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ZUSAMMENFASSUNG 

 

Bakterielle Polysaccharide, vor allem die, die am Aufbau der Bakterien-Kapsel beteiligt sind, werden 

seit einiger Zeit zur Impfstoffentwicklung gegen Pathogene eingesetzt werden. Üblicherweise wurden 

Impfstoffe aus Polysacchariden, die aus natürlichen Quellen isoliert wurden, hergestellt. Dazu stellen 

Impfstoffe, die auf synthetischen Oligosacchariden basieren, eine Alternative dar, die die Möglichkeit 

bietet, Impfstoffe mittels rationalem Design zu entwickeln oder schon bestehende zu verbessern. 

Zugang zu ausreichenden Mengen hochreinen und genau charakterisierten Oligosacchariden ist die 

Grundvoraussetzung für die Durchführung von Studien, die das Ziel haben, die Struktur des 

minimalen Zuckerepitops mit immunogenem Potential aufzuklären.  

Das Hauptziel dieser Arbeit ist die Entwicklung neuer Synthesewege, um Oligosaccharide, die die 

Sequenzen kapsulärer Polysaccharide (KPS) pathogener Bakterien repräsentieren, zu erhalten und 

um minimale Epitope von Antikörpern aufzuklären. Das Ziel wurde durch Kombination von 

verschiedenen synthetischen Methoden, darunter Flüssigphasensynthese und automatisierte 

Festphasensynthese, erreicht. Das finale Ziel dieser Arbeit war es, synthetische Polysaccharid-

Antigene, die für die Entwicklung neuartiger semisynthetischer Glykokonjugat-Impfstoffe für die 

Anwendung am Menschen oder in Tieren genutzt werden können, zu synthetisieren. 

Im ersten Teil der vorgelegten Dissertation wird die Synthese von fünf Fragmenten, die den KPS des 

porzinen Pathogens Streptococcus suis Serotyp 2 zugeordnet werden können, mittels 

Flüssigphasensynthese beschrieben. Als Startpunkt wurden sieben Monosaccharid-Bausteine, die 

geeignete Schutzgruppen tragen, genutzt, um durch eine Reihe von chemischen Glykosylierungen 

und nachfolgender Manipulation der Schutzgruppen die Zielmoleküle zu erhalten. Die so erhaltene 

Bibliothek wurde genutzt, um Glykan-Arrays durchzuführen, die die Bindungsspezifität von 

Antikörpern, die in Seren von mit Streptococcus suis Typ 2 infizierten Schweinen vorkommen, 

evaluieren.  

 

Schema I: Synthese der Streptococcus suis Typ 2 Glykan-Bibliothek. 

Der zweite Teil dieser Arbeit beschreibt die Kombination von automatisierter Festphasensynthese mit 

enzymatischen Glykosylierungen, um drei Fragmente, die den KPS von Streptococcus suis Serotyp 
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14 zugeordnet werden können, zu erhalten. Diese Glykane sollen analog zu den oben beschriebenen 

Experimenten ebenfalls durch Glykan-Mikroarrays evaluiert werden. 

 

Schema II: Synthese der Steptococcus suis type 14 Glykan-Bibliothek. 

Der letzte Abschnitt beschreibt die Synthese von Oligosacchariden, die den CPS von Streptococcus 

pneumoniae 7F zugeordnet werden können. Sechs Oligosaccharide wurden mittels 

Flüssigphasensynthese synthetisiert und mithilfe von Glykan-Arrays untersucht. Die Mikroarrays 

wurden mit humanem Anti-Pneumokokken-Serum getestet, um spezifische Sequenzen, die für die 

Antikörper-Bindung wichtig sind, zu identifizieren. 

 

Schema III: Synthese der Steptococcus pneumoniae 7F Glykan-Bibliothek. 
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SUMMARY 

 

Carbohydrates from bacteria, in particular polysaccharides constituting bacterial capsules, have been 

used to develop vaccines against pathogens. Traditionally, these vaccines are made from 

polysaccharides isolated from natural sources. As an alternative, vaccines based on synthetic 

oligosaccharides offer the possibility of rationally designing new vaccines or improve the existing ones. 

Having access to amounts of highly-pure and well-characterized oligosaccharides is fundamental for 

performing studies aimed at understanding the structures of minimal sugar epitopes with immunogenic 

potential. 

The main objective of this work is the development of synthetic routes to obtain oligosaccharides 

representing sequences of capsular polysaccharides (CPSs) from pathogenic bacteria to elucidate 

minimal epitopes of antibodies. The aim was achieved via a combination of synthetic chemical 

methods and employed both solution-phase and automated solid-phase techniques. The ultimate goal 

was to design synthetic carbohydrate antigens useful for developing new semi-synthetic 

glycoconjugate vaccines for human or animal use.  

The first part of this dissertation describes the synthesis of five fragments related to the CPS of the pig 

pathogen Streptococcus suis serotype 2 using solution phase chemistry. Starting from the synthesis of 

seven monosaccharide building blocks bearing appropriate protecting groups, a series of chemical 

glycosylations and successive protecting group manipulations gave access to the target compounds. 

The obtained library was used to create glycan microarrays to evaluate binding specificities of 

antibodies contained in samples of sera from pigs infected with Streptococcus suis type 2.  

 

Scheme IV: Synthesis of a Streptococcus suis type 2 glycan library. 

The second part describes the use of a combination of automated solid-phase synthesis and 

enzymatic glycosylations to synthesize three fragments related to the CPS of Streptococcus suis 

serotype 14. These glycans will be evaluated in glycan microarrays experiments as described above. 
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Scheme V: Synthesis of a Streptococcus suis type 14 glycan library. 

The Supplementary section describes the synthesis of oligosaccharides related to the CPS from the 

human pathogen Streptococcus pneumoniae 7F. Six oligosaccharides were synthesized through 

solution phase chemistry and used to create glycan arrays. Microarrays were screened with human 

anti-pneumococcal sera, identifying specific sequences involved in antibody binding. 

 

Scheme VI: Synthesis of a Streptococcus pneumoniae 7F glycan library. 
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CHAPTER 1 

INTRODUCTION 

1.1. STREPTOCOCCUS SUIS 

Streptococcus suis is an important pathogen of swine, widely found in farm pigs all over the world and 

is one of the main causes of bacterial infections1, therefore posing animal health and economic 

concerns for today´s industrialized pig farming. S. suis was first isolated and described as the 

causative agent of bacteremia, arthritis and meningitis occurring in animals during first weeks of life2-4 

as part of infection outbreaks in the Netherlands and the UK in the 1950s and 1960s. At the same time 

the first reports of infection and death in humans surfaced5. During the following decades the 

widespread distribution of this bacterium became more obvious as cases of infection in both pigs and 

humans were reported in other European countries6,7, Asia8-10, Australia11 and in North America12-14. S. 

suis is a commensal bacterium that commonly inhabits the upper respiratory, digestive and 

reproductive systems of pigs, localized mostly in the animal’s tonsils and saliva15,16. Most animals are 

healthy carriers of nonvirulent strains but some acquire virulent strains that can infect the bloodstream 

eventually resulting in septic shock and most frequently meningitis. Mortality rates during infection 

outbreaks have reached peak levels of 20%17. While S. suis is largely responsible for infections in 

pigs, the bacterium’s natural host, it can also cause disease in humans, leading mostly to septicemia 

and meningitis. The majority of human infections occur in the southeastern region of Asia18, 

particularly Vietnam and Thailand, where it has been recognized as one of the main causes of 

bacterial meningitis in adults9,19. In Europe, infections are rare and are considered to be occupationally 

related, affecting mostly farmers, butchers or veterinarians.  

Streptococcus suis is a gram-positive coccus belonging to the group of encapsulated bacteria. The 

bacterial cell wall is surrounded by a layer of polysaccharides forming the bacterial capsule. Based on 

the chemical composition of the capsules 35 different serotypes of S. suis, named with progressive 

numbers from serotype 1 to 34 plus serotype 1/2, have been identified so far, although six serotypes 

have been suggested to belong to different species20,21. However, only a small number of the known 

serotypes are considered virulent. According to recent reports20 serotype 2, 3, 7, 9 and 1/2 are the 

most frequently isolated from infected animals and their distribution follows some geographical trends, 

with serotype 2 being prevalent worldwide but especially frequent in Europe and Asia, while serotypes 

3 and 9 were mostly reported in North America.  

1.2. CAPSULAR POLYSACCHARIDES 

Encapsulated bacteria are surrounded by a capsule, an extracellular shell of variable thickness linked 

to the cell surface, detectable under a light microscope after application of appropriate staining 

reagents or upon “swelling” with antibodies22. Bacterial capsules are cellular components that play a 



 2 

fundamental role in the pathogen`s survival. Chemically they consist of a number of monosaccharides, 

often negatively charged at physiological pH, organized in repeating units and forming a high 

molecular weight hydrophilic polymer. This highly hydrated external layer coats the cell preventing 

cellular dehydration, helping adhesion to surfaces and facilitating the formation of biofilms23. Bacterial 

capsules are also important virulence factors: during an infection the capsule interferes with the 

immune system of the host, protecting the bacterium from mechanisms aimed at killing the invading 

pathogen, thus increasing its virulence. When the host lacks specific antibodies, CPSs might confer 

resistance to the host innate immune system. For instance, as demonstrated in the cases of 

Staphylococcus aureus24,25 and Streptococcus pneumoniae26, the capsule acts as a cover for several 

components of the bacterial membrane, lipopolysaccharides or teichoic acids, which would promptly 

activate the classical and alternative pathways of the complement system ultimately leading to cell 

lysis. The capsule also confers resistance to phagocytosis, possibly impairing contacts with phagocytic 

cells by displaying a negative charge at the surface27. Finally, CPSs from some pathogens have been 

suggested to counteract the activity of antimicrobial peptides28. 

Today it is widely established that CPSs, as the outermost antigen coming in contact with the host 

immune system, are able to trigger an adaptive immune response resulting in the production of 

specific antibodies. Therefore, these polysaccharides are attractive targets for the development of 

antibacterial vaccines29.  

1.3. CARBOHYDRATE VACCINES 

Vaccines against bacterial pathogens can be broadly classified into different classes according to the 

antigen used for their preparation: live vaccines made using live attenuated cells, inactivated vaccines 

using inactivated killed pathogens, or subunit vaccines made using just a specific bacterial component 

such as detoxified toxic proteins (toxoids), polysaccharides or glycoconjugates. In addition, 

recombinant vaccines use genetic engineering to express defined bacterial antigens. 

A large array of carbohydrates is displayed on the surface of many pathogenic bacteria, either as part 

of cell envelopes, cell membranes or as extracellular materials such as capsules or slime layers. They 

are key mediators of virulence mechanisms and cell surface antigens that can initiate immune 

responses, therefore representing targets for the design of new bacterial vaccines. 

1.4. CAPSULAR POLYSACCHARIDE-BASED VACCINES 

It was not until the 1920s that carbohydrates, in addition to proteins, were considered antigens. The 

earliest characterizations of capsular saccharides30,31 and immunizations of animals and humans32-34 

were conducted using pneumococcal polysaccharides. These early experiments later evolved into 

deeper evaluations of CPSs from Streptococcus pneumoniae35, Salmonella typhi36 and Haemophilus 

influenzae type b37 as vaccine candidates, all eventually resulting in licensed and marketed vaccines 

for human immunization. 
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All polysaccharide-based vaccines induce moderate to high levels of protection in adults. However, 

they also suffer a significant limitation: polysaccharides alone are not able to induce a strong immune 

response and immunological memory in young children, older adults and immunocompromised 

individuals, the parts of the population that are most prone to bacterial infections38. This is the effect of 

the T cell-independent nature of the immune response generated by plain polysaccharides, discussed 

more in detail in Section 1.6.  

Since the early years of research on polysaccharide-based vaccines, it has been noted that enhanced 

immunogenicity and antibody response directed against the saccharide antigen could be achieved 

upon conjugation of these saccharides to a protein39. The mechanism underlying this effect was at that 

time unknown but it is now well established that these constructs can trigger a T cell-dependent 

response, resulting in strong antibody production and immunological memory, when plain 

polysaccharide vaccines fail. Despite these early findings, the strategy of saccharide-protein 

conjugates (glycoconjugates) as vaccines was not thoroughly investigated until the 1970s. The last 40 

years have seen extensive research in this field and several glycoconjugate vaccines are available to 

protect against some of the most important human pathogens and more are being developed40. 

1.5. GLYCOCONJUGATES AS NEW VETERINARY VACCINES 

Animal vaccination represents an effective strategy for limiting disease and reducing the spread of 

pathogens between animals and between animals and humans. Vaccination is currently common in 

veterinary practice and animal husbandry. In particular, livestock vaccination is a powerful tool to limit 

highly infectious diseases in farm animals and it can ultimately bring concrete socio-economic benefit 

through overall improved production efficiency, reduced antibiotic consumption41 and a limited 

occurrence of antimicrobial resistance42. As an example, a recent study has shown that vaccination of 

a large group of pigs in Denmark against the common pathogen Lawsonia intracellularis resulted in a 

decreased use of antibiotics to treat related diseases by 79% without affecting production 

parameters43. All antibacterial vaccines available for animals are still made from live attenuated or 

inactivated bacterial cells44, and therefore suffer shortcomings in terms of safety, stability and in some 

cases limited immunogenicity42,44,45.  

Significant advances in understanding the immune system, the pathogenicity of bacteria and viruses 

and new technologies for vaccine production seen in the last decades, have translated into several 

new generations of vaccines for human use. On the other hand, a similar development has not 

occurred for veterinary vaccines. Progress in biomedical research has resulted in a shift in interest 

toward new strategies in veterinary vaccination as well, such as the development of subunit 

vaccines42,46,47. In this regard, glycoconjugates represent a largely unexplored opportunity48. So far, 

only very few studies have been reported describing the immunological evaluation of polysaccharide-

protein conjugates against porcine pathogens Actinobacillus pleuropneumoniae49,50 and Streptococcus 

suis51 and the ruminant pathogen Mannheimia haemolytica52.  

Widespread success was achieved through glycoconjugate vaccination in humans. Accordingly, new 

research efforts could be oriented towards the development of glycoconjugate veterinary vaccines. 
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1.6. IMMUNE RESPONSE TO CARBOHYDRATE VACCINES  

Mammals possess an elaborate immune system composed of cells and macromolecules that helps 

them to fight and eliminate dangerous pathogens. Even though differences between animals 

belonging to the same class (such as humans and pigs) exist, the global structure and mechanisms 

are largely identical53. 

The immune system can be subdivided into the innate and adaptive branches. The adaptive branch is 

a highly specific mechanism that, after exposure to a particular foreign (non-self) antigen displayed by 

a pathogen, triggers mechanisms aimed at eliminating the infective agent and also results in 

immunological memory, allowing for an immediate reaction of the immune system in case of a 

subsequent exposure to the same microorganism. The main components of the adaptive system are 

antibodies, B cells and T cells. 

Vaccines induce protection against a specific pathogen by artificially stimulating the development of 

adaptive immunity. The goal is the induction of antibodies of the IgG subclass and IgG-secreting 

memory B cells54. IgG antibodies are high-affinity antibodies, secreted by plasma B cells, that can 

mediate neutralization. As a result of their higher affinity they can effectively opsonize (coat) and “tag” 

the bacteria to ultimately facilitate phagocytosis. The IgM subclass typically displays lower binding 

affinities and lower protective potential and therefore is less desirable.  

Bacterial polysaccharides, like other large polymeric antigens, are commonly classified as T cell-

independent antigens, meaning that they activate B cells directly without the cooperation of T cells. In 

a simplified depiction of the mechanism55,56 they are recognized on the extracellular side of B cells by 

saccharide-specific receptors (Fig. 1-1). Due to their polymeric multivalent character they bind several 

receptors simultaneously causing cross-linking of the receptors and activation of intracellular pathways 

that stimulate the B cells to maturate into plasma B cells, white blood cells capable of secreting large 

amounts of antibodies, mostly of the IgM subclass. Moreover this mechanism does not allow for B 

cells to maturate into memory cells, therefore no immunological memory is obtained. In young 

children, possibly due to the inherent immaturity of parts of their immune system57,58, these 

mechanisms fail. 

In contrast, in the case of glycoconjugates (Fig. 1-1), B cells can act as antigen-presenting cells 

(APCs) and a T cell-dependent pathway is activated55,56,59. The glycoconjugate can be recognized by 

receptors of polysaccharide-specific B cells but in this case the antigen is internalized through 

phagocytosis into endosomes. Here proteases and reactive radical species process and degrade the 

peptide and carbohydrate moieties60. Whether the products of degradation are just peptides, 

glycopeptides, or both, is still debated and subject of ongoing research59,61. These smaller antigens 

are then loaded onto major histocompatibility complex (MHC) class II, a protein that is subsequently 

transferred to the surface of the B cell. The MHC-antigen complex can now bind specific receptors on 

T cells (also named T-helper cells). This interaction activates the T cell, provoking the secretion of 

stimulatory cytokines which in turn activate the B cells and induce them into a complex process of 

proliferation, differentiation and DNA mutations resulting in maturation into specific plasma cells able 

to secrete polysaccharide-specific IgG antibodies. These cells have a relatively short lifespan, 
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however, some B cells also become memory cells, long-lasting and ready to quickly initiate a new 

response upon future exposure to the same specific antigen, providing lifelong immunity. 

 

Figure 1-1: Simplified mechanisms of immune activation from carbohydrate-based vaccines. A) Direct 

activation of the B cell from plain polysaccharides leads to differentiation into IgM-secreting and short-

lived plasma cells. B) Polysaccharides as part of a glycoconjugate are recognized by the same receptor 

but in this case the antigen is internalized. Fragments of the polysaccharideprotein conjugate are 

presented on B cells as epitopes of T cells, activating a mechanism that leads to differentiation into 

Memory B cells specific for that antigen and plasma cells producing antibodies of higher affinity. 

Adapted from: Nature Reviews Immunology, 9, 213–220 (2009). 
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1.7. GLYCOCONJUGATE VACCINE DEVELOPMENT 

Glycoconjugate vaccines are composed of a protein carrier to which a poly- or oligosaccharide chain 

is covalently linked, and an adjuvant to increase immunogenicity56. Carriers are proteins of bacterial 

origin that retain peptide sequences representing T cell epitopes which are presented on MHC class II 

and involve T cells, thus enforcing a T cell dependent mechanism and an effective adaptive immunity. 

After years of clinical experimentation62, five carrier proteins are available and licensed for use in 

conjugate vaccines63: CRM197 and DT (Diphtheria Toxoid) from Corynebacterium diphteriae, TT 

(tetanus toxoid) from Clostridium tetani, OMPC (Outer Membrane Protein Complex) from Neisseria 

meningitidis and HiD from Haemophilus influenzae. Some of them, DT and TT, represent active 

ingredients in widely used diphtheria and tetanus vaccines. 

CRM197 is the most well studied and well defined carrier used in recently developed glycoconjugate 

vaccines. It consists of a modified version of DT in which a single amino acid mutation avoids its toxic 

effect64. Usually carbohydrates are covalently attached to the protein by exploiting the nucleophilicity 

of -amino groups of lysine residues exposed on the protein surface. Due to steric impediments and 

their position within the secondary structure around one half of the total 39 lysine residues present in 

the polypeptide chain are available for covalent bond formation with carbohydrates65 but commonly, 

depending on the conjugation method employed, a maximum of around 10 saccharide chains are 

attached per protein66.  

Almost all glycoconjugate vaccines are made from polysaccharides obtained from bacteria. Long 

polysaccharide chains are normally depolymerized to obtain lower molecular weight polymers that are 

more easily conjugated to proteins67. A number of techniques can be employed to achieve this scope 

such as chemical depolymerization (acidic or basic hydrolysis), physical methods (ultrasonication) or, 

in a few cases, enzymatic degradation. Unfortunately, these treatments are often not specific, cutting 

molecules at different glycosidic linkages and often resulting in the removal of functional groups such 

as acetyl or pyruvate groups. The obtained saccharides are later fractionated to a narrower range of 

molecular weights by using size-exclusion chromatography68. 

Following depolymerization, a step of chemical activation introduces electrophilic or nucleophilic 

functional groups, often non-selectively at random positions along the chain67,69, to perform the 

subsequent chemical conjugation steps. The most commonly employed conjugation method is 

reductive amination69 to obtain a secondary amine from the lysine -amino groups through the 

aldehyde form of reducing-end aldose monosaccharides or via aldehydes produced through periodate 

cleavage of diols on the sugar rings, or ozonolysis. This procedure presents the considerable 

disadvantage of directly modifying the chemical structure of the carbohydrate, with possible 

introduction of artificial epitopes. Cyanylation involves the reaction of the sugar with a mild cyanylating 

agent to form cyanide esters that can react with amines to form stable O-alkyl isourea functionalities70. 

Where present, carboxyl groups along the saccharide chain can be activated with coupling agents to 

generate amide bonds. All these methods involve direct attachment of sugars to the protein.  

Alternatively, linkers can be introduced at the reducing end of the sugar, allowing reaction of a 

functionality on the spacer with lysines or acidic amino acids. Examples of such functionalities include 
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N-hydroxysuccinimide esters, squarate esters and adipic acid dihydrazides69. Additionally, linkers can 

also be introduced on the protein side. This allows for the use of other types of chemical strategies 

such as cycloaddition and click-chemistry reactions71. 

Recently, studies have suggested that a more controlled attachment of sugars to precise amino acids 

on the protein could have a positive impact on the response to the vaccine72. To achieve this, other 

amino acids such as cysteine or tyrosine were functionalized73,74. These residues are not abundant but 

allow for more chemoselective modifications. In the last ten years a new methodology has emerged, 

based on a process named Protein Glycan Coupling Technology, or bioconjugation75,76. The 

glycoconjugate is produced in vivo by engineered Escherichia coli cells expressing both the 

polysaccharide and the carrier protein; enzymes called oligosaccharyltransferases transfer the 

saccharide chain with very high specificity onto a residue of the acceptor protein. The glycoconjugate 

can be then purified from the cell lysate.  

1.8. SEMISYNTHETIC GLYCOCONJUGATE VACCINES 

As an alternative to the processes described in the previous section, glycoconjugate vaccines can be 

manufactured from synthetic carbohydrates resembling portions of the native bacterial 

polysaccharides. The latter methodology is still considered challenging and is not widely employed, 

but it is generally believed that it has the potential to overcome some limitation of the former process 

and provides several advantages29,72,77,78.  

Costly large scale fermentations of bacteria79 and problematic purifications80,81 from mixtures 

containing various biomolecules are avoided using this technique. As a result, the obtained products 

are totally free from any possible biological contamination. Synthetic sugars can be easily conjugated 

to proteins; introducing reducing-end spacers enables diverse conjugation chemistries to ensure 

higher loadings or site-selective attachments82. Moreover, in the conjugation process the original 

structure of the carbohydrate remains intact and some functional groups often lost during isolation of 

polysaccharides83,84 are preserved. Due to higher control over the conjugation chemistry72, physico-

chemical properties of the glycoproteins are maintained and reproduced between different batches. 

The resulting glycoproteins are homogeneous molecules82, rather than cross-linked constructs as in 

the case of polysaccharides78. They contain sugar moieties with precise lengths and molecular 

weights as opposed to more heterogeneous polydisperse polysaccharides84. The number of 

saccharide chains attached to each protein can be more easily determined resulting in better 

characterized glycoproteins.  

Semi-synthetic glycoconjugates are also suitable to evaluate how some characteristics affect the 

immunogenicity of the resulting vaccine72, such as the type of protein carrier employed, the identity 

and length of the spacer and the saccharide-to-protein ratio. Most importantly, a precise correlation 

between the chemical structure of the saccharide antigen and its effect on the protective response 

induced by the vaccine can be derived.  
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A key step for the creation of an effective semi-synthetic glycoconjugate vaccine is represented by the 

elucidation of minimal glycan epitopes, or glycotopes, the precise sequence of sugars that are 

involved in binding interactions to immunoglobulins77. 

Vaccines based on polysaccharides contain high-molecular-weight antigens, chemically and 

conformationally equivalent to the natural antigen displayed on the bacterium and therefore contain 

sequences representing B-cell epitopes eventually inducing antibody responses. On the other hand, 

synthetic oligosaccharide antigens are shorter and less complex and must be designed to exactly 

mimic these epitopes. According to an old hypothesis85 minimal glycan epitopes are represented by a 

minimum of one to a maximum of 6-7 monosaccharide units, based on the size of the antigen binding 

pockets of antibodies. This found partial confirmation in recent studies86-88 where short linear sugar 

sequences were identified as minimal epitopes. 

Recently, some biochemical techniques directed towards detailed analyses of sugar-proteins 

interactions have greatly evolved and nowadays represent powerful tools also in the field of 

glycoconjugate vaccine development89. One of the most important technologies exploiting this 

interaction is carbohydrate microarrays. 

1.8. CARBOHYDRATE ARRAYS 

Glycan microarrays are a technique that offers the possibility of studying interactions between 

carbohydrates and carbohydrate-binding proteins in a high-throughput fashion90. Since the creation of 

the first glycan arrays91,92, many studies have focused on studying interactions between mammalian 

carbohydrates and proteins93. However, recently several bacterial carbohydrate arrays have been 

created and have helped provide insight into binding specificities of bacterial carbohydrate-binding 

proteins94,95. 

Glycan arrays are practically created by immobilizing sugars on the surface of microscope-size slides 

through covalent bonds or non-covalent interactions90. Several types of commercially available slides 

offer the possibility to exploit different immobilization strategies. Among these, glass slides modified 

with a hydrophilic polymer coating functionalized with reactive groups such as N-hydroxysuccinimide 

esters (NHS esters) are often used. This permits reactions with amino groups on sugars modified with 

suitable linkers to form robust covalent bonds. Polysaccharides on the other hand can be adsorbed on 

these surfaces through a combination of hydrophilic and non-hydrophilic interactions91.  

Under typical experimental conditions the layer obtained after immobilization displays carbohydrates 

with a high surface density, maintaining at the same time a degree of flexible orientation96. Sugar-

binding proteins possess relatively low binding affinities, often in the micromolar range for a 

monovalent binding, and therefore the high density of glycans at the surface ensures the achievement 

of stronger bindings through multivalent interactions. 

Immobilization is commonly performed using robotic equipment allowing for a miniaturized and highly 

reproducible printing process consuming only very small amounts, nanomoles or even less, of the 

carbohydrate sample and producing spots around 100 m in diameter96. 
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A solution containing antibodies, commonly serum from humans or animals previously infected or 

vaccinated, is applied after printing on the surface of the slide and with a subsequent washing step the 

unbound proteins are washed away. Later the array is probed with a solution of a class-specific 

secondary antibody conjugated to a fluorescent dye. After another washing, fluorescence is measured 

in a scanner, giving an indirect detection of bound primary antibodies. After elaboration of the data, the 

measured mean fluorescence intensities can be used to derive qualitative and in some cases 

quantitative information on protein binding events96. 

 

Figure 1-2: Typical glycan array workflow. a) Immobilization on the solid surface; b) incubation with an 

antibody-containing sample followed by washing; c) incubation with a fluorescence-tagged secondary 

antibody followed by washing; d) readout and data elaboration (image and graph were adapted from the 

Supplementary section). 

During glycoconjugate vaccine development, glycan arrays serve a double function: they can be used 

to identify minimal glycan epitopes of antibodies from infected humans or animals, assisting in the 

design of synthetic antigens, or they can be used after vaccination to detect the presence of specific 

antibodies and monitor the magnitude of the immune response77. 

The major limitation for glycan arrays analyses of complex bacterial sugars is still obtaining libraries of 

carbohydrates that contain an appropriate number of compounds with sufficient structural diversity, in 

order to maximize conclusions drawn from the experiment. To this end, chemical synthesis can 

provide access to the necessary amounts of highly pure, well-characterized and structurally 

homogeneous oligosaccharides.  

1.9. METHODS OF OLIGOSACCHARIDE SYNTHESIS 

Large collections of glycans for biochemical studies, some containing hundreds of compounds, 

contain mostly sugars isolated and purified from natural sources93,97-99. Importantly, small-sized but 

more focused chemical libraries can be created by chemical synthesis. The scope of the experiment 
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determines which approach is more suitable to obtain the desired library95,97. As already introduced in 

Section 1.8, due to the high complexity of the bacterial glycome100, bacterial oligosaccharide 

analogues obtained by chemical synthesis are extremely useful tools for studying a variety of 

processes in which these glycans are involved, among others recognition by antibodies to help 

diagnostic applications or vaccine development. 

The field of carbohydrate chemistry has seen major advances in the last decades101-103. However, 

despite significant improvements, more research efforts are needed to improve efficacy of synthetic 

procedures and technologies in order to advance knowledge in the field of glycobiology104. Three main 

approaches for obtaining oligosaccharides can be employed: solution-phase synthesis, automated 

solid-phase synthesis and chemoenzymatic synthesis. Often these approaches tend to be applied 

separately depending on the target of the research project or the expertise of the research group. 

Starting from an overview of principles of carbohydrates synthesis, the three approaches will be 

discussed in the following chapters. 

1.9.1. CHEMICAL GLYCOSYLATION REACTIONS 

The most important chemical transformation in oligosaccharides synthesis is the reaction that forms 

the glycosidic bond105. In virtually all cases it is achieved by nucleophilic attack of a non-anomeric 

hydroxyl group from a sugar residue (the glycosyl acceptor) on the electrophilic anomeric carbon of 

another residue (the glycosyl donor) formed upon departure of a leaving group. An acetal is then 

formed with two possible stereochemical configurations, alfa or beta configuration (Fig 1-3). The 

product with axial configuration is generally viewed as lower in energy due to the Edward-Lemieux 

effect, or anomeric effect106. Different models have been proposed to explain this effect but the true 

reasons behind it are still a matter of debate107. 

Glycosylations display intricate mechanisms108,109, the same transformation can proceed through 

several discrete pathways and more than one mechanism might occur at once. According to current 

understanding, the proposed mechanisms range through a whole spectrum from SN1-like to SN2-like 

reactions, going through contact ion pairs, solvent-separated ion pairs and covalent adducts108,110-112. 

Multiple factors are involved in determining the mechanism: type of leaving group, activator, solvent, 

temperature and additives113. Consequently, it is practically difficult to control which mechanism is 

operating under given conditions. A simplified mechanism is generally depicted as follows: the leaving 

group is first activated by interaction with the activator, then following its departure a cationic species 

is formed, which is attacked by the nucleophilic hydroxyl. An irreversible deprotonation leads then to 

the formation of the glycosidic bond. Under most employed conditions the final products are not 

interconverted through equilibrium and therefore no thermodynamic control can be established110, 

however, exceptions exist114,115. 

The cationic intermediate can be viewed as a secondary carbocation (glycosyl cation) stabilized by 

delocalization from the adjacent oxygen, producing a resonance form of an oxonium ion. The true 

nature of this intermediate and even its existence has been subject of debate and research for over 30 

years116-121. 
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Figure 1-3: Generic mechanism of a chemical glycosylation and most common combinations of leaving 

groups (LG) and activators (A) presently employed. 

Several classes of functional groups are employed today as appropriate leaving groups105. The most 

commonly employed groups are imidates, thioethers, phosphates and halides (Fig 1-3). These leaving 

groups necessitate an activator that facilitates breakage of the bond with the anomeric carbon. The 

type of promoter used is determined by the chemical nature of the leaving group and is often a Lewis 

or Brønsted acid. The choice of leaving group affects the synthetic route. Some are introduced at an 

early stage as stable functional groups and are maintained throughout several steps, such as in the 

case of thioethers. Others – imidates or phosphates – are more reactive and must be introduced with 

an additional step just before the glycosylation.  

Regioselectivity in oligosaccharide synthesis is a challenge that arises from the chemical nature of this 

class of compounds. Carbohydrates are polyhydroxyaldehydes or ketones and in solutions form 

pyranose or furanose rings through their cyclic hemiacetal form, displaying several hydroxyl groups 

with almost identical nucleophilicity. In practice, differences in nucleophilicity exist but are rarely 

differentiated directly in glycosylations98. Hydroxyl groups or other nucleophilic functionalities are 

usually masked with protecting groups105 through a complex stepwise sequence in which differences 

of nucleophilicity and steric hindrance are exploited to achieve regioselective installation of different 

groups at distinct positions of the sugar ring. A careful balance of orthogonalities between different 

protecting groups ensures that one single hydroxyl group will be exposed and used in the formation of 

the glycosydic bond. Later, upon selective removal of another group a hydroxyl at another position on 

the same or another sugar unit will become a nucleophile for a subsequent glycosylation. The choice 

is greatly complicated by the fact that protecting groups can either positively or negatively affect the 

reactivity of the reaction partners through electronic effects122-124. Stereoselectivity is also affected by 

other protecting-group related effects: steric or conformational constraints 125,126 or anchimeric 

assistance105.  

Careful design of protected monosaccharide building blocks is crucial105. As a general strategy, 

hydroxyls which will be used as nucleophiles in glycosylations or will be involved in later-stage 

modifications are protected with “temporary” protecting groups such as esters, carbonates, acetals or 
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silyl ethers. Hydroxyls neighboring anomeric centers are protected with ester groups to exploit 

anchimeric assistance in case a 1,2-trans configuration is required, otherwise as ethers. All other 

hydroxyls are converted into “permanent” protecting groups, commonly chemically inert benzyl ethers, 

and removed simultaneously in a late or terminal stage of the synthesis. 

The introduction of protecting groups greatly reduces hydrophilicity of protected carbohydrates. For 

this reason, together with the fact that nucleophiles interfere with glycosylation, reactions need to be 

performed under an inert atmosphere in apolar aprotic solvents, commonly dichloromethane or 

toluene, with use of molecular sieves. Mixtures of solvents including ethers or acetonitrile are 

employed in order to exploit solvent participation in some specific transformations. 

Stereoselectivity is of superior importance in glycosylation reactions105. Two distinct situations can be 

identified: glycosidic bonds can be in a trans relationship with the neighboring group in position 2 or 

conversely in a cis relation. In the fomer case very high, often complete stereochemical control can be 

obtained in their formation through anchimeric assistance (neighboring group participation) offered by 

ester or amide functionalities at the neighboring positon on the donors. This approach is commonly 

employed to install  glycosidic bonds on sugars of the D-gluco and D-galacto configurations and  

glycosidic bonds on D-manno and L-rhamno derivatives. 

Oppositely, the introduction of 1,2-cis glycosidic bonds represents a much larger synthetic challenge. 

Several strategies to improve stereochemical control have been developed by carbohydrate chemists 

over the years127, although none of them of a level high enough for general application. Solvent 

effects, remote anchimeric assistance, chiral auxiliaries, conformational strain or variations in the 

electronic properties of the acceptor are just some examples of such methods (Fig. 1-4). 
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Figure 1-4: Selected examples of strategies to achieve stereoselective control over formation of A) 1,2-

trans and B) 1,2-cis glycosidic bonds. 

