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Preface

This dissertation introduces a robust normalization method to uncover signals in noisy next
generation sequencing data. The genesis of the described approach is the observation that next
generation sequencing resembles a sampling process that can be modeled by means of discrete
statistics. The speci�c and sensitive detection of signals from sequencing data pushes the �eld of
molecular biology forward towards a comprehensive understanding of the functional basic unit
of life – the cell. The thesis is structured in three parts:

Part I provides a background on molecular biology and statistics that is needed to understand
Part II. I describe the fascinating subject of gene regulation and how diverse next genera-
tion sequencing techniques have been developed to study cellular processes at the molec-
ular level. The data generated in these experiments are naturally modeled with statistical
models. To accurately quantify sequencing data, I propose the computational program
“bamsignals” which was developed in collaboration with Alessandro Mammana [1].

Part II introduces a novel sequencing data normalization method which was developed under
supervision of Dr. Ho-Ryun Chung from the Epigenomics laboratory at the Max Planck
Institute for Molecular Genetics in Berlin. A manuscript describing the approach is de-
posited on bioRxiv [2] and the method was also featured as a journal article in Springer
Press BioSpektrum [3]. The method was implemented as an open-source software [4].

Part III provides the conclusion. The �ndings of Part II are wrapped up. Furthermore, I give
future directions for research in the �eld of next generation sequencing data analysis.
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Chapter 1

The Basics of Molecular Biology

This chapter gives a general introduction tomolecular biologywith references for in depth explo-

ration of the subtopics. Section 1.1 explains the genome and its organization into the epigenome

mediated by a dynamic biopolymer structure called chromatin. Herein, I describe how the infor-

mation encoded in the genome is dynamically readout in the context of chromatin. Section 1.2

describes how next generation sequencing techniques are used to measure molecular quantities

like gene readout and chemical modi�cations to the chromatin.

1.1 The Genome and the Readout of Genetic Information

The cell is sometimes referred to as the functional basic unit of life. Aside from unicellular or-

ganisms like bacteria, complex multicellular organisms consist of hundreds to billions of cells

with diverse functions and phenotypes. Astonishingly, all the instructions to build such diverse

cell types in an organisms are stored as heritable information in the genome – a linear polymer

of deoxyribonucleotides, i.e. the DNA. In turn, the genome resides in the nucleus of the cell

and is organized together with histone proteins in a higher-order structure called “chromatin”.

Apart from packaging the genome, the histone proteins are subject to diverse chemical modi�-

cations that dynamically adjust the readout of the genetic information. Diverse environmental

stimuli require a living cell to vigorously adapt which genetic information are read out and set

into operation. This section describes how the dynamic nature of the chromatin facilitates the

dynamic regulation of the readout of the genetic information – a property that is required to

specify adequate cellular responses to stimuli and, moreover, to built distinct cell types.

3



4 Chapter 1. The Basics of Molecular Biology

Fig. 1.1 – The DNA Double Helix. Balls denote atoms and edges are bonds. Bases are paired by hy-
drogen bonds (dashed lines). Base pairs form a deoxyribose back- bone with phosphodiester
bonds. Twists of double strand form two di�erent types of grooves, i.e. minor and major
groove. Illustration adapted from Richard Wheeler [9].

1.1.1 The DNA

The seminal discovery of the DNA double helix by James D. Watson and Francis H.C. Crick in

1953 [8] paved the way for molecular genetics. The deoxyribonucleic acid (DNA) is a double

stranded helix composed of a deoxyribose backbone and four nucleotides, namely adenine (A),

cytosine (C), guanine (G) and thymine (T; Fig. 1.1). These nucleotides are sometimes called bases

and are faced towards the �ber axis and build complementary base pairs (bp) by forming hydro-

gen bonds. A and T pair with two hydrogen bonds whereas G pairs with C by forming three

bonds. In consequence, the DNA strands exhibit reverse complementarity. The deoxyribose

backbone is established by phosphodiester bonds between the 3’ carbon atom of a deoxyribose

and the 5’ carbon of the adjacent deoxyribose. A dinucleotide of C and G is denoted as CpG,

where “p” refers to the phosphodiester bond linking the two. This results in a 5’ and 3’ end of

the DNA, where the 5’ to 3’ direction is referred to as “downstream” and the 3’ to 5’ direction is

called “upstream”.

The sequence of nucleotides builds the “genome” – a text that encodes for the heritable in-

formation of the cell. This static heritage is sometimes referred to as the book of life and contains
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all the instructions to build a functioning cell. Even when the human genome was completely

sequenced in 2001 [10], it is still under intensive investigation which information is encoded

exactly and how the readout of that information is regulated to create distinct cell types in a

complex organism. Moreover, the genome slightly di�ers between individuals of a species cre-

ating a plethora of distinct “books” (see for example [11] for a study on the variations in the

human genome). The genomes of complex organisms like eukaryotes are organized in chromo-

somes, e.g. 23 in human, which reside in an organelle of the cell called the “nucleus”. The tight

compaction of the DNA, e.g. 2 meters in human, into the ∼6 µm-sized nucleus is facilitated by a

heteropolymer of DNA and histone proteins called the “chromatin”.

1.1.2 The Chromatin

Eukaryotic genomes are packaged into chromatin whose basic repeating unit is the nucleosome.

Nucleosomes form upon the association of two copies of each core histone, namely H2A, H2B, H3

and H4, with ∼147bp of DNA [12, 13]. In consequence, the sequence of nucleosomes forms the

so called “beads-on-a-string” structure which is found at genomic regions that are read (active;

Fig. 1.2). A further compaction into 30nm �bres is found at loci that are not read out (inactive).

Thus, the chromatin enables the tight but dynamic packaging of the genome into the cell nu-

cleus. The di�erent levels of the chromatin compaction allow, at times, certain genome regions

to be read while other regions are made inaccessible. For example the sole presence of a nucleo-

some can render the DNA less accessible. Nevertheless, how is this dynamic compaction of the

genome achieved? The unstructured amino-terminal parts of the histones are frequently chem-

ically modi�ed by enzymes - a process that provides a regulation of the compaction with high

�delity. Those chemical modi�cations to histones include acetylation, methylation and phos-

phorylation. For instance, acetylation results in a positively charged histone that destabilizes its

Fig. 1.2 – Levels of Dynamic Chromatin Compaction. The chromatin consists of consecutive
nucleosomes containing DNA and histone proteins on a “beads-on-a-string” structure in
genome regions whose information is currently read (“active”). Further compaction to the
30nm �bre marks genomic regions that are not read out (“inactive”). A chromosome is then
a composite of active and inactive states. Adapted from Richard Wheeler [14].
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Fig. 1.3 – The Combinatorial Action of Histone Modi�cations. DNA (blue) is wrapped around
a heterodimer of histones H2A, H2B, H3 and H4. Unstructured amino-terminal tails of the
histones (red) are subject to chemical modi�cations. Genome-wide, those chemical modi�-
cations either do (arrows) or do not (blunt ends) coincide. Adapted from [17]

contact to the negatively charged DNA and, in consequence, results in less compaction [15, 16].

Traditionally, histone modi�cations are denoted after the histone they reside on and the identity

and position of the amino acid being modi�ed and, �nally, the molecule that is attached to that

amino acid (Fig. 1.3). From a simplistic view point certain histone modi�cations such H3 lysine

4 tri-methylation (H3K4me3) and the aforementioned acetylations facilitate accessibility to the

DNA, whereas others such as H3K9me3 and H3K27me3 facilitate compaction [17]. However, the

true complexity of this histone “language” is thought to be delivered through the combination of

histone modi�cations [18,19] (Fig. 1.3). Thus, the static information of the genome is interpreted

on a dynamic level in context of chromatin, referred to as the “epigenome”.

Apart from chemical modi�cations to the histones, the DNA template itself can be chemically

modi�ed. The most prevalent DNA modi�cation is the methylation of CpG dinucleotides that

is catalyzed by DNA methyltransferases and predominantly found in less accessible compacted

chromatin regions (reviewed in [20]). Whether the histone and DNAmodi�cations are generally

passed on to the progeny is still a matter of debate (e.g. [21–24]). This begs the question how

epigenetic information is preserved or re-established.



1.1. The Genome and the Readout of Genetic Information 7

1.1.3 The Readout of Genetic Information

In 1970, Francis Crick proclaimed the general �ow of genetic information to the functional level

in the “Central Dogma of Molecular Biology” [25]:

“The central dogma of molecular biology deals with the detailed residue-by-residue

transfer of sequential information. It states that such information cannot be trans-

ferred back from protein to either protein or nucleic acid.”

In essence, every protein in a cell originates from a speci�c genomic region referred to as “gene”.

Genes are probably the best characterized elements in the genome and their information is read

out by an enzyme called RNApolymerase (RNAP) in a process called “transcription”. The number

and identity of genes transcribed is related to the status of the cell and depends on many factors,

e.g. cell type and environmental conditions. How gene transcription is regulated has been studied

thoroughly in the last decades and, in the recent years, this regulation was mostly studied in

conjunction with the dynamic nature of the chromatin. In this book I will focus on the regulation

of the readout of genetic information in transcription but, note, there exist regulatory steps past

this layer (for example reviewed in [26, 27]).

The Transcription Cycle

The process of transcription transfers the information encoded by a gene into a ribonucleic acid

template (RNA). During transcription, the RNAP proceeds through distinct states [28]. In the

pre-initiation step, the TATA-binding protein (TBP) binds a characteristic DNA sequence called

“TATA-box” in the “promoter” which describes the region around the “transcription start site”

(TSS). However, the majority of eukaryotic promoters do not contain a TATA-box. Instead TBP-

related factors (TRFs) recognize other still poorly described core promoter sequences. The bind-

ing of TBP and/or TRFs induces the formation of the “pre-initiation complex” which, in turn, fa-

cilitates the RNAP recruitment. In the initiation step, the RNAP starts synthesizes∼50 nucleotides

of a reverse complementary RNA and passes them to add a guanine via a 5’ to 5’ triphosphate

bond to the RNA transcript which prevents enzymatic degradation. After the transition into the

elongation, the RNAP leaves the promoter region and continues to read the gene in 5’ to 3’ di-

rection to synthesize an RNA as a reverse complement to the non-coding DNA strand in the

elongation step. In the termination step, the RNAP cleaves the transcript at the “transcript termi-

nation site”. If a polyA signal, i.e. a characteristic sequence motif, exists, the RNAP adds up to

250 consecutive Adenines to the transcript. After RNAP release it can re-initiate transcription

again. If the transcribed gene encodes for a protein, the RNA is exported to the cytosol and trans-

lated into a protein by ribosomes. Note that RNAs themselves can regulate gene transcription

(reviewed in [29]).
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The Regulation of Transcription

In molecular biology, the study of gene regulation deals with how genes are transcribed at dif-

ferent rates in di�erent cells. In a multicellular organism every cell has the same genome, yet the

genetic information is readout di�erently giving rise to distinct phenotypes like brain neurons or

liver cells. Essentially, a cell type can be de�ned to a large extend by its transcriptional program

but how exactly are these transcriptional programs detailed?

Proteins play a pivotal role in the regulation of transcription. For example, the described

TATA-binding protein facilitates the initiation of transcription through binding to a characteris-

tic DNA sequence and the recruitment of the pre-initiation complex. In fact, there exists a huge

class of proteins called “transcription factors” or “trans-acting factors” which are all attracted by

speci�c nucleotide sequences that are referred to as “motifs”. A trans-acting factor can directly

or indirectly (i.e. through other proteins called “co-factors”) regulate the transcription of a gene

after binding a speci�c genomic locus. This regulatory genomic region is referred to as a “cis-

regulatory element” of a gene. Promoters are generally enriched for these DNA elements to allow

for their targeted transcriptional control. Yet, some cis-regulatory elements can also be located

far away from their targets and only the dynamic looping of the DNA brings these elements in

spatial proximity of their targets [30]. These regulatory regions are referred to as “enhancers”.

Recently, e�orts were made to comprehensively catalogue transcription factor motifs [31] and

to identify the occurrences of those motifs in the static genome [32]. While these approaches

paved the way to study gene regulation, they neglect a central compartment of the eukaryotic

genome that can fundamentally in�uence the DNA binding of proteins – the dynamics of the

chromatin.

The Dynamic Chromatin

Apart from packaging the DNA, the chromatin serves essential roles in the regulation of tran-

scription and is traditionally classi�ed in two forms: The “euchromatin” harbors accessible DNA

and is rich in actively transcribed genes as well as cis-regulatory elements. The euchromatic

regions tend to localize towards the center of the cell nucleus. On the other hand, the “hete-

rochromatin” is characterized by higher degree of compaction which renders the DNA less ac-

cessible. Heterochromatic regions localize to the exterior of the nucleus, referred to as “lamina”,

and contain only a few genes which are mostly inactive.

Aside from the mere level of compaction, there are indications that the role of the chromatin

in gene regulation is multi-faceted. Firstly, the modi�cations to histones serve as dynamically de-

posited binding residues for proteins. So called chromatin modi�ers can read, catalyze or remove

histone modi�cations resulting in a natural language of histone modi�cations. For example, the

“Enhancer of zeste homolog 2” (EZH2) enzyme as part of the polycomb repressive complex 2
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(PRC2) catalyzes the tri-methylation of H3K27 (H3K27me3) which, itself, propagates and stim-

ulates EZH2 activity (reviewed in [33]). By binding multiple H3K27me3-modi�ed nucleosomes

through its Pc subunit, PRC1 facilitates a stable compaction of the chromatin which results in

gene silencing and the putative preclusion of transcription factor binding.

Secondly, histone modi�cations are related to the transcriptional status of the DNA [34]. For

example, histone acetylation and H3K4me3 are found at accessible genomic loci where transcrip-

tion can be initiated whereas H3K27me3 and H3K9me3 are found in heterochromatic repressed

regions [35]. The observed co-occurrence of certain histone modi�cations lead to the notion of a

“chromatin state” [36] which is a genome-wide re-occurring pattern of coinciding histonemodi�-

cations. This concept allows for a compact and still comprehensive description of the epigenome

with a small number (e.g. ≤15) of chromatin states.

A last facet of the role of the chromatin in gene regulation is distinct hierarchies of chromatin

folding facilitating a spatial organization of the chromatin in the nucleus. Some regions, e.g.

telomeres, are stably associated to the nuclear lamina, i.e. “lamina associated domains” (LADs),

whereas some segments are organized in “topologically associated domains” in nuclear interior

(see [37] for review).

1.2 Measuring the Cell by Next Generation Sequencing

For the last decade, next generation sequencing (NGS) has been the experimental technique of

choice to quantify molecular properties genome-wide. The NGS technique is standardized and,

compared to polymerase chain reaction [38], it achieves a higher throughput with million of

data points generated. Yet, similar to the low-throughput polymerase chain reaction, it follows a

“sequencing-by-synthesis” approach where a short segment of DNA is reverse complementary

synthesized to a DNA fragment isolated from a sample of cells. These short segments (36 to

50bp) are called “reads” and their original location in the genome is determined to the bp in a

computational process called “mapping”. In this section, I will explain how NGS can be used to

quantify the level of transcription and to identify genome-wide protein binding sites.

1.2.1 Gene Expression

RNA-seq refers to the capture of the transcriptome via NGS (for review see [39]). There exist

di�erent protocols which generally follow these steps: Firstly, a sample of cells is lysed, e.g. by

the reagent TRIzol. Secondly, the RNA species of interest are selected, e.g. polyA selection for

mRNAs. Alternatively, some protocols simply deplete gratuitous RNA species, e.g. depletion of

ribosomal RNA (≥90% of the transcriptome). Thirdly, RNA is reverse transcribed to clonal DNA

(cDNA) and then fragmented. Finally, the resulting fragments are end-sequenced to generate

reads which are then mapped to the reference genome. The number of reads overlapping a
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speci�c region is called “coverage” and re�ects a quantitative measurement of the steady state

RNA abundance.

A derivate of RNA-seq is represented by an RNA species selection called Cap Analysis of

Gene Expression (CAGE) [40]. Therein, after fragmentation, one enriched for 5’-capped RNA

molecules which are then reverse transcribed and end-sequenced (∼ 27 nucleotides) [41]. When

aligned to the reference genome the generated short reads are indicative for transcriptional start

sites.

1.2.2 Chromatin Modifications

ChIP-seq

Chromatin Immunoprecipitation followed by high-throughput sequencing (ChIP-seq) [42] has

become a standard method to determine the localization of DNA-associated proteins, like tran-

scription factors or histone modi�cations. In brief, after proteins are crosslinked with formalde-

hyde to the DNA, the chromatin is sheared and the resulting chromatin fragments are enriched

by immunoprecipitation for the protein of interest. This precipitate is reverse-crosslinked to ob-

tain DNA fragments, which are ampli�ed and then end-sequenced. The reads generated in this

way are mapped to a reference genome and genomic loci bound by the antigen are inferred by

an accumulation of sequencing reads. The accurate identi�cation of these loci will be the subject

of this thesis.

Due to genome-wide scalability and cost-e�ciency of ChIP-seq, hundreds of distinct pro-

teins and their modi�cations have been assayed to study underlying mechanisms of molecular

function in di�erent cell types [43,44]. Previously, ChIP-seq data have been used to characterize

transcription factor binding sites [45] and chromatin states [46]. As a derivative to antibodies,

histone modi�cation-speci�c interaction domains from chromatin binding proteins have been

used for precipitation [47].

WGBS

InWhole Genome Bisul�te Sequencing (WGBS) the isolated DNA is treated with bisul�te to con-

vert unmethylated cytosines into thymines prior to ampli�cation. When aligned to the reference

genomes, this substitution is detected and relative DNA methylation levels at this nucleotide in

the sample population can be quanti�ed.



Chapter 2

Mathematical Concepts

In the previous chapter I introduced the concept of read counts to investigate molecular prop-

erties such as gene expression and the location of DNA-associated proteins by Next Generation

Sequencing. This chapter provides mathematical prerequisites aiding the identi�cation of bio-

logical phenomena by means of modeling discrete read count distributions. Discrete statistics

provide an appropriate framework to infer biological properties of the data in the presence of

uncertainty. When many statistical tests are performed on the same data set a careful multi-

ple testing correction is essential. In my thesis I use mixture models and focus on maximum

likelihood parameter estimation via the Expectation-Maximization algorithm. Together the in-

troduced concepts provide the basis for the studies described in the following chapters of the

thesis.

2.1 Statistical Prerequisites

In Section 1.2 I described how a Next Generation Sequencing (NGS) experiment generates a pool

of DNA fragments that are then end-sequenced. The alignment of reads to the reference genome

gives rise to characteristic read count patterns across the genome. When dealing with count

data discrete statistics is the natural language to model processes that generate these random

variables.

2.1.1 Statistical Inference

Given a statistical model, hypotheses can be tested on the data. For example in a NGS experiment

we could ask if an observed non-negative read count at a genomic locus is substantially larger

11
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than expected under a statistical modelH0 on the read count distribution. Formally, a realization

x of a random variable X is assigned the probability of observing a value at least as extreme as

x under H0, e.g. for “at least as great as x” then this probability is given by

P = P (X ≥ x|H0 is valid) = 1−
x−1∑

k=0

P (X = k|H0 is valid), (2.1)

whereH0 is also referred to as the “null model” or “null hypothesis” and the calculated probability

P is called “p-value”. The p-value is the probability of sampling another observation from the null

hypothesis that is as far or farther away from the value of x. Usually, a threshold probability,

referred to as “signi�cance level” or α, is used to identify observations that reject H0 as their

generative process. For example, with α = 0.05 the probability that H0 gets falsely rejected is

5%, referred to as “type-1-error” or “false discovery”.

An appropriate framework to model read count data is provided by probability theory. As

a formal description of a statistical hypothesis a probabilistic model is interpretable. The inter-

pretability allows for the sampling of new observations and to reason from the data. Various

discrete distribution families have been used to model read count distributions, e.g. the Pois-

son [48] or the Negative Binomial [49, 50] distribution. For example, a researcher could encode

expected NGS read count patterns into a Poisson distribution. Let X denote a random variable

that follows a Poisson distribution with λ ≥ 0: X ∼ Pois(λ). The probability of observing a

non-negative integer x is:

P (X = x|λ) =
λxe−λ

x!
, (2.2)

where e denotes Euler’s number. This function is also referred to as the “probability mass func-

tion”. The main properties of a Poisson model are the independence and homogeneity of

observations. For details the reader is referred to [51].

The Poisson null model H0 can be used to identify substantial deviations in observed read

count patterns from an expected outcome. In our example, the researcher could approximate λ

by λ̂ = x̄ = 1
m

∑m
i=1 xi, the arithmetic mean of read counts for all genomic regions i = 0, . . . ,m

(Figure 2.1). Together with Equation (2.2) and (2.1) a p-value is assigned to each observation xi:

P (X ≥ xi|λ = λ̂) = 1− P (X ≤ (xi − 1)|λ = λ̂)

= 1−

xi−1∑

k=0

λke−λ

k!

= 1− e−λ̂

xi−1∑

k=0

λ̂k

k!
,
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Fig. 2.1 – ASimple PoissonModel forChIP-seqReadCountData. H3K4me3ChIP-seq read counts
in 500bp genomic windows (histogram) and Poisson model �ts for λ = x̄ = 3.58 (red solid
line) and λ = median(x) = 2 (blue dashed line).

wherePλ(X ≤ (xi−1)) = Fλ(xi−1) is the Poisson “distribution function” evaluated at (xi−1).

Using this Poisson framework the researcher could identify regions with an observed read

count distant from the read count that would be expected given λ̂. For example, a genomic

region with signi�cantly higher RNA-seq read coverage than expected by the model could be

indicative of a highly transcribed gene – or even just a certain exon of a gene that is very highly

transcribed. In ChIP-seq, a read count that is far from the expectation indicates the binding of

a protein. Also, highly DNA-accessible regions show much higher DNaseI-seq read coverage

than the genomic average. In summary statistical inference enables the reasoning of putative

biological phenomena generating observed NGS read count patterns.

2.1.2 Multiple Testing Correction and the T Method

The p-value is the probability that a test is going to produce a statistic at least as extreme assum-

ing the truthfulness of the null hypothesis. In computational biology hundreds or even thousands

of statistical tests are performed on the data set, e.g. testing each of ∼20,000 genes for di�eren-

tial expression. Every statistical test is deemed signi�cant for a threshold α, say 0.05. However,

with an increase in the number of performed tests the chance of incorrectly rejectedH0 for one

or more tests also increases, referred to as type-1-error accumulation. Say m = 20, 000 in-

dependent tests are performed, and it is known that all null hypotheses are true m0 = m, on

average 1, 000 tests are incorrectly called signi�cant atα = 0.05 (Figure 2.2A). Thus, the nominal

p-values are misleading due to the type-1-error accumulation (see [52] for review).
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An early and naïve approach is the Bonferroni method [53] which controls the family-wise

error rate (FWER), i.e. the chance that at least one true null was falsely rejected. To this end the

signi�cance level α is transformed by

α∗ =
α

m0
(2.3)

with m0 = m, which guarantees to control the FWER. However, this approach reduces power

in detecting true non-nulls if many tests are performed because generallym0 is smaller thanm.

Instead of the strict FWER control the Benjamini-Hochberg procedure [54] controls the ex-

pected proportion of discoveries that are false given at least one discovery, referred to as the

false discovery rate (FDR). This approach assumes that not all H0 are true by controlling the

FDR at a level α. Given a vector of sorted p-values p the method �nds the largest k such that

pi ≤
k

m0
· α (2.4)

withm0 = m. Alternatively, the procedure can adjust sorted p-values p via

pBHi = min
{

m0 ·
pi
i
, 1
}

. (2.5)

This method implicitly accounts for the fact that m0 ≤ m by penalizing p-values according to

their sorted index. Yet, an explicit account for the number of true null hypotheses m0 would

increase statistical power.

The proportion of true null hypotheses π0 = m0/m is estimated by adaptive FDR controlling

methods [55,56]. In general, the distribution of p-values is continuous and uniform on the inter-

val [0, 1] if allH0 are true (Figure 2.2A). In contrast, non-null p-values are skewed towards small

values (Figure 2.2B). In a real scenario the distribution of p-values is a composite of these two p-

value populations which impedes the determination ofm0 (Figure 2.2C). In principle,m0 can be

estimated by modeling these mixtures as mixture models (see [57] for review), e.g. a composite

of a Uniform distribution forH0 tests and a Beta distribution forH1 tests [58,59]. Mixture mod-

els will also be discussed in Section 2.1.5 of this book. Adaptive FDR controlling methods make

use of the fact that greater p-values most likely originate from true H0. For example, Storey’s

method [56] estimates π̂0 by counting the number of p-valuesmλ that are greater than a cut-o�

λ. Because of the uniformity of null p-values

π̂0 =
mλ

m · (1− λ)

can be calculated, traditionally for any λ ≥ 0.5. The estimated number of true null hypotheses

is then m̂0 = π̂0 ·m and can be plugged into Equations (2.3), (2.4) or (2.5) leading to an adaptive

and, thus, less strict multiple testing correction.

Alternatively to Benjamini-Hochberg corrected pBHi de�ned by Equation (2.5) FDR-adjusted
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Fig. 2.2 – TheAnatomy of the P-Value Distribution. Three types of P-value distributions are given:
(A) If allH0 are true, the P-value distribution resembles a uniform distribution in the interval
[0, 1]. (B) If allH1 are true, the P-value distribution is skewed towards smaller values. (C) In
a real scenario the P-value distribution is a mixture of H0 and H1.

p-values can be calculated with m̂0 by the expectation that at level α a type-1-error occurs at a

rate of α ·m0. To this end, Storey [56] de�nesR(γ) as the number of nominal p-values less than

or equal tho γ. The q-value is then given by

q1 = p1 ·
m̂0

R(p1)
and

qi+1 = max

{

qi, pi+1 ·
m̂0

R(pi+1)

}

.

Hence, these multiple testing corrected p-values q’s can now be �ltered based on a signi�cance

level α.

Note that these multiple testing correction procedures have been proven to perform well for

continuous data like microarray chip data. However, statistical inference on discrete NGS counts

with, for example, a Poisson model is impeded by the fact that there exists only a �nite number

of achievable p-values. The methods outlined above may not perform as required without some

adjustment. This adjustment is achieved by the “T method” which will be described in the next

section.

The T Method: Estimate π0 when Statistics Are Discrete

In statistical tests every hypothesis i is associated to a test statisticXi dependent on the statistical

model. For continuous data the test statistic Xi and the p-value pi are continuous. If H0 is
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uniform on [0, 1] the methods described in the previous section apply readily to this scenario.

Yet, for discrete data, the test statistic Xi and, hence, the p-value pi are discrete, i.e. there exists

only a �xed set Si of j achievable p-values dependent on the ancillary statisticAi. For example,

the contingency table margin represents the ancillary statistic in Fisher’s exact test [60] which,

in fact, varies with i. In this case the correct estimation of π0 is complicated by the dependence of

X and p on iwhich impedes multiple testing correction. Speci�cally, π0 gets over-estimated [61]

which leads to less statistical power in detecting true di�erences.

Variousmethods have been proposed to estimate π0 in discrete testing problems [62–64]. The

“T method” [61] represents a straight forward �ltering approach on p to improve on downstream

multiple testing correction: Remove all tests where the test statistic can never be rejected at a

nominal level α. Those tests have zero power – even with increasing e�ect size. Formally, the T

method generates a reduced list of p-values p′ for a signi�cance level α with

p′ = {pi ∈ p : ∃x ∈ Ai P (X ≥ x| H0 is valid) ≤ α} .

The so �ltered p′ can then be used for multiple testing correction, e.g. in Benjamini-Hochberg

because its distribution is more uniform on [0.5, 1].

In Computational Biology, zero power can result from a lowNGS read coverage. For example,

a conditional read count di�erence of 5 to 10 and of 50 to 100 both constitute a fold change of 2,

yet one intuitively attributes a higher con�dence to the latter. Even a greater fold change (e�ect

size) does not a�ect this implication. Please refer to Chapter 3 for the interplay of power and

e�ect size in the statistical analysis of NGS read count data.

2.1.3 The Binomial Distribution

Aside from the Poisson distribution introduced in section 2.1.1 the Binomial distribution is a

possible model for discrete count data. Let X denote a random variable that follows a Binomial

distribution with a number of trials n ≥ 0 and a success probability 0 ≤ θ ≤ 1: X ∼ Bin(n, θ).

The probability of observing k successes with 0 ≤ k ≤ n is given by the probability mass

function

f(k|n, θ) = P (X = k|n, θ) =

(
n

k

)

θk(1− θ)n−k, (2.6)

where
(
n
k

)
= n!(k!(n − k)!)−1, referred to as “binomial coe�cient”. The main property of the

Binomial distribution is that trials are independent and identical, i.e. all trials have the same

success probability. The variable X is an independent and identically distributed (iid) random

variable.

Each of the n trials is essentially an independent Bernoulli trial – an experiment with the

outcomes success or failure. This experiment is often illustrated as drawing balls with replace-
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ment from an urn containing two populations of balls, e.g. of black and red color. The Binomial

distribution is the joint probability distribution of k successes after n independent Bernoulli

trials. Thus, if n = 1 and k ∈ {0, 1}, the Binomial distribution is a Bernoulli distribution:

f(k|1, θ) = θk(1− θ)1−k.

Alternatively to the Poisson framework in the previous section a researcher could test every

observed read count xi in m genomic regions for deviations from the expected value under a

Binomial model. Here, the researcher could approximate the number of trials n by the total

number of reads sequenced in the NGS experiment and the success probability θ asm−1. Based

on Equations (2.1) and (2.6) a binomial test can be performed with

P (X ≥ xi|n, θ) = 1−

xi−1∑

k=0

P (X = k|n, θ)

= 1−

xi−1∑

k=0

(
n

k

)

θk(1− θ)n−k.

The Binomial framework yields similar results to the Poisson framework for large n and small θ

with λ = n · θ. This approximation of the Binomial distribution is good for n ≥ 20 and θ ≤ 0.05

which is usually true for NGS experiments.

