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Abstract 

It is increasingly recognized that features attributed to stem cells show striking parallels in certain cell 

populations within solid tumors and that cells with stem cell attributes appear to play a fundamental 

role in development, proliferation, metastasis, and therapy resistance. In the last decade, cancer stem 

cells (CSC), also termed tumor-inducing cells (TIC), have been identified in a variety of solid tumor 

entities. A deeper knowledge of CSC molecular, cellular and immunological properties would allow for 

the development of therapeutic approaches directly targeting this tumor cell population. 

A broad spectrum of methods, addressing known embryonic stem cell characteristics, has been used 

to identify and enrich the mostly rare and seemingly heterogeneous tumor cell populations with tumor 

inducing features. Among the methods, the 3-dimensional culture of cells as floating „spheroids“ or 

„spheres“ has been found to be a valuable tool to enrich and propagate CSC. Compared to monolayer 

culture of adherent cells, spheroid growth conditions select for cells with high plasticity, and the 

spheroids themselves generate loci of low oxygen and nutrient supply, thereby mimicking the natural 

tumor environment closely. 

In contrast to other tumor entities, little is known about CSC in the most common form of kidney 

cancer, the clear cell renal cell carcinoma (ccRCC). Metastatic ccRCC are mostly resistant to chemo- 

and radiotherapy, respond only moderately to tyrosine kinase inhibitors (TKI), and survival benefit 

through the variety of immunotherapeutic approaches, currently tested in clinical studies, is observed 

only in a minor fraction of patients treated. Therefore the identification, characterization, and targeting 

of CSC in ccRCC is not only of scientific interest, but may lead to valid oncological treatment targets. 

In my thesis an established ccRCC cell line, certified for use in clinical trials, was the parent cell line 

(PA) to generate spheroids for CSC enrichment and cellular cloning. The two spheroid cultivation 

procedures applied yielded two phenotypically distinguishable cell lines, termed SP and CS. 

Although the PA, SP, and CS have similar long-term proliferative potentials, both spheroid derived cell 

lines, SP and CS, profoundly increase their self-renewal ability, assayed by spheroid-forming 

efficiency (CSFE), in long-term culture. Conversely, CSFE of PA, the parental cell line, dropped to 

almost zero after only five weeks of culturing. 

When in vitro tumorigenicity was assayed by colony formation in soft agar, SP cells displayed a more 

than ten-fold higher ability to form large colonies compared to PA and CS. 

The property of generating differentiated progeny was assayed in vitro by the potential to generate 

mesenchymal lineages, namely adipogenic or osteogenic cells. SP cells showed the highest potential 

of differentiation into both adipogenic and osteogenic cells. PA cells have a much lower differentiation 

potential, similar to CS cells. Of two CS cell subtypes assayed, termed CS1 and CS7, one 

differentiates into adipogenic the other into osteogenic progeny. 

Most importantly, the spheroid-derived cell lines, SP and CS, maintained their properties of self-

renewal, colony formation, and differentiation, i.e. their stem cell characteristics, when cultured under 

non stem cell selecting conditions in monolayer cultures favoring adherent cell growth over a long 

time.  
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As functional markers for CSC, the enzymatic activity of aldehyde dehydrogenase (ALDH) and the 

transporter function for multiple drug resistance (MDR1) were measured. ALDH is active in PA, SP, 

and CS, but due to variability of measurements in PA results were not statistically significant. MDR1 

activity, though, is clearly different, if the two spheroid-derived cell lines (SP, CS) are compared with 

the parent cell line (PA). High dye pumping activity of MDR1 in PA is contrasted by low activity in SP 

and CS. 

A variety of cell surface markers, but also intracellular markers all reported as correlates of “stemness” 

or pluripotency, were assayed and detected by flow cytometric immunophenotyping (IFC). Also the 

process of epithelial-to-mesenchymal-transition (EMT) was determined through IFC of Cadherins, 

Snail1, vimentin, and cytokeratin. 

Results are discussed extensively in great detail, because no simple explanatory algorithm could be 

derived. However, the general picture fits an interpretation where some cancer stem cell (CSC) 

characteristics are already present in the PA cell line, but broadly and stably established in qualitative 

and quantitative terms in the SP cell line. If compared to SP, the CS cell line exhibits slightly less 

“stemness” and less stability in its CSC characteristics. 

All the above assays bioinformatically represent a trained or filtered set of tools for CSC 

characterization. Therefore, whole transcriptome shotgun sequencing of their mRNA (RNA-Seq) was 

performed for PA, SP, and A-SP. Differentially expressed genes (DEG) were identified in PA, SP, and 

A-SP, allowing for gene set enrichment analysis (GSEA). Results are discussed in detail, but in 

general the characterizations found with the filtered tool set nicely match the RNASeq-based GSEA. In 

the spheroid-derived cell lines (SP, A-SP) their cancer stem cell properties are elicited through up-

regulated signaling by ERK and AKT, CREB, HIF-1α, Wnt/Hedgehog/Notch, EGFR (ERBB), and PAK. 

In the adherently growing parental cell line (PA) cell adhesion and angiogenic pathways as well as 

S1P and NF-kB signaling prevail. If SP cells are kept under non CSC-selecting conditions in 

monolayer cultures they retain their up-regulated CSC signaling, but re-activate cell adhesion 

pathways comparable to PA. 
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Zusammenfassung (German Abstract) 

Es wird zunehmend anerkannt, dass Merkmale von Stammzellen auch bestimmte Zellpopulationen 

innerhalb solider Tumore auszeichnen. Diese Zellen mit Stammzellattributen spielen eine 

grundlegende Rolle bei Entwicklung, Proliferation, Metastasierung und Therapieresistenz von 

Tumoren. In den letzten zehn Jahren wurden solche Tumorstammzellen („cancer stem cells“: CSC), 

auch Tumor-induzierende Zellen („tumor-inducing cells“: TIC) genannt, in einer Vielzahl von soliden 

Tumor-Entitäten identifiziert. Um therapeutische Ansätze zu entwickeln, die direkt auf diese Zellen 

abzielen, ist ein tieferes Wissen über die molekularen, zellulären und immunologischen Eigenschaften 

von CSC erforderlich. 

Zur Identifikation und Anreicherung der meist seltenen und heterogenen CSC Tumorzellpopulationen 

findet ein breites Spektrum von Methoden Anwendung, welche auf der Verwendung bekannter 

Stammzellmerkmale basieren. Dabei hat sich die dreidimensionale Kultur von Zellen als sogenannte 

"Sphäroide" als wertvolles Werkzeug zur Anreicherung und Vermehrung von CSC erwiesen. Im 

Vergleich zur adhärenten Monoschicht-Kultur werden durch Sphäroid-Kultur Zellen mit hoher 

Plastizität selektiert. Die Wachstumsbedingungen in Sphäroiden entsprechen durch die Anwesenheit 

von Regionen mit geringer Sauerstoff- und Nährstoffversorgung zudem eher der natürlichen Mikro-

umgebung von Tumoren („tumor microenvironment“: TME). 

Im Gegensatz zu anderen Tumor-Entitäten ist über CSC bei der häufigsten Form von Nierenkrebs, 

dem klarzelligen Nierenzellkarzinom („clear cell renal cell carcinoma“: ccRCC), relativ wenig bekannt. 

Metastasierte ccRCC sind weitgehend resistent gegen Chemo- und Strahlentherapie, sprechen nur 

moderat auf Tyrosinkinase-Inhibitoren (TKI) an, und auch die vielfältigen immuntherapeutischen 

Ansätze, die derzeit in klinischen Studien getestet werden, führen nur bei einem kleineren Teil der 

behandelten Patienten zu signifikant verlängertem Überleben. Daher sind Identifizierung, 

Charakterisierung und Targeting von CSC in ccRCC nicht nur von wissenschaftlichem Interesse, 

sondern auch Voraussetzungen für valide onkologische Behandlungsstrategien.  

In dieser Arbeit diente eine etablierte ccRCC-Zelllinie, die für den Einsatz in klinischen Studien 

zertifiziert ist, als Ausgangszelllinie (PA), um Sphäroide für die CSC-Anreicherung zu erzeugen. Die 

beiden angewandten Verfahren der Sphäroid-Kultivierung lieferten zwei phänotypisch unterscheidbare 

Zelllinien, SP und CS. 

Obwohl PA, SP und CS ein ähnlich hohes Langzeitproliferationspotential aufweisen, zeigen beide 

Sphäroid-Zelllinien, SP und CS, einen erheblichen Anstieg in ihrer Selbsterneuerungsfähigkeit, welche 

durch die klonale Sphäroid-Bildungseffizienz („clonal spheroid-forming efficiency“: CSFE) in 

Langzeitkultur nachgewiesen wurde. Dagegen sinkt die CSFE der Ausgangszelllinie, PA, nach nur 

fünf Wochen Kulturzeit auf nahezu Null ab.  

Im „Soft Agar Assay“ als quantitativem Test auf Tumorigenität in vitro, zeigen SP-Zellen eine mehr als 

zehnfach höhere Fähigkeit, große Kolonien zu bilden als PA und CS. 

Die Eigenschaft, differenzierte Nachkommen zu erzeugen, wurde in vitro durch das Potential 

untersucht, in mesenchymale Linien zu differenzieren. SP-Zellen zeigten das höchste 

Differenzierungspotential sowohl für Adipozyten als auch für Osteoblasten. Das 

Differenzierungspotential von PA-Zellen war dagegen, ähnlich wie das von CS-Zellen, vermindert. 
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Die beiden untersuchten CS-Zelllinien (CS1 und CS7) differenzierten jeweils nur in eine der beiden 

Zelltypen, d.h. entweder zu Adipozyten oder zu Osteoblasten. 

Bedeutsam ist, dass die aus Sphäroiden gewonnenen Zelllinien SP und CS ihre Eigenschaften zur 

Selbsterneuerung, Koloniebildung und Differenzierung, d. h. ihre Stammzelleneigenschaften, auch 

dann behalten, wenn sie unter Kulturbedingungen, die nicht für Stammzellen selektieren, also in 

adhärenten Monoschicht-Kulturen über einen langen Zeitraum kultiviert werden (A-SP, A-CS). 

Als funktionelle Marker für CSC wurden die enzymatische Aktivität der Aldehyd-Dehydrogenase 

(ALDH) und die Transporterfunktion des Transporters für multiple Arzneimittelresistenz (MDR1) 

gemessen. Sowohl in SP und CS als auch in PA wurde ähnlich hohe ALDH-Aktivität nachgewiesen. 

Aufgrund der Variabilität der Messungen in PA waren die Ergebnisse jedoch statistisch nicht 

signifikant. Deutliche Unterschiede zwischen den beiden Sphäroid-Zelllinien (SP, CS) und der 

Ausgangszelllinie (PA) wurden hingegen in der MDR1 Transporter-Aktivität beobachtet, die durch die 

Fähigkeit zur Abreicherung des Farbstoffes Rhodamin 123 aus den Zellen gemessen wurde. PA-

Zellen zeigen im Gegensatz zu SP- und CS-Zellen hohe MDR1-Aktivität. 

Eine Vielzahl von Zelloberflächenmarkern, aber auch intrazelluläre Marker, welche als Korrelate von 

Stammzelleigenschaften oder Pluripotenz gelten, wurden mittels durchflusszytometrischer 

Immunphänotypisierung (IFC) untersucht und nachgewiesen. Auch der Prozess des Überganges von 

epithelialen zu mesenchymalen Zellen („epithelial-to-mesenchymal-transition“: EMT) wurde durch IFC 

von Cadherinen, Snail1, Vimentin und Zytokeratinen bestimmt. Die Ergebnisse werden ausführlich 

diskutiert, da kein einfaches erklärendes Schema abgeleitet werden konnte. Das allgemeine Bild passt 

jedoch zu einer Interpretation, bei der einige CSC-Eigenschaften bereits in der PA-Zelllinie vorhanden 

sind, aber in der SP-Zelllinie qualitativ und quantitativ stärker und stabiler etabliert sind. Im Vergleich 

zu SP weisen die CS-Zelllinien leicht reduzierte und weiniger stabile CSC-Eigenschaften auf.  

Die oben genannten Assays stellen bioinformatisch einen trainierten oder gefilterten Satz von 

Werkzeugen für die CSC-Charakterisierung dar. Für eine neutrale Analyse wurde deshalb für PA, SP 

und A-SP eine Sequenzierung der gesamten transkribierten mRNA (RNA-Seq) durchgeführt. Dabei 

wurden differentiell exprimierte Gene (DEG) in PA, SP und A-SP identifiziert und eine Gen-Mengen-

Anreicherungsanalyse („gene set enrichment analysis“: GSEA) durchgeführt. Die Ergebnisse werden 

im Detail diskutiert. 

Insgesamt stehen die mit dem gefilterten Werkzeugsatz gefundenen Daten in gutem Einklang mit den 

RNASeq-basierten Datensätzen. In den aus Sphäroiden gewonnenen Zelllinien (SP, A-SP) sind die 

Aktivitäten der ERK und AKT, CREB, HIF-1α, Wnt/Hedgehog/Notch, EGFR (ERBB) und PAK 

Signalwege erhöht; allesamt Korrelate für Stammzell-Eigenschaften. In der adhärent wachsenden 

Ausgangszellen (PA) dominieren Zelladhäsion und angiogene Signalwege sowie S1P- und NFkB-

vermittelte Signaltransduktion. Auch die RNA-Seq Daten zeigen, dass die Stammzell-typischen 

Signaturen in Sphäroiden, die unter nicht CSC-selektierenden Bedingungen in Monoschicht-Kulturen 

kultiviert werden (A-SP), erhalten bleiben. Unter diesen Bedingungen werden aber auch 

Zelladhäsionswege reaktiviert, die in den adhärent wachsenden PA-Zellen aktiv sind.  
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1 Introduction 

1.1 Stem Cells 

Stem cells represent the apex of the tightly regulated hierarchical system, which is the basis for 

creation and maintenance of an organism. They can be classified according to their differentiation 

potentials with descending hierarchical position: a totipotent stem cell (zygote, morula) is able to give 

rise to the whole organism including extra-embryonic tissues; pluripotent stem cells (embryonic stem 

cells, ESC) are able to generate all germ layers from which all tissues of the organism are derived; 

multipotent stem cells are able to differentiate into all cell types of their respective germ layer (e.g.: 

mesenchymal stem cells, MSC); oligopotent, organ specific stem cells stem cells are able to form 

several but not all cells of the respective germ layer (e.g.: hematopoietic stem cells, HSC, neuronal 

stem cells, NSC); epidermal stem cells, breast stem cells, intestinal stem cells) give rise only to organ 

specific cells; unipotent stem cells are merely able to differentiate into one cell type (e.g.: muscle stem 

cells). 1 2 The latter terms are not used stringently in the literature, so the term „multipotent“ is 

frequently used for oligopotent, organ specific stem cells. Differentiated somatic cells, which finally 

form the most parts of an organism, represent the bottom level of the hierarchy (see figure 1.1.1 and 

1.1.2).  

1.1.1 Embryonic Stem Cells and Development 
An overview of early events during embryonic development and of tissue types emerging from 

different germ layers is shown in figure 1.1.1. From the totipotent cells contained in the morula, which 

in human arises after several cell divisions from the zygote, two more restricted cell types can be 

distinguished in the blastocyst stage approximately at day 5 after fertilization. The outer cell layer of 

the blastocyst is composed of pluripotent trophoblast cells, which give rise to extra embryonic tissues 

of the placenta. The inner cell mass of the blastocyst contains the pluripotent ESC, which form the 

basis for generation of the organism. In a first series of differentiation events, ESC give rise to the four 

germ layer linages: ectoderm, endoderm, mesoderm, and primordial germ cells. Cells of the 

epidermis, neurons, and pigment cells are derived from the ectoderm (outer layer), inner organs such 

as lungs, intestine, pancreas, liver, thyroid and thymus are derived from the endoderm (inner layer), 

and blood cells, bones, kidneys, muscles, cartilage, tendon, ligaments and adipocytes are derived 

from the mesoderm (middle layer). Germ cells are derived from the primordial germ cell layer. The 

whole organism is formed from these four layers in a tightly regulated series of differentiation and 

patterning events. The developmental program also includes trans-differentiation events, which are 

characterized by the switch between germ layers. The (reversible) trans-differentiation processes 

which are involved for example in gastrulation and primitive streak formation are termed epithelial-to-

mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) 3. Also during kidney 

development, which is explained in more detail in chapter 1.2.2, cells of mesenchymal origin trans-

differentiate to epithelial cells (MET). Most of the current knowledge of embryonic development was 

achieved by use of model organisms, of which for the mammalian system the mouse is the most 

extensively studied organism, while data for human development due to ethical considerations are 

limited and are based on several established embryonic stem cell or teratocarcinoma cell lines. 4 5 6 7 8 
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Figure 1.1.1: Stem Cell Hierarchy: Embryonic Development and Adult Stem Cells 

Overview of ancestry of different adult organs (grey shaded) from the different germ layers arising during 
embryonic development (non-shaded) and stem cells in the adult organism. The germ layers are color-coded: 
Ectoderm (blue), Mesoderm (green), Endoderm (red), Germ Cell (violet). Totipotent and pluripotent stem cells are 
indicated in violet. Reduction of stem cell potency is indicated by lighter color, with non-shaded boxes 
representing fully differentiated, non-stem cells. Most of adult stem cells are able to differentiate into organ 
specific cells, whereas MSC are able to differentiate into a broad spectrum of mesoderm-derived cells but also to 
trans-differentiate into epithelial or neuron-like cells. The figure is not meant to be complete and is mainly based 
on information in LifeMap® „Embryonic Development & Stem Cell Compendium“ in the GeneCardsSuite. 
EMT: epithelial to mesenchymal transition, HSC: hematopoietic stem cells, M: mesoderm, MSC: mesenchymal 
stem cells, NSC: neural stem cells, SC: stem cell.  
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1.1.2 Somatic or Adult Stem Cells - Mesenchymal Stem Cells 

Adult stem cells have been found to reside in many organs (see figure 1.1.1). Especially in tissues 

with high cellular turnover rates like blood, skin and intestine they serve fundamentally in maintaining 

tissue homeostasis throughout the lifetime of an organism. But adult stem cells also serve for 

regeneration processes after injury in tissues with generally low cell turnover (e.g. NSC, kidney stem 

cells). Recent data indicate, that under stress conditions adult stem cells show remarkably high 

flexibility in order to regenerate the injured tissues. 9 10 11 12 Besides adult stem cells, also pluripotent 

stem cells have been reported to reside in adult organs. They are termed “multipotent adult progenitor 

cells” (MAPC), “very small embryonic-like stem cells” (VSEL), “multi-lineage differentiating stress-

enduring” (MUSE) cells or “marrow-isolated adult multilineage inducible” (MIAMI) cells. 13  

Since mesenchymal stem cells (MSC) have been found to reside in many organs including the kidney, 

and features of MSC have been found to correlate with tumor formation and metastasis (see 1.3.2), 

they are of special interest for this work. 

Mesenchymal stem cells, also termed mesenchymal stromal cells (MSC) have first been described by 

Friedenstein 14 in 1970 as fibroblast colonies from bone marrow (BM) of guinea pigs with the ability to 

osteogenic differentiation. In 1994, the concept of MSC as a multipotent cell source for regeneration of 

mesenchymal tissues was introduced by Caplan. 15 In 1999 Pittenger et al 16 isolated and propagated 

MSC as fibroblast-like, plastic adherent, colony-forming cells from human BM with differentiation 

potential towards adipogenic, osteogenic and chondrogenic lineages. MSC have since been isolated 

from several other tissues including umbilical cord blood (UCB) 17, adipose tissue (AT) 18, synovial 

membrane (SV) 19, dental pulp (DP) 20 and placenta (PL) 21. Besides differentiation into the three 

above mentioned mesenchymal lineages, also differentiation potential into muscle cells and 

endothelial cells as well as trans-differentiation potential into epithelial cells (EMT) and neuron-like 

cells has been reported for MSC. 18 22 23 24 Due to their relatively high abundance and easy 

accessibility combined with their differentiative capacity to form osteoblasts, chondroblasts and muscle 

cells, MSC are central to regenerative medicine. 

Minimal criteria for MSC were defined as adherently growing cells, which have the ability to 

differentiate into osteoblasts, adipocytes and chondroblasts and are positive for cluster of 

differentiation (CD) antigen CD105, CD73 and CD90 expression, but show now expression of 

hematopoietic lineage markers CD45, CD34, CD14, CD19 and HLA-DR. 25 Isolation of MSC from the 

various sources is mainly achieved by selecting for cells growing adherent to plastic in culture. 

Unfortunately, no single defining marker for prospective isolation of MSC from different sources has 

been identified, since MSC from different sources express a variable set of markers. Also many of the 

markers identified so far are expressed by other cell types and/or show differential expression in 

cultured MSC compared to freshly isolated cells. 26 27 28 Besides the defining markers CD105, CD90 

and CD73 most cultured MSC express the surface markers CD9, CD13, CD10, CD29, CD44, CD49d, 

CD49e, CD54, CD106, CD146, CD166, and MHC-II (HLA-ABC). Also expression of CD56 and CD271 

was found on subsets of MSC. The marker profile of MSC is almost identical to that of fibroblasts 

isolated from different sources with few exceptions (CD106, CD10, CD146). 29 30 Whereas marker 
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expression of both cell types is very similar, fibroblasts differ from MSC in their potential to differentiate 

towards adipogenic or osteogenic lineages 29. 

