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ABSTRACT
While various sources increasingly release nutrients to the Red Sea, knowledge about
their effects on benthic coral reef communities is scarce. Here, we provide the first
comparative assessment of the response of all major benthic groups (hard and soft
corals, turf algae and reef sands—together accounting for 80% of the benthic reef
community) to in-situ eutrophication in a central Red Sea coral reef. For 8 weeks,
dissolved inorganic nitrogen (DIN) concentrations were experimentally increased
3-fold above environmental background concentrations around natural benthic reef
communities using a slow release fertilizer with 15% total nitrogen (N) content.
We investigated which major functional groups took up the available N, and how this
changed organic carbon (Corg) and N contents using elemental and stable isotope
measurements. Findings revealed that hard corals (in their tissue), soft corals and turf
algae incorporated fertilizer N as indicated by significant increases in δ15N by 8%,
27% and 28%, respectively. Among the investigated groups, Corg content significantly
increased in sediments (+24%) and in turf algae (+33%). Altogether, this suggests
that among the benthic organisms only turf algae were limited by N availability and
thus benefited most from N addition. Thereby, based on higher Corg content, turf
algae potentially gained competitive advantage over, for example, hard corals. Local
management should, thus, particularly address DIN eutrophication by coastal
development and consider the role of turf algae as potential bioindicator for
eutrophication.

Subjects Biochemistry, Marine Biology, Biogeochemistry
Keywords Coral reefs, Nutrients, Stable isotopes, Nitrogen cycling, Eutrophication, Turf algae,
Zooxanthellae, Phase shifts

How to cite this article Karcher DB, Roth F, Carvalho S, El-Khaled YC, Tilstra A, Kürten B, Struck U, Jones BH, Wild C. 2020. Nitrogen
eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 8:e8737 DOI 10.7717/peerj.8737

Submitted 11 November 2019
Accepted 12 February 2020
Published 2 April 2020

Corresponding author
Denis B. Karcher,
db.karcher@gmx.de

Academic editor
Anastazia Banaszak

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.8737

Copyright
2020 Karcher et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.8737
mailto:db.�karcher@�gmx.�de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.8737
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


INTRODUCTION
Coral reefs are among the most productive and biologically diverse ecosystems on the
planet (Roberts, 2002), even though they grow in oligotrophic waters of the tropics
(Odum & Odum, 1955). The young and isolated Red Sea, with its thriving coral reefs, is
highly oligotrophic, particularly in the subtropical central and northern areas (Raitsos
et al., 2013; Sawall et al., 2014b; Kürten et al., 2014; Roth et al., 2018). However, nutrient
inputs to the Red Sea from aquaculture (Loya et al., 2004; Kürten et al., 2015; Dunne, 2018;
Hozumi et al., 2018) and urban waste water (Basaham et al., 2009; Al-Farawati, 2010;
Kürten et al., 2014; Peña-García et al., 2014) affect marine life (Loya et al., 2004;Mohamed
& Mesaad, 2007; Basaham et al., 2009; Naumann et al., 2015). At the same time, the
expansion of aquaculture industries in view of the Saudi Arabian coastal development
agenda (https://vision2030.gov.sa/en/node), and growing urban sources, for example, from
the city of Jeddah with about 4.6 Mio. inhabitants (Ministry of Health, 2017), represent
further stressors to coral reefs in the Red Sea. Significant parts of the city rely on
septic tanks for wastewater which can be a source of nutrients and pollutants through
leakages into the groundwater (Abu-Rizaiza & Sarikaya, 1993; Aljoufie & Tiwari, 2015).
Moreover, the discharge of insufficiently treated sewage from marine outfalls (i.e., pipe
discharge) as a point-source (Risk et al., 2009b; Al-Farawati, 2010) was already shown to
raise near-shore N availability (Sawall et al., 2014b), affect planktonic (Pearman et al.,
2018) and coral (Ziegler et al., 2016) microbial communities and reach nearby reefs
(Risk et al., 2009b; Peña-García et al., 2014). As nutrients, among several stressors, have the
largest effect on Red Sea hard coral resilience to climate change (Hall et al., 2018), a deeper
understanding of the community response to eutrophication is fundamental.