The �rst two moments of the binomial distribution are

E[X] = µ = nθ

Var[X] = σ = nθ(1− θ)

where, both, the µ and σ are not necessarily discrete numbers. It shows that variance σ is depen-

dent on the mean µ, referred to as heteroskedasticity, which leads to a mis-speci�cation of the

second momemt, i.e. the variance. Hastie et al. [65] provides details on how Heteroskedasticity

a�ects models that assume uncorrelated and uniform modeling errors, e.g. regression analysis

or analysis of variance (ANOVA). NGS read count data are inherently heteroskedastic [50, 66]

which makes the binomial distribution (among other distributions) an appropriate model for

read counts which will be discussed in Chapter 3.

2.1.4 Sampling from Binomial Distributions

A probabilistic model is interpretable by means of sampling new observations from the underly-

ing distribution, called “prediction”, and reasoning on the data, called “inference”. On the other

hand, the model encodes assumptions about the data generation process which are needed for

a meaningful statistical analysis. The generative process for discrete data is sometimes referred

to as “sampling”. Sampling is useful for parameterizing a statistical model (section 2.2) and also

determining con�dence intervals (see [51] for details).
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In discrete statistics, unrestricted sampling corresponds to the Poisson model whereas sam-

pling from a �xed sample size n is described by the Binomial model. In Binomial sampling a

�xed number of observations n are collected and classi�ed according to a categorical given by

Equation (2.6). For example in NGS data, one of n reads either originates from a certain region

i, i.e. “success”, or it does not, i.e. “failure”. Thus, every region i provides a sample p of the

true success probability θ. Because every binomial trial is independent the “Rule for Sample

Proportions” applies which states that the distribution of these sample proportions can be ap-

proximated by a normal distribution given the numbers of successes k and failures n − k are

su�ciently large, i.e. n ≥ 10 and (n − k) ≥ 10. The sample distribution is approximately nor-

mal with E[p] = θ and Var[p] = n · θ(1 − θ). This property is one of the basic foundations of

parameter inference which will be discussed in Section 2.2.

If the observations are according to more than two labels, say k, a generalization of Binomial

sampling called Multinomial Sampling can be used to model the data. Let X be a random

variable distributed under a Multinomial Model with : X ∼ Mult(n, θ),

f(x|θ) =
n!

x1!x2! . . . xk
θx1

1 θx2

2 . . . θxk

k (2.7)

where n is �xed and θ = (θ1, θ2, . . . , θk) is a vector of population proportions. Each Xj is the

count of occurrences for population j in the sample which itself has a binomial margin distribu-

tion. A nice example for a Multinomial is a ChIP-seq experiment: What happens if the pool of

sequenced fragments is generated by multiple generative processes, i.e. two populations “ChIP-

enriched” and “non-ChIP-enriched”? I will leave this question to be discussed in Chapter 3. For

now, I will introduce mixture models as a model for a heterogeneous statistical population and,

later, describe how sampling data is used to estimate an underlying model in Section 2.2.

2.1.5 Mixture Models

In many computational biology studies the measured data are of complex nature and composed

of observations generated by di�erent statistical processes. For example, ChIP-seq read count

data is obtained for the genomic regions devoid of the antigen (background) and those bound by

the antigen (signal). In consequence the statistical population contains two or even more sub-

populations. If the researcher does not account for the latent sub-populations in his modeling

e�orts, the subsequent statistical inference most likely leads to false results. A sound formulation

in those cases is achieved by mixture modeling.

A mixture model is a mathematical formulation to model hidden sub-populations within a

data set in probabilistic terms. Themixture density for the total population consists of a weighted

combination of component densities. The sub-populations in the data are not labeled and, thus,

the unknown labels need to be inferred from the data itself.
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LetX be a random variable that follows a mixture distribution withK mixture components

each weighted by non-negative mixing proportions π = (π1, . . . , πK) and parametrized by

θ = (θ1, . . . , θK): X ∼ MD(X|K,π, θ). The probability mass function f is given by

f(x|K,π, θ) = P (X = x|K,π, θ) =
K∑

k=1

πkPk(X = x|θk),

where 0 ≤ πi ≤ 1 and
∑

k πk = 1. The parameters π and θ can be estimated with techniques

that are described in Section 2.2.2, e.g. Maximum Likelihood Estimation.

A desired key characteristic of mixture distributions is the increase in the variance of the

overall population. Uncertainty in θ causes a further increase in the unconditional variance of

the overall mixture model. Note that a mixture distribution can contain mixture components of

various parametric families. The herein describedmixturemodels are distinct from convolutional

models where one observation is a combination of multiple underlying random variables.

Many NGS data analysis problems require a classi�cation of genomic regions into distinct

classes. Mixture models ful�ll this task by means of the assignment of labels to each data point.

The model provides an estimate r̂ij of the probability that an observation i belongs to a compo-

nent j, called responsibility,

r̂ij =
πjPj(X = xi|θj)

∑K
k=1 πkPk(X = xi|θk)

, (2.8)

which is also called “posterior probability”. Based on the probability de�ned by Equation (2.8)

every observation i can be assigned to the latent (hidden) component zi that generated i most

likely via

zi = argmax
k∈1,...,K

r̂ik,

where z ∈ {1, . . . ,K}.

The explicit modeling of K sub-populations facilitates statistical inference based on only

one component of the mixture model. For example, a researcher could test if an observation i

originates from component k via Pk(X ≥ xi|θk) (see Equation (2.1)). In this caseH0 is described

by one component of the mixture model, e.g. an assumed background component.

When dealing with mixture models there shall exist a unique characterization for any model

in the family being considered, referred to as identi�ability. Formally, a model f(X|θ) is iden-

ti�able if

θ1 6= θ2 implies p(X|θ1) 6= p(X|θ2).

It follows that a model is non-identi�able if there are subspaces of the parameter space where the

family is not identi�able, e.g. π1 = 1. Identi�ability is closely linked to the concept of parameter

estimation and su�cient statistics which are described in the following section.
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2.2 Model Parameter Estimation

In Section 2.1.1 the Poisson model for read counts was estimated simply by the arithmetic mean

x̄ of counts x in all genomic regions. Such an ad-hoc method is not always applicable. Model

parameter estimation aims to �t a model based on the made observations. Here, I present the

concept of su�cient statistics and describe its close ties to parameter inference.

2.2.1 Su�icient Statistics

The mean is the simplest sample statistic on the data to summarize the information contained

in the sample into a single numerical value. No further information contained in the sample is

needed to parametrize the Poisson model. This is referred to as a Su�cient Statistic – a concept

which was introduced by the biologist and statistician Ronald Fisher in 1922 [67]:

“A statistic satis�es the criterion of su�ciency when no other statistic which can be

calculated from the same sample provides any additional information as to the value

of the parameter to be estimated.”

LetX be a set of independent identically distributed (iid) variables conditional on a parameter

θ, a statistic T (X) is su�cient for θ if the probability density function fθ(X) depends solely on

X through T (X). Formally Fisher’s factorization theorem [67] describes this relation by

fθ(X) = h(X)gθ(T (X)), (2.9)

where gθ(•) and h(•) are nonnegative functions. A statistic T (x) can now be tested for su�-

ciency by testing h(x) for independence of θ via h(x) = fθ(x)
gθ(t)

. From the factorization theorem

it follows that for two observations x1 and x2 the estimate θ̂ is identical if T (x1) = T (x2).

The Poisson distribution is a distribution of the exponential family which is a prevalent set

of probability distributions including also the Normal or Binomial distribution. For every ex-

ponential family distribution with parameter θ its probability mass function f can be written

as

fθ(X|θ) = h(X) exp(η(θ) T (X)−A(θ)),

where T (•) is a su�cient statistic, η(•) is called the “natural parameter function” and A(•) is

called the “log-partition function”. When this form is compared to Equation (2.9) it becomes

evident that it is a readily applicable framework for su�cient statistics. In fact, for every expo-

nential family distribution there exist su�cient statistics. Below I derive a su�cient statistic for

the Binomial distribution because it is relevant for the following chapters of this thesis.
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A Su�cient Statistic for the Binomial Family

The Binomial distribution family is an exponential family distribution described by two pa-

rameters, namely the number of trials n and the success probability θ. In most cases n is �xed

and known and only θ has to be estimated.

In contrast to the Poisson distribution the arithmetic mean x̄ is not a su�cient statistic for

θ. The Factorization theorem shows that h(x) still depends on θ for T (x) = t = 1
m

∑m
i=1 xi and

gθ(t) = fθ(t):

h(x) =
fθ(x)

gθ(t)

=

∏m
i=1

(
n
xi

)
θxi(1− θ)n−xi

(
n
t

)
θt(1− θ)1−t

=

(
n
x1

)
θx1(1− θ)n−x1 ·

(
n
x2

)
θx2(1− θ)n−x2 · . . . ·

(
n
xm

)
θxm(1− θ)n−xm

(
n
t

)
θt(1− θ)1−t

=

(
n
x1

)
·
(
n
x2

)
· . . . ·

(
n
xm

)
· θ

∑
x(1− θ)m−

∑
x

(
n

1

m

∑
x

)
θ

1

m

∑
x(1− θ)1−

1

m

∑
x

=

(
n

x1

)

·

(
n

x2

)

· . . . ·

(
n

xm

)

· θ
m−1

m

∑
x(1− θ)m−1 −m−1

m

∑
x.

On the other hand the sum of all successes in all observed trials T (x) = t =
∑m

i=1 xi is a

su�cient statistic for θ because the sum of the successes is also distributed as a binomial t ∼

Bin(mn, θ). In this case it can be shown that h(x) is independent of θ

h(x) =
fθ(x)

gθ(t)

=

∏n
i=1

(
n
xi

)
θxi (1− θ)n−xi

(
mn
t

)
θt(1− θ)n−t

=

(
n
x1

)
θx1 (1− θ)n−x1 . . .

(
n
xm

)
θxm(1− θ)n−xm

(
mn
t

)
θt(1− θ)n−t

=

(
n
x1

)
. . .

(
n
xm

)

(
mn
t

) .

Su�cient Statistics for Mixtures of Exponential Family Distributions

In Section 2.1.5 Mixture Models were introduced. Because every exponential family distribu-

tion has su�cient statistics they are mathematically amenable and commonly used as mixture

components. In consequence, the log density of a K-mixture model parameterized by ν can be
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expressed as

log p(x|ν) = ηx +
∑

k

tk(x)νk, (2.10)

where ηx is a normalization constant and tk is a su�cient statistic for component k. It can be

seen that log p(x|ν) depends on ν solely through t which makes t a su�cient statistic for p(x).

Details are given in Bishop, 2007 [68]. In the next sections parameter inference based on su�cient

statistics will be explained.

2.2.2 Maximum Likelihood Estimation

In some cases simple statistics on the data can yield a convenient model parametrization. How-

ever in more sophisticated cases like mixture models a function can be de�ned to compute the

probability of the measured data given a certain “model realization”, referred to as “likelihood”.

Let X be an iid random variable with observations x = x1, · · · , xm under a parametric model

de�ned by θ: xi ∼ fθ(x). The function fθ(xi) describes how likely xi is observed given θ. On

the other hand, if xi is �xed, fθ(xi) describes how likely a model de�ned by θ could give rise to

xi. The likelihood L for a parametrization θ is given by the likelihood function

L(θ|x) =

m∏

i=1

fθ(xi).

The log-likelihood is de�ned by

logL(θ|x) = ℓ(θ) = log
∏

fθ(x)

=

m∑

i=1

log fθ(xi)

=

m∑

i=1

ℓ(θ|xi) (2.11)

where ℓ(θ|xi) = log fθ(xi) is called a “log-likelihood component”.

Essentially, for exponential family distributions, the log-likelihood function is a θ-linear com-

bination of the su�cient statistics of the model. This results in a mathematically manageable

analysis by partial derivatives. To estimate a parameter θj the derivative of the log-likelihood

with respect to θj is set to 0 in

∂

∂θj
ℓ =

∂

∂θj
log fθj (xi)

!
= 0. (2.12)

Conveniently this derivative can be solved analytically, referred to as a closed form solution

(see [68] for details).
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The method of maximum likelihood estimation (MLE) (see, for example, [65]) �nds a

value θ = θ̂ that maximizes Equation (2.11) in the parameter space by the criterion

θ̂ = argmax
θ

ℓ(θ|X).

Alternatively, by setting the Derivative (2.12) to 0 stationary points can be identi�ed with

0 =
∂

∂θ̂
ℓ =

∂

∂θ̂
log f

θ̂
(xi).

The extremum estimator is consistent, i.e. it converges to the true value θ0 for in�nitely large

sample sizes. In NGS experiments millions of data points are generated which makes MLE a

method of choice. However, there exist more or less similar alternatives: If the sample size is

smallBayesian inference can encode prior information intomaximimum a posteriori estimation

(detailed in [69]). If used with a non-informative prior distribution this estimation is essentially

analogous to MLE. Another simple alternative called Bootstrapping [65] allows for parametric

and also model-free estimation. It is based on resampling of observations which makes it less

consistent than MLE or Bayesian inference.

MLE for Mixture Models

Mixture modeling is a missing data problem where the sub-population membership of the data

points is unknown. The latent (hidden) labels of data points have to be estimated together with

the parameters of K distributions in the mixture distribution. Denote the iid random variable

by X which follows a K-mixture distribution with mixing proportions π and parameter θ. Let

K be �xed and ν = {π, θ} the log-likelihood is de�ned by

ℓ(ν) =
N∑

i=1

ℓ(ν|xi)

=
m∑

i=1

log

{
K∑

k=1

πkfθk(xi)

}

.

Next, the derivative with respect to a parameter θj is

∂

∂θj
ℓ =

m∑

i=1

1
∑

k πkp(xi|θk)
πj

∂

∂θj
p(xi|θj)

=

m∑

i=1

πjp(xi|θj)
∑

k πkp(xi|θk)
︸ ︷︷ ︸

wij

∂

∂θj
log p(xi|θj). (2.13)
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Note that this derivative of the log-likelihood is simply the ordinary likelihood of the parametric

model of component j weighted by wij (see Equation 2.12). This is an advantageous feature of

mixture models for maximum likelihood estimation as will be discussed in the next section.

2.2.3 The Expectation-Maximization Algorithm

Sometimes the likelihood equations can not be solved directly. For example, hidden sub-popula-

tionmemberships inmixturemodeling render theMLE intractable, i.e. X is dependent on a latent

discrete variable Z . The popular Expectation-Maximization (EM) algorithm [70] represents an

elegant solution for MLE when the model depends on hidden variables. The goal is to maximize

the likelihood function of the parameter ν for Z given the variables X

ℓ(ν) = log p(X|ν) =
∑

Z

log p(X,Z|ν),

where Z is unknown and has to be inferred from the data (see below). The EM algorithm is an

iterative method that rotates between two steps: In the expectation step the algorithm calcu-

lates the expectation of the log-likelihood for the current parameter estimate. In the following

maximization step the parameter ν is updated to maximize the expected log-likelihood. The al-

gorithm terminates after a given number of steps or if the likelihood can not be further increased

subject to a number ε > 0.

The maximization problem in EM amounts to iterative updates of ν to achieve a step wise

improvement on the likelihood. However, in this missing data problem the true value of Z is

unknown and can only be inferred based on the knowledge of X and ν. Formally, the posterior

distribution p(Z|X, ν) provides an expected value for Z which is used to estimate ℓ in the ex-

pectation step. At iteration t, the expectation ℓ̇ can be calculated conditional on ν(t−1) andX via

the objective function

ℓ̇(ν, ν(t−1)) =
∑

Z

p(Z|X, ν(t−1)) log p(X,Z|ν). (2.14)

In the maximization step, ν(t) is calculated by maximizing ℓ̇

ν(t) = argmax
ν

ℓ̇(ν, ν(t−1)). (2.15)

In the beginning ν is initialized with arbitrary values ν(0). More detail on the EM algorithm is

provided in [68].

The EM algorithm proves useful and performant especially for distributions of the exponen-

tial family: Su�cient statistics have to be added up to calculate the expectation, such that the

maximization is done on a linear function. In consequence closed form updates at each iteration



2.2. Model Parameter Estimation 25

can be formulated which speeds up the EM algorithm substantially. A major drawback of the

EM method constitutes its convergence to local maxima – dependent on the initial parameter

ν(0). A local maximum is not necessarily the maximum likelihood estimator if the likelihood

distribution is multimodal which is usually the case for mixture models [71]. However, results

of multiple instances with di�erent initialization can be compared with respect to ℓ̇. Alterna-

tively to EM, Markov Chain Monte Carlo performs a posterior sampling via Bayes’ theorem but

is susceptible to non-identi�ability.

The EM Algorithm for Mixture Models

Section 2.2.2 described an advantageous property in MLE for mixture models: The log-likelihood

derivative given by Equation (2.13) with respect to θj is simply a weighted ordinary likelihood of

the model component j. It follows that, if the model components are from the exponential family,

closed form updates are possible. The problem remains that the weights wij depend themselves

on the latentmixing proportions π and the parameter θ. The EM algorithm calculates an expected

value for πj by the posterior probability P (Z = j|X = x, π, θ) which breaks the cycle.

The EM algorithm for mixture models is initialized with the parameters θ(0) = θ
(0)
1 , . . . , θ

(0)
K

and π(0) = π
(0)
1 , . . . , π

(0)
K . At every iteration t the weights wij are computed based on ν(t−1) via

wij = p(Z = j|X = xi, π, θ) =
π
(t)
j p(xi|θ

(t)
j )

∑

k π
(t)
k p(xi|θ

(t)
k )

.

Based on wij the log-likelihood is maximized

ℓ(θ) =

N∑

i=1

∑

j

wij log p(xi|θj).

The EM algorithm iterates until no further improvement in the log-likelihood ℓ is achieved, i.e.

∆ℓ ≤ ǫ.
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Part II

Normalization of NGS Read Count

Data

The robust normalization method described in this part was developed by me and Ho-Ryun Chung

from the Otto-Warburg-Laboratory: Epigenomics at Max Planck Institute for Molecular Genetics in

collaboration with researchers from the Max Planck Institute of Immunobiology and Epigenetics,

Freiburg; the Leibniz Research Centre for Working Environment and Human Factors, TU

Dortmund, Dortmund; the Department of Genetics and Epigenetics, University of Saarland,

Saarbrücken and the Institute of Clinical Molecular Biology, Christian-Albrechts-University of

Kiel, Kiel. A preprint is published in bioRxiv [2] as

Johannes Helmuth, Na Li, Laura Arrigoni, Kathrin Gianmoena, Cristina Cadenas, et al. normR:

Regime Enrichment Calling for ChIP-seq Data. bioRxiv, page http://dx.doi.org/10.1101/082263,

October 2016. http://biorxiv.org/content/early/2016/10/25/082263

http://biorxiv.org/content/early/2016/10/25/082263
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Chapter 3

The normR Framework –

Robust Normalization of Read Count Data with

Mixture Models

This chapter presents the “normR Framework” – a data-driven computational framework to nor-

malize read count data with a binomial mixture model. The model accounts for the e�ects on

the overall read statistics caused by the presence of signal, e.g. read accumulations in certain re-

gions, and technical biases, e.g. sequencing depth. In this thesis the “normR” approach is mainly

applied to the analysis of protein binding sites from ChIP-seq read count data, yet it is not limited

to this type of NGS read counts, but can also be applied to RNA-seq, DNaseI-seq or ATAC-seq

data.

3.1 Motivation

Section 1.2 described how Next Generation Sequencing (NGS) based techniques can be used to

measure distinct molecular properties in a population of cells. For example in ChIP-seq, antibod-

ies are used to preferentially enrich for speci�c protein-DNA complexes. Therein, the probability

of selecting a DNA fragment depends on the presence or absence of the protein of interest. In this

chapter I will describe how sequencing can be seen as a sampling process where the �nal pool of

fragments contains quantitative information on the investigated molecular property across the

genome. In ChIP-seq, this quantity is the genome-wide DNA binding pattern of a protein. The

spatial distribution of the sampled fragments is estimated by mapping the reads to the genome

29
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which results in a characteristic read count pattern. For example, more ChIP-seq reads are ob-

served at genomic loci bound by the protein than at loci devoid of the protein. However, some

ChIP-seq reads still map to the regions devoid of the protein because the ChIP enriches rather

than selects for the protein-containing fragments.

The analysis of the read count patterns involves the in silico identi�cation of genomic regions

characterized by a biological signal of interest – a task that requires the discrimination of signal

from background. Intuitively, the “signal-regions” should be characterized by a read count which

is greater than the read count in “background-regions”. For example in RNA-seq, a signal could

be the elevated transcription of a gene X in diseased subjects if compared to a healthy control

whereas other genes remain unchanged. An increased number of mRNA transcripts results in

more RNA-seq reads accumulating in the exons of gene X (signal-regions). The identi�cation

of this conditionally di�erential transcription is also referred to as “di�erence calling”. How-

ever, the identity of the signal-regions and, ultimately, the expected read enrichment therein is

unknown a priori, i.e. the data are not labeled.

A meaningful interpretation of read count patterns requires the mitigation of the e�ects of

technical biases which in�uence the expected read counts. These biases arise, for example, from

copy number variations, sequencing biases or mapping ambiguities (reviewed in [72, 73]). Read

counts obtained in a control sequencing run without speci�c signals are one way to correct for

biases in the experiment. The adjustment of the read count pattern to the control, however,

requires a “normalization” to account for di�erences in sequencing depths and the presence

of signal in the experiment. To this extent, a normalization factor can correct the average ratio

between the control and the experiment. Most importantly, this factor has to be estimated based

on background-regions only, since an estimation based on all genomic regions results in a bias

towards the prevalent read enrichment in the signal-regions. In other words, the e�ect of the

read accumulations in signal-regions on the overall read statistics has to be accounted for. If

this e�ect is not taken into account, the normalization and, consequently, the di�erence calling

su�er from low sensitivity (see below). Thus, a proper normalization requires the identity of

background-regions.

The two tasks of di�erence calling and normalization in read count data are mutually de-

pendent (Figure 3.1): On the one hand, the discrimination of signal- and background-regions

requires normalization to account for technical artifacts but, on the other hand, the normaliza-

tion requires the knowledge of the regions that remained unchanged, i.e. background-regions.

In consequence, normalization and di�erence calling are inseparable – they are two faces of the

same coin.

In my thesis I illustrate and tackle this interlinked dependency in the problem of the identi-

�cation of protein binding events from ChIP-seq read count patterns. In a ChIP-seq experiment,

a population of chromatin fragments is obtained by the sonication of the chromatin. Next, an-
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Difference

Calling
Normalization

Fig. 3.1 – The Inter-Dependency of Di�erence Calling and Normalization. Di�erence Calling
and Normalization in the analysis of read count patterns are mutually dependent and inter-
linked. On the one hand, Di�erence Calling requires normalization to discriminate signal-
from background-regions and, on the other hand, a proper normalization requires the knowl-
edge of background-regions.

tibodies are used to enrich for fragments carrying a protein of interest (see Section 1.2.2 for

details). The signal-regions correspond to genomic loci bound by the protein which is re�ected

by an accumulation, i.e. “enrichment”, of ChIP-seq reads. Because the ChIP only enriches

rather than selects for protein containing fragments, the probability of observing a read at ge-

nomic loci devoid of the protein is low but not zero. Those loci represent the background-regions.

Bearing this in mind, I will show how a ChIP-seq experiment can be seen as multinomial sam-

pling trial where the average read enrichment in signal-regions a�ects the average read count

in background-regions (Section 3.2.1). Moreover, the more regions are enriched by the ChIP, the

lower the signal-to-noise ratio (S/N) becomes at a �xed sequencing depth (Section 3.2.2).

The discrimination of enriched regions from background-regions in ChIP-seq read count pat-

terns is an unsupervised learning problem, referred to as “enrichment calling” (sometimes also

“peak calling”). Enrichment calling depends on an appropriate normalization with respect to a

control to mitigate aforementioned biases. The ChIP-seq control is obtained, for example, by se-

quencing the sonicated chromatin without speci�c enrichment (Input). A correct normalization

factor should be estimated based only on the regions devoid of the protein. The normR approach

uses a mixture model (Section 2.1.5) to break the mutual dependence as I will outline in the next

section. A detailed comparison to previously developed methods [74–80] in Chapter 4 illustrates

the superior performance of the normR approach.

3.2 The normR Approach

Based on the thoughts on NGS read count patterns above I developed a robust and extendable

framework for joint normalization and di�erence calling, called “normR” (recursive acronym:

“normR obeys regime mixture rules” ). Here, I explain the normR approach by taking the exam-

ple of ChIP-seq data enrichment calling. Firstly, I show that a ChIP-seq experiment relates to
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Fixed and Finite 

Sequencing Depth

(a) Control (No Specific Signal)

(b) Treatment (Few Signal-Regions)

(c) Treatment (Many Signal-Regions)

Fig. 3.2 – A Sequencing Experiment Constitutes a Multinomial Sampling Trial. A �nite num-
ber of sequenced reads are generated in a sequencing experiment (left; 20 reads depicted as
red balls) and mapped to the genome (right). The number of reads is usually quanti�ed in
�xed-size genomic bins, exempli�ed as 10 black buckets. (a) If there are no signal-regions
present, all regions are background-regions and their expected read count is 2. (b) In few
signal-regions (blue overlay; 1 bucket, 10% of genome) the expected read count is high (8)
but it is decreased in background-regions (∼1.3). (c) With more signal-regions (3 buckets,
30% of genome) the expected read count in background-regions is ∼1.3 but the expected
read count in signal-regions is decreased (∼3.7).

sampling of chromatin fragments which can be seen as a multinomial sampling trial where read

counts in background- and signal-regions are inter-dependent. Secondly, I discuss how the over-

all number of signal-regions a�ects the S/N and how statistical power can be increased in low

S/N settings. Finally, the normR model is described. It uses a binomial mixture model which,

in its simplest incarnation, uses two mixture components corresponding to background B and

enrichment E. normR [4] was implemented as an R package [81, 82] with performance-critical

routines optimized for performance as C++ code.

3.2.1 Sequencing is a (Multinomial) Sampling Trial

During a ChIP experiment a population of chromatin fragments are obtained by sonication of

chromatin. Antibodies preferentially bind chromatin fragments that carry an antigen of interest.

Note, these antibodies bind not exclusively antigen-DNA complexes – ChIP only enriches rather

than selects antigen containing chromatin fragments. More speci�cally the probability to draw a

fragment depends on the presence or absence of an antigen. If present, the probability is high, if

absent, the probability is lower but not zero. The spatial distribution of these sampled fragments

is then estimated by end-sequencing and mapping the corresponding reads to the genome (see

Section 1.2). The sequencing of the ChIP library is a multinomial sampling process (described

in Section 2.1.4) which induces dependencies between the regions: As the total number of reads

obtained from one sequencing run is �xed and �nite, the increase of reads in some regions due

to the ChIP enrichment (antigen present; “signal-regions”) leads to a decrease in all remaining

regions (devoid of antigen; “background-regions”). Figure 3.2 illustrates this idea for proteins

with few or numerous binding sites across the genome. An adequate normalization has to take

into account this inter-dependency of read coverage.
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Estimation on Background-RegionsEstimation Based on Sequencing Depths
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Fig. 3.3 – The Sequencing Depth Ratio Is a Background Estimation Biased towards Signal-
Regions. The naïve background estimation based on the sequencing depth ratio θ∗ is shown
in the top left panel. The herein proposed background estimation based on the sequenc-
ing depth ratio θB is illustrated in the top right panel. θB is the ratio of sequencing depths
weighted by the probability of each region to be background. The ratio si

si+ri
of read counts

in treatment si and control ri (lower left panel) shows a characteristic bimodality represent-
ing background-regions (mode≈ 0.19) and signal-regions (mode≈ 0.9). When compared to
θ∗, θB improves on the estimation of the background population. Consequently, the inferred
normalization factor cB approximates the read coverage in background-regions well (lower
right panel).

To infer signal-regions the read densities obtained by ChIP-seq experiment are compared

to the corresponding counts obtained by a control experiment, e.g. by sequencing the sonicated

chromatin (Input). This approach addresses some systematic biases, like copy number variations,

sequencing biases, mapping ambiguities or chromatin structure [72,83,84]. A region i should be

called “enriched by ChIP” only if the number of reads from ChIP si is substantially greater than

expected given the number of reads from Input ri. To this extent, a normalization factor cB is

required to de�ne a statistically sound Null hypothesis to test whether the observed ChIP read

counts are signi�cantly greater than expected given the control.

A simple example illustrates the dependency of cB on the outcome of the ChIP experiment: If

twice as many reads are sequenced in the ChIP than in the control, the read counts per region in

the ChIP are on average expected to be twice as high as in the Input, i.e. the ratio of sequencing
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depths is 2. In fact, with no speci�c enrichment, the normalization factor cB is∼2, i.e. the number

of reads in ChIP-seq si is twice the number in the Input ri for every region i. However, with

speci�c ChIP enrichment, the normalization factor cB is ≤ 2 because it depends on the average

ChIP enrichment and, also, on the total number of signal regions. In particular, cB shrinks as

the number of signal-regions and the level of enrichment in those regions increases. In this case

a naïve ratio of sequencing depths is insu�cient to estimate cB correctly. Figure 3.3 illustrates

how the ratio θB can be estimated based on a probability weighted sequencing depth ratio. The

estimation of the normalization factor cB = θ
(1−θ) requires the identity of background-regions,

albeit their identi�cation requires normalization itself. Again this illustrates that normalization

and the identi�cation of signal-regions are two sides of the same problem – this problem is the

motivation of the normR approach.

Previously developed approaches estimate cB either by the ratio of sequencing depths [74,

76], by the ratio of ChIP- and control read counts summed over ad hoc-chosen background-

regions with �xed width [77, 78, 80], or by the data-driven identi�cation of background-regions

[85,86]. A detailed comparison of their performance to normR’s cB estimation is given in Chap-

ter 4.

3.2.2 Deliberations on the Signal-to-Noise Ratio (S/N)

Apart from the inter-dependency of di�erence calling and normalization, a low S/N can lead

to low power in statistical analysis of a sequencing experiment and, thus, reliable assertions

about the signal-regions can not be made, e.g. protein binding sites in a ChIP-seq experiment. In

sequencing experiments, the S/N depends mainly on two factors: the fraction of signal-regions

and the overall number of sequenced reads. Figure 3.2 illustrates that the more signal-regions

are present, the lower becomes the S/N at a �xed sequencing depth N (also reviewed in [87]).

