mechanisms and a comparison of various missing 

data techniques6.  

4.2.1 Missing data mechanisms 

Missing data is often encountered when carrying out research in the social sciences. Missing 

data mechanisms explain how the measured variables are related and how likely missingness 

is expected to occur (Rubin, 1987, Crichton, 2016). Since various kinds of missing data 

6 An in-depth introduction and overview can be found in Allison (2001); Little & Rubin (2002); and Schafer & 
Graham (2002). 
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mechanisms underlie the missing responses in any given test or survey, it is necessary to 

consider this when treating missing data—as, this ensures more accurate inferences from 

analysis results (Crichton, 2016). The missing data mechanism differs from the missing data 

pattern in that the former describes why missingness took place, while the later simply 

describes the position of the missing data (Enders, 2010; National Research Council, 2010). 

As an example, holes (indicating missing data) found all around a dataset in no clear pattern, 

do not definitely imply that the missing data mechanism is random (Shin, 2016). Irrespective 

of the missing data pattern, the underlying missing data mechanism could be systematic. In 

this case, it implies the probability for data to be missing is linked to an underlying 

characteristic of the variable of missing (Crichton, 2016; Shin, 2016).  

Missing data mechanisms are thus generally placed into three major categories (Crichton, 

2016; Köhler, 2017; Rubin, 1987): missing completely at random (MCAR), missing at 

random (MAR) and missing not at random (MNAR). In MCAR, the probability of missing 

does not depend on either the observed data, the value of the missing data itself (i.e., 

speculative data which could have been observed if there was no missing), nor on some other 

variable in the analysis (Enders, 2010; Shin, 2016).  

The section below adopts the discussion (and mathematical notation) of missing data 

mechanisms (i.e., MCAR, MAR, and MNAR) from Shin (2016, p.15-16). Similar discussions 

can be found in Enders (2010) or Shafer and Graham (2002). Given that the complete data 

consists of observed and missing data, this could be described as: 

( , ),com obs misY Y Y          (4.1)  

where comY  denotes the complete dataset, obsY the observed data, and misY  the missing data. 

Therefore, MCAR can be represented by, 

P(M ) P(M), comY   (4.2) 

where P(M )comY denotes the probability of having missingness when using complete data, 

and M a matrix (of 0’s and 1’s) describing missingness in the dataset, “1” standing for 
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missing responses, and “0” for non-missing responses (Shin, 2016).  Equation (4.2) shows 

that the probability that missingness occurs is independent of the data (Shin, 2016). It can 

therefore be assumed that for MCAR to hold, the observed data must be random samples 

from the complete dataset (Ali, Dawson, Blows, Provensano, Ellis, Baglietto, Huntsman, 

Caldas, & Pharoah, 2011). MCAR thus describes data in which complete cases are a random 

sample of the originally identified set of cases (Pigott, 2001). Unfortunately, this assumption 

rarely holds in real life testing scenarios since when dealing with human subjects, a high 

probability exists that an underlying factor could increase the response likelihood for certain 

subjects (Crichton, 2016). 

On the other hand, data are MAR provided missingness is associated with some other 

measured variables in the analysis model; although such missingness is unrelated to any 

hypothetical values that could have been obtained given that the data were complete (Baraldi 

& Enders, 2010). MAR demands less strict assumptions on the reason for missingness and 

oftentimes occurs in practice; hence, this condition is often assumed to be true when applying 

most missing data techniques (Kang, 2006). In MAR, missingness and the variable of missing 

are independent (Enders, 2010). Hence, this missingness is thus represented by: 

( ) ( ),com obsP M Y P M Y    (4.3) 

where, ( )obsP M Y  denotes the probability of missingness, taking into consideration only the 

observed sections of the data (Shin, 2016). From Equation (4.3), it is evident that the 

probability of missingness is only related to the observed data, and not to the missing data – 

in other words, the probability that missingness occurs is unrelated to the underlying missing 

data provided the measured variables are considered (Shin, 2016).  An example of MAR 

could be in a study estimating levels of depression in a population, with females less likely to 

report that they suffer from depression than males (Crichton, 2016). Thus, in this case, 

missingness depends partly on the sex of the participant and gender can serve as a good factor 

when accounting for the missingness. 

Conversely, missing not at random (MNAR) arises when missingness is systematically 

associated with hypothetical values which are missing, implying data are missing based on 
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expected values of missing scores (Baraldi & Enders, 2010). Thus, this missingness can be 

described as,  

( ) ( )com obsP M Y P M Y    (4.4) 

implying that the MAR condition fails, with observed data not fully explaining missingness, 

and missingness rather related to the part containing missing data (Rubin, 1976; Enders, 

2010; Shin, 2016). Therefore, MNAR occurs when the probability that an item will be 

omitted depends on hypothetical responses to the missing items after considering parts of the 

dataset that are observed (Mislevy & Wu, 1996; Shin, 2016). Further, when data is MNAR, 

there is need to have extensive prior knowledge about the missing data process, since this 

needs to be specifically modelled as part of the estimation process (Cheema, 2014). 

Importantly, the main distinction between MAR and MCAR is if missingness is associated to 

the theoretical missing values. Thus, if missing values are unknown, a distinction is 

impossible. Nonetheless, the probability that data is MAR and not MNAR can be notably 

increased (Dong & Peng, 2013). For example, when test takers omit items to which the 

correct response is unknown, this results in MNAR because the likelihood of missingness is 

associated to whether an item can be answered correctly or wrongly (Dong & Peng, 2013; 

Shin, 2016). Further, although one might want to consider the three missing data mechanisms 

as mutually exclusive, it could happen that all three occur in one dataset based on which 

variables are included in the analysis model (Baraldi & Enders, 2010; Peugh & Enders, 2004; 

Yuan & Bentler, 2000).  

In the context of multiple matrix sampling, examinees are administered subsets of items, 

resulting in these examinees having complete data on the administered item blocks and 

missing data on incomplete blocks. Consequently, this results in data which are MCAR, since 

the missing item blocks, by definition, are not related to the underlying achievement of  

examinees nor to other variables measured in the dataset (Peugh & Enders, 2004; Shin, 

2006). Further, missing data which are MCAR or MAR can be considered ignorable and will 

not result in biased parameter estimates, for instance regression weights (Rubin, 1976; 

Enders, 2010). On the other hand, when missing data are MNAR, the  mechanism controlling 
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missingness becomes nonignorable requiring special models that must incorporate this 

missingness (Howell, 2007). However, although it is expected that applying modern multiple 

matrix sampling like the BIBD will result in unbiased parameter estimates, standard errors 

and confidence intervals of estimated parameters can still be affected by the amount of 

missing data in these designs (Rhemtulla & Hancock, 2016). Thus, the need in this 

dissertation project to investigate the efficiency with which population and item parameters 

are recovered under several conditions in different matrix booklet designs.  

4.2.2 Missing data treatments 

The treatment of missing data has evolved over the years from simple conventional methods 

(e.g., listwise deletion, pairwise deletion, mean substitution, regression substitution, and hot 

deck substitution) to more complex modern methods like maximum likelihood, full 

information marginal likelihood, and multiple imputation (Baraldi & Enders, 2010; Shin, 

2016). Listwise deletion involves discarding from a calculation (or series of calculations) 

such as a correlation matrix, all cases containing any amount of missing data; while pairwise 

deletion involves discarding information only from those statistics that “need” the 

information (Roth, 1994). Mean substitution replaces missing values with the arithmetic 

mean of available cases; regression or conditional mean imputation replaces these missing 

values with scores obtained from a regression equation; while hot deck imputation imputes 

missing values with scores from “similar” respondents in the current dataset (Enders, 2010; 

Wolf, 2006).  

Application of the conventional missing data treatment methods was generally encouraged by 

their simplicity and lack of complications in their procedure. However, these conventional 

treatment methods rely on the stringent condition that the missing data be MCAR (a 

condition rarely satisfied in practice); with the deletion methods particularly resulting in data 

loss and thus, loss in statistical power (Dong & Peng, 2013) . Further, these methods 

underestimate standard errors by not considering two important sources of variance—random 

error resulting from the missing data; as well as, the random error of treating the imputed 

missing data estimates like true values (Crichton, 2016; Shin, 2016). As outlined in Allison, 
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2009, p.75), three generally accepted conditions for a good missing data treatment method 

should be: 

1. It should minimize bias in the estimated parameters to the smallest possible value.

This so because, it is well established that missing data can introduce bias in

estimating parameters of interest.

2. The treatment method should make the greatest use of available data. Consequently, it

should greatly avoid discarding some already available data. Rather, all available data

should be used (if possible) so that parameter estimates with minimum sampling

variability are produced.

3. The method should also produce good uncertainty estimates. Thus, estimates of

standard errors, confidence intervals and p-values should be accurate.

Adding to the above, it is desirably that these conditions be achieved without making 

unnecessarily restrictive assumptions about the missing data mechanism (Allison, 2000). 

Interestingly, complex modern missing data treatment methods like multiple imputation 

(applied in this dissertation) perform quite well in satisfying these conditions.  

Multiple imputation was introduced by Rubin (1987) and currently one of the most popular 

missing data treatment methods.  The basic idea behind this method can be summarized as 

follows (Allison, 2000, p.301): 

1. A suitable model is used to impute missing values, taking into consideration random

variation.

2. This is done M times producing M “complete” data sets. The number of times, M,

usually depends on the amount of missing data in the dataset, with M being larger for

datasets with more missing data.

3. Using standard methods applied for complete data to carry out the desired analysis on

each of the imputed “complete” datasets.
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4. Get a single-point estimate by taking the average value of the parameter estimate of

interest across the M  imputed data sets.

5. Compute standard errors by (a) taking the average of squared standard errors from the

M estimates, (b) calculating variance of M parameter estimates across samples, and

(c) using a simple formula7 to combine the two quantities.

A thorough discussion of this method can be found in Little and Rubin (1989); Schafer 

(1997); and in Schafer and Oslen (1998). Further, when performing multiple imputation, two 

important factors to consider include how many imputed datasets to use and which auxiliary 

or support variables to include in the imputation model (Shin, 2016).  

Several authors recommend different guidelines as to the number of imputed datasets to use 

in order to obtain accurate parameter estimates. For instance, Rubin (1987) and Schafer 

(1997) recommend using three to ten imputed “complete” datasets; while Enders (2010) and 

Graham, Olchowski & Gilreath (2007) recommend using at least twenty datasets. On the 

other hand, White, Royston and Wood (2010) recommend basing the number of imputed 

datasets on the percentage of missing data in the original dataset (for instance, imputing 50 

datasets if 50% of the data are missing). However, there is no fixed rule that will suit all 

research circumstances and the number of datasets could depend on factors such as the 

number of variables in the original dataset, the sample size, and the proportion of missing 

7  221 1 11
1k k
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M M M
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  ,  (4.5) 

where:  

kb is the estimated regression coefficient in sample k of the M samples, 

kS the estimated standard error of the regression coefficient, 

b the mean of kb .
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data (Shin, 2016). As a default, some statistical software (e.g., the TAM R package—

Robitzsch, Kiefer, & Wu; 2019) use 10 imputed datasets.8  

Secondly, when carrying out multiple imputation, it is important to include auxiliary 

variables into the imputation model (Shin, 2016). Auxiliary variables are variables like 

gender, school type, race or ethnicity—included in the imputation model to provide more 

information about the missing data—though not used in carrying out the IRT analysis (Shin, 

2016). These variables exhibit a high bivariate correlation with the underlying missing data 

(Enders, 2010); and thus, increasing the number of these variables could increase chances of 

the MAR condition being satisfied in the dataset under investigation (Hardt, Herke, & 

Leonart, 2012; Schafer, 2003). 

Even though multiple imputation addresses problems with conventional treatment methods 

(e.g. with respect to wastefulness, computational problems, biased [co]variances, and biased 

p values and confidence intervals), the method still suffers some deficiencies (Gingel, 

Linting, Rippe & van der Voort, 2019). For instance, the data must be missing at random, 

with the model used to generate the imputed values being “correct” in some sense (Allison, 

2000). Importantly, the model used for generating the imputed datasets should match with the 

model used in carrying out the analysis (Allison, 2009; Rubin, 1987, 1996). That 

notwithstanding, multiple imputation remains one of the most popular missing data treatment 

methods amongst methodologists and researchers. 

8 For a more detailed discussion on the question about how many complete datasets to impute, see Graham et al. 
(2007). 
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Chapter 5 Study I—Effect of test length, sample 

size and population subgroups on measurement.    

This chapter describes the first (of two large studies) carried out in this doctoral dissertation. 

It will begin with a background discussion on how the three factors (a) test length (b) sample 

size, and (c) population subgroups within the population, relate to the efficiency or precision 

with which population or item parameters are recovered. This will be immediately followed 

by a detailed description of the aim, methodology and description of the empirical and 

simulation study that was carried out.  

5.1 Background 

5.1.1 Test length and measurement precision or efficiency 

Valid and reliable measures are crucial in the field of Psychology, as well as, in the study of 

abilities, aptitudes, and attitudes (Zanon, Hutz, Yoo & Hambleton, 2016). Further, it was long 

recognized that, all other things being equal, lengthening a test will increase its predictive 

validity due to the increased reliability of the test scores (Bell & Lumsden, 1980). This 

argument was derived from implications of the Spearman-Brown prophesy formula 

(Spearman, 1910), which defines the reliability of a test T, constructed by adding several n  

items X1,..,Xn as (Wolf, 2006, p. 24): 
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However, the accuracy of the above formula depends on key assumptions like presupposing a 

specific “universe of content” from which random samples of items are drawn (Burisch, 

1997). Further, if in the process of shortening a test, the deleted items are in every respect 

parallel to the remaining test items, the predicted validity of the shortened test, rk, becomes 

accurately represented by the formula (Burisch, 1997, p.304): 

0

1 ( 1)k
tt

r kr
k r


 

 (5.2) 

with rk representing the validity coefficient of the shortened test; r0 the validity coefficient of 

the original test; k, the ratio of the new test length to the old test length; and rtt the reliability 

coefficient of the original test. 

Importantly, empirical studies confirm a positive association between test length and 

reliability (Wolf, 2006). For instance, Crotts, Zenisk, Sireci and Li (2013) evaluated the 

degree to which shortening tests in a multi-stage adaptive test impacted on measurement 

precision. They compared the test reliability from the original and reduced tests using several 

approaches and found that levels of measurement precision became better with reduced-

length tests. On the other hand, test length and test quality are often found to be positively 

related when considering tests that are reference-based (Kruyen, Emons, & Sijtsma, 2012; 

Wilcox, 1980; Wolf, 2006). In such cases, the main concern is the agreement between 

decisions taken using outcomes of tests considered to be parallel (i.e., these parallel tests 

should classify subjects into categories in an identical manner).  

Particularly, in an IRT setting, short tests can be more reliable than longer tests (Embretson, 

1996). This occurs when the items of the short test are specially selected to be optimally 

appropriate to the ability or trait level of respective test takers (this is the case in targeted or 

adaptive testing). The reason for this is that in such targeted testing, the test items provide 

optimal information for the estimation of IRT model parameters, thus resulting in smaller 

standard errors of measurement for these tests (He & Wheadon, 2013). Conversely, if two 

tests—a long and a short test—have  fixed item content (i.e., the same items are presented to 
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every test taker), the long test will produce lower standard errors of measurement than the 

shorter test (Embretson, 1996). 

Yousfi (2005) used derivations from theory to explicitly prove that a positive relationship can 

only exist between test length and validity/reliability provided stringent conditions are met 

(e.g., test items being Rasch-homogenous or parallel). When these conditions are not 

satisfied, adding more items might not necessarily improve test validity or reliability. Thus, a 

straightforward monotone association between test length and test reliability (or validity) 

cannot be assumed. Two common error sources in the literature and statistical textbooks 

include researchers ignoring assumptions of the Spearman-Brown prophesy formula; and, 

failing to distinguish reliability/validity of an overall test and the reliability/validity estimates 

(Wolf, 2006). These errors lead to wrong conclusions about a test’s statistical characteristics, 

and false associations between test length and test reliability (or validity).  

Further, in real life testing scenarios, the assumption of parallel tests often gets violated. This 

is because, as more items become added to a test, there is a tendency for the response 

behaviour of test takers to change (e.g., test participants could become more bored or less 

motivated to complete a test, as more test items are added). 

5.1.2 Sample size and measurement efficiency 

The development of tests based on IRT and the analysis of data from such tests, rely heavily 

on the accuracy and stability of IRT model parameters. Also, when calibrating items from test 

data using IRT software, model parameter estimates and their associated standard errors (i.e., 

the measurement error associated with these estimated parameters) need to be provided. 

Since these IRT models are probabilistic in nature, an implication is that sample size will 

become a crucial factor impacting on how stable or accurate these estimated model 

parameters are (He & Wheadon, 2013).  

Hambleton, Jones and Rogers (1993) carried out a simulation study using the 2-PL model and 

found that test information distributions became significantly different from their true 
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distributions as smaller sample sizes were used. Chuah, Drasgow and Leucht (2006) found 

similar results though using the 3-PL model and samples from the Computer Adaptive 

Sequential Test (CAST). Conversely, Wang and Chen (2005) used WINSTEPS (Linacre, 

2006), to examine how sample size impacted fit statistics and standard errors of estimate 

when using the Rasch model (Rasch, 1960) and the Rating Scale model (Andrich, 1979). 

They found that the standard deviations of infit and outfit mean square errors (MNSQs) for 

the overall item difficulties became smaller in large samples. Similarly, DeMars (2003) 

examined how sample size, the total number of item parameters, and the number of 

parameters per item, influenced recovery of relevant parameters for polytomous items in a 

Nominal Response Model. Their results showed that sample size and the number of 

parameters per item accounted for a substantial amount of variance in RMSE, whereas the 

total number of item parameters did not. 

The above studies used pure simulations in order to investigate effects of sample size on IRT 

parameter estimation. A limitation here is, assumptions underlying IRT models are perfectly 

satisfied, which rarely is the case when using test data from real life scenarios. However, a 

few studies examined this problem using operational test data. For instance, Swaminathan, 

Hambleton, Sireci, Xing and Rizavi (2003) employed a large dataset produced from the Law 

School Admissions Council test to examine the association between sample size and the 

specification of prior information on the accuracy of item parameter estimates. They found 

that when using small samples, incorporating ratings (provided by subject specialists and test 

developers regarding item difficulty in the form of a prior distribution) produced more 

accurate parameter estimates. Likewise, Stone and Yumoto (2004) used thirteen subsamples 

drawn randomly from the normative database of the latest edition of Knox’s Cube Test 

Revised (KCT-R) to derive and compare estimates for the Rasch, 2-PL and 3-PL models. 

They found that as might have been expected, sample size influenced these estimates, with 

the Rasch parameter estimates from larger samples consistently having better goodness of fit 

indices than those from smaller samples. 

Given that the above studies all use complete datasets, it might be interesting to investigate 

the effect of sample size on incomplete data sets—as is typically the case in most large scale 
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educational assessments, where the resulting incomplete datasets were treated with multiple 

matrix booklet designs. Moreover, a crucial objective in most large-scale assessments is 

precise recovery of population parameters of interest. Therefore, a desirable research 

objective could be to investigate how sample size is related to parameter recovery precision 

when using such multiple matrix booklet designs.  

5.1.3 Measurement efficiency in policy relevant population subgroups 

When carrying out large-scale educational assessments, another important objective is to 

investigate performance disparities between policy relevant sub-groups within populations 

(Schleicher, Zimmer, Evans, & Clements, 2009). Salient groups of persons could be 

classified in terms of relevant educational, geo-political or demographic variables like 

gender, ethnicity or socio-economic status. In the Unites States for instance, The Every 

Student Succeeds Act (ESSA) of 2015 (Public Law 114-15) demands state-wide 

accountability, wherein educational outcomes of students from major ethnic and racial 

groups, economically disadvantaged students, English learners, and students having 

disabilities are reported (Seastrom, 2017).  

In  several LSAs (for instance, PISA and NAEP), students’ academic achievement 

distributions are estimated for policy relevant subpopulations or subgroups. This provides 

mean achievement scores and percentages of examinees lying above set cut scores within 

these in subpopulations or groups. This is done using sparse multiple matrix designs, which 

reduce respondent burden and test time, while ensuring broader content coverage. The 

resulting sparse data introduce large measurement errors for estimating individual ability 

estimates; thus, requiring special analysis procedures for estimating aggregate subgroup 

statistics (von Davier, 2003).   

To tackle this methodology challenge, direct estimation is used, where subgroup estimates are 

obtained without generating individual achievement scores. This typically involves using 

“conditioning models” which incorporate responses given by students to cognitive items with 

their responses on background variables (Cresswell, Schwantner, & Waters, 2015). Thus, 

using additional student information from background variables, more accurate estimates of 
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subgroup characteristics are obtained—unlike when only responses to cognitive items are 

used (Yamamoto, Khorramdel, & von Davier, 2016). 

Since 1984, the Educational Testing Service has been using a direct estimation technique for 

estimating relevant subgroup statistics. They use hierarchical IRT models to integrate student 

achievement data and background information, with major features of the procedure 

including (von Davier, 2003, p.1): 

1. A population model with an assumption that students’ proficiencies are normally

distributed conditional on several background variables. Hence, marginal distributions

(in general and for specific relevant subgroups) are a mixture of normals.

