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Abstract

Reaction-di�usion methods allow treatment of mesoscopic dynamic phenomena of soft condensed matter

especially in the context of cellular biology. Macromolecules such as proteins consist of thousands

of atoms, in reaction-di�usion models their interaction is described by e�ective dynamics with much

fewer degrees of freedom. Reaction-di�usion methods can be categorized by the spatial and temporal

length-scales involved and the amount of molecules, e.g. classical reaction kinetics are macroscopic

equations for fast di�usion and many molecules described by average concentrations. The focus of this

work however is interacting-particle reaction-dynamics (iPRD), which operates on length scales of few

nanometers and time scales of nanoseconds, where proteins can be represented by coarse-grained beads,

that interact via e�ective potentials and undergo reactions upon encounter. In practice these systems

are often studied using time-stepping computer simulations. Reactions in such iPRD simulations are

discrete events which rapidly interchange beads, e.g. in the scheme A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←←←←←←←← C the two interacting

particles A and B will be replaced by a C complex and vice-versa. Such reactions in combination with the

interaction potentials pose two practical problems: i) To achieve a well de�ned state of equilibrium, it is

of vital importance that the reaction transitions obey microscopic reversiblity (detailed balance). ii) The

mean rate of a bimolecular association reaction changes when the particles interact via a pair-potential.

In this work the �rst question is answered both theoretically and algorithmically. Theoretically by

formulating the state of equilibrium for a closed iPRD system and the requirements for detailed balance.

Algorithmically by implementing the detailed balance reaction scheme in a publicly available simulator

ReaDDy 2 for iPRD systems. The second question is answered by deriving concrete formulae for the

macroscopic reaction rate as a function of the intrinsic parameters for the Doi reaction model subject

to pair interactions. Especially this work addresses two important scenarios: Reversible reactions in a

closed container and irreversible bimolecular reactions in the di�usion-in�uenced regime.

A characteristic of reactions occurring in cellular environments is that the number of species involved

in a physiological response is very large. Unveiling the network of necessary reactions is a task that can

be addressed by a data-driven approach. In particular, analyzing observation data of such processes can

be used to learn the important governing dynamics. This work gives an overview of the inference of

dynamical reactive systems for the di�erent reaction-di�usion models. For the case of reaction kinetics a

method called Reactive Sparse Identi�cation of Nonlinear Dynamics (Reactive SINDy) is developed that

allows to obtain a sparse reaction network out of candidate reactions from time-series observations of

molecule concentrations.
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Zusammenfassung

Reaktionsdi�usionsverfahren ermöglichen die Behandlung mesoskopischer dynamischer Phänomene von

weicher kondensierter Materie, insbesondere im Kontext der Zellbiologie. Makromoleküle wie Proteine

bestehen aus Tausenden von Atomen. In Reaktions-Di�usions-Modellen wird ihre Wechselwirkung

durch e�ektive Dynamik mit wesentlich weniger Freiheitsgraden beschrieben. Reaktionsdi�usionsver-

fahren können nach den beteiligten räumlichen und zeitlichen Längenskalen und der Menge der Moleküle

klassi�ziert werden. Zum Beispiel ist klassische Reaktionskinetik de�niert durch makroskopische Gle-

ichungen im Limit schneller Di�usion und vieler Moleküle. Die Menge der Moleküle wird dann als

mittlere Konzentrationen dargestellt. Der Schwerpunkt dieser Arbeit liegt jedoch auf der Reaktionsdy-

namik interagierender Teilchen (iPRD), die auf Längen- und Zeitskalen von wenigen Nanometern und

Nanosekunden arbeitet. Hier können Proteine durch grobkörnige Kügelchen dargestellt werden, die

über e�ektive Potentiale interagieren und Reaktionen bei Kontakt eingehen. In der Praxis werden diese

Systeme häu�g mithilfe von Computersimulationen untersucht, die die Zeit in endlichen Zeitschritten

inkrementieren. Reaktionen in solchen iPRD-Simulationen sind diskrete Ereignisse, welche Teilchen

instantan austauschen. Zum Beispiel im Schema A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←←←←←←←← C werden die beiden wechselwirkenden

Teilchen A und B durch einen C-Komplex ersetzt und umgekehrt. Solche Reaktionen in Kombination mit

den Wechselwirkungspotentialen werfen zwei praktische Probleme auf: i) Um einen genau de�nierten

Gleichgewichtszustand zu erreichen, ist es von entscheidender Bedeutung, dass die Reaktionsübergänge

mikroskopisch reversibel sind (detailliertes Gleichgewicht). ii) Die mittlere Geschwindigkeit einer bi-

molekularen Assoziationsreaktion ändert sich, wenn die Partikel über ein Paarpotential interagieren.

In dieser Arbeit wird die erste Frage sowohl theoretisch als auch algorithmisch beantwortet: theo-

retisch durch die Formulierung des Gleichgewichtszustands für ein geschlossenes iPRD-System und

Aufstellen der Anforderungen für detailliertes Gleichgewicht, algorithmisch durch die Implementierung

des reversiblen Reaktionsschemas in einer ö�entlich verfügbaren Simulationsbibliothek ReaDDy 2 für

iPRD-Systeme. Zur Beantwortung der zweiten Frage werden konkrete Formeln für die makroskopische

Reaktionsrate in Abhängigkeit von den intrinsischen Parametern für das Doi-Reaktionsmodell abgeleitet,

bei denen Paarwechselwirkungen auftreten. Insbesondere werden in dieser Arbeit zwei wichtige Szenar-

ien angesprochen: Reversible Reaktionen in einem geschlossenen Behälter und irreversible bimolekulare

Reaktionen im di�usions-beein�ussten Regime.

Ein Merkmal von Reaktionen, die in zellulären Umgebungen auftreten, ist, dass die Anzahl der

molekularen Spezies, die an einem physiologischen Phänomen beteiligt sind, sehr groß ist. Das Netzwerk

notwendiger Reaktionen aufzudecken, ist eine Aufgabe, die durch einen datengetriebenen Ansatz gelöst

werden kann. Insbesondere das Analysieren von Beobachtungsdaten solcher Prozesse kann verwendet

werden, um die essentielle bestimmende Dynamik zu lernen. Diese Arbeit gibt einen Überblick über

die Inferenz dynamischer reaktiver Systeme für die verschiedenen Reaktionsdi�usionsmodelle. Für

den Fall der klassischen Reaktionskinetik wird eine Methode namens Reactive Sparse Identi�cation of

Nonlinear Dynamics (Reactive SINDy) entwickelt, die es ermöglicht, aus Zeitreihenbeobachtungen von

Molekülkonzentrationen ein spärliches Reaktionsnetzwerk aus Kandidatenreaktionen zu erhalten.

vii



viii



Acknowledgements

I would like to thank Prof. Dr. Frank Noé for the opportunity of doing research in his lab. I want to thank

Prof. Dr. Roland Netz whose “Computerphysik” and “Statistical Physics” lectures initially sparked my

interest for theoretical statistical physics and simulation methods. I thank all colleagues and friends from

the Noé lab, the Biocomputing group, and the ZIB.

I thank my physics teacher, the late Stephan Kirsch for teaching me the basics of the only subject

that really ever interested me in school.

I want to thank Sven Hartmann, Sebastian Baum, Hansjochen Köckert, Sarah Meergans, Linda

Swierkosz, Christian Böhnke, Michael Hellwig, Tobias Jankowski, Eric Drägerdt, Norbert Kähler, Tom

Gibhardt, Christian Vogel, Dominik Hagin, Gabriel Wieland, Andreas Benjamin Christopher Wilde,

Cherno Drammeh, Stephan Rath, Nicole Kwasny.

I thank my family for always being supportive in every respect.

Most importantly I thank my loving wife Laura for moral support throughout the years. I thank my

daughter Helena whose laughter is the greatest joy I have experienced in life.

ix



x



List of Publications

The results of this work were published in

• Christoph Fröhner and Frank Noé. “Reversible Interacting-Particle Reaction Dynamics”. In: The
Journal of Physical Chemistry B 122.49 (2018), pp. 11240–11250. doi: 10.1021/acs.jpcb.8b06981

• Manuel Dibak, Christoph Fröhner, Frank Noé and Felix Hö�ing. “Di�usion-in�uenced reaction

rates in the presence of pair interactions”. In: The Journal of Chemical Physics 151.16 (2019), p.

164105. doi: 10.1063/1.5124728

• Moritz Ho�mann, Christoph Fröhner, and Frank Noé. “ReaDDy 2: Fast and �exible software

framework for interacting-particle reaction dynamics”. In: PLoS Computational Biology 15.2 (2019),

e1006830. doi: 10.1371/journal.pcbi.1006830

• Moritz Ho�mann, Christoph Fröhner, and Frank Noé. “Reactive SINDy: Discovering governing

reactions from concentration data”. In: The Journal of chemical physics 150.2 (2019), p. 025101. doi:

10.1063/1.5066099

The contribution of the author Christoph Fröhner to these results is clari�ed in the respective chapters.

xi

https://doi.org/10.1021/acs.jpcb.8b06981
https://doi.org/10.1063/1.5124728
https://doi.org/10.1371/journal.pcbi.1006830
https://doi.org/10.1063/1.5066099


xii



Contents

1 Introduction 1
1.1 Interacting Particle Reaction Dynamics (iPRD) . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Di�usion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Doi’s Reaction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Macromolecular Structure and its Assembly . . . . . . . . . . . . . . . . . . . . 4

1.2 Equilibrium in Reactive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Thermodynamic Equilibrium for Chemical Reactions . . . . . . . . . . . . . . . 8

1.2.2 Equilibrium of a Closed iPRD System . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 From Microscopic Reactions to Distribution of Compositions . . . . . . . . . . 11

1.2.4 Detailed Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.5 Example: Reversible Association of the Isolated Pair . . . . . . . . . . . . . . . 14

1.3 Time-Dependent Descriptions of Reaction-Di�usion . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Systems with Reaction-Limited Behavior . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Systems with Spatial In�uence . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.3 Master equation for a Closed iPRD System . . . . . . . . . . . . . . . . . . . . . 21

1.4 Identi�cation of Reactive Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . 23

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Detailed balance in particle based reactions 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Bimolecular reaction in equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Macroscopic rate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Microscopic distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.3 Doi reaction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.4 Computing the microscopic association rate constant that reproduces the macro-

scopic equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Interacting-Particle Reaction Dynamics with Detailed Balance . . . . . . . . . . . . . . 37

2.3.1 Derive the backward proposal from the forward proposal . . . . . . . . . . . . 37

2.3.2 Apply DB to Doi model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3 Generalize for other types of reactions . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Dilute limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.2 System of many particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xiii



xiv CONTENTS

3 Di�usion-in�uenced reaction rates in the presence of pair interactions 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Microscopic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Solution strategy and classical limiting cases . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Outer solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Inner solution without potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Reaction rates and spatial distributions in the presence of an interaction potential . . . 61

3.4.1 Constant potential inside the reaction volume . . . . . . . . . . . . . . . . . . . 61

3.4.2 Solution for arbitrary potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.3 Perturbative solution for slow reactions . . . . . . . . . . . . . . . . . . . . . . 63

3.4.4 Numerical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 iPRD simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.1 Simulation setup and protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.2 Pair potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.1 Macroscopic rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.2 Concentration pro�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 ReaDDy 2: Fast and �exible software framework for interacting-particle reaction dy-
namics 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 interacting-Particle Reaction Dynamics (iPRD) . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Interacting particle dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.3 Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.4 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.5 Simulation setup and boundary conditions . . . . . . . . . . . . . . . . . . . . . 88

4.3 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.1 Reaction kinetics and detailed balance . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.2 Di�usion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.3 Thermodynamic equilibrium properties . . . . . . . . . . . . . . . . . . . . . . 97

4.4.4 Topology reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.5 Nontrivial bimolecular association kinetics at high concentrations . . . . . . . 100

4.5 Availability and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Reactive SINDy: Discovering governing reactions from concentration data 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Reactive SINDy: Sparse learning of reaction kinetics . . . . . . . . . . . . . . . . . . . . 111

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.1 Learning the reaction network in the low-noise limit . . . . . . . . . . . . . . . 114

5.3.2 Learning the reaction network from data with stochastic noise . . . . . . . . . 114

5.3.3 Learning the reaction network from multiple initial conditions . . . . . . . . . 117

5.3.4 Application to MAPK cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



CONTENTS xv

5.3.5 Application to Lotka–Volterra system . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



xvi CONTENTS



Chapter 1

Introduction

A majority of cellular processes can be described by reactions initiated by macromolecules [Alb+08]:

genetic information is stored in long polynucleotide chains and is processed by proteins, kinases catalyze

phosphorylation of other functioning proteins [ZL02; Hat+10], binding pockets open and close both

spontaneously and externally induced [KM83], membranes form interfaces and separate functionally

di�erent compartments of the cell [Lip95], cytoskeletons are constructed and maintained [LA17], hydro-

genases catalyze reversible oxidation of hydrogen [Har+18]. All these functions are performed under

the consumption of free energy, which means that living organisms are chemical factories that operate

far from equilibrium. Understanding these metabolic, and signaling pathways [Bar02] is fundamental

not only in medical applications, but also for a wider �eld of soft matter, e.g. catalytic functions en-

abled by the self-assembly of macromolecules into functional superstructures [PBV09], or by core-shell

nanoreactors [Gal+16; Roa+17].

Many of the mentioned processes occur in crowded environments where a well-mixing cannot be

assumed. Thus microscopic insights from an experimental, theoretical and simulation point of view

are required to resolve the mechanics of the underlying processes. However the number of involved

molecular species and hence the resulting number of inter-dependencies is very large. Additionally the

spatial- and temporal scales between the microscopic dynamics and the resulting macroscopic behavior

are very di�erent. A hierarchical multi-scalar approach needs to be put to work, that bridges the atomistic

physical descriptions and the system’s biology. Reaction-di�usion methods are predestined for this

mesoscopic task of studying e�ective, coarse-grained behavior.

Consider the example of the two proteins barnase and barstar [SF93] associating in a cellular environ-

ment. Barnase is a bacterial protein which damages the cell’s ribonucleic acids (RNA). Usually barnase

is inhibited by another protein barstar. Both proteins form an extremely stable complex [Pla+17]. The

stationary ratio of �nding the system in the bound state versus the unbound state is largely determined by

which con�guration is energetically more favorable. This also means that e.g. changing the ionic strength

of the solvent can enhance or weaken the interaction of the two molecules and thus change the stationary

state [Vij+98]. However the association is so rapid, that the process is strongly di�usion-in�uenced, i.e.

the time-dependent rate of association is determined by the frequency of encounter of the two molecules.

Also the time-dependent association kinetics of many such molecules in solution depends very strongly

on the mobility of the reactants which might be hindered by crowding agents or geometric con�nements

like cellular organelles. An e�ective model of the two proteins should take the di�erent time-scales of

di�usion and formation of the complex into account.

How does one systematically construct coarse-grained descriptions from atomistic descriptions?

Typically one has to �nd a mapping from the atomistic degrees of freedom x at a given time to a much

simpler coordinate y = � (x) via a narrowing function � , i.e. x is a vector with much more elements than

1



2 CHAPTER 1. INTRODUCTION

y . For the example of two molecules A and B reversibly associating in solution A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← AB, think of y
as a reaction coordinate that clearly distinguishes the bound and unbound state. The mapping � induces

a free energy F (or potential of mean force) via e−�F(y) = ∫ e−�U (x)�(� (x) − y)dx where �−1 = kBT is

the thermal energy with the Boltzmann constant kB and the temperature T , and U (x) is the potential

energy landscape in the coordinate x . The de�nition of F assures that the statistics in y achieve the same

stationary ratio of bound versus unbound as the original coordinate x , this is called thermodynamic

consistency. If there is a high barrier in the landscape of F (y) that distinguishes bound and unbound state,

then we can formulate a much simpler memory-less process on the coordinate y which encompasses

all the important and slow dynamics of the original dynamics in x . This is exempli�ed by Bicout and

Szabo [BS08], where a high barrier in the potential of mean force leads to a memory-less overall kinetics

in the low dimensional representation. When the di�usion time-scales of encounter are a limiting

factor, then the geometry of the environment and the interaction of the molecules have an impact on

the time-dependent kinetics. That means to obtain a memory-less process for the association kinetics

the di�usion in the unbound state must be resolved spatially, but the formation after the encounter is

well described by a Markov jump process into the bound state. This directly leads to a coarse-grained

reaction-di�usion model, where the two molecules A and B may be represented as particles that have

to encounter via di�usion up to a certain distance and can then undergo the reaction. Such models are

called particle-based reaction-di�usion (PBRD) or interacting-particle reaction-dynamics (iPRD). The

latter highlights the fact that particles di�use subject to interaction potentials. Such reaction-di�usion

models have much fewer parameters than the original atomistic description. For example a protein

which may contain thousands of atoms is e�ectively described by one or several connected beads. Hence

we can study a system of several of these molecules and their interplay, e.g. via computer simulations.

There are several di�erent reaction-di�usion approaches apart from PBRD or iPRD to model molecular

systems. Each one is suited well for a particular spatio-temporal scale and a particle-number scale as

will be described in Section 1.3.

1.1 Interacting Particle Reaction Dynamics (iPRD)

Interacting Particle Reaction Dynamics (iPRD) governs the time-evolution of di�usion and reactions

of coarse-grained beads. Among available reaction-di�usion models iPRD possesses the highest level

of detail. The motion of macromolecules in cellular environments is classically governed by Newton’s

equation of motion in the presence of all other atoms, speci�cally all solvent atoms. A macromolecule

collides very frequently with the solvent atoms. In fact so frequent and short-lived, that its e�ect is very

much stochastic. In the coarse description, the time-scales of interest are much larger than the time-scales

of the collisions in the all-atom descriptions. When the macromolecules in aqueous environments are

represented as individual beads, the e�ect of the solvent is well represented by a stochastic force. The

motion becomes di�usive. Hence the coarse-grained beads di�use in three-dimensional space subject

to potentials, which accounts for con�ned geometries like cellular compartments, or pair interactions

like steric repulsion or short ranged screened electrostatics. Beads can change their type (or species)

via reactions. These can represent chemical reactions like phosphorylation or protein-ligand binding

or con�gurational changes in the macromolecules. Unimolecular reactions of the type A ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ B occur

spontaneously while bimolecular reactions like A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ C occur only when A and B encounter.

Observables of iPRD system are often not calculated from the governing equations but by simulation

of the process [AT17; HFN19; And17; DYK18; KHU19; HFE05; ZW05; ML16]. Many techniques known

from molecular dynamics simulation can also be applied to iPRD. The main di�erences are that transport

is usually di�usive in iPRD and chemical reactions are not modeled on an atomic level, but are discrete

events that add particles to- or remove particles from the system.
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1.1.1 Di�usion
In 1909 Jean Perrin experimentally veri�ed [Per10] Einstein’s quantitative theory [Ein05] about the

movement of small particles suspended in liquids (e.g. water) which seem static at large scales but are

mobile on a microscopic scale. There is a chaotic motion that results from impacts of the particles with

the molecules of the solution. The motion of all molecules within a glass of water at room temperature

has far too many degrees of freedom to e�ciently describe it by a set of equations of motion. But the

sheer number of molecules and thus the high frequency of collisions allows to understand the so called

Brownian motion – �rst observed by Robert Brown in 1827 – of the colloid particles as a stochastic

process whose time evolution is described by the Langevin equation. The latter is a Newtonian equation

of motion for the velocity v of a free particle with mass m subject to a dissipative force and a �uctuating

force mv̇ = −
v + Fr(t) (1.1)

where 
 is the friction coe�cient and the random force Fr(t) is mean-free and the second moment is

delta-correlated ⟨Fr(t)⟩ = 0⟨Fr(t)Fr(t′)⟩ = 2
kBT�(t − t′) (1.2)

where the strength of the random force is subject to Einstein’s version of the �uctuation-dissipation

theorem. In simple terms the value of the random force must compensate for the fact that in thermal

equilibrium with temperature T every degree of freedoms quadratic variation is associated with an

amount of energy that is kBT /2 (equipartition theorem). The velocity autocorrelation of the process

described by Eq. (1.1) decays with a characteristic time m/
 . When the time between consecutive

observations of the process is larger than m/
 , the observed acceleration v̇ will mostly be zero because

the velocity between collisions is constant. In this case the left hand side of Eq. (1.1) vanishes. The above

arguments shall hold also when the particle is subject to an external potential U (x) with the force −∇U ,

we can formulate a stochastic equation for the position x in the overdamped limit t ≫ m/
ẋ = −∇U /
 + Fr(t)/
 (1.3)

At this point we introduce the phenomenological di�usion coe�cient D = kBT /
 . The convenience of

using D is that it can be measured as the ratio of the mean squared traveled distance ⟨x(t)2⟩ and the

traveled time t . As such the di�usion coe�cient should be understood as an observable rather than an

intensive parameter. We also rede�ne the random term r(t) ≡ Fr(t)/
 which is now a random velocity

and rewrite the equation into a form which is associated with the term Brownian dynamics or overdamped
Langevin dynamics ẋ = −�D∇U (x) + r(t) (1.4)

and the moments of the random velocity directly follow from Eq. (1.2)⟨r(t)⟩ = 0⟨r(t)r(t′)⟩ = 2D�(t − t′) (1.5)

From Eq. (1.4) the very popular Brownian Dynamics simulation technique can be derived through a

Euler-Maruyama discretization of time. This is also the driving mechanism of di�usive transport in iPRD

simulations as described in Chapter 4. More formally such stochastic processes are described as driven

by a Wiener process, which is discussed in various textbooks [Ött96; Van92; Gar+85].

1.1.2 Doi’s Reaction Model
Since Smoluchowski’s description of colloids in 1916 [Smo16] which coagulate on direct contact with a

certain distance R, there were two notable variations of microscopic reaction models for bimolecular
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Figure 1.1: Doi reaction model for bimolecular association. Two particles of species A and B approach via

di�usion with coe�cients DA and DB respectively and form an encounter complex when their distance is

smaller than the reaction radius R. The encounter complex decays with the frequency � into the productC .

reactions of the type A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ C. One is the Collins-Kimball [CK49] model, which modi�es the

Smoluchowski model by assuming a probability smaller than 1 of two particles reacting upon contact.

The second one was mentioned by Teramoto and Shigesada [TS67] and also studied by Doi [Doi75],

where a sink function is introduced, which has a constant value (e.g. �) if the distance of two particles

is smaller than R, and vanishes otherwise. This model has been termed Doi model, or � − % model, or

volume-reaction model, and is often used in the context of iPRD simulations which integrates time in

discrete steps. In such Brownian Dynamics simulations the exact time of the encounter need not be

determined. The overall reaction rate is su�ciently approximated when the integration timestep width

is smaller than both the intrinsic reaction timescale �−1 and the residence time R2/D in the reaction

volume of radius R due to di�usion with coe�cient D. For unimolecular reactions of the type A ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ B,

these reaction events occur spontaneously, i.e. according to a Poisson process. In the case of bimolecular

reactions of the type A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ C there is an additional parameter R. When the distance of A and B is

smaller than the reaction radius, only then the reaction event can �re. The reaction radius is a prede�ned

constant, which roughly resembles the size of the two reacting molecules. This situation is depicted in

Fig. 1.1.

The respective reaction and di�usion time-scales give rise to a scaling parameter, which is useful in

distinguishing reaction-limited (well-mixed) and di�usion-limited behavior. The latter is achieved by� → ∞, at which point the Doi model becomes equivalent to the Smoluchowski model or the Debye

model [Deb42] in the presence of potentials. The scaling parameter is

√�/DR ≡ �R, and �−1 is a length

that can be regarded as the penetration depth of two particles into their respective reaction volume

before they decay due to the reaction sink. Alternatively (�R)2 = �R2/D = ��d compares the time-scales

as described above. Generally �R ≪ 1 is the reaction-limited case, �R ≫ 1 is the di�usion-limited case,

and �R ≈ 1 is called di�usion-in�uenced.

1.1.3 Macromolecular Structure and its Assembly

The dynamic formation of intermolecular bonds can be described in terms of microscopic reaction

processes. In combination with force �elds for bonded structures this opens up a broad range of

application for iPRD simulations. Self-assembly of macromolecules into even larger structures is a

driving motif in biology [PB03; Gib+12] and technical applications [Bla04; Rot06]. Structural properties,

like the persistence length of polymers [RC03] can then be studied with time-dependent descriptions.

For example cytoskeletons, that provide cells with structural rigidity while being �exible, are self

assembling structures. They are formed out of Actin proteins under the consumption of energy. The

�laments that Actin forms [PB03] are also slightly helical, a structural property which iPRD simulations

achieve via force �elds. A more general example of how a helical structure assembles out of substrate
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Figure 1.2: Assembly of a linear polymer in helix structure from substrate particles (not shown) in solution.

Snapshots from left to right show a time-series over the course of one simulation with ReaDDy 2. The

monomers interact via bond-, angle- and dihedral potentials, which de�nes a helical secondary structure.

The head particle (orange) is a reaction site to which freely di�using substrate particles can bind in a

scheme “head + substrate ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ monomer – head”, i.e. the head particle becomes a normal monomer and

the substrate particle becomes the head particle.

particles in solution is demonstrated in Fig. 1.2.

The formation of virus capsids is also a self-assembly process [Hag14; Sad16] and is an important

step in the maturization process of a virus. Understanding this process in more detail by experiments,

theory and simulations would help discover possibilities to in�uence the process externally. A small

example of patchy particles assembling into pentamers, hexamers, and heptamers is shown in Fig. 1.3. In

this simple model the patchy particles represent the repetitive protein units of a virus capsid, and the

patches �x the location where other patchy particles may be attached. Here we show only a model for

early stages of virus capsid assembly, but is easily extended to describe a complete assembly process.

Another possibility to use small repetitive connected units of particles is shown in Fig. 1.4. Here

a membrane assembles out of small 3-bead units that represent coarse-grained lipids [CD05]. In this

particular example no reactions are needed for the self assembly. The process is purely entropy-driven

due to the interaction of the di�erent beads. However reactions can be introduced, e.g. to model local

changes to the membrane beads triggered by encounter with other molecules.
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Figure 1.3: Patchy particles assemble into oligomers as an iPRD model for early stages of virus capsid

assembly, simulated with ReaDDy 2. (a): One monomer depicts one protein and consists of a “core ” and

two “site” particles that are in a �xed angle of 120◦. The monomer can bind to two other monomers via

the reaction sites, two reaction sites perform an association event according to the Doi model. Afterwards

the two associated site particles are removed. The formed dimer has two open sites, dihedral potentials

assure an alignment of all four particles in a plane. Additional monomers can then bind to the open sites.

(b): The distribution (Distr.) of molecular mass (here in numbers of particles) as a function of the degree

of polymerization and time for a single simulation run. Initially all particles are present as monomers.

In the end there is a mixture of mainly hexamers, as well as some misformed heptamers, pentamers.

(c): Snapshot of the simulation box at t = 0. (d): Snapshot at t = 2.5. Time is in arbitrary units in this

example.
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Figure 1.4: Three bead lipid model assembles into a bilayer simulated in ReaDDy 2, inspired by the model

of Deserno et al. [Rey+07; CD05]. A lipid consists out of a head bead (blue) and two tail beads (orange)

which are connected by harmonic springs with length � and spring constant 60kBT /�2. Angle potentials

between the triplet enforce a 180◦ con�guration with sti�ness 10kBT . Non-bonded harmonic repulsion

with contact distance 1.05� and force constant 800kBT /�2 acts between head and head particles, and

between head and tail particles. A non-bonded weak interaction potential built out of harmonic terms

that resembles a very soft Lennard-Jones interaction acts between tail and tail particles. This potential

has a well with depth of 0.91kBT and the minimum is at a distance of 1.12� , any penetration closer is

penalized by a harmonic potential with force constant 800kBT /�2. The range of attraction of tail and tail

beads is 2.72� . Initially 1000 lipids were distributed randomly in a cubic periodic simulation box of �xed

edge length 25� , depicted by black lines. The system was simulated for several days computation time

with a time step of Δt = 7.8 × 10−4�2/D0 where D0 is the self di�usion coe�cient of head and tail beads.

The image shows the system at the last frame of the simulation with periodic continuations for visual

guidance.
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1.2 Equilibrium in Reactive Systems
Reaction-di�usion processes are by de�nition dynamical processes. Starting in an initial con�guration

the system’s microscopic variables will continue to change over time. However in most applications there

exists a stationary state in which the variables do not change anymore. In the case of stochastic dynamics

it is the probability distribution that eventually becomes the stationary distribution. Steady states are

important because they allow theoretic workers to �nd simple solutions to an otherwise time-dependent

problem. At the same time a steady state can be experimentally probed with much higher resolution

than a constantly changing system.

When the system at hand is closed, ergodic, and has microscopic reversibility, then its steady state is

also a state of thermodynamic equilibrium. A system being “closed” means that no matter leaves or enters

the system from its surrounding. For reactive systems to be closed, all reaction channels must conserve

matter in such a sense that no matter enters or leaves the system. Systems in contact with a particle-bath

— which ensures that the chemical potential � is constant — become closed when considering the system

of interest and the bath as one large system. If thermodynamic equilibrium is reached the macroscopic

behavior can be understood in terms of thermodynamic variables of state.

1.2.1 Thermodynamic Equilibrium for Chemical Reactions
In a system of constant pressure p and constant temperature T the relevant thermodynamic potential is

the Gibbs free energy and its change dG with respect to a change dNi in number of particles of species i
reads [LJC08; Fer+06] dG = ∑i �idNi (1.6)

where �i is the chemical potential associated with species i. Consider the example A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C and we

can reinterpret the dNi in terms of the extent of the reaction d� and the stoichiometric coe�cients �i ,
which read 1, 1 and −1 for A, B and C respectivelydNi = �id� → dNA = d� dNB = d� dNC = −d� (1.7)

The change in Gibbs free energy then becomes dG = (�A + �B − �C )d� . In equilibrium the Gibbs free

energy is minimal so the term dGd� ||||T ,p = 0 → �A + �B − �C = 0 (1.8)

vanishes. The common ansatz for the individual chemical potentials is�i = �⊖i (p, T ) + RT ln ({i}
i) (1.9)

in terms of a standard chemical potential �⊖i (p, T ), the activity {i}, and the activity coe�cient 
i of the

species. Inserting this in Eq. (1.8) yields

ΔG⊖ − RT ln({A}{B}{C} 
A
B
C ) = 0 (1.10)

where ΔG⊖ = �⊖C − �⊖A − �⊖B is the standard change in Gibbs free energy which becomes measurable via

the equilibrium constant K = {A}{B}{C} (1.11)ΔG⊖ is typically de�ned under ideal conditions, i.e. 
i = 1 by measuring the equilibrium constant.
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Figure 1.5: Ratio of activity coe�cients 
A
B/
C as a function of the density n = (NA + NB)/2 + NC of a

reactive Lennard-Jones (LJ) suspension simulated in ReaDDy 2. Molecules of species A, B and C interact

via a LJ potential with contact distances �ij = ri + rj between species i and j where ri is an assumed

radius of the molecule i. Molecules react according to the reversible bimolecular scheme A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C

with the reaction radius R = (26/7)1/6�AB . The ratio of activity coe�cients is calculated as the ratio of

activities {A}{B}/{C} of the non-interacting suspension and the LJ suspension.

How do microscopic reaction-di�usion systems in equilibrium relate to these thermodynamic consid-

erations? Let us consider the following experiment: We prepare two reaction-di�usion systems i and

ii that perform the reaction A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C in a constant volume V and at constant temperature T . The

derivations Eq. (1.6) until Eq. (1.11) can be carried out analogously for the Helmholtz free energy at the

expense of making the standard chemical potentials �⊖i (V , T ) dependent on the extensive quantity V .

However in this example, we will leave the volume �xed. Both systems i and ii di�er in their microscopic

behavior, in particular in system ii the molecules interact via a Lennard-Jones interaction, but we prepare

them such that under very dilute conditions (i.e. ideal conditions 
i = 1) they will tend to the same

equilibrium constant K . This equilibrium is simulated with an iPRD model using ReaDDy 2. The result

is given in Fig. 1.5. The interaction of the molecules strongly a�ects the ratio of activities 
A
B/
C when

the density is increased, in particular the activity coe�cients of the dissociated state decreases as the

density increases. At low densities the ideal behavior is reproduced. Such data relates the free energies

of real solutions in equilibrium and their activities and are at the heart of chemical thermodynamics.

