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Part I.

Introduction






1. Overview

This Thesis discusses how non-chiral topological order in two-dimensions can be accessed
within a tensor network framework. The approach is two-fold. On the one hand, we extensively
discuss how tensor networks can be used as a tool to characterize topological order [1,4-11] and
how this approach blends in with other mathematical frameworks, such as string-net models
[12], state sum constructions [3, 13-17] and the abstract algebraic theory of anyons formulated
using category theory [18, 19]. On the other hand we use the tensor network description as a
conceptual tool in the design of synthetic topological quantum matter built from mesoscopic
devices, concretely networks of tunnel coupled Majorana Cooper boxes [2].

Topological order

Topological order is undoubtedly one of the most intriguing subjects studied in modern con-
densed matter physics. Its discovery and theoretical investigation throughout the last decades
has profoundly changed our understanding of phases of matter and the mechanisms underlying
their formation [20] — an achievement only recently rewarded by the Nobel prize [21]. States
of matter baptized “novel” or “exotic” due to their puzzling properties in the early 80’s are
nowadays understood well enough to attempt harvesting their fundamental “quantumness”
for applications in quantum computation [22] — a technology with revolutionary potential
[23-26].

At the heart of this remarkable development is the insight, that the formation of different
phases of matter can not only be attributed to the breaking of different physical symmetries
— as captured beautifully by Landau’s theory of symmetry breaking [27, 28] — but also to a
purely quantum mechanical properties captured by the entanglement structure of the system
[20]. Entanglement characterizes the information shared between subsystems which exceeds
the information captured by classical correlations [29]. As such it is a genuine quantum many
body phenomenon and relies on strong interactions. Topological ordered states of matter are
characterized by long-range entanglement [30] which means that information is shared in a
particular non-local fashion. As a consequence a system with topological order is sensitive
to global properties of its environment which can not be detected locally — more precisely it
is sensitive to the topology of the manifold on which it resides. The simplest example of such
a dependency is the topological ground state degeneracy, i.e., the dimension of the ground state
space depends on topological manifold invariants, e.g. the genus of a two-dimensional surface
[31].

Topological order in two dimensions is of particular interest, because of the theoretically
predicted point-like quasi-particle excitations which behave neither as bosons nor as fermions
when exchanging the position of identical particles. These so-called anyons [31-34] feature
the curious property that the wave-function is not uniquely defined by the position of the
particles and instead there is a certain Hilbert space compatible with the presence of a number
of such particles. For certain systems, exchanging the position of two such particles has the
effect of performing a unitary rotation in this Hilbert space [18, 35, 36]. This unconventional
property can again be attributed to the systems sensitivity to topological properties. An intuitive
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interpretation of the latter statement is to consider the particle trajectory as knotted world-lines.
Picturing the world-lines as defect of a 241 dimensional manifold, we recognize a conceptual
similarity to the topological ground state degeneracy.

The theory of anyonic excitations and how the latter can be used to implement quantum
algorithms is not the only, but perhaps the most exciting intersection of condensed matter
theory and quantum information science [20]. Just as in classical computation, a quantum
computation is performed by running a sequence of logical gates on some computational input
state. While classical gates amount to binary operations on binary strings, quantum gates
consist of local unitary operations acting on qubits, i.e., two-dimensional bosonic degrees of
freedom, such as spin-1/2 particles. For some anyon models (e.g. Fibonacci anyons [12, 37, 38])
the unitary operations that result from exchanging anyonic particles are sufficient to realize
arbitrary quantum gates and thus, such a system could be used as a universal topological quantum
computer [36, 39-43].

While aiming at a universal topological quantum computer is an extremely ambitious goal,
there is a more near-term application of topological order in quantum error correcting codes.
A simple, paradigmatic model of topological order known as the toric code [31] has extremely
beneficial properties for storing quantum information. The key idea is to use the ground states
space as code space, i.e., the orthogonal basis states of the ground state space are identified with
code words of logical qubits. As states in the ground state space are long-range entangled, the
information is stored non-locally and robust against local noise. Due to the fact, that the toric
code is an exactly solvable lattice model, i.e., its Hamiltonian is a sum of commuting projectors,
it is possible to locate and identify the effects of local perturbations called “errors”. A concise
mathematical understanding of the system is the key to devise operations on the system that
can also correct such errors in an efficient way [31, 44, 45].

The availability of commuting projector lattice Hamiltonians is one of the features that
separates non-chiral topological order from chiral ones [3, 46]. While chiral topological order —
characterized by gapless chiral edge modes — is the kind of topological order present in the
fractional quantum Hall states [47-51] and thus observed experimentally, it is incompatible
with a description in terms of commuting projector Hamiltonians [52]. On the contrary, non-
chiral topological order, for which edge modes are also gapped, is beautifully captured by
commuting projector Hamiltonians [12], however, as of today, no material has been found that
clearly exhibits this kind of topological order!.

A tensor network approach

The existence of commuting projector Hamiltonians (Levin—-Wen string net models [12]) for
non-chiral topological order can be understood on a profound mathematical level. General
anyon models (including chiral theories) can be classified on an abstract mathematical level
by unitary braided modular fusion categories, also called modular tensor categories [18]. On
such a coarse gained level an anyon theory is a set of particle labels together with a set of rules
how these particles “interact” with each other. Starting from a less structured mathematical
object — a fusion category one can construct the so-called Drinfeld center which is a modular
tensor category, which is non-chiral. It turns out, that this abstract mathematical recipe can
be turned into a lattice Hamiltonian construction. Here, the fusion category is used to define
degrees of freedom on a lattice and their interactions. The excitation of this Hamiltonian can
then be identified with the Drinfeld center of the fusion category [19].

t is still debated whether Herbersmithite is a gapless spin liquid or has non chiral Z, topological order [53, 54]



This peculiar mechanism can be reinterpreted on the level of ground states within a tensor
network approach [4, 6, 7, 9]. We have explained in the preceding Section that topological
order is a consequence of a particular entanglement structure. Tensor network states are a
class of ansatz states that exhibit the entanglement pattern of a state very clearly [55]. While
they have been applied predominantly as a numerical tool [56-58], analytical studies using
tensor networks can reveal fundamental conceptual insights on the structure of phases of
matter. For instance, a full classification of gapped quantum phases in one dimensions has
been successfully carried out using matrix product states [59-61] — a particular kind of tensor
network state.

In the realm of non-chiral topological order, it was first found that the toric code ground
state can be represented exactly as a tensor network state [62], a projected entangled pair
state (PEPS). It became clear very soon, that the topological properties of the system can
be interpreted as a consequence of virtual symmetries of the tensor network state [4]. These
symmetries can be understood as acting in the “parameter space” of the ansatz class, which
can be interpreted as the space parametrizing the entanglement. This remarkable finding can
be extended to the tensor network ground states of general non-chiral topologically ordered
systems [63, 64] and it has been shown that a particular structure of the virtual (entanglement)
space is present in the tensor network description of all Levin—Wen string net model ground
states [7]. This finding is not coincidental, but can be understood as originating from the same
underlying mechanism. To be more precise, the symmetries of the virtual (entanglement)
space can be capture by matrix product operators (MPOs), which bare the structure of a fusion
category [8]. A unified description of these two findings can be obtained by interpreting both
the Hamiltonian as well as the tensor network state within a topological state-sum construction.
While it is beyond the scope of this introduction to outline this correspondence in detail, we
note that a topological state sum construction assigns a topological invariant to a manifold. This
is achieved by choosing a manifold triangulation and calculating quantities conceptually similar
to the Euler characteristic. Per definition these quantities are invariant under retriangulations.
It is this retriangulation invariance which is essentially at the core of the virtual symmetries
in the tensor network and which implies that local Hamiltonian terms of the corresponding
Hamiltonian are mutually commuting.

It is an interesting question whether the insights mentioned above carry over to fermionic
systems [1]. While we can provide an affirmative answer to this question, we find that several
adaptations to the bosonic formalism are required [1, 9, 11]. The anticommutativity of fermionic
degrees of freedom makes it necessary to describe fermionic states with a different class of
ansatz states, so-called fermionic tensor network states [65, 66]. In addition, fermionic parity
is a fundamental symmetry and has to be incorporated in the mathematical formalism on
an elementary level [67-69]. We explore the connection between fermionic matrix product
operator symmetries in fermionic projected entangled pair states and fermionic string net
models and highlight how the respective formalism are modified with respect to the bosonic
setting.

Apart from an extension of the tensor network formalism to fermionic systems, our main
contribution to the field presented in this Thesis is an unconventional application of the tensor
network formalism — it is used as a guideline for the design of synthetic quantum materials
in which topological order is realized [2]. As addressed earlier non-chiral topological order
has not been found in any existing materials. This is an unfortunate situation, since non-
chiral topologically ordered systems provide ideal platforms for topological quantum codes
and fault-tolerant topological quantum computation [44, 70-72]. Several attempts have been
undertaken to simulate or engineer non-chiral topological matter artificially [73-77]. However,
most of the effort has focused on the comparably simple toric code phase [78-84]. While the
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capabilities of the toric code as an error correcting quantum code are not in any doubt, it is
not suited as a platform for universal quantum computation unless it is supplemented with
additional hardware and protocols, which are rather costly [85-88]. To avoid the latter an
alternative approach is to implement topological phases which are intrinsically more complex,
in the extreme case, hosting anyons with which universal topological quantum computation
can be performed. Levin-Wen string net models — a particular class of commuting projector
Hamiltonians describing all known instances of non-chiral topological order — contain both
extremes and the middle ground between them. In this Thesis we investigate how the latter
could be realized in a concrete physical hardware platform and how the intrinsic complexity of
the model interferes with and poses limits to the possible realizations. In doing so we built
upon insights of the theoretical tensor network framework.

The platform we use are the so-called Majorana Cooper boxes (MCB) [89, 90] — mesoscopic
units composed of several nanowires attached to a superconductor such that Majorana zero
modes emerge at the boundaries of the wires. The latter are subject to a parity constraint which
arises from the charging physics of the combined device and allows to identify the simplest
such unit (called tetron) with a single qubit. The low-energy effective theory of tunnel coupled
MCBs then gives rise to an interacting many body spin Hamiltonian acting on the effective
qubits [85-87, 91]. Aided by the mindset of tensor network states and operators we present
how small arrays of tunnel coupled MCBs form basic building blocks, which can be assembled
to more complicated structures. In the design of the latter we investigate several mechanisms
that allow to design effective Hamiltonians in a systematic fashion and make use of so-called
Hamiltonian gadgets ideas [92-95] — a tool developed originally in quantum information theory
to tackle the Hamiltonian complexity problem.

We show, how the double semion model [12, 96, 97], a string-net model of intermediate
complexity, can be realized following this approach. The anyonic excitations of the double
semion model are too simple to allow for universal quantum computation by braiding. Thus,
we investigate how difficult it would be to engineer the simplest Levin—-Wen model which
is sufficient for universal topological quantum computation — the double Fibonacci model
[12]. We find that the tensor network approach still reduces the required resources measured
in terms of auxiliary qubits needed to design the actual phase significantly compared to a
naive direct approach for which the required amount of wires and auxiliary qubits is entirely
out of the question. However, the scheme we employ still relies on intricate wiring of tunnel
connections and a staggered separation of energy scales which makes it experimentally hard to
design and sensitive to finite temperature effects.

Results and further directions

We conclude that the tensor network formalism for non-chiral topological order is not only
useful to gain a concise and profound understanding of topological phases of matter, but
in addition can serve as a guiding principle in the design of artificial quantum matter. The
power of the design mechanisms is partially limited by the chosen physical platform and we
strongly suggest to investigate further how tensor network based schemes can be employed in
other physical platforms or how the presented ideas can be elevated by employing additional
hardware. We emphasize that the building blocks developed here can in principle be used
in the design of other non-topological Hamiltonians as well and constitute a possible toolbox
for analog quantum simulation. This direction should be explored further in the future. On a
more theoretical note we remark that a tensor network description for non-chiral topological
order is well explored and understood. However, it is an open question how (generalized)



tensor network constructions can access chiral topological order. Exploring the latter could
lead to a unified and generalized understanding of phases of matter as a whole [3, 46].

Scope

We would like to briefly sketch the location of this work within the vast landscape of theoretical
physics in order to avoid confusion and misunderstandings. This Thesis is concerned with closed
quantum systems at zero temperature, which can be modeled by lattice Hamiltonians. We do not
restrict ourselves to non-interacting systems described by quadratic Hamiltonians, but consider
genuine strongly interacting many-body systems. However, we do require that interactions
are short-ranged (i.e., they are local) and restrict ourselves to Hamiltonians that are translation
invariant neglecting effects of disorder. We focus on Hamiltonians that are gapped, i.e., systems
for which there exists an energy difference between the ground state space and the excited
states that remains finite in the limit of infinite system size. This setting brings us into the realm
of gapped quantum phase and their classification. The latter depends on the dimensionality
and the underlying microscopic constituents. We consider mostly systems of spins (or bosons),
but take a short excursion into the fermionic realm at some point and restrict our focus to two
dimensions.

It is a common approach to classify phases of matter according to their physical symmetries
or to classify different phases subject to a specific symmetry restriction, e.g. to list and label
all possible time-reversal fermionic phases in one dimension. In this Thesis, we are interested
in the classification of phases that emerge, when we do not consider physical symmetries except
for fermion parity which we assume to be a fundamental. As a result the phase classification
discussed here distinguishes states of matter only according to the qualitative amount of
entanglement.

The phenomenon we are interested in is topological order. We aim at a deeper understanding
of the latter and approach it with different mathematical formalisms partially motivated by
the perspective of quantum information science, i.e., with a focus on entanglement structures.
Among them are fensor network states — a particular class of ansatz states suitable to describe
ground states of local Hamiltonians and a class of commuting projector Hamiltonian — the
Levin—Wen string-net models. We discuss general properties of the latter two and how they are
related, however, we do not perform any concrete exploratory studies of specific Hamiltonians
such as mapping out phase diagrams or calculating transport properties. The focus is more on a
development and interpretation of a suitable mathematical formalism to capture this phenomenon
than on concrete instances of the latter.

In the last part of this Thesis we shift our perspective from explaining and describing phases
of matter to engineering the latter. This brings about a change in methodology as well. We
discuss the use of low-energy effective theories in gapped spin systems as a design principle. Le.,
instead of calculating the effective Hamiltonian H,g of a given Hamiltonian H, we ask how we
need to design H such that a given Hqg emerges as the low-energy effective description. The
concrete recipes are discussed for a specific physical platform (networks of tunnel coupled
Majorana Cooper boxes) and are thus tailored to this setting.

Contents

While we aim to contribute to the general understanding and classification of gapped quantum
matter as such, we would also like to bring this dominantly theoretical subject in closer contact
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with applied sciences. In order to reach a broader audience we try to make the material
presented here as accessible as possible and aim to be self-consistent. As a consequence, large
parts of this Thesis are concerned with reviews of varying depth on the background material
needed to understand and appreciate the topic at hand.

We start with a general introduction to gapped local quantum phases in Chapter 2 and present
the main tools used to study the latter — entanglement and tensor network states. As an example
for the usability of the latter and as a conceptual introduction to methods used later on, we
review the classification of gapped local quantum phases using matrix product states.

We do not expect the reader to be familiar with topological order and thus present a conceptual
introduction to the topic guided by the paradigmatic example of the toric code in Chapter 3. In
preparation to the core material in Chapter 5 we discuss the toric code not only as a Hamiltonian
model, but also its tensor network state description as a G-injective projected entangled pair
state.

The introduction to topological order is completed by a general review of the abstract algebraic
theory of anyons presented in Chapter 4. The Chapter is formulated in the language of modular
unitary braided fusion categories and highlights the mathematical backbone of non-chiral
topological order — the Drinfeld center construction [19].

Chapter 5 is one of the two main Chapters of this Thesis. We discuss in great detail the
connection between Levin-Wen string-net models and projected entangled pair states with
so-called matrix product operator isometric (MPO-isometric PEPS). As an illustrative example,
we present the twisted-quantum double models in the two aforementioned formalisms and
highlight how MPO-isometric PEPS are related to state-sum constructions and manifold invari-
ants. In order not to digress to far from the tensor-network formalism and concrete Hamiltonian
implementations, we refrain from reviewing state-sum constructions in full generality and only
highlight certain aspects and provide an outlook to open questions, in particular addressing
the question of chirality. We conclude the Chapter by presenting an extension of MPO-injective
PEPS and string-net models in the fermionic realm.

In the last Chapter we propose a scheme to realize topological order via the low-energy
effective Hamiltonian of a network of tunnel coupled Majorana Cooper boxes. We review
different variants of low-energy effective theories and how the latter are used for Hamiltonian
design referred to as “gadget” constructions. We continue with a discussion of Majorana Cooper
box networks and the design of specific functional units composed of the latter. Finally, we
show how those building blocks can be assembled to yield effective Levin—-Wen string-net
phases and discuss the double semion model as a detailed example and sketch how a double
Fibonacci phase could be implemented. We summarize our results in Chapter 7.



2. Gapped local quantum phases

What states of matter can emerge from local interactions in a purely quantum mechanical
regime at zero temperature and how can we characterize the latter in a sensible way? This
question of classifying quantum phases is formalized in the study of gapped local Hamiltonians.
A system is called local if the interactions between its microscopic constituents are short-ranged,
i.e., they decay exponentially with the distance between sites. Gapped means that the ground
state space is separated from the excited state space with a finite energy distance (the gap) in
the infinite system size limit, also referred to as thermodynamic limit. Gapped local quantum
systems exhibit remarkable universal properties which can be derived directly and rigorously
from their definition.

Perhaps most fundamentally, there are strict bounds on the Lieb-Robinson velocities [98],
which characterize the speed at which information can propagate in a local quantum systems.
These so-called Lieb—Robinson bounds [99-101] imply several other universal properties of
gapped local quantum phases. For example the entanglement entropy in gapped local systems
follows a so-called area law [55] (cf. Section 2.1.3) which states that the entanglement shared
between a subsystem and its environment grows proportional to the size of its boundary and
not its volume. Lieb-Robinson bounds also allow to infer that ground states of one-dimensional
gapped Hamiltonians can be approximated efficiently by a particular class of sates with low
complexity [102] — so-called matrix product states (cf. Section 2.3.2).

An immediate physically observable consequence of Lieb-Robinson bounds is the clustering
of correlations [99-101] stating that the correlation functions of local observables at different
sites decay exponentially with the distance between them. This property can be considered
as a defining feature of gapped systems and is in stark contrast to gappless systems where
correlation functions decay algebraically.

It is a common point of view to regard gapless Hamiltonians as the phase transition “lines”
separating different gapped Hamiltonians phases. While approaching the phase transition
the correlation length of a gapped system diverges and the correlation function transitions
from an exponential to an algebraic decay. The divergence of the correlation length is typically
characterized by a power law with an exponent referred to as critical exponent. Remarkably the
scaling properties close to a phase transition are often independent of the microscopic details
and fall into universality classes. The mathematical framework for the analysis of gapless phases,
also referred to as critical systems is largely complementary to the framework used for gapped
phases and mainly employs renormalization group methods and conformal field theory. For
reviews on quantum criticality see e.g. Refs. [103-105].

A few comments regarding the picture sketched above are in order. We presented the
property of being gapped as generic and gaplessness as the exception, however, the question
whether a “typical” local quantum systems is gapped or gapless is far from settled and largely
depends of the mathematical fine-print. For systems, which are not translation invariant not
even the definition given here applies as there is simply no canonical recipe how to take the
thermodynamic limit. Recent work addresses this question and indicates that systems without
translation invariance are generically not gapped [106]. For translation invariant systems a
sequence of growing system size can be defined naturally and the definition above is meaningful.
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Indeed recent results indicate that generically the latter are gapped [107, 108]. However, even in
this case, there are examples of translation invariant nearest-neighbor Hamiltonians in one and
two dimensions for which the question whether the gap remains finite in the thermodynamic
limit is undecidable [109, 110] and one can easily imagine settings where the thermodynamic
limit is not meaningful despite the system being translation invariant. For example consider a
spin chain which has a ground state degeneracy that depends on the number of sites being
even or odd.

To avoid problems of the kind addressed above we will assume in the following that the states
of matter considered here possess a sufficient amount of homogeneity such that sequences
of growing system size do not show any “discontinuous” behavior [111]. These so-called
quantum liquids are general enough to exhibit one of the most intriguing phenomena of modern
condensed matter physics — topological quantum order.

Topological quantum order is not detectable via local observables (cf. Section 3.1.3) and dis-
tinguished from non-topological order via its distinct entanglement structure (cf. Section 3.2.4).
As a consequence, the definition of a gapped quantum phase can not be guided by local order
parameters and thus goes beyond Landau’s theory of symmetry breaking. Instead the definition
of a quantum phase starts from scratch with the phenomenologically motivated assumption
that a phase transition should be observable by a discontinuity in some local observable. Such
a singularity can only occur if the gap of the Hamiltonian closes at the transition point and
thus it is concluded that whenever the Hamiltonian gap is preserved along some path in the
parameter space, all Hamiltonians along this path are within the same phase. This definition
can be reformulated on the level of ground states and reveals the non trivial fact that two
gapped Hamiltonians are in the same phase if their ground states show the same qualitative
amount of entanglement.

In the remainder of this Chapter we introduce gapped quantum phases [20, 30, 61, 117-119]
more formally. We briefly review the concept of entanglement in Section 2.1 with its different
quantifiers as a prerequisite for a deeper understanding of gapped quantum phases. In Section
2.2 we present a more formal definition of a gapped quantum phase and discuss the emerging
dichotomy of short- and long-range entangled phases. The crucial role of entanglement mo-
tivates the introduction of tensor network states in Section 2.3, which are optimally suited to
classify states of matter according to their entanglement structure. To showcase the strength of
the tensor network formalism we review the classification of gapped quantum phases in one
dimensional systems via matrix product states (MPS) — a special class of tensor network states
—in Section 2.4.

2.1. Entanglement

Entanglement is the source of correlations in measurement outcomes that can not be explained
classically [29, 120, 121]. It is present whenever a state can not be factorized into a product state,
i.e., a state where the many body wave function factorizes into a tensor product of the wave
functions of the individual constituents

) =¥ ®¥)®...0|¥)y - (2.1)

However, it is unclear, if the relatively recently discovered fracton phases [85, 112-116] can be addressed in the
context of quantum liquids [111].
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2.1. Entanglement

2.1.1. Measures of entanglement

The inspection of entanglement often relies on the concept of density matrices. Recall, that
a general quantum system is characterized by a density matrix p capturing both classical
probabilities of the ensemble as well as quantum mechanical probabilities. Density matrices
which have more than one eigenvalue and thus more than one entry if diagonalized are
called mixed states. In contrast, if the density matrix has only one non-zero eigenvalue (of
magnitude one), i.e., it is described by a single state vector, the state is called a pure state. At zero
temperature it is natural to work with pure states (ground states) and consider their density
matrices p = |¥) (‘¥|. For a system that can be partitioned into two parts A and B one then
defines the reduced density matrix by tracing out the degrees of freedom of one of the subsystems,
i.e., the reduced density matrix of a subsystem A is given by

pa =Trpp. (22)

The reduced density matrix provides information about the amount of information shared
between the two subsystems and is used to define several entanglement entropies. The one
most commonly used is the von Neumann entanglement entropy

S(pa) = —Tr(palogpa) - (23)

Unless the pure state factorizes into a tensor product of two pure states |¥) = [¥) , ® |¥)5
defined on A and B the reduced density matrix is a mixed state and has at least two non-zero
eigenvalues, which add up to one and thus are both smaller than one. Consequently, the von
Neumann entanglement entropy is larger than zero and zero only for a factorizing state. For
a two qubit state the maximal amount of entanglement (log2) is reached when the reduced
density matrix of the remaining spin is maximally mixed, i.e., it is given by a diagonal matrix
with entries 1/2. The maximum is reached for so-called Bell states?

|Bell) = |00) + |11) (2.4)

also referred to as maximally entangled pairs.

Another measure of entanglement derived from the reduced density matrix is the a-Renyi
entropy

log Tr p*
S = —— 25
«(p) 1—a (2.5)

which approaches the von Neumann entropy in the limit &« — 1 (from above) and is identical
to the rank of the reduced density matrix for « = 0.

A different measure of entanglement, not derived from the reduced density matrix, is the
geometric entanglement entropy which quantifies the maximal possible overlap of a given state
with a product state

Ec([¥)) = —log Amax(|¥)) , (26)

where
Amax = m£x| (D|F) | (2.7)

and |®) is a product state.

21t goes without saying that all states obtained by applying a factorizing unitary U ® Uy, to a Bell state are maximally
entangled as well.
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2. Gapped local quantum phases

2.1.2. Entanglement vs. correlation

It is worthwhile to emphasize the difference between entanglement and correlations. Consider
the correlations of local Pauli operators o, (¢ = x,y,z) in a spin system defined as

Cinjp = (¥]0ia0jp

¥) = (Floa [¥) (Flojp[¥) - (2.8)
The product state |0...0) is neither entangled nor correlated. In contrast, the GHZ state
IGHZ) = [00...0) +[11...1) . (2.9)

(named after Greenberger, Horne and Zeilinger) is strongly correlated with respect to mea-
surements in the z-basis and its entanglement entropy S 4 is given by log 2 for any connected
region A. While for the last two examples entanglement and correlations coincide, we mention
that for the ground states of the toric code (discussed in detail in Secs. 3.1 and 3.2.4) each
spin shares a finite amount of entanglement with its environment, i.e., p| 4—; = log2, butall
spin correlations vanish identically C;, ;s = 0 for all i, , a, B3. As a conclusion, we note that
entanglement and correlations can occur independently and are in general different quantities
describing different physical properties.

2.1.3. Arealaw

The scaling of the (von Neumann) entanglement entropy S(p4) with the size of the subsystem
A is a characteristic property of a quantum phase. While in principle the rank of the reduced
density matrix could grow exponentially with the number of degrees of freedom covered by
the region A and thus the entanglement entropy could grow proportional to the volume of
A, there are many known cases where it grows only proportional to the boundary of A. Such
a scaling is called the area law [124]. The area law is rigorously proven for unique ground
states of one dimensional gapped local Hamiltonians [125], where it implies the efficient
representability of the state by matrix product states introduced in Section 2.3.2 [102] as well as
for gapped free (non-interacting, quadratic) fermionic and bosonic systems [124]. The area law
is conjectured to hold also for ground states of higher dimensional gapped local Hamiltonians.
While this conjecture is still unproven in general, it is known to hold for important subclasses
of gapped local Hamiltonians in two dimensions. In particular it holds for all states that can
be represented by a certain type of tensor network state — a projected entangled pair state (cf.
Sec. 2.3.3) as shown in Section 2.3.4. The latter include non-chiral topological ordered* and
symmetry breaking states.

An interesting property of the area law is that if it holds for a ground state of some gapped
Hamiltonian, it holds for all ground states of Hamiltonians within the same phase [127, 128].
Thus, it is a property of a phase rather than a property of a single state.

The area law is often invoked to justify the efficient representability of ground states of
gapped local Hamiltonians with tensor network states. While it is true, that tensor network
states feature an entanglement area law by construction (cf. Section 2.3.4), the converse is not
true. It was shown that the area law alone is not sufficient to guarantee that a state can be
efficiently represented as a tensor network state [129]. However, this does not contradict the
intuition that gapped ground states are efficiently representable with tensor network states per

3The calculation of the entanglement entropy can be found in Refs. [122, 123].
“For topologically ordered states the area law holds up to a topological correction [126] to be discussed in more detail
in the Section 3.2.4.

12



2.2. Definition and classification

se, since there are indications® that being the ground state of a gapped local Hamiltonian is a
much stronger condition than simply fulfilling an area law. Thus, it might very well be that
states that fulfill an area law and are the ground states of local gapped Hamiltonians are indeed
efficiently representable by tensor network states. However, this is an open problem as of today
[133].

2.2. Definition and classification

Acquainted with entanglement as a general concept we now return to the definition of gapped
local quantum phases closely following Refs. [30] and [111]. As we consider discrete systems
such as spins or fermions on a lattice (or graph) and all finite systems have discrete energy levels,
it is only sensible to define a gap as the energy difference between ground and excited states
in the limit of an infinite system size — the so-called thermodynamic limit. In order to define a
thermodynamic limit we need to specify a sequence of Hamiltonians for growing systems sizes.
To construct such a sequence it is most natural to assume that the Hamiltonian is fully translation
invariant. However, translation invariance alone does not guarantee that the thermodynamic
limit is well defined. In contrast, there might be systems which show an alternating behavior for
example in the number of ground states depending on the number of sites being even or odd.
For most practical purposes one can easily detect and exclude such problematic cases, however,
a more careful approach presented in Ref. [111] is to adapt the definition of a quantum phase
and restrict to systems with a sufficient amount of homogeneity referred to as gapped quantum
liquid. For the latter the ground states of Hamiltonians of increasing system size are related
by a generalized local unitary circuit (introduced below) which prohibits that drastic changes
occur between systems of different size.

To define phase transitions between gapped quantum liquids we invoke the phenomeno-
logical definition of a phase transition. Suppose there is a family of Hamiltonians (defined
for all system sizes) which depends on a parameter g, e.g., a magnetic field strength or an
interaction strength. A phase transition is characterized by the existence of a point g. for which
the expectation value of some observable has a singularity. The concept of adiabatic evolution
states that for two local gapped Hamiltonians Hy and H; connected by a smooth path H,
g € [0,1] a phase transition can only occur, if the Hamiltonian Hy is not gapped or not local at
some point g. along the path [30]. Thus, two Hamiltonians are said to be in the same phase, if
there exists a smooth path of local gapped Hamiltonians connecting the two.

Since the definition is tailored to gapped Hamiltonians it is reasonable to introduce a notion
of a quantum phase not on the level of Hamiltonians but on the level of their ground states.
We first consider the case where the ground states are unique. If there exists a gapped local
Hamiltonian path H(g),g¢ € [0,1] and |®(0)), |®(1)) are the unique ground states of H(0)
and H(1), respectively, we say that the two states |®(0)) and |®(1)) are in the same phase. If
the ground state space for H(0) is degenerate, we say that two ground state spaces £(0) and
£(1) are in the same phase, if their dimensionality is the same and there is a Hamiltonian path
connecting H(0) and H(1). The existence of a Hamiltonian path is equivalent to the existence
of a finite local unitary time evolution [30] transforming |®(0)) into |®(1)) as

(1)) = Tle 1 h 988@)] |@(0)) (2.10)

5For example while contracting general PEPS is in the complexity class #P [130, 131], PEPS that are ground states
of local Hamiltonians can be contracted efficiently [132]. Also, gapped local ground states fulfill a clustering of
correlations that is not true for area law states in general [129].
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2. Gapped local quantum phases

where 7 is the time ordering operator and H(g) is a local Hamiltonian. A finite local unitary
time evolution can be approximated by a finite depth local unitary quantum circuit (essentially
via writing the time evolution as a sequence of small Trotter steps). A local unitary circuit
of depth M is defined as an operator Uy; = [[,, U™ composed of M layers of piece wise
local unitary operators U(™). A piece wise local unitary operator is a product of local unitary

operators supported on different non-overlapping sites, i.e., U™ = [T; Ui(m). A finite depth
local unitary quantum circuit is defined as a circuit that does not scale with the system size.
Thus, we conclude that two (sequences of) states |®@n(0)) and |®n(1)) are in the same phase
if there exists a constant depth M and a (sequences of) circuits Uy, y such that

[@n(1)) = UpmN [Pn(0)) , (2.11)

for all system sizes N (larger than some finite value N¢). Note, that a local unitary operator
acting on a finite number of spins can always be decomposed into a finite depth circuit of piece
wise local unitary two-qubit gates (i.e., unitary operators acting on two spins), and thus it
suffices to consider circuits composed out of two-local operators. The essential effect of a two-
qubit gate (apart from changing the local basis of the individual spins) is that it can entangle or
disentangle two spins. For example by performing a controlled-not (CNOT) gate we can rotate
the product state |+) |0) to a maximally entangled Bell state |0) |0) + |1) |1). Thus, the depth
of the local unitary quantum circuit is a measure of the maximal amount of entanglement that
can be added or removed.

If by the application of a quantum gate a single spin is completely disentangled from all other
spins, we can safely remove it from the system without affecting any other spins. Likewise,
the definition of a quantum phase should be robust against adding unentangled spins to a
given state. This motivates the introduction of generalized local unitary circuits instead of
local unitary circuits, where the unitary operators are replaced by local partial isometries, i.e.,
operators W that are not full rank, but unitary on the support space of the state |¥) to which
the circuit is applied (WW |¥) = |¥)). A partial isometry is nothing but a unitary rotation
of the multi-qubit state to a basis in which some degrees of freedom are disentangled from
the rest followed by omitting the now disentangled degrees of freedom. With this notion of
generalized local unitary circuits we are able to apply the definition of a quantum phase to
states whose local degrees of freedom are not of the same dimension.

2.2.1. Short-range vs. long-range entangled states

According to the definition given above all product states are in the same phase as they can be
deformed into each other by a single layer of on-site generalized local unitary operations. Thus,
one might ask whether there exist states that are not in the product state phase, i.e., that can not
be transformed to a product state with a constant depth generalized local unitary circuit. The
latter are termed long-range entangled (LRE) states while states in the product state phase are
called short-ranged entangled (SRE). Note, that all SRE phases of matter collapse to one phase
according to the above definition and only long-range entangled phases of matter can be further
classified.

Intuitively SRE states are states where entanglement is only shared locally. On the contrary
LRE states share entanglement globally and thus need global operations (scaling with the
system size) to be disentangled. One can easily write down states that are short-range entangled
by starting from a product state and applying a finite layer of unitary gates to it. Examples of
long-range entangled states are less obvious to construct. A prominent example for an LRE
state is the GHZ state defined in Eq. (2.9). One can proof using Lieb-Robinson bounds [134]
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that it can not be transformed to a product state. An intuition for this fact can be obtained if we
try to disentangle spins by applying CNOT gates. While it is easy to disentangle one spin at a
time (i.e., using a circuit that scales with N), it is not possible to parallelize the disentangling
operations. Applying a layer of CNOT gates on pairs of sites reduces the state to a GHZ state
on every second site, but than disentangling the latter requires the application of gates which
are 3-local or equivalently a layer of 2-local gates. Iterating this procedure we see that the depth
of the circuit inevitably scales with the system size.
Just as the GHZ state can not be transformed to a product state different GHZ states

|GHZ), = i o, o, ..., ) (2.12)

a=1

distinguished by the number D of uniform states in the superposition belong to different phases
and can not be transformed into each other. We will come back to this point once we have
introduced tensor network states in Section 2.4.

In the following we will be concerned with the question whether there exist additional LRE
states that are not of GHZ-type. The answer to this question depends on the dimensionality
of the system and on the underlying degrees of freedom (bosons vs fermions). While for
one dimensional gapped local Hamiltonian systems one can show that all LRE states are of
GHZ-type, the situation gets more interesting for fermions in one dimensions [67, 68] or for
higher dimensions in both fermionic and bosonic system[20]. LRE states that are not of GHZ
type include the family of topologically ordered states. Those feature patterns of entanglement
that is more complex than that of GHZ states and intricately linked to topological properties.
We will discuss topological order and its entanglement structure in great detail in the following
Sections.

Let us spent a few words on “GHZ phases” and consider the transversal field Ising model

Hrp =Y —hoyj— 020211 (2.13)
j

as an example for a Hamiltonian with GHZ type ground states. For a finite system in the phase
J > h, the ground state is given by an adiabatic continuation of the GHZ state. However, in
the infinite system size limit the ground state space becomes two-fold degenerate as the (adia-
batic continuation) of the GHZ state [00...0) — |11...1) becomes arbitrarily close in energy.
However, this ground state space degeneracy is unstable with respect to arbitrarily small local
perturbations that break the Z,-symmetry, i.e., that do not commute with []; o, ;. Motivated by
this example we interpret “GHZ phases” (i.e., the Hamiltonians with GHZ type ground states)
as symmetry breaking phases where the number of states in the superposition corresponds
to the number of symmetry breaking ground states of the corresponding Hamiltonian and is
given by the size of the symmetry group. This perspective is further emphasized and explored
in the classification of one-dimensional gapped local Hamiltonians in terms of matrix product
states, discussed in Section 2.4 below.

In contrast to symmetry breaking phases, the ground state degeneracy of Hamiltonians
with LRE ground states that are not of GHZ type, i.e., topologically ordered states, is robust
against arbitrary local perturbations. This remarkable feature will be emphasized repeatedly
throughout this text. We note, that this implies that topologically ordered states are in a sense
more entangled than GHZ states. This statement can be made more precise by introducing the
concept of local stochastic quantum circuits LSCs as presented in Ref. [111], where the unitarity
of the circuit is relaxed and one finds that GHZ states can be transformed into product states
via LSCs while topologically ordered states can not.
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2. Gapped local quantum phases

1 1

(a) Tensors: a scalar, a vector, a matrix, a rank-4 tensor.

(b) Contracted tensors: matrix-vector multiplication, matrix multiplication, matrix trace.

Fig. 2.1. + Examples of (a) tensors and (b) tensor contractions in Penrose notation.

As it was hinted at already in the context of symmetry breaking phases, symmetries of the
Hamiltonian can stabilize certain ground state degeneracies. Thus, if one restricts the space
of all possible Hamiltonians H(g) (or equivalently the allowed generalized unitary circuits)
to those respecting certain symmetries, the phase classification is significantly refined. As
certain connecting paths are now ruled out Hamiltonians that were connected previously now
belong to different phases. Interestingly, the classification obtained with respect to certain
symmetries (e.g. finite groups represented by global projective or linear representations)
contains additional phases on top of the different symmetry breaking phases. Those symmetric
phases exhibit features of topological order as long as their protecting symmetry is preserved
and are therefore called symmetry protected topological ordered (SPT) phases. We will briefly
address SPT phases in one dimension in Section 2.4.4.

2.3. Tensor network states

We have seen in the previous Section that entanglement plays a key role in the classification
of gapped quantum phases and that the classification can be carried out on the level of states
instead of Hamiltonians. A particular class of states that capture the entanglement structure
of a quantum state in a concise and transparent fashion are tensor network states [57, 58, 135]
introduced and discussed in the following Section.

A system of N local d-level systems with local Hilbert space basis |i) ,i = 1,...,d is generically
described by a many-body wave function

|1F> = 2 Ciliz---il\l il/ iz, ‘e riN> ’ (214)

01,02,/ IN

i.e., by specifying all dN coefficients in the many body basis. A tensor network state is a state
for which those coefficients are given by a tensor network. That is, ¢; _;, is computed by
contracting several tensors® arranged in a specific network that often resembles the structure
of the underlying lattice. We will see momentarily that tensor network states can be used to
parameterize states according to the amount of entanglement in the system. Before we so we
introduce a convenient and widely used pictorial notation.
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2.3. Tensor network states

2.3.1. Penrose notation

A rank-r tensor is depicted as a box with r legs corresponding to the indices of the tensor (cf.
Fig. 2.1a). Joining the index lines of two tensors denotes a contraction of the two indices, i.e.,
they are summed over (cf. Fig. 2.1b). Indices that are not contracted (not joined) are called
open indices. This notation is most easily understood by considering the examples given in
Fig. 2.1.

It is convenient to introduce additional less-standard notation for certain special cases and
special tensors summarized in Fig. 2.2. First, we use the convention that index lines can go
through boxes as shown in Fig. 2.2a to indicate that the tensor is diagonal with respect to the
vector space associated to this index line, i.e., all tensor entries vanish if the indices at the end
of the index going through the box do not assume the same value. A particularly simple and
important tensor is the delta tensor given by the Kronecker-é defined for an arbitrary number of
indices a,b,...,n

1 a=b=...=n
Oy = ! 2.15
ab... { 0 otherwise. ( )

We will denote the delta tensor by a black filled circle as shown in Fig. 2.2b. The delta-tensor
has the property that contracting several delta tensors yields a single delta tensor.

It will be convenient to represent matrices with respect to a particular block-structure. Let
the row and column index of a matrix be denoted by r and c. We can introduce block-row and
block-column indices, b, and b. and the row and column indices per block 4, = 1,...,b;
and ¢y, . = 1,...,b.. We require that the number of rows in each block only depends on the
block-row index and the number of column in each block only on the block-column index. It is
then possible to represent the row index by the block-row index b, and the row index of the
respective block 75, (analogous for column indices) and use a double index line representation
as in Fig. 2.2c. Since the bond dimension of the row index per block 7;, depends on the block-
index by, we use the convention that the block index is marked by a dashed line and the bond
dimension of index lines parallel to dashed lines depend on the index value of the dashed-line
index. A block-diagonal matrix can then be conveniently represented by a a dashed line going
through the matrix-box or by using the block-index as a third index that is forwarded to row
and column index lines by a delta tensor as in Fig. 2.2d. This notation will simplify calculations
with block diagonal matrices.

Aside: faithful diagrams and complex conjugation

Many abstract calculations as e.g., the calculation of the entanglement entropy performed
later in Section 2.3.4 can be performed in Penrose notation without ever specifying the tensors
explicitly. However, if one wants to eventually relate the diagrams to explicit tensors one has
to be careful that the pictograms contain all the information needed to do so. The rest of this
Section deals with and resolves this issue. It is slightly technical and not essential for the
understanding the rest of this Chapter.

The third pictogram in the top panel of Fig. 2.1 is invariant under rotation by 180°. Thus, if
we want to identify it with a matrix A, there is an ambiguity which index represents the row
and which one the column index. This implies that the given pictogram can only specify a
symmetric matrix. To see this, assume the top index line in the pictogram corresponds to the
row index. After a 180° rotation, top and bottom index lines are interchanged, but the diagram

®In this context a tensor is nothing but a data structure, i.e., a rank r-tensor is an r-dimensional array used to store
complex numbers and it is not required to have any transformation properties.
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b b

(a) A diagonal tensor (b) A é-tensor
— — L L — 1
¢) A matrix partitioned into blocks d) A block-diagonal matrix
P g

Fig. 2.2. + (a) A tensor “diagonal” in the horizontal index line, i.e., A, = 2,504 (N0 summation conven-
tion). (b) An instance of the delta tensor J,;,, defined in Eq. (2.15). (c) A block matrix with square blocks
on the diagonal. (d) A block-diagonal matrix.

is still the same. Thus the matrix has to be the same when permuting the row and column index
Ajj = Aji. To represent non-symmetric matrices we thus need pictograms that are not invariant
under rotation. For general higher rank tensors we need a way to know which index line
represents which index in the sequence A;j. . If the tensor is embedded in a two-dimensional
plane, this can be done by specifying which index line corresponds to the first index (e.g. by
highlighting the point where the index line leaves the box) and using the convention that the
second, third, etc, index corresponds to the index line that comes next when traversing the
boundary of the box in clockwise or counter clockwise direction. Which of the two directions
should be used is irrelevant for matrices and we could fix it by convention. However, it turns out
that it is more sensible to decorate boxes with their individual clockwise or counter clockwise
orientation and read off the mapping between index line and index position depending on the
given direction.

As we work with tensors whose entries are complex numbers, the pictorial notation intro-
duced so far is inconvenient, because we do not know how to represent complex conjugation
pictorially. However, we would like to define Hermitian conjugation and check whether a given
matrix is Hermitian or not on the level of diagrams. Since complex conjugation is an operation
meaningfully defined already on the level of scalars, it makes sense to introduce its pictorial
implementation as an operation defined on a box and not on the index lines. By definition this
operation should be involutive. We thus need to add a decoration to the box which can be
“flipped” to go back and forth between the complex numbers z and z. Clearly, this decoration
needs to be an unambiguous signifier for any rotated version of the diagram, since we do not
want to force ourselves to specify a preferred direction on the sheet of paper that we draw on.
A natural candidate for such a decoration is a handedness. For diagrams embedded in the
two-dimensional plane, this can be represented by decorating the boundary of the boxes with
a clockwise or anticlockwise orientation. Then complex conjugation is defined as flipping the
handedness, i.e., inverting the orientation.

We can now check whether a matrix is Hermitian by permuting its row and column index
(transposition) achieved by a 180° rotation and inverting the orientation of box boundary.
Combining these operations we realize that this is nothing but a mirror reflection of the diagram.
The convention chosen above, i.e., complex conjugation changes the way that index lines and
index positions are identified allows us to define Hermitian conjugation as a reflection also
for matrices that are given by contracted tensor networks embedded in the two-dimensional
plane. To see this consider a diagram where all indices are labeled and the indices i and j
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are (a collection of) open indices that are permuted during Hermitian conjugation. If we
perform a reflection on that labeled diagram, the algebraic expression f(i, ) changes by a
complex conjugation f(i,j) and the indices i and j are inverted with respect to the position
of the original diagram. If we now want to compare the two matrices corresponding to the
original and reflected diagram, we need to relabel the open index lines, i.e., f(i,j) — f(j,1)
and we identify the reflected tensor (network) with the Hermitian conjugate of the original.
We emphasize, that defining Hermitian conjugation as a reflection would not be consistently
defined, if complex conjugation did not invert the “read-off”-direction of the index positions’.
While these consideration may seem technical, they have relevant implications. For example if
we want to represent Hamiltonians as tensor networks, we need to ensure their Hermiticity. In
practical terms that means, we need to check that their diagrams are invariant under reflections.
In most applications considered in this Thesis, pictorial notation only serves as an illustration
and we will not use the somewhat stricter notational conventions explained here.

2.3.2. Matrix product states

We consider tensor network states where the tensor network is aligned with an underlying
physical lattice (cf. Fig. 2.3). For a physical system defined on a lattice with d-level systems
located at the sites j = 1,..., N, a tensor AU is placed at every physical site. Each tensor has
one open physical index i; of dimension d and is connected by virtual indices of a chosen bond
dimension D along the edges of the physical lattice to all its neighbors. Fig. 2.3 shows two
examples of such a construction for a regular one-dimensional and two-dimensional lattice.