Benthic coral reef communities are crucial for many ecosystem functions, including
the cycling and retention of carbon (C) and nitrogen (N) (Johnson et al., 1995;Wild et al.,
2004a; O’Neil & Capone, 2008) but suffer from anthropogenic disturbances (Hoegh-
Guldberg et al., 2007; Carpenter et al., 2008; Hughes et al., 2018). N availability is an
important limiting factor for the biological productivity in oligotrophic reef environments
(Lesser et al., 2007). Local eutrophication may impact reef organisms that typically grow
in nutrient-poor waters (Naumann et al., 2015), and the diverse array of metabolisms
they are comprised of. One prominent example is the entirety of coral host, endosymbiotic
algae (zooxanthellae), bacteria and other microorganisms (Wegley et al., 2007), called
the coral holobiont. The enrichment source (Shantz & Burkepile, 2014; Burkepile et al.,
2019) and ratio of supplied nutrients is important to determine reef biota’s reactions to
eutrophication, particularly for corals (Haas, Al-Zibdah &Wild, 2009;Wiedenmann et al.,
2013). Metabolic differences, for example between autotrophic and heterotrophic
lifestyles, as well as the feeding environment of heterotrophic organisms, can lead to
imbalances of essential biochemicals, which may become limiting (Müller-Navarra, 2008).
Critical parameters to evaluate and trace nutrient fluxes as well as limitations in marine
environments are the C and N elemental (Goldman, 1986; Hillebrand & Sommer, 1999;
Sterner & Elser, 2002; Jessen et al., 2013a; Stuhldreier et al., 2015) and isotopic (Risk et al.,
2009a; Baker et al., 2010; Kürten et al., 2014) composition. N uptake and circulation in the
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reef might be fast and while the input of N can be measured by the long-term increase in
forms of N concentrations (Lapointe et al., 2019), it is most directly traceable in the
short-term by the isotopic signature of reef biota. As external sources and processes of
N acquisition affect the isotopic composition, for example, of corals (Hoegh-Guldberg
et al., 2004), anthropogenic N sources can be traced in the field (Costanzo et al., 2001;
Kendall, Elliott & Wankel, 2007; Baker et al., 2010). N enrichment has negative effects on
coral growth (Ferrier-Pagès et al., 2000; Koop et al., 2001; Hall et al., 2018), calcification
(Kinsey & Davies, 1979; Silbiger et al., 2018), reproductive success (Koop et al., 2001;
Harrison &Ward, 2001; Loya et al., 2004), biodiversity (Duprey, Yasuhara & Baker, 2016),
bacterial communities (Hall et al., 2018) and increases the susceptibility of corals to
bleaching (Wooldridge & Done, 2009; Wiedenmann et al., 2013; Vega Thurber et al., 2014;
Burkepile et al., 2019). In contrast, other benthic groups in coral reefs, such as turf- and
macroalgae benefit from increased nutrient availability in many cases (Lapointe, 1987;
Williams & Carpenter, 1988), particularly in combination with reduced herbivory. Hence,
shifts from coral- to algal-dominated reefs, so-called phase shifts, can occur (Lapointe,
1997; Smith, Hunter & Smith, 2010).

While extensive research investigated the causes of phase shifts (McManus &
Polsenberg, 2004; Norström et al., 2009), nutrient effects on the ecophysiology and
elemental stoichiometry of reef functional groups are rarely assessed, overlooking
connections between uptake to utilization. Responding to the growing nutrient inputs to
the central Red Sea, an assessment of their effects on coral reef communities is needed
in this originally nutrient poor region, particularly which functional groups and
ecophysiological parameters may indicate early-stage effects. Reefs in the oligotrophic
Red Sea can serve as a “natural laboratory” (Berumen et al., 2013, 2019; Pearman et al.,
2017), as anthropogenic nutrient inputs add on a comparably low baseline. However, most
studies have been conducted in the laboratory rather than in-situ, with associated risks
of experimental artifacts, oversimplification or overestimation (see Roth et al., 2019).
Indeed, local boundary layers and contact zones are of major importance in terms of direct
interaction, small scale flow regimes as well as accumulation and transfer of organic matter
(Barott & Rohwer, 2012; Roach et al., 2017), which can hardly be simulated under
controlled laboratory conditions. The few similar studies that exist were conducted in
less oligotrophic seas (Koop et al., 2001; Den Haan et al., 2016), along the natural
environmental gradient of the Red Sea (Kürten et al., 2014), focused on one individual
benthic group only (Loya et al., 2004; Jessen et al., 2013a, 2013b), or only investigated
benthic cover or chlorophyl content, not considering other metabolic parameters
(Haas, Al-Zibdah & Wild, 2009; Naumann et al., 2015).

Therefore, we assessed the responses of major benthic functional groups (hard corals
(Pocillopora cf. verrucosa, that is, tissue and zooxanthellae), soft corals (Xeniidae), turf
algae and sediments) to N enrichment through a manipulative in-situ experiment in the
central Red Sea. Combining elemental and stable isotope analysis, this approach provides
information starting from N in the water column, through N uptake, to its utilization.
We address the following underlying research questions: (1) Which major functional
groups take up available N and (2) how did this affect organic carbon (Corg) and N

Karcher et al. (2020), PeerJ, DOI 10.7717/peerj.8737 3/25

http://dx.doi.org/10.7717/peerj.8737
https://peerj.com/


contents? Taken together, we aimed to draw conclusions about nutrient limitation for
different functional groups.