2. Generating a posterior latent trait distribution of proficiency for every subject in the

sample using: an estimate from (1); the cognitive item responses; a set of IRT

parameters estimated separately and treated as known and fixed; subjects’ group

membership; and other covariates. The combination of these individual posterior

distributions gives an estimate of the true subgroup distributions.

3. Integrating over the posterior distributions of subjects and model parameters of the

population—defined later in (1); to derive estimates of means, percentages over cut

off achievement points, etc.

4. Using normal approximations for posterior distributions of subjects; and multiple

imputation (using plausible values) to compute the integration in (3). The imputations

are used in combination with conditioning models generated from cognitive response

data and background information. These imputations are utilized to make it easier to

perform the integration in (3) and to supply data which secondary data analysts can

use with standard tools.

On the other hand, Cohen and Jiang (1999) put forward a different procedure for estimating 

subgroup characteristics using direct estimation. They argue that without using background 

variables, this approach yields consistent estimates for subgroup characteristics; with the 

main features involving (von Davier, 2003, p.2): 
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1. Population model generation with a marginal normality assumption (that is, aligning

ability distributions from all subgroups will produce a joint normal distribution).

2. Categorical grouping variables have a measurement model with a continuous

underlying variable and joint normal distribution with proficiency.

3. IRT model parameters are known and fixed.

4. Item responses are only used with a single grouping variable (used for reporting). No

other covariates or their interactions are employed in the population model.

5. Direct calculation procedure which skips the generation of individual posterior

distributions and plausible values.

Both methods described above are “direct estimation” methods as they do not use individual 

test scores to compute subgroup statistics. The method used by the ETS (described above) 

utilizes a more general model—with grouping variables, no assumptions concerning marginal 

proficiency distributions, and extra background information. The approach of Cohen and 

Jiang (1999) conversely applies a marginal normality assumption, while ignoring all 

background information except the single grouping variable (von Davier, 2003). 

Using an approach like the ETS approach above, Gonzalez and Rutkowski (2010) carried out 

a simulation study using sparse multi-matrix designs and students’ EAP scores, to investigate 

how item and population parameters were recovered in subgroup populations. They found 

that as the multi-matrix designs got sparser, the variance in the estimated posterior means for 

examinee proficiencies decreased, causing group differences to diminish. Thus, this resulted 

in real group differences being underestimated with this degree of underestimation increasing 

noticeably, as fewer items were administered per examinee (i.e., as matrix sparseness 

increased). 

However, even though accurate recovery of performance gaps between policy-relevant 

population subgroups remains a key objective in large-scale assessments, few studies have 

critically examined this question; especially, how factors such as test length and sample size, 

relate to the precision with which subgroup or subpopulation parameters are recovered.   
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5.2 Research objectives and research questions 

The results of large-scale student assessment studies inform evidence-based educational 

policies and significantly contribute to the empirical knowledge base of educational research. 

Multi-matrix booklet designs in conjunction with IRT analyses represent the state-of-the-art 

methodology of large-scale assessment studies. Thus, efficient and unbiased parameter 

recovery of population parameters or parameters concerning policy-relevant performance 

gaps related to gender, school type or immigration background are key evaluation criteria of 

this methodology. However, the knowledge base on multi-matrix designs and parameter 

recovery is still limited (Rutkowski, Gonzalez, von Davier & Zhou, 2014). Some simulation 

studies on multi-matrix booklet designs (e.g., Gressard & Loyd, 1991; Gonzalez & 

Rutkowski, 2010)9 showed that parameter recovery of population and subgroup parameters 

are influenced by factors such as test length and the number of participating students (i.e., 

sample size). Also, most large-scale assessment studies apply the balanced incomplete block 

booklet design.  

On the other hand, although the excellent studies mentioned above significantly contributed 

to the knowledge base on parameter recovery of multi-matrix sampling designs, there are still 

important research gaps. Notably, these studies were carried out using completely simulated 

data. Such data has well spelt out characteristics and fits to the underlying statistical models 

in predefined ways (e.g., perfect fit). However, this is not true for real empirical data from 

operational testing situations, where IRT models only provide an approximation to the 

empirical data and hence different results might be expected. Thus, it is not clear whether the 

results of simulation studies can be generalized to real empirical data. Further, it is also 

interesting to systematically investigate the extent to which parameter recovery precision is 

lost as booklet designs get sparser—as well as, considering test length and sample size.  

This study therefore used (a) real assessment data and (b) simulated data to critically examine 

how the factors test length and sample size influence parameter recovery when using 

different balanced incomplete block booklet designs. These booklet designs differ in their 

9 These studies were detailly described in chapter one—See Section 1.2 of this dissertation. 



5.3 Data and procedure 52

levels of matrix sparseness (i.e., the amount of missing data they contain). To this end, real 

and simulated data was rigorously examined where all or some of the factors—test length, 

sample size and matrix sparseness—are manipulated experimentally. In particular, the 

following research questions were tackled: (1) How precisely can item and person parameters 

be recovered at the global population level when using these different sparse booklet 

designs10? (2) How do test length or sample size influence the precision (or efficiency) with 

which person and item parameters are recovered when using these booklet designs11? (3) 

How precisely can parameters related to performance differences of policy-relevant 

subgroups (e.g., gender, migration background and school type) be recovered in these booklet 

designs?  

5.3 Data and procedure 

To tackle the above research questions, this study drew real data, as well as simulated data. 

(The simulated data was generated to have properties of the real dataset).  

Real data was obtained from the 2015 VERA-8 Mathematics Assessment for the German 

federal states of Berlin and Brandenburg. VERA-8 is a yearly assessment which assesses the 

mathematics achievement of 8th Graders and run by the Institute for School Quality for Berlin 

and Brandenburg (ISQ). Content specialists construct the test items with strict adherence to 

German national educational standards and evaluate psychometric properties of items by pre-

testing them in large field studies. This assessment was chosen because it gives crucial 

information to teachers, school principals and education policy makers, and since the data are 

not simulated, but rather typical of large-scale assessments with respect to their fit to 

underlying IRT models (in the case of this study, the unidimensional 1-PL IRT model, aka 

Rasch Model). This real dataset contains responses of 13,076 students from the non-

academic school track on a test of 48 dichotomously scored items. The student population 

10 In this research question, the real dataset of 42 items and 10,000 students, randomly selected from the VERA-
8 dataset was used. 
11 In this research question, all test lengths (42, 84, 126 items) and sample sizes (300, 500, 1000, 3000, 4500, 
6000, and 10,000 students) were considered. 
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comprises 45% female; 74% German, 9% Turkish, 17% other nationalities; students attend 

either the integrated secondary school (71%), or the integrated comprehensive school 

(“Gesamtschule”, 19%). These two school types differ in their pedagogical orientation.  

Simulated data were generated using the R package irtoys (Partchev, 2017). This was done 

by using (a) item difficulties from the real dataset and (b) the mean and standard deviation of 

student abilities from the real dataset, assuming a normal distribution, to generate student 

response data. Response data were simulated for test lengths of 84 and 126 items. These 

numbers were chosen because they are plausible item numbers that could be used in 

operational test situations; and since the numbers are all multiples of 7, they can be used in 

creating BIB7 booklet designs. Also, since BIB7 booklet designs can only be created when 

the test length is a multiple of 7, subjects’ responses to 42 items were randomly selected from 

the original real dataset. (See Table 5.1 for a structural overview of the experimental 

conditions and variables used in this study). 

To learn how sample size affects parameter recovery studies (a) real, (b) simulated data was 

studied for various sample sizes: 300, 500, 1,000, 3,000, 4,500, 6,000 and 10,000 students. 

These numbers chosen because they cover a wide spectrum of the possible number of 

students that can partake in an operational test (e.g., PISA requires a minimum sample size of 

4,500 students from each participating country).  

To this end, random selection of students from the original VERA dataset of 13,076 students 

was performed for the real and partly simulated data, while person and item characteristics of 

the VERA dataset were used in creating simulated datasets.  

Further to tackle the question on the recovery of group differences between policy relevant 

sub-groups, data like in the VERA dataset was simulated for a population of two groups—

Group 1 and Group 2. This was done using the item difficulties of the VERA-8 dataset and 

assuming the variance of ability in both groups was 1. These two groups represent policy 

relevant sub-groups (for instance, consisting of students with different genders, migration 

backgrounds, or socio-economic backgrounds). 
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Table 5.1. Overview of the study design 

Data to be 
studied 

Experimental Conditions Major Dependent 
Variables 

Booklet 
Design 

Sample 
Size 

Total 
Number of 
Items 

Difference in mean 
person ability 
between 
population sub-
groups 

Real data 0,1,2,3 300, 500, 
1,000, 
3,000, 
 4,500, 
6,000, 
10,000 

42 -- Bias & RMSE for 
item and person 
parameters at the 
population level 

Simulated 
Data 

0,1,2,3 300, 500, 
1,000, 
3,000, 
4,500, 
6,000, 
10,000 

84, 126 -- Bias & RMSE for 
item and person 
parameters at the 
population level 

Simulated 
Data 

0,1,2,3 300, 500, 
1,000 
3,000, 
4,500 
6,000 
10,000 

42 0a, 0.4b, 
0.8, 
1.2, 
1.6 
2 

Bias & RMSE for 
recovered 
difference in person 
parameters 
between 
population 
subgroups  

Note. The booklet design (see Section 5.4 below) determines the number of items per student, i.e., the matrix 
sparseness; with booklet design 0/1/2/3 implied that a student worked on 42/18/12/6 items, respectively. All 
experimental conditions were fully crossed. The simulated data was created using item and person 
characteristics from the original VERA dataset used in the study. The person parameters investigated were the 
mean person ability and the variance of person abilities, while the item parameter examined were the mean 
item difficulty. 

a  Data was simulated for two population subgroups assumed to be policy relevant (Group1 and Group2). In this 
simulation condition, Group1 and Group2 both have mean person abilities of 0 (Hence, no group difference in 
their mean person abilities) with standard deviation of 1. 
b  In this condition, Group1 has a mean person ability of -0.2, while Group2 has a mean person ability of 0.2, 

giving a group difference in mean person ability of 0.4). Similarly, to get group differences (for the mean 
person ability) of 0.8, 1.2, 1.6 and 2; the mean person abilities for Group1 and Group2 was simulated to be (-
0.4 and 0.4), (-0.8 and 0.8), and, (-1 and 1) respectively. Also, the group differences are given on the logit 
scale, with variance of person ability distribution being 1 in every group (Each group consists of 5000 
students). 

All experimental conditions were fully crossed. Doing so, yields 4 booklets (described in 

detail later below) x 7 (sample size) = 28 experimental conditions for first research question 
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with real data; 4 (booklets) x 7 (sample sizes) x 2 (total number of items) = 56 conditions for 

the second research question with simulated data; and,  4 (booklets) x 1 (sample size) x 6 

(levels of group differences in mean person ability) = 24 conditions for the third research 

question with simulated data. 

To create the real datasets required to answer the first research question, simple random 

sampling of 42 items and the appropriate number of students were selected from the original 

VERA dataset. So, depending on the experimental condition either 300, 500, 1000, 3000, 

4500, 6000 or 10000 students were randomly sampled from the real VERA-8 dataset. 

To create the simulated datasets required to answer the second research question (i.e., for test 

lengths of 84 and 126 items), the mean and standard deviations of person ability and item 

difficulties from the VERA-8 dataset were used to generate response data for the appropriate 

number of students (i.e., for either 300, 500, 1000, 3000, 4500, 6000, or 10000 students). 

Similarly, to create simulated data to answer the third research question (where the test length 

is 42 items), item difficulties from 42 randomly selected VERA-8 items were used to 

generate response data for an appropriate sample size where the mean difference in person 

ability between Group 1  and Group 2 was simulated to be  either 0, 0.4, 0.8, 1.2, or 2 (See 

note in Table 5.1 above for the procedure in which these mean differences in person ability 

were simulated). The choice of sample sizes, test lengths and group differences in mean 

person ability for the various experimental conditions were chosen because they are plausible 

in operational educational assessments.  

The items used fit well to the Rasch model, with Table 5.2 below showing fit statistics for 42 

randomly selected VERA-8 items and aggregated across 1000 replications. These values 

show a good fit to the Rasch model as the infit and outfit values are always close to 1. 

Thus, in this study a total number of 28 + 56 + 168 = 252 experimental conditions were 

investigated. Further to get stable estimates each of these conditions was replicated 1000 

times producing 1000 datasets from which the parameter of interest was calculated. 
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Table 5.2. Item fit statistics for VERA-8 items

Note. Results based on 42 randomly selected test items. 

Drawing on the methodological approach applied by von Davier et al (2009) as well as 

Gonzalez and Rutkowski (2010), various booklet designs were constructed using sparseness 

techniques. Hence, the key parameter in which these booklets differ is the number of items 

Item Name Outfit Outfit_t Infit Infit_t 
1 M1620701 1.12 7.49 1.02 1.03 
2 M1620702 1.02 1.86 0.99 -0.61
3 M1642601 0.99 -0.69 0.98 -1.46
4 M1642602 1.08 10.59 1.06 7.54 
5 M1640101 1.02 3.25 1.01 1.75 
6 M1511401 0.99 -0.32 0.96 -2.34
7 M1511402 0.93 -17.88 0.95 -12.45 
8 M1641201 1.03 3.69 1.01 1.21 
9 M1621802 1.19 10.48 1.03 1.56 
10 M1632201 1.25 29.43 1.17 20.73 
11 M1641001 1.04 4.22 0.99 -1.49
12 M1632501 0.96 -17.32 0.94 -12.86 
13 M1632502 1.05 3.39 1.03 2.34 
14 M5645101 1.16 8.35 1.07 3.49 
15 M5645102 1.27 24.34 1.14 12.50 
16 M5642201 1.09 3.84 1.00 -0.01
17 M5640601 0.98 -6.48 0.94 -3.03
18 M5640602 1.14 17.66 1.09 11.18 
19 M5640603 0.92 -25.66 0.96 -19.39 
20 M5640501 1.20 13.13 1.07 5.02 
21 M5640503 0.93 -9.11 0.96 -5.83
22 M5642001 1.10 12.36 1.07 8.40 
23 M5640401 0.92 -16.81 0.91 -11.91 
24 M5640403 0.96 -15.00 0.97 -10.30 
25 M4631601 1.03 1.51 0.98 -1.35
26 M4641901 0.91 -18.42 0.90 -13.45 
27 M4641903 1.01 0.72 1.01 1.06 
28 M4641001 0.93 -9.96 0.96 -5.69
29 M4641002 1.14 17.69 1.08 10.76 
30 M4641101 0.99 -0.62 1.00 0.03 
31 M4641102 0.91 -14.60 0.92 -8.26
32 M4641201 1.10 7.07 1.02 1.39 
33 M4645001 0.89 -11.35 0.93 -7.00
34 M4610402 0.98 -1.53 1.01 0.87 
35 M4642101 0.91 -16.26 0.93 -8.40
36 M4642102 1.17 20.54 1.14 17.29 
37 M2645301 1.11 7.63 1.04 3.17 
38 M2500301 1.05 3.09 0.99 -0.46
39 M2645001 0.97 -1.37 0.95 -2.81
40 M2641401 0.99 -1.70 0.99 -1.70
41 M2641901 0.98 -2.18 0.97 -3.09
42 M2641902 0.97 -3.59 0.98 -2.31
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answered by each individual student. Since the BIB-7 block design can only be created on a 

test with a test length which is a multiple of 7, data for 42 items from the original VERA-8 

data were randomly selected. The following booklet designs were analysed with real data 

from a total number of 42 items, as well as with partly and fully simulated data with 84 items, 

126 items, and 168 items.  

In the following the booklet designs with a total number of 42 items is described. The booklet 

designs with a larger number of items were created analogously.  

 Booklet Design0: The 42 test items were presented to all examinees. Given that
all students worked on all 42 items, this complete booklet design served as the
gold standard for evaluating parameter recovery of the other incomplete
designs.

 Booklet Design1: Items were randomly distributed into one of seven blocks,
labelled A, B, C, D, E, F, and G. Based on the BIB7 design, every examinee is
administered three blocks containing 18 items from the assessment pool. Hence
the blocks were organized as shown in Figure 5.1 below with the resulting
booklets being (ABD), (BCE), (CDF), (DEG), (EFA), (FGB), and (GAC).
According to Frey, Hartig & Rupp (2009) this booklet design is characterized
by the following parameters: t = 7, b = 7, r = 3, k = 3, λ = 1. This booklet
design contains 57% missing data (i.e. 24/42 *100, for the 42-itemed test, since
24 test items are not administered to the test taker).

 Booklet Design2: Every examinee responds to two blocks  containing 12 items
from the assessment pool; the blocks used were like those in Booklet Design1
above. The blocks were arranged into seven pairs thus: (AB), (BC), (CD),
(DE), (EF), (FG), and (GA). Hence, the design parameters were t = 7, b = 7, r =
2, k = 2, λ = 1. This booklet design  contains 71% missing data (i.e., 30/42 *
100, for the 42-itemed test, as 30 items are not administered to the test taker).

 Booklet Design3: Items were randomly distributed into one of 14 blocks (i.e.,
blocks A through block N). Every examinee responds to two of these blocks
containing six items from the assessment pool. These blocks were arranged into
14 pairs thus: (AB), (BC), (CD), (DE), (EF), (FG), (GH), (HI), (IJ), (JK), (KL),
(LM), (MN), and (NA). The design parameters for this last case are therefore: t
= 14, b = 14, r = 2, k = 2, and λ = 1. This booklet design contains 86% missing
data (i.e., 36/42 * 100, for the 42-item test).
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Fig. 5.1. An overview of the various booklet designs used in the study 

Note. Booklet design0 is the complete data design, where all students are administered all test items. The design 
thus serves as the gold standard for comparing the other booklet designs. 

5.4 Method of data analyses 

Given that no standard software or packages are available, test item selection algorithms were 

newly programmed to generate the multi-matrix booklet designs used in the study. The 

programming was done and run in the R environment for statistical computing (R 

Development Core Team, 2017). First, items and persons in the original VERA-8 dataset 

were randomly selected to create new datasets. Next, test items were ordered in increasing 

difficulty; after which three equally sized items groups (easy, average, and difficult items) 

were sequentially created. To create item blocks for the various booklet designs, an equal 

number of items were randomly selected from each of the item groups (i.e., easy, average and 
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difficult items). This was to ensure homogeneity of item difficulty in the different item 

blocks. Conversely, persons were equally divided (sequentially) into 7 blocks (for booklet 

Design1 and Design2) or 14 blocks (for booklet Deign3). Details of the algorithms used in 

creating these booklet designs are shown in Appendix B.1.  

Person and item parameters were scaled using the TAM R package (Robitzsch, Kiefer, & 

Wu, 2017) with the Mixed Coefficients Multinomial Logit Model (MCMLM; Adams, 

Wilson, & Wang, 1997; Adams & Wu, 2007). The MCMLM is a generalized multi-

dimensional Rasch model which allows estimation of multi-dimensional distributions 

conditional on background variables. Introducing background variables with the use of a 

latent regression permits estimation of not only first moments (i.e., means) and second 

moments (i.e., standard deviations) of overarching multidimensional distributions, but also 

moments of subgroup-specific distributions nested in the overarching distribution (Frey & 

Bernhardt, 2012). This allows means and variances of students from specific population 

subgroups (e.g., based on gender, school type, or migration background) to be easily 

calculated.  

Multiple Imputation (Rubin, 1987) was used to estimate person parameters. The technique 

involves substituting every missing data point with a set of m plausible values to create m 

complete data sets. Standard statistical software is then used to analyse these complete 

datasets and combining the results to get parameter estimates (Sinharay, Stern & Russell, 

2001). The TAM R package (Robitzsch, Kiefer, & Wu, 2017) was used in carrying out the 

multiple imputation, with 10 plausible values (which is the default in TAM) and as applied in 

many large-scale assessments (Frey & Bernhardt, 2012). Importantly, multiple imputation 

with plausible values was used because it remains state-of-the-art methodology in analysing 

large-scale assessments of student performance (Braun & von Davier, 2017). 

On the other hand, although many indices exist for evaluating statistical properties of booklet 

designs with respect to simulation studies, two most popular indices are the bias and RMSE 

(e.g., Toland, 2008; Svetina et al, 2013; Custer, 2015; and, Hecht et al, 2015a). Hence, these 

two indices were used to evaluate the efficiency with which person and item parameters are 

recovered in booklet designs. Bias describes the mean difference between the true and 
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estimated parameter values (i.e., mean inaccuracy of parameter estimate); while, Root Mean 

Squared Error (RMSE) signifies the root of the average squared difference between estimated 

and corresponding true parameter value (Wolf, 2006). Thus, RMSE considers variability of  

parameter estimate, with smaller RMSE and bias values implying more accurate or better 

parameter recovery. Further, given N replications, RMSE and bias are computed as follows: 
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where iX  is the true parameter value, ˆ
iX the estimated value of the parameter, and N the

number of replications to be carried out (In this study, N = 1000). With the real dataset, the 

true parameter values are obtained from Booklet0, which is the complete dataset; while this 

value is known when defining the parameter value for the simulated datasets. 