When planning an oligosaccharide synthesis, retrosynthetic analyses are facilitated since 

disconnections at glycosidic bonds are obvious. They must follow a “building-block oriented” 

approach128 since sugars are readily available “chiral pools” and most synthetic efforts are directed 

towards their functionalization with protecting groups. As a result of all these considerations, 

oligosaccharide syntheses often involve a number of chemical steps comparable to the most complex 

syntheses of natural products129, although the variety of chemical transformations is typically more 

limited. Finally, in most of the described synthetic routes amounts of oligosaccharides obtained are in 

the range of milligrams, enough for basic research or pre-clinical studies, but larger amounts needed 

for successive developments can be obtained through scaling-up130. 
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1.9.2. AUTOMATED SOLID-PHASE SYNTHESIS 

Similar to peptides and oligonucleotides, oligosaccharides are chemical compounds constituted by 

multiple repetitive units and can be assembled blockwise with a linear synthetic approach99. In the 

case of the former compounds, methods for solid-phase synthesis executed by automated systems 

are well established and widely employed131,132. On the contrary, automated solid-phase of 

oligosaccharides is a fairly recent technique. The first automated systems for carbohydrate synthesis 

were developed in the earliest years of this century133, despite the earliest studies of solid phase 

synthesis of carbohydrates date back to the 1970s134. 

In solid-phase oligosaccharide synthesis, carbohydrate chains are synthesized on the surface of a 

solid support consisting in resin beads (Fig 1-5). The resin is typically functionalized with appropriate 

linkers offering nucleophilic sites for creating chemical bonds with monosaccharides through 

glycosylation. Similarly to peptide synthesis, the carbohydrate is protected on one hydroxyl group with 

a temporary protecting group such as Fmoc. After a step of selective deprotection by using a mild 

base, nucleophilic hydroxyls on resin-bound acceptors are exposed and subsequent glycosylations 

can attach another monosaccharide unit. In case branching needs to be introduced along the chain, 

an orthogonal protecting group such as a levulinyol ester is placed on a specific hydroxyl group of the 

sugar residue and can be cleaved to give a site for a second glycosylation. The sequence is repeated 

cyclically until the desired composition of the growing chain is reached. Afterward, the resin is 

separated from the reaction mixture and subjected to a chemical treatment that results in cleavage of 

the bond between the compound and the resin, releasing protected or semi-protected 

oligosaccharides to the solution phase. If needed, further purification can be performed with 

chromatographic techniques. Deprotection steps such as deacylations and hydrogenolysis are usually 

performed in solution phase. 

The main advantage commonly attributed to solid-phase synthesis is that high overall yields can be 

obtained for long synthetic sequences. This is achieved mainly by using a large excess of donor in 

each glycosylation. Reactions can theoretically be driven towards completion reducing the formation of 

side-products, namely incomplete sequences arising from unsuccessful glycosylations. Several 

chemical steps (glycosylations, capping, deprotections) are performed sequentially as a single 

process and intermediate purifications are avoided since the excess of reactants is simply removed by 

washing steps. The final result is a more time-effective synthesis. 

Automated synthesizers99 can execute the entire assembly of the oligosaccharide from building 

blocks, limiting the operator’s intervention. Bench work operations involve therefore synthesis of the 

protected donors and, after the automated synthesis, deprotections and purifications.  
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Figure 1-5: Schematic representation of a solid-phase synthesis of oligosaccharides. 

The resin employed for automated glycan assembly (AGA)99 is typically Merrifield resin (polystyrene-

divinylbenzene cross-linked polymer), insoluble, inert in all reaction conditions and able to swell in the 

most common organic solvents. 

Several classes of linkers have been employed: the most practically useful for AGA are 

photocleavable135, methatesis-labile136 and base-labile linkers137. The photocleavable linker has found 

most application (Fig 1-5). It is an ortho-nitrobenzyl-type linker cleavable by near-UV light irradiation in 

a photochemical reaction that gives optimal results when performed in a continuous-flow reactor138. 

These conditions are compatible with the survival of all protecting groups on the synthesized product. 

Moreover, after cleavage it leads to an aminopentyl spacer attached to the reducing-end 

monosaccharide, allowing for further use of the oligosaccharide in applications such as protein 

modifications, glycan microarrays or nanoparticle synthesis. Complementary to this, a photolabile 

linker that furnishes an unfunctionalized reducing-end sugar was recently developed139. Thereby, 

compounds can be obtained for applications where unnatural spacers are not needed and for further 

use of the products as donors in successive synthetic sequences.  

Considerations regarding stereoselectivity issues in chemical glycosylations parallel those 

encountered in automated solid-phase synthesis. No general solution for stereoselective 1,2-cis 

glycosylations can be  applied. However, strategies for some cases have been identified140 and mostly 

rely on remote anchimeric assistance of protecting groups. 

Optimized protocols for glycosylations using rare sugars often found in bacterial glycans are yet to be 

explored, together with the possibility of introducing functional groups by performing oxidations, 

reductions or nucleophilic displacements. The main bottleneck is represented by the long multistep 

syntheses required to access appropriate amounts of building blocks. Developments in this sense can 

be expected if in the future more semi-protected carbohydrates will increasingly become commercially 

available. For these reasons, syntheses of complex bacterial carbohydrates are still better performed 

using traditional solution-phase chemistry, where also more complex convergent syntheses can be 

performed129. However, provided the availability of automated synthesizers, solid-phase synthesis can 



 16 

be considered the fastest choice for obtaining libraries of bacterial oligosaccharides of low and 

medium complexity. 

1.9.3. ENYZMATIC SYNTHESIS 

In nature, glycosidic bonds are formed with complete regio- and stereoselectivity by enzyme 

catalysts141. Two classes of enzymes have potential for use in oligosaccharides synthesis104: 

glycosidases (or glycosyl hydrolases) and glycosyltransferases. Glycosidases catalyze hydrolysis of 

glycosidic bonds through stereochemical inversion or retention with respect to the original 

stereochemistry of the donor. In the case of retaining glycosidases, they can perform 

transglycosylation by accepting an alcohol as acceptor instead of a molecule of water. These enzymes 

have not been employed extensively for synthetic purposes104. However, synthetically useful mutated 

variants of glycosidases have been recently created. Glycosynthases are retaining hydrolases 

obtained by site-directed mutagenesis142; substitution of one single nucleophilic residue in the active 

site allows irreversible glycosylations using glycosyl fluorides as donors.  

Glycosyltransferases are more frequently employed in chemoenzymatic synthesis104,143. Most 

enzymes of this class catalyze the transfer of one monosaccharide unit, activated as sugar nucleotide, 

to an acceptor which consists often in a glycoside, to create oligo- and polysaccharides, or an 

aminoacid residue, to start sequences of N- or O-glycans on glycoproteins141. Similarly to hydrolases, 

they are known to give either inverting or retaining stereochemical outcomes but detailed mechanisms 

for some of these enzymes are less clearly understood143. Glycosyltransferases guarantee higher 

yields and complete stereoselectivity at the expense of a higher specificity for the substrates they can 

accept143, therefore limiting their synthetic scope to structures resembling products they generate in 

vivo. Structural variation on the acceptor can be tolerated to a certain degree, especially by bacterial 

glycosyltransferases, while the use of unnatural sugar donors might result in a loss of activity144. 

Glycosyltransferases have been employed in several syntheses of human glycans104,145 and 

glycopeptides146,147. Recently, automated systems able to perform fully enzymatic oligosaccharide 

syntheses are being developed148. 

Arguments in favor of chemoenzymatic approaches can be briefly summarized as follows: enzymatic 

reactions are completely regio- and stereoselective due to the high specificity of the catalyst; they are 

performed in water solutions in very mild conditions; syntheses are more straightforward as they are 

not based on protection-deprotection sequences. On the other hand, limited availability and cost of 

both enzymes and sugar nucleotide donors are major drawbacks that still limit the widespread use of 

this methodology.  

Due to the previously mentioned factors, especially the limited substrate scope, complete 

chemoenzymatic approaches for total synthesis of bacterial oligosaccharides seem impractical. The 

use of enzymes can be considered a complementary solution to solve stereoselectivity issues 

encountered in specific glycosylations within complex synthetic routes. The most representative 

example is sialylated oligosaccharides. A general solution to obtain full stereoselectivity in the 

formation of sialosides by chemical synthesis has not been developed. The use of sialyltransferases, 
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where applicable, represents a powerful method for obtaining this class of compounds149. Examples of 

syntheses using combinations of solution-phase149-151 or automated solid-phase synthesis152 and 

enzymatic sialylations with sialyltransferases have been described. Such approach was pursued also 

in this work as described in Chapter 3. 

1.10. AIMS OF THE THESIS 

The overall goal of this work was to contribute to the rational design of new glycoconjugate vaccines 

with the use of synthetic organic chemistry tools. Small focused libraries of oligosaccharides related to 

capsular polysaccharides of pathogenic bacteria were synthesized and can be employed to elucidate 

minimal epitopes of anti-carbohydrate antibodies in glycan microarray experiments. Synthetic 

oligosaccharides emerging as hits from these experiments can be chemically conjugated to carrier 

proteins and the immunogenic properties of the resulting glycoconjugates evaluated in animal models. 

In particular, research was carried out on two main serotypes of Steptococcus suis, an important pig 

pathogen for which an effective vaccine is not currently available. Synthesis routes designed to obtain 

five oligosaccharides related to the CPS of S. suis serotype 2 are described in Chapter 2. The 

synthesis of three oligosaccharides related to the CPS of S. suis serotype 14 is described in Chapter 3 

and was accomplished with different chemical approaches. Finally, the Supplementary section 

describes the synthesis of sub-structures related to the CPS from the human pathogen Streptococcus 

pneumoniae 7F. The library of compounds was screened in a glycan array experiment and used to 

identify structural elements of a minimal glycan epitope of human antibodies.
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CHAPTER 2 

SYNTHESIS OF OLIGOSACCHARIDES RELATED TO STREPTOCOCCUS SUIS 

SEROTYPE 2 CAPSULAR POLYSACCHARIDE 

2.1. STREPTOCOCCUS SUIS SEROTYPES 

To date, 35 different serotypes of Streptococcus suis have been identified. The subdivision of the 

species into serotypes is based on the diverse chemical compositions of bacterial capsules. As 

mentioned in Section 1.1, serotype distribution follows geographical trends, but according to the most 

recent report20, serotype 2 is the most often found in diseased pigs worldwide, followed by serotypes 9 

and 3. Moreover, serotype 2 is the most common serotype causing human infections globally20. 

In recent years, S. suis has gained recognition as an important animal pathogen and a number of 

studies aimed at determining structures of CPSs from important serotypes have been carried out141,153-

155. By using a combination of NMR experiments, CPS structures of the major serotypes have been 

elucidated and are shown in Fig. 2-1. 

 

Figure 2-1: Chemical structures of CPSs from common S. suis serotypes. 

As commonly observed with other encapsulated bacteria, the CPSs of S. suis are polysaccharides of 

high complexity. They normally include rare sugars, a variety of glycosidic linkages, often anionic 

charges and sometimes peculiar functional groups such as acetyls or phosphodiester bridges. 

Interestingly, a high structural similarity was found between the structures of serotypes 1, 2, 1/2 and 

14. 
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2.2.  SEROTYPE 2 CAPSULAR POLYSACCHARIDE 

The structure of the CPS from serotype 2 was determined in 2010155 and consists of branched 

heptasaccharide repeating units of sequence [→4)[-Neu5Ac(2→6)--D-Gal(1→4)--D-

GlcNAc(1→3)]--D-Gal(1→4)-[-D-Gal(1→4)]--L-Rha(1→4)--D-Glc(1→] (Fig. 2-2). Four sugars 

constitute the backbone of this polysaccharide and a 1→4 glycosidic linkage between glucose and 

galactose within this sequence connects the repeating units forming the polysaccharide. A 

trisaccharide side-chain is connected to the backbone and consists of a lactosamine (galactose linked 

1→4 to glucosamine) terminating with an N-acetyl neuraminic acid (Neu5Ac) linked 2→6 to 

galactose.  

This polysaccharide presents structural and composition similarities to CPSs from Group B 

Streptococcus (GBS), for example in the backbone sequence -Gal(1→4)--L-Rha(1→4)--D-Glc, 

identical to GBS type VIII, and the peculiar sialylated side-chain present also in several GBS 

serotypes. However, S. suis serotype 2 displays Neu5Ac linked to galactose with an 2→6 

connectivity rather than 2→3. 

 

Figure 2-2: Characterized structure of serotype 2 CPS repeating unit. 

Sialic acids are a family of nine-carbon sugars widely present as terminal residues in glycoconjugates 

on the surfaces of mammalian cells, but a small number of pathogenic bacteria also possess them in 

their surface156. The reason behind the presence of glycans resembling mammalian antigens on 

bacteria is not fully understood but hypotheses have been advanced. The presence of sialic acids 

could be useful for the survival of the pathogens, since the mimicking of host self antigens retards 

activation of the immune system and hides underlying antigens from recognition156. It has been 

demonstrated that the CPS from serotype 2 is fundamental for its virulence as it can prevent 

phagocytosis when the bacterium infiltrates the bloodstream157. 

2.3. CAPSULAR POLYSACCHARIDE AS VACCINE TARGET 

Over the last three decades vaccine candidates against S. suis serotype 2 have been proposed158. 

The first serotype-specific vaccines to be evaluated were killed whole-cell formulations and these 

vaccines showed unsatisfactory results. Very low or undetectable levels of antibodies were produced 

and no significant protection from infection was observed in pigs158. Several subunit vaccines made 

from proteins were proposed and tested for their immunogenic properties with different adjuvant 

systems158 but few were thoroughly investigated for protection in vivo159. These vaccines have 
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potential for cross-protection, as some proteins are expressed in several serotypes, but stronger 

evidence has yet to be given. 

Between the antigen candidates, the CPS is considered the most promising158,160. Despite being 

poorly immunogenic, low levels of anti-CPS antibodies were seen in pigs after infection161 or 

immunization160, it can induce protective antibodies162,163 for the most part of the IgM subclass. These 

observations led to a study in which for the first time a glycoconjugate as vaccine against S. suis 

serotype 2 was evaluated51. Capsular polysaccharides isolated from bacterial fermentations were 

depolymerized and linked via reductive amination to tetanus toxoid (TT). The resulting glycoconjugate 

was evaluated in immunization experiments in mice and pig models. When the immunogenicity was 

tested, it was found that significantly higher antibody titers were induced in both models by vaccinating 

with the conjugate vaccine compared to the plain CPS. Importantly, production of high-affinity IgG 

antibodies was observed. The induced antibodies were useful to achieve protection: their protective 

capacity was demonstrated with an opsonophagocytic killing assay (OPA), a technique that assesses 

the ability of antibodies to induce bacterial killing in vitro, which can correlate with protection in vivo. As 

final proof, in a challenge study pigs that received immunization with the glycoconjugate vaccine 

showed good levels of protection against a systemic infection. The results in terms of survival levels 

were, however, not significantly different from those conferred by an inactivated whole-cell vaccine. 

This important study represented the first proof-of-principle study evidencing that the poorly-

immunogenic nature of the native CPS can be overcome and that protection against S. suis can be 

achieved by active immunization with a glycoconjugate vaccine. Even though the achieved results 

were not optimal, the study left room for improvement since several parameters can be reconsidered. 

Some variables that are likely to influence the outcome of vaccination are the type of protein carrier, a 

different conjugation strategy, and different sugar-to-protein ratios. Moreover, the structure of 

carbohydrate epitopes responsible for the production of protective antibodies is still unknown. The 

elucidation of such structures serves as the basis for evaluating structure-immunogenicity 

relationships and designing optimized carbohydrate antigens. Few studies were conducted in this 

regard and relied on analyses performed using the native CPS, and produced inconclusive results. It 

was first found that after removal of sialic acid residues from the native CPS by hydrolysis, either a 

monoclonal antibody or polyclonal mouse serum maintained their ability to bind the CPS. This 

suggested a non-prominent role of the sialic acid in the epitope of such antibodies164.  In a subsequent 

study153 on cross-reactions between structurally related CPSs from serotypes 1, 2, 1/2 and 14 (Fig. 2-

3) it was noted that a polyclonal rabbit sera against serotype 2 was able to recognize to a lower extent 

only the CPS from serotype 1/2. The latter is almost identical to serotype 2 except for an N-acetyl 

galactosamine residue on the side-chain replacing the galactose. In addition, this serum recognized 

only weakly the desialylated CPS. No cross-reaction was observed with serotype 14, containing a 

different backbone and an identical side-chain. These results suggested that the side-chain, including 

the sialic acid, is possibly an important sequence forming epitopes of the predominant antibody 

population and that anti-backbone antibodies were rare. However, the lack of cross-reactivity with 

serotype 14 was seen as a sign of conformational differences affecting the binding. 
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Figure 2-3: Cross-reactivity of anti-serotye 2 polyclonal rabbit serum as observed in Ref. 153. 

Later, the same approach was followed to study epitopes of monoclonal antibodies generated after 

immunization of mice with the above described serotype 2 glycoconjugate165. After examining cross-

reactions between serotypes 1, 2, 1/2 and 14, an unclear specificity pattern emerged as three IgM 

antibodies showed different cross-reactivities and one IgG showed no cross-reactions. In this case, all 

antibodies did not recognize the native CPS if the sialic acid residues were hydrolyzed and the authors 

concluded that the sialylated side-chain represents a dominant sequence of antibody epitopes. In 

addition, monoclonal antibodies were evaluated for their protective potential with passive immunization 

in mice and significant levels of protection were noted only with two antibodies at high doses.  

The empirical evidence obtained from these studies can be confirmed and brought to a more detailed 

level by using synthetic oligosaccharides related to the CPS, which can help a more exact 

determination of antibody epitopes. 

2.4. RESULTS AND DISCUSSION 

Five fragments of the repeating unit of serotype 2 CPS were designed in order to obtain detailed 

structural information of antigenic epitopes of antibodies from S. suis-infected pigs. To determine 

whether antibody binding involves specific parts of a repeating unit to different extents, three shorter 

fragments were included. They represent two distinct portions obtained by ideally cutting the 

heptasaccharide shown in Fig. 2-4 unit along the D-B (Gal→Rha) linkage. Trisaccharide 2-1 

represents the backbone sequence up to the  galactose residue, while compounds 2-2 and 2-3 

represent the side-chain. To evaluate if the sequence to which antibodies bind is more extended and 

structurally more complex, pentasaccharide 2-4 and hexasaccharide 2-5 were also included in the 

library. These oligosaccharides cover almost entirely the length of one repeating unit and represent 

branched sequences. Compounds 2-2 and 2-4 differ from 2-3 and 2-5 respectively only in the 

presence of a terminal N-acetyl neuraminic acid. This difference could be used to determine if this 

sugar is directly playing a role in the binding. 
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All the compounds were synthesized carrying an aminopentyl spacer at the reducing end sugar, a 

linker commonly used in carbohydrate chemistry to obtain compounds ready for creating microarrays 

or for protein conjugations. 

 

Figure 2-4: CPS repeating unit and synthesized sub-structures. 

Since the repeating unit of this CPS is composed by five monosaccharides (D-Glc, D-Gal, L-Rha, D-

GlcNAc, D-Neu5Ac), all connected through different glycosidic linkages, a minimum number of seven 

orthogonally protected monosaccharide building blocks, shown in Fig. 2-5, were identified as targets. 

Two 1,2-cis glycosidic bonds, a branching point on L-rhamnose, together with the  sialyl linkage, 

constituted considerable synthetic challenges. Some of the building blocks from this initial set were 

later substituted or adapted as described in the following Sections. Monosaccharide donors 2-6, 2-9, 

2-10 and 2-11 were commercially available while other building blocks were prepared by chemical 

synthesis.  
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Figure 2-5: Initial set of building blocks. 

The  rhamnosidic and the  sialyl linkages represent two particularly difficult bonds to be formed 

through chemical synthesis.  Rhamnosidic linkages are fairly uncommon in natural carbohydrates 

and a limited number of syntheses of rhamnose-containing bacterial oligosaccharides have been 

reported. Several strategies to provide stereocontrol in chemical rhamnosylation have been explored, 

including solvent effects166, promoter effects167, unusual protecting group patterns on donors167,168, and 

special acceptors giving unconventional mechanisms169. However, most studies report glycosylations 

with structurally simple acceptors and none of them have resulted in a universal methodology 

applicable to the synthesis of more complex oligosaccharides. 

Recently, another strategy for the formation of 1,2-cis glycosidic bonds was introduced and relies on 

the effect of protecting groups in the form of esters or ethers of pyridine derivatives170. According to 

the proposed mechanism, the nitrogen atom on these groups acts as a hydrogen bond-acceptor. In 

apolar solvents donor and acceptor can reversibly form pairs connected through a hydrogen bond 

between the hydroxyl group of the acceptor and the pyridine nitrogen on the donor. The directionality 

of the hydrogen bond consequently orients the approach of the nucleophile from one of the two faces 

of the oxocarbenium ion formed upon donor activation, resulting in the formation of a glycosidic bond 

cis with respect to the orientation of the “directing” group. This strategy was therefore named “H-bond 

mediated aglycone delivery” and was explored to stereoselectively form 1,2-cis glycosidic bonds for 

both glucose and mannose. Recently, syntheses of oligosaccharides containing  rhamnose have 

employed this methodology and showed high stereoselectivities171,172, demonstrating the relevance of 

this method for forming this glycosidic bond. 

Similarly, a method for completely stereoselective formation of sialyl glycosidic bonds is lacking. 

Sialylation represents perhaps the most complicated chemical glycosylation173 for a combination of 

reasons: sialic acid donors do not have a hydroxyl neighboring the anomeric center so no anchimeric 

assistance can be exploited; upon donor activation the oxocarbenium ion is destabilized by the 

neighboring electron-withdrawing ester and the attack of the nucleophile must occur on a sterically 
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hindered tertiary carbon; finally, the configuration (the exclusive configuration found in nature) 

corresponds to an equatorial glycosidic bond, higher in energy when compared to the axial bond, as 

mentioned in Section 1.9.  

 

Scheme 2-1: General glycosylation with a sialyl donor. 

Important parameters that can be tuned to improve stereoselectivity of sialylations are the type of 

leaving group and the nature of the protecting groups. It was found that higher levels of product 

were formed when sialic acid donors were protected with electron-withdrawing groups. An -directing 

effect was observed when donors were protected with fused oxazolidinone rings174. This is believed to 

be a consequence of favorable dipole alignments which lower the potential energy of the 

diastereoisomer175. Lower temperatures will increase the formation of the kinetically favored 

product, therefore good leaving groups such as phosphates or imidates guarantee optimal 

results149,173,176 but high levels of stereocontrol are not always achieved. The obtained 

diastereoisomers often show very similar chromatographic behavior, resulting in complex purifications 

that can affect yields. To complicate things further, an acid-catalyzed elimination giving a conjugate 

ester competes with glycosylation and leads to an often observed side-product (Scheme 2-1). 

2.4.1. SYNTHESIS OF LINEAR OLIGOSACCHARIDES 

Preparation of 2-1 required a linear synthesis using three monosaccharide building blocks (Scheme 2-

2). Rhamnose building block 2-7 was synthesized according to reported protocols171. To perform a 

glycosylation that can introduce the following  galactose unit, the C-3 on this donor needs to display 

a group that can be selectively deprotected over the other two positions. A 2-pyridinecarbonyl ester 

(picoloyl ester – Pico) was chosen, also to exploit the H-bond stereodirecting effect discussed above. 

The other two positions were protected with permanent benzyl ether groups. 

The non-reducing end galactose had to be introduced with  configuration. Therefore, known donor 2-

8140, equipped with acetyl esters at C-4 and C-6 and benzyl ethers at C-2 and C-3, was used. This 

protecting group pattern was used to ensure high levels of  stereoselectivity in both solution phase172 

and solid phase syntheses140, possibly through a combination of remote participation and solvent 

effects.  
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Scheme 2-2: Retrosynthesis of 2-1.  

Next, the assembly of 2-1 (Scheme 2-3) started with the introduction of the spacer at the reducing end 

monosaccharide with a glycosylation between N-protected aminopentanol and donor 2-6. Without 

further chromatographic purification, the Fmoc group was removed to obtain 2-14. The 

monosaccharide acceptor was then glycosylated with donor 2-7 by employing high dilution conditions 

(10 mM). These conditions should decrease the probability of acceptors attacking non-hydrogen 

bound donors, resulting in a loss of the stereodirecting effect of the picoloyl ester. -Linked 

disaccharide 2-15 was obtained in two steps after glycosylation and picoloyl ester hydrolysis. 

Presumably traces of -linked disaccharide were formed, but only on an undetectable level. Acceptor 

2-15 was glycosylated with donor 2-8 in a DCM/Et2O mixture to increase  selectivity. Only the -

linked product was detected on TLC and isolated. Finally, protected trisaccharide 2-16 was fully 

deprotected by ester hydrolysis with NaOMe in MeOH followed by catalytic hydrogenation, obtaining 

trisaccharide 2-1. 

 

Scheme 2-3: Synthesis of 2-1. Reagents and conditions: a) HO(CH2)5NBnCbz, NIS, TfOH, DCM, 15 °C; b) 

TEA, DCM, 52% over two steps; c) 2-7, NIS, TfOH, DCM, 30 °C; d) Cu(OAc)2·H2O, DCM/MeOH 2:1, 60% over 

two steps; e) 2-8, NIS, TfOH, DCM/Et2O 1:1, 15 °C, 62%; f) NaOMe, MeOH/THF 1:1; g) H2, Pd/C, 

EtOAc/tBuOH/H2O/AcOH 2:1:1:0.1, 40% over two steps. 

The synthesis of trisaccharide 2-2 also proceeded linearly using three easily accessible building 

blocks (Scheme 2-4). First, commercially available galactose building block 2-9 was the starting point 

for obtaining both 2-18 with an attached spacer and also thioglycoside 2-19 which was used as donor 

to attach at the terminal position.  

Galactose 2-17 was obtained by simple removal of the Fmoc group on 2-9 and then directly employed 

in a glycosylation with N-protected aminopentanol and by exploiting the higher nucleophilicity of the 

primary alcohol at low temperature, 2-18 was obtained and could be employed directly in the following 
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transformation. Then, galactose 2-18 was glycosylated with commercially available glucosamine 2-10, 

and following deprotection of the Fmoc group, disaccharide 2-20 was obtained. It should be noted that 

the levulinoyl ester on 2-10 was not intended as a protecting group to introduce a branching but 

instead this monosaccharide was chosen as the most accessible glucosamine donor at the time of the 

synthesis. The disaccharide was finally glycosylated with galactose 2-19 to obtain a fully protected 

trisaccharide. Compound 2-21 was then deacylated with sodium methoxide in methanol at 35 °C. 

During this step, mass spectrometry monitoring of the reaction revealed partial hydrolysis of the 

trichloroacetamide, likely caused by the large excess of base employed, therefore an intermediate 

step of N-acetylation had to be performed. Finally, catalytic hydrogenation was removed all ethers and 

afforded deprotected trisaccharide 2-2. 

 

Scheme 2-4: Synthesis of 2-2. Reagents and conditions: a) TEA, DCM, 85%; b) HO(CH2)5NBnCbz, NIS, TfOH, 

DCM, 50 °C, 83%; c) Bz2O, TEA, DCM, 90%; d) NIS, TfOH, DCM, 30 °C; e) TEA, DCM, 84% over two steps; f) 

2-19, NIS, TfOH, 15 °C, 66%; g) NaOMe, MeOH/THF 4:1, 35 °C; h) Ac2O; i) H2, Pd/C, iPrOH/H2O/AcOH 3:1:0.1; 

74% over two steps. 

A convergent strategy based on a [2+2] glycosylation was followed to assemble tetrasaccharide 2-3. 

Previously synthesized compound 2-20 was selected as the disaccharide acceptor. As donor, 

disaccharide 2-22, containing a preinstalled  sialyl glycosydic bond was designed.  

 

Scheme 2-5: Retrosynthesis of 2-3. 

To obtain disaccharide 2-22, the first step involved selection of an appropriate sialic acid donor for 

glycosylation with a galactose acceptor. Phosphate donors bearing oxazolidinone protecting group are 
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considered the most efficient to achieve higher diastereoselectivities. It was considered that good 

results are also reported for simpler protecting group patterns177-179 and that these donors require few 

additional synthetic steps to introduce the oxazolidinone ring. A peracetylated sialic acid methyl ester 

was therefore preferred.  

Considering that ideally the donor should be activated at very low temperature, phosphates or 

imidates have to be employed as leaving groups. Traditionally, phosphates are preferred due to their 

higher stability. However, the necessity of using stoichiometric amounts of strong Lewis acids for 

activation, together with the fact that considerable differences in reactivity between the  and  

phosphate anomers are reported176, led to the choice of an N-phenyl trifluoroacetimidate as leaving 

group. Few reports describe the use of imidate sialic acid donors, showing high levels of  

steroselectivity177,180. Due to the availability of thioglycoside 2-23 at the time of the synthesis(†), known 

donor 2-12180 was prepared using reported procedures. A mixture of anomers was obtained and used 

as such in glycosylations, as differences in reactivity were not reported in the literature. Galactose 

acceptor 2-25 was readily obtained from known 2-24 after regioselective opening of the benzylidene 

acetal. 

 

Scheme 2-6: Synthesis of disaccharide 2-22. Reagents and conditions: a) BH3-THF, TMSOTf, 80%; b) 

TMSOTf, DCM/CH3CN 1:1, 60 °C, 62% 10% . 

Acetimidate groups can be chemoselectively activated in the presence of thioethers, therefore 

thioglycoside 2-25 was used as acceptor and glycosylated with sialyl donor 2-12. TMSOTf was used 

as activator in a 1:1 DCM/acetonitrile solvent mixture. Nitrilic solvents have a beneficial effect as they 

can participate in the mechanism through an intermediate “axial” ion pair and favor the formation of 

equatorial bonds. To maximize the effect, sialylations can be performed in pure acetonitrile, but in this 

case the use of DCM was necessary to solubilize the reactants. Surprisingly, donor 2-12 could not be 

activated at 78 °C, temperature at which many imidate donors are reactive. No formation of products 

was observed by TLC, even after prolonged reaction times, for temperatures up to 60 °C. Likely, the 

electron-withdrawing effect of the esters results in deactivation of the donor and opposes the increase 

                                                      
† Compound 2-23 was synthesized by Dr. Chian-Hui Lai  
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in reactivity guaranteed by the leaving group. The reaction was therefore performed at 60 °C and 

proceeded slowly, reaching completion only after 2 h. Isolation of the pure  diastereoisomer from a 

complex crude mixture proved challenging and a careful purification by chromatography on silica 

eventually gave pure sialylated galactosides 2-22 and 2-22 in a 6:1 ratio. 

The configuration of glycosidic bonds is commonly deducted from values of JH-1,H-2 or JC-1,H-1 in NMR 

measurements. This method is not applicable to sialic acids since their anomeric center is a 

quaternary carbon. Instead, an indicator of the configuration is the chemical shift of the equatorial H-3. 

It was empirically observed that its signal, which appears as dd, it is often found at 2.6-2.5 ppm in -

sialyl configurations, while in  isomers the signal is shifted to higher fields, commonly around 2.1-

2.0 ppm181. Axial H-3 appears as a triplet at  1.9-1.8 ppm, often overlapped with singlets given by 

acetyl groups. A more accurate determination relies on measuring three bonds C,H-couplings, which 

follow the Karplus relationship. Sialic acid derivatives are predominantly found in a 2C5 chair 

conformation, therefore coupling between C-1 and the axial H-3 in an  configuration would result in a 

JC-1,H-3ax of 6-7 Hz while a  configuration would give values <1 Hz 182. As an additional indicator, JC-2,H-

3ax is commonly in the range of 7-8 Hz for linkages compared to smaller values of about 3-4 Hz for 

linkages183. 

 

Figure 2-6: Correlations between configuration and heteronuclear coupling in sialic acid derivatives. 

Configuration of the disaccharides was unequivocally determined by measuring the long-range JC-1,H-

3ax using EXSIDE184. This bidimensional technique creates cross peaks, appearing in the same 

position as in an HMBC spectrum, split along the carbon dimension by a value that is correlated to the 

coupling constant. For practical reasons a scaling factor is introduced in the experiment, acting as a 

multiplier to increase splitting and allowing easier interpretation. The relation becomes therefore: 

splitting (Hz) = scaling factor * JC,H (Hz). 

As shown in Fig. 2-7, an HMBC spectrum revealed chemical shifts of C-1 and C-2 of the sialic acid 

and the long-range correlation between C-1 and the axial H-3. Both signals of C-1 (168.0 ppm) and 

axial H-3 (1.96 ppm) were clearly separated from adjacent peaks in the respective spectra, 

simplifying the analysis. The major product was found to have a JC-1,H-3 of 6.3 Hz and a JC-2,H-3 of 7.8 

Hz and was defined as the -linked disaccharide. A similar NMR analysis was not performed on the 

minor product, which gave a very similar 1H-NMR spectrum with an equatorial H-3 as a dd at  2.26 

ppm, and an m/z value identical to the major product and was therefore identified as the -linked 

disaccharide. 
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Figure 2-7: A) HMBC spectrum expansion of 2-22.B) EXSIDE expansion showing C-1,H-3ax and C) C-2,H-

3ax cross-peaks. 

Disaccharide 2-22 was employed as donor in a [2+2] glycosylation with acceptor 2-20, using NIS and 

triflic acid (TfOH) as promoters. These conditions were found to be ineffective for the formation of the 

tetrasaccharide. As judged from TLC analysis, the reaction partners seem to be unreactive, even 

when reactions were conducted at room temperature. Reaction times of several hours resulted in 

progressive degradation of the donor, without substantial increase in product formation. The best 

result was a 15% isolated yield for tetrasaccharide 2-26. 

Poor reactivity of the thioglycoside donor due to the linked sialic acid was supposed as a first 

explanation for these results. Therefore, the thioglycoside donor was directly converted into a more 

reactive phosphate with a one-step procedure. When the new donor 2-27 was tested in a glycosylation 

with acceptor 2-20, however, a similarly sluggish reaction was observed and no product could be 

isolated from a complex reaction mixture.  
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Scheme 2-7: First attempts at synthesizing tetrasaccharide 2-26. Reagents and conditions: a) NIS, TfOH, 

DCM; b) Dibutyl phosphate, NIS, TfOH, 0 °C, 95%; c) TMSOTf, DCM. 