1.1.3 Stem Cell Features 

Due to their outstanding status and function stem cells possess exceptional features, which are more 

pronounced the more prominent their hierarchical position. A hallmark feature of stem cells is their 

ability not only to self-renew by symmetric cell division but to create differentiated progeny by means 

of asymmetric cell division. This means they are able to generate two different daughter cells: one 

stem cell and one committed progenitor cell with reduced potency, which then further proliferates and 

gives rise to the finally differentiated cells of the organ or organism (see figure 1.1.2). These 

differentiated cells are able to self-renew only during their comparably rare cell divisions. 

The two different modes of cell division are tightly regulated by extrinsic and intrinsic factors. Under 

steady-state conditions asymmetric cell divisions are predominant to maintain tissue homeostasis 

whereas after injury or during development of the organism the stem cell pool is expanded by an 

increase of symmetric division rate. The balance between the two modes is critical, since disturbances 

may lead to tissue degeneration (ageing) or hyperplasia/tumor formation. 31 32 33 34 35 36  

Another outstanding feature of stem cells is their high proliferative and replicative potential. In contrast 

to differentiated cells, which possess only a limited proliferative potential, i.e. the number of possible 

cell divisions is restricted to 20-100 generations before the cells enter into a senescent state or die 37 
38, the proliferative potential of stem cells is not restricted. This is partially achieved by expression of 

the enzyme telomerase, which prevents the telomere shortening normally occurring during cell 

divisions. 39 40 

 
Figure 1.1.2: Stem Cell Self-Renewal and Differentiation 

Stem cells are able to divide by two different mechanisms, resulting either in self-renewal of stem cells, thereby 
maintaining the stem cell pool, or in progenitor cells which after further rounds of proliferation are able to form 
various differentiated cells of an organ or organism. The processes are influenced by external signals, mostly 
derived of the stem cell niche. 
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1.1.3.1 Stem Cell Plasticity and Stem Cell Niche 

Attributed with these features, stem cells are enabled to generate either a whole organism, as in case 

of ESC, or the different cell types of their respective tissues or organs in case of adult stem cells. 

To fulfill their function, stem cells, in contrast to the functional terminally differentiated cells of the 

organism, show a high degree of plasticity, including trans-differentiation potential. This is regulated by 

external signals such as soluble factors (growth factors and cytokines) acting via their receptors or by 

cell-cell as well as cell-matrix interacting molecules (cellular adhesion molecules, Ig-like molecules, 

cell-junction molecules), which exert signal transduction pathways within the cell. Expression of the 

respective molecules in stem cells, and thereby the cellular plasticity of the cells, is regulated on 

epigenetic level, with chromatin modifying enzymes being fundamentally involved in this process.  

Adult stem cells receive critical signaling (as described above) from their immediate 

microenvironment, a domain that is distinct from the rest of the organ and is termed the stem cell 

“niche”. The niche, which is often characterized by a hypoxic status, provides signals for quiescence, 

or activation. These are critical for maintenance of the stem cell pool and production of progenitor cells 

engaged in tissue differentiation. The stem cell niche is a dynamic microenvironment that responds to 

local and systemic cues, ultimately influencing stem cell fate. 41 42 43 44 

1.1.3.2 Regulation of Pluripotency - iPSC  

The balance between self-renewal and differentiation of ESC is regulated by a core transcription unit 

consisting of Oct4, Sox2 and Nanog transcription factors in combination with Klf4 and c-Myc 45. 

Expression of these factors is modulated by extracellular signals, of which LIF, Wnt, 

BMP/Activin/Nodal and FGF signaling, via MAPK/ERK, STAT3, SMAD and GSK3β pathways are 

central in ESC. 46 47 48  

By artificial overexpression of the key factors (Oct4, Sox2, Klf4 and c-Myc = OSKM factors) it is 

possible to induce fibroblasts to an ESC-like state, which was first achieved in mouse cells in 2006 

and human cells in 2007 by Takahashi and Yamanaka. 49 50 The resulting cells are termed induced 

pluripotent stem cells (iPSC). It has been shown that Nanog and LIN28A, two downstream targets of 

Klf4 and c-Myc, may replace for the latter for successful reprogramming 46.  

Several markers have been identified as indicators of pluripotency of ESC. For example staining for 

alkaline phosphatase activity is often used to mark pluripotent stem cells. 39 51 52 53 Also the glyco-

epitopes detected by antibodies against so termed stage-specific embryonic antigens (SSEA-1, -3, -4) 

as well as podocalyxin, which is detected by antibodies reacting against TRA-1-60 and TRA-1-81 54 55 

are expressed on pluripotent stem cells, while expression of these antigens is lost upon differentiation 

of the cells. Of note is that SSEA-1 and SSEA-4 expression in ESC of mouse and human origin is 

regulated conversely. In mouse ESC SSEA-1 is expressed on pluripotent stem cells and decreases 

with differentiation of the cells, whereas expression in human ESC increases with differentiation of the 

cells and vice versa for SSEA-4. 56 57 55 58 Some of these pluripotency markers are also expressed on 

adult stem cells. 28 59 60 Besides these extracellular markers, also expression of the master 

pluripotency transcription factors Oct4, Sox2 and Nanog may be used as indicators for stem cell 

pluripotency state. 61 
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1.2 Kidney  

1.2.1 Kidney Structure and Function 

Kidneys represent one of the most complex multi-tissue, multi-cellular and multifunctional organs. The 

main function of the kidneys is excretion of metabolic waste as urine. They also have central functions 

in regulating blood pressure and -volume, electrolyte- and pH balance, as well as in erythrocyte, and 

calcium homeostasis. 

In the kidney two main regions can be distinguished, the cortex (outer part) and the medulla (inner 

part). Within these regions about one million nephrons, surrounded by capillaries, constitute the 

functional units of the kidney. A single nephron is composed of the renal corpuscle, followed by the 

proximal convoluted tubule, the loop of Henle (descending and ascending limb), the distal convoluted 

tubule and finally the connecting tubule, ending up in the collecting duct in which the concentrated 

urine of several nephrons is collected and transported to the ureter.  

The renal corpuscle is the main filtering unit of the blood. It is composed of the Bowman’s capsule and 

the glomerulus. The glomerulus consists of bunch of multi-convoluted capillaries lined by fenestrated 

epithelial cells, accompanied by mesangial cells for anchoring. Blood vessels are entering into the 

glomerulus as thick afferent arterioles and leaving as thinner efferent arterioles, thereby creating 

hydrostatic pressure within the capillary system. The Bowman’s capsule is a cup like structure 

enclosing the glomerulus. The cup is formed by a basement membrane lined with cells surrounding a 

lumen called Bowman’s space into which the primary urine is passed before its further concentrated in 

the renal tubules. According to the lining cell type two continuous layers can be discriminated. The 

visceral layer close to the glomerulus is part of the filtering system. It is composed of podocytes or 

“visceral epithelial cells”, which, separated by the three-layered glomerular basement membrane, 

enwrap the glomerular capillaries with their interdigitating foot processes, thereby forming slits. The 

slits are connected via a special intercellular junction called slit diaphragm, containing the trans-

membrane protein nephrin as major component. The outer parietal layer mainly consists of squamous 

epithelial cells. Endothelial cells and podocytes at either side synthesize the glomerular basement 

membrane. Whereas mesangial cells in the glomerulus by degrading its components have a function 

in homeostasis of the membrane.  

Fenestrated epithelial cells of the capillaries, basement membrane and podocytes together form the 

filtering barrier of the renal corpuscle. Due to the hydrostatic and oncotic pressure and the porous 

nature of capillary’s endothelial cells and basal lamina and the special arrangement of podocytes, 

about 1/5 of the incoming blood liquid including small molecules, but no blood cells or negatively 

charged macromolecules, is pressed/filtered into the Bowman’s space. 62 63 64 

In the proximal tubule water, sodium and other solutes are reabsorbed from the glomerular filtrate. 

Also remaining proteins in the filtrate are removed almost completely by endocytosis. From the blood 

compartment various organic compounds are secreted into the tubular lumen. Tubular epithelial cells 

are complexly folded and form a brush border at the apical pole resulting in a huge plasma membrane 

surface of the cells, which allows for efficient solute transport. The membrane contains various 

transport proteins such as aquaporin, sodium coupled transporters for inorganic phosphate, glucose  





 

Introduction 

 

- 8 - 

and multi-specific organic anion and cation transporters as well as Na/K-ATPase, Na/H exchangers 

and chloride channels. In the thick ascending limb of Henle’s Loop (TAL) sodium is absorbed in 

excess of water by Na/K/Cl symporters and Na/K-ATPase, thus rendering the surrounding interstitium 

hypotonic, which allows the concentration of urine by osmotic pressure. This segment also has a 

prominent role in reabsorption of Ca and Mg ions as well as in acid-base homeostasis. In the distal 

convoluted tube (DCT), connecting tubules (CNT) and collecting duct (CD) final sodium reabsorption 

via amiloride and aldosterone-sensitive sodium channel EnaC takes place. Similar to TAL, DCT and 

CNT have a function in Ca and Mg homeostasis. In the CD also vasopressin regulated water and urea 

transporters are expressed for vasopressin-regulated reabsorption of water and urea. 63 

1.2.2 Kidney Development 

In mammalian embryonic development the kidneys are derived from the intermediate mesoderm.  

In mice at the 6-8 somite-stage the nephric ducts (ND/Wolffian duct) arise in a process of bilateral 

epithelialization and elongate, before they fuse with the cloak, which is the precursor of bladder and 

urethra. An overview of the stages of kidney formation starting about day 11 is depicted in figure 1.2.2. 

 
Figure 1.2.2: Kidney Development 

Schematic representation of stages in mammalian kidney development. (A) Nephric duct compartments with 
invading ureteric into metanephric mesenchyme. (B), (C) Branching of ureteric bud. (D) Formation of 
condensed/cap mesenchyme at ureteric bud tip. (E) Formation of renal vesicles from condensed/cap 
mesenchyme. (F) Formation of a cleft to form the comma-shaped bodies. (G) Podocyte precursors (blue) attract 
angioblasts (red) in the S-shaped body. (H) Developing nephron connects with the nephric duct. 
The figure was created by Schell, Wanner and Huber 64 
 
At the ND, by induction of neighboring metanephric mesoderm, three structures arise: pronephros, 

mesonephros and metanephros. In the further developmental stages pronephros and mesonephros 

become part of the male genital system or degenerate in females. The metanephros finally becomes 
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the kidney. The process of kidney formation is induced at the posterior end of the ND by interaction 

with the metanephric mesoderm/mesenchyme (MNM), by outgrowth of the ureteric bud (UB), which 

invades into the MNM and starts branching. At the tip of the UB the surrounding MNM condenses, 

thereby forming the condensed/cap mesenchyme (CM). CM is characterized by expression of a 

unique gene set composed of SIX2, OSR1, PAX2, SALL1, WT1, CITED1, GNDF, and the 

mesenchymal marker vimentin. Epithelialization of these cells via UB induced MET with concomitant 

repression of the CM specific genes and expression of E-Cadherin is induced by autocrine WNT4 

signaling. Renal vesicles start forming from the CM. From the intermediate comma shaped bodies, the 

S shaped bodies, containing podocyte progenitors and parietal epithelial cells, evolve by forming a 

cleft. Podocytes attract endothelial cells by secretion of VEGF-A, which invade into the cleft and later 

form the capillaries. By secretion of PDGF from angioblasts/endothelial cells, mesangial cells are 

attracted and, by attaching to the endothelial cells, cause looping of the glomerulus. Already at the 

renal vesicle stage a proximal/distal polarity is established, in which WT1 and notch signaling are 

involved. This polarity is retained throughout further steps, with the distal segment of the S shaped 

body finally forming the distal tubule, which connects to the connecting segment on the collecting duct. 

The intermediate segment develops to the Loop of Henle' and the proximal segment finally gives rise 

to the glomerulus and the S1-3 segments of the proximal tubule. Whereas the nephron is formed from 

the ureteric bud and CM, another mesenchymal subset, which is characterized by expression of 

FoxD1, gives rise to several supporting cell types of the kidney such as interstitial fibroblast, pericytes 

and vascular smooth muscle cells (VSMC), but also to mesangial cells, which are characterized by 

expression of α-SMA and seem to be a specialized VSMC and angioblasts. 66 64 67 68 

1.2.3 Adult Stem Cells in the Kidney 

In the adult kidney two mechanisms have been shown to be probable sources for cellular 

regeneration. One mechanism for recovery after injury is the de-differentiation of surviving tubular 

epithelial cells by EMT, but also adult stem cells may be involved in this process. 69 66 70 

In human adult kidney several renal progenitor cell populations have been identified in the cortical, 

medullary and papillary regions of the kidney. These progenitor cells were all characterized by co-

expression of CD24 and CD133 molecules. 71 72 73 74 75 76 

In the Bowman’s capsule different subsets of adult regenerating cells could be discriminated by their 

expression of the podocyte marker PDX, with C133+/CD24+/PDX− localized to the urinary pole are 

able to differentiate to tubular cells and podocytes, whereas cell with additional expression of the 

podocyte marker PDX, localized between urinary and vascular pole are able of podocyte generation 

only. Differentiation potential is restricted to C133+/CD24+ subsets, whereas C133−/CD24− cells 

display phenotypic features of podocytes 77 73 (see figure 1.2.1). These precursors might be used to 

treat glomerular disorders characterized by podocyte injury, proteinuria, and progressive glomerulo-

sclerosis. Renal progenitors isolated from the parietal layer of the Bowman’s capsule have been 

shown to possess differentiating potential not only into functional renal tubules but also into 

adipocytes, osteoblasts and into neuron-like cells. 73 In contrast, progenitors isolated from the tubular 

fraction of human kidneys were found to differentiate into tubular lineages only and were marked in 

contrast to glomerular derived podocyte precursors by lacking expression of CD106. 75  
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Additionally, from adult human decapsulated glomeruli, resident renal progenitor cells of 

mesenchymal-like phenotype have been isolated. The cells are marked by their specific expression of 

CD146 and also expressed further MSC markers (CD73, CD90, vimentin) as well as the renal stem 

cell markers CD24 and Pax2, which are not expressed by MSC. This progenitor cell fraction, in 

contrast to the other progenitor subsets was identified to be negative for CD133 expression. Besides 

MSC specific differentiation capabilities into adipogenic, osteogenic, and chondrogenic lineages, they 

were also able to differentiate into endothelial, tubular epithelial and mesangial cells. 78  

The identification of renal stem cells or cells with renogenic potential is of urgent therapeutic interest 

for treatment of glomerular disorders and kidney failure. 66 79 

1.3 Tumor Formation and Tumor Cell Features 

Tumor formation is the result of imbalanced homeostasis mechanisms due to genetic (mutations, copy 

number variations, deletions, amplifications, translocations) and/or epigenetic alterations (DNA 

methylation status and histone modifications) which provide the resulting tumor cells with the 

capability to proliferate extensively and potentially disseminate to other regions of the body as 

metastases. The process is referred to as transformation, and the resulting cells are termed 

transformed cells. Several key or driver genes have been identified with frequently altered expression 

in tumor cells. According to their function, they are either termed „oncogenes“ (aberrantly high 

expression or gain-of-function in tumor cells) or tumor suppressor genes (aberrantly low expression or 

loss-of-function in tumor cells). These genes often fulfill central functions in signaling pathways 

regulating cell proliferation (e.g. growth factor signaling, cell cycle control), stress response (e.g. DNA 

damage, hypoxia) or apoptosis. 

The altered gene expression results in acquisition of the so termed “hallmarks of cancer” (see table 

1.3.1) described originally in 2000 and revisited 2011 by Hanahan and Weinberg 80 81, which in a 

deregulated intertwined circuit of signaling events provide the basis for the abnormal cell growth and 

survival of tumors. 

 
Table 1.3.1: Hallmarks of Cancer 

Distinctive and complementary capabilities that enable tumor growth and metastatic dissemination and probable 
therapeutic targets thereof as described by Hanahan and Weinberg 81 
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Most tumors are not composed of a homogenous cell population; instead they show high 

heterogeneity with respect to mutational and epigenetic status as well as to their morphological 

appearance. Besides, many tumors also show remarkable plasticity, as can be seen for example in 

the steps needed during formation of metastases (transversal to another organ and adaptation to the 

different growth conditions there), but also in acquisition of therapy resistance. 82 83 84 85 86 87 88 

1.3.1 Cancer Stem Cells (CSC) or Tumor-Initiating Cells (TIC) 

With emerging knowledge on stem cell biology and plasticity, the idea that similar mechanisms might 

be involved in tumor formation came into focus. But this idea was not new either, since a stem cell 

origin of tumors was already proposed by Rudolf Virchow in 1855 in his „Embryonic-rest hypothesis’ of 

tumor formation“, which was based on histological similarities between tumors and embryonic tissues 
89. According to the cancer stem cell (CSC) hypothesis, tumors are organized, similar to other organs, 

in a hierarchical manner, containing a small subset of cells with stem cell characteristics, which are 

capable of regenerating the tumor, whereas most of the tumor is composed of differentiated progeny 

of these cells, which show limited proliferative potential. 90 91 92 93 94 The cell population with stem cell 

characteristics, and assumed to be responsible for tumor expansion, is denominated either as CSC or 

tumor-initiating cells (TIC) in the literature. It is important to be aware, that the cancer stem cell 

hypothesis does not imply that the tumor initiating cell population necessarily descends from a stem 

cell. Rather, the stem cell characteristics might also be acquired by mutational and/or de-differentiation 

events of various cell types. 95 The first evidence, that a small subpopulation of cells in human ALL are 

able to recapitulate the original disease phenotype in immune-compromised mice was provided 1997 

by Bonnet and Dick 96. Later on the first evidence for TIC in solid tumors were provided by Al Hajj 97 et 

al for breast tumors. These reports were subsequently followed by similar reports for brain tumors 98, 

prostate 99 and ovarian 100 tumors, melanoma 101, colon 102, pancreatic 103, liver 104 and lung cancer 105 
106. The first report on TIC in RCC was published 2008 by Bussolati et al 78. 

By now, TIC populations have been reported also for other tumor types and several approaches, 

yielding different populations, have been used to isolate these cells (see chapter 1.4.1). Thereby, in 

different reports the identified TIC populations varied in several aspects (size of population, 

characteristics) not only between different tumor entities but also between different isolation 

approaches and experiments. This has led to controversial discussions on the validity of the 

hypothesis. However, the concept of involvement of stem cell characteristics in tumor formation and 

propagation is now well accepted. The idea leads to the description of a more complex tumorigenesis 

model, which combines the clonal evolution idea with the stem cell hypothesis (see figure 1.3.1). This 

model puts a further challenging layer of complexity on the efforts to refine methods for identification of 

CSC. 88 107 108 109 110 111 112 113 126 

This is important for clinical oncology, since the involvement of cells with stem cell characteristics in 

tumor formation and propagation has profound implications for development of effective tumor 

targeting strategies. Most conventional therapeutic approaches (radio or chemo-therapy) aim to target 

fast proliferating cells, thereby shrinking the tumor mass. Owed to their stem cell features (quiescence, 

high resistance to damaging agents) TIC may not be eliminated efficaciously by this strategy and 

surviving CSC after treatment are able to re-form the tumor and/or metastases. Therefore, targeting 
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the founding CSC is necessary for effective long-term elimination of the tumor. Several approaches 

are now being tested, such as e.g. differentiation therapy, inhibitors for stem cell specific signaling 

components or drug conjugates based on molecular markers. 114 115 116 117 118 119 120 121 122 123 124 125  

 

 
Figure 1.3.1: Models of Tumorigenesis 

Three models for tumorigenesis are depicted, of which the “Unified” mode  seems to be the most probable. 
Left: the clonal evolution model describes tumorigenesis as a stochastic process in which transformed tumor cell 
populations with growth and survival promoting advantageous mutations are selected by evolutional pressure and 
over time accumulate further mutations, which are similarly selected for growth and survival, resulting in tumor 
progression. Tumor heterogeneity according to this model is based on multiple different tumor growth promoting 
mutations. Right  the cancer stem cell model implies that tumor growth is driven by a small subset of cells with 
stem cell features (acquired by mutation of stem, progenitor, differentiated or dedifferentiated cells). Tumor 
heterogeneity according to this model is established by the hierarchical organization based on stem cell intrinsic 
differentiating capacity. Middle: the unified, combined model is the most complex but most probable model for 
tumor genesis. It combines the stem cell characteristics depicted in the CSC model with the acquisition and 
selection of advantageous tumor promoting mutations over time at any stage of the differentiation hierarchy. 
Besides the heterogeneity, which is explained differently in both single models, this model also delineates the 
high plasticity and complexity of tumors. The figure was created by Corrò and Moch 110 
 

1.3.2 Epithelial-to-Mesenchymal Transition (EMT)  

An aspect that has been recognized to be functionally involved in tumor dissemination but probably 

also in tumor formation is the process of trans-differentiation from epithelial to a mesenchymal (EMT) 

phenotype, which is known from embryonic developmental processes  During this process polarized 

attached epithelial cells assume a stem ce l like mesenchymal motile phenotype  The process is 

characterized by a number of molecular changes, of which the loss of expression of epithelial markers 

such as E-Cadherin (CDH1) and cytokeratins and gain of expression of mesenchymal markers 

N-Cadherin (CDH2) and vimentin are the most prominent indicators. EMT might be initiated by several 

external signals (e.g. TGF-β, cytokines, growth factors  WNT, Notch ligands, SHH, integrin and 

hypoxia), which dependent on cellular signal integration, lead to epigenetic changes and subsequent 
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expression of the characteristic core transcription factors Snail, Zeb and Twist. 3 88 126 127 128 129 130 131 
130 132 133 134 135 136 137 In figure 1.3.2 a model of EMT involvement in formation of tumor metastases is 

illustrated. 