Changing activities in dense solutions can e.g. in�uence the feasibility of metabolic pathways in biological

systems, and can lead to a physiological response. To be able to perform thermodynamic studies using

reaction-di�usion simulations it is essential that the correct equilibrium state can be sampled.

1.2.2 Equilibrium of a Closed iPRD System

In Section 1.1 we have stated the microscopic rules for a particle-based reaction-di�usion method subject

to interaction forces, which is then termed interacting-particle reaction-dynamics (iPRD). When such

a system is prepared with an initial state in a constant volume and in contact with a heat bath it will

evolve over time. If this system is ergodic and has detailed balance, an ensemble of many copies of this

system will reach an equilibrium. Inspired by Masao Doi’s work [Doi76] we will formulate this ensemble

and its statistical mechanics, which provides a means of calculating observables as ensemble averages.
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The composition or state of the system at a given time isN = (N1, …NS ) (1.12)

which counts how many particles of which species exist and S is the number of species. The most

important realization is that the number of compositions that the system can occupy is �nite. For this

assumption to hold we need the following conditions:

• Reactions must be reversible. If there is a reaction that takes the system from composition N to M,

then there must be a reverse reaction which takes the system from M to N.

• The system is closed. Number of particles are only allowed to change in terms of the reversible

reactions. This de�nition of closed is less strict than particle conservation. We could alternatively

require that the reactions conserve the total mass of the system, and the system is closed with

respect to exchange of mass.

• Reactions into and out of the vacuum state are forbidden. E.g. the reactions ∅ ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← A are forbidden

(∅ is the vacuum state, i.e. A particles are spontaneously created and vanish). Note that also the

reactions B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← B + A are forbidden because they can be e�ectively reduced to ∅ ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← A. Because

these types of reactions would contradict mass conservation, this rule is just a speci�cation of the

“the system is closed” rule.

Since the system is closed, the compositions N only change due to reactions. If all reactions have a

corresponding reversible reaction, the accessible states live on a �nite manifold  which depends on

the initial number of particles that live in the system. The number of states in  is denoted as | | = n.

It generally grows with the number of particles initially in the system, and also with the number of

reversible reactions. For example, the system A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C initiated with n A particles and n B particles

lives on the manifold of states

 = {N = (NA, NB , NC ) ∶ (NA + NB)/2 + NC = n} (1.13)

Each reaction removes one AB pair and adds one C, or adds an AB pair and removes one C.

Each composition N ∈ has microscopic con�gurations xN, where the superscript indicates that

the con�guration has one component for every particle of every species in the system. Each of these

components can be e.g. position and momentum of the particle in ℝ3, i.e. 6 numbers per particle, thenxN ∈ ℝ6‖N‖1
where ‖N‖1 = ∑Si Ni counts the number of particles in state N. Each state is in thermal

equilibrium, i.e. con�gurations xN are distributed according to

pN(xN) = e−�N(xN)∫ e−�N(xN)dxN (1.14)

where N is the Hamiltonian of system in state N and �−1 = kBT .

The global stationary distribution of �nding the system in state N with con�guration xN isp(N, xN) = Z−1( , V , T ) f (N) pN(xN). (1.15)

where f is the stationary number of microstates associated with state N. The number f is related to the

fugacity, in fact we can interpret it in the form f (N) = exp(�kBT log f (N)), which reveals −kBT log(f (N))
to be the free energy of state N in relation to the other states. Z( , V , T ) is the partition function, i.e.

the total number of microstates in the system of constant ( , V , T ). Normalization of p(N, xN) implies∑N∈ ∫ p(N, xN)dxN = 1. (1.16)
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Figure 1.6: Schematic of a closed iPRD phase space which consists of chemical states or compositions N, M,L and their corresponding microscopic con�gurations xN, yM, zL subject to the reaction A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C. In

this example there are only three reachable states, which are implicitly de�ned by the number of particles

in any of the compositions and the reaction scheme. Con�gurations xN are in local equilibrium with

respect to the distribution pN(xN). Transitions between states are de�ned by the microscopic transition

rate density k(yM|xN), accompanied by the �ux out of state N into state M that is k(yM|xN)pN(xN). The

integral of which over all initial and �nal con�gurations yields an element of the transition rate matrixK .

Since each individual state is normalized with respect to con�gurations, we �nd the partition function to

be the sum of microstates over all compositionsZ( , V , T ) = ∑N∈ f (N) (1.17)

Note that f implicitly depends on V , T , the Hamiltonian , and on the microscopic reactions that allow

transitions between compositions.

In essence we have constructed a set of canonical ensembles, which are weighted against each other

by f . Since there is one canonical ensemble for each N in the set  we may call this an ensemble of

constant ( , V , T ) instead of the canonical (N , V , T ) ensemble.

Once we have determined the stationary distribution Eq. (1.15) through f and all pN we can calculate

averages of observables. These can either be observables of the state N, the con�gurations xN, or both.

The latter general case for the observable g(N, xN) is described by

⟨g⟩ = ∑N∈ ∫ g(N, xN)p(N, xN )dxN (1.18)

For example in the case A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C the equilibrium constant is then measured as ⟨NANB⟩/⟨NC⟩.

1.2.3 From Microscopic Reactions to Distribution of Compositions

In classical statistical mechanics the probability f to �nd a substance with a particular composition in

the grand canonical ensemble is de�ned top-down upon �xing the chemical potential. Here we will take

a bottom-up approach, i.e. we formulate microscopic transitions, that will give rise to the stationary

distribution f (N) of states.

Therefore we address the microscopic phase space of con�gurations and equip it with reactions that

allow transitions from a composition N to another composition M. This situation is depicted in Fig. 1.6

for the reaction A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C and the number of available compositions | | = n = 3.
Let kr (yM|xN) be the microscopic transition rate density to go from con�guration xN in state N to

con�guration yM in state M. It may have the following form, which works well with the Doi reaction

model (see Section 1.1.2) kr (yM|xN) = �rq(yM|xN). (1.19)
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where �r is the frequency (also called: probability per unit time, propensity, or microscopic rate constant)

of the reaction, and q(yM|xN) is a density that proposes new con�gurations yM in the new state M given

con�guration xN of the old state N. q obeys

∫ q(yM|xN)dyM = 1. (1.20)

The transition rate density is accompanied by a �ux densitykr (yM|xN)pN(xN) (1.21)

with pN from Eq. (1.14).
1

This �ux is to be understood as density per dxN through pN and per dyM
through kr . Integrating this �ux over all initial and �nal states results in the total probability �ux from N
to M, which we simply call transition rates

KNM = ∑r∈(M|N)∬ kr (yM|xN)pN(xN)dxNdyM (1.22)

where the summation is executed for all reactions r that lead from composition N to M which is indicated

by the set (M|N). In most cases this will only have one term because each reaction typically generates

a new composition. However, in general there can be multiple reactions with the same products and

educts (i.e. they generate the same composition) but with di�erent transition rate densities kr .
The rate de�ned in Eq. (1.22) gives rise to a transition rate matrix between the states. Let there be an

arbitrary ordering in the set  with n elements. Then we can enumerate the states 1..n and formulate

the matrix with elements KNM ≡ KNM
K = ⎛⎜⎜⎜⎝

K11 K12 … K1nK21 K22 ⋮⋮ ⋱ ⋮Kn1 … … Knn
⎞⎟⎟⎟⎠ (1.23)

where we follow the typical convention thatKii = −∑i≠j Kij (1.24)

Now this matrix certainly de�nes an ergodic system, because we have constructed the state space to be

connected and each reaction is reversible. If the system additionally has detailed balance with respect to

the joint global states (N, xN), then there is a stationary vector f ∈ ℝn+, which is the vector version off (N). The stationary vector ful�lls the global balance conditionf⊤K = 0 (1.25)

which means that in equilibrium all net transition rates into and out of individual states are equal. In

other words we are looking for the �rst eigenvector of K corresponding to eigenvalue 0. From the

global balance we can determine f up to a normalization constant. For a general Markovian process it is

customary to remove this ambiguity by assuming that the sum of the fi is unity, i.e. ∑i fi = 1. However, be

reminded that bespoke sum is also the partition function Z( , V , T ) of the system at hand, see Eq. (1.17).

1
It is important here to not use the global stationary distribution which would yield a probability �ux density with respect to the

global probability, but then microscopic reversibility would imply that these are all equal and the resulting stationary distribution

for f would be uniform for all systems studied, which is unreasonable. Here we want to �nd f under the assumption that a certain

amount of probability with respect to the local probability �ows from one state to another. When f is found, detailed balance with

respect to the global probability will assure that each con�guration remains in thermal equilibrium.
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Fixing it to 1 for every system removes the ability to compare two di�erent ensembles (1, V1, T1) and(2, V2, T2), since they would have the same free energy F = −kBT log Z . This means that by de�ning

the microscopic reactions through kr we cannot determine the overal number of microstates because

we are lacking a reference point. Note that the canonical partition function of one composition N does

not represent a meaningful number of microstates anymore in this context because the reactions across

the compositions change the “phase space volume” of one microstate. This size is typically given by the

Planck constant for classical systems. In our ( , V , T ) ensemble this size di�ers between compositions,

and it is implicitly contained in f , but we cannot estimate it from the transition rates. To establish the

missing constraint we would need to perform a thermodynamic integration from an ensemble of known

free energy (or number of microstates) into our ensemble at hand, and use that to establish the missing

constraint. When measuring observables of one particular system this ambiguity is unproblematic, sinceZ then only functions as normalization.

In the case of only one pair of reversible reactions which connects the compositions, we can set up

the ordering 1..i..n such that neighbors i and i + 1 (likewise i and i − 1) are connected by the reaction

channel. In that case K becomes an unsymmetric tridiagonal matrix

K = ⎛⎜⎜⎜⎜⎜⎝
K11 K12K21 K22 K23K32 ⋱ ⋱⋱ ⋱ Kn−1,nKn,n−1 Knn

⎞⎟⎟⎟⎟⎟⎠
.

with strictly positive o�-diagonals, negative diagonals, and zeros elsewhere. This matrix can be cast into

a symmetric tridiagonal matrix by a similarity transformation. A large body of literature is concerned

with �nding the eigenvectors and -values of such tridiagonal matrices. Furthermore the number of

non-zero elements in this matrix scales with n not n2. In practice, e�cient solvers exist for such banded

matrices so that we can safely assume a solution for f can be found within computational boundaries.

1.2.4 Detailed Balance
Detailed balance is also known as microscopic reversibility. For the reactive iPRD system of joint global

states (N, xN) it is necessary to keep the con�gurations xN in each composition N in local thermal

equilibrium with respect to Eq. (1.14). In other words we need to ensure that the net �ow of probability

between microscopic con�gurations will leave the global equilibrium Eq. (1.15) unaltered. This form of

detailed balance reads p(N, xN)kr+(yM|xN) = p(M, yM)kr−(xN|yM) ∀xN, ∀yM (1.26)

Note that this requirement is stronger than the global balance from Eq. (1.25). Additionally we require

here that each forward reaction r+ has exactly one counterpart reaction r−, which is also a stronger

condition than the plain “every reaction must be reversible”, because the detailed balance requires

pointwise equality for all xN and for all yM. Note also that there can be multiple reaction channels

between the two compositions as long as each reaction channel consists of a (+, −) pair for which detailed

balance holds.

From Eq. (1.26) one can derive reaction mechanisms that ful�ll detailed balance and thus sample the

correct thermodynamic equilibrium. In particular one can construct Monte-Carlo schemes for kr with

Metropolis-Hastings acceptance functions, which is done for the special case of the reaction A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C

of the isolated pair in Chapter 2, with the simpli�cation that the phase space in the two compositions is

the same, i.e. it contains “dummy” or ghost variables for particles that are currently not present in the

system. In Section 1.2.5 we demonstrate how the same scheme and global distribution f results from

applying the more general theory given above.
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1.2.5 Example: Reversible Association of the Isolated Pair
We consider the reaction A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C of the isolated pair, i.e. at all times there is the pair of particles

A and B, or one C particle. Also the particles A and B are subject to an interaction potential UAB(rAB)
which only depends on their distance.

There are only two compositions N = (1, 1, 0) and M = (0, 0, 1) with corresponding con�gurations xN
and yM. We assume a forward transition density inspired by the Doi reaction modelk+(yM|xN) = �onq+(yM|xN) = �on�(xN)�(xN, yM) (1.27)

where �on is the reaction frequency, � is a unitless characteristic function that is 1 if A and B are allowed

to react and 0 otherwise, and � is a Dirac delta function which �xes the con�guration of the C state

given the con�guration of the AB state. We want to derive an expression for the backward density with

the ansatz k−(xN|yM) = �offq−(xN|yM) = �off q̃−(xN|yM)W −1− (yM) (1.28)

where we need to determine q̃− and its corresponding normalization W−. Note that q+ is already

normalized due to the delta function. For this two state system we know that the stationary distribution f
of compositions is proportional to the total transition rate into the composition which we can formulate

as the double integral over initial and �nal con�gurations from Eq. (1.22)

f (N) ∝ �on∬ �(xN)�(xN, yM)e−�N(xN)dxNdyM∫ e−�N(xN)dxNf (M) ∝ �off ∬ q−(xN|yM)e−�M(yM)dyMdxN∫ e−�M(yM)dyM . (1.29)

As discussed in Section 1.2.3 the normalization constant of f is arbitrary when only studying a single

system. We plug both kr and f in the detailed balance equation Eq. (1.26) and solve for q−
q̃−(xN|yM)W −1− (yM) = e−�N(xN)e−�M(yM) �(xN)�(xN, yM) …… × ∬ q̃−(xN|yM)W −1− (yM)e−�M(yM)dyMdxN∬ �(xN)�(xN, yM)e−�N(xN)dxNdyM . (1.30)

Now this expression for q− depends on its own integral. However it is quite obvious that the following

result will ful�ll this equation

q̃−(xN|yM)W −1− (yM) = e−�N(xN)e−�M(yM) �(xN)�(xN, yM). (1.31)

This expression lends itself to be cast into a Metropolis-Hastings form, where the factor exp{−�[N(xN)−
M(yM)]} is put into an acceptance function and the rest is the proposal density, which is similarly done

in Chapter 2. The only thing left to do is �nd the normalization W− through ∫ q−(xN|yM)dxN = 1 which

yields W−(yM) = Γeffreac, (1.32)

which is the e�ective phase-space reaction volume in the AB state. The speci�c value of Γeffreac depends

on the choice of con�gurations. In Chapter 2 we only consider positional degrees of freedom. Here we

shall consider momentum as well xN = (qNA , qNB , pNA , pNB )yM = (qMC , pMC ). (1.33)
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For the delta function in q+ this means that the position of the C particle shall be in the middle between

A and B qMC − (qNA + qNB )/2 = 0, (1.34)

while the momentum of the C particle is distributed among A and BpMC − pNA − pNB = 0.
The characteristic function � which assures that A and B are within reaction radius R then only applies

to the positions, momenta are una�ected. Summarizing delta and characteristic function

�(xN, yM) = � (qMC − qNA + qNB2 ) � (pMC − pNA + pNB )�(xN) = �(Rreac − ‖qNB − qNA‖) (1.35)

where � is the Heaviside function. We obtain

Γeffreac(yM) = V effreac√ 8�kBTm−1A + m−1B exp(−� (pMC )22(mA + mB)) (1.36)

where mA and mB are masses of particles A and B respectively. The e�ective reaction volume V effreac is

the same as in Chapter 2 V effreac = ∫ Rreac0 e−�UAB(r)4�r2dr (1.37)

When only positions are considered as degrees of freedom, one obtains Γeffreac(yM) = V effreac and for

comparison with Chapter 2 we can write down the equilibrium constant as observables [Eq. (1.18)] of

the system, which reads Keq = ⟨NANB⟩⟨NC⟩ = f (N)f (M) = �off�on V − VexV effreac (1.38)

which is indeed the equilibrium constant Keq = KdV that is prescribed in Chapter 2 via Eq. (2.19).
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1.3 Time-Dependent Descriptions of Reaction-Di�usion
In the previous section we have described reactive systems in thermodynamic equilibrium. However

many phenomena of living systems e.g. the response of a biological cell to external stimuli, be it physical

stress, or lack of nutrition, or the signal for the cell to initiate mitosis, cannot be described only by the

statistical mechanics of the system for two reasons:

1. These systems are out of thermal equilibrium because energy and matter enters and leaves these

systems at all times. In other words “In terms of physical chemistry, a closed system has no life.”
[Qia07].

2. Response of a system is by de�nition a concept which involves time due to causality: we can only

observe a response after the stimulus has been initiated.

This calls for time-resolved descriptions of the studied systems. Non-equilibrium thermodynamics

provides means to study time-dependent processes when the microscopic variables are well described

by �elds and the assumption of a local equilibrium is justi�ed. Here however we will approach the

problem from the point of view of dynamical systems. This allows phenomenological studies of systems

even in the absence of equilibrium, microscopic reversibility or ergodicity, and if the systems are open.

These descriptions are nevertheless connected to (non-)equilibrium statistical mechanics, e.g. in that the

stochastic behavior is often of Langevin type subject to the �uctuation-dissipation theorem. Further the

dynamical equations often resemble balance equations of conserved quantities, for example continuity

equations for probabilities.

In particular we seek dynamical equations that describe the behavior of reactive systems at di�erent

number of particles and spatio-temporal scales. The time-dependent stochastic processes Yt we consider

shall be Markovian.
2

I.e. the processes are memoryless or at least have a memory which is shorter than

the smallest timescale that we are interested in. Such dynamics usually give rise to a Master equation

which governs the probability distribution p(y, t) of the microscopic variables y as a function of time tṗ(y, t) = Gp(y, t) (1.39)

where ṗ denotes the time-derivative and G is a linear operator with respect to p.

Furthermore we are interested in the e�ective dynamics when the system size (i.e. all extensive

variables) becomes very large. In this limit the �uctuations of the stochastic process become small and

we obtain a deterministic macroscopic equation [Van92] for the variable yẏ(t) = f (y) (1.40)

where y is loosely de�ned as the mean y(t) = ⟨y⟩(t) = ∫ y′p(y′, t)dy′ , ẏ is its time derivative, and f
determines how the system evolves in time. Note that f (y) is generally non-linear in y .

3

Ultimately we are interested in reactive systems for which we can identify four scenarios: reaction-

di�usion equations (partial di�erential equations), reaction rate equations (ordinary di�erential equa-

tions), particle-based reaction-di�usion, and chemical master equations. These are arranged in Fig. 1.7

and can be distinguished by two determining factors: the number of particles and the spatio-temporal

2
Let Nico Van Kampen remind us that “Non-Markov is the rule, Markov is the exception” [Kam98]. I.e. when formulating a

Markovian dynamical equation we should have good reason to assume the Markov property. In systems with a strong timescale

separation we can be sure that considering only the “slow” coordinates provides a dynamics whose autocorrelation decays

exponentially, i.e. there is no memory and the dynamics is Markov.

3
It should be noted here that the in�nitesimal Koopman generator [Klu+19]  for a system — stochastic or deterministic —

governs the time-evolution ġ(x) = (g)(x) of all functions g ∶ ℝd → ℝ de�ned on the d degrees of freedom. One might consider

this the governing theory for all Markovian processes. Also  is surely linear because it acts on a function-space which makes 
very powerful. One the other hand the operator is in�nite dimensional and the problem of solving the dynamical system is shifted

to �nding an appropriate subspace of functions (i.e. a �nite rank approximation) in which the operator can be represented.
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Figure 1.7: Time-dependent descriptions for reactive systems.

scale. The former determines if a problem is well described by an average concentration c = N /V ofN molecules in a volume V or requires treatment of individual numbers of molecules. The dynam-

ics of few reacting particles is then a stochastic process and the situation of Eq. (1.39) applies, while

concentration-based approaches are deterministic and we obtain a macroscopic equation, see Eq. (1.40).

The latter spatio-temporal scale determines if a problem needs spatial resolution which is determined

by the relative time-scales of di�usion and reaction. If di�usion is fast and reactions are relatively slow

then spatial resolution is not required to formulate a Markovian dynamical equation. When di�usion is

slow compared to the reactions the overall kinetics depends on the point and time of encounter. Thus

space must be resolved which we can achieve by augmenting the dynamical equation by an additional

spatial coordinate x , i.e. we get second stochastic process Xt that shall be Markovian and is coupled toYt , p(y, t) becomes p(y, x, t) and y(t) becomes y(x, t). The spatio-temporal scale can also be understood

by the amount of non-reactive encounters. For example if two molecules have to encounter 1000 times

before associating into a complex then the dynamics is independent of space. If on the other hand they

associate at their �rst encounter the reaction kinetics has a memory of where the molecules started,

which we can only get rid of by taking space into the equation.

In the following we will take a route from the reaction rate equations in the upper right of Fig. 1.7

down to the chemical master equation, and then exemplify when spatial resolution is additionally

required. In Section 1.1 we have introduced the parameter �R = √��d as a direct indicator for the relative

di�usion �d and reaction �−1 time-scales for the Doi reaction model often used in iPRD simulations and

we will demonstrate the number of particles and spatio-temporal scale using iPRD example systems

simulated with ReaDDy 2.

Note that here we do not discuss in detail the upper left corner of Fig. 1.7, i.e. space-time partial-

di�erential equations for the concentration of particles. We only note that they are important in biological

pattern formation (Turing patterns), or the dynamics of interfaces, e.g. in the Cahn-Hilliard equation.

We shall also mention that the overview Fig. 1.7 can be complemented by many descriptions which

are partially stochastic or partially space-resolving. [WS17] Also note that in this overview we assume

di�usive transport in the absence of velocity �elds governed by Navier-Stokes equations.
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1.3.1 Systems with Reaction-Limited Behavior

Consider the reaction with index r between species Z1, … ZS , where Zi is the name of the i-th species of

which there are S in total �r ,1Z1 + … + �r ,sZs kr←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ �r ,1Z1 + … + �r ,sZs (1.41)

where kr is the macroscopic rate constant of the r-th reaction, �r ,⋅ ∈ ℕ are the stoichiometric coe�cients

of the educts of reaction r and the �r ,⋅ ∈ ℕ are corresponding coe�cients of the products. When the

typical time-scale of di�usion is short compared to the time-scale of reaction the kinetics of the system

is reaction-limited which is often synonymous with well-stirred or well-mixed. When the amount of

molecules taking part in a reaction-limited process is very high, the dynamics of the system is described

in terms of reaction rate equations which are macroscopic equations of the form Eq. (1.40)ẏ(t) = f (y) = ∑r kr�r (y)�r (1.42)

where y = ([Zi], … [ZS]) ∈ ℝS+ is a vector of concentrations with an entry for each molecular species. f
speci�es the amount of change for each species based on the de�ned reactions. �r is a nonlinear function

of the concentrations which counts how much amount of molecular concentration is able to undergo

the reaction r . The vector �r = �r − �r ∈ ℤS
speci�es the in�uence of reaction r on individual species

determined by their stoichiometry. For example for bimolecular reactions of type A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ C, � = yAyB
and � = (−1, −1, +1). Note that Eq. (1.42) assumes a linear rate law [ADK18] (there is only one constant

for each reaction and it enters the equation linearly) and � is subject to the law of mass action [GW79]

such that the activity of each species is represented by its concentration and stoichiometry

�r (y) = S∏i=1 y�r ,ii (1.43)

In the general case rate laws can be more complicated.

Systems as described by Eq. (1.42) are fully deterministic but can be oscillatory and even chaotic.

Often there is an attractor which is determined by the rate constants. Most notably the concentration

is a continuous variable which changes smoothly over time. However when the amount of molecules

involved is low then the observed kinetics can vary drastically although we are still in the reaction-limited

regime. For example the e�ect of “transcriptional pulsing” can be observed in the protein-synthesis

machinery of procaryotic cells [Chu+06; Elo02]. This e�ect indicates that stochasticity plays a role in the

transcription process of cells because assuming reaction kinetics in the form of Eq. (1.42) will not lead to

such behavior.

Let us consider an example. We observe a molecular process of the type A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C with association

rate constant kon and dissociation rate constant koff , here simulated with an iPRD model in the reaction-

limited regime. We set up a �xed number n of AB pairs initially and let the system relax into equilibrium

and observe the number of particles as a function of time and the equilibrium constant Kd = [A][B]/[C]
in the long-time limit. We perform this experiment multiple times for di�erent number n of initial AB

pairs but vary the volume V of the container accordingly such that the concentration n/V is initially

always the same. This computer experiment is shown in Fig. 1.8. Part (a) shows the time series of the

concentration of A and one observes that the curves roughly follow the same shape, but for small n
the process is generally more noisy compared to the limit “RRE” which is given by the reaction rate

equations. In particular the case n = 1 is essentially a two-state Markov jump process. On the other

hand the long time equilibrium constants of all cases are fully described by the dissociation constantKd = koff/kon and the volume V .
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Figure 1.8: Bimolecular reversible reaction A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← C with �xed association rate constant kon and

dissociation constant koff in the reaction-limited regime (�R = 0.1) at di�erent number of particlesn = (NA + NB)/2 + NC and di�erent volume V such that the density n/V is constant. Dynamics is iPRD

simulated with ReaDDy 2. Initially there are n AB pairs placed uniformly in the box, which are then

allows to relax while di�using and reacting. (a): Time-series showing the concentration of A particles.

RRE depicts the analytical solution of the reaction rate equations. (b): Equilibrium constant with respect

to the volume as a function of the number of initial AB pairs n.

With very few molecules the observed state space becomes discrete, i.e. we count individual molecules

with the vector N = (N1, …NS ) which has an element for every molecular species, the dynamics becomes

stochastic. Such a process is called Markov jump process, for reactions it is a one-step process [Van92],

i.e. the number of particles only change in prede�ned quantities at a time, which is de�ned by the

stoichiometry of the considered reactions. The governing equation of the form Eq. (1.39) becomes the

chemical master equation [Gar+85; Sun13]dp(N, t)dt = ∑r �r (N − �r )p(N − �r , t) − �r (N)p(N, t). (1.44)

where �r is the change in species number due to reaction r , which is related to the stoichiometry of

Eq. (1.41) via �r = �r − �r . This equation is a “gain-loss” equation for each composition N. For each

reaction r it considers how much probability the state N gains and how much it loses. These probability

�uxes are calculated based on the propensities � , which are frequencies that indicates how likely a

reaction is. For a linear rate law, the assumption is that all molecules are in contact and can potentially

react. For example the reaction A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ C then has a propensity �(N) = NANBk/V where k is the

macroscopic rate constant and V the volume of the container, alternatively k/V can be considered a

microscopic rate constant. Obeying the law of mass action the propensity of reaction r is then more

generally written as [SSG17] �r (N) = kr S∏i=1 Ni!(Ni − �r ,i)!V �r ,i . (1.45)

This form di�ers from the simple product in Eq. (1.43) because we have to take into account that we can

run out of educt molecules. For example the propensity of A + A ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⋅ is proportional to NA(NA − 1)
which obviously vanishes for NA = 1.
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The limit from the chemical master equation Eq. (1.44) to the macroscopic reaction rate equation

Eq. (1.42) is the so-called Kurtz limit as it was formalized by Thomas G. Kurtz [Kur78]. This limit

essentially assumes N → ∞ and V → ∞, while N/V remains a constant with vanishing �uctuations.

For practical purposes it shall be noted, that reaction rate equations can usually be integrated

numerically as an initial value problem. The chemical master equation however is not easily solved,

especially when the state space is unbounded, for example in a birth-death process A ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→←←←←←←←←←←←←←←←←←←←←←←←←←←←←← ∅ the

number of A particles is between 0 and ∞. One usually resolves to simulating individual realizations of

time-series N(t) which all start in an initial state N(0). The time-dependent distribution of many of these

trajectories then resembles p(N, t). The most notable method for simulating these stochastic processes

is the Gillespie algorithm [Gil77; ECC09] which is equivalently called Kinetic Monte Carlo (KMC), or

Stochastic Simulation Algorithm (SSA). These methods are based on the Markov property such that the

exact time of the next reaction event can be drawn from a (self-similar) exponential distribution which

only depends on the current state the system is in.

1.3.2 Systems with Spatial In�uence

When the reaction-limited assumption breaks down then di�usion time-scale is on a similar order of

magnitude or much longer than the reaction time-scale. The number of particles in a container cannot

be described by a memoryless process anymore. But making the number of particles dependent on space

may resolve the situation and we can formulate another Markovian dynamical equation. If space is

divided into many compartments, e.g. separated by membranes, and transport across compartments

is slow compared to di�usion within the compartment, then the overall di�usion is well described

by a discrete hopping process. In particular such a process is also Poisson, described by a propensity�(Ns) = �Ns where � is the frequency of transport out of one compartment into another. This propensity

carries the notion of an unimolecular reaction. Formally, reactions and di�usion are then described

by a Master equation by broadening the state space to also denote di�erent compartments as di�erent

species. The resulting macroscopic equation is thus a reaction rate equation with “reactions” that denote

transport from one compartment to another.

If no such compartments and thus no timescale separation exists, the reaction kinetics become

time-dependent which leads to non-Markov descriptions and rate laws that deviate from the law of

mass action [DK07]. Markovian descriptions then need to describe the movement of individual particles

by a di�usion process in continuous space subject to forces. The transport of reactive molecules can

have a signi�cant impact on the reaction kinetics, for example due to crowding e�ects [AT15], or when

reactants become sparse such that reactions saturate into the di�usion-limit [RAV14].

Let us consider an example in terms of a simple iPRD model of A + A ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ B to demonstrate in

which way reaction kinetics su�er from hysteresis when the process is di�usion-in�uenced. We set up

two systems with the same number of A particles in simulation boxes of the same volume. The two

setups di�er in the value of �R = √�/DR (0.3 and 30) which relates the microscopic reaction frequency �
and the di�usion time scale R2/D to explore the spherical reaction volume with radius R and respective

di�usion coe�cient D = DA + DA of A particles. The values of D and � are then adjusted such that

the mean association rate constant k is the same for both setups. The procedure to calculate the mean

rate for such bimolecular irreversible reactions is described in Chapter 3. Since the mean rate constant

is derived under the Markovian assumption by means of �rst passage times, we expect a deviation in

the time-dependent kinetics for the two setups. Initially no particle is in reactive contact with another

particle, and we observe the concentration of A particles a(t) as a function of time, which is shown in

Fig. 1.9. Not surprisingly we �nd that the kinetics for the reaction-limited setup �R = 0.3 is exactly

described by reaction rate equation ȧ(t) = −ka2 subject to the law of mass action with the assumed mean

rate constant k. Stochastic �uctuations around the macroscopic behavior become apparent when very

few particles are left in the box for times t > 102. The di�usion-in�uenced kinetics �R = 30 deviate from
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Figure 1.9: Bimolecular irreversible association A + A

k←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ B with reaction-limited �R = 0.3 and

di�usion-in�uenced behavior �R = 30 but with the same mean rate constant k. “LMA” is the solution

of the reaction rate equations subject to the law of mass action, i.e. ȧ = −ka2. “Smol.” is the solution

of the reaction rate equations with time-dependent rate kS(t) = 4�DR (1 + 4R/√�Dt). Time is given in

units of the mean rate and the initial concentration (ka(0))−1, which is identical for both processes with�R = 0.3 and �R = 30. �di is the microscopic rate constant of the di�usion-in�uenced process.

the reaction-limited kinetics for the �rst 6 orders of magnitude in time until it recovers from hysteresis

and converges to the case of reaction-rate equations. Note that the case �R = 30 is almost “reaction

upon contact”. This is known as the Smoluchowski limit [Smo16; Smo17] with the time-dependent

reaction rate kS(t) = 4�DR (1 + 4R/√�Dt), which is dominated by the encounter rate 4�DR for large

times. The di�usion-in�uenced case is almost described by this limit, however it displays an initial

hysteresis which is well described by the exponential decay exp(−�dit) of the �rst encounter complexes

with the intrinsic reaction frequency �di. It recovers from this hysteresis at about t ≈ 1, but the reaction

proceeds slightly slower than the Smoluchowski limit �R → ∞. For long times both scenarios evolve

equivalently according to their mean rate, the system has become very dilute such that relative position

correlations of particles vanish in between encounters.

Many theories about the non-Markov kinetics of bimolecular reactions have evolved.[LK87b; LK87a;

GD96; SL99; GOS01] In these studies the “Brownian Dynamics” simulation approach is often used as a

reference, because it directly resolves the space-dependent process of particles di�using and reacting. In

the overview Fig. 1.7 this approach belongs in the lower left corner of particle-based reaction-di�usion

methods. In particular iPRD is such a method, and it has been described already in Section 1.1. The gov-

erning theory for di�usion-in�uenced particle-based methods can be constructed in terms of distribution

functions [WF73] or quantum �eld theory [Doi76].