In both cases, donors could not be recovered in substantial amounts after the reaction (hydrolysis and 

degradation were observed) suggesting that activation was indeed taking place. Oppositely, relatively 

high amounts of acceptor could be recovered. It was then concluded that results could be explained 

by an insufficient nucleophilicity of the acceptor. It is known that 4-OH glucosamine acceptors 

protected with esters are poor nucleophiles185 and that variations in the protecting group pattern can 

lead to improved results. Known glucosamine donor 2-28 and galactose 2-18 were used to synthesize 

disaccharide 2-29, containing an ether group instead of an ester at C-3 of the glucosamine. When 

donor 2-27 was used to glycosylate the new acceptor, the tetrasaccharide was obtained in a satisfying 

67% isolated yield. Removal of all protecting groups was performed by ester hydrolysis in basic 

conditions followed by catalytic hydrogenation, and gave deprotected tetrasaccharide 2-3 after HPLC 

purification. 
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Scheme 2-8: Synthesis of 2-3. Reagents and conditions: a) NIS, TfOH, DCM, 30 °C; b) TEA, DCM, 86% over 

two steps; c) 2-27, TMSOTf, DCM, 0 °C, 67%; d) LiOH·H2O, MeOH/THF, 50 °C; e) H2, Pd/C, THF/MeOH/H2O 

1:1:1, 23% over two steps. 
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2.4.2. SYNTHESIS OF BRANCHED OLIGOSACCHARIDES 

Retrosynthetic analysis of target compounds 2-4 and 2-5 revealed that both can be obtained from a 

common trisaccharide acceptor glycosylated either with a disaccharide donor, to afford 

pentasaccharide 2-4, or alternatively with a sialylated trisaccharide donor to obtain 2-5, as shown in 

Scheme 2-9. 

 

Scheme 2-9: Retrosynthesis of 2-4 and 2-5. 

Trisaccharide 2-30 contains the same challenging 1,2-cis glycosidic bonds displayed in the previously 

synthesized fragments. However, acceptor 2-30 contains at the reducing end residue a double 

substitution on the rhamnose residue. Previously employed building block 2-7 carries a benzyl ether at 

C-4 and was not suitable for this synthesis. A different rhamnose building block had to be prepared. 

The new donor needed to display four orthogonal protecting groups. The picoloyl ester was 

maintained to ensure stereoselectivity in  rhamnosylation. A tert-butyldimethylsilyl (TBS) ether was 

chosen as protecting group for C-4 due to its stability in a range of acidic and basic conditions and a 

limited tendency to migrate. 

Starting from peracetylated rhamnose 2-33, intermediate 2-34186 was synthesized in three steps. Then 

the silyl ether was introduced, followed by hydrolysis of the isopropylidene acetal, affording diol 2-36. 

To achieve selective protection of the hydroxyl group at position 2, a reported protocol was chosen187: 

it was found that slightly different acidities between axial and equatorial hydroxyls on rhamnoses could 
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be exploited to perform regioselective etherification under phase transfer conditions. Previously, a 4-O 

benzylated rhamnose diol was treated in these conditions to form a 2-O-naphtylmethyl ether, which 

was obtained in 85% yield172. Unfortunately, when the same procedure was applied on diol 2-36, the 

reaction showed poor regioselectivity. The appearance of comparable amounts of both 2-O and 3-O 

benzylated products was observed already at short reaction times and resulted in a low 26% isolated 

yield. The obtained amount was considered sufficient to continue the synthetic route and to access 

target donor 2-38, obtained after a single esterification step with picolinic acid. 

 

Scheme 2-10: Synthesis of rhamnose donor 2-38. Reagents and conditions: a) TBSCl, imidazole, DMF, 95%; 

b) Trifluoroacetic acid, DCM/H2O 60:1; 93%; c) Benzyl bromide, TBABr, NaOH 10%(aq), DCM, 26%; d) 2-

Picolinic acid, DIC, DCM, 93%. 

A glycosylation involving donor 2-38 and the aminopentanol linker was attempted, using previously 

employed conditions for -bond formation. In this case low stereoselectivity was observed as the two 

anomers were obtained in a 2.4:1 /ratio as judged by NMR. It was presumed that the high 

nucleophilicity of this primary alcohol was responsible for a competing fast glycosylation occurring on 

non-hydrogen bound acceptors. To improve the result, a recently reported alternative for activation of 

thioglycosides was considered188. Bromine can act as promoter and help the detachment of the thiol. 

Subsequently, an intermediate glycosyl bromide is formed and is the “active” donor on which the 

nucleophilic attack takes place. This activator gives slower reaction rates and can activate only donors 

that are not substituted with electron-withdrawing groups. Slower activation could yield more product 

deriving from the H-bond mediated mechanism, although it is possible that glycosylation through an 

SN2-like mechanism will happen on intermediate glycosyl bromides (Scheme 2-11). 

Experimentally, it was found that bromine activation resulted in a slow reaction, but when glycosylation 

was allowed to proceed overnight to reach full donor conversion, spacer-linked rhamnose anomers 

were obtained in a more satisfactory ratio of approximately 10:1 as judged by NMR. The isomers 

were separated by chromatography after removal of the picoloyl ester. Rhamnose 2-40 was then 

glycosylated with galactose donor 2-8 in a DCM/Et2O mixture. Similarly to the synthesis of 

trisaccharide 2-1, no appreciable amounts of -linked galactose were isolated. To perform a second 

glycosylation and install a second galactose residue, the TBS ether was deprotected with TBAF to 

afford disaccharide acceptor 2-42, which was then glycosylated with donor 2-9.  Directly after 

glycosylation, the Fmoc group was removed to obtain desired trisaccharide 2-30. This result proved 

that 4-OH on the rhamnose ring acted as a good nucleophile, despite proximity of the  galactose unit 

which could impose steric hindrance. 
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Scheme 2-11: Synthesis of trisaccharide 2-30. Reagents and conditions: a) Cu(OAc)2·H2O, DCM/MeOH 2:1, 

61% over two steps; b) 2-8, NIS, TfOH, DCM/Et2O 1:1, 10 °C; c) TBAF, AcOH, THF, 64% over two steps; d) 2-9, 

NIS, TfOH, DCM, 10 °C; e) TEA, DCM, 87% over two steps. 

With trisaccharide acceptor 2-30 in hand, the assembly of 2-4 continued with the preparation of the 

disaccharide donor. To guarantee optimal reactivity, an imidate disaccharide was designed (Scheme 

2-12). First, two known monosaccharides 2-43189 and 2-44190(‡) were glycosylated to obtain 

disaccharide 2-45 which, after deprotection of the anomeric silyl ether, was easily converted into an N-

phenyl trifluoroacetimidate. Donor 2-31 and acceptor 2-30 were coupled to obtain the protected 

pentasaccharide in good yield. Next, the pentasaccharide was deprotected and pure 2-4 was obtained 

after HPLC purification. 

                                                      
‡ Compound 2-43 was synthesized by Dr. Benjamin Schumann. Compound 2-44 was synthesized by 

Dr. Lenz Kröck 
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Scheme 2-12: Synthesis of disaccharide donor 2-31 and synthesis of 2-4. Reagents and conditions: a) NIS, 

TfOH, DCM, 20 °C, 93%; b) TBAF, AcOH, THF; c) ClC=N(Ph)CF3, Cs2CO3, DCM, 88% over two steps; d) 

TMSOTf, DCM, 30 °C, 67%; e) NaOMe, MeOH; f) H2, Pd/C, MeOH/H2O 4:1, 14% over two steps. 

To assemble sialylated hexasaccharide 2-5 (Scheme 2-13), a trisaccharide donor was synthesized. 

Previously synthesized sialyl-galactose 2-22 showed sufficient reactivity to glycosylate TBS-

protected acceptor 2-44. The silyl ether was removed from the glucosamine unit of the trisaccharide 

and the hemiacetal was then converted into an N-phenyl trifluoroacetimidate.  

When 2-31 was employed in a [3+3] glycosylation with trisaccharide acceptor 2-30, little product was 

detected by TLC. Glycosylation was not observed at temperatures lower than 20 °C and degradation 

of the donor was common. Substantial amounts of both donor and acceptor were recovered after 

purification, suggesting an insufficient reactivity of the reactants. Other experimental parameters were 

considered. An increase in the amount of promoter (TMSOTf) from 0.1 equiv to 0.3 equiv gave a 

similar result; a larger amount (0.5 equiv) resulted in fast donor degradation. A slight improvement was 

seen when the solution was warmed to 0 °C after addition of the promoter at 20 °C. The increase in 

temperature activated the reaction, since product formation was immediately observed. However, the 

reaction progression seemed to stop after a few minutes. The addition of an equal amount of acid 

slightly increased the amount of product but the composition of the mixture did not significantly 

change. Therefore, the reaction was quenched and the crude mixture was highly complex and 

necessitated HPLC to recover pure hexasaccharide 2-49 in low 11% yield. 

Since an identical acceptor was successfully employed to synthesize fragment 2-4, without low 

reactivity or unexpected side-products, it was deduced that donor 2-46 was the reason for the 

challenging synthesis. An explanation to this observation was not obvious. Absence of donor 
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activation and lower nucleophilicity of the acceptor could be ruled out, since traces of product were 

always formed. Steric hindrance around the anomeric carbon due to a particular conformation of the 

trisaccharide chain could be used as an argument but would not fully explain the observations, and 

would be difficult to prove. Contamination of the reactants with impurities undetectable by NMR which 

could interfere with activation and/or glycosylation could also not be excluded. 

Although the amount of protected hexasaccharide was low, it was decided to continue with the 

deprotection steps. Fortunately, esters removal and catalytic hydrogenation proceeded smoothly and 

deprotected hexasaccharide 2-5 was obtained after HPLC purification. 

 

Scheme 2-13: Synthesis of trisaccharide donor 2-48 and synthesis of hexasaccharide 2-5. Reagents and 

conditions: a) NIS, TfOH, DCM, 15 °C, 60%; b) TBAF, AcOH, THF; c) ClC=N(Ph)CF3, Cs2CO3, DCM, 89% over 

two steps; d) TMSOTf, DCM, 20 °C→0 °C, 11%; e) LiOH·H2O, MeOH/THF, 50 °C; e) H2, Pd/C, MeOH/H2O 3:1, 

34% over two steps. 
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2.4.3. GLYCAN MICROARRAYS 

Synthesized oligosaccharides were printed on NHS-activated microarray slides, together with 

unrelated synthetic glycans and bacterial polysaccharides as controls, as shown in detail in Section 

2.5.1. The slides were probed with four samples of sera from pigs experimentally infected with S. suis 

serotype 2 (§) and bound antibodies were revealed using anti swine-IgG secondary antibodies. 

Considering the low number of samples, sera were not pooled but instead tested individually. Results 

are summarized in Fig. 2-8 as mean fluorescence intensities (MFI) from duplicate measurements. 

Serum samples are named with numbers 4515, 4641, 7007 and 7013. 

 

Figure 2-8: Glycan array analysis of four pig serum samples. Data shown are MFI measured for synthetic 

oligosaccharides and unrelated polysaccharides as controls. Each sample was measured in two dilutions 

to observe concentration dependence. CWPS are polysaccharides from the bacterial membrane of 

Streptococcus pneumoniae. PBS is phosphate buffer pH 8.5 (printing buffer). 

The experiment revealed absence of binding to synthetic oligosaccharides from three samples – sera 

4641, 7007 and 7013 – all of which showed binding to the unrelated cell-wall polysaccharide (Fig. 2-

8). Such binding may indicate that similar structures are expressed on the cell wall of different types of 

streptococci. One sample – serum 4515 – showed strong binding to synthetic trisaccharide 2-1 (the 

backbone sequence) and, to a lower extent, to the longer sequences 2-4 and 2-5. The observation 

                                                      
§ Serum samples were provided by Prof. Peter Valentin-Weigand (University of Veterinary Medicine 

Hannover) 
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that this serum also recognized another synthetic tetrasaccharide containing the exact sequence 

displayed by 2-1, suggested an involvement of the backbone sugars in binding to these antibodies. 

Oppositely, the side-chain in its sialylated form or not, was never recognized. Weaker recognition of 

longer oligosaccharides can be hardly rationalized. A direct comparison with 2-1 cannot be made, 

particularly in light of the fact that 2-4 and 2-5 do not display the -Rha-(1→4)--Glc sequence. 

Altogether, considering the limited number of analyzed samples and that only one of them showed 

bindings to synthetic glycans, the experiment gave inconclusive results. More accurate conclusions 

could be drawn from an assay including a larger number of samples (ten or more). A positive control 

such as the native S. suis serotype 2 CPS, with which inhibition assays can be performed, could also 

give clear proof for the specificity of the detected antibodies. Despite this, the experiment proved that 

even though levels of induced IgG antibodies against the CPS are reported to be very low or even 

undetectable160,161, the high sensitivity of the glycan arrays technique can guarantee their detection. 

2.5. CONCLUSIONS AND OUTLOOK 

A collection of five substructures related to the capsular polysaccharide of Streptococcus suis 

serotype 2 was assembled using solution-phase chemistry. The synthetic strategies applied recent 

carbohydrate chemistry protocols which proved useful in introducing challenging glycosidic bonds with 

high stereoselectivities and may be employed in future syntheses of S. suis oligosaccharides of higher 

complexity, in view of possible optimization of the synthetic antigens. 

The synthesized compounds were printed on microarray slides and a preliminary screening conducted 

with a limited number of sera from experimentally infected pigs demonstrated that IgG antibodies are 

easily detectable. Future glycan arrays experiments performed with a larger number of serum samples 

will give more accurate information on epitopes of anti-CPS antibodies and will allow the selection of 

synthetic oligosaccharides which, upon conjugation to a carrier protein such as CRM197, could result in 

the first semisynthetic glycoconjugate vaccine candidate against S. suis serotype 2. 

  



 40 

2.6. EXPERIMENTAL SECTION 

Commercial grade solvents and reagents were used without further purification. Anhydrous solvents 

were obtained from a solvent drying system (JCMeyer) or dried according to reported procedures. 

Analytical TLC was performed on Kieselgel 60 F254 glass (Macherey-Nagel). Spots were visualized 

with UV light, Sulphuric acid stain [1 mL of 3-methoxyphenol in 1 L of EtOH and 30 mL H2SO4] or 

Ceric ammonium molybdate stain [0.5 g Ce(NH4)4(SO4)4
.2H2O, 12 g (NH4)6Mo7O24.4H2O and 15 mL 

H2SO4 in 235 mL H2O]. Flash chromatography was performed on Kieselgel 60 230-400 mesh (Sigma-

Aldrich). Preparative HPLC purifications were performed with an Agilent 1200 Series or Agilent 1260 

Infinity II. NMR spectra were recorded on a Varian 400 MHz spectrometer (Agilent), Ascend 400 MHz 

(cryoprobe, Bruker) or Varian 600 MHz (Agilent) at 25 °C unless indicated otherwise. Chemical shifts 

(δ) are reported in parts per million (ppm) relative to the respective residual solvent peaks (CHCl3: δ 

7.26 in 1H and 77.16 in 13C; HDO δ 4.79 in 1H). Bidimensional and non-decoupled experiments were 

performed to assign identities of peaks showing relevant structural features. Configurations of sialic 

acid derivatives were determined by bidimensional HMBC and EXSIDE. The following abbreviations 

are used to indicate peak multiplicities: s (singlet), d (doublet) dd (doublet of doublets), t (triplet), dt 

(doublet of triplets), td (triplet of doublets), q (quartet), p (pentet), m (multiplet). Additional descriptors b 

(broad signal) and app (apparent first-order multiplet) are also employed when required. Coupling 

constants (J) are reported in Hertz (Hz). NMR spectra were processed using MestreNova 11.0 

(MestreLab Research). Specific rotations were measured with a UniPol L1000 polarimeter (Schmidt & 

Haensch) at λ = 589 nm. Concentration (c) is expressed in g/100 mL in the solvent noted in 

parentheses. IR spectra were measured with a Perkin Elmer 100 FTIR spectrometer. High-resolution 

mass spectra (ESI-HRMS) were recorded with a Xevo G2-XS Q-Tof (Waters). 

2.6.1. SYNTHETIC PROTOCOLS AND SPECTRAL DATA 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 2,3-di-O-benzoyl-6-O-benzyl--D-glucopyranoside 

(2-14) 

 

Commercially available compound 2-6 (1.565 g; 2.101 mmol) and N-

(Benzyl)benzyloxycarbonylaminopentanol (0.989 g; 3.021 mmol) were twice coevaporated with 

toluene and left under vacuum overnight. They were then dissolved in DCM (20 mL) under Ar 

atmosphere, 4Å molecular sieves were added, the solution was stirred for 30 min and then cooled to 

15 °C. NIS (566 mg; 2.521 mmol) and TfOH (19 µL; 0.210 mmol) were added. After 30 min the 

reaction was quenched with a large excess of triethylamine (4.0 mL) and gradually warmed to r.t. After 

2 h it was diluted with DCM, filtered and washed with 10% aqueous Na2S2O3 and water. The organic 

phase was dried over Na2SO4, filtered and concentrated. The residue was purified by chromatography 

on silica (Hexane/EtOAc 9:1 to 7:3) to obtain 2-14 (885 mg; 1.123 mmol; 52% over 2 steps). 
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[α]D25 = 26.4° (c = 2.0, CHCl3); IR (thin film, cm–1): νmax: 3428, 3066, 3034, 2943, 2868, 1729, 1698, 

1603, 1586, 1497, 1475, 1453, 1424, 1366, 1315, 1266, 1178, 1095, 1069, 1028, 988, 914, 854, 803, 

736, 710, 699; 1H NMR (400 MHz, CDCl3) δ 8.01 – 7.86 (m, 4H), 7.54 – 7.47 (m, 1H), 7.45 – 7.06 (m, 

20H), 5.49 – 5.34 (m, 2H, H-2/H-3), 5.18 – 5.08 (m, 2H,CH2Ph), 4.69 – 4.55 (m, 3H, H-1/ CH2Ph), 4.43 

– 4.30 (m, 2H, CH2Ph), 4.01 – 3.77 (m, 4H, H-4/H-6a/H-6b/-OCHH-), 3.73 – 3.63 (m, 1H, H-5), 3.50 – 

3.34 (m, 1H, -OCHH-), 3.11 – 2.89 (m, 2H, -CH2N-), 1.56 – 1.28 (m, 4H, 2xCH2(Linker)), 1.21 – 1.00 

(m, 2H, CH2(Linker)); 13C NMR (101 MHz, CDCl3) δ 167.3, 165.3, 156.8, 156.2, 138.0, 138.0, 137.7, 

137.0, 136.8, 133.5, 133.3, 130.1, 129.8, 129.5, 129.2, 128.6, 128.5, 128.4, 128.1, 128.0, 127.92, 

127.89, 127.8, 127.4, 127.3, 127.2, 101.2 (C-1), 76.6, 74.6, 73.9, 71.6, 71.3, 70.2, 70.0, 69.9, 67.2, 

50.6, 50.3, 47.1, 46.1, 29.2, 27.8, 27.4, 23.1; HRMS (ESI+) calculated for C47H49NO10Na [M+Na]: 

810.3248, found: 810.3282. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 2,4-di-O-benzyl--L-rhamnopyranosyl-(1→4)- 2,3-

di-O-benzoyl-6-O-benzyl--D-glucopyranoside (2-15) 

 

Rhamnose donor 2-7171 (136 mg; 0.276 mmol) and glucose acceptor 2-14 (168 mg; 0.213 mmol) were 

coevaporated three times with toluene and left under vacuum overnight. They were then dissolved in 

DCM (20 mL) under Ar atmosphere. 4Å molecular sieves were added, the solution was stirred for 30 

min then cooled to 30 °C. NIS (72 mg; 0.318 mmol) and TfOH (2 µL; 0.021 mmol) were added. After 

30 min the reaction was quenched with triethylamine, warmed to r.t., diluted with DCM and filtered. 

The organic solution was washed with 10% aqueous Na2S2O3 and water. The combined aqueous 

phases were extracted once with DCM. The combined organic phases were dried over Na2SO4, 

filtered and concentrated. Crude material was purified by column chromatography (Hexane/EtOAc 8:2 

to 1:1) to obtain an impure mixture containing -linked disaccharide, probably together with traces of 

-linked product (not isolated) and hydrolyzed donor. Without further purification the mixture was 

redissolved in DCM/MeOH 2:1 (6.0 mL) and Cu(OAc)2
.H2O (54 mg; 0.270 mmol) was added. After 1 h 

the solution was diluted with DCM and washed twice with water. The organic phase was dried over 

Na2SO4, filtered and concentrated. Purification by chromatography on silica (Hexane/EtOAc 7:3 to 1:1) 

afforded pure -2-15 (141 mg; 0.127 mmol; 60% over 2 steps). 

[α]D25 = 46.5° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax: 3543, 3066, 3033, 2931, 2867, 1730, 1698, 

1603, 1586, 1497, 1453, 1423, 1367, 1316, 1273, 1179, 1094, 1069, 1028, 1001, 913, 854, 795, 736, 

711, 698; 1H NMR (400 MHz, CDCl3) δ 7.98 – 7.86  (m, 4H), 7.56 – 7.49 (m, 1H), 7.47 – 7.06 (m, 

30H), 5.73 (t, J = 9.6 Hz, 1H, H-3), 5.35 (dd, J = 10.0, 7.1 Hz, 1H, H-2), 5.19 – 5.01 (m, 2H, CH2Ph), 

4.95 (d, J = 11.8 Hz, 1H, -CHHPh), 4.82 (d, J = 10.9 Hz, 1H, -CHHPh), 4.71 – 4.29 (m, 8H, H-1/H-

1’/CH2Ph/2xCHHPh/-OCH2-), 4.09 (d, J = 10.0 Hz, 1H), 3.98 (t, J = 9.1 Hz, 1H, H-4), 3.94 – 3.71 (m, 

2H), 3.54 – 3.35 (m, 2H), 3.19 – 2.89 (m, 5H), 2.14 (d, J = 9.3 Hz, 1H), 1.57 – 1.27 (m, 7H, -

CH3/2xCH2(Linker), 1.23 – 1.04 (m, 2H, CH2(Linker)); 13C NMR (101 MHz, CDCl3) δ 165.9, 165.3, 

156.8, 156.2, 138.6, 138.4, 138.3, 138.1, 137.0, 136.9, 133.8, 133.3, 129.8, 129.6, 129.5, 129.0, 
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128.9, 128.7, 128.61, 128.57, 128.51, 128.45, 128.44, 128.39, 128.3, 128.2, 128.12, 128.06, 127.94, 

127.91, 127.85, 127.6, 127.4, 127.3, 127.2, 102.3 (C-1’), 101.0 (C-1), 81.8, 78.4, 76.3, 75.5, 75.4, 

75.2, 75.0, 73.8, 73.6, 71.9, 71.6, 70.0, 69.9, 69.5, 67.2, 50.6, 50.3, 47.2, 46.2, 29.2, 27.8, 27.4, 23.2, 

18.0 (-CH3); HRMS (ESI+) calculated for C67H71NO14Na [M+Na]: 1136.4767, found: 1136.4780. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 4,6-di-O-acetyl-2,3-di-O-benzyl--D-

galactopyranosyl-(1→3)-2,4-di-O-benzyl--L-rhamnopyranosyl-(1→4)-2,3-di-O-benzoyl-6-O-

benzyl--D-glucopyranoside (2-16)  

 

Disaccharide acceptor 2-15 (60 mg; 0.054 mmol) and monosaccharide donor 2-8140 (34mg; 0.070 

mmol) were coevaporated three times with toluene and left under vacuum overnight. They were then 

dissolved in DCM/Et2O 1:1 (2 mL) under Ar atmosphere. 4Å molecular sieves were added, the solution 

was stirred for 30 min then cooled to 15 °C. NIS (21 mg; 0.093 mmol) and TfOH (0.1 M in Et2O; 54 

µL; 5.4 µmol) were added. After 30 min the reaction was quenched with triethylamine, warmed to r.t., 

diluted with DCM and filtered. The organic solution was washed with 10% aqueous Na2S2O3 and 

brine. The organic phases were dried over Na2SO4, filtered and concentrated. Crude material was 

purified by chromatography on silica (Hexane/EtOAc 7:3) to obtain pure trisaccharide 2-16 (52 mg; 

0.034 mmol; 62%).  

[α]D25 = 56.8° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax: 3066, 3034, 2928, 2859, 2309, 1733, 1699, 

1603, 1586, 1498, 1454, 1427, 1370, 1315, 1273, 1250, 1230, 1178, 1095, 1069, 1028, 947, 913, 853, 

798, 737, 711, 698, 665; 1H NMR (600 MHz, CDCl3, 10 °C) δ 7.95 – 7.87 (m, 4H), 7.49 – 7.08 (m, 

41H), 5.65 (t, J = 9.6 Hz, 1H, H-3), 5.33 (t, J = 8.7 Hz, 1H, H-2), 5.20 – 5.07 (m, 3H), 4.71 – 4.45 (m, 

11H, H-1/H-1’/H-1’’/3xCH2Ph/-OCH2-), 4.44 – 4.30 (m, 4H), 4.05 (t, J = 6.7 Hz, 1H), 4.03 – 3.97 (m, 

2H), 3.92 – 3.81 (m, 2H), 3.81 – 3.71 (m, 2H), 3.69 – 3.62 (m, 3H), 3.57 (dd, J = 11.1, 6.6 Hz, 1H), 

3.53 – 3.36 (m, 2H), 3.29 – 3.25 (m, 1H), 3.17 – 3.09 (m, 1H), 3.07 – 2.89 (m, 2H, -CH2N-), 2.07 (s, 

3H, COCH3), 1.83 (s, 3H, COCH3), 1.60 – 1.25 (m, 7H, -CH3/2xCH2(Linker)), 1.16 – 1.01 (m, 2H, 

CH2(Linker)); 13C NMR (151 MHz, CDCl3) δ 170.4, 170.3, 165.9, 165.3, 139.3, 138.7, 138.3, 138.2, 

138.1, 133.7, 133.2, 129.8, 129.6, 129.2, 128.9, 128.62, 128.59, 128.5, 128.44, 128.42, 128.37, 

128.07, 128.06, 128.04, 128.01, 127.96, 127.92, 127.89, 127.8, 127.7, 127.63, 127.60, 127.58, 127.3, 

127.2, 101.8 (C-1’), 101.0 (C-1), 94.2 (C-1’’), 79.1, 75.9, 75.8, 75.63, 75.58, 75.3, 75.1, 75.0, 74.8, 

73.54, 73.51, 72.4, 72.1, 71.8, 69.9, 69.5, 67.5, 67.2, 66.6, 62.0, 50.6, 50.3, 47.2, 46.2, 29.2, 27.9, 

27.5, 23.2, 21.0 (COCH3), 20.8 (COCH3), 18.0 (-CH3); HRMS (ESI+) calculated for C91H97NO21Na 

[M+Na]: 1562.6445, found: 1562.6466. 
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5-Aminopentyl -D-galactopyranosyl-(1→3)--L-rhamnopyranosyl-(1→4)--D-glucopyranoside 

(2-1) 

 

Compound 2-16 (26 mg; 16.9 µmol) was dissolved in Methanol/THF 1:1 (2.0 mL). Sodium methoxide 

0.5 M in MeOH was added (0.85 mL; 0.43 mmol). The reaction was stirred for 16 h, then neutralized 

with the addition of Amberlite IR120 H+, filtered and concentrated. The crude residue was purified by 

column chromatography (DCM/MeOH 95:5). The obtained product was dissolved in 

EtOAc/tBuOH/H2O/AcOH 2:1:1:0.1 (2.0 mL). Pd/C was added, the solution was purged with argon and 

hydrogen and left stirring under H2 atmosphere with a balloon for 24 h at 35 °C. The mixture was 

filtered through a PTFE filter (0.45 µm pore size) and concentrated. The crude trisaccharide was 

purified by RP-HPLC (Hypercarb column, 150x10 mm, H2O (0.1% formic acid) isocratic (5 min), linear 

gradient to 30% ACN (30 min), linear gradient to 100% ACN (10 min)) and lyophilized to obtain 2-1 as 

a formic acid salt (4.3 mg; 6.8 µmol; 40% over 2 steps). 

1H NMR (600 MHz, D2O) δ 8.46 (s, 1H, HCOO-), 5.16 (d, J = 3.9 Hz, 1H, H-1’’), 4.89 (br s, 1H, H-1’), 

4.47 (d, J = 8.0 Hz, 1H, H-1), 4.32 (d, J = 3.0 Hz, 1H), 4.23 – 4.19 (m, 1H), 4.03 (dd, J = 3.5, 1.1 Hz, 

1H), 3.98 – 3.92 (m, 3H), 3.89 – 3.81 (m, 2H), 3.77 – 3.67 (m, 4H), 3.67 – 3.62 (m, 2H), 3.55 – 3.42 

(m, 3H), 3.33 – 3.24 (m, 1H), 3.02 (app t, J = 7.5 Hz, 2H), 1.70 (m, 4H), 1.47 (m, 2H), 1.35 (d, J = 5.9 

Hz, 3H, -CH3); 13C NMR (151 MHz, D2O) δ 170.9 (HCOO-), 102.1 (C-1), 100.5 (C-1’), 95.3 (C-1’’), 

77.3, 76.6, 75.6, 74.6, 73.1, 72.1, 70.7, 70.2, 70.0, 69.3, 69.1, 68.2, 67.0, 60.74, 60.71, 39.3, 28.1, 

26.3, 22.0, 16.7;  HRMS (ESI+) calculated for C23H44NO15 [M+H]: 574.2705, found: 574.2708. 

Ethyl 2-O-benzoyl-4,6-di-O-benzyl-1-thio--D-galactopyranoside (2-17) 

 

Commercially available compound 2-9 (500 mg; 0.684 mmol) was dissolved in DCM (5 mL) and 

Triethylamine (1.5 mL). After 2 h the reaction was cooled to 0 °C and neutralized with acetic acid. It 

was then diluted with DCM and extracted three times with water. The organic phase was dried over 

Na2SO4, filtered and concentrated. The crude material was purified by chromatography on silica 

(Hexane/EtOAc 9:1 to 7:3) to obtain 2-17 (297 mg; 0.584 mmol; 85%).  

[α]D25 = -1.9° (c = 0.9, CHCl3); IR (thin film, cm–1): νmax: 3458, 3065, 3033, 2927, 2871, 1723, 1603, 

1586, 1497, 1453, 1401,    1352, 1316, 1265, 1210, 1178, 1091, 1071, 1053, 1028, 994, 881, 804, 

734, 710, 699, 677; 1H NMR (400 MHz, CDCl3) δ 8.11 – 8.04 (m, 2H), 7.62 – 7.55 (m, 1H), 7.51 – 

7.30 (m, 12H), 5.33 (t, J = 9.7 Hz, 1H, H-2), 4.83 – 4.69 (m, 2H, CH2Ph), 4.61 – 4.49 (m, 3H, H-

1/CH2Ph), 4.03 (dd, J = 3.5, 0.9 Hz, 1H, H-4), 3.85 – 3.70 (m, 4H, H-3/H-5/H-6a/H-6b), 2.84 – 2.66 (m, 

2H, SCH2CH3), 1.27 (t, J = 7.4 Hz, 3H, SCH2CH3); 13C NMR (101 MHz, CDCl3) δ 166.7, 138.2, 137.7, 

133.3, 130.0, 129.9, 128.7, 128.6, 128.5, 128.08, 128.06, 128.0, 83.4 (C-1), 76.8, 75.5, 74.1, 73.7, 



 44 

72.4, 68.2, 24.0 (SCH2CH3), 15.1 (SCH2CH3); HRMS (ESI+) calculated for C29H32O6SNa [M+Na]: 

531.1812, found: 531.1819. 

 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 2-O-benzoyl-4,6-di-O-benzyl--D-

galactopyranoside (2-18) 

 

Compound 2-17 (0.122 g; 0.240 mmol) and N-(Benzyl)benzyloxycarbonylaminopentanol (0.216 g; 

0.660 mmol) were twice coevaporated with toluene and left under vacuum overnight. They were then 

dissolved in DCM (10 mL) under Ar atmosphere, 4Å molecular sieves were added, the solution was 

stirred for 30 min and then cooled to50 °C. NIS (80 mg; 0.356 mmol) and TfOH (0.45 M in Et2O; 50 

µL; 0.023 mmol) were added. After 30 min the reaction was diluted with DCM, quenched with 

triethylamine and gradually warmed to r.t. The solution was filtered, washed with 10% aqueous 

Na2S2O3 and brine. The organic phase was dried over Na2SO4, filtered and concentrated. The residue 

was purified by chromatography on silica (Hexane/EtOAc 7:3) to obtain 2-18 (174 mg; 0.199 mmol; 

83%). 

[α]D25 = -9.8° (c = 2.0, CHCl3); IR (thin film, cm–1): νmax: 3453, 3065, 3033, 2937, 2867, 1727, 1697, 

1604, 1587, 1497, 1475, 1454, 1423, 1367, 1315, 1270, 1178, 1114, 1071, 1028, 999, 910, 843, 804, 

769, 735, 712, 699; 1H NMR (400 MHz, CDCl3) δ 8.00 (d, J = 7.6 Hz, 2H), 7.53 – 7.44 (m, 1H), 7.41 – 

7.22 (m, 20H), 7.21 – 7.15 (m, 1H), 7.13 – 7.07 (m, 1H), 5.22 (dd, J = 10.0, 7.9 Hz, 1H, H-2), 5.17 – 

5.10 (br s, 2H, CH2Ph), 4.78 – 4.69 (m, 2H, CH2Ph), 4.58 – 4.32 (m, 5H, H-1/CH2Ph/-OCH2-), 3.95 (br 

d, J = 3.5 Hz, 1H, H-4), 3.90 – 3.65 (m, 5H, H-3/ H-5/H-6a/CH2Ph), 3.48 – 3.30 (m, 1H, H-6b), 3.15 – 

2.89 (m, 2H, -CH2N-), 2.49 – 2.38 (m, 1H), 1.57 – 1.30 (m, 4H, 2xCH2(Linker)), 1.24 – 1.04 (m, 2H, 

CH2(Linker));  13C NMR (101 MHz, CDCl3) δ 166.8, 156.8, 156.2, 138.1, 138.0, 138.0, 137.8, 137.0, 

136.9, 133.3, 129.92, 129.88, 128.7, 128.62, 128.60, 128.55, 128.4, 128.3, 128.2, 128.14, 128.08, 

128.05, 128.03, 128.00, 127.92, 127.86, 127.4, 127.31, 127.25, 101.2 (C-1), 76.6, 75.6, 74.3, 73.7, 

73.6, 73.3, 69.8, 69.7, 68.3, 67.2, 50.6, 50.3, 47.2, 46.2, 29.2, 27.8, 27.4, 23.2; HRMS (ESI+) 

calculated for C47H51NO9Na [M+Na]: 796.3456, found: 796.3469. 