The concept of S/N relates to the statistical concept of “e�ect size” which measures the

strength of a phenomenon. The standardized e�ect size is the di�erence in means of s and r

standardized by the pooled standard deviation given by

d =
s̄− r̄

σ
, (3.1)

where σ =
√

(Ns−1)σ2
s+(Nr−1)σ2

r

Ns+Nr−2 is the pooled standard deviation for two independent samples

of sizeNs andNr . This quantity is also referred to as “Cohen’s d” [88] and relates to the concept

of S/N. Note that with increasing sample sizeN the sample average s̄ converges to the expected

valueE[s] = µs and the sample variance σ2 decreases, referred to as the “Law of Large Numbers”

(detailed in [89]).

The e�ect size d forms a closed system of statistical power together with the signi�cance

level α and the sample size N (Figure 3.4). The more liberal α and/or the greater N and/or the



3.2. The normR Approach 35

Sample Size

N

Significance Level

α

Effect Size

d

Fig. 3.4 – The Closed System of Statistical Power. The more liberal α and/or the greater the sample
sizeN and/or the greater the observed e�ect d, the more likely a signi�cant e�ect is detected.

greater d, the more likely a signi�cant e�ect is detected, i.e. the more powerful the test. Assume

α is held �xed to some value, say 0.05, there exist two set screws to improve the power of the test

for a sequencing-based study, namely d andN : The e�ect size dmay be increased by increasing

the signal strength. For example, a more speci�c antibody could be used in the ChIP. However,

an antibody with improved a�nity for the antigen is not always available. On the contrary, the

sample size N relates to the expected read counts per region which can easily be increased by

sequencing deeper. The decreasing cost of NGS experiments allows for a convenient increase

of the sequencing depth to boost statistical power in low S/N sequencing data (i.e. numerous

signal-regions). Yet, it persists the need of a statistical sound null hypothesis based on a proper

normalization factor cB .

3.2.3 The normR Method

The normR method tackles the described problem of inter-dependency of di�erence calling and

normalization by performing both tasks simultaneously to identify genomic regions harboring a

statistically relevant signal. To this extent, it models the read counts from treatment, e.g. ChIP-

seq, and control, e.g. Input, as a binomial mixturemodel. Given two vectors of integers r (control)

and s (treatment) of identical length, normR models the read counts from the treatment s and

control r by a binomialm-mixture model:

ki ∼ Categorical(π)

Ni = si + ri|ki = j ∼ Bin(Nj , θj) (3.2)

with i = 1, . . . , n and
∑

πj = 1;πj ∈ [0, 1]; j = 1, . . . ,m. Given this model, normR follows a

two step procedure: (i) A binomialm-mixture model is �t by the expectation maximization (EM)

algorithm [70] (refer to Section 2.2.3) using the likelihood function,

L = P (π, θ,Ni|si, ri) =
n∏

i=1

(
Ni

si

) m∑

j=1

πj · θ
si
j · (1− θj)

ri ; (3.3)
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and (ii) each (ri, si) is tested for signi�cance against a �tted background component to label

signal-regions.

In a preprocessing stage, the vectors r and s are �ltered for entries where r = s = 0 because

no assertion about their signal state can be made. Secondly, a hash of unique (ri, si) tuples

is created which improves run time substantially. Because there exist only a �xed number of

discrete tuples and many tuples are observed multiple times, this approach vastly reduces the

number of computations needed.

In the �rst step of the algorithm, the EM algorithm is run with initial values π sampled from

U(0, 1) and θ sampled from U(0.001, θ∗) where θ∗ denotes the ratio of sequencing depth ratios

(Section 3.2.1, Figure 3.3). Upon convergence of the EM algorithm, e.g. ∆L ≤ ǫ = 0.001, the

background component B is determined to be the component with θB that is the smallest of

{θ1, . . . , θm}. By default the EM algorithm is run 10 times to �nd the parametrization with

greatest L.

In the second step, every region i is tested for signi�cance against the �tted background

component B with

Pi = P (si ≥ x|Ni, θB) = 1−

si−1∑

k=0

(
Ni

si

)

θsiB · (1− θB)
Ni−si .

Obtained P-values are transformed to q-values for FDR correction [56] using the T method as de-

scribed in Section 2.1.2. The applied T method ensures tests are performed only for observations

with su�cient statistical power to make reliable assertions. Note that by nature the binomial

mixture model assumes the independence between regions which is valid for a su�ciently large

bin size that is greater than the average fragment size.

In a last step, the regularized and normalized enrichment based on the �tted background B

is calculated for every region i. To account for noise in low count regions, si and ri are adjusted

by adding model-derived pseudo counts. Given the posterior probability for the background

component B

P (Xi = B|si, ri) =
πB · θsiB · (1− θB)

ri

∑m
j=1 πj · θ

si
j · (1− θj)ri

the pseudo counts are taken to be the average read counts in Input αr and ChIP αs de�ned by

αr =

∑n
i=1 P (Xi = B|si, ri) · ri
∑n

i=1 P (Xi = B|si, ri)
and

αs =

∑n
i=1 P (Xi = B|si, ri) · si
∑n

i=1 P (Xi = B|si, ri)
.
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The regularized enrichment e∗ is calculated with

e∗i = log

(
si + αs

ri + αr

·
αr

αs

)

,

where (αr/αs) regularizes e∗i , i.e. shifts to 0, for background-regions. To account for the average

signal in a component j 6= B, e∗i is normalized by the “enrichment factor” 〈fj〉, i.e. the average

fold enrichment, given by

〈fj〉 =
θj

1− θj
·
1

cB
,

with cB = θB
1−θB

which represents the �tted background normalization factor. The regularized

and normalized enrichment e
(j)
i is then obtained via

e
(j)
i =

e∗i
log〈fj〉

.

The normR enrichment can be used as a background normalized signal estimate in downstream

analyses or for visualization as described in the following chapters of this book.

In its simplest incarnation normR has two components, i.e. m = 2, representing background

B and signal E, e.g. ChIP-seq enrichment over Input. In this setting the model has three free

parameters, i.e. θB , θE and πB . θB and θE are the expected fraction of reads in the ChIP-seq

over the sum of reads from ChIP and Input per region for the background-regions and signal-

regions, respectively. πB is the proportion of regions that belong to the background B. The

proportion of signal-regions πE is simply (1 − πB). From the deliberations in the previous

sections it follows that, for the true background θB , θB ≤ θ∗ where θ∗ denotes the expected

fraction of reads from ChIP taking into account only sequencing depth di�erences (Fig. 3.3). In

the case of no enrichment one has πB = 1 and θB = θ∗. The de�nition of regions is the last

“implicit” parameter, e.g. promoter �anking regions or �xed width tiling windows across the

whole genome. This approach is detailed in Section 4.2.2 where I show the applicability and

performance of the normR approach for calling ChIP-seq enrichment.

3.2.4 Why Not Use a Negative Binomial or Multinomial Distribution?

TheNegative Binomial distributionmodels the number of successes in a sequence of iid Bernoulli

trials before a speci�ed number of failures occurs (see also [89]). Denote a random variable X

counting the number of trials n given s successes with a success probability θ one has

f(n; s, θ) = P (X = n) =

(
n− 1

s− 1

)

θs(1− θ)n−s.

Expect for the binomial coe�cient, this density is equivalent to the Binomial distribution, i.e.

θs(1− θ)n−s. Recently, numerous studies [46, 49, 66] have shown the applicability of this distri-
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Fig. 3.5 – A Negative Multinomial Mixture Fit Does Not Model The Interrelation between
Treatment and Control. The normR framework models the relation of treatment to con-
trol in background B and foreground F (left; Decision boundary based on the binomial test
given). A 2-MixtureModel of NegativeMultinomials models the density of read counts in two
dimensions resulting in a separation of low and high count regions (middle; Decision bound-
ary based on likelihood ratio given). Low count regions are not classi�ed as background in
the Negative Multinomial Mixture and the normR classi�cation is more accurate (right). See
also Supplementary Fig. A.1.

bution to model NGS counts. Despite the fact that this model is generally accepted as a natural

formulation for the over-dispersed (i.e. heteroskedastic) NGS count data, I decided to use a mix-

ture of Binomial distributions because of three reasons:

(i) The maximum likelihood estimation of a mixture of binomial distributions is computa-

tionally more malleable due to closed form updates for mixtures of the exponential family in the

EM algorithm (see Section 2.2.2) than �tting a mixture of negative binomial distributions with

numerical methods (see, for example, [69]).

(ii) The normR framework accounts for heteroskedasticity by encoding prior knowledge on

the number of mixture components, i.e. backgroundB and a �nite set of signal componentsF . In

Chapters 5 and 6, I explain howmultiple predetermined signal components facilitate an accurate

and meaningful model �t to ChIP-seq data. Here, the normR framework is able to deal with

multimodality in the read count distribution, i.e. distinct foregrounds. The signal component

could comprise an a priori unknown number of distinct signal “regimes” and, in the future, it

might be desirable to encode this uncertainty in the mixture model, e.g. by modeling the signal

component as a β-Binomial distribution. The Negative Binomial distribution can be expressed

as a continuous mixture of Poisson distributions, i.e. the mean is not �xed, with the Poisson

parameter λ being a random variable distributed as a gamma distribution. However, the Negative

Binomial distribution is unimodal and it may be di�cult to project the presence of distinct signal

regimes that give rise to a multimodality in the read distribution. In principle, a mixture of
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Negative Binomials or Negative Multinomials could be used (see below).

(iii) The normR framework uses a mixture of Binomial distributions to model the “inter-

relation” between the counts in treatment s and control r rather that explicitly modeling the

density of points N = r + s. Consequently, the normR �t can be seen as a regression of the

treatment versus the control conditional on the mixture component. As the multivariate gen-

eralization of the Negative Binomial distribution, the Negative Multinomial distribution, has

recently been used to model read counts in ChIP-seq data [46]. Figure 3.5 compares the normR

model to a Mixture Model of Negative Multinomials that models the read count density in two

dimensions. Thereby the latter models the high density of points in regions with few treatment s

counts (background-regions). This �t separates high and low count regions e�ectively but does

not model the relation of treatment to control for background regions over a range of count val-

ues. In consequence, putative background regions with high and low control counts fall into two

di�erent components. Even with an increased number of Negative Multinomial components,

the model does not �nd one foreground component that models the signal – most likely due to a

high variance (see (ii); Supplementary Fig. A.1). The normR framework correctly estimates the

relation of treatment to control and its statistical test results in an adequate decision boundary.

3.3 Outlook

In the following chapters I demonstrate the normR framework’s suitability in three di�erent

scenarios published also in [2]:

(i) Chapter 4 introduces “enrichR” which facilitates the enrichment calling for high (H3K4me3)

and low (H3K36me3) S/N data and shows better performance than previously published

methods [74–80];

(ii) Chapter 5 describes “regimeR” which discovered two previously undescribed H3K27me3

and H3K9me3 heterochromatic regimes of broad and peak enrichment that are correlated

to sequence features and binding of histone methyltransferase recruitment alike and are

indicative for heterochromatin dynamics in the HepG2 human hepatocarcinoma cell line;

(iii) Chapter 6 explains “di�R” which calls di�erential H3K4me3 or H3K27me3-enrichment be-

tween HepG2 cells and primary human hepatocytes and performs well when compared to

previous methodologies [90–92].

The normR framework is implemented in R [81] and C++ using bamsignals [1] for e�cient read

quanti�cation. Its source code is freely available under GNU General Public License, Version 2

on Bioconductor [82] at http://www.bioconductor.org/packages/normr [4].

http://www.bioconductor.org/packages/normr
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Chapter 4

enrichR–

Enrichment Calling in ChIP-seq Data with the

normR Framework

In this chapter the normR framework (Chapter 3) is used to call statistically signi�cant enrich-

ment in ChIP-seq data – a normR application referred to as “enrichR”. When applied to high

(localized H3K4me3) and low (delocalized H3K36me3) signal-to-noise ratio (S/N) ChIP-seq data

enrichR calls genuine enrichment as valdidated by functional outputs such as gene expression,

DNA methylation state and histone methyltransferase binding. A thorough comparison to en-

richment calls of previously developed approaches [74–80] illustrates the superior sensitivity of

enrichR accounted for by an adequate background estimation, especially in genomic regionswith

only minute ChIP-seq read enrichment over control. The enrichR normalized enrichment corre-

sponds to the one estimated by other in silico approaches [85,86] and to the HistoneMarkDensity

(HMD%) inferred from ICeChIP-seq experiments that use spiked-in semi-synthetic nucleosomes

for normalization [93]. Based on the enrichR enrichment calls the chromatin segmentation by

ChromHMM [36] is augmented by the identi�cation of a previously undetected poised enhancer

state as well as by the dissection of a large previously unresolved chromatin state.

4.1 Introduction

Chapter 1 described the ChIP-seq protocol which provides genome-wide localization data for

DNA-associated proteins. By mapping sequenced fragments to a reference genome protein bind-

ing sites can be inferred by an accumulation of sequencing reads, i.e. “enrichment”. Due to the

41
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genome-wide scalability and cost-e�ciency of ChIP-seq, hundreds of DNA-associated proteins

have been assayed in di�erent cell types, e.g. by the ENCODE [43] and Roadmap Epigenomics

consortia [44]. This huge resource of ChIP-seq data sets paved the way for detailed genome-wide

characterization of transcription factor binding sites [94], chromatin landscapes [36, 46] or cis-

regulatory elements like enhancers [95,96]. Most ChIP-seq studies integrate protein bindingwith

other functional outputs like gene regulation, e.g. in ES cell di�erentiation [97]. Furthermore,

ChIP-seq signals of histone marks are predictive for promoter [34] and enhancer [98] activity.

To enable for those studies an adequate ChIP-seq data normalization is crucial.

The discrimination of signal from background facilitates the identi�cation of regions bound

by a protein of interest, referred to as “enrichment calling”. However, this inference is com-

plicated due to the “binding mode” of the protein of interest and apparent technical biases in the

ChIP-seq experiment. The “binding mode” of a protein in�uences the S/N between signal- and

background-regions in the ChIP-seq read densities (see also Section 3.2.2):

A high S/N is observed in ChIP-seq data of transcription factors that bind a DNA binding mo-

tif and also in ChIP-seq data of certain localized histone modi�cations such as H3K4me3

or H3K27ac (localized enrichment). The identi�cation of signal-regions is usually easily

achieved in this scenario due to a high S/N.

A low S/N is observed in ChIP-seq data of histone modi�cations with a delocalized read accu-

mulation such as H3K27me3, H3K36me3 or H3K9me3 (delocalized enrichment). The deter-

mination of signal-regions is complicated in this scenario due to a low S/N.

In addition, “technical biases” introduced in the experiment lead to accumulation of reads in

regions that are devoid of the antigen (see [72] for a review). The read densities obtained in the

ChIP-seq experiment need to be compared to a corresponding read pro�le obtained by a control

experiment to mitigate the e�ects of technical biases in ChIP-seq, e.g. copy number variations

or chromatin structure [83,84]. Together, the S/N properties and the presence of technical biases

complicate the enrichment calling in ChIP-seq data.

Earlier methodologies follow a two-step procedure to call enrichment: In the �rst step ChIP-

seq read densities are normalized against a control experiment and, second, enriched regions are

identi�ed in normalized read counts. The initial normalization is achieved either by the ratio

of sequencing depths [74, 76], by the ratio of ChIP and control read counts summed over ad

hoc-chosen �xed width background-regions [77, 78, 80], or by the data-driven identi�cation of

background-regions [85, 86]. In a second step these approaches identify signal-regions that are

characterized by a read enrichment and equate those to genomic loci bound by the antigen. The

question remains as to which of those methods performs best given the mutual dependency of

normalization and enrichment calling (see Section 3.1).
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The correctness of a classi�cation method is routinely assessed as a supervised learning

problem with respect to a “gold-standard” that de�nes a true positive and a true negative set.

However, the performance assessment of enrichment callers is aggravated because there exists,

as yet, no universal gold-standard for ChIP-seq enrichment (see [99] for review). ChIP enrich-

ment for a few dozen regions validated by low-throughput ChIP [100, 101] provides an initial

performance assessment but is neither unbiased nor genome-wide scalable. Another approach

represents the de�nition of a “bona-�de benchmark”, i.e. a trustworthy validation set to score

a classi�cation method. This validation set can be obtained, for example, by combining condi-

tionally independent classi�ers to a meta-classi�er [102] or by a consensus-vote strategy among

classi�ers [7]. Those bona-�de benchmarks can readily be used to derive a performance score

for each method among a set of classi�cation approaches.

Some ChIP-seq enrichment callers perform less well when the sequencing depth is reduced

[103]. To demonstrate the robustness of an enrichment caller, a gold-standard can benchmark

enrichment calls on in silico downsampled ChIP-seq and control libraries. Lower sequencing

depth reduces the statistical power but, nevertheless, a robust enrichment caller ought to return

consistent results over a range of sequencing depths.

An enrichment caller can be assessed by auxiliary information, i.e. its ability to recover

known biological phenomena, as well as its correlation to signals that are measured by com-

plementary or even more advanced experimental assays. For instance, nucleosomes trimethy-

lated on H3K4 (H3K4me3) have been reported to be found at hypomethylated promoter re-

gions [104–106] and CpG islands [7]. Moreover, the body of a transcribed gene is marked by the

trimethylation of H3K36 (H3K36me3) [107] which associates with DNA-hypermethylation [108].

These reported biological insights aid to judge the correctness of an enrichment caller. Further,

signals measured by CAGE or RNA-seq can be correlated to the normalized ChIP-seq read counts

for a protein that associates with either promoter (H3K4me3) or gene (H3K36me3) activation,

respectively. A correct normalization of histone modi�cation ChIP-seq data ought to equate to

the Histone Modi�cation Density (HMD%) measured by the novel ICeChIP-seq technique [93].

Therein, a standardization is achieved by an advanced chromatin spike-in technique to infer

the true normalization factor cB experimentally. If a novel enrichment caller performs better

than previous methods in these scenarios and under a bona-�de benchmark, it will augment pre-

vious studies that rely on sensitive enrichment identi�cation like chromatin segmentation by

chromHMM [36].

Here, the normR framework (see Chapter 3) is put to the test. The framework models NGS

read count densities in the experiment and control as a multinomial sampling trial by means

of a binomial mixture model. This data-driven approach follows the notion that normalization

and calling of signal-regions are inseparable. To this extent, normR simultaneously performs

the normalization against the Input (control) and the identi�cation of regions enriched by the

ChIP (treatment) – an application of normR referred to as “enrichR”. The robust normalization
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of ChIP-seq in enrichR is achieved by the estimation of a normalization factor based solely on

regions that are putatively devoid of the protein. This normalization aids the sensitive identi-

�cation of regions enriched by the ChIP, i.e. signal-regions / binding sites of the protein. In

the following I will apply enrichR to high S/N (localized H3K4me3) and low S/N (delocalized

H3K36me3) ChIP-seq data. A systematic comparison of enrichR enrichment calling to previ-

ously developed methods [74–78, 80] shows that enrichR outperforms its competitors’ methods,

especially for low S/N ChIP-seq data. The robust enrichR normalization improves on in silico

normalization methods [85] and shows an astonishing agreement to the in vitro spike-in in-

ferred normalization of ICeChIP-seq [93]. Furthermore, a substantially augmented resolution in

chromatin segmentation by chromHMM [36] is achieved if enrichR enrichment calls are used

as input. Taken together, these �ndings support the applicability of the normR approach in the

normalization of ChIP-seq data.

4.2 Methods

Firstly, details on the processing and the quality of the sequencing data are provided. Secondly,

the normR framework is adapted to the tasks of ChIP-seq enrichment calling which is referred to

as “enrichR”. Thirdly, a con�dence-weighted beta-value forWGBS data is introduced to score the

validity of enrichment calls. Fourthly, to compare enrichR enrichment calls to results of other

approaches I introduce a binary classi�er statistic that is based on a consensus vote among the set

of approaches tested [74–78, 80]. Next, enrichR’s normalization is compared to NCIS’s normal-

ization [85] and to results obtained by ICeChIP [93] which uses spiked-in modi�ed nucleosomes

to estimate a histone mark density (HMD%). Finally, based on chromHMM’s [36] LearnModel

routine, an enrichR-chromHMM hybrid is proposed and demonstrated to achieve an improved

chromatin segmentation by constructing the input (0, 1)-matrix based on enrichR enrichment

calls.

4.2.1 Data Sets

Primary Human Hepatocytes

ChIP-seq Data. Paired end reads from Input, H3K4me3, H3K27me3, H3K36me3 and H3K9me3

ChIP-seq for primary human hepatocytes were mapped with bwa (version 0.6.2, [109]) against

human genome version hg19. Initial data quality was assessed for reads with mapping quality

≥ 20with bamFingerprint tool in deepTools [110] version 2.3 (Supplementary Figure A.2). Frag-

ment coverage tracks for browser display were generated with deepTools [110] in 25 bp windows

(-bs 25), considering only reads with a mapping quality of at least 20 (-MinMappingQuality 20),

normalized to the e�ective genome size (-normalizeTo1x 2451960000) and, for paired end data

only, �ltering for �rst reads in a properly mapped pair (-samFlag 66) with bamCoverage -bam

in.bam -o out.bw -of bigwig -bs 25 [-samFlag 66] -minMappingQuality 20
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-normalizeTo1x 2451960000.

For single end ChIP-seq data read counting, I shifted reads by 100 bp in 3’ direction (shift =

100). For paired end ChIP-seq data read counting, I considered only reads with a mapping qual-

ity of at least 20 (mapq = 20). I regarded midpoints of properly mapped fragments (midpoint

= TRUE) that were unduplicated (filteredFlag = 1024) and within 100 to 220 bp in length

(tlenFilter = c(100, 220)) with normR’s countConfigPairedEnd() function [4] (see

Section 4.2.2 for necessary R code).

RNA-seq Data. Trizol extration was used for the preparation of Total RNA according to the

manufacturer’s guidelines and as described in [111]. An Agilent Bioanalyzer (Agilent, Santa

Clara, USA) was used to check RNA integrity following the manufacturer’s guidelines. Strand-

speci�c sequencing libraries for mRNA and total-RNA were constructed for the human hepa-

tocytes using the TruSeq stranded Total RNA kit (Illumina Inc, San Diego, USA) starting from

500 ng of the total RNA of the samples. Illumina HiSeq2000 was used to perform the sequencing

(101-nucleotide paired-end reads for each library), resulting in the creation of about 100 million

reads per library. The reads were aligned to the NCBI 37.1 (hg19) version of human genome using

TopHat v2.0.11 [112] in the settings -library-type fr-firststrand and -b2-very-sensitive.

Reads mapping to genes were counted using htseq-count from HTSeq-0.6.1p1 [113] in -f bam

-s reverse -m union -a 20 setting. Annotation �le for running htseq-count was downloaded

from GENCODE release 19 (GRCh37.p13) [114].

CAGE Data. Primary human hepatocyte CAGE data was downloaded from http://fantom.

gsc.riken.jp/5/datafiles/latest/basic/human.primary_cell.hCAGE/Hepatocyte%252c%

2520donor2.CNhs12349.11603-120I1.hg19.nobarcode.bam [115]. Reads with mapping quality

of at least 20 were counted with bamsignals [1].

WGBS-seq Data. For primary human hepatocyte two types of whole-genome bisul�te sequenc-

ing NGS libraries were produced to achieve even read coverage. Firstly, 100ng of DNA was used

in the TruSeq DNA methylation kit (Illumina, San Diego, USA) according to the manufacturer’s

protocol. The second type was performed as previously described [7]. Brie�y, 2 g of DNA were

sheared using a Bioruptor NGS device (Diagenode, Liege, Belgium) and cleaned-up usingAmpure

beads XP (Beckman Coulter, Brea, USA). Next, samples were subjected to end-repair, A-tailing

and adaptor ligation steps using components of the TruSeq DNA PCR-Free Library Preparation

Kit (Illumina). After bisul�te conversion involving the Zymo Gold kit (Zymo, Irvine, USA) the

libraries were PCR ampli�ed for 10-12 cycles. The ampli�ed libraries were puri�ed using Am-

pure beads XP and sequenced on three lanes of V3 paired-end �ow cells (2x 100bp). Reads were

mapped using bwa [109] and methylation levels were called with Bis-SNP37 [116].

GM12878 cells

ChIP-seq Data. GM12878 ChIP-seq alignment bam �les for hg19 were downloaded from the

UCSC ENCODE DCC repository (hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

http://fantom.gsc.riken.jp/5/datafiles/latest/basic/human.primary_cell.hCAGE/Hepatocyte%252c%2520donor2.CNhs12349.11603-120I1.hg19.nobarcode.bam
http://fantom.gsc.riken.jp/5/datafiles/latest/basic/human.primary_cell.hCAGE/Hepatocyte%252c%2520donor2.CNhs12349.11603-120I1.hg19.nobarcode.bam
http://fantom.gsc.riken.jp/5/datafiles/latest/basic/human.primary_cell.hCAGE/Hepatocyte%252c%2520donor2.CNhs12349.11603-120I1.hg19.nobarcode.bam
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/
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wgEncodeBroadHistone/) for CTCF, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3-

K4me3, H3K9ac, H4K20me1 and Input (Whole Cell Extract; WCE). Data quality was assessed

with deepTools [110] bam�ngerPrint as described above (Supplementary Figure A.3). Based on

this assessment, Input (WCE) bam �les were merged.

Hek293 cells and mouse embryonic stem cells (mESC)

ICeChIP-seq Data. Downloaded ICeChIP-seq [93] paired end reads for mouse embryonic stem

cells (Input, SRA-Accession: SRR1714013; H3K4me3, SRR1714008; H3K36me3, SRR1714011;

H3K79me2,SRR1714012; H3K27me3, SRR1714010; H3K9me3, SRR1714009) were mapped with

bowtie2 [117] against mm9:

bowtie2 -p 8 -x mm9 -1 Reads_1.fastq.gz -2 Reads_2.fastq.gz | \

samtools view -bS - | samtools sort -@ 8 - out

samtools index out.bam

Furthermore, bigWigs containing the quantitative Histone Mark Density values (HMD%) were

downloaded from Gene Expression Omnibus under accession GSE60378.

Transcription Start Site De�nition

54,763 promoters (extend 750bp down- and upstream of TSS) of 54,849 GENCODE genes [114]

obtained by using GenomicFeatures R package [118]:

require(GenomicFeatures)

gencode <- loadDb("data/gencode.v19.annotation.transcriptDb.sqlite")

genes <- genes(gencode)

proms <- unique(promoters(genes, upstream=750, downstream=750))

4.2.2 The normR Methods: enrichR

The normR framework (Chapter 3) was adapted to calling enrichment in ChIP-seq Data, referred

to as “enrichR” (Figure 4.1). It uses two mixture components, i.e. backgroundB and foreground

F (enriched), to normalize and call enrichment over Input, i.e. control. There are now three free

parameters, namely θB , θF and πB :

θB) represents the expected fraction of reads in the ChIP over the sum of reads from ChIP and

Input in a non-enriched region (background-region);

θF ) represents the expected fraction of reads in the ChIP over the sum of reads from ChIP and

Input in an enriched region (signal-region); and

πB) is the proportion of background-regions over all regions, i.e. the proportion of signal-

regions is πF = 1− πB .

hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/
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ChIP s

Control r

Foreground FBackground B

Fig. 4.1 – enrichR: The normR Method for Two Components. Reads in control r, e.g. Input, and
ChIP s are modeled as a binomial mixture model with two components. Here, two compo-
nents model the expected fraction of reads in the ChIP over the sum of reads from ChIP and
control per region for background θB and the foreground θF , i.e. enriched.

Given the normRmodel in Equation (3.2) and the normR likelihood function de�ned by Equa-

tion (3.3) the following “enrichR” likelihood function can be derived:

L = P (πB, θB, θF |si, ri) =
∏

i

(
si + ri
si

)
(
πB · θsiB · (1− θB)

ri + πF · θsiF · (1− θF )
ri
)
,

where si (ri) corresponds to the number of reads in the ChIP (Input) for non-overlapping, �xed

size genomic bins i = 1, . . . , n.

The parameters θB , θF and πB are then �tted by the EM algorithm [70] (see Section 2.2.3).

At iteration t the posterior probability that a bin i is generated by the background B is

P (Xi = B|si, ri) =
π
(t)
B · (θ

(t)
B )si · (1− θ

(t)
B )ri

π
(t)
B · (θ

(t)
B )si · (1− θ

(t)
B )ri + π

(t)
F · (θ

(t)
F )si · (1− θ

(t)
F )ri

at the values of parameters πt
B , θ

t
B and θtF . Next, the parameters are re-estimated as

π
(t+1)
B =

∑n
i=1 P (Xi = B|si, ri)

n

θ
(t+1)
B =

∑n
i=1 P (Xi = B|si, ri) · si

∑n
i=1 P (Xi = B|si, ri) · (si + ri)

θ
(t+1)
F =

∑n
i=1(1− P (Xi = B|si, ri)) · si

∑n
i=1(1− P (Xi = B|si, ri)) · (si + ri)

.

The algorithm continues until the likelihood converges, i.e. it does not change anymore, e.g. the

change ∆L ≤ ǫ = 0.001. The EM algorithm converges to a local maximum. The chance to �nd

a global maximum is increased by running the routine 10 times (per default) with θB and θF
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randomly initialized close to θ∗ =
∑

si∑
si+ri

(see Section 3.2.3).

To recover signi�cantly enriched regions, the ChIP read count in each region is compared

to the expected ChIP-seq read count under the �tted background component B with a binomial

test (Figure 4.1). The distribution of the p-values from a binomial test is discrete and, thus, the

correction for multiple testing is impeded (see Section 2.1.2). By �ltering out low power tests,

i.e. low count regions, with the T method [61], the p-value distribution becomes more uniform

and p-values can readily be transformed to q-values [56]. Enriched regions are reported if they

fall below a signi�cance threshold α.