 

 
 

Figure 1.3.2: Trans-Differentiation in Metastasis Development and Pathways Active in CSC   

Illustration of a model for metastasis formation by trans-differentiation processes induced by environmental 
signals. Signals from the tumor microenvironment (immune cells, stromal cells and ECM) may induce EMT in 
epithelial tumor cells by means of soluble factors or direct interaction. The resulting cells of mesenchymal 
phenotype are characterized by up-regulation of transcription factors Snail, Zeb and Twist, which induce 
expression of N-Cadherin and repress expression of E-Cadherin accompanied by induction of cytoskeletal 
changes. This changes result in a motile phenotype capable of intravasating into the blood vessel, survive in the 
blood stream and extravasating into distant organs. In the new environment cells might either stay in a dormant 
state or re-acquire epithelial properties and initiate growth of metastases. Inset top right: Growth and metastasis 
promoting developmental and PI3K/STAT3 pathways and deregulated metabolism in CSC.  
CSC: cancer stem cell, ECM: extracellular matrix, EMT: epithelial-to-mesenchymal transition, IL-8: interleukin-8, 
MET: mesenchymal to epithelial transition, SDF: Stromal derived factor-1 or CXCL12. The figure was created a 
by Agliano, Calvo and Box 122 
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1.4 Methods for the Analysis of CSC 

For the investigation of tumor cells either primary tumor material derived from patient biopsies, tumors 

grown from this material in laboratory animals (xenograft tumors), or tumor cells grown in vitro may be 

used. The advantage of using primary tumor material is that the analysis of a “quasi” original state. 

The obvious disadvantage, though, is the limitation of available material. Primary tumors are therefore 

suitable for immune cytometric or immune cytochemical analyses as well as for gene expression, or 

genetic analyses, but only a small amount of functional tests can be performed.  

To augment tumor material for further analyses, it can either be propagated in vivo by xeno-, allo-, or 

auto-transplantation into laboratory animals (mostly immune-compromised mouse strains) or using in 

vitro cell culture methods. Both methods suffer from the lack of original tumor environment and 

introduction of artificial conditions (xenogeneic/heterotopic environment of animals used for in vivo 

propagation, culture conditions used for in vitro propagation). Thus information obtained using 

propagated tumor cells contains effects that are artificially introduced by the artificial environment and 

effects that depend on the missing tumor environment, such as immune-interactions of the tumor. 

Thus, a clear advantage of in vivo models over in vitro propagation is the provision of complex 

interactive structures (microenvironment, immune-interactions). 138 139 140 141 Expansion in vitro, 

though, allows for the definition and monitoring of growth- and other conditions to a much greater 

extent. In addition, also ethical considerations make in vitro cultivation and investigation of tumor cells 

a valuable tool to study tumors, with culture techniques steadily improving (3D-, co-culture). 142 143 144 
145 146 

The gold standard to verify CSC features (self-renewal, differentiation and high replicative and 

proliferative potential) of a cell population is successful in vivo generation of a tumor resembling the 

tumor of origin. Self-renewal capacity and unlimited proliferative potential are confirmed by repeated 

growth of tumors after serial transplantation. 

Besides this final proof for CSC, also in vitro methods can be used to analyze the defining 

characteristics of stem cells in the cell population investigated. The high replicative and proliferative 

potential can be shown by long-term in vitro growth of the cells without loss of these features over 

time. To test for self-renewal ability in vitro, the serial sphere-forming ability, assayed according to the 

so termed “Neurosphere Assay” (NSA) is frequently used. The multipotency of cells can be assayed 

by in vitro differentiation of the cells, when cultured under differentiation-inducing growth conditions. 

These are well established for ESC or adult SC. 

1.4.1 Strategies for Isolation or Enrichment of CSC 

1.4.1.1 Marker Expression 

A straightforward method for isolation of distinctive cell populations is cell sorting according to 

expression of defining markers for the cells of interest. Cell sorting is accomplished either by 

fluorescence-activated cell sorting (FACS) or magnetic activated cell sorting (MACS). A pre-requisite 

for the use of these methods is the availability of suitable selection markers. For the isolation or 

enrichment of TIC from primary tumors and tumor cell lines, several markers have been identified. The 

difficulties in using these markers lie in their variable expression depending on tumor type, and their 
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non-selective character, i.e. expression also in other cell types (see table 4.6.1). Therefore often a 

combination of markers has to be used for successful enrichment of TIC. In table 1.4.1 an overview of 

the most commonly applied markers for isolation of CSC from different tumors is shown. Whereas 

some of the identified markers are typically expressed by stem or progenitor cells (CD133/AC133, 

EpCAM, CD90), others display no functional connection to stem cells (CD29, CD44). As seen for 

CD24, which serves as a marker for CSC from several tumors (mostly in combination with CD44), 

either high or low expression of this protein marks the CSC population in different tumors. Additionally, 

it has also been found that CSC isolated with a given marker do not necessarily show overlap in 

marker expression with CSC isolated with other methods. Therefore, by using these markers only a 

subset of the phenotypically heterogeneous TIC population becomes enriched. 60 107 113 147 148 147 

 
Table 1.4.1: Overview of Frequently Used Markers for Isolation of CSC from Solid Tumors 

The table was modified from 113 148 and only the most frequently used markers and tumor entities are listed. Many 
other markers have been applied for CSC enrichment from various tumor types, also from tumor entities not listed 
in the table. 
ABCG2: ABC subfamily G member 2, ABCB5: ABC subfamily B member 5, CD: cluster of differentiation, CXCR4: 
C-X-C chemokine receptor type 4, EpCAM: epithelial cellular adhesion molecule, ESA: epithelial surface antigen, 
HNSCC: head and neck squamous cell carcinoma 

1.4.1.2 ALDH Activity 

A method, originally developed for isolation of adult stem cells from bone marrow 149 and brain, utilizes 

the high expression of aldehyde dehydrogenase (ALDH) to discriminate stem cells or CSC from other 

cell types. ALDH comprise a family of 19 isoenzymes, converting aldehydes to their corresponding 

carboxylic acids. ALDH are involved in detoxification, but also in other cellular processes, such as 

differentiation, proliferation, and mobility. High ALDH expression is found in liver, pancreas and 

kidney, heart and skeletal muscle. The ALDH1 isoform, which is involved in retinoic acid (RA) 

metabolism and signaling, is highly expressed in stem cells. For identification of cells with high ALDH 

Tumor Type Marker

Brain CD44+, CD133+, CD90+, CD49f+

Breast CD44+/CD24−, CD90+, CD49f+ 

Colon CD44+, CD133+, CD166+, CD24+, EpCAM+, ESA+ 

Esophagus CD44+, CD24+, CD133+, ABCG2+, CXCR4+

Gastric CD44+, CD133+, CD24+, CD54+, CD90+, CD49f+, CD71+, EpCAM+

HNSCC CD44+, CD133+, ALDH+, CD271+ 

Liver CD44+, CD133+, CD90+, CD13+, EpCAM+

Lung CD44+, CD133+, CD166+, CD90+, ABCG2+

Melanoma CD20+, CD133+, CD271+, ABCB5+

Ovarian CD44+, CD133+, CD24+, CD117+, EpCAM+

Pancreatic CD44+/CD24+, CD133+, ESA+, CXCR4+, ABCG2+ 

Prostate CD44+/CD24−, CD133+, Integrin α2β1high , CD166+, CD49f+
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activity the ALDEFLUORTM assay is a widely used method. The non-toxic enzymatic assay converts 

the substrate into a fluorescent form that accumulates intracellularly. Adult stem cells from a variety of 

tissues (HSC, NSC, mammary, prostate, intestinal, myogenic) and CSC from a number of tumor 

entities, including breast, colon, pancreas, lung, liver, prostate and bladder have been isolated by 

combining the ALDEFLUORTM assay with flow cytometric cell sorting. Similar to isolation strategies 

using other markers, the applicability of this assay for CSC enrichment is not without scientific debate, 

especially for isolation of CSC from tissue types with high expression of ALDH enzymes such as 

pancreas, liver and kidney. 69 150 151 152 

1.4.1.3 Side Population Assay 

A characteristic feature of stem cells and drug-resistant tumor cells is the high expression of 

detoxifying efflux transporters of the ABC-family. This characteristic is used in the side population 

assay to discriminate and enrich cells by flow cytometry based on their ability to transport or “pump 

out” the fluorescent DNA-binding dye Hoechst33342 or the mitochondrial binding dye Rhodamine 123 

from dye-loaded cells. The name of the assay is derived from the small non-stained cell fraction seen 

in the flow chart, which represents the cells that pump out the dye, and is termed the “Side 

Population”. The method was first used for enrichment of hematopoietic stem cells (HSC) 153 and later 

became a valuable tool to enrich stem cells from other tissues as well as CSC from different tumor 

origins 154. ABC-transporters ABCB1 (MDR1/P-Glycoprotein), ABCC-members (MRP), and ABCG2 

(BRCP) have been identified to be responsible for drug resistance, of which ABCB1 and ABCG2 have 

been assigned to be the responsible transporters for the SP-phenotype in mice. 155 156 157 The 

expression and contribution to the side population-phenotype varies between different tissues, tumor 

entities, and species. Similar to other methods applied for CSC enrichment, also the applicability of the 

side population assay for detection of CSC populations in different tumor types, not only in 

combination with methodological variations, are controversially discussed in the literature. 154 155 158 159 
160 161 162 163  

1.4.1.4 Sphere Formation Assay 

An assay that has widely been used to isolate, propagate and characterize cells with stem cell 

features is the “Neurosphere Assay” (NSA), which was developed by Reynolds and Weis 164 for 

neuronal stem cells. In this assay selection of stem and progenitor cells is achieved by use of rigorous 

cell culture conditions. Adherence of cells is hampered by use of culture vessels not allowing 

attachment of the cells so that cells grow as non-adherent spheroids. The medium contains only 

defined growth factors (EGF, bFGF and insulin) known to promote stem cell growth. As a result only 

cells that are able to survive these conditions (stem and progenitor cells) are enriched, whereas 

differentiated cells die, due to improper signaling. By use of this assay CSC from several tumor types 

have been identified. 165 166 101 167 168 169 The method is also applied to verify the self-renewal ability of 

assumed TIC in vitro. Repeated application of the assay with concomitant growth of spheroids is, 

similar to serial tumor formation in vivo, considered a proof of self-renewal ability of stem cells. 170  

By the spheroid assay, CSC are selected according to characteristic stem cell features and further 

markers for direct enrichment or targeting of TIC can be identified. This is an important advantage of 



 

Introduction 

 

- 17 - 

CSC isolation through spheroids. Even more important, compared to direct enrichment using specific 

markers, the phenotypic heterogeneity of the tumor’s CSC is conserved. The probability of progenitor 

cells enrichment in addition to or instead of stem cells and phenotypic changes mediated by culture 

conditions are disadvantages of the assay. 171 170 In the literature the terms “sphere” and “spheroid” 

are used synonymously as well as throughout this work. 

1.5 Renal Cell Carcinoma (RCC) 

1.5.1 Incidence and Classification 

Renal cell carcinomas (RCC) are a heterogeneous class of urological tumors mostly derived of renal 

tubular epithelium. They comprise about 3-5% of all human cancers. Three main histological subtypes 

of RCC are discriminated according to the Heidelberg classification of renal cell tumors, which differ in 

their clinical outcome and molecular features. Clear cell adenocarcinoma (ccRCC) or “conventional” 

RCC is the most common form of RCC accounting for 70-80% of renal tumors, followed by papillary 

carcinoma (pRCC) type 1 and 2, which account for about 10–15% of RCCs, and chromophobe 

collecting duct carcinomas with an incidence of 5% are less frequent. Some rare renal tumors do not 

meet the classifications of these subtypes, such as medullary and collecting duct RCC. These are 

grouped into unclassified carcinomas. ccRCC and pRCC arise from proximal tubule cells showing 

specific hepatocyte nuclear factor (HNF) regulated gene expression profiles, whereas chromophobe 

RCC originate from intercalated cells of the collecting duct and show a characteristic forkhead box I1 

transcription factor (FOXI1) driven-gene signature. 172 173 174 175 176 177 

1.5.2 Therapy 

Since RCC do not cause symptoms in early stages, most tumors are detected incidentally and upon 

presentation up to 30% of patients with RCC already have metastatic disease. For localized RCC, 

radical nephrectomy is the standard, often curative therapy. In contrast, about half of RCC patients, 

who present or develop metastatic disease are faced with a high cancer-specific mortality rate with an 

average survival of 4 months and a 5-year survival rate of 12%. Radiation and chemotherapy, due to 

high resistance of this tumor entity, are not efficacious in RCC therapy. RCC show low response rates 

to IFN-α and IL-2 immunotherapy (≈15% partial response rate, 2-5% complete response rates). The 

application of therapies targeting VEGF and mTOR pathways, which include tyrosine kinase inhibitors 

(sunitinib, sorafenib), monoclonal antibodies targeting VEGF (bevacizumab) and mTOR inhibitors 

(temsirolimus, everolimus), also in combination with interferon-based immunotherapies, offer improved 

progression-free and overall survival. Nonetheless, RCC is still a tumor of poor clinical outcome and 

more effective therapies are urgently needed. 172 173 174 175 176 177 

Latest developments in the treatment of RCC are the anti-PD-1 antibodies (pembrolizumab, 

nivolumab) therapies 178 179 which target regulatory T-cells, or various cell-based immunotherapeutic 

strategies, where autologous or allogeneic tumor cells are applied as therapeutic vaccines either 

directly or for priming of Dendritic cells, T-, or NK cells. 180 181 The approach established in Prof. 

Wittig’s group, to apply an allogeneic, fourfold gene-modified RCC tumor cell line in combination with a 

potent immunomodulator as therapeutic vaccine, successfully passed a clinical phase II trial. 182 183 
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1.5.3 Molecular Characteristics of RCC 

Recent detailed molecular characterization of RCCs revealed a high heterogeneity of the tumors and 

lead to an ongoing revision and further elaboration of histological classification of RCC subtypes. 

Most (60-80%) ccRCC are characterized by a defective von Hippel-Lindau (VHL) tumor suppressor 

gene, which is located on chromosome 3p25. A consequence of inactivation or loss of the E3 ubiquitin 

protein ligase, which under normoxic conditions targets oxygen-dependent posttranslational modified 

HIFα transcription factors for degradation, is a deregulation of HIF axis. Stabilization of HIF proteins 

results in expression of a variety of cell type specific HIF target genes, including VEGF, PDGF, TGF-α 

and EGFR, c-Myc, Oct4, Sox2 and p53. Also a number of histone demethylases as well as 

erythropoietin are up-regulated in some kidney cells, to promote tumor growth, angiogenesis and 

therapy resistance. Though the picture is still incomplete, an important role of HIF1α in tumorigenesis 

of RCC can be assumed. 184 

Besides VHL, also chromatin modifying components such as the chromatin-remodeling complex 

components PBRM1 and ARID1A, the histone methyltransferases SETD2 and JARID1C (also known 

as KDM5C) and the histone de-ubiquitinating enzyme BAP1 have been found to be mutated in ccRCC 

cancer cells of patients. TP53 and ATM, both involved in DNA-damage response, were found to be 

mutated in 40% and 10% of cases, respectively, in some tumor regions.  

Also components of the PI3K/mTOR pathway (PTEN, MTOR, PIK3CA, TSC2), which has a key 

function in controlling cellular metabolism, cell growth, proliferation, and apoptosis, were identified as 

mutated in up to 20% of patients, with 60 % of patients harboring at least one mutation in this 

pathway. The mTOR pathway is also connected to the HIF pathway, since mRNA expression of HIF1α 

is governed by mTORC1, and the translation of HIF2α mRNA is regulated by mTORC2. Also the 

PI3K/AKT pathway has been found to be activated by different genomic mechanisms in all three 

different histological types of RCC (clear cell, papillary, and chromophobe). Activation of c-MET proto-

oncogene, coding for hepatocyte growth factor (HGF) receptor, localized on chromosome 7q31-3, is 

frequently associated with papillary RCC. Chromophobe RCC has been associated with the 

BHD/Folliculin gene, which maps to the 17p11.2 locus in hereditary forms of the tumor. It is involved in 

AMPK and mTOR signaling. Also p53 mutation and up-regulated expression of the c-kit oncogene has 

been reported in this histological subtype. 86 184 185 186 187 188 189 190 191 192  
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1.5.4 RCC Cell Lines 

For in vitro investigation of RCC, many established cell lines for various histological subtypes are 

available, which differ in their mutational status as well as in their origin from primary or metastatic 

sites. A list of the most frequently used cell lines is shown in table 1.5.1. 

 
Table 1.5.1: Overview of Frequently Used RCC Cell Lines 

Several frequently used RCC cell lines are listed. In column 1 the names are indicated. Some of the cell lines 
names are used for cell line collections of different institutions (names are extended by numbers). This is 
indicated by the term “various”. The histological subtype is indicated in column 2 (cc: clear cell, pap: papillary 
RCC). For some of the cell line this feature is described inconsistently in the literature (#). In column 3 is indicated 
whether the cell line was derived from primary (Prim) or metastatic (Met) tumor. The VHL status of the cell lines 
are depicted in column 4 with the following abbreviations used: wt- wild-type gene, m- mutated, t- mRNA 
(transcript) detected, + protein expression, - no protein expression, # inconsistent data). In column 5 the 
tumorigenicity in mice is indicated; T: tumorigenic, NT: non-tumorigenic. The information contained in this table 
are adapted from Brodaczewska et al 193 
 

1.6 Cancer Stem Cells (CSC) in Renal Cell Carcinoma (RCC) 

In 2008 Bussolati et al 78 identified a subpopulation of cells expressing the mesenchymal stem cell 

marker CD105 as possible CSC in RCC. They isolated CD105+ cells (5-11% of tumor cells) from 

primary tumors, clonally amplified the cells in adherent monolayer culture, and tested their tumor-

inducing ability in SCID mice. The cells were able to induce tumors in five of six mice already with low 

amounts of 102 injected CD105+ cells, whereas after injection of 106 CD105- cells, tumor formation 

was observed in one of ten mice, only. The fraction of 9-13% of CD105+ cells in the formed tumors 

was comparable to that seen in the primary tumors they were derived of. These cells were also 

capable to serially induce tumors in SCID mice, which can be seen as a proof for their self-renewing 

ability. The isolated cells showed a mesenchymal phenotype, indicated by their expression of further 

mesenchymal markers CD29, CD44, CD73, CD90, CD146 and vimentin (VIM), but lacking expression 

of epithelial marker Pan-CK and endothelial markers CD31 and vWF. Also differentiation into 

endothelial and epithelial linages, but not into osteogenic or adipogenic lineages, which are typical for 

mesenchymal stem cells, was observed. Expression of stem cell markers Nestin, Nanog, Oct4 

(POU5F1) und Musashi, as well as of the renal stem cell marker Pax2 were also reported for the 
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CD105+ selected cells. In serum free medium, approximately 40% of the cells were able to grow as 

spheroids over ten passages with a doubling time of 30 h. 

Following this first report on possible CSC in RCC, further studies using CD105 as CSC marker were 

published, showing release of angiogenic microvesicles from the cells. 194 Therapeutic strategies, such 

as differentiation therapy using IL-15 119 195 196 or c-Met inhibition to block bone metastases of RCC 

were tested. 197 

CD105 was subsequently also used as marker for sorting of CSC from the RCC cell lines Caki-2 198 
199, ACHN 199 200, A498 and SKRC-39 201. CD105+-sorted SKRC-39 and A498 cells have been used for 

dendritic cell (DC)-based immunotherapy in a mouse model and were found to generate a cytotoxic T 

lymphocytes (CTL) as well as TH1-shifted humoral immune responses against CD105+ cells more 

effectively. Compared to unsorted cells, the CD105+-sorted fraction lead to further reduction of tumor 

growth. 201 

Recently another CSC sub-population was identified in tumor tissue from RCC patients by 

Galleggiante et al 202, which was marked by co-expression of CD133+ and CD24+. Similar to normal 

renal progenitor cells isolated in parallel, the cells were able to differentiate towards adipogenic, 

osteogenic, and epithelial lineages. But in contrast to normal renal progenitors, these cells were able 

to form colonies in soft agar assays and were marked by expression of the copper transporter CTR2 

(SLC31A2). This marker was not expressed in normal progenitor cells, and seemed to be involved in 

cisplatin resistance of the tumor-derived cells. The cells were found to be positive for CD73 

expression, but lacked expression of CD105 and CD90 mesenchymal markers. Sorting for 

CD133+/CD24+ cells from ACHN and Caki-1 cell lines was also shown to enrich for cells with CSC 

characteristics. 203	

In RCC cell lines putative CSC have also been identified based on chemokine receptor CXCR4 

expression 204, aldehyde dehydrogenase activity 205 206 207, or side population enrichment using 

Hoechst 33342 dye 208 or Rhodamine 123. 209 210 ALDH sorted TIC from Caki-2 and ACHN cell lines 

were used to test a promising new differentiation therapy in mouse models using BMP-2. 207 

Besides marker expression and other functional assays, also their spheroid-forming ability was used 

to enrich for CSC from RCC cell lines SKRC-42 211, ACHN 212, 786-O 213 210, Caki-1212 213, RCC-26/-53 
204 but also from human embryonic cell line HEK293 214. Recently, spheroid growth was also used to 

isolate CSC in cell lines from primary RCC tissues by Song et al 210. Spheroid-derived cells showed 

higher tumorigenicity and expression of CD73, compared to adherently grown cells. 110 201 215 
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1.7 Objective of this Work 

Rare tumor cells with stem cell characteristics, termed cancer stem cells (CSC) or tumor-initiating cells 

(TIC) have been found to play a major role in tumor formation and metastasis. The aim of my work 

was to enrich and further characterize such cells from a parental clear cell renal cell carcinoma 

(ccRCC) cell line, termed PA, by using the spheroid culture method.  