Ethyl 2,3-di-O-benzoyl-4,6-di-O-benzyl-1-thio--D-galactopyranoside (2-19) 

 

Compound 2-17 (150 mg; 0.235 mmol) was dissolved in DCM (5.0 mL). Triethylamine (0.13 mL; 0.940 

mmol), benzoic anhydride (106 mg; 0,470 mmol) and a catalytic amount of DMAP were added, the 

reaction was stirred for 16 h at room temperature then diluted with EtOAc and extracted with 1 M HCl, 

saturated aqueous NaHCO3 and brine. The organic phase was dried over Na2SO4, filtered and 

concentrated. The crude material was purified by chromatography on silica (Hexane/EtOAc 8:2) to 

obtain 2-19 (130 mg; 0.212 mmol; 90%); 
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[α]D25 = 56.1° (c = 0.9, CHCl3); IR (thin film, cm–1): νmax: 3066, 3034, 2930, 2871, 1726, 1603, 1586, 

1497, 1454, 1354, 1316, 1276, 1213, 1179, 1152, 1096, 1071, 1028, 1001, 885, 803, 735, 709; 1H 

NMR (600 MHz, CDCl3) δ 8.00 – 7.92 (m, 4H), 7.53 – 7.47 (m, 2H), 7.41 – 7.16 (m, 14H), 5.89 (t, J = 

10.0 Hz, 1H, H-2), 5.40 (dd, J = 10.0, 3.1 Hz, 1H, H-3), 4.73 (d, J = 11.6 Hz, 1H), 4.69 (d, J = 9.9 Hz, 

1H, H-1), 4.52 (app d, J = 11.8 Hz, 2H), 4.46 (d, J = 11.8 Hz, 1H), 4.29 – 4.25 (m, 1H, H-4), 3.95 – 

3.90 (m, 1H, H-5), 3.73 – 3.64 (m, 2H, H-6a/H-6b), 2.84 – 2.70 (m, 2H, SCH2CH3), 1.26 (t, J = 7.4 Hz, 

3H, SCH2CH3); 13C NMR (151 MHz, CDCl3) δ 166.0, 165.6, 138.0, 137.9, 133.5, 133.2, 130.0, 129.9, 

129.7, 129.2, 128.6, 128.42, 128.36, 128.1, 127.98, 127.95, 127.8, 83.9 (C-1), 77.5, 75.9, 75.1, 74.4, 

73.7, 68.7, 68.3, 24.0 (SCH2CH3), 15.0 (SCH2CH3); HRMS (ESI+) calculated for C36H36O7SNa [M+Na]: 

635.2074, found: 635.2082. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 6-O-benzyl-3-O-levulinoyl-2-trichloroacetamido-2-

deoxy--D-glucopyranosyl-(1→3)-2-O-benzoyl-4,6-di-O-benzyl--D-galactopyranoside (2-20) 

 

Galactose acceptor 2-18 (151 mg; 0.195 mmol) and glucosamine donor 2-10 (186 mg; 0.239 mmol) 

were coevaporated three times with toluene and left under vacuum overnight. They were then 

dissolved in DCM (2.5 mL) under Ar atmosphere. 4Å molecular sieves were added, the solution was 

stirred for 30 min then cooled to 30 °C. NIS (59 mg; 0.263 mmol) and TfOH (0.1 M in dioxane; 195 

µL; 0.020 µmol) were added. After 1 h the reaction was quenched with triethylamine, warmed to r.t., 

diluted with DCM and filtered. The organic solution was washed with 10% aqueous Na2S2O3 and 

brine. The organic phases were dried over Na2SO4, filtered and concentrated. The obtained crude 

product was redissolved in DCM (10 mL) and triethylamine (2.5 mL). After 2 h the solution was cooled 

to 0 °C and carefully neutralized with acetic acid. It was then diluted with DCM and extracted three 

times with water. The organic phase was dried over Na2SO4, filtered and concentrated. The crude 

material was purified by chromatography on silica (Hexane/EtOAc 1:1 to 4:6) to obtain disaccharide 2-

20 (209 mg; 0.165 mmol; 84% over 2 steps).  

[α]D25 = -22.8° (c = 1.5, CHCl3); IR (thin film, cm–1): νmax: 3341, 3066, 3033, 2928, 2868, 1718, 1604, 

1587, 1524, 1498, 1475, 1454, 1423, 1365, 1314, 1269, 1161, 1098, 1069, 1028, 914, 839, 821, 737, 

699; 1H NMR (400 MHz, CDCl3) δ 8.08 – 7.87 (m, 2H), 7.53 – 7.45 (m, 1H), 7.37 – 7.23 (m, 25H), 7.17 

(d, J = 7.4 Hz, 1H), 7.10 (d, J = 7.3 Hz, 1H), 6.51 (d, J = 8.3 Hz, 1H, NH), 5.51 (dd, J = 10.0, 7.8 Hz, 

1H, H-2), 5.12 (s, 2H, CH2Ph), 4.97 (d, J = 11.6 Hz, 1H, CHHPh), 4.88 (dd, J = 10.9, 8.8 Hz, 1H, H-3’), 

4.67 (d, J = 8.2 Hz, 1H, H-1’), 4.63 – 4.55 (m, 3H, 3xCHHPh), 4.49 – 4.26 (m, 5H, 2xCHHPh/-OCH2-

(Linker)/H-1), 4.13 – 4.01 (m, 2H, H-3/H-4), 4.01 – 3.90 (m, 1H, H-2), 3.89 – 3.46 (m, 8H), 3.43 – 3.19 

(m, 2H), 2.82 – 2.65 (m, 2H, CH2(Lev)), 2.58 – 2.46 (m, 1H, CHH(Lev)), 2.46 – 2.36 (m, 1H, 

CHH(Lev)), 2.14 (s, 3H, -CH3 (Lev)), 1.46 – 1.23 (m, 4H, 2xCH2 (Linker)), 1.12 – 0.93 (m, 2H, CH2 

(Linker)); 13C NMR (101 MHz, CDCl3) δ 208.1 (CH3CO- (Lev)), 173.2, 165.2, 162.3, 156.7, 156.2, 

138.7, 138.0, 137.8, 133.6, 129.80, 129.79, 128.83, 128.75, 128.64, 128.59, 128.5, 128.2, 128.02, 

127.96, 127.9, 127.83, 127.77, 127.6, 127.4, 127.3, 127.2, 101.6 (C-1), 100.7 (C-1’), 92.1 (COCCl3), 
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78.8, 75.9, 75.3, 75.0, 73.9, 73.8, 73.7, 73.0, 70.1, 69.8, 69.6, 69.2, 68.9, 67.2, 55.6, 50.5, 50.3, 38.5, 

29.94, 29.91, 29.1, 28.3, 27.8, 27.4, 23.2; HRMS (ESI+) calculated for C67H73Cl3N2O16Na [M+Na]: 

1289.3918, found: 1289.3965. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 2,3-di-O-benzoyl-4,6-di-O-benzyl-6-O-benzyl--D-

galactopyranosyl-(1→4)-3-O-levulinoyl-2-trichloroacetamido-2-deoxy--D-glucopyranosyl-

(1→3)-2-O-benzoyl-4,6-di-O-benzyl--D-galactopyranoside (2-21) 

 

Disaccharide acceptor 2-20 (89 mg; 0.070 mmol) and galactose donor 2-19 (74 mg; 0.121 mmol) were 

coevaporated three times with toluene and left under vacuum overnight. They were then dissolved in 

DCM (3.0 mL) under Ar atmosphere. 4Å molecular sieves were added, the solution was stirred for 30 

min then cooled to 15 °C. NIS (27 mg; 0.121 mmol) and TfOH (0.1 M in Dioxane; 70 µL; 7 µmol) 

were added. After 1 h the reaction was quenched with triethylamine, warmed to r.t., diluted with DCM 

and filtered. The organic solution was washed with 10% aqueous Na2S2O3 and brine. Crude material 

was purified using a RevelerisX2 Flash Chromatography System (Hexane/EtOAc 85:15 to 45:55) and 

size-exclusion chromatography (Sephadex LH-20, CHCl3/MeOH 1:1) to obtain trisaccharide 2-21 (84 

mg; 0.046 mmol; 66%).  

[α]D25 = 0.8° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax: 3333, 3066, 3034, 2927, 2868, 1725, 1603, 

1586, 1528, 1497, 1454, 1422, 1363, 1315, 1274, 1211, 1160, 1098, 1071, 1029, 843, 820, 736, 713, 

700; 1H NMR (600 MHz, CDCl3) δ 7.97 – 7.80 (m, 5H), 7.56 – 7.07 (m, 45H), 6.45 (d, J = 9.2 Hz, 1H), 

5.61 (dd, J = 10.5, 7.9 Hz, 1H), 5.47 (dd, J = 9.8, 7.9 Hz, 1H), 5.22 (dd, J = 10.5, 3.2 Hz, 1H), 5.15 – 

5.09 (m, 2H), 5.00 (d, J = 11.7 Hz, 1H), 4.96 – 4.91 (m, 1H), 4.68 – 4.61 (m, 2H), 4.60 – 4.51 (m, 4H), 

4.49 – 4.28 (m, 8H), 4.17 (d, J = 3.2 Hz, 1H), 4.01 – 3.95 (m, 4H), 3.80 – 3.71 (m, 2H), 3.67 – 3.49 (m, 

7H), 3.32 – 3.21 (m, 2H), 3.03 – 2.95 (m, 0.5 H), 2.91 – 2.83 (m, 1.5H), 2.60 – 2.38 (m, 4H), 1.96 (s, 

3H), 1.43 – 1.21 (m, 4H), 1.10 – 0.89 (m, 2H); 13C NMR (151 MHz, CDCl3) δ 206.3, 172.6, 165.9, 

164.9, 162.2, 138.7, 138.1, 137.9, 137.84, 137.75, 133.49, 133.45, 133.3, 130.0, 129.9, 129.76, 

129.75, 129.5, 129.1, 128.9, 128.8, 128.7, 128.64, 128.58, 128.56, 128.54, 128.52, 128.40, 128.38, 

128.3, 128.2, 128.10, 128.05, 128.03, 128.01, 128.00, 127.99, 127.98, 127.92, 127.90, 127.87, 127.8, 

127.6, 101.7, 101.1, 100.6, 92.1, 79.0, 75.9, 75.2, 74.94, 74.91, 74.8, 74.6, 74.5, 74.4, 74.0, 73.9, 

73.7, 73.62, 73.60, 73.56, 73.4, 72.7, 72.3, 70.6, 69.4, 69.3, 69.0, 67.62, 67.57, 67.2, 56.0, 50.6, 50.3, 

47.2, 46.2, 37.9, 29.8, 29.1, 28.1, 27.8, 27.4, 23.2; HRMS (ESI+) calculated for C101H103Cl3N2O23Na 

[M+Na]: 1839.5909, found: 1839.5867. 

5-Aminopentyl -D-galactopyranosyl-(1→4)-2-acetamido-2-deoxy--D-glucopyranosyl-(1→3)- -

D-galactopyranoside (2-2) 
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Compound 2-21 (84 mg; 46 µmol) was dissolved in Methanol/THF 4:1 (2.5 mL). Sodium methoxide 

0.5 M in MeOH was added (0.30 mL; 150 µmol). The reaction was warmed to 35 °C and stirred for 72 

h. MS analysis showed formation of both the desired product and a derivative resulting from cleavage 

of the amidic bond of the trichloroacetamide. The solution was cooled to 0 °C, Ac2O (0.25 mL; 2.63 

mmol) was added and the reaction was warmed to r.t.. After 30 min MS analysis showed appearance 

of a new peak corresponding to the N-acetylated trisaccharide. The solvents were evaporated and the 

crude residue was purified by column chromatography (DCM/MeOH 95:5).  Without further 

characterization the obtained mixture was dissolved in iPrOH/H2O/AcOH 3:1:0.1 (2.0 mL). Pd/C was 

added, the solution was purged with Argon and Hydrogen and left stirring under H2 atmosphere with a 

balloon for 60 h at 30 °C. The mixture was filtrered through a PTFE filter (0.45 µm pore size) and 

concentrated. The crude material was purified by size-exclusion chromatography (Sephadex LH-20, 

H2O/MeOH 9:1). Lyophilization afforded 2-2 (22 mg, 34 µmol, 74%). 

1H NMR (600 MHz, D2O) δ 4.73 (d, J = 8.3 Hz, 1H), 4.49 (d, J = 7.8 Hz, 1H), 4.40 (d, J = 7.9 Hz, 1H), 

4.16 (d, J = 3.4 Hz, 1H), 4.00 – 3.91 (m, 3H), 3.86 (m, 1H), 3.83 – 3.66 (m, 12H), 3.63 – 3.53 (m, 3H), 

3.04 – 2.99 (m, 2H), 2.05 (s, 3H), 1.74 – 1.65 (m, 4H), 1.47 (m, 2H); 13C NMR (151 MHz, D2O) δ 

174.9, 102.8, 102.7, 102.5, 82.4, 78.1, 75.3, 74.6, 74.5, 72.4, 72.1, 70.9, 69.9, 69.7, 68.5, 68.2, 61.0, 

60.8, 59.8, 55.2, 39.3, 28.1, 26.4, 22.2, 22.0; HRMS (ESI+) calculated for C25H47N2O16 [M+H]: 

631.2920, found: 631.2930. 

Ethyl 2,3-di-O-benzoyl-4-O-benzyl-1-thio--D-galactopyranoside (2-25) 

 

Compound 2-24191 (700 mg; 1.345 mmol) was dissolved in DCM (13 mL). BH3 1 M in THF (6 mL; 6 

mmol) was added followed by TMSOTf (36 µL; 0.202 mmol). The reaction was left stirring for 16 h at 

r.t. then cooled to 0 °C and neutralized with triethylamine and MeOH. The solvent was evaporated and 

the residue was purified using a RevelerisX2 Flash Chromatography System (Hexane/EtOAc 70:30 to 

30:70) to obtain pure 2-25 (565 mg; 1.081 mmol; 80%). 

[α]D25 = 83.0° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax: 3516, 3068, 3034, 2932, 2873, 1724, 1603, 

1585, 1495, 1453, 1355, 1316, 1276, 1179, 1133, 1092, 1071, 1028, 1002, 871, 803, 735, 709, 675; 

1H NMR (400 MHz, CDCl3) δ 8.01 – 7.93 (m, 4H), 7.55 – 7.47 (m, 2H), 7.42 – 7.33 (m, 4H), 7.31 – 

7.21 (m, 5H), 5.90 (t, J = 10.0 Hz, 1H), 5.39 (dd, J = 10.0, 3.0 Hz, 1H), 4.78 (d, J = 11.7 Hz, 1H), 4.69 

(d, J = 9.9 Hz, 1H, H-1), 4.50 (d, J = 11.7 Hz, 1H), 4.18 (d, J = 2.9 Hz, 1H), 3.88 (dd, J = 11.2, 7.0 Hz, 

1H), 3.81 – 3.73 (m, 1H), 3.58 (dd, J = 11.3, 5.2 Hz, 1H), 2.87 – 2.68 (m, 2H, SCH2CH3), 1.25 (t, J = 

7.4 Hz, 3H, SCH2CH3); 13C NMR (101 MHz, CDCl3) δ 166.0, 165.6, 137.4, 133.6, 133.3, 129.94, 

129.86, 129.5, 129.0, 128.64, 128.58, 128.5, 128.4, 128.2, 83.9 (C-1), 79.1, 76.0, 74.8, 73.6, 68.5, 

61.9, 24.1, 15.0; HRMS (ESI+) calculated for C29H30O7SNa [M+Na]: 545.1604, found: 545.1606. 
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Ethyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero--D-galacto-2-

nonulopyranosylonate)-(2→6)-2,3-di-O-benzoyl-4-O-benzyl-1-thio--D-galactopyranoside (2-

22) 

 

Acceptor 2-20 (360 mg; 0.688 mmol) and donor 2-12180 (380 mg; 0.573 mmol) were coevaporated 

three times with toluene and left under vacuum overnight. They were then dissolved in DCM/CH3CN 

1:1 (10 mL) under Ar atmosphere. 4Å molecular sieves were added, the solution was stirred for 30 

min, then cooled to 60 °C. TMSOTf (0.5 M in DCM; 230 µL; 0.115 mmol) was added. After 2 h the 

reaction was quenched with triethylamine, warmed to r.t., diluted with DCM, filtered and concentrated. 

The crude product was purified by chromatography on silica (Toluene/Acetone 8:2 to 6:4) to obtain 

pure sialyl disaccharide 2-22 (354 mg; 0.355 mmol; 62%) and the corresponding disaccharide 

(59 mg; 0.059 mmol). 

[α]D25 = 30.0° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax: 3364, 2960, 1729, 1667, 1603, 1586, 1538, 

1498, 1453, 1369, 1215, 1179, 1156, 1124, 1070, 1029, 1002, 947, 904, 859, 824, 752, 709, 667; 1H 

NMR (600 MHz, CDCl3) δ 7.99 – 7.95 (m, 2H), 7.93 – 7.87 (m, 2H), 7.51 – 7.45 (m, 2H), 7.38 – 7.28 

(m, 6H), 7.24 – 7.19 (m, 2H), 7.19 – 7.13 (m, 1H), 5.85 (t, J = 10.0 Hz, 1H, H-2), 5.45 – 5.37 (m, 2H, 

H-3/H-8’), 5.32 (dd, J = 8.3, 2.0 Hz, 1H, H-7’), 5.21 (d, J = 9.8 Hz, 1H, NH), 4.90 – 4.83 (m, 1H, H-4’), 

4.79 (d, J = 9.9 Hz, 1H, H-1), 4.68 (d, J = 11.5 Hz, 1H, CHHPh), 4.63 (d, J = 11.5 Hz, 1H, CHHPh), 

4.38 (dd, J = 12.5, 2.7 Hz, 1H, H-9’a), 4.27 (d, J = 3.1, 1.0 Hz, 1H, H-4), 4.16 – 4.03 (m, 3H, H-9’b/H-

5’/H-6’), 4.02 – 3.97 (m, 1H, H-5), 3.86 (dd, J = 10.0, 5.8 Hz, 1H, H-6a), 3.70 (s, 3H, OCH3), 3.66 (dd, 

J = 10.0, 8.5 Hz, 1H, H-6b), 2.85 – 2.70 (m, 2H, SCH2CH3), 2.59 (dd, J = 12.9, 4.6 Hz, 1H, H-3’eq), 

2.19 (s, 3H, COCH3), 2.15 (s, 3H, COCH3), 2.05 – 2.00 (m, 6H, 2xCOCH3), 1.96 (t, J = 12.6 Hz, 1H, H-

3’ax), 1.89 (s, 3H, COCH3), 1.25 (t, J = 7.5 Hz, 3H, SCH2CH3); 13C NMR (151 MHz, CDCl3) δ 171.1, 

170.8, 170.5, 170.3, 170.0, 168.0 (C-1’, 3JC,H = 6.3 Hz), 166.0, 165.6, 138.3, 133.4, 133.1, 129.93, 

129.90, 129.80, 129.3, 128.5, 128.4, 128.3, 127.8, 127.6, 99.3 (C-2’), 83.7 (C-1), 76.6, 75.8, 74.9, 

74.1, 72.9, 69.0, 68.78, 68.76, 67.5, 63.0, 62.7, 53.0 (OCH3), 49.6, 38.2 (C-3’), 24.1, 23.3, 21.2, 20.97, 

20.96, 20.9, 15.0; HRMS (ESI+) calculated for C49H57NO19SNa [M+Na]: 1018.3138, found: 1018.3136. 

Dibutyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero--D-galacto-2-

nonulopyranosylonate)-(2→6)-2,3-di-O-benzoyl-4-O-benzyl--D-galactopyranosyl phosphate (2-

27) 
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Disaccharide 2-22 (80 mg; 0.080 mmol) was coevaporated three times with toluene, left under 

vacuum overnight, then it was in dissolved in DCM (2 mL). Dibutyl phosphate (48 µL; 0.241 mmol) 

was dissolved in DCM (1 mL) and 4Å molecular sieves were added. After stirring for 30 min the 

solution of disaccharide was added to the solution of dibutyl phosphate and cooled to 0 °C. NIS (27 

mg; 0.120 mmol) and TfOH (0.1 M in dioxane; 160 µL; 0.016 mmol) were added and the reaction was 

gradually warmed to r.t. After 2 h it was neutralized with triethylamine, diluted with DCM and filtered. 

The organic solution was washed with 10% aqueous Na2S2O3 and brine. The organic phases were 

dried over Na2SO4, filtered and concentrated. The crude product was purified by chromatography on 

silica (Toluene/Acetone 6:4) to obtain pure  phosphate 2-27 (87 mg; 0.076 mmol; 95%). 

[α]D25 = 21.9° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax: 3292, 2963, 2878, 1742, 1687, 1603, 1546, 

1453, 1370, 1262, 1221, 1180, 1098, 1035, 955, 870, 803, 758, 713; 1H NMR (400 MHz, CDCl3) δ 

8.04 – 7.97 (m, 2H), 7.94 – 7.89 (m, 2H), 7.54 – 7.44 (m, 2H), 7.39 – 7.28 (m, 6H), 7.24 – 7.13 (m, 

3H), 5.90 (dd, J = 10.5, 8.0 Hz, 1H, H-2), 5.54 (t, J = 7.7 Hz, 1H, H-1), 5.44 – 5.38 (m, 1H, H-7’), 5.37 

– 5.30 (m, 2H, H-8’/H-3), 5.17 (d, J = 9.6 Hz, 1H, NH), 4.94 – 4.84 (m, 1H, H-4’), 4.65 (br s, 2H, 

CH2Ph), 4.30 – 4.22 (m, 2H), 4.15 – 3.97 (m, 7H), 3.82 – 3.60 (m, 6H), 2.59 (dd, J = 12.8, 4.6 Hz, 1H, 

H-3’eq), 2.18 (s, 3H, COCH3), 2.13 (s, 3H, COCH3), 2.03 (m, 6H, 2xCOCH3), 1.98 – 1.88 (m, 4H, H-

3’ax/COCH3), 1.68 – 1.59 (m, 2H), 1.43 – 1.33 (m, 2H), 1.32 – 1.22 (m, 2H) 1.08 – 0.97 (m, 2H), 0.91 

(t, J = 7.4 Hz, 3H), 0.68 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 171.1, 170.9, 170.4, 169.6, 

168.0, 165.9, 165.4, 138.0, 133.6, 133.4, 130.01, 129.95, 129.3, 129.0, 128.6, 128.5, 128.4, 127.9, 

127.7, 98.8 (C-2’), 96.88 (d, 2JC,P = 4.6 Hz, H-1), 75.1, 74.3, 73.8, 73.7, 72.5, 70.2, 70.10, 69.0, 68.2, 

68.1, 68.0, 67.94, 67.91, 67.1, 62.4, 62.3, 53.1 (OCH3), 49.6, 38.1 (C-3’), 32.2, 32.1, 31.9, 31.9, 23.4, 

21.2, 21.03, 21.01, 20.9, 18.7, 18.4, 13.8, 13.5; 31P NMR (162 MHz, CDCl3) δ -2.78; HRMS (ESI+) 

calculated for C55H70NO23PNa [M+Na]: 1166.3968, found: 1166.3976. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 3,6-di-O-benzyl-2-deoxy-2-trichloroacetamido--D-

glucopyranosyl-(1→3)-2-O-benzoyl-4,6-di-O-benzyl--D-galactopyranoside (2-29) 

 

Galactose acceptor 2-18 (237 mg; 0.306 mmol) and glucose donor 2-28 (286 mg; 0.371 mmol) were 

coevaporated three times with toluene and left under vacuum overnight. They were then dissolved in 

DCM (6 mL) under Ar atmosphere. 4Å molecular sieves were added, the solution was stirred for 30 

min then cooled to 30 °C. NIS (96 mg; 0.428 mmol) and TMSOTf (0.1 M in dioxane; 300 µL; 0.030 

µmol) were added. The reaction was gradually warmed to 10 °C and quenched after 1 h with the 

addition of triethylamine. It was then diluted with DCM and filtered. The organic solution was washed 

with 10% aqueous Na2S2O3 and brine. The organic phases were dried over Na2SO4, filtered and 

concentrated. The obtained crude product was redissolved in DCM (5 mL) and triethylamine (1.5 mL). 

After 2 h the solution was cooled to 0 °C and carefully neutralized with acetic acid. It was then diluted 

with DCM and extracted three times with water. The aqueous phases were extracted once with DCM 

and the combined organic phases were dried over Na2SO4, filtered and concentrated. Crude material 
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was purified by chromatography on silica (Toluene/EtOAc 9:1 to 7:3) and size-exclusion 

chromatography (Sephadex LH-20, CHCl3/MeOH 1:1) to obtain disaccharide 2-29 (336 mg; 0.266 

mmol; 86% over 2 steps).  

[α]D25 = -19.2° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax: 3417, 3066, 3034, 2927, 2865, 1701, 1604, 

1586, 1521, 1498, 1455, 1424, 1365, 1269, 1070, 1028, 913, 821, 736, 698; 1H NMR (600 MHz, 

CDCl3) δ 8.00 – 7.89 (m, 2H), 7.49 – 7.42 (m, 1H), 7.37 – 7.07 (m, 32H), 6.62 (d, J = 8.0 Hz, 1H, NH), 

5.50 (t, J = 8.7 Hz, 1H, H-2), 5.11 (br s, 2H, CH2Ph), 4.92 (d, J = 11.8 Hz, 1H), 4.86 (br d, J = 8.1 Hz, 

1H, H-1’), 4.69 – 4.61 (m, 2H), 4.61 – 4.49 (m, 3H), 4.46 – 4.25 (m, 5H, CH2Ph/-OCH2-/H-1), 4.08 – 

3.98 (m, 2H), 3.83 – 3.51 (m, 9H), 3.49 – 3.42 (m, 1H), 3.33 – 3.21 (m, 1H), 3.02 – 2.96 (m, 0.5H), 

2.91 – 2.81 (m, 1.5H, -CH2N-), 1.43 – 1.26 (m, 4H, 2xCH2 (Linker)), 1.09 – 0.91 (m, 2H, CH2 (Linker)); 

13C NMR (151 MHz, CDCl3) δ 165.3, 162.0, 156.8, 156.2, 138.8, 138.1, 138.0, 137.7, 137.0, 133.4, 

130.1, 129.9, 128.7, 128.60, 128.57, 128.56, 128.53, 128.50, 128.4, 128.3, 128.10, 128.07, 128.03, 

128.00, 127.98, 127.92, 127.89, 127.85, 127.8, 127.6, 127.3, 101.7 (C-1’), 100.0 (C-1), 92.3 

(COCCl3), 80.2, 78.7, 76.2, 75.0, 74.6, 74.1, 73.91, 73.89, 73.7, 73.0, 58.1, 50.6, 50.3, 47.2, 46.2, 

29.8, 29.2, 27.8, 27.4, 23.2; HRMS (ESI+) calculated for C69H73Cl3N2O14Na [M+Na]: 1281.4020, found: 

1281.4014. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-

dideoxy-D-glycero--D-galacto-2-nonulopyranosylonate)-(2→6)-2,3-di-O-benzoyl-4-O-benzyl--

D-galactopyranosyl-(1→4)-3,6-di-O-benzyl-2-trichloroacetamido-2-deoxy--D-glucopyranosyl-

(1→3)-2-O-benzoyl-4,6-di-O-benzyl--D-galactopyranoside (2-26) 

 

Disaccharide acceptor 2-29 (40 mg; 0.032 mmol) and disaccharide donor 2-27 (55 mg; 0.048 mmol) 

were coevaporated three times with toluene and left under vacuum overnight. They were then 

dissolved in DCM (1.5 mL) under Ar atmosphere. 4Å molecular sieves were added, the solution was 

stirred for 30 min then cooled to 0 °C. TMSOTf (0.5 M in DCM; 95 µL; 0.045 mmol) was added. After 1 

h the reaction was quenched with triethylamine, warmed to r.t., diluted with DCM, filtered and 

concentrated. The crude product was purified by chromatography on silica (Toluene/Acetone 7:3) and 

HPLC (YMC-diol-300NP column, 150 x 20 mm, 30% EtOAc in Hex (5 min), linear gradient to 75% 

AcOEt (30 min), linear gradient to 100% AcOEt (5 min)) to obtain pure tetrasaccharide 2-26 (47 mg; 

0.0214 mmol; 67%). 

1H NMR (600 MHz, CDCl3) δ 7.97 – 7.87 (m, 6H), 7.54 – 7.48 (m, 2H), 7.45 – 7.13 (m, 41H), 7.11 – 

7.07 (m, 1H), 6.74 (d, J = 7.6 Hz, 1H), 5.73 (dd, J = 10.5, 7.9 Hz, 1H), 5.49 (dd, J = 10.2, 7.8 Hz, 1H), 

5.33 – 5.26 (m, 3H), 5.15 – 5.07 (m, 3H), 4.95 (d, J = 11.8 Hz, 1H), 4.91 – 4.79 (m, 3H), 4.74 (d, J = 

6.6 Hz, 1H), 4.65 (d, J = 11.4 Hz, 1H), 4.62 – 4.53 (m, 3H), 4.44 (d, J = 12.0 Hz, 1H), 4.40 (d, J = 11.9 

Hz, 1H), 4.38 – 4.26 (m, 6H), 4.26 – 4.22 (m, 1H), 4.16 (d, J = 3.1 Hz, 1H), 4.08 – 3.95 (m, 6H), 3.87 
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(dd, J = 10.3, 2.8 Hz, 1H), 3.83 – 3.66 (m, 6H), 3.64 – 3.52 (m, 9H), 3.48 – 3.39 (m, 2H), 3.24 (d, J = 

32.2 Hz, 1H), 3.03 – 2.93 (m, 0.5H), 2.91 – 2.81 (m, 1.5H), 2.53 (dd, J = 12.9, 4.6 Hz, 1H, H-3’’’eq), 

2.10 (s, 3H, COCH3), 2.06 (s, 3H, COCH3), 2.02 (s, 3H, COCH3), 1.93 – 1.90 (m, 4H, COCH3/ H-3’’’ax), 

1.88 (s, 3H, COCH3), 1.40 – 1.28 (m, 4H), 1.10 – 0.93 (m, 2H); 13C NMR (151 MHz, CDCl3) δ 170.89, 

170.7, 170.2, 170.1, 169.9, 167.6, 165.7, 165.17, 164.9, 161.7, 138.7, 138.2, 138.1, 138.02, 138.0, 

133.3, 133.2, 133.00, 130.02, 129.8, 129.73, 129.68, 129.5, 129.0, 128.50, 128.46, 128.42, 128.38, 

128.3, 128.2, 128.1, 128.0, 127.82, 127.76, 127.6, 127.5, 127.4, 127.3, 127.1, 101.6, 100.5, 100.4, 

99.2, 92.1, 79.1, 78.3, 75.9, 75.1, 74.8, 74.6, 74.1, 73.8, 73.7, 73.5, 73.2, 72.8, 72.7, 72.2, 70.8, 69.0, 

68.8, 68.7, 68.6, 67.2, 67.0, 62.2, 57.2, 52.9, 50.4, 50.1, 49.5, 47.0, 46.0, 37.7, 31.9, 29.7, 27.7, 27.2, 

23.2, 21.0, 20.8, 20.73, 20.68; HRMS (ESI+) calculated for C116H124Cl3N3O33Na2 [M+2Na]: 1118.8484, 

found: 1118.8470. 

5-Aminopentyl (5-acetamido-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosyl)-(2→6)--D-

galactopyranosyl-(1→4)-2-acetamido-2-deoxy--D-glucopyranosyl-(1→3)--D-

galactopyranoside (2-3) 

 

Compound 2-26 (54 mg; 0.026 mmol) was dissolved in THF/MeOH 1:1 (2.5 mL), LiOH∙H2O (24 mg; 

1.002 mmol) was added and the solution was warmed to 50 °C. After 3 h it was cooled to r.t. and 

neutralized with the addition of Amberlite IR120 H+, filtered and concentrated. The crude residue was 

purified by size-exclusion chromatography (Sephadex LH-20, CHCl3/MeOH 1:1). The obtained product 

was dissolved in THF/MeOH/H2O 1:1:1 (2.0 mL), Pd/C was added, the solution was purged with argon 

and left stirring under H2 atmosphere (10 bar) for 72 h. The mixture was filtered through a PTFE filter 

(0.45 µm pore size) and concentrated. The crude material was purified by HPLC (Hypercarb column, 

150x10 mm, H2O (0.1% formic acid) isocratic (5 min), linear gradient to 30% ACN (30 min), linear 

gradient to 100% ACN (10 min)) and lyophilized to obtain 2-3 (5.5 mg; 6.0 µmol; 23% over 2 steps). 

1H NMR (600 MHz, D2O) δ 4.77 – 4.75 (m, 1H)**, 4.47 (d, J = 7.9 Hz, 1H), 4.40 (d, J = 8.0 Hz, 1H), 

4.17 (d, J = 3.4 Hz, 1H), 4.04 – 3.61 (m, 22H), 3.60 – 3.52 (m, 4H), 3.05 – 3.00 (m, 2H), 2.69 (dd, J = 

12.4, 4.7 Hz, 1H), 2.10 – 2.01 (m, 6H), 1.77 – 1.65 (m, 5H), 1.53 – 1.45 (m, 2H); 13C NMR (151 MHz, 

D2O) δ 174.86, 174.85, 173.5 (C-1‘‘‘,3JC,H = 5.2 Hz), 103.4, 102.7, 102.4, 100.1, 82.3, 80.4, 74.6, 74.2, 

73.6, 72.5, 72.4, 72.2, 71.6, 70.7, 69.9, 69.7, 68.4, 68.3, 68.2, 68.1, 63.3, 62.6, 60.8, 60.1, 55.0, 51.8, 

40.0, 39.3, 28.1, 26.3, 22.3, 22.02, 21.96; HRMS (ESI+) calculated for C36H64N3O24 [M+H]:  922.3874, 

found: 922.3894. 

**Note: the appearance of this signal as multiplet is presumably an artifact since it can be attributed to 

an anomeric proton. 
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p-Tolyl 2,3-O-isopropylidene-4-O-tert-butyl dimethylsilyl-1-thio--L-rhamnopyranoside (2-35) 

 

Compound 2-34186 (3.366 g; 10.844 mmol) was dissolved in DMF (20 mL) and the solution was cooled 

to 0 °C. tert-Butyldimethylsilyl chloride (2.499 g; 16.580 mmol) and imidazole (2.300 g; 33.784 mmol) 

were added portionwise. After the addition it was warmed to r.t. and left stirring overnight. The solution 

was then concentrated, diluted with EtOAc and extracted three times with water. The organic phase 

was dried over Na2SO4, filtered and concentrated. The crude material was purified using a 

RevelerisX2 Flash Chromatography System (Silica Cartridge - Hexane/EtOAc 90:10 to 70:30) to 

obtain compound 2-35 (4.382 g; 10.318 mmol; 95%). 