Specifically, to calculate the RMSE and the bias for the mean of the person ability 

distribution, the mixed coefficient multinomial logit model was applied to each simulated 

dataset with 10 PVs. This resulted in 10 sets of  PVs each having a mean. The average of 

these 10 means were taken to represent an estimate for the person parameter (i.e., the mean of 

the distribution of person ability) for that given dataset. This procedure was then replicated 

using 1000 different (simulated) datasets, resulting in 1000 estimates for this person 

parameter. These 1000 estimates of the recovered person parameter are now compared with 

the true parameter value got from the complete dataset (where no multi-matrix design was 

applied). This same procedure was followed to calculate the RMSE and bias for the mean 

item difficulty. However, to compute the RMSE and bias for the variance of the distribution 

of person ability, the procedure to calculate the variance of the distribution of variance of 

person ability using PVs as described in Section 3.3 of this dissertation was observed (i.e., the 

imputation variance was added to the variance of PVs for each set of 10 PVs for any given 
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dataset).  Further, for interpretation purposes, a parameter was considered accurately 

recovered when  RMSE ≤ 0.04. This approximately corresponds to the acceptable standard 

error benchmark in PISA, where the estimated parameters should lie within ± 5 PISA points 

from their true values and thus, typically falling within a magnitude of 2 standard errors of 

sampling (OECD, 2014, p.27). 

Importantly, in addition, inferential statistics were reported following very closely, the 

recommendations of Harwell, Stone, Hsu, & Kirisci (1996) and Feinberg & Rubright (2016), 

for reporting results of simulation studies performed in Item Response Theory and 

Psychometrics. These simulation results were “summarised as ANOVA’s to highlight the 

main effects” (See, Feinberg & Rubright, 2016, p. 44). Also, as recommended by Harwell et 

al. (1996, p.21), a non-linear, log transformation of the dependent variable (i.e., RMSE) was 

performed to increase the likelihood of the normality assumption being satisfied. Thus, since 

the item difficulties were normally distributed, it is expected that the log(RMSE) of 

parameters computed from these item parameter should be asymptotically normally 

distributed, with a mean and variance depending on the number of replications (Bartlett & 

Kendall, 1946; Harwell et al., 1996). In the same light, effect sizes of independent variables 

were computed using eta squared. As emphasized by Levine & Hullett (2002, p. 612), “Eta 

squared (η2) is the most commonly reported estimate of effect size for the ANOVA”. 

Particularly, η2 is easy to interpret, as it represents the percentage of variance associated with 

each independent variable; and all sources of variation (with their individual errors) add up to 

1.00. 
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5.5 Results and discussion 

5.5.1 How efficiently are item and person parameters recovered at the global 

population level when using the different sparse matrix booklet designs? 

The person parameters investigated were the mean and the variance of the distribution of 

person abilities, while the item parameter investigated was the mean item difficulty. Using 

the original VERA dataset (with complete data and no multi-matrix design applied), the mean 

of the distribution of person abilities was 0.00, while the mean item difficulty was -0.70. 

Similarly, the variance of the distribution of person abilities was 1.17, while the variance of 

the item difficulties was 1.19. Importantly, the mean and the variance of the distribution of 

person abilities were recovered accurately in all sparse booklet designs (RMSE ≤ 0.04), with 

the mean of the distribution of person abilities recovered more accurately than the variance of 

the distribution of person abilities. Further, the mean of the distribution of item difficulties 

was only accurately recovered in Booklet Design1 and Booklet Design2. However, there was 

no bias in the recovery of all person and item parameters investigated (0.00 ≤ Bias ≤ 0.01). 

Table 5.3 shows detailed values of the RMSE and bias for the recovery of person and item 

parameters across the various booklet designs.  

To further illustrate how well person abilities were recovered, the distribution of person 

abilities in the original VERA dataset, was compared to the distribution of person abilities 

from the datasets to which the various sparse matrix booklet designs had been applied. Figure 

5.2 shows this result for the recovered ability distributions using the first plausible values of 

ability (more detailed results, for the other plausible values, can be found in Appendix A.1). 

The results show that all designs recover the original distribution of person abilities very well 

(except around the centre of the ability distribution where the recovered distributions deviate 

slightly from the distribution in the original dataset, as the booklet designs became sparser). 

For each experimental condition, 1000 datasets were generated using the method described in 

section 5.3, from which a pooled estimate of the parameter of interest (for instance, the mean 

of the distribution of person abilities) was computed. Figure 5.3 and Figure 5.4 show how 

these parameters were recovered across the 1000 datasets for the various sparse matrix 
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booklet designs. The results clearly show that as the number of items administered per 

student became fewer (i.e., the booklet design became sparser), the precision with which the 

parameters of interest were recovered reduced. 

Additionally, to examine how individual item locations were recovered, an extra analysis was 

performed to calculate RMSE’s and bias for 42 randomly selected items from the VERA-8 

test.  The results showed that RMSE’s and bias for item location parameters increased as the 

booklet designs became sparser. However, no clear pattern was found in the recovery of the 

item locations based on their difficulty (i.e., after arranging the items in order of increasing 

item difficulty, no clear relationship was found between the difficulty of an item and the 

precision with which its difficulty was recovered). Details of the RMSE and bias values for 

these individual items (across 1000 replication conditions) are shown in Table 5.4. The 

results for the RMSE’s of recovered item locations per item are summarized in Figure 5.5; 

while Figure 5.6 summarizes these details for the bias. 



5.5 Results and discussion 64

Table 5.3. Parameter recovery efficiency for person and item parameters across booklet designs when using the VERA 2015 
mathematics dataset 

Complete data design Booklet Booklet Booklet 
Design1 Design2 Design3 

Mean Person Ability -0.0038 -0.0065 -0.0073 -0.0079
RMSE mean person ability - 0.0061 0.0071 0.0081
Bias mean person ability - 0 0 0.0001

Variance Person Ability 1.3926 1.3901 1.3897 1.3881 
RMSE variance person abilities - 0.0229 0.0241 0.0317 
Bias variance person abilities - -0.0013 -0.0027 -0.0032

Mean item difficulty -0.7015 -0.707 -0.7128 -0.7213
RMSE mean item difficulty - 0.0273 0.0409 0.1017
Bias mean item difficulty - -0.0026 -0.0039 -0.0065

Note. In the complete design no matrix sampling was used. For Booklet Designs 1 through Booklet Design3, the results obtained were pooled from 1000 iterations.
Progressively, the booklet designs become sparser moving from Booklet Design1 to Booklet Design3. (N = 10,000 students). For each simulation condition, the 
three parameters—mean person ability, variance of person abilities, mean item difficulty—were computed for each of the booklet designs from which the respective 
RMSE and bias were computed. 
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 Figure 5.2. Recovery of the distribution of person abilities 

Note. The recovery of the distribution of person abilities is from the 2015 VERA8 Mathematics dataset for Berlin and Brandenburg. The figure shows recovery of this 
distribution using the first plausible value and for the various booklet designs. Design0 contains the complete dataset having no missing data, while the designs become 
sparser moving from Design1 to Design3. (N = 10, 000 students). 
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Figure 5.3. Recovery of the mean and variance of the distribution of person abilities 

Note. The results for the complete dataset (i.e., Design 0) are obtained from a single computation, while those for Booklet Designs1, Design2 and Design3 are obtained from 
1000 iterations. (N = 10, 000 students). 
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Figure 5.4. Recovery of the mean item difficulty across various booklet designs 

Note. The results for the complete dataset (Booklet Design0) are obtained from a single computation, while those for Booklet Designs1, Design2 and Design3 are obtained 
from 1000 iterations. (N = 10, 000 students). 
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Table 5.4. RMSE and  Bias for recovery of item location  parameter across items in the 
VERA-8 dataset 

Note. MMS1/MMS2/MMS3 represent the multiple matrix booklet Design1/Design2/Design3 respectively. (N = 
10, 000 students). 
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Figure 5.5. RMSE for recovered item locations at item level in the VERA-8 dataset 

Note. The results are for 42 randomly selected items from the VERA-8 dataset and for 1000 replication conditions. Each point represents a single item and these items are 
arranged in increasing order of difficulty. MMS1/MMS2/MMS3 represent multiple matrix booklet Design1/Design2/Design3 respectively. (N = 10, 000 students). 
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Figure 5.6. Bias for recovered item locations at item level in the VERA-8 dataset 

Note. The results are for 42 randomly selected items from the VERA-8 dataset and for 1000 replication conditions. Each point represents a single item and these items are 
arranged in increasing order of difficulty. MMS1/MMS2/MMS3 represent multiple matrix booklet Design1/Design2/Design3 respectively. (N = 10, 000 students). 
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5.5.2 How is test length and sample size related to the efficiency or precision 

with which person and item parameters are recovered in the various sparse 

matrix booklet designs? 

The person parameters investigated were the mean and the variance of the distribution of 

person abilities; while the item parameter was the mean item difficulty (these person and item 

parameters are like those used in the previous research question). Since the original VERA 

dataset used in this study contained student response to only 48 test items, these items were 

used to simulate other datasets with 84 and 126 items (using the procedure already described 

in section 5.4.2 of this dissertation). Figure 5.7 and Figure 5.8 respectively describe the 

RMSE and the bias for the recovered person and item parameters across various test lengths, 

sample sizes and matrix booklet designs (The detailed values of the RMSE and bias from 

which Figure 5.7 and Figure 5.8 were respectively generated are presented in Tables 5.5 and 

Table 5.6).  

The results show that test length and sample size are consistently related to the precision with 

which booklet designs recover person and item parameters of interest. Generally, it was 

found that increasing the sample size from 3000 did not lead to any significant gain in 

parameter recovery precision. Also, there was no bias in the recovery of parameters of 

interest (0.00 ≤ Bias ≤ 0.02) across all examined conditions. The mean person ability is very 

accurately recovered in all simulation conditions (0.00 ≤ RMSE ≤ 0.03). This implies that 

even with just 300 students, and with every student administered only six (out of total of 42 

test items), the mean person ability can still be recovered very accurately and reliably. 

However, to accurately recover the variance of person ability (i.e., RMSE ≤ 0.04), it is 

recommended that sample size be at least 3000 examinees, when using a design like Multi-

matrix Booklet Design3. Conversely, to accurately recover the mean item location parameter, 

it is recommended that a minimum of 84 test items with a sample size of more than 3000 

examinees be used, when applying multi-matrix booklet designs like Design1 or Design2.  

Similarly, the ANOVA results for the recovery of person and item parameters confirmed that 

sample size accounted for the major proportion of the variation in the log(RMSE) for the 
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recovered person and item parameters. Specifically, for recovery of the mean for the 

distribution of person abilities, sample size accounted for 87% of the total variation in the 

log(RMSE); while, for the variance of the distribution of person abilities and the mean item 

difficulty, it accounted respectively for 72% and 67% of the total variation, in the log(RMSE) 

of these parameters. 

Also, matrix sparseness played an important role in explaining the variation in the 

log(RMSE) for recovering the mean item difficulty, accounting for 28% in the total variation. 

However, this effect was reduced when considering recovery of the mean and variance of the 

distribution of person ability, as matrix sparseness now accounted respectively for 6% and 

19% of the total variation in the log(RMSE). Conversely, test length had a very small effect, 

accounting for less than 5% in the variation of the log(RMSE) for all person and item 

parameters.  

On the other hand, for recovery of the variance of the distribution of person abilities, the 

interaction between sample size and matrix sparseness had a small effect, accounting for 4% 

of the total variation in the log(RMSE). However, this interaction effect became even smaller 

when considering recovery of the mean for the distribution of person abilities and the mean 

item difficulty—where this interaction accounted for only 2% of the total variance, in the 

log(RMSE) for these recovered parameters. The details for all the above ANOVA results are 

presented in Table 5.7.
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Figure 5.7. RMSE of recovered person and item parameters across various test lengths and sample sizes 

Note. The abbreviation “stds” means “students”. The first group of results are for the recovery of the mean person ability (i.e., mean θ); the second group of results, found at 
the centre, are for the recovery of the varaince of person abilities (i.e., var θ); while the last group of results are for the recovery of the mean item difficulty (i.e., mean δ). 
Each bar in the chart shows results  for one simulation condition across 1000 replications (e.g., the first bar shows the RMSE for booklet Design1 when the test length is 42). 
Booklet Design1, Design2, and Design3 contain 57%, 71%, and 86% missing data respectively. 
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Figure 5.8. Bias of recovered person and item parameters across various test lengths and sample sizes 

Note. The abbreviation “stds” means “students”. The first group of results are for the recovery of the mean person ability (i.e., mean θ); the second group of results, found at 
the centre, are for the recovery of the varaince of person abilities (i.e., var θ); while the last group of results are for the recovery of the mean item difficulty (i.e., mean δ). 
Each bar in the chart shows results  for one simulation condition across 1000 replications (e.g., the first bar shows the RMSE for booklet Design1 when the test length is 42). 
Booklet Design1, Design2, and Design3 contain 57%, 71%, and 86% missing data respectively.
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Table 5.5. RMSE of recovered person and item parameters across various test lengths and 
sample size 
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Table 5.6. Bias of recovered person and item parameters across various test lengths and 
sample sizes 
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Table 5.7. Summary of ANOVA for recovery of person and item parameters considering sample size, test length, matrix sparseness 
(and the interaction between these factors). 

log(RMSE) mean θ log(RMSE) variance θ log(RMSE) mean δ 
Source df Mean 

Square 
F value η2 Mean 

Square 
F value η2 Mean 

Square 
F value η2 

N 6 0.741 2585.67 .87 .741 86279.09 .72 1.136 36651.22 .67 
L 2 0.684 1192.09 .02 .008 883.70 .04 .004 124.47 .02 
S 2 0.319 556.27 .06 .600 65064.64 .19 1.334 43022.04 .28 
N x L 12 0.143 41.58 .03 .001 26.63 .01 0.000 7.24 .01 
N x S 12 0.035 10.13 .01 .019 2235.42 .04 0.018 572.82 .02 
L x S 4 0.020 17.18 .00 .000 26.51 .00 0.000 12.43 .00 
Residuals 24 0.007 .000 0.000 
Note. N = sample size (i.e., number of participating students); L = test length; and S = matrix sparseness (i.e., amount of missing data in the booklet design). N x 
L, N x S, and L x S represent interactions between these variables. The criterion variables were the log(RMSE) for the recovered mean of the distribution of 
person abilities; the log(RMSE) for the variance of the distribution of person abilities; and, the log(RMSE) for the mean of the recovered mean item difficulty. 
Further, p < .001 in all cases. 
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5.5.3 How efficiently are performance differences between policy relevant 

population subgroups recovered when using the various multi-matrix booklet 

designs (across conditions investigated in the study)? 

Data were simulated for a population containing two population subgroups (Group1 and 

Group2). These groups were assumed to represent two policy relevant population subgroups 

(for instance, Group1 could represent high SES students, while Group2 represents low SES 

students). 

Recovery of group difference in mean person ability 

The results show that for a sample size of at least 1000 examinees, performance differences 

between population subgroups are recovered accurately and without bias (0.015≤ RMSE ≤ 

0.022 and 0.000≤Bias≤0.002). For sample sizes of less than 1000 examinees, unreliable 

estimates of performance differences between population subgroups are reported, especially 

when using a multi-matrix booklet design like Design3. Further, increasing the number of test 

participants improved the precision with which performance group differences were 

recovered. However, beyond a sample size of 3000 examinees, changes in sample size had a 

negligible effect on the recovery accuracy of the group difference in mean person ability. For 

instance, when using the sparsest multi-matrix booklet design and the case with the greatest  

difference in mean person ability between population subgroups, increasing the number of 

participating students from 3000 to 10,000 only resulted in an RMSE reduction of 0.0007 

logits (i.e., an RMSE reduction from 0.0182 to 0.0175).  

Further, the magnitude of the difference between the mean person ability between the 

population subgroups had a very negligible effect on the accuracy with which this parameter 

was recovered. For instance, considering the multi-matrix booklet Design1, the average 

reduction in the RMSE of the recovered group difference in mean person ability between 

population subgroups was 0.0006 logits when comparing the group with no performance 

difference (d=0) and the group with the greatest performance difference (d=2). Particularly, 

the major increase in the RMSE of the recovered group difference (in mean person ability) 

only occurred when using the sparsest multi-matrix design and when the sample size was less 
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than 1000 examinees. Thus, for a sample size of 300 students, RMSE of recovered group 

difference (in mean person ability) increased 0.012 logits, when comparing case with least 

performance difference between population subgroups (i.e., d=0) and case with the greatest 

performance difference between the population subgroups (i.e., d=2). A graphical 

representation of the results is displayed in Figure 5.9 below, while detailed values of  the 

RMSE and bias across all investigated conditions are presented in Table 5.8. 

Recovery of group difference in variance of person abilities 

Generally, results for recovery of differences in variance of person ability between population 

subgroups were like those for the recovery of differences in mean person abilities between 

population subgroups (0.019 ≤ RMSE ≤ 0.228; 0 ≤ Bias ≤ 0.043). However, the values of the 

RMSE and bias were larger than those when considering recovery of the group difference in 

mean person ability. The implication is that, in general, the group difference in mean person 

ability was more accurately recovered than the group difference in the variance of person 

ability.  

Further, for accurate recovery of the group difference in variance of person abilities, a 

minimum of 3000 test takers is required. This is unlike the case with recovering the group 

difference in mean person ability where the minimum requirement was 1000 test takers. Also, 

when the sample size became greater than 3000 test takers, further increments in sample size 

had negligible effects on the accuracy with which group difference in variance of person 

abilities were recovered. For instance, considering the sparsest multi-matrix design and the 

case with the greatest group difference in the variance of person abilities (i.e., d=2), 

increasing the sample size from 4500 test takers to 10,000 test takers only reduced the RMSE 

(of the recovered group difference in the variance of person ability) by 0.002 logits—that is, 

from 0.028 logits to 0.026 logits. 

On the other hand, the magnitude of the group difference in the variance of person abilities 

had a negligible effect on how accurately this group difference was recovered. For instance, 

the average increase in the RMSE (of the recovered group difference in variance of person 
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ability) was 0.004, between the case where there was no group difference in the variance of 

person abilities (d=0) and the case where there was the greatest group difference in the 

variance of person abilities (d=2). Also, as sample size increased, the magnitude of the group 

difference (in the variance of person ability) had a smaller effect on the how accurately this 

person parameter was recovered. 

Details of these results are presented in Figure 5.10 and on Table 5.9 below. 
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Figure 5.9. RMSE and bias of recovered mean group difference in mean person ability between population subgroups 

Note. BD1, BD2 and BD3 represent multi-matrix booklet Design1, Design2 and Design3 respectively. Further, d=0, d=0.4, …, d=2 represent the various degrees of 
difference in mean person ability between the population  subgroups. For the condition d=0, there is no difference in mean person ability between population subgroups; 
while for d=2, the mean person ability for Group1 is -1 and the mean person ability for Group2 is 1. (N = 10,000 students, with each group containing 5,000 students). 
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Table 5.8. RMSE and bias of recovered group difference in mean person ability for population subgroups 

Note. The conditions, d=0, d=0.4, …, d=2 represent the simulated difference in the mean person ability between the two population subgroups. d=2 implies the difference in 
the mean person ability between Group1 and Group2 was 2 logits (i.e., the mean person ability for students in Group1 was -1, while the mean person ability for students in 
Group2 was 1). Each result is pooled from 1000 replications.  
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Figure 5.10.  RMSE and bias of recovered difference in variance of person ability between population subgroups 

Note. d=0 to d=2 represent the group differnce in mean person ability between the population subgroups (N  = 10,000 students, with each group containing 5,000 students). 
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Table 5.9. RMSE and bias of the recovered group difference in variance of person ability for population subgroups 

Note. The conditions, d=0, d=0.4, …, d=2 represent the simulated difference in the mean person ability between the two population subgroups. d=0.4 implies the difference in 
the mean person ability between Group1 and Group2 was 0.4 logits (i.e., the mean person ability for students in Group1 was -0.2, while the mean person ability for students 
in Group2 was 0.2). Each result is pooled from 1000 replications. 
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Chapter 6  Study II—Item-person match and 

parameter recovery efficiency 

This chapter describes an extensive simulation study performed as the second major study of 

this dissertation project. The study examines how matching items to fit person abilities 

impacts on how well population and item parameters of interest are recovered. The chapter 

begins with a background on item and test information functions—a pertinent concept to 

understanding this research question, followed by a summary of some previous empirical 

studies on item-person match. Details on the study objectives, methodology and achieved 

results are then presented next. 

6.1 Item and test information functions 

The information function plays a key role in Item Response Theory, as it provides a means of 

precisely evaluating how well individual items in a test measure the level of a given latent 

trait—for instance, student ability, knowledge, or level of satisfaction (Zięba, 2013). Further, 

having information means knowing something about a specific topic or object. This is similar 

as in Statistics and Psychometrics (though more technical), where information is defined as 

the reciprocal of the variance with which a parameter could be estimated (Baker & Kim, 

2017). Hence, estimating a parameter precisely (i.e., lesser variability) will imply more 

information will be known about the value of that parameter than if it was estimated with 

lesser precision (i.e. greater variability). Statistically, the degree of precision of an estimated 
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parameter is inversely proportional to the size of the variability of the estimates around the 

value of the parameter (Baker & Kim, 2017). 

Importantly, IRT models offer a powerful technique for describing items and tests. This is 

also true for the selection of test items in cases where the IRT models are found to fit with the 

test data. This technique involves using item information functions. These (item information) 

functions play a crucial role in the development of tests, as they describe the contributions 

items make to the estimation of person abilities at given points along the ability continuum 

(Hambleton, Jones & Rogers, 1993). This contribution depends hugely on the item’s 

discrimination power (with a greater value implying a steeper item characteristic curve and 

greater information provided by the item). Where exactly this contribution is made on the 

ability scale depends on the item’s difficulty (Hambleton, 1989).  