Two slightly different methods for spheroid generation, resulting in two morphologically different 

spheroid subtypes, termed SP and CS, were to be evaluated with respect to their stem cell and cancer 

stem cell (CSC) properties. 

Growth characteristics, such as long-term proliferative potential, growth in „soft agar assay“ (SAA) and 

spheroid-forming efficacy in the „Neurosphere Assay“ (NSA) over long-term passaging should be 

evaluated to assess and confirm stem cell features in vitro.  

The hallmark of stem cells, namely their ability to generate differentiated progeny, should be evaluated 

by using in vitro differentiation assays for adipogenic and osteogenic lineages. Additionally, the 

expression of known stem cell markers was to be examined. 

To finally probe for the naming and essential CSC characteristic, the tumorigenicity of cells from the 

parental cell line (PA) and from the two spheroid-derived cell lines (SP and CS) should be assayed in 

vivo for tumor generation in immunodeficient (NSG) mice.  

Another important goal was the identification of possible markers for enrichment and quantification of 

CSC in the parental RCC cell line. For this purpose, surface expression of different known CSC 

markers should be determined through immunophenotyping by flow cytometry (IFC); in addition 

functional assays were to be evaluated for suitability. 

Since the cellular reprogramming process known as epithelial-to-mesenchymal transition (EMT) 

appears to be involved in the generation of CSC, the expression of EMT markers in the cells lines 

obtained (SP, CS) should be determined. Also the role of EMT in gaining of stem cell characteristics in 

long-term cultures under spheroid conditions was to be tested. 

Most importantly, the stability as well as the plasticity of spheroid-derived CSC cell lines compared to 

adherently grown cells should be investigated. For this purpose, spheroids were to be re-cultured 

long-term under conditions of adherent growth and assayed for retention of characteristics. 

Besides such functional assays and analyses of known markers, a comprehensive characterization of 

spheroid-derived and adherently grown cells should be established by whole transcriptome shotgun 

sequencing of their respective mRNA populations (RNA-Seq). 
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2 Material  

2.1 Equipment and Consumables 

Consumable materials and technical equipment used for experiments are listed in the following tables. 

All devices were used and maintained according to instructions given in the manuals. 

 
Table 2.1.1: List of Equipment 
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Table 2.1.2: List of Consumables 

2.1.1 Chemicals and Kits 

Reagents and kits used for experiments are listed in the following tables. All reagents were stored and 

handled according to the manufacturer’s recommendations. 

 
Table 2.1.3: List of Kits 
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Table 2.1.4: List of Chemicals and Reagents (A-L) 
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Table 2.1.5: List of Chemicals and Reagents (M-Z) 

2.1.2 Buffer and Solutions 

In tables 2.6-2.8 the components of buffers and solutions made in-house are listed. Prepared buffers 

and solutions are listed in tables 2.4 and 2.5. 

 
Table 2.1.6: List of Solutions (IFC) 
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Table 2.1.7: List of Solutions Continued (Histological Staining and Molecular Biology) 
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Table 2.1.8: List of Solutions Continued (ALDEFLUORTM, Side Population, and Growth Assay) 

 

Water used for preparation of solutions and buffers was ultrapure water (MilliQ). Buffers were 

prepared by dissolving the components for the desired concentration, adjusting pH when necessary, 

and finally adjusting the desired volume.  
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2.1.3 Cell Culture Media and Solutions 

The composition of media for cell culture is listed in the following table. For all solutions to be used in 

cell culture, sterile water (Ampuwa®) was used. All sera were heat-inactivated for 20 min at 56°C, 

aliquoted and stored at -20°C. In tests for medium composition, the component to be tested was 

omitted, and was added separately in the respective concentrations to be tested. 

 

 
Table 2.1.9: List of Cell Culture Media (Adherent and Spheroid Cell Culture, Freeze-Media) 
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Table 2.1.10: List of Solutions and Media for Soft Agar Assay 
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Table 2.1.11: List of Solutions and Media for Differentiation 
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2.1.4 Antibodies 

Antibodies used for immune cytometric analyses are listed in the following table. Antibodies were 

stored at 4°C and diluted to working concentrations as indicated in the respective data-sheets. For 

handling, antibodies were placed in a cooling block at 4°C and protected from bright light. 

 
Table 2.1.12: List of Antibodies 
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2.1.5 Primer 

Primer used for PCR reactions are listed in the following table. Primer sequences were chosen from 

the literature as indicated or designed using the Software OligoPerfect2 or Primer3 and checked with 

PrimerBlast with the default parameters. Primer oligodesoxynucleotides (ODN) were purchased GSF 

cleaned and lyophilized from TIB Molbiol Syntheselabor GmbH. ODN were resuspended in sterile 

water to yield a final concentration of 10 µM. Aliquots were stored at -20°C. 

 
Table 2.1.13: List of Primers for PCR 

ADIPOQ: adiponectin, BGLAP: bone gamma-carboxyglutamate protein/Osteocalcin, bp: base pairs, HPRT: 
hypoxanthine phosphoribosyltransferase 1, r: reverse primer, Runx2: runt related transcription factor 2, Seq: 
sequence, SREBF1: sterol regulatory element binding transcription factor 1, TA: primer annealing temperature 
used in PCR reactions, Tm: primer melting temperature, TNFSF11: tumor necrosis factor superfamily member 
11/Rank-ligand, v: forward primer 
Primer Sequence Origin: HPRT 216, RUNX2 18, ADIPOQ 217, other: Primer 3 
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2.2 Software and Databases 

Software and databases used for data analysis are listed in the following table.  

 
Table 2.2.1: List of Software 

 

References:  
 
a) Martin 218,  
b) Love et al 219,  
c) S. Andrews, 
d) Kim et al 220 221  
e) Li et al 222, 
f) S. Andrews, 
g) Oliveros, J.C. (2007-2015) 
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Table 2.2.2: List of Databases 

 

References:  
 
a) Cancer Genome Anatomy Project, 
b) Kamburov et al 223 224, 
c) Huang et al 225 226,  
d) Rouillard et al 227 228,  
e) Koressaar et al 229, Untergasser et al 230, 
 f) Cancer Genome Anatomy Project 
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2.3 Cell Lines 

2.3.1 RCC Cell Line 

The parental cell line (PA) used for all experiments was established from a primary clear cell renal 

cell carcinoma (ccRCC) tumor biopsy from a 52 year-old caucasian female patient. The cell line was 

established by Tomislav Dorbic and Burghardt Wittig and is a property of Mologen AG, where it is 

used as a starting material to produce the cell-based therapeutic tumor vaccine MGN1601. 182 

For cell line generation, cells were prepared from the tumor material without enzymatic disaggregation 

and cultured in AC-Medium for 7 passages (for 119 days) before freezing in the vaporous phase of 

liquid nitrogen. The cells were subsequently expanded to yield a master cell bank (MCB - 

MOL/0410/MCB1/POBE/1), which was further expanded into working cell banks (WCB). No cloning 

step was included during generation of the cell line; rather the cell line was selected for the tumor 

vaccine because of its morphological heterogeneity. 

The starting cell aliquots used in this work originated from one WCB (980921/POBE-1 p26 08/03/06 

native) and were at passage 26, with one exception, which originated from a different WCB in passage 

23 (POBE-MEO, p23, 25/12/09). 

2.3.2 Spheroid RCC Cell Lines 

All spheroid derivatives of this cell line were established by sub culturing PA-cells in passage 28-30 

under spheroid culture conditions. Two different starting conditions were applied yielding two 

morphologically distinct cell types: 

Spheroid cells (SP) were cultured directly from PA cells with regular disaggregation of spheroids and 

sub culturing every 3-4 days. 

Clonally expanded spheroid cells (CS) were derived from NSA experiments. They were generated 

by starting the spheroid culture from PA cells at a clonal cell density of 2-6x102 cells/mL in 96-well 

plates for 24-34 days without disaggregation of spheroids. Subsequent subculturing and regular 

disaggregation of these spheroids was performed in longer intervals of 8-10 days for the first 10-15 

passages and 4-6 days in later passages. 

2.3.3 Spheroid Cell Lines Re-Grown under Adherent Culture Conditions (ACC)  

Spheroid cell lines at different passages were re-grown under ACC for various periods. The resulting 

cell lines are termed A-SP or A-CS depending on the spheroid cell line used.  

2.3.4 A-SP Cells Re-Grown under Spheroid Culture Conditions (SCC) 

A-SP cells at different passages were re-grown under SCC for various periods. The resulting cell lines 

are termed A-SP-CS. 
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3 Methods 

3.1 Cell Culture Methods 

To expand cells ex vivo they are cultured under sterile conditions in media, which contain the nutrients 

and growth-promoting factors needed for cell growth, and serve as pH-buffers. Many different media 

formulations, containing chemically defined concentrations of nutrients and trace elements, are 

available. To supply the complex mixture of growth factors required for cell proliferation, fetal bovine 

serum (FBS) is added to the medium, since it has been proven to be a suitable source in cell culture 

routine. This component is less well defined. Due to its biological origin and complexity, batch 

variations occur. Beside nutrients and growth factors, most cells are dependent on a proper substrate 

or surface to grow on, which is supplied by the culture vessel, a polystyrene flask or plate with a 

chemically treated surface designed to support attachment of cells or coated with biological materials 

such as ECM molecules. 231 232 Optimal culture conditions vary for different cell types. To expand cells 

of interest, they are seeded under specified optimal conditions to proliferate. Upon cells are grown 

dense, the process is repeated, which is termed passaging. For passaging, cells have to be detached 

from the matrix and separated from each other. Enzymes, like trypsin, that cleave cell contacts are 

used for this purpose. Alternatively, cells can be mechanically dissociated, which is less sensitive and 

causes a high proportion of cell damage, or buffers containing calcium-chelating agents, that impair 

cell attachment by reducing calcium concentration, may be used. A limiting factor for cell expansion is 

the replicative potential of the cells of interest. Normal somatic cells have only a limited life span of 20-

100 generations and gain a senescent phenotype or die after a defined number of cell divisions. 37 

Therefore, only transformed cells or cells with intrinsic unlimited replicative potential can be expanded 

quasi indefinitely in culture. 233 

Cell culture work was done under aseptic conditions inside a laminar flow clean bench. All reagents, 

solutions, and material were either purchased sterile, sterilized by autoclaving, or filter-sterilized. The 

composition of media and solutions used for cell culture is listed in tables 2.1.9.-2.1.11. Media were 

stored at 4°C and warmed to 37°C before use. DBPS used in cell culture was the formulation without 

Ca2+ and Mg2+. All cells were incubated at a temperature of 37°C in a humidified, CO2-enriched (5%) 

atmosphere in a tissue culture incubator. A summary-overview of culture conditions used for different 

cells and in vitro differentiation is given in table 3.1.1. 

3.1.1 Culture Conditions for Adherent PA Cells (ACC) 

PA cells were cultured under standard conditions (ACC) as monolayer cultures in tissue culture 

treated flasks in serum containing AC-Medium on the basis of “Leibovitz’s L15” medium, which is the 

standard medium for this cell line, though cells grow well in other media tested. Cells were seeded at a 

density of 1.5-3x104 cells/cm2 and passaged upon near confluence every 3-4 days. Passaging at 

earlier time-points led to impaired growth of the cells. 
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Table 3.1.1: Summary of Cell Culture Conditions 

3.1.2 Passaging of PA Cells 

For passaging, the medium was aspirated and the cells were washed quickly by rinsing with DPBS to 

remove traces of remaining medium. 0.05 % trypsin-EDTA solution was added in a sufficient volume 

to cover the cells, followed by incubation at 37°C for 3−5 min, to detach cells from the substrate. Once 

the cells were completely dissociated, the trypsin solution was diluted 1:10 by adding AC-Medium 

(containing FBS to stop trypsin activity). A single cell suspension was created by pipetting several 

times up and down with a serological pipette, thereby dispersing the cells. Cell count was performed 

as described (chapter 3.1.2) and an appropriate volume of cell suspension to yield the desired cell 

concentration was seeded into new tissue culture flasks containing AC-Medium.  
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3.1.3 Spheroid Culture - „Neurosphere Assay“ (NSA) 

The „Neurosphere Assay“ (NSA) was initially developed by Reynolds and Weis 164 for the isolation of 

neuronal stem cells from adult mouse striatic brain tissue, and later on optimized and modified for a 

broader cell range. 234 235 236 237 238 239 Today the assay is widely used as a standard assay in stem cell 

and cancer research to asses the self-renewal ability of potential stem cells. 101 165 166 167 168 169 171 240 

The principle of the assay is based on cell selection by applying rigorous culture conditions, allowing 

only the desired cells to survive. For the NSA, cells are seeded at very low cell densities in serum-free 

medium containing epidermal growth factor (EGF), fibroblast growth factor (FGF), and insulin as sole 

growth factors in culture vessels, which do not support attachment of the cells. The basic assumption 

of the assay is, that only stem cells are able to grow under these rigorous conditions as floating cell 

clusters, so called „spheres“ or „spheroids“, whereas differentiated cells rapidly die due to the lack of 

proper adhesion- and growth-signals. Therefore, in applying the NSA it should be possible to select for 

stem cells according to their unique ability to be able to grow under these conditions. Repeated 

application of the assay with concomitant growth of spheroids is considered a proof of self-renewal 

ability of stem cells. In addition, long-term bulk culture should be used as a means to test for stem cell 

specific high proliferative potential. 170 

With some limitations, the assay can also be used to roughly estimate the quantity of stem cells 

contained in the starting preparation by counting the resulting spheres and determine the relative 

number of cells that were able to give rise to them (clonal spheroid-forming efficiency = CSFE). A 

critical parameter here is the cell density seeded, since aggregation and fusion events may distort the 

results. 241 242 243 Additional constraints in quantification of stem cells using the NSA are that (i) beside 

stem cells also committed progenitor cells may be able to grow as spheres 170, and on the other hand 

(ii) silent stem cells may not grow, an thus may be missed. 171 For quantification purposes the assay 

was therefore accordingly refined. In the so-called „Neural Colony-Forming Cell Assay“ (NCFCA) cells 

are seeded in a semi-solid matrix not allowing fusion or aggregation of cells. 244 For discrimination of 

stem cells from committed progenitor cells, colony size is used as a criterion, assuming that large 

colonies are derived from stem cells, whereas smaller colonies grow from progenitor cells with limited 

proliferative potential. 

3.1.4 NSA Culture Conditions and Determination of Clonal Spheroid-Forming Efficiency 

(CSFE) 

To determine and quantitate sphere-forming ability of cells, they were assayed in the NSA. For NSA, 

cells were seeded in 96-well flat bottom cell culture plates in a culture volume of 200 µl sphere culture 

medium (SC-Medium) on the basis of serum-free DMEM:F12 (1:1) containing the growth factors 

insulin, bFGF, and EGF. The medium composition used, was adapted from the one used by Ponti et al 
166 and Bussolatti et al 78 for generation of mammospheres and RCC-derived spheres, respectively, 

albeit slightly reduced BSA concentration of 0.25% instead of 0.4% was used. Corning® not treated 

cell culture plates were used for the assay in order to reduce the tendency of cells to adhere to the 

surface of the culture plate. The use of “ultra-low attachment grade” plates for this purpose was not 

necessary, since cells rarely attached to the plates used. Cells were seeded at a concentration of 30-

100 cells per well. At this cell number, cells were clearly discernible as dispersed single cells and 



 

Methods 

 

- 39 - 

visual single-cell counting of cells and resulting spheroids could be performed. At least 15 wells per 

cell type were used for calculations of clonal spheroid-forming efficiency (CSFE). 

For seeding cells in the NSA, 24 mL SC-Medium were prepared by addition of growth factors EGF and 

bFGF (1 µL/mL) to DMEM:F12-Medium and 100 µl per well were applied to 96-well plates. Single cell 

suspensions of the cells to be tested were prepared and cell number was determined as described for 

passaging (see chapter 3.1.8). Serial dilution of the cells was performed in SC-Medium to yield cell 

concentrations of 6x102 cells/mL in a volume of 12 mL for one plate, or respectively less if 1/2, 1/3, or 

1/4 plate per cell type were intended to be used. 100 µL of the resulting cell suspension was added to 

each well, and plates were incubated overnight. The next day, cell count was performed by 

microscopic inspection of the plates, thereby counting only obviously viable cells. The plates were 

incubated for 16-24 days, with regular medium replacement. Medium replacement was performed 

every 3-4 day by careful aspiration of 50 µL of the growth-medium per well and adding 50 µL of freshly 

prepared SC-Medium containing a 4 x growth factor concentration. When they had grown to a size of 

about 50-100 µm, healthy looking spheroids were counted by microscopic inspection of the plates. 

The outermost wells of the plate were not counted, since growth conditions were less optimal there. 

The in CSFE in per cent (%) of each cell type was calculated by dividing the mean of number of 

spheroids counted in 15-60 wells of one plate by the mean of number of cells seeded in respective 

wells, multiplied with 100. Standard deviations were calculated as described (chapter 3.17). 

3.1.5 NSA Replating  

To determine the secondary and tertiary CSFE for spheroids generated in the NSA, all spheroids 

grown from one cell type in one plate after 3-5 weeks were transferred to a 50 mL centrifuge tube and 

the wells were washed with 100 µL DPBS to remove all cells. The DPBS from the washing step was 

added to the tube containing the cells. Cells were pelleted by centrifugation at 400 x g for 3 min. The 

supernatant was aspirated and the cell pellet was resuspended in 0.5-1.5 mL DPBS and transferred to 

a 1.5 mL reaction tube. Cells were again pelleted by centrifugation at 260 g for 3 min and supernatant 

was removed. To disaggregate spheroids, they were resuspended in 200 µL AccumaxTM solution and 

incubated for 15-20 min at 37°C in the cell incubator. Volume was added to 1 mL with DPBS and cells 

were pelleted again by centrifugation. After aspiration of the supernatant, pellet was resuspended in 

100 µl of SC-Medium, and the suspension was pipetted several times up and down to fully 

disaggregate cells by additional mechanic disruption of aggregates. The volume was filled to 200 µl to 

1 mL, depending on pellet size, and the cells were counted. Cells were seeded and assayed in the 

NSA as described (chapter 3.1.4). 

3.1.6 Generation Spheroid Cells in Bulk-Culture - SP Cells 

Since general growth of PA cells in the NSA was observed, but resulting cell numbers were very low, 

PA cells were directly cultured as bulk-culture under SC-conditions. For generation of spheroid bulk-

culture, single cell suspensions of PA cells in passage 28 were pelleted by centrifugation and 

remaining serum-containing medium was aspirated. The cells were resuspended in SC-Medium and 

seeded at a density of 8 x 104 cells/mL in non-treated tissue culture flasks containing SC-Medium. At 

the very beginning of culture, cells adhered to the flask, starting to form a monolayer, which was later 

followed by progressive loss of adherence and formation spheroids, accompanied by accumulation of 
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dead cells. After 4 days of culture, the medium, containing the spheroids and 10 ml of PBS, which was 

used to for washing the flask, were transferred to a centrifuge tube, leaving adherent cells in the flask. 

The following steps were performed as described for passaging of spheroid cells (chapter 3.1.8). 

3.1.7 Culture Conditions for Spheroid Cells (SCC) 

Conditions used for culturing of spheroids (SCC) resembled conditions used for NSA and differed from 

ACC in several aspects. Besides the use of serum-free SC-Medium on the basis of “DMEM:F12 (1:1)”, 

which has to be completed just prior to use by addition of EGF and bFGF growth factor solution 

(1 µL/mL, each), spheroids were cultured in Corning® not-treated tissue culture flasks to avoid 

unwanted adherence of the cells to the culture vessel. The use of “ultra-low attachment grade” flasks 

was not necessary, since cells rarely attached to the used flasks. To obtain single cells from the 

spheroids without too harsh mechanical disruption, the enzymatic cell aggregate dissociation solution 

AccumaxTM was used, since Trypsin did not yield satisfactory results for this purpose. Seeding density 

of cells for optimal cell growth was adjusted according to the different growth rates of the spheroids, 

starting with 7 x 104 cells/mL for slowly growing cells at the beginning of spheroid culture lowering to 

4 x 104 cells/mL for faster growing later passages. Spheroids were passaged every 4-5 days (SP 

cells) or 4-7 days (CS cells). In case of passaging intervals longer than 4-5 days, medium was 

replaced as described for generation of CS cells (chapter 3.1.6). 

