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Abstract

Two-dimensional potential energy surfaces of charged and neutral MXO (X: C, N and

M: Au, Ag, Cu) and neutral M2XO complexes were calculated. Our results are based

on the CCSD(T)/AVTZ level of theory with effective core potentials for the transition

metals. The calculations show that the PES of MXO+ have two minima, one at the linear

X-down, the other at linear O-down structure, while the neutral complexes have only one

minimum, X-down, but in a triangular shape with an angle depending on the metal atom.

The negative charged complexes have a dispersive minimum when the metal anion nearly

perpendicular to the geometrical center of the XO molecule and distance greater than

3.5 Å .

Additionally we have calculated the interaction energy of M2XO complexes with different

orientations and found that the linear X-down complexes are the most stable orientation.

Also the binding of the CO molecule to the diatomic M2 is stronger than to the M atom.

On the contrary, the binding of the NO molecule to the diatomic M2 is weaker than the

M atom. The strength of the binding energies are ranked based on the type of the metal,

for all type of charge and type of X atoms, as Au > Cu > Ag. About the isoelectric pairs:

MCO, MNO+ and MCO−, MNO, there is no correlation between the number of electrons

and the shape of the PES.

The counterpoise-corrected interaction energy increases as the charge of the complex

increases. The positive charged complexes have blue shift in X-O stretching frequency

while the neutral and negative charged complexes have red shift.

With these highly accurate PESs, it is possible to fit force fields for the system under

investigation and to perform an anharmonic vibrational analysis.
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Kurzzusammenfassung

Zweidimensionale Potentialenergieflächen (PES) von geladenen und neutralen MXO (X:

C, N und M: Au, Ag, Cu) und neutrale M2XO-Komplexe wurden berechnet. Unsere

Ergebnisse basieren auf auf CCSD(T)/AVTZ Rechnungen mit effektiven Kernpotentialen

für die Übergangsmetalle. Die Berechnungen zeigen, dass die PES von MXO+ zwei Minima

haben, eines bei der linearen MXO-Struktur, das andere bei der linearen MOX-Struktur,

während die neutralen Komplexe nur ein Minimum haben, eine dreieckige MXO-Struktur,

wobei der Winkel vom Metallatom abhängt. Die negativ geladenen Komplexe weisen

ein dispersives Minimum auf, wenn das Metall-Anion fast senkrecht zum geometrischen

Zentrum des XO-Moleküls steht und der Abstand größer als 3,5 Å ist.

Zusätzlich haben wir die Wechselwirkungsenergie von M2XO-Komplexen mit verschiedenen

Orientierungen berechnet und herausgefunden, dass die linearen X-down-Komplexe die

stabilste Modifikation sind. Darüber hinaus ist die Bindung des CO-Moleküls an das

zweiatomige M2 stärker als an das M-Atom. Im Gegensatz dazu, ist die Bindung des NO-

Moleküls an das zweiatomige M2 schwächer als an das M-Atom. Unabhängig von Ladung

und Element X steigt die Bindungsenergie von Ag über Cu zu Au. Zu den isoelektrischen

Paaren MCO und MNO+ sowie MCO− and MNO wurde keine Korrelation zwischen der

Anzahl an Elektronen und der Form der PES gefunden. Die counterpoise-korrigierte

Wechselwirkungsenergie nimmt mit der Ladung des Komplexes zu. Die positiv geladenen

Komplexe weisen eine Blauverschiebung der X-O-Streckfrequenz auf, während die neutral

und negativ geladenen Komplexe eine Rotverschiebung zeigen.

Mit diesen hochgenauen PES ist es möglich, Kraftfelder für das zu untersuchende System

zu optimieren und zum Beispiel eine anharmonische Schwingungsanalyse durchzuführen.
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Chapter 1
Introduction

Carbon monoxide (CO) and nitrogen monoxide (NO) are toxic and harmful air pollutants.

They affect passively on human beings and vegetation and indirectly increase global

warming. They are mainly produced from vehicles exhaust and because of the significantly

increasing number of vehicles on the roads, their concentrations reach an alarming level

especially in large cities. Thus, to control vehicles exhaust pollution, it is recommended

to use pollution-reducing units called catalytic converters [1, 2].

The catalytic converter is a tool that converts the harmful pollutants such as, CO, NO

and unburned hydrocarbons (HC) into less harmful emissions like CO2 and N2 before

they leave the car’s exhaust system. It consists out of a large metal box that have active

catalytic material inside and two pipes coming out of it. The first pipe is connected to

the car’s engine and brings in hot, polluted fumes that are produced from fuel burns.

The second pipe is connected to the tailpipe (exhaust). When the gases from the engine

fumes blow over the catalyst, chemical reactions take place on its surface, breaking apart

the pollutant gases and converting them into other gases that are safe enough to blow

harmlessly out into the air [3–8]. The effectivity of the catalytic converter depends mainly

on the type of the catalyst [9–11].

The catalyst is a substances that accelerate the chemical reactions without appearing in the

end products [12, 13]. Therefore, the chemical reactions occur faster in the presence of a

catalyst since the catalyst provides an alternative reaction pathway with a lower activation

energy than the non-catalyzed mechanism. Catalysts are used in multidisciplinary science

and have extensive applications in the food [14–17], pharmaceutical [18–23], and crude oil

1
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industries[24–26] and reducing water and air pollution [27–34].

Catalytic reactions are divided into two main categories, homogeneous and heterogeneous.

In a homogeneous reaction, the catalyst is in the same phase as the reactants, whereas in a

heterogeneous reaction, the catalyst is in a different phase from the reactants. Traditionally,

the homogeneous catalysts are very selective but not very active and not very stable,

while heterogeneous catalysts are active and stable at high temperatures but not very

selective [35, 36].

What happens inside the catalytic converter is a heterogeneous catalytic reactions. In

general, there are three different chemical reactions going on at the same time which

are catalyzed by two different catalysts. The first catalyst tackles CO and the unburned

hydrocarbons using chemical reaction called oxidation (adding an oxygen). It converts

CO into CO2 and the unburned hydrocarbons into CO2 and water. The second catalyst

tackles the NO by an opposite chemical process called reduction (removing oxygen), it

breaks up the NO into nitrogen and oxygen atoms. After two oxidation and one reduction

reactions, the exhaust is ideally a steam of nitrogen molecules (N2), oxygen molecules

(O2), carbon dioxide (CO2) and water (H2O).

The promising catalysts for these reactions are nanosized materials. There are many

studies concerned about catalyzing CO oxidation and NO reduction by various types of

nanocatalysts consisting from base metals (Cu, Mn, Cr, Ni, Fe)[27, 37–44], nobel metals

(Pt, Pd, Rh, Au, Ag)[45–63] and metal oxides (Cu2O, ZnO, CeO2)[40, 64–67]. The present

study investigates the catalytic role of the coinage metals atom (Au, Ag, Cu) in the CO

oxidation and the NO reduction.

A number of experimental investigations and first-principles calculations have been

performed to study the interaction of gold, silver and copper with small molecules CO, NO

and O2 by studying the adsorption of gas molecules either on free and supported metal

sufaces or free and supported nanocluster. Kim et al [68] demonstrated that two types of

low-coordinated sites (steps and kinks) dominate the adsorption of CO at temperatures

above 100 K for the whole range of gold substrates ranging from stepped single-crystal

surfaces to small supported Au particles. In addition to the experiments, they carried

out theoretical studies of CO adsorption on Au(332) surface using DFT method, the

calculations show that CO desorption states above 100 K may be located at step-edges but
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not on terrace sites. Furthermore, Kim et al [69] investigate CO adsorption and reaction

on Au(211) stepped single-crystal surfaces, they found that CO was weakly adsorbed but

was more strongly bound at step sites than at terrace sites.

Haruta and coworkers described the CO oxidation over supported gold clusters at

normal and low temperatures in a series of article [70–78], they found that the catalytic

performances of gold depend on the supports, the size of the cluster, and the preparation

methods [79]. For instance, gold supported on metal oxides of 3d transition metals of

group VIII (Fe, Co, Ni) are much more active for CO oxidation other than on SiO2

and A12O3 [80]. In addition, CO oxidation reaches its maximum on Au/TiO2 when the

diameter of Au islands is 3.5 nm (corresponding to a few hundred atoms, approximately)

[81], while on the MgO (001) surface it is observed in the 8–20 atoms size range [82–84].

Moreover, other scietists have investigated the reactivity of free gold clusters, Aun, and

its dependence on both the charge state and the size of the clusters [85–88]. For instance,

Cox et al. [85] observed that small gold cations (n < 15) are reactive towards H2 and CH4,

wherese only even n anionic clusters are reactive to O2. Lee and Ervin investigated the

reactions of CO and O2 with small anionic clusters [86]. They observed that CO molecule

are more reactive toward larger cluster (n > 4) and there is no even/odd alternation as

for O2. In addition, Wallace and Whetten studied the pressure-dependent adsorption

activity of the CO and O2 molecules on Au−n (n = 4 - 19). They found that the adsorption

activity of CO or O2 is enhanced when the cluster already possesses the other molecule

(cooperative coadsorption) and the coadsorption of CO and O2 on Au−6 leads to a loss of

CO2 molecule.

Simultaneously to the above-mentioned experiments, a number of theoretical studies of

CO interaction with free and supported gold clusters were investigated using density

functional theory(DFT) [78, 83, 89–95]. For example, Sanchez et al [83] studied the

reactivity of gold clusters supported on magnesia (Au/MgO) and they found Au8 cluster

is the smallest catalytically active size for CO oxidation. In addition, Senapati et al [89]

caluclated the binding of the CO molecule with free neutral and charged Aun (n 6 6)

clusters. They found that the binding energy for the cations decreases as the cluster

grows, for the neutral complexes it increases with cluster size n until n = 4 and drops at

n = 5. For the anions, it increases with n as well, but reaches a local maximum at n = 5.
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Compared to the extensive literature on gold catalysis toward CO oxidation, studies

on silver catalytic activity are relatively rare. Experimental studies have indicated that

silver catalyze CO oxidation at low temperatures in different states such as free and

supported Ag surfaces, powdered Ag and free and supported Ag nanoclusters [86, 96–103].

For example, Burghaus and Conrad [96] and Barth and Zambelli [97] found that CO

is oxidized by the adsorped O2 on Ag(110) surface in temperature range 100-300K and

the formation rate of CO2 depends strongly on the reaction temperature. Yu et al [99]

prepared ultrasmall Ag nanoparticles supported on SiO2 and studied the effect of their

size on the CO oxidation. It was found a strong size dependent reaction and the Ag

particle size in a range of 3–5 nm was favorable for CO oxidation. In addition, Tian et

al [103] prepared Ag/SBA-15 catalyst which are uniform Ag nanoparticles with 6.0 nm

diameter dispersed on SBA-15 mesoporous silica materials. This catalyst oxidize CO at

low temperature if it is prepared with specific reducing reagent.

Furthermore, Bernhardt et al [98, 104] measured and calculated the binding energy of

CO and O2 molecules on silver and binary silver-gold anionic clusters consisting from five

atoms. They found that silver cluster anions are unreacted toward CO molecule while

two oxygen molecules adsorb on odd size anionic silver cluster and AgnO−4 complexes are

proposed to be an intermediate in CO oxidation reaction over silver cluster. After that,

Tang et al [101] increased the size cluster to 55 atoms and studied the effect of the charge

on the catalytic performance, they found that all of the anionic, neutral, and cationic

Ag55 clusters were able to promote CO oxidation at low temperatures.

In analogy to gold and silver, experimental and theoretical studies were done to investigate

the role of the copper in CO oxidation [40, 86, 100, 105–115]. For example, Eren et

all [115] studied the CO oxidation reaction over copper surface (111), they found that

Cu(111) is a good catalyst at ambient pressure and room temperature. Sun et al [116]

and Harrison et al [106] prepared the supported CuO and Cu(II) nanoparticles on CeO2

surface. Sun et al [116] found that CuO nanoparticles oxidate CO at low temperature

and Harrison et al [106] found that supported Cu(II) nanoparticles convert CO 100% into

CO2 at 343 K . In addition, Lee and Ervin investigated the reaction of CO toward copper

cluster anions (n 6 13) [86] while Leuchtner et al [105] investigated the reaction of CO

toward copper cluster cations (n 6 14). Both found that larger clusters (n > 4) are more
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reactive than small clusters, and there is no even/odd alternation in rates or reaction.

Regarding the theoretical investigation on CO oxidation catalyzed by a copper surfaces

and nanoclusters, both Yu [112] and Nygren and Siegbahn [111] found that the adsorption

of CO on copper surface (001) and on cluster is chemisorption. In addition, Tang and

Zhang [109] studied the mechanism of CO oxidation by copper nanocluster consisiting of

55 atoms by spin-unrestricted DFT method. They found that Langmuir–Hinshelwood

mechanism is more accepted than Eley–Rideal mechanism only if the entropy effect is

included.

Furthermore, coinage metals catalyze NO reduction into N2 or oxidation into NO2. For

instance, there are many experimental and theoretical studies devoted to study the

reaction of NO with gold in different states [53, 117–137]. For example, Vinod et al

[117] observed that NO adsorps on Au(310) stepped surface and then decomposes into

NO2 and oxygen atoms at 80 K, whereas the (111) and (110) surfaces are inactive in

these bond breaking processes. Hussain et al [118] calculated the adsorption energies of

NO on the previous surfaces and they show that the adsorption energy of NO increases

considerably with increasing the degree of coordinative unsaturation of the gold atoms

to which NO binds, which is consistent with the view that defects, steps and kinks on

the surface determine the activity of gold catalysts. Moreover, McClure et al [53] studied

the adsorption and the reaction of NO on Au(111) surface covered by oxygen atom

under ultrahigh vacuum condition, it was shown that NO2 was produced. Torres et al

[119] characterize theoretically the previous surface reaction by performing DFT periodic

slab model calculations. They found pre-adsorbed O atoms (at low coverage) enhance

slightly the NO adsorption energy. The (NO + O)/Au(111) species are shown to form the

NO2/Au(111) product essentially without an activation barrier, releasing the heat of 170

kJ/mol.

Regarding the interaction of NO with free gold cluster, Ding et al [125] calculated the

adsorption energies of NO on anionic, cationic and neutral clusters (n ≤ 6) using DFT,

they found an even-odd oscillation behavior of the adsorption energy of AuNO−n and that

the cationic cluster have bigger adsorption energies than the anionic and the neutral

cluster. Olvera et al [132] calculated the adsorption energies of NO on neutral, cation and

anion atoms using multireference configuration interaction (MRCI) methods and they
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found that NO binds with the neutral and charged atoms and it forms covalent bond with

the neutral atom and dative bond with the charged atoms.

About the interaction of silver with NO, there are many experimental and theoretical

studies describing the adsorption of NO on free and supported silver clusters [138–146].

For instance, both Satokawa [140] and Breen et al [141] examine the conversion of NO

to N2 and NO2 over supported silver cluster Ag/Al2O3. They found that the addition of

hydrogen to the reaction has a remarkable effect in promoting NO reduction and oxidation.

Hagen et al [146] investigated the reactivity of small silver cluster anions Ag−2−5 toward

NO and mixtures of NO with CO. They found a strongly cluster size dependent reaction

behavior, where reactive fragmentation dominates for clusters with four or fewer atoms and

only Ag−5 is able to form reaction products without dissociation of the metal cluster. Ma et

al [142] studied the reactions of NO toward larger charged silver clusters Ag±n (n = 7− 69)

at low temperatures. They found evidence for NO adsorption, the formation of (NO)2

and the reduction of NO on different cluster sizes.

Concerning the theoretical studies, Grönbeck et al [145] explore structural, electronic,

and vibrational properties of NO, NO2, NO3 adsorption on small silver clusters, Agn(n =

1 − 8) using DFT method. They marked odd/even alternation in adsorption energies

with a stronger bonding to odd clusters and the adsorption energies follow the trend

Ea(NO) < Ea(NO2) < Ea(NO3) for all cluster size. After that, Torbatian et al [144] used

the full-potential density functional theory as well as the pseudo-potential time-dependent

DFT calculations to study adsorption of the toxic CO, NO, and HCN molecules on the

Ag8 cluster. They found that adsorption of these molecules changes the stable structure

of Ag8.

Finally, there are many theoretical and experimental studies describe the interaction of

copper with NO [147–162]. For instance, Wendelken [158] examined the adsorption of NO

on two different surfaces of copper, Cu(100) and Cu(110) as a function of exposure and

temperature with initially clean surfaces. He found that the behavior of NO depends on

the surface. On Cu(110), the adsorbed NO dissociates above 113 K, leaving O(ad) and

N(ad) on the surface, while on Cu(100), some of the initially adsorbed NO is dissociated

at 85 K leaving O(ad) while the N(ad) combines with arriving NO molecules to form

N2O(ad). In addition, Dumas et al [154] studied the interaction of NO on Cu(111),
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they found that the interaction depends on the coverage and on the temperature of the

substrate. For T < 170K, NO molecules are found to be adsorbed on one single site, then

after completion of the NO monolayer, the adsorbed NO molecules react to form adsorbed

N2O molecules. Yen and Ho [150] studied the adsorption and the dissociation of NO

and N2O molecules on Cu(111) by DFT, they found that the dissociation of N2O is an

exothermic process and the dissociation of NO affected with the presence of N atom and

O atom on the surface where the O atom raise the adsorption energy and N atom decrease

it .

Holmgren et al [160] investigated the reactivity of Cun(n = 15 − 80) towards NO at

room temperature and liquid-nitrogen temperature. They found similar behavior at both

temperatures, where the reactivity of Cun with NO is very low overall for (n = 15 - 41)

and higher for larger cluster. Hirabayashi and Ichihashi [159] studied the adsorption and

reaction of NO onto charged clusters Cu±n and CunO±m(n = 3− 19, m 6 9) experimentally

and theoretically, they found that the reactivity of Cu±n toward NO is very low overall,

but some specific CunO±m ions are highly reactive. In addition, they found that the

NO adsorption probability of an anionic copper cluster is significantly enhanced by the

preadsorption of two oxygen atoms.

Although there are already many studies in the literature about the interaction of coinage

metals with NO and CO, not much details are known about the exact binding of CO

and NO to the coinage metals atoms. In addition, there are no studies calculated or

measured the vibrational spectroscopic constants for the monocarbonyl coinage metals

and mononitrosyl coinage metals. The first step to determine those constants and to know

the exact binding of CO and NO with coinage metals atoms is calculating the potential

energy surface. Therefore, the main aim of my thesis is to calculated potential energy

surface (PES) for neutral and charged MCO0,± and MNO0,± where M: Au, Ag, Cu. The

PESs I have calculated depend on the distance and the angle between the geometrical

center of CO or NO and the metal atom while the CO and NO distances are frozen.

Then those potential energy surfaces are parametrized for molecular quantum dynamics

calculation.

In facts, the catalysts should not bind with the reactants strongly. Therefore, in the

catalytic reaction, weak interaction like van der Waals interactions are important. This
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type of interaction is represented by dynamic correlation which is comparable to the

dispersion correlation in DFT method. The dispersion corrections in DFT is not suitable

for all binding situations. The dynamic correlation can be calculated with post-Hartree

Fock methods of which the coupled cluster method with singles, doubles and pertubative

triples (CCSD(T)) is the most accurate method for single reference cases. This method

also have the advantage of giving a more satisfactory account of open shell systems while

it is not trivial to get a defined spin state of the system within DFT. This is important

when alternative spin states are close in energy. However, the scaling with electron number

(N) is poor in CCSD(T), with computer time proportional to N7. This limits make the

CCSD(T) applicable for the system with small number of electrons. Therefore, I used

effective core potential for the coinage atoms to reduce number of electrons and then make

the calculations faster.

Here I calculated two dimensional potential energy surface (2D-PESs) that describe the

adsorption of CO and NO molecules on anionic, cationic and neutral coinage metals atoms

using CCSD(T). I presents the details of the computational scheme in chapter two. In

chapter three, I investigate the electronic structure of the ground states of the neutral and

the ions of the coinage metals. In addition, I investigate the electronic structure of the

CO, NO molecules and of the coinage metal dimer. In chapter four, I investigate how the

the CO molecule adsorbs on the coinage metals atoms by calculating the potential energy

surface of binding the ground state of the CO molecule with the ground state of the

coinage metals atoms and ions, the binding energies were calculated at different distances

and angles. Then I find the optimized parameters of neutral and charged monocarbonyl

complexes and their vibrational frequencies. After that, I find the PES of binding the CO

with the coinage metal dimer to see the effect of increasing the number of metal atoms

on the binding energy. In chapter five, I investigate the adsorption of the NO molecule

on the coinage metals atoms, ions and dimers by following the same protocol in chapter

four. Since the the NO molecule have open shell electronic structure, the adsorption of

NO on the coinage atom and ions produces different spin states, hence, the number of

the PESs for coinage metals nitrosyl is larger than the number of PESs of coinage metals

carbonyl. Finally, I summarize the results in chapter six and make a comparison between

the coinage metals, charge states and the behavior of the CO and the NO toward the

coinage metals atoms.



Chapter 2
Theory and methodology

In 1900, Max Planck developed a theory, the so-called blackbody radiation, to study

the light emitted by heated solids. This theory is considered the beginning of quantum

mechanics [163]. After about 25 years, Heisenberg, Born and Jordan [164] had developed a

complete and consistent theory of quantum mechanics, called matrix mechanics. In 1926,

Erwin Schrödinger introduced the concept of the wave function. It is a mathematical

function that depends on both, time and space, in a wave-like manner, which carries

within it all information about a particle or system. In addition, he introduced a

linear partial differential equation that describes the time-evolution of the system’s wave

function, once the system’s environment (potential) is non-relativistic or treated within the

pseudopotential approach [165]. This equation is known as time dependent Schrödinger

equation (TDSE):

i~
∂Φ(~r, t)
∂t

= ĤΦ(~r, t), (2.1)

where Φ(~r, t) is the wave function which depends on the time and the spatial coordinates

of the system, Ĥ is the Hamiltonian operator and E is the total energy of the system. This

equation is difficult to solve for the systems exceeding two particles without approximation.