MATERIALS AND METHODS
Study site and environmental conditions
The experiments were conducted at Abu Shoosha reef (22�18′15″N, 39�02′56″E) on the
west coast of Saudi Arabia in the central Red Sea from late January until late March 2018.
The reef assessed in this study does not fall under any legislative protection or special
designation as a protected area. Under the auspices of KAUST (King Abdullah University
of Science and Technology, Thuwal, Saudi Arabia), sailing permits to the reef were granted
that included the collection of corals and other reef benthos. This reef is characterized
by generally high levels of herbivory and small fluctuations in ambient dissolved inorganic
nitrogen (DIN) concentration during this period (Roth et al., 2018). For example, in
January to March of the previous year (i.e., 2017), sea water concentrations of ammonium
(NHþ

4 ) ranged from 0.16 to 0.17 mM, nitrate (NO−
3 ) from 0.25 to 0.40 mM, nitrite (NO−

2 )
from 0.03 to 0.06 mM, phosphate (PO3−

4 ) from 0.02 to 0.21 mM and the resulting DIN
(NO−

3 + NO2 + NHþ
4 )/PO

3−
4 ratio from 2.9:1 to 20:1 (Roth et al., 2018, Table S4).

Abu Shoosha reef features turf algae (37%) and hard corals (29%) as most abundant
functional groups (Table 1).

Key environmental variables were monitored every 2–3 weeks at the sampling site, as
described in a related study by Roth et al. (2018). Briefly, water temperature was measured
with continuous data loggers (Onset HOBO Water Temperature Pro v2 Data Logger—
U22-001; accuracy: ±0.21 �C) and are given in 3-day means (72 h). For background
measurements of dissolved NO−

3 , NO
−
2 and PO

3−
4 , water samples were taken in triplicates at

the study site at least 2 m away from any fertilizer source (see “Experimental Design
and Sampling Strategy” for more details). Water samples were filtered on the boat
(IsoporeTM membrane filters, 0.2 mm GTTP) and stored dark and cool until they were
frozen to −50 �C in the lab. Nutrient concentrations were determined with a continuous
flow analyzer (AA3 HR, SEAL). The limits of quantification (LOQ) for NO−

3 , NO
−
2 and

PO3−
4 were 0.084 mmol L−1, 0.011 mmol L−1 and 0.043 mmol L−1 respectively. Five mL

Table 1 Relative benthic cover of functional groups at the experimental reef. Data taken from
Roth et al. (2018).

Major functional groups Cover (%)

Filamentous turf algae 36.8

Hard coral 28.8

Rubble 10.2

Biogenic rock 8.7

Soft coral 8.5

Sediment 6.0

Tridacna sp. 0.7

Macroalgae 0.4
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subsamples for NHþ
4 were filtered into separate acid washed centrifuge tubes. A total of

1.2 mL ortho-phthalaldidehydesolution (OPA) was added, and samples were incubated
>4 h with OPA in the dark. NHþ

4 concentrations were determined fluorometrically
within 8 h (Trilogy� Laboratory Fluorometer; Turner Designs Inc., San Jose, CA, USA).
The LOQ for NHþ

4 was 0.094 mmol L−1. The sum of NO−
3 , NO

−
2 and NHþ

4 concentrations
reflect DIN.

Experimental design and sampling strategy
Eight distinct patches of reef communities, each surrounded by patches of reef sand, were
chosen in the back reef of Abu Shoosha at a water depth of approximately 5 m. The chosen
communities, which represented the surrounding reef in composition (Table 1), were
exposed to simulated eutrophication for 8 weeks in total. More specifically, each of the
replicate communities was surrounded by four pins with approximately 70 g of slow
release fertilizer granulate (Osmocote� Plus (15-9-12)) (Fig. 1). Being one of the most
commonly used fertilizers for eutrophication experiments (Wheeler, 2003; Russell et al.,
2009; Falkenberg, Russell & Connell, 2013; Stuhldreier et al., 2015), this approach
provides a fast and high supply of macronutrients (15% total N (8% nitrate N, 7%
ammoniacal N), 9% available phosphate, 12% soluble potash) from the 1st day of
fertilization under local temperature regimes (Adams, Frantz & Bugbee, 2013). Osmocote�

Plus (15-9-12) provides a balanced fertilization of N and phosphorus (P), however, only
the fate of N was considered in this experiment as particularly N effects were of interest.
The fertilizer was renewed every 2–3 weeks to assure a continuous nutrient supply
(Adams, Frantz & Bugbee, 2013). To test whether the nutrient addition was effective

Figure 1 Example of a manipulated in-situ community surrounded by four pins with attached
fertilizer (Osmocote�) bags, photo: Florian Roth. Full-size DOI: 10.7717/peerj.8737/fig-1
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locally, water samples for nutrients were taken directly at the fertilizer pin, and 25 cm
towards the manipulated communities according to the protocol outlined above.

The effect of eutrophication was then assessed at the major functional groups (in terms
of benthic reef cover in the central Red Sea) that were present in the selected communities.
Specifically, we chose autotrophic hard corals (Pocillopora cf. verrucosa), soft corals
(Xeniidae), turf algae and reef sand (sediments). These groups covered ~80% of the
sampled reef (Roth et al., 2018). Turf algae were defined as dense and flat (less than 2 cm in
height) assemblages of filamentous algae of different species, including small individuals of
macroalgae and cyanobacteria.