3.1.8 Passaging of Spheroid Cells 

For passaging of spheroid cells, the medium containing the spheroids was transferred to a centrifuge 

tube, the cells were pelleted by centrifugation at 272 x g for 3 min and supernatant was aspirated. The 

culture flask was washed with DPBS (1/2 the volume of medium used for the flask), to remove all 

cells. DPBS from the washing step was added to the cells, followed by brief vortexing of the tube and 

centrifugation. For disaggregation of spheroids, the cell pellet was resuspended in 500 µL-750 µL 

AccumaxTM solution using a 1 mL-blue tipped pipette. The cell suspension was incubated at 37°C for 

12-15 min. Then, DPBS was added (1/2 the volume of medium used for the flask) and cells were 

vortexed. Cells were again centrifuged and supernatant was aspirated. The resulting cell pellet was 

resuspended in SC-Medium. To disaggregate cells additionally by mechanic force, the cells were 

resuspended first in 100 µl using a pipette, followed by addition of 900 µl using a blue tipped pipette, 

thereby pipetting the suspension several time up an down. The Volume was added up with SC-

Medium to 2.5-6 mL, depending on the size of the pellet. Cells number was determined (see chapter 

3.1.12) and cells were seeded in new flasks in SC-Medium, which was prepared beforehand by 

adding growth factors to 1x concentration. 

3.1.9 Generation of Clonally Expanded Spheroid Cells - CS Cells 

CS cells were obtained from spheroids grown in the NSA from PA cells in passage 28-31. For 

generation of a new cell line, spheroids grown in the wells of one 96-well plate (30-400) were 

harvested, disaggregated and counted as described for replating of cells in the NSA (chapter 3.1.5). 

Cells were seeded as described for passaging of spheroid cells (chapter 3.1.8). At the beginning of the 

culture (first 10-15 passages), cell number and growth rate were very low and cells were grown for 8-

14 days without disaggregation of the spheroids. Every 3-4 days 1/5-1/3 of the growth-medium was 
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replaced. This was done by placing the flask upright, to let cells sediment, and aspirating 1/5-1/3 of 

medium with a serological pipette carefully, in order to not remove the cells. Then, the same amount of 

fresh medium, prepared to yield respective final 1 x concentration of growth factors, was added. Cells 

were passaged upon reaching adequate number as described for passaging of spheroid cells. 

3.1.10 Culture of Spheroid Cells under ACC - A-SP and A-CS Cells 

For re-culturing spheroid cells under standard AC-conditions, cells were seeded in tissue culture-

treated flasks in AC-Medium at a seeding density of 2-4x104/cm for SP cells and 4-6x104/cm for CS 

cells, respectively. Cells were passaged when nearly confluent (at varying time points depending on 

cell growth 4-9 days). Alternatively, medium was changed every 3-4 days by aspiration and addition of 

fresh medium. Passaging was performed as described for PA cells with the exception that AccumaxTM 

was used as dissociation reagent instead of trypsin. At the beginning of adherent culture, cells grew as 

adherent cell-islands and spheroids in parallel. Washing and aspiration steps were performed very 

carefully to not remove too many loose cells. 

3.1.11 Culture of A-SP/A-CS Cells Under SC-Conditions 
To assay the ability of spheroids grown for different periods as adherent monolayers to re-grow as 

spheroids, single cell suspensions of A-SP and A-CS cells obtained as described (chapter 3.1.10) 

were re-seeded under SC-conditions and passaged at least once as described for spheroid cells 

(chapter 3.1.8). 

3.1.12 Cell Counting 

Cell counts were performed using the Coulter Counter® Z1TM. The instrument uses the principle of 

measuring the short-term resistance change, which occurs upon passage of low conductive particles 

(cells) through a small aperture/orifice in electrolyte solution (due to displacement of electrolyte by the 

particle). The resulting current pulse is recorded, whereby change of current is proportional to the 

particle size. By pulse-counting particle number can be determined.  

For cell counting, a 75 µL aliquot of single cell suspension was diluted 1:100 in a 10 mL sample 

beaker with BD FACSFlow™ solution. Cell count was performed thrice per sample at a particle size 

range of 5-20 µm (12 µm). With dilution factor set to 100, cell concentration was the direct readout of 

the instrument. Mean of three measurements was calculated. 

3.1.13 Cell Size Determination Using CASY® Modell TT 
The “CASY® Modell TT” (Casy) instrument uses a similar, but more sophisticated principle to count 

cells and measure cell size then the “Coulter Counter® Z1TM”. Additional features are that also dead 

cells can be discriminated and the readout contains information on cell size distribution of the 

measured sample. Measurement was performed according to the manual: cell aliquots were diluted 

(usually 1:201) in the isotonic electrolyte solution CASYton and counted. Instrument settings were set 

according to the cell line characteristics to exclude dead cells and debris, which was for SP cells and 

adherent cells 7-12 µm, and for CS cells 4-9 µm. 
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3.1.14 Harvesting cells for molecular biologic analysis 

For cell harvesting, single cell suspensions were prepared and cells were counted as described for 

passaging. Cells were washed with DPBS once by pelleting and aspirating supernatant to remove 

residual medium. Cells were resuspended in the desired volume of DPBS and aliquoted to 1 mL tubes 

yielding a cell number of 1-4x106, and again pelleted by centrifugation. Supernatant was removed and 

the pellet was shock-frozen in liquid nitrogen. Frozen cells were immediately placed in a freezer 

at -80°C. 

3.1.15 Cryopreservation of Cells 

For cryopreservation, single cell suspensions were prepared and cells were counted as described for 

passaging. Cells were pelleted by centrifugation at 272 x g and supernatant was aspirated. The cell 

pellet was resuspended in an appropriate volume of respective freeze medium containing 10% 

dimethyl sulphoxide (DMSO) as a cryoprotectant to yield a concentration of 5x106 cells/mL. Aliquots of 

0.25 mL or 0.5 mL were transferred into cryo freezing tubes, which were immediately put in a cryo 

freezing container filled with isopropanol. The container was directly placed in a freezer at −80 °C to 

let the cells slowly cool down at a rate of −1°C/min. For long-term storage the cryopreserved cells 

were transferred into a liquid nitrogen tank (−196°C). 

3.1.16 Thawing of Cryopreserved Cells 

Tubes containing cryopreserved cells were warmed quickly by placing in a 37°C water bath. As soon 

as the ice inside the tubes had disappeared, 1 mL of respective growth medium was added drop wise. 

Cells were transferred to a centrifuge tube containing 9 mL medium and centrifuged at 272 × g for 3 

min. Supernatant was aspirated and pellets were resuspended in fresh medium to decrease the 

cytotoxic effect of DMSO. Cells were seeded as described for passaging (chapters 3.1.2, 3.1.8), with 

the exceptions that AC-Medium for PA cells was supplemented with additional 10% FBS to ease 

recovery of the cells, and 24 h after thawing the medium was replaced to remove death cells and 

debris. 

3.1.17 Testing for Mycoplasma Contamination 

Since contamination with mycoplasmas is a constant peril in cell culture work, which may impair cell 

growth and behavior, cells were checked for mycoplasmas using the Venor®GeM OneStep Kit 

according to the kit instructions. The detection method is based on PCR detection of mycoplasma 

DNA from several strains in cell culture supernatants. In brief, cell culture 100 µL supernatant was 

taken from cells grown for at least 3 days, transferred to a reaction tube and incubated in a thermo 

cycler at 95°C for 5 min. The tube was shortly centrifuged at maximum speed to pellet all insoluble 

material and 2 µl of the supernatant were used for PCR reaction. Fresh medium was used as negative 

control, the positive control was provided with the kit. PCR was performed and 5 µL of PCR products 

were separated on an agarose gel (see chapter 3.13). Criteria for exclusion of mycoplasma 

contamination were: visibility of control bands in each lane, visibility of positive control band in positive 

control and no staining in the area of positive control band in the sample and negative control lanes. 

All cell lines tested were judged negative for mycoplasma contamination. 
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3.2 Cell Growth Assay (Resazurin Assay) 

To test influences of different culturing conditions on cell growth, the relative number of viable cells 

grown under these conditions was determined using the fluorescent substrate resazurin. Resazurin is 

a cell permeable, non toxic blue dye with an absorption maximum at 605 nm, which is reduced in living 

cells to the pink molecule resorufin, which is highly fluorescent (579Ex/584Em) and has an absorption 

maximum at 573 nm. When the dye is added to living cells, the gradual increase of resorufin 

concentration owing to the cells’ reducing activity is proportional to the number of cells, with a linear 

correlation between cell number and dye concentration within a defined concentration and time range. 

The rate at which the substrate is metabolized varies for different cell types. The change of dye 

concentration can be measured either by change (increase) of fluorescence excited at 530-560 nm 

and measured at 590 nm, or by change of absorption at 600 nm (decrease) and 570 nm (increase). 245 
246  

For the assay, cells were seeded in 96-well plates. According to the assay to be performed, cell 

concentration, media composition, or time of growth, were varied. Each condition to be tested was 

represented by 3-6 wells of the plate. Desired cell concentration was adjusted by performing serial 

dilutions of single cell suspensions, which were prepared as described in passaging of cells (chapters 

3.1.2, 3.1.8). When medium variations were the intention of the assay, cells were centrifuged, the 

supernatant was aspirated, and the pellet was resuspended in the respective assay medium, which 

was prepared for the assay with omission of the substance to be tested. This medium was also used 

for serial dilutions. The test substance was added to an appropriate volume of the medium in 2x 

concentration and 75 µL/well were applied to respective sample wells. The outermost wells of the 

plate served as blank wells, containing only the medium used for the assay. Finally, 75 µl of cell 

suspension/well were added and the plates were incubated for 2-5 days in the incubator to allow cells 

to proliferate. On the day the assay was performed, resazurin solution (1 mM) was diluted 1:1 with 

DPBS in a 2 mL tube and 15 µl/well were applied to the test plate. The plate was incubated in the cell 

incubator and fluorescence of 578 nm emission for 535 nm excitation was measured at regular time 

intervals (1-2 h for 6-8 h) using the Mithras micro plate reader. The acquired raw data containing the 

measured fluorescence intensities of the samples were imported to Microsoft Excel software for 

evaluation. For comparison of different samples the following procedure was applied: a single 

measurement (time point) was chosen for further analysis by viewing a fluorescence/incubation time 

plot. The selection criteria were linearity of the measurement and maximal fluorescence difference of 

the samples. Mean values of the replicate wells were calculated and the blank value was subtracted 

from test values. For inter-assay comparison and comparison of different cell lines, values were 

normalized by calculating relative values to a standard condition. 

3.3 Soft Agar Assay (SAA) 

Soft agar assay is an assay for anchorage-independent growth of cells. Single cells are cultured in a 

semi-solid matrix consisting of agar, thus not allowing cell contacts. Growth of colonies after several 

weeks is an indicator for tumorigenic potential of the cells, since anchorage-independent growth is a 

hallmark of tumor cells. Therefore the assay may be used to estimate tumorigenic potential and 
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chemo sensitivity of cells in vitro. 247 248 Albeit in many cases a correlation between growth of cells in 

the assay and tumorigenicity of cells in vivo is seen, the assay can not substitute for in vivo xenograft 

assays. 249 The basic principle of the assay is related to that used for NSA, allowing only cells to grow, 

which are able to do so as single cells without proper environmental signals. 247 In contrast to the 

NSA, in the standard soft agar assay additional constraints concerning medium composition are 

missing. Applying these constraints yields the conditions used for the NCFCA, with the exception that 

collagen is used there as matrix instead of agar. 244 

Soft agar assay was performed in two variants: the standard assay using serum-containing medium 

and an assay in which medium composition was the same as for NSA (SC-Medium). 

Soft agar assay was performed in 6-well cell culture plates (well area = 34.8 mm2). Usually three wells 

per sample were used. Agarose was boiled before use to liquefy and had to be cooled in a water bath 

to 42°C to not damage the cells. The medium used for the assay was also kept in a water bath at 

42°C to avoid solidifying of agarose during preparation of the plate. Bottom layer was prepared one 

day before cell seeding by mixing 4 mL agarose with the respective 2 x soft agar medium, which was 

prepared beforehand in a 15 mL centrifuge tube. 1.5 mL of the mixture was applied to each well of a 

6-well plate, dispersed and let sit on a plane surface to solidify. Plates were stored at 4°C over night 

and let warm to room temperature before use. For pouring the cell layer, agarose and medium were 

prepared as described for bottom layer. Single cell suspensions for seeding in the assay were 

prepared as described for passaging of the cells (chapters 3.1.2, 3.1.8). Cells were diluted to a 

concentration of 5.9x105 cells/mL with DMEM:F12 (1:1)-Medium for a desired final concentration of 

5x104 cells per well. Cell count was performed to verify the cell concentration. For lower intended cell 

densities, cells were further diluted in DMEM:F12 (1:1)-Medium (1:5, 1:10, 1:25). 300 µL of cell 

suspension was mixed by vortexing with 2.5 ml respective medium prepared as described in a 15 mL 

centrifuge tube, and 2.5 mL agarose was added. The suspension was mixed again by pipetting and 

1.5 mL per well was put onto the bottom layer and distributed equally by panning the plate. The plates 

were placed onto a plane surface to solidify. When the agar was steady, 400 µL maintenance medium 

was added per well. The plates were incubated for 28-36 days to allow growth of colonies. Every 3-4 

days 400 µL of the respective medium was added. When colonies had grown to sufficient size, plates 

were stored at 4°C until analysis. For better visibility of the colonies, the plates were stained with 1.5 

mL per well of 0.01% crystal violet solution for 2 days at 4°C. The staining solution was removed and 

the plates were washed several times with 4 mL MilliQ water overnight at 4°C until background 

staining was reduced sufficiently to count colonies. Plates were photographed on a light box with a 

Nikon D40 using a 55 mm/2.8 AI-S objective. Colony count was performed using the particle analysis 

tool of the ImageJ software. To do so a defined section of the original picture was analyzed by setting 

the threshold appropriately to detect stained colonies. For calculation of colony forming efficiency, 

which is the number of cells seeded to the number of colonies counted in %, the difference between 

area analyzed and total area of the well was taken into account (see chapter 3.17.4). 
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3.4 In vitro Differentiation 

For evaluation of differentiation potential of the cells, adipogenic and osteogenic differentiation 

potential were assayed. The two were chosen since MSC have been shown and are defined to 

possess differentiation potential toward both lineages. 16 27  

Green and Meuth have described adipocyte differentiation for 3T3-L1 cell line already in 1974 and 

since, the cell line has been extensively used as a model for this process. For in vitro adipogenic 

differentiation of MSC various protocols are described, most of which use insulin, dexamethasone, 

indomethacin and IBMX at various concentrations. The optimal medium composition varies for cells 

from different origin and may contain also other components. The synthetic glucocorticoid 

dexamethasone is used to induce expression of C/EBP and PPARγ, which is the early master 

regulator of adipocyte differentiation. IMBX is a cAMP inhibitor, which serves to enhance PKA activity 

and thereby reduction of proliferation. IBMX also enhances expression of C/EBP, which is required for 

PPARγ expression. Indomethacin is a PPARγ ligand and similarly to the other factors induces 

expression of PPARγ via up-regulation of C/EBP. Insulin, depending on cell type and culture system is 

either necessary for the differentiation process and/or increases the lipid accumulation of the cells. 52 
250 251 252 253 

Similarly, various compositions of media for osteogenic differentiation have been described, which 

mostly contain dexamethasone, β-glycerophosphate and ascorbic acid. Dexamethasone serves to 

induce expression of the osteogenic master regulator transcription factor Runx2. β-glycerophosphate 

on the one hand serves as phosphate source for mineralization by forming the hydroxyl apatite 

mineral (Ca10(PO4)6(OH)2) but also a role of inorganic phosphate as signaling molecule regulating the 

expression of osteogenic genes including BMP2 and osteopontin has been described. Ascorbic acid is 

needed for synthesis of proper collagen helices since it serves as a cofactor for prolin/lysine-

hydroxylases. Ascorbate-2-phosphate instead of ascorbate is used, since it has been shown to be 

more stable in in vitro culture conditions. For osteogenic differentiation at least a 3 weeks period of 

treatment with the differentiation inducing components is needed. 254 255 

Marker for adipogenic differentiation are enhanced expression of PPARγ, adiponectin (ADIPOQ/ApM-

1), fatty acid binding protein 4 (FABP4), leptin (LEP), fatty acid synthase (FASN), perilipin (PLIN1), 

lipo-proteinlipase (LPL), apolipoprotein E (APOE) and stearyl-CoA-desaturase (SCD). Osteogenic 

differentiation is marked by expression of Runx2, alkaline phosphatase (AP), osteocalcin 

(BGLAP/OC), collagen type I (COL1A1), osteopontin (OPN), dentin matrix acidic phosphoprotein 

(DMP), integrin binding sialoprotein (IBSP) and RANK-L (TNFSF11). 18 167 217 256 257 258 259 

3.4.1 Culture Conditions for Adipogenic Differentiation 

For adipogenic differentiation, cells were seeded in 6-well or 12-well tissue culture plates at a seeding 

density of 2-5x104/cm in 2.5/1.5 mL adipogenic differentiation medium. The medium was prepared by 

addition of ITS, IBMX, dexamethasone and indomethacin to the yield the desired concentration in an 

appropriate volume of LG-Medium for the respective number of wells. For wells supposed to be 

negative control samples only the respective volume of DMSO instead of the supplements was added 

to the basal medium. The cells were incubated over a period of 12-35 days with regular medium 

change every 2-4 days by aspiration and addition of fresh medium. When necessary, cells were 
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washed with PBS once to remove dead cells and debris. Cells were monitored regularly for formation 

of characteristic lipid vacuoles and were fixed when they showed adipocyte morphology. Cells for RNA 

extraction were treated accordingly, with the exception that cells were seeded in 25 cm² tissue treated 

culture flasks in accordingly higher cell number and medium volume. 

3.4.2 Culture Conditions for Osteogenic Differentiation 

For osteogenic differentiation, cells were seeded in 12-well tissue culture plates at a seeding density 

of 2.5-5x104/cm in 1.5 mL osteogenic differentiation medium. The medium was prepared by addition of 

dexamethasone to the yield the desired concentration in an appropriate volume of Osteo-Medium for 

the respective number of wells. Addition of AsAP or ascorbic acid was omitted in most experiments 

since in former experiments addressing medium composition for osteogenic differentiation both 

substances had been shown to impair differentiation of the cells. Negative controls were seeded in 

LG-Medium instead of osteogenic differentiation medium. The cells were incubated over a period of 

16-44 days with regular medium change every 2-4 days by aspiration and addition of fresh medium. 

When necessary, cells were washed with PBS once to remove dead cells and debris. Cells were 

monitored regularly for formation of characteristic calcium phosphate deposits and were fixed when 

deposits were clearly seen. Cells for RNA extraction were treated accordingly, with the exception that 

cells were seeded in 25 cm² tissue treated culture flasks in accordingly higher cell number and 

medium volume.  

3.5 Histological Staining 

To provide evidence for in vitro differentiation, histological staining for typical structures formed by 

adipocytes and osteoblasts was performed. To stain lipid droplets, which are typical intracellular 

structures of adipocytes, the lipid staining dye Oil Red O was used 260. Mineralization, i.e. calcium 

phosphate depositions, which are typically seen after extended culture periods in osteoblast cultures, 

were visualized either with the dye Alizarin Red S, which forms a red chelate complex with the calcium 

ions present in the depositions or with the van Kossa staining method, whereby silver ions replace for 

calcium ions in the deposited phosphates, which become visible as metallic silver precipitates after 

photochemical degradation of the generated silver phosphate. 261 25  

Staining for alkaline phosphatase (AP) activity, which is an early marker for osteoblast differentiation 
262 263, but also for embryonic stem cells and is also induced during adipogenesis 264 265, was assayed 

using Naphthol-AS-MX-phosphate as a chromogenic substrate for the enzyme, which after cleavage 

by AP reacts with Fast Red Violet LB salt to form a red insoluble azo dye, thereby changing the color 

from yellow to red. 

For histological staining cells were fixed using formalin, a relative mild fixing agent, containing 

formaldehyde as the active ingredient, which crosslinks proteins by reaction with amino groups. 266 

Medium was aspirated and cells were washed twice with DPBS containing Ca2+/Mg2+ to prevent cells 

from detaching. Cells were fixed by addition 4% formalin solution and incubation for 30-60 min. Then, 

the individual staining procedure was executed. For washing steps 2 mL/well for 12-well plates or 

4 mL/well for 6-well plates were used. The volumes used for all other solutions were 0.5 mL/well for 
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12-well plates or 1 mL/well for 6-well plates. The composition of solutions used for the staining 

procedures is listed in table 2.1.7. 

3.5.1 Alizarin Red S Staining (Calcium Phosphate Deposition) 

Alizarin red S staining solution was filtered before use. Fixed cells were washed 3 times with water 

before staining solution was applied. The incubation time for staining was 30-60 min. Staining solution 

was removed, wells were washed with water several times, and the plate was photographed. 

3.5.2 Van Kossa Staining (Calcium Phosphate Deposition) 
Fixed cells were washed 3 times with water before silver-staining solution was applied. The plate was 

set into the gel doc station and incubated for 20 min with UV-light. Staining solution was removed and 

wells were washed 3 times with water before addition of sodium thiosulfate solution for removal of 

access silver ions (fixation). After further washes the plate was photographed. 