1.3.3 Master equation for a Closed iPRD System

At this point we can formulate a Master equation which governs the time evolution of a closed iPRD

system, i.e. particles di�using and reacting in space. In Section 1.2.2 we have described the stationary

distribution p(N, xN) of such a system when it is closed and in Section 1.2.3 we have explicitly derived

the stationary state from the microscopic reaction transition densities kr . The latter are already part of

the time evolution of the system. The only ingredient we have to add is the drift and di�usion of the
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con�gurations xN. Since this is completely orthogonal to the reaction transitions its contribution to the

master equation is simply additive. We write p(N, xN, t) as the time-dependent probability distribution

of the system and its time evolution is given by [Doi76]dp(N, xN, t)dt = p(N, xN, t) …+ ∑M∈M≠N ∑r∈(M|N) ∫ [kr ,+(xN|yM)p(M, yM, t) − kr ,−(yM|xN)p(N, xN, t)] dyM (1.46)

where  is the Fokker-Planck or Kolmogorov forward operator [Ris89] which acts only on the con�gura-

tional part xN of the distribution p. In full it reads

 = − ‖N‖1∑i=1 ))xi D(1)i (xN) + ‖N‖1∑i=1 ‖N‖1∑j=1 )2)xi)xj D(2)ij (xN) (1.47)

where D(⋅) are the Kramers-Moyal expansion coe�cients, in particular D(1) is the drift vector, which is

a force if the particles are subject to a potential and when x are only the positions of particles. D(2) is

the di�usion matrix, which simpli�es to a constant diagonal matrix if all particles di�use independently

with a certain di�usion coe�cient. The second part of Eq. (1.46) is a typical gain-loss term found in any

(chemical) one-step Master equation, except that here we have to integrate over the source con�gurationsyM for the “gain” term (target con�gurations for “loss” term) which belong to another composition M.

The summations are performed over all other compositions M and over all reaction channels r (consisting

of the pair of reversible reactions r , + and r , −) that connect the compositions N and M denoted by the

set (M|N). The normalization of p applies for all times analogously to the stationary case∑N∈ ∫ p(N, xN, t)dxN = 1 ∀t (1.48)

We should convince ourselves that the stationary solution we have given in Section 1.2.2 is indeed the

stationary solution of Eq. (1.46) dp(N, xN, t)dt = 0 (1.49)

Therefore we invoke detailed balance for the reactive transitions [Eq. (1.26)], which immediately cancels

the reaction term of Eq. (1.46). It remains to show that

p(N, xN, ∞) = 

{Z−1( , V , T ) f (N) e−�N(xN)∫ e−�N(xN)dxN
} ∝ e−�N(xN) = 0 ∀N (1.50)

where we have made use of the fact that f , Z , and ∫ e−�N(xN)dxN are mere non-vanishing constants for

the operator . The remaining condition

e−�N(xN) = 0 ∀N (1.51)

implies that  is the generalized potential for the Fokker-Planck equation. A su�cient condition for

stationarity of the Fokker-Planck equation is detailed balance, which has implications for D(1), D(2) and

, see [Ris89] chapter 6.4. These conditions are for example ful�lled byD(1)i (xN) = −)N)xi and D(2)ij = �ijD (1.52)

when all x are symmetric under time reversal, e.g. positions. We conclude that Eq. (1.15) is indeed the

stationary distribution of the proposed Master equation Eq. (1.46) if reactions across- and di�usion within

the compositions ful�ll detailed balance separately.
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1.4 Identi�cation of Reactive Dynamical Systems
The study of reactive systems in an experimental setup poses challenges because the number of molecular

species involved in a process might be very large [Con+99; ZL02]. The governing equations provide

models for understanding an experimental evidence, but the equations may be solved only for small

systems. If the experiment however provides time-resolved measurement data in large quantities we can

try to estimate which model best described the observations. The �eld of system identi�cation can be

considered a branch of machine-learning and is concerned with distilling information from data about

the underlying system. We may take any equation described in Section 1.3 and interpret it as a model

and the rate constants, di�usion coe�cients become the parameters w. There are now two questions

that one tries to answer:

1. Which model is best suited to describe the given observation data?

2. Given the model and data. What is the optimal set of parameters that best describes the data?

We can understand the second task in terms of Bayesian statistics, in particular we seek to maximize the

posterior probability p(w|x) with respect to the parameters w given the data x. Bayes theorem states that

this probability can be rewritten such thatp(w|x) = p(x|w)p(w)/p(x) ∝ p(x|w)p(w) (1.53)

which means that the posterior probability p(w|x)we want to maximize is related to the likelihood p(x|w)
that given a set of parameters w one obtains the observation x. If we cannot evaluate the likelihood

directly we also need a method to generate observations from given parameters. This task may be

achieved by a parameterized function fw . We can then compare the true observations to what fw
predicted. Additionally the prior distribution p(w) enters this equation, which encompasses a prior belief

about the parameters, e.g. “All parameters in w must be small.” which is a distribution that favors small

values. The second question above is then answered by maximizing the likelihood subject to the prior.

The parameters w, the choice of likelihood, the prior belief (and optionally the function fw of

generating observations from a set of parameters) can be summarized as the model. In short the model is

set of assumptions about the problem at hand.

As an example, consider linear regression: We have observed values x = (y, z) = {yi , zi}Ni=0 where yi
are control values set by the experimentalist (e.g. temperature of a gaseous substance) and zi are the

corresponding obtained measurements (e.g. pressure of said substance) of the system. We wish to learn

how the system relates the yi and zi . We make the assumption that the relation is linear, which gives us

a very simple method to generate a prediction z̃ from y via fw (y) = wy. We also make the assumption

that the likelihood in this case is maximized by minimizing the residual error between our estimationz̃ = fw (y) and the true value z. We also have no prior knowledge of the parameter w , so we accept any

value that minimizes the error. The optimal value then readsŵ = argminw ‖z − wy‖22 (1.54)

Now solving this for given data is a numerical exercise, but the insight into the system is encapsulated in

the assumptions. In the speci�c example of relating pressure and temperature of gases the achievement

was in �nding out that they relate linearly which is called Gay-Lussac’s law.

This leads to the �rst and more complicated question: Which model is best suited? In other words:

Which are the best assumptions to answer a certain question about the system? The discrepancy between

the real system and our assumptions is called the approximation error, while Eq. (1.54) only minimizes

the estimation error.
One possibility to systematically counteract the approximation error is to parameterize the prior

belief p� (w) with a hyperparameter � . Then � is a gradual switch between di�erent models/assumptions.
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Eventually this parameter will �nd its way into the optimization problem when we maximize the

likelihood subject to the prior p� (w). However we cannot optimize for � in the same optimization,

because it would not contribute to minimizing the approximation error but only the estimation error.

However we can optimize for � by training two models with di�erent �1 and �2 on the same data x,

which results in two sets of parameters after optimization w1 and w2. Now we need to compare the

performance of the two models (�1, w1) and (�2, w2), e.g. by measuring their estimation error with

respect to new data y. The new data is measured independent from x, but is measured under identical

conditions, i.e. both are samples from the same data distribution p(x). A popular variant of the just

described method to quantify the performance of a model is called cross validation.

We will proceed to present some methods that aid in identifying reactive systems with assumptions

drawn from the descriptions that were presented in Section 1.3.

Sparse identi�cation of nonlinear dynamics (SINDy) [BPK15] is a general framework to infer macro-

scopic equations from data by an ansatz that is a linear combination of non-linear candidate functions.

For reaction rate equations we may interpret Eq. (1.42) as the observable, i.e. the rate of change of

the concentrations. SINDy was applied to �nd the scalar activities that enter each species’ temporal

change [Man+16]. Alternatively we can formulate a set of vector valued candidate reactions param-

eterized with rate constants w. Minimizing the estimation error is then achieved by minimizing the

di�erence between the observed change of concentrations and the predicted change of concentrations

from our candidate reactions. Minimizing the approximation error is achieved by a prior that favors

solutions in which a lot of reaction rates wi are zero with the goal in mind to �nd the sparsest set of

reactions that led to the observations. This prior enters the likelihood by a 1-norm of the parameters ‖w‖1
with a multiplicative hyperparameter � . Finding � is then achieved by cross validation. This application

is called Reactive SINDy and is described in detail in Chapter 5.

When the reaction kinetics is in the limit of few molecules, the observables are samples of a stochastic

Poisson process which is governed by the Chemical Master Equation, see Section 1.3.1. With the Gillespie

algorithm one can generate samples of the observed process. But since the process is stochastic we

cannot use these samples to construct an estimation error. Instead one formulates the likelihood of

transitions directly [SSG17]. If all reaction events can be observed this yields a estimate for the best �t of

the involved reactions. The state space of compositions N however has a special structure under certain

conditions, which yields a robust estimation [Cha+13] of the rates even when many reaction events

happen in between observations.

Inference of processes involving reaction and di�usion can be achieved by the same methods as for

the chemical master equation, when the di�usion is described by a discrete hopping between well-mixed

compartments [Dew+10]. When the observed process is a di�usion process in continuous space driven

by a Wiener process one might infer the drift vector and di�usion matrix using the Kramers-Moyal

formulae [Ris89]. The method of stochastic SINDy [BNC18] then formulates a linear ansatz of nonlinear

candidate functions for drift and di�usion, which is solved by a stepwise sparse regressor to �nd the

simplest solution possible. The full reaction-di�usion dynamics can be understood as several switchable

di�usion processes, whose switching behavior is given a Poisson process. Inference of such dynamics is

often avoided due to the technicalities of treating the problem in Fock space. Relating the stochastic

dynamics to Cox processes however results in an inference method [SGS16].

Another approach for the inference of stochastic dynamics is based on the Perron-Frobenious theorem

applied to dynamical operators, that govern the time evolution (e.g. in Eq. (1.39)). The main motif is that

the slow and thus important dynamics are determined by the dominant eigenmodes of the dynamical

operator. The eigenvalues correspond to timescales and the �rst eigenvalue is the largest, its eigenvector

corresponds to the stationary distribution of the system. All other eigenmodes have smaller timescales.

When there is a timescale gap at the n-th eigenvalue, one may describe the possibly very high dimensional

system with only the �rst n slow modes. This opens up a �eld for e�cient dimension reduction [Pér+13;

Mar+18; WN17], system identi�cation [BPN14; Klu+19; NR19], and coarse-graining [Wan+19; NBC19].
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Chapter 2

Detailed balance in particle based
reactions

The results of this chapter have been published in the following paper:

Christoph Fröhner (CF) and Frank Noé. “Reversible Interacting-Particle Reaction Dynamics”.

In: The Journal of Physical Chemistry B 122.49 (2018), pp. 11240–11250.

doi: 10.1021/acs.jpcb.8b06981,

to be obtained via

http://pubs.acs.org/articlesonrequest/AOR-6EEMXSMurU29aSc4Zg6v

Parts of the text and illustrations have been adopted unchanged in this document. Reprinted with

permission from The Journal of Physical Chemistry B “Reversible Interacting-Particle Reaction Dynamics”,

Fröhner and Noé, 2018. Copyright 2018 American Chemical Society.

The contributions of the authors were as follows: Both Frank Noé and CF conceived the project,

laid out the theory and wrote the paper. CF implemented the algorithms, performed the simulations,

analyzed and visualized the data. Frank Noé supervised the work.

Summary

Interacting-Particle Reaction Dynamics (iPRD) simulates the spatiotemporal evolution of particles that

experience interaction forces and can react with one another. The combination of interaction forces and

reactions enable a wide range of complex reactive systems in biology and chemistry, but give rise to new

questions such as how to evolve the dynamical equations in a computationally e�cient and statistically

correct manner. Here we consider reversible reactions such as A + B � C with interacting particles

and derive expressions for the microscopic iPRD simulation parameters such that desired values for

the equilibrium constant and the dissociation rate are obtained in the dilute limit. We then introduce a

Monte-Carlo algorithm that ensures detailed balance in the iPRD time-evolution (iPRD-DB). iPRD-DB

guarantees the correct thermodynamics at all concentrations and maintains the desired kinetics in the

dilute limit, where chemical rates are well-de�ned and kinetic measurement experiments usually operate.

We show that in dense particle systems, the incorporation of detailed balance is essential to obtain

physically realistic solutions. iPRD-DB is implemented in ReaDDy 2 (https://readdy.github.io).
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2.1 Introduction
Particle based reaction di�usion (PBRD) dynamics is a detailed model for simulating the spatiotempo-

ral evolution of reactive particles [EC09; ZW05a; HS14; And17]. Resolving the trajectories of every

reactive particle is important in applications where the reactants cannot be assumed to be spatially

well-mixed [ACH16; Alb+16] or always su�ciently abundant to be described by a continuous con-

centration [Elo02; Bha04] – e.g., consider many cases of cellular signalling and reactions in nontrivial

architectures [DM09; PB03; Sad16]. A common implementation of PBRD is to propagate particle positions

with overdamped Langevin dynamics (Brownian motion) in discrete time steps, and execute discrete

reaction events such as A+ B → C with a certain probability when two reactive particles A and B are

close in space. When the system is su�ciently dilute, such simulations can be sped up by exploiting

solutions of the one- or two-particle di�usion equation [ZW05a; ZW05b; TTW10; Opp+06; Don+10].

A recent extension of PBRD is the interacting-Particle Reaction Dynamics (iPRD) method [SN13;

Sch+14; Bie+15], in which particles are additionally subject to interaction forces. Alternatively, iPRD

could be characterized as a form of coarse-grained Molecular Dynamics (MD) simulation with reactions

between particles. Particle interaction forces are useful to model order and structure on mesoscopic

lengthscales, such as the space-exclusion in dense particle systems [SN13; HF13], the restriction of

di�using particles to arbitrarily-shaped membranes [SN13; Gun+15; Sch+14], the large-scale structure

of polymers [HFN19] and membranes [SWN18], and the clustering of attractive proteins [Ull+15]. The

combination of interaction forces and reactions allow an even wider range of complex reactive systems

in biology and chemistry to be modeled, such as the dynamics of phototransduction that involve protein

di�usion in particle-dense photoreceptor membranes [Sch+14], the e�ect of transmembrane protein

oligomers on these dynamics [Gun+15], the recruitment of proteins to endosomes [Pos+13; Sch+17], and

the assembly, di�usion, and dissociation of polymers [HFN19]. The idea of combining PBRD with particle

interaction forces is also found in MD-GFRD [VBW15; Vij+17], where the close particle interactions

are simulated by MD and the reaction-di�usion model is used to derive an e�cient way to propagate

particles while they are not-interacting. In contrast, in iPRD particle interactions and reactions occur

simultaneously, with the idea that reaction events are a suitable way to coarse-grain complicated events

such as protein-protein binding, whose kinetics might be obtained from Markov State Models of all-atom

MD simulations [Dib+18]. MD-GFRD simulations can be used to speed up iPRD simulations when the

system is su�ciently dilute [VBW15; Vij+17; SN17], and with free-propagator reweighting, this speedup

can also be obtained in the regime where particles are interacting [JH14].

An open question is: What is the statistically correct way to model the dynamical evolution of

simultaneously interacting and reacting particles? Speci�cally, we consider reversible reactions, such

as A + B � C, as they are found in nature, but also in technological applications. Examples include

reversible protein-drug binding [Sco+16; Pau+17], reversible protein-protein association that can now be

simulated at atomistic detail [Pla+17], and metal ion deposition to / removal from electrodes in batteries

that are driving charging and discharging [AT08; Boy+06]. To derive a statistically correct simulation

scheme of A+ B� C via iPRD, we need to answer the following questions:

1. Which bimolecular reaction scheme should be used, i.e. under which conditions will two particlesA and B fuse into a C particle?

2. How do we choose the microscopic parameters of this reaction scheme such that the iPRD simu-

lation samples the macroscopic kinetic quantities that have been obtained from experiments or

more detailed MD simulations?

3. When executing A + B → C or C → A+ B, where should the product particles be placed, such

that the simulation obeys detailed balance?

The answers to these three questions are coupled.
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Question 1: For the sake of analytical computations, the best-studied reaction scheme is the Smolu-

chowski model where di�using particles react instantly when they establish contact, de�ned by a reaction

distance R [Smo16]. The Collins-Kimball model [CK49] reduces the probability of reacting upon contact

to a �nite value ≤ 1. Reversible reactions in the Collins-Kimball model are discussed in [RQ16], for

interacting particles of isolated pairs an analytical description is found in [AS90]. In iPRD simulations

we instead use the Doi model [TS67; Doi76]:

A+ B� AB� C
Here two particles A and B form a reactive complex AB when their distance is less or equal to R. This

process is simulated by the dynamical model that propagates particles (e.g. overdamped Langevin

equation). Whenever a reactive complex AB exists, it can decay to a C particle with a microscopic rate

constant �. The reverse process happens with a microscopic rate constant koff . The Doi model is well

compatible with a �nite-time-stepping simulation scheme, where the formation of AB can be easily

checked in every time-step as part of the particle neighbor list update.

Question 2: When using the Doi model, how should the parameters in this model be chosen?

The dissociation rate constant koff can be directly obtained from kinetic experiments or all-atom MD

simulations with accelerated sampling methods [Pla+17; Pau+17; DB14]. For the Doi model where A
and B encounter from a long distance via normal di�usion without interaction forces, the association

parameters R and � can be computed from an equation derived in [Doi75; EC09]. When A and B interact,

such a result can still be obtained numerically [Dib+19]. In Sec. 2.2 we develop a theory for the A+B� C
reaction of an isolated pair, that is independent of the di�usion coe�cient D. This enables to choose �
for given dissociation rate constant koff , interaction radius R, and A − B interaction potential such that

the iPRD simulation will produce a desired equilibrium constant and association rate constant at low

particle concentrations, as they are typically found in experiments measuring these constants.

Question 3: Time-reversible processes evolving in thermodynamic equilibrium obey detailed bal-

ance [Van92]. For example, consider that we have system with one particle A and B each at positionsxA, xB and we perform the forward reaction to a system with one particle C at position xC . Detailed

balance implies that the equilibrium probability of being in the A, B system at xA, xB times the forward

reaction rate must be equal to the equilibrium probability of being in the C system at xC times the

backward reaction rate, and this must be true for all system con�gurations. Vice versa, enforcing detailed

balance is a technically convenient way to automatically achieve a desired equilibrium distribution. It

implies a relationship between forward and backward reaction rates and also that the reaction scheme

that allows for a forward reaction xA, xB → xC must also allow for the reverse reaction, and vice versa.

For non-interacting PBRD, a detailed balance scheme was �rst introduced in [MW08]. Other schemes

have been developed more recently [KS14; DYK18]. In Sec. 2.3, we develop a general detailed-balance

scheme for iPRD (iPRD-DB). The scheme includes a Metropolis-Hastings [Met+53; Has70] acceptance

step that ensures the resulting dynamics ful�ll detailed balance for abitrary con�gurations of interacting

particles. In the dilute limit (one A and B particle pair reacting to a single C particle and back), the

proposal steps are designed such that they are always accepted and the desired equilibrium association

and dissociation rate constants are obtained. When the so-parametrized particles enter a dense phase,

the kinetics and equilibria will naturally change, but do so in a physically realistic manner. In particular,

we show that in a dense particle system where the reaction A + B� C involves a change in e�ective

particle volume, the iPRD-DB scheme leads to a solution that is consistent with Le Chatelier’s principle,

while a regular Doi scheme that ignores detailed balance produces unphysical solutions.

The implementation of the iPRD-DB scheme is included in the ReaDDy 2 software package [HFN19].
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Figure 2.1: Schematic time evolution of a reaction-di�usion system of an isolated pair subject to the

reaction A + B� C with the Doi model. Particles A and B di�use and can form a complex particle C
when they are closer than a certain reaction radius, here depicted as the sum of the radii of the two

particles. The complex particle C di�uses as well and can dissociate into A and B again. Reprinted with

permission from The Journal of Physical Chemistry B “Reversible Interacting-Particle Reaction Dynamics”,

Fröhner and Noé, 2018. Copyright 2018 American Chemical Society.

2.2 Bimolecular reaction in equilibrium
We consider a system of molecules with three species, in which molecules A and B reversibly form a

complex C. We want to simulate particle dynamics involving such reactions with iPRD, where particles

interact with a potential when they are close, and a certain microscopic reaction scheme is employed,

see Fig. 2.1. This section answers the question how the microscopic parameters of this reaction scheme

need to be chosen such that the equilibrium constant and the dissociation rate measurable in a bulk

experiments will be reproduced. This result will be used in the next section as part of designing a scheme

obeying detailed balance.

2.2.1 Macroscopic rate model
The macroscopic reaction dynamics is described by the scheme

A+ B kon
�koff C, (2.1)

where kon is a macroscopic bimolecular association rate constant, measured in units of per time and

per concentration, while koff is the dissociation rate constant, measured in units of per time. These are

related to the macroscopic dissociation constant Kd , measured in units of concentration:Kd = koffkon . (2.2)

We assume that both the association- and the dissociation process obey a linear rate law [ADK18],

according to the law of mass action (LMA). We de�ne the e�ective association rate KonKon = konV −1, (2.3)

which is the frequency of association per AB complex. Likewise we de�ne the e�ective dissociation rateKoff Koff = koff , (2.4)

which is the frequency of dissociation per C molecule. We denote �i as the stationary probability of

state i. The ratio of stationary probabilities �AB/�C is given by the ratio of e�ective rates in equilibrium,

where the number of association events per time is equal to the number of dissociation events per time�AB�C = KoffKon = [A]eq[B]eq[C]eq V = KdV . (2.5)
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2.2.2 Microscopic distribution

For the following we will assume that there is only either one pair of A and B particles or one C particle

which live inside the volume V . The vectors x ∈ ℝ9, contain the euclidean positions for three particles.

Individual positions are denoted by xa , xb , and xc for particles A, B, and C respectively. Additionally

there is a phase i ∈ {AB, C}, where AB is the dissociated phase and C is the associated phase. The joint

distribution for states xi = (x, i) ∈ ℝ9 × {AB, C} of �nding the system in phase i and particle positions x is

p(xi) = { �AB pAB(x) for i = AB�C pC (x) for i = C (2.6)

Note that in phaseAB there is still a position for the C particle, such that the dimension of the microscopic

phase space is equal for both phases. The same occurs for the positions of A and B in the phase C . In

both cases, the residual variables have no e�ect. In phase space integrals these will be accounted for by a

volume factor. Hence all phase space integrals use the measure dx = dxadxbdxc , where each dxj has

units of volume. Introducing a Fock space for treatment of changing number of particles is circumvented

by considering at most three particles - the isolated pair and the complex - and having the non existing

particles contribute a constant factor to the partition function.

In phaseAB the two particlesA and B are subject to an interaction potentialU (x) = U (|xb−xa |) = U (r)
depending only on the distance r = |xb − xa | of A and B. The potential is cut o� at Rint, i.e. U (r) = 0, ifr > Rint. The stationary distribution of positions x in phase AB ispAB(x) = Z−1AB exp(−�U (r)) with r = |xb − xa |
where �−1 = kBT is the thermal energy of the system which is coupled to a heat bath with temperatureT and the normalization constant can be computed as follows (see Appendix A),ZAB = V 2(V − Vex) (2.7)Vex = Vint − V effint (2.8)Vint = 43�R3int (2.9)

V effint = ∫ Rint0 e−�U (r)4�r2dr, (2.10)

where Vint is the interaction volume of the reactive particles, V effint the e�ective accessible volume due to

particle interaction and Vex is the reduction of the accessible volume.

In phase C the stationary distribution of positions y ispC (y) = Z−1C
with the partition function ZC = ∫ dy = ∭ dyadybdyc = V 3.
2.2.3 Doi reaction model

The microscopic reaction model is de�ned by the association rate function �+(x) and the dissociation rate

function �−(y). The former describes the probability per unit time with which two particles A and B can

react when the system is in phase AB and depends on positions x. The latter describes the probability

per unit time with which a C particle dissociates into A and B when the system is in phase C . We assume
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that �+(x) is radially symmetric, i.e. it only depends on r = |xb − xa |. Any microscopic reaction model,

described by �+(x) will result in an e�ective association rate Kmicroon which reads

Kmicroon = ∫ �+(x)pAB(x)dx (2.11)

For �+(x) and �−(y) we use the Doi reaction model as depicted in Fig. 2.1, i.e. the microscopic association

reaction rate function is a constant �on, when particles A and B are closer than the reaction radius Rreac�+(x) = �on �reac(r) with r = |xb − xa |, (2.12)

where �reac(r) indicates that A and B are within reactive distance

�reac(r) = { 1, if r < Rreac0, otherwise. (2.13)

The microscopic dissociation rate function is constant and chosen equal to the macroscopic dissociation

rate constant �−(y) = koff . (2.14)

We evaluate the e�ective microscopic association rate (2.11) for the Doi reaction model (2.12) and obtain

Kmicroon = �onZ−1ABV 2 ∫ Rreac0 e−�U (r)4�r2dr
= �on V effreacV − Vex (2.15)

where the e�ective reaction volume V effreac takes a similar form as the e�ective interaction volume , but

with another radius Rreac V effreac = ∫ Rreac0 e−�U (r)4�r2dr. (2.16)

2.2.4 Computing the microscopic association rate constant that reproduces
the macroscopic equilibrium

For the following we will assume a given dissociation constant Kd and a given dissociation rate constantkoff . Using Eqs. (2.3, 2.2) we state the e�ective association rate according to the law of mass action

Kon = koffKdV . (2.17)

We require that the micro- and macroscopic e�ective rates matchKmicroon != Kon (2.18)

and �nd the restrictions on the microscopic reaction model. This results in a choice for the microscopic

association rate constant �on, that will yield the desired equilibrium as in Eq. (2.5). We will call this

speci�c value �̃on �̃on = koffKdV V − VexV effreac . (2.19)

The relation of this expression to other di�usion in�uenced rate calculations is discussed in Appendix B.
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2.3 Interacting-Particle Reaction Dynamics with Detailed Bal-
ance

Transition rates k+ and k− of association (+) and dissociation (−) respectively between states xAB and yC ,

with stationary probability distributions p de�ned in Eq. (2.6) shall obey detailed balancep(xAB)k+(y|x) = p(yC )k−(x|y). (2.20)

We split the transition rates k into proposal rate and acceptance probabilityk+(y|x) = �+(x)q+(y|x) �+(y|x) associationk−(x|y) = �−(y)q−(x|y)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
proposal

�−(x|y)⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
acceptance

dissociation
(2.21)

where �+(x) is the absolute rate of proposing a transition A+ B → C when in particle con�guration x.q+(y|x) is the normalized density to propose the positions y, given that the positions were x . �+(y|x)
is the absolute probability of accepting the proposed positions. Similarly �−(y) is the absolute rate of

proposing a transition C → A+ B, q−(x|y) is the according proposal density and �−(x|y) the absolute

probability of accepting the proposal. All q and � satisfy

∫ qi(y|x)dy = 1 and � i(y|x) 6 1 for i ∈ {+, −}
2.3.1 Derive the backward proposal from the forward proposal
We assume the association proposal density q+ as given, and want to derive the dissociation proposal

density q− and both �+ and �− subject to detailed balance. Therefore we include all terms that depend

on the particle positions into the reverse proposal density q−, such that most terms in Eq. (2.20) cancel

and acceptances �+ and �− become independent of the particle positions of the dissociated phase. The

reverse proposal density reads q−(x|y) = Q(y)−1q+(y|x)�+(x)�−(y) pAB(x)pC (y) (2.22)

with the normalization function Q(y) such thatQ(y) = 1�−(y)pC (y) ∫ q+(y|x)�+(x)pAB(x)dx (2.23)

Note that Q must depend on y to ful�l the normalization ∀y (in the Doi model it will reduce to a constant).

Inserting Eqs. (2.22, 2.21) into Eq. (2.20), the detailed balance condition reduces to�+(y|x)�−(x|y) = �C�AB 1Q(y) (2.24)

Reminding that � 6 1 naturally leads to using the Metropolis-Hastings [Has70; Met+53] acceptance

function �+(y|x) = min{1, �C�AB Q(y)}�−(x|y) = min{1, �AB Q(y)�C } (2.25)

which ful�lls the given detailed balance condition (2.24). For a practical implementation one needs

to know both proposal densities q+(y|x) and q−(x|y), and the corresponding acceptance probabilities�+(y|x) and �−(x|y).
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2.3.2 Apply DB to Doi model
Assuming the Doi model (2.12, 2.14), we state the association proposal density q+(y|x) and derive the

dissociation proposal density q−(x|y) (2.22). The normalized association proposal density readsq+(y|x) = V −2� (yc − xa + xb2 ) (2.26)

where the Dirac delta function �(⋅) assures that the C particle’s proposed position yc is in the middle

between the A and B particles from the initial positions x. The volume term V −2 is required for

normalization, due to the measure dy = dyadybdyc . Additionally the volume term can be understood as a

uniform placement of A and B in the �nal positions y. Since A and B are not considered in the associated

state, it is irrelevant where they are. Hence Eq. (2.26) ful�lls ∫ q+(y|x)dy = 1. The normalization Q of the

dissociation proposal density from Eq. (2.23) can be evaluated and reduces to a constant (see Appendix C)

Q = �onkoff V effreacV − Vex . (2.27)

The dissociation proposal density (2.22) then becomes

q−(x|y) = (VV effreac)−1 � (yc − xa + xb2 )…× �reac(r)e−�U (r), (2.28)

with r = |xb − xa |. This density can be read as: given a C particle at position yc , positions xa and xb of

particlesA and B are restricted to radial shells concentric around yc due to the delta function. These shells

must not be larger than the reaction radius due to the indicator function. The distance is additionally

weighted with the Boltzmann factor of the interaction potential U .

Using the normalization constant Q from Eq. (2.27) the acceptance probabilities from Eq. (2.25) are

directly obtained. Using the microscopic association rate given in Eq. (2.19) results in an acceptance

probability of unity in both directions�+(y|x) = �−(x|y) = 1 for �on = �̃on from (2.19).
2.3.3 Generalize for other types of reactions
The presented Metropolis-Hastings Monte Carlo method can be performed for other types of reversible

reactions, namely reversible conversion reactions of the type

A⏟⏟⏟x kon
�koff B⏟⏟⏟y with �+(x), �−(y) (2.29)

as well as reversible enzymatic reactions of the type

A+ C⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟x
kon
�koff B + C⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟y with �+(x), �−(y) and Rreac, (2.30)

with macroscopic forward and backward rates kon and koff . For those two reactions we can also construct

a microscopic probability density for positions x and y for the dilute case in the fashion of Eq. (2.6). Here

the microscopic phase space only has positions for A and B particles, the C particle in reaction (2.30)

can be placed at the origin without loss of generality. The reaction functions �+(x) and �−(y) for the
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A + B⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟x
kon
�koff C⏟⏟⏟y A⏟⏟⏟x kon

�koff B⏟⏟⏟y A+ C⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟x
kon
�koff B + C⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟y�+(x) �on�reac(x) �on �on�reac(x)�−(y) �off �off �off�reac(y)q+(y|x) V −2� (yc − xa+xb2 ) �(y − x) �(y − x)q−(x|y) (V V effreac)−1 � (yc − xa+xb2 )… × �reac(x)e−�UAB(x) �(x − y) �(x − y)

f +(y|x) e−�(E(y)−[E(x)−UAB(x)]) e−�(E(y)−E(x)) V effreac,AV effreac,B e−�(E(y)−E(x))f −(x|y) e−�([E(x)−UAB(x)]−E(y)) e−�(E(x)−E(y)) V effreac,BV effreac,A e−�(E(x)−E(y))
constraints kon = �onV V effreacV−Vexkoff = �off kon = �onkoff = �off kon = �onV V effreac,AV−Vex,Akoff = �offV V effreac,BV−Vex,B

Table 2.1: Summary of the iPRD-DB quantities for three di�erent kinds of reversible reactions: reversible

association (see Sec. 2.2.2), reversible unimolecular conversion, and reversible bimolecular enzymatic

reaction (see Sec. 2.3.3). Quantities are: absolute proposal rates �, proposal densities q, and acceptance

probabilities � = min{1, f }, as described in Sec. 2.3. Superscript + and − denote the “on” and “o�” process

respectively, corresponding to the de�nition of the reaction. x and y are the microscopic positions of

particles. Constraints describe for which microscopic parameters the acceptance probabilities will be

unity in the dilute limit. Reprinted with permission from The Journal of Physical Chemistry B “Reversible

Interacting-Particle Reaction Dynamics”, Fröhner and Noé, 2018. Copyright 2018 American Chemical

Society.

conversion reaction (2.29) are constants �on and �off respectively. For the enzymatic reaction (2.30) both

reaction functions are additionally multiplied with an indicator function depending on the reaction radiusRreac. As in Sec. 2.2.4 we can compute the microscopic rate constants � that reproduce the macroscopic

kinetics in the dilute limit. In the case of the enzymatic reaction (2.30), there appear excluded volumesVex,A, Vex,B and e�ective reaction volumes V effreac,A, V effreac,B. These are de�ned analogously to the volumesVex, see Eq. (2.8), and V effreac, see Eq. (2.16), with the di�erence that Vex,A and V effreac,A are calculated based

on the interaction potential of A and C, and Vex,B and V effreac,B are calculated based on the interaction

potential of B and C. To assure detailed balance we make the same ansatz for transition rates as in

Eq. (2.21). The proposal densities q are constructed much simpler, because in these types of reactions no

new positions must be generated, i.e. the q are delta functions. However during the species conversion,

molecules might be subject to potentials with respect to educt and product states. We gather the change

of potential energy during the reaction in the variable ΔE. We summarize all of these �ndings in Tab. 2.1.