Further, summing the item information functions at every level that person ability is reported 

produces the test information function. Hence, the test information function is a measure of 

how much information is made available by all item responses on a test, concerning the latent 

trait or true score, θ (Johnson, 2018). Also, the precision with which ability is measured is 

greatly influenced by the amount of information provided by a test at a certain ability level—

with more information provided resulting in more accurate estimates of person abilities. For 

the 1-PL IRT model (applied in this dissertation), the amount of information associated with 

any item, i,  for a given ability level, θ, is given by the formula (Baker, 2001): 

( ) ( ) ( )i i iI P Q   ,  (6.1) 

where ( )iQ  = 1 - ( )iP  . 

Conversely, item information functions can be used to build tests which meet a desired set of 

statistical specifications. Birnbaum (1968) and Lord (1980) presented a procedure for doing 

this which involves using an item bank containing IRT item statistics and following these 

steps as outlined by Hambleton, Jones & Rogers (1993, p. 144): 

1. Deciding what shape, the test information function will take (also known as the target

information function).
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2. Selecting item bank items that have item information functions which fill up hard-to-

fill areas with respect to the target information function.

3. After adding every item to the test, computing the test information function for the

chosen test items.

4. Proceeding with selection of test items until the test information function becomes

approximately equal to the target information function.

This idea of matching test items to ability of test takers such that the items offer maximum 

information about test taker ability, forms the basis of techniques like test targeting and 

optimal item selection. In test targeting, this is done by (1) using background variables 

(which are related to student ability) to assign examinees test booklets having different mean 

difficulties, or (2) using ongoing examinee test performance to adaptively assign them to 

easy, fair or difficult subsequent test parts (Berger et al., 2019). Conversely, in optimal item 

selection, test developers choose items from an item bank based on how well they offer 

maximum information at a given point or range on the ability continuum (Hambleton & 

Jones, 1994). This is done by computer software using optimizing algorithms where test 

characteristics, like target information function and test length, are specified (Hambleton & 

Jones, 1994; van der Linden & Beokkooi-Timminga, 1989).  

Thus, while the item information function describes how much statistical information a test 

item provides in estimating person abilities across the entire range of ability scores, the test 

information function describes how well the entire test performs in estimating ability across 

this ability continuum (Baker, 2001; Baker & Kim, 2017). Importantly, by varying the match 

between the distribution of person abilities and the distribution of item difficulties, the 

amount of information available for the estimation of IRT model parameters could be 

affected. As a result, this could also affect the accuracy with which item and population 

parameters (of interest) are recovered. 
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6.2 Empirical studies on item person-match 

As noted by Svetina et al. (2013, p.336), “considerably less research has been conducted 

investigating IRT methods where a mismatch between item and person parameter 

distributions exist.” Svetina and colleagues carried out a simulation study using the 1PL IRT 

model with short tests and small samples. They investigated estimation accuracy of item and 

person location parameters when the underlying item and person ability distributions were 

mismatched. Their results showed that the degree of mismatch between the item and person 

ability distributions influenced parameter recovery. However, the degree of mismatch likely 

to occur in practice has a relatively small effect on parameter recovery.  

Further, Berger et al. (2019) performed another simulation study in which they compared the 

efficiency with which student ability was estimated using three item-person targeted designs. 

The designs used were the traditional targeted test design, the multistage test (MST) design, 

and the targeted multistage test (TMST) designs. They further investigated the degree to 

which the efficiency of these targeted designs was contingent on the correlation between (a) 

the ability-related background variables and the true examinee ability, and (b) examinee 

ability level and their classification into an ability group. Their results showed that examinee 

ability was generally more efficiently estimated with the targeted multistage design, 

especially when the ability-related background variable had a high correlation with true 

student ability. Also, targeted multistage testing resulted in efficient estimation of abilities for 

high- and low-ability students within the population.  

As noted above, a dearth of research exists investigating IRT methods where a mismatch 

between item and person ability distributions exists. This is worse when looking at multi-

matrix booklet designs. To my knowledge, no study has investigated the question of item-

person mismatch and parameter recovery when using multi-matrix booklet designs12. Further, 

Svetina et al. (2013) used complete data in their study. Thus, it could be interesting to 

investigate what results are obtained when sparse datasets are used. Effects that are negligible 

12 Based on a google scholar search with the keywords: multi-matrix designs, person-item match, parameter 
recovery, item and person ability distribution match, IRT. This search was conducted in March 2019. 
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or small when using complete data, might become significant when using sparse data—as is 

typically the case with multi-matrix booklet designs. This might stem from the fact that less 

information is available for the estimation of IRT model parameters due to data sparseness. 

6.3 Research objectives and research questions 

In IRT measurement, person ability is measured most efficiently when items administered to 

examinees match their ability level on the measured latent trait (Lord, 1980; Rost, 2004; 

Berger et al. 2019). This is because more information is available for measurement when 

person ability matches item difficulty. This thus serves as the basis for targeted testing 

designs like multistage testing and computer adaptive testing (Berger et al., 2019). Also, 

several studies show that factors such as test length and sample size influence parameter 

recovery accuracy when carrying out measurement with IRT models (e.g., see DeMars, 2003; 

Swaminathan, Hambleton, Sireci, Xing and Rizavi, 2003; Yousfi, 2005; Wang and Chen, 

2005; Chuah, Drasgrow and Leucht, 2006; He & Wheadon 2012). Further, a dearth of 

literature exists on item-person match and parameter recovery in IRT—worst still, when 

considering multi-matrix booklet designs. 

Therefore, this study aims to investigate how the match between item and person ability 

distributions influence the efficiency of recovered person and item parameters when using 

sparse multiple matrix booklet designs. This will be achieved by specifically answering the 

following research questions: 

1. Considering test length, how is the efficiency of recovered person and item

parameters influenced by the match between item and person ability distributions in

various sparse matrix booklet designs?

2. Considering sample size, how is the efficiency of recovered person and item

parameters influenced by the match between item and person ability distributions in

various sparse matrix booklet designs?
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6.4 Data and procedure 

To answer the above research questions, this study used real data, as well as simulated data. 

The real data was used to generate the simulated data. This was done such that simulated data 

has properties of the real dataset. The real dataset used was PISA 2012 Mathematics dataset 

for Germany. PISA (Programme for International Student Achievement) is a triennial 

international survey organized by the OECD (Organization for Economic Cooperation and 

Development) with the aim of evaluating education systems worldwide. It does this by testing 

the mathematics, science and reading competencies of 15-year-old students, who are towards 

the end of their compulsory education (OECD, 2018). The PISA 2012 dataset used in the 

study contains the cognitive responses of 5001 German students to 84 mathematics items 

(with a multi-matrix booklet design used in administering the items to the students). On the 

logit scale, the mean and standard deviation of student abilities were -0.02 and 1.281 

respectively, while the mean and standard deviation of the item difficulties were 0.049 and 

1.517 respectively. Respectively, these values on the PISA 2012 metric are 507.85 and 98.57 

for the mean and standard deviation of person abilities, and 512.22 and 118.15 for the mean 

and standard deviation of item difficulties13. 

The simulated student response data were generated using the R package irtoys (Partchev, 

2017). This was done by using (a) item difficulties from the real dataset and (b) the mean and 

standard deviation of person abilities from the real dataset. Five match conditions between 

item and person ability distributions were simulated as shown in Table 6.1 below. 

For each of the above conditions, response data was simulated for test lengths of 42, 84, and 

126 items. These numbers were chosen because they are plausible item numbers that could be 

used in operational test situations; and since the numbers are all multiples of 7, they can be  

13 The PISA scaled scores were got by applying the transformation (OECD, 2014): 
0.0981100 500

1.2838
L    

, 

where L represents the raw logit scores for the item or person parameter. 
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Table 6.1. Match conditions between distributions of person ability and item difficulty in the 
simulated data 

Match condition Mean Person Ability Mean Item Difficulty 
1 (d=0) 0 0 
2 (d=0.2) 0.2 0 
3 (d=0.4) 0.4 0 
4 (d=0.6) 0.6 0 
5 (d=0.8) 0.8 0 
Note. In condition 1 (d=0), there is perfect match between the person ability distribution and the distribution of 
item difficulties (Both distributions having a mean of 0). The mean person ability and the mean item difficulty 
are given in logits.  

used in creating BIB7 booklet designs14. Importantly, BIB7 booklet designs can only be 

created when the test length is a multiple of 7 (See Table 6.2 for a structural overview of the 

experimental conditions and variables used in this study). 

Further, to learn how sample size and person-item match influence parameter recovery 

efficiency, sample sizes of 300, 500, 1,000, 3,000, 4,500, and 6,000 students were simulated 

for each of the match conditions as described in Table 6.1 above. These numbers were chosen 

because they cover a wide spectrum of the possible number of students that can partake in an 

operational test (e.g., PISA requires a minimum sample size of 4,500 students from each 

participating country). All experimental conditions were fully crossed. Doing so, yielded 4 

(booklet designs15) x 6 (sample sizes) x 3 (total number of items) x 5 (Person-Item match 

conditions) = 360 experimental conditions. Further, to ensure the stability of results, each 

experimental condition was replicated 1000 times. Thus, in this study a total number of 360 * 

1000 = 360,000 datasets were analysed.  

14 As was already explained in the introductory chapter of the PhD dissertation, BIBD7 designs have many 
desirable characteristics (e.g., every item pair occurs an equal number of times, and does so at least once). Also, 
the BIBD design and several variants of it are used in many LSAs like PISA (Gonzalez and Rutkowski, 2010). 
15 The booklet designs used were the same as those used in Study I of this dissertation (See Section 5.3—
Particularly, Figure 5.1 on page 58, gives an overview of these booklet designs). 
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Table 6.2. Overview of the study design 

Data to be 
studied 

Experimental Conditions Major Dependent 
Variables 

Booklet 
Design 

Sample 
Size 

Total 
Number of 
Items 

Person-Item match 
condition 

Simulated 
Data 

1,2,3,4 300, 500, 
1,000, 
3,000, 
4,500, 
6,000, 

42, 84, 126 1, 2, 3, 4, 5 Bias & RMSE for 
item and person 
parameters at the 
population level 

Note. The booklet design (see Section 5.4.3) determines the number of items per student, i.e., the matrix 
sparseness. All experimental conditions are fully crossed. In this study, the simulated data were created using 
item and person characteristics from the PISA 2012 mathematics dataset for Germany. The person parameters 
investigated were the mean person ability and the variance of person abilities, while the item parameter 
examined was the mean item difficulty. The person match condition describes the match between the distribution 
of the person abilities and the distribution of the item difficulties (See Table 6.1) 

6.5 Method of data analysis 

The method of data analyses was the same as in Study I of this dissertation (See Section 5.4). 

Importantly, inferential statistics were reported following very closely, the recommendations 

of Harwell, Stone, Hsu, & Kirisci (1996) and Feinberg & Rubright (2016), for reporting 

results of simulation studies performed in Item Response Theory and Psychometrics. Thus, 

the simulation results were “summarised as ANOVA’s to highlight the main effects” (See, 

Feinberg & Rubright, 2016, p. 44). Also, as recommended by Harwell et al. (1996, p.21), a 

non-linear, log transformation of the dependent variable (i.e., RMSE) was performed to 

increase the likelihood of the normality assumption being satisfied. Particularly, since the 

item difficulties were normally distributed, it was expected that the log(RMSE) of parameters 

computed from these item parameter ought also be asymptotically normally distributed, with 

a mean and variance depending on the number of replications (Bartlett & Kendall, 1946; 

Harwell et al., 1996). In the same manner, effect sizes of independent variables were 

computed using eta squared. As emphasized by Levine & Hullett (2002, p. 612), “Eta squared 
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(η2) is the most commonly reported estimate of effect size for the ANOVA.” Further, it is 

easy to interpret, as it represents the percentage of variance associated with each independent 

variable; and all sources of variation (with their individual errors) add up to 1.00. 

6.6 Results and discussion 

The results of how item-person match relates to efficiency with which person and item 

parameters are recovered are described below under three sub-sections. Each sub-section will 

describe how item-person match impacts the recovery of a single person or item parameter. 

At the end of the last section, a brief summary is given on how test length, sample size and 

item-person match relate to the efficiency with which item and person parameters are 

recovered. 

6.6.1 Item-person match and efficiency of mean person ability estimate 

recovery 

Table 6.4 and Table 6.5 respectively give detailed values of the RMSE and bias  (for 

recovered means of the distribution of person abilities) across all conditions of item-person 

match, sample size and test length as was investigated in this study. The results show that, for 

a sample size of more than 1000 students, item-person match has almost no effect on the 

efficiency16 with which the mean person ability is recovered. However, even when the 

sample size is less than 1000, the effect of item-person match on both the RMSE and bias is 

still extremely small. For instance, for a sample size of 500 students, test length of 42 items, 

and considering the sparsest multi-matrix design, the RMSE of the recovered mean person 

ability increased only 0.002 logits (i.e., from 0.021 to 0.023) when comparing the perfectly 

matched condition and the most mismatched condition. Similarly, for a sample size of 300 

students, test length of 42 items, and the sparsest multi-matrix design, the RMSE of the 

recovered mean person ability increased 0.005 logits (i.e., from 0.028 to 0.033), when the 

16 Efficiency here has to do with how precisely the various sparse booklet designs recover the true parameter 
value. 
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perfectly matched condition and the most mismatched conditions were considered 

respectively (See Table 6.4 for details).  

For a  graphical overview of these results, Figure 6.2 displays values of the RMSE for the 

recovered mean of the distribution of person abilities across the various experimental 

conditions investigated. Importantly, although the mean of the person ability distribution was 

recovered accurately in all simulation conditions, the RMSEs became slightly greater as 

items and persons became more mismatched. Figure 6.3 shows the distribution of recovered 

mean person abilities across 1000 replications, when test length is 42 items. A simplified 

version of the same results is presented in Appendix A.3. Further, irrespective of the degree 

of match between the distributions of item difficulties and person abilities, no bias was found 

in the recovery of the mean person ability. The bias in all cases examined was always less 

than 0.03 (See Table 6.5 for details). 

On the other hand, the ANOVA results showed that amongst all factors investigated, sample 

size accounted for almost all the variation in the log(RMSE) for the recovered mean in the 

distribution of person abilities, accounting for up to 93% of the total variance. Matrix 

sparseness and test length had small effects, accounting for 4% and 1% respectively of the 

total log(RMSE) variation. Further, distribution match contributed for less than 1% of this 

total variation, same as the various interaction effects (i.e., sample size x test length, and 

sample size x matrix sparseness). Similarly, there was no significant interaction effect 

between test length and matrix sparseness. The complete results from these ANOVA analyses 

are presented in Table 6.6.  

Thus, in conclusion, irrespective of how sparse the booklet design was, the match between 

the distribution of person abilities and the distribution of item difficulties had a negligible 

effect on the precision with which the mean of the person ability distribution was recovered 

(across all experimental conditions investigated in the study).
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Table 6.4. RMSE of recovered mean person ability across various levels of item-person match, sample size and test length 

Note. “Match” represents the degree of match between the distribution of item difficulties and the distribution of person abilities. For the condition d=0, there is perfect 
match between the distribution of item difficulties and the distribution of person abilities (both distributions having a mean of 0). In all conditions of distribution match 
investigated, the distribution of item difficulties has a fixed mean of 0. Only the mean for the distribution of person abilities is varied. Thus, for the condition d=0.2, the 
distribution of person abilities has a mean of 0.2. Similarly, for the “match” conditions d=0.4, d=0.6 and d=0.8, the distribution of person abilities have means of 0.4, 0.6 
and 0.8 respectively. Also, the multi-matrix designs become sparser moving from Design1 to Design3. Design1 contains 57% missing data, Desing2 contains 71% missing 
data, while Design3 contains 86% missing data. 
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Table 6.5. Bias of recovered mean person ability across various levels of item-person match, sample size and test length 

Note. “Match” represents the degree of match between the distribution of item difficulties and the distribution of person abilities. For the condition d=0, there is perfect 
match between the distribution of item difficulties and the distribution of person abilities (both distributions having a mean of 0). In all conditions of distribution match 
investigated, the distribution of item difficulties has a fixed mean of 0. Only the mean for the distribution of person abilities is varied. Thus, for the condition d=0.2, the 
distribution of person abilities has a mean of 0.2. Similarly, for the “match” conditions d=0.4, d=0.6 and d=0.8, the distribution of person abilities have means of 0.4, 0.6 
and 0.8 respectively. Also, the multi-matrix designs become sparser moving from Design1 to Design3. Design1 contains 57% missing data, Desing2 contains 71% 
missing data, while Design3 contains 86% missing data. 
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 Figure 6.2. RMSE for the recovery of the mean person ability estimate across all experimental conditions 

Note. The bar plots are in groups of 3’s for each sample size (i.e., number of students). For instance, in the first panel which is a bar plot representing the case for a test length 
of 42 items, the first three groups are results for a sample size of 300 students. Further, each of these three groups represents results for one multi-matrix design. The multi-
matrix designs are labelled D1, D2 and D3, with the designs becoming sparser moving from D1 to D3 (Multi-matrix Design D1 contains 57% missing data, while designs D2 
and D3 contain 71% and 86% missing data respectively). Also, “Distribution Match” represents the degree of match between the distribution of item difficulties and the 
distribution of person abilities. For the condition d=0, there is perfect match between the distribution of item difficulties and the distribution of person abilities (both 
distributions having a mean of 0). For the conditions d=0.2, d=0.4, d=0.6 and d=0.8, the mean for the distribution of person abilities is 0.2, 0.4, 0.6 and 0.8 respectively. In all 
distribution match conditions, the mean item difficulty is fixed at 0.  
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Figure 6.3. Distribution of recovered mean person ability estimate for different item-person match conditions (Case for sparsest multi-matrix 
design and test length of 42) 

Note. “Match” represents the degree of overlap between the distribution of item difficulties and the distribution of person abilities. For the condition d=0, there is perfect 
overlap between the distribution of item difficulties and the distribution of person abilities (both distributions having a mean of 0). In all conditions of distribution match 
investigated, the distribution of item difficulties has a fixed mean of 0. Only the mean for the distribution of person abilities is varied. Thus, for the condition d=0.2, the 
distribution of person abilities has a mean of 0.2. Similarly, for the “match” conditions d=0.4, d=0.6 and d=0.8, the distribution of person abilities has a mean of 0.4, 0.6 and 
0.8 respectively.
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Table 6.6: ANOVA results with log(RMSE) of the mean for the distribution of person abilities 
being the dependent variable. 

Source df Mean 
square 

F value 2

Sample Size 5 2.3474 15509.25 .93 
Test Length  2 0.0856 565.78 .01 
Matrix Sparseness 2 0.2758 1828.69 .04 
Distribution Match  4 0.0104 68.44 .00 
Sample Size x Test Length 10 0.0050 33.11 .00 
Sample Size x Matrix Sparseness 10 0.0049 32.22 .00 
Test Length x Matrix Sparseness 4 0.0004 2.38 .00 
Residuals 232 0.0002 
Note.  p < .05 for all conditions, except for the Test Length x Matrix Sparseness interaction.
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6.6.2 Item-person match and efficiency of variance (of person abilities) 

recovery 

Table 6.7 and Table 6.8 show details of the RMSE and the bias for the recovered variance of 

person abilities across various levels of item-person match, sample sizes and test lengths—as 

investigated in the study. In general, the results for the recovery of the variance of person 

abilities were like those for the recovery of the mean person ability. There was no bias in all 

conditions investigated, irrespective of how mismatched the person ability distributions and 

the item difficulty distributions were (Bias < 0.03 in all examined conditions, see Table 6.8 

for details). Figure 6.4 describes how item-person match is related to the efficiency with 

which the variance of person abilities is recovered considering various multi-matrix designs, 

sample sizes and test lengths. 

The major difference in the recovery of both parameters (i.e., the mean of the distribution of 

person abilities and the variance of the distribution of person abilities) was that values of the 

RMSEs for the recovered variance of distribution of person abilities were generally larger. 

While the RMSE and bias for the recovered mean of person ability distribution lay in the 

range [0.005, 0.033] and [0.000, 0.025] respectively; these values for recovery of variance of 

person abilities were in the range [0.013, 0.318] and [0.000, 0.027] for the RMSE and bias 

respectively. 

More specifically, the increase in the RMSEs as a result of increasing item-person mismatch 

was very small. For instance, for a test length of 42 items, the average increase in RMSE 

from the perfectly matched condition (d=0) to the most mismatched condition (d=0.8) was 

0.034. However, this value became even smaller as test length increased—thus, for the 84- 

and 124-itemed tests, this increase was 0.027 and 0.016 respectively. This implies that the 

impact of item-person mismatch, (though small), grew even smaller as test length increased. 

Doubling the test length from 42 items to 84 items resulted in a reduction of about 21% in the 

RMSE between the perfectly matched condition (d=0) and the most mismatched condition 

(d=0.8). 
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Similarly, there was an interaction between “Sample Size and Matrix Sparseness”. Thus, 

increasing the sample size reduced the effect of matrix sparseness on the precision with 

which the variance of the distribution of person abilities was recovered (i.e., smaller RMSE). 