Manipulated specimens (“treatment”) were sampled from within a close radius
(~25 cm) of the fertilizer tubes. As the in-situ communities were also needed in other
experiments investigating their C chemistry (F. Roth, 2018, unpublished data) and N fluxes
(Y. El-Khaled, 2018, unpublished data), specimens for natural conditions at the beginning
(“start”) of the experiment were collected in the surrounding reef. Additional samples
in replicates of eight were collected in the surrounding non-fertilized reef at the end
(“control”) of the experiment, to reflect non-fertilized control conditions. For start and
control data, a distance of at least 10 m from any fertilizer pin was maintained and the
same depth as well as light conditions were given.

Samples were acquired with hammer and chisel. Hard coral and turf fragments
(their substrate) were of approx. 10 cm in length. Sediments were collected using a Petri
dish, which was dragged into the sediment upside-down (max. depth 14 mm) and the
sediment was fixed to the dish from underneath. The samples were stored at −80 �C until
further preparation. Hard corals, soft corals and turf algae were rinsed with Milli-Q to
remove excess salt. Epilithic turf algae were scraped off from their surface with a scalpel
and tweezers.

Elemental and stable isotopic compositions of C and N
Turf algae, soft corals and sediments were dried for 48 h (sediments: 72 h) at 40 �C.
Following Jessen et al. (2013b), hard coral tissue was removed using an airbrush, and the
resulting tissue slurry was weighed, homogenized (MicroDisTec 125) and centrifuged
for 10 min (Eppendorf Centrifuge 5,430 R, 4 �C, 3,220 rcf) to separate algae
(“zooxanthellae”) from animal “tissue”. The supernatant was filtered (Whatman, GF/F)
and for each sample two filters were generated. Filters for N and inorganic C analysis
were dried for 24 h at 40 �C. Filters for Corg measurements were exposed to HCl fumes
(from 37% HCl) and dried for 24 h. The remaining zooxanthellae pellet was dried for 48 h
at 40 �C.

Sub-samples of all groups were ground using an agate mortar and pestle. A mill grinder
(Retsch, PM 200, 4 min) was used for the sediments. For preparation of Corg samples,
5–10 g of ground sediment were placed in an Erlenmeyer flask and covered with Milli-Q.
Drops of HCl (37%) were added until the reaction ceased. The acidified liquid was
transferred to 50 mL Falcon tubes which were filled up with Milli-Q, to stepwise wash the
sample pellet and raise the pH up to neutrality, and subsequently centrifuged for 10 min
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(Eppendorf Centrifuge 5,430 R, 4 �C, 7,200 rcf). The liquid supernatant was discarded
and tubes were then refilled with Milli-Q for 3–4 times to raise pH. The pellets were dried
in the Falcon tubes for 48 h at 40 �C.

The dry, homogenous powder was analyzed for: (a) N and inorganic C quantities; and
(b) Corg as in Roth et al. (2018). Corg/N ratios, fractions of organic and inorganic C and
isotope ratios were measured as in Rix et al. (2018) using a Flash 1112 EA coupled to
a Delta V IRMS via a ConfloIV-interface (Thermo Scientific, Waltham, MA, USA).
Isotopic ratios are shown as δ13C or δ15N (‰) = (Rsample/Rref − 1) × 1,000. There, R is
the ratio of heavier:lighter isotope (13C:12C or 15N:14N). As reference, Vienna Pee Dee
Belemnite was used for C (Rref = 0.01118) and atmospheric nitrogen for N (Rref = 0.00368).

Zooxanthellae cell density and mitotic index
For hard corals, zooxanthellae cell density and the mitotic index were analyzed following
the described sampling strategy (start, control and treatment), whereby “start” and
“control” were from the surrounding reef. Aliquots of 20 µL homogenized tissue sample
and 80 µL Milli-Q were vortexed (Gilson, GVLab) directly before taking 10 µL on an
improved Neubauer Levy hemocytometer (0.0100 mm deep). Pictures were taken with a
ZEISS Primovert microscope via Labscope (Version 2.5) from the 5 × 5 grid in 40-fold
and randomly in 20-fold magnification. Manual counts of zooxanthellae and the mitotic
index were related to the total amount of airbrushed slurry per individual. Here,
clumps and inhomogeneous patches were not considered. For normalization to the coral
surface area, 3D models for all coral skeletons were generated using the software
AutodeskReCap Photo (v18.2.0.8).

Data analysis
Nitrogen uptake by functional groups was assessed using stable isotope analysis.
N utilization was assessed by elemental analysis, and Corg/N ratios served to identify
nutrient limitations (Lapointe, Littler & Littler, 1992; Hillebrand & Sommer, 1999;
Sterner & Elser, 2002; Lapointe et al., 2005), along with zooxanthellae cell density and
mitotic index (for hard corals). Statistical analysis was conducted with RStudio (R Core
Team, 2017). Xeniidae and Pocillopora cf. verrucosa were not abundant in all eight
communities (only in 5 and 6, respectively). Due to logistical constraints, “start” data of
soft corals was not available. A two-way ANOVA (factors: treatment, dominant functional
group) showed no significant effect of community composition on our response
parameters under N eutrophication, therefore data from more coral and more algae
dominated communities were pooled. Significant differences between “start” and “control”
as well as between “control” and “treatment” were checked with two-sample t-tests (test
statistic: t) if test assumptions were fulfilled, otherwise Mann–Whitney–Wilcoxon Tests
(test statistic: W) were applied. A similar approach was conducted for cell density of
zooxanthellae and mitotic index per treatment. Tissue homogenization of the “start”
samples was visually much worse than for “treatment” and “control” samples, but is shown
for completeness and homogeneity.
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RESULTS
Environmental parameters and N availability
During the study period, water temperature increased from 25 �C to 28 �C (Table S1).
The mean background concentration in sea water for DIN was 0.34 ± 0.07 mM N and
0.10 ± 0.02 mM PO3−