2.4 Results

We have proposed a method of executing reversible reactions according to detailed balance. It can be

used to perform reactions in a stochastic reaction-di�usion simulation. A schematic implementation is

shown in the pseudo code Alg. 1.

In order to illustrate our method, we perform many-particle simulations with molecular species A, B
andC engaging in the reversible association reaction shown in Eq. (2.1). The simulation is performed using
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Algorithm 1: Reaction di�usion algorithm for n integration steps with time step size �
Reprinted with permission from The Journal of Physical Chemistry B “Reversible Interacting-

Particle Reaction Dynamics”, Fröhner and Noé, 2018. Copyright 2018 American Chemical

Society.

initialize list of particles/system state p
repeatf ← calculate forces for state pp ← propagate di�usion subject to f and �L ← list of possible reaction events in p

while L not empty do
select next event l from Lu1 ← random-uniform� ← microscopic rate constant of l
if u1 < 1 − exp(��) thenE1 ← calculate energy of state pp ← propose event l according to density qE2 ← calculate energy of state pa ← acceptance for l and energies E1 and E2u2 ← random-uniform

if u2 < a then
accepted, keep the state p

elsep ← revert the event l
remove l out of L
remove all events out L, that shared particles with event l

until n steps performed
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overdamped Langevin dynamics in the particle interaction potential with a �xed time-step integrator.

The potential U (r) between the particles A and B is chosen as a harmonic repulsion with cuto� Rint and

force constant �, that only depends on the distance r = |xb − xa | between A and B
U (r) = { 12�(r − Rint)2, if r < Rint0, otherwise (2.31)

For this choice of potential the e�ective interaction volume from Eq. (2.10) yields an expression containing

errorfunctions. In general the e�ective interaction volume can be determined numerically.

During one time step of length � , we �rst integrate the di�usive motion of particles and then perform

the reactions. The boundaries of the system are periodic, obeying the minimum image convention and

wrapping positions upon crossing the border.

In the reaction step all possible reaction events are determined, this depends on the considered

reactions, reaction radii and the current particle con�guration. Then the list of reaction events is

processed. An event is selected from the list. The event will be proposed with absolute probabilityp = 1 − exp(−��) depending on the microscopic rate constant � of the associated type of reaction. The

event is performed, generating another particle con�guration drawn from the proposal densities in

Eqs. (2.26, 2.28). From the change in potential energy and the type of reaction the acceptance probabilitya is calculated. If the event is accepted the new con�guration is kept. If the event is rejected the old

con�guration has to be restored. Then the processed event is removed from the list of events. Additionally

any event is removed that would propose an event with the same particles as the processed one, since

these might not exist anymore.

The total probability of performing a particular event is pa. If a is chosen according to Eq. (2.25)

and Eq. (2.27) and the proposal density of the dissociation reaction includes the Boltzmann factor as in

Eq. (2.28), we will refer to this as the proposed DB reaction scheme. We refer to the Doi reaction scheme

if a = 1, regardless of the energy di�erence, and if the proposal density does not include the Boltzmann

factor of the interaction potential of the reactants.

2.4.1 Dilute limit

We validate Alg. 1 by performing it on the system of particles A, B and C. These particles are subject to

the reaction (2.1) and a harmonic repulsion potential as in Eq. (4.6). At any point in time there is either

the C particle or two particles A and B, i.e. there is only one instance of each molecule species. Thus

these simulations are in the dilute limit. The only interactions occur between the A and B particle.

Validation of reaction kinetics

We show that the proposed detailed balance reaction scheme always yields the desired macroscopic

equilibrium distribution �AB/�C from Eq. (2.5). Additionally we demonstrate under which circumstances

the simulated e�ective on- and o�-rates, Kon and Koff , will match those given by Eq. (2.3) and Eq. (2.4).

The results are seen in Fig. 2.2. The simulation parameters are given in Table 2.2.

Fig. 2.2a shows that for very low �on, the e�ective association rate Kon cannot exceed a certain value

because the proposal frequency is limited andKoff is in turn diminished by rejection of dissociation events

in order to reproduce the desired equilibrium constant �AB/�C = KdV . For very high �on, association

events will be rejected, thus limiting Kon to the LMA value, while dissociation events are executed with

frequency Koff = koff . The transition between these two regimes is where �on = �̃on as in Eq. (2.19).

Fig. 2.2b shows that, when one uses the appropriate association rate constant from Eq. (2.19), one can

reproduce the expected reaction kinetics for varying Kd .
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Figure 2.2: Validation of the proposed detailed balance reaction scheme in dilute systems by stochastic

particle-based reaction-di�usion simulations (see Alg. 1). Shown are observables of the macroscopic

reaction kinetics: the e�ective association rate Kon, the e�ective dissociation rate Koff and the equilibrium

constant �AB/�C . Reference values (law of mass action - LMA) for Kon, Koff and �AB/�C correspond

to macroscopic behavior described in Sec. 2.2. See simulation parameters in Tab. 2.2. (a) Microscopic

association rate constant �on is varied. �̃on corresponds to Eq. (2.19). (b) The given dissociation constantKd is varied. The microscopic association rate constant is �on = �̃on(Kd ). Reprinted with permission

from The Journal of Physical Chemistry B “Reversible Interacting-Particle Reaction Dynamics”, Fröhner

and Noé, 2018. Copyright 2018 American Chemical Society.
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Quantity Symbol Value

Dissociation constant Kd 3.125 × 10−4
Dissociation rate constant koff 10−4
Volume V 16 × 16 × 16
Di�usion constant of each particle D 5
Reaction radius Rreac 2
Interaction radius Rint 2
Force constant � 5
Time step length

in Fig. 2.2 �1 10−4
in Fig. 2.3 �2 1.25 × 10−5

Number of integration steps

in Fig. 2.2 m1 3 × 1010
in Fig. 2.3 m2 4.8 × 1011

Table 2.2: Unitless parameters used in the simulations of dilute systems, see Fig. 2.2 and 2.3. Reprinted

with permission from The Journal of Physical Chemistry B “Reversible Interacting-Particle Reaction

Dynamics”, Fröhner and Noé, 2018. Copyright 2018 American Chemical Society.

Microscopic reversibility

We now demonstrate that the proposed DB reaction scheme (Alg. 1) indeed produces trajectories

in thermodynamic equilibrium, while the naive Doi scheme leads to periodic cycles in phase space,

corresponding to an unintended nonequilibrium scenario. To this end, we distinguish three substates of

the dissociated state, de�ned by the inter-particle distance r of particles A and B, and the reaction radiusR. We de�ne states 1-4 as follows:

1. The complex state, C
2. A and B are very close r 6 34R
3. A and B are still in reactive range

34R < r 6 R
4. A and B are not within reactive range r > R

Using again a reversibly reacting system with a single A, B pair or a single C complex, we determine

the stationary distribution � for this de�nition of states, and the transition rates K connecting them. A

process that ful�ls detailed balance must yield�iKij = �jKji (2.32)

for all pairs of states i, j. We measure � and K from simulations and compare the Doi reaction scheme

and the proposed DB reaction scheme in the presence of a harmonic repulsion potential between A andB. In this comparison all system parameters are identical, only the reaction mechanism di�ers. Results

are presented in Fig. 2.3 and simulation parameters are given in Tab. 2.2.

From Fig. 2.3 it is evident that for the present case of interacting particles, the naive Doi reaction

scheme produces a cyclic probability �ux that violates DB. In the proposed DB reaction scheme, this is

not the case and all given probability �uxes obey Eq. (2.32).

Note that for both reaction schemes, there occurs a unidirectional transition 4 → 1 due to the time

splitting we employ during one simulation step (�rst the di�usion step and then the reaction step). This

arti�cial transition is a result of the time-step discretization error and not related to the DB scheme. It
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Figure 2.3: Probability �uxes between associated and dissociated states measured from particle-based

reaction-di�usion simulations (see Alg. 1) in the dilute limit. Compared are the Doi reaction scheme

and the proposed detailed balance reaction scheme (DB). De�nitions of the states 1-4 are given in

Sec. 2.4.1. Arrows depict transitions between these states as observed in the simulations. The width

of the arrows encodes the probability �ux �iKij , also given as numeric values measured from multiple

independent simulations giving rise to the standard error of the mean. The widths of two adjacent arrows

are normalized with respect to each other (not globally). See parameters in Tab. 2.2. (a) Doi reaction

scheme. The probability �uxes for the transitions 1 → 2 and 1 → 3 are imbalanced compared to their

respective counterparts, resulting in a circular �ux of probability. (b) Detailed balance reaction scheme.

Reprinted with permission from The Journal of Physical Chemistry B “Reversible Interacting-Particle

Reaction Dynamics”, Fröhner and Noé, 2018. Copyright 2018 American Chemical Society.
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Quantity Symbol Value

Dissociation constant Kd 2 × 10−2
Dissociation rate constant koff 10−3
Volume V 20 × 20 × 20
Particle radii

case r3A + r3B < r3C (rA, rB , rC ) (1, 1, 1.4)
case r3A + r3B > r3C (rA, rB , rC ) (1, 1, 1.1)

Di�usion constants per radius

for species i ∈ {A, B, C} D/ri 5
Interaction radius for pair

of species (i, j)∀i, j ∈ {A, B, C} Rint(i, j) ri + rj
Reaction radius Rreac 2
Force constant � 10
Time step length � 5 × 10−4
Time steps until equilibrated

dilute system with n = 50 mdilute 1.2 × 108
dense system with n = 900 mdense 9 × 106

Table 2.3: Unitless parameters used in the simulations of dense systems, see Fig. 2.4 and 2.5. Reprinted

with permission from The Journal of Physical Chemistry B “Reversible Interacting-Particle Reaction

Dynamics”, Fröhner and Noé, 2018. Copyright 2018 American Chemical Society.

occurs with an absolute rate of less than 10−6, all other transitions have Kij > 10−5∀(i, j) ≠ (4, 1). Thus its

probability �ux is not shown here.

2.4.2 System of many particles

Finally, we study how a dense mixture of interacting particles behaves when the DB algorithm is

employed, and we compare this behavior with the naive Doi algorithm and what is expected from

physical intuition. The Algorithm 1 is performed for a system of many A, B and C particles con�ned to

the volume V with periodic boundaries. In this scenario we assign physical radii rA, rB , and rC to the

particles. Particles are subject to harmonic repulsion potentials (4.6) acting between all pairs of speciesA, B, and C, where the interaction radius is chosen as the sum of the particles’ radii. See parameters

in Tab. 2.3. Particles are subject to the reaction (2.1). Employing the DB reaction scheme introduced in

Sec. 2.3 can therefore result in rejected Monte-Carlo moves, which will a�ect the thermodynamics and

kinetics of the simulation system in the dense limit.

In Sec. 2.2.2 and following we had assumed that phase space consists of only three particles A, B
and C. In the case of many possible reactants one is presented with multiple possible reaction events.

For one particular event we will use the proposal densities from Eqs. (2.26, 2.28) to treat the particles

taking part in the event. All other particles will be considered static excess objects. This means that the

microscopic distributions from Eq. (2.6) gain another Boltzmann factor from interactions with the excess

particles. Note that the partition functions ZAB and ZC will di�er from their “dilute” values. In Sec. 2.3.2

we have seen that a particular choice of parameters leads to the prefactor in the acceptance becoming

unity. Hence, the advantage of such a Markov Chain Monte Carlo algorithm is that one does not need to

know constant factors of the stationary distribution to draw samples from said distribution. Along these

lines we construct an acceptance function for the many particle case, that includes a Boltzmann factor of

the energy di�erence and a prefactor of unity, assuming that internal reaction parameters correspond to

a certain but unknown macroscopic equilibrium. We will use the association rate constant derived in
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Eq. (2.19). Obviously this equilibrium will di�er from the one in Eq. (2.5). But one can guarantee detailed

balance never the less.

The change of potential energy is Δ". It does not include the interaction between A and B as this

is already accounted for by the proposal probabilities q+ and q−. We may write Δ" as the total change

of potential energy ΔE minus the interaction energy UAB . We formulate the acceptance for the many

particle case: �+(y|x) = min{1, exp(−�Δ"+)}�−(x|y) = min{1, exp(−�Δ"−)} (2.33)

where the changes of energies are given byΔ"+ = E(y) − [E(x) − UAB(x)]Δ"− = [E(x) − UAB(x)] − E(y). (2.34)

We set up the system with a certain number of A and B particles and no C particles. We control the

quantity n = (NA + NB)/2 + NC which is conserved during a simulation. The system equilibrates without

the reaction, we then switch the reaction on and let the system equilibrate again.

We compute three observables in the equilibrated state, i.e. when observables are stable and converged:

the equilibrium constant �AB/�C = V [A][B]/[C], the total potential energy of the system U in units ofkBT and the pressure P in units of V −1kBT . The pressure is measured from evaluating the virial term of

acting forces as described in [AT87]. Individual reactions are integrated with either the proposed DB

scheme or the Doi reaction scheme.

Fig. 2.4a shows the results for the case when an association reaction of A and B increases the total

volume occupied by particles such that r3A + r3B < r3C . The associated state is energetically less favourable.

In the dilute limit both methods Doi and DB reproduce the macroscopic equilibrium population �AB/�C =KdV . For increasing number of particles both methods di�er signi�cantly. The Doi reaction scheme

favours the energetically higher associated con�guration C. The Doi scheme produces an equilibrium

constant of roughly �AB/�C ≈ 80 for the highest density simulated. The DB scheme adjusts the e�ective

association probability by rejecting association events. This results in a steady state, where almost no C
particles exist with an equilibrium constant exceeding �AB/�C > 3 × 103. For all n > 50, the DB scheme

�nds a steady state of lower energy and lower pressure compared to the Doi scheme. Fig. 2.5a and b

show representative simulation snapshots of the steady states for Doi and DB scheme.

Fig. 2.4b shows the case when a C particle occupies less volume than A and B combined such thatr3A + r3B > r3C , which could correspond to two proteins A and B, which only fully fold in a bound state. In

the dilute case both methods Doi and DB reproduce the same behaviour in all three observables. For

increasing number of particles the Doi method produces a similar steady state population as in Fig. 2.4a

where the C state is favoured. The DB scheme produces states favouring the C state even stronger thus

reducing the system’s potential energy and pressure compared to the Doi scheme. Fig. 2.5c and d show

representative simulation snapshots of the steady states for Doi and DB scheme.

2.5 Conclusion
We have derived an algorithm to perform iPRD simulations of molecules undergoing reversible reactions

of the form A+ B� C according to detailed balance. This method is called iPRD-DB.

Detailed balance guarantees that simulations of an isolated system generate samples according to

thermodynamic equilibrium. We have shown that in a dense reactive mixture of particles, that exhibit

volume exclusion due to pair-wise potentials, the steady state of the system simulated with iPRD-DB is in

agreement with Henri Le Chatelier’s principle [ADK18], i.e. that the achieved steady state concentrations

strongly depend on the interaction of molecules. Biochemical pathways often show switch-like behavior,
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Figure 2.4: Steady state observables measured in particle-based reaction-di�usion simulations with

multiple particles. The quantity n = (NA + NB)/2 + NC is conserved during a simulation. Shown are

ensemble- and time-averaged values of the equilibrium constant �AB/�C = V [A][B]/[C], the potential

energy U in units of kBT , the pressure P in units of V −1kBT . Compared are the two reaction schemes

Doi and DB, see Sec. 2.4. See simulation parameters in Tab. 2.3 (a) An association reaction of A and B
increases the total volume occupied by particles such that r3A + r3B < r3C . (b) The C particle occupies less

volume than A and B combined such that r3A + r3B > r3C . Reprinted with permission from The Journal
of Physical Chemistry B “Reversible Interacting-Particle Reaction Dynamics”, Fröhner and Noé, 2018.

Copyright 2018 American Chemical Society.
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Figure 2.5: Steady state con�gurations of particle-based reaction-di�usion simulations subject to the

reaction A+ B� C for di�erent densities in terms of the number of particles n initially in the system.

Compared are the two reaction schemes Doi and DB, see Sec. 2.4 at di�erent particle radii respectively.

See simulation parameters in Tab. 2.3. (a) The associated state occupies more volume than the dissociated

state, reactions are handled with the Doi scheme. (b) The associated state occupies more volume than

the dissociated state, reactions are handled with the DB scheme (c) The associated state occupies less

volume than the dissociated state, reactions are handled with the Doi scheme. (d) The associated state

occupies less volume than the dissociated state, reactions are handled with the DB scheme. Reprinted

with permission from The Journal of Physical Chemistry B “Reversible Interacting-Particle Reaction

Dynamics”, Fröhner and Noé, 2018. Copyright 2018 American Chemical Society.
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and are thus sensitive to such changes in concentrations of agents [NB94; HN00; Mar+17]. Sampling the

correct equilibrium is crucial when simulating such processes.

The iPRD-DB method can be generalized for other types of reactions, such as a reversible change

of molecule species A � B, or a reversible enzymatic reaction A + C � B + C, which describes a

Michaelis-Menten experiment when the backwards rate becomes very small.

Furthermore the iPRD-DB method is accompanied by an equation for the microsopic rate constant� that assures the correct macroscopic reaction kinetics. This equation, see Eq. (2.19), relates the

macroscopic kinetic parameters Kd and koff in a dilute environment with the microscopic iPRD model

parameters: microscopic rate constant �, reaction radius R, and force parameters that determine the

excluded volume Vex. Thus, it provides a choice for �, which in the iPRD-DB algorithm functions as

the absolute proposal rate. For this choice the acceptance probability reduces to the Boltzmann factor

describing the change of energy with respect to educt and product states. We also provide proposal

densities such that the acceptance becomes unity in the dilute case.

Having measured Kd and koff in an in vitro scenario, a microscopic iPRD model can be constructed

subject to Eq. (2.19) and can then be analyzed numerically to gain insights about the in vivo process, where

molecules may occur in very low copy numbers and di�use anomalously due to complex geometries,

making experimental measurements cumbersome in this regime. Note that the expression relating Kd
and koff with � and R is independent of the di�usion coe�cient D, i.e. an iPRD model can be adjusted

to resemble the in vivo e�ective di�usion, which may, e.g. be obtained from �ourescence correlation

spectroscopy experiments [Tho02].

An open question is what the analytical reference chemical equilibrium is when going to dense

particle mixtures.

Appendix

A. Normalization constant ZAB
The normalization is ZAB = ∫ e−�U (x)dx

= ∫ dxc ∬ e−�U (xb−xa)dxadxb=V (I1 + I2)
If there are no external potentials present, the latter integral factorizes

I2 = ∬|xb−xa |>Rint dxadxb= ∫ (∫|xb−xa |>Rint dxb)dxa
= (V − Vint) ∫ dxa = (V − Vint) V

where Vint is the interaction volume, that only depends on the cut-o� distance of the potential Rin, not

the potential itself. Since the potential U only depends on the relative position xb − xa , one can �x the
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position of one particle without changing the value of the integral I1
I1 = ∬|xb−xa |6Rint e−�U (xb−xa)dxadxb= ∫ (∫|xb−xa |6Rint e−�U (xb−xa)dxb)dxa
= V effint ∫ dxa = V effint V

The e�ective accessible volume inside the interaction radius is given by:

V effint = Vint − Vex,
which de�nes the excluded volume Vex due to interaction

B. Relation to di�usion-in�uenced rate constant derivations

To understand Eq. (2.19) we formulate the association rate constant for our problem using Eq. (2.2)

kon = �̃onV V effreacV − Vex . (2.35)

This rate is linearly dependent on the e�ective reaction volume from Eq. (2.16), i.e. if one increases the

repulsion force between particles A and B the association rate will decrease. One further notices that the

di�usion of particles is not considered in this equation, since we assume they are at all times distributed

according to Eq. (2.6). This is true only because of the reversible reaction that the isolated pair is subject

to. The di�usion approach of A and B need not be considered here. It is therefore crucial in an algorithm

to generate samples from the stationary distribution we assumed.

At this point we can establish a connection with other treatments of di�usion in�uenced reaction rates.

The formula derived by Doi [Doi75] describes the association rate constant for particles approaching

each other via di�usion from the far-�eld. It includes the relative di�usion constant of the two particlesD and reads kon,Doi = 4�DR(1 − √ D�onR2 tanh(√�onR2D ))
Assuming the fast di�usion limit of this yields [EC09]

� ≪ DR2 → kon,Doi ≈ �on 43�R3. (2.36)

If we on the other hand assume the large volume limit of the expression from Eq. (2.35) we arrive at

R3 ≪ V → kon = �̃onV effreac. (2.37)

Comparing Eqs. (2.36,2.37) we see that they match if the term 4�R3/3 is identi�ed as the e�ective reaction

volume without potentials.
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C. Normalization of dissociation proposal density
Additionally we need Q(y) from 2.23

Q(y) = �onVkoffZAB ∭ � (yc − xa + xb2 ) �reac(x) …× e−�U (|xb−xa |)dxadxbdxc= �onV 2koffZAB ∬|xb−xa |6R � (yc − xa + xb2 )…
× e−�U (|xb−xa |)dxadxb

The delta function can be reformulated in relative coordinates of A and B, that have to placed symmetric

around yc . This eliminates another integral, which yields 1, due to the delta function. The only remaining

degree of freedom is the distance of A and B, which results in an integral, that is identical to the e�ective

reaction volume V effreac from Eq. (2.16).
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Chapter 3

Di�usion-in�uenced reaction rates
in the presence of pair interactions

The results of this chapter have been published in the following paper:

Manuel Dibak, Christoph Fröhner (CF), Frank Noé and Felix Hö�ing. “Di�usion-in�uenced

reaction rates in the presence of pair interactions”. In: The Journal of Chemical Physics 151.16

(2019), p. 164105. doi: 10.1063/1.5124728

Parts of the text and illustrations have been adopted unchanged in this document. Reprinted from The
Journal of Chemical Physics “Di�usion-in�uenced reaction rates in the presence of pair interactions”,

Dibak et al., 2019, with the permission of AIP Publishing.

Manuel Dibak and CF contributed equally to this work. In particular the contributions of the authors

were as follows: Felix Hö�ing, Manuel Dibak and CF conceived the project and laid out the theory. Manuel

Dibak implemented the semi-analytical solution. CF performed the iPRD simulations and analyzed the

resulting data. Manuel Dibak and CF visualized the data. All contributors wrote the paper.

Summary

The kinetics of bimolecular reactions in solution depends, among other factors, on intermolecular forces

such as steric repulsion or electrostatic interaction. Microscopically, a pair of molecules �rst has to meet

by di�usion before the reaction can take place. In this work, we establish an extension of Doi’s volume

reaction model to molecules interacting via pair potentials, which is a key ingredient for interacting-

particle-based reaction–di�usion (iPRD) simulations. As a central result, we relate model parameters

and macroscopic reaction rate constants in this situation. We solve the corresponding reaction–di�usion

equation in the steady state and derive semi-analytical expressions for the reaction rate constant and the

local concentration pro�les. Our results apply to the full spectrum from well-mixed to di�usion-limited

kinetics. For limiting cases, we give explicit formulas, and we provide a computationally inexpensive

numerical scheme for the general case, including the intermediate, di�usion-in�uenced regime. The

obtained rate constants decompose uniquely into encounter and formation rates, and we discuss the e�ect

of the potential on both subprocesses, exempli�ed for a soft harmonic repulsion and a Lennard-Jones

potential. The analysis is complemented by extensive stochastic iPRD simulations, and we �nd excellent

agreement with the theoretical predictions.
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3.1 Introduction

A microscopic view on bimolecular chemical reactions in solution is essential for our understanding of

many biological processes and technological applications; recent examples include, most prominently,

protein functioning via complex formation [Sco+16; Pla+17], ligand binding [Hou10; Pau+17], and

oligomerisation [BSS14; Sch+17], and on the other hand, catalysis in nanoreactors [Her+12; Gal+16] or

ion deposition in batteries [Zho+17; AT08]. Such reactions are often strongly in�uenced by di�usion of

at least one reactant, even more if transport occurs in a heterogeneous environment such as the interior

of cells or on cellular membranes [MM06; ZRM08; HF13; Wei14].

In eukaryotes, the intracellular space is densely crowded by macromolecules, meandered by �lamental

networks, and compartmentalized by extended organelles, typically rendering di�usion at small scales

anomalous [Eto+18; Wit+19; Ban+16; SW16; Kus+05; MJC16; Alb+16; Hor+10]. Di�erent modelling

strategies have been advised to account for such situations [SG18]: spatio-temporal master equations

exploit metastability of di�usion between compartments [WS16], and crowding has been incorporated

into the reaction–di�usion master equation on a mesoscale level [ELM18]. In particle-based Brownian

dynamics simulations, crowding is implemented frequently as explicit excluded volume via hard or short-

range repulsions [Rid+08; KY10; Dor+10; GYB10; TT14; EK15], which can give rise to complex-shaped

structures on a cascade of scales [Höf+08; Spa+16; Sch+15; PF19].

Stochastic particle–based reaction di�usion simulations have become increasingly popular in the

past decade [MW08; EC09; JH14; Sch+14; SUN14; VBW15; And17; ML16; AT17; SWN18; And18]. Such

simulation methods and frameworks evolve the reaction–di�usion processes microscopically and have

experienced advancements both in accuracy and computational performance [DYK18; FN18; Dib+18;

SN17; SS19]. A recent development is interacting particle reaction dynamics (iPRD) [SN13; Bie+15;

HFN19] that allows general interaction potentials on the reactive particles, for example, steric repulsion

or electrostatic forces. Such interaction potentials may represent free energy landscapes computed from

molecular dynamics (MD) simulations [BSF11; Xu+19; Wu+16].

A bimolecular reaction, A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ X, of two molecules A and B in solution occurs as a two-step

process: encounter of the two reacting molecules by di�usion, followed by the formation of the product

X, which abbreviates, for example, a complex C or the result A* + B of a catalytic reaction. Statistical

independence of the durations of both steps suggests that the total reaction rate constant k is the harmonic

mean [SS82; SSS80] of an encounter rate ke and a formation rate kf :k−1 = k−1e + k−1f . (3.1)

The formation rate depends on the detailed chemistry of the reaction process, often pictured as sur-

mounting an activation barrier, whereas the encounter rate is determined by spatial di�usion of the

molecules and subject to crowding conditions [KY10; Dor+10; GYB10; EK15], interaction potentials

[Deb42], and con�ning geometries [GMO18]. A di�usion-in�uenced reaction refers to the not uncommon

situation that both rates in Eq. (3.1) are of comparable magnitude and both steps are relevant for the

overall kinetics [Bha04].

A commonly used reaction scheme in iPRD is Doi’s volume reaction model [TS67; Doi75a; Doi75b;

Doi76], where a reaction can occur with a microscopic rate � if molecule centres are within a reaction

radius R. Here, we extend this scheme by a pair interaction and relate the model parameters � and R to

the macroscopic reaction rate and its components for encounter and formation, see Eq. (3.1). Inversion

of such a relation would allow the calibration of the microscopic model to match experimental rates.

We obtain insights into the speci�c contributions of attractive and repulsive interactions to the reaction

kinetics, and we highlight the importance of the local concentration of molecules in the reaction zone,

which may di�er drastically from the equilibrium distribution.
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Figure 3.1: System of reactive molecules. Molecules of species A di�use in space and can react with B

molecules if their distance r is smaller than the reaction radius R. If B particles are scarce, a reasonable

assumption is that there is no competition between them and one can treat only one of them within a

spherical domain of radius L ≫ R. For the analytical treatment, L → ∞, whereas for numerical methods

and simulations L is �nite. Reprinted from The Journal of Chemical Physics “Di�usion-in�uenced reaction

rates in the presence of pair interactions”, Dibak et al., 2019, with the permission of AIP Publishing.

3.2 Microscopic model
Microscopic theories for bimolecular reactions date back to Smoluchowski [Smo16] in 1917, who proposed

and analysed a model for coagulation of sphere-like molecules in solution that react instantaneously

upon contact. Later, Debye [Deb42] amended the model by electrostatic interactions between the

reactants, with notable repercussions on the binding rate. Collins and Kimball [CK49b; CK49a] re�ned

Smoluchowski’s model by introducing a �nite rate at which molecules would react on contact. This

model has been widely studied in the literature [SS82; SSS80; AS90; RQN18], however, the singular

nature of the reaction surface has drawbacks in computer simulations as the exact time of encounter

is not resolved in a time-stepping algorithm. An alternative scheme was suggested by Teramoto and

Shigesada [TS67] and further characterized by Doi [Doi75a; Doi75b; Doi76], which permits the reaction

of two molecules with a microscopic rate �, referred to as propensity [Gil07], as long as the reactants are

within a reaction radius R. This model is often referred to as the volume reaction model or Doi model and

is in the focus of the present study.

Following Smoluchowski [Smo16], we consider a solution of substances A and B, that undergo the

reaction A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ A∗ + B, (3.2)

for which the product A* of the reaction falls out of scope, such that we do not need to consider it.

The concentrations cA and cB of A and B molecules, respectively, are assumed to be both so dilute that

interactions between like molecules can safely be ignored. (Otherwise, the reaction kinetics would non-

trivially depend on cA and cB and the reaction rate would not be a well-de�ned constant.) Further, the

concentration of B molecules is assumed to be much smaller than that of A, cB ≪ cA, i.e., A molecules are
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abundant relative to Bs and there is no competition for reactants between the B molecules. Equivalently,

substance B is highly diluted, and the problem can be rephrased as that of a single B molecule surrounded

by A molecules in a large, yet �nite volume V . It is convenient to switch to the reference frame of the B

molecule, and we will choose a spherical volume V of radius L; see Fig. 3.1 for an illustration. In a �nite

amount of time and for su�ciently large V , the B molecule absorbs only a negligible fraction of As so

that we can assume a quasi-steady state with the concentration cA being constant at the boundary )V of

the volume.

As microscopic reaction model, we use the Teramoto–Shigesada–Doi model [TS67; Doi75a; Doi75b;

Doi76], in which A and B molecules di�use in space with di�usion constants DA and DB , respectively,

forming a reactive complex whenever an A is separated from a B by less than the reaction distance R.

This reactive complex undergoes reaction (3.2) with a microscopic rate constant or propensity �, thus

e�ectively removing A molecules from the system with a frequency K . More precisely, given a reactive

complex, reaction events are triggered by a Poisson clock with parameter �. The throughput or velocity

of reaction (3.2) is then given by dcA∗dt = KcB , (3.3)

where cA∗ is the overall concentration of the reaction product A*.

Similarly to Debye’s work [Deb42], and as commonly done in iPRD simulations [SN13], our focus

here is on situations where A and B molecules interact physically with each other according to an

isotropic pair potential U (r) = U (|r|); the vector r denotes the separation of an AB pair. The average

concentration �eld p(r, t) of A molecules and the corresponding �ux (density) j(r, t) are then governed

by the reaction–di�usion equation)tp(r, t) = −∇ ⋅ j(r, t) − a(r) p(r, t) , (3.4a)j(r, t) ∶= −D e−�U (r)∇[e�U (r)p(r, t)] , (3.4b)

with the reaction propensity a(r) > 0 and D = DA + DB the relative di�usion constant of the particles;� = 1/kBT denotes the inverse of the thermal energy scale as usual. Within the Doi model, the propensitya(r) is implemented in terms of the Heaviside step function, a(r) = � �(R − |r|) such that the B molecule

appears as a spherical reactive sink of radius R.