The coefficients c;, . ;, of the tensor network state are calculated by contracting the tensor
network. While the algebraic expression becomes cumbersome to write down for higher
dimensions, in one dimension we can state it explicitly as

Y A ARE AN AR A@ AN (2.16)

01,4++/UN-1

Cijiny —

i.e., a product of matrices and hence the tensor network state is called matrix product state (MPS).

In Eq. (2.16) a row and a column vector A1) and A(N) are placed at the first and last sites,
respectively. This is a natural choice for a system with open boundary conditions. It is also
common to use only matrices and take the trace to contract the first and the last virtual index —
a natural ansatz for periodic boundary conditions.

A particular example for an MPS is the é-tensor MPS, where the tensor ‘Séh with bond
dimension D is chosen for every A-tensor. This MPS represents the GHZ state |GHZ) , defined
in Eq. (2.12) and shown in Fig. 2.4. Both delta-tensor and the GHZ state take on an important
role in the classification of one-dimensional gapped local phases as discussed in Section 2.4.

In the following we provide an intuitive understanding of MPS, while a rigorous mathematical
analysis is given in Section 2.4. Consider a translation invariant MPS for the sake of notational
simplicity, i.e., Al) = 4, j =1,...,N. The diagrammatic structure of the MPS shows that
each physical spin is connected to its neighbor by an index with bond dimension D. The bond
dimension D limits the amount of information that can be transmitted from one site to the next
site. Le., if D = 1 the matrices A’ reduce to scalars and the state collapses to a product state
with no entanglement shared between sites. This factorization is visualized by the pictorial

7 An alternative approach to represent complex numbers is to use the so-called complex-number tensors as defined in
Ref. [3]. In this approach real parts and imaginary parts of a tensor are treated separately and auxiliary tensors
with oriented index lines are included to mediate the multiplication of complex numbers occurring during tensor
network contractions. In this formalism, it is also obvious that reflections of two-dimensional diagrams can be
identified with Hermitian conjugation.
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(a) MPS
Fig. 2.3. + Tensor network states where the tensor network is aligned with an underlying physical lattice.

(a) A matrix product state (MPS) as in Eq. (2.16) (cf. Section 2.3.2) on a one-dimensional regular lattice.
(b) A projected entangled pair state (PEPS), cf. Section 2.3.3, on a two-dimensional regular lattice.

S G W W W W

Fig. 2.4. + A GHZ state written as an MPS using delta-tensors.

notation showing N unconnected boxes. To see how information can be transferred in MPS
with D > 1 let us consider as an example a spin-chain with local basis |0) , [1). With D = 2 we
can design an MPS where a spin on site j dictates the state of the spin on site j + 1. E.g, if we
want to enforce an alternating spin pattern, we can choose AJ; = A}, = 1 and all other entries
equal to zero. With this choice of matrices, the left virtual index determines the physical index
and sets the right virtual index to its opposite value. This index is passed on to the next site
where it ensures the orthogonality of the spin state to its left neighbor. As a second example
consider the case where D = 22. Here, we can imagine the virtual index as a double index
each with dimension 2. In this case, one index line could be used to communicate the physical
spin value to the nearest neighbor as in the previous example, while the other index line could
fast-forward the spin value directly to the next nearest neighbor. Thus, by increasing the bond
dimension spins are able to communicate directly with spins at larger distances. However, the
doubling of the index lines in the example indicates that to communicate directly with a spin k
sites away, a bond dimension D = d* is required.

MPS as ground states of local gapped Hamiltonians in one dimension

So far, we have introduced tensor network states as abstract tools which can store information
about a wave function and with which calculations can be performed, but we have not yet
related them to Hamiltonians or phases of matter. However, the great strength and justification
of the wide use of MPS lies in the fact that MPS provably describe gapped local systems in one
dimension very well. To explain this statement, first of all note that any state can be written as
an MPS, if one allows for large enough bond dimension. In particular, for a system of size N
choosing D = dN one can immediately write down an MPS given;, ;. . The crucial question is
whether a state can be represented with a bond dimension that does not scale exponentially with
the system size N. For the ground states of one dimensional gapped, local spin Hamiltonians
the answer is affirmative. In fact, the ground state of a gapped local Hamiltonian of system
size N can be approximated by an MPS with a bond dimension that grows sub-linearly with
the system size to an accuracy of O(1/poly(N)) [136]. Moreover, there exists a polynomial
time algorithm (the time needed to compute scales polynomially with the system size) to find
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2.3. Tensor network states

such an MPS, again to an accuracy O(1/poly(N)).8

This approximability statement is very strong as it tells us that there exists an extremely
efficient representation of the ground state. Note, that instead of specifying d™ complex
numbers, the wave function of an MPS is represented by only N x d x D? complex numbers —
an exponential reduction in the amount of storage needed on a computer. In addition, one can
efficiently compute expectation values on MPS by performing matrix multiplications of small
O(D*) matrices. While a sublinear scaling of the bond dimension is beneficial, it is not sufficient
to guarantee that any ground state of a gapped local Hamiltonian can be approximated well
with an MPS of finite bond dimension. However, in practical calculations one often sees that the
bond dimension saturates, i.e., increasing the bond dimension of the ansatz state any further
does not result in an improvement (lowering) of the ground state energy. For the classification
of phases of matter in one-dimensional gapped local systems it is thus a reasonable starting
point to classify all MPS with constant bond dimension. Recent results [102] further support
this line of thought. In Ref. [102] it is shown that MPS can approximate ground states of
gapped local Hamiltonians locally (i.e., on a region of size I) to a given precision € with a bond
dimension that depends on I and ¢, but is constant with respect to the system size.

Parent Hamiltonians

For any MPS there exists a so-called parent Hamiltonian which has the MPS as its ground state.
It is given by the following construction [59, 60]: The reduced density matrix pr of the MPS
defined on a region of suitable size R is supported on the space Sg. Defining the projector hg
projecting onto the complementary space one obtains the parent Hamiltonian as a sum of local

projectors
H=Y hg, ker(hg) = Sk . (2.17)
R

If the MPS is translation invariant, one can show [59, 60] that the parent Hamiltonian is
gapped and frustration-free. We will comment on the ground state degeneracy of the parent
Hamiltonian in more detail in Section 2.4.

2.3.3. Projected entangled pair states

The generalizations of matrix products states for higher-dimensional systems are called pro-
jected entangled pair states (PEPS) [57, 124, 140, 141]. PEPS are often introduced as tensor
network states for spins on a regular lattice where one tensor is located at every physical site
and virtual bonds connect tensors along the edges of the physical lattice (cf. Fig. 2.3). Thus,
MPS are nothing but PEPS in one dimension. While PEPS sometimes also refers to PEPS in
three dimensions, it is mostly used for PEPS in two dimensions. In the context of phases of
matter it is sensible to use a definition for PEPS that takes into account systems of growing size:
A PEPS is a tensor network where — after blocking of a finite number of tensors — the tensor
network consists of one tensor per physical site and the tensor network graph forms a lattice
matching the dimensionality of the physical system. The rank of the tensors are bounded and
the bond dimensions do not increase with the system size.

To understand the meaning of this definition, consider a kind of tensor network state that is
very different from MPS and PEPS in both structure and purpose: The multi-scale entanglement
renormalization ansatz (MERA) for one-dimensional systems is a hierarchical tensor network

8This algorithm is based on approximate ground state projections (AGSP) [137] and the MPS structure of the ground
state. It is more rigorous and less heuristic than the more widely used density-matrix renormalization group
(DMRG) method [138, 139] and thus also called RRG (rigorous renormalization group algorithm).
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2. Gapped local quantum phases

e

(a) MERA in one dimension. (b) Isometries and disentanglers.

Fig. 2.5. + A one-dimensional MERA state composed of isometries (blue) and disentanglers (red).
OO = (0 O0—0

Fig. 2.6. + A one-dimensional PEPS (MPS) written as a “projected entangled pair state”.

state consisting of log, N layers of virtual tensors and only the outermost (bottom) layer has
open indices describing the physical state (cf. Fig. 2.5). One dimensional MERAs have been
developed to efficiently describe critical (i.e., gapless) systems and are as such clearly distinct
from MPS that describe ground states of gapped Hamiltonians. By inspection of the MERA
network we note that the number of tensors used to describe N spins is still proportional to
N (i.e., 2N — 1), but we can not distribute and block the tensor network in such a way that
we obtain an MPS with a size-independent bond dimension [142]. A simple intuition for this
can be gained by considering the effective bond dimension between one half of the chain and
the other. Counting the number of crossed bonds we roughly estimate it as x'°82N, where x
is the bond dimension of the MERA tensors. To represent such a state by an MPS the bond
dimension D of the MPS needs to increase with the system size and can not remain constant.
Thus, the definition above is designed to distinguish a “MERA in disguise” from a true MPS.

The name projected entangled pair state can be understood by a reinterpretation of the tensor
network. To this end, consider a D = 2 PEPS’ on a regular lattice of N sites and k edges per
site. Place two virtual qubits at each virtual index line and maximally entangle them, such that
they are in a Bell state as given in Eq. (2.4). Now apply operators AU) : Ck - C,j=1,...,N

AW =1y ADE L (ar, 0y, ] (2.18)

to each site, i.e., the operator A acts on k virtual qubits located at the site j. The emerging state

¥y =TT AY T [Bel), (2.19)

j€Esites ecedges

is a projected entangled pair state. This can be easily seen if we disregard the bra-ket-structures
(Choi-Jamilkowsi isomorphism) and note that |Bell) ~ |0) (0| + |1) (1| ~ 1. Fig. 2.6 shows
the construction above for a one-dimensional PEPS, i.e., an MPS in Penrose notation.

°For D > 2 qubits have to be replaced by qu-D-dits, but the construction is completely analogous.
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2.3. Tensor network states

PEPS as ground states of gapped local Hamiltonians in two dimensions

Similar as in the case of MPS and one-dimensional gapped local Hamiltonians, one can show
that PEPS approximate ground states of local gapped two-dimensional Hamiltonians, although
the statement is severely weaker [133, 143]. Under the assumption that the density of states
grows at most polynomially with the system size one can prove that a PEPS approximates the
ground state to accuracy O(polyN) with a bond dimension that scales subexponentially, i.e.,

D < ¢OUog’ N) Whether this scaling can be improved to polynomial scaling is an open question
[133].

Another difficulty of two-dimensional PEPS is that calculating local observables requires
the contraction of the tensor network just as in the case of MPS. While the contraction of an
MPS boils down to several matrix multiplications and is thus both efficient in theory and
practice, contracting a PEPS is more difficult. It is known that contracting PEPS is in the
complexity class #P. However, this theorem does not apply to the contraction performed for
the calculations of local observables of local gapped ground states given by a PEPS [132].
Nevertheless, the practical implementation is still difficult and requires heuristic truncation
techniques. To see this, note, that when a L x L PEPS grid is contracted column by column,
one obtains a row of matrices with bond dimension D' and thus a naive contraction approach
scales exponentially with the system size. State of the art algorithms use physically motivated
partial contractions that are then subjected to a singular value decompositions and only the
matrix entries corresponding to the highest singular values are kept (truncation), such that
an exponential blow up of the bond dimension of the partially contracted tensor network is
avoided [58, 144, 145].

Variational numerical algorithms similar to DMRG for ground state searches using PEPS
as ansatz states exist [144, 146-148] and are still evolving rapidly [149-151]. Compared to
the “rival algorithms” — so-called Monte Carlo methods based on random sampling — PEPS
algorithms do not suffer from the so-called sign problem [152, 153] which hinders the usage of
Monte Carlo methods for frustrated spin and fermionic systems. In these cases PEPS based
algorithms are often claimed to be superior [154-156].

Parent Hamiltonians. — The parent Hamiltonian construction for MPS can be adapted to PEPS
in a straightforward fashion. Eq. (2.17) still applies. However, an important difference to the
MPS setting is, that the Hamiltonian obtained by this construction can be gapless [62, 157].
Conditions under which the parent Hamiltonian is gapped are discussed in more detail in
Section 3.2.3 and Section 5.2.2.

Exact fix point PEPS. — While the general representability of ground states of local gapped
Hamiltonians in two-dimensional with PEPS is still debated [158], it is clear that a large class
of fix-point models (i.e., models with zero correlation length) have exact PEPS representations.
In particular, a large class of quantum phases with topological order have exact PEPS ground
states. Formulating the last statement more strongly, there is no phase of matter known that
has a particular kind of topological order, namely non-chiral topological order, which does not
have a fixed-point Hamiltonian with an exact PEPS ground state. This indicates that there is a
rather deep connection between PEPS and non-chiral topological order. This connection will
be the subject of Chapter 5.

2.3.4. Entanglement area law for tensor network states

We have claimed that tensor network states exhibit the entanglement structure of a state very
clearly. To convince ourselves of this fact and to get familiar with the way in which calculations
for tensor network states are performed on a diagrammatic level, we compute the area law
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2. Gapped local quantum phases

Fig. 2.7. + The reduced density matrix pc as described in the text in Penrose notation. The matrices Cy, C,
and R marked in green, orange and blue, respectively. Virtual bonds crossing the region C marked in red.

scaling of the von Neumann entanglement entropy (cf. Section 2.1.3) in PEPS. Consider a
connected convex region C of a PEPS depicted in Fig. 2.3 for the one-dimensional case. The
boundary of C is denoted by dC and the size of a region (denoted by |C|) is measured by the
number of local degrees of freedom contained inC. The reduced density matrix pc can be
expressed conveniently in Penrose notation. To this end, we write |¥) and (¥| in pictorial
notation. The trace over the complement of C corresponds to connecting the open indices of
the ket state in the complement of C with their bra-counterparts.

By inspection of the diagram (shown for a one-dimensional lattice in Fig. 2.7) we realize that
the reduced density matrix can be decomposed into a product of matrices pc = C1RC,. Here
C; corresponds to the C-region of the ket-state and is a d/°! x DI?Cl-matrix and C, represents
the C-region of the bra-state is a DI°Cl x d/Cl-matrix. Finally, the matrix R represents the rest of
the reduced density matrix and its dimension is given by the number of bonds that cross the
boundary of C, i.e., DI%C! x DI?Cl. As the rank of a matrix product is bounded by the smallest
dimension occurring in the multiplication, we conclude that for a sufficiently large region the
rank is bounded by DI9C|. Tt is then straightforward to calculate that the von Neumann entropy
is bounded by O(|0C|log D), i.e., it scales with the boundary of C and we have verified that
tensor network states with a "physical” lattice structure, i.e., MPS and PEPS, fulfill the area law.

2.4. One dimension - A full classification via matrix product states

Motivated by the findings that MPS approximate ground states of gapped local Hamiltonians
in one dimension very well, a classification of gapped local quantum phases based on MPS
has been developed in the past years [4, 61]. The key insight is that translation invariant
matrix product states with a finite bond dimension can be brought into a block-diagonal
(canonical) form [60]'° such that individual matrices form a finite dimensional C*-algebra
under multiplication and addition.

Using the fact that for each finite dimensional C*-algebra there is a finite group G and a
unitary representation U(g) such that U, commutes with all elements of the C*-algebra, one can
relate the canonical form to virtual symmetries of the individual tensors. The virtual-symmetry
approach can be carried over and extended to the two-dimensional case, where a canonical
form is no longer available. Thus, we review the classification of one-dimensional gapped
local quantum phases via MPS with a two-fold motivation. First, to show the power of tensor
network methods and second to introduce the concepts which are fundamental to the analysis
of non-chiral topological order in PEPS in Chapter 5.

10A more recent and more general irreducible form is presented in Ref. [159].
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2.4. One dimension — A full classification via matrix product states

This Section is a shortened and condensed review of Refs. [4] and [61], which in turn relies
on the seminal work of Refs. [59] and [60].

2.4.1. Overview of the result

The canonical form [60] is obtained by applying a gauge transformation
Al 5 UuAU! (2.20)

at every site j which leaves the state invariant. In this canonical form the matrices A’ are
simultaneously block diagonalized, i.e., all A’ are decomposed into blocks of the same shape
and for each block b of dimensions B;, x By, the matrices A} span the space of all complex
By x B, matrices, i.e., span({Af};) = L(CB).

It directly follows that the A’ span a direct sum of the vector spaces of B,-dimensional linear
operators span({A’};) = @,L(CP) which is a finite dimensional C* algebra. Apart from the
position of the blocks in the decomposition and unitary basis changes within each block, the
canonical form is unique and thus, each translation invariant MPS can be uniquely classified by
its corresponding finite dimensional C*-algebra.

Fundamental theorems of representation theory (in particular Schur’s lemma) relate the C*-
algebra structure to a discrete symmetry group G acting on the virtual level. One distinguishes
between the single-block case, where the symmetry group is trivial, the MPS tensors are
injective and the ground state of the parent Hamiltonian is unique and the general case, called
the G-injective case. Both are reviewed in detail in the next Sections as they can be seen
as the conceptual foundation of the tensor network approach to gapped quantum phases
in general including the higher dimensional cases. The main result is the following. The
number of conjugacy classes of the group G determines the ground state degeneracy of the
parent Hamiltonian and G-injective MPS are LRE states with GHZ-type entanglement. As
a consequence, the existence of topological ordered states in one dimensional gapped spin
systems is ruled out and as long as (physical) symmetries are not taken into account, there are
only trivial and symmetry-breaking phases classified by different ground state degeneracies.

2.4.2. Injective MPS

If the most refined block decomposition of the matrices A’ for a bond dimension D MPS is a
single block of size D x D, the MPS is called injective, as there is a one-to-one correspondence
between the physical and the virtual vector spaces and in particular, there exist an inverse A,
such that

Y AL AL = SacOye (2.21)
i

as visualized in the left panel of Fig. 2.8. The existence of the inverse can be seen as follows.
Consider the space L(CP) as a vector space. A scalar product between the vectors of L(CP)
is defined by Tr(A'B) and linear operators K : L(CP) — L(CP) are given by rank-4 tensors
with two double line input and two double line output indices (each of bond dimension D).
In particular the identity element 1 : A — A acting on vectors in L(CP) is a double line of
identities 1 ~ 1p ® 1p. Since the A’ span a (non orthonormal) basis of L(CP”) a resolution of
the identity can be constructed from them 1 = ¥; |A") (A’| = Yij | A7) bj; (Al| for appropriately
chosen b;; defining the A. In the special case where the basis A’ is orthonormal, the MPS
is called isometric and the resolution of the identity is simply given by 1 = ¥; |A") (A’, i.e.,
Y A;;,Alcd = O4acOpe-
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2. Gapped local quantum phases

SIS

Fig. 2.8. + The inverse of an injective left MPS (left) can be used to disentangle the state to a product state
(right).

Note, that injectivity requires that the physical dimension d exceeds D?. This can be achieved
by blocking matrices on neighboring sites in a region / and treating the [ index lines as a single
index of dimension d’ such that d’ > D. Generically, i.e., if the A’ are chosen randomly and do
not posses additional structure, the blocked matrices on regions of size | will be injective.

Once injectivity is reached, it is stable under blocking, i.e., if A’ is injective also A’A/ is
injective.

Parent Hamiltonian

The parent Hamiltonian for injective MPS has a unique ground state which is shown in the
following. It is constructed as defined in Eq. (2.17) and it suffices to choose two neighboring
sites as the region R. The support space of the reduced density matrix can be spelled out
explicitly and is given by

Sy = span{Tr(A'A/R) |if) }r,ij , (2.22)

where R € L(CP). The parent Hamiltonian of an injective MPS can then be constructed from
local projectors onto the 2-site support space I, by projecting onto the orthogonal compliment
on every pair of sites, i.e.,
H=) h, (2.23)
1

where
hi=1-— ng(i,i +1) (2.24)

and we assume periodic boundary conditions (i.e., i ~ i+ L). It is crucial to check that
the Hamiltonain constructed this way is gapped. A proof of the gap property for parent
Hamiltonians of general MPS is provided in Ref. [60]. Here, we will only show that the
Hamiltonian in Eq. (2.23) is frustration free and has a unique ground state given by the MPS.
To see this, note that it is a sum of local projectors and thus, there are two cases. Either the
intersection of all local ground states S, on different pairs of sites vanishes. In this case, the
Hamiltonian is frustrated, because not all local constraints can be fulfilled simultaneously. Or
the intersection of all &; is the ground state space. We will show, that the latter is the case.

To see this, we first consider the Hamiltonian on an open chain of length L and convince
ourselves, that the intersection of all S, is equal to Sy, i.e., the physical state space spanned by
an MPS of length L with open boundary conditions. This is done by noting that

C'8_1NS1®C =8, (2.25)

and applying this identity inductively to S;. Eq. (2.25) can be proven by writing any element
in Sy_; ® C as a three site MPS o
Tr[A'B/NF] |ijk) (2.26)

where the first site corresponds to the first physical site,the second site corresponds to sites
2,...,k —1blocked together, i.e.,, B/ = A™2... A%-1 and the third site corresponds to the k-th
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2.4. One dimension — A full classification via matrix product states

Fig. 2.9. + Closure for injective MPS. Any tensor N for which there exists M, such that [¥)y =
Y Tr[A'BIN] |ij) = L Tr[A'MB/]|ij) = [¥)) is proportional to the identity in the case that A" and
B! are injective.

physical site, where an appropriate tensor N has been placed. The representation of C? ® Sy_4
is done analogously and the intersection is calculated by using that

(Y Te[ABIN |ijk) ym N { Y Te[M'B AR Jiji) by = { ) Te[A'BIARX] fijk) bk, (2.27)
ijk ijk ijk

which can be proven diagrammatically by using the inverse of A and B. Thus, we know that
the ground state space on an open chain is not empty. It is given by S;, which contains the
MPS of length L with open boundary conditions.

The interesting point is the closing of the chain. Here, the analysis of injective MPS deviates
from the non-injective case. The ground state space on a closed chain can be calculated by
the intersection space of two “overlapping” chains. To see this, we split the Hamiltonian in
Eq. (2.23) according to H = H; + Hr where H}, does not contain I'lg,(1,2) and Hg does not
contain I'Tg, (L, 1). The ground state space of H is then given by the intersection of the ground
state spaces of Hy and Hg. The latter can be represented as open-chain MPS with closure
tensors between sites L and site 1 or sites 1 and 2 respectively, i.e.,

St dosed = {Y_ Tt[ATB2-LN] iy ...ip )}y N Y Te[ATMB2-L] iy .. .ip) b - (2.28)
{i} {i}

The intersection of the two spaces parametrized by the two MPS does only contain the MPS
with trivial closure tensor M = N = Al in the injective case, i.e., Sp josed iS One-dimensional
and

SLclosed 2 Y Tr[ATA2 AL [iy...ip) . (2.29)

{i}

It is the closure property which changes in the non-injective case and opens up the possibility
for grounds state degeneracies. The proof of the closure property in the injective case proceeds
in two parts. First, the one-dimensional space given by N = M = 1 is trivially contained in the
intersection. Second, if there is an M-tensor for which one can find an N-tensor such that the
state determined by N is equal to the state given by M (i.e., the state is in the intersection), one
can show, that the tensor M is proportional to the identity (cf. Fig. 2.9).

For isometric MPS the parent Hamiltonian can be easily constructed from the matrices A'.
Consider the operator I1s, defined in Fig. 2.10. One easily checks using the isometry property
that it leaves the MPS invariant when applied to any two adjacentssites, i.e., I1s, [MPS) = |[MPS).
Using manipulations on diagrams it is also not difficult to check that I'Is, is a projector and
that two I'ls, acting on overlapping sites commute. Thus, the Hamiltonian defined in Eq. (2.23)
with h; defined as in Eq. (2.24) and I, defined in Fig. 2.10 is a mutually commuting projector
Hamiltonian that has [MPS) as ground state with zero energy. To show that it is the unique
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2. Gapped local quantum phases

Fig. 2.10. + The projector I1s, onto the support space of 2-sites for an isometric MPS.

ground state, first note that I is a rank-D? projector by calculating its trace again in pictorial

notation. In addition, the 2-qubit space spanned by {|i) |j) Al, Ai < Jac, i.e., spanned by two MPS
matrices with open virtual indices is also D? dimensional. Thus, there is no other local space
that survives the projection I'ls, and thus [MPS) is the unique ground state.

All isometric MPS are in the same phase since they can be deformed into a product state by
applying A" on every site as demonstrated in Fig. 2.8 (right). This result can be extended to
show that all injective MPS are in the same phase [61] by using the fact that every matrix can
be decomposed into a positive matrix Q and an isometric matrix W'!. The positive part can
then be smoothly tuned to zero. To be more precise, one considers the parent Hamiltonians
of the MPS with matrices A = QW and its isometric cousin A = W. One can then define an
adiabatic path of local gapped Hamiltonians interpolating smoothly between Q = Q4 and

Q=1

2.4.3. G-injective MPS

The case where the matrices A’ can be decomposed into a non-trivial block structure is more
interesting. Insights from the representation theory of finite groups yield a connection between
the block structure and a symmetry on the virtual space. To see this, we start with rearranging
the block structure of

D =span({A'};) = L(C). (2.30)
b

If there are several blocks with the same dimension 1, we can permute the blocks by a unitary
transformation acting on the virtual indices'? such that some of them, say d, occur next to each
other in the block decomposition. This can be represented as 1; ® L(C™). We now permute
the blocks such that d; blocks of dimension m; occur next to each other and perform a direct

sum over i to arrive at
I

D=P1,;, @L(C™) . (2.31)
i=1

It is clear that we can write D in this form for appropriately chosen d; and m;, however, it is
not yet clear what the meaning of d; and m; is. This becomes clear, if we recall Schur’s lemma
from representation theory as stated for the simple case of finite groups: Consider a irreducible
representation p, of a finite group G with elements ¢ € G of dimension d. If a non-zero element

of L(C%) commutes with all pg, it has to be proportional to the identity.
On the other hand we know that every unitary representation of a finite group U, can be
decomposed by unitary transformations into a direct sum of irreducible representations, where

1 This decomposition is called polar decomposition by comparison with the usage of polar coordinates of complex
numbers to which it reduces in the case of one dimensional matrices.

12These so-called gauge transformations do not affect the physical state and are a standard tool for calculations with
tensor networks.
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[ st E

(a) G-injectivity (block representation) (b) G-symmetry (¢) G-injectivity

Il
L |

Fig. 2.11. + G-injective MPS. (a) restricted injectivity in the space of block-diagonal matrices. (b) G-
symmetry and (c) G-injectivity as defined in Eqs. (2.33) and (2.35), respectively. Note, that the normal-
ization factor 1/|G]| is not represented in the diagram on the right in (c).

the same irreducible representation can appear several times (multiplicity). We can thus write
a unitary representation of a group U as a direct sum of irreducible representations p; with
dimension d; and multiplicity m; as

I
Uy = Ppi(8) @ L, - (2.32)
i=1

If an element of L(CP) commutes with all Uy given in the form of Eq. (2.32) it thus follows by
Schur’s lemma that it must be an element of D as given in Eq. (2.31). Thus, we have established
a relation between a unitary representation Uy of a symmetry group G and the C*-algebra D.
Conversely, given the C*-algebra D, we can construct a group G and a unitary representation Uy
such that every element of D commutes with every element U,. This can always be achieved,
e.g., by choosing I in general different groups that have irreducible representations g; of
dimension d;. Then G is constructed as G = Gy X ... x Gy and the representation p; is given
by pi(g1,---,81) = pi(gi). In general, given a C*-algebra, the choice of G and Uy is not unique.
However, the number of different irreducible representations occurring in the decomposition of
Ug must be the same independent of which group G and representation Ug is chosen. This
number will take on the role of an invariant, classifying the quantum phase.

The block diagonal structure of the MPS gives rise to a group symmetry and a restricted
injectivity condition, which together define the notion of G-injective PEPS. For a unitary repre-
sentation Uy, the commutation property above UgAi = Aillg can be recast into the form

U, AUS = A (2.33)

by applying the inverse group element to the right (cf. Fig. 2.11b) and we see that the A’ posses
a virtual group symmetry.

The restricted injectivity can be best understood, when we convince ourselves, that the
block-diagonal matrix A viewed as an operator from C? x C2 — C? has a non-trivial kernel,
given by all block-off diagonal matrices. Thus, we cannot find a general inverse A. However,
we have injectivity per block and thus, it is possible to find an inverse on the subspace of all
block-diagonal matrices (cf. Fig. 2.11a). The block-diagonal matrices are exactly the one which
commute with the symmetry, i.e., the subspace they span is given by all G-symmetric matrices

Sc = {X|[X,U,] = 0,¥g} (2.34)
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and there exits A such that
AA = ]1|5G (2.35)

and the projector onto Sg (cf. Fig. 2.11c¢) is given by a sum over all group elements acting on
the virtual indices

1
8

Note, that the symmetry alone is not enough to find the restricted inverse, since any subgroup
of G is also a symmetry group, but injectivity is only possible after projecting onto the largest
symmetry group. Thus, the symmetry and the injectivity condition come as two separate
criteria which together define

Definition 2.1. G-injective MPS
An MPS is G-injective for a given group G and a unitary representation Uy, if it is G-symmetric
and there exists an inverse on the symmetric subspace, i.e., Egs. (2.33) and (2.35) are fulfilled.

Using representation theory and diagrammatic calculus (cf. Ref. [4]), one can derive that
just like injectivity, also G-injectivity is robust under blocking. I.e., if A and B are G-injective

then also AB defined as (AB)L]C = Aszi . is G-injective.

Parent Hamiltonian

The parent Hamiltonians of G-injective MPS defined as in Eqs. (2.24) and (2.23) have a ground
state degeneracy given by the number of different irreducible representations occurring in U,.
If ng is semi-regular, i.e., every irreducible representation occurs at least once, this number is
equal to the number of conjugacy classes of the group G. We refer to the general proof of this
theorem to Ref. [4] and provide some intuition instead.

We can proceed analogously to the case of injective MPS and first consider the parent
Hamiltonian defined on an open chain of length L. The intersection of all 2-site ground state
spaces is parametrized by MPS that are closed with an arbitrary matrix, but since all non
G-symmetric matrices are in the kernel of the MPS tensors, we can restrict ourselves without
loss of generality to closure matrices which are G-symmetric.

The ground state space on a periodic chain is again given by the intersection of the ground
state spaces of two open chains, shifted by one site, i.e., by considering the intersection of two
MPS with different closure tensor positions. By using the restricted inverse, i.e., the projector
onto the G-symmetric subspace instead of the inverse for injective MPS, we obtain that all
closure tensors can be written as Zg AgUe, where Aq is a scalar. Thus, the intersection of the
two open chain spaces is spanned by MPS closed with U, and we find that every state

[¥)g = Y Te[AT ... ATU] [y .. .iL) (2.37)

is an element of the ground state space. From this, we directly see, that different group elements
in the same conjugacy class yield the same state, since Uj,-1,, = Uj,-1UgUj, and the h-element
can be absorbed by the G-symmetric A matrices. Proving that |¥) ¢ With g from different
conjugacy classes are linearly independent can be done easily for regular representations using
Tr[uér Uy] = ég, and calculating the overlap (¥, [¥)), = d¢(y)c(n), where C(g) denotes the
conjugacy class of g.
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2.4. One dimension — A full classification via matrix product states

Fig. 2.12. + General structure of MPS written with the explicit use of the block index (dashed line) in
conventional notation (left) and in a notation highlighting the entanglement structure in the virtual space
(right).

Fig. 2.13. + Left: Case 1) A single-block, i.e., injective MPS with only local entanglement in the product
state phase. Right: Case 2) A G-injective MPS with D blocks of size one, corresponding to the GHZ state
|GHZ) defined in Eq. (2.12).

2.4.4. Phase classification

We have seen that the parent Hamiltonians of G-injective PEPS have a ground state degeneracy
determined by the (conjugacy classes of the) symmetry group G or likewise by the number of
blocks in the canonical form. We will next show that this number uniquely classifies the phase.

To this end, we make use of the block diagonal structure of MPS in the canonical form. When
multiplying two matrices with the same block structure the resulting matrix will again have the
same block structure. Thus, we find it is useful to capture this property also diagrammatically
and use the block label as another index of the tensor A and let the other two virtual indices
label the rows and columns of individual blocks. Note, that in general the bond dimension
of those row and column indices depend on the block index. This dependency is left implicit
as it is not relevant for the statements made below. With this considerations we represent
a block-diagonal MPS tensor as in Fig. 2.12. The MPS can then be deformed such that its
entanglement structure becomes apparent: It can be written as a GHZ state with additional
maximally entangled pairs of qubits to which the tensors A are applied (cf. Fig. 2.12 right
panel). With this representation we can now perform the phase classification for general MPS.

There are two special cases (shown in Fig. 2.13) that help to understand the general situation.

I. Injective MPS (Fig. 2.13 left). The dimension of the block index is one, i.e., there is only a
single block for the A’ and the MPS is injective. In this case, we can omit the block index line
(it is one dimensional) and we can directly see from the structure of the virtual space, that
the MPS corresponds to a product state. More explicitly, we can apply the MPS map A and its
inverse to obtain unentangled pairs of two qubits at each physical site.

II. GHZ states (Fig. 2.13 right). The dimension of the block index is I (cf. Egs. (2.31) and
(2.32)) and all blocks are one-dimensional, i.e., d; = 1Vi. In this case, we can omit all index lines
except for the block index line and we see that the virtual space corresponds to a GHZ state
with the MPS map A applied on each site. Decomposing A using the polar decomposition and
removing the non-isometric part per block as in the case for injective MPS, we obtain a GHZ
state and its parent Hamiltonian given by local terms #; = 1 — Y!_; |aa) (&, a|. The ground
state degeneracy of this parent Hamiltonian is I, i.e., the number of blocks, since every state
la,«, ..., «) is a ground state.

The general case, where the block index dimension is I and the dimensions of the other
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2. Gapped local quantum phases

index lines are d; withi = 1,...,I can be understood as a combination of case I and II. Le.,
there is global GHZ state like entanglement coming from the block index. Additionally, there
is locally removable entanglement resulting from the index lines of bond dimension 4;. This
entanglement can be removed by a local unitary circuit as in the case of injective-MPS, but the
GHZ part remains. Thus this MPS is in the same phase as an MPS from case II which has the
same number of blocks I as the given MPS.

We conclude that MPS-phases are classified by the number of blocks in the canonical form
or likewise by the ground state degeneracy of their parent Hamiltonian.

Symmetries

As pointed out earlier, the phase definition in Section 2.2 does not take into account physical
symmetries of the Hamiltonians. To obtain a notion of phase classification that can distinguish
between phases of different symmetry one can restrict the allowed Hamiltonian path by requir-
ing that certain symmetries of the Hamiltonian are preserved. The same can be done on the
level of states by only allowing quantum circuits that respect the physical symmetry. This yields
a more refined phase diagram [20]. Interestingly, it turns out that there exist cases where two
Hamiltonians respect the same symmetry, but nevertheless can not be connected by a symmetry
respecting adiabatic path [117]. Phases for which this is the case are called symmetry protected
topological (SPT) phases, since their their long-range entanglement (a property associated with
topological order) is protected by the presence of a symmetry. If the symmetry restriction is
lifted, they can no longer be distinguished as distinct phases and in this sense they are not stable
against arbitrarily small perturbations that violate the symmetry. Long-range entangled phases
can also be subject to symmetry restrictions. In this case, one obtains a refined classification of
long-range entangled phases, referred to as symmetry enriched topologically (SET) order.

Both SPT and SET phases can be classified with MPS [61] when the physical symmetry of
the state is represented by an on-site linear unitary representation Uy of a group G acting as

U, |¥) = |¥) (2.38)
for SPT phases, i.e., Hamiltonians that have a unique ground state and likewise as
® ug&) =&, (2.39)

where & denotes the ground state space for SET (symmetry broken) phases.

Again making use of the canonical form, one can infer that the symmetry action on the
physical space can be represented by a group action on the virtual space given by a projective
representation that is defined up to a phase and depends on the MPS tensor A. Different
projective representations correspond to different MPS that can not be deformed into each
other and thus SPT phases in one dimension with a physical symmetry U, are classified by
the second cohomology group H2(G,U(1)) determining the phase factor of the projective
representation.

For SET phases in one dimension, the physical symmetry can also permute different ground
states as it only needs to preserve the finite dimensional ground state space and the phases are
classified by both, the permutation action and the cohomology group classifying the symmetry
actions within individual ground states.

2.4.5. Limitations of the approach for higher dimensions

In higher dimensions the understanding of gapped quantum phases is much less complete.
There are two immediate obstacles that prohibit us from extending the tensor network approach
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described in the previous Section to higher dimensions. First, it is only conjectured, but not
proven that all ground states of gapped local Hamiltonians can be well approximated by
projected entangled pair states [133]. Second, even if we restrict ourselves to PEPS states, it
is not possible to obtain an exhaustive classification. This is due to the fact, that there is no
canonical form for general PEPS. Due to these severe limitations the study of gapped quantum
phases is mainly a study of exact fix point models.

Apart from the symmetry breaking phases constructed in complete analogy to the one
dimensional case, non-chiral topologically ordered phases (discussed in detail in Chapter 5)
are well understood in higher dimensions. The latter are accessible via commuting projector
Hamiltonians, have exact PEPS representations and are classified by modular tensor categories.

Slightly less accessible are topologically ordered phases that are chiral. Chiral phases are
only fully gapped on closed manifolds and feature gapless edge modes when defined on
open manifolds. There are strong indications that they can not be represented by commuting
projector Hamiltonians [46, 160] and it is not clear if they can be represented by PEPS. However,
on an abstract level chiral topologically ordered phases are still (per definition) classified by
modular tensor categories which describe the theory of their (anyonic) excitations.

Even more exotic than chiral topologically ordered phases are so-called fracton phases,
characterized by excitations that are completely immobile or mobile only in certain directions
[116]. The latter two types of topological order will not be addressed further in this Thesis.
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3. A conceptual introduction to
topological order

Gapped quantum phases in two dimensions are profoundly more complex and interesting
[20] than the one dimensional phases discussed in the previous Chapter. Most of all they
include phases with topological order — a kind of quantum order characterized by a series of
rather exotic phenomena including a topology dependent ground state degeneracy and quasi-
particle excitations called anyons that are neither bosons nor fermions [31]. While the essential
concept of topological order can be understood on an elementary level, the general theory of
(non-chiral) topological order is rich and highly evolved while being fairly abstract as well.
Before we discuss the abstract formalisms, i.e., the algebraic theory of anyons and non-chiral
topological order of string-nets and MPO-injective PEPS in general terms in Chapter 5, this
Section is devoted to a two-fold conceptual introduction to topological order. On the one
hand, we review the paradigmatic toric code model [31] — a particular exactly solvable lattice
Hamiltonian. On the other hand, we explain how the G-injective MPS formalism introduced in
the previous Chapter can be generalized to two-dimensional tensor network states yielding the
notion of G-injective PEPS [4]. We review how the latter correspond to topologically ordered
states and show that the ground state of the toric code Hamiltonian is a G-injective PEPS with
symmetry group G = Z;. Both the toric code as well as the tensor network construction can be
generalized to address non-chiral topological order in full generality (cf. Chapter 5) yielding
string-net Hamiltonians and MPO-injective PEPS, respectively.

The material presented in this Section is a condensed version of the first Chapter of Kitaev’s
seminal paper Ref. [31] and the G-injective PEPS formalism introduced by Schuch et al. in
Ref. [4].

3.1. The toric code

The toric code [31] is an exactly solvable! spin-1 lattice Hamiltonian that is paradigmatic
for (non-chiral) topological order in two dimensions. Its Hamiltonian can be defined on any
two-dimensional lattice with spins on the edges. The Hamiltonian is a sum of local mutually
commuting terms given by star (vertex) and plaquette operators A, and B,

Hrce=-)Y_ A,—) B,. (3.1)
[
The star (vertex) operators measure the parity of all spins around a vertex
A, =114 (3.2)
jev

and the plaquette operators flip the spins around each plaquette

By =11]% . (3.3)

jep

1Exactly solvable in the sense that the Hamiltonian can be written as a sum of locally commuting projectors.
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3. A conceptual introduction to topological order

One can rewrite the Hamiltonian as a sum of commuting projectors by adding an energy shift
and rescaling the A and B operators

HTCZZ
0

Most of the defining features of topological order are found in the toric code and can be
calculated on an elementary level from the Hamiltonian. Moreover, it is fair to say that all
known models exhibiting non-chiral topological order can be seen as generalizations of the
toric code (cf. Section 5.1. Also, the connection between non-chiral topological order and PEPS
can be understood well using the example of the toric code. We review most of the theory of
topological order in the light of the toric code. Before we do so we briefly explain why the
Hamiltonian model in Eq. (3.1) is called a code.

(1—Av)+2%(1—3p). (3.4)
P

N =

3.1.1. The toric code as a quantum code

The origins of the toric code model can be traced back to constructions in lattice gauge theory
by Wegner [161] and Kogut [162] in the 70’s, however, its importance was only fully realized
when Kitaev proposed the model in 1997 [31] as a topological quantum code robust against
local noise. The last statement needs explanation: One of the main properties of topologically
ordered systems is that the ground state degeneracy depends on the topology. The toric code
Hamiltonian defined on a two-dimensional lattice with periodic boundary conditions, i.e., a
torus, has a 4-fold degenerate ground state space. Furthermore, different ground states can not
be distinguished by local measurements and can only be deformed into one another by global
operations — another hallmark of topological order. As a consequence, the information which
particular ground state the system is in, is protected against local noise.
This suggest to interpret the 4-dimensional ground state space as a so called code space

& = C = span{|00),|10),|01),[11)} (3.5)

spanned by two logical qubits which can be used to store quantum information. One can
furthermore construct logical operators acting globally on the system that act as Pauli spin
operators on the logical qubits.

If a single spin changes its state, the system is no longer in the ground state space and
we cannot identify the state immediately with an element of the code space. We say that an
error has been created. However, since the error occurred locally it should be possible to also
detect and correct it locally. The question under which conditions errors can be detected and
corrected is the topic of quantum error correction [163]. For the toric code model, the local
Hamiltonian terms are mutually commuting and thus they can be measured without the effect
that the measurement of one affects the measurement of the other. Their eigenvalues are 1 or -1,
respectively and the spatial pattern of -1s and 1s obtained from measuring all local operators
contains information about the possible error configurations, i.e., the position and the type of
local errors, that have occurred in the system. This spatial pattern of measurement outcomes
is called the error syndrome. If for a system on a L x L square lattice, the number of errors is
smaller than L, the error syndrome contains enough information to undo the errors. The task to
infer the error pattern from the syndrome and to undo the error is not trivial. One has to devise
a decoder, i.e., an algorithm that performs the task. Finding good or even optimal decoders,
proving their existence or non-existence and similar questions constitute a large research area.
For the toric code, one can prove that if errors occur independently and not too often, a decoder
exists whose chance of succeeding in preserving the quantum information approaches unity
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3.1. The toric code

in the limit of infinite system size (cf. Chapter “Topological codes” in [163] or [164]). This
renders the toric code an ideal candidate for a quantum memory. Variants of the toric code with
open boundary conditions named surface codes are still considered a state of the art approach
to fault-tolerant quantum memories [165, 166], however they compete against a plethora of
similar codes, most prominently color codes [167], and it is not settled yet which (if any) of the
codes emerges as actually suited for practical implementations.

3.1.2. Topological ground state degeneracy

A characterizing feature of topologically ordered Hamiltonians is that their ground state de-
generacy |&y| depends on the topology of the lattice. For the toric code, this can be understood
by analyzing the structure of the ground states explicitly. We can count the number of indepen-
dent projectors Np and compare it with the total number of qubits Nj. As every independent
projector projects out half of the Hilbert space dimensions, we are left with |o| = 2Ns=Np. For
a square lattice on a torus we have N, = 2L? qubits and 2L? projectors, however two of them
are already determined by all others, so we have Np = 2L? — 2 and the ground state degeneracy
is given by 4. The counting of projectors and degrees of freedom resembles the calculation
of the Euler characteristic. Indeed, we need to count the number of edges (spins) minus the
number of vertices (vertex projectors) minus the number of faces (plaquette projectors) and
add 2, because two of the projectors are already determined by all other ones

|Eo| = 2E-V—FH2 = p=x+2 = = (2-29)+2 _ 45 (3.6)

where we have used the definition of the Euler characteristic Yy = V — E + F and the well
known fact that the Euler characteristic is related to the genus ¢ by x = 2 — 2g. Since the Euler
characteristic is a topological invariant, also the ground state degeneracy is.

3.1.3. Local indistinguishability of ground states

We have already mentioned above that different ground states can only be transformed into
one another by global operations. To see this, consider the possible effects of a spin flip () on
vertex operators and note that the model is self-dual under exchanging x and z and the role of
vertex and plaquette operators. Thus, the effects we observe for spin flips on the vertex operators
can be mapped to the effect of 0, operators on plaquette operators. As all operators in the
Hilbert space can be represented as a sum of products of Pauli operators, these considerations
will allow us to make very general statements.

Consider the effect of a single spin flip. The state is still an eigenstate of the Hamiltonian,
but the two vertex operators adjacent to the edge where the flip has occurred yield -1. We say
that the vertex constraint is violated at two vertices and conclude that the state is an excited
state with energy 2. We can now flip another spin on one of the vertices where the vertex
constraint is violated to “heal” the violation at this vertex, however, now a neighboring vertex
will be violated. We have moved the violation one site further. The energy of this state is still
2. We see, that we can move excitations in this manner at no energy cost. Only, if we move
the excitation back to its origin we end up in the ground state space again. If the excitation is
moved back to its origin along a contractible loop, the ground state does not change. To see
this, note that a contractible loop of spin flips can be obtained by tiling the loop interior by
plaquette operators. Since application of the latter leaves the state invariant, a closed loop is
indeed trivial. If however, the excitation is moved along a homologically non-trivial loop? the

2 A homologically non-trivial closed loop can not be written as the boundary of some area on the manifold.
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ground state is changed to another, orthogonal, ground state.