The first step to solve TDSE is to describe the investigated systems as stationary time-

independent system by separating the time and the spatial dependency of the wave

function, and only the spatial one is treated. This step leads to the time-independent

Schrödinger equation (TISE):

ĤΨ(~r) = EΨ(~r). (2.2)

9



10 2.1. Born-Oppenheimer Approximation

The aim of this work is to find the molecular stationary wave function by solving Eq.2.2.

The non-relativistic Hamiltonian for a molecule consisting of M nuclei and N electrons

depends on the position vectors of the nuclei and the electrons ~RA and ~ri, respectively. It

consists of five operators that are written in atomic units as :

Ĥ(~R,~r) = −
M∑
A=1

1
2MA

∇2
A︸ ︷︷ ︸

T̂nuc(~R)

−
N∑
i=1

1
2∇

2
i︸ ︷︷ ︸

T̂elec(~r)

−
N∑
i=1

M∑
A=1

ZA
riA︸ ︷︷ ︸

V̂elec−nuc(~R,~r)

+
N∑
i=1

N∑
j>i

1
rij︸ ︷︷ ︸

V̂elec−elec(~r)

+
M∑
A=1

M∑
B>A

ZAZB
RAB︸ ︷︷ ︸

V̂nuc−nuc(~R)

, (2.3)

Where MA is the mass of the nucleus A in atomic units which equal to the ratio of the

mass of the nucleus A to the mass of an electron. ZA, ZB are the atomic number of

nucleus A, B, respectively. riA, rij, RAB are the distances between the ith electron and

Ath nucleus, the ith and jth electron, and Ath nucleus and Bth nucleus, respectively.

The first two operators in Eq.2.3 represent the kinetic energy operators of the nuclei

and the electrons. The third one represents the Coulomb attraction operator between

the nuclei and the electrons. The fourth and the fifth operators represent the Coulomb

repulsion operators between electrons and nuclei, respectively[166]. This equation can be

solved numerically for H+
2 [167], but for larger molecules approximations are necessary to

find its total energy. The first approximation is the Born-Oppenheimer approximation.

2.1 Born-Oppenheimer Approximation
In 1927, Born and Oppenheimer introduced that electronic motion could be decoupled

from nuclear motion, since the electronic mass is much smaller than the nuclear mass

(Mproton/me = 1836). Therefore the electrons in the molecule considered to be moving

in the field of fixed nuclei [168]. This can be expressed mathematically by writing the

molecular wave function as a product of two functions; the nuclear wave function Ωnuc( ~X)

and the electronic wave function φele( ~X; ~x) that depends parametrically on the nuclear

coordinates ~X :

Ψ( ~X, ~x) = Ωnuc( ~X)φele( ~X; ~x). (2.1)
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where ~X is short-hand notations for the spin ~Σ and position ~R coordinates of all nuclei,

while ~x for the spin ~σ and position ~r coordinates of all electrons, respectively.

{~r, ~σ}, {~R, ~Σ} = ~x, ~X (2.2)

Insertion of this ansatz into Eq.2.2 and treating the RA-dependence of φele as a parameter,

allows the separation of Eq.2.2 into an electronic Schrödinger equation that depends

parameterically on nuclear coordinates :

(T̂ele + V̂ele−nuc + V̂ele−ele)φele( ~X; ~x) = Eele( ~X)φele( ~X; ~x), (2.3)

and a nuclear Schrödinger equation:

(T̂nuc + V̂nuc−nuc + Eele( ~X))Ωnuc( ~X) = EΩ( ~Xnuc). (2.4)

Once the electronic problem is solved, the nuclear equation could be solved. The nuclear

Schrödinger equation shows that the electronic energy and Coulomb interaction between

the nuclei provides a potential for nuclear motion. Consequently, the nuclei in the Born-

Oppenheimer approximation move on a potential energy surface obtained by solving the

electronic Schrödinger equation. In addition, solving Eq.2.4 gives us the total energy of

molecule, including electronic and vibrational energy which is the energy of Eq.2.2 with

Born-Oppenheimer approximation.

For this work, only solving the electronic problem Eq.2.3 is interesting. So I drop the

subscript ”ele”, H means the electronic Hamiltonian and φ means the electronic wave

function for the further derivations.

2.2 Hartree-Fock Approximation
The first step in solving the electronic Schrödinger equation is to define the characteristic

of the wave function. A many-electron wave function should take into account the

indistinguishability of electrons, this means, the electronic density |φ|2 should be invariant

to the exchange of the spin and space coordinate of the electrons. In addition, it must

satisfy the Pauli exclusion principle. So it should be antisymmetric with respect to the
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interchange of both spin and space coordinate of any two electrons and only one electron

can occupy the spin orbital.

In 1929, John Slater [169] proposed a simple approximate expression for a wave function of

a many-electron system, which has all the properties aforementioned, the so-called Slater

determinant. The Slater determinant for N electrons is constructed from N occupied spin-

orbitals (χa, χb, ..., χN ), which can be only occupied by one electron, without determining

which electron is in which orbital as the following :

φSD(~x) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χa(~x1) χb(~x1) · · · χN(~x1)

χa(~x2) χb(~x2) · · · χN(~x2)
... ... . . . ...

χa(~xN) χb(~xN) · · · χN(~xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.1)

where the factor ( 1√
N !) is the normalization factor. The rows are labeled by the electrons

while the columns are labeled by the spin orbitals.

The Slater determinant satisfies the antisymmetric principle because interchanging the

coordinate of any two electrons corresponds to interchanging two rows, which changes the

sign of the Slater determinant. In addition, the Slater determinant is in accordance with

Pauli exclusion principle since the determinant is zero if two electrons occupy the same

spin orbital.

The Hartree-Fock method uses the variation principle to find the ground state electronic

wave function [170]. The essence of this method is to use φSD(~x) as a trial normalized

wave function to calculate the expectation value of electronic Hamiltonian under the

constraints that all the individual spin orbitals are orthonormal. Then vary the spin

orbitals to find the minimum energy:

min 〈φSD| Ĥ |φSD〉︸ ︷︷ ︸
E[{χ(~x)}]

. (2.2)

The set of spin orbitals that minimize the energy, construct the “best single determinant”

or the ground state Hartree-Fock wave function ΨHF. In addition, the electronic energy
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corresponds to φHF is the ground state energy EHF:

EHF = 〈φHF| Ĥ |φHF〉 . (2.3)

The equations for finding the optimal spin orbitals are called the Hartree-Fock integro-

differential equation:

f̂(i)χa(~xi) = εaχa(~xi), (2.4)

where ~f is the Fock operator and εa is the orbital energy of spin orbital χa. The Fock

operator consists of a one-electron operator h(i) plus a Hartree-Fock potential operator

νHF(i).

f̂(i) = ĥ(i) + ν̂HF(i). (2.5)

The one-electron operator includes the attractive potential energy between all the nuclei

and the ith electron plus its kinetic energy:

ĥ(i) = −1
2∇

2
i −

∑
A

ZA
rAi

. (2.6)

The Hartree-Fock potential operator is an effective-one electron potential operator that

gives the average potential experienced by the ith electron due to the presence of the

other electrons. It consists of two operators, the Coulomb operator Jb and the exchange

operator Kb:

ν̂HF(~x) =
∑
b

Ĵb(~x)− K̂b(~x). (2.7)

The Coulomb and exchange operators are defined by their effect when acting on the spin

orbital χa as the following:

Ĵbχa(~xi) =
∫
dxj
|χb(~xj)|2
ri − rj

χa(~xi), (2.8)

K̂bχa(~xi) =
∫
dxj

χb(~xj)∗χa(~xj)
ri − rj

χb(~xi). (2.9)

The Coulomb operator is a local operator, since it gives the average local potential at

a point in space (~xi) due to the other electrons. The exchange operator is a non-local

operator, because there does not exit a simple potential uniquely defined at a point in

space (~xi). The result of operating K̂b on χa(~xi) depends on the value of χa throughout
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all the space, not only at ~xi.

The Hartree-Fock equation is a Pseudo-eigenvalue equation because the Fock operator

depends on the solution χa. Therefore, it can not be solved directly but only iteratively

within the self consistent field (SCF) approach [171]. In brief, the principle of SCF

method is making a starting guess for the set of N spin-orbitals {χ(~x)0} to construct

the Fock operator. Then the set of N equations {Eq.2.4} is solved as an eigenvalue

problem . Afterwards, the new orbitals {χ(~x)1} are used to construct a new Fock operator.

The process is repeated until no significant change occurs in the total energy. Finally,

the converged orbitals construct the ground state wave function and the ground state

Hartree-Fock energy equal to:

EHF =
N∑
a=1

εa −
1
2(

N∑
a,b=1
〈χa| Jb |χa〉+ 〈χa|Kb |χa〉). (2.10)

The Hartree-Fock method reduces the N-body wave function problem into N-coupled

integro-differential equations or N/2 equations when spatial orbitals are used. Hartree-

Fock equations are solved numerically for atoms and very small molecules [172], but it is

impossible for larger systems.

In 1951, Roothaan [173] and Hall [174], independently proposed a different way for solving

Hartree-Fock equations, by expanding the orbitals in a set of fixed basis functions:

χa(~x) =
K∑
k=1

Ckaϕk(~x), (2.11)

where the basis functions ϕ and their number K have been chosen in advance and only

the expansion coefficients Cka are varied.

Introducing the linear combination of Eq.2.11 into Hartree-Fock equations Eq.2.4, then

multiplying the result from left by ϕ∗l (~x), and integrate over ~x, yields a set of algebraic

equations that solved by standard matrix techniques. These equations called the Roothaan-

Hall equations:

K∑
k=1

Cka

∫
d~xiϕ

∗
l (~xi)f̂(i)ϕk(~xi) = εa

K∑
k=1

Cka

∫
d~xiϕ

∗
l (~xi)ϕk(~xi), (2.12)
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which can be written more compactly as a single matrix equation:

FC = SCε (2.13)

where F,C, S, ε represent the Fock matrix, the expansion coefficient matrix, the overlap

matrix and the diagonal orbital energy matrix, respectively.

The Fock matrix is K ×K Hermitian matrix and its elements are given by:

Flk = 〈ϕl| f̂(~x) |ϕk〉 =
∫
d~xϕ∗l (~x)f̂(~x)ϕk(~x) (2.14)

=
K∑
l

K∑
k

(∫
d~xiϕ

∗
l (~xi)ĥ(~xi)ϕk(~xi) +

N∑
b

∫
d~xiϕl(~xi)(Jb −Kb)ϕk(~xi)

)
. (2.15)

The overlap matrix is a K ×K Hermitian matrix and its element is given by :

Slk = 〈ϕl|ϕk〉 =
∫
d~xiϕ

∗
l (~xi)ϕk(~xi) (2.16)

The expansion coefficient matrix is K ×K matrix which contains the coefficients of each

spin orbital to the different basis functions.

The great advantage of Hartree-Fock-Roothaan-Hall approach is replacing the problem

of determining the values of all occupied orbitals in all position-spin space points with

determining only the expansion coefficient of the orbitals to the basis functions. Therefore,

the iterative procedure is started by choosing the a starting guess for the coefficients Cka,

then construct the corresponding Fock matrix F [C0
ka], and solve the eigenvalue problem in

Eq.2.13. In addition, it provide a systematic way to improve any calculation by increasing

the number of the basis set functions. Finally, the Roothaan-Hall formulation can only

offer an accurate solution to the Hartree-Fock equations because in actual calculation the

basis set is finite. Additionally, the results are only reliable as long as the electronic wave

function is approximated as single Slater determinant.

2.3 Post-Hartree-Fock methods
As seen in the previous section, the SCF theory produces the best single determinant

wave function that treats the interactions between the electrons in an average way; in
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such a manner, one electron moves in an average field of n-1 other electrons. Nevertheless,

the electrons have instantaneous interactions among themselves. This mean, their motion

is correlated. Because of the correlated motion of the electrons, they keep apart from each

other to reduce their mutual repulsion. Therefore, the energy corresponding to the exact

correlated wave function for a molecule is lower than the Hartree-Fock energy even if the

Hartree-Fock energy is obtained in the limit that the basis set approaches completeness.

The energy difference between the exact non-relativistic electronic energy in Eq.2.3 and

the Hartree-Fock energy at the complete basis set limit is called the correlation energy:

Ecorr = E − EHF, (2.1)

The correlation energy has been the focal point of ab initio quantum physics and chemistry

for about 60 years [175]. Because by calculating the correlation energy, the calculated

properties such as bond lengths, angles, charge densities and dipole moments will be more

accurate. The electron correlation is represented formally by allowing the electrons ”to

spend time” in the unoccupied spin orbitals so that the electrons are able to avoid each

other. There are many schemes to calculate the correlation energy, that depend either on

the Hartree-Fock ground state wave function or on the Fock operator. These methods are

known as Post-Hartree-Fock methods such as the configuration interaction method, the

coupled cluster method and Møller–Plesset perturbation theory.

2.3.1 Configuration Interaction

Configuration interaction (CI) is a systematic procedure for calculating the correlation

energy. It is a variational method which mean it provides an upper bound to the exact

energy. The trial wave function used within the CI approach is represented as a linear

combination of configuration state functions (CSFs). A configuration state function

is a symmetry-adapted linear combination of Slater determinants, that have the same

symmetry as the exact wave function:

|CI〉 = C0 |ψ0〉+
( 1

1!

)2 ∑
a ∈ occ
r ∈ virt

Cr
a |ψra〉+

( 1
2!

)2 ∑
ab ∈ occ
rs ∈ virt

Crs
ab |ψrsab〉+

( 1
1!

)2 ∑
abc ∈ occ
rst ∈ virt

Crst
abc

∣∣∣ψrstabc

〉
+....,

(2.2)
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where the first term |ψ0〉 represents the determinant formed from the N lowest energy

spin orbitals that obtained from Hartree-Fock-Roothaan-Hall equation (ground state HF

wave function). The second term represents the singly excited CSF, which differ from

|ψ0〉 in replacing one occupied spin orbital χa with the virtual spin orbital χr. The third

term represents the doubly excited CSF, that constructed by replacing two occupied spin

orbitals χa and χb with two virtual spin orbitals χr and χs. The third term represents the

triply excited CSF, and so on. The expansion coefficients, C0, C
r
a, C

rs
ab , ... are determined

by using the linear variational principle. The factor ( 1
n!)

2 in front of each CSF is to ensure

that the excited determinants in each CSF is accounted once.

If the wave function is expanded with all possible CSFs of the appropriate symmetry (CI-

space), up to the N-excited CSF, then the method is called full configuration interaction

(FCI). However, it is convenient to rewrite the full CI wave function in a symbolic form as:

|CI〉 =
n∑
i=0

Ĉi |HF〉 = Ĉ0 |HF〉+ Ĉ1 |HF〉+ Ĉ2 |HF〉+ Ĉ3 |HF〉+ ...+ Ĉn |HF〉 , (2.3)

where |HF〉 represents Hartree-Fock wave function and Ĉi represents the excitation operator

that produces ith-excited Slater determinants. For example, Ĉ2 produces all possible

doubly excited Slater determinants.

The FCI scheme solves the electronic Schrödinger equation exactly within the space

spanned by the one-particle basis set. The FCI approach is computationally demanding,

therefore various approximations are applied on the FCI wave function by truncating the

CI-space. For instance, CID method is limited to doubly excited CSFs, and CISD method

is limited to singly and doubly excitation CSFs.

The truncated CI methods, CID and CISD, greatly reduce the computational effort and

give a reasonable approximation to the correlation energy, but they have a problem of

size-inconsistency which simply means that the energy of two infinitely separated particles

is not equal to the summation of the individual particle energy. The property of size

consistency is very important to obtain correctly behaving dissociation curves. Because of

that I did not use these methods to calculate the potential energy surfaces.
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2.3.2 Perturbation Theory

Rayleigh-Schrödinger perturbation theory (RSPT)[176] is a systematic procedure for

solving time-independent Schrödinger equation and consequently finding the correlation

energy. It is not vartiational but is size-consistent at each level. The principle of this

theory is to divide the total Hamiltonian of the system Ĥ into two parts, the first part

is called a zeroth-order part, Ĥ0, which has known eigenfunctions and eigenvalues. The

second part is a perturbation, V̂ . In the following, I derive the energy expressions of

RSPT following the procedure by Szabo and Ostlund [166].

In Rayleigh-Schrödinger perturbation theory, it is started with the Hamiltonian for the

unperturbed system Ĥ0, that has a set of non-degenerate eigenfunctions {ψ(0)
i } which are

orthogonal and form a complete space, and their corresponding eigenvalues are E(0)
i :

Ĥ0

∣∣∣ψ(0)
i

〉
= E

(0)
i

∣∣∣ψ(0)
i

〉
, (2.4)

the superscript (0), means unperturbed wave function and unperturbed energy (zero-order

perturbation). In order to find an approximate eigenvalues and eigenfunctions of the total

Hamiltonian (perturbed Hamiltonian):

Ĥ |φi〉 = ξi |φi〉 . (2.5)

This is done by adding the perturbation V̂ to H0:

Ĥ = Ĥ0 + λV̂ , (2.6)

where λ is an ordering parameter that controls the perturbation strength and it’s value is

between zero and one.

Next, the perturbed wave functions and the perturbed eigenvalues are expanded in power

series in λ:

ξi = E
(0)
i + λE

(1)
i + λ2E

(2)
i + λ3E

(3)
i + ...., (2.7)

|φi〉 =
∣∣∣ψ(0)
i

〉
+ λ

∣∣∣ψ(1)
i

〉
+ λ2

∣∣∣ψ2
i

〉
+ λ3

∣∣∣ψ(3)
i

〉
+ ...., (2.8)
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Both wave functions, ψ0
i and φi, are assumed to satisfy the intermediate normalization:

〈
ψ

(0)
i

∣∣∣ψ(0)
i

〉
= 1 =

〈
ψ

(0)
i

∣∣∣φi〉 , (2.9)

this leads to an orthogonality relation between the zero-order wave function and the higher

order perturbed functions:

〈
ψ

(0)
i

∣∣∣ψ(n)
i

〉
= 0 n = 1, 2, 3, .... (2.10)

Afterwards, the energy expansion, wave function expansion and perturbed Hamiltonian

are substituted into Eq.2.5:

(Ĥ0 + λV̂ )
(∣∣∣ψ(0)

i

〉
+ λ

∣∣∣ψ(1)
i

〉
+ λ2

∣∣∣ψ(2)
i

〉
+ ...

)
=(

E
(0)
i + λE

(1)
i + λ2E

(2)
i + ...

) (∣∣∣ψ(0)
i

〉
+ λ

∣∣∣ψ(1)
i

〉
+ λ2

∣∣∣ψ(2)
i

〉
+ ...

)
.

(2.11)

Then the coefficients of λn on each side of the equation are set equal to each other. This

leads to an infinite number of equations of the form:

Ĥ0

∣∣∣ψ(0)
i

〉
= E

(0)
i

∣∣∣ψ(0)
i

〉
n = 0 (2.12)

Ĥ0

∣∣∣ψ(1)
i

〉
+ V̂

∣∣∣ψ(0)
i

〉
= E

(0)
i

∣∣∣ψ(1)
i

〉
+ E

(1)
i

∣∣∣ψ(0)
i

〉
n = 1 (2.13)

Ĥ0

∣∣∣ψ(2)
i

〉
+ V̂

∣∣∣ψ(1)
i

〉
= E

(0)
i

∣∣∣ψ(2)
i

〉
+ E

(1)
i

∣∣∣ψ(1)
i

〉
+ E

(2)
i

∣∣∣ψ(0)
i

〉
n = 2 (2.14)

and so on. After multiplying these equations from left by
〈
ψ

(0)
i

∣∣∣ and using the orthogonality

relation (Eq.2.10), the expressions for the nth-order energies are obtained:

E
(0)
i =

〈
ψ

(0)
i

∣∣∣H0

∣∣∣ψ(0)
i

〉
n = 0 (2.15)

E
(1)
i =

〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(0)
i

〉
n = 1 (2.16)

E
(2)
i =

〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(1)
i

〉
n = 2 (2.17)

E
(3)
i =

〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(2)
i

〉
n = 3 (2.18)

E
(n)
i =

〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(n−1)
i

〉
n = n (2.19)

Clearly, the energy expansion of the perturbed system could be written in a compact way

as a summation of the eigenvalues of H0 and the matrix elements of the perturbation
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between the eigenfunctions of H0:

ξi = E
(0)
i +

∞∑
n=1

λn
〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(n−1)
i

〉
(2.20)

However, if the H0 is chosen wisely, then V is small and the expansion of the perturbation

energy converges quickly.

To calculate the nth order perturbation energy, the
∣∣∣ψ(n−1)
i

〉
must be known. This can

be done in general by expanding the perturbed eigenfunction
∣∣∣ψ(n)
i

〉
in space of {ψ(0)

i }.