[α]D25 = -179.3° (c = 2.2, CHCl3); IR (thin film, cm–1): νmax:  3379, 2957, 2933, 2898, 2859, 1494, 1473, 

1463, 1381, 1362, 1311, 1279, 1245, 1220, 1164, 1106, 1092, 1073, 1056, 1019, 1002, 939, 923, 869, 

838, 809, 792, 778, 749, 713, 667; 1H NMR (400 MHz, CDCl3) δ 7.37 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 

8.4 Hz, 2H), 5.66 (d, J = 0.8 Hz, 1H, H-1), 4.32 (dd, J = 5.6, 0.8 Hz, 1H, H-2), 4.08 – 3.99 (m, 2H, H-

3/H-5), 3.40 (dd, J = 9.7, 7.2 Hz, 1H, H-4), 2.33 (s, 3H, -PhCH3), 1.52 (s, 3H, -CH3), 1.35 (s, 3H, -CH3), 

1.18 (d, J = 6.2 Hz, 3H, -CH3), 0.91 (s, 9H, tBu-Si), 0.15 (s, 3H, Me-Si), 0.09 (s, 3H, Me-Si); 13C NMR 

(101 MHz, CDCl3) δ 137.9, 132.6, 129.94, 129.91, 109.3, 84.4, 79.0, 76.8, 76.3, 67.6, 28.3, 26.7, 26.0 

(3C), 21.3, 18.3, 17.8, -3.8, -4.7; HRMS (ESI+) calculated for C22H36O4SSiNa [M+Na]: 447.1996, 

found: 447.2018. 

p-Tolyl 4-O-tert-butyl dimethylsilyl-1-thio--L-rhamnopyranoside (2-36) 

 

Compound 2-35 (4.382 g; 10.318 mmol) was dissolved in DCM (60 mL). Water (1 mL) and 

Trifluoroacetic acid (81 µL; 1.06 mmol) were added. The solution was left stirring overnight, then it was 

neutralized with triethylamine, diluted with DCM and extracted three times with water. The organic 

phase was dried over Na2SO4, filtered and concentrated. The crude material was purified using a 

RevelerisX2 Flash Chromatography System (Silica Cartridge - Hexane/EtOAc 90:10 to 50:50) to 

obtain compound 2-36 (3.682 g; 9.573 mmol; 93%). 

[α]D25 = -116.6° (c = 2.0, CHCl3); IR (thin film, cm–1): νmax:  3374, 2956, 2931, 2859, 1494, 1473, 1464, 

1381, 1363, 1257, 1105, 1062, 1020, 985, 927, 835, 811, 778, 728, 672; 1H NMR (400 MHz, CDCl3) δ 

7.38 – 7.32 (m, 2H), 7.15 – 7.10 (m, 2H), 5.26 (d, J = 1.7 Hz, 1H, H-1), 4.20 – 4.06 (m, 2H), 3.71 (dd, J 

= 9.2, 3.4 Hz, 1H), 3.46 (t, J = 9.3 Hz, 1H), 2.33 (s, 3H, -PhCH3), 2.25 (br s, 2H), 1.31 (d, J = 6.2 Hz, 

3H, -CH3), 0.90 (s, 9H, tBu-Si), 0.10 (s, 3H, Me-Si), 0.07 (s, 3H, Me-Si);  13C NMR (101 MHz, CDCl3) δ 

137.9, 132.7, 130.3, 130.0, 89.2, 74.2, 73.4, 72.5, 69.2, 25.8, 21.3, 18.1, 17.6, -4.5, -4.7; HRMS 

(ESI+) calculated for C19H32O4SSiNa [M+Na]: 407.1683, found: 407.1686. 
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p-Tolyl 2-O-benzyl-4-O-tert-butyl dimethylsilyl-1-thio--L-rhamnopyranoside (2-37) 

 

Compound 2-36 (3.682 g; 9.573 mmol) was dissolved in DCM (33 mL). Aqueous NaOH (10% w/v; 7 

mL) was added. Under vigorous stirring, tetrabutylammonium bromide (720 mg; 2.233 mmol) and 

benzyl bromide (1.25 mL; 10.508 mmol) were added and the solution was left stirring at r.t. After 2 h 

the reaction was diluted with DCM, layers were separated and the organic layer was extracted twice 

with water. The organic phase was dried over Na2SO4, filtered and concentrated. The crude material 

was purified using a RevelerisX2 Flash Chromatography System (Silica Cartridge - Hexane/EtOAc 

95:5 to 75:25) to obtain desired compound 2-37 (1.161 g; 2.446 mmol; 26%). 

[α]D25 = -90.2° (c = 1.1, CHCl3); IR (thin film, cm–1): νmax:  3560, 2957, 2931, 2896, 2859, 1494, 1473, 

1456, 1400, 1361, 1303, 1251, 1211, 1104, 1089, 1068, 1019, 1007, 891, 838, 809, 778, 737, 699, 

670; 1H NMR (400 MHz, CDCl3) δ 7.39 – 7.28 (m, 7H), 7.15 – 7.09 (m, 2H), 5.47 (d, J = 1.3 Hz, 1H, H-

1), 4.72 (d, J = 11.8 Hz, 1H, -CHHPh), 4.50 (d, J = 11.8 Hz, 1H, -CHHPh), 4.10 – 4.01 (m, 1H, H-5), 

3.96 (dd, J = 3.8, 1.4 Hz, 1H, H-2), 3.69 (dd, J = 9.0, 3.7 Hz, 1H, H-3), 3.47 (t, J = 9.0 Hz, 1H, H-4), 

2.34 (s, 3H, -PhCH3), 1.28 (d, J = 6.2 Hz, 3H, -CH3), 0.91 (s, 9H, tBu-Si), 0.15 (s, 3H, Me-Si), 0.09 (s, 

3H, Me-Si); 13C NMR (101 MHz, CDCl3) δ 137.8, 137.5, 132.4, 130.7, 130.0, 129.0, 128.3, 128.1, 

85.5, 79.9, 75.9, 72.4, 72.2, 69.9, 26.1, 21.3, 18.2, -3.6, -4.4; HRMS (ESI+) calculated for 

C26H38O4SSiNa [M+Na]: 497.2152, found: 497.2158. 

p-Tolyl 2-O-benzyl-3-O-picoloyl-4-O-tert-butyl dimethylsilyl-1-thio--L-rhamnopyranoside (2-38) 

 

Compound 2-37 (1.141 g; 2.403 mmol) was dissolved in DCM (25 mL). 2-Picolinic acid (0.385 g; 3.127 

mmol), DIC (550 µL; 3.605 mmol) and two crystals of DMAP were added sequentially. After 2 h the 

reaction was filtered through Celite, diluted with DCM and washed once with saturated aqueous 

NaHCO3 and once with brine. The organic phase was dried over Na2SO4, filtered and concentrated. 

The crude material was purified using a RevelerisX2 Flash Chromatography System (Hexane/EtOAc 

90:10 to 60:40) to obtain compound 2-38 (1.300 g; 2.242 mmol; 93%). 

[α]D25 = -32.9° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax: 2931, 2860, 1723, 1587, 1494, 1473, 1353, 

1307, 1292, 1248, 1130, 1104, 1089, 1044, 994, 838, 809, 779, 745, 700, 668; 1H NMR (400 MHz, 

CDCl3) δ 8.81 (br d, J = 4.6 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1H), 7.83 (t, J = 7.7 Hz, 1H), 7.50 (m, 1H), 

7.37 (d, J = 7.8 Hz, 2H), 7.24 – 7.18 (m, 2H), 7.11 (m, 5H), 5.45 – 5.34 (m, 2H, H-1/H-2), 4.65 (d, J = 

12.3 Hz, 1H, CHHPh), 4.50 (d, J = 12.3 Hz, 1H, CHHPh), 4.25 – 4.10 (m, 2H, H-5/H-2), 4.04 (t, J = 9.0 

Hz, 1H, H-4)), 2.34 (s, 3H, -PhCH3), 1.35 (d, J = 6.2 Hz, 3H, -CH3), 0.78 (s, 9H, tBu-Si), 0.12 (s, 3H, 

Me-Si), -0.05 (s, 3H, Me-Si); 13C NMR (101 MHz, CDCl3) δ 164.2, 150.0, 147.9, 137.8, 137.6, 137.0, 

132.4, 130.6, 130.0, 128.3, 128.2, 127.8, 127.0, 125.4, 85.9 (C-1), 77.0, 75.6, 72.4, 72.0, 70.7, 25.9, 
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21.3, 18.5, 18.1, -3.8, -4.2; HRMS (ESI+) calculated for C32H42NO5SSiNa [M+Na]: 580.2547, found: 

580.2553. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 2-O-benzyl-4-O-tert-butyl dimethylsilyl--L-

rhamnopyranoside (2-40) 

 

Compound 2-38 (0.203 g; 0.350 mmol) and N-(Benzyl)benzyloxycarbonylaminopentanol (210 mg; 

0.641 mmol) were coevaporated twice with toluene and left under vacuum for 3 h. They were then 

dissolved in DCM (6 mL), 4Å Molecular sieves were added and the solution was stirred for 30 min. 

Bromine (20 µL; 0.778 mmol) was added and the reaction was left stirring at r.t. After 16 h it was 

filtered, diluted with EtOAc and washed with 10% aqueous Na2S2O3 and brine. The organic phase was 

dried over Na2SO4, filtered and concentrated. The crude material was purified by chromatography on 

silica (Hexane/EtOAc 8:2) to obtain an impure glycosylated monosaccharide (presumably mixed with 

traces of -linked isomer or hydrolyzed donor). Without further characterization, the residue was 

dissolved in DCM/Methanol 2:1 (6 mL), Cu(OAc)2
.H2O (0.110 g; 0.551 mmol) was added and the 

solution was left stirring overnight. It was then diluted with DCM and extracted with water; the organic 

phase was dried over Na2SO4, filtered and concentrated. The crude residue was purified using a 

RevelerisX2 Flash Chromatography System (Silica Cartridge - Hexane/EtOAc 95:5 to 60:40) to obtain 

pure -2-40 (0.146 g; 0.215 mmol; 61% over 2 steps). 

[α]D25 = 45.4° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax: 3516, 3068, 3034, 2932, 2873, 1724, 1602, 

1585, 1495, 1453, 1355, 1316, 1276, 1179, 1133, 1092, 1071, 1028, 1002, 871, 803, 735, 709, 675; 

1H NMR (400 MHz, CDCl3) δ 7.40 – 7.13 (m, 15H), 5.16 (app d, 2H, CH2Ph), 5.02 (m, 1H, CHHPh), 

4.64 – 4.56 (m, 1H, CHHPh), 4.49 (m, 3H, -OCH2(linker)/H-1), 3.96 – 3.83 (m, 1H, CHHPh), 3.75 (m, 

1H, H-2), 3.46 – 3.11 (m, 6H, -NCH2-(Linker)/H-3/H-4/H-5/ CHHPh), 2.19 (s, 1H), 1.70 – 1.48 (m, 4H, 

2xCH2(Linker)), 1.30 (d, J = 6.2 Hz, 5H, -CH2-(Linker)/-CH3), 0.87 (s, 9H, tBu-Si), 0.10 (s, 3H, Me-Si), 

0.06 (s, 3H, Me-Si); 13C NMR (101 MHz, CDCl3) δ 156.9, 156.3, 138.5, 138.0, 137.0, 136.9, 128.7, 

128.59, 128.56, 128.4, 128.1, 128.01, 127.95, 127.4, 127.3, 101.8 (C-1), 78.0, 75.8, 75.1, 73.9, 72.9, 

69.8, 69.7, 67.3, 50.6, 50.3, 47.2, 46.3, 29.9, 29.5, 28.0, 27.6, 26.1, 23.5, 18.4, 18.3, -3.7, -4.5; HRMS 

(ESI+) calculated for C39H55NO7SiNa [M+Na]: 700.3640, found: 700.3647. 

Note: the unusual splittings and multiplicities, together with broad proton signals, were indicative of a 

possible conformational equilibrium in solution. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 4,6-di-O-acetyl-2,3-di-O-benzyl--D-

galactopyranosyl-(1→3)-2-O-benzyl--L-rhamnopyranoside (2-42) 
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Donor 2-8140 (198 mg; 0.406 mmol) and acceptor 2-38 (220 mg; 0.325 mmol) were coevaporated three 

times with Toluene and left under high vacuum overnight. Under argon atmosphere they were 

dissolved in DCM/Et2O 1:1 (6 mL), 4Å Molecular sieves were added, the solution was stirred for 30 

min and then cooled to 10 °C. NIS (137 mg; 0.609 mmol) and TfOH (0.5M in dioxane; 66 µL; 0.033 

mmol) were added. After 30 min the reaction was quenched with triethylamine, warmed to r.t., filtered 

and diluted with EtOAc. The organic solution was washed with 10% aqueous Na2S2O3 and water. The 

organic phase was dried over Na2SO4, filtered and concentrated. The crude material was purified by 

chromatography on silica (Hexane/EtOAc 8:2 to 3:1) to obtain the desired disaccharide.  

Without complete characterization, the obtained product was dissolved in THF (6 mL), acetic acid (82 

µL; 1.44 mmol) and TBAF (1M in THF; 1.40 mL; 1.40 mmol) were added and the reaction was left 

stirring at r.t. for 16 h. It was then diluted with EtOAc and extracted three times with water. The organic 

phase was dried over Na2SO4, filtered and concentrated. The crude was purified by chromatography 

on silica (Hexane/EtOAc 6:4 to 4:6) to obtain pure disaccharide 2-42 (207 mg; 0.209 mmol; 64% over 

2 steps). 

[α]D25 = 64.0° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax: 3487, 3034, 2927, 2857, 1746, 1698, 1607, 

1498, 1455, 1423, 1371,  1310, 1227, 1157, 1125, 1091, 1071, 1028, 946, 910, 822, 794, 736, 698; 1H 

NMR (600 MHz, CDCl3) δ 7.38 – 7.14 (m, 25H), 5.44 (br s, 1H), 5.17 (br d, J = 19.2 Hz, 2H), 5.00 (br 

s, 1H, H-1 or H-1’), 4.87 – 4.80 (m, 2H), 4.69 – 4.62 (m, 2H), 4.58 (d, J = 12.0 Hz, 1H), 4.53 – 4.46 (m, 

2H), 4.42 (d, J = 11.5 Hz, 1H), 4.33 – 4.23 (m, 2H), 4.12 (dd, J = 11.5, 3.7 Hz, 1H), 4.05 – 3.99 (m, 

1H), 3.91 – 3.78 (m, 4H), 3.59 (t, J = 9.1 Hz, 1H), 3.38 – 3.15 (m, 5H), 2.12 (s, 3H), 2.07 (s, 3H), 1.64 

– 1.46 (m, 4H), 1.37 (d, J = 6.1 Hz, 3H), 1.32 – 1.20 (m, 2H); 13C NMR (151 MHz, CDCl3) δ 170.6, 

170.3, 156.8, 156.3, 139.23, 138.6, 138.0, 137.9, 137.0, 136.9, 128.7, 128.6, 128.50, 128.48, 128.03, 

127.98, 127.94, 127.93, 127.91, 127.90, 127.87, 127.86, 127.83, 127.80, 127.43, 127.38, 127.3, 

127.2, 100.9 (C-1 or C-1’), 99.3 (C-1 or C-1’), 86.1, 77.6, 75.7, 75.5, 74.9, 73.8, 72.1, 72.1, 72.1, 69.6, 

69.6, 68.2, 67.8, 67.3, 63.2, 50.7, 50.3, 47.3, 46.3, 29.8, 29.4, 28.1, 27.6, 23.4, 20.9, 20.7, 18.0; 

HRMS (ESI+) calculated for C57H67NO14Na [M+Na]: 1012.4453, found: 1012.4449. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 2-O-benzoyl-4,6-di-O-benzyl--D-

galactopyranosyl-(1→4)-[4,6-di-O-acetyl-2,3-di-O-benzyl--D-galactopyranosyl-(1→3)]-2-O-

benzyl--L-rhamnopyranoside (2-30) 

 

Commercially available donor 2-9 (199 mg; 0.251 mmol) and acceptor 2-42 (207 mg; 0.209 mmol) 

were coevaporated three times with toluene and left under high vacuum overnight. Under argon 

atmosphere they were dissolved in DCM (5 mL), 4Å Molecular sieves were added, the solution was 

stirred for 30 min and then cooled to 10 °C. NIS (70 mg; 0.311 mmol) and TfOH (0.5M in dioxane; 42 
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µL; 0.021 mmol) were added. After 1 h the reaction was quenched carefully with triethylamine, 

warmed to r.t., filtered and diluted with EtOAc. The organic solution was washed with 10% aqueous 

Na2S2O3 and water. The organic phase was dried over Na2SO4, filtered and concentrated.  

The crude product was redissolved in DCM (8 mL) and TEA (2 mL) was added. After 2 h it was 

neutralized with acetic acid, diluted with DCM and washed three times with water. The organic solution 

was dried over Na2SO4, filtered and concentrated. The crude residue was purified by chromatography 

on silica (Hexane/EtOAc 7:3 to 6:4) to obtain trisaccharide 2-30 (261 mg; 0.181 mmol; 87% over 2 

steps). 

1H NMR (600 MHz, CDCl3) δ 8.10 – 8.04 (m, 2H), 7.58 (m, 1H), 7.46 (m, 2H), 7.38 – 7.14 (m, 33H), 

7.03 (m, 2H), 5.29 (d, J = 3.3 Hz, 1H), 5.21 – 5.11 (m, 4H), 4.90 (m, 2H), 4.74 (d, J = 11.8 Hz, 1H), 

4.68 – 4.61 (m, 2H), 4.55 (d, J = 11.7 Hz, 4H), 4.43 – 4.36 (m, 3H), 4.00 (d, J = 11.1 Hz, 1H), 3.87 (m, 

5H), 3.80 – 3.70 (m, 4H), 3.67 – 3.57 (m, 3H), 3.53 (dd, J = 9.9, 3.4 Hz, 1H), 3.47 (d, J = 6.3 Hz, 1H), 

3.40 (dd, J = 9.6, 3.1 Hz, 1H), 3.31 – 3.15 (m, 3H), 3.10 (m, 1H), 2.17 (s, 3H), 2.03 (s, 3H), 1.53 (m, 

4H), 1.37 – 1.23 (m, 5H); 13C NMR (151 MHz, CDCl3) δ 170.4, 170.3, 166.5, 138.29, 138.27, 138.2, 

137.9, 133.4, 130.3, 129.9, 128.74, 128.72, 128.66, 128.62, 128.60, 128.56, 128.5, 128.3, 128.08, 

128.06, 128.04, 128.00, 127.9, 127.73, 127.70, 127.66, 127.6, 127.3, 101.4, 99.7, 95.4, 79.2, 76.9, 

76.39, 76.37, 75.4, 75.2, 74.7, 74.5, 73.7, 73.2, 73.0, 72.5, 71.5, 71.4, 69.7, 69.6, 68.00, 67.95, 67.8, 

67.3, 63.0, 50.7, 50.4, 47.3, 46.3, 29.5, 28.1, 27.7, 23.5, 21.1, 21.0, 18.0; HRMS (ESI+) calculated for 

C84H93NO20Na [M+Na]: 1458.6183, found: 1458.6185. 

tert-Butyl dimethylsilyl 2,3,4,6-tetra-O-benzoyl--D-galactopyranosyl-(1→4)-3,6-di-O-benzyl-2-

deoxy-2-trichloroacetamido--D-glucopyranoside (2-45) 

 

Donor 2-43189 (136 mg; 0.212 mmol) and acceptor 2-44190 (102 mg; 0.165 mmol) were coevaporated 

three times with toluene and left under high vacuum overnight. Under Argon atmosphere they were 

dissolved in DCM (4 mL), 4Å Molecular sieves were added, the solution was stirred for 30 min and 

then cooled to 20 °C. NIS (55 mg; 0.244 mmol) and TfOH (0.5M in dioxane; 33 µL; 0.017 mmol) were 

added. After 30 min the reaction was quenched with triethylamine, warmed to r.t., filtered and diluted 

with EtOAc. The organic solution was washed with 10% aqueous Na2S2O3 and water. The organic 

phase was dried over Na2SO4, filtered and concentrated. The crude residue was purified by 

chromatography on silica (Toluene/EtOAc 30:1 to 9:1) to obtain disaccharide 2-45 (178 mg; 0.151 

mmol; 93%). 

[α]D25 = 18.5° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax: 3345, 3067, 3034, 2932, 2860, 1731, 1603, 

1586, 1530, 1497, 1453, 1362, 1316, 1264, 1177, 1094, 1069, 1028, 938, 911, 840, 821, 785, 738, 

709, 687; 1H NMR (400 MHz, CDCl3) δ 8.04 – 7.98 (m, 2H), 7.91 (m, 4H), 7.80 – 7.73 (m, 2H), 7.60 – 

7.51 (m, 3H), 7.49 – 7.29 (m, 13H), 7.28 – 7.16 (m, 6H), 6.89 (m, 1H), 5.90 (dd, J = 3.5, 1.0 Hz, 1H), 

5.75 (dd, J = 10.4, 8.0 Hz, 1H), 5.45 (dd, J = 10.4, 3.5 Hz, 1H), 5.17 (d, J = 10.8 Hz, 1H), 5.03 (d, J = 

7.7 Hz, 1H), 4.97 (d, J = 8.1 Hz, 1H), 4.75 (m, 2H), 4.48 – 4.37 (m, 2H), 4.32 – 4.18 (m, 2H), 4.14 – 
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4.05 (m, 2H), 3.72 (dd, J = 11.1, 3.1 Hz, 1H), 3.57 – 3.46 (m, 2H), 3.34 (m, 1H), 0.86 (s, 9H), 0.08 (s, 

3H), 0.04 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 166.0, 165.6, 165.5, 165.0, 161.7, 138.5, 138.0, 

133.63, 133.56, 133.4, 129.92, 129.86, 129.8, 129.5, 129.10, 129.06, 128.84, 128.82, 128.71, 128.65, 

128.6, 128.41, 128.38, 128.37, 128.2, 127.8, 127.7, 100.4, 94.6, 92.6, 77.2, 76.6, 74.7, 74.5, 73.8, 

71.8, 71.3, 70.3, 68.0, 67.8, 61.7, 60.3, 25.7, 18.0, -4.1, -5.1; HRMS (ESI+) calculated for 

C62H64Cl3NO5SiNa [M+Na]: 1218.3003, found: 1218.3008. 

2,3,4,6-Tetra-O-benzoyl--D-galactopyranosyl-(1→4)-3,6-di-O-benzyl-2-deoxy-2-

trichloroacetamido-/-D-glucopyranosyl N-phenyltrifluoroacetimidate (2-31) 

 

Disaccharide 2-45 (178 mg; 0.151 mmol) was dissolved in THF (3 mL). Acetic acid (26 µL; 0.45 mmol) 

and TBAF (1M in THF; 450 µL; 0.450 mmol) were added and the reaction was stirred at r.t. for 30 min. 

It was then diluted with EtOAc and extracted three times with water. The organic phase was dried over 

Na2SO4, filtered and concentrated.  

The obtained residue was dissolved in DCM (3 mL); N-phenyltrifluoroacetimidoyl chloride (75 µL; 0.46 

mmol) and Cs2CO3 (158 mg; 0.485 mmol) were added and the solution was stirred at r.t. for 30 min. 

The solution was then filtered and concentrated. The crude residue was purified by chromatography 

on silica (Hexane/EtOAc 3:1) to obtain imidate 2-31 as a mixture of diastereoisomers (167 mg; 0.133 

mmol; 88%). 

1H NMR (600 MHz, CDCl3) δ 8.05 – 8.02 (m, 2H), 7.99 – 7.96 (m, 2.4H), 7.95 – 7.91 (m, 4.4H), 7.85 – 

7.79 (m, 4.4H), 7.74 – 7.71 (m, 4.4H), 7.59 – 7.55 (m, 1H), 7.54 – 7.12 (m, 55H), 7.01 – 6.96 (m, 1H), 

6.66 (d, J = 7.7 Hz, 2.2H), 6.50 – 6.30 (m, 2H), 6.22 (d, J = 7.0 Hz, 1H), 5.89 (dd, J = 3.5, 1.1 Hz, 1H), 

5.83 (d, J = 3.4 Hz, 1.2H), 5.74 (dd, J = 10.4, 8.0 Hz, 1.2H), 5.66 (dd, J = 10.5, 8.0 Hz, 1H), 5.36 – 

5.31 (m, 2.2H), 5.13 (d, J = 11.4 Hz, 1.2H), 4.85 – 4.77 (m, 2.4H), 4.73 (d, J = 12.0 Hz, 1.2H), 4.67 (d, 

J = 12.1 Hz, 1H), 4.63 – 4.53 (m, 3.2H), 4.50 (dd, J = 11.4, 6.3 Hz, 1H), 4.40 – 4.33 (m, 5.4H), 4.29 – 

4.20 (m, 3.4H), 4.16 – 4.06 (m, 3.4H), 4.01 – 3.97 (m, 1.2H), 3.84 – 3.77 (m, 1.2H), 3.71 – 3.64 (m, 

1.2H), 3.60 – 3.51 (m, 2H), 3.48 – 3.36 (m, 3.2H); 13C NMR (101 MHz, CDCl3) δ 166.13, 166.06, 

165.7, 165.6, 165.5, 165.4, 165.1, 164.6, 162.8, 162.0, 143.0, 138.0, 137.8, 137.7, 137.6, 133.8, 

133.70, 133.67, 133.51, 133.47, 133.44, 133.41, 130.2, 129.91, 129.88, 129.84, 129.83, 129.77, 

129.76, 129.5, 129.30, 129.27, 129.2, 129.10, 129.06, 129.02, 128.97, 128.84, 128.79, 128.78, 

128.75, 128.73, 128.71, 128.68, 128.63, 128.61, 128.57, 128.5, 128.43, 128.41, 128.37, 128.08, 

128.05, 128.0, 127.8, 126.5, 124.7, 120.6, 119.4, 104.1, 102.4, 100.5, 92.1, 86.3, 76.5, 75.9, 75.2, 

74.7, 73.9, 73.4, 73.2, 71.9, 71.8, 71.53, 71.52, 71.3, 70.7, 70.2, 69.6, 68.4, 68.1, 68.0, 66.8, 65.9, 

62.4, 61.6, 53.9; HRMS (ESI+) calculated for C64H54Cl3F3N2O15Na [M+Na]: 1275.2434, found: 

1275.2397. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl   2,3,4,6-tetra-O-benzoyl--D-galactopyranosyl-

(1→4)-3,6-di-O-benzyl-2-deoxy-2-trichloroacetamido--D-glucopyranosyl-(1→3)-2-O-benzoyl-
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4,6-Di-O-benzyl--D-galactopyranosyl-(1→4)-[4,6-di-O-acetyl-2,3-di-O-benzyl--D-

galactopyranosyl-(1→3)]-2-O-benzyl--L-rhamnopyranoside (2-46) 

 

Donor 2-31 (131 mg; 0.105 mmol) and acceptor 2-30 (112 mg; 0.078 mmol) were coevaporated three 

times with Toluene and left under high vacuum overnight. Under Argon atmosphere they were 

dissolved in DCM (3 mL), 4Å Molecular sieves were added, the solution was stirred for 30 min and 

then cooled to 30 °C. TMSOTf (0.1 M in DCM; 78 µL; 0.0078 mmol) was added. After 30 min, an 

additional 0.1 eq of TMSOTf was added. After 1 h the reaction was quenched carefully with 

triethylamine, warmed to r.t., filtered and concentrated.  The crude residue was purified by 

chromatography on silica (Toluene/EtOAc 30:1 to 9:1) and size-exclusion chromatography (Sephadex 

LH-20, CHCl3/MeOH 1:1) to obtain pentasaccharide 2-46 (130 mg; 0.052 mmol; 67%). 

1H NMR (700 MHz, CDCl3) δ 8.11 (d, J = 7.7 Hz, 2H), 8.01 (d, J = 7.8 Hz, 2H), 7.88 (m, 4H), 7.79 (s, 

2H), 7.61 – 7.12 (m, 58H), 6.99 (d, J = 7.1 Hz, 2H), 6.60 (d, J = 7.6 Hz, 1H), 5.87 (d, J = 3.5 Hz, 1H), 

5.71 (dd, J = 10.3, 8.1 Hz, 1H), 5.48 (dd, J = 10.1, 7.8 Hz, 1H), 5.40 (dd, J = 10.4, 3.5 Hz, 1H), 5.24 

(br s, 1H), 5.22 – 5.16 (m, 3H), 5.02 (m 2H), 4.92 (m, 2H), 4.87 (d, J = 7.8 Hz, 1H), 4.79 (t, J = 12.2 

Hz, 1H), 4.72 (d, J = 11.9 Hz, 1H), 4.61 (m, 2H), 4.57 – 4.49 (m, 3H), 4.43 (d, J = 11.6 Hz, 1H), 4.38 

(dd, J = 11.2, 6.3 Hz, 1H), 4.36 – 4.28 (m, 3H), 4.27 – 4.21 (m, 3H), 4.18 (dd, J = 11.2, 7.5 Hz, 1H), 

4.12 – 4.06 (m, 2H), 3.99 (t, J = 7.0 Hz, 1H), 3.92 (m, 2H), 3.88 – 3.83 (m, 2H), 3.80 – 3.51 (m, 10H), 

3.44 (m, 2H), 3.36 (d, J = 9.7 Hz, 1H), 3.33 – 3.16 (m, 4H), 3.11 (m, 1H), 3.00 (m, 1H), 2.20 (s, 3H), 

2.00 (s, 3H), 1.53 (m, 4H), 1.33 – 1.21 (m, 5H); 13C NMR (176 MHz, CDCl3) δ 170.4, 170.3, 166.0, 

165.6, 165.5, 165.0, 164.8, 161.6, 156.8, 156.3, 139.73, 139.67, 139.2, 138.4, 138.1, 138.03, 137.98, 

137.9, 137.8, 136.9, 136.8, 133.64, 133.57, 133.44, 133.42, 130.3, 130.0, 129.89, 129.85, 129.83, 

129.78, 129.4, 129.00, 128.98, 128.91, 128.87, 128.85, 128.82, 128.79, 128.75, 128.71, 128.66, 

128.64, 128.59, 128.57, 128.52, 128.48, 128.40, 128.36, 128.34, 128.29, 128.24, 128.21, 128.12, 

128.06, 128.01, 127.95, 127.94, 127.91, 127.87, 127.82, 127.76, 127.73, 127.66, 127.6, 127.44, 

127.36, 127.33, 127.25, 127.09, 127.07, 101.0, 100.3, 100.2, 100.0, 96.4, 92.1, 80.0, 79.5, 78.4, 76.7, 

76.7, 76.64, 76.56, 76.3, 74.94, 74.91, 74.89, 74.58, 74.55, 74.2, 73.7, 73.6, 73.3, 73.0, 72.6, 71.7, 

71.49, 71.47, 71.2, 71.1, 70.2, 69.6, 69.5, 68.5, 68.0, 67.8, 67.71, 67.69, 67.6, 67.3, 67.2, 62.8, 61.3, 

58.9, 50.6, 50.2, 47.2, 46.3, 29.51, 29.46, 28.1, 27.7, 23.5, 23.4, 21.2, 21.0, 18.0; HRMS (ESI+) 

calculated for C140H145Cl3N3O34 [M+NH4]: 2516.8770, found: 2516.8711. 
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5-Aminopentyl  -D-galactopyranosyl-(1→4)-2-acetamido-2-deoxy--D-glucopyranosyl-(1→3)- 

D-galactopyranosyl-(1→4)-[-D-galactopyranosyl-(1→3)]--L-rhamnopyranoside (2-4) 

 

Compound 2-46 (38 mg; 15.2 µmol) was dissolved in MeOH (1.5 mL). Sodium methoxide 1 M in 

MeOH (0.20 mL; 0.20 mmol) was added. The reaction was stirred for 24 h, then neutralized with the 

addition of Amberlite IR120 H+, filtered and concentrated. The crude residue was purified by 

chromatography on silica (DCM/MeOH 25:1). The obtained product was dissolved in MeOH/H2O 4:1 

(2.0 mL). Pd/C was added, the solution was purged with argon and hydrogen and left stirring under H2 

atmosphere (7 bar) for 5 days at room temperature. The mixture was then filtered through Celite and 

concentrated. The crude product was purified by RP-HPLC (Synergi column, 250x10 mm, H2O (0.1% 

formic acid) isocratic (5 min), linear gradient to 25% ACN (30 min), linear gradient to 100% ACN (5 

min)) and a C18-SPE Cartridge (H2O/ACN 1:0 to 0:1), to obtain pentasaccharide 2-4 (2.0 mg; 2.1 

µmol; 14%). 

1H NMR (700 MHz, D2O) δ 5.26 (d, J = 3.9 Hz, 1H), 4.70 – 4.64 (m, 2H), 4.49 (d, J = 7.9 Hz, 1H), 4.30 

(br s, 1H), 4.24 (m, 1H), 4.17 (br s, 1H), 4.01 – 3.92 (m, 6H), 3.91 – 3.84 (m, 3H), 3.82 – 3.65 (m, 

14H), 3.60 (br s, 1H), 3.57 – 3.50 (m, 3H), 2.98 (t, J = 7.6 Hz, 2H), 2.05 (s, 3H), 1.67 (m, 4H), 1.45 (m, 

2H), 1.37 (d, J = 6.1 Hz, 3H); 13C NMR (176 MHz, D2O) δ 174.9, 102.9, 102.7, 102.5, 99.5, 92.7, 82.9, 

78.2, 75.3, 75.2, 74.9, 74.6, 74.5, 72.5, 72.3, 71.2, 71.02, 70.95, 70.0, 69.6, 69.5, 69.4, 68.5, 68.3, 

68.2, 65.4, 61.3, 61.0, 60.9, 59.9, 55.3, 39.4, 28.1, 26.8, 22.3, 22.1, 17.2; HRMS (ESI+) calculated for 

C37H67N2O25 [M+H]: 939.4027, found: 939.4021. 

Note: an unreported anomeric proton signal overlaps with the residual solvent peak. 

tert-Butyldimethylsilyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero--D-

galacto-2-nonulopyranosylonate)-(2→6)-2,3-di-O-benzoyl-4-O-benzyl--D-galactopyranosyl-

(1→4)-3,6-di-O-benzyl-2-deoxy-2-trichloroacetamido--D-glucopyranoside (2-47) 

 

Disaccharide donor 2-22 (255 mg; 0.256 mmol) and acceptor 2-44190 (122 mg; 0.197 mmol) were 

coevaporated three times with toluene and left under high vacuum overnight. Under argon atmosphere 

they were dissolved in DCM (5 mL), 4Å Molecular sieves were added, the solution was stirred for 30 

min and then cooled to 15 °C. NIS (67 mg; 0.30 mmol) and TfOH (0.5 M in dioxane; 52 µL; 0.026 
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mmol) were added. After 1 h the reaction was quenched with triethylamine, warmed to r.t., filtered and 

diluted with EtOAc. The organic solution was washed with 10% aqueous Na2S2O3 and water. The 

organic phase was dried over Na2SO4, filtered and concentrated. The crude residue was purified by 

chromatography on silica (Toluene/EtOAc 9:1 to 7:3) to obtain trisaccharide 2-47 (185 mg; 0.151 

mmol; 60%). 