By isotropy of the setup, the steady �ux j(r) of A molecules has only a radial component j(r) that is a

function only of the distance r = |r| to the B molecule. It determines the reaction frequency K through

the surface integral K = − ∫|r|=R j(r) ⋅ n d� = −4�R2j(R) , (3.5)

with the surface normal n pointing outwards; the minus sign arises due to the fact that particles �ow

from the boundary to the sink at the origin, j(r) < 0. On the other hand, the law of mass action yields

the reaction rate equation dcA∗dt = kcAcB , (3.6)

in terms of the macroscopic association rate constant k. Comparing to Eq. (3.3), the latter is related to

the microscopic frequency K by k = K/cA, and the reaction rate constant follows ask = 4�R2|j(R)|cA . (3.7)

The goal of the following sections is to calculate the �ux pro�le j(r) of the quasi-steady state and

thus the macroscopic rate k, focussing on their dependences on the microscopic reaction parameters,� and R, and on the pair potential U (r) between A and B molecules. Note that there is no interaction

amongst A molecules.
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3.3 Solution strategy and classical limiting cases
In this section, we work out the general solution strategy for the reaction–di�usion equations, Eq. (3.4),

and obtain analytical solution to important subproblems, which resemble a number of classical results.

The stationary solutions p(r) obeys )tp(r) = 0, and thus Eq. (3.4a) reduces to∇ ⋅ j(r) = −a(r) p(r). (3.8)

According to the quasi-steady state assumption, p(r) further satis�es the Dirichlet boundary conditionp(r) = cA , r ∈ )V . (3.9)

Restricting to isotropic potentials, we switch to a single radial coordinate, r = |r|, with the convention

that the �ux j(r) = j(r) ⋅ r/r points outwards:1r2 )r r2j(r) = −� �(R − r) p(r) (3.10)

with j(r) = −De−�U (r))r[e�U (r)p(r)]. (3.11)

In this case and for an in�nitely large volume V , Eq. (3.9) simpli�es to p(r → ∞) = cA.

To complete the boundary value problem for p(r), we need to specify also the behaviour at the

coordinate origin, which is not obvious due to the interaction potential. The total �ux through a ball B"
of radius " centred at r = 0 obeys:

∫)B" j(r) ⋅ n d� = − ∫B" a(r) p(r) d3r , (3.12)

invoking Gauss’ theorem and inserting Eq. (3.8). Continuity of the solution p(r) together with our choice

for a(r) yields 4�"2 j(") ≃ −�p(0) ⋅ 4�"3/3, and thusj(0) = 0 . (3.13)

It implies a Robin boundary condition for the concentration pro�le,limr→0[�U ′(r) p(r) + )rp(r)] = 0, (3.14)

which is satis�ed by a Boltzmann distribution (scaled by a constant factor):p(r) ∼ exp(−�U (r)) , r → 0, (3.15)

capturing the r-dependence asymptotically.

Note that the preceding derivation does not apply for potentials U (r) that diverge as r → 0. In this

case, the current j(r) is not de�ned at the origin, r = 0, and, strictly speaking, this point must be excluded

from the integration domain B" , which forbids the application of Gauss’ theorem. Yet, the extension of

Eq. (3.15) to diverging potentials, U (r → 0) = +∞, is motivated physically as it is improbable that any A
molecule reaches the centre of the reaction volume: an upper bound on p(r) is given by the equilibrium

distribution, describing the non-reacting case. In particular, p(r) is continuous in r = 0 and so is ∇ ⋅ j(r)
by Eq. (3.8), justifying the use of Gauss’ theorem a posteriori.

Eventually, the step-like reaction propensity in Eq. (3.10) suggests to split the domain at the reaction

boundary, r = R, and to �nd separate solutions p≷ and j≷ in both subdomains, r ≷ R. By inspection of
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the r.h.s. of Eqs. (3.10) and (3.11), the �ux j(r) is �nite and continuous at this interface, which implies

that p(r) is continuously di�erentiable at r = R. This provides us with the interface conditionsp>(R) = p<(R) , (3.16)j>(R) = j<(R) = −K/4�R2, (3.17)

making use of Eq. (3.5) in the last step. Matching the solutions of both subdomains will thus yield the

sought-after reaction frequency K .

3.3.1 Outer solution
In the outer domain (>), where R 6 r < ∞, Eq. (3.10) reduces to an equation for the �ux alone, )r r2j>(r) = 0.

Integration from the lower boundary, Eq. (3.17), to some r > R yields:

j>(r) = − K4�r2 , (3.18)

with unknown rate K . The functional dependence on r is readily understood by the fact that, in the

absence of reactions, the integral �ux through spheres of radius r is constant (Gauss’ theorem). In

particular, the solution is compatible with the no-�ux condition, j>(r → ∞) = 0, which is implied by

the upper boundary, p>(r → ∞) = cA, together with the vanishing force, −∇U (r → ∞) = 0, and using

Eq. (3.11).

Next, we calculate the concentration pro�le p>(r) from Eqs. (3.9) and (3.11). Introducingg(r) ∶= e�U (r)r−2 (3.19)

for brevity, one �nds (K/4�D) g(r) = )r[e�U (r)p>(r)], and after integration over [r , ∞):
p>(r) = e−�U (r) [cA − K4�D ∫ ∞r g(s)ds] , (3.20)

which is Debye’s classical result [Deb42]. If the interaction potential is not present (U = 0), this reduces

to the familiar solution of the Dirichlet–Laplace problem:

p>(r) = cA − K4�D 1r . (3.21)

For di�usion-limited reactions, that is when product formation is fast and kf ≪ ke in Eq. (3.1),

particles almost surely react on the surface of the reaction volume and the concentration inside vanishes:p<(r) = 0 for r 6 R. Then by continuity of p(r) at the interface of the subdomains, Eq. (3.20) is amended

by p>(R) = 0 and can be solved for K . This yields the Debye reaction rate constant k = K/cA, which we

identify as the encounter rate ke in the presence of a pair potential:

ke = 4�D/∫ ∞R g(s)ds . (3.22)

The corresponding concentration pro�le is given by Eq. (3.20) and reads

p>(r) = cAe−�U (r) ∫ rR g(s) ds/ ∫ ∞R g(s) ds. (3.23)

In particular, p>(r) is independent of the di�usion constant D. For U (r) = 0, these results recover

Smoluchowski’s rate constant [Smo17] k = 4�DR and the pro�le p>(r) = cA(1 − R/r).
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3.3.2 Inner solution without potential
In the absence of an interaction potential, Eqs. (3.10) and (3.11) simplify drastically and the concentration

inside p<(r) the reaction volume, 0 6 r 6 R, obeys the Helmholtz equation

()2r + 2r )r − �2)p<(r) = 0 (3.24)

with the inverse length � ∶= √�/D, describing the penetration depth into the reactive domain. The �ux

takes the form j<(r) = −D)rp<(r), which turns the boundary conditions for the �ux, Eqs. (3.13) and (3.17),

into von Neumann conditions for the concentration, p′<(0) = 0 and p′<(R) = K/4�DR2. Equation (3.24) is

equivalent to ()2r − �2)[rp<(r)] = 0, and the boundary value problem is solved by [EC09]p<(r) = 
 sinh(�r)�r (3.25)

with the constant 
 �xed by the upper boundary; in particular, 
 is proportional to the reaction fre-

quency K . Matching inner and outer solutions for p(r), Eqs. (3.21) and (3.25), at the interface, r = R, leads

to 
 = cA/ cosh(�R), and Doi’s result for the reaction rate constant [Doi75a; EC09] follows:k = 4�DR[1 − tanh(�R)�R ]. (3.26)

The solution naturally decomposes as in Eq. (3.1) into Smoluchowski’s encounter rate ke = 4�DR,

see Eq. (3.22), and a formation rate kf = 4�DR[�R coth(�R) − 1], (3.27)

with coth(x) = 1/ tanh(x). In the fast-di�usion limit, �R ≪ 1, i.e., when the reaction propensity � is

low, the formation rate kf ≃ (4�/3)R3� is simply the product of the reaction volume VR = (4�/3)R3 and

the propensity, re�ecting well-mixed conditions inside the reaction volume (p<(r) = const). For fast

reactions, �R ≫ 1, we obtain kf ≃ 4�R2�−1�, which we interpret as reactions being restricted to a volume4�R2�−1, that is a thin shell of radius R and width �−1.
3.4 Reaction rates and spatial distributions in the presence of

an interaction potential
For the general solution to the reaction–di�usion problem, Eqs. (3.10) and (3.11), in the presence of an

interaction potential, it remains to �nd a solution inside the reaction radius (inner domain) and to match

it with Eq. (3.20). As boundary condition we use j<(0) = 0, Eq. (3.13), and solve for the current j<(r) �rst.

3.4.1 Constant potential inside the reaction volume
As a preliminary to the general discussion, we consider the analytically accessible situation that the

interaction potential is constant within the reaction volume, i.e., U (r) = U (R) for r 6 R. This may be

useful in modelling reactions in electrolytes while neglecting excluded volume e�ects. Then the inner

solution equals the non-interacting case, Eq. (3.25), and can be matched with Eq. (3.20) to �nd the reaction

rate constant k = 4�D ( R g(R)�R coth(�R) − 1 + ∫ ∞R g(r) dr)−1 . (3.28)

In particular, the encounter rate ke is equal to Debye’s result, Eq. (3.22), whereas the formation rate is

suppressed by a factor R2g(R) = e�U (R) relative to the non-interacting value, Eq. (3.27), and the total rate

is the harmonic mean of both, Eq. (3.1).
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3.4.2 Solution for arbitrary potentials
We proceed along the lines of the potential-free case, Section 3.3.2, and solve Eqs. (3.10) and (3.11) inside

the reaction volume, 0 6 r 6 R, subject to the boundary conditions Eqs. (3.13) and (3.17). Applying the

di�erential operator e−�U (r))re�U (r) on both sides of Eq. (3.10) and identifying the �ux on the right hand

side, one �nds the following Dirichlet problem for the dimensionless function  (r) ∶= −4�r2j<(r)/K : ′′(r) + (�U ′(r) − 2r )  ′(r) − �2 (r) = 0 , (3.29a) (0) = 0 , and  (R) = 1 . (3.29b)

In the absence of an explicit solution, we use the method of �nite di�erences[Smi85] to compute, in

particular, the derivative on the reaction boundary,  ′(R). The latter determines the concentration on

the boundary via Eq. (3.10): p<(R) =  ′(R)K/4�R2� . (3.30)

Eventually, the reaction frequency K is obtained by matching inner and outer solutions for the

concentration, Eq. (3.16). Employing the numerical value for  ′(R) and our previous result, Eq. (3.20), we

have K4�R2�  ′(R) = e−�U (R)[cA − K4�D ∫ ∞R g(s) ds]. (3.31)

Solving for K = k/cA, yields an exact, closed expression for the macroscopic rate constant k, which is

one of our main results: k = 4�D [∫ ∞R g(s)ds + g(R)  ′(R)�2 ]−1 ; (3.32)

the pair potential enters through the function g(r) ∶= e�U (r)r−2. The result naturally displays the

decomposition of Eq. (3.1), and we identify the formation rate askf = 4��g(R)  ′(R) , (3.33)

which appears to be proportional to the reaction propensity �; in fact, the value of  ′(R), as given by

Eqs. (3.29), indirectly depends on � as well. Noteworthy, the di�usion-limited encounter rate ke is the

same as for the Debye problem, see Eq. (3.22), and the classical result, k = ke, is recovered in the limit of

instantaneous reactions, � → ∞, i.e., for vanishing k−1f .

An alternative expression for the formation rate kf in terms of the concentration p(R) is obtained

by substituting  ′(R) using Eq. (3.30) and K = kcA, which yields kf = kcAe−�U (R)/p(R). Employing the

decomposition of the total rate k [Eq. (3.1)] and solving for kf , one �ndskf = ke [cAe−�U (R)p(R) − 1] . (3.34)

Interestingly, the formation rate is fully speci�ed by the encounter rate ke and the concentration at the

reaction boundary relative to its equilibrium value. However, the computation of p(R) requires the full

solution of the reaction–di�usion problem.

The concentration pro�le p(r) follows from integration of Eq. (3.11) in terms of  (r) and using

continuity, Eq. (3.16), to eliminate p<(R) to �ndp(r) = cAe−�U (r) [1 − k4�D ∫ ∞r g(s) (s)ds] , (3.35)

with the convention  (r) = 1 for r > R. Alternatively the density pro�le can also be found by Eq. (3.10),

from the solution  (r) as p<(r) =  ′(r)K/4�r2�. However, we observed the numerical integration in

Eq. (3.35) to yield smaller errors.
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3.4.3 Perturbative solution for slow reactions
Slow reactions, � ≪ DR2, corresponding to a well-mixed reaction volume, are described by a large

penetration depth �−1 ≫ R. This suggests to expand the concentration pro�le p<(r) in the small

parameter �R ≪ 1, introducing functions p0, p1, … :p<(r) = p0(r) + (�R)2p1(r) + O((�R)4) ; (3.36)

here, we neglect terms of order (�R)4. Corresponding �uxes j0(r), j1(r), … are de�ned by virtue of

Eq. (3.11). Inserting the expansion into Eq. (3.10) for r 6 R and sorting by powers of �2 = �/D, one �nds

that the 0
th

order is satis�ed by the equilibrium distribution in the absence of reactions:p0(r) = cAe−�U (r) , (3.37)

which is accompanied by a vanishing �ux, j0(r) ≡ 0, due to detailed balance. The �ux j1(r) at order (�R)2
obeys 1r2 )r r2j1(r) = −�2D p0(r) , (3.38)

which can be integrated to yield

j1(r) = −�2DcAr2 ∫ r0 e−�U (s)s2ds (3.39)

for 0 6 r 6 R, where we used the boundary condition j(0) = 0 [Eq. (3.13)]. With this, the reaction rate

constant k follows from Eq. (3.7) straightforwardly:

k = �2D ∫ R0 e−�U (r) 4�r2dr + O((�R)4) . (3.40)

It allows for a simple interpretation valid for slow reactions: the macroscopic rate k ≃ �Veff is the product

of the reaction propensity � and an e�ectively accessible reaction volume [FN18],

Veff = ∫|r|6R e−�U (r) d3r . (3.41)

3.4.4 Numerical details
The computation of the reaction rate [Eq. (3.32)] for arbitrary potentials and reaction parameters requires

the numerical solution of the boundary-value problem, Eq. (3.29), and of the integral, Eq. (3.22). We

checked our numerical implementation by comparing to the analytically exactly tractable, albeit peculiar

case of a logarithmic potential,

U (r) = {−2kBT log(r/R), r < R0, otherwise.

(3.42)

With this, g(r) = R−2 �(R − r) is a step function, and the coe�cient �U ′(r) − 2/r in Eq. (3.29a) reduces to−4/r . The di�erential equation can be solved using computer algebra, yielding  ′(R) and the reaction

rate according to Eq. (3.32) as

k = 2�DR {3 − (�R)2(�R)2 − 2[�R coth(�R) − 1]} . (3.43)
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Figure 3.2: Relative error Δk/k of the reaction rate constant k of the numerical solution [Eq. (3.32)]

with respect to the analytical solution [Eq. (3.43)] for a diverging potential [Eq. (3.42)]. The numerical

result is obtained for di�erent discretisation widths ℎ given in units of the reaction radius R and for

di�erent reactivities �R. The dashed line depicts a linear scaling, Δk/k ∼ ℎ. Reprinted from The Journal
of Chemical Physics “Di�usion-in�uenced reaction rates in the presence of pair interactions”, Dibak et al.,

2019, with the permission of AIP Publishing.

The Debye rate was computed via the adaptive quadrature routines from QUADPACK. For numerical

solutions to Eq. (3.29), we used the method of �nite di�erences [Smi85] by discretising the domain[0, R] into N sub-intervals of equal size ℎ ∶= R/N . Let us note that at the outer most grid points, r = 0
and r = R, Eq. (3.29a) does not require evaluation if central di�erences are used to compute  ′(r) and ′′(r) from  (r). For a range of values of �R, we computed the error Δk between the numerical and the

analytical results for the rate, see Fig. 3.2. The relative error Δk/k scales approximately linearly with ℎ
and decreases with increasing �R. For the worst case studied, �R = 0.1, we conclude that an accuracy

better than 10−3 is reached by choosing a grid spacing of ℎ = 10−4R, which is still well feasible in terms

of computational costs. This value of ℎ is used for all subsequent calculations.

Finally, we have checked that all terms in Eq. (3.29a) are bounded. In particular, we argue that the term[�U ′(r) − 2/r] ′(r) vanishes in the limit r → 0. The expression is proportional to [�U ′(r) − 2/r]r2p(r)
after re-substituting  (r) and using Eq. (3.10). Further, we anticipate that the concentration pro�le

is bounded from above by the equilibrium distribution, p(r) 6 cAe−�U (r), as reactions can only lower

the concentration in the reaction volume, see Fig. 3.8. With this, (2/r) r2p(r) → 0 and |�U ′(r) p(r)| 6cA |||)re−�U (r)|||, and it remains to show that
|||)re−�U (r)||| r→0←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0. This is ful�lled by certain logarithmic

potentials, such as in Eq. (3.42), and by algebraically diverging potentials, �U (r → 0) ≃ ar−m witha,m > 0. In the latter case, putting y ∶= r−m we have
|||)re−�U (r)||| ≃ am y(m+1)/me−ay → 0 as y → ∞.

3.5 iPRD simulations

Complementary to the preceding theoretical analysis, we have performed extensive simulations of the

microscopic reaction–di�usion dynamics in the steady state. We “measure” the absolute reaction rate k
of the reaction (3.2) and the radial distribution function p(r) of A molecules relative to a B molecule.
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Quantity Symbol Value Unit

Propensity of reaction (3.2) � varies �−1d
Soft repulsion strength b 40 kBT /R2
Soft repulsion range r0 1 R
LJ interaction strength " 1 kBT
LJ interaction range � (26/7)−1/6 R
LJ cuto� radius rc 2.5 R
Integration time step Δt 10−4 �d
Radius of simulation domain L 10 R
Width of factory shell ΔL 5 R
Number of factory particles Nf 1.5 × 104 1
Propensity to create A f+ 0.01 �−1d
Propensity to absorb A f− 0.01 �−1d

Table 3.1: Parameters used in the particle simulations. Basic units of length, time, and energy are R,�d ∶= R2/D, and kBT , respectively. Reprinted from The Journal of Chemical Physics “Di�usion-in�uenced

reaction rates in the presence of pair interactions”, Dibak et al., 2019, with the permission of AIP

Publishing.

3.5.1 Simulation setup and protocol

Stochastic simulations of the interacting particle-based reaction–di�usion dynamics (iPRD) are performed

with the software ReaDDy 2 [HFN19; SN13], which integrates the motion of particles and reactions

between them explicitly in three-dimensional space. In ReaDDy, time is discretised into steps of �xed sizeΔt . A single step consists of �rst integrating the Brownian motion of molecules via the Euler–Maruyama

scheme and then handling reaction events according to the Doi model (Section 3.2). After each step, one

can evaluate observables, such as the positions of particles or the number of reactions that occurred.

The simulation setup is constructed spherically symmetric around a single B molecule in the coordi-

nate origin, as depicted in Fig. 3.1. In particular, we use a spherical domain of �nite radius L, which will be

�lled with A molecules such that at the boundary, r = L, the concentration p(L) of A molecules matches

a given constant. Within the whole domain, A particles di�use subject to the interaction potential U (r),
whereas the B molecule is �xed in space; here, we restrict ourselves to potentials that are cut o� at a

distance rc < L. The conversion reaction (3.2) takes place with reaction propensity � inside the sphere

with r 6 R. We have run a large number of simulations for varying propensity � and di�erent potentialsU (r), see below. Simulation units were chosen such that distances are measured in terms of the reaction

radius R, energies in terms of the thermal energy kBT , and times in terms of the combination �d ∶= R2/D,

which is proportional to the time to explore the reaction volume by di�usion. The parameters used are

listed in Table 3.1; in particular, a time step Δt = 10−4�d was used throughout production runs. The

chosen time step is su�ciently small to be suitable for the Lennard-Jones potential, which generally

calls for much smaller integration steps than the harmonic repulsion due to an increased sti�ness. For a

given set of parameters and a desired accuracy goal, an optimal time step can be found by systematic

comparison of a sequence of simulations with our analytical results.

Aiming at the simulation of a stationary reaction kinetics, we coat the domain by a factory shell, with

radial coordinates in r ∈ [L, L + ΔL], that yields a constant supply of A molecules. Adjacent to the shell,

for r > L + ΔL, an external harmonic potential is added that prevents A molecules from escaping and

thereby closing the simulation domain. The factory shell contains Nf factory (F) particles, which are

�xed in space at random positions according to a uniform distribution. F particles create and absorb A
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molecules through the reversible reaction

F f+←←←←←←←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←←←←←←←←f− F + A . (3.44)

The forward reaction has propensity f+ and is of �ssion type: a new A molecule is placed at a random

distance d ∈ [0, Rf ] from the active F particle. The backward reaction is of fusion type, by which an A

molecule is absorbed with propensity f− if it is closer than Rf to an F particle. Due to the fact that the

number of F particles is conserved, the factory reactions (3.44) are pseudo-unimolecular, i.e. they can be

reduced to A ←←←←←←←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←←←←←←←← ∅, (3.45)

which leads to a steady-state concentration p(L) of As. The latter depends also on the out�ux K =4�L2|j(L)| of A molecules, which can di�use freely into and out of this shell and migrate towards the

origin due to the reaction of interest, Eq. (3.2). Lacking an a priori knowledge of the concentration p(L)
and the concentration cA in the far �eld (r → ∞), we run simulations with a certain set of parametersNf , f+, f−, and Rf and estimate the resulting value of cA accurately from the observed steady-state pro�lep(r). Speci�cally, we �t the solution p(r) = cA − K/4�Dr [Eq. (3.21)], to the data for p(r) in the rangemax(R, rc ) 6 r 6 L, where both interactions and reactions are absent and A molecules di�use freely. This

yields the extrapolated concentration at far distances, p(r → ∞) = cA. Note that the reaction frequencyK is directly available from the simulation by counting reaction events.

The above procedure relies on the fact that shifting the upper boundary from in�nity to r = L merely

shifts the concentration p(r) by an additive constant, leaving the integral �ux through spheres of radius r
unchanged, provided that r is outside of the interaction range. This is a consequence of Gauss’s theorem,

see also Eq. (3.11). Therefore, simulation results with a �nite volume can be mapped exactly to the

in�nite case upon using the e�ective far-�eld concentration cA as determined above.

A data production cycle starts with uniformly distributing A molecules in the factory shell with

a concentration that roughly anticipates the expected cA. This initial state is relaxed by evolving the

reaction–di�usion dynamics for a time span of teq = 300�d, by executing 3 × 105 integration steps with

a coarser time step size of Δt = 10−3�d. Equilibration is veri�ed by observing that the number of A

particles does not vary signi�cantly. The time step is then decreased to Δt = 10−4�d and the system

equilibrated for another time span of 30�d. During the subsequent production run of length similar toteq, we record the two main observables:

1. the concentration pro�le p(r) as the radial distribution function (RDF) of A molecules relative to

the B molecule in the centre, and

2. the number of reactions (3.2) that were performed in each integration step, yielding the reaction

frequency K and thus the macroscopic reaction rate constant k = K/cA.

Observing the RDF in the case without a reaction and comparing it against the Boltzmann distribution is

used to verify the time step.

One such simulation procedure took roughly 512 hours on a single CPU. Simulations were run for

3 di�erent potentials and 5 di�erent propensities, for each combination statistical averages over 13

independent realisations were taken, altogether yielding 195 simulations that were run in parallel. The

cumulative CPU time amounts to 100,000 hours.

3.5.2 Pair potentials
In the following, we consider two di�erent isotropic pair potentials for the interaction between A and B

molecules, and we compare to the non-interacting case (U = 0). The employed potentials are visualized
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Figure 3.3: Pair potentials U (r) used in our study of the steady-state reaction kinetics [Eqs. (3.47) and (4.6)]

for the parameters given in Table 3.1. The separation r of molecule centres is given in units of the reaction

radius R, and the potential energy U is given in terms of the thermal energy kBT ; the shaded region marks

the reaction sphere in which reaction (3.2) can occur. Arrows indicate the location of the interaction

cuto�s. Reprinted from The Journal of Chemical Physics “Di�usion-in�uenced reaction rates in the

presence of pair interactions”, Dibak et al., 2019, with the permission of AIP Publishing.

in Fig. 3.3, and all relevant parameters are given in Table 3.1. The �rst potential describes an ultra-soft

steric repulsion, which is common for macromolecules such as polymer rings [Poi+15]. For simplicity,

we assume that A and B molecules repel each other only when their centres are within a cuto� radius r0,
and we use a harmonic form: U (r) = 12b(r − r0)2 , r 6 r0 , (3.46)

and U (r) = 0 otherwise; here, b > 0 is a harmonic spring constant chosen to be sti�, br0 ≫ kBT , and we

set the cuto� equal to the reaction radius, r0 = R.

The second potential is a commonly truncated form of the Lennard-Jones (LJ) potential, which

combines a strong steric repulsion of nearly overlapping molecules with a short-range attraction due to

van der Waals forces: U (r) = 4" [(�/r)12 − (�/r)6] �(rc − r), (3.47)

with � and " > 0 being a length and an energy, respectively, that set the range and the strength of the

interaction. The value of " is also the depth of the potential well at r = � . Here we choose � such that

the potential minimum lies within the reaction volume, speci�cally, the in�ection point of U (r) is set at

the boundary, R = (26/7)1/6� ≈ 1.24� . The attractive part of the interaction is truncated at rc = 2.5R.

3.6 Results and discussion

3.6.1 Macroscopic rates
Simulation results for the reaction rate constant k as a function of the propensity � = �2D are shown in

Fig. 3.4 for the above potentials. They are compared to the theoretical predictions from the reaction–

di�usion problem, Eqs. (3.4), as follows: For the non-interacting case (U = 0), the exact solution is

available in closed form, Eq. (3.26). For the soft repulsion and the LJ potential, the solution is available
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Figure 3.4: (a): Macroscopic rate constant k as a function of the reactivity �R with the inverse penetration

depth � = √�/D and the reaction radius R for di�erent pair potentials U (r). Data are given relative

to the Smoluchowski rate constant 4�DR (grey dashed line) in terms of the relative di�usion constantD = DA + DB and the reaction radius R. Symbols are results of interacting particle-based stochastic

simulations of the reaction–di�usion process (iPRD simulations). Solid lines show theoretical predictions

obtained from exact expressions [non-interacting case, Eq. (3.26)] or quasi-analytic solutions [soft

harmonic repulsion and LJ potential, Eq. (3.32)] of the reaction–di�usion problem, Eqs. (3.4). The green

dashed line indicates the Debye limit, Eq. (3.22), for the LJ potential. (b): Macroscopic rate constantk as a function of the reactivity �R normalized by the perturbative solution k(0) ≃ �VR of the non-

interacting case for slow reactions [Eq. (3.40)]. Dashed lines indicate the ratios of the accessible to the

total reaction volume Veff/VR for each potential [Eq. (3.41)], which is the prediction of perturbation

theory. Reprinted from The Journal of Chemical Physics “Di�usion-in�uenced reaction rates in the

presence of pair interactions”, Dibak et al., 2019, with the permission of AIP Publishing.
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only in quasi-analytic form, Eq. (3.32), i.e., the �nal expressions for k are explicit in terms of a numerical

quadrature as in the Debye problem and the numerical solution to a one-dimensional boundary value

problem in the interior of the reaction sphere, see Section 3.4.4. As dimensionless control parameter we

choose the combination �R = R√�/D, which distinguishes the reaction- and di�usion-limited regimes,�R ≪ 1 and �R ≫ 1, respectively. Equivalently, (�R)2 = ��d controls the reaction propensity relative to

the di�usion time �d = R2/D.

For all choices of the potential, the agreement between theory and simulations is excellent, see

Fig. 3.4a. In all three cases, the reaction rate k increases monotonically with the reaction propensity � and

saturates at Debye’s result, Eq. (3.22), for a di�usion-limited reaction (�R → ∞). In this limit, the reaction

occurs almost surely upon �rst contact and details inside of the reaction volume become irrelevant, the

formation rate diverges, kf →∞. Note that for the truncated soft repulsion, Eq. (4.6), the limiting value

equals the Smoluchowski rate as the potential is zero in the outer domain. For slow reactions, �R ≪ 1,
the initial increase of k depends quadratically on �R and it coincides with the prediction k ≃ �Veff of

perturbation theory, Eq. (3.40). This regime is better visualised by normalising k with the perturbation

result for the non-interacting case, k(0) = �VR , where VR = (4�/3)R3, see Fig. 3.4b. From the limit �R → 0
it is evident that also the constant of proportionality Veff as calculated from Eq. (3.41) matches very well

with the numerical results. For �R = 0.2 noticeable relative deviations are seen in the simulation data,

indicating that the slow-reaction regime is challenging to explore by the particle-based approaches such

as iPRD. The �gure shows further that the perturbation solution deviates by no less than 10% from the

full solution for �R . 0.5.
How is the reaction rate constant k changed due to the presence of the investigated potentials? A

repulsion within the reaction volume slows down the reaction relative to the non-interacting case, which

we attribute to the greatly diminished accessible reaction volume (Fig. 3.4, soft repulsion). The e�ect is

most pronounced for slow reactions, which are most sensitive to a reduction of the actual penetration

depth relative to its value �−1 of the free case. Evaluating Eq. (3.41) for the speci�c harmonic repulsion

used here, Veff and thus k are reduced by a factor of ≈ 2.2 relative to the non-interacting case.

An attractive interaction between A and B molecules, on the other hand, is expected to enhance

the encounter rate ke and thus to speed up the overall reaction. Already the short-ranged well of the

truncated LJ potential, Eq. (3.47), su�ces to increase ke by 12% with respect to the free case, Eq. (3.22).

Noting that only the part of the potential outside of the reaction volume, r > R, contributes to ke, we

can test the dependence on the attraction by varying the interaction range � at �xed R, see Fig. 3.5.

The encounter rate becomes maximal at � = R, i.e., when the integral in Eq. (3.22) is taken over the full

domain where the potential is negative, U (r) < U (r → ∞).
The rami�cations of the potential on the formation rate kf are more subtle: the strongly repulsive

part of the LJ potential should lead to a decrease as the accessible reaction volume is diminished.

Concomitantly, the potential well induces an enrichment of A molecules at the boundary of the reaction

volume, which would increase kf . The combination of both can lead to a non-monotonic dependence of

the formation rate on the position of the reaction boundary relative to the potential well, which indeed

we observe in the numerical solutions to Eq. (3.33), see Fig. 3.5. The position of the maximum in kf
depends on �R and shifts towards larger �/R for higher reaction propensity. For the parameters given

in Table 3.1, the e�ectively accessible reaction volume is increased by ≈ 17% over the free volume VR
(Fig. 3.4b), and for all �R the overall rate constant k is larger than for non-interacting molecules.

By the Markov property of the microscopic reaction–di�usion process, the total reaction rate constantk is the harmonic mean of the partial rates for encounter and formation, Eq. (3.1), and thus, k is bounded

from above by the smaller rate: k 6 min(ke, kf). The relative importance of both processes depends on the

rescaled reaction propensity �R, which is nicely seen from Fig. 3.6 for the Lennard-Jones potential with�/R = 0.1 and "/kBT = 13. One reads o� that the formation and di�usion-limited regimes, where the other

contribution can safely be neglected, are delimited by �R . 10−1 and �R & 101, respectively. Inbetween,

there is a wide window of propensities, where both processes enter the overall rate constant. Here, an
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Reprinted from The Journal of Chemical Physics “Di�usion-in�uenced reaction rates in the presence of

pair interactions”, Dibak et al., 2019, with the permission of AIP Publishing.
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pair interactions”, Dibak et al., 2019, with the permission of AIP Publishing.
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Figure 3.7: The macroscopic rate constant k in the presence of a Lennard–Jones potential with particle

diameter � and energy depth that is equal to the thermal energy " = kBT . Here k is a function of the

unit–less reactivity �R = √�/D R and a function of the reaction radius R, with the microscopic rate

constant �, relative di�usion constant D. k is given in units of 4�D� , which is the encounter rate up to

particle diameter if no reaction and potential would be present. Reprinted from The Journal of Chemical
Physics “Di�usion-in�uenced reaction rates in the presence of pair interactions”, Dibak et al., 2019, with

the permission of AIP Publishing.

enhanced availability of reactants due to the deep potential well compensates a slower reaction propensity

so that the formation rate displays an approximately plateau-like behaviour for 0.1 . �R . 0.5. For

su�ciently fast reactions, the accumulation disappears and kf starts increasing again towards its large�R behaviour, kf ∼ �R, which resembles the potential-free case as reactions are con�ned to a thin shell

near r = R. Note that kf is a monotonic function of �R, which follows from Eq. (3.34) and anticipating

the monotonic decrease of p(R) as �R increases, see Fig. 3.8.