But because the
∣∣∣ψ(0)
i

〉
are orthogonal to

∣∣∣ψ(n)
i

〉
according to the orthogonality relation

of Eq.2.10, then
∣∣∣ψ(n)
i

〉
is written as a linear combination of all other eigenfunctions of

{ψ(0)
i }: ∣∣∣ψ(n)

i

〉
=
∑
l,l 6=i

C
(n)
i,l

∣∣∣ψ(0)
l

〉
(2.21)

where

C
(n)
i,l =

〈
ψ

(0)
l

∣∣∣ψ(n)
i

〉
(2.22)

For instance, to find the expansion coefficients of the first order perturbed wave function

C
(1)
i,l , one should insert the expansion of Eq.2.21 into Eq.2.13 and then multiply from left

by
∣∣∣ψ(0)
l

〉
, then the results is:

(E(0)
i − E

(0)
l )

〈
ψ

(0)
l

∣∣∣ψ(1)
i

〉
=
〈
ψ

(0)
l

∣∣∣ V̂ ∣∣∣ψ(0)
i

〉
(2.23)

and so

C
(1)
i,l =

〈
ψ

(0)
l

∣∣∣ψ(1)
i

〉
=

〈
ψ

(0)
l

∣∣∣ V̂ ∣∣∣ψ(0)
i

〉
(E(0)

i − E
(0)
l )

. (2.24)

The expansion coefficients for the higher order perturbed wave functions are obtained in a

similar way with increasingly complicated expressions. Once the perturbed wave function

is found, the perturbed energies are calculated via Eq.2.19. Within this logical framework,

the expressions for the perturbed energies are obtained for a general partitioning of the

Hamiltonian.

Møller-Plesset Perturbation theory (MPPT)[177] is a particular formulation of many-body

perturbation theory that finds the electron correlation energy as a perturbation on the

Hartree-Fock solution.



2.3. Post-Hartree-Fock methods 21

2.3.2.1 Møller-Plesset Perturbation Theory

In 1934, Christian Møller and Milton S. Plesset [177] have applied RSPT on N-electron

system to find the perturbation expansion for the correlation energy (MPPT). They used

the Hartree-Fock Hamiltonian as the zero order Hamiltonian Ĥ0 which is a sum of the

one-electron Fock operator f̂(i):

Ĥ0 =
N∑
i

f̂(i) =
∑
i

[ĥ(i) + v̂HF(i)] (2.25)

The eigenfunction of Ĥ0 is the Slater determinant ψ(0)
0 formed from the set of the spin

orbitals {χa(~xi)}, that are eigenfunctions of Fock-operator. The eigenvalue corresponds

to each eigenfunction equals to the sum of the orbital energies included in the Slater

determinant which could be either occupied or virtual:

∑
i

f̂(i) |ψ0〉 =
∑
a∈ψ0

εa |ψ0〉 . (2.26)

The perturbation is defined as the difference between the exact electron-electron interaction

and the Hartree-Fock potential:

V =
∑
i<j

r−1
ij − vHF(i) =

∑
i<j

r−1
ij −

∑
b

Ĵb(~xi)− K̂b(~xi). (2.27)

The zeroth order wave function of the Hartree-Fock Hamiltonian is simply the Hartree-Fock

wave function ψ(0)
0 , and the corresponding zeroth order energy MP0 equal to the sum of

the orbital energies {εa} of the occupied orbitals .

MP0 = E
(0)
0 =

〈
ψ

(0)
0

∣∣∣∑
i

f̂(i)
∣∣∣ψ(0)

0

〉
=

∑
a ∈ occ

εa (2.28)

The first order perturbation energy E(1)
0 is given by applying Eq.2.16:

E
(1)
0 =

〈
ψ

(0)
0

∣∣∣ (∑
i<j

r−1
ij − vHF(i))

∣∣∣ψ(0)
0

〉
= −1

2
∑
b

Ĵb(~xi)− K̂b(~xi), (2.29)
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Then the total first order energy MP1 is :

MP1 = MP0 + E
(1)
0 =

∑
a

εa −
1
2
∑
b

Ĵb(~xi)− K̂b(~xi), (2.30)

which equals to the Hartree-Fock energy. Therefore, the total correlation energy is given

by the sum over all orders starting from the second order:

Ecorr = E
(2)
0 + E

(3)
0 + ... (2.31)

The second-order MPPT, or MP2 method approximates the electronic correlation energy

to the second order:

EMP2
corr = E

(2)
0 , (2.32)

then the MP2 energy is defined as:

MP2 = MP0 + E
(1)
0 + E

(2)
0 = EHF

0 + E
(2)
0 = EHF

0 + EMP2
corr , (2.33)

the new information required to calculate the MP2 energy is only the first-order perturbed

wave function ψ
(1)
0 . It is expanded in space of the eigenfunctions of the Hartree-Fock

Hamiltonian. But because of orthogonality constrain between ψ(1)
0 and ψ(0)

0 (Eq.2.10), and

the Brillouin’s theorem which states that there is no interaction between the Hartree-Fock

ground state wave function and the singly excited determinants {Ψr
a} [166], and the

Slater-Condon rules [178],[179], the first order wave function expanded as:

ψ
(1)
0 =

∑
a>b
r>s

C
(1)
abrs |ψrsab〉 , (2.34)

where the coefficients Crs
ab are determined by the equation:

C
(1)
abrs =

〈
ψ

(1)
0

∣∣∣ψrsab〉 =
∑
a>b
r>s

〈
ψrsab

∣∣∣ψ(0)
0

〉
εa + εb − εr − εs

(2.35)

This wave function then placed in the second order energy expression to give:

E
(2)
0 =

∑
a>b
r>s

[〈
ψ

(0)
0

∣∣∣ 1
r12
|ψrsab〉

]2
εa + εb − εr − εs

(2.36)
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That means to calculate the MP2 correlation energy, only two electrons integrals and

orbital energies are required. But, the energy calculation for MP3 and MP4 are more

complex. MP2 recovers about 80-90 % of the correlation energy, while MP3 and MP4

recover about 90-95 %, 95-98 %, respectively. The MPn energy is not an upper bound

to the exact energy, because MPPT because is not variational. However, to have more

accurate results regarding the correlation energy, coupled cluster methods are used, which

are explained in the next section.

2.3.3 Coupled-Cluster Theory

The coupled-cluster (CC) theory represents the most successful approach to accurate many-

electron molecular wave functions. It is size-extensive and size-consistent and capable of

recovering a large part of the correlation energy. additionally, the coupled-cluster wave

function providing an accurate correction to the Hartree-Fock description. It describes the

complicated correlated motion of interacting electrons by virtual excitation of electrons

from occupied to unoccupied spin orbitals.

The coupled-cluster theory for molecular electronic calculations were developed by

Sinanoglu [180], Nesbet [181],Čížek and Paldus[182–185] in the 1960s and by Bartlett

and co-worker in the 1970s [186–188] and Pople and co-worker [189]. I present the CC

theory by following the textbook "Molecular Electronic-Structure Theory" by Helgaker,

Jørgensen and Olsen [190].

There are two approaches for constructing the coupled-cluster wave function, the product

ansatz and the exponential ansatz. In the product ansatz, the coupled-cluster wave function

is defined as a product of correlating operator (1+ tµτ̂µ) acting on the Hartree-Fock ground

state |HF〉:

|CC〉 =
[∏
µ

(1 + tµτ̂µ)
]
|HF〉 (2.37)

=
1 +

∑
µ

tµτ̂µ +
∑
µ>ν

tµτ̂µtν τ̂ν + ...

 |HF〉 (2.38)

= |HF〉+
∑
µ

tµ |µ〉+
∑
µ>ν

tµtν |µν〉+ ... (2.39)

where τ̂µ, τ̂ν are excitation operators of specified excitation level; both are single or
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double or triple, etc, that generate excited Slater Determinants |µ〉 , |µν〉 and tµ, tν are

the associated amplitude which represents the probability of occurrence of the particular

excitation. The restriction of µ > ν applies because each excitation operator has to appear

only once in the product in Eq.2.37 and the order of excitation operators is unimportant

because they commute:

[τ̂µ, τ̂ν ] = 0 (2.40)

The excitation operators are defined as a product of annihilation (aI) and creation (a†A)

operators, that annihilate the electrons from the occupied spin orbitals and create the

electrons in virtual spin orbitals. For example, the single excitation operator annihilates

an electron from the occupied spin orbital I and creates an electron in the virtual spin

orbital A:

τ̂AI = a†AaI (2.41)

and the double excitation operator annihilates two electrons from the occupied spin

orbitals I and J and creates two electrons in the virtual spin orbitals A and B:

τ̂ABIJ = a†AaIa
†
BaJ . (2.42)

However, the excitation operators satisfy the relation:

τ̂ 2
µ = 0, (2.43)

since we can not remove an electron from a spin orbital, if it is not already there.

It is clear in Eq.2.39 that the excitation operator τ̂µ generates the excited Slater determinant

|µ〉 with the associated amplitude tµ which referred as connected cluster amplitude:

τ̂µ |HF〉 = tµ |µ〉 . (2.44)

In addition to the Slater determinant |µ〉, the operator τ̂µ generates a large number of

determinants in collaboration with the other excitation operators, for instance:

τ̂µτ̂ν |HF〉 = τ̂ν τ̂µ |HF〉 = tµtν |µν〉 (2.45)
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The amplitude of such a composite excitation is the product of the amplitudes of the

contributing excitations tµtν which is referred as disconnected cluster amplitude.

The presence of product excitation in Eq.2.37 leads to generate the same excited Slater

determinant with at least two mechanisms, by acting with one excitation operator or by

acting with a composite of lower excitation operators. Therefore, the total amplitude equal

to the sum of one connected cluster amplitude and other disconnected cluster amplitude.

For example the determinate |µν〉 could be reached by the one excition operator τ̂µν or by

acting with two operators regardless of their order τ̂µ, τ̂ν . then their total amplitude equal

to:

ttotalµν = tµν + tµtν . (2.46)

The optimization of the coupled cluster wave function is done either by variation principle

or by solving the projected Schrödinger equation. The variational principle give rise to an

intractable set of nonlinear equations for the amplitudes and thus a complicated energy.

Therefore, the variational principle is abandoned and the projection formalism are used

to find the energy and the amplitudes. The coupled-cluster energy is found by projecting

the Schrödinger equation against the Hartree-Fock wave function:

E = 〈HF| Ĥ |CC〉 , (2.47)

while the amplitudes is found by projecting the Schrödinger equation against the

determinants with connected amplitudes:

〈µ| Ĥ |CC〉 = E 〈µ|CC〉 = Etµ. (2.48)

Since the projected CC-equations are non-variational, the coupled cluster energy no longer

represents the upper bound to the FCI energy.

Now , I will move to the exponential ansatz in which the CC wave function is written as

an exponential of cluster operators T̂ acting on the normalized ground state Hartree-Fock

wave function |HF〉:

|CC〉 = eT̂ |HF〉 (2.49)

which ensures the extensive property, i.e. the correct scaling with the number of electrons.
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The cluster operator T̂ is a linear combination of excitation operators multiplied by the

connected-cluster amplitude tµ:

T̂ =
∑
µ

tµτ̂µ. (2.50)

However, the Taylor expansion of the operator eT̂ leads to the same expression as the

expansion of the product function.

The excitation operator included in the cluster operator are not selected individually.

Rather, a hierarchy of approximation is adopted by partitioning the cluster operator into

a classes containing all single excitation, all double excitation, all triple excitation, and so

on. Therefore, the cluster operator could be in other form:

T̂ = T̂1 + T̂2 + ...+ T̂n, (2.51)

where T̂1 is the single excitation cluster operator, T̂2 is the double excitation cluster

operator and n is the number of electrons in the molecule. The one and two cluster

operators are defined as:

T̂1 =
∞∑

A=n+1

n∑
I=1

tAI a
†
AaI =

∞∑
A=n+1

n∑
I=1

tAI τ̂
A
I (2.52)

T̂2 =
∞∑

b=a+1

∞∑
a=n+1

n∑
J=I+1

n−1∑
I=1

tABIJ a
†
AaIa

†
BaJ =

∞∑
b=a+1

∞∑
a=n+1

n∑
J=I+1

n−1∑
I=1

tABIJ τ̂
AB
IJ . (2.53)

As before, the indices I and J are used for the occupied Hartree-Fock spin orbitals and

the indices A and B for the virtual spin orbitals. The cluster amplitudes tABIJ are anti-

symmetric with respect to permutations of both, A and B ,and I and J. However, the

limits of the summation in the definition of T̂1 and T̂2 are chosen to include all possible

excitations without duplication. The same definition holds for T̂3, ..., T̂n. The operator T̂

terminates at T̂n because the maximum number of excitations have to be equal to the

number of the electrons in |HF〉.

One should be careful to the definition of the cluster operators, T̂1 ,T̂2, ..., T̂n because

if they operate on an excited determinant which have electrons in both occupied and

virtual spin orbitals, the result is a sum of higher excited determinants because the cluster

operators excite the electrons from the occupied spin orbitals in |HF〉 and not from the
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virtual spin orbitals. For example, the results of T̂ 2
1 |HF〉 = T̂1(T̂1 |HF〉) is a double excited

Slater determinants, and T̂ 2
2 |HF 〉 contains only quadruple excited Slater determinants.

(This definition makes the operators amplitudes different to the CI coefficients, because

the amplitudes of some higher excitation are a product of lower excitations).

The CC theory becomes applicable after making two approximations. First, using a finite

basis set instead of using a complete basis set. This produces a finite number of virtual

spin orbitals which are used to form the excited Slater determinants. Second, including

only a few of the cluster operators rather than including all the operators.

To compare coupled-cluster model with FCI model, one expand the operator eT and then

collect the term of the same excitation level.

eT̂ |HF〉 =
N∑
i

Ĉi |HF〉 (2.54)

Then, the configuration operators Ĉi are given in term of cluster operators:

Ĉ0 = 1 (2.55)

Ĉ1 = T̂1 (2.56)

Ĉ2 = T̂2 + T̂ 2
1

2! (2.57)

Ĉ3 = T̂3 + T̂1T̂2 + T̂ 3
1

3! (2.58)

Ĉ4 = T̂4 + T̂ 2
2

2! + T̂ 2
1 T̂2

2! + T̂1T̂3 + T 4
1

4! (2.59)

Ĉ5 = T̂5 + T̂1T̂4 + T̂2T̂3 + T̂ 2
1 T̂3

2! + T̂ 3
1 T̂2

3! + T̂1T̂
2
2

2! + T̂ 5
1

5! (2.60)

These equations show that the excited configurations can be generated by different

mechanisms. For example, the doubly excitation configurations can be reached by two

mechanisms, by connected T̂2 term which describes the simultaneous interaction of two

electrons and by two disconnected simultaneous singly excitations. The triply excited

configurations are generated via three mechanisms, the connected T̂3 term which describes

the simultaneous interaction of three electrons, by the disconnected combination of a double

and a single excitation and by the three disconnected single excitations. The quadruple
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and quintuple excited configurations can be reached via five and seven mechanisms,

respectively.

The FCI and the full coupled-cluster wave functions contain the same number of parameters

because there is one connected cluster amplitude for each determinant. However the FCI

provides a linear set of parameters while the full coupled-cluster provides a non-linear

set of parameters. The advantages of the non-linear parametrization become apparent

only upon the truncation, since the truncated coupled-cluster wave function still have

contributions from all determinants in the FCI wave function which are constructed by

a combination of disconnected excitation. For example, the inclusion of only single and

double cluster operators (CCSD), generates in addition to all singly and doubly excited

determinants, as in CISD, higher exited determinants which reached by the products of

single and double excitation. This ensures that the truncated coupled-cluster methods

are size-extensive and size-consistent.

The projected coupled-cluster equations with the exponential ansatz are expressed slightly

different than the product ansatz. First, multiply the Schrödinger equation from left by

e−T̂ to obtain:

e−T̂ ĤeT̂ |HF〉 = E |HF〉 (2.61)

This equation is considered as a Schrödinger equation with an effective, non-Hermitian

similarity-transformed Hamiltonian:

ĤT = e−T̂ ĤeT̂ (2.62)

Then, projecting the similarity-transformed Schrödinger equation against the Hartree-Fock

determinant to get the energy:

〈HF| e−T̂ ĤeT̂ |HF〉 = E (2.63)

and projecting against the determinants with connected amplitudes to get the amplitudes

〈µ| e−T̂ ĤeT̂ |HF〉 = 0 (2.64)

which are equivalent to Eq.2.47 and Eq.2.48. After that, the similarity-transformed
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Hamiltonian is expressed using the Baker–Campbell–Hausdorff (BCP) expansion as a

sequence of nested commutator which terminates after the five term:

e−T̂ ĤeT̂ = Ĥ + [Ĥ, T̂ ] + 1
2[[Ĥ, T̂ ], T̂ ] + 1

6[[[Ĥ, T̂ ], T̂ ], T̂ ] + 1
24[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ] (2.65)

The first CC calculations was coupled-cluster double (CCD) with a wave function eT̂2 |HF〉.

Although it is limited to the expansion of the two-body cluster T̂2,

eT̂ = 1 + T̂2 + T̂ 2
2

2! + T̂ 3
2

3! + ..., (2.66)

it contains the essential disconnected amplitude of quadruple excitation and the amplitudes

of the higher even-ordered excitation, which are the dominant parts of the excitation for

Hartree-Fock wave function.

Although the CCD method includes the dominants contribution for the correlation energy,

it is necessary to include the single-particle clusters, T̂1, and their products with themselves

and with T̂2. The full Coupled-cluster single and double excitation method (CCSD), has

a wave function |CCSD〉 = eT̂1+T̂2 |HF〉 and the equation for single amplitude is:

〈µ1| Ĥ |HF〉+ 〈µ1| [Ĥ, T̂1] |HF〉+ 〈µ1| [Ĥ, T̂2] |HF〉+ 1
2 〈µ1| [[Ĥ, T̂1], T̂1] |HF〉

+ 〈µ1| [[Ĥ, T̂1], T̂2] |HF〉+ 1
6 〈µ1| [[[Ĥ, T̂1], T̂1], T̂1] |HF〉 = 0

(2.67)

and the double amplitude equation is:

〈µ2| Ĥ |HF〉+ 〈µ2| [Ĥ, T̂1] |HF〉+ 〈µ2| [Ĥ, T̂2] |HF〉+ 1
2 〈µ2| [[Ĥ, T̂1], T̂1] |HF〉

〈µ2| [[Ĥ, T̂1], T̂2] |HF〉+ 1
2 〈µ2| [[Ĥ, T̂2], T̂2] |HF〉+ 1

6 〈µ2| [[[Ĥ, T̂1], T̂1], T̂1] |HF〉

+1
2 〈µ2| [[[Ĥ, T̂1], T̂1], T̂2] |HF〉+ 1

24 〈µ2| [[[[Ĥ, T̂1], T̂1], T̂1], T̂1] |HF〉 = 0

(2.68)

However, the non-linear equations of the amplitude are solved self-consistently. The CCSD

scheme includes the most important correlation processes; the pair correlation via T̂2, and

pair-pair interactions via T̂ 2
2 . The single excitation carries out the orbital relaxation effects

which considered as a part of the non-dynamic correlation effects. The quadruple excited

determinants are described in CCSD mostly via the process T̂ 2
2 because the truncation

leads to a neglect of the less probable processes T̂4 and T̂3T̂1. The main error in CCSD
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scheme arise from neglecting the connected triple cluster operators T̂3 and depending

only on T̂ 3
1 and T̂1T̂2, that have a low weight to the energy contribution from the triple

excitation.

To improve the CCSD method, the triple connected excitation is added by truncating the

CC wave function at T̂3 level, then we obtain the full coupled-cluster singles doubles and

triples (CCSDT) model [191, 192]. This model is very accurate because it describe the

dynamical correlation but it is computationally demanding and can be applied only for

small system.

However, Barllet and Pople and their co-workers [193–197] attempted to define an

economical approximations to CCSDT by applying many-body perturbation theory

MPPT for the triple term which reduces the computational cost and retains much of the

accuracy. They create different approximations which are conventionally divided into two

classes; iterative and non-iterative methods. The iterative methods are the same as the

full CCSDT, the equations of the amplitude of T̂1, T̂2, and T̂3 are coupled and are solved

in an iterative way, but the difference is that the T̂3 equation is truncated. For example

CCSDT-1 [193, 194], CCSDT-2 [195],CCSDT-3 [195] and CCSDT-4 [196]. The second

class is the non-iterative methods, such as CCSD + T(CCSD)[194] and CCSD(T) [197],

in these methods, the amplitude equation of T̂3 is decoupled from the T̂1 and T̂2, then

the contributions of T̂3 are estimated from taking the terms introduced in the iterative

method CCSDT -1, but evaluating them non-iteratively. Accordingly, T̂1 and T̂2 gives an

initial approximation for T̂3, but T̂3 not allowed to change T̂1 and T̂2. Therefore, these

methods are much more economical than their iterative counterparts.

This work depends mainly on the CCSD(T) method, therefore, I would like to write in detail

about it. The key point to understand this method is the coupled-cluster perturbation

theory (CCPT) which connects the coupled-cluster theory and the perturbation theory by

expanding the full coupled cluster wave function (Eq.2.49), the coupled cluster energy

(Eq.2.63) and the similarity transformed Schrödinger equation (Eq.2.61) in order of the

perturbed potential V̂ , as will be seen later.