Taking the sparsest multiple matrix design with a test length of 42 as an example, the 

increase in RMSE from the perfectly matched case (d=0) to the most mismatched case 

(d=0.8) was 0.036 when the sample size was 300 students; however, when the sample size 

was now 6000 students, the increase in RMSE from the perfectly matched case (d=0) to the 

most mismatched case (d=0.8) became 0.026. This means that there was a 10% reduction in 

the effect of item-person mismatch when the sample size was increased from 300 to 6000 

students.  

Table 6.9 summarizes ANOVA results for the recovered variance of the distribution of 

person abilities and factors investigated in the study (i.e., number of participating students, 

test length, matrix sparseness in booklet design, match between the distribution of person 

abilities and the distribution of item difficulties; and, the interactions between all of these 

factors). As was the case with recovering means of the distribution of person abilities, the 

major source of variance in the log(RMSE) for the recovered variance of the distribution of 

person abilities was the number of participating students (accounting for 65% of the total 

variance).  

 Further, the degree of sparseness in the booklet design accounted for 15% of the total 

variance in the log(RMSE); while test length and distribution match (i.e. the degree of 

overlap between the distribution of person abilities and the distribution of item difficulties) 

accounted for 8% and 15% respectively. Importantly, the interactions (Sample Size x Test 

Length; and, Sample Size x Matrix Sparseness) had a greater effect than was the case when 

considering recovery of the mean for the distribution of person abilities, with these 

interactions accounting for 2% and 4% of the total variation respectively. On the other hand, 

the interaction between test length and matrix sparseness accounted for less than 1% in the 

total variation of the log(RMSE). 
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Table 6.7. RMSE of recovered variance of person abilities across various levels of item-person match, sample size and test length 

Note. “Distribution Match” represents the degree of match between the distribution of item difficulties and the distribution of person abilities. For the condition d=0, 
there is perfect match between the distribution of item difficulties and the distribution of person abilities (both distributions having a mean of 0). In all conditions of 
distribution match investigated, the distribution of item difficulties has a fixed mean of 0. Only the mean for the distribution of person abilities is varied. Thus, for the 
condition d=0.2, the distribution of person abilities has a mean of 0.2. Similarly, for the “match” conditions d=0.4, d=0.6 and d=0.8, the distribution of person abilities 
has a mean of 0.4, 0.6 and 0.8 respectively. Also, the multi-matrix designs become sparser moving from Design1 to Design3. Design1 contains 57% missing data, 
Desing2 contains 71% missing data, while Design3 contains 86% missing data. 
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Table 6.8. Bias of recovered variance of person abilities across various levels of item-person match, sample size and test length 

Note. “Match” represents the degree of match between the distribution of item difficulties and the distribution of person abilities. For the condition d=0, there is perfect 
match between the distribution of item difficulties and the distribution of person abilities (both distributions having a mean of 0). In all the match conditions investigated, 
the distribution of item difficulties has a fixed mean of 0. Only the mean for the distribution of person abilities is varied. Thus, for the condition d=0.2, the distribution of 
person abilities has a mean of 0.2. Similarly, for the “match” conditions d=0.4, d=0.6 and d=0.8, the distribution of person abilities has a mean of 0.4, 0.6 and 0.8 
respectively. Also, the multi-matrix designs become sparser moving from Design1 to Design3. Design1 contains 57% missing data, Desing2 contains 71% missing data, 
while Design3 contains 86% missing data. 
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Figure 6.4. RMSE for the recovery of the variance of person abilities for different item-person match conditions 

Note. The multi-matrix booklet designs become sparser moving from Design1 to Design3. The multi-matrix design Design1 represents the design with 57% missing data, 
while Desing2 and Design3 are multi-matrix de signs with 71% and 86% of missing data respectively. d=0, d=0.2, ..., d=0.8 represent the distribution match (i.e., the degree 
of match between the distribution of item difficulties and the distribution of person abilities). Moving from d=0 to d=0.8, the two distributions (of item difficulties and 
person abilities) become more misaligned with d=0 being the condition of perfect match between both distributions, and d=0.8 being the most mismatched condition
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Table 6.9. ANOVA results with log(RMSE) of recovered variance for the distribution of 
person abilities being the criterion. 

Source df Mean 
square 

F value 2

Sample Size 5 3.186 1483.72 .65 
Test Length  2 1.156 449.31 .08 
Matrix Sparseness 2 2.154 837.34 .15 
Distribution Match  4 0.340 132.06 .05 
Sample Size x Test Length 10 0.052 20.19 .02 
Sample Size x Matrix Sparseness 10 0.113 43.84 .04 
Test Length x Matrix Sparseness 4 0.020 7.90 .00 
Residuals 232 0.0002 
Note.  p < .001 for all cases.
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6.6.3 Item-person match and recovery of mean item difficulty 

Table 6.10 and Table 6.11 respectively show the RMSE and Bias for the recovered mean 

item difficulty across the various conditions of item-person match, sample sizes and test 

lengths investigated in the study. These results also follow a similar pattern to the above 

results for the recovery of the mean person ability and variance of person ability (though the 

values of the RMSE for the recovered mean item difficulty were slightly larger, 0.013 ≤ 

RMSE ≤ 0.429). Also, item-person match had no effect on the recovery of the mean item 

difficulty except when the sample size was less than 1000 students. That notwithstanding, 

this effect was also very small (See Table 6.10 for details). Further, though there was no bias 

in recovering mean item difficulty across all conditions of item person match, sample size, 

and test length (0.000 ≤ Bias ≤ 0.025); accurate recovery of this parameter especially with the 

sparsest booklet design required more than 1000 students. 

On the other hand, upon further examination of the recovery of item difficulties at an 

individual item level, the results showed that the nature of item-person match affected 

recovery precision for individual items in completely different ways. For instance, shifting 

the distribution of person abilities to the right, by using students with higher abilities (the 

distribution of item difficulties kept fixed, with a mean of 0), resulted in the item difficulty 

for the difficult items being recovered more accurately than the item difficulties for the easier 

items. As an example, for the distribution match condition, d=0.8, where the distribution of 

person abilities had a mean of 0.8, while the mean of the distribution of item difficulties 

remained fixed at 0; the results showed that the more difficult items were recovered more 

accurately than the easier items. Conversely, for the distribution match condition, d=0, where 

both distributions of item difficulties and person abilities were perfectly aligned (with both 

distributions having a mean of 0), the results showed that the item difficulties for all items 

were recovered with almost the same degree of accuracy, except for a few extremely easy and 

extremely difficult items (See Figure 6.6 and Figure 6.7 for details).  

To further verify these results, another distribution match condition, d= -0.8, was 

investigated, in which the distribution of person abilities was now shifted to the left, so that 
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the mean person ability was -0.8 (with the distribution of item difficulties still kept fixed, 

with a mean of 0). In this scenario, shifting the distribution of person abilities to the left 

resulted in the item difficulties, for the easier items, being recovered more accurately than 

item difficulties for the more difficult items (See Figure 6.6, Figure 6.7 and Figure 6.8 for 

details of these results). 

Similarly, ANOVA analyses were performed to examine how the various investigated factors 

accounted for variation in the log(RMSE) for the recovered mean item difficulty. A summary 

of these results is presented in Table 6.12. Further, as was the case for the recovery of the 

mean and variance for the distribution of person abilities, sample size accounted for a major 

part of the total variation (accounting for 70% of the variation in the log(RMSE) of the 

recovered mean item difficulty). However, the degree of sparseness in the booklet design also 

played a crucial role, accounting for 22% of the total variation in the RMSE, which was more 

than five times the magnitude of the variance accounted for by the same factor when 

considering recovery of the mean of the distribution of person abilities. Test length and 

distribution match accounted for 2% and 1% respectively; while the interaction between 

number of participating students (sample size) and matrix sparseness in booklet design had a 

larger impact, accounting for 3% percent of the total variance. 

To summarize the above results on how person-item match affected the recovery of person 

and item parameters investigated, it was found that: (1) When considering recovery of the 

mean person ability, the match between item and person ability distributions had a negligible 

effect on the precision with which item and person parameters were recovered—with the 

recovery precision becoming only slightly worse as the two distributions became more 

misaligned; (2) As test length increased, the effect of a mismatch (between the distribution of 

item difficulties and the distribution of person abilities) on person and item parameter 

recovery precision, became more negligible. For instance, for a 42-item test, there was an 

average reduction of 0.0018 in the RMSE of the recovered mean person ability between the 

perfectly matched case (with mean person ability of 0, mean item difficulty of 0), and the 

most mismatched case (where the mean person ability was 0.8, and the mean item difficulty 

was 0). However, when test length was increased to 84-items, this average reduction dropped 
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to 0.0008. Also, when the test length was further increased to 126 items, this average 

reduction in the RMSE of the recovered mean person ability became 0.0005. Thus, as test 

length increased, the effect of a mismatch between the distribution of person abilities and the 

distribution of item difficulties, grew more negligible. 
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Table 6.10. RMSE of recovered mean item difficulty across various levels of item-person match, sample size and test length 

Note. “Match” represents the degree of match between the distribution of item difficulties and the distribution of person abilities. For the condition d=0, there is perfect 
match between the distribution of item difficulties and the distribution of person abilities (both distributions having a mean of 0). In all the match conditions investigated, 
the distribution of item difficulties has a fixed mean of 0. Only the mean for the distribution of person abilities is varied. Thus, for the condition d=0.2, the distribution of 
person abilities has a mean of 0.2. Similarly, for the “match” conditions d=0.4, d=0.6 and d=0.8, the distribution of person abilities has a mean of 0.4, 0.6 and 0.8 
respectively. Also, the multi-matrix designs become sparser moving from Design1 to Design3. Design1 contains 57% missing data, Desing2 contains 71% missing data, 
while Design3 contains 86% missing data. 



6.6 Results and discussion 110

Table 6.11. Bias of recovered mean item difficulty across various levels of item-person match, sample size and test length 

Note. “Match” represents the degree of match between the distribution of item difficulties and the distribution of person abilities. For the condition d=0, there is perfect 
match between the distribution of item difficulties and the distribution of person abilities (both distributions having a mean of 0). In all the match conditions investigated, 
the distribution of item difficulties has a fixed mean of 0. Only the mean for the distribution of person abilities is varied. Thus, for the condition d=0.2, the distribution of 
person abilities has a mean of 0.2. Similarly, for the “match” conditions d=0.4, d=0.6 and d=0.8, the distribution of person abilities has a mean of 0.4, 0.6 and 0.8 
respectively. Also, the multi-matrix designs become sparser moving from Design1 to Design3. Design1 contains 57% missing data, Desing2 contains 71% missing data, 
while Design3 contains 86% missing data. 
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Figure 6.5. RMSE for the recovery of the mean item difficulty across different item-person match conditions, sample sizes and test lengths 

Note. The bar plots are in groups of 3’s for each sample size (i.e., number of students). For instance, in the first panel which is a bar plot representing the case for a test length of 
42 items, the first three groups are results for a sample size of 300 students. Further, each of these three groups represents results for one multi-matrix design. The multi-matrix 
designs are labelled D1, D2 and D3, with the designs becoming sparser moving from D1 to D3 (Multi-matrix Design D1 contains 57% missing data, while designs D2 and D3 
contain 71% and 86% missing data respectively). Also, “Distribution Match” represents the degree of match between the distribution of item difficulties and the distribution of 
person abilities. For the condition d=0, there is perfect match between the distribution of item difficulties and the distribution of person abilities (both distributions having a mean 
of 0). For the conditions d=0.2, d=0.4, d=0.6 and d=0.8, the mean for the distribution of person abilities is 0.2, 0.4, 0.6 and 0.8 respectively. In all distribution match conditions, 
the mean item difficulty is fixed at 0.  
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 Figure 6.6. Residuals between true item difficulty and the estimated item difficulty for individual items across 1000 simulations 

Note. The above results are for a test length of 84, sample size of 3000 students, and for the sparsest multi-matrix design (having 86% missing data). In all three cases (d=0.8, 
d=0, d=-0.8), the distribution of item difficulties has a mean of 0. However, in in Panel 1 (d= 0.8), the distribution of person abilities has a mean of 0.8. Similarly, the 
distribution of person abilities in Panel 2 (d=0) and Panel 3 (d=-0.8), have means of 0 and -0.8 respectively. Thus, in Panel 2 (d=0), the distribution of person abilities and the 
distribution of item difficulties are perfectly matched. Also, the test items are arranged in increasing order of difficulty with Item 1 being the easiest item, and Item 84 being 
the most difficult item. 
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Figure 6.7. RMSE for the recovery of the item difficulty for individual items across 1000 simulations (N=3000 students) 

Note. In the three panels above (d=0.8, d=0 and d=-0.8), the distribution of item difficulties is kept fixed (with the mean item difficulty being 0); while the distribution of 
person abilities is shifted to the right in Panel 1, d=0.8 (so, that the mean person ability is 0.8); and in Panel 3, d=-0.8, the distribution of person abilities is shifted to the left 
(so that the mean person ability is -0.8). In Panel 2 (d=0), the distribution of person abilities and the distribution of item difficulties are perfectly matched, both distributions 
having a mean of 0. Further, the results are for the case where the test length is 84, sample size of 3000 students, and with the sparsest multi-matrix design (i.e., the multi-
matrix design having 86% missing data). Also, the 84 test items are arranged in increasing order of difficulty. So, Item 1 is the easiest item, while item 84 is the most difficult 
item.  
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 Figure 6.8. Bias for the recovery of the item difficulty for individual items across 1000 simulations (N=3000 students) 

Note. In the three panels above (d=0.8, d=0 and d=-0.8), the distribution of item difficulties is kept fixed (with the mean item difficulty being 0); while the distribution of 
person abilities is shifted to the right in Panel 1, d=0.8 (so, that the mean person ability is 0.8); and in Panel 3, d=-0.8, the distribution of person abilities is shifted to the left 
(so that the mean person ability is -0.8). In Panel 2 (d=0), the distribution of person abilities and the distribution of item difficulties are perfectly matched, both distributions 
having a mean of 0. Further, the results are for the case where the test length is 84, sample size of 3000 students, and with the sparsest multi-matrix design (i.e., the multi-
matrix design having 86% missing data). Also, the 84 test items are arranged in increasing order of difficulty. So, Item 1 is the easiest item, while item 84 is the most difficult 
item. 
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Table 6.12. ANOVA results with log(RMSE) of recovered mean item difficulty as criterion 
Source df Mean 

square 
F value η2 

Sample Size 5 5.905 5446.27 .70 
Test Length  2 0.482 444.72 .02 
Matrix Sparseness 2 4.719 4352.52 .22 
Distribution Match  4 0.074 68.37 .01 
Sample Size X Test Length 10 0.040 36.97 .01 
Sample Size X Matrix Sparseness 10 0.109 100.89 .03 
Test Length X Matrix Sparseness 4 0.021 19.05 .00 
Residuals 232 0.001 
Note. p < .001 for all cases.
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Chapter 7 General discussion 

In the previous chapter, a detailed report was presented on the results of this doctoral project. 

The current chapter consists of a summary on studies carried out; a discussion of the findings 

observed; implications of these findings to educational practice; as well as study limitations 

and recommendations for further research. The chapter’s purpose will be to provide an in-

depth discourse on how factors investigated in the project (i.e. test length, sample size, sub-

group populations, and item-person match) relate to efficiency with which person and item 

parameters are recovered. This will be followed by a discussion of challenges encountered in 

carrying out the studies; as well as consequences or implications of findings to test 

developers, measurement experts and education policy makers. At the end of chapter, a 

general summary will be given to capture the substance and scope covered by the entire 

project, as well as directions for future research and practice. 

7.1 Summary of studies 

This doctoral project aimed at investigating how the efficiency with which various sparse 

multi-matrix booklet designs recovered item and population parameters. In order to do this, 

factors such as the number of students, number of items, item-person match; as well as, sub-

groups within the population, were examined to learn how these relate to the efficiency with 

which person and item parameters were recovered. The person parameters investigated were 

the mean and variance of the distribution of person abilities; while the item parameter 

investigated was the item location parameter (i.e., the item difficulty). It is important to note 

that in large-scale assessments, emphasis is not on the performance of individual students, but 
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how groups of students perform. That is why in this project individual student ability was not 

considered, but rather the mean and variance of the distribution of person ability of 

populations or sub-populations of students. Further, Balanced Incomplete Block-7 booklet 

Designs like those in von Davier et al. (2009) and Gonzalez and Rutkowski (2010) were 

used. These designs possess several beneficial characteristics (like every item-pair 

combination occurring at least once, and an equal number of times) and variants of these 

designs used in several large-scale assessments like PISA (Gonzalez & Rutkowski, 2010).  

Thus, this doctoral project answered the following key research questions: 

1. How efficiently are item and person parameters recovered at the global population

level in the various sparse matrix booklet designs?

2. How is test length and sample size related to the efficiency and precision with which

person and item parameters are recovered in the various sparse matrix booklet

designs?

3. How efficiently are performance differences between policy relevant population

subgroups recovered when using the various multi-matrix booklet designs (across

various conditions investigated)?

4. Considering test length, how is efficiency of recovered person and item parameters

influenced by the match between item and person ability distributions in various

sparse matrix booklet designs?

5. Considering sample size, how is efficiency of recovered person and item parameters

influenced by the match between item and person ability distributions in various

sparse matrix booklet designs?

These research questions were answered under two large studies, in which Study 1 answered 

the first three research questions, while Study 2 answered the last two research questions. In 

Study 1, real data (VERA-8 2015 mathematics assessment for Berlin and Brandenburg) and 

simulated data were used, while for Study 2 simulated data was used. The data for Study 2 

were simulated to have properties like the PISA 2012 Mathematics data for Germany. 
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Further, person an item parameters were scaled using the mixed coefficient multinomial logit 

model (MCMLM; Adams & Wu, 2007) which is a generalized multidimensional Rasch 

model; while the RMSE (root mean squared error) and bias of the recovered person and item 

parameters were used to examine parameter recovery efficiency. This was done using 1000 

replications in each experimental condition to ensure stable and reliable results. 

In general, the results showed that: 

 At the global population level (for the VERA-8 dataset), the mean and the variance of

the distribution of person ability were recovered accurately and without bias (RMSE ≤

.04). However, the mean of the distribution of item difficulties was inaccurately

recovered especially when using the sparsest multi-matrix booklet design.

 Test length and sample size were consistently related to the precision with which the

various matrix designs recover person and item parameters of interest. However,

increasing the sample size beyond 3000 students led to insignificant gains in

parameter recovery precision.

 Performance differences between population subgroups were recovered accurately

and without bias, across all matrix booklet designs and conditions when sample size

was at least 3000 students.

 The degree of match between the distribution of person abilities and the distribution

of item difficulties affected parameter recovery precision especially when the sample

size was less than 1000 students. However, this effect reduced greatly with increasing

sample size. Thus, after a sample size of more than 3000 students, the effect became

almost negligible.

7.2 Discussion of findings 

A detailed discussion of findings of this project are presented under three broad headings. 

The first heading will discuss how test length (i.e., number of items) and sample size (i.e., 

number of students) are related to the efficiency and precision with which item and person 
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parameters are recovered in the various sparse booklet designs. The second heading will 

proceed to elaborate on efficiency of item and person parameter recovery at the group or sub-

population level; while the last section will tackle how the match between the distribution of 

person abilities and the distribution of item difficulties impacts parameter recovery efficiency 

(taking into consideration test length and sample size). 

7.2.1 Test length, sample size, and parameter recovery efficiency in sparse 

matrix booklet designs 

To gain the utmost benefits of IRT, it is important to ensure accurate estimation of IRT model 

parameters (He & Wheadon, 2013; Kieftenbeld & Natesan, 2012). Importantly, a myriad of 

factors and conditions—including test length and sample size—can influence the precision or 

accuracy with which item and person parameters are recovered (Hambleton, 1989; Wollack 

et al., 2006). Further, numerous studies have investigated how test length and sample size 

impact parameter recovery in an IRT context (e.g. see De Mars, 2003; He & Wheadon, 2016; 

Sahin & Anil, 2016; Swaminathan et al., 2003; Tay, Huang & Vermunt, 2016; Wang & 

Chen, 2005). The general conclusion from these studies is that short tests with few students 

result in less precise item and person parameter estimates, in contrast to long tests with large 

samples which produce more precise parameter estimates.  

Thus, a resulting—and pertinent—question from the above is, investigating appropriate 

sample size and test length requirements, for obtaining acceptable levels of precision for 

estimated person and item parameters in an IRT context. Several studies have been carried 

out to investigate this problem and there have not been any clear-cut recommendations on the 

number of test participants or number of items required for person or item parameters to be 

recovered accurately. This is more the case because researchers use different benchmarks to 

evaluate what they consider as an accurate level of recovery and the requirement for such 

accuracy differs with respect to the IRT models used. Table 7.1 below gives a summary of 

some studies that investigated this problem and the minimum sample size that was 

recommended. It is important to note that  the studies all involve the use of complete  datasets 

without any application of multi-matrix booklet designs.
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 Table 7.1. Sample size recommendations from some IRT studies on parameter recovery
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Thus, interesting questions that result from the above are examining sample size requirements 

for acceptable levels of parameter recovery precision in different multi-matrix booklet 

designs; as well as, further examining how test length and sample size relate to parameter 

recovery efficiency in these designs. Unfortunately, the knowledge base on multi-matrix 

designs and parameter recovery is still very limited, with “much of the discussions around 

multi-matrix sampling having been relegated to the pages of technical manuals” (Rutkowski, 

Gonzalez, von Davier, & Zhou, 2014, p.76). In a slightly related study, Gonzalez and 

Rutkowski (2010) performed a simulation study using balanced incomplete block booklet 

designs; and examined the degree to which item and population parameters were recovered in 

relation to matrix sparseness and sample size. They found that when the booklets had fewer 

items, person abilities became less accurate and as the number of test participants increased, 

the precision with which item difficulties were recovered increased (though the gain in 

precision was greater for difficult items as compared to the easier items). However, this 

important study used completely simulated data. This kind of data often fits perfectly to 

underlying IRT models used in the study (unlike in real empirical data), thus raising concerns 

about generalizability of the results in real data. Further Gonzalez and Rutkowski (2010) used 

only one sample size and test length. 