Motivated by the practical question how to choose the model parameters � and R for given reaction

rate k and di�usivity D and given interaction potential, we have scrutinized further the dependence ofk on both the propensity �R and the reaction radius R/� , exempli�ed for the Lennard-Jones potential

(Fig. 3.7). For slow reactions, �R . 1, the rate constant k is insensitive to the reaction radius. In the

di�usion-limited regime, �R & 10, the rate constant k mainly depends on the reaction radius R/� and

is insensitive to the value of �R. Inbetween, 1 . �R . 10, both parameters must be adjusted carefully.

From physical considerations, the reaction radius R should be comparable to the molecular radius � ,

which delimits the freedom in the choice of �.

3.6.2 Concentration pro�les

Simulation results for the concentration pro�le p(r), more precisely, the radial distribution of A molecules

relative to Bs, are shown in Fig. 3.8 for three di�erent propensities �, expressed in terms of � = √�/D,

and for the di�erent interactions considered above. The data are compared to the theoretical predictions

developed in Sections 3.3 and 3.4, and the quantitative agreement is very good for all cases studied. Thus,

the iPRD simulations corroborate our theoretical analysis and the numerical results, which in turn are

used to validate the implementation of the simulation algorithm.

For the non-interacting case (Fig. 3.8a), we have closed analytic expressions for p(r) inside and outside
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Figure 3.8: Radial distribution p(r) of A molecules around a B molecule for di�erent reaction propensities�, here expressed by � = √�/D. The panels show results for (a) the non-interacting case, (b) the soft

harmonic repulsion [Eq. (4.6)], and (c) a truncated LJ potential [Eq. (3.47)]. Data points are results from

iPRD simulations, and solid lines theoretical predictions from Eqs. (3.21) and (3.25) for the non-interacting

case and from numerical solutions to Eqs. (3.20) and (3.29) otherwise. Grey dashed lines represent the

limit �R → ∞ of almost sure reactions upon contact [Eq. (3.23)]. Grey shaded areas mark the interior of

the reaction volume (r 6 R), and vertical lines indicate the respective positions rc of the potential cuto�s.

Reprinted from The Journal of Chemical Physics “Di�usion-in�uenced reaction rates in the presence of

pair interactions”, Dibak et al., 2019, with the permission of AIP Publishing.

of the reaction volume, Eqs. (3.25) and (3.21), respectively. For the soft repulsive and the LJ potentials

[Eqs. (3.47) and (4.6)], pro�les in the outer domain are obtained from Eq. (3.20) by a quadrature, and in

the inner domain from the numerical solution for  ′(r) of the boundary value problem, Eq. (3.29). At

distances r > rc , where neither a reaction can occur nor a potential is present, the constant �ux implies

for the pro�le, p(r) = cA(1 − k/4�Dr), see Eq. (3.21).

For slow reactions, �R ≪ 1, the concentration pro�le at leading order in �R is expected to equal

the equilibrium distribution, p0(r) = cAe−�U (r), subject to the speci�c boundary condition p(r → ∞) =cA [Eq. (3.37)]. Indeed, for �R = 0.5 both the numerical and simulation results for p(r) are hardly

distinguishable from p0(r) in all three cases studied, see Fig. 3.8; for U = 0 it holds p0(r) = cA everywhere.

Upon increasing �R, the concentration is decreasing uniformly and, in the limit of an instantaneous

product formation, �R → ∞, the pro�le p(r) vanishes inside the reaction volume and approaches Debye’s

solution, Eq. (3.23), outside as expected. For the non-interacting case and the soft repulsive potential, the

latter simpli�es to Smoluchowski’s result, p(r) = cA(1−R/r) for r > R; for the truncated LJ potential used

here, the di�erences are small and hardly seen in the graph (Fig. 3.8c). Summarising, the equilibrium

distribution and Debye’s solution constitute upper and lower bounds on p(r).
After having understood these limits, we will discuss the consequences of the interaction potential

on the pro�les in more detail. Adding a soft repulsion within the reaction volume to mimic an excluded

volume largely reduces the probability of �nding a particle inside the reaction volume (Fig. 3.8b) and

thus suppresses the product formation rate kf (see also Fig. 3.4b). Yet, the e�ect is more pronounced for

slow reactions as the interior of the reaction volume becomes less and less accessible upon increasing�R, and we conclude that the repulsion is particularly relevant for slow reactions. The attractive well of

the LJ potential on the other hand induces an enrichment of A molecules near the reaction boundary,

which is more developed for smaller �R (Fig. 3.8c).
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3.7 Conclusion
We have studied the reaction kinetics of a bimolecular association process A + B ←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ X in the steady state

for molecules that di�use in space and interact through an isotropic pair potential U (r). Within Doi’s

volume reaction model, we have calculated the reaction rate constant k and the distribution function p(r)
of AB pairs as a function of the microscopic reaction propensity �. The explicit dependence of the model

on � enables us to systematically probe the kinetics from the well-mixed to the di�usion-limited regime.

The transition between the regimes is conveniently captured by the dimensionless quantity R√�/D,

which we abbreviate as the reactivity �R of an AB pair; the length �−1 describes how far molecule centres

can penetrate the reaction volume of radius R before they react and D ∶= DA +DB is the relative di�usion

constant. Speci�cally, our approach bridges between the two well-studied cases �R ≪ 1 (reaction-limited

or well-mixed) and �R ≫ 1 (di�usion-limited or fast-reaction limit). Similarly, ��d = (�R)2 can be used

to classify these regimes, however in terms of the residence time �d = R2/D in the reaction volume (as

obtained for non-interacting molecules).

Over the entire spectrum of �R values and for arbitrary pair potentials, our analytical result for the

reaction rate constant displays the Markovian decomposition k−1 = k−1e + k−1f into encounter ke and

formation kf rates [Eq. (3.32)]. Thereby, ke is always given by Debye’s result Eq. (3.22). Interestingly,kf can be expressed in terms of ke and the substrate concentration p(R) at the reaction boundary, see

Eq. (3.34), the latter being non-trivial to calculate. The well-mixed limit is dominated by the formation

rate kf and can be solved by perturbation theory (see Section 3.4.3), which yields k = �Veff in terms

of the e�ectively accessible reaction volume Veff . In the absence of a potential, Veff simpli�es to the

volume of the reactive sphere VR = (4�/3)R3. On the other hand, the di�usion limit is dominated by the

encounter rate ke: a reaction occurs almost surely upon entering the reaction volume. Our expression

for k reproduces the Smoluchowski encounter rate 4�DR in the absence of potentials and Debye’s result

[Deb42], when particles di�use subject to an interaction potential U (r).
In the application-relevant di�usion-in�uenced regime (see Section 3.4), where ke is of comparable

magnitude as kf , we obtained semi-analytical expressions for the rate k and the local concentration p(r)
that require numerical evaluation [Eqs. (3.32) and (3.35)]. Practically, one has to solve a one-dimensional

boundary value problem for the reaction–di�usion equation inside the reaction volume and to compute

an integral over the domain outside the reaction volume; the computational costs of both tasks are

negligible. We tested our numerical scheme against explicit analytic solutions for a logarithmically

repulsive potential. A closed expression for the rate k is given for general potentials outside in the case

that molecules do not interact if their centres are within the reaction volume [Eq. (3.28)]; this may be

useful to model, e.g., reactions in electrolytes while neglecting excluded volume.

We have studied the detailed dependence of the rate k on the reactivity parameter �R for two di�erent

potentials: a soft harmonic repulsion inside the reaction volume, and a truncated Lennard-Jones potential

combining excluded volume and attraction. Our numerical results for the rate k and the concentrationp(r) show excellent agreement with extensive stochastic particle-based reaction-di�usion simulations.

We draw the following physical conclusions:

1. A purely repulsive potential decreases both partial rates, ke and kf , and so also the overall rate

constant k compared to the non-interacting case.

2. An attraction speeds up the reaction generally. Outside the reaction volume, it increases the

encounter rate ke; here, the sign of U (r) − U (r → ∞) matters, which points at an energetic origin.

For the formation rate kf , the force −U ′(r) inside the reaction volume and the value p(R) on the

boundary enter.

3. For mixed situations as for the LJ potential, both contributions, ke and kf , are non-monotonic in

the position of the reaction boundary (Fig. 3.5) and can lead to non-trivial dependencies of the

total rate k on the model parameters � and R (Fig. 3.6).
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Concluding, we have established a microscopic simulation model that extends Doi’s volume reaction

model to interacting molecules. This model is at the core of iPRD simulations, which permit treatment

of spatially resolved reaction processes in cells and nanotechnology at di�erent levels of coarse graining.

The obtained relation between k and the parameters �, R facilitates the development of quantitative

iPRD models based on experimental values of the macroscopic rate k. The interaction potential U (r),
can either be chosen ad hoc based on physical insight or determined as the potential of mean force in

atomistic simulations [BSF11; Xu+19; Wu+16]. The freedom to choose an interaction potential within

the reaction volume o�ers the opportunity to implement coarse-grained simulations that switch between

representations of bound complexes using either explicit potential wells and barriers or stochastic

reactions. The present study focuses on the dilute limit, which serves as a well-de�ned starting point

for the investigation of concentration and crowding e�ects on the reaction rate and the distribution of

molecules.
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Chapter 4

ReaDDy 2: Fast and �exible software
framework for interacting-particle
reaction dynamics

The results of this chapter have been published in the following paper:

Moritz Ho�mann, Christoph Fröhner (CF), and Frank Noé. “ReaDDy 2: Fast and �exible

software framework for interacting-particle reaction dynamics”. In: PLoS Computational
Biology 15.2 (2019), e1006830. doi: 10.1371/journal.pcbi.1006830

Parts of the text and illustrations have been adopted unchanged in this document. The above publication

is open access and distributed under the terms of the Creative Commons Attribution License (see

http://creativecommons.org/licenses/by/4.0/).

The contributions of the authors were as follows: Moritz Ho�mann, CF and Frank Noé conceived the

project. Moritz Ho�mann implemented a majority of ReaDDy 2. CF implemented parts of ReaDDy 2. CF

laid out the validation scenarios contained in the given paper. Moritz Ho�mann and CF analyzed and

visualized the data. All contributors wrote the paper.

Summary

Interacting-particle reaction dynamics (iPRD) combines the simulation of dynamical trajectories of

interacting particles as in molecular dynamics (MD) simulations with reaction kinetics, in which particles

appear, disappear, or change their type and interactions based on a set of reaction rules. This combination

facilitates the simulation of reaction kinetics in crowded environments, involving complex molecular

geometries such as polymers, and employing complex reaction mechanisms such as breaking and fusion

of polymers. iPRD simulations are ideal to simulate the detailed spatiotemporal reaction mechanism

in complex and dense environments, such as in signalling processes at cellular membranes, or in nano-

to microscale chemical reactors. Here we introduce the iPRD software ReaDDy 2, which provides a

Python interface in which the simulation environment, particle interactions and reaction rules can be

conveniently de�ned and the simulation can be run, stored and analyzed. A C++ interface is available

to enable deeper and more �exible interactions with the framework. The main computational work of

ReaDDy 2 is done in hardware-speci�c simulation kernels. While the version introduced here provides

single- and multi-threading CPU kernels, the architecture is ready to implement GPU and multi-node
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kernels. We demonstrate the e�ciency and validity of ReaDDy 2 using several benchmark examples.

ReaDDy 2 is available at the https://readdy.github.io/ website.

4.1 Introduction

The physiological response of biological cells to stimuli can be a many-stage process. A widely studied

example is the MAPK pathway [XGG96; TTW10]. Many of such signaling pathways incorporate G-

protein coupled receptors (GPCR) [Trz+12] and cyclic adenosine monophosphate (cAMP) [BB02]. These

are related to various diseases [TD11; Dra+09; Abr+04]. An extracellular stimulus can activate the

membrane bound GPCRs and lead to localized synthesis of cAMP as second messengers. Their transport

through the cell is di�usive, however due to the geometry of cellular compartments cAMP molecules are

non-uniformly distributed [ACH16; Hou10]. Their presence needs to be resolved in space and time to

understand their function.

Particle-based reaction dynamics (PBRD) simulations [EC09; ZW05b; DYK18] are amongst the most

detailed approaches to model reaction kinetics computationally as they simulate each reactive molecule as

a particle and therefore can be used as a tool to investigate systems of the aforementioned kind. Reactions

can occur when reactive particles are in proximity, resembling the physical process. PBRD is suitable

when the spatial distribution of molecules does not equilibrate rapidly and must therefore be resolved,

and some reactants are locally scarce, such that their discrete number must be kept track of [HS14; Bha04].

There is a wide range of simulation tools for PBRD [SUN14], including Smoldyn [And17], MCell [Ker+08],

Cell++ [San+06], eGFRD [TTW10], mesoRD [HFE05], spatiocyte [AT10], SpringSaLaD [ML16], and

SRSim [Gru+10]. A simulation tool that takes the molecular structure into account is SDA [Mar+15; GW98;

GW97]. A recent review of particle-based stochastic simulators can be found in [And18]. Alternatively

when the spatial resolution is of less importance, one can apply more e�cient tools like Lattice Microbes

[RSL13; Rob+11; Rob+09] which generates realizations of the reaction-di�usion master equation (RDME)

[Isa13; Isa09]. In case of large copy numbers of particles it can make sense to think of them in terms of

concentrations and build hybrid models [Fra+13].

PBRD simulations usually contain purely reactive particles that are not subject to interaction forces,

e.g., to model space exclusion with repulsive interactions or clustering with attractive interactions.

On the other hand, molecular dynamics (MD) simulations are designed to model particle dynamics

including complex interactions between the particles or particles and an external �eld. The particles in

MD simulations are often atoms or groups of atoms and higher-order structures such as molecules are

represented by topology graphs that de�ne the bonding structure between particles and thus, together

with a MD force �eld, imply which pair, triplets and quadruplets or particles interact by means of bond,

angle and torsion potentials. While reactive force �elds [HKD07; KW11; Dui+01] include reactivity on

the chemistry scale, and soft matter MD simulation tools include breakable bonds [Arn+13; Lim+06],

current MD models and simulation packages do not incorporate generic particle reactions.

Interacting-particle reaction dynamics (iPRD) was introduced in [SN13] to combine the bene�ts of

PBRD and MD simulations by modeling particle-based reaction dynamics while enabling full-blown

interactions between particles as well as particles and the environment. Available simulation tools

that are capable of special cases of iPRD simulations are, e.g., the MD packages LAMMPS [Auh+03;

Pli95] which is capable of forming and breaking bonds dynamically and ESPResSo [Arn+13; Lim+06]

which additionally has an implementation of catalytic reactions. In comparison to the iPRD simulator

ReaDDy [SN13], these do not support full iPRD and are built and optimized for particle numbers that

stay roughly constant. Comparing iPRD and PBRD, the interaction potentials in iPRD can be used to

induce structure on mesoscopic length scales, e.g., volume-exclusion in crowded systems [HF13; SN13],

clustering of weakly interacting macromolecules [Ull+15], restriction of di�using particles to arbitrarily-

shaped membranes [SN13; Gun+15; SUN14]. Furthermore it allows to study the large-scale structure of

https://readdy.github.io/
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oligomers [KS14], polymers and membranes [SWN18]. When not only considering interactions but also

reactions, a wide range of reactive biochemical systems are in the scope of the model. For example, the

reaction dynamics of photoreceptor proteins in crowded membranes [Sch+14] including cooperative

e�ects of transmembrane protein oligomers [Gun+15] have been investigated. Another example is

endocytosis, in which di�erent proteins interact in very speci�c geometries [Pos+13; Sch+17]. The

simulation tool Cytosim [NF07] is another software package that can be used to investigate mesoscopic

biochemical systems, speci�cally geared towards the simulation of the cytoskeleton.

The price of resolving these details is that the computation is dominated by computing particle-

particle interaction forces. Although non-interacting particles can be propagated quickly by exploiting

solutions of the di�usion equation [SN17; ZW05a; ZW05b; Don+10], interacting particles are propagated

with small time-steps [VBW15; Vij+17], restricting the accessible simulation timescales whenever parts

of the system are dense. As this computational expense is not entirely avoidable when the particle

interactions present in iPRD are needed to model the process of interest realistically, it is important to

have a simulation package that can fully exploit the computational resources.

Here we introduce the iPRD simulation framework ReaDDy 2, which is signi�cantly faster, more

�exible, and more conveniently usable than its predecessor ReaDDy 1 [SN13; Bie+15]. Speci�cally,

ReaDDy 2 includes the following new features:

• Computational e�ciency and �exibility: ReaDDy 2 de�nes computing kernels which perform

the computationally most costly operations and are optimized for a given computing environment.

The current version provides a single-CPU kernel that is four to ten times (depending on system

size) faster than ReaDDy 1, and a multi-CPU kernel that scales with 80% e�ciency to number

of physical CPU cores for large particle systems (Section 4.3.2). Kernels for GPUs or parallel

multi-node kernels can be readily implemented with relatively little additional programming work

(Section 4.3).

• Python user interface: ReaDDy 2 can be installed via the conda package manager and used as a

regular python package. The python interface provides the user with functionality to compose the

simulation system, de�ne particle interactions, reactions and parameters, as well as run, store and

analyze simulations.

• C++ user interface: ReaDDy 2 is mainly implemented in C++. Developers interested in extending

the functionality of ReaDDy 2 in a way that interferes with the compute kernels, e.g., by adding

new particle dynamics or reaction schemes, can do that via the C++ user interface.

• Reversible reaction dynamics: ReaDDy 2 can treat reversible iPRD reactions by using steps that

obey detailed balance, as described in [FN18] (iPRD-DB), and thus ensure correct thermodynamic

behavior for such reactions (Section 4.4.1).

• Topologies: We enable building complex multi-particle structures, such as polymers, by de�ning

topology graphs (brie�y: topologies, see Section 4.2.4). As in MD simulations, topologies are an

e�cient way to encode which bonded interactions (bond, angle and torsion terms) should act

between groups of particles in the same topology. Note that particles in topologies can still be

reactive. For example, it is possible to de�ne reactions that involve breaking or fusing polymers

(Section 4.4.4).

• Potentials and boundaries: Furthermore, the range of by default supported interaction potentials

has been broadened, now including harmonic repulsion, a harmonic interaction potential with a

potential well, Lennard–Jones interaction, and screened electrostatics. The simulation volume can

also be equipped with partially or fully periodic boundary conditions.
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This chapter summarizes the features of ReaDDy 2 and the demonstrates its e�ciency and validity of

ReaDDy 2 using several benchmarks and reactive particle systems. With few exceptions, we limit our

description to the general features that are not likely to become outdated in future versions. Please

see https://readdy.github.io/ for more details, tutorials and sample code.

4.2 interacting-Particle Reaction Dynamics (iPRD)
The ReaDDy 2 simulation system consists of particles interacting by potentials and reactions (Fig. 4.1) at

a temperature T . Such a simulation system is con�ned to a box with repulsive or periodic boundaries. A

boundary always has to be either periodic or be equipped with repulsive walls so that particles cannot

di�use away arbitrarily. To simulate iPRD dynamics in complex architectures, such as cellular membrane

environments with speci�c shapes, additional potentials can be de�ned that con�ne the particle to a

sub-volume of the simulation box (Section 4.2.2).

4.2.1 Interacting particle dynamics
ReaDDy 2 provides a developer interface to �exibly design models of how particle dynamics are propa-

gated in time. The default model, however, is overdamped Langevin dynamics with isotropic di�usion as

this is the most commonly used PBRD and iPRD model. In these dynamics a particle i moves according

to the stochastic di�erential equation:dxi(t)dt = −Di(T )kBT fi(t) + √2Di(T )� i(t), (4.1)

where xi(t) ∈ ℝ3 contains the particle position at time t , Di(T ) is its di�usion coe�cient, kB is the

Boltzmann constant, and T the system temperature. The particle moves according to the deterministic

force fi and the stochastic velocity

√2Di(T )� i in which � i are independent, Gaussian distributed random

variables with moments ⟨� i(t)⟩ = 0, ⟨� i(t)�⊤i (t′)⟩ = I�(t − t′),
where I is the identity matrix. The stochastic terms � i and � j are uncorrelated for particles i ≠ j. In

ReaDDy 2 the default assumption is that the di�usion coe�cients Di(T ) are given for the simulation tem-

perature T . Additionally, we o�er the option to de�ne di�usion coe�cients for a reference temperatureT0 = 293K and then generate the di�usion coe�cients at the simulation temperature T by employing

the Einstein-Smoluchowski model for particle di�usion in liquids [Von06; Ein05]:Di(T ) = Di(T0) TT0 .
This way, simulations at di�erent temperatures are convenient while only having to specify one di�usion

constant. Using this model, the dynamics aredxi(t)dt = −Di(T0)kBT0 fi(t) + √2Di(T0) TT0 � i(t). (4.2)

This means that the mobility is preserved if the temperature changes and Eq. (4.1) is recovered for T = T0.
The simplest integration scheme for Eqs. (4.1) and (4.2) is Euler-Maruyama, according to which the

particle positions evolve as:

xi(t + �) = xi(t) − � Di(T0)kBT0 fi(t) + √2Di(T0) TT0 ��t . (4.3)

https://readdy.github.io/
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Figure 4.1: The simulation model. (a) Potentials: Particles are subject to position-dependent external

potentials, such as boundary potentials or external �elds and interaction potentials involving two, three

or four particles. As in MD force �elds, bonded potentials are de�ned within particle groups called

“topologies” whose bonding structure is de�ned by a connectivity graph. (b) Reactions: Most reactions

are unimolecular or bimolecular particle reactions. Topology reactions act on the connectivity graphs and

particle types and therefore change the particle bonding structure. (c) Simulation box: The simulation box

with edge lengths �x , �y , and �z . It can optionally be periodic in a combination of x , y , and z directions,

applying the minimum image convention.
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Where � > 0 is a �nite time step size and �t ∼  (0, 1) is a normally-distributed random variable.

The di�usion constant Di e�ects the magnitude of the random displacement. The particles’ positions

are loosely bound to a cuboid simulation box with edge lengths �x , �y , �z (Fig. 4.1). If a boundary is

non-periodic it is equipped with a repulsive wall given by the potential

V
wall

(x(j)i ) = 12kd(x(j)i ,Wj )2 (4.4)

acting on every component j of the single particle position xi , where k is the force constant, W =∏3j=1Wj = ∏3j=1[x (j)origin
, x (j)

origin
+ x (j)

extent
] the cuboid in which there is no repulsion contribution of the

potential, and d(⋅,Wj ) ∶= inf{d(⋅, w) ∶ w ∈ Wj} the shortest distance to the set Wj . The cuboid can be

larger than the simulation box in the periodic directions. In non-periodic directions there must be at

least one repulsive wall for which this is not the case.

Due to the soft nature of the walls particles still can leave the simulation box in non-periodic directions.

In that case they are no longer subject to pairwise interactions and bimolecular reactions however still

are subject to the force of the wall pulling them back into the box.

Other types of dynamical models and other integration schemes can be implemented in ReaDDy 2

via its C++ interface. For example, non-overdamped dynamics, anisotropic di�usion [Vij+17; Mun+09],

hydrodynamic interactions [EM78] or employing the MD-GFRD scheme to make large steps for nonin-

teracting particles will all a�ect the dynamical model and can be realized by writing suitable plugins.

4.2.2 Potentials
The deterministic forces are given by the gradient of a many-body potential energy U (Fig. 4.1a):

fi = (i (∑i Uext(xi) +∑i≠j Upair(xi , xj ) + ∑i≠j≠k Utriple(xi , xj , xk ) + …)
The potentials are de�ned by the user. ReaDDy 2 provides a selection of standard potential terms,

additional custom potentials can be de�ned via the C++ interface and then included into a Python

simulation script.

External potentials only depend on the absolute position of each particle. They can be used, e.g., to

form softly repulsive walls Eq. (4.4) and spheres, or to attach particles to a surface, for example to model

membrane proteins. Furthermore the standard potential terms enable the user to simulate particles

inside spheres and exclude particles from a spherical volume. The mentioned potential terms can also

be combined to achieve more complex geometrical structures. Pair potentials generally depend on the

particle distance and can be used, e.g., to model space exclusion at short distances.

A fundamental restriction of ReaDDy 2 interaction potentials is that they have a �nite range and can

therefore be cut o�. This means that, e.g., full electrostatics is not supported but screened electrostatic

interactions are implemented (Section 4.4.5). Additionally a harmonic repulsion potential, a weak

interaction potential made out of three harmonic terms, and Lennard–Jones interaction are incorporated.

ReaDDy 2 has a special way of treating interaction potentials between bonded particles. Topologies

de�ne graphs of particles that are bonded and imply which particle pairs interact via bond constraints,

which triples interact via angle constraints, and which quadruplets interact via a torsions potential. See

Section 4.2.4 for details.

4.2.3 Reactions
Reactions are discrete events, that can change particle types, add, and remove particles (Fig. 4.1b). Each

reaction is associated with a microscopic rate constant � > 0 which has units of inverse time and
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represents the probability per unit time of the reaction occurring. The integration time-steps used in

ReaDDy 2 should be signi�cantly smaller than the inverse of the largest reaction rate, and we therefore

compute discrete reaction probabilities by:p(�; � ) = 1 − e−�� . (4.5)

In the software it is checked whether the time step � is smaller than the inverse reaction rate up to a

threshold factor of 10, otherwise a warning is displayed as discretization errors might become too large.

In general, ReaDDy 2 reactions involve either one or two reactants. At any time step, a particle that is

subject to an unary reaction will react with probability p(�; � ). If there are two products, they are placed

within a sphere of speci�ed radius Ru around the educt’s position x0. This is achieved by randomly

selecting an orientation n ∈ ℝ3, distance d 6 Ru, and weights w1 > 0,w2 > 0, s.t. w1 + w2 = 1. The

products are placed at x1 = x0 + dw1n and x2 = x0 − dw2n. Per default, w1 = w2 = 0.5 and the distancesd are drawn such that the distribution is uniform with respect to the volume of the sphere. When it

is necessary to produce new particles, we suggest to de�ne a producing particle A and use the unary

reaction A ⇀ A+ B with corresponding placement weights w1 = 0, w2 = 1 so that the A particle stays at

its position.

The basic binary reaction scheme is the Doi scheme [Doi76; TS67] in which a reactive complex is

de�ned by two reactive particles being in a distance of Rb or less, where Rb is a parameter, e.g., see

Fig. 4.1b Fusion or Enzymatic reaction. The reactive complex then forms with probability p(�; � ) while

the particles are within distance.

Optionally ReaDDy 2 can simulate reversible reactions using the reversible iPRD-DB scheme de-

veloped in [FN18]. This scheme employs a Metropolis-Hastings algorithm that ensures the reversible

reaction steps to be made according to thermodynamic equilibrium by accounting for the system’s energy

in the educt and product states.

4.2.4 Topologies
Topologies are a way to group particles into superstructures. For example, large-scale molecules can

be represented by a set of particles corresponding to molecular domains assembled into a topology. A

topology also has a set of potential energy terms such as bond, angle, and torsion terms associated. The

speci�c potential terms are implied by �nding all paths of length two, three, and four in the topology

connectivity graph. The sequence of particle types associated to these paths then is used to gather the

potential term speci�cs, e.g., force constant, equilibrium length or angle, from a lookup table (Fig. 4.1a).

Reactions are not only possible between particles, but also between a topology and a particle (Fig. 4.1b)

or two topologies. In order to de�ne such reactions, one can register topology types and then specify the

consequences of the reaction on the topology’s connectivity graph. We distinguish between global and

local topology reactions.

Global topology reactions are triggered analogously to unary reactions, i.e., they can occur at any

time with a �xed rate and probability as given in Eq. (4.5). Any edge in the graph can be removed and

added. Moreover, any particle type as well as the topology type can be changed, which may result in

signi�cant changes in the potential energy. If the reaction causes the graph to split into two or more

components, these components are subsequently treated as separate topologies that inherit the educt’s

topology type and therefore also the topology reactions associated with it. Such a reaction is the topology

analogue of a particle �ssion reaction.

A local topology reaction is triggered analogously to binary reactions with probability p(�; � ) if the

distance between two particles is smaller than the reaction radius. At least one of the two particles needs

to be part of a topology with a speci�c type. The product of the reaction is then either yielded by the

formation of an edge and/or a change of particle and topology types. In contrast to global reactions only

certain changes to particle types and graphs can occur:
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• Two topologies can fuse, i.e., an additional edge is introduced between the vertices corresponding

to the two particles that triggered the reaction.

• A topology and a free particle can fuse by formation of an edge between the vertex of the topology’s

particle and a newly introduced vertex for the free particle.

• Two topologies can react in an enzymatic fashion, i.e., particle types of the triggering particles and

topology types can be changed.

• Two topologies and a free particle can react in an enzymatic fashion analogously.

In all of these cases the involved triggering particles’ types and topology types can be changed.

4.2.5 Simulation setup and boundary conditions

Once the potentials, the reactions (Fig. 4.1a,b), and a temperature T have been de�ned, a corresponding

simulation can be set up. A simulation box can be periodic or partially periodic, see Fig. 4.1c. Periodicity

in a certain direction means that with respect to that direction particle wrapping and the minimum

image convention are applied. Non-periodic directions require a harmonically repelling wall as given in

Eq. (4.4).

In order to de�ne the initial condition, particles and particle complexes are added explicitly by

specifying their 3D position and type. A simulation can now be started by providing a time step size �
and a number of integration steps.

4.3 Design and Implementation
ReaDDy 2 is mainly written in C++ and has Python bindings making usage, con�guration, and extension

easy while still being able to provide high performance. To encourage usage and extension of the software,

it is Open Source and licensed under the BSD-3 license. It therefore can not only be used in other Open

Source projects without them requiring to have a similar license, but also in a commercial context.

4.3.1 Design

The software consists of three parts. The user-visible toplevel part is the python user interface, see

Fig. 4.2a. It is a language binding of the C++ user interface (Fig. 4.2b) and has additional convenience

functionality. The work�ow consists out of three steps:

1. The user is creating a readdy.ReactionDi�usionSystem, including information about temperature,

simulation box size, periodicity, particle species, reactions, topologies, and physical units. Per

default the con�gurational parameters are interpreted in a unit set well suited for cytosolic

environments (lengths in nm, time in ns, and energy in kJ/mol), e.g., particles representing proteins

in solution. The initial condition, i.e., the positions of particles, is not yet speci�ed.

2. The system can generate one or many instances of readdy.Simulation, in which particles and

particle complexes can be added at certain positions. When instantiating the simulation object,

a compute kernel needs to be selected, in order to specify how the simulation will be run (e.g.,

single-core or multi-core implementation). Additionally, observables to be monitored during the

simulation are registered, e.g., particle positions, forces, or the total energy. A simulation is started

by entering a time step size � > 0 in units of time and a number of integration steps that the system

should be propagated.
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Figure 4.2: The software structure. (a) Python user interface: Provides a Python binding to

the “C++ user interface” with some additional convenience functionality. The user creates a

“readdy.ReactionDi�usionSystem” and de�nes particle species, reactions, and potentials. From a con-

�gured system, a “readdy.Simulation” object is generated, which can be used to run a simulation of

the system given an initial placement of particles. (b) C++ core library: The core library serves as an

adapter between the actual implementation of the algorithms in a compute kernel and the user interface.

(c) Compute kernel implementation: Implements the compute kernel interface and contains the core

simulation algorithms. Di�erent compute kernel implementations support di�erent hard- or software

environments, such as serial and parallel CPU implementations. The compute kernel is chosen when

the “readdy.Simulation” object is generated and then linked dynamically in order to provide optimal

implementations for di�erent computing environments under the same user interface.

3. When a simulation has been performed, the observables’ outputs have been recorded into a �le.

The �le’s contents can be loaded again into a readdy.Trajectory object that can be used to produce

trajectories compatible with the VMD molecular viewer [HDS96].