On the basis of the enrichR �t, a normalized and regularized enrichment is calculated. To

account for noise that is generated by low count regions, counts are adjusted by adding pseudo

counts for ChIP and Input. The pseudo counts are model-derived and taken to be the average

read counts in the background component:

αr =

∑n
i=1 P (Xi = B|si, ri) · ri
∑n

i=1 P (Xi = B|si, ri)

αs =

∑n
i=1 P (Xi = B|si, ri) · si
∑n

i=1 P (Xi = B|si, ri)
.

The regularized ChIP-seq enrichment e∗ is then calculated with

e∗i = log

(
si + αs

ri + αr

·
αr

αs

)

,

where the second terms regularizes e∗i , i.e. shifts to 0, for background regions. To account for

the achieved ChIP enrichment, e∗ is normalized with the log of the model-derived average en-

richment factor

〈f〉 =
θF

1− θF
·
1− θB
θB

to obtain a regularized and normalized enrichment e:

ei =
e∗i

log〈f〉
.

These routines were implemented in the normR R package [4] as the enrichR()-function (see

also R code snippet below).

For enrichment calling, only regions on regular autosomes (chr1-chr22; 2.9 Gigabases (Gb))

were considered:

require(GenomeInfoDb)

genome <- fetchExtendedChromInfoFromUCSC("hg19")

genome <- genome[which(!genome$circular &



4.2. Methods 49

genome$SequenceRole=="assembled-molecule"), 1:2]

genome <- genome[grep("X|Y|M", genome[, 1], invert=T), ]

require(GenomicRanges)

genome.gr <- GRanges(

seqnames = genome[, 1],

ranges = IRanges(start = 1, end = genome[, 2]),

seqinfo = Seqinfo(

seqnames = genome[,1],

seqlengths = genome[,2],

genome = "hg19"

)

)

A binsize of 500bp (1000bp) was used for H3K4me3 (H3K36me3) because both θ and π were not

robust for much smaller bin sizes (Supplementary Figure A.4). Read counts were modeled with

enrichR and the �tted background component B was used for signi�cance testing. Bins with

q-value≤ 0.05 (H3K4me3) and q-value≤ 0.1 (H3K27me3/K36me3/K9me3) were called enriched

and exported to bed tracks for display:

require(normr)

countConfig <- countConfigPairedEnd(

binsize = 500, #1000

mapqual = 20,

midpoint = TRUE,

filteredFlag = 1024,

tlenFilter = c(100,220),

shift = 0

)

fit <- enrichR(

treatment = "ChIP.bam",

control = "Input.bam",

genome = genome,

countConfig = countConfig,

procs = 8

)

exportR(

x = fit,

filename = "enriched.bed",

type = "bed",
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fdr = 0.05 #0.1

)

Finally, e was exported to bigWig tracks for browser display:

exportR(

x = fit,

filename = "enrichment.bigWig",

type = "bigWig"

)

4.2.3 Confidence-Weighted�antification of DNA-Methylation

To account for, both, the number of CpGs in a bin i and the read coverage at each CpG, I calculated

con�dence-weighted DNA-methylation β values. For each �xed width bin i and covered CpGs

M β was calculated by

βi =

∑M
j=0ReadCountj · FractionMethylatedj

∑M
j=0ReadCountj

.

Only regions with at least 2 CpGs covered by reads were reported.

4.2.4 Comparison of Enrichment Callers

For comparison to enrichR, peaks in H3K4me3 and H3K36me3 ChIP-seq data in primary hepa-

tocyte were called with six previously developed tools for enrichment (peak) calling [74–80]. To

compare called peaks by above methods to enrichR called regions, overlap of peaks with 500bp

(1,000bp) windows was calculated for H3K4me3 (H3K36me3). A comparison was achieved in two

ways: (i) The overlap of enrichR results with third-party tools is analyzed for auxiliary informa-

tion like DNA-methylation and expression, and (ii) Binary classi�cation scores like precision,

recall and Fβ-score are calculated based on a validation set de�ned by a consensus vote strategy.

Enrichment Calling in Third-Party Tools

Peaks were called with MACS2 [74,75] (v2.1.0.20150731), DFilter [76] (v1.6), CisGenome [77],

SPP [78], BCP [79] (v1.1) andMUSIC [80]. An FDR threshold of 0.99was usedwhere applicable to

enable for subsequent �ltering of results and the construction of precision-recall-curves. Firstly,

duplicated fragments were removed and only reads with a mapping quality higher than 20 were

extracted with samtools [119] (v0.1.19-44428cd) to allow for a fair comparison with enrichR:

samtools view -F 1024 -q 20 in.bam > out.bam
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Secondly, peaks for H3K4me3 and H3K36me3 were called. MACS2 was run using the following

commands:

macs2 callpeak -t ChIP.bam -c Control.bam -f BAMPE -g hs -q 0.99

For H3K36me3, results were merged with results from results with option “-broad”:

macs2 callpeak -t H3K36me3.bam -c Control.bam -f BAMPE -g hs --broad -q 0.99

DFilter was run using suggested con�gurations (http://collaborations.gis.a-star.edu.sg/

~cmb6/kumarv1/dfilter/tutorial.html):

run_dfilter.sh -t=H3K4me3.bam -c=Control.bam -f=bam -pe -bs=100 -ks=100 \

-lpval=0.001 -o=H3K4me3_result.bed

run_dfilter.sh -t=H3K36me3.bam -c=Control.bam -f=bam -pe -bs=100 -ks=20 \

-lpval=0.001 -nonzero -o=H3K36me3_result.bed

CisGenome, SPP, BCP andMUSICwork on single end read alignments only. Here, only �rst reads

in a proper mapped pair (-f 66) were considered for a fair comparison to peak callers working

on paired end data:

samtools view -b -f 66 Input.bam > Input_SE.bam

samtools view -b -f 66 ChIP.bam > ChIP_SE.bam

For CisGenome, I generated *.aln �les with piping bedtools bamtobed [120] and ran CisGenome’s

SeqPeak routine using default parameters with a P-value cuto� of 0.99 on a generated �lelist:

bedtools bamtobed -I Input_SE.bam > Input_SE.bed

cut -f 1,2,6 Input_SE.bed > Input_SE.aln

bedtools bamtobed -I ChIP_SE.bam > ChIP_SE.bed

cut -f 1,2,6 ChIP_SE.bed > ChIP_SE.aln

echo -n "Input_SE.aln\t0\nChIP_SE.aln\t1" > ChIP_filelist.txt \

&& ./seqpeak -i ChIP_filelist.txt -d . -o Result -bar 0 -lpcut 0.99

SPP was run in R using suggested con�gurations (compbio.med.harvard.edu/Supplements/

ChIP-seq/tutorial.html) with a Z-score threshold of 0.5 and by removing chromosomes with

no reads mapping to them:

chip.data <- read.bam.tags("ChIP_SE.bam")

input.data <- read.bam.tags("Control_SE.bam")

idx.notnull <- !sapply(chip.data[["tags"]], is.null)

chip.data <- lapply(chip.data, "[", idx.notnull)

input.data <- lapply(input.data, "[", idx.notnull)

bin.charac <- get.binding.characteristics(

http://collaborations.gis.a-star.edu.sg/~cmb6/kumarv1/dfilter/tutorial.html
http://collaborations.gis.a-star.edu.sg/~cmb6/kumarv1/dfilter/tutorial.html
compbio.med.harvard.edu/Supplements/ChIP-seq/tutorial.html
compbio.med.harvard.edu/Supplements/ChIP-seq/tutorial.html
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chip.data,srange = c(50,500),

bin = 5,

accept.all.tags = T

)

broad.clusters <- get.broad.enrichment.clusters(

signal.data=chip.data[["tags"]],

control.data=input.data[["tags"]],

window.size=1e3,

z.thr=0.5,

tag.shift=round(bin.charac[["peak"]][["x"]]/2)

)

write.broadpeak.info(broad.clusters,file)

BCP was run using the following command:

./BCP_v1.1/BCP_HM -1 ChIP_SE.bed -2 Input_SE.bed -3 EnrichmentCalls.bed -p 0.9

For MUSIC, I downloaded mappability �les for 50bp reads from (http://archive.gersteinlab.

org/proj/MUSIC/multimap_profiles/hg19/hg19_50bp.tar.bz2) and ran the following com-

mand:

samtools view Input_SE.bam | ./MUSIC -preprocess SAM stdin Input/ && \

./MUSIC -sort_reads Input Input/sorted && \

./MUSIC -remove_duplicates Input/sorted 2 Input/dedup

samtools view ChIP_SE.bam | ./MUSIC -preprocess SAM stdin preprocessed && \

./MUSIC -sort_reads preprocessed sorted && \

./MUSIC -remove_duplicates sorted 2 dedup && \

./MUSIC -get_multiscale_punctate_ERs -chip dedup -control

Finally, to compare called peaks by above methods to enrichR enriched regions, overlap of re-

ported peaks with 500bp (1,000bp) windows was calculated in R for H3K4me3 (H3K36me3) if a

peak at FDR 0.05 (0.10) overlapped a window by at least 250bp:

binsize <- 500; fdr <- 0.05 #0.1

gr <- tileGenome(genome.gr, width = binsize)

ov <- matrix(0, nrow = length(gr), ncol = 7)

colnames(ov) <- c("enrichR", "MACS2", "DFilter", "CisGenome", "SPP",

"BCP", "MUSIC")

for (method in colnames(ov)) {

peaks.sig <- peaks[[meth]][which(peaks[[meth]][["lqval"]] >= -log10(fdr))]

ov[,method][countOverlaps(gr, peaks.sig, minoverlap = 250)> 0 )] <- 1

}

http://archive.gersteinlab.org/proj/MUSIC/multimap_profiles/hg19/hg19_50bp.tar.bz2
http://archive.gersteinlab.org/proj/MUSIC/multimap_profiles/hg19/hg19_50bp.tar.bz2
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A Bona-Fide Benchmark Based on a Consensus-Vote among Peak Callers

Accuracy of Classi�cation. Firstly, a “tool-speci�c bona-�de benchmark”, i.e. a trustworthy

validation set, for the evaluation of correctness of a tool was de�ned as follows: A bin is enriched

under the tool-speci�c bona-�de benchmark if at least four out of six other methods (including

enrichR) called this bin enriched. In R, I ran the following code:

gs <- lapply(colnames(ov), function(method) {

which(apply(ov[,which(colnames(ov) != method)], 1, sum) >= 4)

})

names(gs) <- colnames(ov)

Secondly, I computed precision, recall and F2-score under the “tool-speci�c bona-�de benchmark”

in R:

getPrecRecall <- function(ov, gs) {

mp <- which(ov == 1)

tp <- sum(mp %in% gs)

fn <- sum(!(gs %in% mp))

fp <- sum(!(mp %in% gs))

tn <- dim(ov)[1] - tp - fn - fp

specificity <- tn / (fp + tn)

precision <- tp / length(mp)

recall <- tp / (tp + fn)

f2 <- fscore(precision, recall, 2)

return(c(

"precision"=precision,

"recall"=recall,

"f2"=f2,

"specificity"=specificity

))

}

stats <- mapply(getPrecRecall, as.list(ov), gs)

Thirdly, precision-recall-curves were computed for each tool under its own “tool-speci�c bona-

�de benchmark” in R:

peaks <- lapply(peaks, function(p) {

peaks[order(peaks[["lqval"]], decreasing=TRUE)]

})

nmax <- max(colSums(ov))
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stats.sub <- lapply(seq(100, nmax, 100), function(n) {

ov.sub <- lapply(peaks, function(p) {

if (length(p) < n) {

NULL

} else {

idx <- countOverlaps(gr, p[1:min(n, length(p))], minoverlap=250) > 0

ov <- rep(0, length(gr))

ov[idx] <- 1

return(ov)

}

})

return(getPrecRecall(ov.sub, gs))

})

Lastly, the obtained precision and recall values were used to plot a precision recall curve. Because

some tools did not report the full spectrum of recall values I calculated a “PartAUC”, i.e. the area

under the curve ranging from the minimum to the maximum recall value. Thus, the “PartAUC”

represents a lower bound of the full AUC.

Validity of Tool-Speci�c Classi�cation. I catalogued “tool-speci�c regions” not represented

by the “uni�ed bona-�de benchmark”, i.e. the union of seven “tool-speci�c bona-�de benchmark

sets”:

gsUnified <- unique(unlist(gs))

toolSpecCalls <- lapply(colnames(ov), function(method) {

which(!(mat[,method] %in% gsUnified))

})

Robustness to Varying Sequencing Depth. For the saturation analysis I downsampled bam

�les with samtools to 5%, 10%, 20%, 30%, 50% and 75%:

for sub in .05 .1 .2 .3 .5 .75; do

for f in *.bam; do

of=${f/.bam/.Sub$sub}

samtools view -u -s 1$sub $f | samtools sort - $of && samtools index $of.bam

done

done

Next, peak calling and classi�cation of enriched bins was performed as described above on the

reduced libraries. The recovered fraction of “uni�ed bona-�de benchmark” by each method was

calculated in R:



4.2. Methods 55

stats.ds <- mapply(getPrecRecall, as.list(ov), rep(list(gsUnified), 7))

4.2.5 Correlating enrichR-estimated Enrichment to NCIS and HMD%

NCIS. The background normalization factor was calculated with NCIS [85] on the created single

end bed �les in R:

ncis <- NCIS(

chip.data = "ChIP_SE.bed",

input.data = "Input_SE.bed",

data.type = "BED",

chr.vec = seqnames(gr),

chr.len.vec = seqlengths(gr)

)

ICeChIP. Similar to reported in [93] onlymidpoints of properlymapped fragments (midpoint

= TRUE) were quanti�ed. Furthermore, it was �ltered for unduplicated fragments (filteredFlag

= 1024) within 100 to 220 bp in length (tlenFilter = c(100, 220)). 500 (1,000) bp windows

were used forH3K4me3 (H3K36me3/K79me2/K27me3/K9me3) using again normR’s countCon�g-

PairedEnd() function. Firstly, enrichR was run with this con�guration to estimate the normalized

enrichment genome-wide:

require(normr)

counConfig <- countConfigPairedEnd(

binsize = 500,

mapq = 20,

midpoint = TRUE,

filteredFlag = 1024,

shift = 0,

tlenFilter = c(0,220)

)

fit <- enrichR("ChIP.bam", "Input.bam", genome, procs = 8)

Secondly, to compare the estimated enrichR enrichment, I downloaded the ICeChIP histonemark

density (HMD%) information for H3K4me3, H3K36me3, H3K79me2, H3K27me3 and H3K9me3

from Gene Expression Omnibus [121] under accession GSE60378. Because the original scaling

factors 〈IPLadder〉were not reported in [93] I inferred the average normalization factor based on

〈IPLadder〉 =
1

n

∑

i

100

HMD%i

·
ChIP-coveragei
Input-coveragei

.
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In this regard, the per bp fragment coverage was calculated from bam �les and HMD% from

bigWig �les in R with the help of bamsignals [1] and rtracklayer [122], respectively:

gr <- reduce(fit.rep1@ranges)

require(bamsignals)

coverage <- lapply(c("ChIP.bam", "Input.bam"), function(b) {

unlist(bamCoverage(

bampath = b,

gr = gr,

mapqual = 20,

shift = 0,

paired.end = "extend",

tlenFilter = c(0,220),

filteredFlag = 1024

))

})

require(rtracklayer)

hmd <- unlist(import.bw("HMD.bigWig", which=gr, as="NumericList"))

ratio <- 100/hmd * coverage[[1]]/coverage[[2]]

ipladder <- mean(na.omit(ratio[!is.infinite(bs)]), na.rm=T)

I computed Pearson’s r of enrichR standardized enrichment e and HMD%. Finally, I �tted a linear

model for f(x = e) = HMD% = α+ β ∗ x and residuals were studentized.

4.2.6 Chromatin Segmentation Based on enrichR Enrichment Calls

The chromHMM method uses a Hidden Markov Model to segment the genome in distinct epi-

genetic states based on enrichment calls in a set of ChIP-seq experiments. The input for chrom-

HMM’s Hidden Markov Model is a (0, 1)-matrix where 0 indicates a background and 1 an en-

riched bin in non-overlapping �xed sizewindows along the genome, respectively. The chromHMM

developers provide a program called BinarizeBam to identify enriched windows based on a Pois-

son background model (see Section 2.1.1).

Here, I would like to test if enrichR can increase the quality of the input (0, 1)-matrix by a

sensitive enrichment identi�cation. Firstly, as a comparison set, I ran chromHMM BinarizeBam

with default options (200bp bins, reads shifted by 100bp) in GM12878 for two replicates of CTCF,

H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K9ac and H4K20me1:

java -mx80G -jar ChromHMM/ChromHMM.jar BinarizeBam -b 200 -n 100 \

hg19_chroms.txt GM12878 cellmarkfiletable GM12878chromHMMInput

Secondly, enrichR() was used to call enrichment ChIP-seq over Input for pooled replicates in

200bp windows with reads shifted by 100bp:
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require(normr)

getSumOfCounts <- function(bampaths, gr = genome) {

require(bamsignals)

l <- lapply(bampaths, function(bam) {

unlist(bamProfile(

bampath = bam,

gr = genome,

shift = 100,

binsize = 200

))

})

return(as.integer(colSums(do.call(rbind, l))))

}

r <- getSumOfCounts("Input.bam")

enr <- mclapply(names(bamfiles), function(b) {

s <- getSumOfCounts(bamfiles[[b]])

fit <- enrichR(s, r, gr)

return(fit)

}, mc.cores=8)

Next, enriched regions were classi�ed under FDR=10% and exported the binary matrices for each

chromosome to feed this information into chromHMM’s Hidden Markov Model:

invisible(mclapply(seqlevels(genome), function(chr) {

idx <- which(seqnames(gr) == chr)

mat <- sapply(names(bamfiles), function(n) {

x = getClasses(enr[[n]], fdr=0.1)[idx]

x[is.na(x)] = 0 #background is all NA classes

x

})

#header of binary file

cat(paste0("GM12878\t", chr, "\n"), file=chr, append=F)

cat(paste(names(bamfiles), collapse="\t"), file=chr, append=T)

cat("\n", file=chr, append=T)

#(0,1)-matrix

write.table(x = mat, file = chr, col.names=F, row.names=F, eol="\n",

sep="\t", quote=F, append=T)

}))

Finally, I applied the chromHMM method to both binarizations:
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java -mx80G --jar ChromHMM/ChromHMM.jar LearnModel -stateordering emission \

-holdcolumnorder -printposterior -printstatebyline -b 200 -p 8 \

Input_chromHMM/ Output_chromHMM/ 15 hg19

java -mx80G --jar ChromHMM/ChromHMM.jar LearnModel -stateordering emission \

-holdcolumnorder -printposterior -printstatebyline -b 200 -p 8 \

Input_enrichR/ Output_enrichR/ 15 hg19

Later, hidden states were labeled based on a hierarchical clustering of the emission probabilities

which gave rise to Fig. 4.11. Fold enrichments for genomic features were taken from chromHMM

LearnModel output and log2 transformed.

4.3 Results – Enrichment Calling in High and Low S/N

To illustrate the enrichment calling based on a robust background estimation, I applied enrichR to

ChIP-seq experiments for localized and delocalized histone modi�cations in primary human hep-

atocytes (PHH). In a �rst analysis, auxiliary information is used to verify the valdidity of calls:

The localized trimethylation of H3K4 (H3K4me3) correlates with promoter activity and DNA-

hypomethylation [104–106]. The delocalized H3K36me3 is associated to transcriptional elonga-

tion in the body of transcribed genes [107] as well as DNA-hypermethylation [108]. H3K4me3

exhibited a substantially higher S/N ratio than H3K36me3 (Supplementary Fig. A.2). In a second

instance, I show that the enrichR-based enrichment calls compare favorably to results obtained

by six popular peak calling methods, namely MACS2 [74, 75], DFilter [76], CisGenome [77],

SPP [78], BCP [79] and MUSIC [80]. Furthermore, the enrichR normalization recapitulates the

normalization factors estimated by NCIS [85] based on regression and those determined via an

in vitro chromatin spike-in tradegy in ICeCHIP experiments [93]. Finally, enrichR is applied to

improve chromatin segmentation resolution through a enrichR-chromHMM hybrid approach.

As a �rst assessment, I studied the coverage and enrichment calls for H3K4me3 and

H3K36me3 ChIP-seq in the vicinity of the Glucose-6-Phosphate Isomerase gene (GPI, Fig. 4.2A)

— a housekeeping gene that is highly expressed in all cell types [123]. GPI was also expressed

in PHH as measured by RNA-seq and showed a characteristic chromatin signature of transcrip-

tion, i.e. H3K4me3 and H3K36me3 in the promoter and the gene body, respectively. All tested

methods identi�ed these characteristic enrichments at the GPI locus. Moreover, the promoter of

the WTIP gene was detected as H3K4me3-enriched by all methods. Together with the measured

shallow coverage of RNA-seq reads along its gene body this indicated that WTIP is expressed

suggesting a low but genuine H3K36me3 enrichment in its gene body. Interestingly, this minute

H3K36me3 enrichment was exclusively recovered by enrichR.

Genome-wide enrichR called H3K4me3-enrichment in 142,451 500 base pairs (bp) regions in

PHH, corresponding to 45,522 consecutive regions representing ∼3% of the mappable genome



4.3. Results – Enrichment Calling in High and Low S/N 59

Fig. 4.2 – Enrichment Calling with enrichR on H3K4me3 and H3K36me3 ChIP-seq Data in
Primary Human Hepatocytes. (A) Input (grey), H3K4me3 (green, high S/N), H3K36me3
(rose, lower S/N) and RNA-seq (black) barplots indicate coverage proximal to the human
Glucose-6-Phosphate Isomerase (GPI, yellow overlay) locus on chromosome 19. Enrichment
calls are indicated as colored boxes below respective tracks for enrichR, DFilter, MACS2,
CisGenome’s SeqPeak, SPP and BCP. TheWTIP gene (blue overlay) had detectable H3K4me3
enrichment at its promoter and minute H3K36me3 is recovered solely by enrichR. (B-C) en-
richR H3K4me3-enriched regions were DNA-hypomethylated (B) and expressed as measured
by CAGE (C). (D-E) enrichR H3K36me3-enriched regions were DNA-hypermethylated (D)
and expressed as measured by RNA-seq (E). Wilcoxon signed-rank Test: “***” (P≤ 0.001).

(71.2 Megabases (Mb)). The identi�ed regions were characterized by low levels of DNAmethyla-

tion (Fig. 4.2B), in line with the theory that H3K4me3 is repressing DNA methylation [104–106].

Furthermore, a higher density of CAGE-tags was observed in H3K4me3-enriched regions when

compared to background regions (Fig. 4.2C) indicating that they serve as active transcriptional

start sites (TSSs). In fact, enrichR H3K4me3-enriched regions showed a statistically signi�cant
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overlap with annotated TSSs (odds-ratio=18.29, Fisher’s signed exact test, P≤0.001, Table B.1).

Together these observations support enrichR’s identi�cation of genuine H3K4me3-enriched re-

gions.

ForH3K36me3 enrichR identi�ed 559,560 1 kilobase pair (kb) regions as enriched in PHH, cor-

responding to 85,293 consecutive regions representing 20% of the genome (599.6Mb). H3K36me3-

enriched regions showed DNA hypermethylation (Fig. 4.2D), in line with the theory that H3-

K36me3 recruits DNMT3B leading to de novo DNA methylation [108]. H3K36me3-enriched

bins showed a signi�cantly higher RNA-seq read coverage than background regions (Wilcoxon-

signed-rank test P≤0.001, Fig. 4.2E) and a statistically signi�cant overlap with annotated tran-

scripts (odds-ratio = 17.06, Fisher’s signed exact test, P≤0.001, Table B.2), in linewith the reported

association of H3K36me3 to transcriptional elongation [107]. These results support that enrichR

also identi�es genuine H3K36me3-enriched regions.

4.3.1 Systematic Comparison of Available Enrichment Callers

The enrichRH3K4me3 andH3K36me3 enrichment calls were compared genome-wide toMACS2,

DFilter, CisGenome’s SeqPeak, SPP, BCP and MUSIC results on two systematic levels (Methods

Section 4.2.4):

(a) The overlap of results reported by all competitor tools with enrichR was quanti�ed. Next,

regions that are exclusive to a method were studied for auxiliary information like DNA

methylation and expression.

(b) Because there was no genome-wide ChIP-seq benchmark set on-hand, I de�ned a “tool-

speci�c bona-�de benchmark” for each method based on a consensus vote among the

six remaining tools. This bona-�de benchmark set was used to evaluate every method for

its enrichment classi�cation accuracy and its robustness to an in silico reduced sequencing

depth.

(a) Overlap of Results

All methods performed similarly for the localized H3K4me3 at a False Discovery Rate (FDR)

of 5% (Fig. 4.3A), although in terms of covered bp DFilter (39.8Mb) and CisGenome (38.7Mb)

called almost two-fold less enrichment than the other tools (mean=65.3Mb; Table 4.1). 13,364

regions that are only called by enrichR (“enrichR-exclusive”) were distal to peaks called by com-

petitors (median=7,137kb, Figure 4.3B). All H3K4me3-enriched regions shared among the tools

(“tool-inclusive”) were characterized by a signi�cant DNA-hypomethylation when compared to

background regions (Wilcoxon signed-rank test P≤0.001; Figure 4.3C). In fact, “tool-exclusive”

regions are on average less methylated than the genomic average – with the exception of SPP

and BCP. Up to DFilter and CisGenome, all “tool-exclusive” H3K4me3-enriched regions were
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Fig. 4.3 – enrichR H3K4me3 Enrichment Calls Agree with Peaks Reported by Competitor
Methods. (A) enrichR enrichment calls substantially overlap with peaks called by bench-
mark methods based on 500 genomic intervals. (B) Regions called exclusively by enrichR
are distant to peaks called by other methods (median=7.137kb). (C-D) H3K4me3-enriched re-
gions called exclusively by one (“excl.” ) or multiple (“incl.” ) methods are signi�cantly lower
DNA-methylated (C), except for SPP, and higher expressed (D), except for DFilter, as com-
pared to background regions. There were no CisGenome-exclusive peaks. Red dashed line
represents average genome-wide DNA-methylation or Expression. enrichR has the greatest
amount of tool-exclusive regions (13,364) that were in concordance with auxiliary informa-
tion. Wilcoxon signed-rank Test: “***” ( P≤0.001) and “n.s.” ( P>0.05).
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expressed signi�cantly higher than background regions (Figure 4.3D). In summary, enrichR re-

ported most exclusive regions that were also supported by DNA-hypomethylation and expres-

sion.

For the delocalized H3K36me3, enrichR identi�ed up to>16-fold more enriched regions than

its competitor methods (Table 4.1). When compared to enrichR (559.6Mb) far fewer regions

were reported by MACS2 (407.7Mb), BCP (396.5Mb), MUSIC (402.3Mb) and especially DFilter

(87.8Mb), SPP (25.1Mb) and CisGenome (36.4Mb). Almost all of these H3K36me3-enriched re-

gions (MACS2: 399.1Mb; 97.9%, DFilter: 87.8Mb; 100%; CisGenome: 36.4Mb; 100%; SPP: 24.2Mb;

96.7%; BCP: 386.8Mb; 97.6%; MUSIC: 382.6Mb; 95.1%) were recovered by enrichR leading to few

exclusive regions for competitor methods (Fig. 4.4A). Importantly, H3K36me3-enriched regions

called exclusively by enrichR (93.6Mb; 16.7%) were characterized by a median distance of 2kb

to peaks recovered by other methods (Fig. 4.4B). These regions also showed signi�cantly higher

DNA-methylation levels and transcriptional activity than background regions (Wilcoxon-signed-

rank test P≤0.001, Fig. 4.4C-D). Taken together, many genuine H3K36me3-positive regions were

only detected by enrichR as supported by information on DNA-methylation and expression –

similar to results obtained for the localized H3K4me3.

(b) Evaluation by a Bona-Fide Benchmark

A systematic comparison of the tools’ classi�cation accuracy was performed in the following

way. For each method a tool-speci�c validation set (“bona-�de benchmark”) was computed as a

consensus vote that comprised all regions called by four out of six competitor methods (Methods

Section 4.2.4) In addition to precision (“positive predictive value”) and recall (“true positive rate”),

I use the F2-score as a sensitivity-weighted score of the accuracy of a classi�cation method to

penalize especially false negative calls. The Fβ-score is de�ned by:

Fβ-score = (1 + β2)
precision · recall

(β2 · precision) + recall
. (4.1)

The union of all tool-speci�c bona-�de benchmark sets was used to study the robustness of a

method when the sequencing depth is reduced in silico.

Accuracy. For the localized H3K4me3, most methods performed well with a mean F2-score

of 0.79. At FDR=5%, CisGenome achieved highest precision (1.00), MACS2 had the highest recall

(0.99) and the highest F2-score (0.91) (Table 4.1A). enrichR achieved a high recall (0.97) and high

F2-score (0.87) with only slightly fewer regions called than BCP (74.5Mb; F2-score=0.86). Lowest

accuracy was observed for SPP (F2-score=0.65) which also reported many invalid exclusive calls

as described in the previous section. All other methods, except for SPP, performed equally well

for H3K4me3 enrichment calling at di�erent recall levels (Fig. 4.5A). The greatest area under the

precision recall curve was observed for enrichR (AUC=0.97).
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Fig. 4.4 – enrichR H3K36me3 Enrichment Calling Outperforms Competitor Methods. (A) en-
richR enrichment calls substantially overlap with peaks called by benchmark methods based
on 1,000bp genomic intervals. (B) Regions called exclusively by enrichR are distant to peaks
called by other methods (median=2.136kb). (C-D) H3K36me3-enriched regions called exclu-
sively by one (“excl.” ) or multiple (“incl.” ) methods are signi�cantly more DNA-methylated
(C) and higher expressed (D) as compared to background regions. There were no DFilter-
and CisGenome-exclusive peaks. enrichR calls most exclusive regions (92,508) which are in
concordance with auxiliary information, i.e. DNA-methylation and expression. Wilcoxon
signed-rank Test: “***” ( P≤0.001) and “n.s.” ( P>0.05).
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Fig. 4.5 – Precision-Recall-Curves Based on aBona-Fide Benchmark Support the Superior Per-
formance of enrichR. (A) All methods expect SPP have a precision≥0.82 at recall≤0.7 for
H3K4me3. enrichR has greatest “PartAUC” with most regions reported. (B) For H3K36me3,
enrichR reports the most bins enriched and has the greatest “PartAUC”. Legends give num-
ber of H3K4me3- and H3K36me3-enriched regions at a FDR of 10%. Precision-Recall Curves
and “PartAUC” were computed with respect to a tool-speci�c bona-�de benchmark (see Sec-
tion 4.2.4).