As in MP2 scheme, the electronic Hamiltonian is divided into Fock operator and the

perturbation potential Ĥ = f̂ + V̂ , and the electronic energy is expanded in orders of the
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perturbation:

E = E(0) + E(1) + E(2) + ... =
∞∑
n=0

E(n) (2.69)

but the perturbed wave function is expanded using the exponential cluster ansatz instead

of linear ansatz: ∣∣∣ψ(n)
〉

= eT̂ |HF〉 , (2.70)

where

T̂ = T̂ (1) + T̂ (2) + T̂ (3) + ... =
∞∑
n=1

T̂ (n) (2.71)

where T̂ (1) is the first order cluster operator, T̂ (2) is the second order cluster operator, and

so on. After substituting the electronic Hamiltonian and the perturbed wave function

and energy into the Schrödinger equation, then multiplying from left with [e−T̂ (n) ], the

similarity transformed Schrödinger equation is obtained:

ĤT |HF〉 = E(n) |HF〉 (2.72)

where

ĤT = e−T̂
(n)(f̂ + V̂ )eT̂ (n) = f̂T + V̂ T , (2.73)

The similarity transformed Fock operator f̂T equals to :

f̂T = e−T̂
(n)
f̂ eT̂

(n) = f̂ +
∞∑
n=1

∑
µ

εµt
(n)
µ τµ (2.74)

where the expansion of the perturbed cluster amplitudes t(n)
µ is :

t(n)
µ = t(0)

µ + t(1)
µ + t(2)

µ + ..., (2.75)

and an example of the energy εµ is:

εABIJ = εA + εB − εI − εJ . (2.76)

Next, the terms of order (n) in the similarity transformed Schrödinger equation (Eq.2.72)

are collected:

f̂ |HF〉 = E(0) |HF〉 (2.77)
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∑
µ

εµt
(n)
µ τµ |HF〉+ [V̂ T ](n) |HF〉 = E(0) |HF〉 , n > 0 (2.78)

However, projecting Eq.2.72 against the |HF〉 gives the energy E(n) which equals to :

E(n) = 〈HF| f̂T |HF〉+ 〈HF| V̂ T |HF〉 = E0 + 〈HF| V̂ T |HF〉 (2.79)

where E0 equal to the sum of orbital energies of all the occupied spin orbitals. Then

projecting against the excited determinant with connected amplitudes give :

εµt
(n)
µ = −〈µ| [V̂ T̂ ](n) |HF〉 (2.80)

Next, the BCH expansion is applied to the V̂ T = e−T̂ V̂ eT̂ and the expansion of T̂ (Eq.2.71)

is substituted to get the order of the amplitude for each excitation, for example:

εµt
(1)
µ = −〈µ| V̂ |HF〉 (2.81)

εµt
(2)
µ = −〈µ| [V̂ , T̂ (1)] |HF〉 (2.82)

εµt
(3)
µ = −〈µ| [V̂ , T̂ (2)] |HF〉 − 1

2 〈µ| [[V̂ , T̂
(1)], T̂ (1)] |HF〉 (2.83)

This mean the excitations at each order of perturbation are determined by the amplitude

equation (Eq.2.80). For instance, only the double excitations contribute to the first order

of perturbation. The single excitations do not contribute because of Brillouin theorm, and

the higher-order excitations can not couple with the Hartree-Fock state by a two-electron

operator. The singles and triples excitations start to appear at the second order of

perturbation.

The knowledge of the perturbed cluster amplitudes leads to calculate the CCPT wave

function according to Eq.2.70:

∣∣∣ψ(0)
〉

= |HF〉 (2.84)∣∣∣ψ(1)
〉

=T̂ (1) |HF〉 = T̂
(1)
2 |HF〉 (2.85)∣∣∣ψ(2)

〉
=(T̂ (2) + 1

2 T̂
(1)T̂ (1)) |HF〉 = (T̂ (2)

1 + T̂
(2)
2 + T̂

(2)
3 + 1

2 T̂
(1)
2 T̂

(1)
2 ) |HF〉 (2.86)
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∣∣∣ψ(3)
〉

= (T̂ (3) + T̂ (2)T̂ (1) + 1
6 T̂

(1)T̂ (1)T̂ (1)) |HF〉 = T̂
(3)
1 |HF〉+ T̂

(3)
2 |HF〉

+(T̂ (3)
3 + T̂

(2)
1 T̂

(1)
2 ) |HF〉+ (T̂ (3)

4 + T̂
(2)
2 T̂

(1)
2 ) |HF〉+ T̂

(2)
3 T̂

(1)
2 |HF〉

+1
6 T̂

(1)
2 T̂

(1)
2 T̂

(1)
2 |HF〉

(2.87)

The first order wave function (Eq.2.85) contains only the connected doubles while the

second order wave function (Eq.2.86) contains besides to the connected singles, doubles

and triples, disconnected quadruples. The higher order wave function contains a large

number of disconnected cluster amplitudes.

Now, the coupled-cluster energy corrections are evaluated according to the formula in

Eq.2.78, after expanding the similarity-transformed perturbation potential in BCH series:

E(0) =E0 (2.88)

E(1) = 〈HF| V̂ |HF〉 (2.89)

E(2) = 〈HF| [V̂ , T (1)
2 ] |HF〉 (2.90)

E(3) = 〈HF| [V̂ , T (2)
2 ] |HF〉 (2.91)

E(4) = 〈HF| [V̂ , T (3)
2 ] |HF〉 (2.92)

E(5) = 〈HF| [V̂ , T (4)
2 ] |HF〉+ 1

2 〈HF| [[V̂ , T (2)
1 ], T̂ (2)

1 ] |HF〉 (2.93)

Then, the optimized energy expression is found using the Lagrange multiplier technique

[198]. This method of optimization leads to energy expression E2n+1:

E(n) = E(0)δn,0 + 〈HF| [V̂ T ](0) |HF〉+
∑
µ

n−1∑
k=1

εµt
(k)
µ t̄(n−k)

µ +

∑
µ

n−1∑
k=1

t̄(k)
µ 〈µ| [V̂ T ](n−k) |HF〉 .

(2.94)

The method that combines the CC theory and the MBPT are called hybrid method, in

which the contribution of the highest excitations are approximated to the lower order in

the perturbation potential. Iterative hybrid methods are termed as CCN, for instance,

CC2 is an approximation of CCSD, in that the double cluster operator is included to the

first order only. CC3 is an approximation to CCSDT, in that the triple cluster operator is

included to the second order only. These method generates improved wave function with
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lower cost compared with non-hybrid CC methods. But, if the energy has to be calculated

only, non-iterative hybrid CC method as CCSD(T) is more economical than CC3.

The CCSD(T) is the most successful non-iterative hybrid model, it is known an "gold

standard" of electronic structure theory. In CCSD(T) an a perturbative (non-iterative)

correction is added to the CCSD energy:

ECCSD(T) = ECCSD + ∆ECCSD(T), (2.95)

where ∆ECCSD(T) includes two terms of the fifth order CCPT energy correction that

contain triple connected amplitudes. In conclusion, the CCSD(T) energy is calculated

by solving the full CCSD iteratively, then the single and double amplitudes are used to

calculate the second order corrected wave function that is used to calculate the fourth

and fifth order energy corrections that are added to the CCSD energy.

We apply CCSD(T) method which is a well balance method between accuracy and

computaional cost. Hence, the calculated electronic energy includes a large amount of

correlation energy and it is calculated within reasonable computational time. In addition,

this method is size-extensive and size-consistance, thus it gives accurate binding energy.

2.4 Computational details
The calculation were carried out using post-Hartree-Fock ab initio method based on

spin unrestricted coupled-cluster singles and doubles and a perturbative estimate of

triple excitaions UCCSD(T) method as implemented in MOLPRO package [199]. The

UCCSD(T) wave function depends on HF wave function which is calculated using Roothan-

Hall equations. Hence, each atomic orbital is expanded in a finite set of basis functions.

In order to minimize the error resulting from the the use of finite basis set, Augmented

correlation-consistent basis sets of Dunning and coworkers [200, 201] were tested, because

they are designed for converging Post-Hartree–Fock calculations systematically to the

complete basis set limit using empirical extrapolation techniques [202].Hence, augmented

polarized valence triple zeta basis set(avtz) was chosen for carbon, oxygen and nitrogen

[200].
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In addition, effective core potentials (ECPs) are used to replace the inner (core) electrons

of coinage atoms by an effective potential and treat only the valence electrons explicitly in

the calculations, in order to treate the relativistic effects and to reduce the computational

effort as well. The number of core electrons that replaced by ECP is 60, 28, 10 for gold,

silver and copper [203], repectively, and the 19 valence electrons are represented by avtz

basis set [204].

2.4.1 Basis set superposition error and Counterpoise

Correction

The binding energy ∆E(AB) of complex consists from monomer A and B is found by

subtracting the electronic energy of each monomer from the electronic energy of the

complex AB:

∆E(AB) = EAB
AB (AB)− EA

A(A)− EB
B (B), (2.1)

where the superscripts denote the basis used, the subscripts denote the geometry, and the

symol in parentheses denotes the chemical system considered. Thus, EAB
AB (AB) represents

the energy of the complex AB evaluated with the union of the basis sets on A and B, at

the geometry of the complex. Likewise, both monomers A and B are each evaluated at

their own geometries in their own basis sets.

When the monomers A and B are far apart, there is no overlap between their basis

functions and each monomer uses only its own basis set to describe its electronic strcuture.

But, as monomer A approaches monomer B, each monomer in the complex can “steal”

basis functions from the other monomer, lowering the energy of the complex in a way that

is not possible for the isolated monomers, thus leading to overbinding of the complex when

one computes its binding energy. Such problem is ascribed to “basis set superposition

error” (BSSE) [205, 206] and it is more pronounced for smaller basis sets.

Counterpoise correction (CP)[207] is prescription for eliminating the BSSE. The BSSE

for each monomer is evaluated by subtracting the energy of monomer in its own basis

functions from the energy of monomer in the complex basis functions:

EBSSE(A) = EAB
A (A)− EA

A(A), (2.2)
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EBSSE(B) = EAB
B (B)− EB

B (B), (2.3)

The energy of the monomer in the complex basis functions must necessarily be lower

(more stable) than the energy of the monomer in its own basis functions, so the BSSEs

are negative. If the BSSEs of both monomers are subtracted from the binding energy

defined in Eq.2.1, the terms EA
A(A), EB

B (B) cancel, yielding:

∆ECP (AB) = EAB
AB (AB)− EAB

A (A)− EAB
B (B) (2.4)

Practically speaking, to estimate the energy of monomer A in the complex basis functions,

one places all the basis functions of monomer B on the atomic centers of the monomer

B while neglecting the electrons and the nuclear charges of the monomer B. The basis

functions on the monomer B are thus referred to as “ghost functions”, or the atoms of the

monomer B are referred to as “ghost atoms”. Likeweise, the atoms of the monomer A are

considered ghost atoms to estimate EAB
B (B). Hence, eliminating the BSSEs decreases the

magnitude of binding energy.

In this study, I calculate the counterpoise corrected binding energies of the neutral and

charged coinage atoms with CO, NO, respectively, to form monocarbonyl coinage metals

complexs (M− CO0,±) and mononitrosyl coinage metals complexs (M− NO0,±), where

M: Au, Ag, Cu. Thus, I consider the coinage metals atom as the first monomer and the

CO or NO as the second monomer. Then I calculated the counterpoise corrected binding

energy as define in Eq.2.4



Chapter 3
Electronic properties of monomers

A potential energy surface (PES) is a plot of molecular energy as a function of molecular

geometry. The molecular energy is divided into four categoreis; translational, rotational,

vibrational and electronic energy. This study is interested in the PES of electronic energy

that is calculated using the CCSD(T) method. The electronic energy depends on the

type of atoms consisting the molecule and on the number of electrons included in the

calculation. Therefore, to compare between different molecules regarding the stability

and the effect of charge, one should calculate the PES of binding energy rather than the

electronic energy.

The PESs I have calculated describe the binding of charged or neutral coinage metals with

CO or NO to form monocarbonyl coinage metals (M− CO)0,± and mononitrosyl coinage

metals (M− XO)0,± complexes with M being Au, Ag, Cu, as the following reaction:

M0,± + XO −→ (M− XO)0,±, where M : Au , Ag ,Cu. and X : C , N. (3.1)

Each point of the PES represents a counterpoise corrected binding energy (ECP)[207]

which is calculated using the following formula:

ECP = E((M− XO)0,±)− E(M0,±)− E(XO), (3.2)

where the E((M− XO)0,±) is the electronic energy of the complex, E(M0,±) is the electronic

energy of the metal atom or its ions, and E(XO) is the electronic energy of CO or NO.

Both energies, E(M0,±) and E(XO), were calculated for the same geometry as in the

37
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complex with a basis set of both constituents to remove the basis set superposition error

[208].

In order to calculate the binding energy of E((M− CO)0,±) and E((M− NO)0,±)

complexes, it is very important to know what are the electronic ground states of the

carbon monoxide (CO), nitrogen monoxide (NO) molecules and the coinage metal atoms.

3.1 Carbon monoxide
Carbon monoxide (CO) consists of one carbon atom (C) and one oxygen atom (O).

The electron configuration of carbon and oxygen atoms are 1s22s22p2 and 1s22s22p4,

respectively, both C and O atoms have 3Pg as a ground state. The molecular electronic

states of CO resulting from the combination of the ground state of C and O according to

Wigner-Witmer rules[209] are: 2× 1Σ+,1Σ−,1Π, 1∆, 2× 3Σ+,3Σ−, 3Π, 3∆, 2× 5Σ+,5Σ−,
5Π, 5∆. The molecular ground state of CO based on the UCCSD(T)/AVTZ calculation is
1Σ+ with a bond length equals to 1.136 Å and the vibrational frequency 2143.3 cm−1 in the

harmonic approximation, which agree resonably well with the corresponding experimental

values 1.128 Å and 2169.8 cm−1 [210].

The canonical molecular orbitals diagram of the CO ground state is given in Fig.3.1.1.

It is similar to the electron configuration of neutral C2 molecule, but with 10 electrons;

four valence electrons come from carbon and six valence electrons come from oxygen. In

addition, the s-p mixing is clear since the 3σ orbital is higher in energy than the 1π orbital.

Therefore, the electronic configuration of CO molecule (1Σ+) is (1σ)2(2σ∗)2(1π)4(3σ)2

which have a bond order of 3. This means that CO contains formally a triple bond; one σ

bond and two π bonds.

The highest occupied molecular orbital (HOMO) of CO is 3σ orbital is shown in Fig.3.1.2.

It is built from the sigma combination of two p atomic orbitals and the s orbitals. It is

not totally symmetric; there is a larger lobe on the carbon atom than on the oxygen atom.

Because the nuclear charge of carbon atom is less than of oxygen atom which make the

atomic orbitals of carbon higher in energy than the oxygen’s orbitals and closer to 3σ

molecular orbital.
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Figure 3.1.1: Energy level diagram for canonical valence molecular orbitals of carbon
monoxide molecule (1Σ+) using RHF/AVTZ. The atomic orbitals of carbon and oxygen
are calculated with CASSCF(4/4) and (6/4)/AVTZ, respectively.

Figure 3.1.2: The highest occupied
molecular orbital (HOMO) of CO (3σ).
The carbon atom on the left and the
oxygen atom on the right, the isocontour
is 0.025. The contribution of s and p
atomic orbitals are: HOMO= -0.62C2s+
0.71Cpx + 0.06O2s - 0.38Opx .

Figure 3.1.3: The highest occupied
molecular orbital (HOMO) of NO ( 2π∗).
The nitrogen atom on the left and the
oxygen atom on the right, the isocontour
is 0.025. The contribution of p atomic
orbitals are:
HOMO= + 0.88Npx - 0.69Opx .
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3.2 Nitrogen monoxide
Nitrogen monoxide (NO) or Nitrosyl radical consists from one nitrogen atom (N) and one

oxygen atom (O). The electron configuration of nitrogen atom is 1s22s22p3 which have
4Su ground state. The combination of the ground states of nitrogen and oxygen atoms

leads to the following states 2Σ+, 2Π, 4Σ+, 4Π, 6Σ+, 6Π. The molecular ground state of

NO molecule based on the UCCSD(T)/AVTZ is 2Π state with a bond length 1.157 Å and

vibrational frequency 1889.08 cm−1 which agree reasonable well with the experimental

values 1.151 Å and 1904.04 cm−1 [210].

The valence electrons configuration of NO molecular ground state is

(1σ)2(2σ∗)2(3σ)2(1π)4(2π∗)1, see Fig.3.2.1, resulting from CASSCF (5/ 4)/AVTZ

method. The HOMO is an antibonding singly occupied orbital, see Fig.3.1.3, which leads

to a bond order of 2.5, one sigma bond and 1.5 pi bond. The unpaired electron makes the

NO molecule a free radical, which is unstable and tending to lose or gain an electron.

Hence, the NO molecule is more reactive than the CO molecule.

Oxygen and nitrogen do not equally contribute to form the molecular orbitals of NO

because of the difference in the nuclear charge. The nitrogen atomic orbitals are higher in

energy than the oxygen atomic orbitals, see Fig.3.2.1, therefore, the nitrogen contributes

more to antibonding orbitals, while the oxygen contributes more to bonding orbitals. This

explains why the HOMO of NO has larger lobes on the nitrogen side. Therefore, the NO

molecule tends to bind with other atoms from nitrogen side.

In conclusion, the important difference between CO and NO is the symmetry and the

occupancy of the HOMO; the CO’s HOMO is double occupied and has σ symmetry while

the NO’s HOMO is singly occupied and has a π symmetry.
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Figure 3.2.1: Energy level diagram for natural valence molecular orbitals of nitrogen
monoxide molecule (2Π) using CASSCF(5/4)/AVTZ.
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3.3 Coinage metals atom
Copper (Cu), silver (Ag) and gold (Au) are known as coinage metals, due to their former

usage in minting the coins. They are transition metals belonging to group 11 of the

periodic table. They have same electron configuration pattern in the outermost shells.

The three elements have 2S ground state with a full d subshell and singly occupied s

subshell as it listed in the Tab.3.3.1. But the first and the second excited states are

not the same; copper’s and gold’s first excited state is 2D, and the second excited state

is 2P. While silver’s first excited state and second excited state are 2P and 2D, respectively.

M
Atomic ∆E ∆Eexp Electrons

term (eV) (eV) configuration

Cu

2S 0 0 [Ar]3d104s1

2D 1.3 1.5 [Ar]3d94s2

2P 3.8 3.8 [Ar]3d104p1

Ag

2S 0 0 [Kr]4d105s1

2P 3.7 3.7 [Kr]4d105p1

2D 6.6 4.0 [Kr]4d95s2

Au

2S 0 0 [Xe]4f145d106s1

2D 1.8 1.9 [Xe]4f145d96s2

2P 4.9 4.9 [Xe]4f145d106p1

Table 3.3.1: The ground and the
excited states of neutral atom, cation and
anion of coinage metals and the their
corresponding excitation energy calculated
by UCCSD(T)/ECP(10,28,60)MDF-AVTZ.
The experimental values correspond to the
mean values of total angular momentum (J)
over all spin-orbital components of the state
[211].

M±
Atomic ∆E ∆Eexp Electrons

term (eV) (eV) configuration

Cu+
1S 0 0 [Ar]3d10

3D 2.7 2.8 [Ar]3d94s1

Ag+
1S 0 0 [Kr]4d10

3D 5.2 5.3 [Kr]4d95s1

Au+
1S 0 0 [Xe]4f145d10

3D 2.6 2.5 [Xe]4f145d96s1

Cu−
1S 0 0 [Ar]3d104s2

3P 1.7 - [Ar]3d104s14p1

Ag−
1S 0 0 [Kr]4d105s2

3P 1.7 - [Kr]4d105s15p1

Au−
1S 0 0 [Xe]4f145d106s2

3P 2.6 - [Xe]4f145d106s16p1

The excitation energies for each element are calculated as the difference between the total

electronic energy of the excited state and of the ground state. As shown in Tab.3.3.1,

copper atom has the lowest excitation energies, followed by the gold atom then the silver.
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Furthermore, the difference in the value of the first excitation energy between copper and

gold is small in comparison with the difference in their atomic number. In addition, the

energy needed to move an electron from the s subshell to the p subshell is nearly the

same for copper and silver, and less than for gold. This is because relativistic effects are

predominant in gold, which lower the energy of s and p AOs and increase the energy of

the d AO [212].

The ground state and the first excited state for the cations of the coinage metals were

calculated. Tab.3.3.1 shows clearly that the ground state of the three cations is 1S, in

which the atom lost an electron from the s orbital. Moreover, the first excited state of the

cation is 3D where the electron is lost from the d orbital. Furthermore, the copper and

gold cations have nearly the same excitation energy which is lower than the Ag+ cation.

The ground state of the anions and their first excited state were calculated, too. As it

seen in Tab.3.3.1, the three elements have 1S ground state with full occupied s orbital.

The first excited state is 3P, for which the electron is transferred to the p orbital. Finally,

the values of the first excitation energy do not show the same trends as for the cations;

while, the copper and silver have the same value and lower than the gold’s anion.

In addition, the ionization potential (IE) and the electron affinity (EA) for coinage

elements, CO and NO molecules were calculated, see Tab.3.3.2. The IE is defined as the

minimum amount of energy that an isolated atom in the ground electronic state must

absorb to expel an electron, resulting in a cation:

M + IP→ M+ + e−, (3.1)

where M is any neutral atom and M+ is its cation. In computational chemistry, the IP is

calculated using the following formula:

IP = E(M+)− E(M), (3.2)

where E(M+) and E(M) are the electronic ground state energy of the cation and neutral

atom, respectively.

The electron affinity (EA) is basically the opposite of IP; it reflects the ability of an atom

to accept an electron. It is defined as the energy change that occurs when an electron is
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added to the atom, resulting in an anion:

M + e− → M− + EA. (3.3)

Moreover, the electron affinity is calculated using the following formula:

EA = E(M−)− E(M), (3.4)

where E(M−) is the electronic ground state of the anion. As it seen in Tab.3.3.2, the

coinage metals have negative EA and positive IP. This means that the coinage anions are

more stable than the neutral atoms and the neutral atom are more stable than the cation

(E(M−)< M < E(M+)). Regarding the CO and the NO molecules, they have positive IP

and EA. This mean that the neutral molecules are more stable than the anions, and the

anions are more stable than the cations (E(CO/NO)) < E(CO/NO)−) < E(CO/NO)+)).