4 during the time of the experiment (measured after 2, 4 and
6.5 weeks). Accordingly, the environmental background DIN/PO3−

4 ratio was 3.4
(±0.08):1 on average. The manipulation of nutrients increased DIN concentrations
(measured after 2, 4 and 6.5 weeks) on average 3-fold and to a maximum of 7-fold directly
at the communities relative to background concentrations (Fig. 2). Namely, manipulated
NO−

3 was 1.05 ± 0.09 mM and manipulated NHþ
4 was 0.22 ± 0.06 mM. PO3−

4 remained
at ambient condition, despite being present in the fertilizer (Table S1). As such, the mean
DIN/PO3−

4 ratio at the manipulated communities was 15.1 (±3.46):1.

Uptake of excess N by benthic functional groups
Pure Osmocote� fertilizer was enriched in 15N (δ15N = 16.326 ± 0.257, Table S2). Hard
corals (tissue), turf algae and soft corals took up excess N, as indicated by significantly
(t12 = 2.553, p = 0.025; t13 = 3.228, p = 0.007; t9 = 6.705, p < 0.001, respectively) increased
δ15N (Fig. 3A). The δ15N values in manipulated functional groups were 8% (Pocillopora
tissue), 27% (Xeniidae) and 28% (turf algae) higher compared to untreated controls
after the same time.

Utilization of excess N by benthic functional groups
Nitrogen content was highest in hard coral zooxanthellae both before and after
eutrophication (Fig. 3B). In the eutrophication treatment, N content was significantly
higher in the tissues of Xeniidae (t9 = 5.667, p < 0.001) and turf algae (W = 49, p = 0.014).

Figure 2 Dissolved inorganic nitrogen (DIN) concentrations at experimental communities (red, last
data point extrapolated) and of background sea water (grey) over time of in-situ manipulation. Black
arrows symbolize introduction and renewal of fertilizer. Full-size DOI: 10.7717/peerj.8737/fig-2
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Figure 3 Nitrogen (N) and carbon elemental and N isotopic composition of major functional groups
before (grey), without (blue) and after 8 weeks in-situ eutrophication (red). Investigated groups are
turf algae, Pocillopora cf. verrucosa zooxanthellae (“zoox.”) and -tissue, Xeniidae and sediments. Eight
replicates per boxplot. (A) Nitrogen isotopes (δ15N), (B) nitrogen content (%N), (C) organic carbon
content (%Corg), (D) organic carbon to nitrogen ratio (Corg/N). Asterisks indicate significant differences
(�p < 0.05 and ��p < 0.001). Full-size DOI: 10.7717/peerj.8737/fig-3
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Their tissues contained 85% (Xeniidae) and 39% (turf) more N compared to untreated
controls. Increases in the other groups were not significant.

To investigate whether N was utilized to produce Corg under a metabolically stable ratio,
the Corg content and Corg/N ratio are presented. The hard coral components showed the
highest Corg content ranging from 50.39 ± 1.83% to 55.05 ± 1.49% in the tissue and
between 42.64 ± 1.39% and 45.78 ± 1.49% in zooxanthellae (Fig. 3C). Minimum Corg

content was observed in reef sediments, ranging between 0.09 ± 0.01% and 0.11 ± 0.01%.
Only turf algae and sediments showed a significant change in Corg content (t14 = 2.568,
p = 0.022; t14 = 2.537, p = 0.023, respectively). This represents an increase in Corg content
by 33% in turf algae and 24% in sediments in the treatment compared control specimen.

The Corg/N ratio for treated Xeniidae was significantly lower (t8 = −6.405, p < 0.001)
than for Xeniidae in the surrounding reef (8.520 ± 0.320 compared to 4.132 ± 0.566,
Fig. 3D). In sediments of the eutrophication “treatment” the Corg/N ratio was significantly
higher than in controls (W = 53, p = 0.028), however it did not increase compared to
start values. In hard coral zooxanthellae, Corg/N ratio declined over time but was not
significantly different in treatment data compared to controls. Corg/N remained constant
in hard coral tissue and turf algae.

Cell density of hard coral zooxanthellae (Pocillopora cf. verrucosa) doubled over the
8 weeks, while their mitotic index halved (Figs. 4A and 4B). However, zooxanthellae
density and mitotic index in fertilized and control corals remained similar. After 8 weeks,
cell densities ranged from 1.324 ± 0.147 Mio. cells cm−2 (treatment) to 1.373 ± 0.172
Mio. cells cm−2 (control), whereas the mitotic index ranged from 4.718 ± 0.445% to
4.901 ± 0.244% in organisms under control and N enrichment conditions, respectively.