We conclude, that a number of spin flips of the order of the system size is needed to go from
one ground state to another ground state. If there are less then L spin flips, there are two cases.
Either the spin flips are arranged in a closed loop pattern and leave the ground state invariant,
or the spin flips form a pattern of open strings. In this case, we obtain an excited state. We
conclude that for any operator O(S) supported on sites S = {s;}; with |S| < L, we have that
for |¥) € &

N 1 S: closed loop pattern,
(#10(5) ¥) = { o OoPP (37)
0 otherwise.
This implies the local indistinguishability of ground states
| (F11 O(S) [#1) — (¥2| O(S) [¥2) | = 0 (3.8)

for |¥1) # |¥2) as well as the statement noted earlier in Section 2.1.2 that the toric code ground
states are uncorrelated with respect to local measurements. This property is so surprising and
unconventional, that it can be seen as the definition of topological order. Relaxing the condition
to a distinguishability of € for an operator of support /, we obtain the definition of topological
order as used in [134] to prove the separation of the toric code phase from the product state
phase. This result has severe implications on the hardness (or likewise time needed) to prepare
a topological ordered state from a product state. More refined and slightly more technical
versions of the topological order conditions have been used to proof the stability of topological
phases against local perturbations in rigorous terms [168-170].

3.1.4. Anyonic excitations of the toric code

We have seen that any open string of spin flips yields a state where the two vertex projectors at
the end of the string are violated. Likewise, an open string of Pauli-z operators corresponds to
a violation of two plaquette constraints at the end of the z-string. By the analogy of (magnetic)
flux and (electric) charge violations in lattice gauge theory, these local excitations are called e
and m particles. They have unconventional properties when they are braided with one another.
Let us consider a state, where a pair of two e-particles is created at some location and a pair of
m-particles is created at a different location. Now we move one e-particle around one of the
m-particles by acting with a closed loop of Pauli-z operators that encloses the m-particle and
thus intersects with the x-string. Commuting the z-loop with the x-string, we obtain a minus
sign and can then evaluate the closed z-loop on a ground state where it acts trivially. Thus,
braiding an e- with an m-particle has the effect of changing the phase of the wave function by 7.

Next, consider bringing an e- and an m-particle close together. This new (e, m)-particle can
be moved around by applying x- and z-strings in parallel. If we move it along a closed loop
and bring it back to its original position, we obtain by similar reasoning as above, that the
wave function changes by —1. Thus, we can identify the (e, m)-particle with a fermion. Indeed,
bringing two (e, m)-particles close together, we obtain the ground state again. Identifying the
ground state with the trivial particle, we obtain the expected fusion rules for fermions, i.e., two
fermions fuse to a boson. Similarly, we can calculate the fusion properties of the other particles.
Since, both two e- and two m-particles fuse to the trivial particle, there are not more than four
particle types in the model and they fuse according to

exe=mxm=fxf=1, exm=f, exf=m, mxf=e. (3.9)

Note that the fusion rules are a representation of Z, x Z,, where we identify e with (1,0) and
m with (0,1). Whenever the fusion of two anyons is unique, i.e., it results in the same anyon
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(a) G-symmetry (b) G-injectivity

Fig. 3.1. + G-injective PEPS. (a) G-symmetry and (b) injectivity on the G-symmetric subspace. We have
used the convention to denote a Hermitian conjugation by a reflection as indicated by the arrows and
omitted the normalization 1/|G| in the left-hand side of (b).

type regardless of the microscopic details of the fusion process, anyons are called Abelian. The
general theory of Abelian and non Abelian anyons is presented in Chapter 4.

3.2. G-injective PEPS

The classification of gapped phases of matter in one dimension based on G-injective MPS
presented in Section 2.4 can be performed solely based on the canonical form of MPS without
ever invoking the group symmetry or the restricted injectivity explicitly. In contrast, for PEPS
in two dimensions a canonical form is lacking and cannot be invoked. However, the concept of
G-injectivity can still be adapted to the two-dimensional case in a straight forward fashion to
define the notion of G-injective PEPS. G-injective PEPS already exhibit all aspects of topological
order on a conceptual level and can be generalized to MPO-injective PEPS capturing all known
non-chiral phases (cf. Section 5.2). In the following Section we review the basic properties of
G-injective PEPS following Ref. [4] and show that they exhibit features of topological order.

3.2.1. Definition

As a first step, we generalize the symmetry and injectivity property from MPS tensors to tensors
with more than two virtual indices as shown in Fig. 3.1. Note, that for translation invariant MPS
there are only two indices and thus only one type of virtual index line (the horizontal one). The
symmetry under Ug ® U, then also implies symmetry under U,-1 ® Ug. In contrast, PEPS
have different index lines (e.g. horizontal and vertical on a square lattice) and it is not clear a
priori how to represent the group G on different index lines. For example on a triangular lattice
one could choose Uy ® U,-1 @ Ug as well as Uy ® Uy-1 @ Uy-1 and the two representations
are generically different. In fact, there is even more freedom in the choice of representations
than in the example given: the only condition that restricts the choice of local representation is
the stability under blocking®. Stability under blocking requires that for any link type, e.g., the
horizontal link, we define a pair Ug, U,-1 acting on the left and on the right virtual index, such
that the two representations cancel when two G-injective tensors are blocked along a horizontal
line. The same applies for vertical lines and we see, that in general each index line type can
have its own representation. We will not specify which representation is used on which index
line, but will assume that every representation used is semi-regular and unitary.

3Considering a system in the thermodynamic limit, we do not want to loose a characteristic property of the system
while zooming out.
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The existence of an inverse on the symmetric subspace can also be adapted to the two-
dimensional case (cf. Fig. 3.1a). Here, the choice of the representation in the definition of the
symmetric projectors needs to be consistent with the choice of representations in the symmetry
condition. With the preceding considerations, we arrive at the following

Definition 3.1. For a group G represented by semi-regular, unitary representations, a PEPS is
called G-injective, if it is symmetric under G and an inverse exists on the G-symmetric subspace,
i.e., it fulfills the equations given in Fig. 3.1.

It is not hard to prove that G-injectivity is stable under blocking. The stability of the G-
symmetry follows directly from the definition and the stability of the restricted injectivity can
be proven using representation theory and diagrammatic calculus.

3.2.2. Parent Hamiltonian

Recall, that parent Hamiltonians of PEPS are in general not gapped (cf. Section 2.3.3). Even for
injective PEPS, which are contained in the definition of G-injective PEPS by choosing the trivial
group, the parent Hamiltonian can be gapless [62]. To ensure that the parent Hamiltonian is
gapped, the PEPS map has to be close enough to the G-isometric point.

G-isometric PEPS

The special case when the projector onto the G-invariant subspace is given by
1 1
= ATA = Teul 1
c |G|§ug®ug®ug®ug, (3.10)

i.e., the inverse in Fig. 3.1b is given by At and the representation Uy is the left-regular repre-
sentation Uy |h) = |gh) is called G-isometric PEPS.

Analogously to the one-dimensional case we find that the projector onto the physical subspace
on four adjacent sites is given by blocking four A tensors into a 4-site tensor A4 and contracting
Al and A4 along the virtual indices, similar to the one-dimensional case shown in Fig. 2.10

Ils, = A4AL . (3.11)

The Hamiltonian is a sum of local commuting projector Hamiltonians as can be easily shown
using diagrammatic calculus.

Like in the one-dimensional setting, we can decompose a PEPS tensor A into a positive map
Q € L(CY) and an isometry W : CP ® CP — C?. If Q is close enough to the identity, i.e., the
ratio min EV(Q)/ max EV(Q) is close to unity, one can show that the parent Hamiltonian is
gapped [61]. The discussion of the parent Hamiltonian should be regarded as a discussion of
G-injective PEPS that are close to isometric.

Ground state space

Using the definition in Eq. (2.17) with a four-site region R, we find that the parent Hamiltonian
of G-isometric PEPS is frustration free and has a ground state degeneracy that is topology
dependent.

The characterization of the ground state space again proceeds analogously to the one-
dimensional case. On an open patch of L x L sites the ground state space of the parent
Hamiltonian is spanned by all PEPS with a G-symmetric closure.
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Fig. 3.2. + The ground state [, ;).

The ground state space on a closed manifold, e.g., a torus is given by the intersection of the
ground state spaces of all possible Hamiltonians on different open patches that jointly cover
the full manifold. Thus, we consider patches closed with G-symmetric closure tensors along
the two homologically non-trivial loops placed at different positions. By using the axioms
of G-injectivity, one can show that the intersection of the latter is spanned by states | g,h)>
with [, 1] = 0, which are given by inserting a g-string, i.e., a line of U, operators along one
homologically non-trivial loop and an h-string along the other (cf. Fig. 3.2). This is analogous to
the G-symmetric closure tensors in the one-dimensional setting. Note, that the commutativity
of g and h is required to ensure that the closure tensor can be deformed freely which is required
to yield a state in the intersection space of closures located at different positions.

We will see that the insertion of a g-string along a non-trivial loop can be identified with the
action of a logical operator on the physical level, when we discuss the Z,-injectivity of the toric
code PEPS ground state in Section 3.2.3.

Again in analogy to the one-dimensional case, not all |¥(, ,)) with [¢,h] = 0 are linearly
independent. Instated we find that a pair of elements (g’,h’), which is equal to a pair (g, ) up
to conjugation results in the same ground state. More formally, we denote the pair conjugacy
class

C(gh) ={(&" W) 1) ~ (.1} (3.12)

as an equivalence class with the equivalence relation, (g,h) ~ (¢, /) < 3x € G : xgx ! =
¢, xhx~! = I’ and find that the two ground states |¥) on and [¥) ., are identical if (g, /1) ~
(¢',1"). Moreover, we can prove that ground states obtained from different pair conjugacy
classes are linearly independent and thus arrive at the result that the ground state space is
spanned by the conjugacy classes C(g, 1) for which [g, h] = 0.

Local indistinguishability of ground states

Let us analyze the structure of the states |¥)c(, ). It is clear, that the two loops given by an
element g and an element /1, which are representatives of C(g, 1) can be deformed freely as a
property of the G-symmetry of the local tensors. Furthermore, the intersection of the k- and
the g-loop does not restrict the deformability since UgU), = U Uy, i.e., the h loop can pass
trough the g-loop and vice versa. Thus, if we measure a local operator on the state |?>C(g,h)l we
can move the g and the & loop arbitrarily far away from the point of measurement. Unless the
correlation length in the system is infinite, the measurement result should not be influenced
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by the loop at a far distance and thus the measurement outcome is independent of the pair
conjugacy class C(g,h). This is a manifestation of the local indistinguishability of different
ground states in topological ordered systems.

3.2.3. The toric code as a Z,-isometric PEPS

The parent Hamiltonians of G-isometric PEPS are the ground states of Kitaev’s group quantum
double models [31] constructed from finite groups G. We have already encountered the
simplest example of a Kitaev quantum double model, i.e., the toric code where G = Z;. Indeed,
the ground states of the toric code model can be written as PEPS which are Z,-injective as
shown by the following considerations.

Closed-loop superposition

The toric code ground state can be explicitly constructed as follows. Consider a product state
0,...,0) — referred to as “vacuum”. This state is an eigenstate of all vertex projectors. Now
apply all plaquette operators. The resulting state is an eigenstate of all vertex and all plaquette
operators*. Applying one plaquette operator B p to the vacuum, one obtains a superposition
of the vacuum and a state with one closed loop of flipped spins around the plaquette p;.
Applying another plaquette operator at a plaquette p,, that is not in the vicinity of p1, we obtain
a superposition of four states, the vacuum, one loop at p;, one loop at p» and two loops at both
p1 and py. If py is a neighboring plaquette of p;, we instead obtain a superposition of the first
three states and the fourth one has a larger loop around p; U p,. Iterating this procedure, we
see that the toric code ground state is given by an equal weight superposition of all closed
loops. When wrapped on a torus, we can construct four orthogonal ground states by starting
from a state with only trivial loops in the superposition and apply x-flips on one or both of the
two cycles.

PEPS map

The closed-loop superposition state can easily be written as a PEPS. To this end we define a
tensor A on four physical sites around a vertex and implement the vertex constraint directly on
the level of the tensor, i.e., the image of A as a linear operator from the virtual to the physical
space is given by all parity even states. A map that generates (physical) parity even states from
arbitrary virtual states can easily be devised by taking pairwise differences. Labeling the vector
space basis elements by Z, elements and using addition modulo 2 we use

A=Y la+bb+cc+dd+a)(abecd . (3.13)
a,b,c,d

The total parity of the four physical qubits as measured by the product of four Pauli-z operators
is given by
xi(a+b)xi(b+eo)xi(c+d)xi(d+a) =x1(0)=1, (3.14)

where we used 0z]0) = x1(0)]0) = 1|0) and 0> |1) = x1(1) |1) = —1]1) and x1(g) denotes
the character of the non-trivial 1-dimensional irreducible representation of Z,.

This map is inspired by a gauge symmetry, i.e., shifting the virtual indices a, b, ¢, d by the
nontrivial group element is a symmetry of the map. We can use this insight to define a PEPS

4We also need to ensure that the state is not annihilated, i.e., the Hamiltonian is frustration free. This will become
clear in the following.
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3.2. G-injective PEPS

Fig. 3.3. + The PEPS map of the toric code. The four (eight, when doubled) virtual indices are denoted by
lines and the four physical indices are denoted by dots. All configurations of the form depicted here yield
tensor entries equal to one. All other entries are zero.

 —— o —r o — o —

C

- o —

7

Fig. 3.4. + The two configurations of the toric code tensor network patch of four tensors for a fixed
configuration of the open virtual indices are related by a spin flip of the inner spins. Grey (black) lines
and dots corresponds to spin states |0) (|1)) of virtual and physical indices. The blue line highlights the
physical string which is deformed by a spin flip.

map A. This is most conveniently done by using A and doubling the virtual indices as shown
in Fig. 3.3. Tiling the lattice with an A tensor at every vertex, we observe, that we have twice as
many physical qubits as needed. This redundancy is harmless and can be removed trivially
since two spins at one physical edge are always in the same state by construction.

We observe that each tensor patch of 4 individual tensors is invariant under the application
of the plaquette operator. It is cumbersome to write out all matrix elements. However, note,
that there is one closed virtual index line v in the center of the 4-site tensors that is summed
over and thus for a fixed configuration of the open virtual indices we obtain a superposition
|¥(v=0))+ |¥(v=1)). The physical spins of |¥ (v = 0)) are flipped with respect to the spins
of |¥); and thus the space spanned by all index configuration of the open virtual indices is the
+1 eigenspace of the plaquette operator (cf. Fig. 3.4). As a result by tiling the complete lattice
with PEPS tensors and summing over all closed indices of the tensor network we obtain the
closed-loop superposition ground state.

Z)-isometry

It is easy to check that the map given in Fig. 3.3 is Z,-isometric. The physical indices are
insensitive to a shift of the virtual indices 4, b, ¢, d by a group element g applied to all indices
simultaneously. Thus, the map A is invariant under e.g. the left-regular representation. We next
consider AT A and find that it is equal to the Z,-symmetric projector, i.e., it fulfills Eq. (3.10),
proving Z;-isometry. When calculating AT A, we sum over all physical index configurations
that are in the image of A. The physical index configurations of A and A" are only identical if
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3. A conceptual introduction to topological order

their virtual indices differ by a global shift. More explicitly, we find that
AtA
- Z la,b,c,d) (a+b,b+c,c+d,d+alld +b, b+, +d,d+d) v, d
ab,cda b c'd)

= ) labecd)(at+gb+gct+gdtgl=) U @U;@U;@ Uy, (3.15)
ab,cdg g

where ¢ = b+ V' = c+ ¢’ = d + d’ and the doubling of the virtual indices is left implicit.

Ground states on a torus

By inspection of the PEPS map we can easily verify the claim that an insertion of a g-string along
a non-trivial loop corresponds to the action of a logical operator. The g-string with non-trivial
group element ¢ = 1, i.e., Uy = 0y, shifts the index values of half of the virtual indices

AUg@Uy ®1@1) = Y |a+bb+cc+dd+a){a+1,b+1,cd|
a,b,c,d

=) la+bb+c+lc+dd+a+1)(abecd=1R0031Q0)A,
a,b,c,d

i.e., it results in a spin-flip of the two spins on the horizontal edges. Applying this identity
on all PEPS maps to the left (right) of the g-string, we obtain the equivalence between virtual
string-insertions and logical operators.

3.2.4. Entanglement entropy

We have seen in Section 2.3.4 that MPS and PEPS fulfill an entanglement area law. A hallmark
of topological order is the so-called topological correction to the area law, i.e., there is a constant
correction term independent of microscopic details that is given by the topological entanglement
entropy (cf. Ref. [126,171]). In the framework of G-isometric PEPS the entanglement entropy
can be calculated explicitly: Blocking tensors on a topological trivial region C yields a tensor
that is equivalent (up to local unitary transformations) to the G-symmetric projector on the
virtual boundary indices. We infer that the reduced density matrix pc is a projector onto the
G-symmetric subspace on the boundary indices. The bond dimension of each index is |G| and
thus the boundary Hilbert space is |G|/°C|-dimensional. The image of the symmetric projector
is given by all symmetrized states. Since symmetrizing |a,b,...,c) and |a’,V/,...,c') yields
identical states if the initial states are related by a shift with a constant group element, the
image is | G|°C! /|G| dimensional. The spectrum of p¢ is flat (as it is a projector) and thus, we
find that the entanglement entropy of p¢ is given by

S(pc) = —Trlpclogpc] = (|oC| —1)log |G| . (3.16)

This result is in agreement with the scaling of the entanglement entropy of a region C in a
general topologically ordered system (i.e., one that is not necessarily described by G-isometric
PEPS) derived by Preskill and Kitaev [126]

S(pc) = a|dC| —y+... . (3.17)

Here . .. refers to terms that vanish in the limit |§C| — oo and « is a numerical prefactor as
expected from the area law that is typical for gapped local systems. The constant correction
term to the area law < is called the topological entanglement entropy.
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3.2. G-injective PEPS

Eq. (3.17) is derived using the conjecture that in the low-energy (far infrared) limit, a
topological ordered system should be characterized by a topological quantum field theory
(TQFT) and in this case, the topological correction is given by the so called total quantum
dimension D (cf. Section 4.2.1)

v =logD. (3.18)

The total quantum dimension D is an invariant of the phase and related to the number N and
types of anyonic excitations a as

N
D=,|Y 4, (3.19)
a=1

where d, is the quantum dimension of the anyon a (cf. Section 4.2.1). In the simplest topological
models, where the fusion of anyons is unique (Abelian anyons), we have d, = 1 and thus D? is
equal to the number of anyons.

For the toric code, the entanglement entropy can also be calculated explicitly [122, 123] and
one obtains

S(pc) = (]oC| —1)log2, (3.20)
in agreement with Eq. (3.16) for |G| = 2. By comparison with Eq. (3.17), we find
Yrc = log?2 (3.21)

as expected since the toric code has four Abelian anyons, 1,¢,m, f and thus D¢ = 2.

3.2.5. Local excitations

Placing an open string of U, operators on virtual bonds results in a state with an interesting
property. First, due to the deformability of the U,-string, the state does only depend on the
two end points of the string and not on the string position. Second, it is not a ground state of
the parent Hamiltonian, since it is not G-symmetric at the two end points of the string. Instead
it corresponds to an excited state with local quasi-particle excitations. The energy of the state
does not depend on the position of the string end-points, thus, it does not cost energy to move
excitations around - the excitations are deconfined.

One can show that measuring the product of the physical spins around a plaquette reveals
the conjugacy class of g (cf. Theorem 6.15 of [4]). By analogy to magnetic fluxes in electro-
magnetism this type of excitation is called a fluxon®.

Similar to the fluxons one can define another local excitation called chargon. In the simplest
case, a chargon arises if we place the diagonal tensor ). on a virtual link. The matrix elements
of the tensor . are given by the characters of the irreducible representation c. To see why the
excitation is called a charge excitation, we think of the group elements as carrying charge. A
state (on one qubit) is charge neutral, if all types of charges are equally present, i.e., it is an
equal weight superposition of all states |g). Note, that in the ground state we can think of xg
as being placed on all edges, since the characters of the trivial irreducible representations are
always equal to one and thus xj is the identity 1. Intuitively this means, that the ground
state does not favor any charge type over the other and is indeed charge neutral. Now replacing
Xo with x., the equal weight superposition is lost, since for some ¢ we have x.(g) # 1 and thus
a charge is created locally. Similar to the fluxons, chargons are deconfined excitations in the
sense that there is no energy cost associated to moving them.

5The analogy is as follows: the line integral of the magnetic vector potential along the boundary of a surface is equal
to the magnetic flux through the area. This line integral is analogous to multiplying all group elements on the
boundary of the plaquette. Note, that group multiplication is the natural generalization of addition in the Z; case
discussed in detail.
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4. The algebraic theory of anyons

Most signatures of topological order such as the topological ground state degeneracy, the local
indistinguishability of ground states and exotic excitations with fractional statistics can be
discussed using the paradigmatic example of the toric code. However, the anyonic excitations
of the toric code are more simple than general anyonic excitations. Recall that bringing an
e-particle in proximity to an m-particle results in a state that behaves as if a fermion was located
at the position of the (e, m)-particle pair. Hence, we say that the e and m particle fuse to a
fermion. In the toric code the fusion outcome of two particles is always unique. Anyons with
this property are called Abelian anyons. In contrast, for non-Abelian anyons the fusion outcome
is not unique. An example for such non-Abelian anyons are the Ising anyons with particle types
1,0,'¥, where 1 is the trivial particle, ¥ is a fermion and ¢ is a non-Abelian anyon as signified
by the property that two o particles can fuse to the vacuum or to a fermion. This is formally
written as

cxoc=1+Y. (4.1)

For a concrete lattice implementation of a system exhibiting Ising anyons this means that a
state with two o-particles can be identified with a superposition of states with a particle 1 or ¥
at the position of the two o-particles. One can apply different microscopic operators on the
region to project into a definite particle content state.

For non-Abelian anyons detecting a certain number of anyons at several distinct positions is
not enough to uniquely determine the state. For example four o-particles could have emerged
as two pairs out of the vacuum. Alternatively, they could be the result of two fermions which
decayed into two o particles. We could distinguish the two states by observing how the two
pairs braid with each other. In the first case, they would behave as bosons, while in the latter,
they would behave as fermions.

In general we can associate a multi-dimensional Hilbert space to a given configuration of
several non-Abelian anyons. The dimension of such a space is determined by the number
of different possible ways in which the given anyon configuration can be obtained from the
vacuum by a sequence of particle creation processes (cf. Section 4.2.1 for a more precise
definition). As the particle positions do not uniquely specify the state, moving anyons around
each other such that they eventually return to their original position does not need to be an
identity operation, but instead can in principle be an arbitrary unitary operator acting within
the multi-dimensional Hilbert space associated to the mutli-anyon configuration. In contrast,
for Abelian anyons the state space is one dimensional and thus a braiding process can change
the wave function only by a phase factor. Thus, braiding operations commute, which justifies
to call these types of anyons Abelian.

Non-Abelian anyons are interesting due to their potential application in topological quantum
computation [36, 40, 42, 43], where the ability to implement unitary operators by braiding anyons
is used to perform quantum gates. As the latter only depend on the topology of the braiding
paths, they are robust against local noise and hence fopologically protected. An important question
is what type of anyons allow to implement a universal gate set, i.e., a set of gates that can be
used to express any quantum circuit. While Ising anyons mentioned in the example above only
allow for a non-universal subset of gates (Clifford gates), universal anyon theories exist. A
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4. The algebraic theory of anyons

particularly simple example of universal anyons are the so called Fibonacci anyons! with the
fusion property T x T = 1+ 71 [12, 36, 37, 172].

In the following Section we present the theory of anyons on an abstract mathematical level
disregarding the concrete physical implementations in terms of Hamiltonians. This so called
algebraic theory of anyons starts out from proposing the existence of a finite number of distinct
anyonic particle types (also called anyonic charges) labeled by 4, b, c, . .., n, and Hilbert spaces
associated to fusion outcomes of particles a X b — ¢, i.e., the Hilbert space associated to two
particles a and b which are in proximity and behave like a particle type c (one says that they
have total charge c). Usually these spaces are one-dimensional (multiplicity free). One can
then infer consistency conditions on the fusion and the braiding of anyonic particles which are
imposed by fundamental symmetry assumption. One example is the associativity of particle
fusion (pentagon equation), i.e., the Hilbert space associated to a finite number of particles
with a given total charge has a unique (finite) dimension which does not depend on the order
of the fusion of the individual particles. The theory of anyon fusion is essentially described by
a mathematical structure known as fusion category. Physical assumptions such as the existence
of a unique vacuum state, normalizable states and the existence of a Hilbert space associated
to a particle configuration imply several additional properties for the fusion category, which
are fulfilled if the fusion category is unitary. The braiding of anyonic particles needs to be
consistent with the associativity of the fusion, which is specified in a non-trivial self-consistency
equation called the hexagon equation. A unitary fusion category for which braid operations
can be defined consistently is called a unitary braided fusion category also referred to as unitary
ribbon category. At last a certain non-degeneracy condition of the braid operations termed
modularity discussed in Section 4.2.2 is usually imposed. Hence, anyonic theories correspond to
mathematical objects known as modular unitary braided fusion categories (UBFCs) which is used
anonymously with unitary modular tensor categories (UMTCs).

Unitary modular tensor categories can be divided into two classes, chiral and non-chiral ones.
A chiral UMTC has a non-zero total chiral central charge as defined in Eq. (4.5). While famous
examples of topologically ordered systems such as the ones used to describe the fractional
quantum Hall effect are chiral as signified by chiral gapless edge modes, non-chiral topologically
ordered systems are more amenable within the framework of gapped fix point Hamiltonians
and tensor network ground states. In particular, a large class of non-chiral UMTCs can be
constructed from unitary fusion categories via the Drinfeld center construction [19] discussed in
the end of this Section. Both the known exact fix point models of topologically ordered systems
(i.e., the Levin—Wen string net models) as well as their PEPS description (in terms of MPO-
injective PEPS) can be seen as a physical implementation of the Drinfeld center construction.
In the light of this fact, the following Chapter is devoted to an introduction to fusion categories,
braided fusion categories and their relation to the theory of anyons and concludes with a
discussion of the Drinfeld center construction.

For a more in depth review of anyons and where to find them, we refer to Ref. [36]. The
presentation here closely follows Ref. [18, Appendix E].

4.1. Fusion categories

Before we introduce the notion of a fusion category more formally, let us give a brief intuitive
description. A fusion category is given by a finite number of simple objects that can be fused
(multiplied) resulting again in an object of the fusion category. This object however, is in

IThe dimensionality of the Hilbert spaces associated to one, two, there, etc. T-anyons grows as the Fibonacci series,
hence the name.
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general not simple, but isomorphic to a decomposition into finitely many simple objects. An
intuitive example for such a structure are irreducible representations p;(g) of finite groups G
which take on the role of simple objects. Fusion then corresponds to taking the tensor product
pij(g) = pi(g) ® p;j(g) which is again a representation but in general a reducible one. Thus,
there exist a transformation U such that Ug;;(g)U ' = @®;p;(g), i.e., in the language of fusion
categories the fusion of two simple objects is isomorphic to a finite direct sum of simple objects.

For a more formal definition we need to introduce some terminology on categories. A category
C is an abstract mathematical object that captures mathematical structure on a very coarse
grained level general enough to rephrase every mathematical theorem as a certain properties of
a suitably specified category. A category is defined as a collection of objects and morphisms that
map objects to objects. Morphisms can be composed as f o g and the composition is associative.
In addition, for every object x € Obj(C) there is an identity morphism 1, : x — x that maps it
to itself. The definition of a fusion category is as follows: A fusion category C is a rigid, finite,
semi-simple, k-linear monoidal category. These attributes are explained in the following. We
start with the most important property — monoidal.

4.1.1. Monoidal categories

Monoidal categories are equipped with a product structure similar to a Cartesian product or a
tensor product. In particular for a monoidal category there is a mapping, called a tensor functor
denoted by ® from C x C to C which maps tuples of objects in C x C to objects in C. Likewise,
tuples of morphisms in C ® C are mapped to morphisms in C such that the composition of
morphisms is preserved, i.e., fog®kol = f ® ko g ® I and the tensor product of identity
morphisms on objects x and y is mapped to the identity morphism on x @ y, i.e. 1y ® 1y = Tygy.
Although we have used the tensor product symbol familiar from linear algebra, ® is not strictly
associative, but associative only up to a (natural) isomorphism? a4 p ¢ that maps (A ® B) ® C
to A® (B®C).

A useful intuition for this is to think of (A ® B) ® C and A ® (B ® C) as isomorphic vector
spaces, i.e., vector spaces of the same dimension, but represented in a different basis.

Pentagon equation The natural isomorphism of a monoidal category are subject to a con-
sistency condition known as Mac Lane’s coherence theorem or pentagon equation. It arises
if we compare the objects (A®B) ® C) ® Dand A ® (B® (C ® D)) and the two sequences
of morphisms that map (((A® B) ® C) ® D to A® B(®(C ® D))). Itis required that the two
sequences of natural isomorphisms are identical and thus the natural isomorphism « fulfill
the pentagon equation visualized in Fig. 4.1. Remarkably, all other consistency conditions, i.e.,
the requirement that any two sequences of natural isomorphisms relating two objects of C are
identical, also follows from the pentagon equation — a fact known as Mac Lane’s coherence
theorem [173].

For the definition of a monoidal category one additionally requires that there is an identity
object I for which there are natural isomorphisms p and A such thatay;p: (A®I)®B —
A® (I ® B) composed withl1, ®Ip: A® (I®B) — (A® B) isidenticaltory ® 1p : (A ®
I) ® B — A ® B. This identity is referred to as the triangle equality.

2The precise definition of a natural isomorphism is the following. A natural isomorphism is a map between two
functors F, G mapping from a category C to a category D (inour case — ® (—® —),(—® —) ® —:CxC xC = C)
such that for every object x € C (in our case the tripe (A, B,C) € C x C x C) there is an isomorphism &, from
the object F(x) to the object G(x) (in our case an isomorphism a4 pc : (A® B) @ C - A® (B® C)) such that
for every morphism in C mapping x to y, the natural isomorphism mapping F(x) to G(x) and F(y) to G(y) are
consistent with the morphisms F(f) and G(f), i.e., ay o F(f) = G(f) o ax.
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A B C D A B C D A B C D
aA®BCD 1A®05BCD
A B C D A B C D
QA B,C®D
—

Fig. 4.1. + The pentagon equation for monoidal categories.

4.1.2. Rigidity, semi-simplicity, linearity and unitarity

The other properties of a fusion category are explained as follows. Semi-simple means that
each object of C can be decomposed into a direct sum of simple objects and this sum is finite.
The precise definition of a simple object is tedious, however, it agrees with the intuitive concept
that a simple object can not be decomposed into other objects. It is irreducible and a good way
to think of simple objects is to think of irreducible (group) representations.

Rigidity means that there is a notion of dual objects. ILe., for each object X there exists a
unique dual object X* defined by the existence of two morphisms, the unit# : I — X ® X* and
the co-unit € : X ® X* — I which satisfy the so-called snake equation stating that X ® (X* ® X)
is isomorphic to X. In a less rigorous language, this means that for each object there is a unique
inverse with which it fuses to the identity in a unique way. Whether the isomorphism between
X ® (X* ® X) and X is the identity morphism or a non-trivial morphism is an interesting
property of a fusion category. It is related to the categorical definition of Frobenius Schur
indicators [18]3. The property k-linear means, that morphisms are linear and the set of all
morphisms between two objects forms a vector space over a field k (in our case k = C).

Unitarity

For the purpose of constructing physical theories from a fusion category in one way or the
other, the fusion category must obey additional properties that guarantee that the resulting
physical theory is compatible with the unitarity of quantum mechanical time-evolution, or
likewise results in Hermitian Hamiltonians. The latter is guaranteed, if we impose unitarity of
the fusion category. This means that the vector spaces of morphisms are Hilbert spaces and the
natural isomorphisms, in particular the components of the natural isomorphism «y y 7 used in
the pentagon equation (the F-matrices) are unitary*.

3 A physical implication of non-trivial (higher) Frobenius Schur indicators is that they are associated to time-reversal
and parity symmetry breaking as outlined in Ref. [174]

“4Recently, non-unitary fusion categories have been considered [175], however, they give rise to non-Hermitian
Hamiltonians and are beyond the scope of this thesis.
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adh, bxy ® 1z
V \ X v Z
X v Z

(XeY)®Z AN

XY ®2)
YeoX)®Z
bX.Y;,ZZ l Qy X7
Xy Z X v Z
> 0
WX ¥ VA ly ® b}.lz
YoZ)eX \\ YR (X®2Z)

Y®(Z®X)

Fig. 4.2. + One of the two hexagon equations defining braided fusion categories. The other is obtained by
inverting the line crossings in all figures and replacing the braid operation b by their inverses.

4.2. Modular braided unitary fusion categories and anyons

Above we discussed fusion categories without references to anyons and without discussing
braid operations. Indeed, the existence of braiding operations is not part of the definition of
a fusion category and for certain fusion categories it is not possible to find braid operations
consistently. For an anyons theory, however, braiding is essential and is formalized as follows.

A braided fusion category is a fusion category with braiding, i.e., for all objects X and Y there
are natural isomorphisms cxy : X ® Y — Y ® X such that the braiding operation is compatible
with the natural isomorphisms of the fusion ax y 7z as specified by the hexagon equations, which
states that the diagram shown in Fig. 4.2 and its counterpart obtained by replacing each braid
morphism by its inverse is commutative.

4.2.1. Anyons

The simple objects of a fusion category can be identified with anyonic particles and the Hilbert
space of morphisms from simple objects A ® B to simple objects C with the physical Hilbert
space V, — called splitting space —associated to particles a and b restricted to having total anyonic
charge c. The dual space V' (of morphisms from C to A ® B) is interpreted as the Hilbert space
associated to a particle c which was created by fusing particles a and b and called fusion space.
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4. The algebraic theory of anyons

In the physics literature the fusion rules of anyons are often stated as a X b = ). N, ¢, where
Ng, are the dimensions of the fusion (splitting) spaces and are called fusion multiplicities, i.e.,
N¢, = dim(V5,).

Fusion and braiding

The associator of a unitary fusion category can be understood as a unitary isomorphism between
the two Hilbert spaces associated to a triple of anyons a, b, ¢ restricted to have total charge u. It

is commonly referred to as F-symbol and defined as F2¢ : @,V @ V¢ — @ fV,ff ® V}’C. Note,
that to be an isomorphism the dimensionality of the two vector spaces has to be the same, i.e.,

Y NGNE = ; NYN (42)

The pentagon equation in Fig. 4.1 can then be written more explicitly in terms of F-symbols —
the morphism a4 g ¢ ® 1p is replaced by F;bc, where g is the total charge of the particles a, b, c.

Similarly we can interpret the braid morphism as an actual braiding of anyonic particles and
define the R-matrices R, : Vb — Vb4 as unitary transformations between Hilbert spaces. The
hexagon equations can then be rephrased in terms of F-symbols and R-matrices.

To further analyze the anyon theory we need to introduce the concept of particles and
antiparticles provided by the rigidity (i.e., the existence of duals) of the fusion category. Each
particle 4 has a unique antiparticle a* with which it fuses to the vacuum?®.

Quantum dimensions

An interesting quantity attributed to an anyonic particle a is its quantum dimension d, defined
as the exponential growth rate of the Hilbert space associated to an increasing number of
a-particles and determined by the largest eigenvalue of the matrix N, with (N,)jx = N »]1(]" The

total quantum dimension of an anyon theory is defined as D = /), d2. One can easily check
that for Abelian anyons, i.e., anyons for which the fusion outcomes are unique®, the quantum
dimensions are equal to one. The Hilbert space associated to a certain particle configuration is
one dimensional and thus the braiding of anyons merely changes the wave-function by a phase.
Thus, the order in which braidings are performed is irrelevant which justifies the given name.

In general quantum dimensions can take non-integer values. A special subclass of non-
Abelian anyons are the so-called metaplectic anyons (e.g. the Ising anyons) with the property
that d2 is integer. It is conjectured [176] that the latter are not suitable to perform universal
quantum computation via braiding. The standard example for non-Abelian anyons with non-
integer quantum dimensions are the Fibonacci anyons T with d; equal to the golden ratio.
The quantum dimension d, can also be expressed diagrammatically as a “closed-loop” of
an a-particle. The closed-loop can be understood as the scalar product (¥1.|¥1.), where
[¥L.) € VL. and (¥l.] € V. Attributing the value d, to the closed loop can then be
understood as a normalization convention for the basis vector [¥1.).

5For further technical details, in particular regarding the role of potentially non-trivial Frobenius-Schur indicators,
we refer to Ref. [18, Appendix E].
®1.e., for every pair 4 and b there is a unique ¢ such that N, = 1 and N;l; =0ifc#c.
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_ i * * a
0(1 = i Sa’b - D a b < b
a* a a a*
(a) Topological twists 6, (b) S-matrix

Fig. 4.3. + Twist and braiding data of an anyon theory specified by the twists 6, and the mutual braidings
Sab-

S-and T-matrices

Finally, we can define the topological spin of an anyonic particle via the R-matrix (braid relation)
as
0, =d, ') d.-TeRM (4.3)
C

visualized in Fig. 4.3a. This expression can be understood as creating two particle-antiparticle
pairs (a,a*) braiding the particle a of one pair with the particle a of the other pair and fusing
the resulting particle antiparticle pairs back to vacuum. Since we do not know how to braid
two particles with arbitrary total charge, we need to evaluate the braiding for each total charge
sector ¢ and sum over all possible values.

Similarly we can characterize the braiding of two particles a and b via the entries of the
S-matrix defined as

1 * *
Sup = 75 L Tr(RI REY) (44)
c

and visualized in Fig. 4.3b. The entry S, of the S-matrix describes a process where two anyon
particle-antiparticle pairs (a,4*) and (b, b*) are created, b* and a are braided and at last, the
particle-antiparticle pairs are fused to the vacuum again.

The topological charges define the total chiral charge of the theory

1 2 27i/8
0= 5;@9“ = g2mm/8¢ (4.5)

which determines the chiral central charge ¢ (known from conformal field theory) modulo
8. The chiral central charge is a measure of the asymmetry of the topological spins. Typical
non-chiral theories, i.e., theories with ® = 1 consist of two anyon theories C and C, where C is
the time-reversed copy of C with conjugated topological charges 6 — 6.

4.2.2. Modularity

It is common to restrict the algebraic theory of anyons to a non-degenerate setting, where
each particle (except for the vacuum particle) is observable by a braiding operation, i.e., for
each particle a # 1 there is at least one particle which causes a change of the wave-function
when moved around the particle a. This non-degeneracy condition implies that the S-matrix
is unitary and the S- and T-matrices fulfill a set of equations that are — up to phase factors —
identical to the defining relations for the generators of SL(2,Z), i.e., the group of 2 x 2 matrices
with integer coefficients and unit determinant. While SL(2, Z) has the presentation

SL(2,Z) = (S, T|S* =1,(ST)® = §?), (4.6)
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the modular’ relations for the S and T matrix in the non-degenerate setting are
(ST =0eCc, Ss*=cC, (C?2=1, (4.7)

i.e., they are identical to SL(2, Z) for chirality free anyon models. For a more in-depth interpre-
tation we refer to Ref. [177].

We illustrate the connection between the S-and T-matrices and the group SL(2,Z) for non-
chiral theories. It is an essential observation that each anyonic particle in the theory can be
identified with a particular ground state on a torus of a suitably chosen Hamiltonian repre-
senting the theory® [178]. We illustrate the connection between anyonic particles and ground
states on the torus on the example of the toric code. Recall, that in the toric code there are
four different anyon types and four ground states on a torus. Moreover, we can express logical
operators as the following process: create a particle-antiparticle pair, move one particle around
a non-contractible loop and fuse it again with its antiparticle. This suggests the following
picture: Imagine an anyonic flux e (i.e., a closed e-anyon world-line) inside the torus winding
once around the hole. If we apply the logical operator around the other cycle which corre-
sponds to an m-particle loop around the other cycle, this corresponds to the diagram for S,,.
This suggests to identify eigenstates of the logical m-operator around one cycle with states
of well-defined e-anyon flux through the other cycle. Generalizing this picture, we label the
ground states which are also eigenstates of particular logical operators by anyon types.

As indicated above, we can than access the S- and T—matrices by calculating scalar products
of states with well-defined anyon flux’. We can also change the anyon fluxes by applying Dehn-
twists to the torus. A Dehn-twist is a certain global deformation which consists in cutting the
manifold open along a non-contractible cycle, performing a 360° twist and gluing the cutting
boundaries together again. For example, on a state with well defined anyon flux through
one cycle, performing a Dehn-twist along the same cycle increases the winding number of
the anyon flux. By comparing the state before and after the Dehn-twist we can calculate the
topological spin of the anyonic particle corresponding to the flux. Similarly, the S-matrix entry
S.p can be expressed by performing a sequence of Dehn-twists on a state with anyon flux b
through one cycle, such that after the deformation, the flux is transferred to the other cycle.
Taking the overlap between the “rotated” b-state and the unrotated a-state coincides with the
diagrammatic definition of the entry S,; up to a normalization factor.

From the relations between Dehn-twists and the S-and T-matrix we can see how the latter
are connected to SL(2,Z), which is the mapping class group of the torus. To see this, we think
of the torus as being parametrized by the two winding numbers (1, m) of some imaginary
strings wrapped around the two non-trivial cycles. The two Dehn-twists take the tuple of
winding numbers (m,n) — (m +n,n) and (m,n) — (m,n + m), respectively. Representing
these actions as linear maps 1, t, with integer coefficients, we obtain the standard generators
of SL(2,Z) by identifying t; with T and £, ' with S.

4.2.3. Non-chiral anyon theories and the Drinfeld center

In this Section we consider a particular class of non-chiral braided fusion categories which are
obtained from a given fusion category C by a particular recipe — the Drinfeld center construction.
The Drinfeld center Z(C) of C appears as the anyon content in well-known lattice models for

"The projective version of SL(2,Z), which is called the modular group PSL(2,Z) is obtained by SL(2,Z) when
identifying A and —A.

8For non-chiral theories which are Drinfeld centers of a fusion category the Hamiltonian construction is straight-
forward and will be discussed in the following Section.

For a procedure how this can be done explicitly, we refer to Ref. [178].
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topological order, i.e. in Levin—-Wen string-net models discussed in Chapter Section 5.1. Simi-
larly, PEPS ground states of non-chiral topologically ordered systems have virtual symmetries
captured by a fusion category C while their parent Hamiltonian host anyonic excitations given
by Z(C) (cf. Section 5.2). Thus, it is fair to say that the Drinfeld center construction C — Z(C)
is the mathematical backbone of non-chiral topological.

Definition 4.1. Drinfeld center (cf. Ref. [19, p. 310]) The Drinfeld center Z(C) of a fusion
category C is a category whose objects are pairs (X, ¢x) where X is an object from C and ¢x
is natural half-braid isomorphism ¢x : A ® X — X ® A which is compatible with the tensor
functor, i.e., it fulfills the hexagon equation10 as defined in Fig. 4.2.

As a direct consequence of the definition the Drinfeld center is a braided fusion category. If
the input fusion category C is not too exotic (i.e., it is spherical or, stronger yet, unitary), the
Drinfeld center will also be modular and unitary and thus gives rise to a well defined anyon
model. The anyon labels of this theory are the simple objects of the braided fusion category
Z(C). However, if we calculate the objects of Z(C) built from pairs of simple objects of C and
appropriate braid morphisms, the resulting objects might not be simple. Finding the simple
objects of Z(C) is usually done by identifying the category Z(C) with an associative *-algebra
and calculating its irreducible representations. Depending on the specific approach used in
the calculation one may arrive at different labels of the irreducible representations and it is
not always apparent at first sight, if the latter are equivalent. For example in the case where
C is given by a group G (i.e. its simple objects can be identified with group elements and
the tensor functor is essentially determined by the group law), we may label the irreducible
representations of the Drinfeld center either by pair-conjugacy classes as defined in Section 3.2.2
or by pairs (C, PiZc ), where C denotes the conjugacy classes of G and PiZC are the irreducible
representations of Z¢, where Z is the centralizer for one arbitrarily chosen element of C (cf.
Ref. [31]). Using representation theory, we can immediately verify that the two sets can be
identified with each other.

The anyon theories associated to Drinfeld centers are always non-chiral as proven in Ref. [182]
using category theory. An alternative way to see this is to show that one can always construct
a gapped boundary Hamiltonian to a given bulk Hamiltonian which hosts anyons given by
a Drinfeld center [46]. Note, that the converse is not true, i.e, there exist non-chiral UMTCs
which are not Drinfeld centers [183].