3.5.3 Oil Red O Staining (Lipid Droplet Accumulation) 

Oil Red O working solution had to be prepared just prior to use by diluting 3 parts of stock solution with 

2 parts of water and mix. The solution had to stand for at least 10 min and then be filtered, to remove 

aggregates. Fixed cells were washed with water once and then incubated for 2-3 min with 60% 

isopropanol. After removal of isopropanol, staining solution was added and the plates were incubated 

for 30-60 min. The plates were washed with water several times and stored at 4°C. In cases were 

nuclear counterstaining using hematoxylin was performed, this was done at earliest the next day by 

adding hematoxylin solution and incubation for 15-30 min. Wells were incubated with tap water to be 

blued. Tap water was replaced by MiliQ water and plates were stored at 4°C until pictures were taken 

using a microscope camera placed on an inverted phase contrast microscope. 

3.5.4 Alkaline Phosphatase (AP) Activity Staining 
The staining solution for AP activity had to be prepared just prior to use according to the volume 

needed. Medium was aspirated from the wells and cells were washed twice with DPBS containing 

Ca2+/Mg2+ to prevent cells from detaching. Cells were fixed by addition 4% formalin solution. To avoid 

impairment of the enzyme activity formalin solution was left on the cells for 2-3 min, only. Cells were 

washed and permeabilized by addition of PBST twice. The staining solution was applied to the wells 

and the plates were incubated at room temperature for 15-30 min in the dark with regular inspection. 

The reaction was stopped by removing the staining solution, and washing twice with DPBS, when 

staining was visible. Storage buffer containing glycerol was added and the plates were stored at 4°C 

until pictures were taken using a microscope camera placed on an inverted phase contrast 

microscope. 
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3.6 Flow Cytometry 

Flow cytometry is a method to measure light scattering characteristics and intrinsic or artificially 

introduced fluorescence of single cells. For this purpose a cell suspension is passed through a nozzle 

to yield a single cell stream. Light created by the laser(s) in the instrument is focused to pass the 

single cell stream. Several photomultiplier detectors are arranged to perceive the scattered and 

emitted light from one cell at a time. The recorded signals are proportional to the intensity of the 

scattered or emitted light.  

Scattered light is measured with two detectors. One detector is set in the path of the laser so that 

measured intensity, resulting from light diffraction around the cell, is proportional to the cell size. This 

parameter is termed forward scatter (FSC). The second detector is set at an angle of 90° to the laser 

path, and the measured parameter is termed side scatter (SSC). SSC is influenced by the cell’s inner 

structure, since the detected signal results from refraction and reflection of the light. Therefore cells 

with many granular structures show higher side scatter intensities than less complex cells. Different 

wavelengths of emitted fluorescence are measured with different detectors. The setup for 

fluorescence (FL) detection may vary for different instruments. By setting appropriate filters into the 

optical path, measured wavelengths are adjusted. The FACSCalibur™ flow cytometer used was 

equipped with a blue laser (488 nm), and a red diode laser (635 nm) and four fluorescence detectors, 

allowing parallel measurement of six different parameters of a cell. The wavelength parameter for the 

different fluorescence detectors (1 to 4) were as follows: FL1 (530 nm/30), FL2 (585 nm/42), FL3 (670 

nm/LP), and FL4 (661 nm/16). Fluorescence is the characteristic feature of some molecules to be 

electromagnetically excited by light of a specific wavelength and, by energy absorption, emit light at a 

longer wavelength. Intrinsic cellular fluorescence is due to the presence of such molecules (e.g. 

riboflavin); it is usually low. By artificial addition of fluorescent molecules (fluorescent substrates, dyes 

or proteins) or fluorescently labeled antibodies these can be used to monitor cellular features of 

interest. 267 

Cells used for flow cytometric analyses were grown as described above and were used when reaching 

cell densities similar to passaging time points. 

3.6.1 Immunophenotyping by Flow Cytometry (IFC) 

For flow cytometric immunophenotyping applications a fluorescent molecule is covalently linked to 

antibodies, which recognize specific molecular epitopes (antigens), thus allowing their detection upon 

binding to the cell. The detected signal is proportional to the amount of antibody bound. But, since the 

measured signal is dependent on several factors such as labeling efficiency of antibody, emission 

characteristics of the fluorochrome used and staining efficiency, a semi-quantitative comparison is 

possible only within narrow ranges (same antibody with same fluorochrome and same staining 

procedure). 268 

  



 

Methods 

 

- 49 - 

3.6.1.1 Immunostaining of Cell Surface Antigens  

Single cell suspensions were prepared from adherent cells and spheroid cells as described for their 

respective passaging using AccumaxTM as a dissociation reagent for most purposes. Since some 

antigens proved to be sensitive to AccumaxTM treatment, cells were incubated in TSE buffer instead of 

dissociation reagent and dissociated by pipetting the cell suspensions more vigorously. Cell count was 

performed, and 2-5x105 cells per sample were pelleted by centrifugation at 272 x g. Supernatant was 

aspirated and cell pellet was resuspended in appropriate volumes of F-PBS to yield 100 µL per 

sample. The following steps were performed protected from light on ice or 4°C, respectively. Individual 

antibody-containing staining solutions were prepared by diluting antibodies in block buffer according to 

the manufacturer’s instruction to yield a final volume of 50 µL per sample. Cells were applied to 96-

well round bottom plates, centrifuged at 400 x g for 4 min, and supernatant was decanted. Individual 

samples were resuspended in the respective antibody staining solution and incubated for 30-60 min. 

Cells were washed twice by adding FACS-PBS to a final volume of 200 µL followed by centrifugation 

and decanting supernatant. Cells stained with respective isotype control antibodies (non-specific 

antibodies with same isotype and fluorochrome conjugation as the test antibody) and/or unstained 

cells were used as controls and were prepared accordingly. 

For staining of unstained mouse-derived antibodies with the compatible fluorescently labeled 

secondary antibody (AlexaFluor® 647 goat anti-mouse Ig), samples pre-incubated with primary 

antibody as described above, were resuspended in 50 µl secondary antibody staining solution each. 

The solution was prepared by diluting an appropriate volume of secondary antibody in block buffer to 

yield a concentration of 5 µL/mL. Samples were incubated for additional 30 min and washing steps 

were repeated as described above. 

Antibody-stained cell pellets were resuspended in 100 µL FACS-PBS containing 25 µL (1.25 µg) 

7-AAD viability staining solution/mL to stain dead cells, and incubated for at least 10 min before further 

dilution in FACS-PBS to a concentration of 1-2x106 cells/mL. 

All steps were performed at 4°C or on ice and protected from bright light. 

3.6.1.2 Immunostaining of Intracellular Antigens  

For intracellular immonostaining, single cell suspensions were prepared as described for staining of 

surface antigens. Cells were fixed and permeabilized using the „Foxp3 Transcription Factor Staining 

Buffer Kit„ according to the manual. Antibody staining and final preparation of cell suspension was 

performed as described for staining of surface antigens in 96-well round bottom plates using 5x105 

cells per sample with the exceptions, that for dilution of antibody and washing steps 1 x wash buffer 

from the kit was used, and addition of viability dye was omitted. 

3.6.1.3 Data Acquisition and Analysis 

FACSCalibur™ flow cytometer equipped with the acquisition software CellQuest™Pro was used for 

data acquisition. Individual instrument settings had to be applied to the different cell lines due to their 

varying sizes and auto fluorescence characteristics. Parameter were set as such that control samples 

were in the range of geometric mean (GM) 5 in the fluorescence channels and the populations were 

equally distributed in the forward/side scatter plot. Compensation settings for overlapping fluorescence 
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control buffer respectively. Samples were incubated for 30-40 min in the tissue culture incubator. After 

incubation, cells were pelleted by centrifugation at 600 x g for 3 min and supernatant was aspirated. 

Cells were resuspended in 100 µL ALDEFLUORTM Assay Buffer containing 2.5 µL (1.25 µg) 7-AAD 

viability staining solution/mL to stain dead cells, and incubated for at least 10 min before further 

addition of 150 µL ALDEFLUORTM Assay Buffer. Measurement was performed on FACSCalibur™ flow 

cytometer equipped with the acquisition software CellQuest™Pro. Parameter were set as such that 

populations were equally distributed in the forward/side scatter plot and control samples were clearly 

visible but in the low range of fluorescence channel 1 (about GM 10). Raw data were processed using 

the software FlowJo® (Version 8.7). Live cell gating was done as described for IFC (chapter 3.6.1.3). 

Fluorescence thresholds for positive/negative gating were set according to respective DEAB-control 

samples. 

3.8 Rhodamine 123 Side Population Assay (RSPA) 

It has been shown that a small cell population with stem cell characteristics can be discriminated by 

their ability to efflux foreign substances such as the fluorescence dyes Hoechst33342 or Rhodamine 

123 (Rho). Those cells appear as a small dislocated population, in the respective plots obtained by 

flow cytometric measurements when using Hoechst33342 and are termed the “side population”. The 

accordingly named “side population” assay has successfully been used for isolation of progenitor cells 

from adult tissues as well as of TIC from tumor material or cell lines. 158 The molecular foundations of 

this characteristic behavior have been found to be the high expression of various ABC transporters, of 

which ABCB1 (MDR1/P-Glycoprotein) and ABCG2 (BCRP1) have been shown to be the main 

responsible transporters for efflux of the dyes used in the assay, with ABCG2 showing higher affinity 

for Hoechst33342 transport and ABCB1 seems to be the main responsible transporter for Rhodamine 

123 efflux 155 269, but these characteristics seem to be species and tissue dependent 157 and ABCB1 

was shown to be the responsible transporter for Hoechst33342 in 786-P renal carcinoma cell line, 

which do not express ABCG2. 208 

Both dyes have different fluorescence characteristics with Hoechst33342 fluorescence has to be 

excited with a UV-laser (350 nm), which is not standardly found in most flow cytometers, and emission 

is seen in the red and blue range 270, while Rhodamine 123 can be excited with the standard 488 nm 

laser and fluorescence is seen in the green/yellow range (FL1 channel). Besides this, both dyes have 

affinities to different cellular structures. While Hoechst33342 preferably binds to nucleic acids and is 

used as nucleic acid stain in other assays, Rhodamine 123 accumulates the mitochondria following 

the electrochemical gradient. After removal, the stain is preferentially retained in the mitochondria in 

an amount proportional to the mitochondrial membrane potential, therefore it is used as a probe for 

mitochondrial membrane potential 271 or for staining of mitochondria in other assays. 272 The side 

population assay was first described using the Hoechst33342 stain, but due to the special 

requirements on instruments and the cytotoxic nature of the molecule owed to its DNA-binding affinity, 

the alternative use of Rhodamine 123 was introduced and subsequently used, though not necessarily 

marking the same population like Hoechst33342 staining.273 274 275 

The general principles of the assay comprise the following steps: the cells are incubated with a dye 

containing solution to achieve staining, then the solution is removed and residual dye is removed by 
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washing steps. To allow for dye efflux, the cells are incubated in unstained medium for a defined 

period, and the resulting staining characteristics are measured on a flow cytometer. Dye concentration 

and incubation times are critical, influencing parameters of the test. To discriminate staining 

characteristics of dye pumping cells from the non-pumping cells, a control sample, in which the dye 

efflux is inhibited is needed. Inhibition of dye efflux is achieved by addition of the respective membrane 

pumps using different pharmacological inhibitors, which often selectively inhibit different transporters. 

Since the nature of transporters responsible for the dye efflux is often not known and varies in different 

tissues, the use of the right inhibitor or inhibitor cocktail might influence the results. For example 

verapamil, by a yet unclear mechanism, targets preferably ABCB1, whereas Fumitremorgin C (FTC) is 

an ABCG2-specific inhibitor. 276  

The Rhodamine 123 side population assay (RSPA) in combination with ABCB1-inhibior verapamil was 

chosen to characterize individual dye efflux abilities of the different cell lines. In some experiments 

expression of ABCB1 (MDR1, CD243) was assayed in parallel by immunostaining of the cells to 

address the role of this transporter for the observed dye-efflux. 

Single cell suspensions for RSPA were prepared from adherent cells and spheroid cells as described 

for their respective passaging using AccumaxTM as a dissociation reagent. Cell count was performed 

and an equivalent volume of cells to obtain 1x106 cells per sample was transferred to 15 mL reaction 

tubes. All washing steps were performed by pelleting cells at 400 x g for 4 min and aspiration of 

supernatant. The following samples were prepared for each cell line tested: unstained control sample 

(U), Rho-stained sample (Rho) and Rho-stained sample containing the efflux inhibitor verapamil (Ver). 

Cells were pelleted by centrifugation and resuspended in 2 mL of the Rho staining solution (Rho, Ver), 

which were prepared beforehand according to volume needed for the number of cell lines tested in the 

experiment. The unstained control sample was resuspended in medium without further supplements. 

All samples were incubated in the in the tissue culture incubator for 60 min to allow staining of the 

cells. Following staining, the solutions were removed and samples were washed three times with 4 ml 

F-PBS without Azid (Rho, U) or PBS-Ver (Ver). To assay the dye efflux capacity, the samples were 

resuspended in 12 mL AC-Medium without further supplements (Rho, U) or medium-Ver (Ver) and 

incubated for 90 min in the tissue culture incubator with occasional agitation. After incubation, cells 

were pelleted by centrifugation at 400 x g for 4 min and supernatant was aspirated. During the further 

procedure, the samples were placed on ice and protected from bright light to avoid further dye efflux 

and bleaching. Cells were resuspended in 100 µL PBS-Ver containing 2.5 µL (1.25 µg) 7-AAD viability 

staining solution/mL to stain dead cells, and incubated for at least 10 min before further addition of 150 

µL PBS-Ver. In some experiments additional staining with CD243-APC antibody or respective isotype 

control was performed. In these experiments the cell number and volumes of all used solutions for the 

Rho samples was doubled and after the second incubation step the antibody staining was performed 

as described for immunostaining of cell surface antigens using half of the sample for staining with 

antibody or isotype control, respectively. During this procedure all samples were kept on ice and 

centrifugation steps were performed at 4°C. In one series of experiments SC-Medium instead of AC-

Medium, which was routinely used for SP assay, was used to test for possible differences. In some 

experiments the Rho staining intensity was measured directly after staining, to evaluate the effectively 
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of the inhibitor and possible bleaching effects during the procedure. For this purpose, the cell number 

and volumes of Rho samples were doubled and one aliquot of the cells was prepared for 

measurement and assayed immediately after incubation in the staining solution. 

The samples were measured on FACSCalibur™ flow cytometer equipped with the acquisition software 

CellQuest™Pro with instrument settings resulting in equally distributed populations in the forward/side 

scatter plot and unstained control samples being clearly visible in the low range of fluorescence 

channel 1 (about GM 5). Raw data were processed using the software FlowJo® (Version 8.7). Live cell 

gating was done as described for IFC (chapter 3.6.1.3). The general gating strategy used was 

identical to that used for IFC (see figure 3.6.1), but to set thresholds for positive/negative gating of the 

cells the respective Ver sample was used. 

3.9 Tumor Formation by Xenotransplantation Assay 

The final proof of stem cell central features, namely self-renewal and differentiation, can reliably be 

provided only in vivo by their ability to give rise to the respective organs/tumors. 92 Therefore, 

xenotransplantation assay using NSG mice was performed. The NSG (NOD.Cg-Prkdcscid 

Il2rgtm1Wjl/SzJ, also termed NOD/SCID/IL2Rγnull) mouse strain is the strain with the most heavily 

impaired immune functions. It is derived from the NOD/SCID strain with lacking T- and B-cells and 

impaired innate immune functions due to defects in complement, dendritic cells, macrophages and NK 

cells. In addition, the NSG strain also lacks NK-cells completely due to IL-2R γ-chain deficiency. Since 

NK cell residual activity has shown to compromise engraftment of xenogeneic material, this strain is 

superior over NOD/SCID mice for engraftment of xenotransplanted cells. 277 Cells were injected in 

MatrigelTM basement membrane matrix, which contains structural proteins and growth factors to 

facilitate engraftment of the cells. 278 

PA cells in passage 37 (same passage as used for preparation of MGN1601) and SP cells in passage 

80 were used for the experiment. SP cells in this passage were chosen because of their growth 

characteristics seen in in vitro tests. The cells were cultured and harvested as described for culturing 

and passaging of the cells. PA cells for the experiment were provided by MOLOGEN AG.  

Transplantation experiments were performed at “EPO GmbH, Berlin”. Cells were transported to the 

animal facility at room temperature in their respective growth medium (transport time 2 h). For 

application, the cells were pelleted and resuspended in in PBS: MatrigelTM 1:1 to yield the desired cell 

concentrations. 1x104 (5 animals), 1x105 (4 animals), and 1x106 (3 animals) PA- and SP-cells 

respectively, were injected subcutaneously in a volume of 100 µL. Cell viability, which was checked in 

an aliquot after injection, was > 90% for all cell concentrations. Mice were maintained in the pathogen-

free animal facility following institutional guidelines and with approval from the responsible authorities. 

Body weight and tumor formation were monitored and documented twice per week for 70 days. After 

this period mice were sacrificed and necropsies were performed. 
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3.10 RNA Isolation 

RNA was isolated from cells using either “NucleoSpin® RNA II“ kit (MN) or “mirVana™ miRNA 

Isolation Kit“ (AM). MN is based on solid-phase silica membrane purification of RNA. AM uses a 

combination of chemical extraction of nucleic acids and solid-phase silica membrane purification to 

also retain small RNAs, which when using standard procedures get lost during the purification steps 

(either by not binding to the solid-phase or by not being recovered in ethanol precipitation after 

chemical extraction). The chemical extraction of RNA is based on the use of high concentrations of 

chaotropic salts in conjunction with phenol- or phenol-chloroform solutions to inactivate RNAses, 

precipitate proteins and extract nucleic acids from the aqueous phase. The solid-phase extraction is 

based on alterations of binding affinities of nucleic acids to the silica membrane, which are dependent 

on salt and alcohol concentration of the solution. 

For isolation of nucleic acids, cells are homogenized by mechanical force (by passing suspension 

through a syringe needle) in a lysis buffer containing the chaotrophic salt guanidinium hydrochloride 

and β-mercaptoethanol to denature proteins, including RNAses, which is important to avoid RNA 

degradation during the process. The cell lysate is either filtered (MN) or nucleic acids are chemically 

extracted using acid phenol/chloroform (AM) before application to the membrane. For optimal binding 

of nucleic acids to the silica membrane, the ethanol concentration is adjusted by addition of ethanol to 

the filtered lysate (MN) or aqueous phase of the extract (AM). For retention of small RNAs in AM the 

ethanol concentration has to be adjusted to 55%, whereas only larger molecules (>200 nt) bind to the 

membrane when an ethanol concentration of 25% is used. In both methods the membrane is washed 

to several times with ethanolic buffer to remove unwanted molecules. Finally the RNA can be eluted in 

water. To minimize the risk of RNA degradation by RNAse contamination, all materials used for RNA 

preparation and handling were either sterile/RNAse-free, heated for 2 h at 220°C or cleaned with 

RNAse AWAY® to inactivate RNAses. All steps (except phenol/chloroform-extraction) were performed 

at a separate RNA-working space (clean bench). Either sterile water (Ampuwa), DEPC-treaded or 

RNAse-free water supplied with the kits was used. 

3.10.1 mirVana™ miRNA Isolation Kit (Ambion: AM) 
RNA extraction was performed according to the kit manual using 2-3x106 frozen cells. For cell lysis 

600 µL Lysis/Binding Buffer were used and the solution was passed through a syringe needle several 

times. After addition of 60 µL miRNA Homogenate the solution was incubated for 10 min on ice before 

Acid-Phenol:Chloroform extraction was performed using 600 µL of the solution. The aqueous phase 

was recovered, comprising about 500 µL. An equivalent amount of ethanol was added and the 

solution was placed on the silica membrane containing filter unit. Washing steps were performed as 

described in the kit manual and RNA was eluted by addition of 120 µL and 100 µL respectively in two 

steps, yielding a total volume of RNA solution of about 200 µL, which was placed immediately on ice. 

RNA concentration was measured and the solution was aliquoted and stored at -20°C over night. 

DNAse digestion was performed the next day. 
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3.10.2 DNAse Digestion using Ambion® TURBO DNA-freeTM Kit 

DNAse digestion of RNA containing solutions obtained using AM-kit were performed with Ambion® 

TURBO DNA-freeTM kit according to kit instructions using 30 µg of nucleic acid. The solution was 

diluted to a final concentration of 0.3 µg/µL by addition of RNAse free water. 11 µL 10xTURBO DNAse 

Buffer and 2 µL TURBO DNAse were added and the samples were incubated at 37°C for 30 min in a 

thermoblock. 23 µL of DNAse Inactivation reagent was added and the reaction mixture after thorough 

mixing was incubated for 5-7 min at room temperature. The tubes were centrifuged to pellet DNAse 

Inactivation beads and RNA containing supernatant was carefully removed and transferred to a fresh 

tube. The solution was placed on ice and RNA concentration was measured before aliquoting and 

storing at -80°C. 

3.10.3 NucleoSpin® RNA II Kit (Macherey und Nagel: MN) and DNAse Digestion 

RNA extraction was performed according to the kit manual using 2-3x106 frozen cells. For cell lysis 

350 µL RA1 Buffer supplemented with 3.5 µL β-mercaptoethanol were used and the solution was 

passed to a syringe needle several times before application onto the filter unit. The lysate was filtered 

by centrifugation and 350 µL ethanol were added to the flow-through to adjust binding conditions for 

membrane binding of nucleic acids. The solution was placed on the silica membrane filter unit and 

loaded by centrifugation. The membrane was desalted by addition of 350 µL Membrane Desalting 

Buffer. On-column DNAse digestion was performed by addition of 100 µl DNAse reaction mixture and 

incubation for 15 min at room temperature. Washing steps were performed as described in the kit 

manual and the RNA was eluted by addition of 60 µL respectively in two steps, yielding a total volume 

of RNA solution of about 100 µL. The solution was placed on ice and RNA concentration was 

measured before aliquoting and storing at -80°C. 