To fill this gap in the literature, the first study of this dissertation project carried out a study 

like that of Gonzalez and Rutkowski (2010) with the difference that it uses empirical 

assessment data; and, incorporates several levels of test length and sample sizes in the design 

of the study. Using different test lengths and sample sizes makes it possible not only to 

examine parameter recovery efficiency in the various matrix booklet designs; but, also get 

sample size requirements for acceptable levels of precision for the recovery of population and 

item parameters of interest. 

As expected, and in line with previous literature on test length, sample size, and parameter 

recovery, the study results showed that as sample size and test length increased, the precision 

with which population and item parameters were recovered improved. Importantly, sample 

size accounted for the greatest amount of variance in the RMSE of all recovered person and 

item parameters investigated (explaining more than 50% of the total variance). However, 
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increasing the sample size beyond 3000 led to very little gains in parameter recovery 

precision. Generally, the mean of the distribution of person ability was recovered accurately17 

by all multi-matrix booklet designs when the sample size was at least 1000 test participants. 

However, for recovery of the variance of the distribution of person ability, a sample size of at 

least 3000 subjects was required for accurate parameter recovery when using the sparsest 

multi-matrix booklet design. Similarly, to recover the mean item difficulty accurately, a 

minimum sample size of 3000 test participants were required, irrespective of the multi-matrix 

booklet design used.  

On the other hand, although parameter recovery accuracy improved with increasing test 

length, the gain in precision as a result of the increase in test length was small. For instance, 

ANOVA analysis of the results showed that test length accounted for only 1% of the variance 

in the log(RMSE) of the recovered mean for the distribution of person abilities. Similarly, it 

accounted for 8% and 2% respectively for the variance in log(RMSE) for the recovered 

variance of the distribution of person abilities and mean item difficulty. It is important to note 

that test on its own cannot be used as a benchmark for describing parameter recovery 

accuracy but makes sense only when described for a given sample size. Thus, as an example, 

with at least 42 items and 3000 test participants, the variance of the distribution of person 

abilities and the mean item difficulty can be recovered accurately, when using any of the 

multi-matrix booklet designs. Further, to visualize how the RMSE and the accuracy of a 

given parameter are related, Figure 7.1 below illustrates two cases in which in the first case, 

the variance of the distribution of person abilities is recovered accurately across 1000 

simulations, while in the second case, this person parameter is not recovered accurately. 

It is interesting to note that the results from the first study of this dissertation were like those 

from the second study, although both studies used different datasets. The results for test 

length, sample size and parameter recovery for the first study, can be considered a subset of 

the results from the second study—for all conditions where a perfect match exists between 

the distribution of person abilities and the distribution of item difficulties. The gain in 

17 An item or population parameter was considered as being accurately recovered, when the RMSE of the 
recovered parameter was ≤ .04 
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parameter recovery precision with increasing sample size results from the increase in the 

amount of information available for the estimation of population and item parameters. 

However, continuously increasing the sample size will lead to a point where the parameter 

estimates become so accurate that further sample size increases result in very little gain in 

parameter recovery precision. This threshold was found to be a sample size of about 3000 

subjects when using the multi-matrix designs and conditions examined in this project.
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Figure 7.1. Distribution of recovered variance (for the distribution of person abilities) across 1000 simulations for two experimental conditions 

Note. The results are for the case where multi-matrix Design1 is used (i.e., the Design with 57% missing data) and when there is perfect overlap between the distribution of 
person abilities and the distribution of item difficulties. The true variance of the distribution of person abilities was 1. In Panel 1 (where N=300 students), the variance is not 
accurately recovered, with the 95% confidence interval of the recovered variance (for the distribution of person abilities) lying in the range [.808, 1.181]. On the other hand, 
in Panel 2 (where N=4500 students), the variance (for the distribution of person abilities) is recovered accurately, with the 95% confidence interval for this person parameter 
lying in the range [.936, 1.060].
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7.2.2 Group level parameter recovery 

While performing large-scale assessments, one crucial objective is to examine performance 

related disparities that exist between relevant subgroups within populations. Such important 

subgroups within the population could be classified based on relevant educational, geo-

political or demographic variables such as gender, ethnicity or socio-economic status. Taking 

the United States as an example, the Every Student Act (ESSA) of 2015 (Public Law 114-15) 

imposes state-wide accountability, wherein educational outcomes of students from major 

ethnic and racial groups, economically disadvantaged students, English learners, and disabled 

students are systematically reported (Seastrom, 2017). Further, the “No Child Left Behind 

Act” (NCLB) demands that schools be held accountable for the performance of the school, as 

well as for designated subgroups, starting with the 2002-2003 academic year (Simpson, Gong 

& Marion, 2006). 

One long standing criticism of large-scale assessments is the existence of substantial and 

persistent score disparities between test takers with minority and nonminority backgrounds 

(Bronner, 1997; Jencks & Philips, 1998; Sacks, 1997). The troublesome issue of persistent 

score differences by socioeconomic status (SES) and among racial or ethnic groups have led 

to some charges of test bias (Camara & Schmidt, 1999).  

It is however not surprising that, grouping individuals in different ways that are associated to 

differences in their access to educational opportunities, could result in group members 

scoring differently. It is thus noteworthy that differences in test mean scores or on other 

measures, are not necessarily a measure of bias—the more crucial concern in large-scale 

assessments being whether differential predictive ability exists among the concerned groups 

(Camara & Schmidt, 1999).  

Given that performance differences can exist between subpopulations or groups, an important 

measurement or policy objective is to ensure that these performance differences between 

groups or subpopulations are well estimated and uncovered whenever they exist. To achieve 

this goal, several multi-group IRT models have been developed (e.g., Adams, Wang & Kang, 

1997; Béguin & Glas, 2001; Steenkamp, De Jong, & Baumgartner, 2010; Mislevy, 1983; 
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Padilla, Azevedo & Lachos, 2018). However, it is possible that the amount of missing data in 

a multi-matrix booklet design (i.e., matrix sparseness) impacts the precision with which item 

and population parameters are recovered. In a related simulation study, Gonzalez and 

Rutkowski (2010) examined the efficiency with which person and item parameters were 

recovered at the group level when using various sparse multi-matrix booklet designs. Using 

EAP scores their results showed that as the multi-matrix booklet designs became sparser, 

person ability estimates became less reliable, and group differences in the population became 

underestimated, when these existed. 

In this PhD project, the above question examined by Gonzalez and Rutkowski (2010) was 

further examined. In this case, plausible values were used instead of EAP scores (which are 

point estimates) for estimating person abilities; also, unlike using completely simulated data, 

real assessment data were used in simulating the test data—hence, the resulting simulated 

data had properties of the real assessment dataset. However, the results of the study were 

different from those of Gonzalez and Rutkowski (2010) in that group differences in the 

population were recovered accurately and without bias when the sample size was at least 

3000 test participants. Particularly, group differences in the mean of the distribution of person 

abilities were recovered accurately with a minimum sample size of 1000 test participants 

(0.015≤RMSE≤0.022 and 0.000≤Bias≤0.002). However, for accurate recovery of group 

differences in the variance of the distribution of person abilities, a minimum sample size of 

3000 test takers was required (0.019≤RMSE≤0.044 and 0.000≤Bias≤0.007). 

Further, huge performance differences slightly affected the precision of recovered person 

parameters especially when the sample size was less than 3,000 students. For instance, when 

the sample size was 300 students and for the sparsest multi-matrix design, the increase in the 

RMSE of the group difference in the mean of the distribution of person abilities was 0.012, 

when the two groups had no performance differences (d=0 condition) and when the two 

groups had the greatest amount of performance differences (d=2 condition). However, when 

the sample size was now 10,000 students, the RMSE only increased by a negligible amount 

of 0.002 when those two same conditions were considered (i.e., the case of no performance 
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differences between the two groups, d=0; and the case with the greatest performance 

differences between the two groups, d=2). 

The above results thus support the use of plausible values in conjunction with multi-matrix 

booklet designs in estimating student performance at group or subpopulation levels in large-

scale assessments (where the sample size is usually greater than 3,000 students). This 

procedure produces accurate and unbiased recovery of mean student performance in groups 

or subpopulations; unlike when point estimates (e.g., EAP scores) are used in conjunction 

with the booklet designs to estimate student performance at group or sub-population levels. 

As noted by Mislevy et. al. (1992), a challenge in large scale educational assessments is the 

fact that distributions of point estimates—that would be preferred for making inferences 

about individuals—can depart substantially from distributions of underlying latent variables 

investigated. 

7.2.3 Item-person match and parameter recovery 

In order to measure examinee performance most effectively, not-so-easy or not-so-difficult 

items need to be administered to test takers (Lord, 1980). This implies, ideally, in a 

population of students with varying abilities, item sets or test booklets with varying 

difficulties are required for efficient measurement of individual student abilities (Weiss, 

1982). However, although students are administered different sets of items—which could be 

from easy, moderate or even difficult test booklets—the final test scores need be directly 

comparable (Berger et al., 2019). This goal is however easily achieved using one of several 

test equating strategies (Kolen & Brennan, 2014).  

Further, taking for instance the one-parameter logistic model, the quality of parameter 

estimates ought to degrade to the extent that person and item location parameters fail to 

match to one another, since individual items are maximally informative for person parameter 

estimation—and individual persons maximally informative for item parameter estimation—

when an item and person lie at the same point  on the latent trait continuum (Svetina et al., 

2013). In a large-scale assessment scenario, such person-item mismatch can occur when easy 
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items are administered to a population of high ability students or difficult items administered 

to a population of low ability students.  

Unfortunately, “considerably less research has been conducted investigating IRT methods 

where a mismatch between item and person parameter distributions exist” Svetina et al. 

(2013, p.336). As might be expected, measurement efficiency could be affected by factors 

such as boredom or lack of motivation, which is possible when test items fail to fit student 

abilities. This could consequently impact on the precision with which population and item 

parameters are recovered. For instance, Asseburg & Frey (2013) investigated the relationship 

between ability-difficulty fit (i.e., match between person ability and item difficulty) and effort 

or boredom.  They used 9,452 ninth graders in Germany (PISA 2006) who took a 

mathematics test and responded to a questionnaire on test-taking effort (motivation) and 

boredom/daydreaming (emotion). Their results showed that ability-difficulty fit was 

positively linear-related with effort and boredom/daydreaming. In a more related study, 

Svetina et al. (2013) performed a simulation study to investigate recovery of item and person 

parameters of the one-parameter logistic model for short tests administered to small samples. 

They manipulated the match between the distribution of person abilities and the distribution 

of item difficulties, as well as test length, sample size, and item discrimination. Their results 

showed that match between the distributions of person abilities and the distribution of item 

difficulties had a modest effect on parameter recovery; and accuracy in parameter estimation 

decreased as sample size and test length decreased.  

Thus, to fill the research gap on a dearth of literature investigating IRT methods where a 

mismatch between item and person parameter distributions exists, the second study of this 

PhD dissertation focused on examining item-person match and parameter recovery in sparse 

multiple matrix booklet designs. Unlike in Svetina et al. (2013) where completely simulated 

and complete datasets were used, our study tackled the question from a different perspective 

using data simulated from an empirical dataset, and further containing missing data due to 

treatment with multiple matrix sampling. Completely simulated data usually fit underlying 

IRT models more perfectly, and small effects discovered using complete data could become 

larger when using incomplete data with missingness.  
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Importantly, even though the results showed that item-person match impacted parameter 

recovery precision, with greater item-person match resulting in more precise parameter 

estimates, this effect was very small. For instance, the ANOVA results showed that item-

person match accounted for less than 1% of the total variance in log(RMSE ) of recovered 

mean for distribution of person abilities (other sources of variation in the model being test 

length, sample size, sparseness in booklet design, and the interaction between sample size and 

booklet design sparseness). Similarly, for recovery of mean item difficulty and variance of 

distribution of person ability, item-person match only explained 1% and 5% of the total 

variance in the log(RMSE) respectively. 

Further, the ANOVA results also showed a very small but significant interaction between 

sample size (i.e., number of test participants) and the degree of sparseness in the booklet 

design. This interaction accounted for up to 3% of the variance in log(RMSE) of the 

recovered mean item difficulty, with item-person match having a stronger effect when the test 

length was less than 1000 test participants. For example, considering the sparsest multi-

matrix design (Design3) and 42-itemed test, the RMSE of the recovered mean item difficulty 

increased by 0.037 logits from the perfect match case (d=0) to the most mismatched case 

(d=0.8), for a sample size of 300 test takers. However, when the sample size was 6000 test 

takers, this increase in RMSE was only 0.009 logits (i.e., between the perfectly matched case 

and the most mismatched case, under the same conditions). 

On the other hand, it was also interesting to look at how item difficulties were recovered at 

individual item levels. The results showed that depending on the direction of item-person 

match, various extremes of the item difficulty continuum (i.e., either very easy or very 

difficult items) were affected differently. For instance, for the distribution match condition, 

d=0.8, where the distribution of person abilities had a mean of 0.8, while the mean of the 

distribution of item difficulties remained fixed at 0; the results showed that the more difficult 

items were recovered more accurately than the easier items. However, for the distribution 

match condition, d=0, where both distributions of item difficulties and person abilities were 

perfectly aligned (with both distributions having a mean of 0), the results showed that the 

item difficulties for all items were recovered with almost the same degree of accuracy. This 
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could be explained by the fact that shifting the distribution of person abilities to the right (e.g. 

case where the mean of the distribution of person abilities was 0.8), with the distribution of 

item difficulties remaining fixed (with a mean of 0), results in less information being 

available for estimating difficulties for the very easy test items. 

It is noteworthy that, the fundamental idea behind targeted testing designs like computerized 

adaptive testing is ensuring a good match between the distribution of item difficulties and the 

distribution of person abilities. Such targeted testing designs increase measurement efficiency 

since, test items are not too easy to make the test takers bored; nor too difficult to reduce their 

motivation for taking the test (especially in the case of low stakes assessments like in most 

large-scale assessments). However, it is suggested that some caution be exercised when 

comparing item difficulties from worst performing and best performing countries in a large-

scale assessment, since the precision with which very easy and very difficult items are 

recovered could be slightly different in both countries. This could pose a challenge when 

calculating the proportion of students belonging to a certain proficiency level, judging the 

cognitive demands of items, or doing standard setting procedures based on the empirical item 

difficulty.  

7.3 Implications of research findings 

This section relates how findings of this dissertation are applicable in practice. These 

implications are given under two broad headings a) the implications to test developers and 

measurement experts and b) the implications to education policy makers. 

7.3.1 Implications for test developers and measurement experts 

Many empirical investigations suggest that test length and sample size influence efficiency 

with which item and person parameters are recovered in IRT (e.g., see Akour & Al-Omari, 

2013; Chuah, Drasgow & Luecht, 2006; DeMars, 2003; He & Wheadon, 2013; Sahin & Anil, 

2016; Stone & Yumuto, 2004; Swaminathan et al., 2003; Toland, 2008). An important 

challenge to test developers and measurement experts is, thus, finding sample size 
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requirements for accurate estimation of given population or item parameters when applying 

IRT models. Further, even if parameter recovery “accuracy” is not the main concern, it is 

often still interesting to investigate parameter recovery “efficiency” (i.e., how to recover item 

and population parameters accurately, while at the same time minimizing the amount of 

resources used to achieve this). 

From the results of this dissertation, it can be recommended that, to accurately recover person 

parameters (i.e., the mean and variance of the distribution of person abilities), a sample size 

of more than 1000 test participants and 100 test items be used when applying multi-matrix 

booklet designs like those in this PhD project. However, for accurate recovery of the item 

parameter (i.e., the mean item difficulty), it is recommended that a minimum sample size of 

3000 test participants and 100 items be used, when applying a booklet design like Design1 

(with 57% missing data) or Design2 (with 71% missing data). Importantly, as the sample size 

increases, its association with the RMSE of recovered item or population parameters 

diminishes.  

On the other hand, test length, sparseness in the booklet design and distribution match are 

also found to be associated with the accuracy with which item and person parameters are 

recovered. Longer tests result in more precise parameter estimates. For instance, doubling the 

test length from 42 to 84 test items results in a general reduction of 25% in the RMSE of the 

recovered mean for the distribution of person abilities. However, when test length is further 

doubled from 84 to 126 test items, the RMSE (for the mean of the distribution of person 

abilities) only reduces by about 11%. Thus, as test length increases, the associated gain in 

parameter recovery precision becomes less. 

Similarly, as expected, matrix sparseness (i.e., the amount of missing data in a booklet 

design) is also found to relate to the precision with which person and item parameters are 

recovered, with a sparser booklet design resulting in less precise population and item 

parameter estimates. Thus, a reduction of about 30% in matrix sparseness (i.e., from the least 

sparse to the sparsest of the booklet designs considered) results in a mean increase of 0.14 in 

the RMSE of the recovered mean for the distribution of item difficulties. However, when 

considering recovery of the mean and variance for the distribution of person abilities (for the 



7.3 Implications of research findings 132

same conditions as above), this mean reduction in RMSE only becomes 0.003 and 0.06 

respectively. Thus, matrix sparseness has the greatest impact on the recovery precision of the 

mean for the distribution of item difficulties.  

On the other hand, although the match between the distribution of person abilities and the 

distribution of item difficulties is found to be associated with the precision with which item 

and population parameters are recovered, the strength of this association is very weak. For 

instance, a reduction of about 30% in the match between the two distributions (i.e., 

comparing the case where the two distributions match perfectly with the most mismatched 

case) results in a negligible mean increase of about 0.001, in the RMSE for the recovered 

mean for the distribution of person abilities. Similarly, when considering recovery of the 

mean item difficulty and the same conditions, the mean increase (in RMSE) was just about 

0.02. Therefore, in designing large scale assessments, item-person match should not be 

considered a major challenge to parameter recovery accuracy, especially when the sample 

size is above 3000 participants, since its effect on parameter estimates has been found to be 

negligible.  

7.3.2 Implications for policy makers, politicians and other stakeholders in 

Education 

Large scale educational assessments provide information on a system’s educational outcomes 

and—if questionnaires are administered to get background information from students, 

teachers, parents, and/or schools—the associated factors, which can thus help policy makers 

and other stakeholders in the education system in making policy and resourcing decisions for 

improvement (Anderson, Chiu & Yore, 2010; Benavot & Tanner, 2007; Braun, Kanjee & 

Bettinger, 2006; Grek, 2009; Postlethwaite & Kellaghan, 2008). This perspective to 

education policymaking, based on evidence, including data from large-scale assessments has 

been adopted around the world (Lietz, Cresswell, Rust, & Adams, 2017); and has not only 

become the most frequently reported method used by politicians and policy makers, but now 

considered a global norm for educational governance (Wiseman, 2010). Further, evidence-

based policy making involves measuring and ensuring quality, ensuring equity, and 
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accountability (Lietz et al., 2017; Wisemann, 2010). In order to provide indicators of equity, 

it is necessary to compare the performance of policy relevant sub-groups within 

populations—for instance, based on gender, socio-economic status or ethnic background 

(Lietz et al., 2017). Accurate measurement of performance differences between policy 

relevant population subgroups is thus a crucial objective in large-scale assessments.  

Therefore, results from this dissertation are important to education policy makers since they 

offer further support that multi-matrix booklet designs can be used to accurately estimate 

student performance in subgroups within populations. By accurately estimating the 

performance of population subgroups (for instance, in terms of gender, socio-economic status 

or school type), performance gaps or differences existing between these subgroups can be 

exposed, thus providing evidence for education policy makers and politicians to create 

policies or legislation geared towards bridging such inequity.  

Further, in large-scale assessments, policy makers are also interested in the distribution of 

person ability, including its mean and variance. This is because it can show the proportion of 

students that belong to certain proficiency levels, which in turn could guide policy making 

(for instance, the need to allocate more resources to help low ability students, or  give prizes 

to very high achieving students). The results are thus relevant to policy makers, as they show 

that in a large scale assessment (with more than 1000 students and at least 100 items), the 

mean and variance of the distribution of person abilities is recovered accurately, when using 

multi-matrix designs like those investigated in this PhD project. 

On the other hand, when conducting large-scale assessments or surveys, there is usually a 

need to balance topical breadth and depth with factors related to respondent behaviour, such 

as compliance, motivation, and concentration. On one hand, there is need to obtain the 

greatest amount of information on subjects in the sample, in order to ensure better modelling 

of complex human perceptions, attitudes and behaviour. On the other hand, economic 

restrictions, as well as psychological and motivational factors must guide construction of any 

test (Wolf, 2006). Lengthy tests can thus be problematic in that they require more resources 

to construct and administer; place a heavier burden on the respondents; and, this could result 
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in increased non-response, modified answering behaviour, and thus, greater measurement 

error.  