The map C — Z(C) is not injective. There are different fusion categories that have the
same Drinfeld center. Two categories with the same Drinfeld center are Morita-equivalent!!.
In physical terms this means that two seemingly unrelated Hamiltonians can give rise to
the exact same anyonic excitations. An explicit example for Morita equivalent categories
are the two categories which can be derived from a finite group G. The first one VecG, the
category of G-graded vector spaces is essentially determined by the group law itself that
defines the tensor functor for simple objects as Jg ® &), = d¢j,- The other category Rep(G) is the
category of irreducible representations of G, where the tensor functor is given by the direct
sum decompositions of the tensor product representation into irreducible representations.
While we do not know how to proof this statement in elementary terms, it follows from a
general theorem about Hopf algebras (which contain group algebras as the simplest examples)
stating that the representations of the quantum double of G — which for our purpose can be used

19Sometimes one finds the short-hand definition ¢xgy = 1® ¢x o ¢y ® 1, which does not refer explicitly to the
associators. [179-181]

For us, this can be seen as the definition of Morita equivalence, however the actual definition in the category theory
literature is different and is given by duality relations for module categories (cf. Ref. [19, p. 289]).
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synonymously with Drinfeld center — is equal to the quantum double of the representations of
G,ie., Rep(D(G)) = D(Rep(G)) [19, 184].
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5. MPO-isometric PEPS, string-nets and
state-sums

B vy
ﬁ N

Fig. 5.1. + Equivalent manifestations of the pentagon equation in different formalisms describing non-chiral
topological order. Top left: Matrix product operators (MPO) injectivity in tensor networks. Top right:
Self-consistency condition for deformation rules in Levin—-Wen string-nets. Bottom left: Triangulation
invariance of a space time volume (1-4 Pachner move).

Non-chiral topological ordered systems exhibit hallmarks of topological order as e.g. a
topological ground state degeneracy and anyonic quasiparticles. In contrast to chiral systems
—such as e.g. the ones in which the fractional quantum Hall effect [47-49] is observed —
they are fully gapped, meaning that their excitation spectrum is gapped not only if they
are defined on a closed manifold, but also on a manifold with boundary. In contrast, chiral
topological systems (cf. Section 5.4.2) are only gapped in the bulk, i.e., they are gapped on
closed manifolds, but show gapless edge modes on the boundary. The latter can not be gapped
out by small local perturbations. They are chiral in the sense that there is a single mode
with wave-vector k and energy €1 (k) without a “counter propagating” mode at —k with the
same energy €1 (k) = ex(—k)!. In a conventional condensed matter perspective the connection
between chirality (meaning the presence of chiral edge modes) is connected to robust gapless
excitations as follows. If edge modes come in pairs (k, —k) perturbations can gap out the
excitation spectrum around the “band crossing” at k = 0 by suitably “mixing” the two bands.
This is however not possible if there is only a single chiral edge mode. Thus, chiral gapless
edge modes are stable against perturbations.

While the algebraic theory of the bulk anyons (discussed in Section 4.2.1) is the same for
chiral and non-chiral topological order, the microscopic or field theoretic descriptions of the
two are quite different [46]. We will briefly discuss this point at the end of this Chapter in

IThis is often depicted as a circular motion around the edge of the system. However, the edge states are still (stationary)
eigenstates of the Hamiltonian and there is a priori no “motion” associated to them.
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Section 5.4.2, but the remainder of this Chapter is concerned only with non-chiral topological
order.

The theory of non-chiral topological order in two dimensions is highly evolved and the
range of different mathematical formalisms by which it is studied are remarkably broad and
deep [11, 19, 185-188]. The most elementary description is perhaps given by exactly solv-
able lattice Hamiltonians similar to the toric code [31] — the Levin—Wen string-net models [12].
Complementary, ground states of the latter can be written as exact PEPS [63, 64] with virtual
symmetries characterized by matrix product operators (MPOs) [6-8]. Taking a closer look at the
tensor network construction one can identify individual tensors with simplices of a manifold
triangulation [3, 6, 189, 190]. The virtual symmetries of the tensors can be understood as a kind
of triangulation invariance. Thus, the tensor networks associated to string-net models give rise
to fopological invariants [14, 186, 187, 189, 191]. This relates the theory of non-chiral topological
order to abstract functorial topological quantum field theory (TQFT) [13, 192, 193] (not addressed
further in this text).

A particular subclass of non-chiral topological theories corresponds to lattice gauge theories
with finite discrete gauge groups (Dijkgraaf~Witten theories) [189]. Others [12] correspond
to doubled Chern-Simons theories [194], i.e., a bi-layer system with one layer described by a
Chern-Simons theory and the other by its time-reversed counterpart. In a sense dual [3, 187,
195] to Levin—Wen string-net models, the toric code model can also be generalized by replacing
the group Z, with a general group G [31], or even more general a (finite semisimple) Hopf
algebra H [5, 196, 197]. The latter models can be shown to be equivalent to string-net models
and correspond to quantized Chern-Simons theories [197, 198].

We have discussed in the previous chapter that the theory of non-chiral topological order
can be essentially understood — on a very abstract level — in the language of category theory.
A system with microscopic degrees of freedom that interact according to rules determined
by a fusion category C exhibits anyonic particles which are given by the Drinfeld center Z(C).
Nowadays, the mathematical details, extensions and interpretation of this fundamental idea
are mostly studied in the language of higher-category theory [188, 199-202]. It is our im-
pression that the details of how the subjects mentioned here relate to each other are still not
entirely understood. Moreover, it seems that the mathematical structures and their physical
interpretations are only known to a small selected community.

In this Chapter we try to make the subject more accessible to a wider audience and provide
an elementary introduction to non-chiral topological order. We explain the relations between
Levin-Wen string-net models, virtual symmetries in topological PEPS, state sum constructions
and the Drinfeld center (cf. Fig. 5.1). The connections drawn here also allow us to approach a
very practical question later in this thesis. Namely, the question how non-chiral topological
order can be realized in actual physical systems.

5.1. Levin-Wen string net models

In 2005 Levin and Wen proposed a class of exactly solvable models that exhibit non-chiral
topological order [12] — the string-net models. Including their recent generalizations [174,
203-206] string-net models still present the largest class of known fixed point models and we
will briefly review their basic theory following the original reference [12] in the following
Section.

String-net models can be seen as a generalization of the toric code and are described by a
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5.1. Levin—Wen string net models

Fig. 5.2. + An example of a string-net state with four string-types. The vacuum string is drawn with
dashed lines.

commuting projector Hamiltonian

H=) As+) By, (5.1)
v P

of vertex and plaquette operators, A, and B).

The toric code ground state is given by an (equal weight) superposition of closed loops (cf.
Section 3.2.3), i.e., a particular configuration of strings, where spin-up states are associated with
anon-trivial string type and spin-down states are associated with the vacuum, or with the trivial
string type. For a general string-net model there is a set of abstract string-types |a;) ,i =1,..., Ns
that always include the trivial (vacuum) string ap = 0 and the local Hilbert spaces associated
to the edges of the lattice is spanned by a basis that is labeled with the string-types.

Like in the toric code, the vertex projector projects onto the subspace of allowed vertex
configurations, i.e., allowed patterns of strings that. The latter are specified by so-called
branching rules and can be interpreted as the fusion coefficients NS, € {0,1} of a multiplicity-
free fusion category (cf. Section 4.1)2, i.e., there is only one way how two strings a and b can
fuse to a string ¢ or likewise how a string type ¢ can split up into a string a and a string b. For
the toric code there is only one non-trivial branching rule, stating that the non-trivial string-type
is not allowed split into two strings which implies that the vertex projector projects onto states
with an even number of non-trivial strings on the adjacent links of a vertex (even parity).

To distinguish fusion and splitting vertices and particles from anti-particles the edges of the
lattice carry an orientation. The original string-net models [12] impose that the orientation of
an edge can be reversed if the string-type associated to it is replaced by its dual string-type.
This additional axiom restricts the set of non-chiral theories, which can be described by the
model, but simplifies the formalism significantly?.

For a trivalent lattice, e.g., a honeycomb lattice, the vertex constraints are immediately given
by the branching rules. In general, string-net models can be defined on arbitrary graphs by

2Including fusion multiplicities would require to add an additional degree of freedom at every vertex, such that there
is an Ny, -dimensional Hilbert space associated to a vertex where the strings a and b fuse to the string c.

3The condition was later relaxed to allow for more general string-net models [174, 203, 205, 207] and other even
more general constructions are formulated in the language of (Turaev—-Viro-Barret-Westbury) state sums [190, 208,
209] which are equivalent to string-net models [44, 185, 186]. Also, the fermionic string-net models given in [11] -
restricted to the fermionic component of the theory being trivial — yield (bosonic) generalizations of the original
string-net models.
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the following consideration. An n-valent lattice can be decomposed into a small graph with
trivalent vertices and the n-valent vertex operator is defined as the product of the respective
trivalent vertex operators.

The plaquette operator performs a similar action to flipping all spins around a plaquette as
in the toric code. It is given by a sum over plaquette operators associated to each string type

ds
By= Y. JBps. (5.2)
s=1,...,Ng

with D = Y d? and the factors ds defined in Eq. (5.4) are introduced to ensure that the
Hamiltonian is Hermitian. The operator B, o = 1 acts trivially. To understand the action of B, s
for non-trivial string-types, we need to relax the rigid notion of a lattice and consider string-
types more abstractly as string-like objects living on a two-dimensional manifold. The action
of Bys then corresponds to inserting a closed loop of the string-type s into the interior of the
plaquette p and “merging” the inserted loop with the strings on the boundary of the plaquette
such that the interior of the plaquette is string-free again and the string configuration on the
boundary of p has changed. For the toric code, inserting a non-trivial string type has the effect
of flipping all spins, as can be seen by noting that the fusion rules are nothing but the group
multiplication of Z,. For more general string-nets the re-integration of the inserted string into
the lattice structure requires the knowledge of a set of rules specifying how string-configurations
can be manipulated, which is discussed in the next Section.

5.1.1. Deformation rules

Since Levin—-Wen string-net models are designed to exhibit topological order, it is required that
their ground state wave function is invariant under a set of deformation rules, which do not
change the topology of the string-net. A closer look reveals that the latter can be identified
with the defining properties of a fusion category or correspond to additional normalization
conventions. In the following we list and comment on the deformation rules proposed in
Ref. [12].

The first and simplest deformation-rule motivated by topological invariance is the deforma-

bility of strings
@( b ):@( i ) (5.3)

stating that the amplitude of the wave function is invariant under all topologically trivial
deformations of the string-net. The second rule

(0 )-se(B)

states that a topologically trivial closed loop of a string type a can be removed from the config-
uration (similar to the application of a generalized local unitary circuit removing disentangled
degrees of freedom in Section 2.2) while the wave function amplitude changes by a scalar factor
d,. Reminiscent of the quantum dimensions in the algebraic theory of anyons (cf. Section 4.2.1)
the prefactors d; are also referred to as quantum dimensions? and

D =) d (5.5)

4This wording is used even though the fusion category of the string types itself might not necessarily give rise to a
well-defined anyon model as for some fusion categories, no consistent braid morphisms can be found.
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is referred to as the total quantum dimension.

The third rule
q>< ,»CTST >:5i]-q>( ,»C:b,» > (5.6)
states that if a string i branches into two strings which immediately fuse again, the fusion
result has to be the string i. If this was not the case and the fusion product was instead a string
type p, then at the segment of the branching j, k a string type i would simply transform into a
string-type p. This seems to be unphysical as the branching j, k affects the string only on a finite
region and should be invisible at large distances. Thus, if such a transformation i — p would
be allowed, string types i and p could freely transform into each other and would no longer
correspond to distinct string-types. In other words, we require that a string type i always stays
a string-type i as long as it is only “perturbed” by local string-diagrams that do not contain any
outgoing or incoming strings.
The fourth rule is clearly motivated by the associativity axiom of a fusion category

cp< >Jﬂ:(< >—;F,ZZ1(D( [ ) (5.7)

and is referred to as F-move. It is a statement about a configuration where four string types
i,f, k,1 are fused in two different ways and expresses the fact that the wave functions associated
to the two microscopically different implementations of the fusion process should be related by
a linear operator, the F-symbol.

The deformation rules given above can be applied to drastically simplify a string-net configu-
ration. A generic ground state string-net configuration can be reduced to a minimal web of
strings that cannot be simplified any further due to topological obstructions of the manifold. For
example, in the closed loop superposition of the toric code, one can remove every topological
trivial loop and multiply the wave-function by d; = 1 until one ends up with a trivial vacuum
state on a sphere. On a torus we obtain four different ground states distinguished by the
number of non-trivial string types winding around the non trivial cycles.

Self-consistency equations

The deformation rules above cannot be used with arbitrary d;, F]i]lf By the analogy with fusion
categories we strongly suspect that at least the associativity rule, the F-move, must be subject
to a consistency condition similar to the pentagon equation. Indeed, if we require that the wave
function amplitude associated to a given string configuration is unique, we obtain a pentagon
equation for the F-symbols. To see this, consider the string configuration on the top left of
Fig. 5.3. It can be deformed to the configuration on the bottom-right by a sequence of F-moves
along the paths on the left panel. Likewise, it can be deformed to the same configuration via a
different path shown on the right panel. Evaluating and equating the sequences of F-symbols
along the two paths, we arrive at the pentagon equation for F-symbols of string-net models

Ns g - g .
Z Fl?;l*anZrlLZS* Fl]lfr’z1 = Fézf;cr* F;;?s* : (58)
n=1

One may ask whether there are more pairs of paths given by sequences of deformation rules
that connect two different string-net configurations and thus lead to additional consistency
equations. However, MacLanes coherence theorem [173] (cf. Section 4.1.1) asserts that the
pentagon equation is sufficient to ensure consistency, i.e., all other consistency equations are
fulfilled if the pentagon equation is satisfied.
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Fig. 5.3. + The pentagon equation emerges as a self-consistency equation from comparing the two different
deformation paths (left and right) between an initial and a final string-configuration. Labels and arrows
have been omitted in the diagram.

Normalization

Regarding the normalization of the string-net wave function, we note that there is a canonical
rescaling of the wave-function: Associating a factor f(i, j, k) to every vertex with string configu-
ration i, j, k does not affect the validity of the deformation rules. As long as f(i,i*,0) = 1 the
rescaling only results in a gauge transformation of the F-symbols

~ijm ijm f (i, ], k/ l/ ¥
Fk;n = Fk;n fJ‘C((Zn]’ :3;2], k, :ln*)) . (59)

Thus, we can always choose f such that the F-symbol fulfills the following normalization condition

Y (5.10)
*%() ik s
It V;V;

where
v; =\/d; . (5.11)

and J;j is a short-hand notation for the branching rule, i.e., §;x = 1if 7, j and k are allowed to
meet at a vertex and zero otherwise. We will see in Section 5.3.1 that this gauge choice can be
interpreted as a generalization of gauging a 3-cocylce with a 2-cocylce.

Tetrahedral symmetry

In the original work by Levin and Wen [12] it is imposed that the wave function defined on
a minimal sphere (i.e., a tetrahedron) is invariant under reflections and rotations and hence
invariant under the full tetrahedral group. This additional requirement simplifies the string-net
formalism while also making it less general as tetrahedral symmetry restricts the set of allowed
F-symbols as follows. Applying the three generators of the tetrahedral group (reflections
along three different planes) to a given string-net configuration on a minimal sphere, results in
four different configurations. Each can be reduced to the vacuum configuration whereby the
amplitude of the wave-function changes according to the deformation rules Egs. (5.3), (5.4),
(5.6) and (5.7). Equating the wave function amplitudes one obtains the tetrahedral symmetry
conditions for the F-symbols. The latter can be used to introduce the symmetrized F-symbol —
the G-symbol — which is tetrahedral symmetric by definition

ijm __ jim imj
Gk]ln Fkln VVjURY] = F]m "vv; UKV = l]kn*vivjvkvl = F ) 0i0Umn - (5.12)
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Plaquette operator

As discussed earlier the plaquette operator can be best understood as the sum of closed loop
insertions inside a plaquette. To reintegrate the inserted string back to the hexagonal lattice, we
imagine six vacuum strings inside the hexagon and apply six F-moves as in Fig 5.4a to obtain
a configuration with “bubbles” at the vertices. Each bubble can be simplified according to
Fig. 5.4b. Collecting all F-symbols and using Eq. (5.10) we obtain the matrix elements of B s as
s,/ Wikl al bg*h h* di* ej*k k*1

[BP,S]ggjjkl ! ( deef) g* g/gl/*F *gh/ /*FCilil/*FS ]’]l/*F ’Zk/ /*Ff*l/k/* 7 (513)

where g, h,1,j,k, I and their primed variants refer to the string types on the inner edges before

and after the application of Bys and a, b, ¢, d, e, f refer to the string types on the outer links that
remain unchanged.

5.1.2. Relation to fusion categories and remarks on tetrahedral symmetry

In essence, a string-net model is defined from unitary fusion category C. The objects of the
fusion category correspond to the string-types, the fusion rules are determined by the tensor
functor and the F-symbols are a concrete implementation of the natural isomorphisms ax y z
that appear in the pentagon equation for monoidal categories. The existence of a dual object
a* is implied by the rigidity of the fusion category and unitarity ensures that the F-moves
correspond to unitary operations.

Tetrahedral symmetry is not a property of a general fusion category and there are in fact
examples of fusion categories with non-tetrahedral symmetric F-symbols. The simplest example
is the category Vec(Z3, w) where the fusion rules are given by the group multiplication and
the F-symbol is given by one of the two non-trivial 3-cocycles of Z3 (cf. Section 5.3.1). Also,
the condition that inverting edges maps a to a* is an unnecessary restriction. What is required
in order to obtain a well-defined string-net model and in particular a Hermitian string-net
Hamiltonian is that the F-symbols evaluated on a sphere are subject to complex conjugation
when reflected on some arbitrary mirror-plane [205]°

5.1.3. Anyons

The theory of string-net models is designed to yield topologically ordered lattice Hamiltonians.
Thus, we expect that string-net models feature anyonic excitations. As the string-net Hamil-
tonian is a sum of commuting projectors, all excitations are characterized by a finite number

5A deeper understanding of the necessity of the conjugation-mirror-symmetry of the F-symbol can be obtained in the
state-sum picture and is sketched in Section 5.3.2. The latter condition is fulfilled for any unitary fusion category
with the property that a** = a (strict pivotality) [205].

(a) Transforming the inserted closed loop. (b) Evaluation of the bubble configuration.

Fig. 5.4. + String-deformations used in the definition of the plaquette operator (cf. Eq. (5.13)).
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Fig. 5.5. + The deformability condition of the excitation string « expressed diagrammatically.
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Fig. 5.6. + Definition of an excitation string-type « in terms of a string-net configuration with yet to be

determined (matrix-valued) coefficients Qfx st

of vertex and plaquette operator violations. Motivated by the analysis of the toric code, we
expect that excitations can be generated by string-operators. When applied to the ground state,
excitations are generated at the end points of the string, while the excitation string itself can be
deformed freely. A natural ansatz for these operators are matrix product operators (MPOs)
where the bond dimension indicates the complexity of the string-type and the support of the
MPOs should be a line-like region, i.e., of finite width. It turns out that it suffices to use an
MPO that modifies the string-net configuration along a line of connected edges and whose
matrix values depend only on the string types along and directly adjacent to that line. This fact
can be motivated by the observation that Levin—-Wen string-nets have zero correlation length.
The conditions stated above can be captured by the following ansatz for excitation string-
operators expressed in a diagrammatic way. For the sake of conceptual clarity and to avoid
cumbersome notation, we restrict ourselves to the case where string-types are self-dual, as is the
case for several string-net models including the Fibonacci, Ising and the Z, string-net. For self-
dual string-types, we can omit all arrow directions in the diagrams. We introduce an abstract
diagram to denote the presence of an excitation string-operator a. Without loss of generality, we
pick a location that is small enough such that the excitation string only intersects with a single
string-type of the lattice denoted by i in Fig. 5.6. Since, this diagram should correspond to a
state in the string-net Hilbert space, we must be able to express it as a superposition of string-net
configurations. These configurations should have an ingoing and an outgoing i-string and also
the excitation string should be modeled by a superposition of yet to be determined of ingoing
and outgoing string-types s and t. We still need to resolve the crossing of the excitation string
and the i-string. With the assumptions about the locality of the excitation string, it suffices to
pick a specific string segment where the i-string is changed to a (superposition of) j-strings.
J
w,sti

string operator is a matrix product operator, we are free to use matrix valued coefficients (2

The coefficients of the superposition (2 . in general depend on i,s,t and j. As the excitation
j

w,sti
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(a) Left-hand side of Fig. 5.5 evaluated using Fig. 5.6 and deformed using Eq. (5.7).
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(b) Right-hand side of Fig. 5.5 evaluated using Fig. 5.6 and deformed using Eq. (5.7).

Fig. 5.7. + Resolving the excitation string condition (Fig. 5.5) in terms of string-net configurations.

which are multiplied if two a-segments are connected. The dimension of these matrices is not
fixed a priori.

We now evaluate the condition of free deformability stated in Fig. 5.5 in diagrammatic
notation. Replacing the a-strings with string-net diagrams as defined in Fig. 5.6, we can apply
several F-moves to reduce both sides of the equation to a sum over string-net configurations
with prefactors given by 2- and F-symbols (cf. Fig. 5.7). From this we obtain an algebraic
condition on the (2-matrices

vjv
slz s jik ~n jln
Zﬂa rsj* kjm zxstz Om Z Ftletx rtk Fkrm‘ (5.14)
n=0

A direct sum of solutions to Eq. (5.14) is again a solution. We are thus interested in calculating
the irreducible solutions to Eq. (5.14), i.e., the ones with minimal matrix dimensions. We can
identify the latter with elementary anyonic particles and direct sums with superpositions.

Calculating the irreducible solutions for (2 explicitly can be tedious. However, we realize that
the equations determining the excitation string types are very similar to the definition of the
Drinfeld center of C, the fusion category of string-types. Identifying each F-symbol with the
associator and each (2 with the braid morphism, Eq. (5.14) is almost identical to the hexagon
equation in the definition of the Drinfeld center (cf. Fig. 4.2 and Section 4.2.3). In the original
string-net models, the equivalence of the quasi-particle excitations with the Drinfeld center is
obvious for certain cases, e.g., when C is a group (cf. Section 5.3.1). A more general equivalence
of quasi-particle excitations in string-net models and the Drinfeld center construction is proven
in Ref. [206] using the so called Q-algebra approach.

Relating the quasi-particle content to the Drinfeld center has practical advantages. First
of all, we know from fundamental category theory that the string-excitations indeed form
a modular unitary braided fusion category and thus a consistent anyon model. In addition,
Drinfeld centers are known in the literature for a large set of fusion categories. On top of that,
known Morita equivalences allow to infer the anyon content of complicated string-net models
from more simple ones. E.g., the anyon content of the fusion category Rep(S3) which has
three string-types with non-Abelian fusion rules and non-trivial F-symbols can be inferred
from the the anyon content of the string-net model with fusion category Vec(S3) which has six
string-types, but trivial fusion rules given by the group multiplication and trivial F-symbols.
The Drinfeld center of the latter coincides with the quantum double algebra D(G) introduced
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(a) Fat lattice picture (b) PEPS representation

(c) The tensor T associated to every vertex.

Fig. 5.8. + The tensor network ground state of a string-net model obtained from (a) starting with the
vacuum state and applying plaquette operators at every plaquette, deforming the string configuration
(b) and replacing the string configurations at each vertex by a tensor (c). (d) shows the resulting tensor
network representation.

in Ref. [31] as a generalization of the toric code model for general groups G. The equivalence of
the Drinfeld center and the quantum double can be directly seen when evaluating the algebraic
equations for the (2 matrices in the case where fusion is unique and specified by the group
multiplication (cf. Section 5.3.1).

5.1.4. Tensor network construction

The PEPS construction for string-net ground states [63, 64] proceeds analogous to the PEPS
construction for the toric code ground states. We start with the vacuum state which is an
eigenstate of all vertex operators. Next, we apply the plaquette operator at all plaquettes

[¥)cs = [ [ By 10) (5.15)
p

In the fat-lattice picture this corresponds to inserting a closed loop of a string type s weighted
by a factor as; = d;/ D and summing over all string-types. The inserted loops eventually take
on the role of virtual index lines (cf. Fig. 5.8).

To arrive at the concrete tensor network expression, the loop pattern is deformed to a string-
configuration with strings on the edges of the hexagonal and bubble configurations at vertices
(cf. Fig. 5.9). The F-symbols of the deformation move are evaluated using Eq. (5.10). The
bubble configurations at the vertices are replaced with bubble-free configurations, weighted
by F-symbols (cf. Fig. 5.4b). This allows us to express the string-net ground state as a sum
over string configurations on the edges of the honeycomb lattice. Each of these physical
configurations is weighted by a sum over all auxiliary string-type configurations that have led
to the physical configurations and each addend is weighted by the product of all F-symbols and
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Fig. 5.9. + Reintegrating inserted loops and obtaining bubble configurations (cf. Fig. 5.4b) at the vertices.

quantum dimension factors that emerged during the string-net deformations explained above.
We distribute the product of the latter evenly over all vertices, such that every vertex with
physical strings i, j, k on the adjacent edges and auxiliary strings ¢, s, u (that were “historically”
present on the adjacent plaquettes) is associated with a factor

” .
T, = (asauar)® | /0i0;0¢G,, . (5.16)
This 6-index tensor is shown in Fig. 5.8c and is defined in terms of the G-symbol
ijk _ pijk 1
Gt]su = Fti*um (5.17)

which has a cyclic invariance under the permutation (i,t) — (j,s) — (k, u). This allows us to
write the ground state as a tensor network with tensors T° at every vertex as shown in Fig. 5.8b.

Note, that the former fat-lattice loops drawn in red have become virtual indices that form
closed loops. For each closed loop u we obtain six factors al/® from the six adjacent vertex
tensors. Alternatively, one may define the tensors T without the factor (asauat)l/ 6 and instead
impose that every closed u-loop of the tensor network contributes a factor d,. This is helpful
if the tensor network is defined on lattices where the number of vertices around a hexagon
is not always the same. Such lattices are interesting for the description of manifolds with
locally varying curvatures. To see this, one may consider the dual lattice of any trivalent lattice
formed by the triangle tensors T. Imagining that those form a regular tiling of a manifold, a
varying number of vertices around a plaquette then corresponds to a varying curvature of the
underlying manifold.

As a remark for later reference, we note that the G-symbols fulfill a pentagon equation that
is directly derived from the pentagon equation for the F-symbols in Eq. (5.8)

Ng . - . .
Y d, GG GET =GP, .G (5.18)
n=1

kpn ~mn*s* gk re S ml*s*

The pentagon equation for the G-symbols constitutes an interesting symmetry of the tensor T,
that we will explore in more detail in the next Section.

5.2. MPO-isometric PEPS

We have discussed a tensor network representation for string-net models [63, 64] and seen in
Chapter 3.2.3 that the PEPS ground state of the simplest string-net model — the toric code —

6Note, that we have largely omitted arrow orientations and the distinction between a string-type a and its dual a* in
the description of the moves. To be precise, a tensor ik

tsu
honeycomb lattice, while a tensor th;i*k*

has to be placed at every vertex of the A-sublattice of the
is placed at the B-sublattice.
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is G-injective with G = Z;. It is natural to ask, what kind of virtual symmetry is hidden in a
general string-net ground state PEPS or the slightly more general question: What is the kind of
virtual symmetry underlying non-chiral topological order?

It turns out that to characterize general non-chiral topological order in a tensor network
formalism the concept of G-injectivity has to be generalized in the following way [6-8]: The
group G is replaced by a fusion category C. The symmetry operators associated to each object
of the fusion category are no longer represented by factorizing operators U, acting individually
on each virtual index, but instead need to be replaced by matrix product operators (MPOs)
O, build from local tensors with finite bond dimension. Adapting the notion of symmetry
and injectivity one arrives at the definition of M PO-injective PEPS which capture all string-net
models and for which the hallmarks of non-chiral topological order can be calculated directly
from the symmetry objects, i.e., the MPOs.

Before we proceed with the details of the construction let us recall the essential mechanisms
that cause G-injective PEPS to be topologically ordered and try to formulate them as general
axioms that can be extend beyond the group symmetry case. For G-injective PEPS the local
indistinguishability of ground states follows from the deformability of the symmetry g-strings.
However, there is no immediate need that the set of symmetry strings form a group, however
they should form a set closed under multiplication (i.e., placing two symmetry strings parallel
to each other). Further requirements on the symmetry strings emerge from considering the
growth of the virtual support spaces. Recall that the topological correction to the entanglement
area law follows from the fact that the symmetric projector given by the sum of all symmetry
operators P =}, Ug ® ... ® Ug reduces the dimension of the virtual support space of a tensor
network patch by a constant factor 1/|G| which is independent of the patch size (cf. Section 3.2.4
and Eq. (3.16)). We infer that in general we are looking for a set of deformable virtual symmetry
strings from which we can construct a well-defined projector on all possible boundaries of a
tensor network patch which reduces the growth rate of the rank of the reduced density matrix
by a size independent factor, such that the topological correction to the area law emerges. We
expect that this symmetry projector is given by a sum over all deformable string types. A
general ansatz for such a projector is a matrix product operator with constant bond dimension.
Interpreting the MPO as an MPS, the existence of a canonical form for (translation invariant)
MPS directly implies a block structure of the MPO, i.e., the latter can be decomposed into a
finite direct sum of single block MPOs suggesting the identification of the set of deformable
string-types with the set of the single blocks of the MPO.

There are various ways to formalize the two conditions on symmetry strings stated in the
previous paragraph into a set of axioms. In particular, one can formulate several local conditions
that are strong enough to infer global properties of the PEPS or alternatively require global
properties of the PEPS, i.e. properties valid on all tensor patches, and infer a set of algebraic
conditions from the latter. The local approach is the one taken for G-isometric PEPS reviewed
in Section 3.2 as well as for the slightly more general (G, w)-injective PEPS [6] already requiring
to use MPOs as symmetry objects. The most general local approach is presented in Ref. [7].
Here, one starts with a local deformability condition for MPO operators referred to as pulling
through condition formulated for a single site of the tensor network, i.e., for a single PEPS
tensor. An additional condition, namely that trivial MPO loops can be removed (cf. Eq. (3)
of Ref. [7]) implies that closed single-site MPOs are projectors. A local injectivity condition,
namely the invertibility on the support space of the local MPO projectors completes the set
of local axioms. In order to elevate the local axioms to global properties valid on all tensor
network patches one requires the existence of a local operator which can remove local degrees
of freedom that are only weakly entangled with the rest of the lattice (cf. Eq. (14) and (15) of
the supplemental material of Ref. [7]). This is achieved by imposing the existence of a suitable
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Fig. 5.10. + The MPO projector defined in Eq. (5.19) for N sites. The circle tensor diagonal in the block-index

a is given by the weights w, and the red squares correspond to the (block) matrices B, .

so called generalized inverse (cf. Egs. (4) and (5) of Ref. [7]). The symmetry condition (pulling
through) is automatically valid on all length scales by sequentially pulling the symmetry string
through sites. While this set of local axioms is consistent and implies global MPO-injectivity, it
fails to illuminate the algebraic structure of the symmetry objects and the connection to fusion
categories and string-net models is not apparent at first sight.

In contrast, in the opposite, the global approach presented in Ref. [8] one requires the
existence of a Hermitian projector MPO built from local tensors which determines the virtual
support space of every tensor network patch of the PEPS. Employing known results about
the canonical (block diagonal) form of MPS one can decompose the MPO into single blocks
and derive strong algebraic conditions on the individual MPO tensors. Under a few mild
additional assumptions one can show that the single blocks form a fusion category. If one
additionally requires the unitarity of the fusion category, the MPO tensors can be used to define
MPO-isometric PEPS on arbitrary lattices and the single block MPOs can be identified with
the deformable symmetry strings fulfilling the pulling through conditions. This completes the
equivalence between the local and the global approach”. The appearance of a fusion category
strongly suggests that MPO-isometric PEPS are capable of describing string-net ground states.
This can be checked explicitly and the symmetry MPOs are presented in Section 5.2.4.

5.2.1. Translation invariant Hermitian projector MPOs and fusion categories

In the following Section we review the global approach to MPO-isometric PEPS sketched in the
preceding paragraph in more detail. We closely follow Ref. [8] and summarize how translation
invariant Hermitian MPO projectors defined on all length scales give rise to a fusion category.

The projectors considered give rise to translation invariant MPOs. They are constructed from
identical tensors B placed at every site and an additional tensor A, that commutes with all Bs.
Using the fact that the canonical form for MPS [60] can be applied to MPOs as well, we obtain
the following block diagonal form

N D o -
P=Y w, Y t(B'B*...B/") livia...ir) (jajo-.-jrl , (5.19)
a=1 {i}.{j}

where g is the block index and the single block tensors B, are injective, w, € C are global
weights associated to the block MPO a and result from the commuting matrix A. The matrix

multiplication of the B;j is left implicit (cf. Fig. 5.10).

7Apart from the pulling through condition, the other two local axioms, i.e., the trivial loop condition and the existence
of a generalized inverse follow from the the unitary of the MPO fusion category and from sufficiently blocking
individual MPO tensors, respectively.
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As discussed earlier, we require that the MPO P is a Hermitian projector on all length scales.
With the following abbreviation

D L
Z tr(B,lllh B;ZJZ . IIJL) |1112 > <j1j2 .. ]L‘ (5.20)
{ip A7}
the projector property implies
PP=P & Y w,wy0,0, = ZwaOa , (5.21)
a,a’

which can only be realized for boundaries of arbitrary length of the tensor patch, if

0,0 = Ng,Oc , Zwawb =W (5.22)

and N, takes integer values. Hence, we find that the block-MPOs possess a fusion rule on a
global level. By the arguments in Ref. [60] this also implies the existence of a fusion rule on a
local level of individual B tensors. Le., for blocks a, b, ¢ there exist u = 1,..., N¢, fusion tensors
X, Xt that map the block matrices B; ® By, locally to B, via

XaE, (23” ®B]k> & = B (5.23)

We will restrict to multiplicity-free fusion, i.e., N, € {0, 1} and omit the index y in the following.
Assuming a technical a non-degeneracy criterion® the stronger inverse condition

N y .

Y X¢,BkxG = Y BY @ BJf (5.24)
c=1 j

holds.

Hermiticity of the projector implies the existence of a dual single block MPO O, such that
O} = O, and @, = w,+. Since two identical MPOs must be related by a gauge transformation
of the local tensors, this implies the existence of an inversion tensor Z that relates B, to B}.
More precisely, we have

B = 27,'Bl7,. (5.25)

A gauge transformation can be applied to simplify the matrices Z, such that for a # a* we
have Z,Z,+ = 1 and for a = a*, we have Z,Z,+ = x,1, where x, = +1 is an invariant closely
related to the categorical definition of a Frobenius Schur indicator (cf. Section 4.1.2). Unless
the fusion algebra of block MPOs can be split into several components A, B, . .. that do not talk
to each other, i.e. Ny, = 0ifa € Aand b € B for all possible ¢, one can identify a unique block
labeled by 1 that corresponds to the unique unit element of the fusion category9 One can then
show that the sum over c appearmg in 0,0, = Z O, contains N .0 which allows us to
identify the dual element a* with the inverse of a'°

Associativity of the product O,0,0, implies NsbNgc Yr Nd Nf (cf. Eq. (42)) and on a
more fine grained level the existence of an F-tensor relating two fuswn trees, i.e., the fusion

aa* aa*

8We neglect possible off-diagonal blocks, because they do not contribute to closed MPOs.
90On the level of MPOs the unit element is singled out as the single-block MPO tensor that has the largest spectral
radius after tracing out the vertical indices (cf. Ref. [8]).
10Recall, that in a fusion category, the notion of an inverse is not to require O,0,+ = O; but the significantly weaker
condition that O; is contained in the fusion product of O, and O,+.
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tensors realizing the fusion (a,b) — e and (¢,e) — d must be related by a tensor Pgbjf to the
fusion tensors realizing the fusion (b,c) — fand (4, f) — d, ie.,

(X4, ©1) X 2 Fite (1o x],) x2; (5.26)

Alocal realization of the pentagon equation then follows from considering the product O,0,0.0y
and how a local segment of this MPO tensor can be fused using two different fusion trees
abbreviated as ((a,b),c),d and a, (b, (c,d)). The two tensor expressions associated to them can
be related in two different ways and both are given by applying a collection of F-tensors to
them. This implies the pentagon equation for the F-tensor as

Y pate pahd Fbcd — pfedpab (5.27)
[

8fh”egi egj “efi ’

which is very similar to the pentagon equation derived for the F-symbols of string-net mod-
els (cf. Eq. (5.8)) or the pentagon equation occurring in the algebraic theory of anyons (cf.
Section 4.2.1).

This concludes the survey of how translation invariant Hermitian projector MPOs correspond
to fusion categories. In the next Section we discuss how the latter can be used to define a class
of topologically ordered PEPS.

5.2.2. MPO-isometric PEPS

A PEPS is called MPO-isometric, if each patch of the tensor network is invertible on the space
defined by the MPO projector P applied to its boundary and every single-block MPO O, can be
pulled through the tensor patch. There is one subtlety we need to take into account to complete
this definition. Recall, that in the G-injective case, we defined PEPS on a square lattice and
assigned to each edge of the lattice a direction specifying that the symmetry operator U is
used for the virtual index associated to the starting point of the edge while U is the appropriate
symmetry operator for the PEPS tensor on the end point of the edge (cf. Section 3.2.1). In the
G-injective case this definition allows to pull virtual symmetry strings through the lattice by
inserting a closed loop symmetry operators and then using UtU = 1 to absorb the g-string on
one side of the tensor patch. This is possible only if the symmetric projectors are defined with
tensors Ug and Ug depending on the edge orientations of “virtual lattice” formed by the virtual
index lines. Clearly, MPO-injective PEPS should contain G-injective PEPS as a subclass. Thus,
when constructing MPO-injective PEPS we again equip the lattice with directed edges and use
the tensor B, and its Hermitian conjugate B} = B,+ in the definition of the symmetry projector.
For the construction of MPO-injective PEPS the MPO tensors are restricted in such a way
that the corresponding fusion category is unitary [8]. This implies that all local gauge tensors
Za, X, are isometrics, ie., Z, 1 = 7t and XT = X' and there exists a pivotal structure (cf.
Eq. (37) of Ref. [8] and Ref. [18, Section E.2.3]), which essentially allows to cyclically permute
the roles of different blocks in fusion and splitting “processes” by using appropriate duals!!
With these additional properties we can define MPO-injective PEPS by placing closed MPO
projectors P on every vertex of a lattice with oriented edges and connecting virtual indices as
in Fig. 5.11a. Whether we choose B, or B} at each edge is determined by the direction of the
edge (ingoing or outgoing). Applying an arbitrary PEPS map which is injective on the MPO

1 Note that technicalities of this kind are avoided in the context of string-nets in the original paper by Levin and Wen
[12] by restricting to fusion categories where inversion of a string-direction is identical to taking the dual and there
is no clear distinction between a fusion and a splitting vertex.
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(a) MPO-isometric PEPS (b) MPO-injective PEPS

Fig. 5.11. + (a) MPO-isometric PEPS constructed from MPO projectors. An MPO-injective PEPS (b) is
obtained by inserting additional local PEPS maps, which are injective on the image of the local MPO
projectors.

subspace to the “interior” open indices of the MPO projector yields an MPO-injective PEPS
(cf. Fig. 5.11b). One can check explicitly that the pulling through condition is valid for a single
site and thus valid on arbitrary tensor network patches. Injectivity on a single site is fulfilled by
definition. It can be shown that injectivity also holds on all patch sizes by explicitly constructing
an inverse on two sites from the inverses on single sites and repeat the same procedure to
“grow” the inverse until the desired patch size is reached (cf. Eq. (49) of Ref. [9]).

5.2.3. Parent Hamiltonians and topological order

The parent Hamiltonian of an MPO-injective PEPS with PEPS map A constructed according to
Eq. (2.17) is gapped in the vicinity of the isometric point. At the isometric point itself it can be
expressed as
+
H = ZAPAP , (5.28)
P

where A, denotes a blocked tensor patch on a full plaquette p, i.e., the contraction and blocking
of e.g. four tensors on a square lattice or six tensors on a hexagonal lattice analogous to the
G-isometric case (cf. Eq. 3.11).

If the parent Hamiltonian is gapped, it describes a (non-chiral) topological phase of matter. It
has a topological ground state degeneracy with locally indistinguishable ground states and an
excitation spectrum of anyonic quasiparticles. It is a remarkable feature of the MPO-injectivity
formalism that the latter quantities can be calculated from the MPO tensors alone. At the core
of this achievement lies the fact that the tensor network representation gives direct access to
the entanglement structure of the ground state: A closed loop MPO projector can be thought
of as a witness of the entanglement shared between the regions separated by it. This picture
can be extended to characterize excited states which correspond to local modifications of the
ground state wave function on finite disk-like regions. The anyonic charge inside a region
deviating from the ground state can be detected via the entanglement that is shared between
the region and the rest. An adjusted “MPO-witness” can be constructed that projects onto
the entanglement space associated to a specific anyonic charge. By finding those minimal
projectors, we can find out the distinct anyon types which can occur as local excitations. In the
following, we will discuss the observations sketched here in more detail.
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Topological correction to the area law

As a direct consequence of the MPO-injectivity axioms the rank of the reduced density matrix,
i.e., the zero-Renyi entropy Sg (cf. Eq. (2.5)) on any large enough region of an MPO-isometric
PEPS is given by the rank of the Hermitian projector MPO P, which can be evaluated by taking
its trace. A short calculation shows that the logarithm of the rank scales with the length of
the boundary region, but with a topological correction determined by the weight w; of the

MPO-block Bij corresponding to the unit element of the fusion category

So =AML —log (;) . (5.29)
1

Here A is the eigenvalue of _; B Since the spectrum of the MPO projector P is flat, we find
the same scaling for the von Neumann entropy.

Ground state degeneracy and local indistinguishability

The ground state space of the parent Hamiltonian can be characterized analogously to the
G-injective case. Calculating the intersection of all local ground state spaces given by the
individual local Hamiltonian terms one finds that the Hamiltonian is frustration free and the
ground state space on an open patch is spanned by the PEPS tensor network with arbitrary
virtual boundary tensors (that can be taken to be MPO-isometric without loss of generality).
The calculation is performed by applying the generalized inverse and the pulling through
conditions several times and can be found in the Supplementary Material of Ref. [7].

To calculate the ground state space on the torus one considers a minimal torus. The results
obtained carry over to any torus of finite size. For a minimal torus the intersection space of
the ground state spaces on four different overlapping lattice patches (that cover the whole
manifold) is spanned by all states |¥, ) defined from closure tensors Q; via the tensor network
depicted in Fig. 5.12a. The tensor Q; has to be such that each state |¥g,) can equally well
be expressed in terms of other closure tensors Qy, Q3, Q4 located at different lattice sites (cf.
Fig. 5.12).

One can then show that two closure tensors yield the same state, if they evaluate to the same
tensor when contracted with an “MPO buffer region” (cf. Eq. (40) of Ref. [7]) and further, that
two tensors Q;, Q; with i # j yield the same state even when they are placed at the same lattice
site. This implies that the ground states are derived from closure tensors which can be moved
freely throughout the lattice and thus the state |¥(Q)) is a ground state for all closure tensors
Q = Q1 = Q2 = Q3 = Q4 which fulfill the pulling through condition.

The pulling through condition of the Q tensor implies that closures are not detectable locally.
As a consequence different ground states arising from different closure tensors can not be
distinguished locally.

The calculation of the Q-tensors can be performed analytically for certain simple cases of
MPO-injectivity such as the twisted quantum double models [6, 210] and their fermionic
counterpart discussed in Section 5.5.2. In general the calculation is straight forward but tedious.
An alternative way to calculate the ground state degeneracy based on the identification of
orthogonal ground states with distinct topological charges is presented at the end of the next
Section.

Anyons

The anyonic excitations of the parent Hamiltonians of MPO-isometric PEPS can be calculated
from the MPO tensors themselves. The calculation is inspired by general TQFT arguments and
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() [¥(Q3)) (d) [¥(Q4))

Fig. 5.12. + The four different closures on a minimal torus given by closure tensors Q);.

76



5.2. MPO-isometric PEPS

related to Ocneanus tube algebra [211], also called Q-algebra in Ref. [206]'2. It is known that
Ocneanus tube algebra is a presentation of the Drinfeld center [206].

Before we discuss how to obtain the anyonic charges from the MPO-isometric PEPS formalism,
we first try to provide an intuitive understanding of the tube algebra and its relation to anyonic
charges. It is instructive to consider a sphere with two anyons 4 and a* located at the two
poles. Since anyons are local excitations, the state is not distinguishable from the ground state
anywhere except for two finite disk-like regions around the poles'. If we cut out the regions
of the anyonic particles, we obtain a cylinder (a tube) or likewise an annulus with two open
boundaries. The state space spanned by all possible boundary configurations is contained in
the ground state space on an annulus. We conclude that an arbitrary excited state with two
anyons can be expressed as a state within the ground state space on an annulus that is “closed”
by appropriate states on disks, which carry come anyonic charge. We are thus looking for a
partitioning of the ground state space on an annulus into sectors, which corresponds to the
elementary anyon types.

This partitioning can be found using the tensor network formalism, where the cutting and
gluing operations sketched in the preceding paragraph are well defined constructive operations:
Cutting corresponds to cutting virtual index lines and gluing corresponds to contracting indices
of two tensor network patches. With this notion of gluing and cutting in mind, we proceed to
discuss the gluing of two annuli forming again an annulus. If the annuli is a segment of the
tube obtained from cutting out the anyon disks a and a* gluing together several such segments
corresponds to an elongation of the tube and should have a trivial effect, since the theory is
insensitive to deformations which do not change the topology (topological invariance). Thus,
we claim that gluing two such segments results in an annulus segment which can be identified
with a single segment. If we parameterize the ground state space on the annulus by a tensor
network with open virtual indices, we obtain a linear map A from one boundary space to the
other and gluing amounts to the multiplication of the two linear maps and again results in an
annulus associated with a linear map. In the light of the above considerations we claim that
idempotent maps (AA = A) can be associated with states that carry a well defined anyon flux
from one boundary to the other. Concretely, the anyonic charge is transported by a deformable
virtual string — a virtual version of the anyonic excitation string W, encountered in the string-net
model. In a string-net language, the idempotency of the linear map corresponds to the fact
that gluing to string-configurations with a W, such that the ends of the two W; strings are
connected, can be reduced to a single configuration with a W, string. To obtain the anyon types,
we are looking nor for arbitrary idempotents, but for minimal ones, i.e., idempotents that can
not be decomposed into direct sums by a unitary basis change on the virtual indices.