According to this results, the MCO0,± and MNO0± complexes will be formed by binding

the neutral CO or NO with M0,±.

Metal Cu Ag Au CO NO

CO/NO cal exp cal exp cal exp cal exp cal exp

IP (eV) 7.65 7.73 7.45 7.58 9.03 9.23 13.9 14.0 9.2 9.2

[213] [214] [215] [216] [217]

EA (eV) -1.18 -1.23 -1.23 -1.30 -2.17 -2.31 1.5 1.3 0.011 0.026

[218] [218] [219] [220] [221]

Table 3.3.2: Ionization potential (IP) and electron affinity (EA) of copper, silver,gold
atoms and CO, NO molecules calculated by CCSD(T)/ECPnMDF-AVTZ, where n being
the number of core electrons that are replaced by a pseudopotential, 10 for Cu, 28 for Ag
and 60 for Au.

3.4 Coinage metal dimer
The molecular ground state of any coinage metals dimer is 1Σ which results from the

combination of atomic ground state 2S. A comparison of calculated and experimental

bond lengths is presented in Tab.3.4.1. As it is seen, there is good agreement between the
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calculated and the experimental values of the bond length. The interatomic distance in

gold dimer is shorter than the silver dimer because of the relativistic effect [212, 222].

Dimer
Cu2 Ag2 Au2

cal exp cal exp cal exp

Bond length (Å) 2.221 2.220 [210] 2.545 2.531[223] 2.500 2.472 [210]

Table 3.4.1: The bond length of copper, silver and gold dimer calculated by
CCSD(T)/ECPnMDF-AVTZ, where n is the number of core electrons which are replaced
by pseudopotential, 10 for Cu, 28 for Ag and 60 for Au.

The canonical valence molecular orbital diagrams of coinage metals dimers have the same

pattern. It is is shown in Fig.3.4.1. They differ only in the values of the energy levels.

Tab.3.4.2 gives the energy of the s and the d atomic orbital and the HOMO and the

LUMO of the dimers. The energy gap between the s and d atomic orbital of the gold is

4.4 eV which is less than the energy gap in copper and silver. This is a consequence of

the relativistic effect according to which the s orbital contracts and the d orbital expands

[212, 222]. In addition, the LUMO’s energy of gold dimer is negative while it is positive

for copper and silver, this means that the electron affinity of gold dimer is more than the

silver and copper.

Metal Copper Silver Gold

Energy of atomic orbital d (eV) -13.0533 -13.8479 -12.3050

Energy of atomic orbital s (eV) -6.6624 -6.4572 -7.8969

Energy of molecular orbital 3σ (eV) -6.4543 -6.3310 -7.9588

Energy of molecular orbital 4σ∗ (eV) 0.0983 0.0253 -0.3201

Table 3.4.2: The energy of s and d atomic orbitals for copper, silver and gold atoms and
the HOMO and the LUMO of their dimers calculated by RHF/ECPnMDF-AVTZ, where
n is the number of core electrons which are replaced by pseudopotential, 10 for Cu, 28 for
Ag and 60 for Au.
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Figure 3.4.1: The canonical valence molecular orbital diagram of M2(1Σ) with M: Au,
Ag, Cu. The shell number is represented by n = 5, 4, 3 for Au, Ag, Cu



Chapter 4
Two dimensions potential energy surfaces of

coinage metals carbonyl complexes

Coinage metals monocarbonyl complexes are compounds that contain one CO as a

coordinated ligand (M-CO, M: Au, Ag, Cu). To understand how the CO adsorbs on the

coinage metal atom, the potentail energy surafces (PESs) of the neutral and the charged

coinage metals monocarbonyl complexes are calculated. The full PES for a complex

consists from three atoms should be a function of three parameters (two bond lengths

and one bond angle). According to Bistoni et al [224], the CO bond length in different

carbonyl complexes differs by 0.001 Å to 0.01 Å from the free CO bond length. Hence,

to make the calculations easier, the calculated PES is a function of two parametrs only;

the distance and the angle between the coinage metal atom and the geometrical center

of CO bond, see Fig. 4.0.1, the CO bond length is fixed to its equilibrium bond length

1.136 Å, that is calculated by CCSD(T)/AVTZ. Hence, the PES is called two dimensional

potential energy surface (2D-PES).

Each point of the 2D-PES represents the counterpoise corrected binding energy, ECP. It

is calculated at different distances and angles with respect to the dissociation limits which

are the molecular ground state of the neutral CO molecule and the ground state of the

neutral atom or its anion or cation, depending on the charge of the complex. Depending

on the results of chapter three, the molecular ground state of the CO molecule is 1Σ+, and

each coinage metal atom, cation, anion have 2S, 1S, 1S atomic ground states, respectively.

47
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Figure 4.0.1: M-CO geometry selected for the 2D-PES, the distance and the angle
between the coinage metal atom and the CO center is represented by (d) and (α),
respectively. At α = 90° the complex has a linear geometry MCO and at α = −90° the
complex has a linear geometry MOC.

Hence the , ECP, for the neutral and charged complexes are calculated, respectively, as:

ECP = E(MCO)− E(M(2S))− E(CO(1Σ+)), where M : Au, Ag, Cu, (4.1)

ECP = E(MCO)± − E(M±(1S))− E(CO(1Σ+)), where M : Au, Ag, Cu, (4.2)

where all electronic energy terms in the Eqs. 4.1, 4.2 were calculated using the basis set

of the complex to remove the BSSE.

The PES for the chemical reactions can be classified as attractive or repulsive accrording

to the values of the binding energy in Eqs. 4.1, 4.2. If there is an attraction between

the monomers (the CO molecule and the metal atom ) as they approach each other,

then they bind and produce a complex with an energy less than the sum of the free

monomers energies. Hence, the binding energy has a negative value and the PES is called

an attractive PES. In the other case, if the monomers repeal each other when they approch

each other, they do not bind and the energy of the system become more than the sum

of the free monomers energies. Hence, the values of binding energy is positive and no

complex is formed. Thus, the PES is classified as a repulsive PES.

The PES is a conceptual tool to analyze the molecular geometry. Once the points of the

PES are calculated, a few of them are classified into staionary points or saddle points.

The stationary points are the energy minima that correspond to physically stable chemical

species. The saddle points are the highest energy points along the path from one minimum

to another, they correspond to the transtion states of the chemical species.
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4.1 2D-PESs of MCO0,±

Foremost, The 2D-PES is plotted as a contour plot, a way to map a three dimensional

surface into a two dimentional plane, to see how the binding energy value changes as a

function of two variables (x: distance, y: angle). I called the upper half of the PES plot

with positive angles as a carbon region, because the metal is near to the carbon atom

based on Fig. 4.0.1, and the lower half with negative angles as oxygen region since the

metal is near to the oxygen atom. In addition, the region with red contour lines (negative

binding energy) is described as an attractive region and the region with blue contour lines

(positive binding energy) is described as a repulsive region.

The 2D-PES of the neutral complexes, AuCO, AgCO, CuCO are shown in Figs. 4.1.1,

4.1.2, 4.1.3, respecitvely. They have attractive and repulsive regions and one minimum.

Regarding the 2D-PES of AuCO complex, the carbon region is almost attractive region

and the oxygen region is totally repulsive region. It has only one minimum in the carbon

region around the angle (α = 72°) and distance (d = 2.5 Å) with binding energy -320

meV. This mean that gold atom binds with CO from carbon side and form a bent AuCO

complex.

The PES of AgCO is replusive for the distances less than 3.5 Å then it starts to be

attractive. It has very shallow minimum at longe distance d = 4.5 Å and α = 35° with

binding energy -12 meV. Due to the far position of the minimum and the low value in

binding energy, this shallow minimum is called dispersive minimum, because it indicates

a very weak binding that results from the dispersion interaction.

The PES of CuCO indicates that the interaction of the copper atom with CO is similar to

the interaction of the gold atom with CO but slightly weaker. Thus, the carbon region is

almost attractive region and the oxygen region is repulsive region. The attractive region

has a minimum at α = 70 ° and d = 2.4 Å with a binding energy -240 meV. This means

that the copper atom binds with CO molecule from carbon side and form a bent CuCO

complex.
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Figure 4.1.1: Counterpoise corrected binding energy surface of Au(2S) + CO(1Σ+) −→
AuCO(2A′) as a function of the distance and the angle between Au atom and CO center as
described in Fig. 4.0.1 using UCCSD(T)/Au=ECP60MDF-AVTZ, C=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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Figure 4.1.2: Counterpoise corrected binding energy surface of Ag(2S) + CO(1Σ+) −→
AgCO(2A′) as a function of the distance and the angle between Ag atom and CO center as
described in Fig. 4.0.1 using UCCSD(T)/Ag=ECP28MDF-AVTZ, C=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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Figure 4.1.3: Counterpoise corrected binding energy surface of Cu(2S) + CO(1Σ+) −→
CuCO(2A′) as a function of the distance and the angle between Cu atom and CO center as
described in Fig. 4.0.1 using UCCSD(T)/Cu=ECP10MDF-AVTZ, C=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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Figure 4.1.4: Counterpoise corrected binding energy surface of Au+(1S) + CO(1Σ+) −→
AuCO+(1A′) as a function of the distance and the angle between Au+ ion and CO center
as described in Fig. 4.0.1 using UCCSD(T)/Au=ECP60MDF-AVTZ, C=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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Figure 4.1.5: Counterpoise corrected binding energy surface of Ag+(1S) + CO(1Σ+) −→
AgCO+(1A′) as a function of the distance and the angle between Ag+ ion and CO
center as described in Fig. 4.0.1 using UCCSD(T)/Ag=ECP28MDF-AVTZ, C=AVTZ,
O=AVTZ.The dots represent the binding energy calculated at different geometries.



4.1. 2D-PESs of MCO0,± 55

Figure 4.1.6: Counterpoise corrected binding energy surface of Cu+(1S) + CO(1Σ+) −→
CuCO+(1A′) as a function of the distance and the angle between Cu+ ion and CO center
as described in Fig. 4.0.1 using UCCSD(T)/Cu=ECP10MDF-AVTZ, C=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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Figure 4.1.7: Counterpoise corrected binding energy surface of Au−(1S) + CO(1Σ+) −→
AuCO−(1A′) as a function of the distance and the angle between Au− ion and CO center
as described in Fig. 4.0.1 using UCCSD(T)/Au=ECP60MDF-AVTZ, C=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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Figure 4.1.8: Counterpoise corrected binding energy surface of Ag−(1S) + CO(1Σ+) −→
AgCO−(1A′) as a function of the distance and the angle between Ag− ion and CO
center as described in Fig. 4.0.1 using UCCSD(T)/Ag=ECP28MDF-AVTZ, C=AVTZ,
O=AVTZ.The dots represent the binding energy calculated at different geometries.
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Figure 4.1.9: Counterpoise corrected binding energy surface of Cu−(1S) + CO(1Σ+) −→
CuCO−(1A′) as a function of the distance and the angle between Cu− ion and CO center
as described in Fig. 4.0.1 using UCCSD(T)/Cu=ECP10MDF-AVTZ, C=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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In addition to the geometry analysis, the 2D-PES helps us to find the dissociation path

that the complex follows to dissociate into its constituents. It is the minimum energy

path that connects the minimum of the PES with the contour line of zero binding energy.

This means that AuCO dissociate if the gold atom first bends to the angle 30°, then move

away from the carbon atom. The CuCO complex dissociates by following the same path,

too. But in AgCO case, the silver atom moves away from CO molecule without bending.

For the cationic carbonyl MCO+ complexes, the PESs are shown in Figs. 4.1.4, 4.1.5,

4.1.6. The 2D-PES of AuCO cation shows that the interaction between the gold cation

and the CO molecule is attractive over the whole the range of the parameter space, since

all of the contours have negative binding energy. Furthermore, the PES has two minima

(m1,m2) and a saddle point in between; the first minimum, m1, is in the carbon region at

α = 90° and d = 2.5 Å, with a binding energy of -1900 meV. This means that the gold

cation binds with CO from the carbon side and forms a linear AuCO+ complex. The

second minimum, m2, is in the oxygen region at α = −90° and d = 2.6 Å, with a binding

energy of -400 meV. Hence, the gold cation binds with CO from the oxygen side and forms

a linear AuOC+, too.

That means the gold cation binds with CO molecule either from the carbon side or from

the oxygen side and forms a linear AuCO+ or AuOC+ complex, respectively. It binds

much stronger from the carbon side, which means that the linear AuCO+ is the stable

complex while the linear AuOC+ is a metastable complex. To transform AuOC+ complex

into the stable structure AuCO+, the AuOC+ complex should pass through the saddle

point and overcome the energy barrier of 100 meV. In addition, both complexes, AuCO+

and AuOC+, dissociate into a neutral CO molecule and a gold cation when the gold cation

rotates to be perpendicular to the CO molecule and then move away.

The PES of AgCO+ is similar to the PES of AuCO+ but weaker; the interaction of silver

cation toward the CO molecule have nearly the same behavior but with weaker binding

energy. It has two minima, m1, m2, the first minimum is in carbon region at α = 90° and

d = 2.7 Å with a binding energy of -900 meV. Hence, the silver cation binds with CO

from the carbon side and forms a linear AgCO+ complex. The second minimum is in

the oxygen region at α = −90° and d = 2.7 Å. Thus, the silver cation binds with CO

molecule from oxygen side and forms a linear AgOC+ complex.
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This means that silver cation binds with CO either from the carbon side or from the

oxygen side and forms linear AgCO+ or AgOC+ complexes, respectively. The linear

AgCO+ complex is more stable than the AgOC+ complex and the energy barrier should

be overcome to transfer the AgOC+ to the AgCO+ is about 120 meV. In addition,

both complexes dissociate, like AuCO+ and AuOC+, by bending the silver cation to be

perpendicular to the CO molecule and then move away.

The interaction of copper cation towards the CO molecule have the same behavior as the

gold and the silver cations, but the binding energy is weaker than gold cation and stronger

than silver cation. Hence, the 2D-PES has two minima, m1,m2, in carbon and oxygen

regions, respectively. The first minimum at α = 90° and d = 2.4 Å with binding energy

-1500 meV. The second minimum at angle α = −90° and at distance 2.4 Å with binding

energy -600 meV. Thus, the copper cation binds with the CO molecule either from carbon

side or from oxygen side and froms a linear complex, CuCO+ or CuOC+, respectively.

The CuCO+ complex is more stable than CuOC+, and the energy barrier, that should

be overcome to transform the metastable CuOC+ to the most stable linear CuCO+, is

about 240 meV, which is higher than the barrier of AgCO+ and AuCO+. Moreover, both

complexes dissociate if the copper cation bends to be perpendicular to the CO molecule

and then go away.

Regarding the interaction of CO with coinage metals anions, the PESs of AuCO−, AgCO−,

CuCO− are shown in Figs. 4.1.7, 4.1.8, 4.1.9. The PES of AuCO− is repulsive until

d = 3 Å then it starts to be attractive. It has a minimum around d = 4 Å and α = 15° with

binding energy -80 meV. Hence, the gold anion binds with the CO molecule from carbon

side and forms a bent AuCO− complex. In addition, the AuCO− complex dissociates if

the gold anion rotates either to α = 40° or α = −20° and then move away.

The interaction of silver and copper anions with the CO molecule is weaker than the

interaction of gold anion but the behavior is similar; the PESs of AgCO− and AuCO−

are repulsive until d = 3.5 Å , d = 3.7 Å , respectively then they start to be attractive.

Both have a wide minimum: The borders of the minimum are nearly from d = 4 Å to

d = 4.9 Å and from α = 20° to α = −5° with binding energy -40 meV. Hence, if the anion,

Ag− or Cu−, is perpendicular to the CO moleucle, they bind with each other weakly and

form AgCO− or AuCO− complex, respectively. In addition, both complexes, AgCO− and
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CuCO−, dissociates if the anion rotates either to α = 40° or α = −40° and then move

away.

In summary, the 2D-PESs of MCO have attractive and repulsive regions and one minimum;

the attractive region of AuCO and CuCO are localized in carbon region and the minimum

occur at short distances, 2.5 Å , 2.4 Å, repectively. While in AgCO case, the attractive

region is spread over the entire range of α and d ≥ 4 Å.

The 2D-PESs MCO+ are attractive over the whole range of parameter space and have

two minima. The minimum in carbon region have stronger binding energy than the

minimum in oxygen region. Hence each cation binds with the CO molecule either from

carbon side or from oxygen side, and forms a stable linear complex MCO+ or a metastabe

linear complex MOC+. In addition, all the positive charged complexes dissociate if the

cation bends to be in perpendicular position to the CO molecule and then go away. The

only difference in the cations behavior is the strength of binding energy which is ranked

according to the binding strength at the first minimum and second minimum as gold >

copper > silver and copper > gold > silver, respectively.

The 2D-PESs of the MCO− complexes are similar, the attractive region occurs when the

anion is nearly perpendicular to the CO molecule and is at d ≥ 4Å. This mean all the

anion have a dispersive minimum, thus, the negative charged complexes are weakly bound.

In conclusion, the CO molecule binds with the neutral, cation and anion of coinage metals

atom from carbon side and the structure stability and the binding strength is affected by

the type and the charge of the coinage metals atoms. The neutral and negative charge

complexes have bent geometry while the positive charged complexes have linear geometry.

In addition, the binding energy increases as the charge of coinage metal increases. As

we saw, the binding energies of the negative charged complexes are the weakest then

it become stronger in the neutral complexes and then much stronger in the positively

charged complexes. Regarding the effect of the type of elements, the binding energies are

ranked for all type of charge as the followig AuCO > CuCO > AgCO.
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4.2 Electronic structure of coinage metals

carbonyl
To know why CO molecule binds with gold and copper stronger than silver and why the

negative charged complexes are weakly bound, a full geometry optimization and frequency

calculation was performed using the geometry at the minimum of each PES as initial

guess. Then, the counterpoise corrected binding energy is calculated for each optimized

structure using Eqs. 4.1, 4.2. The optimized bond parameters and the binding energy,

ECP are listed in Tab. 4.2.1, and the normal modes frequencies and the CO frequency

shift are listed in Tab. 4.2.2.

Molecular state
rMC rCO ∠ MCO BSSE ∆ZPE ECP+∆ZPE

(Å) (Å) Degree meV meV meV

AuCO−(1A′) 3.593 1.139 98.1 -10.72 5.3 -76.7

AuCO(2A′) 2.018 1.143 148.0 -7.2 27.2 -319.1

AuCO+(1A1) 1.950 1.124 180.0 -49.0 68.8 -1890.9

AgCO−(1A′) 4.229 1.137 93.1 -5.8 -0.2 -45.1

AgCO(2A′) 3.665 1.136 120.2 -6.1 0.2 -11.8

AgCO+(1A1) 2.182 1.124 180.0 -27.1 49.5 -957.7

CuCO−(1A′) 4.083 1.138 94.3 -7.7 9.8 -58.2

CuCO(2A′) 1.880 1.142 154.2 -58.6 27.2 -261.3

CuCO+(1A1) 1.887 1.124 180.0 -35.9 64.5 -1494.0

rMO rCO ∠ MOC

AuOC+(1A1) 2.255 1.148 180.0 -19.7 1.9 -509.2

AgOC+(1A1) 2.351 1.145 180.0 -24.7 18.8 -488.2

CuOC+(1A1) 1.987 1.149 180.0 -24.2 26.6 -642.5

Table 4.2.1: The optimized bond parameters of MCO0,± and MOC+ with M: Au, Ag, Cu.
The rM−O and ∠MNO are different than the angle (α) and the distance (d) in Fig. 4.0.1.
The basis set superposition error (BSSE), zero point energy (ZPE) and the counterpoise
ZPE corrected binding energy using UCCSD(T)/ECP(60,28,10)MDF-AVTZ are given.

At the begining, let’s look at the neutral complexes. The three complexes have bent

geometry as predicted in the PES, the M-C bond distance in AgCO complex is larger
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than in AuCO and CuCO complexes, the CO bond length in AgCO is the same as the

free CO while in AuCO and CuCO is slightly longer than the free CO. That’s mean the

interaction between Ag and CO is much weaker than the interaction between Au, Cu and

CO.

Molecular state
C-O stretching M-C stretching M-C-O bending CO shift

cm−1 cm−1 cm−1 cm−1

AuCO−(1A′) 2118.3 110.6 39.2 -25.0

AuCO(2A′) 2057.5 343.4 188.8 -85.8

AuCO+(1A1) 2251.5 381.5 309.6 +108.3

AgCO−(1A′) 2131.9 78.1 27.0 -11.4

AgCO(2A′) 2140.2 37.8 17.3 -6.1

AgCO+(1A1) 2244.7 244.5 226.5 +101.4

CuCO−(1A′) 2129.0 83.2 29.2 -14.3

CuCO(2A′) 2064.9 342.9 173.9 -78.4

CuCO+(1A1) 2250.0 361.6 289.7 +106.7

C-O stretching M-O stretching M-O-C bending

AuOC+(1A1) 2058.83 192.9 101.6 -84.4

AgOC+(1A1) 2074.7 173.7 98.9 -68.5

CuOC+(1A1) 2060.0 262.7 125.1 -83.3

Table 4.2.2: The vibrational frequencies of MCO0,± and MOC+ with M: Au, Ag, Cu.
The CO shift is calculated as a difference of C-O stretching frequency and the free CO
frequency (2143.3 cm−1) using UCCSD(T)/ECP(60,28,10)MDF-AVTZ.

To know the nature of the binding between the coinage metals and CO, I have looked

at the molecular orbitals and at the Mulliken population analysis, see Tab. 6.0.1 in the

Appendix. The canonical molecular orbital diagram of the AuCO complexes is shown

in Fig. 4.2.1, the CuCO complex have the same pattern but different energies while the

AgCO complex no molecular orbital diagram is drawn because there is no overlap between

the Ag atomic orbitals and the CO molecular orbitals.