DISCUSSION
Studies on the effects of eutrophication in the oligotrophic central Red Sea are scarce, and
have, so far, focused on eutrophication effects on single functional groups only, used

Figure 4 Cell density (A) and mitotic index (B) of hard coral’s (Pocillopora cf. verrucosa)
zooxanthellae before (grey), without (blue) and with 8 weeks of N eutrophication (red). Error bars
represent the standard error of the mean, letters X and Y indicate significant differences.

Full-size DOI: 10.7717/peerj.8737/fig-4
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natural gradients or left out impacts on the elemental stoichiometry. In a comparative
in-situ approach we therefore provide an assessment of eutrophication effects on several
major functional groups’ ecophysiology using elemental and stable isotope analysis,
drawing conclusions on N uptake and utilization.

Uptake of excess N by major benthic functional groups
In-situ N enrichment resulted in an uptake of N in the tissues of turf algae, soft corals and
hard corals, but not in sediments and hard coral zooxanthellae. The fact that turf algae
exhibited the lowest δ15N at the start of our experiment suggests considerable assimilation
of N from N2 fixation (Yamamuro, Kayanne & Minagawao, 1995; Rix et al., 2015;
Tilstra et al., 2017; Y. El-Khaled, 2018, unpublished data). Biological fixation of
atmospheric N2 leads to a depletion in 15N in the N compounds of the fixer (Carpenter
et al., 1997; Karl et al., 2002). After the experiment, turf algae showed one of the strongest
uptakes of N from the fertilizer among the benthic reef functional groups, as indicated by
significantly higher δ15N values (Fig. 3A), which concurs with Den Haan et al. (2016).
The low DIN/PO3−

4 ratio in ambient waters at the reef further suggests a relatively low
degree of P-limitation under ambient conditions, which may help to explain the strong
uptake of N when available. Concordantly, Lapointe et al. (2019) showed that in the
eutrophic waters of the Florida Keys, the N:P ratio of turf algae (293:1) increased to a much
greater extent than that of macroalgae (71:1) as DIN concentrations increased over a 3-
decade period. Also soft corals incorporated fertilizer N and reached higher δ15N values
than typical for soft corals that are exposed to industrial and urban run-off in the central
Red Sea (Kürten et al., 2014).

In the present experiment, the uptake of excess N was not noticeable in the sediment
δ15N, in contrast to a study by Miyajima et al. (2001). There, sediment microflora took
up NO−

3 and NHþ
4 in bottle incubations (Miyajima et al., 2001), and assimilation as well

as adsorption of N compounds on carbonate reef sands were observed (Erler, Santos &
Eyre, 2014). This would suggest fast nutrient uptake, especially in microalgae on the
sediments, and high uptakes into pore water, as reported by Rasheed, Badran & Huettel
(2003) and Erler, Santos & Eyre (2014). Pore water was not targeted in our study and
a change of isotopic signature in the sediment could take longer than the current
experimental period, as previously suggested by Cook et al. (2007) who did not find
clear δ15N patterns in N manipulated sediments. This would account for the integration
time of isotopic signatures through the food-web (Rolff, 2000; O’Reilly et al., 2002).
In agreement to our study, Koop et al. (2001) also did not find high δ15N uptake in
sediments. Potentially, organisms on and in the sediments are not N-limited, given that
sediments are active sites of microbial N transformations (Capone et al., 1992) and
remineralization (Tribble, Sansone & Smith, 1990) allowing for N recycling.

Within the hard coral holobiont, the zooxanthellae did not incorporate excess N
significantly. This generally agrees with Koop et al. (2001) and Den Haan et al. (2016)
showing that hard corals (i.e., Madracis mirabilis (now Madracis myriaster)) take up less
excess nutrients than turf or macroalgae. Most studies, however, report stronger δ15N
enrichment in the zooxanthellae fraction compared to host tissue (Grover et al., 2002;
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Pernice et al., 2012; Kopp et al., 2013). There are several possibilities why this was not
observed in our study. Firstly, NO−

3 uptake in zooxanthellae can be highest under low NHþ
4

availability (Grover et al., 2003; Tanaka et al., 2017), however, NHþ
4 was elevated ~5-fold

compared to the environmental background in our experiment (Table S1). Secondly, P can
be a limiting factor to zooxanthellae’s N uptake (Godinot et al., 2011). Unlike the highly
increased N availability, the P provided by our fertilizer did not alter the PO3−

4

concentration 25 cm away from the source (Table S1). The resulting increased DIN/PO3−
4

ratio at the communities underlines a stronger P-limitation under manipulation.
Potentially, reef sediments (Millero et al., 2001) or organisms in the water column and the
surrounding benthos took up PO3−

4 too quickly as P was stated crucial (Cuet et al., 2011)
and limiting (Lapointe, Littler & Littler, 1992; Eyre, Glud & Patten, 2008; Kürten et al.,
2014) for primary production in coral reefs. However, we acknowledge dissimilar findings
on the limiting roles of N and P in the central Red Sea (Peña-García et al., 2014).
The understanding of P cycling and limitation in coral reef environments is still in its
infancy (Ferrier-Pagès et al., 2016), but PO3−

4 could have been limiting for significant N
uptake in zooxanthellae (Godinot et al., 2011). In contrast to other findings (Grover et al.,
2003; Tanaka et al., 2006), coral tissue incorporated more available N than the symbionts.
This suggests that the host tissue was less P-limited than the zooxanthellate fraction,
and hence took up relatively more N. This is corroborated by the low DIN/PO3−

4 ratio of
3.4 in ambient waters of the studied reef that indicates N-rather than P-limitation,
confirming Al-Farawati, El Sayed & Rasul, (2019).