The tensor network parametrization of the ground states on the annulus are the key to
actually finding the latter. In Section 5.2.3, we discussed the ground state space on a torus. The
ground state space on an annulus is given by cutting the torus open at a non-trivial cycle. It
can be parametrized by inserting a single MPO along a cut from one boundary to the other
(cf. Fig. 5.13a). By using the fusion rules for single block MPOs, we can distill the minimal
virtual support space on an annulus of finite size and find represent it by a linear map A,; with
open block-indices 4, c and additional virtual indices that are not spelled out explicitly and
depend on the circumferential size of the annulus. We can further decompose the map A, into
its components A,;.5, where b and d denote virtual block indices in the tangential direction
of the annulus and specify to the case where objects are self-dual (cf. Fig. 5.13b). Evaluating
the gluing operation, i.e., the multiplication of two maps is a non-trivial task and requires the

12For a connection between the two and the technical details between the latter we refer to Ref. [212]
13The size of that region depends on the correlation length. For fixed-point models discussed here, the correlation
length is zero and hence, a minimal width of a few lattice sites is sufficient to shield of the effect of the anyon.
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d

Y
1
c
(a) Ground state space on an annulus. (b) Virtual support space.

Fig. 5.13. + (a) Ground state space parametrized by an MPO-isometric tensor network and (b) its virtual
support space spanned by the tensor A,,.; on an annulus with boundary of length four. Indices on the
left and right boundary are contracted.

application of several “F-moves” defined in Eq. (5.26) (cf. Ref. [8, Appendix B]). We finally
obtain

_ (hjci)
AhngAade - 53” Zf(hegf),(abcd)A(hjCi) ’ (5.30)
g

here F can be expressed essentially'* in terms of three F-symbols much like the defining
equation for string-operators (cf. Eq. (5.14)) and again resembles the definition of the Drinfeld
center (cf. Fig. 4.2 and Section 4.2.3). We suspect that the A-maps from a C*-algebra and verify
this intuition by explicitly calculating AT. Knowing that every finite dimensional C*-algebra
is isomorphic to a finite dimensional matrix algebra, we know that we can decompose the
A-(tube)-algebra into minimal idempotents (matrix blocks) using the ansatz

Pi=Y_ CapcaAabed - (5.31)
abed

A numerical algorithm to actual perform the calculation can be found in Appendix C of Ref. [8].

5.2.4. String-net PEPS as MPO-isometric PEPS

The generalization of G-injective PEPS to MPO-injective PEPS was motivated by the finding that
G-injective PEPS sutffice to capture the ground states of simple models exhibiting topological
order such as the toric code (and in general all group quantum double models), but fail to
represent the virtual symmetries of string-net PEPS. Furthermore, we have seen that both,
string-net models as well as MPO-injective PEPS are manifestations of fusion categories. In this
Section we explain how string-net PEPS fall into the MPO-injectivity formalism.

The PEPS tensors of string-nets derived in Section 5.1.4 are essentially given by a G-symbol
and thus the pentagon equation for G-symbols (5.18) provides a symmetry of the tensor.
Indeed, one can define virtual MPO-tensors in terms of G-symbols (cf. Fig. 5.14a) such that the
pulling through condition for a PEPS tensor on a trivalent lattice (cf. Fig. 5.15b) is nothing but
the pentagon equation. This is most conveniently done by using the convention that a closed
virtual index line u contributes a factor d,,, where d,, is the quantum dimension. In this case,
the tensor T is defined without the prefactors (ata,a5)'/® in Eq. (5.16) and given in Fig. 5.14b
(cf. Ref. [7]). Likewise, one can explicitly find a pseudo inverse of the PEPS map in terms of
the G-symbol as given in Fig. 5.14c. Applying the pseudo inverse to the PEPS map we obtain
the right-hand side of Eq. (5.18), while the MPO projector evaluates to the left-hand side of the
pentagon equation (cf. Fig.5.15a). To see this, it is necessary to apply the tetrahedral symmetry

4There is an additional factor associated with taking dual block labels, which we do not discuss here.
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(a) MPO-tensors (b) PEPS map (¢) Pseudo-inverse

Fig. 5.14. + MPO tensors, PEPS map and pseudo-inverse for string-net models.

hd

(a) MPO-injectivity (b) MPO symmetry

Fig. 5.15. + Axioms of MPO-injectivity fulfilled by the string-net tensors and their symmetry MPOs.

relations for the G-symbol which follow directly from the tetrahedral symmetry conditions of
the F-symbol in Eq. (5.12).

The MPO-tensors for string-net models have a slightly different structure then the B, tensors
introduced in the general formalism. To see that they are equivalent note that the index f

in Fig. 5.14a is a block index and takes on the role of the index a in Bf,j . The indices (a,b, )
are blocked to form index i and likewise ((;, e,d) are blocked to form index j. The block-row

and block-column indices of the matrix By are given by the blocked indices (b, c) and (a,d),
respectively.

Relevance and Implications

The accessibility of string-net models as MPO-isometric PEPS has several benefits. First of
all, we can use the MPO-isometric PEPS formalism to calculate properties of the string-net
model in a way that is perhaps easier to track (though eventually equivalent). Second, the
explicit and formal use of unitary fusion categories within the MPO-formalism which does
not take into account additional structure such as tetrahedral symmetry allows to generalize
string-net models easily. Third, the parent Hamiltonians of string-net ground state PEPS are
accessible as the low-energy effective theories of comparably simpler Hamiltonians than the
original Levin-Wen Hamiltonians. This insight is prominently used in the next Chapter of this
thesis, where blueprints for synthetic quantum matter realizing non-chiral topological order
are devised (cf. Chapter 6).

At last, the MPO-isometric PEPS framework can be applied to study phases of matter numer-
ically and detect topological order. Starting from a given Hamiltonian one can optimize for the
best PEPS wave function with a given bond dimension using PEPS algorithms [144, 147-149].
Once a good ground state approximation is found one can investigate virtual symmetries and
the virtual subspace to determine the MPO-tensors. This method is in principle superior to
calculating the modular data from the ground state space of the model on a torus. In the latter
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approach one calculates the S- and T-matrices from overlaps between rotated (S-matrix) and
sheared (T-matrix) minimally entangled ground states (MES) on a torus (cf. Ref. [178] and
Section 5.2.3). However, while it was long conjectured that the S- and T-matrices characterize
an anyon model uniquely [213], a series of counterexamples provided in Ref. [214] showed
that this is actually not the case and thus the method is not able to uniquely determine the
topological phase. Recently, it was shown in Ref. [215] that to distinguish the topological
phases with identical S- and T-matrices found in Ref. [214] it is sufficient to calculate the
mapping class group representations (provided in a similar way as the calculation of S-and
T-matrices) on higher genus surfaces. The construction of ground states on the latter can be
done using only the MPO tensors. In fact, once the fusion category C of the MPO tensors is
found, it uniquely determines the anyon model of the theory since the latter corresponds to the
Drinfeld center Z(C). As a concluding remark we note, that very recently the method outlined
above, i.e., calculating the PEPS ground state numerically and extracting the topological order
from the PEPS tensors has been implemented in Ref. [216].

5.3. Example - The twisted quantum double models

To illustrate the string-net and MPO-isometric PEPS formalism discussed in the previous
two Sections, we consider a particular class of string-net models as an explicit example — the
twisted quantum double models [210] — characterized by a finite group G and a 3-cocylce
w € H3*(G,U(1)). Twisted quantum double models were first introduced by Dijkgraaf and
Witten [189] in the context of 2+1 dimensional Chern-Simons theory with finite gauge group —
later referred to as Dijkgraaf-Witten Chern-Simons theory. The path integral partition function
of the latter defines a topological invariant on any closed 3-manifold Z(M) and we will show
how the latter is related to the tensor network description.

The construction of topological invariants is a subject of great interest to the mathematical
community and similar constructions for topological invariants were introduced by Turaev
and Viro shortly afterwards [190] and generalized later by Barret and Westbury [191]. Explicit
connections between Turaev-Viro invariants (also referred to as Turaev—Viro state sums)
and Levin—Wen string-net models were drawn later in the context of topological quantum
computation [44] and for the special case of (untwisted) quantum double models [185]. In
Ref. [186] Kirillov generalized these ideas and showed that Turaev—Viro-Barret-Westbury state
sums are in one-to-one correspondence with Levin—-Wen string-nets.

Due to a restriction (tetrahedral symmetry) on the F-symbols in the original paper by Levin
and Wen [12] several twisted quantum double models were not accessible within the string-net
formalism and the connection between Turaev—Viro state sums and string-nets did not carry over
to Dijkgraaf-Witten models immediately. In Ref. [210] a Hamiltonian formulation of Dijkgraaf-
Witten theories was presented and the name twisted quantum double models was introduced.
A partial identification with string-net models was also presented. Later, generalizations of
string-net models relaxing the tetrahedral symmetry conditions were presented for string-types
that are given by Abelian groups G [203]. In parallel to these generalizations, Dijkgraaf-Witten
theories/twisted quantum double models were characterized via MPO-isometric PEPS in
Ref. [6]. For suitable gauges of the generalized string-net models, an identification with twisted
quantum double models from Abelian groups is apparent.

Dijkgraaf-Witten theories represent an interesting middle ground regarding the complexity
of string-net models/state-sums. The fusion rules are Abelian (coming from finite groups),
yet, the F-symbols are non-trivial — given by a 3-cocycles w — and not necessarily tetrahedral
symmetric, making them sensitive to orientations (as compared to Turaev-Viro invariants [190,
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217]). In addition, the PEPS ground states of twisted quantum double models do not fall within
the framework of G-injective PEPS but their virtual symmetries are characterized by a fwisted
group action determined by the cocycle w captured by an MPO-symmetry [6]. If the 3-cocylce
w is trivial the twisted quantum double models reduce to Kitaev’s quantum double models
introduced in Ref. [31] with the toric code (G = Z;) as the simplest example. An interesting
consequence of the cocycle twist is that the anyonic excitations of a twisted quantum double
model can be non-Abelian even for Abelian groups. The group Z; x Z, x Z; with one of the
non-trivial cocycles is an example [210] of such a case.

Recently, there has been interest in using twisted quantum double models as error correction
codes. The simplest twisted quantum double model is known as the double semion model [12,
96, 97]. Its anyonic excitations are the trivial particle, two semions (with topological spin 71/2)
and a boson. It is given by G = Z, and the non-trivial third cohomology class. A normalized
representative is given by w(1,1,1) = —1. Since the model is tetrahedral symmetric it can be
written as a conventional Levin—Wen string-net model [12]. The double semion model has
been elevated to a stabilizer code [218] and a more general investigation of the code properties
of twisted quantum double models is presented in Ref. [219].

In this Section, we review twisted quantum double models in their description as string-nets,
MPO-injective PEPS and Dijkgraaf-Witten state sums and show how the latter three formalisms
are interrelated.

5.3.1. String-net description

As mentioned before, twisted quantum double models go beyond the original Levin-Wen
string-net models [12], as their F-symbols are not tetrahedral symmetric. As a consequence,
arrow directions on edges have to be treated more carefully. There are different ways how
to go about this issue. In Ref. [203] the authors considered generalized string-net models
without tetrahedral symmetric F-symbols, but with branching rules given by Abelian groups
and introduced certain lattice decorations to deal with the latter. A subsequent substantial
generalization of string-net models with general non tetrahedral symmetric F-symbols can be
found in Ref. [174]. The formulation presented here is tailored to elucidate the correspondence
between twisted quantum double models as string-nets and state sum invariants and uses
a set of decorations on the lattice (a branching structure on the dual lattice) for which this
correspondence can be worked out conveniently. It is based on unpublished original and
independent work.

In the string-net description of a twisted quantum double (G, w) string-types are given by
group elements ¢ € G and their branching rules are determined by the group law in the
following way. On trivalent lattices, vertices need to be oriented such that there are no three
incoming or three outgoing edges, which corresponds to a branching structure on the dual
lattice (cf. Fig. 5.16). The branching rule states that the three string-types meeting at a vertex
have to multiply to the identity element. Outgoing edges occupied by g are evaluated as g?,
incoming edges occupied by g are evaluated with g and the group elements are multiplied
in clockwise order, if the majority of edges is pointing inwards and in anti-clockwise order
otherwise. In contrast to the original string-net models [12] presented in Section 5.1 it is not
allowed to invert group elements and arrow directions simultaneously ad libitum.

Note, that as a consequence of the group law (Abelian fusion rules) in the ground state
space the string-type on the third edge of any trivalent vertex is already determined by the
string-types on the other two edges. Thus, the string-configuration subject to an F-move in
Eq. (5.7) is already specified by the string-types on three of the four outer edges, e.g., 7, ],k
in Eq. (5.7) and consequently three of the six indices of the F-symbol are redundant. Note,
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Fig. 5.16. + A lattice that has a dual lattice with branching structure.

Fig. 5.17. + Assigning a simplex to an F-move via the faces associated to the dual lattice before and after
the move.

that due to the fact that the arrow directions can not be flipped arbitrarily, there are a priori
several distinct F-moves each corresponding to one arrow configuration before and after the
move. However, due to the choice of a branching structure on the dual lattice, the faces on
the dual lattices of the two configurations before and after the move can be interpreted as the
front and back side of a tetrahedron as depicted in Fig. 5.17. The arrow orientations uniquely
determine an ordering of the vertices!®. The F-symbol for any move is then defined via the
tetrahedron as w* (a, b, ¢), where a, b and c are the string-types associated to the edges e1p, €23
and ez, respectively and x refers to the chirality or handedness of the tetrahedron determined
by whether the edges ey, €13, €14 form a left- or right-handed coordinate system.

With this definition of the F-move we can investigate the self-consistency equations as in
Section 5.1.1 and find

w(i, jk)w(i,jk Dw(j k1) = w(ijk Dw(i,j,kl) . (5.32)

This equation is well known and states that w is a 3-cocycle!®. Next, we consider how the gauge
transformation of the F-symbol in Eq. (5.9) is simplified in the case, where the string-types are

15For lattices without branching structure on the dual lattice, this would not be the case and F-moves where vertices
after the move do not respect the branching rules are forbidden.

16 As a matter of self-consistency, we present a very short introduction to group cohomology of finite groups at the
end of this Section.
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group elements and find

s(b,c)s(a, bc)

@(a,b,c) = w(a, b,c)m :

(5.33)
We recognize a multiplication with a 3-coboundary given by the 2-cochain s associated to
the four faces of the tetrahedron on the right-hand side of this equation. Thus, all 3-cocycles
within the same cohomology class are related by a gauge transformation and define the same
model. In particular, we can use this 3-coboundary gauge to be normalize w and require that
w(a,b,c) = 1ifaor b or cis the identity element. From now on, we will only work with these
normalized representatives.

The F-symbol given by a 3-cocycle is not necessarily tetrahedral symmetric. For example the
two non-trivial 3-cocycles of Z3 do not fulfill tetrahedral symmetry conditions. Translating
the tetrahedral symmetry relations for F-symbols to 3-cocycles w, we obtain the following
equations

w(a,b,c) = w((abc)™,c,b) = w(b,a, (abc)™') = w((ab)~}, b, (bc)*l)M , (5.34)

Va0Uc

where the factors v, are defined as
Vg =0, =+\/w (a,ata), (5.35)

which can be used to check if (there exist a gauge in which) the 3-cocycle is tetrahedral sym-
metric or not.

The definition of string-net Hamiltonian for twisted quantum double models is analogous to
Eq. (5.1), however the branching structure of the lattice mildly breaks translation invariancce.
The vertex projector is directly given by the branching rules and the plaquette operator is
given by matrix elements which can be obtained in complete analogy to the discussion in
Section 5.1.1. We will present a more elegant interpretation of the plaquette operator at the end
of Section 5.3.2 (cf. Fig. 5.21a).

Concerning the anyonic excitations of twisted quantum double models, we evaluate the
deformability condition for excitation strings in Fig. 5.5 with appropriately chosen arrow
directions and obtain (analogous to Eq. (5.14) for general string-nets)

w(a,b,s)w(s,a,b)
w(a,s,b)

Q(a,5)Q(b,5) = 04.4),60(1,5),.2(ab, 5) , (5.36)

1

where [a,s] = asa—'s~! is the commutator of @ and s. A closer inspection reveals that

w(a,b,s)w(s,a,b)

¢s(a,b) = w(a,5,b (5.37)
is a 2-cocycle, i.e, it fulfills
¢s(a,be)ps (b, c)
AR AR A ! 5.38
9s(ab,c)s(a,) (5:38)

and hence (-, s) is a projective representation!” of the centralizer Z(s) = {a € G|[a,s] = e},
ie. fora,b € Z(s) we have

Q(a,s)Q(b,s) = ¢s(a,b)Q(ab,s) . (5.39)

17 A projective representation is a group representation up to a phase, i.e., p(g)p(h) = a(g, )o(gh). Since the group
multiplication is associative, it follows that a(g, h)a(gh, k) = a(h, k)a(g, hk), which is nothing but a 2-cocycle
condition.
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We identify the anyon types with irreducible ¢s-projective representations of the centralizers
Z(s). However, we know that the centralizers of all elements within one conjugacy class are
isomorphic to each other and thus the number of distinct anyon types is given by choosing one
representative of each conjugacy class sc,, ..., sc, and finding all irreducible ¢sc,-projective
representations of the centralizer Z(sc,).

Informal short introduction to group cohomology for finite discrete groups

In the following we sketch an interpretation of group coyclces for finite discrete groups as
measures of n-dimensional volumes following a blog article by Terence Tao [220].

An n-cochain is a function G" — U(1). We find it convenient to think of n-cochains as
functions that assign a weight to n-dimensional simplices that are spanned by #n group elements.
Le., the vertices of the simplices are labeled with numbers from 1 to # and the n group elements
are assigned to edges in ascending order. We also define a handedness to the n-simplex by
embedding it into an oriented manifold and comparing the orientation defined by its vertex
ordering with the manifold orientation. We can define the weight of an n-chaincomplex (i.e., a
collection of n-simplices) by multiplying all weights associated to individual simplices.

An n-cocycles is a special n-chains with the following property: An n-cocylce on a closed
n-manifold triangulized by simplices evaluates to one, i.e., the trivial element of U(1). It is
trivial for closed chains (cycles), hence the name. A particular trivial class of n-cocycles are
n-coboundaries which are constructed from (n — 1)-cochains via multiplying the weights of
all (n — 1)-simplices of the n-simplex. We consider this setting in 3-dimensions. For a closed
3-dimensional volume, each face is encountered twice (once with a positive and once with a
negative orientation) and thus as a variant of Stokes/Gauss theorem, the weight of a closed
3-dimensional volume evaluated by a 3-coboundary is trivial. Interestingly, there are cocycles
which are not coboundaries, just as we know from topology that there are cycles which are not
the boundary of some surface. Identifying all n-cocycles which are not n-coboundaries and
classifying them up to equivalence under multiplication with a n-coboundary, we obtain the
definition of H" (G, U(1)) the n-th cohomology class of G with values in U(1).

5.3.2. MPO-isometric PEPS and the state sum construction

Unsurprisingly, twisted quantum double models have PEPS ground states which are MPO-
isometric [6]. The tensor network construction can be carried out analogous to Section 5.1.4,
however, there is simpler and more intuitive way to construct PEPS ground states for twisted
quantum double models, which is presented here.

Tensor network construction

We have already encountered the dual lattice which resembles the tensor network on a pictorial
level. Triangles tile the manifold and their edges can be identified with the physical indices.
Knowing that the twisted quantum double models reduce to quantum double models accessible
with G-injective PEPS or synonymous, knowing that they arise from a local gauge symmetry,
we can guess the correct virtual indices. For a physical index configuration 4, b, ¢, we know that
ab = c is required by the vertex constraint. This is easily achieved, if we choose virtual indices
adjacent to the vertices v, w, u of the triangle tensor and determine the physical index value
at the edge as the difference of the two values at the vertices as in Fig. 5.18. This also implies
a virtual symmetry under multiplying all vertex values by a group element. So far, we have
constructed G-isometric PEPS, but we have not yet incorporated the cocycle twist w into the
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uw wv

uv—

Fig. 5.18. + The PEPS map for twisted quantum double models given in Eq. (5.40).

& T T

Fig. 5.19. + Contracting PEPS triangle tensors can be identified with the gluing of simplices.

tensor network construction. Thus, the tensor network obtained fulfills the vertex constraint
but not the plaquette constraint. To achieve this, we need to assign the correct weight to each
triangle-tensor.

In the discussion of the F-move we have already made reference to simplices whose surface
was identified with a fragment of the dual lattice before and after the move. It is suggestive to
identify the triangle tensor as well with a simplex, where the six indices are identified with the
six edges of the simplex. The orientation of the three physical index edges originates from the
physical lattice and it is a reasonable choice to orient the virtual index edges all in the same
direction, e.g., pointing towards the physical plane (cf. Fig. 5.18). The weight of the tensor can
then be read off from the simplex as discussed earlier and we obtain

1

AGuw) = ) w(u,uw ", wo ) luw ™, wot, uot) (u,0,w| . (5.40)

u,0,weG

This is consistent with the intuition that the PEPS map should be essentially given by an F-
symbol which in the case of twisted quantum double models reduces to a 3-cocycle. Finally, we
state the rule how index contractions of the tensor network are identified with the gluing of
simplices. On the physical lattice two triangle tensors share a common physical edge. Translated
to the tensor network formalism, the two indices need to match, but they are not contracted
(i.e., summed over). Thus, we conclude that if two tetrahedra touch at an edge, the edge
colorings (index configurations) have to match, but a summation over the index value is not
implied. Next consider the virtual indices. All virtual indices in the interior of a tensor network
patch are contracted (summed over). The corresponding virtual index edges of the associated
tetrahedra are completely surrounded by simplices. Le., they are not visible from the outside.
We conclude, that internal edges of a triangulated volume have to be summed over. Note, that
two triangle tensors always share three common indices (one physical and two virtual), thus,
they correspond to two tetrahedra which are glued at a shared face spanned by the three index
edges (cf. Fig. 5.19).
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The recipe of assigning weights to triangulated volumes using the tensors of the twisted
quantum double PEPS ground states is identical to the construction of the path integral partition
function Z(M) for Dijkgraaf-Witten theories [189, 217] on a manifold M. It is calculated from
a triangulation of the manifold into simplices whose edges are colored by group elements and
a weight determined by the 3-cocylce w and the chirality x of the simplex is associated to each
colored tetrahedron. Multiplying all weights of the tetrahedra and summing over all possible
edge colorings, we obtain

Z(M):|G|u Y IT aghi)*x, (5.41)

colorings simplices

where the factor 1/|G|* is a normalization constant and 4 is the number of vertices. We will see
in the following, that this number is independent of the triangulation and hence, a topological
invariant [217].

MPO-symmetry as triangulation invariance

The identification of tensors with colored simplices makes it straight forward to find the correct
symmetry MPOs. The left-hand side of the 3-cocycle condition in Eq. (5.32) can be identified
with three simplices glued at three faces where each pair of simplices shares one common face,
while the right-hand side corresponds to two simplices glued at one face, such that the two
share one common face (cf. Fig. 5.20a). Both sides of the equation correspond to the same total
volume whose boundary edges are colored identically. Only the interior triangulation into two
or three simplices is different. Such a retriangulation move is well known in topology as a 2-3
Pachner move [221]. From the 3-cocycle equation we can trivially construct another equation

w(ij, k,w(i,j, kI)

w(i,j k) = WG, (kD) (5.42)
The left-hand side is independent of I and thus we rewrite
w(ijk) =Y 1 wlijkDwli,j,K) (5.43)

£ 16T wli, e DG k1)

The last equation can be expressed again neatly as a Pachner mover — the 1-4 move depicted in
Fig. 5.20b. Note, that triangulation of the volume into four simplices as given by the right-hand

(a) 2-3 Pachner move (b) 1-4 Pachner move

Fig. 5.20. + Local retriangularizations of three-dimensional manifolds.
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(a) B, (b) B,V =V

Fig. 5.21. + (a) The plaquette operator B, defined in Eq. (5.2) with matrix elements given in Eq. (5.13)
represented as a space-time volume of six simplices glued together, each identified with an F-symbol.
(b) Applying the plaquette operator to a tensor patch V with open physical indices (red) and physical
indices (blue).

side of Eq. (5.43) contains an enclosed vertex, which we have not encountered before. By
comparison with the algebraic expression, we suspect that an enclosed vertex is associated with
a prefactor of 1/|G|. This concludes the mapping between arrangements of glued tetrahedra
(simplicial complexes) and tensor networks. Summarizing, we have obtained a recipe how to
associate a tensor network to a given triangulation. Furthermore, following from the 3-cocycle
condition, we found that the evaluation of the tensor network is invariant under a 2-3 and a 1-4
Pachner move.

This finding has substantial consequences. It has been shown [217, 221], that sequences of
1-4 and 2-3 Pachner moves are sufficient to go back and forth between any two triangulations
of a 3-manifold. Thus, we know that the evaluation of a tensor network associated to any 3-
dimensional volume is independent of the specific triangulation. This immediately implies the
pulling through condition for symmetry MPO-strings (via the 2-3 move) and the MPO-projector

property
A=AP=AY LV(g) (5.44)
7 |Gl

via the 1-4 move. The projector property can be transformed to the MPO-isometry condition
AtA = Y, ﬁV( <) by applying the pseudo-inverse At

From the triangulation invariance, we can also verify that the PEPS we constructed earlier
is indeed a ground state of the twisted quantum double model Hamiltonian. To this end, we
represent the plaquette operator as the volume depicted in Fig. 5.21a. An open tensor network
patch is represented by a cone-shaped object with a physical surface on top and a virtual surface
at the side. Gluing the plaquette operator to the physical surface, we can deform the volume
such that we again obtain a flat physical surface. The internal triangulation is irrelevant and we
have verified that each open tensor network patch is invariant under applying the operator By,.

As a consequence of the remarks above, the ground state wave function can not only be
written as a PEPS, but likewise as a state associated to the surface of a general 3-dimensional
manifold which is triangulated with simplices. For a ball and a given lattice on the surface
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the triangulation is unique and canonical. It suffices to add a single interior vertex. However,
on topologically non-trivial manifolds this construction fails, which is in agreement with the
observation that there is no unique ground state on a topologically non-trivial manifold and
the ground state is degenerate. The different ground states on a torus are given by closure
tensors in the PEPS picture as discussed in Section 5.2.3 (cf. Fig. 5.12). Translating the tensor
network to a triangulated manifold, we obtain a solid torus filled with MPO-tensors. However,
inside the solid torus there is another solid torus which corresponds to the closure tensor Q
and gives rise to the ground state degeneracy.

5.4. General bosonic state sum constructions

We have seen in the last Section that MPO-isometric PEPS for twisted quantum double models
give rise to topological manifold invariants by identifying tensors with simplices of a manifold
triangulation. Constructions of this kind are known as topological state sum construction (cf.
Refs. [3, 14, 46, 191, 217, 222]). We can generalize the construction for twisted-quantum double
models in a straight-forward fashion to general MPO-isometric PEPS and obtain more general
state-sum constructions. Essentially, every fusion category with the property that the F-symbols
fulfill a mirror-conjugation symmetry can be used to define a state sum by associating the F-
symbols to simplices whose edges are colored by the simple objects of the fusion category. This
mirror-conjugation symmetry is required, if we want to identify manifolds with Hamiltonian
terms as in the definition of the plaquette operator. Likewise, we can consider the state sum
constructions as discretized imaginary time path integral partition functions. In this case, the
F-tensors associated to simplices correspond to local components of a discrete time step € of
the imaginary time evolution under a local Hamiltonian, i.e., F ~ 1 — eH, where H is a local
Hamiltonian term. Thus, F needs to be Hermitian, i.e., invariant under complex conjugation
followed by transposition. Depending on the specific formalism it is possible to define complex
conjugation implicitly as part of the reflection operation as discussed in Section 2.3.1.

5.4.1. Tensor lattice algebras

The concept of identifying lattice structures with tensor networks can be extended significantly
beyond the ideas presented here. In a general axiomatic framework presented in Ref. [3] it is
discussed how different lattice types equipped with sets of allowed deformation rules (moves)
and the tensor network structures associated to the latter can be used to classify phases of
matter. The formalism is not restricted to simplicial complexes or to low dimensions, however,
concrete examples are only worked out in one and two dimensions so far. The formalism
reproduces the classification of non-chiral topological order in two-dimensional systems and
provides additional insights on dualities between quantum double models (generalized to
Hopf*-algebras) and string-net models (generalized to multi-fusion categories[209]). By
specifying the right tensor types (e.g. fermionic, symmetric, Gaussian) and lattices (e.g.
undecorated lattices, lattices with branching structure, spin lattices with a discretized spin
structure) one can obtain a phase classification not only for gapped bosonic topological phases
without symmetries, but also for fermionic phases, free fermionic phases or symmetry restricted
phases. It is our impression that the concepts presented in this Thesis for the example of the
twisted quantum double models in Section 5.3.2 provide a good basis for an understanding of
the far more evolved and more technical work presented in Ref. [3, 46].
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5.4.2. Chirality

At last we briefly discuss if and how tensor network methods can be used to characterize chiral
topological order, i.e. phases with chiral gapless edge modes, which can not be gapped out by
local perturbations.

There are formidable obstacles that hinder a PEPS description for systems with gapless
edge modes. As pointed out by Kitaev [18] and made more explicit recently in Ref. [52] a
system governed by a Hamiltonian that is a sum of commuting projectors, has zero central
charge or equivalently zero thermal Hall conductance and must therefore fail to describe a
model exhibiting chiral gapless edge modes. The isometric points of (G, w)-injective PEPS give
rise to parent Hamiltonians with exactly this property and thus can not be used to describe
topological order with gapless edge modes exactly. As the thermal Hall conductance is a
topological invariant, i.e., it can not change within a specific phase nothing is gained by relaxing
the isometry condition to an injective vicinity around the isometric fix point where parent
Hamiltonians are no longer necessarily given by a sum of commuting projectors.

Nevertheless, attempts towards the description of chiral systems with PEPS have been made
using the construction of Gaussian fermionic PEPS (gfPEPS) [223, 224]. Numerical evidence
[225-228] suggests that with the latter at least some types of states with topological order
and gapless edge modes can be approximated well [229]. For the proposed tensor networks
two different Hamiltonians can be constructed that both have the PEPS as their ground state.
One is the usual parent Hamiltonian. It is local, frustration-free, but gapless. The other one is
gapped, but has an algebraically decaying range of interaction. Thus, both Hamiltonians are
not within the framework of gapped local quantum phases. It is anticipated that parent/uncle
Hamiltonians of PEPS that capture chiral states will always feature one of these oddities [230,
231] due to the fact that the gaplessness of the edge implies algebraically decaying correlations
on the boundary, which proliferate to the bulk.

For all topological fix-point models discussed so far, the impossibility to access chiral topo-
logical order is imminent. The existence of commuting projector Hamiltonians is guaranteed by
the triangulation invariance as explained in Section 5.3.2 for the example of twisted quantum
double models. It is also possible to construct gapped boundary Hamiltonians directly from
the simplex tensors [46]. Thus, simple state sum constructions necessarily fail to describe chiral
systems. However, there is hope that a generalized tensor network construction presented in
Ref. [46] might be powerful enough to represent chiral systems. The tensor networks associated
to lattices are more general in the sense, that the tensors associated to certain lattice structures
depend not only on the lattice structure itself, but also on the surrounding lattice structure. Le.,
instead of a rule “Associate a tensor A to each simplex.” we obtain more complicated rules as
e.g. “Associate a tensor A; to a simplex with 7 tensors adjacent to the first vertex.”. This ansatz
is promising, but an example of a chiral phase described in this fashion is still missing [46].
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5.5. Fermionic non-chiral topological order

In the previous Chapter we discussed the theory of non-chiral bosonic topological order
extensively. In the following we will briefly discuss special instances of fermionic non-chiral
topological order. The microscopic degrees of freedom of a system — being fermionic or bosonic
— determine the possible phases of matter, that can emerge from local interactions. Fermionic
phases of matter, i.e., phases of systems whose microscopic degrees are fermions, are richer
and contain bosonic phases as a subset (cf. e.g. Refs. [67-69, 232, 233]). The latter statement
can intuitively be understood by the fact that a local bosonic degree of freedom can be formed
by combining two fermionic degrees of freedom, while the inverse statement is not true. The
main difference which causes qualitatively distinct phases of matter for fermionic systems is
that fermionic parity is an intrinsic symmetry that can not be broken. In particular, a fermionic
system can never be in a superposition of fermion parity even and fermion parity odd states.
A theory that allowed states of mixed fermion parity and measurements of operators whose
eigenstates are of mixed fermion parity (such as the operator fT + f) leads to strong violations
of causality as it provides mechanisms for instantaneous communication (cf. Ref. [234, Section
3.3.2]).

Preserving fermion parity is a symmetry constraint inbuilt in the definition of a fermionic
quantum phase by adapting the definition in Section 2.2. To define a fermionic phases of matter
a generalized local unitary circuit is replaced by a generalized fermionic local unitary circuit, i.e.,
a circuit where each local unitary preserves fermion parity. Such a circuit is composed from
layers of operators that contain an even number of fermionic creation and an even number of
fermionic annihilation operators.

We studied bosonic gapped quantum phases in one and two dimensions within a tensor
network framework. It is natural to ask whether fermionic quantum phases can be studied
within a tensor network framework as well. The answer to this question is affirmative: In one
dimensional systems fermionic matrix product states [67, 68, 235] classify fermionic phases
of matter via a fermionic MPO canonical form. However, due to the presence of a non-trivial
fundamental symmetry — fermion parity — the phase classification is richer then in the bosonic
case and contains a topologically non-trivial phase known as the Kitaev chain [236].

Likewise, two-dimensional fermionic systems exhibiting non-chiral topological order are
accessible via fermionic PEPS (fPEPS) and their virtual symmetries captured by fermionic
MPOs [1, 9, 10]. While in the bosonic case, the single MPO blocks form a fusion category, the
fermionic version gives rise to a super fusion category [11, 237]. Analogous to the bosonic case
fermionic string-net models [11, 69, 232] are in one to one correspondence with fermionic MPO-
isometric PEPS [1, 9-11]. However, anticommutativity of fermionic operators has fundamental
implications on the virtual symmetries and the introduction of a discretized spin-structure is
required to restore robust fMPO-injectivity. The necessity of discrete spin structures appears
most prominently in the state sum approach to fermionic topological order [238] and is strongly
related to spin-TQFTs. While the general theory of and connections between super fusion
categories [237], fermionic string-nets [11, 69], fermionic MPO-injectivity [1, 9, 10], fermionic
state sums and spin-TQFT [238] is beyond the scope of this thesis, we present an in-depth
discussion of a particular class of fermionic string net models, the fermionic twisted quantum
double models and their fermionic MPO-injective fermionic PEPS ground states based on
Ref. [1].
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5.5. Fermionic non-chiral topological order

5.5.1. Fermionic tensor networks

Due to fermionic anticommutativity fermionic theories are more complex and require a signifi-
cant amount of additional technical details compared to the bosonic theories. The fact, that the
sign of a many-body wave function with several local fermions occupying certain sites depends
on the order in which the fermions were created has to be reflected when fermionic states are
represented as tensor network states.

There are various ways to implement the latter condition. The simplest way is to capture
the weights of the fermionic many body basis states by a usual bosonic tensor network with a
chosen particular order of the fermionic modes (sites) [65]

¥) = Y T [ahai] N o), (5.45)

i1,-IN

where the A’ are usual bosonic tensors. While in principle one can work with this ansatz and
perform numerical simulations with it, there are several down-sites for this representation.
First of all, making reference to an arbitrarily chosen global ordering of sites obscures the
locality structure of the problem and obstructs the use of diagrammatic notation. In particular,
a diagrammatic expression is only complete, if a directed string representing the order of sites
decorates the tensor network (cf. Fig. 5.22a). More profoundly, the tensor network defined in
Eq. (5.45) distinguishes very clearly between a physical and a virtual index. While a virtual
index with bond dimension D labels a basis state in a D-dimensional vector space, the physical
index ultimately describes a fermionic degree of freedom which can not be identified with a
usual vector space due to the fundamental distinction between fermion parity even and fermion
parity odd sectors and the anticommutativity of fermionic modes!8. The structural dissimilarity
of virtual and physical indices poses a significant obstacle in recovering the relation between
virtual symmetries and topological order. A heuristic argument is provided by the following
observation. The string-net deformation rules such as the F-move are applied to the physical
degrees of freedom and we expect that for fermionic string-nets, the fermionic F-moves act on
fermionic degrees of freedom. In the bosonic case, the self-consistency relations of the F-moves,
i.e, the pentagon equation, directly implied a virtual symmetry of the string-net PEPS tensors.
If we wish to recover a fermionic virtual symmetry from a self-consistency relation of fermionic
F-moves, the symmetry objects need to act on a fermionic virtual space as well. It is also only
in this case, that we can establish a well defined notion of isometry between the virtual and
the physical space — a property that is desirable when constructing parent Hamiltonians from
fMPO-isometric fPEPS.

In the light of the mentioned evidence, we propose to use fermionic virtual indices instead
of bosonic ones, i.e., we place auxiliary fermionic modes on an underlying virtual lattice which
are “integrated out” when performing the tensor network contraction. If the total parity of
all virtual and all physical fermionic degrees of freedom per tensor is even, we can use a
diagrammatic notation without specifying a global ordering. Restricting to total parity even
tensors is advisable also because it prohibits the occurrence of states with mixed fermion parity.

There are various ways to formalize the ideas of the preceding paragraph and introduce
fermionic tensors. The most commonly used formalisms are based either on super vector spaces
[9, 67, 68], Grassmann numbers [239, 240] or the use fermionic maximally entangled pairs on
which a fermion parity even fPEPS map acts on [66]. In every case, the indices of a fermionic
tensor can be partitioned into parity even and parity odd ones corresponding to an even or odd
number of local virtual or physical fermions. The parity of the index i is denoted by |i| € {0,1},

18The appropriate structure to represent local fermionic degrees of freedom are super vector spaces [68].
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(a) Bosonic tensor network description of a fermionic
state (cf. Eq. (5.45)). (b) Fermionic PEPS built from fermionic tensors.

Fig. 5.22. + Fermionic states represented as tensor networks. Green dots indicate fermionic degrees of
freedom.

where |i| = 0 refers to even and |i| = 1 to odd. Specifying the tensor entry A;, _;, we have to
chose a local ordering of the fermionic indices (modes). This can be done by with the aid of a
graded tensor product

where ®. is associative and obeys
Ik @g 1) = (=1)M 1) g [k) (5.47)
or using Grassmann numbers 67, . . . Oy fulfilling the usual anticommutation relations

Ay i 01 ol (5.48)

iy
or using PEPS maps with a certain ordering of fermionic creation and annihilation operators.
In any case, a reordering of the virtual fermionic indices can be performed by a sequence of
swaps that results in a sign o determined by the parities of the fermionic indices involved in
the permutation. As an example consider the reordering a,b, ¢, d to d, c, b, a which results in a
factor

o(a,bc,d — d,c,b,a) = (—1)ldl(al+bl+Ic)+e(lal+[b)+allb] (5.49)

where addition is understood to be modulo two. A convenient diagrammatic notation to
compute the so called Koszul signs o (cf. Ref. [65]) is given for the example in Eq. (5.49)
in Fig. 5.23a. The indices are drawn as lines connecting the initial and final position (on a
horizontal line). A crossing of index lines i and j is attributed with a factor |i||j| and summing
over all crossings the parity of the permutation is obtained. If the total parity of all involved
indices is even, e.g., if the indices are the indices of a fermionic tensor, one can use the parity
even constraint to simplify the calculation. In the diagrammatic notation, we are allowed to
draw index lines against the “flow of time” and revolve around the fermionic tensor to avoid
index line crossings (cf. Fig. 5.23b). If an index line i takes such a detour it adds a factor i to
the exponent determining the Koszul sign. This can be understood by considering the example
of the index line 4 in Fig. 5.23 which avoids the crossing with index lines a, b and c. The factor
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(a) General permutation (b) Permutation with total parity even indices

Fig. 5.23. + Diagrammatic rules for calculating Koszul signs of reordering fermionic indices. (a) General
permutation of fermionic indices calculated by drawing “world lines” along the flow of time (top to
bottom). (b) Permutation of fermionic indices of an fermionic even tensor (i.e. |a| + |b| + |c| + |d| = 0).

(la] + 16| + |c])|d| = |d||d] = |d| can be recovered by introducing |d| as a “penalty” for the
detour.

The reordering of fermionic indices is important, if we want to contract fermionic indices. To
contract two fermionic indices the two fermionic modes which are integrated out have to occur
next to each other and we need to specify which one comes first. Thus, the contraction of two
fermionic indices is directed and inverting the direction of the contraction generates a minus
sign, if the parity of the index is odd. Directed contractions are represented in the diagrammatic
notation by placing an arrow direction on the index line. In the super vector space formalism,
the directed contraction of an index [ with an index r is implemented by using vectors and dual
vectors depending on whether the index comes first or second in the contraction and using the
scalar product (I|r) = d;,. To achieve the reordering, we note that Eq. (5.47) applies to vectors
and dual vectors alike. In the Grassmann number based formalism one formally multiplies the
expression with (1 + 6,6,) and performs the integral [ d6,d6, using Grassmann numbers 6;,
and 0, instead of vectors and dual vectors. In the maximally entangled pair picture, it is the pair
itself which carries the contraction order, i.e., one distinguishes between the pair (1 + fl’L 1 12)
and (1+ £ ) [2).

For concreteness we will work in a Grassmann number formalism from now on. While the
ansatz in Eq. (5.48) is general, it is incomplete in the sense that the partitioning of the indices
into parity even and parity odd sectors is not contained in the expression. We find it more
convenient to introduce additional bosonic indices and treat “parity even” and “parity odd” as
the two values of a block index. Le, for anindexi =1, ..., n, + n, with index values 1, .. ., n,
even and index values n, +1, ..., n, + n, odd, we write

Al 01 - O (5.50)

jubr) - (i) 1 N
with {b;} € {0,1} and the range of j; depends on b; consistent with the convention for block
indices. The indices j can be understood as usual bosonic indices. Alternatively, we can specify

the partitioning of even and odd sectors by functions f; : i; — {0, 1} and write

Aiy i 00N (551)

i1, N
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5.5.2. Fermionic twisted quantum double models

In the following we consider a particular class of fermionic string-net models — the fermionic
twisted quantum double models proposed in Ref. [69] and construct fPEPS representations for the
latter. In addition, we show, that they fulfill the criteria of fermionic MPO-injectivity.

Fermionic twisted quantum double models are the simplest examples of fermionic systems
with non-chiral topological order and can be understood as fermionic generalizations of the
toric code model [232]. They are a subclass of fermionic string-net models as presented in
Ref. [69] and later generalized in Ref. [11]. Interestingly, fermionic parity symmetry interacts
with the topological invariance formulated as string-deformation rules or as virtual symmetry
in a non-trivial way as becomes apparent in the definition of F-moves and the fermionic pentagon
equation (cf. Eq. (5.53)).

In the definition of fermionic twisted quantum double models [69, 232] fermionic degrees of
freedom are introduced into a string-net model in a way that most of the bosonic formalism
carries over to the fermionic case, but one still obtains new intrinsically fermionic phases
of matter. Essentially, a conventional bosonic string-net model as defined in Ref. [12] and
reviewed in Section 5.1 is decorated with additional fermionic sites at the vertices. The string-
deformation rules have to be modified accordingly as they now affect patterns of bosonic strings
with local fermions at the vertices. A particular simple ansatz is to make the presence and
absence of local fermions at the vertices dependent on the bosonic string types around the
vertex. Choosing bosonic string types whose fusion rules are determined by a finite group via
the group multiplication, one arrives at the fermionic twisted quantum double models.

Due to the potential presence of fermions at the vertices the pentagon equation for the
F-symbols is altered in such a way that the trivial F-symbol (identical to one for all allowed
configurations) is no longer a solution of the fermionic pentagon equation as explained in the
following Section. This is in contrast to the bosonic case, where a group G with the trivial F-
symbol always defines a consistent string-net model. Thus, fermionic quantum double models
are always “twisted” and are formally similar to bosonic twisted quantum double models.

The simplest fermionic twisted quantum double model is the fermionic toric code presented
in Ref. [232], where the underlying group is G = Z,. One finds that its anyonic excitations are
those of a Chern-Simons theory with diagonal K-matrix and thus give rise to a topological
phase that is inaccessible for purely bosonic theories [232].

String-types and deformation rules

In the following we review the string-net description of fermionic twisted quantum double
models following Ref. [69, 232].

Fermionic twisted quantum double models are defined on trivalent lattices with branching
structure, i.e., the edges of the lattice are oriented and the orientations are such that no vertex
has all-incoming or all-outgoing edges. Branching structures can be interpreted as a choice of
a local coordinate system and appear in many topological theories that are not time-reversal
symmetric[6, 174]. For the definition of the deformation rules and the ground state wave
function it is central to find a consistent rule assigning fermions to vertices. We make the ansatz
that for a vertex with two incoming edges occupied by sting types i, j, the occupancy of the
vertex by a fermion is determined by a function s(i, j). Note that due to the fusion rule being
given by the group law, the tuple i, j already determines the string-type ij on the third edge.
With this ansatz we can define a fermionic F-move as in Fig. 5.24 in terms of a 3-index tensor
w(a,b,c) and a product of fermionic creation and annihilation operators that remove and add
fermions according to the edge occupations before and after the F-move. Note, that in order to
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Fig. 5.24. + Fermionic F-move for a fermionic twisted quantum double. In addition to changing the wave
function by a prefactor w(a, b, ¢) depending on the bosonic string-types 4, b, ¢, fermions at the old vertices
are removed and added at the new vertices according to the fermion assignment function s.

conserve fermion parity the function s needs to fulfill
s(a,b) +s(ab,c) +s(b,c)+s(a,bc) =0, (5.52)

where again addition is meant modulo two. We realize that this is the defining relation for a
2-cocycle s € H2(G,Zy).