For the delocalized H3K36me3, the performance ofmethods decreased (µF2-score=0.42) – prob-

ably accounted for by a diminished S/N (Table 4.1B). At FDR=10%, DFilter, CisGenome and SPP

were most precise (≥0.87) with only a few regions called (≤87.8Mb), while enrichR, MACS2, BCP

and MUSIC were most sensitive (≥0.99) with≥4.5-fold more enriched regions reported. enrichR

which called almost all regions of its six competitors combined (Fig. 4.4A) had an F2-score=0.53 –

its menial precision (0.19) is compensated by the best recall (1.00). Turning to precision at di�er-
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ent recall levels, only enrichR could perpetuate a high precision throughout varying sensitivity

levels (AUC=0.96) with SPP coming close (PartAUC=0.83; Fig. 4.5B). In fact, enrichR had the

highest precision (≥ 0.80) at high recall levels (≥ 0.50) indicating that the bona-�de benchmark

at FDR=10% misses most regions already identi�ed by enrichR at FDR=10%. Taken together, the

performances of tools in H3K36me3 enrichment calling di�ered extremely – a result supported

by the analysis of the overlaps of enrichment calls in the previous section.

Given these observations the question arose whether the validity of the enrichment calls

which were not represented by the bona-�de benchmark, i.e. “tool-speci�c” calls. To this extend,

I de�ned a “uni�ed bona-�de benchmark” of H3K36me3-enrichment (354,527 1kb regions) which

represents the union of seven tool-speci�c bona-�de benchmark that were used in the previous

paragraphs. For every method I catalogued detected regions that are not represented by this

uni�ed bona-�de benchmark for further investigation of their validity. The uni�ed bona-�de

benchmark exhibited a signi�cantly higher fold change over Input than the enrichR-, MACS2-

, SPP-, BCP- and MUSIC-speci�c regions (Wilcoxon-signed-rank test; P≤0.001; Figure 4.6A).

There were only 2 DFilter- and 3 CisGenome-speci�c regions. enrichR had the most tool-speci�c

regions (205,064) which is equivalent the size of ∼57% of the benchmark and showed signi�-

cantly higher fold changes as well as read coverages than background regions (Figure 4.6B). The

A H3K4me3

Enrichment called Scoring based on bona-�de benchmark
in Mb in 500bp bins Precision Recall F0.5-score F1-score F2-score Speci�city

enrichR 71.23 142451 0.6010 0.9730 0.6500 0.7430 0.8660 0.9900

MACS2 63.71 126393 0.6830 0.9880 0.7280 0.8080 0.9070 0.9930

DFilter 39.84 79635 0.8830 0.6640 0.8290 0.7580 0.6990 0.9980

CisGenome 38.67 74527 0.9950 0.6830 0.9110 0.8100 0.7290 1.0000

SPP 69.40 138795 0.5040 0.6960 0.5330 0.5850 0.6470 0.9880

BCP 74.54 149101 0.5770 0.9870 0.6290 0.7280 0.8640 0.9890

MUSIC 53.45 106667 0.7750 0.8740 0.7930 0.8210 0.8520 0.9960

A H3K36me3

Enrichment called Scoring based on bona-�de benchmark
in Mb in 1kb bins Precision Recall F0.5-score F1-score F2-score Speci�city

enrichR 559.56 559560 0.1859 0.9997 0.2220 0.3135 0.5330 0.8360

MACS2 407.65 451920 0.2301 0.9996 0.2720 0.3741 0.5990 0.8747

DFilter 87.78 99324 0.9997 0.2801 0.6604 0.4376 0.3272 1.0000

CisGenome 36.40 42517 0.9994 0.1199 0.4050 0.2140 0.1455 1.0000

SPP 25.09 25491 0.8702 0.0628 0.2436 0.1171 0.07710 0.9987

BCP 396.46 407118 0.2554 0.9983 0.3001 0.4068 0.6312 0.8908

MUSIC 402.25 410166 0.2535 0.9910 0.2979 0.4038 0.6265 0.8897

Table 4.1 – Enrichment Calling Statistics and Correctness for All Tools with Respect to the
Bona-Fide Benchmark Set. (A) All tools performwell for enrichment calling in H3K4me3
ChIP-seq data at FDR=0.05, yet DFilter and CisGenome report two-fold less enrichment
than other methods. CisGenome is most precise, MACS2 performs best for Recall and F2-
score. enrichR achieves a high recall and F2-score. (B) Among all tools, enrichR reportsmost
H3K36me3-enriched regions and achieves a high recall at FDR=0.10. All scoring values
≥0.75 are bold faced. Mb=Megabase; kb=kilobase.
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Fig. 4.6 – High Fold-Change and Read Coverage in Tool-Speci�c Regions Support Validity of
enrichRCalls. (A) log2 fold-change (fc) of ChIP over Input and (B) log2(ChIP+Input) cov-
erage compiled for “tool-speci�c” regions. Most tool-speci�c regions have a fc and read cov-
erage signi�cantly greater than background regions. 205,064 enrichR-speci�c regions have
higher fc and read coverage than the genomic average and correspond to ∼57% the quantity
of the benchmark. Red dashed line represents mean log2(fc). Grey dashed line represents
mean log2(fc) (A) and mean log2(ChIP + Input). Tool-speci�c regions are de�ned to be
not represented in a “uni�ed bona-�de benchmark set”. Wilcoxon signed-rank Test: “***” (
P≤0.001), “**” ( P≤0.01), “*” ( P≤0.1) and “n.s.” ( P>0.05).

competitor methods contain many regions with read coverage and fold changes less than the

genomic average. These observations support the validity of enrichR-speci�c regions. Further-

more, enrichR-speci�c regions were remote from uni�ed benchmark regions (median=14Mb)

and, yet, still overrepresented in annotated gene bodies (odds-ratio=13; Table B.1).

Robustness. SomeChIP-seq peak callers perform less well when the sequencing depth in the

ChIP library is reduced [103]. To evaluate the robustness of enrichment calling methods, once

again a uni�ed bona-�de validation set was used to benchmark all tools on an in silico down

sampled sequencing library (Methods Section 4.2.3). All methods, except CisGenome, recovered

≥70% of the H3K4me3 uni�ed bona-�de benchmark (108,834 500bp regions; 54Mb) at a sequenc-

ing depth reduced by 80% (Fig. 4.7A). Only enrichR, MACS2 and BCP could achieve ≥90% pre-

cision at ∼50% of the original H3K4me3 sequencing depth. For H3K36me3, DFilter, CisGenome

and SPP showed inconsistent performances (≤35% recovered) whereas enrichR, MACS2, BCP

and MUSIC recovered ≥90% of the uni�ed bona-�de benchmark (354,527 1kb regions; 355Mb)

at a sequencining depth of 30% (Fig. 4.7B). Note, for sequencing depths far below 15%, enrichR
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Fig. 4.7 – Saturation Analysis Based on a Uni�ed Bona-Fide Benchmark Set for enrichR,
MACS2, DFilter, CisGenome, SPP, BCP and MUSIC. Sequencing libraries of ChIP and
Input were downsampled in silico (Methods Section 4.2.3). (A) For H3K4me3, all methods
worked well. enrichR, MACS2 and BCP captured ≥90% of the uni�ed benchmark set with
50% of the reads from the original library. (B) For H3K36me3, DFilter, CisGenome and SPP
were inconsistent. enrichR, MACS2, BCP and MUSIC recovered ≥80% at 20% of the original
sequencing depth.

�lters rigorously for low power regions with the T Filter to avoid low power calls. In summary,

enrichR, MACS2 and BCPwere precise with respect to a consensus-vote inferred “gold-standard”

in ChIP-seq libraries with a strongly reduced sequencing depth.

4.3.2 enrichRNormalization Corresponds to Published In Silico as well as In

Vitro Normalization Methods

Here, I compare the normalization estimated by enrichR to two competing approaches: (i) the in

silico estimation of cB with NCIS [85]; and (ii) the in vitro spike-in-based estimation of the enrich-

ment factor 〈f〉 in Internal Standard Calibrated ChIP (ICeChIP) [93]. The NCIS normalization

is also based on bona-�de background regions. The method estimated a normalization factor
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and NCIS normalization (θNCIS) are given. NCIS correctly accounted for enrichment in the
data in estimating the normalization factor.

that was >1.5-fold smaller than θ∗ suggesting that NCIS also accounted for the e�ect of enrich-

ment towards a correct background normalization. Interestingly, the NCIS estimates (H3K4me3:

0.14, H3K36me3: 0.263) were still ∼1.35-fold greater than enrichR’s estimate for both H3K4me3

(0.103) and H3K36me3 (0.195). A visual inspection indicated that NCIS over-estimated the ratio

in the true background population (Fig. 4.8A). This over-estimation was more pronounced for

H3K36me3 than for H3K4me3 (Fig. 4.8B). Despite di�erent underlying models both normaliza-

tions account for the e�ect of enrichment on the overall read statistics, yet enrichR seemed more

accurate.

In ICeChIP the ChIP-seq read coverage is transformed into a Histone Mark Density (HMD%)

with the help of spiked-in modi�ed nucleosomes reconstituted from recombinant and semi-

synthetic histones on barcoded DNA. The ICeChIP normalization makes use of an assumed pu-

tative linear relationship between the amount of epitope present and corresponding ChIP-signal

intensity. The HMD% per bp i is de�ned as

HMD%i = 100% ∗

ChIP-coverage
Input-coverage

〈IPLadder〉
(4.2)

where 〈IPLadder〉 is the regression coe�cient in the spike-in IP enrichment ladder. For compar-

ison, I determined the average enrichment 〈f〉 with enrichR in four mouse embryonic stem cell

(mESC) ICeChIP-seq data sets. When compared to 〈f〉, the 〈IPLadder〉 was greater for H3K4me3

(Table 4.2). However, for H3K36me3, H3K79me2, H3K27me3 and H3K9me3 〈IPLadder〉 was

smaller the enrichR’s 〈f〉 suggesting that 〈IPLadder〉 and 〈f〉 are not directly comparable. A

�nding that is also true for the actual scaling factors 〈IPLadder〉
−1 and (log〈f〉)−1. This dis-
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Experiment 〈IPLadder〉 〈f〉 〈IPLadder〉
−1 (log〈f〉)−1 αChIP αInput

H3K4me3 29.03 18.77 0.04 0.34 19.85 103.78
H3K36me3 0.28 1.56 3.70 2.24 57.88 200.89
H3K79me2 0.15 1.64 7.69 2.03 50.15 204.17
H3K27me3 0.70 1.68 1.49 2.05 49.18 210.13
H3K9me3 1.36 1.68 0.73 1.93 51.19 211.01

Table 4.2 – ICeChIP’s Enrichment Factor 〈IPLadder〉 is Not in Concordance with enrichR’s 〈f〉.
When compared, 〈f〉 is∼1.5-fold smaller in H3K4me3 and≥1.2-fold greater in H3K36me3,
H3K79me2, H3K27me3 and H3K9me3 where 〈f〉 is also quite similar for the latter histone
modi�cations. The actual scaling factors are given by 1

〈IPLadder〉
and 1

log〈f〉 where, again, a
disparity between the two methods is observed.

crepancy may be related to the wrong assumption of a linear relationship between epitope and

ChIP-signal intensity in the determination of 〈IPLadder〉. Thus, this assumption in ICeChIP needs

more in-depth investigation, e.g. by extending the spike-in ladder over a greater range of epitope

quantities.

To further analyze the disparity between enrichR’s in silico normalization and ICeChIP’s

in vitro spike-in based normalization, I studied the enrichR enrichment and ICeChIP-reported

HMD% directly. Strikingly, a high correlation (≥0.81) was observed for all �ve ICeChIP experi-

ments which indicated that enrichR’s e and ICeChIP’s HMD% are in concordance (Fig. 4.9A). A

simple linear model could explain the relation in all data sets very well – yet, to a lesser extent for

H3K4me3 where the relation seemed non-linear. Note that the HMD% calculation tends to in�ate

ChIP/Input fold changes in low count regions whereas the enrichR approach penalizes the fold

changes in those regions by adding model-derived pseudo counts αChIP and αInput (see Methods

Section 4.2.2). To analyze this potential discrepancy further, I studied the studentized residuals

of the linear model �t in relation to the raw ChIP and Input read counts (Fig. 4.9B). Through-

out all experiments, the variances of residuals were greatest in regions with ChIP and/or Input

read counts smaller than enrichR’s inferred pseudo counts αChIP and αInput. This observation

con�rmed that HMD% in�ates fold changes of regions with low statistical power. In a �nal as-

sessment, ICeChIP’s 〈IPLadder〉 and enrichR’s 〈f〉 in relation to the fragment coverage per bp

in ChIP and Input. Both enrichment factor estimates represented the maximal enrichment ob-

served in H3K4me3 and H3K9me3 well (Fig.4.9C). However, only 〈f〉 estimated the maximal

enrichment correctly in H3K36me3, H3K79me2 and H3K27me3 whereas ICeChIP’s 〈IPLadder〉

under-estimated the maximal enrichment to a large degree. This under-estimation of the max-

imal enrichment leads to a further in�ation of many HMD% estimates far beyond 100% and,

in consequence, complicates the interpretation of ICeChIP’s HMD% for these histone modi�ca-

tions. Taken together, the enrichR normalization compares favorably to previously published in

silico as well as in vitro normalization methods in terms of its correct background and foreground

enrichment estimation, respectively.
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Fig. 4.9 – enrichR Enrichment e and ICeChIP’s HMD% are Strongly Correlated but HMD% In-
correctly In�ates Low Count Fold Changes. (A) HMD% and enrichR enrichment posi-
tively correlate and this relation can be well explained by a simple linear model for H3K4me3,
H3K36me3, H3K79me2, H3K27me3 and H3K9me3 (regression line in green). (B) Spread of
model residuals are smallest for read counts greater than enrichR-estimated pseudo counts,
i.e. αChIP andαInput (marked in purple). An observation indicative for the HMD% to in�ate the
fold change in low power regions. (C) ChIP fragment coverage per bp plotted against Input
coverage per bp. ICeChIP’s 〈IPLadder〉 (red) and enrichR’s 〈f〉 (blue) are indicated by dashed
lines. 〈IPLadder〉 and 〈f〉 correctly estimate the putative maximal enrichment in H3K4me3
and H3K9me3. However, 〈IPLadder〉 largely under-estimates the putative maximal enrich-
ment in H3K79me2, H3K36me3 and H3K27me3 which results in HMD% up to 5-fold greater
than 100% (see also (A)).
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Fig. 4.10 – chromHMM Binarization Input: enrichR Improved on the Mutual Information
between Histone Modi�cations Associated to Active Transcription in GM12878
ChIP-seq Data. (A) enrichR called up to 3-fold more enrichment in ENCODE GM12878
ChIP-seq data. (B) Covariances of enrichment (0, 1)-matrices showed a high mutual infor-
mation (MI) of H3K4me1/2/3, H3K27ac and H3K9ac in the chromHMM (upper triangular
matrix) and enrichR binarization (lower triangular matrix). In the enrichR binarization,
the MI of H3K4me1 to euchromatic histone modi�cations (H3K4me2/3, H3K27ac, H3K9ac,
H3K36me3) increased but its MI decreased for repressive marks (H4K20me1, H3K27me3).

4.3.3 Improved Chromatin Segmentation with an enrichR-chromHMM Hy-

brid Approach

Given a set of ChIP-seq experiments, the task of chromatin segmentation aims to assign most of

the genome to meaningful chromatin states, i.e. reoccurring patterns of coinciding enrichment

in the ChIP-seq data. I refer to this task as “resolving the epigenome into chromatin states”. The

chromHMMmethod [36] uses a Hidden Markov Model to segment the genome in distinct epige-

netic states based on enrichment calls in a set of ChIP-seq experiments. Hither to shown was the

correctness of the enrichment calling and the normalization capabilities of enrichR. In this last

section, a previously developed technique, namely the chromHMM chromatin segmentation, is

augmented by sensitive enrichment calling performed by enrichR. To this extent, I developed an

enrichR-chromHMM hybrid approach that, �rst, calls enrichment with enrichR (binarization)

and; second, computes a chromatin segmentation with chromHMM’s Hidden Markov Model

based on these enrichment calls (segmentation). I applied this enrichR-chromHMM hybrid as

well as the conventional chromHMM approach on published ENCODE ChIP-seq Data for CTCF,

H3K4me1/2/3, H3K27ac, H3K9ac, H3K36me3, H4K20me1 and H3K27me3 in the lymphoblastoid

cell line GM12878 (Methods Section 4.2.6).

On the level of binarization, enrichR identi�ed more ChIP-seq enrichment than the chrom-

HMMbinarization and improved on themutual information (MI) between certain histonemodi�-

cations associated to active transcription. enrichR could increase the number of enriched regions
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by up to 3-fold (e.g. H3K27me3)when compared to the conventional chromHMMbinarization ap-

proach based on a Poisson background model (Fig. 4.10A). Nevertheless, “more” enrichment calls

do not imply “moremeaningful“ enrichment calls. To study the validity of this gain in enrichment

calls, the MI (see [89]) of the (0, 1)-matrix was computed where 0 and 1 indicate background and

enriched, respectively. A high MI of H3K4me1/2/3, H3K27ac and H3K9ac which is indicative for

active promoters was already apparent in the chromHMM enrichment calls (Fig. 4.10B). How-

ever, enrichR enrichment calling increased the MI between modi�cations associated to active

chromatin, e.g. H3K4me1 and CTCF, and decreased the MI between those marks and repressive

modi�cations, e.g. H3K4me3 and H3K27me3. Thus, enrichR enrichment calling is a promising

augmentation to the conventional chromHMM binarization approach.

On the level of segmentation, the enrichR binarization improved the chromatin segmen-

tation on two levels: (i) by identi�cation of a previously undetected poised enhancer state and;

(ii) by dissecting a large unresolved state into a elongation-associated state as well as into a

lamina-associated and a lamina-distal heterochromatic state. When compared to the conven-

tional chromHMM approach, the enrichR-chromHMM hybrid evoked many similar chromatin

states strati�ed by a hierarchical clustering of a combined emission matrix (Fig. 4.11A). The ma-

jority of chromatin states covered only a small fraction (≤3.9%) of the genome in both approaches

(Fig. 4.11B). Nevertheless, the enrichR binarization in the hybrid approach led to the identi�ca-

tion of a chromatin state with low prevalence (∼70Mb; “enrichR | state 14a” highlighted in green)

that is characterized by H3K4me1/2 as well as H3K27me3 enrichment. Given that this state is

found predominantly proximal to genes and it is characterized by H3K4me1 and H3K27me3

alike suggest that it marks putative poised enhancers (see [124] for review). The conventional

chromHMM approach reported a large state (∼2.2Gb; “chromHMM | state 15”) that is associated

neither to CTCF nor to any chromatin modi�cation. On the contrary, the enrichR binariza-

tion led to a reduction of this state by almost 2-fold (∼1.2Gb; “enrichR | state 15b”; Fig. 4.11B).

These states are associated to the cell lamina and most likely represent stably silenced regions

in telomeric and/or centromeric regions, i.e. constitutive heterochromatin. Those genomic loci

are hard to assay in ChIP-seq due to repeats in their DNA sequences. Interestingly, the en-

richR binarization led to the dissection of the “chromHMM | state 15” into three chromatin states

(Fig. 4.11D): the larger aforementioned heterochromatic state (“enrichR | state 15b”), a ∼580Mb

state marked by H3K27me3 (“enrichR | state 14b”, marked in yellow) and a ∼456Mb state char-

acterized by H3K4me1, H3K36me3 and H3K27me3 (“enrichR | state 15a”, marked in pink). The

presence of H3K27me3 in “enrichR | state 14b” and its association to the lamina suggest that

this state is, in fact, representing stably silenced heterochromatin. This H3K27me3 enrichment

was not detectable with the conventional chromHMM binarization. As suggested by the pres-

ence of H3K36me3, “enrichR | state 15a” may be associated to active transcription because this

state is found enriched in gene bodies distant to the cell lamina (Fig. 4.11C). It remains further

investigation if this state describes genes with allele-speci�c or sample-heterogeneous expres-
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Fig. 4.11 – chromHMM Segmentation Output: An enrichR-chromHMMHybrid Approach In-
creased Resolution of Chromatin Segmentation in GM12878 Cells. (A) A hierarchical
clustering on the combined emission probabilities reported by the conventional chromHMM
approach (dark grey) and the enrichR-chromHMM hybrid (light grey) indicates a good
agreement between both approaches but also highlights di�erences. For example, enrichR
state 14a (green overlay) is characterized by H3K4me1/2 and H3K27me3 simultaneously and
does not cluster with a chromHMM state. The large enrichR state 15a (pink overlay) is char-
acterized by H3K36me3 and H3K4me1 and not found in the conventional chromHMM ap-
proach. (B) Most states in both approaches are of low prevalence. The enrichR-chromHMM
hybrid resolves themajority of the genomewhereas the conventional approach leaves>75%
unresolved. (C) log2 fold enrichments for genomic features highlights again the consistency
of the hybrid approach. “enrichR | state 14b” (yellow) is enriched at lamina associated do-
mains (LADs) and “enrichR | state 15a” (pink) describes a putative gene body-associated
state distant from the cell lamina. (D) A bipartite graph of segmentations reported by both
approaches shows coherent results between the two. It also highlights how the enrichR-
chromHMM hybrid approach dissects the large unresolved state reported by the conven-
tional approach into three states.

sion patterns. Taken together, the enrichR-chromHMM hybrid approach increased the mutual

information of reported transcription-associated histone modi�cations in the binary input ma-

trix. The more sensitive enrichment calling by enrichR enabled the hybrid approach to detected

a putative poised enhancer state and to dissect a previously unresolved state into twomeaningful

chromatin states.
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4.4 Discussion

In summary, the application of a simple two-component implementation of the “normR” frame-

work is represented is represented by “enrichR”. Bymodeling foreground and background jointly,

normalization and enrichment calling are performed simultaneously. The implicit modeling of

the e�ect of enrichment on the overall read statistics results in an adequate normalization fac-

tor that increases the sensitivity in detecting shallow di�erences in ChIP enrichment while, at

the same time, maintaining high speci�city. The enrichR method can readily be used as a self-

contained software package in the extensive analysis of ChIP-seq data in epigenetic studies.

The enrichR method facilitates enrichment calling in high and low signal-to-noise ratio (S/N)

ChIP-seq data alike. The ChIP-seq enrichment calling for the localized histone modi�cation like

H3K4me3 is successfully achieved by enrichR and by most of its competitors. Auxiliary infor-

mation such as DNA-hypomethylation and transcriptional activity support the validity of those

enrichment calls. As opposed to H3K4me3 which has a high S/N, delocalized histone modi�-

cations like H3K36me3 impede enrichment calling because of a low S/N in the ChIP-seq data.

Herein, enrichR outperforms other approaches in terms of robustness to a reduced sequencing

depth and accuracy of classi�cation as scored under a novel bona-�de ChIP-seq benchmark, i.e.

a trustworthy validation set, derived from a set of seven enrichment calling approaches. Fur-

thermore, enrichR recovers many regions with promiscuous H3K36me3 enrichment that other

methods miss. Once again, auxiliary information like DNA-hypermethylation and substantial

fold enrichment over Input could con�rm the genuineness of these calls. The superior perfor-

mance of enrichR is attributed to the sensitive normalization technique which accounts not only

for varying sequencing depth but speci�cally addresses the e�ect of ChIP enrichment on the

overall read statistics. In the future, enrichR can be used to detect regions with low ChIP-seq en-

richment like chromatin modi�cations in heterogeneous samples or low a�nity protein binding

sites wherein the signal level does not pass the detection level of precedent peak calling meth-

ods. Revising canonical transcription factor binding sites might be considered if they are based

on peaks called by those in-sensitive methods.

Aside from a correct enrichment calling, enrichR improves on current in silico as well as in

vitro ChIP-seq normalization methods. The application of enrichR to a recently reported spike-

in controlled ICeChIP-seq data set revealed a peculiar disparity in the estimation of a correct

enrichment factor to infer the histone modi�cation density. The assumption of the putative lin-

ear relationship between the quantity of the epitope spike-in and the ChIP-seq signal intensity

is incorrect. In consequence, the initial spike-in derived normalization factor 〈IPLadder〉 under-

estimates the maximal enrichment in three out of �ve experiments. Strikingly, enrichR’s enrich-

ment factor 〈f〉 correctly estimated the maximal enrichment in all experiments.

As a proof of concept, a chromatin segmentation based on enrichR enrichment calls improves

the resolution of the segmentation result. Whereas the conventional segmentation approach
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by chromHMM leaves ∼75% of the epigenome unresolved, an enrichR-chromHMM hybrid ap-

proach resolves the majority of the genome into previously undetected meaningful states. For

example, a detected putative poised enhancer state is a promising candidate for future investi-

gation. Moreover, the dissection of the large previously unresolved heterochromatin state into

a Lamina-associated and a Lamina-dissociated heterochromatic states supports the theory of

distinct repressive mechanisms of these forms of chromatin organization (for review see [37]).

Thus, I envision how enrichR augments today’s epigenetic analyses ranging from clustering to

visualization.

In the next two chapters I am going to present two more sophisticated applications of the

normR framework in ChIP-seq data analysis. A simple augmentation to the enrichRmodel allows

for the identi�cation of distinct H3K27me3 andH3K9me3 enrichment regimes that are ultimately

linked to formation of facultative and consecutive heterochromatin, respectively. Furthermore,

I will study the e�ects induced by the immortalization of primary hepatocytes with a normR

incarnation that compares to ChIP-seq tracks without the need of an Input experiment.
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Chapter 5

regimeR –

Regime Enrichment Calling in ChIP-seq Data

This chapter introduces “regimeR” – an expansion of the enrichR model that dissects canonical

signals in ChIP-seq data into distinct regimes of di�erent enrichment levels. The regimeRmethod

is described via an application to low S/N ChIP-seq data of the heterochromatic histone modi-

�cations H3K27me3 and H3K9me3 in HepG2 cells. The regimeR-based analysis identi�ed peak,

i.e. high, enrichment regions to be associated to higher levels of methyltransferase binding for

those marks and, also, to be embedded within regions broad, i.e. low, enrichment. These results

and distinct sequence features suggest that the heterochromatin peak regions resemble nucle-

ation sites for gene repression in silenced regions of facultative (H3K27me3) and consecutive

(H3K9me3) heterochromatin.

5.1 Introduction

In the previous chapter, enrichR was shown to con�dently identify genomic loci in ChIP-seq

data that harbor a statistically signi�cant ChIP enrichment given a background model which is

accurately �t using the normR framework. A comparison to previously developed approaches

for enrichment calling con�rmed that this background normalization aided the identi�cation of

ChIP-seq signals with low signal over background. Now the question arises whether those sites

of lowChIP enrichment are qualitatively di�erent from the “canonical” protein binding sites with

high enrichment – apart from the di�erence in their average enrichment level. To the best of my

77



78 Chapter 5. Regime Enrichment Calling with regimeR

knowledge, there is no precedent methodology reported in the scienti�c literature that solves

the principled discrimination of ChIP-seq enrichment regimes.

ChIP-seq signal intensities are predictive for quantitative outputs like gene expression [34]

which is indicative of the quantitative information inherent to ChIP-seq data. It would be favor-

able to correlate the normalized ChIP-seq signal intensity to the prevalence of a protein binding

event in the sample cell population. In fact, the acquisition of very homogeneous cell popula-

tions is the exception rather than the rule and, if not taken into account, the sample heterogeneity

leads to spurious results in downstream analyses of protein binding sites [93]. A conventional

in-sensitive enrichment calling approach is doomed to exclusively identify genomic loci bound

in the majority of sample population which harbor a predominantly high ChIP enrichment. In

a very heterogeneous sample population, there may exist only a few of these regions and, thus,

it is an asset to also identify regions of weak protein binding. A qualitative separation of the

signal-regions into low (broad) and high (peak) enrichment regions aids the di�erentia-

tion of genomic loci that are bound by the protein in only a small sub-population of cells from

those that are bound in most cells, respectively. This analysis of heterogeneous protein binding

can not be performed using existing methods.

The qualitative di�erences of broad and peak protein binding events can be strati�ed, for ex-

ample, by a signi�cantly di�erent co-occupancy with a known interacting protein or by distinc-

tive sequence features of the underlying DNA at those sites. For instance, genomic loci harboring

a certain histone modi�cation should be associated with the presence of an enzyme catalyzing

this modi�cation, e.g. H3K27me3 is deposited by EZH2 [125–128]. To this extent, H3K27me3-

enriched regions should coincide with EZH2 binding – speci�cally, H3K27me3-broad regions

should show lower EZH2 binding than H3K27me3-peak regions. In addition, broad and peak

regions can also be studied on the basis of determining genomic features like the CpG con-

tent [129, 130] or conservation [131]. Thus, by compiling multiple auxiliary data a biological

relevance can be assigned to the two protein binding regimes of broad and peak signals.