Utilization of excess N by benthic functional groups
Due to eutrophication, tissue N content significantly increased in turf algae and soft corals
but not in hard corals and sediments. Corg content remained constant in hard and soft
corals but increased in sediments and turf algae. Thus, turf algae and hard coral tissue
remained at constant Corg/N ratio, while it decreased in soft corals and showed unclear
trends in hard coral zooxanthellae and sediments.

For turf algae, N and Corg content were significantly higher under nutrient addition
compared to controls, which contrasts findings by Stuhldreier et al. (2015) reporting no
such eutrophication effects on turf algae dominated settlement communities. In the present
study, relatively similar increases in N content (+39%) and Corg content (+33%) occurred
and the Corg/N ratio stayed constant (between 9.1 and 9.3). Hence we interpret N to be
a limiting nutrient (Hecky, Campbell & Hendzel, 1993) for turf algae growth, which also
corroborates other studies (Hatcher & Larkum, 1983; Williams & Carpenter, 1988;
McCook, 1999). Turf algae are strong opponents to corals (Airoldi, 1998; Roth et al., 2018),
and their competitiveness under high-nutrient availability has been documented in Hawaii
(Smith, Smith & Hunter, 2001), the Caribbean (Vermeij et al., 2010), Brazil (Costa et al.,
2000), Australia (Gorgula & Connell, 2004) and in the Red Sea (Naumann et al., 2015).
As turf algae are also rapidly taking over bare substrates (Stuhldreier et al., 2015; Roth et al.,
2018) and are very resistant to disturbances (Airoldi, 1998), their monitoring should be on
regional management agendas. Cover data was not documented in the present study but
turf algae growth could be speculated upon based on increases in Corg content.
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Nitrogen was taken up by soft corals while the Corg content did not increase, resulting in
an altered elemental stoichiometry (Corg/N ratio). The strong decline in the soft
corals’ Corg/N ratio could be explained by an uptake of excess N as so-called “luxury
consumption” (Sterner & Elser, 2002), describing on-going uptake while a different
nutrient (e.g., P) might limit growth and productivity. We interpret that in our
eutrophication experiment P rather than N was the limiting nutrient for soft corals, which
may limit chlorophyl a content and photosynthesis in Xeniidae (Bednarz et al., 2012).
Our data from elemental analysis and non-documented visual observations support the
hypothesis of Fabricius et al. (2005) that soft corals could react more timely and strongly to
water quality gradients than hard corals.

Our results further correspond to other studies (Capone et al., 1992; Rasheed, Badran &
Huettel, 2003; Wild et al., 2004b) finding low Corg content in carbonate dominated reef
sands (0.18–0.36%), which were even lower in our study (0.1%). We acknowledge that
the utilized acid wash-out processing may underestimate Corg contents due to Corg losses to
the liquid acid of 4–52% (Yamamoto, Kayanne & Yamamuro, 2001) and as such
lower the Corg/N ratio. However, this is a commonly used method in comparative studies
(Rasheed, Badran & Huettel, 2003; Wild et al., 2004b). The observed 21% increase in Corg

could be attributed to P-supported algae growth on the sediments (Fig. S1) as fertilizer
N was not taken up (constant δ15N) but gross primary production significantly increased
(Y. El-Khaled, 2018, unpublished data). A different source for the increased Corg content in
sediments could be the export of Corg from turf algae (F. Roth, 2018, unpublished data)
for example, as dissolved organic carbon (DOC) (Haas et al., 2011) and subsequent uptake
by reef sediments, as suggested by Cárdenas et al. (2015). This, along with the low
Corg/N ratio, corroborates the previous assumption that life in and on the sediments, as
well as its increase in Corg content was not N limited.