[α]D25 = 9.7° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax: 3356, 2934, 2860, 1748, 1603, 1530, 1454, 

1370, 1261, 1220, 1095, 1070, 840, 785, 737, 711; 1H NMR (600 MHz, CDCl3) δ 7.86 – 7.78 (m, 3H), 

7.41– 7.35 (m, 2H), 7.29 – 7.12 (m, 17H), 7.10 – 7.05 (m, 3H), 7.01 – 6.97 (m, 1H), 5.69 (dd, J = 10.5, 

7.9 Hz, 1H), 5.30 – 5.23 (m, 2H), 5.21 (dd, J = 10.5, 3.1 Hz, 1H), 5.17 – 5.14 (m, 1H), 4.90 – 4.85 (m, 

2H), 4.82 (d, J = 7.3 Hz, 1H), 4.80 – 4.74 (m, 1H), 4.61 – 4.55 (m, 2H), 4.50 (d, J = 11.3 Hz, 1H), 4.45 

(d, J = 12.2 Hz, 1H), 4.28 (d, J = 12.2 Hz, 1H), 4.23 (dd, J = 12.4, 2.8 Hz, 1H), 4.10 (d, J = 3.1 Hz, 

1H), 4.04 – 3.96 (m, 4H), 3.92 (dd, J = 9.1, 7.9 Hz, 1H), 3.73 – 3.67 (m, 2H), 3.62 – 3.57 (m, 1H), 3.56 

– 3.50 (m, 6H), 3.37 – 3.33 (m, 1H), 2.48 (dd, J = 12.9, 4.6 Hz, 1H), 2.04 – 1.99 (m, 6H), 1.94 (s, 3H), 

1.90 (s, 3H), 1.86 (t, J = 12.5 Hz, 1H), 1.80 (s, 3H), 0.74 (s, 9H), -0.04 (s, 3H), -0.07 (s, 3H); 13C NMR 

(151 MHz, CDCl3) δ 171.1, 170.9, 170.4, 170.3, 170.1, 167.8, 165.9, 165.3, 161.7, 138.6, 138.3, 

138.2, 133.4, 133.3, 129.9, 129.8, 129.6, 129.2, 128.54, 128.52, 128.51, 128.33, 128.31, 128.28, 

128.2, 127.8, 127.7, 127.63, 127.57, 127.5, 100.4, 99.3, 94.9, 92.8, 77.8, 76.3, 75.0, 74.9, 74.5, 74.0, 

73.9, 73.4, 72.96, 72.95, 70.8, 69.1, 68.9, 68.8, 67.5, 62.5, 59.2, 53.0, 49.6, 37.9, 25.7, 23.3, 21.2, 

21.0, 20.92, 20.90, 17.9, -4.2, -5.2; HRMS (ESI+) calculated for C75H89Cl3N2O25SiNa [M+Na]: 

1573.4481, found: 1573.4510. 

(Methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero--D-galacto-2-

nonulopyranosylonate)-(2→6)-2,3-di-O-benzoyl-4-O-benzyl--D-galactopyranosyl-(1→4)-3,6-di-

O-benzyl-2-deoxy-2-trichloroacetamido-/-D-glucopyranosyl N-Phenyltrifluoroacetimidate (2-

48) 

 

Trisaccharide 2-47 (160 mg; 0.103 mmol) was dissolved in THF (10 mL). Acetic acid (17 µL; 0.30 

mmol) and TBAF (1M in THF; 300 µL; 0.30 mmol) were added and the reaction was stirred at r.t. for 2 

h. It was then diluted with EtOAc and extracted twice with water. The organic phase was dried over 

Na2SO4, filtered and concentrated. The crude residue was purified by chromatography on silica 

(Hexane/EtOAc 2:8 to 0:1) to obtain the trisaccharide hemiacetal. 

Without complete characterization, the product was dissolved in DCM (10 mL); N-phenyl 

trifluoroacetimidoyl chloride (45 µL; 0.28 mmol) and Cs2CO3 (90 mg; 0.28 mmol) were added and the 

solution was stirred at r.t. for 30 min. The solution was then filtered and concentrated. The crude 

residue was purified by chromatography on silica (Hexane/EtOAc 3:7 to 0:1) to obtain imidate 2-48 as 

a mixture of diastereoisomers (148 mg; 0.092 mmol; 89% over 2 steps). 
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1H NMR (400 MHz, CDCl3) δ 7.84 – 7.75 (m, 3.8H), 7.45 – 7.05 (m, 24H), 6.97 – 6.90 (m, 1H), 6.73 (d, 

J = 7.8 Hz, 0.7H), 6.63 – 6.54 (m, 0.7H), 6.44 – 6.22 (m, 0.5H), 6.20 – 6.12 (m, 0.2H), 5.78 – 5.63 (m, 

1H), 5.34 – 5.01 (m, 4H), 4.94 (d, J = 11.2 Hz, 0.8H), 4.88 – 4.47 (m, 5.8H), 4.41 – 3.80 (m, 9.6H), 

3.75 – 3.31 (m, 8.6H), 2.51 – 2.42 (m, 1H), 2.10 – 2.00 (m, 5.4H), 1.98 – 1.93 (m, 3.6H), 1.91 (s, 

2.4H), 1.89 – 1.77 (m, 4.6H); 13C NMR (101 MHz, CDCl3) δ 143.1, 138.32, 138.26, 138.2, 138.10, 

138.08, 138.0, 133.5, 133.4, 133.2, 130.00, 129.96, 129.8, 129.7, 129.6, 129.52, 129.47, 129.1, 128.8, 

128.73, 128.68, 128.58, 128.55, 128.5, 128.4, 128.34, 128.31, 128.26, 128.2, 128.11, 128.06, 128.02, 

127.92, 127.88, 127.8, 127.7, 127.59, 127.58, 126.5, 124.6, 120.6, 119.4, 104.0, 102.7, 100.5, 99.3, 

99.1, 92.2, 76.5, 75.6, 75.2, 75.0, 74.9, 74.5, 74.4, 74.2, 74.0, 73.8, 73.5, 73.3, 73.2, 73.1, 73.0, 72.8, 

72.6, 72.1, 70.8, 70.6, 70.0, 69.1, 69.0, 68.91, 68.87, 67.7, 67.4, 67.1, 66.0, 63.1, 62.4, 62.2, 60.6, 

53.8, 53.1, 53.0, 49.6, 49.5, 38.2, 37.9, 23.4, 21.22, 21.19, 21.1, 21.01, 20.99, 20.91, 20.89, 20.86; 

HRMS (ESI+) calculated for C77H79Cl3F3N3O25Na [M+Na]: 1630.3913, found: 1630.3925. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl  (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-

dideoxy-D-glycero--D-galacto-2-nonulopyranosylonate)-(2→6)-2,3-di-O-benzoyl-4-O-benzyl--

D-galactopyranosyl-(1→4)-3,6-di-O-benzyl-2-deoxy-2-trichloroacetamido--D-glucopyranosyl-

(1→3)-2-O-benzoyl-4,6-di-O-benzyl--D-galactopyranosyl-(1→4)-[4,6-di-O-acetyl-2,3-di-O-benzyl-

-D-galactopyranosyl-(1→3)]-2-O-benzyl--L-rhamnopyranoside (2-49) 

 

Donor 2-48 (63 mg; 39.1 µmol) and acceptor 2-30 (45 mg; 31.3 µmol) were coevaporated three times 

with toluene and left under high vacuum overnight. Under argon atmosphere they were dissolved in 

DCM (2 mL), 4Å Molecular sieves were added, the solution was stirred for 30 min and then cooled 

to20 °C. TMSOTf (0.1 M in DCM; 31 µL; 31 µmol) was added. After 30 min additional 0.1 eq of 

TMSOTf were added and the reaction was warmed to 0 °C. After 2 h the reaction was quenched 

carefully with triethylamine, warmed to r.t., filtered and concentrated. The crude residue was purified 

by chromatography on silica (Toluene/Acetone 1:0 to 7:3) and HPLC (YMC-Diol-300 column, 150x20 

mm, Hex/EtOAc 80:20 (5 min), linear gradient to 50% EtOAc (35 min), linear gradient to 100% EtOAc 

(5 min))  to obtain hexasaccharide 2-49 (10 mg; 3.5 µmol; 11%). 

1H NMR (600 MHz, CDCl3) δ 8.10 – 8.07 (m, 2H), 7.92 – 7.85 (m, 4H), 7.54 – 7.43 (m, 5H), 7.37 – 

7.12 (m, 52H), 6.98 – 6.95 (m, 2H), 6.54 (d, J = 8.4 Hz, 1H), 5.73 (dd, J = 10.5, 7.9 Hz, 1H), 5.45 (dd, 

J = 10.2, 7.8 Hz, 1H), 5.33 – 5.28 (m, 2H), 5.24 (dd, J = 10.5, 3.2 Hz, 1H), 5.19 – 5.13 (m, 3H), 5.11 – 

5.07 (m, 1H), 4.97 (d, J = 11.9 Hz, 1H), 4.92 (d, J = 10.8 Hz, 1H), 4.90 – 4.87 (m, 2H), 4.85 – 4.80 (m, 

3H), 4.78 – 4.73 (m, 1H), 4.63 (d, J = 11.4 Hz, 1H), 4.58 (d, J = 11.4 Hz, 1H), 4.55 – 4.46 (m, 6H), 
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4.40 (d, J = 11.8 Hz, 1H), 4.34 (d, J = 11.7 Hz, 1H), 4.28 – 4.19 (m, 5H), 4.15 (d, J = 3.2 Hz, 1H), 4.12 

– 3.97 (m, 5H), 3.93 – 3.79 (m, 5H), 3.76 – 3.51 (m, 17H), 3.43 – 3.38 (m, 2H), 3.29 – 3.05 (m, 5H), 

3.01 – 2.94 (m, 1H), 2.50 (dd, J = 12.8, 4.6 Hz, 1H), 2.16 (s, 3H), 2.10 (s, 3H), 2.05 – 2.01 (m, 6H), 

1.92 – 1.86 (m, 10H), 1.56 – 1.42 (m, 4H), 1.30 – 1.20 (m, 5H); 13C NMR (151 MHz, CDCl3) δ 171.1, 

170.8, 170.4, 170.33, 170.28, 170.2, 169.9, 167.8, 165.9, 165.3, 164.7, 161.6, 139.3, 138.5, 138.3, 

138.21, 138.19, 138.17, 133.5, 133.39, 133.35, 130.3, 130.2, 130.0, 129.8, 129.6, 129.2, 128.8, 128.7, 

128.6, 128.5, 128.42, 128.40, 128.32, 128.26, 128.24, 128.21, 128.08, 128.06, 127.99, 127.96, 127.9, 

127.78, 127.75, 127.72, 127.69, 127.58, 127.55, 127.43, 127.38, 127.36, 127.1, 101.1, 101.0, 100.7, 

100.2, 99.3, 96.5, 92.2, 80.0, 79.3, 78.1, 76.8, 76.73, 76.65, 75.03, 74.99, 74.96, 74.9, 74.6, 74.4, 

74.1, 73.9, 73.64, 73.59, 73.4, 73.1, 72.9, 72.8, 71.6, 71.4, 70.9, 69.1, 68.8, 68.7, 68.4, 68.3, 67.9, 

67.4, 67.3, 62.9, 62.3, 62.2, 57.7, 53.0, 49.6, 37.7, 29.5, 23.5, 23.4, 21.2, 21.0, 20.9, 20.9, 20.8, 18.1; 

HRMS (ESI+) calculated for C153H166Cl3N3O44Na [M+Na]: 2876.9802, found: 2876.9995. 

5-Aminopentyl  (5-acetamido-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosyl)-(2→6)--D-

galactopyranosyl-(1→4)-2-acetamido-2-deoxy--D-glucopyranosyl-(1→3)--D-galactopyranosyl-

(1→4)-[-D-galactopyranosyl-(1→3)]--L-rhamnopyranoside (2-5) 

 

Compound 2-49 (10 mg; 3.5 µmol) was dissolved in THF/MeOH 1:1 (2 mL), LiOH∙H2O (7 mg; 167 

µmol) was added and the solution was warmed to 40 °C. After 16 h it was cooled to r.t. and 

neutralized with the addition of Amberlite IR120 H+, filtered and concentrated. The obtained crude 

product was dissolved in MeOH/H2O 3:1 (2.0 mL), Pd/C was added, the solution was purged with 

argon, and then left stirring under H2 atmosphere (3 bars) for 24 h. The mixture was filtered through 

Celite and concentrated. The crude material was purified using a C18-SPE Cartridge (H2O/ACN 1:0 to 

1:1) and size-exclusion chromatography (Sephadex LH-20, H2O/MeOH 1:1). Lyophilization afforded 

pure 2-5 (1.4 mg; 1.2 µmol; 34 % over 2 steps). 

 1H NMR (700 MHz, D2O) δ 5.26 (d, J = 3.8 Hz, 1H), 4.68 (m, 2H), 4.47 (d, J = 7.9 Hz, 1H), 4.30 (br s, 

1H), 4.25 (m, 1H), 4.17 (d, J = 3.3 Hz, 1H), 4.03 – 3.50 (m, 34H), 3.01 (t, J = 7.6 Hz, 2H), 2.68 (dd, J = 

12.5, 4.7 Hz, 1H), 2.08 (s, 3H), 2.04 (s, 3H), 1.69 (m, 5H), 1.45 (m, 2H), 1.37 (d, J = 6.1 Hz, 3H); 13C 

NMR (176 MHz, D2O) δ 175.0, 174.9, 173.5, 103.5, 102.7, 102.3, 100.2, 99.6, 92.7, 82.9, 80.5, 75.3, 

74.9, 74.5, 74.3, 73.7, 72.6, 72.44, 72.38, 71.7, 71.2, 71.1, 70.7, 70.0, 69.6, 69.5, 68.43, 68.38, 68.3, 

68.2, 65.4, 63.4, 62.7, 61.4, 61.0, 60.2, 55.1, 51.9, 40.1, 39.4, 28.1, 26.5, 22.5, 22.1, 22.0, 17.2; 

HRMS (ESI+) calculated for C48H84N3O33 [M+H]: 1230.4981, found: 1230.4973. 

Note: an unreported anomeric proton signal overlaps with the residual solvent peak. 
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2.5.1. GLYCAN ARRAYS PREPARATION AND SCREENING 

Glycan microarray slides were prepared by robotically spotting solutions on NHS activated glass 

slides. Synthetic glycans were dissolved in printing buffer (50 mM sodium phosphate, pH 8.5) to obtain 

0.2 mM solutions. Similarly, polysaccharides were dissolved in printing buffer to obtain 0.2 mg/mL 

solutions. The solutions were transferred to a 384 well V bottom plate (Genetix) and robotically printed 

onto NHS activated glass slides (CodeLink slides) using an S3 non-contact microarray spotter 

(Scienion) equipped with a Type 4 coated nozzle (PDC80). Humidity in the printing chamber was 

maintained at 45% during the entire print run. Following printing, the slides were left overnight at room 

temperature in a humidity-saturated chamber. To quench residual reactive groups the slides were 

incubated in quenching solution (50 mM sodium phosphate, 100 mM ethanolamine, pH 9) at room 

temperature for one hour. The slides were then washed twice with water, dried by centrifugation at 

300 x g for three minutes (Eppendorf CombiSlide system) and stored dry at 4 °C until use. 

To avoid nonspecific bindings between antibodies and the surface, directly before the assay the slides 

were blocked with a solution of 3% (w/v) BSA in PBS (BSA-PBS) for 60 min at room temperature, 

washed 3 × 2 min with PBS and dried by centrifugation. A 64-well incubation gasket (FlexWell 64 grid, 

Grace BioLabs) was attached to the slide. Pig serum was diluted in 3% (w/v) BSA-PBS-0.1% Tween, 

and added in duplicates to the glycan arrays. After incubation for 1 h at r.t., slides were washed 3 × 2 

min with PBS containing 0.1% (v/v) Tween-20 (PBST) by adding 50 μL to each well. The secondary 

antibody (goat anti-swine IgG AlexaFluor 488 1:400, Dianova) diluted in 3% (w/v) BSA-PBS-0.1% 

Tween was directly added with 25 µL to the wells of the gasket and incubated for 1 h at room 

temperature in the dark. After incubation the slides were washed twice with PBS-T, twice with PBS, 

rinsed with deionized water and dried by centrifugation (300 x g, 3 min) prior to scanning with a 

GenePix 4300A microarray scanner (Molecular Devices). Intensities were evaluated as mean 

fluorescence intensity of circles of identical diameter for all glycans with local background subtraction 

using GenePix 7 (Molecular Devices). 

 

Figure 2-9: Schematic representation of printing pattern on microarray slides with employed printing 

concentrations and compound descriptions. Synthetic oligosaccharides (yellow), native polysaccharides 

(grey) and unrelated synthetic oligosaccharides (white) were printed according to the above described 

procedure. 
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CHAPTER 3 

SYNTHESIS OF OLIGOSACCHARIDES RELATED TO STREPTOCOCCUS SUIS 

SEROTYPE 14 CAPSULAR POLYSACCHARIDE 

3.1. STREPTOCOCCUS SUIS SEROTYPE 14 CAPSULAR POLYSACCHARIDE 

Serotype 14 is an important S. suis serotype, responsible for pig infections and for disease in humans, 

the majority of cases being reported in Vietnam and Thailand20,192. Nevertheless, this serotype has 

been less studied than the most prevalent serotype 2. It was found that expression of the CPS is 

fundamental to inhibit phagocytosis in vitro and that mutated non-encapsulated bacteria are 

significantly less virulent in mice models193. These results suggest a prominent role of the CPS in 

virulence, similarly to what observed for serotype 2, and more in general with encapsulated bacteria 

and could be anticipated since the two serotypes show structural similarities in their CPSs. The 

structure of serotype 14 CPS was elucidated in 2012154 and consists of hexasaccharide repeating unit 

of sequence: [→6)[-Neu5Ac(2→6)--D-Gal(1→4)--D-GlcNAc(1→3)]--D-Gal(1→3)--D-Gal(1→4)-

-D-Glc(1→]. Similarly to serotype 2, repeating units are formed by a backbone, in this case a three-

sugars sequence, and a sialylated lactosamine side chain. Structural differences with serotype 2 

consist in the absence of the  rhamnose in the backbone and the linkage between the units: a 1→6 

linkage, instead of 1→4, connects glucose and galactose. 

 

Figure 3-1: Characterized repeating unit of serotype 14 capsular polysaccharide. 

In studies aimed at identifying cross-reactivities between structurally similar serotypes 1, 2, 1/2 and 

14153, already mentioned in Section 2.3, it was found that a polyclonal rabbit serum against serotype 

14 was able to strongly recognize also the CPS from serotype 1. CPSs from serotype 14 and 1 share 

an identical backbone sequence and have slightly different side-chain (Fig. 3-2), containing 

respectively a galactose and a galactosamine. Since no cross-reactivity was observed with serotype 2, 

which displays an identical side-chain, it was proposed that the backbone residues represent the 

major part of epitopes of antibodies present in these sera. 
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Figure 3-2: Cross-reactivity of anti-serotype 14 polyclonal rabbit serum as observed in Ref. 153. 

Results from the above described experiment represent a starting point for the elucidation of 

glycotopes responsible for the production of protective antibodies against S. suis serotype 14, but 

more detailed information on the structure of carbohydrate epitopes is needed. Moreover, the 

antigenic properties of the CPS, either alone or as part of a glycoconjugate, have not been evaluated. 

Synthetic oligosaccharides as substructures of the CPS can help a more exact determination of 

antibody epitopes, to design new synthetic antigens for developing glycoconjugate vaccines against S. 

suis serotype 14. 

3.2. RESULTS AND DISCUSSION 

A library of substructures related to the repeating unit of serotype 14 CPS was designed, and included 

three oligosaccharides carrying an aminopentyl spacer at the reducing end. To identify whether 

antibody binding involves mostly the backbone residues, as suggested in the aforementioned study, 

hexasaccharide 3-1 was synthesized. Due to the non-complex nature of the backbone sequence, 

containing two types of sugars and only 1,2-trans glycosidic linkages, it was decided to synthesize a 

backbone fragment that spans two units. Longer oligosaccharides can result in higher binding affinities 

and facilitate detection on glycan arrays. 

To evaluate if antibody epitopes include the whole repeating unit, pentasaccharide 3-2 and 

hexasaccharide 3-3 were also synthesized. Compounds 3-2 and 3-3 constitute respectively a non-

sialylated and a sialylated repeating unit. Presence (or absence) of sialic acid on the oligosaccharides 

can directly indicate if this sugar is important for binding. In this sense, hypotheses on the role of 

sialylation in serotype 14 CPS have not yet been advanced. 
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Figure 3-3: CPS repeating unit and synthetic sub-structures. 

Considering that the planned structures were linear, included exclusively 1,2-trans glycosidic bonds 

and did not contain rare sugars, automated solid-phase synthesis represented the fastest method to 

obtain the desired compounds. As shown in Fig. 3-4, fragments 3-1 and 3-2 can be assembled from 

four building blocks and Merrifield resin functionalized with a photolabile linker, described in Section 

1.9.2. These thioglycoside building blocks were common donors previously employed in automated 

oligosaccharide syntheses. Considering the challenges encountered in the formation of sialyl bonds 

on serotype 2 structures, to obtain hexasaccharide 3-3 a chemoenzymatic approach was preferred, as 

it could furnish in one single step the desired hexasaccharide from compound 3-2 and an activated 

sialyl nucleotide, using a sialyltransferase. Donors 3-4, 3-5, 3-6, 3-7, 3-9 were commercially available 

and resin 3-8 was prepared according to reported procedures135. 
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Scheme 3-1: Retrosynthesis of 3-1, 3-2 and 3-3.   (CMP=cytidine monophosphate). 

Hexasaccharide 3-1 consists of a repetition of a three-sugars sequence. To verify if building blocks 3-

4, 3-5 and 3-6 were suitable for the assembly of this sequence, the synthesis of trisaccharide 3-10 

(Scheme 3-2) was fist attempted. Using a home-built automated synthesizer, the linker-functionalized 

Merrifield resin was coupled with building block 3-4, followed by 3-5 and 3-6, through cyclices of 

glycosylation, followed by capping (esterification) to protect potentially unreacted hydroxyl groups, and 

base-assisted removal of Fmoc groups.  

The employed conditions were typical conditions developed to activate standard thioglycoside donors, 

such as those employed in this synthesis, in recent automated glycan assembly protocols. The 

activator consisted of a solution containing NIS and triflic acid; a donor excess of 6.5 equivalents was 

employed, based on the initial resin loading; temperature of the reaction was first set at an incubation 

temperature of 20 °C for five minutes followed by warming up to a reaction temperature of 0 °C, 

maintained for forty minutes; acid-catalyzed capping was performed with a solution of acetic anhydride 

and methanesulfonic acid; Fmoc deprotections were carried out with piperidine. 

At the end of the synthesis, the resin was removed from the reaction vessel and swollen in DCM, then 

injected in a UV photoreactor coupled with a syringe pump to perform cleavage of the 

oligosaccharides from the resin in a flow system. 
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Scheme 3-2: Automated assembly using thioglycosides. Reagents and conditions: a) building block (6.5 eq), 

NIS, TfOH, DCM, 20 °C (5 min)→ 0 °C (40 min); b) Ac2O, MsOH, DCM; c) Piperidine, DMF; d) hν (305 nm). 

HPLC trace: ELSD detection. 

After analyzing the crude product by analytical HPLC and MALDI-MS it was found that an impure 

mixture was obtained, containing mostly the desired trisaccharide, a disaccharide deletion sequence 

(from incomplete glycosylation and incomplete capping) and a peak showing an m/z value identical to 

the desired trisaccharide. The presence of the latter peak was of difficult rationalization and a 

contamination of one of the initial reagents was suspected. 

When the same synthetic cycle was repeated twice, attempting to synthesize hexasaccharide 3-11, 

HPLC analysis after UV cleavage showed an increase in the complexity of the mixture. After HPLC 

purification the main peak was found to be the desired hexasaccharide, hardly separable from deletion 

sequences (penta and tetrasaccharides) and other compounds that were difficult to characterize. It 

was concluded that these conditions were not suitable to obtain the desired hexasaccharide in 

acceptable yield and purity. To improve the outcome of the automated synthesis, more reactive 

phosphate donors were prepared starting from the four initial thioglycosides (Scheme 3-3). 

disaccharide 

trisaccharide 

deletion sequences + 
uncharacterized products 
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Scheme 3-3: Synthesis of glycosyl phosphate building blocks. Reagents and conditions: a) Dibutyl 

phosphate, NIS, TfOH, DCM, MS4Å, 0 °C. 

Glycosyl phosphates 3-12, 3-13 and 3-14 were employed in an automated synthesis to obtain 

trisaccharide 3-10. Glycosylation conditions were adjusted to optimize activation and couplings with 

new donors: 5.0 equivalents of donors were employed, and temperature of the reaction was first set at 

an incubation temperature of 30 °C for ten minutes followed by warming up to 10 °C, and 

maintained for forty minutes. A TMSOTf solution was used as activator. The crude obtained after resin 

cleavage showed a much higher purity as almost exclusively the desired product was observed in 

HPLC analysis (Scheme 3-4).  

 

 

Scheme 3-4: Automated assembly of trisaccharide using glycosyl phosphate donors. Reagents and 

conditions: a) building block (5 eq), TMSOTf, 30 °C (5min)→ 10 °C (40 min); b) Ac2O, MsOH, DCM; c) 

Piperidine, DMF; d) hν (305 nm). HPLC trace: ELSD detection. 

Using the new donors, protected hexasaccharide 3-11 was assembled in a single synthetic sequence 

and obtained after resin cleavage and NP-HPLC purification in an overall 20% yield (Scheme 3-5). 

Deprotection was carried out by hydrogenation followed by basic ester hydrolysis. A reversal in the 

typical order of the deprotection steps was experimentally found to result in faster ester hydrolysis and 

easier purification of the crude, which nevertheless relied on RP-HPLC since small traces of products 

of incomplete deacylation were observed. Deprotected hexasaccharide 3-1 was obtained in a 

satisfying 52% yield over two steps.  
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Scheme 3-5: Synthesis of hexasaccharide 3-1 using glycosyl phosphate building blocks. Reagents and 

conditions: a) building block (5 eq), TMSOTf, 30 °C (5min)→ 10 °C (40 min); b) Ac2O, MsOH, DCM; c) 

Piperidine, DMF; d) hν (305 nm); the yield is based on resin loading; e) H2, Pd/C, THF/MeOH/AcOH; f) NaOMe, 

MeOH; 40 °C; 52% over 2 steps. HPLC trace: ELSD detection. 

Pentasaccharide 3-2 contains the same sequence included in 3-1, plus a glucosamine and a 

galactose. To avoid problems encountered in the assembly of 3-11, it was decided to perform the 

synthesis exclusively with phosphate donors. In this case, only three building blocks were needed: one 

glucose and one galactose, together with donor 3-15 to introduce the galactosamine unit.  

By employing the same conditions previously used to synthesize the hexasaccharide, automated 

assembly proceeded smoothly and pentasaccharide 3-12 was obtained after resin cleavage and NP-

HPLC purification in 56% overall yield. Deprotection was again carried out by hydrogenolysis followed 

by deacylation with sodium methoxide, to afford fully deprotected 3-2 in 53% yield. 
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Scheme 3-6: Synthesis of pentasaccharide 3-2 using glycosyl phosphate donors. Reagents and conditions: 

a) building block (5 eq), TMSOTf, 30 °C (5min)→ 10 °C (40 min); b) Ac2O, MsOH, DCM; c) Piperidine, DMF; d) 

hν (305 nm); the yield is based on resin loading; e) H2, Pd/C, THF/MeOH/AcOH; f) NaOMe, MeOH; 40 °C; 53% 

over 2 steps. HPLC trace: ELSD detection. 

With pentasaccharide 3-2 in hand, the enzymatic sialylation to obtain hexasaccharide 3-3 could be 

performed. The choice of sialyltransferase is restricted due to their limited availability, especially for 

those creating 2→6 linkages. Bacterial sialyltransferases are more tolerant concerning structure 

differences on acceptors than their human counterparts, and therefore present a broader synthetic 

scope. Between them, a sialyltransferase that was isolated from the marine bacterium Photobacterium 

damsela194 (Pd2,6ST) has shown the widest substrate and donor flexibility195,196, and is presently 

available as a recombinant protein expressed in bacterial systems. Like other sialyltransferases, this 

enzyme operates as an inverting glycosyltransferase, resulting in reversion of the stereochemistry of 

its natural donor, in this case CMP-Neu5Ac (Cytidine-5′-monophosphate-N-acetylneuraminic acid) 3-9, 

a sugar nucleotide which is commercially available.  

To optimize conditions for the enzymatic sialylation of 3-2, reactions were initially conducted on a 1 

nmol scale to limit the consumption of valuable acceptor and enzyme, and analyzed by direct injection 

into an HPLC-MS. A donor/acceptor ratio of 2:1 was employed and the reaction time was 16 h. As 

shown in Fig. 3-4A, an investigation of different enzyme amounts (measured as milliunits per 

micromole of substrate) showed that amounts between 30 and 250 mU/mol did not result in complete 

conversion of the initial substrate. It is known that Pd2,6ST can show sialidase activity, breaking the 

newly formed bond between Neu5Ac and Gal and transferring the sialic acid to cytidine 

monophosphate, rebuilding the sialyl nucleotide and making the whole process reversible. When this 

 

protected 
pentasaccharide 



 73 

occurs, yields can be improved if an alkaline phosphatase is added to the reaction197. This additional 

enzyme catalyzes the hydrolysis of the phosphate nucleotide released after donor activation, impeding 

the sialidase mechanism. However, when the reaction was conducted using 250 mU/mol of 

sialyltransferase and calf intenstinal phosphatase (CIP), no significant difference in terms of substrate 

conversion was observed. Only an increase in the enzyme amount to 500 mU/mol could lead to 

complete conversion of the initial substrate. Unfortunately, together with the formation of the desired 

product (m/z=1246.3, [M–H]), considerable amounts of a side-product identifiable as doubly sialylated 

compound (m/z=767.2, [M–2H]) were formed. When the reaction was performed on a 1 mol scale 

(approximatively 1 mg of acceptor, Fig. 3-4B), HPLC analysis showed that around 40% of the formed 

products was disialylated. Due to the low amounts obtained, the side-product could not be further 

characterized beyond mass spectrometric analysis.  

 

Figure 3-4: Optimization of enzymatic sialylation monitored by HPLC (ELSD detection) at 16 h reaction 

time. A) Increasing enzyme amount to 500 mU/mol led to increased substrate conversion at 16 h; B) 

reaction profile when performed on 1 mol of acceptor 3-2; C) reaction profile with 1.5 eq initial donor 

amount. 

The observation of such undesired products is not uncommon: it is known that Pd2,6ST can 

glycosylate also internal galactose residues, either as part of lactose198 or lactosamine199 internal 

sequences. In addition, an 2→3 transferase activity was recently reported with N-glycans as 

acceptors200, where Pd2,6ST was able to disialylate galactose units both at position 6 and at position 
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3. Considering structural similarities between 3-2 and compounds included in published studies198, a 

double sialylation on an internal galactose seemed more probable. 

To limit the side-reaction, the initial donor/acceptor amount was varied (Fig. 3-4C). When 1.5 equiv. of 

donor were initially present, incomplete conversion was again observed. Finally, it was supposed that 

only a more careful monitoring of the reaction progress could eventually result in an improved 

outcome. The reaction was performed on about 1 mol scale and periodically monitored by HPLC. It 

was evident that the reaction progressed moderately slow but full donor conversion was reached 

already at 6 h. Therefore, a shorter reaction time was necessary to maximize substrate conversion 

and limit side-product formation.  

 

Figure 3-5: Reaction progression monitored by HPLC (ELSD detection). 

After 7 h, the reaction was stopped and the product purified by solid-phase extraction and HPLC. Even 

though ELSD detection did not show peaks other than those given by 3-3 and products of donor 

hydrolysis, traces of the initial substrate were detected with an MS detector. After purification the 

desired sialylated hexasaccharide 3-3 was obtained in 42% yield, together with around 10% of the 

initial substrate. 

 

Scheme 3-7: Enzymatic sialylation on 3-2.  
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3.3. CONCLUSIONS AND OUTLOOK 

A collection of three substructures related to the capsular polysaccharide of S. suis serotype 14 was 

assembled using automated solid-phase synthesis and an enzymatic glycosylation. Two 

oligosaccharides were obtained through optimized procedures using glycosyl phosphate building 

blocks, minimizing the formation of unwanted products in the solid-phase process. The third 

oligosaccharide was obtained through stereoselective introduction of the sialyl residue employing a 

bacterial sialyltransferase which, in this case, showed a non-optimal specificity and produced 

unexpected byproducts, thus resulting in modest yield. A different, more acceptor-specific bacterial 

sialyltransferase could provide better results.  

Due to unavailability of serum samples from serotype 14-infected pigs, the synthesized compounds 

were not screened in glycan arrays experiments. In future studies, these glycans will be printed on 

microarray slides and the library will be useful for obtaining structural information of serotype-specific 

epitopes. This will allow for the selection of synthetic oligosaccharides which, after chemical 

conjugation to a carrier protein, will translate in a semisynthetic glycoconjugate vaccine candidate 

against S. suis serotype 14. 
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3.4. EXPERIMENTAL SECTION 

Commercial grade solvents and reagents were used without further purification. Anhydrous solvents 

were obtained from a solvent drying system (JCMeyer) or dried according to reported procedures. 

Analytical TLC was performed on Kieselgel 60 F254 glass (Macherey-Nagel). Spots were visualized 

with UV light, Sulphuric acid stain [1 mL of 3-methoxyphenol in 1 L of EtOH and 30 mL H2SO4] or 

Ceric ammonium molybdate stain [0.5 g Ce(NH4)4(SO4)4
.2H2O, 12 g (NH4)6Mo7O24.4H2O and 15 mL 

H2SO4 in 235 mL H2O]. Flash chromatography was performed on Kieselgel 60 230-400 mesh (Sigma-

Aldrich). Preparative HPLC purifications were performed with an Agilent 1200 Series or Agilent 1260 

Infinity II. NMR spectra were recorded on a Varian 400 MHz spectrometer (Agilent), Ascend 400 MHz 

(cryoprobe, Bruker) or Varian 600 MHz (Agilent) at 25 °C unless indicated otherwise. Chemical shifts 

(δ) are reported in parts per million (ppm) relative to the respective residual solvent peaks (CHCl3: δ 

7.26 in 1H and 77.16 in 13C; HDO δ 4.79 in 1H). Bidimensional and non-decoupled experiments were 

performed to assign identities of peaks showing relevant structural features. The following 

abbreviations are used to indicate peak multiplicities: s (singlet), d (doublet) dd (doublet of doublets), t 

(triplet), dt (doublet of triplets), td (triplet of doublets), q (quartet), p (pentet), m (multiplet). Additional 

descriptors b (broad signal) and app (apparent first-order multiplet) are also employed when required. 

Coupling constants (J) are reported in Hertz (Hz). NMR spectra were processed using MestreNova 

11.0 (MestreLab Research). Specific rotations were measured with a UniPol L1000 polarimeter 

(Schmidt & Haensch) at λ = 589 nm. Concentration (c) is expressed in g/100 mL in the solvent noted 

in parentheses. IR spectra were measured with a Perkin Elmer 100 FTIR spectrometer. High-

resolution mass spectra (ESI-HRMS) were recorded with a Xevo G2-XS Q-Tof (Waters). 

3.4.1. BUILDING BLOCKS SYNTHESES 

Dibutylphosphoryloxy 2-O-benzoyl-3,6-di-O-benzyl-4-O-fluorenylmethoxycarbonyl--D-

glucopyranoside (3-12) 

 

Compound 3-12 was prepared according to reported procedures and spectral data corresponded to 

those reported in the literature201 . 