It is clear that number of electrons in bonding orbital is more than in antibonding orbital

by one, which mean that AuCO and CuCO complexes have a bond order of 0.5. In both

complexes, the HOMO consists from an antibonding combination of metal (s) orbital and
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Figure 4.2.1: Energy level diagram for canonical valence molecular orbitals of
AuCO complex (2A′) using RHF/AVTZ. The CO molecular orbital have the same
lables as in Fig. 3.1.1. The molecular orbital occupation depending on Cs point
group is: (1a′)2(2a′)2(1a′′)2(3a′)2(2a′′)2(4a′)2(3a′′)2(5a′)2(6a′)2(7a′)1. The highest occupied
molecular orbital (HOMO) consists mainly from the 6s gold atomic orbital (The gold
atom on the right and the CO unit on the left, the isocontour is 0.025).

CO (3σ) orbital. In addition, the charge analysis shows that the metal atom in AuCO

and CuCO is negatively charged and the charge separation in Au−δCO+δ (0.45 electrons)

is much larger than in Cu−δCO+δ (0.06 electrons). This means that the AuCO complex
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have a dative bond and CuCO have covalent bond, and the there is very small van der

waals interaction between CO and Ag atom. Therefore, the AuCO complex have the

strongest binding energy, then the CuCO complex and the AgCO complex is the weakest.

The vibrational frequencies of MCO complexes follow the same trend; the C-O streching

frequency is the highest, then the M-C stretching frequency and the lowest is the M-C-O

bending frequency. This emphasize that the CO bond is much stronger than the M-C

bond. Furthermore, the red shift in the CO stretching frequency in AuCO and CuCO can

be ascribed to the σ donation from the ligand (CO) towards the metal.

About the positive charged complexes, they have two linear strcutures, MCO+ and MOC+,

see lower part of Tabs. 4.2.1, 4.2.2. The MCO+ are more stable than the neutral complexes

because the interatomic distance between the metal and the carbon is shorter than the

corresponding ones in the neutral complexes, and their binding energies are larger in

magnitude than the neutral complexes by at least one order of magnitude. This can be

explained from molecular orbital point of view; the MCO+ have a closed shell electron

configuration and their molecular orbitals have the same pattern as the neutral complexes

which shown in Fig. 4.2.1 but without an electron in 6s−3σ orbital, therefore, the positive

complexes have bond order of 1.

The MCO+ has four vibrational frequencies, C-O stretching, M-C stretching and two

degenerate M-C-O bending modes. The C-O stretching frequency is larger than the free

CO frequency because the CO bond length in the MCO+ is shorter than the free CO

bond length which lead to blue shift in CO stretching frequency.

About the MOC+ complexes, the bonds M-O and C-O are longer than the M-C and

C-O in MCO+ and the binding energies are weaker than the MCO+ complexes. Because

the overlap between dz2 and 3σ is bigger if it occur from carbon side than oxygen side.

Thus, the molecular orbitals built from the combination of metal (dz2) and CO (3σ) have

lower energy in MCO+ than in MOC+. Therefore, the MCO+ complexes have stronger

binding energy than the MOC+ complexes. Based on the elongation of CO bond in MOC+

complexes, the C-O stretching frequency becomes less, hence, the MOC+ complexes have

a red shift in the CO frequency.

Regarding the MCO− complexes, the interatomic distance between the carbon and the
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metal are longer than in the neutral and the positive charged complexes and the CO bond

length and the C-O stretching frequency is nearly the same as the free CO. Moreover, there

is no overlap between the anion and the CO orbitals. Therefore, the van der Waals forces

are responsible for the longe range attraction between the anion and the CO molecule.

Hence, the MCO− complexes have weak binding energies.

In conclusion, the MCO+ has the strongest binding energy because they have bond order

of one, then comes the MCO complexes which have bond order of 0.5. The MCO− have

no bond. In addition, the CO stretching frequency goes from blue shift to red shift when

moving from positively charged complexes to the neutral complexes.

4.3 Potential energy surface of M2CO
In order to see how does the binding energy change when the number of coinage metal

atoms increases to two atoms, I assume different configurations to bind the CO molecule

with the metal dimer either from the carbon side or from the oxygen side, see Tab. 4.3.1.

Shape M2 − CO M2 −OC

Linear M M C Od M M O Cd

L-shape M

M

d C O M

M

d O C

T-shape M

M

d C O

M

M

d O C

CO-hat
C

O

d M M

C

O

d M M

Parallel M

M

d

C

O

M

M

d

C

O

Table 4.3.1: Different configurations of M2 − CO and M2 −OC, where M: Au, Ag, Cu.



4.3. Potential energy surface of M2CO 67

Then I calculate the counterpoise corrected binding energy of the M2CO and M2OC

complexes at different distance (d) with considering the metal dimer ground state (1Σ) as

the first monomer and the CO molecule (1Σ) as the second monomer. The one dimension

PESs plots are collected in Fig. 4.3.1. It contains the PESs of the binding energy for each

complex in different configurations.

First, let us look at the binding of the gold dimer (1Σ) with CO molecule (1Σ), it is

clear in Fig. 4.3.1, that the gold dimer binds with CO molecule from carbon side much

stronger than the oxygen side. In addition the best configuration to have a stable complex

is the linear configuration for both carbon and oxygen binding. Then come the CO-hat

configuration. The other configurations have weaker binding energy, see Tab. 4.3.2.

Furthermore, the binding energy of the linear M2CO complex is three times greater than

binding energy of AuCO complex.

Regarding the silver dimer, the best configuration to bind the CO molecule with the silver

dimer is the linear configuration and it will much stronger when it binds from carbon side.

The best second configuration is the parallel one not the CO-hat as for the gold dimer.

The other configurations have very very weak binding energy. What is noticeable is that

the CO binds with silver dimer much stronger than with the silver atom; where it binds

at short distance with binding energy 30 times greater than the binding energy with silver

atom.

About copper, the interaction of copper dimer with CO molecule is stronger than the silver

dimer but weaker than the gold dimer in linear configurations only. But the behavior

is different for the other configurations, the copper dimer attracts the CO weaker than

silver and becomes repulsive in T-shape configuration. This mean that the binding

energies of M2 − CO have the same trend as MCO if M2 binds with CO in linear geometry,

Au2 − CO < Cu2 − CO < Ag2 − CO.

Returning back to Au2 − CO, because the binding energy of CO-hat is near to the linear

Au2 −OC, I calculate 2D-potential energy surface of the binding energy in which the

Au2 − CO complex transforms from the linear Au2 − CO to the linear Au2 −OC by

passing through CO-hat depending on the geometry of Fig. 4.3.2.
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Figure 4.3.1: Counterpoise corrected binding energy of M2(1Σ) + CO(1Σ+) −→
M2 − CO, with M: Au, Ag, Cu as a function of the distance between C atom or O atom and
coinage metals dimer as described in the Tab.4.3.1 using UCCSD(T)/ECP(10,28,60)MDF-
AVTZ,C=AVTZ,O=AVTZ. The subfigures on the right are zoom in for M-C distance.
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M2 − CO

Gold Silver Copper

ECP dAu2−C ECP dAg2−C ECP dCu2−C

meV Å meV Å meV Å

Linear -1282.8 1.9 -329.0 2.2 -921.2 1.8

L-shape -11.1 4.1 -6.0 4.3 -3.3 4.5

T-shape -4.9 4.5 -1.4 5.0 - -

CO-hat -76.2 2.7 -14.0 3.4 -8.1 3.5

Parallel -37.3 3.9 -24.9 4.2 -22.2 4.1

M2 −OC

ECP dAu2−O ECP dAg2−O ECP dCu2−O

Linear -79.1 2.7 -42.7 3.0 -71.0 2.2

L-shape -13.4 3.8 -8.5 4.1 -5.8 4.1

T-shape -10.4 4.0 -5.3 4.4 - -

Table 4.3.2: Counterpoise corrected binding energy of M2 − CO and M2 −OC, where
M: Au, Ag and Cu for different configurations and the corresponding distance between the
metal and carbon or oxygen atoms based on the geometry described in Tab.4.3.1 calculated
by UCCSD(T)/ECP(60, 28, 10)MDF-AVTZ. The CO-hat and parallel configurations are
the same for M2 − CO and M2 −OC.

The 2D-PES of Au2 − CO is shown in Fig. 4.3.2. It has two minima (m1,m2), the first

one at d = 2.5 Å and α = 0° when the Au2 − CO have linear geometry, the second

minimum at d = 3.1 Å and α = 180° at the linear geometry Au2 −OC. In addition the

CO-hat geometry regarded a transition state and the energy barrier should the linear

Au2 −OC overcome to transform into the stable Au2 − CO is about 30 meV.
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Figure 4.3.2: Counterpoise corrected binding energy surface of Au2CO as a function of
the distance between Au atom and CO center and the angle as described in the geometry
at the upper part of the figure (when a = 0° the geometry is linear Au2CO, a = 90° it
is CO hat, a = 180° the geometry is linear Au2OC) using UCCSD(T)/Au=ECP60MDF-
AVTZ, C=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.



Chapter 5
Two dimensions potential energy surfaces of

coinage metals nitrosyl complexes

Coinage metals mononitrosyl complexes are compounds that contain one NO as a

coordinated ligand (M-NO, M: Au, Ag, Cu). These complexs are formed by the interaction

of the ground state of NO(2Π) with the ground state of the coinage metals atoms or

ions, 2S or 1S, respectively. In analogy to the CO-case, I have calculated two-dimensional

potential energy surfaces (2D-PESs) that describe the adsorption of the NO molecule

on the coinage metals atoms and ions. The surfaces were calculated using the same

geometry of MCO0,±, see Fig. 4.0.1, with NO molecule instead of the CO molecule, with

keeping the NO bond length fixed to its equilibrium value 1.1569 Å, that is calculated by

CCSD(T)/AVTZ.

The calculations were performed by applying the symmetry point group, CS, to be able

to distinguish between the complex states that result from the combination of the space

and spin symmetry of the monomers according to the Wigner-Witmer rules[209].

In the following sections, the 2D-PESs of different states for the neutral and charged

coinage metals nitrosyl are discussed together with the optimized parameters, binding

energy and the vibrational frequencies of each complex.

71
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5.1 2D-PESs of MNO complexes
The interaction of the NO molecule (2Π) with the atomic ground state of coinage metal 2S

will produce four different molecular states; 1A′ ,3 A′ ,1 A′′ ,3 A′′ . Because there is no open

shell singlet Hartree Fock implementation, the CCSD(T) method could not calculate the

2D-PES of 1A′′ state. Hence, I have caluclated three 2D-PESs for 1A′ ,3 A′ ,3 A′′ states for

each MNO complex:

M(2S) + NO(2Π)

MNO(1A′)

MNO(3A′′) with M: Au,Ag, Cu,

MNO(3A′). (5.1)

The 2D-PES of AuNO states, 1A′ ,3 A′ ,3 A′′ , are shown in Figs. 5.1.1, 5.1.2, 5.1.3,

respectively. About the AuNO(1A′) state, the PES has three seperate attractive region;

the largest attractive region is in nitrogen region, it starts and ends smoothly at the

minimum, α = 40° and d= 2.4 Å with binding energy -800 meV, this means that the

gold atom binds with NO from nitrogen side and form a bent shape. The other attractive

regions are small and have very sharp minima. I will pay attention only to the smooth

minimum because the sharp minima could not be accurately described by CCSD(T)

method and they need multi-configuration treatment.

The PES of AuNO(3A′) is almost repulsive and has shallow minimum when the gold

atom perpendicular to the geometrical center of NO molecule at a distance 3.6 Å. Due to

the weak binding energy (-20 meV) and far distance, this minimum is called dispersive

minimum. About 3A′′ state, its PES is totally repulsive. Hence, the 1A′ and 3A′ are

bound states and 3A′′ is an unbound state.

The 2D-PESs that describe the binding of silver atom with the NO molecule are shown in

Figs. 5.1.4, 5.1.5, 5.1.6. It is clear that the singlet state (1A′) is bound state while the

triplet states, 3A′ , 3A′′ are unbound states since their PESs are totally replusive. It seems

to me that the PES of 1A′ is a superposition of different configurations and CCSD(T) can

not describe it well, hence, it needs a multi configuration treatment. I just concentrate on

the minimum in the nitrogen region at α = 40° and d = 2.7 Å because I will compare it
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Figure 5.1.1: Counterpoise corrected binding energy surface of
Au(2S) + NO(2Π) −→ AuNO(1A′) as a function of the angle and the distance between Au
atom and NO center as described in Fig. 4.0.1 using UCCSD(T)/Au=ECP60MDF-AVTZ,
N=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.
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Figure 5.1.2: Counterpoise corrected binding energy surface of
Au(2S) + NO(2Π) −→ AuNO(3A′) as a function of the angle and the distance between Au
atom and NO center as described in Fig. 4.0.1 using UCCSD(T)/Au=ECP60MDF-AVTZ,
N=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.
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Figure 5.1.3: Counterpoise corrected binding energy surface of
Au(2S) + NO(2Π) −→ AuNO(3A′′) as a function of the angle and the distance between Au
atom and NO center as described in Fig. 4.0.1 using UCCSD(T)/Au=ECP60MDF-AVTZ,
N=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.
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Figure 5.1.4: Counterpoise corrected binding energy surface of
Ag(2S) + NO(2Π) −→ AgNO(1A′) as a function of the angle and the distance between Ag
atom and NO center as described in Fig. 4.0.1 using UCCSD(T)/Ag=ECP28MDF-AVTZ,
N=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.
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Figure 5.1.5: Counterpoise corrected binding energy surface of
Ag(2S) + NO(2Π) −→ AgNO(3A′) as a function of the angle and the distance between Ag
atom and NO center as described in Fig. 4.0.1 using UCCSD(T)/Ag=ECP28MDF-AVTZ,
N=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.
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Figure 5.1.6: Counterpoise corrected binding energy surface of
Ag(2S) + NO(2Π) −→ AgNO(3A′′) as a function of the angle and the distance between Ag
atom and NO center as described in Fig. 4.0.1 using UCCSD(T)/Ag=ECP28MDF-AVTZ,
N=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.
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Figure 5.1.7: Counterpoise corrected binding energy surface of
Cu(2S) + NO(2Π) −→ CuNO(1A′) as a function of the angle and the distance between Cu
atom and NO center as described in Fig. 4.0.1 using UCCSD(T)/Cu=ECP10MDF-AVTZ,
N=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.
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Figure 5.1.8: Counterpoise corrected dissociation energy surface of
Cu(3P) + NO(2Π) −→ CuNO(3A′) as a function of the distance between Cu atom and
NO center and the angle as described in Fig. 4.0.1 using UCCSD(T)/Cu=ECP10MDF-
AVTZ,N=AVTZ,O=AVTZ. The dots represent the dissociation energy calculated at
different geometries.
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Figure 5.1.9: Counterpoise corrected binding energy surface of
Cu(2S) + NO(2Π) −→ CuNO(3A′′) as a function of the angle and the distance between Cu
atom and NO center as described in Fig. 4.0.1 using UCCSD(T)/Cu=ECP10MDF-AVTZ,
N=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.
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with the similar minimum of AuNO (1A′).

The 2D-PESs that describe the three states of copper mononitrosyl, 1A′ ,3A′ and 3A′′ , are

shown in Figs. 5.1.7, 5.1.8, 5.1.9, respectively. The PES of 1A′ state is similar to the PES

of the 1A′ state of AuNO and AgNO, it have attraction and repulsive regions with many

sharp minima. I only pay attention to the minimum in the nitrogen region at α = 45° and

d = 2.2 Å with binding energy -600 meV because it starts and finish smoothly. This

minimum is an evidence that the copper binds with NO molecule from nitrogen side and

form a bent complex. About the triplet spin states, the PES of 3A′ is totally repulsive,

and the PES of 3A′′ state has a minimum in nitrogen region, hence a bent complex is

formed. Thus, the CuNO complex has two bound states 1A′ and 3A′′ .

In order to know how much the NO bond length is changed and what are the optimized

parameters for each bound state, a full optimization calculation were done with considering

the geometry at the minimum as an initial guess. The optimized bond parameters and

the counterpoise ZEP corrected binding energy are summarized in Tab. 5.1.1, and the

calculated vibrational frequencies are in Tab. 5.1.2.

Complex
Molecular rM−N rN−O ∠MNO ∆E BSSE ∆ZPE ECP+∆ZPE

state Å Å Degree meV meV meV meV

AuNO
1A′ 2.043 1.163 118.0 0 -48.0 39.2 -813.8
3A′ 3.535 1.157 179.0 +875.8 -9.6 -0.08 -15.5

AgNO 1A′ 2.317 1.1713 118.1 0 -20.9 20.1 -230.9

CuNO
1A′ 1.903 1.1756 120.0 0 -36.9 30.7 -670.8
3A′′ 1.823 1.2084 129.5 +262.7 +56.5 17.4 -515.0

Table 5.1.1: The optimized bond parameters of MNO with M: Au, Ag, Cu. The rM−N
and ∠MNO are different than the angle (α) and the distance (d) in Fig. 4.0.1. The
basis set superposition error(BSSE), zero point energy (ZPE) and the counterpoise ZPE
corrected binding energy using UCCSD(T)/ECP(60,28,10)MDF-AVTZ.

The ground state of the AuNO complexes is 1A′, it has a bent shape as predicted from

the 2D-PES, the bond length between the oxygen and nitrogen is longer than the free NO

bond length that makes the N-O stretching frequency less than the frequency of the free

NO molecule and hence a red shift in N-O streching frequency is calculated. To know

the reason why AuNO(1A′) is bonding and AuNO(3A′′) unbonding state, the canonical
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Complex
Molecular N-O stretching M-N stretching M-N-O bending NO shift

state cm−1 cm−1 cm−1 cm−1

AuNO
1A′ 1732.4 515.7 273.1 -156.7
3A′ 1887.8 - - -1.3

AgNO 1A′ 1744.4 318.1 151.4 -144.7

CuNO
1A′ 1683.3 434.8 265.5 -205.8
3A′′ 1488.3 460.0 220.9 -400.8

Table 5.1.2: The vibrational frequencies of MNO with M: Au, Ag, Cu. The NO shift
is calculated as a difference of N-O stretching frequency and the free NO frequency
(1889.1 cm−1) using UCCSD(T)/ECP(60,28,10)MDF-AVTZ.

molecular orbitals diagram of both states were studied, see Fig. 5.1.10.

The canonical orbitals of AuNO(1A′) show that this complex is a diamagnetic one since

all the orbitals are doubly occupied and it has one bond since the number of electrons in

bonding orbitals is more than in the antibonding orbitals by two electrons. However, the

Mulliken population analysis from the canonical orbitals, see Tab. 6.0.2, shows that there

is a little charge transfer, 0.08 electrons, from NO to the Au, this means that the binding

is done through a covalent bond. In addition, the HOMO is a bonding orbital between

gold and nitrogen and antibonding between nitrogen and oxygen, it is formed from the

constructive overlap between (6s) orbital of gold and (3π∗) of NO which leads to bending

geometry with ∠AuNO = 118.0°.

About the AuNO(3A′′) state, there is a difference between the molecular orbitals diagram of

the AuNO(3A′′) and AuNO(1A′) states; the HOMO of AuNO(3A′′) state is singly occupied

and there is another singly occupied orbital called HOMO-1 which is an antibonding

orbital formed by combination of dxy gold atomic orbital and 2π∗x NO molecular orbital,

see the orbitals in Fig. 5.1.10. This makes the bond order zero and so no bond is formed.

The third state of gold-mononitrosyl (3A′), it is very weakly bond since it binding energy

is -15.5 meV and the canonical orbitals shows that their is no overlap between the atomic

orbitals of the gold atom and the NO molecular orbitals. Moreover, the rM−N is longer

than the ground state (1A′) by 1.492 Å and the NO bond length and its frequency are

nearly same as the free NO. This mean that the (3A′) state formed because of van der

Waals dispersion interaction.
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Regarding the silver nitrosyl, the molecular ground state is 1A′ , where the silver atom

can capture spontaneously the NO molecule at distance 2.317 Å. Its canonical molecular

orbitals diagram is similar to the molecular orbital diagram of AuNO in Fig. 5.1.10, and

the Mulliken charge analysis in Tab. 6.0.2 shows that there is a significant charge transfer,

0.3 electrons, from silver atom to NO molecule. Therfore, the N-O bond length increasses

and the N-O stretching frequency decreases, and hence a red shift in the NO vibrational

frequency is calculated. Due to the charge transfer and the shape of the HOMO, the silver

atom binds with NO molecule through a dative covalent bond and form a bent shape with

118° .

Concerning the copper nitrosyl, it has two bound states, 1A′ and 3A′′ . The ground state

is 1A′ where the copper atom binds with NO molecule through a dative covalent bond

because there is significant charge transfer from copper atom to the NO molecule, 0.28

electrons, see Tab. 6.0.2. The HOMO consists from the constructive overlap between the

4s copper atomic orbital and the 2π∗ NO molecular orbital, thus, the geometry of the

CuNO 1A′ complex is bent shape with ∠ CuNO = 120° .

Furthermore, the canonical molecular orbitals of the excited states of copper nitrosyl

(3A′′) shows that the HOMO and HOMO-1 are singly occupied, 2π∗x and 2π∗y , which mean

that the NO molecule captures the valence electron of copper. This explain the increasing

of the NO bond length and the decreasing of NO frequency and the short bond length

between copper and nitrogen.