3.11 Reverse Transcription (RT) of RNA 

For PCR, RNA was reverse transcribed to cDNA by using a reverse transcriptase enzyme in an 

appropriate buffer solution containing the four desoxyribose-nucleoside triphosphates (dNTPs). The 

primer needed for the reaction, were either random hexamer primer for random transcription of all 

RNA species or oligo-dT primer, to specifically transcribe mRNA. 279 

Reverse transcription was performed using “EpiScript™ Reverse Transcriptase Kit“ according to the 

kit instruction. 1 µg RNA was used for the reaction in a volume of 10 µL. Denaturation of RNA and 

primer annealing was done by incubation at 65°C for 2 min in a thermo cycler. After chilling on ice, the 

reaction mixture was completed by addition of 10 µL of a master mix containing 10x buffer, dNTPs, 

water and enzyme in appropriate concentration. Reaction was mixed by pipetting and incubated at 

60°C for 37 min in a thermo cycler for reverse transcription, followed by 5 min incubation at 85°C to 

terminate reaction. Samples were chilled on ice and stored at -20°C until further use. To avoid 

contamination of the samples during pipetting steps, filter tips were used. 

For RNA isolated from differentiated cells reverse transcription was performed using SuperScript™ II 

Reverse Transcriptase Kit according to the kit instruction. 1 µg RNA was used for the reaction in a 

final volume of 20 µL. Primer, RNA and dNTP were mixed and the volume was added to 10 µl with 

RNAse-free water. Denaturation of RNA and primer annealing was done by incubation at 65°C for 
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1 min in a thermo cycler. After chilling on ice, the reaction mixture was completed by addition of 9 µL 

of a master mix containing 10x buffer, MgCl2, DTT, and RNAseOUT in appropriate concentrations. 

Reaction was mixed by pipetting and incubated at 42°C for 2.5 min in a thermo cycler, then the 

enzyme was added. The reaction mixture was incubated for 50 min at 42°C for reverse transcription, 

followed by 15 min incubation at 70°C to terminate reaction. Samples were chilled on ice and stored at 

-20°C until further use. To avoid contamination of the samples during pipetting steps, filter tips were 

used. 

3.12 Standard PCR 

PCR is a method to amplify DNA fragments of interest in vitro. DNA oligonucleotide primer sequences 

are selected as to bind specifically on the flanks of the DNA sequence of interest and thereby meet 

criteria to optimally bind at the used reaction temperatures and do not form secondary structures. The 

DNA sequence flanked by the primers is amplified using a DNA polymerase enzyme in a buffer 

solution containing the four desoxyribose-nucleoside triphosphates (dNTPs) and magnesium ions, by 

several cycles of thermal denaturation, primer annealing, and amplification. Primer annealing 

temperature varies according to the characteristics of the used primer. The amplified DNA can be 

visualized and evaluated qualitatively and semi-quantitatively by using agarose gel electrophoresis 

(see chapter 3.14.2). 279 Since PCR is a very sensitive method, for pipetting of the components filter 

tips were used to avoid contamination of the samples. Biozym Taq DNA Polymerase Kit was used for 

PCR reactions according to the manual. 2 µL of first strand cDNA were used in a reaction volume of 

50 µL in PCR soft tubes or PCR 8-tube strips. The volumes used for one reaction are listed in table 

3.12.1. Master mixes were prepared and either primer or template was added separately. PCR 

reaction was performed in a thermo cycler using the protocol as described in table 3.12.2. The 

annealing temperature was chosen according to the primer used (see table 2.1.13).  

Component Volume (µL) Final concentration 
10X PCR Buffer 5 1x 
Sterile Water Ampuwa® to 50 µL 37.5  
40 mM dNTP Mix (10 mM each) 1.25 1 mM each 
cDNA from first-strand reaction 2 variable 
Forward primer (10 µM) 2 400 nM 
Reverse primer (10 µM) 2 400 nM 
Taq DNA polymerase (5 U/µL) 0.25 1.25 U 

Table 3.12.1: PCR-Mix for one Reaction 

 
Step Process Cycles Time Temperature in °C 

1 Initial denaturation 1 2 min 95 
2 Denaturation 

25-37 
15 s 95 

3 Primer annealing 15 s depending on primer used 
4 Amplification 15 s 72 
5 Repeat step 2-4 for an additional 24-36 times 
6 Final Extension 1 2 min 72 
7 Cooling 1 ∞ 4 

Table 3.12.2: Cycler Program for PCR 
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3.13 Agarose Gel Electrophoresis of PCR Products  

The principle of separating charged molecules like RNA and DNA with a constant charge to mass ratio 

in gel electrophoresis is based on the different electrophoretic motilities of different sized molecules 

driven by a voltage gradient in a sieving like matrix. Smaller molecules migrate faster than big ones 

whereby the migration distance in gel (cm) is proportional to the log10 of the molecular size (bp/nt) of 

the molecule. Nucleic acids were visualized by staining with the fluorescent nucleic acid intercalating 

dye ethidium bromide, which in the intercalated state emits visible light (590 nm) after excitation with 

light in the UV spectrum range (254-366 nm). 

To separate and visualize PCR products a 1.5% 0.5 x TBE agarose gel was prepared by dissolving 

6 g Biozym LE-Agarose in 360 mL MilliQ and 40 ml 5 x TBE buffer, boiling and chilling to 60°C before 

casting the gel. Ethidium bromide was added to the liquid needed for one gel (40-100 mL) at a final 

concentration of 0.125 µg/mL. Gel mixture was immediately poured into the gel tray of a horizontal 

electrophoresis system with a comb attached to generate the pockets for sample loading. After the gel 

had polymerized, the tray was placed into the electrophoresis chamber, filled with buffer and the comb 

was removed. 1.5-10.5 µL of PCR product was applied per lane, diluted in a final concentration of 

1x Orange DNA loading dye and water. Electrophoresis was run at 6 V/cm for 60 to 90 min. Finally 

ethidium bromide-stained DNA bands were visualized under UV light and photographed using the Gel 

Doc 2000 Imaging System. 

3.14 RNA Quality Control 

RNA quality is a critical requirement for obtaining reliable gene expression data. RNA degradation, 

DNA contamination or impurities influencing downstream enzymatic reactions may introduce 

unwanted biases such as loss of sequencing library complexity which compromise downstream 

analyses, especially differential gene expression analysis. 280 281 

3.14.1 Photometric Measurement  

Photometric measurement was used to determine the concentration and quality of RNA. 

Nucleic acids show strong absorption of light with a wavelength of 260 nm, which is according to Beer-

Lambert’s law proportional to their concentration: Aλ = ε × c × d. (Aλ= absorptionwavelength, ε = molar 

extinction coefficient, d = pathlenght of the cuvette). The molar extinction coefficient is a molecule 

specific constant. For RNA it is equal to 0.025 (µg/mL/cm)-1. By photometric measurement also 

contaminations of the sample with protein (280 nm) or organic substances like phenol (270 nm) or 

guanidine thiocyanate (220-230 nm) may be detected since they also show specific absorption 

maxima in the measured spectrum range. An indicator for „pure RNA“ in TE buffer is an absorption 

ratio of >1.8 for 260/280 nm and 2 for 260/230 nm (varies according to the buffer system used). Only 

samples meeting these criteria were selected for further analyses. 282 

For absorption measurement RNA sample was mixed with 20 mM TE buffer 1:1. 10 mM TE buffer was 

used as blank value. 3 µl were applied to the cuvette (TrayCell with path length 0.1 cm) and 

absorption spectrum was measured from 220-320 nm in 0.5 nm steps. Blank spectrum values were 

subtracted from the respective values. From the resulting A260 value the background value at A320 
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representing fluctuations of individual measurement was subtracted. RNA concentration was 

calculated according to the formula: c µg/mL = (A260-A320) × 2 × (0.025 (µg/mL/cm)-1 × 0.1 cm)-1.  

3.14.2 Agarose Gel Electrophoresis of RNA 

To estimate the integrity of RNA and select appropriate samples for sequencing respective samples 

were separated by agarose gel electrophoresis. 

Cellular RNA is a mixture of different RNA-species. The major RNA-species of a cell is ribosomal RNA 

(rRNA) accounting for about 80-90% of cellular RNA. rRNA can be subdivided according to their size 

into 28S-, 18S-, and 5S/5.8S-rRNA. 28S- and 18S-rRNA are clearly visible on agarose gels as 

distinctive bands with a size of 5 kb and 2 kb, respectively. In contrast, mRNAs representing about 1-

10% of total RNA (depending on cell type) are visible as a diffuse smear, due to their varying sizes 

between 0.3 and 100 kb (average length of 2.2 kb). The smaller 5/5.8S-rRNAs with a size of about 

0.15 kb can be seen as diffuse band together with transfer RNAs (tRNAs). tRNAs with a size of about 

100 nt account for about 15% of total cellular RNA content. The smallest functional RNAs are micro 

RNAs (miRNAs) and small interfering RNAs (siRNAs) with sizes of 15-30 bp/nt. Residual genomic 

DNA-contamination may be visible at the uppermost part of the gel since due to its size, genomic DNA 

does not migrate far in the gel. The band-distribution and resolution of different bands depends on the 

gel system used. An example of typical intact RNA is shown in figure 3.14.1. When RNA is degraded 

the characteristic band-distribution is accordingly changed. To assess RNA integrity, the ratio of peak 

intensities of the 28S- and 18S-rRNA band can be used as criterion. A ratio of 28S:18S > 2:1 is 

considered an indicator for intact RNA (although varying in different tissues). 282  

1.25% 0.5 x TBE agarose gels were prepared by dissolving 2.5 g Agarose NEEO-Ultra in 180 mL 

DEPC-water and 20 mL 5 x TBE-Puffer, boiling, and chilling to 60°C before casting the gel. Ethidium 

bromide was added to yield a final concentration of 0.25 µg/mL. For agarose gel electrophoresis RNA 

was dissolved at a final concentration of 0.3 µg RNA/mm lane (0.4 µg marker/mm lane) in a final 

concentration of 0.5 x TBE loading buffer (adjusted by addition of sterile water). To monitor gel 

electrophoresis, the tracking dye bromphenol blue was added at a concentration 0.15 µg/mL. A low 

concentration of the dye was used since its migration is equivalent to the small RNA fraction and 

therefore it may mask respective bands at higher concentrations. To disturb/prevent the secondary 

structure formation inherent to RNA, the samples had to be denatured before separation. This was 

done by addition of formamide to a final concentration of 60% (v/v) and heating the samples to 70°C 

for 10 min followed by immediate chilling on ice just before loading onto the gel. This step is critical 

since higher temperatures or too long incubation times lead to degradation of the RNA. Samples were 

applied to the gel, which was submerged in in 0.5 x TBE buffer and electrophoresis was run at 5 V/cm 

for 80-100 min. Bands were visualized by UV-light and the gel was photographed using the Gel Doc 

2000 Imaging System. 
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much signal is found between the 5S and 18S band, between the 18S and 28S bands, and after the 

28S band (see figure 3.14.2 (A)). The RIN scale reaches from RIN 10 equivalent of perfect score or 

excellent RNA to RIN 1 representing totally degraded RNA. 283 284 285 Examples are depicted in figure 

3.14.2.  

The 2200 TapeStation System is an automatic gel electrophoresis system which uses credit-card-

sized „ScreenTape“s composed of three layers of polymers: the protective layer, the electrode layer 

and the bioprocessing layer containing the gel matrix with individual separation channels (lanes) and 

buffer chambers for electrophoresis. Samples and marker are added to the instrument either in tube 

strips or 96-well plates and are automatically loaded onto the „ScreenTape“ when the run is started. 

Analysis of TapeStation data is done by 2200 TapeStation Analysis software which analogous to 

Bioanalyzer automatically determines size, quantity, and RINe (different RIN algorithm for 

TapeStation). 286 

For RNA quality control using the two systems all steps were performed according to „Agilent RNA 

6000 Nano Kit Guide“ or „Agilent High Sensitivity RNA ScreenTape System Quick Guide“. For 

Bioanalyzer measurement 1 µL and for TapeStation measurements 2 µL RNA sample volume was 

used. Analysis was run in „Eucaryote Total RNA Nano“ (Bioanalyzer) or „Eukaryotic RNA“ 

(TapeStation) mode. The RIN values of all samples used for RNA-Sequencing were determined to be 

between 9 and 10 (see table 3.15.1). 

 
Figure 3.14.2: Example of Bioanalyzer Result for Different RIN Values 

Electropherograms (fluorescence intensities over time) as measured on a Bioanalyzer or TapeStation System. (A) 
Regions defined and used for calculation of RIN values, containing the following RNA species: Marker (Marker 
fragment); 5S Region (5S, 5.8S and tRNA); Fast-Region (small RNAs, degraded RNA, mRNA); 18S-Region/28S-
Region (18/28S rRNA); Inter-Region (mRNA, degraded ribosomal RNA); Region preceding 28S-Region 
(precursor RNA); Post-Region (DNA contamination). (B) RIN values for RNA samples with ascending amount of 
degradation starting from RIN 10 corresponding to excellent RNA to RIN 1 representing fully degraded RNA (from 
285). 
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3.15 RNA-Sequencing 

Among the different techniques available to sequence whole transcriptomes in a high-throughput 

manner, RNA-sequencing on the Illumina platform was chosen. The sequencing principle of the 

Illumina platform is similar to the Sanger sequencing method in that it is based on cyclic reversible 

termination of DNA amplification. The four differently fluorescently marked 3’-blocked dNTPs are used 

to detect the complementary base in each cycle of elongation. The sequencing process is started by a 

primer, which is complementary to an adapter region, present in the sequencing template. After 

incorporation of one base the fluorescent signal is measured and unbound dNTPs as well as the 

blocking group are removed. The next cycle is started and the process is repeated for 50-300 cycles 

thus obtaining sequence information for 50 to 300 nt. 

Single stranded fragments with a size of 200-1000 nt of the DNA of interest, or in case of RNA-

sequencing of the respective cDNA, serve as templates for the reaction. These fragments, which are 

prepared from the starting material in several steps including fragmentation and adapter ligation, are 

termed the sequencing library. The library is immobilized on a glass slide, named the flow cell, which 

contains several lanes for different samples. On the flow cell’s surface two universal ODN-adapters, 

which serve as primers and are complementary to adapters ligated to both ends of the sequencing 

library, are immobilized. By using sequence-tagged adapters/primers for library preparation, several 

samples can be applied to one lane and can be sequenced in parallel, being discriminable after 

sequencing according to the sequence tag used. Before the actual sequencing step, the single 

fragments have to be clonally amplified to yield local clusters of fluorescent molecules in order to gain 

a strong enough fluorescent signal for detection and discrimination of fragments. This is done by so-

called bridge amplification of the fragments using the dense lawn of the two ODN on the flow cell as 

primers. A single stranded fragment from the library hybridizes randomly to a slide-bound primer/ODN. 

By adding unlabeled nucleotides and enzyme, the reverse strand is amplified, thus the fragment is 

immobilized on the slide. After denaturation and washing away the original fragment, a nearby second 

ODN, complementary to the opposite end of the fragment’s complement, serves for priming a next 

round of amplification. The binding occurs through bending of the fragment in a bridge like manner. 

The process of denaturation and elongation is repeated several times, thereby amplifying each bound 

fragment locally. The process is illustrated in figure 3.15.1. Cluster density is critical for the quality of 

results, as too dense clustering impairs proper detection of the signal whereas a too small number of 

clustered fragments will reduce the coverage of the library.  

After bridge amplification, the sequencing reactions can be started. The reverse stands are cleaved 

and the 3’ ends are blocked with ddNTP to prevent unwanted priming. The sequencing begins with 

extension of the sequencing primer using fluorescently labeled nucleotides. Only one nucleotide is 

incorporated per cycle and the fluorescence signal is read by the instrument for the different clusters 

on the flow cell in parallel. The steps are repeated for up to 150 cycles to obtain sequence information 

of this length. 287 288 289 290 
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The following steps required for RNA-sequencing, including quality control of RNA using 

Bioanalyzer/TapeStation instruments, were done at the “Berlin Institute of Health (BIH) Core Facility 

Genomics at the Charité Campus Rudolf-Virchow”. 

3.15.1 RNA Sequencing Library Preparation 

Samples have to be prepared for sequencing in a process named library preparation, which includes 

selection of the sequences of interest (mRNA, removal of rRNA, specific selection of sequences), 

fragmentation, transcription to cDNA, sequencing adapter ligation and amplification steps. The 

resulting pool of cDNA is called the RNA-sequencing library. The process of library preparation is 

illustrated in figure 3.15.2. 

Since rRNA is the most abundant but in most cases not relevant RNA species, it has to be removed 

from the sequencing pool of RNAs. This can be done either by depletion of rRNA using respective 

methods or by enriching for the RNA species of interest, in most cases mRNA by poly-A selection. 

mRNA depletion or poly-A selection methods differ in their results, whereby libraries prepared with the 

mRNA depletion method contain a higher fraction of non-protein coding sequences located in 

intergenic and intronic regions as well as non-polyA transcripts (e.g. histones). 291 When preparing the 

library according to the standard protocol it contains sequences in the sense and antisense orientation 

at random (50%), this means that strand information is lost during the process. To preserve 

information on strand orientation, which might be of importance for identifying antisense or overlapping 

transcripts, several methods exist. They are based either on addition of different adapters to both ends 

of the RNA or marking the strands chemically for example by incorporation of dUTP during second 

strand cDNA synthesis and subsequent removal of this strand. 292  

The use of paired-end (PE) cDNA libraries, which are created by using respective adapters/primers, 

provides additional information and allows isoform discrimination or detection of gene-fusion events. 

This is achieved by sequencing fragments from both ends, and thus producing a sense and antisense 

read for each fragment. The library preparation method depends on the intended aim of the study and 

the cost effectiveness. For transcriptome profiling a stranded, PE library would be the best selection. 

For differential expression studies a single-end (SE), non-strand specific library is sufficient. 

The cells used for evaluation of gene expression by RNA-sequencing were maintained and harvested 

as described in sections 3.1.12 and 3.1.8. Sequencing samples were named according to the cell line. 

Biological triplicates were used for sequencing. 293 294 Individual samples are discriminated by addition 

of A, B, C to the name of the cell line. An overview of specifications of cell lines and respective RNA 

used for library preparation and subsequent sequencing is given in table 3.15.1. 

Prior to library preparation, RNA concentration was measured with the Qubit™ 2.0 Fluorometer, which 

relies on the highly sensitive and accurate fluorescence-based Qubit™quantitation of RNA, using the 

“Qubit™ RNA HS Assay Kit”, according to the kit instructions, since the use of exact quantities of input 

RNA is important for all later steps.  
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Table 3.15.1: Specifications of Cell Lines Used for RNA-Sequencing Library Preparation 

For RNA sequencing 3 biological replicates (A-C) representing one sample were used. The names, passage 
numbers and time of culture under ACC are indicated in column 1-4. RIN values and numbers used in 
sequencing are shown in column 5-6. The numbers of raw read obtained are indicated in column 7. 
ACC: adherent culture conditions, AS; adherently grown spheroids; A-SP: SP cells grown under ACC for 2 
weeks, Mo: cells cultured at GMP facility of Mologen AG, P: passage number, PA: parental cell line, SP: spheroid 
cells derived from PA 

For library preparation „NEBNext®Ultra™RNA Library Prep Kit for Illumina® (NEB #E7530+#E7490)“ 

was used according to kit instructions. 500 ng mRNA of each sample served as starting material for 

library preparation in a volume of 50 µL. Poly-A RNA was enriched using oligo(dT) magnetic beads 

according to kit instructions. The binding procedure was repeated for better removal of traces of rRNA. 

mRNA was eluted from beads in a volume of 17 µL buffer for first strand cDNA synthesis containing 

random hexamer primers and was incubated for 15 min at 94°C for denaturation and fragmentation of 

RNA. 15 µL of eluate were used for first strand cDNA synthesis reaction in final volume of 20 µL.  

Reaction was performed on a thermocycler with the following protocol: 10 min 25°C; 15 min 42°C; 15 

min 70°C; hold 4°C. Second strand cDNA synthesis was performed immediately by adding the 

components to the tube yielding a final volume of 80 µL. The reaction was incubated for 1 h at 16°C in 

a thermo cycler with 40°C heated lid. The reaction mixture was cleaned from PCR components using 

“AMPure XP Beads” according to instructions. 144 µL beads per reaction were used and elution was 

performed in 60 µL 0.1 x TE buffer pH 8. 55.5 µL of supernatant were transferred to a fresh tube. End 

repair, respectively 3’-adenylation, was performed by addition of buffer and enzyme yielding a final 

volume of 65 µl and incubation in a thermocycler with the following protocol: 30 min 20°C; 30 min 

70°C; hold 4°C. Adapters for ligation were diluted in a freshly prepared 1:9 dilution of 10 mM Tris 

buffer and 10 mM NaCl and Blunt/TA Ligase mix, water and 1 µL of adapter were added to the tube 

yielding a final volume of 83.5 µL. The mixture was incubated at 20°C in a thermo cycler for 15 min to 

ligate adapters before addition of 3 µL USER enzyme and additional incubation at 37°C for 15 min to 

remove unpaired bases. The reaction mixture was cleaned using “AMPure XP Beads” according to 

instructions, using a final volume of reaction mixture adjusted by addition of water of 100 µL and 

100 µL beads. DNA was eluted using 22 µL 0.1 x TE. 20 µL eluate were transferred to a fresh tube. 