The results of this dissertation yield further support for the use of multi-matrix booklet 

designs as a very efficient form of test abridgement in large scale assessments. Thus, by 

applying multi-matrix booklet designs, shorter tests can be developed, resulting in 

significantly reduced test construction and administration costs. Particularly, the results show 

that by using a multi-matrix booklet design like Design 3, test length can be reduced by 86 

percent and yet accurate item and person parameters still recovered when using a sample of 

more than 1000 students and at least 100 test items). This can result in massive savings of 

both financial and material resources required for test construction and administration. 

Further, shorter tests are better for the respondents since they involve lesser respondent 

burden which in turn could further motivate them to complete the entire test. On the other 

hand, since shorter tests require lesser time to complete, school principals could be more 

willing to allow their students to partake in such assessments, since they will result in lesser 

disruption on the school’s timetable. 

Importantly, even though the results show that in large scale assessments item-person match 

does not pose a great challenge to the precision of population estimates (i.e., the mean and 

variance of the distribution of person abilities), there is need to be wary when considering 

item parameters. This is because a high mismatch between the distribution of person abilities 

and the distribution of item difficulties can result in less precise item location estimates for 

extreme items (i.e., very easy items or very difficult items). For instance, administering a test 

of average difficulty to a population of very high achieving students, could result in very easy 

items being less accurately estimated. On the other hand, in a population of low achieving 

students, the difficult items could be estimated less accurately.  

7.4 Study limitations and recommendations for future research 

Despite the merits of the results of this project (e.g., on the relationship between item-person 

match and parameter recovery efficiency), as expected with studies of this magnitude, some 
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limitations still exist. For instance, during person and item parameter estimation, item-

position effects were not fully taken into consideration. Importantly, several studies show that 

in performing large scale assessments, a source of bias during parameter estimation are 

effects resulting from the position items are presented in a booklet (e.g., Albano, 2013; 

Debeer & Janssen, 2013; Hahne, 2008; Hohensinn, Kubinger, Reif, Holocher-Ertl, 

Khorramdel, & Frebort, 2008; Hohensinn, Kubinger, Reif, Schleicher, & Khorramdel, 2011; 

Weirich, Hecht, & Böhme, 2014). Usually, the applied test design contains several test 

booklets with the same items presented at different test positions (Hohensinn et al., 2008). 

Students thus answer one of several booklets with the order in which items are presented in 

each booklet being different. This variation in item positions within booklets could 

potentially affect the probability of a correct response (Hecht, Weirich, Siegle, & Frey, 

2015b).  

This phenomenon—referred to as position effects—is interpretable from either a person or 

item perspective. From an item perspective, item parameters such as item difficulties are seen 

to depend on the item position (e.g., an item may be found to be more difficult if 

administered towards the end of a test). From a person perspective, an examinee’s 

competence estimate may be seen to drop towards the end of a test causing estimated 

competencies to be greater at the beginning of the test than towards the end. This could be 

explained by the effects of fatigue, motivational aspects, or training effects (Hecht et al., 

2015b). Examinee performance could decrease towards the end of the test because they 

become more exhausted and demotivated, or conversely, increase because they become more 

accustomed to the kind of test material being used. 

Therefore, it could be interesting to conduct a similar study using a model that takes into 

consideration item position effects when estimating person and item parameters. However, it 

is important to note that using a balanced incomplete block design in this project helped to 

partly mitigate the problem caused item-position effects. As noted by Frey & Bernhardt 

(2012), position and carry-over effects are not removed when using a balanced incomplete 

block design but only averaged across positions. Generally, this is not a problem in most 

large-scale assessments, since emphasis is not on valid individual ability estimation, but on 
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ability estimation at group or subpopulation levels. However, some large-scale assessments 

give additional feedback to every individual test taker, and sometimes to individual classes or 

schools; in such cases, when several test booklets are used, for instance to limit cheating, any 

item-position effect could invalidate results obtained for any individual test taker (Hohensinn 

et al., 2008). 

Another limitation encountered in the course of this project was that person parameter 

estimation problems were encountered when the sample size was less than 300 and when 

using the sparsest multi-matrix booklet design. This resulted because the MML estimator 

sometimes failed to converge. It could have been interesting to find a lower threshold (to 

serve as the sample size requirement) for accurate recovery of the mean person ability in the 

various booklet designs. On the other hand, there are so many possibilities as to how 

balanced incomplete block designs can be constructed. For instance, the balanced incomplete 

block design used in the PISA 2006 assessment contained 14 booklets and 4 item blocks 

(Frey & Bernhardt, 2006). However, this project examined only three kinds of balanced 

incomplete block designs. Other studies could thus be carried out using different forms and 

variants of balanced incomplete block designs to verify if similar results will be obtained. 

In the second study of this project (on item-person match and parameter recovery efficiency), 

it was assumed that person abilities and item difficulties were normally distributed; and that 

missingness was MAR, Missing at Random. Differing and maybe unexpected results are 

possible, if the simulated item sets poorly measure ability levels of examinees in the 

population. This could be achieved by simulating items allotted to examinees with skewed 

distribution of abilities or simulating situations where there is a lot of missing data as a result 

of non-response, instead of missing by design. It will also be interesting to perform a similar 

study which does not only look at mean differences between subpopulations but takes into 

consideration correlations between covariates and achievement. Another approach could be 

to examine whether shorter tests can be compensated for by larger samples of test takers and 

vice versa; or simply, using different IRT models (e.g. the 2-PL) or missing data techniques 

(e.g. FIML). 
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7.5 General conclusion 

This project examined person and item parameter recovery in different booklet designs, 

taking into consideration test length, sample size, item-person match, and policy-relevant 

subgroups within the population. Generally, for a sample size of at least 3000 students and 

100 items, the results show accurate recovery of person and item parameters in all booklet 

designs and conditions investigated. This is true even considering parameter recovery at 

subgroup or subpopulation levels. Test length, sample size, and item-person match are found 

to be related to parameter recovery efficiency, with their effect diminishing with increasing 

sample size. These results are important to test developers and measurement experts, as they 

show that during the construction of large-scale assessments (where the sample size is 

typically usually over 3,000 test takers) there is less need for concern when the distribution of 

person abilities fail to match the distribution of item difficulties, since this does not 

significantly affect the precision with which person and item parameters are recovered. On 

the other hand, the results are beneficial to policy makers and other stakeholders in 

Education, since first, they prove that when using the booklet designs investigated (with 

samples of at least 3,000 and a test length of at least 100 items), population parameters like 

the mean and variance of the distribution of person abilities, are recovered accurately—both 

at the global population level, and for policy relevant subgroups within populations. Given 

growing policy concerns to ensure equity between subgroups within educational systems, the 

results support using matrix booklet designs as a suitable technique for estimating 

performance gaps between such groups. In addition, the results back using multi-matrix 

booklet designs as a reliable test abridgement technique in large scale assessments—which 

can result in great savings of material and financial resources, and lesser response burden on 

test takers. That notwithstanding, item-position effects were not completely considered while 

carrying out the studies in this project; and, different or unexpected results could be obtained 

if similar studies are performed with conditions involving items that poorly measure student 

abilities (e.g., with students having skewed ability distributions); or, simulating conditions 

where there is a lot of missing data due to non-response, instead of just missing by design. A 

similar study can be carried out which examines correlations between covariates and 
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achievement; or the extent to which shorter tests can compensate for large samples and vice 

versa.
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Appendix A Additional Results 

This section of the appendix gives additional results of the empirical and simulation studies 

performed in chapter five and chapter six of this PhD project.
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A.1 Recovery of person ability distributions across various booklet designs for the set of first six plausible values 

Note. The figure shows the distribution of person ability estimates recovered from the various booklet designs using the first six sets of plausible values (denoted 
by PV1 to PV6 respectively). Design0 contains the complete dataset with no missing data while the designs get sparser from Design1 to Design3. Six plausible 
values for used for brevity and especially as the results don’t change much across the various PVs. 
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A.2  Bias of recovered mean person ability across item-person match conditions 

 

 

 

Note. d=0, d=0.2,..., d=0.8 represent the degree of match between the distribution of item difficulties and the distribution of person abilities. For the condition d=0, 
there is perfect match between the distribution of item difficulties and the distribution of person abilities (both distributions having a mean of 0). In all the match 
conditions investigated, the distribution of item difficulties has a fixed mean of 0. Only the mean for the distribution of person abilities is varied. Thus, for the 
condition d=0.2, the distribution of person abilities has a mean of 0.2. Similarly, for the “match” conditions d=0.4, d=0.6 and d=0.8, the distribution of person 
abilities has a mean of 0.4, 0.6 and 0.8 respectively. Also, the multi-matrix designs become sparser moving from Design1 to Design3. Design1 contains 57% 
missing data, Desing2 contains 71% missing data, while Design3 contains 86% missing data. 
  

42 Items 84 Items 126 Items 
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A.3 RMSE for the recovery of the mean person ability estimate across different distribution match conditions 

(Case for a test length of 42 items) 

 
Note. “Distribution Match” represents the degree of match between the distribution of item difficulties and the distribution of person abilities. For the condition 
d=0, there is perfect match between the distribution of item difficulties and the distribution of person abilities (both distributions having a mean of 0). In all 
conditions of distribution match investigated, the distribution of item difficulties has a fixed mean of 0. Only the mean for the distribution of person abilities is 
varied. Thus, for the condition d=0.2, the distribution of person abilities has a mean of 0.2. Similarly, for the “distribution match” conditions d=0.4, d=0.6 and 
d=0.8, the distribution of person abilities has a mean of 0.4, 0.6 and 0.8 respectively. 
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A.4   Bias for recovery of variance of θ for different item-person match conditions 
 

 
 
 
 
 
Note. θ represents the distribution of person abilities. Also, d=0, d=0.2,..., d=0.8 represent the degree of match between the distribution of item difficulties and the 
distribution of person abilities. For the condition d=0, there is perfect match between the distribution of item difficulties and the distribution of person abilities 
(both distributions having a mean of 0). In all the match conditions investigated, the distribution of item difficulties has a fixed mean of 0. Only the mean for the 
distribution of person abilities is varied. Thus, for the condition d=0.2, the distribution of person abilities has a mean of 0.2. Similarly, for the “match” conditions 
d=0.4, d=0.6 and d=0.8, the distribution of person abilities has a mean of 0.4, 0.6 and 0.8 respectively. Also, the multi-matrix designs become sparser moving from 
Design1 to Design3. Design1 contains 57% missing data, Desing2 contains 71% missing data, while Design3 contains 86% missing data. 
 
 
 
 

42 Items 84 Items 126 Items 



 

  167

 
 

A.5 Bias for the recovery of  mean  item  difficulty for different item-person match conditions 

 
 

 
Note. d=0, d=0.2,...,d=0.8 represent the degree of match between the distribution of item difficulties and the distribution of person abilities. For the condition 
d=0, there is perfect match between the distribution of item difficulties and the distribution of person abilities (both distributions having a mean of 0). In all the 
match conditions investigated, the distribution of item difficulties has a fixed mean of 0. Only the mean for the distribution of person abilities is varied. Thus, for 
the condition d=0.2, the distribution of person abilities has a mean of 0.2. Similarly, for the “match” conditions d=0.4, d=0.6 and d=0.8, the distribution of person 
abilities has a mean of 0.4, 0.6 and 0.8 respectively. Also, the multi-matrix designs become sparser moving from Design1 to Design3. Design1 contains 57% 
missing data, Desing2 contains 71% missing data, while Design3 contains 86% missing data.

42 Items 84 Items 126 Items 
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Appendix B      Program Code 

This section of the Appendix reproduces the program code used for the most important 

algorithms used in this PhD project. Every function listed below is programmed for the R 

statistical environment (R-3.6.0). The data used is available upon request. 
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B.1 Generation of booklet designs from real assessment data 
The following script generates the various multi-matrix designs investigated from the 2015 

VERA-8 Mathematics data for Berlin and Brandenburg. This script produces 1000 unique 

designs for each of the multi-matrix booklet designs investigated. (Case for the sample size, 

N =10,000 students). 

library("TAM") 

#Load the VERA_8 Mathematics dataset scored_B1 into the working environment  

load("scored_B1.Rdata") 

set.seed(15254) 

D1 <- scored_B1[sample(10000),sample(42)] 

 

dataset <<- list() 

for (i in 1:1000) { 

  set.seed(i) 

  randomSubset <- D1[sample(nrow(D1), ), sample(ncol(D1), )] 

  dataset[[i]] <- randomSubset 

   

} 

 

 

#1) Creation of the BIB one design 

create.BIB.one <- function(X){ 

  #ordering of item difficulties 

 

  mod1 <- tam(X) 

  Diff <- mod1$xsi 

  Diff_ordered <- Diff[order(Diff$xsi),] 

  items_ordered <- rownames(Diff_ordered) 

  items_p_2 <- items_ordered 

   

  #stratify the item difficulties  

  easy_BIB <- items_p_2[1:14] 
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  average_BIB <- items_p_2[15:28] 

  diff_BIB <- items_p_2[29:42] 

   

   

  #shuffle the items in each stratum 

  ##shuffle the items above and convert them to characters 

  set.seed(548) 

  easy_BIB_2 <- sample(easy_BIB, 14) 

  easy_BIB_22 <- as.character(easy_BIB_2) 

   

  set.seed(302) 

  average_BIB_2 <- sample(average_BIB, 14) 

  average_BIB_22 <- as.character(average_BIB_2) 

   

  set.seed(125) 

  diff_BIB_2 <- sample(diff_BIB, 14) 

  diff_BIB_22 <- as.character(diff_BIB_2) 

   

   

  #create item blocks 

  BIB_Block_1 <- c(easy_BIB_22[1:2], average_BIB_22[1:2], diff_BIB_22[1:2]) 

   

  BIB_Block_2 <- c(easy_BIB_22[3:4], average_BIB_22[3:4], diff_BIB_22[3:4]) 

   

  BIB_Block_3 <- c(easy_BIB_22[5:6], average_BIB_22[5:6], diff_BIB_22[5:6]) 

   

  BIB_Block_4 <- c(easy_BIB_22[7:8], average_BIB_22[7:8], diff_BIB_22[7:8]) 

   

  BIB_Block_5 <- c(easy_BIB_22[9:10], average_BIB_22[9:10], 
diff_BIB_22[9:10]) 

   

  BIB_Block_6 <- c(easy_BIB_22[11:12], average_BIB_22[11:12], 
diff_BIB_22[11:12]) 
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  BIB_Block_7 <- c(easy_BIB_22[13:14], average_BIB_22[13:14], 
diff_BIB_22[13:14])    

   

   

  scored_B1_p <- X  

   

  #create 7 population blocks which will be administered the different 
booklets 

  G1 <- scored_B1_p[1:1428,] 

  G2 <- scored_B1_p[1429:2856,] 

  G3 <- scored_B1_p[2857:4284,] 

  G4 <- scored_B1_p[4285:5712,] 

  G5 <- scored_B1_p[5713:7140,] 

  G6 <- scored_B1_p[7141:8568,] 

  G7 <- scored_B1_p[8569:10000,] 

   

  #create the BIBS Sample though with data even for the unneeded blocks 

  BIB_Booklet_1 <- G1[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_2 <- G2[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_3 <- G3[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_4 <- G4[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_5 <- G5[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_6 <- G6[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_7 <- G7[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

   

  #remove the respective unneeded blocks from the various booklets 

  BIB_Booklet_1[c(BIB_Block_3, BIB_Block_5, BIB_Block_6, BIB_Block_7)] <- 
NA 

  BIB_Booklet_2[c(BIB_Block_1, BIB_Block_4, BIB_Block_6, BIB_Block_7)] <- 
NA 

  BIB_Booklet_3[c(BIB_Block_1, BIB_Block_2, BIB_Block_5, BIB_Block_7)] <- 
NA 
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  BIB_Booklet_4[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_6)] <- 
NA 

  BIB_Booklet_5[c(BIB_Block_2, BIB_Block_3, BIB_Block_4, BIB_Block_7)] <- 
NA 

  BIB_Booklet_6[c(BIB_Block_1, BIB_Block_3, BIB_Block_4, BIB_Block_5)] <- 
NA 

  BIB_Booklet_7[c(BIB_Block_2, BIB_Block_4, BIB_Block_5, BIB_Block_6)] <- 
NA 

   

   

  total_BIB_one <<- rbind(BIB_Booklet_1, BIB_Booklet_2, BIB_Booklet_3, 
BIB_Booklet_4, BIB_Booklet_5, BIB_Booklet_6, BIB_Booklet_7) 

   

} 

 

#2) Creation of the BIB two design 

create.BIB.two <- function(X){   

  #ordering of item difficulties 

   

  mod1 <- tam(X) 

  Diff <- mod1$xsi 

  Diff_ordered <- Diff[order(Diff$xsi),] 

  items_ordered <- rownames(Diff_ordered) 

  items_p_2 <- items_ordered 

   

  #stratify the item difficulties  

  easy_BIB <- items_p_2[1:14] 

  average_BIB <- items_p_2[15:28] 

  diff_BIB <- items_p_2[29:42] 

   

   

  #shuffle the items in each stratum 

  ##shuffle the items above and convert them to characters 

  set.seed(548) 

  easy_BIB_2 <- sample(easy_BIB, 14) 

  easy_BIB_22 <- as.character(easy_BIB_2) 
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  set.seed(302) 

  average_BIB_2 <- sample(average_BIB, 14) 

  average_BIB_22 <- as.character(average_BIB_2) 

   

  set.seed(125) 

  diff_BIB_2 <- sample(diff_BIB, 14) 

  diff_BIB_22 <- as.character(diff_BIB_2) 

   

   

  #create item blocks 

  BIB_Block_1 <- c(easy_BIB_22[1:2], average_BIB_22[1:2], diff_BIB_22[1:2]) 

   

  BIB_Block_2 <- c(easy_BIB_22[3:4], average_BIB_22[3:4], diff_BIB_22[3:4]) 

   

  BIB_Block_3 <- c(easy_BIB_22[5:6], average_BIB_22[5:6], diff_BIB_22[5:6]) 

   

  BIB_Block_4 <- c(easy_BIB_22[7:8], average_BIB_22[7:8], diff_BIB_22[7:8]) 

   

  BIB_Block_5 <- c(easy_BIB_22[9:10], average_BIB_22[9:10], 
diff_BIB_22[9:10]) 

   

  BIB_Block_6 <- c(easy_BIB_22[11:12], average_BIB_22[11:12], 
diff_BIB_22[11:12]) 

   

  BIB_Block_7 <- c(easy_BIB_22[13:14], average_BIB_22[13:14], 
diff_BIB_22[13:14])   

   

   

  scored_B1_p <- X 

   

   

  #create 7 population blocks which will be administered the different 
booklets 

  G1 <- scored_B1_p[1:1428,] 

  G2 <- scored_B1_p[1429:2856,] 
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  G3 <- scored_B1_p[2857:4284,] 

  G4 <- scored_B1_p[4285:5712,] 

  G5 <- scored_B1_p[5713:7140,] 

  G6 <- scored_B1_p[7141:8568,] 

  G7 <- scored_B1_p[8569:10000,] 

   

  #create the BIBS Sample though with data even for the unneeded blocks 

  BIB_Booklet_1 <- G1[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_2 <- G2[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_3 <- G3[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_4 <- G4[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_5 <- G5[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_6 <- G6[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_7 <- G7[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

   

  #remove the respective unneeded blocks from the various booklets 

  BIB_Booklet_1[c(BIB_Block_3, BIB_Block_4, BIB_Block_5, BIB_Block_6, 
BIB_Block_7)] <- NA 

  BIB_Booklet_2[c(BIB_Block_1, BIB_Block_4, BIB_Block_5, BIB_Block_6, 
BIB_Block_7)] <- NA 

  BIB_Booklet_3[c(BIB_Block_1, BIB_Block_2, BIB_Block_5, BIB_Block_6, 
BIB_Block_7)] <- NA 

  BIB_Booklet_4[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_6, 
BIB_Block_7)] <- NA 

  BIB_Booklet_5[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_7)] <- NA 

  BIB_Booklet_6[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5)] <- NA 

  BIB_Booklet_7[c(BIB_Block_2, BIB_Block_3, BIB_Block_4, BIB_Block_5, 
BIB_Block_6)] <- NA 
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  total_BIB_two <<- rbind(BIB_Booklet_1, BIB_Booklet_2, BIB_Booklet_3, 
BIB_Booklet_4, BIB_Booklet_5, BIB_Booklet_6, BIB_Booklet_7) 

   

} 

 

#3) Creation of the BIB three design 

create.BIB.three <- function(X){    

  #ordering of item difficulties 

   

  mod1 <- tam(X) 

  Diff <- mod1$xsi 

  Diff_ordered <- Diff[order(Diff$xsi),] 

  items_ordered <- rownames(Diff_ordered) 

  items_p_2 <- items_ordered 

   

  #stratify the item difficulties  

  easy_BIB <- items_p_2[1:14] 

  average_BIB <- items_p_2[15:28] 

  diff_BIB <- items_p_2[29:42] 

   

   

  #shuffle the items in each stratum 

  ##shuffle the items above and convert them to characters 

  set.seed(548) 

  easy_BIB_2 <- sample(easy_BIB, 14) 

  easy_BIB_22 <- as.character(easy_BIB_2) 

   

  set.seed(302) 

  average_BIB_2 <- sample(average_BIB, 14) 

  average_BIB_22 <- as.character(average_BIB_2) 

   

  set.seed(125) 

  diff_BIB_2 <- sample(diff_BIB, 14) 

  diff_BIB_22 <- as.character(diff_BIB_2) 
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  #create item blocks 