In conclusion, the ground state of MNO complexes is 1A′ , the NO molecule binds with

gold through covalent bond while it binds with silver and copper through a dative covalent

bond. The 1A′ state has multi-refrences character. Therefore, the CCSD(T) could not

produce smooth PES.
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Figure 5.1.10: Energy level diagram for canonical molecular orbitals of AuNO
complex (1A′) using RHF/AVTZ. The NO molecular orbitals have the same
labels as in Fig. 3.2.1. The molecular orbital occupation depending on Cs
point group is: (1a′)2(1a′′)2(2a′)2(2a′′)2(3a′)2(3a′′)2(4a′)2(5a′)2(6a′)2. The molecular
orbital diagram of 3A′′ state has two unpaired electrons instead of two electrons
in 2π∗x + 6s orbital, see the red colored orbitals and the pictures, they are the
HOMO and HOMO-1 of 3A′′ . Hence, the molecular orbitals occupation of 3A′′ :
(1a′)2(1a′′)2(2a′)2(2a′′)2(3a′)2(3a′′)2(4a′)2(5a′)2(6a′′)1(6a′1). (the gold atom on the right
and the NO molecule on the left, the isocontour is 0.025.)
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5.2 2D-PESs of MNO+ complexes
The interaction of the ground state of the coinage metal cation (1S) with the NO molecule

(2Π) produces two different states of the coinage mononitrosyl cation MNO+, 2A′ , 2A′′ ,

depending on Cs point group:

M+(1S) + NO(2Π)
MNO+(2A′)

MNO+(2A′′). (5.1)

Based on Eq. 5.1, I have calculated two PESs for each MNO+, see Figs. 5.2.1, 5.2.6. The

PESs of AuNO+ show that the interaction between the gold cation and the NO molecule

is attractive interaction over the entire parameters space and they have two minima,

(m1,m2), the first minimum is in the nitrogen region and the second minimum is in the

oxygen region with weaker binding energy. In details, the first minimum of the 2A′ state

is at α = 45° and d = 2.4 Å with binding -1250 meV, the second minimum is at α =

-45° and d = 2.6 Å with binding energy -650 meV. This means that the gold cation binds

with NO molecule either from nitrogen side or from oxygen side and forms bent AuNO+

or AuON+ structure. Furthermore, the AuON+ should overcome an energy barrier of 300

meV to transform into AuNO+ by rotating the gold cation from α = -45° to α = 45°.

The PES of the 2A′′ state have two minima at α = ±90 and distances 2.7 Å, 2.9 Å,

respectively. This mean that 2A′′ state have two linear structures AuNO+ and AuON+.

The AuNO+ structure of both states, 2A′, 2A′′ are more stable than AuON+ structures

because they have stronger binding energies. The energy needed to transform the AuON+

structure into the stable structure is about 200 meV. Both states dissociate into gold

cation and NO molecule if the gold cation rotates to be perpendicular to the NO molecule

and then move a way.

About the AgNO+ complex, the PESs are shown in Figs. 5.2.3, 5.2.4. They are almost

attractive and have two minima, the deep minimum is in the nitrogen region and the

shallow minimum is in the oxygen region as the AuNO+ complex. Regarding the 2A′

state, it has bent stable structure AgNO+ at α = 50° and d = 2.7 Å, with binding energy

-650 meV and a bent metastable structure AgON+ at α = −50° and d = 2.8 Å with
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binding -350 meV. In addition, the energy barrier that the metastable structure should

overcome to transform into the stable structure around 50 meV.

Concerning the 2A′′ state, it has linear stable structure AgNO+ at d = 2.9 Å with binding

energy -500 meV, and linear metastable structure AgON+ at d = 3 Å with binding

energy -250 meV. The energy required to transfrom the metstable structure to the stable

structure is 150 meV. Both states of AgNO+ dissociate by rotating the silver cation to be

perpendicular to the NO molecule and then move away as AuNO+.

The PESs that describe the interaction of copper cation with the NO molecule are shown

in Figs. 5.2.5, 5.2.6, they are similar to the corresponding states of AuNO+ and AgNO+

since they are almost attractive with two minima, a minimum with strong binding energy

in the nitrogen region and the other with weaker binding energy in the oxygen region.

Regarding the 2A′ state, it has bent stable structure CuNO+ at α = 55° and d = 2.3Å

with binding energy -1000 meV, and a bent metastable structure CuON+ at α = −50° and

d = 2.4Å with binding enegy -600 meV. The energy barrier that the metastable structure

should overcome to transform into the stable structure around 200 meV.

Concerning the 2A′′ state, it has linear stable structure CuNO+ at d = 2.5Å, and

linear metastable structure CuON+ at d = 2.6Å. The energy required to transform

the metastable structure into the stable structure is 200 meV.

In conclusion, the behavior of the gold, silver and copper cations towards the NO molecule

are similar; the PESs are attractive over the entire parameters space and each PES has two

minima, the minimum in nitrogen region has stronger binding energy than the minimum

in oxygen region. The 2A′ states have bent structure while the 2A′′ states have linear

structure. The AuNO+ complex have the strongest binding energy, then the CuNO+

complex, and the AgNO+ is the weakest.
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Figure 5.2.1: Counterpoise corrected binding energy surface of Au+(1S) + NO(2Π) −→
AuNO+(2A′) as a function of the angle and the distance between Au atom and NO center
as described Fig. 4.0.1 using UCCSD(T)/Au=ECP60DF-AVTZ, N=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.



5.2. 2D-PESs of MNO+ complexes 89

Figure 5.2.2: Counterpoise corrected binding energy surface of Au+(1S) + NO(2Π) −→
AuNO+(2A′′) as a function of the angle and the distance between Au atom and NO center
as described in Fig. 4.0.1 using UCCSD(T)/Au=ECP60DF-AVTZ, N=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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Figure 5.2.3: Counterpoise corrected binding energy surface of
Ag+(1S) + NO(2Π) −→ AgNO+(2A′) as a function of the angle and the distance between
Ag atom and NO center as described in Fig. 4.0.1 using UCCSD(T)/Ag=ECP28MDF-
AVTZ, N=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.
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Figure 5.2.4: Counterpoise corrected binding energy surface of
Ag+(1S) + NO(2Π) −→ AgNO+(2A′′) as a function of the angle and the distance between
Ag atom and NO center as described in Fig. 4.0.1 using UCCSD(T)/Ag=ECP28MDF-
AVTZ, N=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.
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Figure 5.2.5: Counterpoise corrected binding energy surface of Cu+(1S) + NO(2Π) −→
CuNO+(2A′) as a function of the distance between Cu atom and NO center and angle as
described in Fig. 4.0.1 using UCCSD(T)/Cu=ECP10MDF-AVTZ, N=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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Figure 5.2.6: Counterpoise corrected binding energy surface of Cu+(1S) + NO(2Π) −→
CuNO+(2A′′) as a function of the distance between Cu atom and NO center and angle as
described in Fig. 4.0.1 using UCCSD(T)/Cu=ECP10MDF-AVTZ, N=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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To know the optimized parameters of the stable and the metastable structures of the

positively charged coinage metals nitrosyl complexes, a full optimization calculation and

frequency calculation were done and the results are summmarized in Tab. 5.2.1, 5.2.2.

Complex
Molecular rM−N rN−O ∠MNO ∆E BSSE ∆ZPE ECP+∆ZPE

state (Å) (Å) Degree meV meV meV meV

AuNO+
2A′ 2.079 1.135 125.2 0 -14.4 38.6 -1299.9
2A′′ 2.080 1.146 180.0 +472.0 -41.8 32.6 -806.5

AgNO+
2A′ 2.301 1.144 130.5 0 -18.1 27.4 -640.7
2A′′ 2.284 1.146 180.0 +115.7 -27.7 26.6 -516.2

CuNO+
2A′ 1.932 1.144 135.1 0 -27.0 35.9 -1062.5
2A′′ 1.893 1.144 180.0 +113.5 -35.8 38.2 -910.5

rM−O rN−O ∠MON

AuON+
2A′ 2.270 1.156 126.1 0 -30.0 19.5 -593.8
2A′′ 2.320 1.164 180.0 +265.9 -25.9 12.8 -338.7

AgON+
2A′ 2.388 1.162 129.7 0 -20.4 16.5 -373.1
2A′′ 2.397 1.163 180.0 +79.3 -20.9 13.3 -293.3

CuON+
2A′ 2.023 1.166 130.2 0 -25.9 21.9 -596.5
2A′′ 2.006 1.165 180.0 +112.7 -28.2 19.6 -483.8

Table 5.2.1: The optimized parameters of MNO+ and MON+ with M: Au, Ag, Cu.
The BSSE and ZPE errors. The counterpoise and ZPE corrected binding energy using
UCCSD(T)/ECP(60,28,10)MDF-AVTZ, N=AVTZ, O=AVTZ.

It is clear that the ground state for both structures MNO+ and MON+ is 2A′ , and 2A′′

is the excited state. In addition, the ground state has bent geometry and the excited

state has a linear geometry. The MNO+ complexes have a blue shifts in the N-O strecting

frequency while the MON+ complexes have red shift in N-O stretching frequency.

In details, the NO molecule binds with the gold cation at distance 2.079 Å to form

AuNO+(2A′) which is 0.036 Å longer than the Au-N bond length of the neutral gold

nitrosyl complex. The canonical molecular orbitals diagram is similar to the neutral gold

nitrosyl’s diagram, but the HOMO (6a′) is singly occupied. The Mulliken population

analysis, see Tab. 6.0.2, shows that the charge of the gold cation decreases from +1 to

+0.6 electrons, which mean that the electron density shifts from the NO molecule to the
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Complex
Molecular N-O stretching M-N stretching M-N-O bending NO shift

state cm−1 cm−1 cm−1 cm−1

AuNO+
2A′ 1901.1 381.5 229.7 +12.0
2A′′ 1966.3 246.2 201.0 +77.2

AgNO+
2A′ 1927.2 255.6 147.8 +38.2
2A′′ 1963.7 185.7 167.9 +74.6

CuNO+
2A′ 1933.6 334.6 199.8 +44.5
2A′′ 1979.3 299.4 228.6 +90.2

N-O stretching M-O stretching M-O-N bending

AuON+
2A′ 1746.2 294.1 163.2 -142.9
2A′′ 1839.0 154.4 102.0 -50.1

AgON+
2A′ 1825.5 208.8 120.9 -63.6
2A′′ 1850.2 148.5 104.3 -38.9

CuON+
2A′ 1803.3 279.2 158.9 -85.8
2A′′ 1843.0 230.1 130.9 -46.1

Table 5.2.2: The vibrational frequencies of MNO+ and MON+ with M: Au, Ag, Cu.
The NO shift is calculated as a difference of N-O stretching frequency and the free NO
frequency (1889.1 cm−1) using UCCSD(T)/ECP(60,28,10)MDF-AVTZ.

empty 6s and 6p orbitals of the gold cation. This explains the shortening of the NO

bond length in the AuNO+(2A′) complex, whereas the electron density become less in

the antibonding orbital and thus the bond order of NO increases and its bond length

decreases, thus it has a blue shifts in the N-O stretching frequency.

Regarding the excited state (2A′′), it differs from the ground state mainly by the HOMO

orbital, it is an antibonding orbital consisting from the combination of the NO (π∗x) orbital

and the gold dxz orbital and the amount of the charge transfer from NO molecule to the

gold cation is less than by 0.03 electrons, hence, the N-O bond length is a bit longer than

the corresponding bond of the ground state (2A′). The antibonding nature of the HOMO

makes the dative covalent bond weaker than the dative bond of the (2A′) state. Therefore,

the binding energy of (2A′′) is less in magnitude than the binding energy of (2A′) state.

In addition, the (2A′′) state has an imaginargy vibrational frequency (375.1 cm−1), which

mean it is unstable state.
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About the AgNO+ complexes, the length of Ag-N and N-O bonds are longer than the

corresponding bonds in the (AuNO+(2A′)) by 0.222 Å , which reflects a weaker interaction

between the silver cation and the NO molecule. The orbital diagram of AgNO+(2A′) is

similar to the diagram AuNO+(2A′) where the HOMO is a bonding orbital that constitutes

from the NO molecular orbital π∗ and the empty silver 5s atomic orbital, this explains the

bent shape of AgNO+(2A′). In addition, the charge of of silver cation decreases from +1

to +0.8 because there is an electron density shift, 0.2 electrons, from NO π∗ to the empty

5s and 5p orbitals. Therefore, the NO binds with silver cation through a dative bond.

The first excited state of AgNO+ is 2A′′ , it is higher in energy than the ground state by

+115.7 meV, which is less than the exciation energy of AuNO+ by 75%. The HOMO is an

antibonding orbital that constitutes from π∗x NO molecular orbital and dxy silver orbital.

In addition, there is an electron density transfer, 0.2 electrons, from the NO molecule to

silver cation. Therefore, the AgNO+(2A′′) has a dative covalent bond but it is weaker

than of the AgNO+(2A′) because of antibonding nature of its HOMO. The same as for

AuNO+(2A′′), the excited state AgNO+(2A′) have an imaginargy vibrational frequency

(179.4cm−1), which mean it is unstable state.

Regarding the CuNO+ complex, it has a bent shape because its HOMO is a bonding

orbital that result from the combination of NO π∗ molecular orbital and copper 4s atomic

orbital. Moreover, the copper cation binds with the NO molecule with one electron dative

covalent bond because its canonical molecular orbital diagram is similar to Fig. 5.1.10,

and the HOMO is singly occupied orbital and there is an electron density transfer (0.32

electrons) from the NO molecule to the copper cation based on Mulliken charge analysis

in Tab. 6.0.2.

Furthermore, the excited state of CuNO+(2A′′) is higher in energy by 113.5 meV from the

ground state. It has linear structure and its canonical molecular orbitals differs from the

ground state in HOMO, it is antibonding orbitals that results from the combination of the

copper dxz orbital with the NO π∗ orbital which make the bond weaker than ground state.

In addition, the amount of the charge transfer from the NO to the copper cation is about

0.34 electrons which is slightly larger than the ground state, this makes the magnitude of

NO frequency shift larger. The same as AuNO+(2A′′) and AgNO+(2A′′) , the excitaed

state CuNO+(2A′) have an imaginargy vibrational frequency (208.5cm−1), which mean it
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is unstable state.

About the metastable structures of MON+, it is clear that the bond length between

the metal and the oxygen is longer than the bond length between the metal and the

nitrogen and the N-O bond lenght is nearly equal or longer than the bond length of the

free NO molecule. Therefore, all the MON+ complexes have red shifts in NO streching

frequency. In addition, each excited state have imaginargy frequency, which are 248.4cm−1,

137.3cm−1, 175.9cm−1 for AuNO+(2A′′), AgNO+(2A′′), CuNO+(2A′′), respectively. Thus,

all the excited states are unstable states.

In addition, the magnitude of the binding energies of MON+ is less than the binding

energies of MNO+ because the HOMO of the NO molecule is not symmetric, the lobe on

the oxygen atom is smaller than the lobe on the nitrogen atom, thus, the overlap between

the metal cation and the NO molecule from oxygen side is less than the nitrogen side.

This make the binding energy of MON+ complexes weaker than MNO+ complexes. In

conclusion, the red shift in the NO stretching frequency and the magnitude of the binding

energy are the criteria that distinguish AuON+ from AuNO+ complexes.

Finally, all the MNO+ and MON+ complexes dissociate if the metal cation rotates to be

perpendicular to the NO molecule and then move away.
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5.3 2D-PESs of MNO- complex
The interaction of the ground state of the coinage metal anion (1S) with the NO molecule

(2Π) produces two different states of the coinage mononitrosyl anion MNO−, 2A′ , 2A′′ ,

depending on Cs point group:

M−(1S) + NO(2Π)
MNO−(2A′)

MNO−(2A′′). (5.1)

Based on Eq. 5.1, I have calculated two PESs for each MNO−, see Figs. 5.3.1 - 5.3.6. The

PES of AuNO−(2A′) is repulsive until 3.6 Å , then two shallow minima (m1,m2) appear.

The first minimum at d = 3.9 Å and α = 80° with binding energy -20 meV. The second

minimum at d = 3.9 Å and α = −80° with binding energy -100 meV. This mean that the

gold anion have dispersive interaction with the NO molecule due to the far distance and

weak binding energy.

About the PES of AuNO−(2A′′) state, the attractive interaction starts smoothly from

d = 2.4Å and continue after 4 Å. The strongest binding energy (-80 meV) occurs between

2.9 Å and 4 Å and α = 30° and α = −10°. This mean that the gold anion binds with

the NO molecule from nitrogen side and form a bent AuNO−. The bent AuNO−(2A′′)

complex dissociate if the gold anion rotates to α = 55° and then move away.

About the AgNO−, the 2A′ state is totally repulsive. The 2A′′ state has a wide minimum

as AuNO−(2A′′) state with binding energy -50 meV. Thus, the silver anion binds with

the NO molecule weakly from the nitrogen side and form a bent AgNO− complex. It

dissociates if the silver anion rotates to α = 50° and then move away.

Regarding the CuNO−, the 2A′ state is totally repulsive as AgNO−. The 2A′′ state has a

minimum in nitrogen region at d = 2.2 Å and α = 45° with binding energy -400 meV.

Thus, the copper anion binds with the NO molecule from nitrogen side and forms a

bent CuNO−(2A′′) which have stronger binding energy than the corresponding states of

AuNO− and AgNO−. It dissociates by rotating the anion to α = 65° or α = 15° and then

move away.
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Figure 5.3.1: Counterpoise corrected binding energy surface of Au−(1S) + NO(2Π) −→
AuNO−(2A′) as a function of the angle and the distance between Au atom and NO center
as described in Fig. 4.0.1 using UCCSD(T)/Au=ECP60DF-AVTZ, N=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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Figure 5.3.2: Counterpoise corrected binding energy surface of Au−(1S) + NO(2Π) −→
AuNO−(2A′′) as a function of the angle and the distance between Au atom and NO center
as described in Fig. 4.0.1 using UCCSD(T)/Au=ECP60DF-AVTZ, N=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.



5.3. 2D-PESs of MNO- complex 101

Figure 5.3.3: Counterpoise corrected binding energy surface of
Ag−(1S) + NO(2Π) −→ AgNO−(2A′) as a function of the angle and the distance between
Ag atom and NO center as described in Fig. 4.0.1 using UCCSD(T)/Ag=ECP28MDF-
AVTZ, N=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.
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Figure 5.3.4: Counterpoise corrected binding energy surface of
Ag−(1S) + NO(2Π) −→ AgNO−(2A′′) as a function of the angle and the distance between
Ag atom and NO center as described in Fig. 4.0.1 using UCCSD(T)/Ag=ECP28MDF-
AVTZ, N=AVTZ, O=AVTZ. The dots represent the binding energy calculated at different
geometries.
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Figure 5.3.5: Counterpoise corrected binding energy surface of Cu−(1S) + NO(2Π) −→
CuNO−(2A′) as a function of the distance between Cu atom and NO center and angle as
described in Fig. 4.0.1 using UCCSD(T)/Cu=ECP10MDF-AVTZ, N=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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Figure 5.3.6: Counterpoise corrected binding energy surface of Cu−(1S) + NO(2Π) −→
CuNO−(2A′′) as a function of the distance between Cu atom and NO center and angle as
described in Fig. 4.0.1 using UCCSD(T)/Cu=ECP10MDF-AVTZ, N=AVTZ, O=AVTZ.
The dots represent the binding energy calculated at different geometries.
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The optimized parameters and the vibrational frequencies for each bond state are

summarized in Tabs. 5.3.1 , 5.3.2.

Complex
Molecular dAu−N dN−O ∠AuNO ∆E BSSE ∆ZPE ECP+∆ZPE

state Å Å Degree meV meV meV meV

AuNO−
2A′′ 2.146 1.220 116.2 0 +107.5 11.0 -342.8
2A′ 4.316 1.156 67.8 215.6 -6.1 0.3 -26.1

AgNO− 2A′′ 2.224 1.227 118.3 0 +154.3 3.0 -358.0

CuNO− 2A′′ 1.869 1.241 120.3 0 +203.0 14.3 -957.3

Table 5.3.1: The optimized bond parameters of MNO− with M: Au, Ag, Cu. The rM−N
and ∠MNO are different than the angle (α) and the distance (d) in Fig. 4.0.1. The
basis set superposition error(BSSE), zero point energy (ZPE) and the counterpoise ZPE
corrected binding energy using UCCSD(T)/ECP(60,28,10)MDF-AVTZ.

Complex
Molecular N-O stretching M-N stretching M-N-O bending NO shift

state cm−1 cm−1 cm−1 cm−1

AuNO−
2A′′ 1469.9 398.7 197.1 -419.1
2A′ 1895.8 - - 6.7

AgNO− 2A′′ 1421.0 339.5 175.7 -468.1

CuNO− 2A′′ 1408.3 465.5 245.6 -408.8

Table 5.3.2: The vibrational frequencies of MNO− with M: Au, Ag, Cu. The NO shift is
calculated as a difference of N-O stretching frequency and the free NO frequency (1889.1
cm−1) using UCCSD(T)/ECP(60,28,10)MDF-AVTZ.

The ground state of AuNO− is 2A′′ , its HOMO is an antibonding orbital consisting from

the NO molecular orbital π∗ and the Au atomic orbital dyz. In addition, the Mulliken

population analysis, Tab. 6.0.3, shows that the charge of gold anion increases from -1

to -0.88 which mean there is a charge transfer (0.12 electrons) from Au anion to the

NO molecule that leads to elongating the NO bond by 0.063 Å hence, red shift in NO

stretching frequency is calculated. Based on charge transfer, the NO molecule binds with

the gold anion through a dative covalent bond.