Analogous to the bosonic case (cf. Section 5.1.1) one can derive a self-consistency equation
for the fermionic F-moves — a fermionic pentagon equation — by considering two different
sequences of fermionic F-moves with the same source and target configuration. Each sequence
corresponds to a product of weights w and fermionic creation and annihilation operators.
Equating the two sequences and applying the usual fermionic anticommutation relations to
reorder the creation and annihilation operators one obtains an equation for the weights w

w(a,b,c)w(a,be,d)w(b,c,d)
=(—1)*@b)s(cd) oy (ab, c,d)cw(a, b, cd) . (5.53)

This equation is referred to as a super 3-cocycle equation, which is a 3-cocycle equation graded
by the 2-cocycle s. Formally we have w € Hf’,(G, U(1),s). A solution to Eq. (5.53) exists, if the
function (—1)3(@?)s(¢d) js a coboundary B*(G, U(1)) viewed as a 4-cocycle.

It is an interesting observation that while for certain groups G one can construct fermionic
models as a well-defined fermionic counterpart to a bosonic model (as e.g. for the fermionic
toric code discussed in the next Section) this is not generically true. For example all groups Z,
with n odd do not admit non-trivial 2-cocycle s and hence can not be used to define a fermionic
twisted quantum double model.

Hamiltonian

Given a group G and a solution to Egs. (5.52) and (5.53) the model is fully determined and we
can find a commuting projector Hamiltonian

H=) Qu+) Qp (5.54)
v p

given by a sum of vertex operators Q, and plaquette operators Q, that act on bosonic and
fermionic degrees of freedom simultaneously. The vertex projector projects onto string configu-
rations allowed by the branching rules for the bosonic string-types living on the edges J;jx and

95



5. MPO-isometric PEPS, string-nets and state-sums

(a) Ay

Fig. 5.25. + Fermionic PEPS tensor A and A_ given in Eq. (5.55) and Eq. (5.56). Solid black lines denote
bosonic indices. Dashed lines denote fermionic indices.

the according fermion configurations determined by s(i, j). The plaquette operator can again
be represented as a sum over closed loop insertions (cf. Section 5.1.1), where the inserted loops
are integrated back to the honeycomb lattice with the aid of fermionic F-moves.

Another way to construct the plaquette operator proceeds as sketched in Section 5.1.2 for
the bosonic case. The fermionic F-symbols can be identified with fermionic tensors, which
again can be identified with simplices, where index contraction is identified with the gluing of
simplices. In addition to the bosonic indices associated to the edges of the simplices, fermionic
indices are associated to the faces of the simplex. The plaquette operator can then be constructed
from Fig. 5.21a completed by edge orientations (derived from the edge orientations of the
physical lattice) and a convention how the latter determine the contraction direction of the
fermionic indices (as e.g. provided in Ref. [240]).

Fermionic PEPS ground states

Similar to the bosonic case, fermionic string-net ground states have exact fPEPS representations
[1,9, 11]. In this Section we present a concrete fPEPS description for the fermionic twisted
quantum double models and show that the fPEPS possesses virtual symmetries captured by a
fermionic matrix product operator (fMPO) following Ref. [1].

As discussed in the previous Section the lattice on which we define a fermionic twisted
quantum double has a branching structure, i.e., there are two types of vertices, one with two
ingoing edges and one with two outgoing edges. We will use this branching structure to define
two types of tensors that are placed at the positions of the respective vertex types. To define the
latter it is convenient to consider the dual lattice and orient edges of the dual lattice according
to the orientation of the underlying edges. We choose the convention that an ingoing edge
corresponds to an edge pointing in clockwise direction and refer to the two types of tensors
A+ as positively and negatively oriented according to whether the majority of the edges are
oriented clockwise or counter-clockwise. The edge orientation of the lattice are also used to
define the contraction direction of the fermionic index contractions.

The concrete expressions for A+ (cf. Fig 5.25) are motivated by the PEPS construction for
string-net models and in particular twisted quantum double models'?, i.e., they are essentially

19See also Section 3.2.3 for an interpretation of the map between the virtual and the physical indices
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Fig. 5.27. + Symmetry fMPOs P, and P_ consisting of Y-tensors (grey) and tensors T (blue) and T—
(red).

given by the fermionic F-symbols
AL = Z w(vo, valvl,v;lvz) (5.55)
V0,01,02
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x |U(;101/Uf102' 061’02> <UO/ 01/02| s

A=) w1 (vo, vy to1, 07 10y) (5.56)

00,01,02

95(vo,va 1oy) 95(v1,v1’ 10;) 9s(vo,vo’ 10;) 95(va 101,07 10)
01 U12 V02 P

X |ZJO_101,01_102, valvz> (vo,v1,02] -

Note, that the 2-cocycle condition on s in Eq. (5.52) implies that the tensors are fermion parity
even.

In a slight variation of the contraction rule introduced above, we will use the convention that
Grassmann valued indices are contracted by inserting [ d0d6(1 + 66).

Fermionic MPO injectivity

As a consequence of the fermionic pentagon equation (5.53) the fPEPS tensors defined in
Eq. (5.55) and Eq. (5.56) exhibit a fermionic MPO symmetry with fermionic MPOs defined
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from tensors T4 and T— (cf. Fig. 5.26a-b)

T.(3) :UZU w(g,v0,05 '01) |00, v1) (800, 801 (5.57)
0,91
x[v0, g00) (v1, g1 (5.58)
« 95(00100_101)95(3,01)és(gvo,vg_lm)9‘5(8/00),
T-(g) ZUZ;, w (g, 01,07 00) |0, v1) (300, g1 (5.59)
0,91
x |0, g00) (v1, g1 (5.60)

X99(8,01)95(801,?7{1170)gs(g/vo)és(vhvflvo)

We find, that in order to obtain an fMPO which is as symmetry for A1 we need to introduce
an additional purely bosonic sign factor tensor depicted in Fig. 5.26(c)

Y = Y (=1)°® 20, w) (0, w] . (5.61)
v,w
The symmetry fMPOS are than defined as

Vi(g) = tTr[T(8) T+ () Tx(8)Y] (5.62)

such that Ay = A+V4(g), ie., Vi(g) is a virtual symmetry of A+ for each group element
g€G.

From the symmetry MPOs V. (g) we can define the MPO projector as Py = Y, V4 (g). The
projector identity P = P, follows from the fact that V, (g) fulfills the group representation
property Vi (g) Vi (h) = Vi (hg). The existence of the pseudo-inverses of A is verified by an
explicit calculation.

To conclude that the fPEPS defined by tiling a regular honeycomb lattice with tensors A is
fMPO-injective, we need to investigate the stability of fMPO-symmetry and fMPO-injectivity
under concatenation. We expect that the concatenation of two fMPO-symmetric fPEPS tensors
is again fMPO-symmetric. However, the placement of the parity matrices for elementary
MPOs depends on the edge orientations via the relations depicted in Fig. 5.28. Thus, the
position of the parity matrices on a larger patch are derived from the positions of the parity
matrices on elementary triangle tensors. Keeping this technicality in mind one can show that
the concatenation of two MPO-symmetric tensors is again fMPO-symmetric and fMPO-injective
as long as there are no vertices on the dual lattice where all edges are incoming or outgoing,
i.e., the tensor network patch has a dual branching structure as well as a branching structure.
A particular simple case of such an orientation pattern is a lattice where all edges point into
the same direction, i.e., the angles between all pairs of edges never exceed 7. In Ref. [1] we
referred to this property as “global flow” property. For such a lattice one can show that the
symmetry MPO acting on any tensor network patch is given by T tensors placed according to
the edge orientations of the boundary and parity tensors are inserted at convex source points
and concave drains as explained and visualized in Fig. 5.29). Thus, there is a consistent rule for
the placement of parity matrices. The proof of the consistency proceeds via straight-forward
but tedious induction (cf. Ref. [1, Appendix A]). For all possibilities of attaching one additional
tensor to a tensor network patch (such that the global flow property is fulfilled before and after
attaching the tensor) one can check that for the larger tensor network patch the parity matrix
rule is fulfilled. Details can be found in Appendix A.1.
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==

(a) Open boundary

(b) Closed boundary type I (c) Closed boundary type II

Fig. 5.28. + Concatenation of two MPO tensors with open or partially closed radial indices.

Fig. 5.29. + MPO for a generic boundary. T (blue) and T_ (red) tensors are placed according to the edge
orientation of the boundary and parity matrices Y (grey) are placed at convex source points (i.e., vertices
around which the lattice underlying the tensor network patch is locally convex and the edges are oriented
away from the vertex) and at concave drain points (i.e., vertices around which the lattice underlying the
tensor network patch is locally concave and the edges are oriented towards the vertex).

99



5. MPO-isometric PEPS, string-nets and state-sums

Fig. 5.30. + The three different closure tensors on a minimal torus.

Topological ground state degeneracy

We have seen in Section 5.2.3 how characteristic features of topological order can be calculated
from the MPO tensors without considering the ground state or the Hamiltonian of a model
explicitly. In particular, we showed how to calculate the ground state degeneracy on a torus
for bosonic G-injective PEPS (a subclass of MPO-injective PEPS) in Section 3.2.2 and found
that it is given by all pair conjugacy classes C(g, /1) defined in Eq. (3.12). For fermionic twisted
quantum double models, we can obtain a similar result. To this end we focus on fMPO-injective
PEPS on a torus equipped with a branching structure admitting a global flow and adapt the
calculation for MPO-injective PEPS of bosonic twisted quantum double models presented in
Ref. [6] to the fermionic setting.

As explained on a conceptual level in Section 2.4.3 for the one dimensional setting and in
Sections 3.2.2, 5.2.3 adapted to the two-dimensional setting of G-injective and MPO-injective
PEPS, to calculate the ground state degeneracy, we need to consider all locally undetectable
closures on a minimal torus which are MPO-symmetric. Thus, we search for all states which
can be defined simultaneously using the three different closure tensors depicted in Fig. 5.30.
Similar to the bosonic setting we find the following parametrization of the space spanned by
the latter

span{M(g, h)[ [g,h] =0, s(g, 1) =s(h,g)}, (5.63)
where the closure tensor M is constructed as depicted in Fig. 5.31 and given by
h) =Y AMw; g h)|a, gu, gha, ha) (5.64)
24

« es(gzx,”‘g’l)Qs(hga,"‘hfl)és(gha,"‘g’l)gs(htx,“h’l) .
Here, ¢ = a~!ga denotes conjugation by the inverse element and the coefficient A is given by

oy whga)w(hgatgh)
A(“l gl h) - (g, h 0() (g, hl’(,a hil) (565)

x (—1)5(8ha h1)s(ga g ™) +s(hga g™ s (ha 1)

(1) 0a) s 1)) ((g.) +5(g0 s ™)) +s(hgn)

We use MPO-symmetry by acting with a four-site MPO V (k) on M and obtain a parametriza-
tion of the ground state space in terms of MPO—symmetric tensors

g h e GI Y V(k) (5.66)

:@;ng’(h,k)M(gk,hk) .
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do T
— ha a
_Ehg(y ga ]

[

M

Fig. 5.31. + Closure tensor M(g, /). The labels for the fermionic indices follow from the definition of T+
and are omitted.

where ¢g& = kgk~! denotes conjugation and ng (h, k) is given by

w(g,k‘l,hk)w(k_l,hk,gk)w(h,g,k_l)
w(h k=1, gF)w (k=1 gk, h¥)w (g, b k1)
(1 )s(k Lkh)+s(khk=1)][s(k~1 kg)+s(kg k™)

ng (hk) =

(— 1) sk~ kgh)+s(kghk') (5.67)

To count the number of linearly independent elements of the ground state space, we first
show that two states M’ (g, ) and M’ (k, ) are linearly dependent if (g, ) and (k,I) are in the
same pair conjugacy class. This follows from the identity

g (xf,yt™h) = (5.68)

which holds formally as in the bosonic setting despite the fact that #*" has additional sign
factors and is given by a product of super 3-cocycles w.

An additional subtlety to be considered is that not all pair conjugacy classes correspond to a
non-vanishing state. Similar to the bosonic setting only pair conjugacy classes C(g, h) contribute

to the total ground state space dimension for which [g, h] = 0,s(g, h) = s(h, g) and where for
all elements of the centralizer k € Z(g, h) we have

cg’(h, k) = cg’(k,h) (5.69)
where ( ool )
w _w(g hk)w(hk g

cq (h, k) = w3,k . (5.70)

We refer to this property as (c“,s)-regular. To see that only (c“,s)-regular pair conjugacy
classes contribute to the ground state dimension we first note that if

Y, n5(hs)=0, (5.71)
seZ(gh)
then also
Y. ug(hs)=0, Vi. (5.72)
slg*=g'i e=H'i
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Writing out the state M’(g, h) in the basis of the elements of the pair conjugacy class C(g, h) we
make use of the fact above to conclude that

M(gh)=0s Y nf(hs)=0. (5.73)
s€Z(gh)

To single out the pair conjugacy classes for which Eq. (5.73) is fulfilled we note that for all
elements k in the centralizer of (g, i) with [g, 1] = 0 we have

k=1, h)

T () = Lt Ty -

o
% 8
—~

(5.74)

where c¢ (1, k) as defined in Eq. (5.70). For g,h,k € Z(g,h) and [g,h] = 0, i.e. g hk are
mutually commuting c§’ (h, k) is a 2-cocycle. This insight is used to apply the same arguments
as in Ref. [210] and show that

ZX(: . ng (h,s) =0 c§(h,s) # c§(s,h) . (5.75)
s€Zz(g,

In other words, only pair conjugacy classes C(g, 1) contribute to the total ground state space
dimension for which [g,h] = 0,s(g,h) = s(h,g) and c§ (h, k) = c{ (k, h) as claimed above. In
complete analogy to the bosonic setting the considerations on the minimal torus carry over to a
torus of arbitrary size. We conclude that the ground state degeneracy for fermionic twisted
quantum double models defined by a triple (G, s, w) is given by the number of (¢, s)-regular
pair conjugacy classes.

As a sanity check we confirm that whenever the 2-cocycle s is trivial, we reobtain a classifica-
tion of the ground state basis in terms of c“’-regular pair conjugacy classes as expected from
the results in Ref. [6].

Example - Fermionic Toric Code

In the next Section we show how the ground state of the fermionic toric code Hamiltonian
as proposed in Ref. [232] can be written as a fermionic tensor network satisfying the axioms
of fermionic MPO-injectivity. The fermionic toric code model is the simplest solution of the
self-consistency equations for fermionic twisted quantum double models, i.e., the simplest
triple (G, s, w).

In particular, we have G = Z; = {0,1}, i.e., the model is constructed with spin—% degrees of
freedom on the edges of the honeycomb lattice. G = Z; has only two second cohomology classes
and the trivial one results in the bosonic toric code or the double semion model depending
on the choice of the (then ungraded) 3-cocycle w. The non-trivial second cohomology class
has the normalized representative s;rc(g,h) = 1if ¢ = h = 1 and 0 otherwise. We find two
normalized solutions to the fermionic pentagon equation

+i g=h=k=1,

(5.76)
1 otherwise

wrrc(g h k) = {

which correspond to the fermionic toric code model.

The lattice from Ref. [232] admits a global flow and thus we can write an ansatz for the ground
state wave function as a fermionic PEPS with A tensors defined in Eq. (5.55) and (5.56) with
G = Z; and s, w defined above. The tensor network is fMPO-injective by construction. To prove
that it is indeed the ground state of the fermionic toric code Hamiltonian one needs to choose
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an appropriate gauge of the Hamiltonian given in Ref. [232] as discussed in Appendix A.1.1
and verify that the tensor network is an eigenstate to each local projector in the given gauge.
The definition of the A+ tensor already implies that the tensor network state is an eigenstate
to all vertex projectors. Verifying that it is also an eigenstate to each plaquette operator is
done by explicit calculation. An intuitive understanding of this result can be understood
by interpreting the plaquette operator as inserting a closed loop around the center of the
hexagon. The contraction of the inner virtual index vy exactly compensates for that, ie.,
QpAnex(v0 = 0) = Apex(vo = 1) and QpApex(v0 = 1) = Apex(vo = 0). Note that due to the
anti-commutating Grassmann variables it is not trivial to see that all sign-factors are indeed
correct but it is a result of an explicit calculation. Due to the translation invariance of the lattice
it follows that the tensor network state is the ground state on any region with open virtual
boundary.

As an application of the formalism developed in the previous Section, we calculate the
ground-state degeneracy on a torus. Since Z, is Abelian there are four pair conjugacy classes
(0,0),(0,1),(1,0) and (1,1). All of them are (c%“, s)-regular. This can be easily checked. The
2-cocycle s is symmetric and the super 3-cocycle is normalized. Thus, the regularity condition
is trivially fulfilled whenever one of the elements g, I, k is the trivial group element. For the
only other case g = h = k = 1 it is also fulfilled as can be verified by explicit calculation. Thus,
the ground state on a torus is four fold degenerate and the result is in agreement with a direct
calculation on the physical level provided in Ref. [232].
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Part Ill.

Synthetic topological quantum matter
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6. Realizing topological order in
mesoscopic systems

We have seen in Chapter 5 that the theory of non-chiral topological order is rich and beautiful
in its mathematical description. In stark contrast, the experimental realization of the theory is
lacking almost completely [119]. While chiral topological order is found in fractional quantum
Hall states [36, 4749, 119] and thus is present in many materials under the right external
conditions [51, 241, 242], for non-chiral topological order Herbertsmithite (ZnCus(OH)Cly)
is the only material candidate and it is still debated whether its unconventional magnetic
properties are truly a consequence of Z;, topological order (i.e., it is in a toric code phase) [53,
54, 243, 244 or whether the material is actually in a gapless phase (a gapless U(1) Dirac liquid
[245]).

Still, the interest in non-chiral topological order is not only a matter of academic curiosity, but
is motivated to a large extent by the potential applications in quantum information processing,
namely as topological quantum codes and platforms for fault-tolerant topological quantum
computation [44, 70-72]. Thus, in the absence of material candidates an alternative approach
is to simulate or engineer non-chiral topological matter artificially. Most of the experimental
effort in this direction has focused on the comparably simple toric code phase (cf. Section 3.1)
and its code properties. Apart from experiments that focus on preparing the ground state space
and performing stabilizer measurements on it, but do not realize a Hamiltonian [78-80], the
toric code phase has been simulated experimentally in minimal instances on different platforms
including optical lattices [81], arrays of Josephson junctions [82], Rydberg atoms [83] and in
more unconventional simulation approaches using Floquet engineering [84].

While the toric code is still considered as a state-of-the-art error correcting code, it is not
suitable as a platform for (universal) quantum computation unless it is supplemented with
additional “hardware” and protocols. The set of quantum gates can be completed by introducing
auxiliary qubits into the system that are prepared to be in a special so-called “magic states”[246].
However, the magic states have to be of high fidelity (i.e., the state must be very close to the
desired state). A protocol to distill high-fidelity magic state qubits from several low-fidelity
magic state qubits is known as magic state distillation[246]. The latter is a costly additional
process [85-88]. Avoiding such additional overheads one may try to implement topological
phases which are intrinsically more complex, hosting non-Abelian anyons with which universal
topological quantum computation can be performed. A prime candidate in this realm are
Fibonacci anyons for which recent work demonstrates their capability of fault-tolerant quantum
computation even under adverse conditions of finite temperature and noise [247-249]. Fibonacci
anyons can be found in comparably simple string-net models with two string-types and a non-
Abelian fusionrulet x T =1417.

Several proposals towards the realization of topological phases beyond the toric code have
been brought forward. Among them are ideas for the implementation of topological orders
with (non-Abelian) discrete gauge groups (i.e., Kitaev’s quantum double models captured by
G-injective PEPS) in arrays of Josephson junctions [73, 74] and optical lattices of cold atoms
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[75,76] or trapped ions [77]!. However, none of the proposed schemes is suited for a phase of
matter that hosts anyons which can be used for universal topological quantum computation.
In particular, it is not investigated if and how general Levin—-Wen string-net models can be
realized in concrete physical platforms.

In the following Section we approach this question. As a physical platform we choose net-
works of tunnel coupled Majorana Cooper boxes (MCBs) [89, 90], which have been considered
before as candidates to realize the toric code [85-87, 91] and color codes [88]. To give a vague
intuition why we think that this platform is suitable for this task, we note that the physics of
MCB networks is dominated by charging effects, which naturally give rise to a low-energy
effective theory of “ring-exchange” processes —i.e., particle tunnelings that always take place
in “closed loops”. This vaguely reminds us of the plaquette operators in Levin-Wen models
given by closed-loop insertions of virtual strings. In the preceding Sections, we have encoun-
tered yet another “closed-loop structure”, namely the matrix product operator projectors of
MPO-isometric PEPS. We have also seen how the latter two are connected (cf. Section 5.2.4).
In the following we will argue that the low-energy effective theory of tunnel coupled MCB is
naturally characterized by matrix product operators.

Combining this insight with the theoretical framework of the preceding Sections we make
use of the MPO-injective PEPS formalism as a guide to devise blueprints for string-net phases
in MCB architectures. We suggest that — apart from the physical dimension of the qudits, i.e.,
the number of string-types — the bond dimension of the matrix product operator projector
determining the virtual subspaces of the PEPS ground states gives a measure of how difficult
it is to realize the string-net model. We explore the limits of the given physical platform.
Concretely, we present how small arrays of coupled MCBs can be used as building blocks for
matrix product operators and design additional useful structures such as Bell-pair projectors,
which can be assembled to more complicated structures. In doing so, we make use of several
so called Hamiltonian gadgets ideas [92, 94, 251-253] - a tool developed originally in quantum
information theory to tackle the Hamiltonian complexity problem — which can be seen as
recipes to effectively engineer Hamiltonians with high locality from comparably simpler ones.

In our proposal the identification and characterization of low-energy subspaces is crucial in
several ways. First of all, the low-energy subspace of the Majorana Cooper box — a relatively
complex device — can be identified with one or several qubits (depending on the number
of nanowires) [89, 90]. Second, instead of engineering the canonical parent Hamiltonian of
a topological PEPS, i.e., a standard Levin—-Wen fix-point Hamiltonian, we aim for a simpler
Hamiltonian, the so called perturbative PEPS parent which is in the same phase.

Thus, the first Section of this chapter discusses in detail the idea of Hamiltonian gadgets and
degenerate perturbation theory as a tool to engineer effective low-energy Hamiltonians that
feature intricate n-body interactions from comparably simpler Hamiltonians. We recapitulate
the general theory of degenerate perturbation theory, in particular the Schrieffer—Wolff (SW)
transformation [254] and review specific gadget constructions, including the perturbative PEPS
parent construction [94] and the Jordan—Farhi gadgets [93]. Next, we turn to the mesoscopic
constituents — the MCBs — and how effective qubits emerge in the latter. We discuss the effective
spin Hamiltonians in networks of MCBs and construct small well-controlled MCB networks as
building blocks. Finally, we show how those buildings blocks can be combined to yield the
perturbative PEPS parent Hamiltonian of the double semion model and briefly discuss the
additional effort needed to implement the double Fibonacci model.

For a recent review on simulation proposals for general lattice gauge theories see also Ref. [250].
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6.1. Low-energy effective theories

Fixed point models of topological order are complex and feature an unnaturally high locality
— typically 12-local interactions for Levin—-Wen string-net models. In contrast natural Hamil-
tonians typically feature only 2-local interactions. It is known that in perturbation theory
low-energy effective Hamiltonians Hg with high locality can emerge from Hamiltonians with
lower locality. This insight will be used as a design principle in the construction of systems that
effectively realize string-net models. In the following Section we will briefly review different
formalisms of low-energy effective theories in lattice models and design principles named
Hamiltonian gadgets.
In all cases the starting point is to consider a Hamiltonian

H=Hy+eV, (6.1)

where H) is referred to as the unperturbed Hamiltonian and V is called the perturbation. The
effective Hamiltonian H,g is then derived perturbatively in the limit of small €.

It is sufficient to assume that the Hamiltonian Hj has an energy gap A separating the low-
energy and the high energy space, i.e., all eigenstates either have energy less than J§ — those
span the low-energy subspace — or higher than § + A. However, we will restrict ourselves to
the case, where the low-energy subspace is fully degenerate, i.e., it consists only of the ground
state space & with ground state energy Ey = 0. This assumption simplifies the calculations
and all Hamiltonians considered below will be of this form. Intuitively this case can also be
seen as a good approximation for the general case, if the energy gap A is much larger than the
level separation of the low-energy states.

When constructing the low-energy effective Hamiltonian we are interested in reproducing
the energy spectrum of H in the low-energy subspace £ that originates from the deformation
of the ground state space &. Intuitively, the massive ground state degeneracy of Hy will be
lifted by the perturbation V yielding a refined spectrum around the ground state energy Ey.
The excited energy levels of Hy may split and shift as well, but we can assume that if the gap A
is much larger than €, they will stay well separated from the low-energy spectrum.

The mathematical machinery to formalize the intuition sketched above is highly evolved and
a research topic in its own right. While some methods do not involve a perturbative treatment at
least on a formal level and are therefore exact, for practical purposes the effective Hamiltonian is
usually given as a series expansion and different expansion techniques will in general not yield
the same effective Hamiltonian order by order. However, in the cases considered here, different
methods will agree in leading order. The main techniques used for degenerate perturbation
theory are the self-energy expansion, the Bloch method and the Schrieffer—Wolff method in a
global and a local version. We will review these methods in the following Sections accompanied
by examples.

Traditionally, degenerate perturbation theory has been studied to analyze the low energy
theory of a given physical model. More recently, low-energy effective theory analysis has been
used also as a reverse engineering approach to Hamiltonian design [93-95, 252]. Here the
goal is to synthesize a complicated effective low energy Hamiltonian H,g from comparably
simpler Hamiltonians H and V. This idea has become popular under the name of Hamiltonian
gadgets. The term first appeared in the context of Hamiltonian complexity, where the authors
of Ref. [92] showed that the 2-local Hamiltonian problem? is in the complexity class QMA [255]

2The k-local Hamiltonian problem is the task to decide whether given r k-local Hamiltonian terms H;, i = 1,...,r and
two real numbers a and b, the lowest eigenvalue of the Hamiltonian H = }_;_; H; is below a or all its eigenvalues
are larger than b.
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by reducing the 3-local Hamiltonian problem known to be in QMA to a 2-local Hamiltonian
problem. This is done by showing that the spectrum of a given 3-local Hamiltonian is well
approximated by the spectrum of an effective Hamiltonian that emerges from a specifically
designed 2-local Hamiltonian of the form H = Hy + V. Following up on this idea various other
Hamiltonian gadgets have been constructed.

An instructive example how to apply degenerate perturbation theory is presented in the
discussion of the Kitaev honeycomb model in Ref. [18] and will be reviewed briefly in Sec-
tion 6.1.1. Next, we discuss a fairly general gadget construction by Jordan and Farhi [93] that
can be used to design general k-local Hamiltonians from 2-local Hamiltonians in Section 6.1.2.
The reduction in locality is usually paid by introducing auxiliary qubits to the system leading
to a huge and possibly impractical overhead. This overhead can be reduced when the gadget
construction is tailored to designing specific Hamiltonians. The perturbative PEPS parent
construction by Brell et al. allows to engineer parent Hamiltonians of topologically ordered
PEPS with significantly less overhead than the general-purpose gadget by Jordan and Farhi
and will be reviewed in Section 6.1.4.

Notation

We introduce some notation that will be used throughout the following Sections. The projector
onto the ground state space &, of Hy is denoted by Py and the projection onto its orthonormal
complement by Qp = 1 — Py. We assume that the Hamiltonian Hy is local and local terms
do not overlap. Therefore, the ground state space and its projector Py have a tensor product
structure

p=pVeorPe.. 0P, (6.2)
where generically all p(()l) are of rank two and the number of tensor factors grows with the system
size, such that the ground state degeneracy of Hy grows exponentially with the system size. A
typical example for Hy would be a sum of non-overlapping interacting spin pairs Y ; £5;2p;41-
Another example we will encounter are disjoint clusters of spins with ferromagnetic interaction
between all pairs } ¢ }; jcc ZiZ;. Here, the ground state space factorizes into several giant qubits
formed by clusters of single spins that are aligned.

The perturbation V = ), v; is a sum of potentially overlapping 2-body terms that act either
entirely on the same Hilbert space on which Hy acts on or at least partially on that Hilbert
space. In the latter case we will usually think of the total Hilbert space as being partitioned
into auxiliary qubits and target qubits, where Hy only acts on auxiliary qubits and V acts on
both auxiliary and target qubits. Each local term v; has the property that it does not preserve
the ground state space, i.e., Pyv; Py = 0 which again simplifies the perturbative expansions.

It is convenient to split all operators according to whether they act within the ground state
space, within the excited state space or between the two spaces, i.e.,

O-—=PROP, Oty =Q00Qo (6.3)

O1- = Qo0R, O—+ = P0Qo - (6.4)
6.1.1. Self-energy expansion and the Kitaev honeycomb model

We briefly review the perhaps most standard approach to degenerate perturbation theory — the
self-energy method closely following Refs. [18] and [92].
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In order to determine the spectrum of H in the low-energy subspace, we would like to project
to & using Py at some point in our calculation. However, eigenvalues are usually not preserved
under a projection. This is easy to see in our example as P)HPy = PyHoPy + ePyVPy = 0 is
trivial. However, one can instead consider the resolvent

G(z) = (z—H)™! (6.5)

and its poles that are in one to one correspondence with the eigenvalues of H and perform the
projection to Py on the resolvent. The projected resolvent G__(z) can then be used to define
the self-energy X(z) as

G (z) =(z-X(2)" (6:6)

which takes on the role of an effective Hamiltonian H, if its dependency on z can be neglected.
Whether this is the case or not depends on the specific form of the perturbation V. This is
the most prominent downside of the self-energy method. We will now assume, that the z-
dependency is small and evaluate Hege = X(0) perturbatively in leading order. The corrections
arising from taking into account the z-dependence are usually larger than the subleading order
corrections [18].
To calculate X(z), we express G in terms of the unperturbed resolvent Gy = (z — Hp) ! and
the perturbation and express it in a block-matrix form partitioned into Py and Qy, i.e.,
Gy 1 eV eV -
G=(Gyl—eV)l= 704+ =00 T : 6.7
(Go eV) < eV, Go_,l_—ev__ (6.7)
Calculating the matrix inverse and selecting the low-energy subspace contribution we obtain
—(cg? 201 -1 -
G._ = (GOIW —eVo_ — (Gl —eViy) V+_) (6.8)
Using the series expansion (1 — X)™! =1+ X + X? +... and using Eq. (6.6) we obtain
E(z) = Ho—— +€Vor + € VoiGo 4t (2)Vim + Vi Gopy1-(2) Vit Go g (2) Ve 4. (69)

which we summarize as

¥(z) = Ho— + eV +€" Y Vi (Gort (2)Vis)"?Go st (2) Vi . (6.10)
n=2

Since Go(z) only has poles at 0, we can evaluate the self-energy around z = 0 and use Gy(0) =

—1/Hy. We also recall that we work under the assumption that HyPy = 0 and thus H__ =0

and that applying perturbations lead out of the ground state subspace, i.e., V__ = 0 and thus
3 1 n—2 1

Heff = 2(0) = 6” H;ZV__i_ (—I‘I()V++) _71_10‘/.1,__ . (611)

Evaluating the first addend explicitly we obtain

1 1 1
Hey = €2P)V——V Py + e3PV ——QoV——VPy + O(e*) . (6.12)
—Hp —Hy —Hj

We will later compare this expansion obtained from the self-energy approximation with ex-
pansions obtained from the Bloch method and the Schrieffer-Wolff method. For now, note,
that the terms in the effective Hamiltonian can be thought of as paths starting and ending in
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Fig. 6.1. + Kitaev honeycomb model.

the ground state space Py that run via intermediate virtual states in the excited state space Qg
where the perturbation V takes us from one state to the next one. It is natural to think of the
length of the path as the number of applied perturbations V. Since 1/ Hy is evaluated only in
the excited state space we have 1/Hy < 1/A and thus a term corresponding to a path of length
n scales with €’ / A"~! which means that long excursions through the virtual excited state space
are suppressed drastically.

To illustrate the formalism we consider an example how the self-energy approximation
method can be used to determine the topological phase of a Hamiltonian by finding its low-
energy effective description Heg. The example is given in Ref. [18] and our presentation closely
follows the given reference with the only difference that the notation is changed to be consistent
with the rest of this Section. Although in this example the method is applied to investigate a
given Hamiltonian rather than constructing a specific target Hamiltonian H,g from simpler
Hamiltonians Hy and V the structure of Hy and V is of the form that will be used in more
constructive so-called gadget constructions and clearly inspired the latter.

We consider the Kitaev honeycomb model [18], i.e., a Hamiltonian defined on a hexagonal
lattice with qubits on vertices and nearest neighbor interaction that depends on the orientation
of the edge shared by two spins (cf. Fig. 6.1). Partitioning the three different types of edges
into sets X, Y, Z we have

H:_]xzfﬂax_]y Z?}ﬂay—fzszbm (6.13)

xeX yeY z€Z

where |, denotes the two vertices at the boundary of the edge 4. We now consider the regime
where 0 < [, Jy < J; and define

Ho= - Z 22‘& + =Nz, (6.14)
z€Z

where we have included the energy shift to ensure Ey = 0 and N, denotes the number of
z-edges

Vi=—JY %2~ Jy Y, 900w, (6.15)

acA beB

and H = Hy + V. The ground state space of Hy is given by all states where qubits along the
z-edges are aligned, i.e., it has the tensor product structure mentioned above and is massively
degenerate. We now investigate the effective Hamiltonian in Eq. (6.11). Each addend in the
perturbation V flips two spins on different z-edges and thus breaks the alignment on at least
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two z-edges and we have Py)V Py = 0 as required in the initial assumptions. The first non-
vanishing contribution in the series expansion occurs at second order, when the flip of two
spins is reversed by flipping them back, i.e.,

242
He(ff —POJy Zyyby i] ?yA|ayP0+P0]§Z |8x i] xx|8xPO (Nx+Ny)]4]]xP0/
yey z xeX z

(6.16)
i.e., the effect is a lowering of the ground state energy. The third order term vanishes because
after having flipped two spin pairs (breaking two different bonds) flipping one more spin
pair can only “heal” one of the broken bonds. However, at fourth order we obtain terms that
correspond to flipping all spins around a hexagon (plaquette). There are 4! = 24 different
permutations of those four pairs of spin flips that we need to sum over. For eight of the 24
terms the first two spin flips occur on opposite edges. They yield a sequence of intermediate
virtual states with higher energy then the other terms since, after the two pairs of spin flips
four bonds are broken. We label this class of terms by the number of broken bonds in the
sequence of intermediate states, i.e., (2,4,2). Terms where the two first pairs of spin flips occur
on neighboring bonds are labeled by (2,2,2). Also note, that pairs of spin flips on neighboring
bonds anticommute and the 16 (2,2, 2)-terms split into two halves with opposite sign which
cancel each other and we are left with

4) ]yfz

Hef = —8,—- 58452 Y Qp, (6.17)

AAAAAA

one plaquette in clockwise direction. If we regard the spin pairs along the z-edges as a single
logical qubit with states [0) = |00), |1) = |11) we can identify the operator £7) as well as )%
acting on the two qubits of the spin pair with a logical y-operator Y acting on the logical qubit.
Also, the operators 21 and 12 can be identified with the logical Z operator. The logical qubits
occupy a square lattice and the plaquette operators assume the form Q;, = YZYZ. Applying

a local unitary basis transformation (spin rotation) results in plaquette operators YYYY and
7777 on every other plaquette and we can identify the the two different plaquette types with
the usual star and vertex operators of the toric code.

This example is instructive in several aspects. First, we see how the local ground state
spaces can be identified with logical qubits on which the effective Hamiltonian can be defined.
Second, the analysis of the perturbation expansion reveals that non-trivial terms correspond to
closed paths of operator products. This mechanism will be encountered again in the following
examples.

6.1.2. Bloch method and Jordan-Farhi gadgets

Among the various gadget ideas [92, 94, 251-253 ], the gadget construction by Jordan and Farhi
[93] is of particular conceptual simplicity. We briefly review this method following the original
reference [93].

The starting point is again a Hamiltonian H = Hy 4 V which is designed such that the
effective Hamiltonian Hg reproduces a certain target Hamiltonian Hr. Considering a general
k-local qubit Hamiltonian Hr acting on n qubits we can decompose it into a sum of Pauli
products

.
Hr =) cs051...05k (6.18)
s=1
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where
Os,j = s, jXj + Bs,jj + Vs jZj (6.19)

and «, 8,7 € R with a2+ /32 + ’yz =1,ie, 05, is normalized. One could also restrict to the
case, where 05 ; is one of the three Pauli matrices and not allow to use linear combinations of
Pauli matrices. However, this might increase the number of addends r.

The following 2-local Hamiltonian can be used to simulate Hr. For each s-term in the sum,
we use k auxiliary qubits, that are coupled strongly with z-z-interactions among each other or
put in different words, projected pairwise to the even parity subspace,

.
1 .\ s
Ho=) Y E(11 —2i,2) - (6.20)

s=11<i<j<k

The ground state space of Hy is characterized by r clusters each containing k spins which are
aligned, i.e., we can again think of r logical qubits with [0) = |0...0) and |1) = [1...1) that
each consist of k individual qubits.

Next we define the perturbations V. To every auxiliary qubit in a given cluster, we associate
one physical qubit — “physical” meaning the qubits on which Hr is eventually simulated — and
define an interaction that simultaneously flips the auxiliary qubit while acting with oy ; on the
physical qubit, i.e.,

r k
V= Z <C50’5,1 ® %1+ Z 05 @ J?w) , (6.21)
s=1 j=2
here the explicit use of the tensor product symbol indicates the separation between the physical
and the auxiliary qubit and we have associated the proportionality factor cs to one specific
auxiliary/physical qubit pair. We now consider the Hamiltonian H = Hy 4 €V.

Regardless of the specific method employed to obtain the low-energy effective theory the
intuition behind the gadget construction is as follows. Each term of V flips one auxiliary
spin. As the auxiliary qubits within one cluster are coupled ferromagnetically this operation is
heavily penalized. Only a repeated application of spin flips or a product of spin flips acting on
all auxiliary qubits of a given cluster can restore the ground state configuration. In the latter
case the operators oy 1 ... 0y ¢ are simultaneously applied to the physical qubits, generating the
addends of the target Hamiltonian up to proportionality. If the auxiliary qubits are initialized
in the state |+) = |0) + |1), the collective spin flip leaves the state of the auxiliary qubits
unchanged and thus the auxiliary qubits and physical qubits remain unentangled. In essence,
we expect to encounter a global energy shift due to flipping the same spins back and forth at
second order and a Hamiltonian proportional to the target Hamiltonian in k-th order.

We now confirm this expectation analyzing the Hamiltonian H with the so called Bloch
method named after French physicist Claude Bloch [256]. Here, the key idea is to consider the
rotation

U:E—E (6.22)

from the ground state space of Hy to the low-energy subspace of H. With that we can construct
the operator
A =eP)VU (6.23)

which yields the low-energy spectrum of H. To see this, denote the eigenstates of H at energy E;
by [¥;) and their projections onto & by |a;) = Py [¥}). The rotation U is defined by U |a;) = [¥}).
Now a direct calculation shows that |a;) are the right eigenvectors of .4 at energies E;
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Note, that A is not Hermitian and thus we need to specify to right-eigenvectors. We can now
conjugate .4 by U to obtain an “effective Hamiltonian”

Ho = UAUL . (6.24)

We put quotation marks to indicate that this operator is in general not Hermitian and thus
should not be called a Hamiltonian. The expression Eq. (6.24) is meaningless unless we now
the rotation ¢/. However, finding U/ exactly is as hard as diagonalizing H. Instead, we can
derive an equation for I/ which can be expanded in orders of . Comparing terms order by
order yields a recursive definition of the m-th order term and we can explicitly construct a
series expansion for /. The starting point is the equality

1
U =Py = 11-Qo(eVU — UeVU) (6.25)

which can be derived in a straightforward fashion from the definitions given here®. The
recursive definition of U™ is found to be

U — D (6.26)
and
—1
UM =s; levym=0 - Y yevym-r-1| (6.27)
p=1
where we have introduced
L 1>o0,
S =< ~Ho (6.28)
—Py [=0.
The solution
um =em Yy 5 VS,V...S, VP, (6.29)
I,

where the sum is restricted tol; +... + 1, > pV1 <p<m—Tland ; +... + 1, = m can be
proven by induction. The convergence of the series is guaranteed if [|eV|| < % as is shown
in Ref. [93, Appendix B]. Though this bound might seem generous at first sight, note that in
the setting considered, the gap is constant in the system size while the operator norm of the
perturbation grows linear with the system size and we need to scale € with 1/N.

From the series expansion of ¢/ we readily obtain a series expansion for .A

A = empy Y VS, VS, V.S VP, (6.30)
ll/---/lmfl
where now the sum is restricted to

L>1,+bL>2,... h+... 0y 1>m—1, (6.31)

and
h+...+l, 1=m—1. (6.32)

Note, that each term A(") starts and ends with a ground state projection just as it was the
case for the effective Hamiltonian obtained via the self-energy approximation. We can conclude
at this state that for the gadget Hamiltonian we have

A= coPy+ AW + Oy, (6.33)

3For an explicit calculation we refer to Appendix A of [93]
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i.e., A consists of terms proportional to the ground state projector which will result in a global
energy shift that arises from contributions with i < k that cannot have a non-trivial effect
on the physical Hamiltonian and the non-trivial terms arising from collectively flipping all k
auxiliary spins in one cluster. Consider the k-th order term. If one or more of the summation
indices are zero, the product contains factors Sg « Py which trivialize the operator, i.e., either
it vanishes or it is proportional to Py, since non-trivial terms of the form Fy... Py can only
be generated by k factors of V. If none of the I3, ..., I,,_1 is equal to zero, Eq. (6.32) implies
Lh=0hL=...=1,_1 =1and we obtain

Q k—1
M“:&%(VO) VP, . (6.34)
—H,
This result coincides with the k-th order of the effective Hamiltonian obtained from the self-
energy approximation. Indeed, calculating Heg = U AU~ we find

Hegt = UcoPod ~H + UAR Y™ + O () (6.35)

Using that L/ Pod ~! = IT is nothing but the energy shift and & = P + O(e€) we obtain in lowest
non-trivial order
Heg = IT+ AR + Oy, (6.36)

which confirms that the first non-trivial order of the Hamiltonian obtained via the self-energy
approximation and the Hamiltonian obtained via the Bloch method agree for this construction.

We now evaluate A®) explicitly. There are k! addends that all contribute to the term for one
cluster, i.e., the number of different permutations of applying individual spin flips. Since all
terms commute and the set-up is perfectly symmetric, we can calculate one specific sequence
and multiply the result by k!. The energy in the denominator is calculated as follows. After
applying the first perturbation, i.e., flipping one spin in the k-cluster, (k — 1) bonds are frustrated.
Flipping a second spin heals one bond (the one between the first flipped spin and the second
flipped spin) and adds (k — 2) broken bonds, such that we have 2(k — 2) broken bonds. Iterating
this, we obtain for the energy denominator

L= _ (=t
T 5= = = (637

and finally arrive at
—k(—e)F A
A — (k(—l))' chasrl N A S TR S (6.38)
° S

Using that the auxiliary registers are initialized in the |+) state we obtain for the effective
Hamiltonian (with traced out auxiliary qubits)

Heow ~ T —k(—e)k k+1
off ™ +7(k—1)! Hr+0(e), (6.39)
i.e., the effective Hamiltonian is proportional to the target Hamiltonian up to higher order
corrections.

This makes the Jordan—Farhi gadget construction a very powerful tool for designing or
simulating general k-local qubit Hamiltonians. However, the number of auxiliary qubits is
kr, where r is the number of linearly independent Pauli-words of length k in which the target
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Hamilton has been decomposed. This number can be very large. A general Hermitian operator
acting on k qubits can be decomposed in slightly less than 4 Pauli-words, where 4 is the number
of local basis vectors, i.e., 1, £, 7,2 and “slightly less” means that a few addends can always
be grouped together as in e.g. a®% + bty = a®(B% + /1 — B?)), however a simple parameter
counting shows that this approach is limited to a number that scales only linear with k. Thus
using the Jordan-Farhi gadget requires approximately k4 auxiliary qubits.

6.1.3. The Schrieffer-Wolff method

The Schrieffer-Wolff (SW) method [254, 257] is the most advanced technique to analyze low-
energy effective theories and will be reviewed here closely following Ref. [254]. In contrast to
the self-energy approximation it does not rely on an assumption that is in general hard to check,
namely that the self-energy X(z) does not depend strongly on z. Though it is conceptually
related to the Bloch method and also relies on a suitable rotation between the low-energy
subspaces, it does not suffer from the inconvenience that non Hermitian operators are used to
define the effective Hamiltonian. Instead a unitary rotation U = exp(S) is used to transform the
Hamiltonian H to a Hamiltonian that is block diagonal with respect to & and . Projecting
this Hamiltonian to the low-energy subspace yields the effective Hamiltonian

Hyg = Poe®(Hg 4 €V)e P, . (6.40)

Perhaps the most significant drawback of the SW technique is that the series expansion obtained
for the generator of the rotation S is quite cumbersome and thus also the series expansion of the
effective Hamiltonian has a structure more complicated than that of the effective Hamiltonian
obtained via the self-energy approximation.