Regarding the hard coral holobiont, our results suggest that the incorporation of excess
N only to the host tissue did not result in its utilization in terms of Corg production.
As such, Corg/N ratios for Pocillopora cf. verrucosa contrast a study conducted in 10 km
distance to our study site further offshore at the same time of the year in 2012 (Ziegler
et al., 2014). There, the natural host total C:N ratio was around 5, which makes our
presented host material appear more N depleted in comparison. Over time, we observed an
increase in symbiont cell density, which contrasts with other studies finding higher
zooxanthellae cell densities in Pocillopora species in cooler and more nutrient rich phases
(Stimson, 1997; Al-Sofyani & Floos, 2013; Sawall et al., 2014a). However, particularly
the similarity between treatment and non-fertilized controls should be considered where
cell density and mitotic index did not differ. Similar findings have been reported by
Ferrier-Pagès et al. (2001) and Rosset et al. (2017) during pure N fertilization but contrast
with other studies (Stambler et al., 1991; Muller-Parker, Cook & D’Elia, 1994; Fabricius,
2005). Increased zooxanthellae cell density in hard corals was found, for example, after
only 18 days of eutrophication (Falkowski et al., 1993) or following a natural nutrient
gradient (Sawall et al., 2011). Altogether, this suggests that N was not a limiting factor for
zooxanthellae in our experiment. The production (Ezzat et al., 2016), health and density
(Tanaka et al., 2017) of zooxanthellae cells was found to be P limited. Accordingly, high
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P availability resulted in higher increases of zooxanthellae density (Pocillopora damicornis
and Euphyllia paradivisa (now Fimbriaphyllia paradivisa)) than availability of only N
(Stambler et al., 1991; Rosset et al., 2017). As a consequence, we hypothesize that hard
corals also did not shift in primary productivity, even though a significant increase in δ13C
in hard coral zooxanthellae (Fig. S2) could be a sign of increased photosynthesis
(Swart, Saied & Lamb, 2005) for example, following a seasonal pattern (F. Roth,
2018, unpublished data). However, gross primary production did not increase in our
manipulated hard corals (Y. El-Khaled, 2018, unpublished data). The increased δ13C in
the zooxanthellae (Fig. S2) could also be an indicator for a negative effect on hard coral
health which was also found in relation to bleached Favia favus (now Dipsastraea favus)
corals in the Northern Red Sea (Grottoli, Tchernov & Winters, 2017) but not Montastraea
faveolata (now Orbicella faveolata) in Florida (Wall et al., 2019). Given our 8-week
observation period and a comparatively cold water temperature, our study did not provide
a setting to trace severe bleaching effects and for the Southern Red Sea it was speculated
that higher nutrient availability might even benefit P. verrucosa to resist higher water
temperature (Sawall et al., 2014a). This corroborates that effects of eutrophication on coral
health are not always negative (Bongiorni et al., 2003; Sawall et al., 2011; Ezzat et al., 2019)
and do not necessarily harm or kill individual coral colonies but get outcompeted or
overgrown over time (reviewed in Fabricius, 2005). Longer (3 years; Vega Thurber et al.,
2014), and both longer and stronger (1 year, 36.2 mM NHþ

4 ; Koop et al., 2001) N
manipulation could, however, lead to increased coral mortality (Koop et al., 2001).
In particular, reviewed findings (Morris et al., 2019), natural long-term observations
(Lapointe et al., 2019) and laboratory experiments (Wiedenmann et al., 2013; Rosset et al.,
2017) with high N (>3 mM and 38 mM N, respectively) and low P supply (<0.07 mM and
0.18 mM P, respectively) increased susceptibility of corals to bleaching, which suggests
negative effects. In agreement with Ezzat et al. (2016) and Ferrier-Pagès et al. (2016), we
suggest increasing efforts investigating P cycling and limitation in current and future reef
ecosystems. Besides this key role of nutrient ratios, Burkepile et al. (2019) highlight the
importance to also account for varying effects of different forms of N. As N sources and
pathways in corals and their reef environments are of major importance to better
understand ecosystem functioning (Rädecker et al., 2015), the uptake and utilization of N
(this study) should be compared to eutrophication effects on the N cycle.

CONCLUSIONS
Anthropogenic pressures on the Red Sea are constantly increasing (Carvalho et al., 2019)
and 60% of Red Sea coral reefs are at stake (Burke et al., 2011). We were able to show
cascaded, group-specific responses to N availability and link elemental and isotopic
composition to group-specific nutrient limitations, N uptake and utilization, and highlight
the importance of P limitations in hard and soft corals. Even over an 8-week N
eutrophication and under high abundance of herbivores, significant uptake and utilization
of fertilizer N was shown particularly for turf algae as strong competitors for space in
struggling reef ecosystems. As such, our study corroborates that turf algae can be early
indicators for changes and anthropogenic influence (Barott et al., 2012; Roth et al., 2015),
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reacting faster to eutrophication than hard coral zooxanthellae. As turf algae play a key role
in phase shifts, are strong competitors to corals, rapidly take over bare substrates and are
highly persistent, their substantial biochemical benefits from N supply should push coastal
management to not only consider limiting future discharges but try to reduce both
point-sources and non-point sources of nutrients already in place. Given the increasing
coastal development in the central Red Sea, water quality management is challenged to
improve future reef states (Gurney et al., 2013; D’Angelo &Wiedenmann, 2014) and should
be on regional agendas for coastal urban development and aquaculture. The context in
which eutrophication effects should be seen comprises further local (e.g., fishing pressure
and habitat destruction) and global (e.g., warming and ocean acidification) factors to which
coastal development adds high nutrient loads on top. Low N concentrations were shown to
be a crucial precondition for coral recovery (Robinson, Wilson & Graham, 2019) and
particularly in the Red Sea the maintaining of oligotrophic conditions could be the key
factor and challenge for coral health and resilience to climate change (Hall et al., 2018).
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