The first excited state of AuNO− is 2A′ , it is weakly bound state because the distance

between the gold anion and the nitrogen is long in comparison with the ground state and

the NO bond length is equal to the free NO molecule. In addition, there is no overlap



106 5.3. 2D-PESs of MNO- complex

between the molecular orbitals of the NO and the atomic orbitals of the Au anion, and

there is no charge transfer between them, see Tab. 6.0.3. This mean that there is an

attactive van der Waals force between the Au anion and the NO molecule but no chemical

bond.

About the silver mononitrosyl anion AgNO−, the ground state is 2A′′ as the AuNO−

complex. Its HOMO is an antibonding orbital consistes from the NO molecular orbital π∗

and the Ag atomic orbital dyz. In addition, the Mulliken population analysis, Tab. 6.0.3,

shows that there is a charge transfer (0.12 electrons) from Ag anion to the NO molecule

that leads to elongating the NO bond by 0.07 Å. This leads to red shift in NO stretching

frequency. Based on charge transfer, the NO molecule binds with the silver anion through

a dative covalent bond.

The ground state of the copper mononitrosyl anion CuNO− is 2A′′ as AuNO− and AuNO−

complexs. The NO bond length is longer than the free NO by 0.084 Å which leads to red

shifts in NO stretching frequency. The HOMO is an antibonding orbital consistes from

NO molecular orbital π∗ and the Au atomic orbital dxz. In addition, there is a charge

transfer (0.29 electrons) from the copper anion to the NO molecule, hence, dative bond is

formed.

Finally, the ground state of MNO− complexes is 2A′′ in all cases, it has bent geometry,

red shift in N-O stretching frequency and dative bond between the anion and the NO

molecule. There are two notes about the MNO−. The BSSE have positive values instead

of negative values, and there is a big difference in the binding energy values of the MNO−

in the 2D-PES and in Tab. 5.3.1. This is because of the NO molecule, its bond length

in the complex longer than the free NO molecule, thus the energy of the NO molecule

used in calculating the binding energy is higher than its gound state energy (unrelaxed

molecule) even it uses the basis set of the metal which lead to positive BSSE. The value

of the BSSE of NO is +146.0, +187.5, +261,6 in AuNO−, AgNO−, CuNO−, respectively,

while the BSSE of the anion is negative. About the difference in the binding energy values,

the calculation of 2D-PES were done based on frozen (relaxed) NO molecule (the ground

state of the NO molecule with equlibrium bond length 1.157 Å) while in Tab. 5.3.1 the

NO molecule where unrelaxed.
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5.4 Potential energy surface of M2NO
In analogy to CO, I have investigated the binding of the coinage metal dimer(1Σ) with

NO molecule (2Π) by calculating the PES of the counterpoise corrected binding energy of

M2NO at different distances of different configurations as explained in Tab. 4.3.1, with

replacing the CO molecule with NO molecule. The PESs are collected in Fig. 5.4.1.

It is clear that the gold dimer binds with NO molecule from nitrogen side much stronger

(six times) than the oxygen side. The best configuration to bind the NO molecule with the

metal dimer is the linear configuration, then comes the parallel configuration and then the

NO-hat configuration. The other configurations have very weak binding energy, Tab. 5.4.1

summarizes the binding energies of the different configuration and their corresponding

distance.

In addition, I have calculated 2D-PES that describes the transforming the linear Au2 − NO

into the linear Au2 −ON by passing through NO-hat based on the geometry of Fig. 4.3.2.

The 2D-PES is shown in Fig. 5.4.2. It has only one minimum around angle 36°and

distance 2.6 Å with binding energy -500 meV. This means that the most stable structure

is bent structure with ∠NAuAu = 36°. Hence, increasing the number of gold atom to two

atoms decreases the binding energy by 51% which is opposite to Au2CO.

Regarding the silver dimer, the strength of binding energy and the best configuration is

different than the gold dimer. The best configuration to bind the silver dimer with the

NO molecule from nitrogen side is the linear configuration, then the NO-hat configuration.

But when the silver dimer binds from oxygen side, the best configuration is the NO-hat

configuration then comes the linear configuration. The other configurations have very

weak binding energy. What is noticeable is that the binding energy of NO with silver

atom is 3 times more than the silver dimer. Hence, increasing the number of silver atom

to two atoms decreases the binding energy by 71% which is opposite to Ag2CO.

About the copper dimer, it is clear that the interaction of the copper dimer with the NO

molecule is the strongest among the coinage metals dimer. The best configuration to bind

the copper dimer with the NO molecule from nitrogen side is the linear configuration, then

the NO-hat configuration then the parallel configuration, there is no attractive interaction

when the complex has L-shape and T-shape configurations.
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Figure 5.4.1: Counterpoise corrected binding energy of M2(1Σ) + NO(2Π) −→ M2 − NO,
with M: Au, Ag, Cu as a function of the distance between N atom or O atom and coinage
metals dimer as described in the Fig. 4.3.1 using UCCSD(T)/ECP(10,28,60)MDF-AVTZ,
N=AVTZ, O=AVTZ. The subfigures on the right are zoom in for M-N distance.
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The behavior is different when the copper dimer binds from oxygen side, the best

configuration is the NO-hat configuration then comes the linear configuration, then

the parallel configuration, and there is very weak interaction when complex have L-shape

and T-shape configurations. The binding energy of Cu2NO dearease by 26.4% when the

number of copper atom increases to two atoms.

In conclusion, the best configuration for binding the NO molecule with coinage metal

dimer is the linear configuration from nitrogen side. In addition, the binding energy

decreases as the number of atom is increased to two atoms. Finally, the binding of the

NO molecule with copper dimer is the strongest among the coinage metals dimer then

comes the gold dimer, then the silver dimer which is not the same trend of the binding

energy of MNO complexes.

shape
X2 − NO

Gold Silver Copper

ECP dAu2−N ECP dAg2−N ECP dCu2−N

meV Å meV Å meV Å

Linear -400.2 2.0 -66.0 2.7 -493.8 1.8

L-shape -14.4 3.9 -8.8 4.2 unbound -

T-shape -9.2 4.1 -7.1 4.4 unbound -

NO-hat -18.7 3.0 -36.7 3.2 -36.1 2.8

Parallel -37.5 3.8 -22.3 4 -18.4 4.0

shape
X2 −ON

ECP dAu2−O ECP dAg2−O ECP dCu2−O

Linear -66.2 2.7 -27.9 3.1 -27.1 2.8

L-shape -16.4 3.8 -11.0 4.0 -7.6 4.1

T-shape -15.1 3.6 -10.6 4.1 -8.1 4.2

Table 5.4.1: Counterpoise corrected binding energy of M2 − NO and M2 −ON, where
M: Au, Ag and Cu for different configurations and the corresponding distance between
the metal and nitrogen or oxygen atoms based on the geometry described in Tab.
4.3.1 calculated by UCCSD(T)/ECP(60, 28, 10)MDF-AVTZ. The CO-hat and parallel
configurations are the same for M2 − NO and M2 −ON
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Figure 5.4.2: 2-dimensions Counterpoise corrected binding energy surface of Au2NO as
a function of the distance between Au atom and NO center and the angle as described
in Fig. 4.3.2 using UCCSD(T)/Au=ECP60MDF-AVTZ, N=AVTZ, O=AVTZ. The dots
represent the binding energy calculated at different geometries.
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Conclusion

The potential energy surfaces for binding the CO molecule and the NO molecule with the

neutral and charged coinage metals atoms were calculated using UCCSD(T) method with

effective core potential for the coinage metals atom and augmented valence-triple-zeta

basis set. Here, I will compare the reaction of the CO molecule toward the coinage metals

atoms and dimers with the reaction of the NO molecule.

Based on Wigner-Witmer rules, the reaction of the CO ground state with the coinage

metal atoms or its ions ground state always produce single states. While the reaction of

the NO ground state with the coinage metal atoms or ions ground state produce multiple

states. Therefore, I have calculated 9 PESs for MCO0,± and 21 PESs for MNO0,±.

The 2D-PESs of MCO complexes have attractive and repulsive regions and one minimum;

the attractive region of AuCO and CuCO are localized in carbon region and the minimum

occur at short distances, 2.5 Å and 2.4 Å, repectively. Thus, bent AuCO, CuCO complexes

are formed. While in AgCO case, the attractive region is spread over the entire range of

α and d ≥ 4 Å.

Each MNO complex has three different PESs. The 2D-PESs of the ground states of

MNO(1A′) have one smooth minimum and many jumps. The binding energy at the smooth

minimum of MNO complexes are stronger than the binding energy at the minimum of the

MCO complexes. The 2D-PES of the excited trip states (3A′,3 A′′) are either repulsive or

have dispersive minima, except the CuNO(3A′′) has a minimum at the nitrogen region

with binding energy of -300 meV.

111
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The 2D-PESs of the MCO+ and the MNO+ complexes are attractive over the whole range

of parameter space and have two minima. The minimum in the carbon/nitrogen region

have stronger binding energy than the minimum in the oxygen region. Hence each cation

binds with the CO/NO molecule either from the carbon/nitrogen side or from oxygen side,

and forms a stable complexes MCO+/ MNO+, or metastabe complexes MOC+/MON+.

In addition, all the positive charged complexes dissociate due bending of the cation to

the perpendicular position of the CO/NO molecule. The only difference in the cations

behavior is the strength of binding energy which is ranked according to the binding energy

strength at the first minimum and second minimum as gold > copper > silver and copper

> gold > silver, respectively.

The 2D-PESs predict that the MCO+ and MOC+ complexes have linear geometries, and

the ground states of MNO+ and MON+ (2A′) have bent geometries while the excited

states (2A′′) have linear geometries.

The 2D-PESs of the MCO− complexes and the ground state MNO−(2A′′) are similar, the

attractive region occurs when the anion is nearly perpendicular to the CO/NO molecule

and at d ≥ 4Å (dispersive minimum) except the CuNO−(2A′′), it have a minimum at

nitrogen region with binding energy -400 meV. Thus, the negative charged complexes are

weakly bound.

The strength of the binding energy for both MCO0,± and MNO0,± increases as the charge

of coinage metal increases. As we saw, the binding energies of the negative charged

complexes are the weakest then it become stronger in the neutral complexes and then

much stronger in the positive charged complexes. The strength of the binding energies

are ranked based on the type of the metal for all type of charges as Au > Cu > Ag.

About the isoelectric pairs: MCO, MNO+ and MCO−, MNO, there is no correlation

between the number of electrons and the shape of the PES. The 2D-PESs of MCO

complex have one minimum in the carbon region while the 2D-PESs of MNO+ complexes

have two minima, one in the nitrogen region and the other in the oxygen region. Regarding

the MCO− and the MNO complexes, the 2D-PESs of the former complexes have dispersive

minimum while the later complexes have a minimum at shorter interatomic distance with

stronger binding energy.
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From binding of the CO/NO with one metal atom to the binding with metal dimers, the

CO molecule binds with the coinage metal dimer much stronger than with the coinage

metal atom, because the MCO complexes have open shell electronic structure while the

M2CO complexes have closed shell electronic structure. The strength of the binding

energy of M2CO complexes have the same trend as the MCO complexes if the M2 binds

with the CO molecule in linear geometry, Au2CO > Cu2CO > Ag2CO.

On the contrary, the NO molecule binds with the coinage metal dimer much weaker than

with the coinage metal atom, because the MNO(1A′) complexes have close shell electronic

structure while the M2NO complexes have open shell electronic structure. The strength of

the binding of the NO molecule with the copper dimer is the strongest among the coinage

metals dimer then comes the gold dimer, then the silver dimer which is not the same

trend of the binding energy of MNO complexes.

About the bond order, bond type and the optimized geometry, both complexes the AuCO

and the CuCO complexes have a bond order of 0.5 and they have bent geometries. In

addition, the AuCO complex have a dative bond and the CuCO complex have covalent

bond since there is a charge transfer from the CO molecule to the gold atom but not to

the copper atom. However, the bond order of the AgCO complex is zero since there is

no chemical bond formed, only very small van der Waals attractive interaction occurs

between the CO molecule and the Ag atom. Therefore, the AuCO complex have the

strongest binding energy, then the CuCO complex and the AgCO complex is the weakest.

About the MNO complexes, they have bent geometries, too. Their bond order is 1, thus

their binding energies are stronger than the binding energy of MCO complexes. The NO

molecule binds with the gold atom through covalent bond while it binds with the silver

and the copper atoms through a dative bond, based on the Mulliken charge anaylsis.

The MCO+ complexes have bond order of 1 and a dative bond based on the Mulliken

charge analysis. They have linear geometries and they are more stable than the neutral

complexes and therefore the interatomic distance between the metal and the carbon is

shorter than the corresponding ones in the neutral complexes, and their binding energies

are larger in magnitude than the neutral complexes by at least one order of magnitude.

About the MOC+ complexes, the bonds M-O and C-O are longer than the M-C and C-O
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in the MCO+ complexes. The binding energies are weaker than the MCO+ complexes,

because the overlap between dz2 and 3σ is bigger if it occur from carbon side than oxygen

side. Thus, the molecular orbitals are built from the combination of metal (dz2) and CO

(3σ) have lower energies in MCO+ than in MOC+. Based on the change in the CO bond

length, the MOC+ complexes have blue shift in the C-O stretching frequency while the

MOC+ complexes have red shift.

The ground state of the MNO+ and MON+ complexes have bond order of 0.5, and bent

geometries because of the nature of their HOMO; it is bonding orbital results from NO

π∗ molecular orbital and the valence s orbital of the metal cation. But, the magnitude

of the binding energies of MON+ is less than the binding energies of MNO+ because the

HOMO of the NO molecule is not symmetric, the lobe on the oxygen atom is smaller than

the lobe on the nitrogen atom, thus, the overlap between the metal cation and the NO

molecule from oxygen side is less than the nitrogen side. This make the binding energy

of MON+ complexes weaker than MNO+ complexes. In addition, the MNO+ and MON+

complexes differ in the N-O stretching frequency, The MNO+ complexes have a blue shift

in the N-O strecting frequency while the MON+ complexes have red shift.

About the excited state of the MNO+ and MON+ complexes, they have bond order of

0.5,too, and the trend of the binding energies and the N-O streching frequency are the

same as the ground states. They only differ in the geometry, they have linear geometries

because their HOMO is antibonding orbital constitutes from the NO molecular orbital

(π∗) and the atomic orbital dxy.

Regarding the MCO− complexes, their bond order is zero because there is no overlap

between the anion and the CO orbitals. The interatomic distance between the carbon

and the metal are longer than in the neutral and the positive charged complexes and the

CO bond length and the C-O stretching frequency is nearly the same as the free CO.

Therefore, the van der Waals forces are responsible for the longe range attraction between

the anion and the CO molecule.

The ground state of MNO− complexes have bond order of 0.5. They have bent geomtries,

dative bond based on the Mulliken charge anaylsis and red shift in N-O stretching

frequency. There is a difference in the binding energy values, in the 2D-PES and in the

optimized structure since the calculation of 2D-PES were done based on frozen (relaxed)
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NO moleucle where the NO molecule in binding energy calculation of the optimized

stucture is unrelaxed.

Those accurate PESs are used to find the vibrational energy levels of the MCO0,± and

MNO0,± complexes. In addition, they are used in the quantum dynamics simulations to

model the scattering of CO/NO molecules on coinage metal surfaces.

After having completed this comprehensive study on binding of CO/NO molecules with

the coinage metal atoms, an insight was won in the aspects behind the catalytic activity

of the coinage metals in the CO oxidation and the NO reduction. For a more intuitive

understanding of the lack in catalytic activity of the coinage metals, the next step would

be the modeling of the CO/NO adsorption on a different cluster of the coinage metals in

the presence of the oxygen and hydrocarbon molecules.
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Monocarbonyle Atom s p d Total Charge

AuCO−(1A′)
O 3.77465 4.34105 0.04952 8.16931 - 0.16931

Au 3.88383 6.01329 10.00217 19.89947 - 0.89947

C 3.83551 1.95009 0.12379 5.93122 + 0.06878

AuCO (2A′)
O 3.87401 4.35715 0.06781 8.30340 - 0.30340

Au 3.26724 6.43176 9.72570 19.44584 - 0.44584

C 3.19050 1.88297 0.14099 5.25076 + 0.74924

AuCO+(1A′)
O 3.84995 4.22977 0.07520 8.15972 - 0.15972

Au 2.72729 6.26711 9.73217 18.74394 + 0.25606

C 3.01357 1.93342 0.10475 5.09634 + 0.90366

AgCO−(1A′)
O 3.77986 4.31937 0.05037 8.15370 - 0.15370

Ag 3.99587 6.00361 10.00093 20.00042 - 1.00042

C 3.79470 1.90910 0.12032 5.84588 + 0.15412

AgCO (2A′)
O 3.78819 4.31307 0.05147 8.15678 - 0.15678

Ag 3.00270 6.00175 9.9988 19.00331 - 0.00331

C 3.80455 1.89869 0.11534 5.83991 + 0.16009

AgCO+(1A′)
O 3.80761 4.24523 0.07792 8.13611 - 0.13611

Ag 2.23616 6.15972 9.95236 18.35701 + 0.64299

C 3.48605 1.90945 0.07624 5.50688 + 0.49312

CuCO−(1A′)
O 3.82158 4.37982 0.05509 8.26071 - 0.26071

Cu 4.35253 5.98877 9.88616 20.23014 - 1.23014

C 3.41982 1.93126 0.13048 5.50915 + 0.49085

CuCO (2A′)
O 3.76723 4.28563 0.06507 8.12253 - 0.12253

Cu 2.94093 6.26389 9.85081 19.05894 - 0.05894

C 3.74294 1.91771 0.12000 5.81853 + 0.18147

CuCO+(1A′)
O 3.71424 4.14820 0.07300 7.94076 + 0.05924

Cu 2.12015 6.07786 9.89299 18.09313 + 0.90687

C 3.87399 1.97429 0.07509 5.96611 + 0.03389

Table 6.0.1: Mulliken population analysis for the neutral and charged coinage
metal monocarbonyle MCO±,0 complexes using HF/Au=ECP60MDF-AVTZ, C=AVTZ,
O=AVTZ.



119

Mononitrosyl Atom s p d Total Charge

AuNO (1A′)
O 3.90053 4.31613 0.08496 8.31096 - 0.31096

Au 3.21961 6.10462 9.73719 19.08084 - 0.08084

N 3.56601 2.92423 0.09721 6.60820 + 0.39180

AgNO (1A′)
O 3.86859 4.33043 0.06764 8.27489 - 0.27489

Ag 2.62805 6.08362 9.96639 18.68736 + 0.31264

N 3.76707 3.17595 0.07893 7.03774 - 0.03774

CuNO (1A′)
O 3.88019 4.37688 0.07338 8.33926 - 0.33926

Cu 2.66768 6.12149 9.92113 18.71684 + 0.28316

N 3.64236 3.20552 0.07828 6.94390 + 0.05610

AuNO+(2A′)
O 3.89463 4.16384 0.10482 8.17438 - 0.17438

Au 2.35803 6.15208 9.87334 18.40309 + 0.59691

N 3.59320 2.74233 0.06915 6.42253 + 0.57747

AuNO+(2A′′)
O 3.88011 4.20146 0.10544 8.19903 - 0.19903

Au 2.28896 6.17023 9.89060 18.37166 + 0.62834

N 3.59369 2.78738 0.02748 6.42931 + 0.57069

AgNO+(2A′)
O 3.86784 4.18570 0.09092 8.15497 - 0.15497

Ag 2.11002 6.07964 9.98738 18.18572 + 0.81428

N 3.76992 2.81926 0.05621 6.65931 + 0.34069

AgNO+(2A′′)
O 3.87610 4.20923 0.09362 8.19026 - 0.19026

Ag 2.10114 6.08702 9.98991 18.18732 + 0.81268

N 3.77400 2.80298 0.02899 6.62242 + 0.37758

CuNO+(2A′)
O 3.88071 4.17824 0.10199 8.17247 - 0.17247

Cu 2.22521 6.13264 9.95572 18.31955 + 0.68045

N 3.64204 2.80129 0.04824 6.50798 + 0.49202

CuNO+(2A′′)
O 3.86796 4.20590 0.10762 8.19414 - 0.19414

Cu 2.23748 6.14972 9.94725 18.34127 + 0.65873

N 3.62909 2.80407 0.01194 6.46459 + 0.53541

Table 6.0.2: Mulliken population analysis for the neutral and positive charged
coinage metal mononitrosyl MNO, MNO+ complexes using HF/Au=ECP60MDF-AVTZ,
N=AVTZ, O=AVTZ.
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Mononitrosyl Atom s p d Total Charge

AuNO−(2A′′)
O 3.89876 4.48362 0.06161 8.45204 - 0.45204

Au 3.93499 6.11634 9.82385 19.88701 - 0.88701

N 3.64042 2.90728 0.09332 6.66096 + 0.33904

AuNO−(2A′)
O 3.81477 4.23726 0.06904 8.12922 - 0.12922

Au 3.98911 6.00285 10.00178 19.99377 - 0.99377

N 3.93261 2.85037 0.07865 6.87702 + 0.12298

AgNO−(2A′)
O 3.89816 4.41989 0.05752 8.38344 - 0.38344

Ag 3.84349 6.09419 9.94154 19.88638 - 0.88638

N 3.64890 2.98289 0.08104 6.73019 + 0.26981

CuNO−(2A′′)
O 3.89511 4.48046 0.05512 8.43865 - 0.43865

Cu 3.65418 6.18509 9.87197 19.71722 - 0.71722

N 3.57011 3.16926 0.08585 6.84413 + 0.15587

Table 6.0.3: Mulliken population analysis for the negative charged coinage metal
mononitrosyl MNO− complexes using HF/Au=ECP60MDF-AVTZ, N=AVTZ, O=AVTZ.
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