Dibutylphosphoryloxy 2-O-benzoyl-4,6-di-O-benzyl-3-O-fluorenylmethoxycarbonyl--D-

galactopyranoside (3-13) 
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Compound 3-13  was prepared according to reported procedures and spectral data corresponded to 

those reported in the literature202. 

Dibutylphosphoryloxy 2-O-benzoyl-3,4-di-O-benzyl-6-O-fluorenylmethoxycarbonyl--D-

galactopyranoside (3-14) 

 

Compound 3-14 was prepared according to reported procedures and spectral data corresponded to 

those reported in the literature202. 

Dibutylphosphoryloxy 3,6-di-O-benzyl-4-O-fluorenylmethoxycarbonyl-2-deoxy-2-

trichloroacetamido--D-glucopyranoside (3-15) 

 

Compound 3-7 (1.044 g; 1.354 mmol) was coevaporated three times with toluene and left under high 

vacuum overnight. Under Argon atmosphere it was dissolved in DCM (15 mL). Dibutyl phosphate (540 

µL; 2.723 mmol) and 4Å Molecular sieves were added to the solution. The suspension was stirred for 

60 min and then cooled to 0 °C. NIS (457 mg; 2.03 mmol) and TfOH (12 µL; 0.14 mmol) were added. 

After 30 min the reaction was carefully quenched with triethylamine, diluted with EtOAc, warmed to r.t. 

and filtered. The organic solution was washed once with 10% aqueous Na2S2O3 and once with water. 

The organic phase was dried over Na2SO4, filtered and concentrated. The crude material was purified 

using a RevelerisX2 Flash Chromatography System (Hexane/EtOAc 90:10 to 40:60) to obtain 

compound 3-15 as a sticky colorless solid (0.577 g; 0.628 mmol; 46%; α/β ~1:3). 

1H NMR (400 MHz, CDCl3, α/β mixture) δ 7.79 – 7.71 (m, 8H), 7.60 – 7.52 (m, 8H), 7.44 – 7.37 (m, 

8H), 7.35 – 7.26 (m, 24H), 7.24 – 7.17 (m, 24H), 6.88 – 6.82 (m, 4H, NHα/β), 5.74 (dd, J = 6.1, 3.3 Hz, 

3H, H-1β), 5.33 (d, J = 3.6 Hz, 1H, H-1α), 5.11 (dd, J = 10.2, 9.2 Hz, 3H, H-3β), 4.96 (dd, J = 10.2, 9.1 

Hz, 1H, H-3α), 4.64 – 4.55 (m, 8H), 4.54 – 4.46 (m, 8H), 4.39 – 4.17 (m, 17H), 4.15 – 3.93 (m, 22H), 

3.71 – 3.55 (m, 9H), 1.70 – 1.51 (m, 16H), 1.44 – 1.23 (m, 16H), 0.98 – 0.79 (m, 22H); 13C NMR (101 

MHz, CDCl3, α/β mixture) δ 162.0, 161.8, 154.3, 154.2, 143.32, 143.27, 143.2, 143.1, 141.43, 141.40, 

137.6, 137.4, 137.2, 128.6, 128.52, 128.46, 128.10, 128.09, 128.07, 128.04, 127.99, 127.95, 127.93, 

127.91, 127.88, 127.33, 127.31, 125.19, 125.17, 125.1, 120.2, 95.5 (d, 2JCP = 6.4 Hz, C-1β), 92.5, 

92.2, 91.3 (C-1α), 76.2, 75.5, 74.8, 74.2, 74.1, 73.80, 73.77, 71.0, 70.24, 70.18, 69.3, 69.0, 68.6, 

68.48, 68.45, 68.42, 68.39, 54.5, 54.33, 54.25, 46.78, 46.75, 32.32, 32.30, 32.25, 32.23, 29.7, 18.7, 

13.72, 13.70; 31P NMR (162 MHz, CDCl3) δ -2.64; HRMS (ESI+) calculated for C45H51Cl3NO11PNa 

[M+Na]: 940.2158; found: 940.2151.  
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3.4.2. PROCEDURES FOR AUTOMATED SOLID-PHASE SYNTHESIS 

General materials and methods 

The automated syntheses were performed on a home-built synthesizer developed at the Max Planck 

Institute of Colloids and Interfaces. The synthesizer executes a series of commands combined into 

modules to achieve specific chemical transformations. 

All chemicals used were reagent grade and used as supplied unless otherwise noted. Solvents for 

preparation of solutions were obtained from an anhydrous solvent system (JC Meyer). Other solvents 

were HPLC-grade solvents. Building blocks were coevaporated three times with toluene and left under 

high vacuum for three hours before use. All solutions were freshly prepared and kept under Argon 

during the automated synthesis. The photocleavable linker was synthesized according to established 

procedures135. Isolated yields are calculated on the basis of resin loading, which was determined as 

described previously203: one glycosylation cycle (Module C) with 10 equiv. of building block was 

performed, followed by DBU promoted Fmoc-cleavage and determination of Dibenzofulvene 

production by UV absorbance measure.  

The calculated resin loading was 0.32 mmol/g. 

All automated syntheses were performed on a 0.0125 mmol scale. 

Stock solution preparation 

Building blocks:  0.060 mmol of building block in 1 mL of DCM per each glycosylation cycle required. 

Acidic wash/activator:  0.45 mL of TMSOTf in 40 mL of DCM (~62 mM) 

Pre-capping:  10% (v/v) pyridine in DMF 

Capping:  1.2 mL of methanesulfonic acid and 6 mL of acetic anhydride in 52 mL of DCM 

Fmoc deprotection:  20% (v/v) piperidine in DMF 

Modules for automated synthesis 

MODULE A: RESIN PREPARATION BEFORE SYNTHESIS  

The resin was placed in the reaction vessel and swollen in DCM for 20 min at room temperature prior 

to synthesis. During this time, all reagent lines needed for the synthesis were washed and primed. 

MODULE B: ACIDIC WASH 

The resin was washed with DMF, THF, and DCM (three times each with 2 mL), then swollen in DCM 

(2 mL). The temperature of the reaction vessel was adjusted to 20 °C. Acidic wash solution (1 mL) 

was then delivered dropwise to the reaction vessel. After bubbling for 3 min the solution was drained 

and the resin was washed with DCM (2 mL).  

Action Cycles Solution Vol (mL) T (°C) Time 

Cooling -   20  

Deliver 1 DCM 2 20  

Deliver 1 Acidic wash 1 20 3 min 

Wash 1 DCM 2 20 25 s 
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MODULE C: GLYCOSYLATIONS 

The temperature was adjusted to the initiation temperature (T1) and then the building block solution (1 

mL) was delivered to the reaction vessel. Then the activator solution (1 mL) was added dropwise. 

After an initiation time (t1) the temperature was raised to incubation temperature (T2). After the 

incubation time (t2) the solution was drained and the resin was washed with DCM. 

Action Cycles Solution Vol (mL) T (°C) Time 

Cooling -   30  

Deliver 1 Building block 1 30 (T1)  

Deliver 1 Activator 1 30 (T1)  

Reaction  1   
30 (T1) 

10 (T2) 

5 min (t1) 
40 min (t2) 

Warming -   25  
Wash 6 DCM 2 25 25 s 

MODULE D: CAPPING 

The resin was washed with DMF twice (2 mL) and then pre-capping solution (2 mL) was delivered. 

After 1 min the solution was drained and the resin washed with DCM three times (3 mL). Capping 

solution (4 mL) was delivered into the reaction vessel. After 20 min the reaction solution was drained 

and the resin washed three times with DCM (3 mL). 

Action Cycles Solution Vol (mL) T (°C) Time 

Wash 2 DMF 2 25 25 s 
Deliver 1 Pre-capping  2 25 1 min 
Wash 3 DCM 2 25 25 s 
Deliver 1 Capping  4 25 20 min 
Wash 3 DCM 2 25 25 s 

MODULE E: Fmoc DEPROTECTION 

The resin was washed three times with DMF (2 mL). Fmoc deprotection solution (2 mL) was delivered 

into the reaction vessel. After 5 min the reaction solution was drained and the resin washed three 

times with DMF (2 mL) and five times with DCM (2 mL). 

Action Cycles Solution Vol (mL) T (°C) Time 

Wash 3 DMF 2 25 25 s 
Deliver 1 Fmoc deprot  2 25 5 min 
Wash 3 DMF 2 25 25 s 
Wash 5 DCM 2 25 25 s 

3.4.3. POST-AUTOMATED SYNTHESIS STEPS 

Photocleavage 

After automated synthesis, the oligosaccharides were cleaved from the solid support using a 

continuous-flow reactor equipped with a UV-150 Medium pressure Mercury lamp, as described 

previously135. The solution was filtered to remove the resin and concentrated.  

Purification 

The obtained crude products were analyzed and purified using analytical or preparative HPLC on 

Agilent 1200 Series using Hexane/EtOAC as eluent. 
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METHOD A (analytical): YMC-Diol-300 column (150 x 4.6mm); flow rate 1.00 mL/min; 10% EtOAc 

isocratic (5 min), linear gradient to 70% EtOAc (40min), linear gradient to 100% EtOAc (5 min). 

METHOD B (preparative): YMC-Diol-300 column (150 x 20.0mm); flow rate 15.00 mL/min; 10% EtOAc 

isocratic (5 min), linear gradient to 70% EtOAc (50min), linear gradient to 100% EtOAc (5 min). 

METHOD C (preparative): YMC-Diol-300 column (150 x 20.0mm); flow rate 15.00 mL/min; 10% EtOAc 

isocratic (5 min), linear gradient to 70% EtOAc (45min), linear gradient to 100% EtOAc (5 min). 
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3.4.4. SYNTHESIS OF OLIGOSACCHARIDES PROTOCOLS AND SPECTRAL DATA 

N-Benzyloxycarbonyl-5-aminopentyl   2-O-benzoyl-3,4-di-O-benzyl--D-galactopyranosyl-(1→3)-

2-O-benzoyl-4,6-di-O-benzyl--D-galactopyranosyl-(1→4)-2-O-benzoyl-3,6-di-O-benzyl--D-

glucopyranosyl-(1→6)-2-O-benzoyl-3,4-di-O-benzyl--D-galactopyranosyl-(1→3)-2-O-benzoyl-

4,6-di-O-benzyl--D-galactopyranosyl-(1→4)-2-O-benzoyl-3,6-di-O-benzyl--D-glucopyranoside 

(3-11) 

 

Table 1: automated synthesis protocol for 3-11 

Steps Modules 

1 A 

2 B, C (3-12  ~5 eq), D, E 

3 B, C (3-13  ~5 eq), D, E 

4 B, C (3-14  ~5 eq), D, E 

5 B, C (3-12  ~5 eq), D, E 

6 B, C (3-13  ~5 eq), D, E 

7 B, C (3-14  ~5 eq), D, E 

 

The product was cleaved from the solid support and purified as described in Post-automated synthesis 

steps using METHOD B to obtain 3-11 (7.4 mg; 2.54 μmol; 20% overall yield). 

1H NMR (400 MHz, CDCl3) δ 7.98 – 7.90 (m, 4H), 7.70 – 6.87 (m, 104H), 5.65 (dd, J = 10.2, 7.8 Hz, 

1H), 5.54 – 5.38 (m, 3H), 5.19 – 4.97 (m, 7H), 4.93 – 4.77 (m, 3H), 4.68 – 4.42 (m, 15H), 4.33 – 4.01 

(m, 13H), 3.99 – 3.95 (m, 1H), 3.92 – 3.77 (m, 6H), 3.75 – 3.57 (m, 6H), 3.54 – 3.20 (m, 17H), 3.17 – 

3.05 (m, 2H), 2.89 – 2.79 (m, 2H), 1.50 – 1.19 (m, 6H), 1.16 – 1.04 (m, 2H); 13C NMR (101 MHz, 

CDCl3) δ 165.2, 165.1, 165.0, 164.2, 164.1, 156.4, 139.1, 139.0, 138.8, 138.6, 138.4, 138.3, 138.24, 

138.17, 137.6, 137.5, 136.8, 133.3, 133.1, 132.9, 132.7, 132.5, 130.2, 130.01, 129.96, 129.83, 129.76, 
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129.6, 128.8, 128.72, 128.69, 128.63, 128.59, 128.49, 128.46, 128.4, 128.23, 128.20, 128.17, 128.13, 

128.05, 128.02, 127.99, 127.94, 127.91, 127.8, 127.73, 127.67, 127.6, 127.44, 127.39, 127.2, 127.1, 

127.0, 120.2, 102.1, 102.0, 101.2, 100.7, 100.5, 80.8, 80.6, 80.0, 79.4, 79.1, 79.0, 76.5, 76.2, 75.7, 

75.4, 75.1, 75.0, 74.9, 74.7, 74.5, 74.3, 73.8, 73.53, 73.48, 73.4, 73.0, 72.8, 72.6, 72.4, 72.1, 72.0, 

71.8, 71.3, 69.5, 68.8, 68.5, 68.0, 67.5, 66.8, 66.6, 61.9, 40.9, 29.4, 28.9, 23.2; HRMS (ESI+) 

calculated for C175H175NO39Na [M+Na]: 2937.1633; found: 2937.1758. 

 

N-Benzyloxycarbonyl-5-aminopentyl   2-O-benzoyl-4,6-di-O-benzyl--D-galactopyranosyl-(1→4)-

3,6-di-O-benzyl-2-deoxy-2-trichloroacetamido--D-glucopyranosyl-(1→3)-2-O-benzoyl-4,6-di-O-

benzyl--D-galactopyranosyl-(1→3)-2-O-benzoyl-4,6-di-O-benzyl--D-galactopyranosyl-(1→4)-2-

O-benzoyl-3,6-di-O-benzyl--D-glucopyranoside (3-16) 

 

 

Table 2: automated synthesis protocol for 3-16 

Steps Modules 

1 A 

2 B, C (3-12  ~5 eq), D, E 

3 B, C (3-13  ~5 eq), D, E 

4 B, C (3-13  ~5 eq), D, E 

5 B, C (3-15  ~5 eq), D, E 

6 B, C (3-13  ~5 eq), D, E 

 

The product was cleaved from the solid support and purified as described in Post-automated synthesis 

steps using METHOD C to obtain 3-16 (17.8 mg; 7.10 μmol; 56% overall yield). 

1H NMR (600 MHz, CDCl3) δ 8.02 – 7.98 (m, 2H), 7.95 – 7.91 (m, 2H), 7.63 – 7.58 (m, 3H), 7.53 – 

7.10 (m, 70H), 7.07 – 7.01 (m, 3H), 6.99 – 6.94 (m, 2H), 6.30 (d, J = 8.2 Hz, 1H), 5.49 (dd, J = 10.2, 

7.7 Hz, 1H), 5.41 (dd, J = 10.1, 7.9 Hz, 1H), 5.18 (dd, J = 10.0, 7.9 Hz, 1H), 5.13 – 5.02 (m, 4H), 4.96 

(d, J = 11.7 Hz, 1H), 4.86 (t, J = 11.3 Hz, 2H), 4.68 – 4.30 (m, 19H), 4.28 – 4.24 (m, 3H), 4.19 (d, J = 
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12.2 Hz, 1H), 4.10 (d, J = 11.8 Hz, 1H), 4.00 – 3.87 (m, 5H), 3.78 – 3.28 (m, 23H), 3.28 – 3.22 (m, 

1H), 3.22 – 3.17 (m, 1H), 3.13 – 3.08 (m, 1H), 2.92 – 2.83 (m, 2H), 1.46 – 1.32 (m, 2H), 1.26 – 1.20 

(m, 2H), 1.17 – 1.04 (m, 2H); 13C NMR (151 MHz, CDCl3) δ 166.2, 165.2, 164.6, 164.0, 161.8, 156.4, 

139.2, 138.84, 138.82, 138.5, 138.43, 138.35, 138.2, 138.1, 138.0, 137.9, 137.8, 136.9, 133.5, 133.1, 

132.82, 132.76, 130.3, 130.0, 129.9, 129.8, 129.6, 128.9, 128.8, 128.70, 128.66, 128.62, 128.61, 

128.49, 128.46, 128.40, 128.38, 128.35, 128.33, 128.31, 128.28, 128.21, 128.18, 128.16, 128.14, 

128.11, 128.06, 128.04, 128.01, 127.93, 127.91, 127.89, 127.84, 127.80, 127.6, 127.4, 127.3, 127.0, 

102.2, 101.3, 100.7, 100.5, 80.9, 79.2, 78.8, 78.3, 76.6, 76.5, 76.4, 76.3, 75.6, 75.0, 74.9, 74.6, 74.5, 

74.4, 74.2, 74.1, 73.9, 73.8, 73.61, 73.59, 73.5, 73.4, 72.9, 72.7, 72.1, 69.4, 69.2, 69.0, 68.3, 67.9, 

67.6, 66.6, 57.6, 40.9, 29.5, 29.0, 23.2; HRMS (ESI+) calculated for C143H145Cl3N2O32Na [M+Na]: 

2529.8738; found: 2529.8655. 
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5-Aminopentyl  -D-galactopyranosyl-(1→3)--D-galactopyranosyl-(1→4)--D-glucopyranosyl-

(1→6)--D-galactopyranosyl-(1→3)--D-galactopyranosyl-(1→4)--D-glucopyranoside  (3-1) 

 

Compound 3-11 (7.4 mg; 2.54 µmol) was dissolved in THF/MeOH 1:3 (2.0 mL) and AcOH (200 μL). 

Pd/C was added, the solution was purged with argon and hydrogen and left stirring under H2 

atmosphere (3 bars) for 2 days at room temperature. The mixture was then filtered through a PTFE 

filter (0.45μm) and concentrated. The obtained product was dissolved in MeOH (2.0 mL). Sodium 

methoxide 0.5 M in MeOH (0.20 mL; 0.10 mmol) was added. The reaction was warmed to 40 °C and 

stirred for 24 h, then neutralized with the addition of AcOH and purified by size-exclusion 

chromatography (Sephadex LH-20, H2O/MeOH 1:1) and HPLC [Hypercarb; 150x4.6mm; flow rate 0.70 

mL/min; H2O (+0.1% Formic acid) isocratic (5 min), linear gradient to 30% ACN (30 min), linear 

gradient to 100% ACN (5 min)] to obtain hexasaccharide 3-1 after lyophilization (1.4 mg; 1.30 µmol; 

52% over 2 steps). 

1H NMR (600 MHz, D2O) δ 4.66 – 4.61 (m, 2H), 4.57 – 4.49 (m, 4H), 4.25 – 4.20 (m, 2H), 4.06 – 3.59 

(m, 37H), 3.37 – 3.30 (m, 2H), 3.02 (t, J = 7.6 Hz, 2H), 1.74 – 1.66 (m, 4H), 1.51 – 1.44 (m, 2H); 13C 

NMR (151 MHz, D2O) δ 104.3, 104.1, 102.7, 102.51, 102.49, 102.0, 81.8, 78.24, 78.18, 75.00, 74.96, 

74.9, 74.70, 74.68, 74.4, 74.3, 73.7, 72.8, 72.7, 72.4, 72.3, 71.0, 70.9, 70.12, 70.09, 70.0, 69.4, 68.6, 

68.5, 68.3, 61.0, 60.92, 60.90, 60.04, 60.01, 39.3, 28.1, 26.3, 22.0; HRMS (ESI+) calculated for 

C41H74NO31 [M+H]: 1076.4239; found: 1076.4233. 

5-Aminopentyl -D-galactopyranosyl-(1→4)-2-acetamido-2-deoxy--D-glucopyranosyl-(1→3)--

D-galactopyranosyl-(1→3)--D-galactopyranosyl-(1→4)--D-glucopyranoside (3-2) 

 

Compound 3-16 (7.9 mg; 3.15 µmol) was dissolved in THF/MeOH 1:3 (2.0 mL) and AcOH (200 μL). 

Pd/C was added, the solution was purged with argon and hydrogen and left stirring under H2 

atmosphere (3 bars) for 3 days at room temperature. The mixture was then filtered through a PTFE 

filter (0.45μm) and concentrated. The obtained product was dissolved in MeOH (2.0 mL). Sodium 

methoxide 0.5 M in MeOH (0.20 mL; 0.10 mmol) was added. The reaction was warmed to 40 °C and 

stirred for 24 h, then neutralized with the addition of AcOH and purified by size-exclusion 

chromatography (Sephadex LH-20, H2O/MeOH 1:1) and HPLC [Hypercarb; 150x4.6mm; flow rate 0.70 

mL/min; H2O (+0.1% formic acid) isocratic (5 min), linear gradient to 30% ACN (30 min), linear 

gradient to 100% ACN (5 min)] to obtain pentasaccharide 3-2 after lyophilization (1.6 mg; 1.68 µmol; 

53% over 2 steps). 
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1H NMR (700 MHz, D2O) δ 4.75 (d, J = 8.5 Hz, 1H), 4.63 (d, J = 7.9 Hz, 1H), 4.55 – 4.49 (m, 3H), 4.22 

(br s, 1H), 4.17 (br s, 1H), 4.03 – 3.94 (m, 4H), 3.90 – 3.55 (m, 28H), 3.36 – 3.31 (m, 1H), 3.03 – 2.99 

(m, 2H), 2.07 (s, 3H), 1.73 – 1.68 (m, 4H), 1.51 – 1.46 (m, 2H); 13C NMR (176 MHz, D2O) δ 175.0, 

104.4, 102.9, 102.8, 102.6, 102.1, 82.1, 82.0, 78.34, 78.32, 75.4, 75.0, 74.8, 74.7, 74.6, 74.5, 72.9, 

72.6, 72.2, 71.0, 70.23, 70.19, 70.15, 68.6, 68.39, 68.37, 61.1, 61.0, 60.9, 60.2, 60.0, 55.3, 39.5, 28.2, 

26.7, 23.3, 22.2, 22.1; HRMS (ESI+) calculated for C37H67N2O26 [M+H]: 955.3977; found: 955.3987. 

5-Aminopentyl 5-acetamido-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosyl-(2→6)--D-

galactopyranosyl-(1→4)-2-acetamido-2-deoxy--D-glucopyranosyl-(1→3)--D-galactopyranosyl-

(1→3)--D-galactopyranosyl-(1→4)--D-glucopyranoside  (3-3) 

 

Pentasaccharide 3-2  (1.13 mg; 1.18 µmol) was added to a 10 mM CMP-Neu5Ac solution in water 

(220 μL; 2.20 µmol), followed by 700 μL of 0.1 M Tris Buffer (pH 8.0) and 100 μL of -2,6-

Sialyltransferase from Photobacterium damsela (5 mU/μL; 500 mU). The reaction was incubated at 37 

°C and shaken (300 rpm) for 7 h. The solution was heated to 90 °C for 2 min, then frozen and 

lyophilized. The residue was purified using a C-18 SPE-cartdrige (H2O/ACN) and HPLC [Hypercarb; 

150x4.6mm; flow rate 0.7 mL/min; H2O (+0.1% formic acid) isocratic (5 min), linear gradient to 30% 

ACN (30 min), linear gradient to 100% ACN (5 min)] to obtain hexasaccharide 3-3 after lyophilization 

(0.62 mg; 0.50 µmol; 42%). 

1H NMR (700 MHz, D2O) δ 4.75 (d, J = 7.2 Hz, 1H), 4.61 (d, J = 7.6 Hz, 1H), 4.53 – 4.45 (m, 3H), 4.21 

– 4.18 (m, 1H), 4.16 – 4.14 (m, 1H), 4.03 – 3.92 (m, 5H), 3.92 – 3.52 (m, 32H), 3.31 (t, J = 8.2 Hz, 

1H), 3.03 – 2.99 (m, 2H), 2.68 (dd, J = 12.7, 4.7 Hz, 1H), 2.05 (m, 6H), 1.76 – 1.66 (m, 5H), 1.47 (m, 

2H); 13C NMR (176 MHz, D2O) δ 174.9, 173.5, 171.1, 104.4, 103.5, 102.6, 102.5, 102.0, 100.2, 82.1, 

81.9, 80.5, 78.3, 75.0, 74.8, 74.7, 74.5, 74.3, 73.7, 72.8, 72.6, 72.4, 72.2, 71.7, 70.8, 70.19, 70.16, 

70.1, 68.43, 68.38, 68.3, 68.2, 63.4, 62.7, 61.0, 60.9, 60.2, 60.1, 55.0, 51.9, 40.1, 39.4, 28.2, 26.4, 

22.3, 22.1, 22.0; HRMS (ESI+) calculated for C48H84N3O34Na [M+H+Na]: 634.7411; found: 634.7410. 
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CHAPTER 4  SUPPLEMENTARY SECTION 

IDENTIFICATION OF THE MINIMAL GLYCOTOPE OF STREPTOCOCCUS 

PNEUMONIAE 7F CAPSULAR POLYSACCHARIDE USING SYNTHETIC 

OLIGOSACCHARIDES 

 

This Section was adapted in part from the following publication: 

Ménová P., Sella M., Sellrie K., Pereira C.L., Seeberger P.H., Identification of the Minimal Glycotope 

of Streptococcus pneumoniae 7F Capsular Polysaccharide using Synthetic Oligosaccharides, Chem. 

Eur. J., 2018, 24, 4181–4187. https://doi.org/10.1002/chem.201705379 

(Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.) 

4.1. INTRODUCTION 

Streptococcus pneumoniae, a gram-positive, human-specific pathogen and common constituent of the 

nasopharyngeal flora causes life-threatening invasive diseases such as pneumonia, meningitis, 

bacteremia and acute otitis media. To date, 97 serotypes of S. pneumoniae have been described204 

but less than 20 serotypes account for the majority of infections205. Protection against S. pneumoniae 

infections can be achieved by vaccination with a 13-valent pneumococcal conjugate vaccine 

(PCV13/Prevnar13®) introduced in the US in 2010 and in the EU in 2012. This vaccine added the 

emerging serotypes 1, 3, 5, 6A, 7F and 19A to those already included in the heptavalent vaccine 

PCV7/Prevnar7® (4, 6B, 9V, 14, 18C, 19F, 23F) licensed a decade earlier. The capsular 

polysaccharides are purified from bacterial cultures and conjugated by reductive amination to the 

carrier protein CRM197. Structural similarities between protective epitopes may account for cross-

protection towards other serotypes such as 6C and 7A, that are not included in the PCV13 

formulation206. Naturally-derived capsular polysaccharides have been the basis for effective 

pneumococcal vaccines, but little is known about the protective glycotopes for many serotypes. 

Synthetic oligosaccharides are useful tools for epitope elucidation. Oligosaccharides corresponding to 

frameshifts of repeating units and sub-units, differing in chain length and monosaccharide composition 

help to identify antigenic determinants for the creation of semi-synthetic glycoconjugate vaccine 

candidates. These oligosaccharides may help to explain the observed cross-reactive immune 

response against other serotypes at the molecular level.  

The structure of the ST7F capsular polysaccharide repeating unit (RU) consists of a double-branched 

heptasaccharide (Figure I)207. The linear backbone, composed of [→6)--D-Gal-(1→3)-(2-OAc)--L-

Rha-(1→4)--D-Glc-(1→3)--D-GalNAc-(1→], contains two branching points to two short side-chains 

[-D-Gal(1→] and [-D-GlcNAc-(1→2)-L--Rha-(1→]  at two adjacent residues.  

To identify the minimal glycotope that can elicit a robust immune response to the CPS, a series of 

oligosaccharides related to the repeating unit of ST7F CPS were synthesized. Structures of the 

oligosaccharides were designed to probe the effect of branching, length and acetylation. All 

https://doi.org/10.1002/chem.201705379
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oligosaccharides are equipped with a reducing-end aminopentanol linker to enable printing on glycan 

arrays and conjugation to a carrier protein (Scheme S-I) (**). 

 

Scheme S-I: Structure of ST7F CPS repeating unit, synthetic antigens library and retrosynthesis of 

oligosaccharides. 

4.2. SYNTHESIS OF OLIGOSACCHARIDES 

Six differentially protected monosaccharide building blocks were needed to construct the six 

oligosaccharides (Scheme S-I). Combination of monosaccharides produced disaccharide building 

blocks S-7, S-8 and S-9. Successive glycosylations involving disaccharide and monosaccharide 

building blocks provided access, after global deprotection, to various related sequences for glycan 

array glycotope analysis. Oligosaccharides S-3, S-5 and S-6 were assembled from the mono- and 

disaccharide building blocks as outlined in Schemes S-II and S-III. 

For the synthesis of trisaccharide S-3 (Scheme II), rhamnose donor S-12 was first reacted with the N-

protected aminopentanol linker to provide an inseparable mixture of  and  anomers (1:4.5). 

Subsequent removal of the Pico group with Cu(OAc)2 and chromatographic separation afforded pure 

-linked alcohol S-16 in 68% overall yield. Glycosylation of trifluoroacetimidate S-7 with alcohol S-16 in 

                                                      
** Compounds S-1, S-2, S-4 and building blocks were synthesized by Dr. Petra Ménová. 
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DCM/Et2O proceeded with good selectivity (~95:5), presumably due to a combination of solvent 

effects and remote acyl participation. Debenzoylation of the obtained trisaccharide required harsh 

conditions (15% aq. NaOH in refluxing methanol for four days) and led to partial decomposition of the 

starting compound. Finally, hydrogenation gave trisaccharide S-3 in 15% yield over five steps. 

The synthesyis of trisaccharide S-5 (Scheme II) started with benzoylation of the free hydroxyl group in 

building block S-13. The obtained donor S-18 was coupled with disaccharide acceptor S-9, and 

subsequent global deprotection provided trisaccharide S-5 in 47% overall yield. 

The synthesis of linear trisaccharide S-6 proved challenging (Scheme III). All attempts to glycosylate 

electron-rich 2-azido glucose at various positions failed. Resorting to known peracetylated 

azidoglucose donor S-20208-210 to install 1,2-cis linkages by reaction with rhamnose acceptor S-21 

afforded a mixture of  and  anomers. Deacetylation and subsequent benzylation proceeded cleanly, 

giving benzylated -linked disaccharide S-22, separable from traces of -isomer by column 

chromatography. Azido disaccharide S-22 was converted to acetamide S-23 by nickel chloride and 

sodium borohydride-mediated reduction followed by subsequent acetylation. Final glycosylation of the 

disaccharide with building block S-15 proceeded with excellent stereoselectivity and exclusively -

linked product S-24 was isolated, albeit in modest yield due to extensive thioglycoside hydrolysis. A 

single-step deprotection by catalytic hydrogenation afforded the desired trisaccharide S-6 in 5% 

overall yield. 

 

Scheme S-II: Synthesis of compounds S-3 and S-5. Reagents and conditions: a) HO(CH2)5NBnCbz, NIS, 

TfOH, DCM, –40 °C→–20 °C; b) Cu(OAc)2*H2O, DCM/MeOH 2:1, 68% over two steps; c) S-7, NIS, TMSOTf, 

DCM/Et2O, –15 °C, 55%; d) NaOH, MeOH; e) H2, Pd/C, EtOAc/tBuOH/H2O 2:1:1, 40% over two steps; f) Bz2O, 

Et3N, DCM, >95%; g) S-9, NIS, TfOH, DCM, –15 °C, 76%; h) NaOMe, MeOH/THF 1:1, 35 °C; i) H2, Pd/C, 

EtOAc/tBuOH/H2O 2:1:1, 62% over two steps. 
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Scheme S-III: Synthesis of trisaccharide S-6. Reagents and conditions: a) TMSOTf, DCM/Et2O 1:3, 0 °C; b) 

NaOMe, MeOH; c) BnBr, NaH, DMF, 32% over three steps; d) NiCl2·6H2O, NaBH4, MeOH/THF 1:1; e) Ac2O, Py, 

DCM, 73% over two steps; f) 2-15, NIS, TfOH, 0 °C, 33%; g) H2, Pd/C, EtOAc/tBuOH/H2O 2:1:1, 64%. 

4.3. GLYCAN ARRAY EVALUATION OF MINIMAL EPITOPES 

Glycan microarray analysis of a human reference serum211 served to identify epitopes recognized by 

human antibodies. Synthetic oligosaccharides, as well as native ST7F CPS, structurally related 

serotype 7A (ST7A) CPS212, pneumococcal cell wall polysaccharide (CWPS) and various synthetic 

oligosaccharides as negative controls were printed on NHS-activated glass slides (Figure S-I and 

Section 4.5.2)213. Human serum 007sp recognized all oligosaccharides with the exception of 

trisaccharide S-5. An inhibition assay after preincubation with purified ST7F CPS showed a strong 

decrease in signal intensities for compounds S-1, S-2, S-3 and S-6. Serotype-specific antibodies in the 

serum recognize these oligosaccharides, suggesting that both side-chains are important for antibody 

binding. The low level of binding inhibition to tetrasaccharide S-4 indicates the presence of other 

cross-reactive antibodies in the human serum directed against common epitopes. Antibodies 

recognizing oligosaccharides containing similar substructures have been detected during serum 

analyses utilizing S. pneumoniae  serotype 2171. Both side chains in the polysaccharide RU are 

recognized by anti-ST7F antibodies. A synthetic oligosaccharide antigen containing the side-chains or 

the entire repeating unit would be a good start for the development of a synthetic vaccine candidate. 

Due to structural similarities between the CPSs of serotypes 7F and 7A (ST7A has the same repeating 

unit but for the β-D-Galp(1→ side chain), shared epitopes have been hypothesized and cross-

reactivity of a human serum post-PCV13 immunization was observed in an OPA assay206. To verify 

whether our synthetic glycans contain ST7A epitopes, even though these glycans contain an 

additional galactose not present in serotype 7A, ST7A CPS was printed on glycan arrays and a 

second inhibition assay was performed. Preincubation of the serum with native ST7A CPS led to 

partial binding inhibition to ST7F CPS. Binding inhibition to the synthetic glycans showed a similar 

pattern to that of serotype 7F, although much weaker inhibition was observed for compounds S-1, S-2, 

and S-3, confirming again the fundamental role of the β-D-Gal residue in the anti-ST7F epitope. A 

similar high level of inhibition was observed with trisaccharide S-6. These results show that an anti-
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pneumococcal polyvalent human serum is able to specifically recognize serotype 7A polysaccharide 

and that antibodies bind to a similar portion of the polysaccharide repeating unit. Based on these 

results, immunizations using glycoconjugate containing an SP7F-specific synthetic antigen should 

induce antibodies cross-reactive to serotype 7A.  

 

Figure S-I: Identification of minimal epitopes by glycan microarray screening of reference serum. (A) 

Synthetic glycans and native CPSs were immobilized on microarray slides and the slides were incubated 

with human reference serum 007sp (1:180 dilution). The bound antibodies were detected using 

fluorescently labeled secondary antibodies. For the inhibition study, sera were preincubated with ST7F or 

ST7A CPS (10 µg/mL) and then incubated with the printed arrays. (B, C) Comparison of mean 

fluorescence intensities (MFI) with synthetic glycans (B) or native polysaccharides (C) in the presence or 

absence of natural CPS. Data are represented as mean ± SD of duplicate determinations.  