The rotation U is constructed via a double reflection

U= ,/Re,Re (6.41)

where the projector onto a space V is denoted by Py and
Ry =2Py—1 (6.42)

can be understood in analogy to a double reflection applied to vectors in R?, i.e., a reflection
along the direction of one vector a followed by the reflection along the direction of another
vector b leads to a rotation of 2Z(a, b). It can be proven [254] that the ,/ operation is well
defined if no vector in & is orthogonal to £ and vice versa and that the latter condition is
satisfied for small enough perturbations, i.e., if €||V|| < A/2. The rotation U is also called direct
or minimal rotation as it is the rotation which differs least from the identity (in Frobenius norm)
among all rotations V fulfilling VPV = P.

The generator S is anti-Hermitian and block-off diagonal with respect to both &, £+ and
&, & which allows to derive an expression for the transformed Hamiltonian from which a
series expansion of S can be obtained. Referring for the details to Ref. [254] one finds the
non-trivial relation

S = LS(eVy) + LS coth(8) (eVyq) , (6.43)

where we have introduced the following short-hand notation for the diagonal and off-diagonal
part of the perturbation

Va = PVPy+ QoVQo, Vod = QoVPy+ PVQo, (6.44)
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and the superoperators $, £ defined as O(A) = [0, A] and

[| Py A APylj
ca) - p TRAQERABD i, win moly =Bl (649
ij 1

The superoperator £ “projects” the operator A to its off-diagonal part and assigns to each
matrix element A;; the inverse energy difference of the states |i) and |j) (the states before and
after transition).

From Eq. (6.43) we can derive a series expansion of S with the ansatz S =}, S;,€” and finally
obtain a series expansion for the effective Hamiltonian

Hett = HoPy + €PoVPy + Y € Hegi - (6.46)
n=2

Again we refer for further details of the derivation to Ref. [254]. The effective Hamiltonian at
orders higher than two has a rather complicated structure of nested commutators, i.e.,

Heffn - ZbZJ 1P0W2(] 1 )PO ’ (6.47)
j>1
where .
W= 3 (S (Sl [Sj Voal - (6.48)
ittt je=n
Juj2r>1

with the property that W) = 0if g < r and the coefficients of the expansion of S are given
recursively as

S1 = L(Vea) (6.49)
1
T

Su = LS. Va)+ Y. a (6.50)
j>1

2(2%¥-1)B

and a, = 2"By,/n!l, byj1 =
numbers B,,.

The expression stated here is general in the sense that we did not yet make use of the fact that
& is fully degenerate with a single eigenvalue Ey = 0 and the perturbation takes the system out
of &, i.e., PhV Py = 0. Using these simplifications we obtain a more comprehensible expression
for Heg.

First, note that the superoperator £ is simplified to

Qo Qo

T,ZJ are numerical prefactors defined in terms of the Bernoulli

and thus
_ Qo Qo
S = RV - o Vh (6.52)
Qo ., Qo Qo ., Qo
= PV — VP, . .
S L e T A (6.53)
We find that
W =[Sy, Vog] = 2PV =L Qo VP, —&VPOVQO—QOVPOV Qo (6.54)
“H, “H, “H,
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and thus
Hegrp = by PoW{ Py = POV% VP, (6.55)
—Hp

the result we already obtained via the self-energy approximation. Also in third order we obtain

2 _ _ Qo ., Qo _ Qo B Qo , Qo
Wi = [S2, Vo] = 2RV =V =g VP = - V= VRIVQo = QVRY -V =i
(6.56)
and thus
Hags = bi POW2Ry = PV -0 v 20 yp (6.57)
' —Hy —H,

again in agreement with the self-energy approximation. The first (potential) disagreement
occurs in fourth order where we find that S3 deviates from the pattern of S; and S, and
contains also addends with single factors of Qy/(—Hp)?. The expressions for W3 [S3, Vodl
and Wj = [S1,[S1, [S1, Voal]] also show these kind of terms. They are calculated in a straight
forward fashion, but are rather lengthy and thus are not stated here. We eventually find

Heiga = biPgW7 + bsPoW3 (6.58)
_ Qo ., Qo Qo Qo Qo Qo
= PV_HO —HOVP PV VPV —H, VP 2PV Hy VP, VHOVPO

This Hamiltonian contains terms with intermediate Py in the product compensated by a power
of 1/ H3 at another position in the product. In more physical terms, the system returns to the
ground state space for some intermediate virtual state. Those contributions are absent from
the effective Hamiltonian obtained via the self-energy approximation method. Note however,
that these terms are either subleading or vanishing. If they are not vanishing, they must have
already occurred at second order and thus the fourth order is not the leading order. Similar
arguments can be made if the first non-vanishing contribution occurs at higher orders. As a
matter of fact the leading order will never contain terms with intermediate virtual ground
states. Thus, we conclude that the self-energy approximation coincides with the more advanced
SW result in leading order.

6.1.4. Perturbative parent Hamiltonians

Tailored to parent Hamiltonians of PEPS (cf. Section 2.3.2 and 2.3.3) which fulfill some ad-
ditional constraints discussed below, the perturbative PEPS parent construction proposed by
Brell et al. [95] gives a recipe how to construct a Hamiltonian

H=Hy+eV (6.59)

whose effective low-energy Hamiltonian H,g obtained by the Schrieffer-Wolff (SW) method is
a parent Hamiltonian for an encoded version of a given projected entangled pair state (PEPS).
It plays a prominent role in the design of string-net phases in Section 6.3 and is thus reviewed
in greater detail closely following the original reference by Brell et al. [95].

Encoded PEPS and encoded parent Hamiltonian

The effective Hamiltonian in the perturbative PEPS parent construction is not the parent
Hamiltonian itself, but an encoded version thereof. To apply the construction it is thus required
that the PEPS map A is a (partial) isometry on the virtual subspace, i.e., AYA = Pwhere Pisa
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Hermitian projector. With that we can use the following encoding. Consider a conventional
PEPS obtained by placing maximally entangled pairs of virtual qudits on the edges of some
lattice and applying the PEPS map A : Vyirt = Vppys on all vertices of the lattice, i.e.,

1) phys = [TA.]]Bell), . (6.60)
4 e
We obtain the encoded PEPS by applying the pseudo-inverse A" : Vphys — Vvirt on all vertices
|IF>virt = HA'Z |1F>phys = HPU I—I |Beu>e . (661)
v e

Note, that the encoded PEPS is equivalent to the original PEPS since we can restrict the physical
space to the local images of A on which we have AAT = 1 and thus we can apply the PEPS
map A again locally at every site to obtain the original PEPS from the encoded one. For this
reason the projector P is called the code space projector, since for all virtual states in the code
space V defined by PV = V, we have a one-to-one correspondence between the virtual and the
physical states while states in V' do not get mapped to any physical states.

Two other properties are needed for the construction: quasi-injectivity and a gapped canonical
parent Hamiltonian. Here, we review the perturbative PEPS parent construction only for the
case of MPO-isometric PEPS which fulfill both of the criteria above [95]. For MPO-isometric
PEPS (cf. Section 5.2.3 and Eq. (5.28)) the canonical parent Hamiltonian

Hpnys = Y ApAf, (6.62)
P

is gapped and the gap is not affected by applying the pseudo inverses A locally. Thus, also the
encoded PEPS has a gapped canonical parent Hamiltonian

Hyire = [ [ A (ZAPA;> [T4.=Y.Q,. (6.63)
v 4 4 4

where
Q, = [T 4% (4,4}) A, (6.64)
vEp
and we recall that A, is the PEPS mapped obtained from blocking the PEPS maps A around a
full plaquette p.

The last property required is so-called quasi-injectivity. This is a formal criterion defined in
Ref. [95] stating that the PEPS is the simultaneous eigenstate of several operators Y; at their
highest eigenvalue. While we refer for the general definition to the original work by Brell et
al., we observe that for MPO-isometric PEPS quasi-injectivity is fulfilled and the Y; are simply
given by the Q),.

Effective Hamiltonian
We will now explain how the effective low energy description of the Hamiltonian
H=Hy+eV (6.65)

yields an effective Hamiltonian that is in the same phase as the encoded parent Hamiltonian.
Here,

Hy=) (1-P,) (6.66)

[
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is the sum of all local code space projectors applied at all vertices of the lattice and the pertur-
bation
V =Y [Bell) (Brell|, (6.67)
e

consists of all local Bell-pair projections along the edges of the lattice To get an intuitive
understanding of this fact first note that the ground state projector P is given by the product
of all code space projectors, i.e.,

Po=]]P (6.68)

and thus the effective Hamiltonian acts within the code space only. Also, note that the n-th
order effective Hamiltonian obtained via the SW method is a sum of terms with the following
structure

PVG;, VG, ...G;, VP, (6.69)

whereiy,...,i,_1>0,i1+...+i,_1 =n—1and
Py i=0,
G; = o (6.70)

(—Ho)! izl

We neglect the G; for a second and evaluate

n
PV'Py =P (2 |Bell) (Be11|e> Hpv ZcR [T Bell) (Bell|, P, , (6.71)
v e

eeR

where R denotes a collection of up to n Bell-pairs, which can be pictured as some region R and
cr are numerical coefficients. It is instructive to consider a collection of Bell-pair projections
inside a connected region R sandwiched by code space projections (cf. Fig. 6.2). Writing the
code space projections as P, = A’ A we realize that the Bell-pair projections inside the region
have the effect of contracting or blocking the PEPS maps A and their counterparts and thus

[1P. I [Bell) (Bell|, P, = [ AT ArA} Ao - (6.72)
v e€R 4

If the region R is large enough in the sense that Ag A% = Q, we can identify the term emerging
on the right-hand side of Eq. (6.72) as the encoded local Hamiltonian term Q.. In the case
of general string-net PEPS the region R, corresponds to one full plaquette consisting of 18
Bell-pair projection edges, i.e.,

HPU [T [Bell) (Bell|, P, = Q, . (6.73)

eERy

From these considerations it is clear how the encoded Hamiltonian appears in the series
expansion of Hyg. The situation is simplified significantly if PyV Py = 0, since then we can
evaluate P)VQoVPy = PyV (1 — Py)VPy = PyV?Py and the G, reduce to numerical prefactors
in low orders. Also at higher orders we can always express Qp as (1 — Py) and obtain the
desired Hamiltonian at some finite order. The main problem is to ensure that the Q), terms
are the dominant contribution, i.e., lower order terms vanish or “project” into a space that
contains the ground state space of Hyirt and higher order contributions can be regarded as small
perturbations that do not drive the system towards a phase transition. We will illustrate that
both of these conditions are fulfilled on the example of the double semion model in the next
Section. For the full and general proof that the effective Hamiltonian is in the same phase as
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Fig. 6.2. + A one-dimensional version of Bell-pair projections sandwiched by code space projections which
yields a blocking of the PEPS maps in a virtual encoding.

Hyirt we refer to the original work by Brell et al. [95] and only summarize the proof technique
used there in words.

Similar to our considerations provided to get a preliminary and intuitive understanding of
the effective Hamiltonian, the proof in Ref. [95] also starts out with highlighting a particular
contribution to the perturbation expansion that occurs at some finite order. It is then argued
that this contribution corresponds to a sum of operators Y;, which stabilize the PEPS (as a
consequence of quasi-injectivity) and that this term can indeed be considered the dominant
contribution. The proof proceeds with showing that the higher order contributions of the
perturbation expansion can be considered as a small perturbation to the finite order Hamiltonian
which do not change the phase of the Hamiltonian. The latter is achieved by invoking the
stability of topological ordered states, i.e., the well known fact that Hamiltonians possessing
the formal property of local topological quantum order (LTQO) [168-170] are stable against
small local perturbations. To ensure that all higher order terms can indeed be regarded as
local perturbations a local version of the SW method is used and it is shown that the effective
Hamiltonian obtained via global SW is in the same phase as the effective Hamiltonian obtained
via local SW.

Double semion parent Hamiltonian

As the simplest example of an MPO-isometric PEPS we consider the double semion ground
state (cf. Section 5.3). The perturbative PEPS parent Hamiltonian consists of the code space
projectors acting on six qubits located in a triangle around each vertex and is a matrix product
operator of bond dimension two. The Bell-pair projections act on all edges and there are two
parallel edges connecting each pair of vertex triangles (cf. Fig. 6.3.). To analyze the perturbation
expansion first note that we have PyV Py = 0 which follows from the fact that sandwiching
a single Bell-pair projection between code space projectors evaluates to zero. To see this, we
explicitly calculate the code space projector from the PEPS map given as e.g. in Ref. [95]

" 1
Pyps = E(Pc +X), (6.74)
here P, = Yabela,a,b,b,c.c)(a,ab,b,c,c| projects from the 26-dimensional space ®°V of

general states, |a,4’,b,V',c,c’), onto the 23-dimensional space of pairwise even-parity states
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Fig. 6.3. + The perturbative PEPS parent of the double semion model with the support of the code space
projectors marked by grey triangles and the support of the Bell-pair projections marked by red rectangles.

The regions marked in orange correspond to the support of Hgf) ~ P and He(f6f) ~ Q;,.

~ @3V and

=Y [001,001,001L,b01,c®1,c®1) Xy

a,b,c

(a,a,b,b,c,c| (6.75)

likewise acts in ®3V where it flips all states and assigns a sign factor

-1 a+b+c=1,2,
XﬂbC:{ (6.76)

1 otherwise.

It is easy to see that a single Pauli operator acting on a single qubit excites the system and
thus the first-order term vanishes. As a consequence the first potential non-zero contribution
to the perturbation expansion is given by terms in second order where the region of Bell-pair
edges consists of the two edges connecting two neighboring vertices
H? — POV% VP Py Y P,P,, ][] [Bell)(Belll,Py,Py,P, (6.77)

€:
01,02 eEva URUZ

where vy, v, are neighboring vertices and R, denotes the triangle at v. Using the considerations
from the above paragraph and Eq. (6.72) we find

2
HY -y (AL AL AR, o, Ak, , Aoy Ay Po - (6.78)

01,02

The contracted PEPS map Ag, , is best understood, if we recall that the physical qubits are
192

located at the edges of the triangle tensor. Thus, if we consider two uncontracted neighboring

triangle tensors, there are two independent physical qubits for each edge of the hexagonal
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6. Realizing topological order in mesoscopic systems

lattice. However, those two qubits should in the end correspond to only one physical qubit.
This is guaranteed if the tensor network is contracted. It is exactly this contraction which is
enforced by the second order terms stated above. Thus, we identify the ground state space of

Hgf) with the physically consistent space of virtual qubits and denote its projector by P .

2
HZ ~ Py, . (6.79)

Note, that it is reasonable to evaluate all higher order contributions within the physically
consistent subspace as all states orthogonal to the latter will be penalized with an energy that
exceeds the energy scale of the higher order contributions arbitrarily in the limit of § — 0.
The third and fifth order contributions vanish just like the first-order contribution, because
three or five Bell-pair projections cause isolated spin flips. At fourth order we obtain products
of second order terms which further stabilize the space of physical consistent configurations.
At sixth order we obtain a term that consists of six Bell-pair projections around one hexagonal
loop sandwiched by code space projections. If we evaluate this term in the physically consistent
subspace enforced by the second order terms, we obtain the encoded plaquette operator, i.e.,

6
L ~ Y Py [T(AAR, Ak Ao)Poc =) Q) - (6.80)
b p

vEp

Scaling

We want to conclude this Section by comparing the number of qubits needed to effectively
realize a Levin-Wen phase via the perturbative PEPS parent method with the number of qubits
needed in the Jordan—Farhi gadget construction. On a hexagonal lattice with N qubits, there
are N, = % vertex operators and N, = % plaquette operators. The vertex operators are 3
local and the plaquette operators are 12 local. The number of individual Pauli words appearing
in the decomposition of the vertex and plaquette terms denoted with r, and r, respectively,
depends on the model and in general there are more Pauli words needed the more complex
the model is. While for the toric code model there is only a single Pauli word per vertex and
a single one per plaquette operator, i.e., , 7c = rp,rc = 1 already the plaquette operator of
the double semion model has 2° = 64 Pauli words because the phase factor of the plaquette
operator depends on the state of the outer spins and we have r, ps = 1, 7, ps = 64. For the
double Fibonacci model we have seven Pauli words to characterize the vertex operator r, rg = 7
and the Pauli word decomposition of the plaquette operator can not even be calculated naively
on a usual desktop machine as it involves 412 multiplications of two 2!2 x 212 matrices. Recall
that we can find a Pauli word decomposition of an operator acting on # sites by calculating
Tr(cj,..i,A), where 0 = 0; ® ... ® 0y, for all i; = 0,1,2,3 and 03 with k = 0,1,2,3 labeling
the 3 Pauli matrix and the identity matrix. Thus, finding the Pauli word decomposition is a
computationally costly problem. A rough estimate of the number of Pauli words of the double
Fibonacci plaquette operator can be obtained by realizing that the plaquette operator can be
written as a sum of two MPOs, one with bond dimension two, the other with bond dimension
three each acting on six sites comprised of two qubits. Thus, we obtain 2° + 3% = 793 terms
that each correspond to a different Pauli word.
The number of auxiliary qubits used for the Jordan-Farhi gadget constructions is

N4 = 3Nyry + 12Nprp (6.81)
to which the number of physical qubits has to be added, i.e., the total number of qubits is
Njg = Ng+ N = N +2Nry +4Nrp . (6.82)
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6.2. Majorana Cooper box networks

Inserting the numbers above, we obtain

Nie {: 259N double semion, (6.83)

~ 3187N double Fibonacci.

However, the lower bound is a very conservative estimate and most likely the true value is
orders of magnitudes higher.

Assuming that the code space projector of the perturbative PEPS parent approach can be
realized without additional gadget constructions, the number of qubits used in this approach
equals the number of qubits used to define the code space, which is 6 for the double semion
model and 9 for the double Fibonacci model, times the number of vertices of the hexagonal
lattice, i.e.,

4N double semion,
Np peps = NoNeode = {6N double Fibonacci. (684)

Thus, the scaling is linear with the system size in both cases. However, while the number of
qubits increases moderately with the complexity of the model in the case of the perturbative
PEPS parent, the Jordan—Farhi gadget method is not even applicable in a straight forward
fashion since already the computation of the Pauli decomposition becomes problematic.

6.2. Majorana Cooper box networks

The next Section follows Ref. [2], which is the work of the author performed in collaboration
with together with R. Egger, J. Eisert and A. Altland. Figures are taken directly from Ref. [2].

In the following we will review the theory of Majorana Cooper boxes (MCBs) [89, 90] and
how their low-energy state space corresponds to a Hilbert space of qubits. We show how
tunnel coupled networks of MCBs [85, 86, 88, 91, 113, 258-260] give rise to an effective low
energy theory of interacting spins and how we can book-keep the effective interactions in a
comprehensible way. This allows us to identify mechanisms of destructive interference, i.e.,
conditions under which certain interactions are suppressed. These insights can in turn can
be used as design principles to construct small network structures that yield well-controlled
effective qubit interactions.

6.2.1. Majorana Cooper box

A Majorana Cooper box (MCB) [89, 90] is a mesoscopic device for which theoretical studies
suggest that its low-energy subspace can be identified with one or multiple qubits. The essential
idea is to use quantum wires which host Majorana bound states (MBS) at their ends. The charg-
ing physics of the full device — consisting of the quantum wires and a normal superconductor
— gives rise to a parity constraint on the Majorana modes (corresponding to the MBS) which
makes the mapping from Majorana modes to qubits possible. We will briefly review the main
concepts of the MCB including the formation of Majorana zero modes in nanowires and refer
for further details to Refs. [87, 261, 262].

Much thought has been spent on the question how Majorana modes can appear in condensed
matter systems [263-267] and we refer for a recent review on MBS to Ref. [268]. Here, we will
only briefly discuss the theoretically proposed emergence of Majorana zero modes in nanowires
with strong spin-orbit coupling in a magnetic field placed in proximity to a superconductor.

Readers with a background in quantum information theory might be less familiar with
Majorana physics, but know very well that the Kitaev chain [236] exhibits Majorana edge
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6. Realizing topological order in mesoscopic systems

modes in the topological phase and is used as a toy model for a superconductor of spinless
Fermions (so-called p-wave superconductors). While superconductivity occurs frequently in all
kinds of materials, the usual pairing term couples Fermions of opposite spin (s-wave pairing).
A possible way how one can nevertheless have superconductors of spinless Fermions is to
consider mechanism by which effectively spinless Fermionic bands can emerge and to “add”
superconductivity by placing the system in proximity to a usual s-wave superconductor. One
particular mechanism how a single effective spinless band emerges is in systems with strong
intrinsic spin-orbit coupling as for example in InAs or InSb nanowires [267]. The spin-orbit
coupling induces a splitting of the two spin-bands with a level crossing at the k = 0 point
of the Brioullion zone. If now a uniform magnetic field is applied along the wire direction,
the additional Zeeman splitting causes the level crossing of the two bands to disappear and a
gap is opened around k = 0. If the Fermi energy is close to zero, an effective band of spinless
Fermions emerges. The superconducting pairing term acting on those effectively spinless
Fermions emerges if the nanowire is brought in close contact to a superconductor. This effective
Kitaev chain can give rise to Majorana edges modes if it is in the topological phase (i.e., for
appropriate parameters). Experimental evidence for the formation of MBS in systems designed
as the one sketched above has been reported in Refs. [269-274]. However, it is not yet settled
whether the observed phenomena would only occur for MBS or could also be caused by so
called Andreev bound states [275-277]. For recent proposals for experiments to distinguish
the latter see e.g. Refs. [278-280] and the references therein.

With this general setting in mind we now turn to the physics of the Majorana Cooper boxes
following Ref. [2]. An MCB consists of 7 quantum nanowires fabricated with a superconducting
shell such that they fulfill the requirements above and host Majorana edge modes. All n wires
are isolated against ground but electrically connected to a superconductor island. A schematic
of the setup is shown in Fig. 6.4, where the vertical dark shaded bars indicate the superconductor
connected to the horizontal wires. When isolated against ground, systems of this size have
small electrostatic capacitance, C, and as a consequence a large electrostatic charging energy,
Ec(N — ng)?, where Ec := ¢2/2C ~ 1 meV [270], N is the particle number on the MCB
and ng an effective background parameter tunable via side-gate electrodes. The charging
effects are sensitive to the number of non-local fermions formed from the Majorana edge
modes of the Kitaev wires, 1, = Y} _; 114 with 11, := cl ¢y and conventional fermion operators
ca = (Y20—1 + i724)/2 [281] and the number of Cooper pairs in the superconducting island
Nc. The charging Hamiltonian is given by

He =Ec(N-ng)>,  N=2Nc+N,. (6.85)

If the back gate voltage 74 is tuned to a value such that the closest integer, N, is electrostatically
favored, a parity constraint emerges as follows [89, 90, 282]. Since Cooper pairs can be created
in the superconductor at no energy cost the value of N is only fixed modulo 2. And thus
the ground state of the charging Hamiltonian is given by all configurations with an even or
odd number of non-local Fermions N, depending on whether 7, is an even or odd integer.
Expressing this parity constraint in terms of the Majorana modes we obtain

P = in’)q e Yo = +1. (686)

The even- and odd-parity sectors are separated by a large energy gap due to the charging
energy Ec of the box and we can restrict our analysis to the sector where the parity constraint
is satisfied.

Due to the parity constraint Eq. (6.86) an MCB with 21 spatially localized MBS v; = 7],
i=1,...,2n satisfying the anticommutation relation

Yiar vjp}t = 20i0ap (6.87)
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Fig. 6.4. + (a) Part of a network containing one tetron (MCB 1) and one hexon (MCB 2). In the ground
state, each MCB abides in a definite eigenstate of the parity operator (6.86). Individual MBSs of different
MCBs are coupled via complex tunneling amplitudes indicated in blue. (b) A somewhat less schematic
representation of the same architecture, emphasizing that each MCB is a mesoscopic island comprising n
parallel quantum wires proximitized by the same superconductor (shaded vertical structure). Tunneling
links between neighboring MCBs are tunable via local gate voltage changes.

gives rise to a 2"~! dimensional Hilbert space that can be interpreted as the Hilbert space of
(n — 1) qubits. Products of an even number of Majorana operators can be identified with Pauli
words acting on the latter. For n = 2, i.e., an MCB hosting four MBS called a tetron and for n = 3,
an MCB hosting six MBS called a hexon, all Pauli words can be expressed as Majorana bilinears,
while for general 2n MCBs some Pauli words can only be expressed by products of four or
more Majorana operators. This makes tetrons and hexons particularly interesting as building
blocks in the scheme to be developed below since the full Hilbert space can be explored only
by Majorana bilinears. Bilinears appear quite naturally in single tunneling processes where
an electron tunnels into and out of the MCB. In contrast a product of four Majoranas would
correspond to two tunneling events that occur simultaneously.

One possible explicit identification of the Majorana modes in a tetron with the Pauli algebra
of a qubit [89] is the following

Y172 = —it, Y273 = —if, T173 = —iZ. (6.88)

Combinations involving 74 are fixed by the parity constraint in Eq. (6.86), y1727371 = 1. In
Fig. 6.5a this identification is visualized. For later reference, we mark one of the Majorana
modes with a white dot such that the Fig. 6.5a can be used as a legend in more complicated
MCB networks.

Similarly for a hexon [262] we can partition the six Majorana modes into two groups of three
and Majorana bilinears formed from only one group correspond to single-qubit Pauli operators
on single qubits, cf. Fig. 6.5b. In contrast, bilinears involving MBSs from different groups yield
two-qubit operators which follows from the parity constraint. For instance, y17y4 = i72737576
and thus equals —iZ ® £ as indicated in Fig. 6.5c.

6.2.2. Tunneling Hamiltonian

Next, we consider MCBs tunnel coupled with phase-coherent connectors (e.g., normal-conducting
short nanowires), indicated by blue lines in Fig. 6.4. The effective couplings A;; ;» depend on
the fabrication process and are not well controlled. However, one can tune their values by
a changing the voltage at local side gates as indicated in the bottom panel of Fig. 6.4. In a
one-time interferometric calibration procedure that is performed prior to the actual operation
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Fig. 6.5. + Pauli operator representation of Majorana bilinears on tetrons and hexons. Arrows between
vertices (i.e., MBSs) identify Majorana bilinears and their associated single- or two-qubit operators. The
marking of 1 (open circle) indicates our Majorana ordering choice. (a) Single-qubit operators for a
tetron. (b) Single-qubit operators for a hexon. (c) Several two-qubit operators for a hexon.

of the system one can thus adjust their values. In particular, adjusting the complex tunneling
phase is a powerful mechanism that will be used in the following, cf. Section 6.3.2 and Refs. [87,
261, 262, 281] for the general interferometry calibration protocol.

Crossing wires are difficult to implement in practice, though current fabrication technology
does not exclude them in principle [267]. The coupling architectures described in the following
try to minimize the number of crossing wires, although they cannot be completely avoided.

It is convenient to work in a charge fractionalized picture where all Majorana fermions are
considered charge neutral and charge transferred to MCB i is expressed as elfi using a number-
phase conjugate pair [¢@;, Nj] =14;; [90, 281, 283]. We arrive at this fractionalized picture by
applying a gauge transformation c; ,  c; ,¢'% to the fermion operators of the respective MCB.

Our approach will be based on perturbation theory in the parameters [A;;;p|/Ec < 1.
Physically, this means that state changes of the system are induced by virtual excitations out of
the definite parity ground state sector.

In this formulation the tunneling Hamiltonian assumes the following form

Ht = Z /\i]',abin,a’)/jrbei(@i_qA}j) +he., (6.89)
ija,b

where ¢(?%~%) accounts for the fact that charge is raised/lowered by one unit on MCB i/j.
The Hamiltonian of the whole system is given by a sum of all individual MCB Hamiltonians
Hy=EcY,;(N; — ng,i)z and the tunneling Hamiltonian

H=Hy+H,. (6.90)
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Fig. 6.6. + Example of a minimal MCB network, cf. Eq. (6.94).

6.2.3. Effective low-energy theory

In general the charging energy defines the largest energy scale of the system, i.e., [A;j ;] /Ec < 1
and we can treat the Hamiltonian in Eq. (6.90) perturbatively. We seek to characterize only
the low energy behavior of the system and therefore restrict our attention to the processes
within the ground state space of Hy. Note that the action of H; on any element in the ground
state space of F generates an excited state. The task of the perturbative program outlined
below is then to identify the relevant virtual ring-exchange processes which take the system
through a sequence of excited states and finally back to the ground state space of Hy. We will
first present an intuitive picture for this. Each single tunneling process decharges the emitting
MCB and charges the receiving MCB. The reverse tunneling process can undo this effect, but
it has a trivial effect on the MCBs, acting as an identity operation. However, if a sequence of
further tunneling processes transports the charge unit through a closed loop of MCBs back to
the emitting box, charge neutrality is reached again. However, now the effect on the MCBs is
non-trivial, as it causes a hybridization of all Majorana states visited, i.e., an operator given by
a product of the respective Majorana modes.

In the following we show that this intuitive picture can be made more precise by applying a
self-energy expansion as in Section 6.1.1. The emerging relevant tunneling processes can than
be expressed as products of Pauli operators (Pauli words) acting on the low-energy Hilbert
space of the system identified with a tensor product Hilbert space of qubits.

As introduced in Section 6.1.1, we consider the series expansion

) k—1
Hegs = Z Ak, Ak = Py (Ht Q? ) APy, (6.91)
k=1 —Hy

where P, is the ground-state projector of Hy.
We find it convenient to represent every individual tunneling operator

Tijab = MjavYiaVipe 7% (6.92)

as a directed arrows from 7; ; to 7;, for different MCBs a # b. The arrow direction indicates
the direction of the charge flux and the Hermitian conjugate T;;’ 4 corresponds to the reversed
arrow direction, cf. Fig. 6.6. Depicting a product of individual tunneling operators as an arrow
pattern, it is easy to see, that charge neutrality now requires an equal number of incoming
and outgoing arrows at each MCB. Thus, only hopping patterns that correspond to oriented
closed paths contribute to Eq. (6.91) and the effective Hamiltonian is given by a sum over the
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latter. Each closed path can be partitioned into a product of loops. If we consider closed paths
without self-intersections, i.e., only single loops, we can easily characterize all the contributing
terms. There are two possible orientations d = %1 of the loop giving rise to a term and its
Hermitian conjugate

O, =0". (6.93)
In addition, for a loop of length k, i.e., a loop consisting of k tunneling links and a chosen orien-
tation, there are k! different permutations of the tunneling link segments that each contribute
to the expansion Eq. (6.91). Since in general individual T; operators do neither commute with
each other nor with 1/ Hp, the summation has to be performed explicitly. We will comment on
possible simplifications in the following Sections.

It is important to note, that the contributions from closed paths of length k are weighted by a
factor that decays exponentially with k, since each operator 1/ Hy yields a factor of the order
of 1/Ec. Thus, short (and thereby relatively simple paths) dominate the theory and it is not
expedient to develop a full analysis of all possible complicated patterns. However, we will
briefly remark on self-intersecting closed paths at the end of this Section.

We now analyze Eq. (6.91) for a simple example — a network of two tetrons connected with
two parallel wires depicted in Fig. 6.6 where no self-intersecting loops can occur. Using the
notation in Fig. 6.6 the tunneling Hamiltonian is given by H; = Ty + T» + T{ + T4 with the
hopping operators

Ty = Ay av1,8e P4 98) | Ty = Ky py3 pel(P4—98) (6.94)

The effective Hamiltonian is given by the only possible closed loop of length two summing
over two possible directions and the possible permutation of T; and T,. We obtain

~2) a2 A(2 A(2) A(2)

A = OF, +0y, +0_+051_, (6.95)
A2 A 1 44
Oi/]’,Jr = POTi_HOTj Py,

where the index specifies (s, d). As discussed earlier contributions where hopping occurs back
2
e
operation and only cause an irrelevant overall energy shift. Thus, they will always be omitted.
From now on we will assume, that the MCBs are operated at the electron-hole symmetric
point. In that case both charging or decharging the MCB give rise to a state with energy Ec
and we can further evaluate Eq. (6.95) using the identification of Majorana bilinears with Pauli

operators in Eq. (6.88) to obtain

and forth along the same wire, i.e., O}, are trivial meaning they are proportional to an identity

~(2 Ax* Ax*
Oirz)ﬂr = TE PATIBI3BYAA = 5E-2aZE (6.96)

Note, that for a given loop the Pauli operators are the same up to a numerical prefactor
independent of the orientation and the sequence of the hopping operators. We summarize
this observation by expressing the operator corresponding to an oriented loop of length k and
given operator ordering s by

O.‘E(),kd) = lkA(k/ 5, d)Q(k) ’ Q(k) = q\lq\Z T ‘?k 7 (697)

where Q¥ is composed of Pauli operators §; acting on MCB i. The prefactor A(k,s,d) is a
product of all tunneling amplitudes of the wire segments that form the loop and the (inverse)
excitation energies of all virtual intermediate states. Depending on the sequence, in some
intermediate virtual states more than two boxes might be excited at the same time which is
why the prefactor is only proportional to 1/EE™! and not exactly given by 1/ (2Ec)F".
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6.2.4. Destructive interference mechanisms

The exponential decay of A(k, s, d) with the loop length is important, as it limits the ability to
engineer effective qubit operators which act on many qubits simultaneously. In the generic
case short loops corresponding to few qubit operators will dominate the effective theory. This
is a severe obstacle in the design of topologically ordered fix-point Hamiltonians since they
generically require 12-body interactions [12, 119, 172]. We thus discuss two specific mechanisms
in the next Section that can lead to the cancellation of specific loop terms. Since the effective
Hamiltonian term corresponding to a certain loop O is given by the sum over both orientations
and all sequences

O0=Y 04 (6.98)
s,d

it is natural to ask when this sum vanishes as an effect of destructive interference. We analyze
first a setting where cancellation occurs by summing the different sequences of an oriented
loop. The reversely oriented loop will vanish as well since it is only the Hermitian conjugate of
the former. Then we discuss how the prefactor can be tuned to be purely imaginary such that
adding its Hermitian conjugate (summing over both loop directions) leads to cancellation.

Loop cancellation by symmetry

If for each sequence s of tunneling operators, there exists a permuted sequence I1[s| with opposite
prefactor,

A(k, I1[s],d) = —A(k,s,d) (6.99)
the sum over all sequences is zero since we have
A A Ak A (k
O1=Y 0.4 =Y 00, =-Y0%. (6.100)
s S S

This condition is not necessary, but sufficient and in particular it is simple to find instances
of loops that fulfill this criterion. To this end note that a sign change due to a change of the
sequence can only occur if at least some of the hopping operators anticommute. This is the case
if two wires are couple to the same Majorana mode, i.e., if we have overlapping hopping terms.
If the permutation interchanges an odd number of overlapping hopping terms and leaves the
energy prefactor invariant, i.e., the product of all inverse energies of the virtual intermediate
state is the same for the sequence s and I1[s] the condition in Eq. (6.99) is guaranteed. Since
the energy of the intermediate states only depends on the charge transferred between MCBs,
irrespective of precisely which MCBs are involved in the tunneling path or whether we have
tetrons or hexons, we can simplify the loop to a reduced graph where MCBs are replaced by
single vertices labeled by their charging energy. MCBs with overlapping hopping operators
connected to them are marked. Now a practical approach to finding the permutation I is to
find suitable symmetries of the reduced graph. In particular a mirror symmetry, mapping edges
to edges and vertices to vertices of the same color and same charging energy, with the mirror
axis going through an odd number of marked vertices will directly yield such a permutation.
This is easily seen as the symmetry guarantees that the intermediate states have the same energy
and the reflection induces an odd number of sign changes. Note that for the construction of the
reduced graph the coupling amplitudes are irrelevant since their product appears irrespective
of the specific sequence.

We illustrate this mechanism for the MCB network in Fig. 6.7a, which has a mirror symmetry
of its reduced graph (cf. Fig. 6.7b) along the vertical axis. This reflection defines a permutation
Ty <+ Ty and T, <+ T3 of tunneling terms. Since T; and T3 anticommute, this permutation
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(a) ] (b)

(c) (d)

P

Fig. 6.7. + Two examples for loop cancellation by symmetries and anticommuting T; terms. (a) MCB
network with overlapping hopping terms T, and T3, and (b) the corresponding reduced graph. The
reflection symmetry defining the loop-canceling permutation I1[s] is also indicated. (c¢) Another example
for a network with anticommuting T; operators and (d) the associated reduced graph.

induces a sign change. We evaluate the loop contributions for a specific sequence s and the
associated permuted sequence I1[s] to make the notation clear,

oY = pB1 _}qo Ts —i% T, _1% TyB
= wingAﬁgllc@@ﬁ)D, (6.101)
Oy, = PTu— OTz_}{OTg_AOTlpo
= @xAxBlC@@ﬁ)D

Here we have set the tunneling amplitudes to one since they are irrelevant as explained above.
We see that both contributions cancel each other as expected from the general arguments laid
out above.

Loop cancellation by phase tuning

Next we consider a cancellation mechanism that occurs for a suitable tuning of the complex
coupling amplitudes. We define the loop phase as the complex phase of the prefactor A(k,s,d)
which is independent of the sequence and given by

Dy =km/24+ P+ ...+ Py, (6.102)

where &; with A; = |A;|e'? are the complex phases of the coupling amplitudes of the wires
defining the loop. If &, = £m/2 we obtain an anti-Hermitian operator O, and adding its
Hermitian conjugate O_ will yield zero.
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Fig. 6.8. + An example for cancellation of composed loop paths.

Let us briefly reconsider the two-tetron example in Fig. 6.6 to illustrate this mechanism.
Summing over the two different sequences for a clockwise oriented loop, we obtain

Ax*
Ec

0% = 22 5,2, (6.103)

cf. Eq. (6.96). Now O©) = Of) +0% exactly vanishes for Re(Ax*) = 0 or 2m/2 + ¢pp — ¢y =
+m/2. It is important to note that this loop phase is accessible experimentally and can be
tuned via the gate voltage in an interferometric procedure (e.g., conductance or capacitance
spectroscopy) measurements [261, 262]. Thus, cancellation based on phase tuning can in
principle constitute a powerful tool to avoid unwanted short-loop contributions to the overall
effective Hamiltonian. However, in practice, the above calibration procedure will adjust the
loop phases only up to a certain accuracy level, and the suppression will not be perfect. Still, one
can regard the occurring terms as small perturbations to the unperturbed effective Hamiltonian.

Composite loop patterns

We now investigate general closed paths and see how the two cancellation mechanism can
be transferred to this setting. First, for disjoint unions of closed loops it is straightforward to
see that their contribution factorizes into the product of the contributions from the individual
loops up to a numerical prefactor. Thus, if one of the single-loop contributions vanishes, the
contribution from the disjoint union will vanish as well.

Regarding the cancellation due to symmetries of the reduced graph explained above, note
that we did not restrict ourselves to self-intersection free loops and the cancellation argument
extends to this case.

To investigate the applicability of the cancellation mechanism based on the tuning of the
loop phase consider a self-intersecting path and partition it into #n non-intersecting closed
sub-paths with sequences and orientations {(s;,d;)}. Charge neutrality requires that only
orientation patterns for which the number of paths beginning and ending at a vertex is the
same contribute to the effective low energy Hamiltonian. If for all these patterns there is at
least one oriented sub-loop which vanishes due to its loop phase being /2 the complete
parent path will vanish. In Fig. 6.8 we examine an example of this type. The left length-2
loop, . = L4 + L_ = 0, vanishes due to phase cancellation while the right length-2 loop,
R = R4 + R_, has an arbitrary loop phase and does in general not vanish by itself. However,
the closed length-4 path O*) can be decomposed into two oriented segments I, and R that can
both have either clockwise or anticlockwise orientations. The total contribution is given by

oW = Ogﬂ + Of), + O(ﬂr +0o% « (L4 +L_)(Ry + R_) = 0 and thus vanishes.
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6. Realizing topological order in mesoscopic systems

Fig. 6.9. + (a) MCB ring of tetrons (the chain has periodic boundary conditions), and (b) the leading
order of the corresponding effective qubit Hamiltonian (6.104), a product operator, represented as tensor
network.

6.2.5. Engineering multi-qubit operators

Next, we analyze what kind of qubit Hamiltonians can be achieved with the cancellation
mechanism introduced above. As mentioned earlier generic network structures in which wires
are not sparsely distributed will be dominated by 2-body interactions corresponding to the
shortest possible loops. However, sparsity also severely limits the emerging Hamiltonians.
In particular, in order to engineer multi-qubit operators that can generate a certain amount
of entanglement, wires can not be arbitrarily sparse. If for every pair of MCBs there is only
one wire connecting them, the emerging operators will be simply product operators while
having more then one connecting wire creates a short loop unless a cancellation mechanism
is employed. In this sense, the complexity (or ability to generate entanglement) of a multi-
qubit operator is limited by the ability to suppress short loops. We will next investigate this
observation in more detail.

Product operators

The symmetry based cancellation mechanism explained in the previous Section allows us
to engineer product operators on a ring of MCBs of arbitrary length M, where each single
qubit operator is a sum of £, and £ with arbitrary weights. Fig. 6.9 shows the MCB network
architecture for such an operator. Tunnel bridges connect neighboring MCBs, but each wire
terminates at the same MBS per box. Thus, all length-2 loops cancel due to the fact that they
have a mirror symmetry giving rise to a canceling permutation. All loops which are products
of several length-2 loops vanish by the factorization property discussed above and the only
non-vanishing loops are of length M winding once around the full ring. Thus, the leading
order of the low energy theory is given by the operator

M
O = i dm, 6.104
Y QEqM-Thi2dm (6.104)

4i = 0%+ Bili +waiZi, (6.105)

since tunneling from one box to another can take place via the three different wires weighted
by weights a;, 8; and é; and corresponds to a single qubit operator. The resulting Hamiltonian

is given by summing OA(+M) and its Hermitian conjugate. We observe that for loops with even
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6.2. Majorana Cooper box networks

Fig. 6.10. + (a) MCB ring of hexons, and (b) the leading order of its effective qubit Hamiltonian, a product
operator composed from two-qubit operators, depicted as tensor network.

(odd) length M and purely real (imaginary) tunneling amplitudes, (A)SFM) is Hermitian. In that

case, the low-energy Hamiltonian, Heg = ZOSFM), implements a Hermitian product operator
of qubits, where the associated tensor network is shown in Fig. 6.9b. Detuning the tunneling
phases away from the purely Hermitian point, we have O, # O_ and thus H is not a pure
product operator anymore, but a sum of two product operators. lLe., it may generate some
entanglement.

The same design principle can be applied to a ring of hexons or mixed hexon/tetron structures.
For hexons, Eq. (6.104) describes the leading order operators, but the individual §; operators
are now replaced by two-qubit operators. For instance, for the example in Fig. 6.10a, we have

gi = —x(201);+pi(Je1);
+ 5(2®%)i+e(ER9)i+1i(2®2);, (6.106)
where «;, 8;, 0;, €;, ; again refer to the five tunneling amplitudes connecting the MCB labeled
by i to its left neighbor, cf. Fig. 6.10a. For the sake of completeness Fig. 6.10b shows the operator

in tensor network notation, where the two-qubit nature of the compound operators 4; becomes
apparent through the the two parallel vertical index lines at each tensor.

Matrix product operators

Employing the phase-cancellation mechanism we can design well controlled matrix product
operators with bond dimension two. Unfortunately, the mechanism is not suited to go to higher
bond dimensions. To the best of our knowledge, hierarchical gadgets constructions with more
than one low-energy subspace projection are required to achieve the latter. We will comment
on this in a later Section. For now, we consider again a ring structure as in Fig. 6.11a, but this
time each pair of neighboring MCBs is coupled with two wires of tunneling amplitudes

a; = |ale? (.Bi = |ﬁi|€i¢ﬂ'"> : (6.107)
We tune the loop phase to be
Plony = o — Pp, = £7/2 (6.108)

such that destructive interference occurs. Tuning all 4)1((2,}) to this value all length-2 loops and
their products cancel and the leading order of the low-energy effective theory is given by the
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(a) (67

® | I I

D=2

Fig. 6.11. + Matrix product operators. (a) Tetron ring of length M = 3. (b) Tensor network representation
for case (a) as a qubit MPO. The bond dimension of this MPO is D = 2.

sum of all operators that emerge from a tunneling process around the full ring. Since tunneling
from one box to the next one can occur via the upper or the lower wire segment it is convenient
to express the operator in MPO form with bond dimension two, i.e.,

om _ =i Yoo Y AL A2 .. AM,
+ (ZE )M—l‘ ) 112" "in13 imit
c i1=01  iy=0,1
:M

-1 Al A2 AM

where the A’ are Pauli operators acting on MCB i weighted by tunneling amplitudes,

Ay = —wt, Afy =B, (6.110)

o= wg, Al =p, (6.111)

and again the Hamiltonian is given by Heg = (A)SFM)(A)EFM). The tensor network representation of
this operator is given in Fig. 6.11b.

Note, that Eq. (6.111) does not represent a general D = 2 MPO. While it is possible to vary
the local basis and thereby replace the pair of £, # with another pair say 7, Z, we can not choose
all four operators independently due to the symmetry of the tetron. In addition to that, it is not
straight forward to implement operators proportional to the identity. Thus, careful inspection
is required when answering the question if a desired D = 2 MPO can be realized as an MCB
network.

Next, let us discuss why adding a third parallel wire fails to yield a bond dimension three
MPO in leading order. The reason is very simple. Out of the three length-2 loops formed
between two MCBs, only two can be tuned to have a loop phase of +7/2 simultaneously. The
third one is simple the sum of the the two and thus equal to 0 or 7, i.e., it cannot be subject to
phase based cancellation. Other mechanisms to generate D = 3 MPOs are much more involved
and explained in Section 6.2.6.