Running a simulation based on the readdy.Simulation object invokes a simulation loop. The default

simulation loop is given in Alg. 2. Individual steps of the loop can be omitted. This enables the user to, e.g.,

perform pure PBRD simulations by skipping the calculation of forces. Performing a step in the algorithm

leads to a call to the compute kernel interface, see Fig. 4.2b. Depending on the selected compute kernel

the call is then dispatched to the actual implementation. Compute kernel implementations (Fig. 4.2c)

are dynamically loaded at runtime from a plugin directory. This modularity allows ReaDDy 2 to run

across many platforms although not every computing kernel may run on a given platform, such as a

CUDA-enabled computing kernel. ReaDDy version 2 includes two iPRD computing kernels: a single

threaded default computing kernel, and a dynamically-loaded shared-memory parallel kernel.

The computing kernels contain implementations for the single steps of the simulation loop. Currently,
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Algorithm 2: ReaDDy 2 default simulation loop. Each of the calls are dispatched to the compute

kernel, see Fig. 4.2. Furthermore, the user can decide to switch o� certain calls in the simulation

loop while con�guring the simulation.

Initialize compute kernel;

if has output �le then
Write simulation setup;

Set up neighbor list;

Compute forces;

Evaluate observables;

while continue simulating do
Call integrator;

Update neighbor list;

Perform reactions;

Perform topology reactions;

Update neighbor list;

Calculate forces;

Evaluate observables;

Tear down compute kernel;

integrator and reaction handler are exchangeable by user-written C++ extensions. Hence, there is

�exibility considering what is actually performed during one step of the algorithm or even what kind of

underlying model is applied.

In comparison to the predecessor ReaDDy 1, the software is a complete rewrite and extension.

The functionality of the Brownian dynamics integrator has been preserved, however the reaction

handlers can behave slightly di�erently. In particular, if during an integration step a reaction con�ict

occurs, i.e., there are at least two reaction events which involve the same educt particles, only one of

these events can be processed. One possibility of choosing the to-be processed event is the so-called

“UncontrolledApproximation”, which draws the next reaction event uniformly from all events and prunes

con�icting events. Another possibility is drawing the next reaction event from all events weighted by

their respective reaction probability. Since this approach is loosely based on the reaction order in the

Gillespie SSA, this reaction handler is named “Gillespie” in ReaDDy 2.

With respect to the microscopic evaluation of a reaction event, the ReaDDy 1 implementation places

product particles of �ssion type reactions at a �xed distance, which is handled more �exibly in the

current implementation, see Section 4.2.3.

4.3.2 Performance

To benchmark ReaDDy 2, we use a reactive system with three particle species A, B, and C introduced

in [SN13] with periodic boundaries instead of softly repelling ones. The simulation temperature is

set to T = 293K and the di�usion coe�cients are given by DA = 143.1 �m2 s−1, DB = 71.6 �m2 s−1,
and DC = 68.82 �m2 s−1. Particles of these types are subject to the two reactions A + B ⇀ C with

microscopic association rate constant �on = 10−3 ns−1 and reaction radius R1 = 4.5 nm, and C ⇀ A+ B
with microscopic dissociation rate constant �off = 5 × 10−5 ns−1 and dissociation radius R2 = R1. Particles
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are subject to an harmonic repulsion interaction potential which reads

U (r) = {�2 (r − �)2 , for r 6 �,0 , otherwise,

(4.6)

where � is the distance at which particles start to interact and � = 10 kJmol−1 nm−2
is the force constant.

The interaction distance � is de�ned as sum of radii associated to the particles’ types, in this case rA =1.5 nm, rB = 3 nm, and rC = 3.12 nm. All particles are contained in a cubic box with periodic boundaries.

The edge length is chosen such that the initial number density of all particles is %tot = 3141 nm−3
. This

total density is distributed over the species, such that the initial density of A is %A = %tot/4, the initial

density of B is %B = %tot/4, and the initial density of C is %C = %tot/2. For the chosen microscopic rates

these densities roughly resemble the steady-state of the system. The performance is measured over a

simulation timespan of 300 ns which is much shorter than the equilibration time of this system. Thus

the overall number of particles does not vary signi�cantly during measurement and we obtain the

computation time at constant density.

In the following the benchmark results are presented. A comparison between the sequential reference

compute kernel, the parallel implementation, and the previous Java-based ReaDDy 1 [SN13] is made with

respect to their performance when varying the number of particles in the system keeping the density

constant. Since the particle numbers �uctuate the comparison is based on the average computation time

per particle and per integration step (Fig. 4.3). The sequential kernel scales linearly with the number of

particles, whereas the parallelized implementation comes with an overhead that depends on the number

of threads. The previous Java-based implementation does not scale linearly for large particle numbers,

probably owing to Java’s garbage collection. The parallel implementation starts to be more e�cient than

the sequential kernel given su�ciently many particles.

Fig. 4.4 shows the strong scaling behavior of the parallel kernel, i.e. the speedup and e�ciency for

a �xed number of particles as a function of the used number of threads. For su�ciently large particle

numbers, the kernel scales linear with the number of physical cores and an e�ciency of around 80%. In

hyperthreading mode, it then continues to scale linear with the number of virtual cores with an e�ciency

of about 55–60%.

The number of steps per day for a selection of particle numbers and kernel implementation is

displayed in Table 4.1. For a system with 13, 000 particles and a time step size of � = 1 ns (e.g., membrane

proteins [SN13]), a total of 17ms simulation time per day can be collected on a six-core machine (Fig. 4.3

for details). The current ReaDDy kernels are thus suited for the detailed simulation of processes in

the millisecond- to second timescale, which include many processes in sensory signalling and signal

transduction at cellular membranes.

Table 4.1: Number of steps per day for the benchmark system.
Approximate Steps per day Peak performance steps per day Number of

number of particles sequential kernel parallel kernel threads250 2.8 × 108 2.6 × 108 41000 7.9 × 107 1.2 × 108 713000 5.6 × 106 1.7 × 107 1140000 1.8 × 106 6.3 × 106 11
Number of time steps per day for benchmark system of Section 4.3.2 using the machine described in

Fig. 4.3. In case of the parallelized implementation the peak performance with respect to the number of

threads is shown.
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Figure 4.3: Performance comparison. Average computation time per particle and integration step for

the benchmark system of Section 4.3.2 using a machine with an Intel Core i7 6850K processor, i.e., six

physical cores at 3.8 GHz, and 32GB DDR4 RAM at 2.4 GHz (dual channel). The number of particles is

varied, but the particle density is kept constant. The sequential kernel (orange) has a constant per-particle

CPU cost independent of the particle number. For large particle numbers, the parallel kernels are a certain

factor faster (see scaling plot Fig. 4.4). For small particle numbers of a few hundred the sequential kernel

is more e�cient. ReaDDy 2 is signi�cantly faster and scales much better than the previous Java-based

ReaDDy 1 [SN13].

4.4 Results

In the following, several aspects of the model applied in ReaDDy 2 are validated and demonstrated by

considering di�erent application scenarios and comparing the results to analytically obtained results,

simulations from other packages, or literature data.

4.4.1 Reaction kinetics and detailed balance

We simulate the time evolution of particle concentrations of the benchmark system described in Sec-

tion 4.3.2. In contrast to the benchmarks, the considered system initially only contains A and B particles

at equal numbers. It then relaxes to its equilibrium mixture of A, B, and C particles (Fig. 4.5). Since the

number of A and B molecules remain equal by construction, only the concentrations of A and C are

shown.

In addition we compare the solutions with and without harmonic repulsion potentials Eq. (4.6)

between all particles, as well as two di�erent methods for executing the reactions: The Doi reaction

scheme as described in Section 4.2.3 and the detailed-balance reaction scheme iPRD–DB described

in [FN18].

In contrast to Section 4.3.2, we construct a macroscopic reference system with rate constants kon =3.82 × 10−1 nm3s−1 and koff = 5 × 10−5 s−1 resembling a cellular system. The microscopic reaction rate

constants �on and �off are then chosen with respect to the reference system taking interaction potentials
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Figure 4.4: Speedup and e�ciency. Parallel speedup and e�ciency of the benchmark system of

Section 4.3.2 as a function of the number of cores using the machine described in Fig. 4.3. (a) Speedup

with di�erent numbers of cores compared to one core. Optimally one would like to have a speedup that

behaves like the identity (black dashed line). (b) E�ciency is the speedup divided by the number of

threads, i.e., how e�ciently the available cores were used.
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Figure 4.5: Reaction kinetics and detailed balance. Concentration time series of a the reaction-

di�usion system introduced in Section 4.3.2 with the reversible reaction A + B � C. Compared are

cases with and without harmonic repulsion Eq. (4.6). Additionally we compare two di�erent reaction

mechanisms, the Doi reaction scheme and the detailed balance (iPRD-DB) method for reversible reactions.

(a) 30% volume occupation and no interaction potentials. (b) 30% volume occupation with harmonic

repulsion between all particles. (c) 60% volume occupation and no interaction potentials. (d) 60% volume

occupation with harmonic repulsion between all particles.
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between A and B into account. In particular, �off = koff , (4.7)�on = konVeff , (4.8)

where Veff = ∫ R0 exp(−�U )4�r2dr is the accessible reaction volume, R the reaction radius, � the inverse

thermal energy, and U the pair potential. The harmonic repulsion potential reduces Veff with respect

to the volume of the reactive sphere. The expression Eq. (4.8) originates from an approximation forkon in a su�ciently well-mixed (i.e., reaction–limited) and su�ciently diluted system. The derivation

can be found in [FN18] based on calculating the total association rate constant kon for an isolated pair

of A and B particles. In this case one obtains �off = 5 × 10−5 ns−1 for the microsopic dissociation rate

constant. The microscopic association rate constant reads �on = 10−3 ns−1 for the noninteracting system

and �on = 2.89 × 10−3 ns−1 for the interacting system. Note that for non-reversible binary reactions

without interaction potentials the formula provided by [Doi75; EC09] describes the relation between� and k for slow di�usion encounter. In the case of non-reversible binary reactions with interaction

potentials and slow di�usion encounter such a relation can still be numerically computed [Dib+19].

Using the macroscopic rate constants kon and koff , a solution can be calculated for the mass-action

reaction rate equations (RRE). This solution serves as a reference for the noninteracting system (no

potentials), because the system parameters put the reaction kinetics in the mass-action limit.

In the noninteracting system, the ReaDDy solution and the RRE solution indeed agree (Fig. 4.5a,c). In

the case of interacting particles, see Fig. 4.5b, d, an exact reference is unknown. We observe deviations

from the RRE solution that become more pronounced with increasing particle densities. A di�erence

between the two reaction schemes can also be seen. The Doi reaction scheme shows faster equilibration

compared to RRE for increasing density, whereas the iPRD-DB scheme shows slower equilibration, as

it has a chance to reject individual reaction events based on the change in potential energy. Thus an

increased density leads to more rejected events, consistent with the physical intuition that equilibration

in a dense system should be slowed down. Furthermore the equilibrated states di�er depending on the

reaction scheme, showing a dependence on the particle density. For denser systems the iPRD-DB scheme

favors fewer A and B particles than the Doi scheme, consistent with the density-dependent equilibria

described in [FN18].

4.4.2 Di�usion

Next we simulate and validate the di�usive behavior of noninteracting particle systems and the subdi�u-

sive behavior of dense interacting particle systems. The simulation box contains particles with di�usion

coe�cient D0 and is equipped with softly repelling walls, in order to introduce �nite size e�ects. The

observations are carried out with and without interaction potential. In the case without interaction

potential we compare with an analytical solution and the case of an interaction potential is compared to

the literature.

Length x is given in units of � , time t is given in units of �2/D0, and energy is given in units of kBT .

The cubic box has an edge length of � ≈ 28� .

The noninteracting particle simulation has a mean-squared displacement of particles in agreement

with the analytic solution given by Fick’s law for di�usion in three dimensions⟨(xt − x0)2⟩ = 6D0t, (4.9)

where x is the position of a particle and t is time (Fig. 4.6). For long timescales t > 101 transport is

obstructed by walls, resulting in �nite size saturation.
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Figure 4.6: Di�usion in crowded environments. Mean squared displacement as a function of time.

Multiple particles are di�using with intrinsic di�usion coe�cient D0 in a cubic box with harmonically

repelling walls. Triangles were obtained by using the Yukawa repulsion potential Eq. (4.10) between all

particles. The dashed line represents an e�ective di�usion coe�cient from the literature [LS93] for the

same Yukawa repulsion potential.

Fig. 4.6 also shows that more complex transport can be modeled, as, e.g., found in crowded systems.

Particles interact via the Yukawa potential [Yuk35]

U (r) = {U0� exp (−� r−�� ) /r , for r 6 rc ,0 , otherwise,

(4.10)

where U0 = kBT is a repulsion energy, � is the length scale, � = 8 is the screening parameter, andrc = 2.5� the cuto� radius.

The particle density is n�3 = 0.6 with n being the number density. In such a particle system, the

mean-squared displacement di�ers signi�cantly from the analytical result for free di�usion after an

initial time t ≥ 10−2 in which particles travel their mean free path length with di�usion constant D0.
At intermediate timescales t ∈ [10−2, 10−1), particle transport is subdi�usive due to crowding. At long

timescales, t ∈ [10−1, 101), the particles are again di�usive with an e�ective di�usion coe�cient D that is

reduced to re�ect the e�ective mobility in the crowded systems. We compare this to an e�ective di�usion

coe�cient obtained by Brownian dynamics simulations from Löwen and Szamel [LS93] and �nd that

they qualitatively agree. For large timescales t > 101 �nite size saturation can explicitly be observed as

almost every particle has been repelled at least once by the boundaries.

To quantitatively compare the long-time e�ective di�usion coe�cient D, we set up 1100 particles

in a periodic box without repelling walls with the edge length chosen to give the densired densityn�3 = 0.6. The cuto� of the potential Eq. (4.10) is set to rc = 5� , where U (rc ) < 10−14kBT . The particle

suspension is equilibrated for at least teq > 3 with a time-step size of � = 10−5. We observe the mean

squared displacement until tobs = 4.5 and measure the di�usion coe�cient as the slope of a linear

function for t ∈ [4, 4.5). We obtain D/D0 = 0.54 ± 0.01, which agrees with the reference value [LS93]Dref/D0 = 0.55 ± 0.01.



4.4. RESULTS 97

4.4.3 Thermodynamic equilibrium properties

We validate that ReaDDy 2’s integration of equations of motion yields the correct thermodynamics

of a Lennard-Jones colloidal �uid in an (N , V , T ) ensemble. To this end, we simulate a system of N
particles con�ned to a periodic box with volume V at temperature T . The results and comparisons with

other simulation frameworks and analytical results are shown in Table 4.2. The particles interact via the

Lennard-Jones potential

U (r) = 4" [(�r )12 − (�r )6] ,
with " being the depth of the potential well and � the diameter of particles. The potential is cut o�

at rC = 4� and shifted to avoid a discontinuity. The rescaled temperature is T ∗ = kBT"−1 = 3. We

perform simulations of the equilibrated Lennard-Jones system for 106 integration steps with rescaled

time step size � ∗ = 10−4. Time units are �2/D and are determined by the self-di�usion coe�cient D of

the particles. We measure the rescaled pressure P ∗ = P�3"−1 by estimating the virial term from forces

acting in the system as described in [AT87]. Additionally we measure the rescaled potential energy per

particle u∗ = UN −1"−1. Both pressure and potential energy are calculated every 100th time step. This

sampling gives rise to the mean and its error of the mean given for the ReaDDy 2 results in Table 4.2.

Comparing HALMD [CH11] and ReaDDy 2, the latter shows larger energy and pressure in the third

decimal place for the lower density %∗ = 0.3. For the higher density %∗ = 0.6 pressure di�ers in the �rst

decimal place and energy in the second. This can be explained by ReaDDy 2 using an Euler scheme

Eq. (4.3) to integrate motion of particles, which has a discretization error of �rst order in the time step

size (� ). On the other hand HALMD uses a Velocity-Verlet method [Swo+82], which has a discretization

error of second order in the time step size (�2).
Table 4.2: Thermodynamic equilibrium properties of a Lennard–Jones colloidal �uid in a(N , V , T ) ensemble.

density %∗ pressure P ∗ energy u∗
ReaDDy 2 0.3 1.0253 ± 0.0004 −1.6704 ± 0.0003
HALMD [CH11] 0.3 1.0234 ± 0.0003 −1.6731 ± 0.0004
Johnson et al. [JZG93] 0.3 1.023 ± 0.002 −1.673 ± 0.002
Ayadim et al. [AOA09] 0.3 1.0245 −1.6717
ReaDDy 2 0.6 3.711 ± 0.002 −3.2043 ± 0.0004
HALMD [CH11] 0.6 3.6976 ± 0.0008 −3.2121 ± 0.0002
Johnson et al. [JZG93] 0.6 3.69 ± 0.01 −3.212 ± 0.003
Ayadim et al. [AOA09] 0.6 3.7165 −3.2065
Results of the ReaDDy 2 framework are compared to other simulation frameworks and analytical results

for validation.

4.4.4 Topology reactions

We illustrate ReaDDy 2’s ability to model complex reactions between multi-particle complexes, called

“topology reactions”. We model polymers as linear chains of beads, held together by harmonic bonds and

sti�ened by harmonic angle potentials.
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Figure 4.7: Mean-squared end-to-end distance of worm-like chains. The theoretical mean-squared

end-to-end distance of worm-like chains as a function of number of beads Eq. (4.11) is compared to

simulation data obtained from linear chains of beads as described in Section 4.2.4. Error bars depict

errors over the mean from multiple measurements.

When considering just one worm-like chain with a certain amount of beads n, its equilibrium

mean-squared end-to-end distance should behave like [RC03]

⟨R2⟩ = 2lpRmax − 2l2p (1 − exp(−Rmaxlp )) , (4.11)

where lp = 4lk(kBT )−1 is the persistence length, Rmax = (n − 1)l the chain contour length, l the bond

length, and k the force constant of the harmonic angles. In order to verify that the considered chain

model obeys the mechanics of a worm-like chain, the theoretical mean-squared end-to-end distance

Eq. (4.11) can be compared to observations from simulations, see Fig. 4.7. For each �xed number of beads,

an isolated chain was relaxed into an equilibrium state without performing topology reactions, yielding

a squared end-to-end distance at the end of the simulation. This experiment was repeated 51 times.

From the �gure it can be observed that there is good agreement between the theoretical and measured

mean-squared end-to-end distances.

In a system with many of these chains, we introduce two di�erent particle types for the beads. Either

they are head particles and located at the ends of a polymer chain or they are core particles and located

between the head particles, as shown in Fig. 4.8a, c in blue and orange, respectively.

We impose two di�erent topology reactions in the system with many chains (Fig. 4.8a):

1. Association: Two nearby head particles (distance ≤ R) can connect with rate �1. The topology is

changed by adding an edge between the connected particles, resulting in the addition of one bond

and two angle potentials. Additionally, the particle types of the two connected particles change

from “head” to “core”.

2. Dissociation: A chain with n particles can dissociate with microscopic rate n�2, such that longer

chains have a higher probability to dissociate than shorter chains. When a dissociation occurs,

a random edge between two core particles is removed. The particle types of the respective core

particles are changed to “head”. As a result, the graph decays into two connected components

which subsequently are treated as autonomous topology instances.
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Figure 4.8: Topology reactions example. Illustrative simulation of polymer assembly/disassembly

using topology reactions. (a) Sketch of the involved topology reactions. Association: When two ends of

di�erent topologies come closer than R, there is a rate �1 that an edge is formed. Dissociation: The inverse

of association with a rate �2 and a randomly drawn edge that is removed. (b) The number of beads in a

polymer ⟨n(t)⟩ over time averaged over 15 realizations. (c) Two representative particle con�gurations

showing the initial state and the end state at time tbegin and tend, respectively.
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The temporal evolution of the average length of polymer chains is depicted in Fig. 4.8b. The simulation

was performed 15 times with an initial con�guration of 500 polymers containing four beads each. After

su�cient time ⟨n(t)⟩ reaches an equilibrium value. Over the course of the simulation the polymers

di�use and form longer polymers. This can also be observed from the two snapshots shown in Fig. 4.8c,

depicting a representative initial con�guration at t
begin

and a representative con�guration at the end of

the simulation at time. In that case, there are polymers of many di�erent lengths.

4.4.5 Nontrivial bimolecular association kinetics at high concentrations
This section studies a biologically inspired system with three macromolecules A, B, and C, that resemble,

e.g., proteins in cytosol. The macromolecules A and B can form complexes C that also can dissociate

back into their original components, i.e., we introduce reactionsA+ B
 C. (4.12)

This form of interaction has been studied for proteins bovine serum albumin and hen egg white lysozyme

in coarse-grained atomistic detail in [MMW14] and for barnase and barstar in [Pla+17]. Here, we consider

the case where the association reaction of Eq. (4.12) does not preserve volume, i.e., the complex C is

more compact.

The presence of ions in aqueous solutions has e�ects on protein interactions [RAL78], therefore

we assume the reversibly associating macromolecules to be weakly charged and thus subject to the

Debye-Hückel interaction potential [DH23] including an additional repulsion term

Us1s2 (r) = qs1qs2 e2"0"r exp(−�r)r + Ur (�s1s2r )12 , (4.13)

where s1, s2 ∈ {A, B, C}, q are partial charges associated with the macromolecules, e is the elementary

charge, "0 is the vacuum permittivity, "r is the relative permittivity of an aqueous solution, � is the

screening parameter that describes shielding due to ions in the solution, Ur is the repulsion energy, and�s1s2 = rs1 + rs2 is the sum of two particle radii. Here, we do not take hydration e�ects into account.

We investigate the equilibrium constant K = [A][B]/[C] for di�erent number densities n = (NA +NB)/2 + NC . In case of a reversibly associating �uid described by the law of mass action, the equilibrium

constant is given by K = koff/kon, where kon is the macroscopic association rate constant of Eq. (4.12)

and koff the respective dissociation rate constant. In a well-mixed (i.e., reaction-limited) and su�ciently

diluted system, kon can be approximated as in Section 4.4.1. However, for a di�usion-in�uenced process

which we consider here, kon is typically understood as a harmonic mean of encounter and formation

rates [SS82; SSS80; GH80; NH79], i.e., k−1on = k−1enc + k−1form. At low densities, only two-body interactions

between A and B determine the on-rate constant, in this limit, kon can be evaluated numerically as a

function of the microscopic association rate constant �on in the presence of the interaction potential,

based on solving the Smoluchowski di�usion equation with a sink term that accounts for the volume

reaction model, see [Dib+19]. Furthermore, in dense reversibly associating �uids, many-body interactions

have an in�uence on kon, in particular due to competition for reactants, clustering, volume exclusion,

and caging [NH79].

Thus, it is challenging to �nd a consistent analytical description over multiple orders of magnitudes

in density. In contrast, we perform an empirical evaluation by simulations as shown in Fig. 4.9. To this

end, we set up 6 simulations for di�erent n ∈ [2 × 101, 1.5 × 104] in a constant volume which then are

allowed to relax into an equilibrium state subject to detailed-balance and yield a measurement K(n). The

exact simulation parameters can be found in Table 4.3. The reference value for the dilute case is given

by Kdilute = koff/kdiluteon , where koff = �off and kdiluteon is a function of the microscopic association rate

constant �on as well as the interaction potential (Eq. (4.13)) and is numerically computed as described

in [Dib+19].
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Table 4.3: Parameters of density-dependent reaction kinetics.
Quantity Symbol Value Unit

Thermal energy kBT 2.49 kJmol−1
Volume V 1003 nm3
Radius A rA 1 nm
Radius B rB 0.8 nm
Radius C rC 1 nm
Di�usion coe�. A DA 0.01 nm2 ns−1
Di�usion coe�. B DB 0.0125 nm2 ns−1
Di�usion coe�. C DC 0.01 nm2 ns−1
Charge A qA 1.3 –

Charge B qB −1 –

Charge C qC 0 –

Screening parameter � 3.82 nm−1
Debye-Hückel prefactor e2"−10 "−1r 2349 kJ nmmol−1
Repulsion energy Ur 1. kJmol−1
Cuto� radius rcutoff 4.7 nm
Reaction radius R 2. nm
Equilibrium constant Kdilute 6.16 × 10−5 nm−3
Macroscopic rate constant kon 0.11 nm3 ns−1
Macroscopic rate constant koff 6.58 × 10−6 ns−1
Microscopic rate constant �on 5.61 × 10−3 ns−1
Microscopic rate constant �off 6.58 × 10−6 ns−1
Timestep � 0.1 ns
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Figure 4.9: Equilibrium constant transition from dilute to dense systems. The equilibrium con-

stant K is obtained by simulation for di�erent choices of the number of particles n = (NA + NB)/2 + NC
which corresponds to a density due to constant volume of the simulation box and compared to an

analytically obtained equilibrium constant of a dilute system (dashed line). The number of particles n
remains constant during the course of a simulation. The shaded areas are standard deviations from the

recorded data.

We show that the reference value Kdilute is recovered by the simulation for low densities. For

increasing densities more complex behavior can be observed. In particular, there is a drop in the value

of K for n & 102 which then is followed by a roughly stable regime up to n ≈ 5 × 103. For even higher

densities, the equilibrium state is dominated by the complexes C likely due to �nite size of the simulation

volume. This drop in the equilibrium constant is in accord with Le Chatelier’s principle [ADK18], i.e.,

the system prefers the state of lower free energy.

4.5 Availability and Future Directions

We have described the iPRD simulation framework ReaDDy 2 for combined particle interaction dynamics

and reaction kinetics, which permits to conduct highly realistic simulations of signal transduction in

crowded cellular environments or chemical nanoreactors with complex geometries. ReaDDy 2 follows

up upon and signi�cantly extends the simulation package ReaDDy 1. ReaDDy 2 is signi�cantly faster

than its predecessor, it can be easily installed as a Python conda package, and it can be �exibly used and

recon�gured via its Python interface.

In comparison to molecular dynamics software packages, ReaDDy 2 does not include long range

interactions. The software comes with a set of default interaction potentials. These include, e.g., harmonic

repulsion which can model steric repulsion, Lennard–Jones interaction, and screened electrostatics which

provide a way to model charged interaction at short ranges. Furthermore, ReaDDy allows for implemen-

tation of any short-ranged potential via a C++ interface. It is possible to implement and subsequently use

hydration models which are short-ranged [SSN12; HD03] in the ReaDDy 2 framework. Hydrodynamic

interactions are currently not included. They can be added by, e.g., providing an appropriate integrator

which represents these interactions by a particle pairwise friction tensor [EM78].
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Currently all pair potentials implemented in ReaDDy 2 are isotropic, however anisotropic interactions

can be emulated by using particle complexes, in particular allowing for patchy particles. If the particles

and interactions should be anisotropic themselves, a new computation kernel or appropriate integrator

can be implemented into the framework via the C++ interface.

We have conducted a set of numerical studies, showing that ReaDDy 2 produces quantitatively

accurate results where references from analytical solutions or other simulation packages were available,

and physically meaningful results where reference solutions were not available.

For a quick and easy start into simulating and developing with ReaDDy 2 step by step tutorials,

sample code, and further details are available online (https://readdy.github.io/). The software

itself is Open Source and available under a permissive licence in order to enable a broad group of people

to run simulations without forcing them to make their own work public.

ReaDDy 2 has been designed to be easily extensible. Planned extensions include simulation kernels

for specialized hardware platforms, such as graphics processors and highly parallel HPC environments.

Also planned is a MD-GFRD integrator [SN17] to speed up computations in dilute systems, and a particle-

based membrane model as described in [SWN18] that reproduces mechanical properties of cellular

membranes.

In its current state, membranes can be modeled in terms of external forces, i.e., constraining particles

onto two-dimensional surfaces. As these constraints only apply to selected particle types, it is possible

to, e.g., grow polymers against a static membrane, where one end is anchored.
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Chapter 5

Reactive SINDy: Discovering
governing reactions from
concentration data

The results of this chapter have been published in the following paper:

Moritz Ho�mann, Christoph Fröhner (CF), and Frank Noé. “Reactive SINDy: Discovering

governing reactions from concentration data”. In: The Journal of Chemical Physics 150.2

(2019), p. 025101. 10.1063/1.5066099

Parts of the text and illustrations have been adopted unchanged in this document. Reprinted from The
Journal of chemical physics “Reactive SINDy: Discovering governing reactions from concentration data”,

Ho�mann, Fröhner, and Noé, 2019, with the permission of AIP Publishing.

Moritz Ho�mann and CF contributed equally to this work. In particular the contributions were as

follows: Moritz Ho�mann, CF and Frank Noé conceived the project and laid out the theory. Moritz

Ho�mann and CF set up the software pipeline for generation of training data, the minimization procedure

and cross validation. Moritz Ho�mann took care of the results in the low-noise limit (Section 5.3.1). CF

ran the cross validation for noisy measurements (Sections 5.3.2 and 5.3.3) on the compute cluster. CF

applied the Reactive SINDy method to the predator-prey and MAPK example (Sections 5.3.4 and 5.3.5).

Moritz Ho�mann and CF analyzed and visualized all resulting data. All contributors wrote the paper.

Summary

The inner workings of a biological cell or a chemical reactor can be rationalized by the network of

reactions, whose structure reveals the most important functional mechanisms. For complex systems,

these reaction networks are not known a priori and cannot be e�ciently computed with ab initio methods,

therefore an important approach goal is to estimate e�ective reaction networks from observations, such as

time series of the main species. Reaction networks estimated with standard machine learning techniques

such as least-squares regression may �t the observations, but will typically contain spurious reactions.

Here we extend the sparse identi�cation of nonlinear dynamics (SINDy) method to vector-valued ansatz

functions, each describing a particular reaction process. The resulting sparse tensor regression method

“reactive SINDy” is able to estimate a parsimonious reaction network. We illustrate that a gene regulation

network can be correctly estimated from observed time series.

109

https://doi.org/10.1063/1.5066099


110 CHAPTER 5. REACTIVE SINDY

5.1 Introduction

Mapping out the reaction networks behind biological processes, such as gene regulation in cancer [Abr+04],

is paramount to understanding the mechanisms of life and disease. A well-known example of gene

regulation is the lactose operon whose crystal structure was resolved in [Lew+96] and dynamics were

modeled in [YM03]. The system’s “combinatorial control” in E. coli cells was quantitatively investigated

in [Kuh+07], in particular studying repression and activation e�ects. These gene regulatory e�ects often

appear in complex networks [She+02] and there exist databases resolving these for certain types of cells,

e.g., E. coli cells [Gam+16] and yeast cells [Lee02]. Another example where mapping the active reactions

is important is that of chemical reactors [Roa+17], where understanding which reactions are accessible

for a given set of educts and reaction conditions is important to design synthesis pathways [Con+99;

KR05].

The traditional approach to determine a reaction network is to propose the structure of the network

based on chemical insight and subsequently �t the parameters given available data [Sch+14]. To decipher

complex reaction environments such as biological cells, it would be desirable to have a data-driven

approach that can answer the question which reactions are underlying a given observation, e.g., the

time series of a set of reactants. However, in su�ciently complex reaction environments the number of

reactive species and possible reactions is practically unlimited – as an illustration, consider vast amount

of possible isomerizations and post-translational modi�cations for a single protein molecule. Therefore,

the more speci�c formulation is “given observations of a set of chemical species, what is the minimal set
of reactions necessary to explain their time evolution?”. This formulation calls for a machine learning

method that can infer the reaction network underlying the observation data.

Knowledge about the reaction network can be applied to parameterize other numerical methods to

further investigate the processes at hand. Such methods include particle-based approaches derived from

the chemical master equation [Gil77; WS16; WS17; Isa09], as well as highly detailed but parameter-rich

methods such as particle-based or interacting-particle reaction dynamics [SN13; HFN19b; FN18; DYK18;

And17; ZW05a; ZW05b] capable of fully resolving molecule positions in space and time – see [SUN14;

And18] for recent reviews.

Existing methods to infer regulatory networks include ARCANE [Mar+06] that uses experimental

essay data and information theory, as well as the likelihood approach presented in [Tia+07] that takes

the stochasticity of observed reactant time series into account.