4.4. CONCLUSIONS 

Six oligosaccharides representing different subunits of the ST7F CPS repeating unit, equipped with a 

reducing-end linker, were synthesized. The glycans were printed onto microarray slides to probe 

human reference sera. The results suggest that both side chains play an important role in antigen 

recognition and likely are an essential part for the development of a synthetic vaccine antigen. The 

synthetic antigen should be able to induce antibodies against both serotypes 7F and 7A based on the 

cross-reactivities observed during the glycan microarray analyses. 
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4.5. EXPERIMENTAL SECTION 

4.5.1. SYNTHETIC PROTOCOLS AND SPECTRAL DATA 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 4-O-benzyl-2-O-naphtylmethyl--L-

rhamnopyranoside (S-16) 

 

Trifluoroacetimidate donor S-12 (31 mg, 0.046 mmol) and linker acceptor (23 mg, 0.070 mmol) were 

co-evaporated twice with toluene and dried under high vacuum overnight. DCM (1 mL) and 4Å 

molecular sieves were added and the mixture was stirred at room temperature for 60 min. Then the 

solution was cooled to 40 °C, TMSOTf (0.1 M in DCM, 45 μL, 4.5 µmol) was added and the reaction 

mixture was stirred for 60 min at 40 °C to 20 °C. The reaction was quenched with triethylamine, 

filtered and concentrated. The residue was purified by column chromatography (30% to 40% ethyl 

acetate in hexanes). The obtained mixture of diastereoisomers (37 mg, 0.045 mmol) was dissolved in 

DCM/MeOH 2:1 (0.9 mL), Cu(OAc)2
.H2O (9 mg, 0.045 mmol) was added and the reaction mixture was 

stirred at room temperature for 2 h. The solvents were evaporated and the crude material was purified 

by column chromatography (20% ethyl acetate in hexanes) to afford compound S-16 as a white solid 

(22 mg, 68%) and the corresponding alfa-anomer (5 mg) (α/β 1:4.5 after isolation). 

 [α]D20 = 34.3° (c = 0.8, CHCl3);  IR (thin film, cm–1): νmax : 3456, 3033, 2935, 1698, 1605,1498, 1455, 

1423, 1366, 1229, 1186, 1073, 1030,  911, 857, 820, 735, 698; 1H NMR (600 MHz, CDCl3, -6°C) δ 

7.89 – 7.75 (m, 4H), 7.56 – 7.44 (m, 3H), 7.39 – 7.22 (m, 15H), 7.19 – 7.12 (m, 1H), 5.24 – 5.11 (m, 

3H), 4.91 (d, J = 10.8 Hz, 1H), 4.76 (t, J = 12.3 Hz, 1H), 4.60 (d, J = 10.8 Hz, 1H), 4.52 – 4.46 (m, 2H), 

4.42 (d, J = 23.9 Hz, 1H), 4.00 – 3.89 (m, 1H), 3.83 (dd, J = 17.0, 3.8 Hz, 1H), 3.62 – 3.56 (m, 1H), 

3.45 – 3.32 (m, 1H), 3.31 – 3.23 (m, 3H), 3.20 (m, 1H), 1.74 – 1.50 (m, 4H), 1.38 (d, J = 5.7 Hz, 3H), 

1.36 – 1.27 (m, 2H);  13C NMR (101 MHz, CDCl3) δ 156.9, 156.3, 138.5, 138.0, 137.0, 136.9, 135.8, 

133.4, 133.2, 128.7, 128.58, 128.55, 128.5, 128.2, 128.14, 128.06, 127.94, 127.87, 127.5, 127.3, 

126.34, 126.30, 126.2, 101.7, 82.3, 78.2, 75.3, 75.2, 74.2, 71.5, 69.9, 69.8, 67.3, 50.6, 50.3, 47.3, 

46.3, 29.5, 28.0, 27.6, 23.5, 18.2; HRMS (ESI+) calculated for C44H49NNaO7 [M+Na]: 726.3401, found: 

726.3414. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 2-O-benzoyl-3,4,6-tri-O-benzyl--D-

galactopyranosyl-(1→2)-4,6-di-O-benzoyl-3-O-benzyl--D-galactopyranosyl-(1→3)-4-O-benzyl-2-

O-naphtylmethyl--L-rhamnopyranoside (S-17) 

  

Trifluoroacetimidate donor S-7 (21 mg, 0.017 mmol) and acceptor S-16 (10 mg, 0.014 mmol) were 

twice co-evaporated with toluene and then dried under vacuum overnight.  They were dissolved in 
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DCM/Et2O 1:1 (0.6 mL) and 4Å Molecular sieves were added. The solution was stirred at room 

temperature for 30 min and subsequently cooled to 15 °C. TMSOTf (0.05 M in DCM, 28 μL, 1.4 µmol) 

was added dropwise and the mixture was stirred at 15°C for 1 h. The reaction was quenched with 

triethylamine, filtered and concentrated. Purification by column chromatography (20 to 30% ethyl 

acetate in hexane) afforded the product (14 mg; 4.2 µmol) as a mixture of anomers. Subsequent 

HPLC purification  (YMC-diol-300NP column, 150 x 20 mm, flow rate 15 mL/ min, 20% AcOEt in Hex 

(5 min), linear gradient to 55% AcOEt (35 min), linear gradient to 100% AcOEt (5 min)) afforded pure 

S-17 as colorless solid (13 mg, 7.64 µmol, 55%) and correspondent β-anomer (0.7 mg, 0.41 µmol).  

[α]D20 = 52.7° (c = 0.4, CHCl3); IR (thin film, cm–1): νmax : 3033.2, 2926.7, 1727.48,  1700.0, 1603.2, 

1497.6, 1453.9, 1422.1, 1365.9, 1268.3, 1176.9, 1096.2, 1070.8, 1027.6, 819.0, 735.5, 711.6, 698.7; 

1H NMR (400 MHz, CDCl3) δ 8.02 – 7.87 (m, 6H), 7.73 – 7.43 (m, 8H), 7.42 – 7.00 (m, 42H), 6.87 – 

6.80 (m, 2H), 5.58 (dd, J = 10.2, 8.0 Hz, 1H), 5.40 (d, J = 3.2 Hz, 1H), 5.22 – 5.13 (m, 2H), 5.08 (d, J = 

13.7 Hz, 1H), 5.01 (d, J = 3.5 Hz, 1H), 4.85 – 4.71 (m, 4H), 4.59 – 4.35 (m, 9H), 4.35 – 4.27 (m, 2H), 

4.07 – 3.94 (m, 3H), 3.93 – 3.89 (m, 1H), 3.89 – 3.78 (m, 2H), 3.70 – 3.54 (m, 4H), 3.53 – 3.37 (m, 

4H), 3.34 – 3.15 (m, 3H), 2.94 (br d, J = 9.9 Hz, 1H), 1.76 – 1.61 (m, 4H), 1.49 – 1.29 (m, 5H); 13C 

NMR (101 MHz, CDCl3) δ 166.2, 165.7, 165.1, 138.6, 138.5, 138.1, 137.93, 137.87, 137.6, 133.2, 

133.1, 132.8, 130.2, 130.1, 129.94, 129.88, 129.85, 128.7, 128.62, 128.57, 128.5, 128.43, 128.37, 

128.3, 128.2, 128.13, 128.05, 128.04, 128.00, 127.95, 127.9, 127.71, 127.68, 127.5, 127.3, 127.2, 

127.1, 126.1, 125.9, 125.7, 101.8, 101.4, 98.6, 81.2, 79.5, 79.4, 77.8, 75.2, 74.7, 74.6, 73.7, 73.7, 

72.7, 71.8, 71.7, 71.0, 68.7, 68.4, 67.8, 67.3, 63.5, 50.4, 46.5, 29.9, 28.3, 23.6, 17.8; HRMS (ESI+) 

calculated for C105H105NNaO20 [M+Na]: 1723.7122, found: 1723.7185. 

5-Aminopentyl -D-galactopyranosyl-(1→2)--D-galactopyranosyl-(1→3)--L-rhamnopyranoside 

(S-3) 

 

Compound S-17 (4.0 mg, 2.4 µmol) was dissolved in MeOH (1 mL). 15% NaOH aqueous solution (50 

µL) was added and the reaction mixture was stirred at 40 °C for 48 h. Then the temperature was 

raised to 60 °C and the reaction was stirred for an additional 48 h. The solution was cooled to 0 °C 

and neutralized with acetic acid, then diluted with water (5 mL) and extracted with ethyl acetate 

(3x10mL). The combined organic layer was dried over anhydrous Na2SO4, filtered and concentrated. 

The obtained crude product was  dissolved in EtOAc (1 mL), tBuOH (0.5 mL) and H2O (0.5 mL). Pd/C 

was added, the vial was purged first with argon, then with H2 and the reaction mixture was stirred 

under H2 atmosphere (3 bar) at room temperature for 16 h. The catalyst was filtered off (hydrophobic 

PTFE filter, 0.45 μm) and the solution was concentrated. The residue was subjected to a second 

hydrogenation cycle under the same conditions. After 16 h the catalyst was filtered off, the solution 

was concentrated and purified by HPLC (Hypercarb column, 150 x 10 mm, flow rate of 1.3 mL / min, 
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H2O (0.1% formic acid) isocratic (5 min), linear gradient to 30% ACN (30 min), linear gradient to 100% 

ACN (5 min)) to afford S-3 after lyophilization (0.60 mg, 0.97 µmol, 40%). 

 1H NMR (700 MHz, D2O) δ 8.39 (s,1H, HCOO-), 5.32 (d, J = 3.7 Hz, 1H), 4.57 (s, 1H), 4.52 (d, J = 7.7 

Hz, 1H), 4.21 (d, J = 3.0 Hz, 1H), 4.15 (t, J = 6.4 Hz, 1H), 4.06 – 4.02 (m, 1H), 4.01 – 3.99 (m, 1H), 

3.92 – 3.86 (m, 2H), 3.84 – 3.79 (m, 1H), 3.77 – 3.58 (m, 8H), 3.58 – 3.54 (m, 1H), 3.45 – 3.40 (m, 

1H), 3.40 – 3.34 (m, 1H), 2.93 (t, J = 7.5 Hz, 2H), 1.66 – 1.57 (m, 4H), 1.43 – 1.36 (m, 2H), 1.27 (d, J 

= 6.1 Hz, 3H).  13C NMR (176 MHz, D2O) δ 171.03 (HCOO-), 105.0, 99.8, 94.9, 78.3, 77.5, 75.3, 72.5, 

72.1, 71.0, 70.5, 70.4, 69.7, 69.1, 68.5, 68.2, 66.6, 60.8 (2C), 39.4, 28.2, 26.6, 22.2, 16.8; HRMS 

(ESI+) calculated for C23H44NO15 [M+H]:  574.2711, found: 574.2712.  

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 2,4-di-O-benzoyl-3,6-di-O-benzyl--D-

glucopyranosyl-(1→3)-[2-O-benzoyl-3,4-di-O-benzyl--L-rhamnopyranosyl-(1→4)]-6-O-benzyl-2-

deoxy-2-trichloroacetamido--D-galactopyranoside (S-19) 

 

Thioglycoside donor S-18 (66 mg, 0.098 mmol) and disaccharide acceptor S-9 (86 mg, 0.074 mmol) 

were twice co-evaporated with toluene and then dried under high vacuum overnight. DCM (3 mL) and 

4Å AW MS were added and the mixture was stirred at room temperature for 30 min. Then the solution 

was cooled to 15 °C, NIS (27 mg, 0.120 mmol) followed by TfOH (0.11 M in DCM, 70 μL, 7.7 μmol) 

were added and the reaction mixture was stirred for 30 min at 15 °C. The reaction was quenched 

with triethylamine and diluted with aqueous Na2S2O3 (10%, 5 mL) and DCM (5 mL). The mixture was 

filtered and the phases were separated. The aqueous phase was extracted with DCM (1 × 10 mL) and 

the combined organic layer was washed with saturated aqueous NaHCO3 (1 × 10 mL), dried over 

anhydrous Na2SO4, filtered and concentrated. The crude material was purified by column 

chromatography (20% ethyl acetate in hexanes) and HPLC (YMC-diol-300NP column, 150 x 20 mm, 

flow rate 15 mL/min, 20% AcOEt in Hex (5 min), linear gradient to 55% AcOEt (35 min), linear gradient 

to 100% AcOEt (5 min)) to afford S-19 as colorless solid (25 mg, 76%).  

[α]D20 = -2.5° (c = 1.0, CHCl3); IR (thin film, cm–1): νmax : 3066, 3033, 2927, 2863, 1727, 1453, 1265, 

1108, 1069, 1028, 737, 711, 699; 1H NMR (700 MHz, CDCl3) δ 8.24 (d, J = 7.6 Hz, 2H), 7.98 – 7.94 

(m, 4H), 7.58 – 7.51 (m, 3H), 7.50 – 7.45 (m, 4H), 7.42 (t, J = 7.3 Hz, 2H), 7.40 – 7.35 (m, 6H), 7.34 – 

7.16 (m, 17H), 7.16 – 7.08 (m, 4H), 7.07 – 7.05 (m, 2H), 7.03 – 6.99 (m, 1H), 6.98 – 6.93 (m, 4H), 6.80 

– 6.65 (m, 1H), 6.10 – 6.04 (m, 2H), 5.71 (t, J = 9.5 Hz, 1H), 5.26 (br s, 1H), 5.18 – 5.10 (m, 2H), 5.06 

– 5.02 (m, 2H), 4.89 – 4.85 (m, 1H), 4.82 (d, J = 7.8 Hz, 1H), 4.75 (d, J = 11.9 Hz, 1H), 4.71 (d, J = 

10.8 Hz, 1H), 4.67 (d, J = 11.4 Hz, 1H), 4.65 – 4.59 (m, 2H), 4.52 (d, J = 11.8 Hz, 1H), 4.48 – 4.42 (m, 

3H), 4.30 (br s, 1H), 4.22 – 4.17 (m, 2H), 4.16 – 4.12 (m, 1H), 4.06 – 3.97 (m, 2H), 3.82 – 3.70 (m, 

2H), 3.67 (t, J = 9.4 Hz, 1H), 3.64 – 3.55 (m, 3H), 3.50 – 3.46 (m, 1H), 3.43 – 3.39 (m, 1H), 3.37 – 3.26 

(m, 1H), 3.23 – 3.08 (m, 3H), 1.53 – 1.39 (m, 4H), 1.32 (d, J = 6.1 Hz, 3H), 1.25 – 1.13 (m, 2H); 13C 

NMR (176 MHz, CDCl3) δ 165.6, 165.2, 164.8, 139.0, 138.8, 138.3, 138.1, 137.82, 137.80, 133.3, 
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133.2, 132.9, 130.6, 130.4, 130.3, 129.97, 129.93, 129.90, 128.66, 128.55, 128.49, 128.46, 128.4, 

128.37, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 102.6, 101.3, 

98.0, 92.2, 80.4, 79.9, 79.8, 76.4, 75.6, 73.8, 73.60, 73.57, 73.5, 72.5, 72.1, 71.0, 70.3, 69.8, 69.7, 

69.6, 68.6, 67.3, 56.8, 50.69, 50.37, 47.25, 46.31, 29.4, 23.4, 18.4; HRMS (ESI+) calculated for 

C96H97Cl3N2NaO20 [M+Na]: 1726.5633, found: 1726.5598.  

5-Aminopentyl -D-glucopyranosyl-(1→3)-[-L-rhamnopyranosyl-(1→4)]-2-acetamido-2-deoxy-

-D-galactopyranoside (S-5) 

 

Compound S-19 (4.1 mg, 2.4 µmol) was dissolved in MeOH/THF 1:1 (1 mL). Sodium methoxide (0.5 

M in MeOH, 0.20 mL, 0.10 mmol) was added and the reaction mixture was stirred at 35 °C for 48 h. To 

quench the reaction, Amberlite was added until the solution became neutral. The resin was filtered off 

and the solution was concentrated. The obtained product was  dissolved in EtOAc (1 mL), tBuOH (0.5 

mL) and H2O (0.5 mL). Pd/C was added, the vial was purged first with argon, then with H2 and the 

reaction mixture was stirred under H2 atmosphere (3 bar) at room temperature for 48 h. The catalyst 

was filtered off (hydrophobic PTFE filter, 0.45 μm) and the resulting acidic solution was neutralized 

with triethylamine. Purification by HPLC (Hypercarb column, 150 x 10 mm, flow rate of 1.3 mL / min, 

H2O (0.1% formic acid) isocratic (5 min), linear gradient to 30% ACN (30 min), linear gradient to 100% 

ACN (5 min)) and lyophilization afforded S-5 (1.0 mg; 1.51 µmol; 62%).  

1H NMR (700 MHz, D2O) δ 8.39 (s, 1H, HCOO-), 5.25 (d, J = 1.8 Hz, 1H), 4.45 (d, J = 8.6 Hz, 1H), 

4.41 (d, J = 7.8 Hz, 1H), 4.20 (d, J = 2.8 Hz, 1H), 4.09 – 4.07 (m, 1H), 3.96 (dd, J = 10.9, 8.6 Hz, 1H), 

3.88 – 3.82 (m, 3H), 3.79 (dd, J = 9.8, 3.3 Hz, 1H), 3.76 – 3.64 (m, 5H), 3.54 (dt, J = 10.2, 6.3 Hz, 1H), 

3.42 – 3.38 (m, 2H), 3.35 – 3.33 (m, 2H), 3.22 (dd, J = 9.3, 7.8 Hz, 1H), 2.95 – 2.91 (m, 2H), 1.96 (s, 

3H), 1.65 – 1.58 (m, 2H), 1.57 – 1.52 (m, 2H), 1.38 – 1.32 (m, 2H), 1.23 (d, J = 6.2 Hz, 3H); 13C NMR 

(176 MHz, D2O) δ 174.8, 171.0, 104.5, 101.4, 101.2, 80.2, 75.7, 75.5, 75.2, 74.7, 73.2, 71.8, 70.2, 

70.2, 70.0, 69.6, 69.4, 61.3, 60.8, 51.6, 39.4, 28.1, 26.4, 22.2, 22.1, 16.6; HRMS (ESI+) calculated for 

C25H47N2O15 [M+H]: 615.2971, found: 615.2969. 

p-Tolyl 2-azido-2-deoxy-3,4,6-tri-O-benzyl--D-glucopyranosyl-(1→2)-3,4,-di-O-benzyl-1-thio--

L-rhamnopyranoside (S-22) 

 

Trichloroacetimidate donor S-20 (315 mg, 0.663 mmol) and acceptor S-21 (199 mg, 0.442 mmol) were 

co-evaporated three times with toluene and dried under vacuum overnight. They were then dissolved 
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in DCM/Et2O 1:3 (4.5 mL) under argon atmosphere and 4Å Molecular sieves were added. The solution 

was stirred at room temperature for 30 min and subsequently cooled to 0 °C. TMSOTf (0.1 M in DCM, 

220 μL, 0.044 mmol) was added dropwise over 10 minutes and the mixture was stirred at 0 °C for 2 h. 

The reaction was quenched with triethylamine, filtered and concentrated. Purification by column 

chromatography (5 to 10% ethyl acetate in toluene) afforded impure acetylated disaccharide in 

quantitative yield. The product was directly dissolved in MeOH (4.5 mL). NaOMe (0.5 M in MeOH, 85 

µL, 0.043 mmol) was added and the reaction mixture was stirred at room temperature for 2 h. To 

quench the reaction, Amberlite was added until the solution became neutral. The resin was filtered off 

and the solution was concentrated. The crude product was dissolved in DMF (2.5 mL) under nitrogen 

atmosphere and benzyl bromide (163 µL, 1.373 mmol) was added. NaH (60% susp. in mineral oil, 62 

mg, 1.550 mmol) was added portionwise. The reaction was stirred for 3 h then it was carefully diluted 

with MeOH and concentrated. The crude was taken up in DCM (20 mL) and brine (10 mL). After 

phase separation the aqueous phase was extracted with DCM (2 × 10 mL). The combined organic 

layers were dried over anhydrous Na2SO4, filtered and concentrated. The crude material was purified 

by column chromatography (10 to 20% ethyl acetate in hexanes) to obtain pure S-22 as colorless solid 

(130 mg, 0.143 mmol, 32% over 3 steps). 

[α]D20 = 33.1° (c =1.1, CHCl3); IR (thin film, cm–1): νmax 3032.9, 2926.8, 2108.0, 1496.5, 1455.1, 1364.7, 

1246.3, 1210.1, 1103.0, 1088.6, 1065.1, 1040.5, 912.5, 809.9, 735.4, 697.7; 1H NMR (600 MHz, 

CDCl3) δ 7.35 – 7.16 (m, 26H), 7.06 (m,  3H), 5.37 (s, 1H), 4.93 (d, J = 3.6 Hz, 1H), 4.89 – 4.82 (m, 

3H), 4.70 (d, J = 10.8 Hz, 1H), 4.67 – 4.64 (m, 2H), 4.61 (d, J = 10.8 Hz, 1H), 4.46 (d, J = 12.0 Hz, 

1H), 4.41 (d, J = 10.7 Hz, 1H), 4.34 – 4.31 (m, 1H), 4.28 (d, J = 12.0 Hz, 1H), 4.16 – 4.11 (m, 2H), 

4.02 (t, J = 9.6 Hz, 1H), 3.81 – 3.77 (m, 1H), 3.69 (t, J = 9.5 Hz, 1H), 3.57 (t, J = 9.5 Hz, 1H), 3.37 – 

3.32 (m, 1H), 3.25 – 3.20 (m, 1H), 3.17 – 3.12 (m, 1H), 2.28 (s, 3H), 1.29 (d, J = 6.2 Hz, 3H); 13C NMR 

(151 MHz, CDCl3) δ 138.5, 138.3, 138.22, 138.21, 138.1, 137.8, 132.6, 130.5, 130.1, 128.6, 128.54, 

128.52, 128.50, 128.2, 128.1, 128.0, 127.93, 127.91, 127.89, 127.8, 127.6, 127.4, 96.6, 85.7, 80.4, 

79.2, 79.1, 78.4, 75.6, 75.2, 75.12, 75.10, 73.7, 72.4, 70.9, 69.5, 68.0, 62.9, 21.3, 17.7; HRMS (ESI+) 

calculated for C54H57N3NaO8S [M+Na]: 930.3764, found: 930.3743. 

p-Tolyl 2-acetamido-2-deoxy-3,4,6-tri-O-benzyl--D-glucopyranosyl-(1→2)-3,4,-di-O-benzyl-1-

thio--L-rhamnopyranoside (S-23) 

 

Compound S-22 (170 mg, 0.187 mmol) was dissolved in MeOH/THF 1:1 (2.0 mL). Nickel chloride 

hexahydrate (5 mg, 0.019 mmol) was added and the solution was cooled to 0 °C. NaBH4 (9 mg, 0.243 

mmol) was added portionwise and the solution was stirred for 30 min. Then it was diluted with MeOH, 

warmed to room temperature and the solvent was evaporated. The residue was dried under high 

vacuum and redissolved in DCM (2.0 mL). Pyridine (110 µL, 1.42 mmol) and acetic anhydride (55 µL, 
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0.561 mmol) were added and the solution was stirred for 1 h. The reaction was diluted with CHCl3 (30 

mL) and extracted with 1M HCl (1 × 10 mL), saturated aqueous NaHCO3 (1 × 10 mL) and brine (1 × 

10 mL). The organic phase was dried over anhydrous Na2SO4, filtered and concentrated. The crude 

material was purified by column chromatography (20 to 40% ethyl acetate in hexanes) to obtain pure 

S-23 as colourless solid (126 mg, 0.136 mmol, 73% over 2 steps).  

[α]D20 = 37.1° (c =1.1, CHCl3); IR (thin film, cm–1): νmax  3427.7, 3065.0, 3032.1, 2921.9, 2870.9, 1682.6, 

1516.4, 1496.6, 1454.7, 1365.0,  1310.4, 1208.9, 1099.6, 1085.7, 1069.9, 1043.24, 1029.4, 990.1, 

910.8, 848.5, 810.2, 736.3, 697.8; 1H NMR (400 MHz, CDCl3) δ 7.33 – 7.15 (m, 25H), 7.16 – 7.09 (m, 

2H), 7.03 (d, J = 7.9 Hz, 2H), 5.45 (d, J = 9.4 Hz, 1H), 5.04 (d, J = 1.9 Hz, 1H), 4.90 (d, J = 10.9 Hz, 

1H), 4.81 (d, J = 11.6 Hz, 1H), 4.79 – 4.71 (m, 2H), 4.66 (d, J = 11.9 Hz, 1H), 4.63 – 4.55 (m, 2H), 

4.57 – 4.42 (m, 3H), 4.36 (d, J = 12.1 Hz, 1H), 4.23 (t, J = 2.4 Hz, 1H), 4.20 – 4.01 (m, 3H), 3.77 – 

3.67 (m, 2H), 3.60 (m, 1H), 3.51 (dd, J = 10.8, 3.5 Hz, 1H), 3.39 – 3.25 (m, 2H), 2.26 (s, 3H), 1.62 (s, 

3H), 1.19 (d, J = 6.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 170.2, 138.5, 138.3, 138.2, 138.1, 137.97, 

137.94, 132.0, 130.5, 130.1, 128.8, 128.59, 128.58, 128.56, 128.53, 128.49, 128.4, 128.2, 128.02, 

127.99, 127.97, 127.96, 127.8, 127.7, 127.6, 96.6, 86.0, 80.3, 79.6, 78.6, 78.3, 75.6, 75.3, 75.0, 74.6, 

73.6, 71.8, 71.1, 68.9, 68.2, 52.4, 23.3, 21.3, 18.4; HRMS (ESI+) calculated for C56H61NNaO9S 

[M+Na]: 946.3965, found: 946.3932. 

N-(Benzyl)benzyloxycarbonyl-5-aminopentyl 2-acetamido-2-deoxy-3,4,6-tri-O-benzyl--D-

glucopyranosyl-(1→2)-3,4,-di-O-benzyl--L-rhamnopyranosyl-(1→4)-6-O-benzyl-2-deoxy-2-

trichloroacetamido--D-galactopyranoside (S-24) 

 

Disaccharide S-23 (68 mg, 0.074 mmol) and monosaccharide S-9 (50 mg, 0.058 mmol) were co-

evaporated three times with toluene and dried under high vacuum overnight.  They were dissolved in 

DCM (2.5 mL) under Argon atmosphere and 4Å Molecular sieves were added. The solution was 

stirred at room temperature for 30 min and subsequently cooled to 0 °C. NIS solution (100 mg/mL in 

DCM/Dioxane, 170 μL, 0.075 mmol) was added, followed by a TfOH solution (0.05 M in 

DCM/Dioxane, 44 µL, 5.8 µmol) and the mixture was stirred for 1 h at 0 °C and for 30 min at r.t.. The 

reaction was quenched with triethylamine and diluted with aqueous Na2S2O3 (10%, 5 mL) and DCM (5 

mL). The mixture was filtered and the phases were separated. The aqueous phase was extracted with 

DCM (1 × 5 mL) and the combined organic layer was washed with saturated aqueous NaHCO3 (1 × 

5 mL), dried over anhydrous Na2SO4, filtered and concentrated. The crude material was purified by 

column chromatography (30% to 50% ethyl acetate in hexanes) to afford pure trisaccharide S-24 as a 

colorless solid (32 mg, 0.019 mmol, 33%).  
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[α]D20 = 35.4° (c =1.7, CHCl3); IR (thin film, cm–1): νmax 3286.1, 3065.1, 3032.4, 2928.2, 2868.5, 1670.9, 

1605.9, 1524.0, 1497.9, 1455.1, 1423.6, 1365.3, 1303.5, 1210.4, 1102.8, 1051.9, 1029.4, 910.7, 

821.5, 736.8, 698.2, 672.0; 1H NMR (600 MHz, CDCl3) δ 7.84 – 7.77 (m, 3H), 7.70 (s, 1H), 7.47 – 7.09 

(m, 43H), 5.45 – 5.38 (m, 1H), 5.15 (m, 2H), 5.07 (s, 1H), 4.91 (d, J = 11.1 Hz, 1H), 4.84 (d, J = 11.5 

Hz, 1H), 4.79 (m, 2H), 4.73 – 4.57 (m, 7H), 4.55 – 4.43 (m, 4H), 4.31 (d, J = 12.2 Hz, 1H), 4.15 (m, 

3H), 4.08 – 4.01 (m, 2H), 3.90 (m, 1H), 3.83 – 3.72 (m, 3H), 3.69 – 3.56 (m, 5H), 3.48 – 3.38 (m, 3H), 

3.31 (m, 3H), 3.23 (m, 1H), 3.16 (m, 1H), 1.66 (s, 3H), 1.50 (m, 4H), 1.26 (m, 2H), 1.16 (d, J = 6.1 Hz, 

3H); 13C NMR (151 MHz, CDCl3) δ 173.2, 169.9, 162.0, 138.6, 138.5, 138.3, 138.1, 138.0, 137.9, 

137.7, 134.2, 133.4, 133.3, 129.0, 128.83, 128.66, 128.64, 128.60, 128.56, 128.54, 128.52, 128.46, 

128.4, 128.31, 128.28, 128.22, 128.20, 128.16, 128.12, 128.05, 127.99, 127.97, 127.94, 127.92, 

127.86, 127.80, 127.75, 127.73, 127.68, 127.66, 127.4, 126.43, 126.37, 126.3, 126.2, 99.3, 98.5, 96.7, 

80.3, 79.7, 78.3, 77.9, 75.1, 74.5, 73.6, 73.53, 73.49, 73.0, 71.6 (4C), 70.0 (2C), 68.9, 68.7, 68.4, 67.3, 

56.0, 52.4, 50.7, 50.4, 47.3, 46.3, 29.3, 28.1, 27.6, 23.4 (2C), 18.7; HRMS (ESI+) calculated for 

C95H102Cl3N3NaO17 [M+Na]: 1684.6173, found: 1684.6115. 

5-Aminopentyl 2-acetamido-2-deoxy--D-glucopyranosyl-(1→2)--L-rhamnopyranosyl-(1→4)-2-

acetamido-2-deoxy--D-galactopyranoside (S-3) 

 

Compound S-24 (4.0 mg, 2.40 µmol) was dissolved in EtOAc (1 mL), tBuOH (0.5 mL), H2O (0.5 mL) 

with one drop of acetic acid. Pd/C was added and the vial was purged first with argon, then with H2. 

the reaction mixture was stirred under H2 atmosphere at room temperature for 24 h. The catalyst was 

filtered off (hydrophobic PTFE filter, 0.45 μm) the solvent evaporated under vacuum. The crude 

material was purified by size-exclusion chromatography (Sephadex LH-20, 50% MeOH in H2O). 

Lyophilization afforded S-3 as a salt with acetic acid (1.1 mg, 1.54 µmol, 64%).  

1H NMR (600 MHz, D2O) δ 5.14 (d, J = 1.7 Hz, 1H), 4.96 (d, J = 3.7 Hz, 1H), 4.46 (d, J = 7.9 Hz, 1H), 

4.17 – 4.14 (m, 1H), 4.05 – 3.97 (m, 3H), 3.95 – 3.85 (m, 5H), 3.84 – 3.73 (m, 6H), 3.62 – 3.51 (m, 

3H), 2.99 – 2.95 (m, 2H), 2.05 (d, J = 4.9 Hz, 6H), 1.93 (s, 3H, CH3COO-), 1.70 – 1.57 (m, 4H), 1.44 – 

1.39 (m, 2H), 1.34 (d, J = 6.2 Hz, 3H); 13C NMR (176 MHz, D2O) δ 181.5, 174.7, 174.4, 101.8, 98.9, 

95.5, 76.0, 75.6, 74.8, 71.9, 71.7, 71.4, 70.5, 70.0, 69.8, 69.7, 69.3, 61.4, 60.3, 53.7, 52.4, 39.5, 28.1, 

26.8, 23.3, 22.22, 22.15, 21.8, 16.7; HRMS (ESI+) calculated for C27H50N3O15 [M+H]: 656.3242, found: 

656.3245. 
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4.5.2. GLYCAN ARRAYS PREPARATION AND SCREENING 

Glycan microarray slides were prepared by robotically spotting solutions on NHS activated glass 

slides. In detail, synthetic glycans and polysaccharides were dissolved in printing buffer (50 mM 

sodium phosphate, pH 8.5) in the concentrations outlined in Figure S-II, i.e. 0.2 mg/mL 

polysaccharides and 0.1 mM synthetic oligosaccharides. The solutions were transferred to a 384 well 

V bottom plate (Genetix) and robotically printed onto NHS activated glass slides (CodeLink slides, 

Surmodics) using an S3 non-contact microarray spotter (Scienion) equipped with a Type 4 coated 

nozzle (PDC80). Humidity in the printing chamber was kept constant at 45% during the entire print 

run. Following printing, the slides were incubated overnight at room temperature in a humidity-

saturated chamber. Remaining reactive groups were quenched by incubating the slides in quenching 

solution (50 mM sodium phosphate, 100 mM ethanolamine, pH 9) at room temperature for one hour. 

The slides were washed twice with water, dried by centrifugation at 300 x g for three minutes 

(Eppendorf CombiSlide system) and stored dry at 4 °C until use. Directly before the assay, the slides 

were blocked with a solution of 3% (w/v) BSA in PBS (BSA-PBS) for 60 min at room temperature, 

washed 3 × 2 min with PBS and dried by centrifugation. A 64 well incubation gasket (FlexWell 64 grid, 

Grace BioLabs) was attached to the slide. For the inhibition assay, human reference serum 007sp 

(NIBSC, UK) was diluted in 3% (w/v) BSA-PBS-0.1% Tween containing 10 μg/mL pneumococcal cell 

wall polysaccharide and either no or 10 μg/mL SP7F-CPS or SP7A-CPS (all polysaccharides obtained 

from Statens Serum Institut, Denmark), incubated  20 min at 37 °C, and added in duplicates to the 

glycan arrays. After incubation for 1 h at r.t., slides were washed 3 × 2 min with PBS containing 0.1% 

(v/v) Tween-20 (PBST) by adding 50 μL to each well. The secondary antibody diluted in 3% (w/v) 

BSA-PBS-0.1% Tween (goat anti-human IgG-Fc AlexaFluor® 488 1:400, Dianova) was directly added 

with 25 µL to the wells of the gasket and incubated for 1 h at room temperature in the dark. After 

incubation the slides were washed twice with PBS-T, twice with PBS, rinsed with deionized water and 

dried by centrifugation (300 x g, 3 min) prior to scanning with a GenePix 4300A microarray scanner 

(Molecular Devices). Intensities were evaluated as mean fluorescence intensity of circles of identical 

diameter for all glycans with local background subtraction using GenePix 7 (Molecular Devices). 

 

Figure S-II: Microarray slide printing pattern with employed printing concentrations. ST7F 

oligosaccharides S1–S6 (yellow), natural polysaccharides A–E (grey) and unrelated oligosaccharides F–K 

(white) were printed according to the above described procedure.  
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