Bell-pair projection

As mentioned earlier more complex Hamiltonians can only be achieved by combining several
low energy projections. One of those hierarchical gadget construction is employed later to
construct the double semion model and combines the perturbative PEPS parent gadget con-
struction with the low energy projection of MCB networks. In addition to MPO-projections, the
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6.2. Majorana Cooper box networks

Fig. 6.12. + Bell-pairs. (a) Coupled tetron device. The ground state of the associated effective Hamiltonian
(6.112) is a Bell state for real positivea = b = ¢. (b) Tensor network representation of [Bell) = |0,0) + |1,1).
() Tensor network representation of the Bell-pair projector Pg,;; = |Bell) (Bell|.

PEPS parent Hamiltonian is composed of several Bell-pair projections. We thus briefly show
how a Bell-pair projection can be engineered in a simple MCB network. The network is given
in Fig. 6.12a showing three wires with weights 4, b, c connecting two MCBs. Thus, the three
length-2 loops give rise to three 2-qubit operators. For a = b = ¢ > 0 we obtain

aZ

eff = o (=818 — 2122 + 1102) - (6.112)
2Ec

which has a Bell state |Bell) = |0,0) + |1,1) as its ground state. The state as well as the projector

Pgenr = |Bell) (Bell| are depicted in Figs. 6.12b— in tensor network notation.

6.2.6. Hierarchical designs

The operator designs proposed above all rely on the fact that we work within a low-energy
sector separated from the excited state space with a large energy gap. It is possible to think of
design schemes in which additional energy scale separations are introduced, e.g. by choosing
certain link weights to be much stronger than others. In these settings, we obtain a low-energy
description of the low energy description. We refer to these designs as hierarchical designs or
hierarchical gadgets and present several examples of the latter in the following Section.

Repetition code qubits

A particularly simple hierarchical gadget construction is the repetition code Hamiltonian
operating on a chain of MCBs again connected with parallel wires with tunneling amplitude
a and b shown in Fig. 6.13a, but this time, the loop phases are not tuned to the destructive
interference regime. Instead, we choose ¢1o0p = ¢a — ¢p, such that /2 < ¢150p < 37/2 the
and the length-2 loops yield

_ Re(ab*)

T

<0, (6.113)

137



6. Realizing topological order in mesoscopic systems
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Fig. 6.13. + Logical qubit in a repetition code. (a) Chain of M tetrons with open boundary conditions.
Neighboring tetrons are coupled by tunneling amplitudes a and b. (b) Logical Pauli operators X and ¥
emerge by pumping an electron through the entire chain, cf. Eq. (6.117).

and the effective Hamiltonian

M-1
Heg =] ) 2is1 (6.114)
i=1
is nothing but a ferromagnetic Ising chain. The two-fold degenerate ground state space of this
Hamiltonian can be identified with the code space of a repetition code [284], i.e., the logical zero
state |0) = |00...0) and the logical one state |1) = [11...1). We can assume that the whole
system will always be in the logical subspace and thus forms a logical qubit. Interestingly, this
logical qubit may be operated just like a single tetron-based qubit but with enhanced error
resilience.

Let us consider a process where an electron enters the MCB chain at the left side and exits
at the right site. Such processes can be implemented experimentally a shown in Ref. [86].
This process corresponds to a sum of all possible paths, each corresponding to a Pauli word
composed of £ and 7 operators. Interestingly the action on the logical space spanned by |0)
and |1) only depends on the entry and exit point of the tunneling electron and is independent
of the exact path. To see this, first consider a chain of length two and a tunneling processes
where the electron enters at the top left and exits at the top right. The two possible paths yield

-1 A
S0 = =—— (axlxz + b}/lyz) , (6.115)
2Ec

where the first (second) index refers to the entry (exit) point and the index value 0 (1) refers

to the top (bottom) MBS. On the logical space we have §j = i£Z and 212, = 1, and obtain
s a=b
0=~ 5F

%152, (6.116)

which is proportional to the logical Pauli-X operator. We can generalize this argument by
induction and arrive at the general expression for a M-qubit chain

~ A A

Spo = =511 = —cmX, So1 =510 =cMm

=

(6.117)
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6.2. Majorana Cooper box networks

Fig. 6.14. + (a) A hierarchical structure in which units of two tetrons are first linked by tunneling amplitudes
a; ~ —b; to define repetition qubits. These blocks are then coupled by amplitudes «;, 8; to an MPO depicted
as tensor network in (b).

this result is identical to the mapping of Majorana bilinears to Pauli operators for a single tetron,
cf. Eq. (6.88).

MPOs on repetition code qubits

One can now use repetition code chains as elements in more complex networks where only
the four MBS at the boundary of the chain are coupled to the rest of the network. Now, the
tunneling processes corresponding to logical operations discussed above, occur as higher order
contributions to the low-energy effective theory. Le., at the energy scale | defined in Eq. (6.113),
one would not be able to resolve the more structured effective Hamiltonian of the logical qubit,

but only see a ferromagnetic chain. However, on the scales < ﬁMﬁl, the higher order terms of
the effective theory can be resolved and we discover an effective Hamiltonian acting on logical
repetition code qubits. This is our first example of a hierarchical gadget constructions. To be
more specific, consider the network structure depicted in Fig. 6.14 closed in a ring of length M,
i.e.,, M /2 repetition code blocks formed by tunnel couplings a;, b; are embedded into an MPO
structure with M /2 parallel wire pairs «, B.

We want to resolve the effective theory at energy scales o< 1/ EéAil, i.e., terms corresponding
to tunnelings once around the ring. However, the theory is generically dominated by length-2
loops. Tuning the loop phases of the a, 8 pairs such that destructive interference cancels them,
we obtain three decoupled logical repetition qubits at energy scale 1/Ec. Now the theory at
scale < 1/ Eédfl can safely be evaluated projecting to the ground state space of the effective
theory at scale 1/Ec, i.e., the code space of three independent repetition code qubits and we
obtain an MPO of M /2 logical Pauli operators acting on repetition qubits given by

O'M o Ty (1911%2 ...BM/z) , (6.119)
with MPO matrix elements
Bi, = —a; X, (6.120)
361 = ,BiY ’
Biy = a7,
Bl = -BiV.
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. Physical qubit

Bell pair projections

Repetition code registers

Careful wire routing

Fig. 6.15. + A design scheme for realizing D = 3 MPOs on physical qubits (red).

Jordan-Farhi-gadget enhancements

To overcome the limitation of the bond dimension D = 2 for matrix product operator designs
explained in Section 6.2.5 we employ a hierarchical gadget design sketched in Fig. 6.15 sufficient
to designa D = 3 MPO. The design idea is inspired by the Jordan-Farhi gadgets in Section 6.1.2
and the perturbative PEPS parent construction. Each physical qubit p, i.e., the qubit on which
the MPO eventually acts on, is supplemented with auxiliary qubits that together form a unit
cell (grey boxes in Fig.6.15). The unit cell consists of an array of of 3 x 3 repetition code qubits
") j =1,2,3, each assembled form three MCBs r(; ;y x, k = 1,2,3 and two communication
qubits ¢y, c; which are subject to Bell-pair projections with the communication qubits of the
neighboring unit cells.

The repetition code qubits are used similar to the Farhi gadget construction to engineer well
controlled 3-body operations on the physical qubit and its associated communication qubits. A
desired Pauli word, e.g.

X, ®Y,®Z, (6.121)

is assembled by adding two-body interactions
Xey @20 Yo @2y, Zo®@%Xn, (6.122)

between the communication (physical) qubits and the auxiliary qubits of the register (i, f).
Similar to the Jordan-Farhi-gadget construction the leading order term in perturbation theory
is given by the shortest product of two-body terms that flips all auxiliary spins, i.e., performs a
logical )A((i,]-) =Xr0, ©%r ), @ %, 5 on the repetition code register (i,7). In this way, we can
design a total of 9 freely chosen three-qubit operations.

Note, that there is a massive amount of short cuts (mini-loops) generated since many wire
ends are connected to one single Majorana terminal. However, non of them is harmful to the
construction, as they fail to perform a logical X or Z on the repetition code qubits and thus do
not contribute to the effective theory in low order.

The Pauli words on the triple (c1, p, ¢2) designed using the repetition code array (i, j) are

not arbitrary, but instead of the form Ug)l?;f’j )(Tg), where i,j = 1,2,3 and o) = %,9,2 and
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6.2. Majorana Cooper box networks

& = %,—1,2. The operators B("/) can be freely chosen and correspond to the MPO tensors
eventually.

The choice of the Pauli matrices on the communication qubits is such that the index con-
traction between MPO tensors on different unit cells is carried out effectively via the Bell-pair
projection. Consider two three qubit operators on two neighboring unit cells

PP Ny
o8, oIBI ) (6.123)
A Bell-pair projection on the right communication qubit of unit cell one (j) and the left com-
munication qubit of unit cell two (i')

Pgen0j ® 0y Ppeny = 6, 5 (6.124)

selects only those Pauli words, where neighboring communication qubits are operated on with
the same Pauli matrix.

To summarize we write down the leading order effective Hamiltonian of each layer of the
construction. On the level of a single unit cell we have the repetition code registers (wired with
coupling strength )

2
I e DA .,
Hrj) = g2 (Z) Zroi Brons T B Erions (6.125)
i,j

and the weaker couplings (A between MCBs of repetition code registers to communication and
physical qubits within each unit cell

)\2

— () o » (i) o o ) o #
Hrep (i) = £ (o @ 21, + By @21+ @2, ) (6.126)
such that the first layer of the gadget construction is
Hegr1 = ZHI’,(i,j) + Hrcp,(i,j) . (6.127)

1]
The energy separation between the code space of all repetition code registers and all other

states is determined by the ratio p/A. If we assume y >> A, we obtain from the next layer of
effective low energy projection the effective Hamiltonian on the unit cell k

Heox = B Y. oW B (6.128)
i k=1

where B is proportional to A®/(Ecu*). Note, that in order to neglect the operators acting on
the repetition code registers, we need to initialize the registers in the logical |+) state, such that
logical x-operations have a trivial effect which we can omit as in Eq. (6.128) above.

Next, consider the full system. Tunnel couplings with strength x between communication
qubit ¢, of unit cell k and communication qubits c; of unit cell k 4 1 result in effective Bell-pair
projections Hpe i (cf. Eq. (6.112)) proportional to & = x>/ Ec. The effective Hamiltonian on
the full system then reads

N
Heip = ), #Hpenx + BHett 2 (6.129)
k=1
where N is the number of unit cells. For « > B, we obtain in a third layer of low energy
projection
Hes = Y. BU2 gBih g gplivi) (6.130)

itein=1
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acting on the physical qubits of the system and trivially on the auxiliary spins.

The idea presented here to design D = 3 MPOs can be easily adapted to D > 3 without
introducing additional gadget layers. If we double the communication qubits and use two
parallel Bell-pair projections between neighboring unit cells, we can realize D = 3%. The
repetition registers now consists of 5 qubits each such that they can generate five-qubit operators
acting on all four communication qubits and the physical qubit. To generate all 32 x 32 MPO
operators B("/) acting on a physical qubit, a total of 3* repetition code registers is needed. Thus,
to realize a D = 3" MPO acting on N qubits, we need N (1 + 3%")(2n + 1) qubits. While this is
a massive qubit overhead, we note that compared to a naive Jordan—Farhi gadget the scaling is
still moderate*

Adding Hamiltonian terms

Engineering well controlled k-body interactions by tunnel coupling k MCBs is a non-trivial
task as we have explained above. To avoid spin Hamiltonians dominated by nearest neighbor
interactions, cancellation mechanisms have to be invoked. Another difficulty arises if these
k-local Hamiltonian acting on different sites are added to form a local Hamiltonian on a larger
spin system. The supports of the k-local terms have to overlap at least partially, otherwise we
obtain a collection of individual subsystems that do not talk to each other. However, starting
with a tunnel coupled network that gives rise to one Hamiltonian term H; and than adding all
wires required to engineer a term Hj will not result in the Hamiltonian H; + H», but generically
short additional loops will be created that also cause two qubit interactions. This is the case
whenever the supports of H; and H; overlap on more than one qubit as demonstrated for
product operators and MPOs with D = 2 in Fig. 6.16. Only for special product operators as
e.g. used in the construction of the MCB version of the toric code, the emergence of additional
2-body interactions can be avoided. This is essentially possible in the rare cases, when wires of
the operator H; can be reused for the design of the operator Hj.

If the supports overlap only on one qubit, we refer to this as tangential overlap. In this case,
one will generically encounter wire crossings that might lead to difficulties with regards to
experimental realizations, but no additional short-loops are created and we can indeed obtain
H; + Hj by simply adding the wires generating H; and the wires generating Hj.

Note, that this constraint on the overlap severely limits the Hamiltonian design and a hierar-
chical gadget construction where interactions between different local parts of the system are
mediated in a very controlled and specific way as e.g. in the perturbative PEPS parent design
explained in Section 6.1.4 are essential to make any progress.

6.3. String-net phases in MCB networks

Having discussed the general principles of low-energy effective theories and gadgets, in particu-
lar the perturbative PEPS parent design which is tailored to engineering string-net Hamiltonians
and understanding the possibilities and limitations of Hamiltonian design in MCB networks,
we are now ready to return to the main question of this chapter — engineering string-net
Hamiltonians.

4For D > 4 a Jordan-Farhi gadget would generically require 4N auxiliary qubits, which is the maximum number of
linearly independent Paui words on N qubits.
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a) b)

) d)

Q
Q

Fig. 6.16. + Adding two individual Hamiltonian operators realized with blue and green wire couplings,
respectively. a) and c¢) show tangential overlap of the support, i.e., overlap on only one qubit for a)
product operators, c) MPOs with D = 2. b) and d) show overlapping support on two qubits leading two
additional short loops (length two) marked in red.

6.3.1. General design

The design of string-net Hamiltonians is challenging mainly because the plaquette operator
is 12 local and neighboring plaquette operators have overlapping support on 5 qubits. Both
features are extremely adverse to a realization in coupled MCB networks. However, for a given
string-net model, we can use its MPO-isometric PEPS ground state to construct a perturbative
parent Hamiltonian
H=) (1-P,)+e)_|Bell) (Bell|, (6.131)
v e

as discussed in Section 6.1.4 whose low-energy effective theory is in the same phase as the
original string-net model. The perturbative PEPS parent Hamiltonian (cf. Section 6.1.4) does
not suffer from overlapping supports. The only overlap of supports is between vertex operators
and Bell-pair projections, but here the overlap is only tangential in the language of Section 6.2.6.
Implementing the Bell-pair projections on MCB qubits is straightforward and we can simply
use the architecture given in Section 6.2.5.

Qudits

So far, we have mostly considered effective qubit Hamiltonians emerging in MCB networks.
However, to our knowledge, there are only three string-net models that are defined with 2
string-types, the toric code, the double semion and the double Fibonacci model. All other
string-net models are based on having three or more different string types. Thus, we would
need to design MCB structures with a local Hilbert space dimension larger than 2. However,
MCB devices are based on a parity constraint so their Hilbert space is usually of a tensor
product structure and we obtain 2" dimensional local Hilbert spaces naturally. While we can
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in principle embed a d-dimensional Hilbertspace H; in a 2" dimensional one Hy» as long as
d < 2", we note, that if we do not implement any constraints that restrain the system from
taking on states in Hyn / H 4, we need to prepare the initial state of the system very carefully and
need to have very good control over the Hamiltonian terms to avoid that the system ends up in a
state that is not identifiable with a state in the string-net Hilbertspace. However, implementing
constraints to penalize certain states is not trivial. E.g. if we want to obtain a 3 dimensional
Hilbert space embedded into the 22-dim space of 2 MCBs, we need to implement an operator
that is proportional to a projector onto a one-dimensional space up to some overall energy shift.
However, there is no simple candidate for such an operator. Both single qubit Pauli operators
acting on a single box as well as Pauli product operators acting on both effective MCB qubits
will project out half the state space. Splitting this space again by another single qubit or product
operator results in three or four distinct energy levels rather than a threefold degenerate ground
state. Of course one can employ a Bell-pair projection to project out a one dimensional space.
However, this involves three coupled wires already. It turns out that one cannot expect to
do much better, since in general one needs to engineer a 1-dimensional projector by a sum
of three two qubit Pauli operators. To see this, note, that two length two Pauli words always
commute and thus can be simultaneously diagonalized. Weighted with coefficients & and
B, the spectrum of the sum of the two is given by « + 8,& — B, = + &, —a« —  and thus we
cannot design a threefold degenerate subspace. Adding a third length-2 Pauli word resolves
the situation. Thus, we conclude that the implementation of additional constraints reducing
the Hilbert space dimension is costly and cumbersome. It might also lead to the emergence
of unwanted short loops in the more general setting of n MCBs. Thus, we need to restrict
ourselves to string-net models with two-string types.

Vertex projector

The crucial point in designing the Hamiltonian in Eq. (6.131) is the design of the vertex operator
P,. We have already seen that the vertex projector can always be written as an MPO with
relatively low bond dimension. In particular, the bond dimension is upper bounded by the
number of allowed vertex configurations and thus for the same number of string-types, a string-
net model with multiple fusion channels for the same pair of string types will generically have
a higher bond dimension. This is reflected in the fact, that the toric code and the double semion
model have bond dimension one and two respectively, while the Fibonacci model has bond
dimension 5. Thus, we can implement the toric code and the double semion model without
making use of Jordan—Farhi gadget enhancements by simply implementing the bond MPOs
with bond dimension one or two, respectively. However, for the toric code model it is not even
necessary to employ the perturbative PEPS parent since already the string-net Hamiltonian
itself has only tangential overlap and consists of product operators. A concrete example for
the toric code in an MCB network is presented e.g. in Ref. [91]. We will thus not investigate
the construction of the toric code model but instead consider the double semion in detail and
sketch a design for the Fibonacci model based on the more costly Jordan-Farhi enhanced MPOs.

Before we continue with the details of the double semion construction, we note that in general
the symmetry projection MPOs of string-net PEPS act on nine virtual qudits located in a triangle
and every two qudits in one corner of the triangle are forced to take the same value. This
effect can be conveniently achieved by using repetition code qubits instead of uncorrelated
single qubits in the construction of the effective Hamiltonian (cf. Section 6.2.6) for all string-net
models with two string types, i.e., the case where the MPO acts on qubits.

144



6.3. String-net phases in M(CB networks

Fig. 6.17. + Tetron ring (“triangle”) used for implementing the effective vertex Hamiltonian, H,.

6.3.2. D = 2 - The double semion blueprint

This Section is closely following the original work of the author — and co-authors — in Ref. [2].

We now turn to the implementation of the vertex operator for the double semion model
defined in Eq. (6.74). There is no need to implement the operator P, which enforces even parity
on the pairs of qubits on the edges of the triangle explicitly. Instead the even parity constraint
on all corner pair qubits is enforced by using a repetition code MPO as defined in Section 6.2.6.
Then P, acts as an identity operator within the parity restricted subspace and the essential
information of the code space projector Pv ps is carried by X. In particular, we know that the
local ground space of the operators 1 — Pv,DS in the parent Hamiltonian in Eq. (6.74) coincides
with that of —X. Our objective is thus to engineer an MCB network whose ground space equals
that of —X.

To this end, note that the operator X in Eq. (6.75) can be explicitly represented as an MPO
with bond dimension D = 2,

X = — BZ%A]@)Ak@Akl, (6132)
where individual factors,
A=Ay =202-907,
Ap=Ap=207+9®%, (6.133)

act on a qubit pair at the corner of a triangle (cf. Fig. 6.3).

The operator X can be implemented using the MCB structure shown in Fig. 6.17 with a; ~ —b;
and « = if. For the chosen parameters the leading order effective Hamiltonian corresponds
to an MPO acting on repetition code qubits at the corners. The length-6 loop in clock-wise
direction results in an MPO

Ol = =1r (B1E2E) (6.134)
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Fig. 6.18. + Double semion MCB network: Triangular 6-tetron vertices (grey triangles), cf. Fig. 6.17, are
connected via Bell-pair tunneling bridges (red). Note that vertices are arranged in two different sublattices.
For a magnified view of the coupling between vertices, cf. Fig. 6.19 below.

with MPO matrix elements

o =—0;(a;2R2+bJ®7), (6.135)
Aal_ﬁz(aiﬁ(g)g_bz]?@ﬁ)/
Blo=ai(a) @ % —bitR7),

which can be evaluated further
Bi, = +iBjy = (2t 0% - 7)), (6.136)
By = FiBjy = (2 09+ ®
v:lith ¢; = Bia;. Choosing c¢; =i (e.g. a; = if;) we obtain the effective tunneling Hamiltonian
H, o« —X (cf. Eq. (6.132)).
Practical implementation

In Fig. 6.18 we present a schematic of the actual hardware layout consisting of the tunnel
couplings that generate the vertex-operator MPO (on triangles) and the Bell pair projections.
Apart from a small amount of wire crossings, the structure does not include elements truly
adverse to experimental realization. An essential point of the construction is the phase tuning
of the tunnel couplings. This is achieved by an initial calibration procedure which requires
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6.3. String-net phases in M(CB networks

Fig. 6.19. + Bell-pair tunnel bridges connecting neighboring vertices in the double semion MCB network
of Fig. 6.18.

the presence of additional local gates near each tunneling link and performing interferometric
measurements [261, 262] followed by subsequent gate voltage tuning.

Inaccuracies in the above calibration procedure result in small but finite contributions to the
Hamiltonian V; = (A2/Ec)A¢iZ ® £ with Ag; most likely uncorrelated. The additional terms
have the effect of an effective spatially varying magnetic field, since depending on the sign A¢;
there is a bias towards the physical |0) (|1)) state (encoded by the parity of the two qubits). In
Ref. [285] the stability of the double semion model against a homogeneous magnetic fields has
been studied and it was found that the topological phase persists up to a critical field strength,
h¢ about one tenth of the gap. It is very reasonable that the phase is even more stable against a
random spatially varying magnetic field [286].

The stability of the phase against higher order terms of the perturbation series is investigated
in Ref. [2, Appendix] which is reprinted in Appendix B of this Thesis for convenience. It is
found that higher order terms are irrelevant and do not pose a threat to the stability of the
phase.

6.3.3. D = 5 - A double Fibonacci candidate

The double Fibonacci model is the simplest string-net model hosting non-Abelian anyons. It is
constructed from the Fibonacci fusion category Cry, with string-types 1 and T with the fusion
rule T X T = 1+ 7. The quantum dimension d- is given by the golden ration. Its F-symbols
are non-trivial and can be found e.g. in Ref. [12]. The Drinfeld center of the Fibonacci category
is given by the Fibonacci theory itself times its time-reversed dual (cf. Ref. [12]). Thus, the
particle content of the model contains Fibonacci anyons and thus can be used for universal
topological quantum computation by braiding (cf. Chapter 4). Therefore, there is a strong
motivation to realize this topological phase of matter.

Since the double Fibonacci model also has only two string-types, tetron MCBs giving rise to
effective qubits are sufficient to represent the string types and the main obstacle for extending
the approach used in the design of the double semion model is the bond dimension of the
MPO projector defining the vertex projector in Eq. (6.131). We can easily calculate the bond
dimension of the projector MPO by considering the F-symbols of the model and the MPO-
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tensors constructed from the latter as specified in Fig. 5.15. A closer inspection of the G-symbol
reveals that the index values of the indices at each edge of the MPO tensor in Fig. 5.14a have
to fulfill the fusion rules. Thus, there are five possible values of the blocked horizontal index
(a, f,d) in Fig. 5.14a, namely (1,1,1),(1,7,7),(7,1,7),(7,7,1) and (7,7, T) and likewise for
the blocked index (b, f,c). As opposed to the double semion model, the vertical index value e
is no longer fixed by the index values a and b as a result of ambiguous fusion results. Thus,
the single MPO tensor corresponds to a three qubit operator and we need to introduce an
additional MCB per triangle edge compared to the double semion model (cf. Fig. 6.17).

Applying the hierarchical gadget idea for D = 32 MPOs from Section 6.2.6, we can design
the vertex operator from MPOs where individual MPO tensors are three qubit operators, i.e.,
we need to add two additional physical qubits and two additional communication qubits to the
unit cell in Fig. 6.15. Addressing the seven qubits, we use repetition code registers of 7 MCBs
each. As we are only looking for a bond dimension D = 5 MPO, it is sufficient to use 5% such
registers.

It is doubtful that even if MCB units become experimental reality, the presented scheme
would be feasible due to the large number of MCBs used and the enormous amount of wiring
needed to engineer the couplings. Even if these technical obstacles could be overcome, it is
doubtful whether signatures of a double Fibonacci phase would be observable. The multi-layer
gadget construction might work in principle, however, the separation of energy scales is crucial
and one needs to have access to very small energy scales that emerge from the splitting of the
splitting of the splitting of the ground state energies. It goes without saying that this approach
is thus also extremely sensitive to finite temperature effects.
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7. Summary and discussion

In this Thesis we approached non-chiral topological order within a tensor network framework.
We introduced the subject of gapped quantum phases and their distinguished properties.
The fundamental role of entanglement in the formation of quantum phases beyond Landau’s
symmetry breaking paradigm lead us to the introduction of tensor network states as the right
ansatz class to concisely capture quantum phases in the absence of symmetries. We highlighted
the power of the tensor network approach by reviewing the full classification of phases of
matter in one dimension and identified virtual symmetries of the individual tensors as the
fundamental object that causes phases of matter to become entangled. A finite virtual symmetry
group G defining G-injective matrix product states (MPS) gave rise to GHZ-like entanglement
—a weak form of long-range entanglement.

Asking whether there exist even stronger forms of long-range entanglement, we turned
towards topologically ordered systems in two dimensions. In an attempt to carry over the
techniques from the one-dimensional setting, we introduced G-injective projected entangled
pair states (PEPS) and explained how the paradigmatic model of non-chiral topological order
— the toric code — can be described by the latter.

With this we concluded the introduction to the general mindset and framework of this thesis
and moved on to discuss the mathematical mechanisms behind topological order on a general
rather abstract level. We introduced the algebraic theory of anyons and explained that it is
described by what mathematicians refer to as modular tensor category. We highlighted a
particular class of anyon theories which is non-chiral and can be constructed from a fusion
category by a particular construction known as the Drinfeld center.

Identifying the mathematical backbone of non-chiral topological order on an abstract math-
ematical level we returned to the main matter of this Thesis - the emergence of non-chiral
topological order in various formalisms which can be considered equivalent. We presented a
class of exactly solvable lattice Hamiltonians, the Levin—Wen string-net models, that exhibit
non-chiral topological order. We showed how the latter are essentially constructed from a fusion
category and that their anyonic particles correspond to the Drinfeld center of the latter. Coming
back to the tensor network formalism, we showed that the ground states of Levin—-Wen string
net Hamiltonians are exact PEPS with virtual symmetries given by matrix product operators
that again form a fusion category. We exemplified the equivalence of the latter two formalisms
on the example of twisted quantum double models and showed how one can understand
both the lattice Hamiltonian as well as the tensor network in terms of a state-sum perspective
relating the two formalisms directly to the construction of topological manifold invariants and
discretized path integrals of topological quantum field theories.

We concluded the investigation of non-chiral topological order with an excursion to fermionic
systems and showed that the MPO-injective PEPS formalism can be generalized to fermionic
string-net models.

The third part of this Thesis focused on applying the highly evolved and abstract tensor
network formalism to a very concrete problem — the realization of topological order in synthetic
quantum matter. We found that MPO-injective PEPS give rise to parent Hamiltonians that
can be engineered as the low energy effective theory describing tunnel coupled Majorana
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Cooper boxes in a way that is simpler and more feasible than the direct implementation of
Levin-Wen string net Hamiltonians, which feature intricate 12-body interactions. The central
tool of this investigation were low energy effective theories and their controlled design in the
realm of Hamiltonian gadgets. We introduced several variants of low energy effective theories
and elaborated on the relation between them. In particular we reviewed a general purpose
gadget scheme introduced by Jordan and Farhi and a scheme tailored to realizing PEPS parent
Hamiltonians proposed by Brell et al.

As a physical platform on which we sought to implement the aforementioned gadget con-
structions, we considered mesoscopic hybrid devices — so called Majorana Cooper boxes (MCBs)
composed of nanowires and superconductors. Majorana zero modes emerging in the latter
give rise to effect qubits in the low energy sector. We presented a concise and systematic way
to characterize the effective spin-interaction resulting from tunnel coupling the latter and inves-
tigated different mechanisms to control and design the emerging Hamiltonian contributions.
Designing small building blocks we were finally able to devise a blueprint for a topological
phase of matter beyond the toric code, i.e., the double semion model. In a bold attempt to realize
phases of matter which allow for universal topological quantum computation, we investigated
the measures necessary to elevate the presented blueprint to give rise to a double Fibonacci
phase. The scheme we presented employed hierarchical gadget designs and — though being
impractical with the current state of available technologies — showed a way towards designing
complex topological quantum matter in principle.

We hope that the ideas presented here are of service to the greater community of condensed
matter and quantum information scientist and inspire further ideas for the design of artificial
quantum matter from a tensor network perspective. In the future we would like to investigate
whether the design ideas presented here can be carried over to other physical hardware plat-
forms such as arrays of Josephson junctions or if one can devise additional control mechanisms
to avoid specific Hamiltonian terms. Preliminary investigations regarding the latter have been
performed in periodically driven (Floquet) systems, however no significant improvement of the
flexibility of the design scheme could be found. At last we suggest to use the existing building
blocks as a tool box for analogue quantum simulation and to explore which (non topological)
models are available with the components developed already.

On a more theoretical note, we would like to investigate the precise obstacles in capturing
chiral topological phases with a tensor network approach. The state-sum perspective presented
in this Thesis seems to provide the most clear conceptual insights to this problem and it is
apparent from the material presented here that MPO-injective PEPS can not be ground states
of chiral Hamiltonians. However, a generalized tensor network approach could be sufficient
to capture chiral phases and would potentially lead to a unified understanding of phases of
matter.
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A. Technical details on
fMPO-symmetric fPEPS

A.1. Concatenation stability

To prove the concatenation stability of fMPO-injectivity for the fPEPS tensors A+ defined in
Egs. (5.55) and Eq. (5.56) with the rules defined in Section 5.5.2 (cf. Fig. 5.29), we first introduce
an abbreviated notation in Fig. A.1. Instead of drawing the full symmetry MPO, we indicate
the positions of the parity matrices Y before and after the concatenation (Fig. A.1) by circles at
the respective boundary vertices. Next, we consider all possible ways in which a new tensor
can be attached to an existing tensor network patch.

We distinguish between an “open” concatenation depicted in Fig. 5.28a and a partially closed
concatenation depicted in Figs. 5.28b—c. The latter are relevant when an outer vertex of a
triangle tensor becomes an inner vertex during the concatenation process.

For the case of “open” concatenation consider a concatenation along an edge pointing towards
the global flow direction. The different possible concatenation cases are then classified by the
shared angle 6 with the neighboring edges at the origin vertex (i.e., the source of the edge).
The placement of parity matrices depends only on whether the shared angle is smaller or larger
than 7, while the edge orientations and the exact angles are irrelevant. Thus, there are only four
different cases (6 = 0,7/2,m,37/2). The global flow criterion restricts the possible geometries
and making use of the mirror symmetry along the global flow direction there are only six
distinct cases, which are shown explicitly in Fig. A.2a.

When two MPO-symmetric tensors are contracted along a common boundary of length two
or more, two different concatenation rules apply depending on the orientation of the inner edge
relative to the position of the already contracted transversal indices (cf. Fig. 5.28b and Fig. 5.28c.
There are again two cases. First, the edges to be contracted share a vertex at their origin. In
this case the contraction does not yield additional parity matrices (cf. Fig. A.2b upper panel).
In the other case, we consider the different possible edge configurations in the vicinity of the
contracted edge. Using symmetry arguments, we find three distinct cases shown explicitly in
Fig. A.2b panel 2 to 4.

Fig. A.1. + The concatenation of two MPO-symmetric tensors written in explicit notation (upper panel)
and in abbreviated notation only depicting the positions of parity matrices Y.

153



A. Technical details on fMPO-symmetric fPEPS
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(a) Open concatenation. (b) Closed concatenation.

Having checked that the fMPO symmetry rules are remain consistent under all possible ways
to attach another triangle tensor to an existing patch, the proof is completed by noting that the
induction anchor is provided by the elementary triangle tensors A+.

A.1.1. Hamiltonian gauge of the fermionic toric code model

To prove that the fermionic tensor network defined in Section 5.5.2 is a ground state of the
fermionic toric code model [232], we need to apply a gauge transformation on the original
Hamiltonian. For fMPO symmetric fPEPS there is a also a gauge choice of w. A natural gauge
is to choose a normalized 3-cocycle. A tensor network defined with normalized 3-cocycles
yields a wave-function that is invariant under adding a closed-loop, i.e. d; = 1. Thus, the tensor
network gauge suggests a particular Hamiltonian gauge of the corresponding string net model.

In Ref. [232], several gauge transformations were introduced and the Hamiltonian was given
in a specific gauge (8 = 1). Thus, we first reintroduce the gauge parameter § by performing
the gauge transformation

ct = \}Bc+, c— +/Be. (A1)
and then choose § = —i. In this gauge we obtain that closed loops are attributed with trivial
factors. On the level of matrix elements the plaquette operator is now written as
Q= ). p(81---,80)Fp(81,---,86) (A2)
817486

X ‘gl@111g6@1> <81,---,g6| 7

where @ denotes addition modulo two and (g1, ..., 8e) are given in Table A.1.
Using this gauge, we can check that an open tensor network patch is an eigenstate of the
plaquette operator by explicit calculation.
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LjkLmmn  p(ijklmn)Fy(ijkl,mn) ijklmn p(jklmn)F,(ijklmn)
000000 —a/ Bkt
100000 cler 010000 1/p%ctciclcet
001000 cie 000100 cley
000010 —1/p*cichclcl 000001 cles
110000 —1/Bcich 011000 —1/Bcict
001100 —Bcleacser 000110 1/Bctct
000011 —1/Bckch 100001 Bclcscser
101000 —aBcacy 010100 a/Bcicictey
001010 —a/Bclctcten 000101 afcscy
100010 —a/Bckcleler 010001 a/Belcicles
100100 —afescy 010010 w/prcicscdetctet
001001 xfcsco
000111 1 001110 —cteleser
011100 CICZC4C3
101100 rx,Bzc4C3czc1 010110 oc/ﬁzc{c;c;cg
001011 —ackcr 100101 —afB?cecscycy
110010 a/pAcclctel 011001 —acies
010101 —CZC;Czcl

Table A.1. + The first 32 matrix element of the plaquette operator Q, defined on a hexagon with physical
spins i, j, k, I, m, n after ungauging the Hamiltonian given in Ref. [232]. The remaining 32 matrix elements
follow by Hermitian conjugation.
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B. Perturbation analysis of the double
semion MCB network

This Appendix presents a detailed analysis of the perturbation series for the effective Hamilto-
nian in the double semion MCB network discussed in Section 6.3.2. It is a literal copy of the
Appendix in Ref. [2] which is original work of and was written solely by the author.

We consider the MCB network in Fig. 6.18 where we assume that the energy scale A%/ E2
characterizing the vertex part, F,, is much larger than the scale ¢ = AZ o1/ Ec corresponding to
Bell-pair tunneling links between neighboring vertices. Under this assumption, the analysis of
Ref. [95] applies where one treats the Bell-pair Hamiltonians Hpg,y; as perturbation to ¥, Hy. In
addition, in our case, terms of order O (eA?/E?) arise due to loops of length 4 (and beyond)
which involve MCBs on different vertices. Such contributions need to be included in a pertur-
bative analysis aimed at checking that the low-energy Hamiltonian of the perturbative PEPS
parent theory is indeed the parent Hamiltonian of the encoded PEPS. While the full analysis
combining global and local Schrieffer-Wolff transformations [254] is cumbersome, a simplified
calculation [95] for the double semion model considers a self-energy expansion series order by
order and establishes the physical meaning of each term. As in our perturbative expansion
for the low-energy physics of MCB networks in Section 6.2.3, only operators acting within the
ground state space of the dominant Hamiltonian term, here the code space, are considered.

The first order gives no contribution since PHg, P = 0, where P is the projector to the
ground state of Y, H,. In fact, all odd orders do not contribute apart from trivial energy shifts.
At second order, the simultaneous action of Bell-pair operators on two neighboring vertices
yields a contribution favoring even parity states for the corresponding four qubits. This term
has a clear physical meaning. Indeed, mapping the encoded state back to the physical state
by applying the PEPS map A, one finds that the physical state (which used to live on the
edge of the honeycomb lattice) is overdetermined. Thanks to the even parity constraint for
the four qubits, this overdetermination is resolved and one recovers a consistent mapping
from code space to physical space. At fourth order, products of second-order terms but no
qualitatively new contributions emerge. Such contributions arise, however, in sixth order from
six Bell-pairs Hamiltonians acting on 12 qubits around one plaquette. These terms correspond
to encoded versions of the string-net plaquette operator and are essential to drive the system
into a topological phase. Note that up to the fifth order, the effective Hamiltonian only contains
(encoded versions of) vertex projections and terms ensuring consistency of different local
decodings, where one does not expect a topologically ordered ground state. It is thus crucial
that the effect of the plaquette operator is relevant for the system. In particular, if we repeat the
perturbative analysis for the MCB network Hamiltonian, taking into account perturbations due
to loops of length 4 and beyond, we have to check that no terms overwhelming the plaquette
operator are present which can potentially destroy the topological order of the ground state.

The design of the MCB network overcomes this obstacle in a natural way by making use of
destructive interference mechanisms. Consider a junction of two vertices connected by two
Bell-pair bridges in Fig. 6.19. There are 36 different length-4 loops that emerge from tunneling
from one MCB at one vertex to the neighboring MCB on the same vertex (via a or §) then to the
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other vertex via one of the three Bell bridges, then (again via « or ) to the neighboring MCB
and finally back to the starting point via one of the three Bell bridges. It is useful to partition
these 36 loops into four different groups labeled by the loop phase ¢, /5 — ¢4 ,/p. Let us analyze
the different ¢ — ¢p loops. There is one loop that is threatening the emergence of topological
order. It corresponds to the ZZ interactions on neighboring qubits, interactions that we needed
to suppress already in the design of the vertex Hamiltonian. Because the parity of two different
corner qubits determines the physical state uniquely, a system that favors a specific parity of
those two qubits corresponds to a trivial product state. Since this state is part of the code space
there is no chance to argue that it will not survive the code space projection P. This is why
we have chosen the tunneling links on different sublattices according to Fig. 6.19. The loop
phase ¢n — ¢pg = 71/2 and likewise ¢ — ¢, leads to a complete cancellation of all those loops
(note that the Bell-pair wires do not add phase shifts) including the one that would otherwise
lead to the adverse 22 interaction. The other half of the length-4 loops does not vanish but
also poses no threat to the formation of topological order. They are of the form O®) « pp ® 44
where the tensor product indicates the separation into two Bell-pairs and p, § denote different
Pauli operators. Contributions of this form also arise in second order perturbation theory in
¢ from the Bell-pair Hamiltonian and therefore do not yield qualitatively new contributions.
In addition they are completely outside the code space and do not contribute at all when
treated as a first order correction to }_, Hy. Similar arguments apply to higher order loop terms.
Prominently among them are detour-loops that wind once around a vertex ring but with a
detour via two qubits of a neighboring vertex. Those detour terms either leave the code space
or yield terms that correspond to a product of 0(®) and 22 ® 2. These terms cause a splitting
of the ground state space degeneracy that is in agreement with the aforementioned consistency
of physical qubit states and do not cause a phase transition. Detour terms involving more than
one detour can be treated similarly.

To conclude, we have verified that the analysis of Ref. [95], and therefore our encoded PEPS
approach to the ground state of the double semion model, also applies in the presence of
higher-order terms.
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Summary

In this Thesis, we discuss non-chiral topological order from a tensor network perspective.
The Thesis is divided into three parts. The first part introduces the necessary background
material and provides the context of our work. The second part is devoted to the theory of
non-chiral topological order, its various mathematical descriptions and the relations among
the latter. The third part discusses how non-chiral topological order might be realized
in artificial quantum matter by exploiting the tensor network structure of topologically
ordered ground states.

We review the concept of gapped local quantum phases and discuss how they are classified
according to their entanglement properties. Tensor network states are introduces as a
suitable framework to characterize the latter. Turning to the main subject of our studies
— topological order in two dimension, we present a conceptual introduction to the topic
by discussing the paradigmatic example of the toric code and its tensor network ground
state. Already at this stage we observe a crucial insight: Virtual symmetries of the tensor
network give rise to topological order.

We complete the introduction to topological order by a general review of the algebraic
theory of anyons in the language of braided fusion categories. We highlight a particular
mathematical construction, which yields non-chiral anyon models called the Drinfeld
center and comment on its importance for Hamiltonian models and tensor network de-
scriptions of non-chiral topological order. Elaborating on the latter observation we discuss
the connections between Levin—-Wen string-net models and a particular class of tensor
network states — so-called matrix product operator isometric projected entangled pair
states (MPO-isometric PEPS). As an illustrative example, we present the twisted-quantum
double models in the two aforementioned formalisms and review how they are related to
state-sum constructions and topological manifold invariants.

As an extension to the established formalisms, we present a simple fermionic variant of
string-net models and MPO-injective PEPS.

At last we discuss a scheme to realize topological order in a specific mesoscopic hardware
platform — networks of tunnel coupled so-called Majorana Cooper boxes. We review
different variants of low-energy effective theories and how they can be employed for
Hamiltonian design. We discuss the effective theory of tunnel coupled MCB networks,
design functional units composed of the latter and show how they can be assembled to
yield effective Levin—Wen string-net phases. We discuss a blueprint for double semion
phase in detail and sketch the additional effort needed to design a double Fibonacci phase,
which is of particular interest due to its potential application as a universal topological
quantum computer.



Zusammenfassung

Diese Arbeit diskutiert nichtchirale topologische Ordnung innerhalb eines Tensornetzwerk-
Formalismusses. Sie ist in drei Teile gegliedert. Im ersten Teil wird notwendiges Hinter-
grundmaterial bereitgestellt und der Kontext dieser Arbeit erldutert. Der zweiten Teil
widmet sich der theoretischen Beschreibung von nichtchiraler topologischer Ordnung
mit verschiedenen mathematischen Formalismen und zeigt auf, wie diese miteinander
in Verbindung stehen. Im dritten Teil wird ein Vorschlag diskutiert, wie topologische
Ordnung in bestimmten synthetischen Materialien erzeugt werden kénnte. Fiir diesen
Vorschlag ist es zentral, die Tensornetzwerkstruktur topologischer Zustdnde auszunutzen.
Wir beginnen mit einer Diskussion von lokalen Quantenphasen mit einer Energieliicke
oberhalb des Grundzustands und erkldren, wie diese anhand ihrer Verschrankungseigen-
schaften klassifiziert werden konnen. Tensornetzwerkzustdnde bieten hier einen geeigneten
Zugang. Anschliefiend wenden wir uns dem zentralen Gegenstand unserer Arbeit zu —
nichtchirale topologische Ordnung in zwei Dimensionen. Wir prédsentieren eine konzep-
tionelle Einleitung in das Thema, indem wir das paradigmatische “toric code” Modell
diskutieren und seinen Tensornetzwerk-Grundzustand erortern. Bereits an dieser Stelle
kénnen wir eine zentrale Beobachtung machen, ndmlich, dass virtuelle Symmetrien des
Tensornetzwerks urséchlich sind fiir topologische Ordnung.

Wir beenden die Einleitung in das Thema mit einer Zusammenfassung der abstrakten alge-
braischen Anyonen-Theorie, welche durch bestimmte Fusionskategorien (braided fusion
categories) beschrieben wird. Dabei heben wir eine bestimmte Konstruktion aus der Kate-
gorientheorie hervor, die sogenannte Drinfeld center Konstruktion, welche zentral ist fiir
die Hamiltonsche Formulierung von nichtchiraler topologischer Ordnung in sogenannten
Levin-Wen Modellen und einer Klasse von Tensornetzwerkzustdnden, den sogenannten
“matrix product operator isometric projected entangled pair states (MPO-isometric PEPS)”.
Wir erldutern die beiden letztgenannten Formalismen am Beispiel der sogenannten fermio-
nischen twisted quantum double models und zeigen auf, wie diese mit Zustandssummen
und topologischen Invarianten auf Mannigfaltigkeiten zusammenhéngen.

Als eine Erweiterung der bisher présentierten bereits existierenden Theorien prasentieren
wir eine einfache Variante von fermionischen Modellen mit topologischer Ordnung und
deren MPO-injective PEPS Grundzustinde.

Zuletzt diskutieren wir einen Vorschlag, wie topologische Ordnung in spezifischen
mesoskopischen Systemen aus tunnel-gekoppelten sogenannten Majorana-Cooper Boxen
(MCBs) realisiert werden konnte. Dazu geben wir einen Uberblick {iber verschiedene Va-
rianten der von effektiven Niedrigenergie-Theorien und wie diese genutzt werden kénnen
um gezielt Hamiltonians zu erzeugen. Wir diskutieren die effektive Niedrigenergie-Theorie
der gekoppelten MCBs, zeigen, wie kleine funktionale Bausteine in diesen Netzwerken
gebaut werden kénnen und wie diese so zusammen gebaut werden kdnnen, dass man
effektiv eine Levin-Wen Phase erhélt. Wir diskutieren eine Blaupause fiir das sogenannte
double semion Modell im Detail und skizzieren, welcher zusétzlicher Aufwand notwendig
wdre um eine sogenannte double Fibonacci Phase zu erzeugen. Diese Phase ist vor allem
interessant, da sie prinzipiell als universeller topologischer Quantenrechner geeignet ist.
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