To study the prevalence of protein binding events via ChIP-seq, I used another implementa-

tion of the normR framework called “regimeR” which classi�es signi�cantly enriched regions

into multiple enrichment regimes. As a proof of principle, I applied regimeR with two enrich-

ment components to two heterochromatic histone modi�cations H3K27me3 and H3K9me3 in

the HepG2 hepatocarcinoma cell line to study the preservation of facultative and constitutive

heterochromatin, respectively. The low S/N nature of these marks generally impedes enrich-

ment calling with conventional approaches (see Section 3.2.2) but, as shown before, the normR

framework provides high sensitivity in this setting (see Chapter 4). In fact, regimeR success-

fully dissected the ChIP-seq enrichment therein into two distinct enrichment regimes of low and

high signal over background. The regimeR-based study found that H3K27me3 peak regions are

speci�cally embedded within regions of broad H3K27me3 enrichment and that these peaks, in

comparison to their �anking broad regions, were associated to CpG-dense genomic loci preferen-
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tially bound by the H3K27 methyl transferase EZH2. Similarly, H3K9me3 peak regions were also

�anked by broad H3K9me3 domains. The H3K9me3 peak regions were coincident with repetitive

elements and the binding of ZNF274 – a transcription factor that recruits the H3K9 methyltrans-

ferase SETDB1 [132]. Taken together, these distinct regions of high H3K27me3 and H3K9me3

ChIP-seq enrichment resemble nucleation sites of broad facultative and constitutive heterochro-

matin, respectively. Thus, the regimeR approach enables for an unprecedented strati�cation of

sample heterogeneity in ChIP-seq experiments to study di�erences of protein binding with low

and high propensity in the sample population.

5.2 Methods

This section details the processing and the quality of the sequencing data used. Next, the normR

framework is adapted to the tasks of ChIP-seq regime enrichment identi�cation which is referred

to as “regimeR”. In the last section, the steps that facilitate the analysis of DNA sequence features

are outlined.

5.2.1 Data Sets

ChIP-seq Data. Paired end reads from Input, H3K27me3 and H3K9me3 ChIP-seq for HepG2

cells and Primary Human Hepatocytes (PHH) were processed and quanti�ed as described in

Section 4.2.1. EZH2 (GSM1003576), ZNF274 (GSM935350) ChIP-seq alignments and the respective

control alignment (GSM733780) were downloaded from the UCSC ENCODE DCC repository [43]

under hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/. Enrichment over background

estimated with enrichR() in 1kb bins for reads with Mapping Quality ≥30 shifted by 100bp (see

Chapter 4).

5.2.2 The normR Methods: regimeR

The normR framework (see Chapter 3) was adapted to calling enrichment regimes in ChIP-seq

Data, referred to as “regimeR”. Now,m = 3mixture components were used, i.e. backgroundB

and two foreground components F1 (broad enrichment) and F2 (peak enrichment), to normalize

and call enrichment regimes over Input. The number of free parameters is now increased to �ve

in comparison to enrichR (see Chapter 4), namely θ = {θB, θF1
, θF2

} and π = {πB, πF1
, πF2

}.

Note, πF2
is simply (1 − πB − πF1

). Given the normR model in Equation (3.2) and the normR

likelihood function de�ned by Equation (3.3) the following “regimeR” likelihood function can be

derived:

L = P (π, θ|si, ri) =
∏

i

(
si + ri
si

)
∑

k∈{B,F1,F2}

πk · θ
si
k · (1− θk)

ri

hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
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where si (ri) corresponds to the number of reads in the ChIP (Input) for non-overlapping, �xed

size regions i = 1, . . . , n. Parameters are �tted by running the EM algorithm as described for

enrichR in Section 4.2.2. Identically to enrichment calling with enrichR, the background model

B is set to the mixture component k with smallest θk. To identify signi�cantly enriched regimes,

regions signi�cantly di�erent from background are recovered as described before in Section 4.2.2.

Next every bin j that is signi�cantly enriched is assigned to one of the two enrichment regimes

by Maximum A Posteriori

zj = argmax
k∈{F1,F2}

(
P (πk, θk|sj , rj)

P (π, θ|sj , rj)

)

,

where zj indicates the assignment of a signi�cantly enriched region j to either F1 or F2.

The regularized ChIP-seq enrichment e∗ is computed as reported for enrichR (Section 4.2.2).

To account for the maximal ChIP enrichment, e∗ is normalized with the log of the average en-

richment factor for F2

〈f2〉 =
θF2

1− θF2

·
1− θB
θB

to obtain a regularized and normalized enrichment e:

ei =
e∗i

log〈f2〉
.

These routines were implemented in the normR R package [4] as the enrichR()-function (see

also R code snippet below).

These routines were implemented in the normR R package [4] as the regimeR()-function

(see R code below). Note that, in principle, an arbitrary number of components representing

background plus a �xed number of enrichment regimes is possible in regimeR().

The same read counting con�guration as before was used (see Section 4.2.2). Read counts

obtained from H3K27me3 and H3K9me3 ChIP-seq experiments in HepG2 cells were modeled in

regimeRwith 3 components: (i) background (no enrichment); (ii) broad regions (low enrichment)

and; peak regions (high enrichment) with regimeR() in R:

regimes <- regimeR(

treatment = "ChIP.bam",

control = "Input.bam",

genome = genome,

models = 3,

countConfig = countConfig,

procs = 8
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)

Bins with q-value≤0.1 (FDR=10%) were called enriched and assigned to an enrichment com-

ponent by Maximum A Posteriori in regimeR(). Results were exported to bed using normR’s

exportR() function:

exportR(

x = regimes,

filename = "regimes.bed",

type = "bed",

fdr = 0.1

)

5.2.3 Validation of regimeR Calls via Sequence Features

CpG Odds Ratio. The CpG odds ratio for a genomic region i was calculated as the ratio of the

number of observed CpGs “#CpG” therein over the number of expected CpGs under i.i.d., i.e.

(#Ci · #Gi):

CpG-oddsi =
#CpGi

#Ci · #Gi

.

Conservation. PhastCons100way [133, 134] and PhyloP100way scores were downloaded from

UCSC. The maximum value in a 1,000bp window was cataloged.

Repetitive Elements. RepeatMasker [135] annotations for hg19 were downloaded from

repeatmasker.org/species/hg.html. Repetitive elements �agged as “simple/tandem repeats”

or “low complexity regions” were �ltered out and only repeats with “score”≥1,000 were consid-

ered.

KRAB-ZNF Motif Scanning. To identify potential binding sites for Krüppel-associated box

zinc-�nger transcription factors that correlate with H3K9me3 peaks, I searched footprintDB [31]

“DNA Binding Motifs” for the term “ZNF” and out of 31 motifs retained all motifs annotated as

“KRAB box” (5 motifs: ZNF263, ZNF274, ZNF306, ZNF354C, ZNF713). I used the MEME SUITE’s

[136] FIMO routine [137] to identify genome-wide occurrences of these motifs. Reported p-

values give the probability of a random DNA sequence of the same length as the respective motif

to match the occurrence with the same or a better score, i.e. sum of “used” entries in position-

dependent scoring matrix of the motif.. I retained only motifs with FDR≤0.01 – only ZNF274

and ZNF263 passed this threshold:

awk -F"\t" \

’OFS="\t" { if ($8 <= .01) {print $2,$3,$4,$1"(q="$8")",(30*$6),$5}}’ \

FIMO_0All.IDs.txt | sort-bed - > FIMO_0All.IDs.qsig.bed

repeatmasker.org/species/hg.html
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Fig. 5.1 – regimeR Identi�es H3K27me3 and H3K9me3 Enrichment Regimes at the FCGBP
Gene Locus. Input (grey), H3K27me3 (orange), H3K9me3 (blue) and RNA-seq (black) cover-
age around a ZNF cluster on chromosome 19 in HepG2 cells. Individual regimeR-computed
regimes are displayed as boxes below respective tracks. Repressed promoters of the FCGBP
are marked by a H3K27me3 peak within a broad H3K27me3 domain (green overlay). The
3’-ends of ZNF genes are marked with high H3K9me3 enrichment (yellow overlay).

5.3 Results - Distinct Heterochromatic Enrichment Regimes

Hither to discussed was the applicability of normR to a well-studied problem: the discrimination

of enrichment against background. Here, a problem is studied for which I did not �nd to the

best of my knowledge a precedent in the literature: the discrimination of low enrichment from

high enrichment. This problem can easily be addressed by increasing the number of foreground

components in enrichR from one single component to multiple components (see Methods Sec-

tion 5.2.2) – an approach referred to as “regimeR”. In the case of two foreground components,

regimeR discriminates a peak regime (high enrichment) and a broad regime (low enrichment)

over the background. Here, I applied regimeR to H3K27me3 and H3K9me3 ChIP-seq data from

the hepatocarcinoma cell line HepG2 and studied distinctive features of the two ChIP enrichment

regimes therein.

Fig. 5.1 depicts a representative region of Human chromosome 19 harboring active and re-

pressed genes. Therein, regimeR segmented the ChIP-seq enrichment into broad and peak re-

gions. For example, a H3K27me3 peak was identi�ed at the most upstream promoter of the

“Fc Fragment Of IgG Binding Protein” gene (FCGBP). This promoter is repressed as con�rmed

by RNA-seq read coverage. For H3K9me3, regimeR identi�ed three peaks that are �anked by

broad H3K9me3 enrichment at the 3’-ends of zinc �nger genes ZNF546 and ZNF780A/B which

are reported to be bound by SETDB1, the catalyst of H3K9me3 [132, 138, 139]. This potentially

contradictory role of the repressive mark H3K9me3 at the 3’-ends of expressed genes has been

described previously [140].
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5.3.1 H3K27me3 Peaks Coincide with CpG Islands Bound by EZH2

For H3K27me3, regimeR called 42.4% (1.2Gb) of the HepG2 epigenome H3K27me3-enriched

(1,221,850 1kb regions) and subdivided this into 940,753 broad (77%, 941Mb; µChIP=12.03; θF1
=0.46)

and 281,097 peak regions (23%, 281Mb; µChIP=29.62; θF2
=0.68; Fig. 5.2A). H3K27me3-peak re-

gions were characterized by a higher CpG odds ratio, i.e. CpG-content corrected for GC content,

than, both broad or background regions (Fig. 5.2B). In conjunction with an elevated conservation

(Fig. 5.3A) and a statistically signi�cant overlap with annotated TSSs (Fisher’s signed exact test;

P≤0.001; odds ratio=1.98; Table 5.1A) these observations rea�rm that the TSSs targeted for peak

H3K27me3 levels in HepG2 cells are CpG island promoters [129]. Moreover, H3K27me3-peak

regions had a signi�cantly higher level of EZH2 ChIP-seq enrichment (Wilcoxon signed-rank

test; P≤0.001, Fig. 5.2C) which is the major H3K27 methyltransferase [125–128]. Together these

observations suggest that H3K27me3-broad and -peak regions show distinct characteristics with

respect to CpG content, localization and EZH2 enrichment.

5.3.2 H3K9me3 Peaks are Found within Repeats Bound by ZNF274

For H3K9me3, 14.7% (424Mb) of the HepG2 epigenome got classi�ed into 202,390 broad (47.8%,

202Mb; µChIP=11.27; θF1
=0.39) and 221,741 peak regions (52.2%, 222Mb; µChIP=23.75; θF2

= 0.70;

Fig. 5.2D). H3K9me3 covered∼3-fold less of the genome than H3K27me3, yet, with a higher frac-

tion of peak regions. Both H3K9me3-broad and –peak regions showed a statistically signi�cant

overlap with repetitive DNA elements over background (Wilcoxon-signed-rank test; P≤0.001;

Fig. 5.2E and Fig. 5.3B), which is a reported feature of constitutive heterochromatin marked by

H3K9me3 [141]. H3K9me3-peak regions were signi�cantly more enriched for ZNF274 than back-

A H3K27me3

1.5kb Promoter Genes

+ - Odds, P-value + - Odds, P-value

broad
enriched 51796 1464895 0.637 635970 880721 0.3781

background 71750 1292603 P<2.2e-16 895445 468908 P<2.2e-16

peak
enriched 21335 263211 1.978 144364 140182 0.898

background 102211 2494287 P<2.2e-16 1387051 1209447 P=2.932e-163

B H3K9me3

1.5kb Promoter Genes

+ - Odds, P-value + - Odds, P-value

broad
enriched 17705 385127 1.03 189828 213004 0.755

background 105841 2372371 P=0.0003163 1341587 1136625 P<2.2e-16

peak
enriched 6488 227776 0.6156 83147 151117 0.4553

background 117058 2529722 P<2.2e-16 1448268 1198512 P<2.2e-16

Table 5.1 – Transcriptional Start Site and Gene Overlap of H3K27me3- and H3K9me3-Broad
and -Peak Regions in HepG2 Cells. (A) H3K27me3-peak regions are over-represented
at transcriptional start sites (TSS). (B) Both H3K9me3 regimes are not over-represented at
genic features. A “1.5kb Promoter” is de�ned as 750bp down- and upstream of the TSS; “+”
= overlapping; “-” = non-overlapping; P-values are obtained from Fisher’s exact test.
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ground and H3K9me3-broad regions (Wilcoxon-signed-rank test, P≤0.001; Fig. 5.2F), in line with

the theory that ZNF274 recruits the H3K9 methyltransferase SETDB1 [132]. Thus, the identi-

�ed H3K9me3-peak regions may coincide with nucleation sites for heterochromatin assembly at

repetitive elements.
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Fig. 5.2 – H3K27me3 and H3K9me3 Enrichment Regimes Coincide with Distinctive Sequence
Features and Protein Binding. (A) regimeR identi�es broad and peak H3K27me3 enrich-
ment with distinctive levels of ChIP intensity (left). (B-C) H3K27me3-peaks have signi�-
cantly greater CpG odds (B) and EZH2 ChIP-seq enrichR enrichment e (C) as compared to
background and broad regions. (D) H3K9me3 regimes identi�ed by regimeR (right) also have
distinctive levels of ChIP signals (left). (E-F) H3K9me3-peaks are signi�cantly enriched for
repeats (E) and have a higher ZNF274 ChIP-seq enrichment e (F) as compared to both back-
ground and broad regions. Wilcoxon signed-rank Test: “***” ( P≤0.001). For repeats see also
Fig. 5.3.
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Fig. 5.3 – H3K27me3 Heterochromatin is Punctually More Conserved Than Background Re-
gions and Enriched for Long Term Repeats (LTRs) in HepG2 Cells. (A-B) Comple-
mentary cumulative empirical density plots of regional PhyloP100way (A, punctual conser-
vation) and PhastCons100way (B, broad conservation) scores reveals that H3K27me3 regimes
are marginally more conserved than H3K9me3 regimes and background-regions in the verte-
brate lineage. (C) The numbers of SINE/LINEs and Retro-elements/LTRs in H3K9me3 regimes
are signi�cantly greater than in background regions. Red dashed line represents genomic av-
erage of repeat overlap. “Retro/LTRs” = Retro elements and long term repeats; Wilcoxon
signed-rank Test: “***” ( P≤0.001) and “n.s.” ( P>0.05).

5.3.3HeterochromaticPeaksResembleNucleation Sites forHeterochromatin

Embedded within Regions of Broad Enrichment

The observation that peak regions coincided with signi�cantly higher levels of proteins associ-

ated to their catalysis than broad- and background-regions indicates that they may correspond

to putative nucleation sites for heterochromatin assembly. In line with this idea I found the vast

majority of H3K27me3-peak regions were embedded in H3K27me3 broad domains (82.8%). Also

most H3K9me3-peak regions are either embedded in an H3K9me3-broad domain (43.4%) or at

the border of a broad domain (35.1%). In addition, the DNA sequences of H3K27me3-peak and

-broad regions are more conserved than background according to di�erent measures of conser-

vation (Fig. 5.3A, B) with the tendency of H3K27me3-peaks to be hyper-conserved. This �nding

is in line the theory that hyper-conserved domains underlie polycomb silencing [142]. On the

contrary, H3K9me3 peaks were less conserved than broad regions and are predominantly found

in repeat regions and retroelements (Fig. 5.3C) further supporting the aforementioned theory

that repetitive elements recruit the H3K9 methyltransferase SETDB1 [141, 143]. Taken together,

these �ndings strongly support the idea that the H3K27me3 and H3K9me3 peaks identi�ed by

regimeR are nucleation sites for facultative and consecutive heterochromatin, respectively.
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5.3.4 H3K27me3 and H3K9me3 do Overlap by a Minority within and be-

tween Tissues

Next, the overlap of H3K27me3 and H3K9me3 regimes within and between the HepG2 and pri-

mary human hepatocytes (PHH) epigenome was analyzed. In∼203Mb of the HepG2 epigenome

H3K27me3 and H3K9me3 coincided (Fig. 5.4A) wherein broad regions tended to overlap more

(∼80Mb; 8.5% of H3K27me3-broad, 39% of H3K9me3-broad) than peak regions (∼14Mb; 5.2%

of H3K27me3-peak, 6.6% of H3K9me3-peak). Once more, the small overlap of H3K27me3 and

H3K9me3 peaks supports the distinct nature of those two putative heterochromatic nucleation

sites supporting the theory of their mutual exclusivity [144]. Surprisingly, PHH which are the

tissue-of-origin of the HepG2 hepatocarcinoma cell line showed an overall increase in hete-

rochromatin with the tendency towards more peak regions in H3K27me3 (∼613Mb) and more

broad regions in H3K9me3 (∼900Mb; Fig. 5.4B). When compared, ∼41% (385Mb) of HepG2

H3K27me3-broad, ∼38.6% (108Mb) of HepG2 H3K27me3-peak and ∼49% (100Mb) of HepG2

H3K9me3-broad regions were coincident with regions of the same type in PHH (Fig. 5.4C). How-

ever, only 41Mb (18.4% of HepG2 H3K9me3-peak) shared a H3K9me3 peak. Taken together, het-

erochromatic regimes overlap only by a minority between HepG2 cells and PHH – especially

H3K9me3-peak regions are diverse.

To investigate the diversity of H3K9me3 peak regions between the two studied cell types, I

scanned the genome for occurrences of Krüppel-associated box zinc-�nger transcription factor

(KRAB-ZNF) binding sites (see Methods Section 5.2.3). A region on chromosome 19 con�rmed

the co-occurrence of potential KRAB-ZNF binding sites and H3K9me3-peak regions in both cell

types (Fig. 5.5), especially for ZNF274 [132]. However, there existed ZNF274 motif occurrences

A HepG2 cells

ZNF263 ZNF274

+ - Odds, P-value + - Odds, P-value

broad
enriched 1496 200894 1.12 78 202312 1.33

background 17712 2660942 P=0.00004 777 2677877 P=0.02

peak
enriched 1049 220692 0.69 507 221234 17.51

background 18159 2641144 P<2.2e-16 348 2658955 P<2.2e-16

B Primary Human Hepatocytes

ZNF263 ZNF274

+ - Odds, P-value + - Odds, P-value

broad
enriched 5889 893880 0.97 68 899701 0.19

background 13319 1967956 P=0.09 787 1980488 P<2.2e-16

peak
enriched 691 126177 0.81 679 126189 84.16

background 18517 2735659 P=1.9e-8 176 2754000 P<2.2e-16

Table 5.2 – Overlap of ZNF263 and ZNF274 Motif Occurences with H3K9me3 Broad and Peak

Regions in HepG2 Cells and Primary Human Hepatocytes. (A-B) H3K9me3-peak re-
gions overlap signi�cantly with ZNF274 motif occurrences for HepG2 cells (A; odds=17.51)
and primary human hepatocytes (B; odds=84.16). “+” = overlapping; “-” = non-overlapping;
P-values are obtained from Fisher’s exact test.
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Fig. 5.4 – H3K27me3 andH3K9me3HeterochromaticRegimesPredominantlyDoNotOverlap
within HepG2 Cells and are Predominantly Cell-Type Speci�c. (A) HepG2 H3K27me3
and H3K9me3 heterochromatin is shared for 203Mb but heterochromatic peaks overlap by
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atocytes. Only∼18% of HepG2 H3K9me3 peaks are also H3K9me3 peaks. Venn diagrams are
scaled to the size of regions therein.
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Fig. 5.5 – H3K9me3 Heterochromatin Correlates with KRAB-ZNF274 Motif Ocurrences. A
genome browser shot of a 22Mb region on human chromosome 19 illustrates the strong over-
lap of constitutive heterochromatin peak regions with ZNF274 and ZNF263motif occurrences
(darkblue boxes) in HepG2 cells and primary human hepatocytes. However, also di�erences
are apparent (pink overlay).

which were marked by heterochromatic peaks only in the primary tissue, i.e. PHH. Genome-

wide, ZNF263 motifs are not over-represented in heterochromatin (Table 5.2) which supports the

theory that ZNF263 has both repressing and activating roles [145]. On the other hand, ZNF274

motif occurrences are over-represented in H3K9me3-peaks of HepG2 cells (odds=17.51) and PHH

(odds=84.16). Taken together, these observations highlight the di�erences in constitutive hete-

rochromatin marked by H3K9me3 between cultured and primary cells.

5.4 Discussion

normR can be used to facilitate the discrimination of peak- and broad-regions against background

in a single principled analysis, referred to as “regimeR”. An analysis of H3K27me3 and H3K9me3

inHepG2 cells revealed that there exist distinct regions of broad (low) and peak (high) enrichment

in HepG2 cells. For the �rst time, one principled approach was able to detect these distinct

enrichment regimes in the low S/N ChIP-seq data. These �ndings suggest that those enrichment

regimes are ultimately linked to the protein localization propensity in a heterogeneous sample

and, furthermore, are indicative of the modes of action in the preservation of heterochromatin.

The histone modi�cation H3K27me3 marks the facultative heterochromatin which can be

dissected into two regimes of ChIP enrichment with regimeR. Speci�cally, conserved H3K27me3-

peak regions were found within H3K27me3-broad domains at CpG-dense regions bound by

EZH2, supporting the idea of CpG-enriched polycomb recruitment sites [142]. As opposed to

canonical polycomb response elements in Drosophila [125, 128], a working model of polycomb

recruitment for the establishment of facultative gene silencing is still lacking for mammals. The

regimeR-based analysis of H3K27me3 ChIP-seq data constitutes an adequate approach to inves-

tigate on possible mechanisms of polycomb silencing in both Drosophila and mammals alike.

On the other hand, the constitutive heterochromatin is mutually exclusive to facultative

chromatin which is predominantly marked by H3K9me3 [144]. Therein, regimeR can also iden-

tify two distinct regimes of enrichment. Similarly to H3K27me3-peak regions, the identi�ed
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H3K9me3-peak regions are embedded within or �anked by regions of broad enrichment. Those

H3K9me3 peaks coincide with repetitive elements like retrotransposons which have recently

been shown to provide gene regulatory potential [143]. H3K9me3-peak regions are bound by

Krüppel-associated box zinc-�nger transcription factor 274 (ZNF274) – a recruitment protein for

the H3K9 methyltransferase SETDB1 [132]. I anticipate that regimeR can readily be used to in-

terrogate on the stability of constitutive heterochromatin across conditions, e.g. in aging and

environmental stress (see [141] for review).

My �ndings implicate a novel mode of action in the preservation of heterochromatin: High

propensity heterochromatic regions with high (peak) ChIP-seq enrichment signal methyltran-

ferase recruitment to establish the stably silenced heterochromatin. As a consequence of these

recruitment signals, surrounding regions may be silenced with low propensity. In line with

this idea, a low (broad) ChIP-seq enrichment of the heterochromatic modi�cations is observed

around these nucleation sites. The herein identi�ed preclusion of H3K27me3- and H3K9me3-

peak regions hints at distinct modes of action of nucleation sites for facultative and constitutive

heterochromatin, respectively. Especially, the low overlap of H3K9me3 peak regions between

HepG2 cells and their cell type of origin, i.e. primary human hepatocytes, is an interesting sub-

ject for further investigation of the dynamics of constitutive heterochromatin in relation to en-

vironmental stimuli [141]. In particular, malignancies can induce substantial disruptions of the

heterochromatin [139] and the immortalization of hepatocytes is an appropriate model to study

such e�ects [146,147]. A systematic comparison of the di�erences in facultative heterochromatin

between HepG2 cells and primary human hepatocytes is given in Chapter 6.

In the future, regimeR will prove useful in studies of heterogeneity in cellular epigenetic

markings to identify regions of weak protein binding. For instance, regimeR has recently been

used to model histone modi�cation asymmetries [5]. Furthermore, I anticipate that the enhanced

decomposition of ChIP-seq signals is bene�cial to predict gene regulation based low a�nity

transcription factor binding [148, 149].
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Chapter 6

diffR –

Conditional Di�erence Calling in ChIP-seq Data

This chapters presents “di�R” – an implementation of the normR framework that enables for the

direct comparison of NGS experiments. di�R �ts a mixture model with three components repre-

senting background, control- and treatment-di�erential enrichment. The �tted background com-

ponent enables the detection of conditional changes in read coverage by means of a two-sided

statistical test. The usage of di�R is illustrated by a comparison of H3K27me3 and H3K4me3

ChIP-seq data between hepatocarcinoma cell line HepG2 and its cell type-of-origin, i.e. pri-

mary human hepatocytes (PHH). The di�R-based analysis revealed a disruption in the faculta-

tive heterochromatin of HepG2 cells and HepG2-speci�c H3K4me3 enrichment at promoters of

transcription- and cell cycle-associated genes. A systematic comparison to one enrichR-based ap-

proach (see Chapter 4) and also three competitor methods for ChIP-seq di�erence calling [90–92]

shows that di�R is very sensitive in the detection of genomic loci that change their association

with the ChIP-seq target. I anticipate that di�R is well-suited to identify conditional di�erences

in a variety of NGS-based approaches without a control experiment, e.g. DNaseI-seq and ATAC-

seq.

6.1 Introduction

ChIP-seq enrichment calling is essential to identify genomic loci bound by a protein of inter-

est. In Chapter 4 enrichR successfully achieved robust and sensitive ChIP-seq enrichment call-

ing. While calling ChIP-seq enrichment over control is essential, another common task is the

91
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identi�cation of di�erential ChIP-seq enrichment between two conditions. A conditional di�er-

ence manifests itself in either mutually exclusive (i.e. condition-speci�c presence or absence

of signal) or quantitatively di�erent (i.e. di�erential intensity of signal) ChIP-seq enrichment.

Similar to enrichment calling, the discrimination of signal against background is essential for the

identi�cation of regions that are di�erentially bound in two samples, e.g. healthy and diseased

tissues. A di�erence caller should recover those regions, even if conditional control experiments

are not available.

The binding of proteins to the DNA is naturally very dynamic between di�erent conditions

or cell-types (see Section 1.1.3). For instance, environmental stimuli like stress conditions af-

fect the DNA binding of transcription factors like the glucocorticoid receptor to induce or re-

press certain transcriptional programs [150], i.e. transactivation/-repression. In addition, the

patterns of chromatin modi�cations along the epigenome are greatly cell type-speci�c [44, 151]

as manifested in the high correlation of their ChIP-seq signals to gene expression [34] and mu-

tational processes [152]. An accurate quanti�cation of these di�erential protein bindings/epige-

netic alterations is needed to systematically compare samples on a molecular level. Critically, an

even higher resolution can be achieved by also recovering genomic loci wherein a change in the

strength of protein binding is observed.

Some approaches, e.g. MACS2 [74], aim to identify condition-speci�c exclusive enrichment,

whereas other recently developed methods [90–92] also allow for the strati�cation of quantita-

tively di�erent enrichment to the identi�cation of di�erential ChIP-seq enrichment. The latter,

more recent tools, employ a three-state Hidden Markov Model to identify, in addition to mutu-

ally exclusive enrichment, also condition-speci�c changes of signal within regions of concurrent

ChIP enrichment. To this extent, a computationally intensive training is needed to learn a hidden

state representation of the ChIP-seq data. This concept leads to the putatively meaningful inter-

polation of the ChIP-seq signal based on the ChIP-seq read coverage in adjacent genomic loci.

However, this “smoothing” may abstract the original signal substantially and, in consequence,

can lead to spurious results. To my knowledge, a methodical comparison of these competing

methods is still lacking in the literature.

Here, I present an implementation of the normR framework (see Chapter 3) referred to as

“di�R” to simultaneously call mutually exclusive and quantitatively di�erent enrichment in

two ChIP-seq samples. di�R employs a three-component mixture model derived from the normR

framework to perform the joint normalization and identi�cation of di�erential enrichment. As

a proof of concept, I use di�R to call di�erences between PHH and the hepatocarcinoma HepG2

cell line in ChIP-seq data for the heterochromatic H3K27me3 and euchromatic H3K4me3 histone

modi�cations. The analysis recovers many epigenetic alterations between the two cell types

close to genes whose dis-regulation is known to be a hallmark of the immortalization of cancer

cells, e.g. E2F2 [153, 154]. A methodical comparison based on a trustful validation set reveals a

superior performance of di�R over previously developed approaches. In addition, di�R is shown
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to precisely recover annotated genomic ampli�cations in the HepG2 cell line from the Input

tracks in PHH and HepG2 cells. Once more, the versatility of the normR framework is illustrated

to open up new possibilities in the analysis of NGS read count data with the normR framework.

6.2 Methods

Firstly, this section provides details on the processing and the quality of the sequencing data

used. Secondly, the normR framework is adapted to facilitate the tasks of ChIP-seq di�erence

calling between two conditions which is referred to as “di�R”. Next, di�R is used to call di�er-

ential H3K4me3 and H3K27me3 ChIP-seq enrichment between PHH and HepG2 cells. Thirdly,

regions that are called di�erential by di�R are overlapped with transcription start sites and genes

which are then subjected to Gene Ontology over-representation analysis for functional assess-

ment. Finally, di�R di�erence calls are validated by the comparison (i) to mutually exclusive

enrichment calls obtained from two individual enrichR calls, referred to as “enrichR-compare”,

and (ii) to results of other tools for calling di�erential ChIP-seq enrichment [90–92] via the pre-

viously introduced consensus-vote strategy to obtain a trustful validation set (see Section 4.2.4).

6.2.1 Data Sets

ChIP-seq Data. Paired end reads from Input, H3K4me3 and H3K27me3 ChIP-seq for HepG2

cells and PHH were processed and quanti�ed as described in Section 4.2.1. Peaks for HepG2

Polymerase II and CTCF were downloaded from UCSC under accessions wgEncodeEH001792

and wgEncodeEH000080, respectively.