The method presented in this work can identify underlying complex reaction networks from concen-

tration time series by following the law of parsimony, i.e., by inducing sparsity in the resulting reaction

network. This promotes the interpretability of the model and avoids over�tting. We formulate the prob-

lem as data-driven identi�cation of a dynamical system, which renders the method consistent with and an

extension of the framework of sparse identi�cation of nonlinear dynamics (SINDy) [BPK15]. Speci�cally,

the problem of identifying a reaction network from time traces of reactant concentrations can be solved

by �nding a linear combination from a library of candidate nonlinear functions (ansatz functions) that

each corresponds to a reaction acting on a set of reactants. With this formulation, the reaction rates can

be determined via regression. Sparsity is induced by equipping the regression algorithms with a sparsity

inducing regularization. SINDy was investigated, generalized, and applied in many di�erent ways, e.g.,

including control [BPK16] (SINDYc), in the context of partial di�erential equations [Rud+17], updating

already existing models [Qua+18] (abrupt-SINDy), and looking into convergence properties [ZS18].

We extend and apply SINDy to the case of learning reaction networks from non-equilibrium con-

centration data. Similar approaches make use of SINDy but do not resolve speci�c reactions [Man+16],

use weak formulations to avoid numerical temporal derivatives [PT17], or use compressive sensing and

sparse Bayesian learning [Pan+12].

Our extension of the original SINDy method mostly involves estimating parameters which are coupled

across the equations of the arising dynamical system. In the context of learning reaction networks this
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means that we look for speci�c reactions and their rate constants that might have lead to the observations

instead of net �ux across species. We demonstrate the algorithm on a gene regulatory network in three

di�erent scenarios of measurement: When there is no noise in the data we can �nd, given su�cient

amounts of data, all relevant processes of the ground truth. If there is noise in the data we converge to

the correct reaction network and rates with decreasing levels of noise. The third scenario generalizes the

method to two measurements with di�erent initial conditions, also converging to the correct model with

decreasing levels of noise.

We additionally demonstrate the algorithm on time series data of the mitogen activated protein

kinases (MAPK) pathway as an example for a bimodal system and on time series data of the Lotka–

Volterra system which describes oscillatory predator-prey dynamics subject to social friction. In both

systems reactive SINDy recovers the generating reaction network whereas non-sparse estimation detects

many spurious processes.

5.2 Reactive SINDy: Sparse learning of reaction kinetics
We are observing the concentrations of S chemical species in time t :

x(t) = ⎛⎜⎜⎝
x1(t)⋮xS (t)⎞⎟⎟⎠ ∈ ℝS . (5.1)

We assume that their dynamics are governed by classical reaction-rate equations subject to the law of

mass action. A general expression for the change of concentration of reactant s as a result of order-0

reactions (creation), order-1 reactions (transitions of other species into s, transitions of s into other

species, or annihilation), order-2 reactions (production or consumption of s by the encounter of two

species), etc, is given by: ẋs = ∑i �(i)s,0 +∑i �(i)s,1xi +∑i,j �(i,j)s,2 xixj + … (5.2)

where the �(…)s,k -values are constants belonging to the reactions of order k. These rate constants however

can incorporate several underlying reactions at once. For example, the two reactions

s1 �1←←←←←←←←←←←←←←⇀ s2 (5.3)s1 �2←←←←←←←←←←←←←←⇀ s3 (5.4)

both contribute to ẋ1 = �(1)1,1x1 = −(�1 + �2)x1. To disentangle (5.2) into single reactions, we choose a

library of R possible ansatz reactions that each represent a single reaction:

yr (x(t)) = ⎛⎜⎜⎝
yr ,1(x(t))⋮yr ,S (x(t))⎞⎟⎟⎠ , r = 1, … , R. (5.5)

With this ansatz, the reaction dynamics (5.2) becomes a set of linear equations with unknown parameters�r that represent the sought macroscopic rate constants:

ẋi(t) = R∑r=1 yr ,i(x(t))�r , i = 1, … , S, (5.6)
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where �r are the to-be estimated macroscopic rate constants. The two reactions in the previous example

(5.3-5.4) would be modeled by the functionsy1(x) = (−x1, x1, 0)⊤,y2(x) = (−x1, 0, x1)⊤,
illustrating that the values of the coe�cients �1 and �2 can be used to decide whether a single reaction is

present and to what degree.

Now suppose we have measured the concentration vector (5.1) at T time points t1 < ⋯ < tT . We

represent these data as a matrix

X = ( x(t1) x(t2) ⋯ x(tT ) )⊤ ∈ ℝT×S . (5.7)

Given this matrix, a library Θ ∶ ℝT×S → ℝT×S×R , X ↦ (�1(X) �2(X) ⋯ �R(X)) of R candidate

(ansatz) reactions can be proposed with corresponding reaction functions

�r (X) = ⎛⎜⎜⎝
yr (X1∗)⊤⋮
yr (XT∗)⊤

⎞⎟⎟⎠ ∈ ℝT×S , r = 1, … , R, (5.8)

where Xi∗ denotes the i-th row in X. Applying the concentration trajectory to the library yields Θ(X) ∈ℝT×S×R .

The goal is to �nd coe�cients Ξ = (�1 �2 ⋯ �R)⊤, so that

Ẋ = Θ(X)Ξ = R∑r=1 �r (X)�r . (5.9)

In particular, the system is linear in the coe�cients Ξ, which makes regression tools such as elastic net

regularization [ZH05] applicable. To this end, one can consider the regularized minimization problem

(reactive SINDy):

Ξ̂ = argminΞ ( 12T ‖‖Ẋ − Θ(X)Ξ‖‖2F + ��‖Ξ‖1 + �(1 − �)‖Ξ‖22) subject to Ξ > 0. (5.10)

Here, ‖ ⋅ ‖F denotes the Frobenius norm, � ∈ [0, 1] is a hyperparameter that interpolates linearly between

LASSO [Tib96; HTF09] and Ridge [HK70] methods, and � > 0 is a hyperparameter that, depending

on �, can induce sparsity and give preference to smaller solutions in the L1 or L2 sense. For � = 0 the

minimization problem reduces to standard least-squares (LSQ) with the constraint Ξ > 0. Reactive

SINDy (5.10) is therefore a generalization of the SINDy method to vector-valued ansatz functions.

Since only the concentration data X is available but not its temporal derivative, Ẋ is approximated

numerically by second order �nite di�erences with the exception of boundary data. Once the pair (X, Ẋ)
is obtained, the problem becomes invariant under temporal reordering. Hence, when presented with

multiple trajectories the data matrices Xi and Ẋi can simply be concatenated.

In order to solve (5.10) the numerical sequential least-squares minimizer SLSQP [Kra88] is applied

via the software package SciPy [JOP+01]. Code related to this chapter can be found under https:
//github.com/readdy/readdy_learn.

5.3 Results
We demonstrate the method by estimating the reactions of a gene-regulatory network from time series of

concentrations of the involved molecules. Let S ∶= {A, B, C} be a set of three species of proteins which

https://github.com/readdy/readdy_learn
https://github.com/readdy/readdy_learn
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Figure 5.1: The regulation network example described in Sec. 5.3. Each circle depicts a species, each

arrow corresponds to one reaction. Blue arrows denote transcription from DNA to mRNA, green arrows

denote translation frommRNA to protein, and red arrows denote the regulatory network. Reprinted from

The Journal of chemical physics “Reactive SINDy: Discovering governing reactions from concentration

data”, Ho�mann, Fröhner, and Noé, 2019, with the permission of AIP Publishing.

are being translated each from their respectivemRNAmolecule. EachmRNA in turn has a correspondingDNA which it is transcribed from. The proteins and mRNA molecules decay over time whereas the DNA
concentration remains constant. The network contains reactions of the following form [TO01]

DNAi ⇀ DNAi + mRNAi (transcription),mRNAi ⇀mRNAi + i (translation),mRNAi ⇀ ∅ (decay of mRNA),i ⇀ ∅ (decay of protein),i + mRNAj ⇀ i (regulation of j ∈ S),

for each of the species i ∈ S. These reactions model a regulation of species j by virtue of the fact that the

transcription product inhibits the transcription processes. In our example proteins of type A regulate themRNAB molecules, proteins of type B regulate the mRNAC molecules and proteins of type C regulate

the mRNAA molecules (Fig. 5.1). Using this reaction model, time series of concentrations are generated

using the rates given in Tab 5.2 under the initial condition described in Tab 5.1a, which were chosen

so that all the reactions in the reaction model signi�cantly contribute to the temporal evolution of the

system’s concentrations. The generation samples the integrated equations equidistantly with a discrete

time step of � = 3 ⋅ 10−3 yielding 667 frames which amounts to a cumulative time of roughly T = 2.
The proposed estimation method is applied to analyze these time series of concentrations in order to

recover the underlying reaction network from data. To this end we use the library of ansatz functions

given in Tab. 5.2, which contains a large number of possible reactions, only few of which are actually

part of the model.
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DNAA mRNAA A DNAB mRNAB B DNAC mRNAC C
(a) 1 2 0 1 0 3 1 0 0
(b) 1 1.5 0 1 0 2 1 0 1

Table 5.1: Initial conditions (a) and (b) used to generate concentration time series. Reaction rates can

be found in Tab. 5.2. Reprinted from The Journal of chemical physics “Reactive SINDy: Discovering

governing reactions from concentration data”, Ho�mann, Fröhner, and Noé, 2019, with the permission

of AIP Publishing.

5.3.1 Learning the reaction network in the low-noise limit

We �rst demonstrate that the true reaction network can be reconstructed when using a �nite amount

of observation data without additional measurement noise, i.e., the observations are re�ecting the true

molecule concentrations at any given time point. The minimization problem (5.10) is solved using the

concentration time series shown in Fig. 5.1b.

We �rst set the hyperparameter � = 0 in the minimization problem (5.10), which results in con-

strained least-squares regression without any of the regularization terms. In this case we estimate a

reaction network that can reproduce the observations almost exactly (Fig. 5.2). However, the result is

mechanistically wrong as the sparsity pattern does not match the reaction network used to generate the

data. On the one hand many spurious reactions are estimated that were not in the true reaction scheme

and would lead to wrong conclusions about the mechanism, such as A+ A ⇀ A and A+ C ⇀ C. More

dramatically, the reaction responsible for the decay of A particles is completely ignored (Fig. 5.3).

Next, we sought sparse solutions by using � > 0 and additionally eliminating reactions with rate

constants smaller than a cuto� value �. For a suitable choice of hyperparameters � ≈ 1.91 ⋅ 10−7, � = 1,
and � = 0.22, a sparse solution is obtained that �nds the correct reaction scheme and also recovers the

decay reaction (Fig. 5.3).

The value of the cuto� � was determined by comparing the magnitude of estimated rates and �nding

a gap, see Fig. 5.8. The hyperparameter pair (�, �) was obtained by a grid search and evaluating the

di�erence ‖Ξ̂�,� −Ξ‖1, where Ξ̂�,� is the estimated model under a particular hyperparameter choice and Ξ
is the ground truth. If the ground truth is unknown, a hyperparameter pair can be estimated by utilizing

cross-validation as in the following sections.

5.3.2 Learning the reaction network from data with stochastic noise

In contrast to Sec. 5.3.1, we now employ data that includes measurement noise. Such noise can originate

from uncertainties in the experimental setup or from shot noise in single- or few-molecule measurements.

In gene regulatory networks such noise is commonly observed when only few copy numbers of mRNA
are present [Gol+05; Ber78; Elo02]. In order to simulate noise from few copies of molecules, the system of

Sec. 5.3 with initial conditions as given in Tab. 5.1a is integrated using the Gillespie stochastic simulation

algorithm (SSA) [Gil76; Gil77]. In the limit of many particles and realizations, the Gillespie SSA converges

to the integrated reaction-rate equations subject to the law of mass action. As our model is based on

exactly these dynamics, the initial condition’s concentrations are interpreted in terms of hundreds of

particles. Each realization is then transformed back to a time series of concentrations. We de�ne the noise

level as the mean-squared deviation of the concentration time series from the integrated reaction-rate

equations. Data with di�erent noise levels are prepared by averaging multiple realizations of the time

series obtained by the Gillespie SSA.

It can be observed that decreasing levels of noise lead to fewer spurious reactions when applying

reactive SINDy (5.10), see Fig. 5.4a. Also the estimation error ‖� − �̂ ‖1 with respect to the ground truth �
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Figure 5.2: Concentration time series generated from integrating the reaction network shown in Fig. 5.1a.

The initial condition prescribes positive concentration values only for B protein and mRNAA species

(Tab. 5.1a). This initial condition is used in the subsequent sections for further analysis. Gray dots depict

concentration time series yielded from the LSQ rates estimated in Sec 5.3.1. Reprinted from The Journal of
chemical physics “Reactive SINDy: Discovering governing reactions from concentration data”, Ho�mann,

Fröhner, and Noé, 2019, with the permission of AIP Publishing.
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Figure 5.3: Estimated reaction rates in the system described in Sec. 5.3.1. The y and x axes contain reaction

educts and products, respectively. A circle at position (i, j) represents a reaction i ⇀ j whose rate has a

linear relation with the area of the circle. The black outlines denote the reactions with which the system

was generated and contain the respective rate value. Red crosses denote reactions that were used as

additional ansatz reactions. Blue circles are estimated by LSQ and orange circles depict rates which were

obtained by solving the minimization problem (5.10). The latter rates are subject to a cuto� � = 0.22
corresponding to the green circle’s area under which a sparse solution with the correct processes can be

recovered. If a certain rate was estimated in both cases, two wedges instead of one circle are displayed.

Reprinted from The Journal of chemical physics “Reactive SINDy: Discovering governing reactions from

concentration data”, Ho�mann, Fröhner, and Noé, 2019, with the permission of AIP Publishing.
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Figure 5.4: Convergence of the estimation error when estimating the system described in Sec. 5.3.1 with

varying levels of noise by application of reactive SINDy (5.10) with and without regularization in blue

and orange, respectively. The procedure was independently repeated 10 times with di�erent realizations

giving rise to the mean and standard deviation depicted by solid lines and shaded areas, respectively. (a):
The number of detected spurious reactions up to the cuto� value introduced in Sec. 5.3.1 over di�erent

levels of noise. (b): The estimation error given by the mean absolute error between the generating

reaction rates � and the estimated reaction rates �̂ over di�erent levels of noise. Reprinted from The
Journal of chemical physics “Reactive SINDy: Discovering governing reactions from concentration data”,

Ho�mann, Fröhner, and Noé, 2019, with the permission of AIP Publishing.

decreases with decreasing levels of noise (Fig. 5.4b). In both cases, the regularized method with a suitable

hyperparameter pair (�, �) performs better than LSQ.

The hyperparameters (�, �) are obtained by shu�ing the data and performing a 10-fold cross valida-

tion.

5.3.3 Learning the reaction network from multiple initial conditions

Preparing the experiment that generates the data in di�erent initial conditions can help identifying the

true reaction mechanisms as a more diverse dataset makes it easier to con�rm or exclude the participation

of speci�c reactions. This section extends the analysis of Sec. 5.3.2 to two initial conditions, where the

�rst initial condition is identical to the one used previously and the second initial condition is given in

Tab. 5.1b.

The corresponding time series are depicted in Fig. 5.5a. The gray graph corresponds to a sample

trajectory generated by the Gillespie SSA. For both initial conditions the same time step of � = 3 ⋅ 10−3
has been applied, amounting to 2 ⋅ 667 = 1334 frames. Once the data matricesX1 = (x1(t1) ⋯ x1(t667)) , X2 = (x2(t1) ⋯ x2(t667))
and the corresponding derivatives Ẋ1, Ẋ2 have been obtained, the frames are concatenated so thatX = (x1(t1) ⋯ x1(t667) x2(t1) ⋯ x2(t667)) ,
analogously for Ẋ.
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Figure 5.5: Convergence of estimation error of reaction schemes from noisy gene-regulation data starting

from two di�erent initial conditions under decreasing levels of noise. The minimization problem (5.10)

was solved for � = 0 (LSQ) and with regularization. This was repeated 10 times on di�erent sets of

observation data generated by Gillespie SSA, giving rise to mean and standard deviation (solid lines

and shaded areas, respectively). (a): Concentration time series corresponding to the initial conditions,

generated by integrating the reaction-rate equations. The �rst initial condition is identical to the one

used in Sec. 5.3.1 and Sec. 5.3.2. The second initial condition (Tab. 5.1b) prescribes positive initial

concentrations for mRNAA, B, and C species. The gray graphs are sample realizations of integration

using the Gillespie SSA. (b),(c): Analogously to Fig. 5.4 with the di�erence that 20-fold cross validation

was used for hyperparameter estimation. Reprinted from The Journal of chemical physics “Reactive

SINDy: Discovering governing reactions from concentration data”, Ho�mann, Fröhner, and Noé, 2019,

with the permission of AIP Publishing.

Similarly to Sec. 5.3.2, decreasing levels of noise lead to fewer spurious reactions (Fig. 5.5b) and

a smaller L1 distance to the ground truth (Fig. 5.5c). Again applying the optimization problem with

a suitable set of parameters (�, �, �) performs better than LSQ. Compared to the previous section the

convergence is better due to twice as much available data. At noise levels of smaller than roughly 10−6
the model can reliably be recovered when using the regularized method.

The hyperparameters (�, �) are obtained by shu�ing the data and performing a 20-fold cross valida-

tion.

5.3.4 Application to MAPK cascade

The reactive SINDy method is applied to the mitogen activated protein kinases (MAPK) pathway [XGG96]

which is an important regulatory mechanism of biological cells to respond to stimuli and is involved

in proliferation, di�erentiation, in�ammation, and apoptosis [ZL02]. Single-cell MAPK kinetics can be

observed experimentally [Ryu+18]. Mathematically MAPK kinetics are often modelled using reaction

rate equations [KCG05; Ort+05] which enables analysis using reactive SINDy.

Generally a MAPK pathway consists of multiple stages of kinases that are either inactive or active,

denoted by “*”. Their activation occurs due to phosphorylation catalyzed by the upstream kinase of

the previous stage, dephosphorylation is catalyzed by phosphatases. When the kinase is active it can

activate other downstream kinases of the next stage. The initial activation is often due to an external

stimulus. The response of the whole cascade is the amount of activated substrate after the �nal stage,

typically measured as a function of the initial stimulus.

Here the MAPK pathway is modeled with three stages of kinases MAPK, MAPKK, and MAPKKK.

The initial stimulus is called S and the �nal substrate to be activated is a transcription factor TF. The
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ground truth reaction network consists of activation/phosphorylation reactions

S + MAPKKK ⇀ S + MAPKKK ∗MAPKKK ∗ + MAPKK ⇀ MAPKKK ∗ + MAPKK ∗MAPKK ∗ + MAPK ⇀ MAPKK ∗ + MAPK ∗MAPK ∗ + TF ⇀ MAPK ∗ + TF ∗
and deactivation/dephosphorylation reactions

MAPKKK ∗ ⇀ MAPKKKMAPKK ∗ ⇀ MAPKKMAPK ∗ ⇀ MAPKTF ∗ ⇀ TF.
For simplicity we assume phosphatase to be abundant such that deactivations e�ectively become �rst

order reactions. The external stimulus S is not consumed such that time integration of these reactions

yields a steady state in which the response, i.e., the concentration [TF ∗] can be measured as a function of

the stimulus concentration [S]. Using the rate constants given in Tab. 5.3 we obtain the response curve

given in Fig. 5.6a.

We generate concentration time series data of the MAPK reactions above at three di�erent initial

conditions, each di�ering in the amount of stimulus [S]. The response yielded by the chosen initial

conditions is marked in Fig. 5.6a by vertical dashed lines. The concatenated time series is a dataset of 300

frames in total. We use the library Θ of ansatz reactions Tab. 5.3. The hyperparameter � = 6.6 × 10−9 was

determined by shu�ing the data and performing 15-fold cross validation. The estimated rate constants

were obtained by solving the minimization problem (5.10) with � = 1. The results are given in Fig. 5.6b.

Least-squares estimation detects 5 of the 8 reaction processes that belong to the ground truth model.

However it also detects 12 spurious reaction processes (�18 - �29). Reactive SINDy estimation detects all

reactions of the ground truth, two processes (�4 and �8) show deviations in rate constants. Generally

reactive SINDy yields a sparse model which allows further simpli�cation of the reaction network by

dropping out reaction processes that lie beneath a certain cuto�. In this case for example a cuto� of� = 0.25 would directly recover the ground truth reaction network. Quantitatively, one may consider

the L1 norm of the relative distance of estimated rate constants �̂r to the non-zero rate constants of the

ground truth �r 8∑r=1 |||(�̂r − �r )/�r |||
which yields 167% error for least-squares and 21% error for reactive SINDy.

5.3.5 Application to Lotka–Volterra system

As biological pathways often exhibit oscillatory behavior [IZ08] which can stem from positive or negative

feedback loops [Shi+09] we apply reactive SINDy to an idealized oscillatory system, namely the Lotka–

Volterra system. The predator-prey dynamics of two species A (prey) and B (predator) is de�ned by the
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Figure 5.6: Application of reactive SINDy to the MAPK pathway system. (a) The response curve of the

MAPK cascade as a function of external stimulus given as a constant concentration [S]. The activity is the

steady state concentration of activated transcription factors [TF ∗]. Dashed lines show the values of [S] at

which concentration time series data was generated. (b) Estimated rate coe�cients of candidate reactions

(see Tab. 5.3) after application of reactive SINDy (regularized) to the time series data. Least-squares

estimation (LSQ) and the ground truth model for comparison. Reprinted from The Journal of chemical
physics “Reactive SINDy: Discovering governing reactions from concentration data”, Ho�mann, Fröhner,

and Noé, 2019, with the permission of AIP Publishing.

reaction network

A ⇀ A+ A (prey growth),A + B ⇀ B + B (predator eats prey),B ⇀ ∅ (predator decay),A + A ⇀ ∅ (prey friction),B + B ⇀ ∅ (predator friction).
From this model we generated concentration time series data with 200 frames which is displayed in

Fig. 5.7a. The library of ansatz reactions Θ is given in Tab. 5.4. The hyperparameter � = 2.7 × 10−7 was

determined by shu�ing the data and performing 5-fold cross validation. The estimated rate constants

were obtained by solving the minimization problem (5.10) with � = 1. The results are depicted in Fig. 5.7b.

Least-squares estimation detects all reactions of the ground truth model but also two spurious processes

(�6 and �7) with a higher rate than the �rst two underlying processes (�1 and �2). Reactive SINDy recovers

the true reaction network with minor deviations in rate constants. As in Sec. 5.3.4, considering the L1
norm of the relative distance to the ground truth for non-zero rate constants

5∑r=1 |||(�̂r − �r )/�r |||
yields 75% error for least-squares and 7% error for reactive SINDy.
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Figure 5.7: Application of reactive SINDy to the Lotka–Volterra system with social friction. (a) Con-

centration data as a function of time for predator and prey species. (b) Estimated rate coe�cients of

candidate reactions (see Tab. 5.4) after application of reactive SINDy (regularized) to the time series data.

Least-squares estimation (LSQ) estimation and the ground truth model for comparison. Reprinted from

The Journal of chemical physics “Reactive SINDy: Discovering governing reactions from concentration

data”, Ho�mann, Fröhner, and Noé, 2019, with the permission of AIP Publishing.

5.4 Conclusion
In this work we have extended the SINDy method to reactive SINDy, not only parsimoniously detecting

potentially nonlinear terms in a dynamical system from noisy data, but also yielding, in this case, a

sparse set of rates with respect to generating reactions (5.8). Mathematically this has been achieved

by permitting vector-valued basis functions and obtaining a tensor linear regression problem. We

have applied this method on data generated from a gene regulation network, a MAPK pathway, and a

Lotka–Volterra system and could successfully recover the underlying reaction networks.

The studies of Sec. 5.3.2 and Sec. 5.3.3 have shown that the applied regularization terms can mitigate

noise up to a certain degree compared to the unregularized method, so that identi�cation of the reaction

network is more robust and closer to the ground truth. Potentially, this method could be used to identify

reaction networks from time series measurements even if the initial conditions are not always exactly

identical, as was demonstrated in Sec. 5.3.3.

One apparent limitation is that the method can only be applied if the data stems from the equilibration

phase, as the concentration-based approach has derivatives equal zero in the equilibrium, which precludes

the reaction dynamics to be recovered. Thus, in the case of oscillatory systems the reaction network can

be recovered robustly.

In future work, we will consider the identi�cation of reaction schemes from instantaneous �uctuations

of particle numbers in equilibrium.
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Reaction rate descriptionDNAA ⇀ DNAA + mRNAA k1 = 1.8 transcription of mRNAAmRNAA ⇀ mRNAA + A k2 = 2.1 translation of A proteinsmRNAA ⇀ ∅ k3 = 1.3 mRNAA decayA ⇀ ∅ k4 = 1.5 decay of A proteinsDNAB ⇀ DNAB + mRNAB k5 = 2.2 transcription of mRNABmRNAB ⇀ mRNAB + B k6 = 2.0 translation of B proteinsmRNAB ⇀ ∅ k7 = 2.0 mRNAB decayB ⇀ ∅ k8 = 2.5 decay of B proteinsDNAC ⇀ DNAC + mRNAC k9 = 3.2 transcription of mRNACmRNAC ⇀ mRNAC + C k10 = 3.0 translation of C proteinsmRNAC ⇀ ∅ k11 = 2.3 mRNAC decayC ⇀ ∅ k12 = 2.5 decay of C proteinsmRNAA + A ⇀ A k13 = 0 self regulation of A proteinsmRNAB + B ⇀ B k14 = 0 self regulation of B proteinsmRNAC + C ⇀ C k15 = 0 self regulation of C proteinsmRNAB + A ⇀ A k16 = 0 regulation of mRNABmRNAC + B ⇀ B k17 = 0 regulation of mRNACmRNAA + C ⇀ C k18 = 0 regulation of mRNAAmRNAC + A ⇀ A k16 = 6.0 regulation of mRNACmRNAB + C ⇀ C k17 = 4.0 regulation of mRNABmRNAA + B ⇀ B k18 = 3.0 regulation of mRNAAmRNAA + A ⇀ mRNAA k19 = 0 arti�cial fusionmRNAB + B ⇀ mRNAB k20 = 0 arti�cial fusionmRNAA + B ⇀ mRNAA k21 = 0 arti�cial fusionmRNAB + C ⇀ mRNAB k22 = 0 arti�cial fusionmRNAC + A ⇀ mRNAC k23 = 0 arti�cial fusionmRNAA + C ⇀ mRNAA k24 = 0 arti�cial fusionmRNAB + A ⇀ mRNAB k25 = 0 arti�cial fusionA+ A ⇀ A k26 = 0 A regulates AB + B ⇀ B k27 = 0 B regulates BC + C ⇀ C k28 = 0 C regulates CB + A ⇀ A k29 = 0 arti�cial fusionC + B ⇀ B k30 = 0 arti�cial fusionA+ C ⇀ C k31 = 0 arti�cial fusionC + A ⇀ A k32 = 0 arti�cial fusionB + C ⇀ C k33 = 0 arti�cial fusionA+ B ⇀ B k34 = 0 arti�cial fusionA ⇀ B k35 = 0 arti�cial conversionB ⇀ C k36 = 0 arti�cial conversionC ⇀ A k37 = 0 arti�cial conversionA ⇀ C k38 = 0 arti�cial conversionC ⇀ B k39 = 0 arti�cial conversionB ⇀ A k40 = 0 arti�cial conversionmRNAB + mRNAC ⇀ mRNAA k41 = 0 arti�cial fusionmRNAC + mRNAB ⇀ mRNAC k42 = 0 arti�cial fusionmRNAC + A ⇀ C k43 = 0 arti�cial fusion

Table 5.2: Full set of ansatz reactions Θ used in Sec. 5.3 for the gene-regulatory network. The given

rate constants de�ne the ground truth reaction model. Reprinted from The Journal of chemical physics
“Reactive SINDy: Discovering governing reactions from concentration data”, Ho�mann, Fröhner, and

Noé, 2019, with the permission of AIP Publishing.
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Reaction rate descriptionS + MAPKKK ⇀ S + MAPKKK ∗ k1 = 1 external stimulus activates MAPKKKMAPKKK ∗ ⇀ MAPKKK k2 = 1 dephosphorylationMAPKKK ∗ + MAPKK ⇀ MAPKKK ∗ + MAPKK ∗ k3 = 1 phosphorylation of MAPKKMAPKK ∗ ⇀ MAPKK k4 = 1 dephosphorylationMAPKK ∗ + MAPK ⇀ MAPKK ∗ + MAPK ∗ k5 = 1 phosphorylation of MAPKMAPK ∗ ⇀ MAPK k6 = 1 dephosphorylationMAPK ∗ + TF ⇀ MAPK ∗ + TF ∗ k7 = 1 phosphorylation of transcription factorTF ∗ ⇀ TF k8 = 1 dephosphorylationMAPKKK + MAPKK ⇀ MAPKKK + MAPKK ∗ k9 = 0 arti�cial reactionMAPKKK + MAPK ⇀ MAPK ∗ k10 = 0 arti�cial reactionMAPKKK + TF ⇀ MAPKKK + TF ∗ k11 = 0 arti�cial reactionMAPKKK ∗ + MAPK ⇀ MAPKKK ∗ + MAPK ∗ k12 = 0 arti�cial reactionMAPKKK ∗ + TF ⇀ MAPKKK ∗ + TF ∗ k13 = 0 arti�cial reactionMAPKK + TF ⇀ MAPKK + TF ∗ k14 = 0 arti�cial reactionMAPKK ∗ + TF ⇀ MAPKK ∗ + TF ∗ k15 = 0 arti�cial reactionMAPK + TF ⇀ MAPK + TF ∗ k16 = 0 arti�cial reactionMAPKK + MAPK ⇀ MAPKK + MAPK ∗ k17 = 0 arti�cial reactionMAPKKK + MAPKK ∗ ⇀ MAPKKK + MAPKK k18 = 0 arti�cial reactionMAPKKK + MAPK ∗ ⇀ MAPKKK + MAPK k19 = 0 arti�cial reactionMAPKKK + TF ∗ ⇀ MAPKKK + TF k20 = 0 arti�cial reactionMAPKKK ∗ + MAPKK ∗ ⇀ MAPKKK ∗ + MAPKK k21 = 0 arti�cial reactionMAPKKK ∗ + MAPK ∗ ⇀ MAPKKK ∗ + MAPK k22 = 0 arti�cial reactionMAPKKK ∗ + TF ∗ ⇀ MAPKKK ∗ + TF k23 = 0 arti�cial reactionMAPKK + MAPK ∗ ⇀ MAPKK + MAPK k24 = 0 arti�cial reactionMAPKK + TF ∗ ⇀ MAPKK + TF k25 = 0 arti�cial reactionMAPKK ∗ + MAPK ∗ ⇀ MAPKK ∗ + MAPK k26 = 0 arti�cial reactionMAPKK ∗ + TF ∗ ⇀ MAPKK ∗ + TF k27 = 0 arti�cial reactionMAPK + TF ∗ ⇀ MAPK + TF k28 = 0 arti�cial reactionMAPK ∗ + TF ∗ ⇀ MAPK ∗ + TF k29 = 0 arti�cial reaction

Table 5.3: Full set of ansatz reactions Θ used in Sec. 5.3.4 for the MAPK system. The given rate constants

de�ne the ground truth reaction model. Reprinted from The Journal of chemical physics “Reactive SINDy:

Discovering governing reactions from concentration data”, Ho�mann, Fröhner, and Noé, 2019, with the

permission of AIP Publishing.
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Reaction rate descriptionA+ A ⇀ ∅ k1 = 0.1 social friction of preyB + B ⇀ ∅ k2 = 0.1 social friction of predatorA ⇀ A+ A k3 = 1 prey growthA+ B ⇀ B + B k4 = 1 predator eats preyB ⇀ ∅ k5 = 1 predator decaysA+ B ⇀ A+ A k6 = 0 arti�cial reactionA ⇀ ∅ k7 = 0 arti�cial reactionB + B ⇀ B k8 = 0 arti�cial reactionB ⇀ B + B k9 = 0 arti�cial reactionA+ A ⇀ A k10 = 0 arti�cial reactionA+ B ⇀ A k11 = 0 arti�cial reactionA+ B ⇀ B k12 = 0 arti�cial reactionA+ A ⇀ B k13 = 0 arti�cial reactionA ⇀ B k14 = 0 arti�cial reactionB ⇀ A k15 = 0 arti�cial reactionA ⇀ B + B k16 = 0 arti�cial reaction

Table 5.4: Full set of ansatz reactions Θ used in Sec. 5.3.5 for the Lotka–Volterra system. The given

rate constants de�ne the ground truth reaction model. Reprinted from The Journal of chemical physics
“Reactive SINDy: Discovering governing reactions from concentration data”, Ho�mann, Fröhner, and

Noé, 2019, with the permission of AIP Publishing.
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