  BIB_Block_1 <- c(easy_BIB_22[1], average_BIB_22[1], diff_BIB_22[1]) 

   

  BIB_Block_2 <- c(easy_BIB_22[2], average_BIB_22[2], diff_BIB_22[2]) 

   

  BIB_Block_3 <- c(easy_BIB_22[3], average_BIB_22[3], diff_BIB_22[3]) 

   

  BIB_Block_4 <- c(easy_BIB_22[4], average_BIB_22[4], diff_BIB_22[4]) 

   

  BIB_Block_5 <- c(easy_BIB_22[5], average_BIB_22[5], diff_BIB_22[5]) 

   

  BIB_Block_6 <- c(easy_BIB_22[6], average_BIB_22[6], diff_BIB_22[6]) 

   

  BIB_Block_7 <- c(easy_BIB_22[7], average_BIB_22[7], diff_BIB_22[7])  

   

  BIB_Block_8 <- c(easy_BIB_22[8], average_BIB_22[8], diff_BIB_22[8]) 

   

  BIB_Block_9 <- c(easy_BIB_22[9], average_BIB_22[9], diff_BIB_22[9]) 

   

  BIB_Block_10 <- c(easy_BIB_22[10], average_BIB_22[10], diff_BIB_22[10]) 

   

  BIB_Block_11 <- c(easy_BIB_22[11], average_BIB_22[11], diff_BIB_22[11]) 

   

  BIB_Block_12 <- c(easy_BIB_22[12], average_BIB_22[12], diff_BIB_22[12]) 

   

  BIB_Block_13 <- c(easy_BIB_22[13], average_BIB_22[13], diff_BIB_22[13]) 

   

  BIB_Block_14 <- c(easy_BIB_22[14], average_BIB_22[14], diff_BIB_22[14])  

   

   

  scored_B1_p <- X 
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  #create 14 population blocks which will be administered the different 
booklets 

  G1 <- scored_B1_p[1:714,] 

  G2 <- scored_B1_p[715:1428,] 

  G3 <- scored_B1_p[1429:2142,] 

  G4 <- scored_B1_p[2143:2856,] 

  G5 <- scored_B1_p[2857:3570,] 

  G6 <- scored_B1_p[3571:4284,] 

  G7 <- scored_B1_p[4285:4998,] 

  G8 <- scored_B1_p[4999:5712,] 

  G9 <- scored_B1_p[5713:6426,] 

  G10 <- scored_B1_p[6427:7140,] 

  G11 <- scored_B1_p[7141:7854,] 

  G12 <- scored_B1_p[7855:8568,] 

  G13 <- scored_B1_p[8569:9282,] 

  G14 <- scored_B1_p[9283:10000,] 

   

  #create the BIBS Sample though with data even for the unneeded blocks 

  BIB_Booklet_1 <- G1[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_2 <- G2[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_3 <- G3[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_4 <- G4[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_5 <- G5[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_6 <- G6[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
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BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_7 <- G7[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_8 <- G8[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_9 <- G9[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_10 <- G10[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_11 <- G11[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_12 <- G12[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_13 <- G13[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_14 <- G14[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

   

   

   

  #remove the respective unneeded blocks from the various booklets 

  BIB_Booklet_1[c(BIB_Block_3, BIB_Block_4, BIB_Block_5, BIB_Block_6, 
BIB_Block_7, BIB_Block_8, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_2[c(BIB_Block_1, BIB_Block_4, BIB_Block_5, BIB_Block_6, 
BIB_Block_7, BIB_Block_8, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 
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  BIB_Booklet_3[c(BIB_Block_1, BIB_Block_2, BIB_Block_5, BIB_Block_6, 
BIB_Block_7, BIB_Block_8, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_4[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_6, 
BIB_Block_7, BIB_Block_8, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_5[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_7, BIB_Block_8, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_6[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_8, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_7[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_8[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_9[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_10[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, BIB_Block_9, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_11[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, BIB_Block_9, 
BIB_Block_10, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_12[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, BIB_Block_9, 
BIB_Block_10, BIB_Block_11, BIB_Block_14)] <- NA 

  BIB_Booklet_13[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, BIB_Block_9, 
BIB_Block_10, BIB_Block_11, BIB_Block_12)] <- NA 

  BIB_Booklet_14[c(BIB_Block_2, BIB_Block_3, BIB_Block_4, BIB_Block_5, 
BIB_Block_6, BIB_Block_7, BIB_Block_8, BIB_Block_9, BIB_Block_10, 
BIB_Block_11, BIB_Block_12, BIB_Block_13)] <- NA 

   

  total_BIB_three <<- rbind(BIB_Booklet_1, BIB_Booklet_2, BIB_Booklet_3, 
BIB_Booklet_4, BIB_Booklet_5, BIB_Booklet_6, BIB_Booklet_7, BIB_Booklet_8, 
BIB_Booklet_9, BIB_Booklet_10, BIB_Booklet_11, BIB_Booklet_12, 
BIB_Booklet_13, BIB_Booklet_14) 

   

} 
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#   MMS creator 

MMS.creator <-  function(X){ 

  create.BIB.one(X) 

  create.BIB.two(X) 

  create.BIB.three(X) 

   

} 
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B.2 Generation of booklet designs from simulated data 
The following script shows how the multi-matrix booklet designs were created in the 

simulation study in chapter six. This script produces 1000 unique designs for each of the 

multi-matrix booklet designs investigated. It also presents the case for simulating data for 

4500 students and for 42 test items; and for match condition  where item difficulties have a 

mean of 0 while person abilities have a mean of 0.8. 

library("TAM") 

library("irtoys") 

 

dataset <<- list()  

for(i in 1:1000) {    

   

  set.seed(i) 

  items0 <- rnorm(42, 0, 1) 

  items1 <- as.data.frame(items0) 

  items2 <- sort(items1$items0) 

   

  items <<- cbind(rep(1, 42), items2, rep(0, 42)) 

   

  set.seed(i+1000) 

  theta <- rnorm(4500, 0.8, 1) 

   

  resp1 <- sim(ip=items, x=theta) 

  resp <- as.data.frame(resp1) 

   

  dataset[[i]] <- resp 

   

} 

 

create.BIB.one <- function(X){ 

  #ordering of item difficulties 

    D1 <- X    
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  mod1 <- tam(D1) 

  Diff <- mod1$xsi 

  Diff_ordered <- Diff[order(Diff$xsi),] 

  items_ordered <- rownames(Diff_ordered) 

  items_p_2 <- items_ordered 

   

  #stratify the item difficulties  

  easy_BIB <- items_p_2[1:14] 

  average_BIB <- items_p_2[15:28] 

  diff_BIB <- items_p_2[29:42] 

   

   

  #shuffle the items in each stratum 

  ##shuffle the items above and convert them to characters 

  set.seed(548) 

  easy_BIB_2 <- sample(easy_BIB, 14) 

  easy_BIB_22 <- as.character(easy_BIB_2) 

   

  set.seed(302) 

  average_BIB_2 <- sample(average_BIB, 14) 

  average_BIB_22 <- as.character(average_BIB_2) 

   

  set.seed(125) 

  diff_BIB_2 <- sample(diff_BIB, 14) 

  diff_BIB_22 <- as.character(diff_BIB_2) 

   

   

  #create item blocks 

  BIB_Block_1 <- c(easy_BIB_22[1:2], average_BIB_22[1:2], diff_BIB_22[1:2]) 

   

  BIB_Block_2 <- c(easy_BIB_22[3:4], average_BIB_22[3:4], diff_BIB_22[3:4]) 

   

  BIB_Block_3 <- c(easy_BIB_22[5:6], average_BIB_22[5:6], diff_BIB_22[5:6]) 
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  BIB_Block_4 <- c(easy_BIB_22[7:8], average_BIB_22[7:8], diff_BIB_22[7:8]) 

   

  BIB_Block_5 <- c(easy_BIB_22[9:10], average_BIB_22[9:10], 
diff_BIB_22[9:10]) 

   

  BIB_Block_6 <- c(easy_BIB_22[11:12], average_BIB_22[11:12], 
diff_BIB_22[11:12]) 

   

  BIB_Block_7 <- c(easy_BIB_22[13:14], average_BIB_22[13:14], 
diff_BIB_22[13:14])    

   

   

  scored_B1_p <- X  

   

  #create 7 population blocks which will be administered the different 
booklets 

  G1 <- scored_B1_p[1:642,] 

  G2 <- scored_B1_p[643:1284,] 

  G3 <- scored_B1_p[1285:1926,] 

  G4 <- scored_B1_p[1927:2568,] 

  G5 <- scored_B1_p[2569:3210,] 

  G6 <- scored_B1_p[3211:3852,] 

  G7 <- scored_B1_p[3853:4500,] 

   

  #create the BIBS Sample though with data even for the unneeded blocks 

  BIB_Booklet_1 <- G1[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_2 <- G2[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_3 <- G3[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_4 <- G4[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_5 <- G5[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_6 <- G6[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 
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  BIB_Booklet_7 <- G7[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

   

  #remove the respective unneeded blocks from the various booklets 

  BIB_Booklet_1[c(BIB_Block_3, BIB_Block_5, BIB_Block_6, BIB_Block_7)] <- 
NA 

  BIB_Booklet_2[c(BIB_Block_1, BIB_Block_4, BIB_Block_6, BIB_Block_7)] <- 
NA 

  BIB_Booklet_3[c(BIB_Block_1, BIB_Block_2, BIB_Block_5, BIB_Block_7)] <- 
NA 

  BIB_Booklet_4[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_6)] <- 
NA 

  BIB_Booklet_5[c(BIB_Block_2, BIB_Block_3, BIB_Block_4, BIB_Block_7)] <- 
NA 

  BIB_Booklet_6[c(BIB_Block_1, BIB_Block_3, BIB_Block_4, BIB_Block_5)] <- 
NA 

  BIB_Booklet_7[c(BIB_Block_2, BIB_Block_4, BIB_Block_5, BIB_Block_6)] <- 
NA 

   

   

  total_BIB_one <<- rbind(BIB_Booklet_1, BIB_Booklet_2, BIB_Booklet_3, 
BIB_Booklet_4, BIB_Booklet_5, BIB_Booklet_6, BIB_Booklet_7) 

   

} 

 

################ 

 

create.BIB.two <- function(X){   

  #ordering of item difficulties 

    D1 <- X  

  mod1 <- tam(D1) 

  Diff <- mod1$xsi 

  Diff_ordered <- Diff[order(Diff$xsi),] 

  items_ordered <- rownames(Diff_ordered) 

  items_p_2 <- items_ordered 

   

  #stratify the item difficulties  

  easy_BIB <- items_p_2[1:14] 
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  average_BIB <- items_p_2[15:28] 

  diff_BIB <- items_p_2[29:42] 

   

   

  #shuffle the items in each stratum 

  ##shuffle the items above and convert them to characters 

  set.seed(548) 

  easy_BIB_2 <- sample(easy_BIB, 14) 

  easy_BIB_22 <- as.character(easy_BIB_2) 

   

  set.seed(302) 

  average_BIB_2 <- sample(average_BIB, 14) 

  average_BIB_22 <- as.character(average_BIB_2) 

   

  set.seed(125) 

  diff_BIB_2 <- sample(diff_BIB, 14) 

  diff_BIB_22 <- as.character(diff_BIB_2) 

   

   

  #create item blocks 

  BIB_Block_1 <- c(easy_BIB_22[1:2], average_BIB_22[1:2], diff_BIB_22[1:2]) 

   

  BIB_Block_2 <- c(easy_BIB_22[3:4], average_BIB_22[3:4], diff_BIB_22[3:4]) 

   

  BIB_Block_3 <- c(easy_BIB_22[5:6], average_BIB_22[5:6], diff_BIB_22[5:6]) 

   

  BIB_Block_4 <- c(easy_BIB_22[7:8], average_BIB_22[7:8], diff_BIB_22[7:8]) 

   

  BIB_Block_5 <- c(easy_BIB_22[9:10], average_BIB_22[9:10], 
diff_BIB_22[9:10]) 

   

  BIB_Block_6 <- c(easy_BIB_22[11:12], average_BIB_22[11:12], 
diff_BIB_22[11:12]) 
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  BIB_Block_7 <- c(easy_BIB_22[13:14], average_BIB_22[13:14], 
diff_BIB_22[13:14])   

   

   

  scored_B1_p <- X 

   

   

  #create 7 population blocks which will be administered the different 
booklets 

  G1 <- scored_B1_p[1:642,] 

  G2 <- scored_B1_p[643:1284,] 

  G3 <- scored_B1_p[1285:1926,] 

  G4 <- scored_B1_p[1927:2568,] 

  G5 <- scored_B1_p[2569:3210,] 

  G6 <- scored_B1_p[3211:3852,] 

  G7 <- scored_B1_p[3853:4500,] 

   

     

  #create the BIBS Sample though with data even for the unneeded blocks 

  BIB_Booklet_1 <- G1[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_2 <- G2[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_3 <- G3[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_4 <- G4[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_5 <- G5[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_6 <- G6[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

  BIB_Booklet_7 <- G7[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7)] 

   

  #remove the respective unneeded blocks from the various booklets 

  BIB_Booklet_1[c(BIB_Block_3, BIB_Block_4, BIB_Block_5, BIB_Block_6, 
BIB_Block_7)] <- NA 
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  BIB_Booklet_2[c(BIB_Block_1, BIB_Block_4, BIB_Block_5, BIB_Block_6, 
BIB_Block_7)] <- NA 

  BIB_Booklet_3[c(BIB_Block_1, BIB_Block_2, BIB_Block_5, BIB_Block_6, 
BIB_Block_7)] <- NA 

  BIB_Booklet_4[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_6, 
BIB_Block_7)] <- NA 

  BIB_Booklet_5[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_7)] <- NA 

  BIB_Booklet_6[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5)] <- NA 

  BIB_Booklet_7[c(BIB_Block_2, BIB_Block_3, BIB_Block_4, BIB_Block_5, 
BIB_Block_6)] <- NA 

   

   

  total_BIB_two <<- rbind(BIB_Booklet_1, BIB_Booklet_2, BIB_Booklet_3, 
BIB_Booklet_4, BIB_Booklet_5, BIB_Booklet_6, BIB_Booklet_7) 

   

} 

 

############## 

 

#Creation of the BIB three design 

create.BIB.three <- function(X){    

  #ordering of item difficulties 

  D1 <- X 

  mod1 <- tam(D1) 

  Diff <- mod1$xsi 

  Diff_ordered <- Diff[order(Diff$xsi),] 

  items_ordered <- rownames(Diff_ordered) 

  items_p_2 <- items_ordered 

   

  #stratify the item difficulties  

  easy_BIB <- items_p_2[1:14] 

  average_BIB <- items_p_2[15:28] 

  diff_BIB <- items_p_2[29:42] 

   

   



 188

 
  #schuffle the items in each stratum 

  ##schuffle the items above and convert them to characters 

  set.seed(548) 

  easy_BIB_2 <- sample(easy_BIB, 14) 

  easy_BIB_22 <- as.character(easy_BIB_2) 

   

  set.seed(302) 

  average_BIB_2 <- sample(average_BIB, 14) 

  average_BIB_22 <- as.character(average_BIB_2) 

   

  set.seed(125) 

  diff_BIB_2 <- sample(diff_BIB, 14) 

  diff_BIB_22 <- as.character(diff_BIB_2) 

   

   

  #create item blocks 

  BIB_Block_1 <- c(easy_BIB_22[1], average_BIB_22[1], diff_BIB_22[1]) 

   

  BIB_Block_2 <- c(easy_BIB_22[2], average_BIB_22[2], diff_BIB_22[2]) 

   

  BIB_Block_3 <- c(easy_BIB_22[3], average_BIB_22[3], diff_BIB_22[3]) 

   

  BIB_Block_4 <- c(easy_BIB_22[4], average_BIB_22[4], diff_BIB_22[4]) 

   

  BIB_Block_5 <- c(easy_BIB_22[5], average_BIB_22[5], diff_BIB_22[5]) 

   

  BIB_Block_6 <- c(easy_BIB_22[6], average_BIB_22[6], diff_BIB_22[6]) 

   

  BIB_Block_7 <- c(easy_BIB_22[7], average_BIB_22[7], diff_BIB_22[7])  

   

  BIB_Block_8 <- c(easy_BIB_22[8], average_BIB_22[8], diff_BIB_22[8]) 

   

  BIB_Block_9 <- c(easy_BIB_22[9], average_BIB_22[9], diff_BIB_22[9]) 
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 BIB_Block_10 <- c(easy_BIB_22[10], average_BIB_22[10], diff_BIB_22[10]) 

 BIB_Block_11 <- c(easy_BIB_22[11], average_BIB_22[11], diff_BIB_22[11]) 

 BIB_Block_12 <- c(easy_BIB_22[12], average_BIB_22[12], diff_BIB_22[12]) 

 BIB_Block_13 <- c(easy_BIB_22[13], average_BIB_22[13], diff_BIB_22[13]) 

 BIB_Block_14 <- c(easy_BIB_22[14], average_BIB_22[14], diff_BIB_22[14]) 

 scored_B1_p <- X 

#create 14 population blocks which will be administered the different 
booklets

 G1 <- scored_B1_p[1:321,] 

 G2 <- scored_B1_p[322:642,] 

 G3 <- scored_B1_p[643:963,] 

 G4 <- scored_B1_p[964:1284,] 

 G5 <- scored_B1_p[1285:1605,] 

 G6 <- scored_B1_p[1606:1926,] 

 G7 <- scored_B1_p[1927:2247,] 

 G8 <- scored_B1_p[2248:2568,] 

 G9 <- scored_B1_p[2569:2889,] 

 G10 <- scored_B1_p[2890:3210,] 

 G11 <- scored_B1_p[3211:3531,] 

 G12 <- scored_B1_p[3531:3852,] 

 G13 <- scored_B1_p[3853:4173,] 

 G14 <- scored_B1_p[4174:4500,] 

#create the BIBS Sample though with data even for the unneeded blocks

 BIB_Booklet_1 <- G1[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 
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  BIB_Booklet_2 <- G2[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_3 <- G3[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_4 <- G4[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_5 <- G5[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_6 <- G6[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_7 <- G7[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_8 <- G8[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_9 <- G9[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_10 <- G10[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_11 <- G11[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_12 <- G12[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

  BIB_Booklet_13 <- G13[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 
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  BIB_Booklet_14 <- G14[, c(BIB_Block_1, BIB_Block_2, BIB_Block_3, 
BIB_Block_4, BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, 
BIB_Block_9, BIB_Block_10, BIB_Block_11, BIB_Block_12, BIB_Block_13, 
BIB_Block_14)] 

   

     

  #remove the respective unneeded blocks from the various booklets 

  BIB_Booklet_1[c(BIB_Block_3, BIB_Block_4, BIB_Block_5, BIB_Block_6, 
BIB_Block_7, BIB_Block_8, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_2[c(BIB_Block_1, BIB_Block_4, BIB_Block_5, BIB_Block_6, 
BIB_Block_7, BIB_Block_8, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_3[c(BIB_Block_1, BIB_Block_2, BIB_Block_5, BIB_Block_6, 
BIB_Block_7, BIB_Block_8, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_4[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_6, 
BIB_Block_7, BIB_Block_8, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_5[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_7, BIB_Block_8, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_6[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_8, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_7[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_9, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_8[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_10, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_9[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, BIB_Block_11, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_10[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, BIB_Block_9, 
BIB_Block_12, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_11[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, BIB_Block_9, 
BIB_Block_10, BIB_Block_13, BIB_Block_14)] <- NA 

  BIB_Booklet_12[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, BIB_Block_9, 
BIB_Block_10, BIB_Block_11, BIB_Block_14)] <- NA 

  BIB_Booklet_13[c(BIB_Block_1, BIB_Block_2, BIB_Block_3, BIB_Block_4, 
BIB_Block_5, BIB_Block_6, BIB_Block_7, BIB_Block_8, BIB_Block_9, 
BIB_Block_10, BIB_Block_11, BIB_Block_12)] <- NA 
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  BIB_Booklet_14[c(BIB_Block_2, BIB_Block_3, BIB_Block_4, BIB_Block_5, 
BIB_Block_6, BIB_Block_7, BIB_Block_8, BIB_Block_9, BIB_Block_10, 
BIB_Block_11, BIB_Block_12, BIB_Block_13)] <- NA 

   

  total_BIB_three <<- rbind(BIB_Booklet_1, BIB_Booklet_2, BIB_Booklet_3, 
BIB_Booklet_4, BIB_Booklet_5, BIB_Booklet_6, BIB_Booklet_7, BIB_Booklet_8, 
BIB_Booklet_9, BIB_Booklet_10, BIB_Booklet_11, BIB_Booklet_12, 
BIB_Booklet_13, BIB_Booklet_14) 

   

} 

 

######### 

#   MMS creator 

MMS.creator <-  function(X){ 

  create.BIB.one(X) 

  create.BIB.two(X) 

  create.BIB.three(X) 

  MMS.zero.sim <<- X[1:4500, ] 

  MMS.one.sim <<- total_BIB_one[, c(colnames(MMS.zero.sim))] 

  MMS.two.sim <<- total_BIB_two[, c(colnames(MMS.zero.sim))] 

  MMS.three.sim <<- total_BIB_three[, c(colnames(MMS.zero.sim))] 

   

} 

 

MMS.creator(resp) 
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