HepG2 Genotyping. HepG2 genotype information for hg19 was generated by ENCODE/Hud-

sonAlpha (Gene Expression Omnibus [121] under accession: GSM999286). A bed �le containing

annotated ampli�cations and deletions was downloaded from the UCSC ENCODE DCC reposi-

tory (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibGenotype/

wgEncodeHaibGenotypeHepg2RegionsRep1.bedLogR.gz).

6.2.2 The normR Methods: diffR

The normR framework (see Chapter 3) was adapted to call di�erential ChIP-seq enrichment be-

tween two conditions, referred to as “di�R”. Essentially, di�R usesm = 3mixture components,

i.e. background B and two foreground components F1 (control enriched) and F2 (treatment en-

riched). The number of free parameters is now increased to �ve, similar to regimeR (see Sec-

tion 5.2.2). Given the normR model given by Equation (3.2) and the normR likelihood function

de�ned by Equation (3.3) the following “di�R” likelihood function can be derived:

L = P (π, θ|ri, si) =
∏

i

(
si + ri
si

)
∑

k∈{B,F1,F2}

πk · θ
si
k · (1− θk)

ri

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibGenotype/wgEncodeHaibGenotypeHepg2RegionsRep1.bedLogR.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibGenotype/wgEncodeHaibGenotypeHepg2RegionsRep1.bedLogR.gz
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where ri (si) corresponds to the number of reads in the control (treatment) ChIP-seq for non-

overlapping, �xed size bins i = 1, . . . , n. Again, parameters are �t by running the EM algorithm

as described in Section 4.2.2. In contrast to enrichR and regimeR, the mixture component k with

θk closest to θ∗ =
∑

si∑
si+ri

is used as background B for a two-sided binomial test. To achieve

a robust multiple testing correction, the T method (Section 2.1.2) uses the maximal T threshold

obtained from the P-values of the two-sided binomial test for either (r, s) or the label-switched

(s, r). Next, P-values are transformed to q-values [56].

To identify regions with signi�cant di�erences between conditions, regions with a q-value

≤α (user-chosen signi�cance level) are recovered. Next, every signi�cant bin j is assigned to

one of the two conditions by Maximum A Posteriori

zj = argmax
k∈{F1,F2}

(
P (πk, θk|sj , rj)

P (π, θ|sj , rj)

)

,

where zj indicates the assignment of a signi�cantly enriched region j to either F1 (control) or

F2 (treatment).

The regularized di�erential ChIP-seq signal e∗ is computed as described in Section. 4.2.2. In

di�R, two average enrichment factors are estimated, namely the average enrichment factor 〈f1〉

for control

〈f1〉 =
θF1

1− θF1

·
1− θB
θB

and the average enrichment factor 〈f2〉 for treatment

〈f2〉 =
θF2

2− θF2

·
2− θB
θB

.

Dependent on the algebraic sign of e∗i the regularized and normalized enrichment ei is

ei =

{

e∗i · (log〈f1〉)
−1, e∗i ≤ 0

e∗i · (log〈f1〉)
−1, e∗i > 0

.

These routines were implemented in the normR R package [4] as the diffR()-function (see R

code snippet below).

Read counting was con�gured as previously described in Section 4.2.2. Read counts obtained

from H3K4me3 (H3K27me3) ChIP-seq experiments in PHH and HepG2 cells were modeled with

the diffR()-function in 500bp (1,000bp) bins:

diffs <- diffR(

treatment = "ChIP1.bam",

control = "ChIP2.bam",
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genome = genome,

countConfig = countConfig,

procs = 24

)

Bins with q-value≤0.05 (0.1) for H3K4me3 (H3K27me3) were called di�erentially enriched and

assigned to control or treatment by Maximum A Posteriori internally in diffR. Results were ex-

ported to bed and bigWig using normR’s exportR()-function:

for (filetype in c("bed", "bigWig")) {

exportR(

x = diffs,

filename = paste0("differences.", filetype),

type = filetype

fdr = 0.05 #0.1

)

}

6.2.3 Gene Ontology Analysis

Transcription start site (TSS) and gene annotations were compiled as previously described (see

Section 4.2.1). After overlapping di�erentially enriched regions with genic features, topGO

[155] was used on the gene ontology “Biological Process” (BP) with algorithms “classic” (algo-

rithm=”classic”) and “elim” (algorithm=”elim”) for statistics “�sher” (statistic=”�sher”) and “ks”

(statistic=”ks”) for GENCODE gene IDs mapped to Ensembl gene IDs. The “ks” statistic allows

for supplying a score for each entity. Here, the di�R calculated “q-value” was used as score. I re-

tained only the top 1,000 (n=1000) GO terms which were ordered by “elim” algorithm and ranked

by “classic” algorithm calculated P-values:

require(topGO)

#get GO annotated Ensembl Genes

go2ensembl <- annFUN.org(ontology, mapping="org.Hs.eg.db", ID="ensembl")

#get GENCODE genes and filter these for the ones in gene universe

gencode <- loadDb("data/gencode.v19.annotation.transcriptDb.sqlite")

gene.universe <- intersect(

unique(GenomicFeatures::genes(gencode)[["genes"]]),

unique(unlist(go2ensembl))

)

#set diffR pvalue as score for differentially modified TSSs

idx <- gene.universe %in% diffTSSs
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allGenes <- 1-as.integer(idx)

names(allGenes) <- gene.universe

allGenes[idx] <- pvals[diffTSSs %in% gene.universe]

goData <- new("topGOdata",

description="diffR differential TSS histone marking study (scored)",

ontology="BP",

allGenes=allGenes, geneSel=function(p) { return(p <= 0.05) },

annot=annFUN.GO2genes, GO2genes=go2ensembl, #GO mapping for ensembl IDs

nodeSize=10

)

#testing

resultFisher <- runTest(goData, algorithm="classic", statistic="fisher")

resultKS <- runTest(goData, algorithm="classic", statistic="ks")

resultKS.elim <- runTest(goData, algorithm="elim", statistic="ks")

#compile results

resDf <- GenTable(goData,

classicFisher = resultFisher,

classicKS = resultKS,

elimKS = resultKS.elim,

orderBy ="elimKS",

ranksOf = "classicFisher",

topNodes=1000

)

6.2.4 Comparison of ChIP-seq Di�erence Callers

The performance of di�R was evaluated on two levels: (i) via a comparison to mutually exclusive

enrichment calls obtained from an approach referred to as “enrichR-compare”; and (ii) via a

comparison to results from three competitor methods [90–92] based on a trustful validation set

generated by overlapping competitor methods calls.

Mutually Exclusive Enrichment with “enrichR-compare”

To evaluate di�R results, enrichR-compare represents an alternative approach to detect mutu-

ally exclusive enrichment. Firstly, enriched regions in HepG2 (PHH) conditions were called with

enrichR on HepG2 (PHH) ChIP-seq over HepG2 (PHH) Input for H3K4me3 (500bp bins) and

H3K27me3 (1,000bp). For a fair comparison to di�R, I considered only signi�cant regions with a

posterior of≥0.50. Secondly, I called a bin “both enriched” or “HepG2-exclusive” (“PHH-exclusive” )

if it was enriched in both conditions or exclusively in HepG2 (PHH), respectively. Finally, I deter-

mined accuracy of the di�R classi�cation by comparing it to the enrichR-compare classi�cation.
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Enrichment Calling in Third-Party Tools

Similarly to the approach described in Section 4.2.4, I downloaded a set of competitor methods to

evaluate their performance in relation to di�R. I called conditional di�erences in ChIP enrichment

with ChIPDi� [90], histoneHMM [91] (v1.6) and ODIN [92] (v0.4) in the following way:

Firstly, duplicated fragments were removed, only keeping reads with a mapping quality

higher than 20 by using samtools [119] (v0.1.19-44428cd) to allow for a fair comparison with

di�R:

samtools view -F 1024 -q 20 in.bam > out.bam

Secondly, conditional di�erences for H3K4me3 and H3K27me3 between PHH and HepG2 cells

were called. ODIN was run with the following command incorporating condition speci�c Input

alignments and the hs37d5 genome sequence:

rgt-ODIN -m -v --input-1=Input1.bam --input-2=Input2.bam ChIP1.bam ChIP2.bam \

hs37d5.fa hs37d5_chromSizes

For histoneHMM, enriched regions were called prior to di�erential enrichment detection as sug-

gested in the tutorial (http://histonehmm.molgen.mpg.de/v1.6/histoneHMM.pdf):

./histoneHMM_call_regions.R -b 500 -c hs37d5_chromSizes_Autosomes \

-o ChIP1_histoneHMM -t 20 ChIP1.bam

./histoneHMM_call_regions.R -b 500 -c hs37d5_chromSizes_Autosomes \

-o ChIP2_histoneHMM -t 20 ChIP2.bam

./histoneHMM_call_differential.R --sample1 ChIP1.bam --sample2 ChIP2.bam \

ChIP1.txt ChIP2.txt

For ChIPDi� which works on single end read alignments only, I considered �rst reads only in a

properly mapped pair (-f 66) for a fair comparison to di�erence callers that work with paired

end data:

samtools view -b -f 66 ChIP.bam > ChIP_SE.bam

bedtools bamtobed -I ChIP_SE.bam > ChIP_SE.bed

./ChIPDiff ChIP1_SE.bed ChIP2_SE.bed hs37d5_chromSizes

Thirdly, to compare called peaks using above methods to di�R di�erential regions, overlaps of

peaks with 500bp (1,000bp) bins were calculated in R for H3K4me3 (H3K27me3) if a di�erential

region at FDR 5% (10%) overlapped a window by at least 250bp. As opposed to enrichR, thematrix

now contains two columns for each tool because a region can be di�erential in either control or

treatment:

binsize = 500; fdr = 0.05;

http://histonehmm.molgen.mpg.de/v1.6/histoneHMM.pdf
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gr <- tileGenome(genome.gr, width = binsize)

ov <- matrix(0, nrow = length(gr), ncol = 6)

colnames(ov) <- c(

"diffR_ctrl",

"diffR_treat",

"ODIN_ctrl",

"ODIN_treat",

"ChIPDiff_ctrl",

"ChIPDiff_treat",

"histoneHMM_ctrl",

"histoneHMM_treat"

)

for (method in colnames(ov)) {

peaks.sig <- peaks[[meth]][which(peaks[[meth]][["lqval"]] >= -log10(fdr))]

ov[,method][countOverlaps(gr, peaks.sig, minoverlap = 250)> 0 )] <- 1

}

Fourthly, a “tool-condition-speci�c bona-�de benchmark” for the comparison of all tools was

de�ned as follows: A bin is di�erentially enriched for one condition under the gold standard if

at least two out of three other methods (including di�R) called this bin di�erentially enriched for

this condition. The following R code was used:

gs <- lapply(colnames(ov), function(method) {

col.idx <- which(colnames(ov) != method &

grep(strsplit(method, "_")[[1]][2], colnames(ov))

which(apply(ov[,col.idx], 1, sum) >= 2)

})

names(gs) <- colnames(ov)

Finally, precision and recall were computed under these tool-condition-speci�c bona-�de bench-

mark sets for all peaks reported by a tool:

getPrecRecall <- function(ov, gs) {

mp <- which(ov == 1)

tp <- sum(mp %in% gs)

fn <- sum(!(gs %in% mp))

fp <- sum(!(mp %in% gs))tn <- dim(ov)[1] - tp - fn - fp

specificity <- tn/(fp+tn)

precision <- tp/length(mp)

recall <- tp/(tp + fn)
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f2 <- fscore(precision, recall, 2)

return(c(

"precision"=precision,

"recall"=recall,

"f2"=f2,

"specificity"=specificity

))

}

stats <- mapply(getPrecRecall, as.list(ov), gs)

6.3 Results

An important task in the analysis of ChIP-seq data is represented by the identi�cation of epige-

netic alterations between conditions. The normR framework can address this problem by call-

ing di�erential ChIP-seq enrichment between two conditions with a three-component mixture

model, referred to as “di�R”. The di�R approach �ts a robust background model which allows

for a reliable identi�cation of conditional di�erences by means of a two-sided binomial test. As a

proof of principle, di�R was applied to H3K27me3 (low S/N) and H3K4me3 (high S/N) ChIP-seq

data from PHH and the hepatocarcinoma cell line HepG2. The results of di�R were systemati-

cally compared to those of four competitor approaches in two ways: (i) those obtained by calling

mutually exclusive enrichment with enrichR (see Chapter 4) on the two conditions separately,

referred to as “enrichR-compare”; and (ii) those obtained by three previously developed methods,

namely ChIPDi� [90], histoneHMM [91] and ODIN [92]. Furthermore, di�R was used to iden-

tify HepG2-associated Copy Number Variations (CNVs) by calling conditional di�erences on the

Input sequencing experiments of PHH and HepG2.

6.3.1 Di�erence Calling in HepG2 Cells and Primary Human Hepatocytes

Visual inspection of a 50kb region on chromosome 19 con�rmed that, therein, H3K27me3 hete-

rochromatic domains were mostly exclusive to HepG2 cells and that most H3K4me3 peaks were

common despite detectable di�erences in signal intensity (Fig. 6.1). The majority of the cell

type-exclusive enrichment of H3K27me3 was called by most methods, e.g. the HepG2-speci�c

heterochromatin downstream of E2F Transcription Factor 2 (E2F2). The �delity of the borders

of this mutually exclusive enrichment varied strongly between the methods. For H3K4me3, the

quantitative di�erences between HepG2 cells and PHHwere recovered mainly by di�R, ChIPDi�

and ODIN. Strikingly, the detected HepG2-speci�c gain of H3K4me3 signal at the E2F2 promoter

coincided with an increased E2F2 gene expression as revealed by RNA-seq – an observation

that underpinned the positive correlation of the promoter’s H3K4me3 ChIP-seq signal and its
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Fig. 6.1 – di�R Di�erence Calling Uncovers Mutually Exclusive Enrichment and Quantitive
Di�erences in H3K27me3 and H3K4me3 ChIP-seq Data alike at the E2F2 Locus.
Prim ary Human Hepatocytes (PHH) and HepG2 Input-seq (grey), H3K27me3 (orange) and
H3K4me3 (green) ChIP-seq with RNA-seq (black) coverage around E2F Transcription Fac-
tor 2 promoter (E2F2) locus on human chromosome 19. A region ∼40kb upstream of E2F2
(pink overlay) shows a PHH-exclusive enrichment for H3K27me3 that is recovered by di�R,
histoneHMM and enrichR-compare. The PHH-exclusive change in heterochromatin is ac-
companied by a quantitative di�erence in H3K4me3 which is detected by di�R, ChIPDi� and
ODIN as well as peaks for CTCF and polymerase 2 in HepG2 cells. The E2F2 promoter (yel-
low overlay) is detected HepG2-di�erential for H3K4me3 by di�R, ChIPDi� and ODIN which
is also supported by an increased RNA-seq coverage along the E2F2 gene body and a poly-
merase 2 peak. Calls of di�erential enrichment are displayed as red (HepG2 conditional) or
blue (PHH conditional) boxes for di�R, ChIPDi�, histoneHMM and ODIN. enrichR enriched
regions displayed as boxes below respective tracks.

activity [34]. The HepG2-speci�c expression of this crucial regulator of the cell cycle [147] in-

dicated that the uncovered di�erence in H3K4me3 at the E2F2 promoter is in fact genuine and

that its induction may re�ect the increased proliferation potential in HepG2 cells in comparison

to PHH [153, 154]. Downstream of the E2F2 locus, di�R and histoneHMM identi�ed a PHH-

speci�c H3K27me3 domain which was accompanied by an emerging H3K4me3 peak in HepG2

cells which was only detected by di�R, ChIPDi� and ODIN. It can be speculated that the E2F2

induction in hepatocarcinoma cells is related to the HepG2-speci�c activation of an enhancer at

that locus – an idea that is supported by the reported presence of RNA polymerase 2 and CTCF
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Fig. 6.2 – di�R Detects Functional Epigenetic Alterations between HepG2 Cells and Primary
HumanHepatocytes. (A-B) di�R fold enrichment plotted against sum of H3K27me3 (A) and
H3K4me3 (B) ChIP-seq read counts in HepG2 cells and primary human hepatocytes (PHH).
di�R detects di�erential enrichment for HepG2 cells (red) and PHH (blue) in low and high
count regions even for low di�R di�erential enrichment values. T method is stringently �l-
tering low count regions because of di�R’s two-sided binomial test (bu� triangles, see also
main text). (A) A wordcloud (right) depicts how HepG2-di�erential H3K27me3 regions (red)
overlap/repress 11,836 TSSs that drive genes in morphogenesis and signaling and how PHH-
di�erential H3K27me3 regions (blue) overlap / repress 10,902 TSSs that drive genes in cell fate
commitment and adhesion. (B) Awordcloud (right) depicts howHepG2-di�erential H3K4me3
regions (red) overlap 10,268 active TSSs that drive genes in transcription and cell cycle and
how PHH-di�erential H3K4me3 regions (blue) overlap 9,496 active TSSs that drive genes in
keratinization and the P450 pathway. “TSSs”=Transcriptional Start Sites. Wordclouds rep-
resent signi�cantly enriched (P≤0.05) Gene Ontology terms with their fontsize based on
“− log10 q-value”of the hypergeometric test.

in that region for HepG2 cells ( [43], Fig. 6.1). In summary, di�R detected mutually exclusive and

quantitatively di�erential enrichment in low S/N H3K27me3 and high S/N H3K4me3 ChIP-seq

data and these calls were also detected by the competitor methods at di�erent accuracy levels.

Genome-wide, di�R reported in total 848,902 1kb regions (849Mb) as di�erentially H3K27-

me3-enriched (Fig. 6.2A). Out of these 251,931 regions (252Mb) were HepG2-di�erential and re-
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pressed 11,836 TSSs of genes regulating morphogenesis and cell-cell signaling. 596,971 PHH-

di�erential regions (597Mb) repressed 10,902 TSSs of genes functioning in cell fate commit-

ment and T-cell development which represent pathways not functioning in liver cells. Together,

this suggests an overall decrease in heterochromatin in HepG2 cells in comparison to PHH. For

H3K4me3, di�R recovered 83,965 500bp regions (42Mb) as being di�erentially enriched between

HepG2 and PHH (Fig. 6.2B). In contrast to the prevalence of H3K27me3 in PHH, H3K4me3-

di�erential regions were similar in numbers between the two cell types. 39,881 regions (20Mb)

were HepG2-di�erential and overlapped 10,268 TSSs that drove genes mainly related to the tran-

scription and cell cycle. 44,084 PHH-di�erential H3K4me3 regions (22Mb) overlapped 9,496 TSSs

of genes that were associated with liver function (e.g. P450 pathway) and tissue characteristics

(e.g. keratinization or cell adhesion) that are absent in a cell line like HepG2. Taken together,

di�R uncoveredmany hetero- and euchromatic alterations betweenHepG2 cells and PHHaround

genes that regulate diverse functions related to the biology of these cell types.

6.3.2 Comparison of ChIP-seq Di�erence Callers

A systematic assessment of the valdity of di�R results was achieved on two levels (see Methods

Section 6.2.4):

(a) di�R results were compared to another normR approach that calls conditional di�erences

by calling individual ChIP-seq enrichment over Input for each condition and then identi�es

mutually exclusive enrichment by overlapping enriched regions of samples, referred to as

“enrichR-compare”.

(b) Three competitor tools [90–92] were used to call conditional di�erences. A trustful validation

set for each method based on a consensus vote among the remaining tools (“tool-condition-

speci�c bona-�de benchmark”, Methods 6.2.4). The bona-�de benchmark was used to assess

every method for its enrichment classi�cation accuracy.

(a) enrichR-compare

On the �rst level, enrichR-compare was applied to call enrichment in ChIP-seq over Input for

HepG2 cells and PHH individually to yield the following classi�cation (Methods 6.2.4):

“No enrichment”: enrichR did not detect enrichment in neither HepG2 cells nor PHH.

“PHH-exclusive”: enrichR detected enrichment in PHH but not in HepG2 cells.

“HepG2-exclusive”: enrichR detected enrichment in HepG2 cells but not in PHH.

“both enriched”: enrichR detected enrichment in, both, HepG2 cells and PHH.
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Fig. 6.3 – di�R Recovers Mutually Exclusive Enrichment that is Detected by enrichR-com-
pare. (A,D) log2 H3K27me3 (A) / H3K4me3 (D) fold changes between HepG2 cells and
primary human hepatocytes (PHH) plotted against the sum of ChIP-seq counts. enrichR-
compare classi�es regions into “both enriched” (small fold change, high ChIP-seq counts) and
“no enrichment” (low ChIP-seq counts) as well as “HepG2-exclusive” and “PHH-exclusive”
concordant with high absolute fold changes and elevated ChIP-seq count levels that pass the
T �lter. (B,E) di�R recovered “HepG2-” and “PHH-di�erential” H3K27me3 (B) / H3K4me3 (E)
regions that are majorly classi�ed as “HepG2-” and “PHH-exlusive”, respectively. (C,F) di�R
detects H3K27me3 (C) / H3K4me3 (F) di�erential enrichment in “both enriched” regions but
misses some cell type-exclusive regions.

This enrichR-compare classi�cation was used to benchmark results obtained from di�R.

Genome-wide, for H3K27me3, enrichR-compare revealed that many enriched regions were

common inHepG2 and PHH (“both enriched”: 598,116; 598Mb) and 294,138 (294Mb)were “HepG2-

exclusive” (Fig. 6.3A). Similarly to di�R, enrichR-compare detected many “PHH-exclusive” re-

gions (784,721; 784Mb) for H3K27me3 suggesting once more a disruption of the hepatocyte het-

erochromatin in hepatocarcinoma cells. When compared to enrichR-compare, the majority of

di�erential regions detected by di�Rwere classi�ed as cell type-exclusive (i.e. “HepG2-exclusive”

and “PHH-exclusive”) by enrichR-compare (Fig. 6.3B). This result rea�rmed that di�R is precise

in detecting mutually exclusive enrichment. A substantial fraction of di�R di�erential regions

are classi�ed as “both enriched” by enrichR-compare – representing most likely regions of quan-

titatively di�erent ChIP-seq signal intensity between PHH and HepG2 cells (Fig. 6.3B) which, in

consequence, lead to a reduced sensitivity (Table 6.1). Sensitivity was also reduced because 44%

of the H3K27me3 cell type-exclusive regions were not called by di�R (Fig. 6.3C, see also below).

For H3K4me3, the enrichR-compare analysis revealed that most enriched 500bp regions were

“both enriched” (75,131; 38Mb) while 26,858 (14Mb) were “HepG2-” and 67,320 (34Mb) “PHH-

exclusive” (Fig. 6.3D). Similarly to H3K27me3, di�R detected, both, the cell type-exclusive en-
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riched regions as well as the quantitative di�erences in the level of enrichment in “both enriched”

regions (Fig. 6.3E). Again, a reduced sensitivity of di�R was observed – also because di�R did not

recover all cell type-exclusive regions detected by enrichR-compare (Fig. 6.3F). This �rst assess-

ment revealed a disagreement of di�R with enrichR-compare to recover some cell type-exclusive

regions between HepG2 cells and PHH. Though, the comparison could con�rm that di�R is very

precise in terms of detecting mutually exclusive and also quantitatively di�erent enrichment

which could not be detected by enrichR-compare.

Next, two properties of di�R were studied which could lead to a discrepancy in sensitivity

when compared to enrichR-compare: (i) di�R’s detection of quantitative di�erences in enrichR-

compare’s “both enriched” regions; and (ii) di�R’s shortcoming to to classify some enrichR-

A H3K27me3

enrichR-compare di�R Classi�cation Performance

1kb bins called True Positives False Positives False Negatives Recall

Un�ltered
HepG2 294138 157397 94534 136741 0.535
PHH 784721 447176 149795 337545 0.570
combined 1078859 604573 244329 474286 0.553

No Low Counts
HepG2 174088 147236 94027 26852 0.846

PHH 478152 415990 149783 62162 0.870

combined 652240 563226 243810 89014 0.858

No di�R CNVs
HepG2 187527 81573 33531 105954 0.435
PHH 582610 342493 122745 240117 0.588
combined 770137 424066 156276 346071 0.512

No ENCODE CNVs
HepG2 214932 105316 57689 109616 0.490
PHH 605590 353522 123113 252068 0.584
combined 820522 458838 180802 361684 0.537

B H3K4me3

enrichR-compare di�R Classi�cation Performance

1kb bins called True Positives False Positives False Negatives Recall

Un�ltered
HepG2 26858 11577 28304 15281 0.431
PHH 67320 27400 16684 39920 0.407
combined 94178 38977 44988 55201 0.419

No Low Counts
HepG2 10681 10362 28283 319 0.970

PHH 36518 26601 16684 9917 0.728
combined 47199 36963 44967 10236 0.849

No di�R CNVs
HepG2 13574 5268 12646 8306 0.388
PHH 46540 19437 12814 27103 0.418
combined 60114 24705 25460 35409 0.403

No ENCODE CNVs
HepG2 20309 8590 19738 11719 0.423
PHH 52332 21523 13960 30809 0.411
combined 72641 30113 33698 42528 0.417

Table 6.1 – Consistency between di�R and enrichR-compare can be Increased by Removing
Low Power and CNV Regions. (A-B) Performance of di�R with respect to enrichR-
compare calls as ground truth on di�erential H3K27me3 (A) or H3K4me3 (B) enrichment
calls in HepG2 cells and Primary Human Hepatocytes (PHH) for di�erent �lters. Filtering
of low power regions reduced the number of false negatives and achieved a boost in the
consistency as measured by recall (sensitivity). Filtering out in silico or in vitro determined
CNVs improved the recall only marginally. Recall values greater than 0.75 set in bold font.
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compare “cell type-exclusive” regions. Firstly, I studied the impact of detecting quantitative dif-

ferences. The number of di�R’s false positives is in�uenced by its ability to detect conditional dif-

ferences in ChIP-seq signals in regions that are classi�ed as “both enriched” by enrichR-compare.

As a measure for true quantitative di�erences between two ChIP-seq experiments, I determined

the conditional log2 fold changes between HepG2 cells and PHH. The fold changes in di�R’s false

positive regions were equal (H3K27me3) or greater (H3K4me3) than those in cell type-exclusive

regions (Fig. 6.4A). This observation suggested that those cell type-di�erential regions detected

by di�R, in fact, correspond to regions of di�erential signal intensity in the two conditions.

Secondly, to study di�R’s shortcoming to classify some cell type-exclusive regions, I investi-

gated the test framework that is used in bothmethods. By design, di�R uses a two-sided binomial

test to recover regions signi�cantly di�erent from the �tted background model (see Methods

Section 6.2.2) whereas enrichR-compare depends on enrichR which uses a one-sided test (Meth-

ods Section 4.2.2). Both methods use the T method described in section 2.1.2 to �lter out low

power (i.e. low count) regions. This �ltering, in fact, depends on the chosen statistical test. Be-

cause the two-sided test is more strict under a certain signi�cance level α, a higher T threshold

is obtained in the T method used by di�R (T-thresholds: di�R 14 (H3K4me3), 19 (H3K27me3),

enrichR-compare 8 (H3K4me3), 11 (H3K27me3)). Indeed, most of the discrepancies between

di�R and enrichR-compare were attributed to a more strict T threshold to eliminate low power

regions in the two-sided binomial test (Fig. 6.4B): By applying the T thresholds of di�R to en-

richR, enrichR-compare called on average∼1.7-fold less cell type-exclusive regions (H3K27me3:

652,240; H3K4me3: 47,199). The sensitivity of di�R in recovering the cell type-exclusive enrich-

ment could be increased substantially, e.g. only 2.99% false negatives for H3K4me3 in HepG2

cells (Table 6.1). Taken together, the low sensitivity of di�R to recover enrichR-compare’s results

is attributed, on the one side, to di�R’s calls that represent true conditional di�erences of signal

intensity (di�R’s false positives) and, on the other side, to di�erences in the statistical testing

framework used (di�R’s false negatives).

In addition to discrepancies described above, some di�erences between di�R and enrichR-

compare can be attributed to CopyNumber Variations (CNVs) in HepG2 cells which are prevalent

in immortalized cell types [156, 157]. To alleviate this problem, di�R was applied to HepG2 and

PHH Input tracks with 20kb and 50kb windows. An initial visual investigation con�rmed that

di�R detected previously reported CNVs [43] on the short arm of human chromosome 14 in

HepG2 cells (Fig. 6.5) Given the reasonable assumption that there are no CNVs in PHH, di�R

recovered genome-wide 91% of 6,487 windows (odds-ratio=112.7) that overlapped 80 annotated

large ampli�cations in HepG2 (13% of genome; median(length) = 163kb). Nevertheless, di�R did

not detect 88% of 249 windows (odds-ratio=40.8) which overlapped 170 annotated very short het-

erozygous and homozygous deletions (6% of genome; median(length) = 9kb). The consistency of

di�R and enrichR-compare calls could be improved by �ltering out di�R called or experimentally

validated CNV regions (Fig. 6.4C, D; Table 6.1). This approach reduced the number of di�R false
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Fig. 6.4 – Discrepancies between di�R and enrichR-compare. (A) Conditional log2 fold change
between HepG2 cells and Primary Human Hepatocytes (PHH) for H3K27me3 (left) and
H3K4me3 (right) in background regions (no enrichment), “HepG2-exclusive” and “PHH-
exclusive” regions. Based on each “cell type-exclusive” by enrichR-compare, boxes show
di�R’s true positives (TP), false positives (FP) and false negatives (FN). Conditional fold
change in FP regions are equal or greater than the ones in TP regions suggesting genuine dif-
ferences in ChIP-seq signal intensity. (B) Same as (A) with di�R’s T Filter applied to enrichR-
compare. The number of FN decreases substantially improving consistency between di�R
and enrichR-compare (C) Same as (A) with di�R HepG2 CNVs removed. Most groups do not
change but the number of FP in HepG2-di�erential calls is reduced. (D) Same as (A) with
ENCODE HepG2 CNVs. See also Table 6.1 and Supplementary Fig. A.5. Whiskers extend up
to 1.5-times the interquartile range. Width of boxes are proportional to the square-root of
the number of regions in the groups.
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Fig. 6.5 – TheApplication of di�Ron Input forHepG2Cells and PrimaryHumanHepatocytes
(PHH) Identi�es Copy Number Variations (CNVs). Input-seq for HepG2 cells (blue) and
PHH (red) indicate CNV presence in HepG2 cells on Human chromosome 14. The genotype
of the HepG2 cell line (HAIB Genotype track [43]) encompasses ampli�ed (blue) and deleted
regions (red) that deviate from the reference genotype (black). di�R on HepG2 and PHH
Input identi�ed ampli�cations and deletions alike, assuming no CNVs in PHH. Performance
values greater than 0.75 set in bold font.

positive calls and improves sensitivity (Table 6.1). In summary, di�R’s agreement with enrichR-

compare could be improved by �ltering out in silico or in vitro inferred CNVs, yet not to the

extent that was achieved by �ltering for low count regions.

(b) Evaluation by a Bona-Fide Benchmark

On the second level, di�R results were compared systematically to those obtained from ChIPDi�

[90], ODIN [92] and histoneHMM [91]. After calling di�erentially enriched regions with each

tool, a trustworthy validation set (“bona-�de benchmark”) was de�ned to assess their perfor-

mance (see Methods section 6.2.4). For H3K27me3 at FDR=0.10, ChIPDi� was most precise

(µPrecision=0.976) and di�R had the highest recall (µRecall=0.777), together with the best F1.5-score

(µF1.5-score=0.616; Table 6.2A). For H3K4me3 at FDR=0.05, histoneHMMwas the most precise tool

(µPrecision=0.585) and di�R had the highest recall (µRecall=0.797), together with the best F1.5-score

(µF1.5-score=0.539; Table 6.2B). These results showed that di�R slightly sacri�ces precision for a

substantial advance in sensitivity when compared to its competitors.

Next, I investigated the genuineness of the calls that are not represented by the bona-�de

benchmark, i.e. “tool-speci�c” calls. A uni�ed bona-�de benchmark revealed that the most tool-

speci�c regions were called by ODIN (701.7Mb) and histoneHMM (689.1Mb) for H3K27me3 and

by di�R (28.9Mb) and ODIN (25.4Mb) for H3K4me3 (Table 6.2). Turning to conditional fold

changes for H3K27me3, only di�R- and histoneHMM-speci�c regions had fold changes com-

parable to those in the bona-�de benchmark (Fig. 6.6A). However, histoneHMM-speci�c regions
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had an average read coverage≤18 in a 1,000bp window (Fig. 6.6B) indicating that these calls may

be spurious. For H3K4me3, di�R-, ChIPDi�- and histoneHMM-speci�c regions had absolute fold

changes greater or equal than the bona-�de benchmark (Fig. 6.6C). Among those di�R-speci�c

regions had the highest read coverage (Fig. 6.6D) suggesting that these are valid calls. In con-

clusion, di�R identi�ed conditional di�erences for, both, H3K27me3 and H3K4me3 which were

supported by a good classi�er performance, a high absolute fold change as well as a read coverage

that is large enough to eliminate low power (i.e. low count) regions.

A H3K27me3

Method # regions Scoring based on bona-�de benchmark

Precision Recall F0.5-score F1-score F1.5-score # tool-speci�c

HepG2
di�R 251931 0.666 0.722 0.677 0.693 0.710 84069
ChIPDi� 126747 0.976 0.401 0.758 0.568 0.455 3076
ODIN 661239 0.264 0.969 0.309 0.415 0.632 486431
histoneHMM 229209 0.627 0.570 0.615 0.597 0.581 85548

PHH
di�R 596971 0.315 0.834 0.360 0.457 0.627 408805
ChIPDi� 9990 0.975 0.017 0.078 0.033 0.021 246
ODIN 402129 0.465 0.419 0.455 0.441 0.428 215255
histoneHMM 791961 0.238 0.653 0.273 0.349 0.484 603510

combined
di�R 848902 0.419 0.777 0.462 0.545 0.616 492874
ChIPDi� 136737 0.976 0.150 0.464 0.260 0.202 3322
ODIN 1063368 0.340 0.578 0.371 0.428 0.475 701686
histoneHMM 1021170 0.325 0.614 0.359 0.425 0.482 689058

B H3K4me3

Method # regions Scoring based on bona-�de benchmark

Precision Recall F0.5-score F1-score F1.5-score # tool-speci�c

HepG2
di�R 39881 0.182 0.865 0.217 0.301 0.495 32603
ChIPDi� 25193 0.290 0.290 0.290 0.290 0.290 17893
ODIN 40464 0.139 0.419 0.161 0.209 0.299 34833
histoneHMM 4065 0.713 0.095 0.311 0.168 0.115 1165

PHH
di�R 44084 0.428 0.774 0.470 0.551 0.666 25212
ChIPDi� 33656 0.562 0.677 0.582 0.614 0.651 14738
ODIN 24854 0.357 0.303 0.345 0.328 0.313 15984
histoneHMM 26597 0.566 0.490 0.549 0.525 0.503 11547

combined
di�R 83965 0.311 0.797 0.355 0.448 0.539 57815
ChIPDi� 58849 0.446 0.493 0.454 0.468 0.478 32631
ODIN 65318 0.222 0.340 0.239 0.268 0.292 50817
histoneHMM 30662 0.585 0.294 0.488 0.391 0.347 12712

Table 6.2 – Di�erence Calling Performance for di�R, ChIPDi�, ODIN and histoneHMMwith
Respect to a Bona-Fide Benchmark Set. (A) Performance for H3K27me3 ChIP-seq dif-
ference calling between HepG2 cells and Primary Human Hepatocytes (PHH) in 1,000bp
bins. ODIN and histoneHMM call most regions, ChIPDi� calls least regions but is very pre-
cise and di�R has the highest recall and F1-score. Most tool-speci�c bins are called by ODIN
and histoneHMM. (B) Same as (A) for H3K4me3 in 500bp bins. di�R calls most tool-speci�c
regions and has the highest recall and F1-score.
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Fig. 6.6 – Fold-Changes and Read Coverage for di�R-, ChIPDi�-, ODIN- and histoneHMM-
Speci�c Regions with Respect to the Bona-Fide Benchmark Set. (A) Conditional log2
fold changes for H3K27me3 in HepG2 cells and Primary Human Hepatocytes (PHH) in back-
ground (GS background), tool-speci�c and benchmark (GS enriched) regions for HepG2- (left)
and PHH-di�erential (right). Fold changes in di�R- and histoneHMM-speci�c regions are
equal to fold changes in GS enriched regions. (B) ChIP-seq read coverage in GS background,
tool-speci�c and GS enriched regions for HepG2- (left) and PHH-di�erential (right). Only
di�R-speci�c regions have a read coverage that is comparable to GS enriched regions. (C)
Same as (A) for H3K4me3. di�R-, ChIPDi�- and histoneHMM-speci�c regions have fold
changes that are comparable to GS enriched regions. Read coverage in di�R- and ODIN-
speci�c regions is greater or equal to coverage in GS enriched regions.

6.4 Discussion

In this chapter I presented an implementation of the normR framework for the direct compari-

son of two ChIP-seq experiments, referred to as “di�R”. The di�R approach �ts a mixture model

with three components to simultaneously model background and two condition-speci�c fore-

ground components. Herein, a robust background is estimated without the need for an Input

experiment and this background estimation enables for the statistical inference of mutually ex-

clusive and conditionally di�erent enrichment alike. While mutually exclusive enrichment can

also be identi�ed by a qualitative integration of individual enrichment calls, the detection of con-

ditionally di�erent signal levels substantially increases the resolution in the comparison of two
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conditions. The latter scenario bene�ts from the di�R-estimated conditional enrichment ewhich

directly relates to the di�erence in ChIP-seq signals to the conditional prevalence of the protein

binding.

In a proof-of-principle study on H3K27me3 and H3K4me3 ChIP-seq data, a comparison of

hepatocarcinoma cell line HepG2 and primary human hepatocytes revealed that the H3K27me3

heterochromatin covers less of the genome in HepG2 cells and that the H3K4me3 enrichment dif-

fers mostly on quantitative levels. di�R uncovered implications of the cancer-associated disrup-

tion of the hepatocyte heterochromatin in hepatocarcinoma cells (see [141] for review). Speci�-

cally, downstream of the crucial cell cycle regulator E2F2 [147] di�R detected a HepG2-speci�c

shortening of a H3K27me3 domain accompanied by a HepG2-speci�c gain of H3K4me3 suggest-

ing a potential cis-regulatory e�ect on E2F2. Detected quantitative di�erences in H3K4me3 levels

correlate to expression level changes and are coincident with promoters of genes associated to

functions like cell division for HepG2 cells and the P450 pathway for hepatocytes. This report on

epigenetic alterations between cancer and primary cells could in the future be integrated with

DNA methylation and mutational signatures [152] to understand the e�ects of immortalization

on an epigenetic level.

When compared to other previously applied approaches, di�R is very precise and sensitive in

detectingmutually exclusive enrichment and conditionally di�erent signal intensities. Strikingly,

even without an Input experiment, di�R recovers the majority of cell type-exclusive regions de-

tected by enrichR when an identical T threshold is used prior to FDR correction. Furthermore,

di�R’s accuracy can be marginally increased by the incorporation of CNV information – either

measured experimentally or by applying di�R directly on the Input tracks of the two condi-

tions. A systematic benchmark based on a bona-�de benchmark set showed that di�R is much

more sensitive than three competitor tools in both low S/N H3K27me3 and high S/N H3K4me3

ChIP-seq data. In the future, an experimentally validated gold-standard of conditional ChIP-seq

enrichment has to be generated to approve the herein described validation set.

Recently, I used di�R to model enrichment in reChIP-seq data over a primary ChIP-seq ex-

periment to detect H3K4me3-H3K27me3 bivalently modi�ed nucleosomes genome-wide [7]. In

the future, it is conceivable to also call mutually enriched regions in the two conditions with

di�R by integrating the two foreground enrichment factors 〈f1〉 and 〈f2〉 into one multinomial

component. The subtle in�uence of CNVs on di�R’s performance could be diminished by an ap-

proach that jointly models conditional ChIP-seq tracks together with the respective Input tracks.

Hereafter, di�R can detect conditional di�erences in other NGS experiments apart from ChIP-

seq, e.g. STARR-seq [158] or ATAC-seq [159] – especially if there is no actual control experiment

de�ned (as for the latter).
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Conclusion

In this thesis I presented an extendable methodology called “normR” that enables for the ex-

tensive analysis of NGS read count data. By modeling foreground(s) and background jointly,

normalization and di�erence calling are performed simultaneously using a intuitive binomial

mixture model and robust statistics (Chapter 3). The implicit modeling of the e�ect of signal-

regions on the overall read statistics results in an adequate normalization factor that increases

the sensitivity in detecting regions with only minute signal over background. In this work I used

the normR framework to analyze ChIP-seq read count data from the hepatocarcinoma cell line

HepG2 and primary human hepatocytes (PHH) under three scenarios (Fig.6.7): (i) the identi�-

cation of enriched genomic loci in low and high signal-to-noise ratio settings with enrichR; (ii)

the dissection of ChIP enrichment in two distinct enrichment regimes with regimeR; and (iii) the

strati�cation of conditional di�erences in ChIP enrichment between HepG2 cells and PHH with

diffR.

A simple two-component implementation of the normR framework called enrichRwas shown

(in Chapter 4) to achieve a more sensitive enrichment calling than six competitor methods [74–

80]. Due to the lack of a experimentally validated and comprehensive gold-standard for ChIP-seq,

I introduce a bona-�de validation set based on a consensus vote among peak callers to systemati-

cally assess their performance of a cohort of peak callers. In this regard, the validity of thousands

of enrichR-exclusive enrichment calls could be con�rmed by auxiliary information like expres-

sion and DNAmethylation. Yet, a comprehensive ChIP-seq gold-standard is needed to assuredly

assess all available enrichment callers. enrichR’s background normalization factor improves on

current in silico and in vitro ChIP-seq normalization methods [85, 93]. Strikingly, my analysis

of ICeChIP-seq data [93] revealed that the assumption of a linear relationship between the epi-

tope spike-in and the ChIP-seq signal intensity may be incorrect. In a proof-of-principle study, I

show how enrichR-based enrichment calls can vastly improve the chromatin segmentation with

chromHMM [36] by resolving the majority of the epigenome and detecting a novel state char-

acterized by histone modi�cation patterns of poised enhancers. A possible extension to enrichR

represents the incorporation of replicates to account also for biological variability within the

sample condition.
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Fig. 6.7 – The normR Approach: Normalization and Di�erence Calling in NGS Data.

The identi�cation of two distinct enrichment regimes in facultative and constitutive hete-

rochromatin was achieved with a three-component implementation of the normR framework

referred to as regimeR (Chapter 5) For the �rst time, one principled approach was able to dissect

heterogeneous enrichment into peak and broad enrichment in, both, H3K27me3 and H3K9me3

ChIP-seq data. Apart from distinctive genetic and epigenetic features associated to the two

regimes, my �ndings suggest a novel mode of action in the preservation of heterochromatin

where high propensity heterochromatic regions function as nucleation sites for large heterochro-

matic domains. The disparities in heterochromatin between hepatocarcinoma cells and their cell

type-of-origin, i.e. PHH, begs the question how cancer and immortalization a�ect the stability

of heterochromatin [139]. In the future, an automated determination of the number of enrich-

ment components by means of a Dirichlet Process or a β-binomial foreground component (Sec-

tion 3.2.4) will be adjuvant in studying epigenomic heterogeneity in conjunction with recently

reported single cell ChIP- seq data [160].

The direct comparison of two ChIP-seq experiments was enabled in Chapter 6 by diffR

which also uses a three-component implementation of the normR framework to model condi-

tional di�erences. In an exemplary study, I could show that HepG2 cells have a diminished

H3K27me3 decoration when compared to PHH and that most di�erences in H3K4me3 are of

quantitative nature. Recently, I used di�R to identify co-localizing histone modi�cations in a

novel reChIP-seq data set [7] where the background estimation is complicated by the presence

of enrichment in the control ChIP-seq experiment. The di�R framework does not require a con-

trol and I anticipate it would be bene�cial to identify conditional di�erences in assays where

no technical control experiment is de�ned, e.g. ATAC-seq [159]. In the future, di�R could be

extended to account for biases, e.g. CNVs, by the incorporation of condition-speci�c control

experiments.

Taken together normR proved as a versatile and sensitive framework for the analysis of ChIP-

seq data. In principle, it is readily available for the analysis of conditional di�erences in other

NGS-based experiments, e.g. STARR-seq [158] or even RNA-seq.
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Fig. A.1 – A Negative Multinomial 4-Mixture Fit Does Not Model The Interrelation between
Treatment and Control. A 4-Mixture Model of Negative Multinomials models the density
of read counts in two dimensions resulting in a separation of low and high count regions (left;
Decision boundary based on likelihood ratio given). Low count regions (5≥Control≤20) are
not classi�ed as background in the Negative Multinomial Mixture and the normR classi�ca-
tion is more accurate (right). See also Fig. 3.5.
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Fig. A.2 – HepG2 and Primary Human Hepatocytes ChIP-seq Data Quality Measured with
BamFingerprint. Cumulative fraction of ChIP-seq, Input reads with respect to (w.r.t.) to
bin with highes coverage in PHH (A) and HepG2 cells (B) computed with deepTools [110].
Input experiments are almost uniform in both cell types. ChIP-seq experiments contain bins
with substantial enrichment. “PHH”/“Hepa” = Primary Human Hepatocytes.
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Fig. A.3 – ENCODE GM12878 ChIP-seq Data Quality Measured with BamFingerprint. Cumu-
lative fraction of ChIP-seq, Input reads with respect to (w.r.t.) to bin with highes coverage in
GM12878 cells computed with deepTools [110]. Input experiments are lack coverage in∼30%
of the genome. Pooling Input experiments resolves this issue. ChIP-seq replicates contain
regions with substantial enrichment.
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Fig. A.4 – The Dependency of the enrichR Model Fit on the Choosen Binsize. (A) Estimates
for θE and θB are robust for a binsize≥500bp across all studied ChIP-seq experiments. (B)
Estimates for πE and πB are robust for binsizes≥500bp for most ChIP-seq experiments.
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Fig. A.5 – Discrepancies between di�R and enrichR-compare are Due to Low Count Regions
and Copy Number Variations Speci�c for HepG2 Cells. (A) (from left to right) Condi-
tional log2 fold change, log2 fold change over respective Input and read counts for H3K27me3
and H3K4me3 in HepG2 cells and Primary Human Hepatocytes (PHH) for background,
“cell type-exclusive” (enrichR-compare classi�ed) and “cell type-di�erential” (di�R classi-
�ed). “cell type-di�erential” is subclassi�ed as true positives (TP), false positives (FP) and
false negatives (FN) with respect to enrichR-compare classi�cation. Conitional fold change
and read counts in FP regions are equal or greater than the ones in TP regions suggesting
genuine di�erences in ChIP-seq signal intensity between HepG2 cells and PHH. FN regions
are characterized by low ChIP fold change over Input and low read counts. (B) Same as (A)
with di�R’s T Filter applied to enrichR-compare. The number of FN decreases substantially
improving consistency between di�R and enrichR-compare (C) Same as (A) with di�R called
CNVs removed. Most groups do not change but the number of FP in HepG2-di�erential
calls is reduced. (D) Same as (A) with ENCODE reported CNVs in HepG2 cells removed
with similar observations thatn for (C). See also Table 6.1. Whiskers extend up to 1.5-times
the interquartile range. Width of boxes are propotional to the square-root of the number of
regions in the groups.
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1.5kb Promoter Genes

All regions + - Odds, P-value + - Odds, P-value

enrichR
enriched 47984 94467 18.29 113531 28920 3.627

background 151829 5467798 P<2.2e-16 2920701 2698926 P<2.2e-16

MACS2
enriched 46627 79766 20.92 102294 24099 3.914

background 153186 5482499 P<2.2e-16 2931938 2703747 P<2.2e-16

DFilter
enriched 42406 37229 39.97 65205 14430 4.13

background 157407 5525036 P<2.2e-16 2969027 2713416 P<2.2e-16

CisGenome
enriched 37980 36547 35.48 62947 11580 4.969

background 161833 5525718 P<2.2e-16 2971285 2716266 P<2.2e-16

SPP
enriched 46027 92768 17.65 112820 25975 4.017

background 153786 5469497 P<2.2e-16 2921412 2701871 P<2.2e-16

BCP
enriched 47923 101178 17.03 120391 28710 3.884

background 151890 5461087 P<2.2e-16 2913841 2699136 P<2.2e-16

MUSIC
enriched 41757 64910 22.37 87121 19546 4.096

background 158056 5497355 P<2.2e-16 2947111 2708300 P<2.2e-16
Tool-exclusive + - Odds, P-value + - Odds, P-value

enrichR
enriched 1158 12206 2.651 8877 4487 1.781

background 198655 5550059 P=5.203e-170 3025355 2723359 P=1.655e-228

MACS2
enriched 182 1878 2.699 1437 623 2.074

background 199631 5560387 P=2.781e-29 3032795 2727223 P=3.96e-56

DFilter
enriched 302 726 11.6 613 415 1.328

background 199511 5561539 P=4.879e-184 3033619 2727431 P=7.698e-06

CisGenome
enriched 0 0 0 0 0 0

background 0 0 P=1 0 0 P=1

SPP
enriched 4287 35502 3.413 29147 10642 2.476

background 195526 5526763 P<2.2e-16 3005085 2717204 P<2.2e-16

BCP
enriched 913 12387 2.057 10030 3270 2.763

background 198900 5549878 P=1.973e-80 3024202 2724576 P<2.2e-16

MUSIC
enriched 69 840 2.287 630 279 2.03

background 199744 5561425 P=3.051e-09 3033602 2727567 P=2.106e-24
Tool-speci�c + - Odds, P-value + - Odds, P-value

enrichR
enriched 7575 49310 4.405 41437 15448 2.431

background 192238 5512955 P<2.2e-16 2992795 2712398 P<2.2e-16

MACS2
enriched 5884 34226 4.901 29718 10392 2.586

background 193929 5528039 P<2.2e-16 3004514 2717454 P<2.2e-16

DFilter
enriched 3789 5490 19.57 5869 3410 1.548

background 196024 5556775 P<2.2e-16 3028363 2724436 P=2.449e-94

CisGenome
enriched 104 299 9.687 262 141 1.671

background 199709 5561966 P=1.649e-58 3033970 2727705 P=6.935e-07

SPP
enriched 9776 59092 4.79 52118 16750 2.829

background 190037 5503173 P<2.2e-16 2982114 2711096 P<2.2e-16

BCP
enriched 7351 55770 3.771 48013 15108 2.887

background 192462 5506495 P<2.2e-16 2986219 2712738 P<2.2e-16

MUSIC
enriched 2528 21498 3.303 17404 6622 2.371

background 197285 5540767 P<2.2e-16 3016828 2721224 P<2.2e-16

Table B.1 – Transcriptional Start Site and Gene Overlap of H3K4me3 Enrichment Calls by en-
richR, MACS2, DFilter, CisGenome, SPP, BCP and MUSIC. A 1.5kb promoter is de-
�ned as 750bp down- and upstream of the TSS. “+” = overlapping; “-” = non-overlapping;
P-value obtained from Fisher’s exact test.
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1.5kb Promoter Genes

All regions + - Odds, P-value + - Odds, P-value

enrichR
enriched 24045 535515 1.003 520070 39490 17.06

background 99501 2221983 P=0.7132 1011345 1310139 P<2.2e-16

MACS2
enriched 18696 433224 0.9566 429676 22244 23.27

background 104850 2324274 P=4.117e-08 1101739 1327385 P<2.2e-16

DFilter
enriched 4407 94917 1.038 97990 1334 69.09

background 119139 2662581 P=0.01912 1433425 1348295 P<2.2e-16

CisGenome
enriched 1989 40528 1.097 42168 349 109.5

background 121557 2716970 P=8.019e-05 1489247 1349280 P<2.2e-16

SPP
enriched 1912 23579 1.823 24308 1183 18.39

background 121634 2733919 P=3.913e-118 1507107 1348446 P<2.2e-16

BCP
enriched 16596 390522 0.9405 388968 18150 24.98

background 106950 2366976 P=4.402e-13 1142447 1331479 P<2.2e-16

MUSIC
enriched 17729 392437 1.01 394110 16056 28.78

background 105817 2365061 P=0.244 1137305 1333573 P<2.2e-16
Tool-exclusive + - Odds, P-value + - Odds, P-value

enrichR
enriched 4684 88909 1.183 77393 16200 4.381

background 118862 2668589 P=7.126e-27 1454022 1333429 P<2.2e-16

MACS2
enriched 296 7137 0.9255 6451 982 5.81

background 123250 2750361 P=0.1971 1524964 1348647 P<2.2e-16

DFilter
enriched 0 0 0 0 0 0

background 0 0 P=1 0 0 P=1

CisGenome
enriched 0 0 0 0 0 0

background 0 0 P=1 0 0 P=1

SPP
enriched 227 479 10.59 571 135 3.728

background 123319 2757019 P=2.794e-129 1530844 1349494 P=2.268e-53

BCP
enriched 221 2739 1.802 2530 430 5.192

background 123325 2754759 P=7.351e-15 1528885 1349199 P=1.001e-305

MUSIC
enriched 1855 10161 4.122 11002 1014 9.622

background 121691 2747337 P<2.2e-16 1520413 1348615 P<2.2e-16
Tool-speci�c + - Odds, P-value + - Odds, P-value

enrichR
enriched 19337 436221 0.9874 417716 37842 13

background 104209 2321277 P=0.1145 1113699 1311787 P<2.2e-16

MACS2
enriched 13988 333927 0.9266 327319 20596 17.54

background 109558 2423571 P=5.251e-17 1204096 1329033 P<2.2e-16

DFilter
enriched 3 24 2.79 26 1 22.91

background 123543 2757474 P=0.1075 1531389 1349628 P=1.584e-06

CisGenome
enriched 1 25 0.8928 25 1 22.03

background 123545 2757473 P=1 1531390 1349628 P=2.977e-06

SPP
enriched 750 2560 6.573 2670 640 3.681

background 122796 2754938 P=2.147e-308 1528745 1348989 P=5.517e-240

BCP
enriched 11889 291235 0.9017 286622 16502 18.61

background 111657 2466263 P=1.928e-26 1244793 1333127 P<2.2e-16

MUSIC
enriched 13022 293148 0.9905 291760 14410 21.81

background 110524 2464350 P=0.3127 1239655 1335219 P<2.2e-16

Table B.2 – Transcriptional Start Site and Gene Overlap of H3K36me3 Enrichment Calls by
enrichR, MACS2, DFilter, CisGenome, SPP, BCP and MUSIC. A “1.5kb Promoter” is
de�ned as 750bp down- and upstream of the TSS. “+” = overlapping; “-” = non-overlapping;
P-value obtained from Fisher’s exact test.
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Abstract

Molecular Biology pertains to the molecular basis of the regulation of biomolecular processes in

the cell, e.g. gene expression or the genome-wide localization of DNA-associated proteins. These

molecular quantities are routinely measured by Next Generation Sequencing (NGS)-based tech-

niques due to their genome-wide scalability and cost-e�ciency. In order to discern background-

regions from genomic loci that harbor a biological relevant signal, i.e. di�erence calling, the

NGS measurements need to be corrected for technical biases with the help of a control, i.e. nor-

malization. However, the normalization itself requires the knowledge of background regions

and, consequently, di�erence calling and normalization are inseparable. Here, this problem is

solved by the data-driven “normR” framework which models the inter-dependency of NGS mea-

surements in background- and signal-regions as a multinomial sampling trial with a binomial

mixture model. The robust normR normalization accounts for the e�ect of signal on the overall

measurement statistic by modeling treatment and control simultaneously. In this thesis, I used

normR in three studies concerning the inference of DNA-protein binding from ChIP-seq data.

Firstly, the two-component “enrichR” model is shown to achieve a more sensitive enrichment

calling (AUC≥0.93) than six competitor methods (AUC≤0.86) in low, e.g. H3K36me3, and high,

e.g. H3K4me3, signal-to-noise ratio (S/N) ChIP-seq data. enrichR’s enrichment calls augment the

resolution and comprehensiveness of chromatin segmentations by chromHMM and its normal-

ization improves on present in silico and in vitro ChIP-seq normalization methods. Secondly, the

three-component “regimeR” model dissects enrichment into two unprecedented regimes of dif-

ferent signal levels. A regimeR-based analysis identi�ed two distinct facultative and constitutive

heterochromatic enrichment regimes in H3K27me3 and H3K9me3 ChIP-seq data, respectively.

The identi�ed peak regions (high enrichment) resemble nucleation sites for heterochromatin

embedded in regions of broad (low) enrichment. Lastly, the three-component “di�R” model calls

conditional di�erences in ChIP-seq enrichment between two conditions. The di�R calls in low

(H3K27me3) and high (H3K4me3) S/N ChIP-seq data are con�rmed by a systematic compari-

son to four di�erence callers. Overall, normR represents a robust and versatile framework for

the comprehensive analysis of ChIP-seq data, yet, it can be readily applied to other NGS-based

experiments like ATAC-seq, STARR-seq or RNA-seq.
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Zusammenfassung

Die Molekulare Biologie studiert die molekulare Basis der Regulierung von biomolekularen Pro-

zessen wie der Genexpression und der genomweiten Lokalisation von DNS-bindenden Protei-

nen. Die molekularen Größen werden mittels Next Generation Sequencing(NGS)-basierten Me-

thoden gemessen, da diese genomweit skalierbar und kostene�zient sind. Um Hintergrundre-

gionen von genomischen Regionen mit einem biologisch relevanten Signal zu unterscheiden

(Di�erenzenbestimmung) müssen technische Verzerrungen in den NGS Messungen mit Hilfe

einer Kontrolle normalisiert werden. Jedoch benötigt eine korrekte Normalisierung die Identi-

tät der Hintergrundregionen und, somit, sind Di�erenzenbestimmung und Normalisierung un-

trennbar miteinander verbunden. Dieses Problem wird mit dem vorgestellten datenbasierten

“normR” Modell gelöst, welches die Wechselbeziehung zwischen Zahlenwerten in Hintergrund-

und Signalregionen als eine binomiale Mischverteilung modelliert. Die robuste Normalisierung

von normR berücksichtigt durch gleichzeitige Modellierung von Experiment und Kontrolle den

Ein�uss des Signals auf die Messstatistik. In dieser Arbeit wurde normR in drei Analysen von

ChIP-seq Daten verwendet um DNS-Bindestellen von Proteinen zu identi�zieren. 1. Das “en-

richR” Modell erreicht mit einer Mischverteilung aus zwei Komponenten eine Di�erenzenbe-

stimmung, die sensitiver ist (AUC≥0.93) als bei sechs anderen Programmen (AUC≤0.86). Die

identi�zierten di�erentiellen Regionen erweitern die Au�ösung und den Umfang von Chroma-

tinsegmentierungen durch das chromHMM Programm. Die Normalisierung von enrichR ist bes-

ser als bekannte in vitro und in silico Normalisierungsansätze. 2. Das “regimeR” Modell mit drei

Komponenten teilt die vom ChIP angereicherten Regionen in zwei Klassen mit unterschiedli-

cher Signalintensität. Eine Analyse mit regimeR identi�ziert zwei Klassen von Anreicherung in

fakultativem und konstitutivem Heterochromatin in H3K27me3 and H3K9me3 ChIP-seq Daten-

sätzen. Die Regionen mit hoher Signalintensität sind �ankiert von breiten Regionen mit nied-

rigem Signal und könnten Keimstellen des Heterochromatins darstellen. 3. Das “di�R” Modell

identi�ziert Unterschiede zwischen ChIP-seq Messungen in zwei zellulären Bedingungen. Die

Ergebnisse von di�R wurden mittels eines systematischen Vergleichs zu vier anderen ChIP-seq

Di�erenzbestimmungsprogrammen validiert. normR ist ein robustes und vielseitiges Programm

zur umfassenden Analyse von ChIP-seq Daten und vermag in Zukunft eine sensitive Analyse

von anderen NGS Datensätzen wie ATAC-seq, STARR-seq und RNA-seq zu ermöglichen.
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