The adapter ligated cDNA amplified in a PCR reaction in a thermo cycler using the following protocol:  
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Step Process Cycles Time Temperature in °C 
1 Initial denaturation 1 30 sec 98 
2 Denaturation 25-37 10 s 98 
3 Primer annealing 15 s 65 
4 Amplification 15 s 65 
5 Repeat step 2-4 for an additional 12 times 
6 Final Extension 1 5 min 65 
7 Cooling 1 ∞ 4 

Table 3.15.2: Cycler Program for PCR in RNA-Sequencing Library Preparation 

For PCR reactions master mix was added to the eluate and index primer (i7/i5) were chosen and 

added to each sample separately to allow multiplexing of 8 samples per lane in the sequencing step. 

The amplified library was cleaned from PCR components with “AMPure XP Beads” and eluted in a 

volume of 23 µL 0.1xTE buffer. 20 µL of the cleaned amplified library were transferred to a fresh tube. 

 
Figure 3.15.2: Schematic Overview of RNA-Sequencing Library Preparation Steps 

Steps for preparation of RNA-Sequencing library with „NEBNext®Ultra™RNA Library Prep Kit for Illumina® as 
described in the text. mRNA was enriched using oligo(dT) magnetic beads. Clean up steps were performed using 
“AMPure XP Beads”. 
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3.15.2 RNA Sequencing Library Quality Control 

Size distribution of cDNA library was checked by applying an aliquot of 1 µL to the “DNA 500 LabChip 

Kit” according to kit instructions and measuring on a 2100-Bioanalyzer. Analysis was run in „High 

Sensitivity DNA“ mode. The size-distribution of sequencing libraries from all samples was in the 

desired range of 500-1000 nt with a medium size of 450 nt. An example of Bioanalyzer results is 

shown in figure 3.15.3. Prior to library pooling for sequencing, DNA concentration was measured with 

the Qubit 2.0 Fluorometer with the “Qubit™ dsDNA HS Assay Kit”, according to the kit instructions. The 

use of an exact quantitation method is important to gain a good clustering density on the flow cell and 

equal amounts of single libraries in the sequencing pool. 

 
Figure 3.15.3: Example of Bioanalyzer Results for RNA-Sequencing Library Quality Control 

Representative examples of Bioanalyzer results of RNA-sequencing libraries from samples 
A: PA; B: SP; C: A-SP; D: A-SP 

3.15.3 Next Generation Sequencing (NGS) 

The samples were sequenced on Illumina “NextSeq® 500“ and “HiSeq® 2500” systems, respectively. 

For sequencing on the NextSeq® system libraries and instrument were prepared according to the 

manual using the “NextSeq® 500/550 Mid Output Kit v2“. The kit contains the flow cell and a cartridge 

containing all reagents needed for the run and clustering of the flow cell. Before loading, the samples 

were pooled (8 samples per lane) according to respective DNA concentration, using equal amounts of 

each sample to yield a final concentration of 4 nM cDNA in the pooled library. The concentration was 

again checked by “Qubit™ dsDNA HS Assay Kit” and pooled libraries were denatured by 5 min 

incubation in freshly prepared 0.2 N NaOH. An equal amount of Tris-HCl buffer pH 7 was added to 

prevent a too high concentration of NaOH in the sequencing reaction and the library was further 

diluted in a two step procedure to the final loading concentration of 1.8 pM with HT1 buffer. A volume 

of 1.3 mL was applied to the respective chamber of the cartridge. Flow cell, after thorough cleaning, 

cartridge and, buffers for the run were loaded onto the instrument and the run was started as „Single 

Read“ for 50 cycles.  

For sequencing on the “HiSeq® 2500 system” “HiSeq® Sequencing Kit“ was used. The instrument 

was prepared according to the manual, by inserting sequencing reagents and performing the priming 
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procedure. The flow cell was inserted and the run was started as „Single Read“ for 50 in cycles in the 

„Rapid Run“ mode. In contrast to the NextSeq® system, the first step of flow cell clustering was 

performed according to the manual on a “cBot Clonal Amplification System“ using the „HiSeq Rapid 

Cluster Kit v2“, which contains the flow cell and reagents for clustering of the flow cell. Pooling and 

denaturation of the libraries to be sequenced was done as described for the NextSeq® system. 

After the run, data were demultiplexed by the instruments software and raw reads obtained in the 

FASTQ file format 295, which besides the fragments’ sequences contains information on sequencing 

quality, were used for bioinformatic analyses. 

3.16 NGS Data Analysis 

3.16.1 Quality Control and Processing of Raw Reads 

The quality of raw sequence reads was determined by using the software FastQC. All samples had 

similar profiles. The overall base quality was between a Phred quality score of 32 and 40. Phred 

quality score represents the probability that a base call is incorrect (see chapter 3.17.10). The values 

are Illumina encoded values, which means that the probability for correct base-call was between    

99.9 to 99.99%. 296 The per base sequence content at the 5’ end of the read was not random, which is 

a known bias due to the usage of random hexamer primers for library preparation. 297 This bias can 

not be fixed by trimming since it is caused by non-random selection for amplified fragments, but it 

should not seriously affect analysis for differentially expressed genes. In the sequence duplication 

level plot two peaks were visible, which in DNA sequencing experiments is an indicator for PCR 

artifacts during library preparation. In contrast, sequence duplication is normal for RNA sequencing 

since there it is due to the presence of fragments that originate from transcripts with high expression 

levels. 298 The GC content per read exhibited relatively equal distribution around 50%. This is in the 

range of the average GC content of human genes (≈ 50%), which is higher compared to average GC 

content of the whole genome (≈ 40%). A slight shift of the sample curve towards lower GC content 

compared to the theoretical curve indicates the presence poly-A selected RNA. A shift toward higher 

GC content would be an indicator of rRNA contamination of the sample. In all samples 

overrepresented sequences, identified as Illumina adapter sequences, were detected. This is a 

sequencing artifact, due to sequencing of adapters or sequencing into the adapter at 3’ position of the 

read. 299 The overrepresented sequences were removed from the datasets with the software Cutadapt 

1.16 218 using the respective primer sequence for each sample and trimming mode for 3’ adapter with 

an error rate of 5%. Reads shorter than 20 bp after trimming were removed from the datasets. 1 to 2% 

of all reads were affected by trimming. Trimmed datasets were again analyzed with FastQC. An 

example of FastQC results is shown in figure 3.16.1. 
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Figure 3.16.1: Example of FastQC results (Sample PA-A-Lane 1) 

(A) Phred quality scores across all bases (Illumina 1.5 encoding), (B) Per base sequence content, (C) Sequence 
duplication levels, (D) GC distribution over all sequences (E) Per sequence quality scores (F) Per base N content 
(G) Sequence length distribution before trimming (H) Overrepresented sequences before trimming (I) Sequence 
length distribution after trimming (J) Overrepresented sequences after trimming. All other parameters were not 
affected by trimming. 
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3.16.2 Alignment 

The sequence alignment on H. sapiens, GRCh38 transcriptome was done using the software HISAT2 

version 2.1.0 using the standard settings for unpaired reads 221. For conversion of the text encoded 

SAM files to binary encoded BAM files the software SAMtools version 1.8 was used 222. 

3.16.3 Quantitation and Differential Gene Expression Analysis (DGE) 

Further analysis of the aligned reads was performed using SeqMonk Package.  

Aligned reads with a mapping quality score (QMAP) of 30 (representing a 0.01 probability for wrong 

mapping position, see chapter 3.17.10) were chosen for analysis of differential gene expression and 

SAM files containing the data were imported to SeqMonk accordingly. Homo sapiens genome release 

GRCH38_v90 was used for the analysis. Quality control of data was performed using the RNA-Seq 

QC plot option. The data were quantitated as raw counts using the RNA-Seq quantitation pipeline for 

mRNA Non-strand specific libraries and the „merge transcript isoform“ option. Homo sapiens 

CRch38_v90 was used for annotation and alignment. 

The data were further processed by removing data for genes that had a number below 10 raw counts 

per gene in at least 3 of the 3 replicate stets of one sample (Expressed Genes), also genes with no 

description as well as probes resulting from read-through of genes and mitochondrial and rRNA genes 

were removed from the datasets before analysis (Expressed-C). 

To obtain differentially expressed genes, the three datasets PA, SP and A-SP (AS) containing the 

three biological replicates (A-C) were compared pairwise (see table 3.16.1) using the R-based 

DESeq2 filter implemented in SeqMonk with a significance limit set below 0.01 after Benjamini and 

Hochberg correction. The biostatistics tool DESeq2 applies algorithms that assume a negative 

binomial distribution of data as a natural extension of Poisson distribution to account for biological 

variability of replicates, as well as flexible data-driven relationships between mean and variance for 

detection genes that are significantly differentially expressed. 300 301 

After DESeq comparison the data were re-quantified to log transformed length corrected values. In 

this step also corrections for DNA contaminations were performed. 

The resulting number of data (differentially expressed gene numbers in the range of 5100-9300) was 

still too high for further analyses. Therefore a refinement was done using two options:  

• data were selected for “Intensity Difference“ (ID) with a minimum p-value when comparing two 

datasets to be below 0.05 with multiple testing correction applied with a sample size of 100-

1000 when constructing the control distributions. The resulting differentially expressed gene 

numbers ranged from 59-82. 

• genes with differences in expression value of 2-20 RPM between both samples were chosen 

manually from the scatter plot view (DESeq+Man) for further analysis. The resulting 

differentially expressed gene numbers ranged from 242 to 823. 

To obtain genes, which are specifically expressed in each of the cell lines, the obtained gene lists from 

the two comparisons of the cell lines (see table 3.16.1) were combined using the logical combination 

AND. In this way also spheroid-specific and serum-specific genes were extracted by combining gene 

lists from respective samples. To remove genes that were expressed in a cell type specifically, these 

were subtracted using the logical list combination BUTNOT. 
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Table 3.16.1: Diagram of Dataset Comparison Combinations 

Upper Table: data were compared pairwise using the DESeq algorithm resulting in lists of differentially expressed 
genes (column 1). Up-regulated gens in respective cell line datasets were extracted using manual expression 
difference filtering (Man) or statistical intensity difference (ID) filtering of the data. Column 2: lists of genes up-
regulated in PA. Column 3: lists of genes up-regulated in SP. Column 4: lists of genes up-regulated in SP. These 
data were used for GSEA. Line 5: Cell line specific genes were extracted by combining the lists using the logical 
combination AND (PA+PA, SP+SP, AS+AS). Lower table: up-regulated genes in serum or spheroid-derived cells 
were obtained by combination of lists for respective cell lines (column 1) and subtraction of cell line specific genes 
using the logical combination BUTNOT (column 3). 
ACC: adherent culture conditions, AS adherently grown spheroids, A-SP: SP cells grown under ACC for 2 weeks, 
GSEA: gene set enrichment analysis, PA: parental cell line, SP: spheroid cells derived from PA, Cell line specific 
gene lists: for PA = PA+PA, for SP = SP+SP, for AS = AS+AS. 

3.16.4 Gene Set Enrichment Analysis (GSEA) using GeneAnalyticsTM 

Gene set enrichment analysis (GSEA) is a statistic based method, which determines if a gene set 

contains a signature similar to pre-defined gene modules comprising known gene sets of various 

numbers and phenotypes (molecular functions, biological processes, diseases, tissues or cells, signal 

transduction pathways). The gene modules are derived from different databases (e.g. Gene Ontology 

(GO), KEGG-Pathways, Reactome Pathways, WiKi-Pathways), which provide respective gene 

classifications. 

The obtained gene lists from DGE analysis were tested for enriched gene sets using the 

GeneAnalyticsTM software. A maximum of 409 genes was submitted for analysis. For samples with 

more than this number, the lists were sorted according to fold change of expression and the 370-409 

genes (depending on expression levels) with highest difference in expression were submitted for 

analysis. The resulting Data were manually inspected for relevant information. The scores provided by 

the program are (-log2) transformed p-values, derived of a binomial distribution-based test for over-

representation of the investigated genes in any compound from SuperPath or GO-terms databases. 

Three categories are indicated: high: corrected p-value smaller or equal to 0.001, medium: corrected 

p-value higher than 0.001 but less than 0.05, and low: corrected p-value higher than 0.05. 
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3.17 Calculations and Statistical Methods 

3.17.1 Calculation of Growth Rate 

Growth rate per day =  
Total number of cells at passage

Number of cells seeded × Time of culture to passage (days)
  

3.17.2 Calculation of Accumulated Cell Number 

ACN (P!) =  SCN (P!!!) × GRD (P!) × t (P!

!

!!!

) 

ACN = Accumulated cell number 

SCN = Starting cell number 

GRD = Growth rate per day 

t  = Time of culture (days) 

(P! )          =   Passage number n   

SCN (P!!!) =   10! 

Starting cell number for frozen aliquots was cell number obtained in passage of freezing of the cells 

3.17.3 Calculation of Clonal Spheroid-Forming Efficiency (CSFE) 

CSFE % =  
Mean (number of live cells seeded in 15 to 60 wells)
Mean (number of spheroids in respective wells)

× 100 

3.17.4 Calculation of Colony-Forming Efficiency (CFE) in Soft Agar Assay  

CFE % =  
Number of cells seeded/well
Number of colonies/well

× 100 

Number of colonies per well =
Area !"## !"!#$

Area !"#$%&' !"!#$%&'
× Number of counted colonies 

3.17.5 Calculation of RNA Concentration 

Beer-Lambert-Law: Aλ = ε × c × d  

Aλ  = absorptionwavelength 

ε  = molar extinction coefficient 

d  = path length of cuvette 

 

c µg/mL = (A260-A320) × 2 × (0.025 (µg/mL/cm)-1 × 0.1 cm)-1 

3.17.6 Calculation of Fold Change Expression Level in Flow Cytometric Immunophenotyping 

Fold change expression =  
Geo mean of antibody stained sample

Geo mean of isotype control stained sample
 

3.17.7 Calculation of (Arithmetic) Mean, Geometric Mean, Median 

1
n

x!

!

!!!

= x  = (arithmetric) Mean  

x!

!

!!!

!
!

= Geometric Mean (GM) 
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The median is the middle value of a numerically ordered dataset in case of an odd number of data or 

the mean of the two middle values of a numerically ordered dataset in case of an even number of 

data. 

The values were calculated using Excel software. 

𝑥!   =   observed value   

n   =   number of values 

3.17.8 Calculation of Standard Deviation 

(𝑥!  × 𝑥)!!
!!!
(n − 1)

= Standard  Deviation (STD) 

𝑥!   =   observed value   

x    =   (arithmetric) Mean   

n   =   number of values 

3.17.9 Determining Significance of Differences between Mean Values 

Two-tailed Student's t-test using the Welch’s correction for unequal variance was carried out to 

determine statistically significant difference between mean values. P <0.05 was considered as 

significant. Calculations were done using Excel software. 

3.17.10 Phred Quality Scores (Q) 

3.17.10.1 Sequencing Quality score (QSanger) 296 

QSanger = -10 × log10 p 

p = probability for incorrect base call (method of calculation differs for different instruments) 

3.17.10.2 Mapping Quality score (QMAP) 

QMAP = -10 × log10 p 

p = probability for wrong mapping position (method of calculation differs for different aligners) 

(a value 255 indicates that the mapping quality is not available) 

3.17.11 RNA Sequencing Quantification 

The output data from RNA sequencing are sequence reads from fragments, which have to be 

subsequently aligned to a genome or transcriptome sequence. The number of reads that align to a 

specific gene then can be counted, obtaining a quantitative measure. The resulting information 

represents a relative measure of molar concentration of an individual mRNA to total mRNA analyzed. 

It does not represent an absolute measure for the abundance of an individual mRNA in a cell, since 

individual information on the measured cells (cell number, cell size, cell volume, cellular composition) 

is missing. For comparison of different genes or different samples, values have to be normalized for 

transcript length and sequencing depth by calculating RPKM or TPM values. 302 303 

  



 

Methods 

 

- 73 - 

3.17.11.1 RPKM (Reads per Kilobase per Million Reads)  

For quantitative comparison of different genes within the same dataset RPKM values, which correct 

for different transcript length and total library coverage, can be used. 302 These are calculated:  

RPKM! =  

r! × 10!
fl!
R
10!

=  
r! × 10!

fl! × R
 

 

g = gene of interest 

G = all genes determined at experiment 

rg = reads mapped to particular gene region 

flg = feature length (number of nucleotides in gene, i.e. total length of exonic region) 

R = sequencing depth =  total number of reads from sequencing run =  r!
!∈!

 

Normalization for transcript length: !! × !"!

!"!
 

Normalization for sequencing depth: !
!"!

 

3.17.11.2 TPM (Transcripts per Million)  

For quantitative comparison of genes from different samples TPM values are calculated. TPM values 

are proportional to RPKM within one sample. For calculation of TPM normalization is done to 

transcript copies instead of reads so that the values are more consistent across different samples. 303 

 

𝑇𝑃𝑀 =  
𝑟! × 𝑟𝑙 × 10!

𝑓𝑙! × 𝑇
 

 

rg = reads mapped to particular region 

flg = feature length (number of nucleotides in gene, i.e. total length of exonic region) 

rl = read length (average number of nucleotides mapped per read) 

T = total number of transcripts sampled in sequencing run =   
r! × rl
fl!!∈!

 

3.18 Copyright Statement 

Figures produced by other authors gratefully used in this work were from articles published (mostly in 

in BioMed Central (BMC), part of Springer Nature: www.biomedcentral.com) under the terms of the 

Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/4.0), which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited.
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4 Results 

4.1 Generation of Different Cell Lines 

The aim of this work was to investigate cells with cancer stem cell (CSC) characteristics in a clear cell 

renal cell carcinoma (ccRCC) cell line, which was derived from the primary tumor material of a female 

patient with ccRCC. This cell line, which is certified for clinical use in humans and has already been 

employed in a four-fold gene-modified version in clinical trials, is termed parental cell line (PA) 

throughout this thesis. Central to all experimentation was the enrichment as well as the induction of 

stem cell, respectively cancer stem cell, characteristics by using the spheroid cell culture method. 

Spheroid cell cultures were first described for isolation of neuronal stem cells and subsequently used 

for isolation of stem cells from other sources, namely solid tumors, to gain CSC. 

Several aliquots (A-O) of the parental ccRCC cell line (PA) were grown separately under standard 

conditions in serum-containing medium as adherent monolayers (ACC) for various periods, ranging up 

to more than 60 weeks. Spheroid cell lines were derived from PA by using two different starting 

conditions.  

Firstly, spheroid cell lines were generated by culturing PA cells at passage 28 as “bulk” culture under 

serum-free, non-adherent spheroid culture conditions (SCC) with regular passaging. The resulting cell 

lines were termed SP (spheroid) cells. Three SP cell lines were independently established in this way 

(SP1-3), of which SP1 and SP3 were cultured for more than 60 weeks continuously. Aliquots of the 

cells were frozen at different passage numbers and later assayed either in parallel or at different time 

points.  

Secondly, spheroid cell lines were also generated from spheroids derived from the “Neurosphere 

Assay” (NSA, see chapter 3.1.3), since it had been observed that these were morphologically distinct 

from SP spheroids. In contrast to starting conditions used for SP cells, in the NSA cells were plated at 

very low (clonal) densities and were grown without disaggregation of spheroids for 3-5 weeks. 

Additionally, at start of “bulk” culture of these cells, the passaging and thus disaggregation intervals 

were longer than those used for SP cells. The resulting cell lines were termed CS (clonally amplified 

spheroids). Seven cell lines were established in this way (CS1-7), of which CS1 and CS7, which 

slightly differed in cell size and spheroid morphology (see figure 4.1.4), were further characterized. 

Aliquots derived of frozen cells of CS1 and CS7 cell lines at passage 6 and 5 respectively were grown 

for periods of more than 60 weeks continuously. 

To discriminate spheroid cell lines frozen at different passage numbers from continuously cultured cell 

lines, these cells were named according to the passage number of freezing, e.g. SP1.7, SP1.35, 

SP3.13. When several aliquots from frozen cells were cultured separately, these were discriminated 

by additional numbers, e.g. SP1.80-2, SP1.35-3. And cells obtained by freezing of thawed aliquots 

again were termed by subsequent numbering of both freezing passage numbers, e.g. SP1.35.7. 

To investigate whether the differences seen in SP and CS cell lines compared to the PA cell line were 

immanent or simply induced by the different growth conditions, spheroid cell lines were also re-

cultured under ACC. The resulting cell lines were named A-SP or A-CS according to their parental 

spheroid cell line. The passage number of spheroid cell line used to start adherent culture is indicated 

in the name, e.g. A-SP-P14, A-SP-P30. A-SP-P30, A-CS1-P7, and A-CS7-P6 were cultured 
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continuously under adherent conditions for more than 35 weeks. A-SP cells were also assayed for 

their ability to re-grow as spheroids after various culturing periods under ACC. These cells were 

termed A-SP-SC. In figures 4.1.1 and 4.1.2 the genealogy of cell lines used in this work is depicted.  

 

 
Figure 4.1.1: Genealogy of Cell Lines Used 

Two distinctive spheroid cell lines SP and CS were derived from PA ccRCC cell line at passage 28/29 (middle, 
red). Several aliquots of PA cells were cultured separately (PA-A-O) for different periods. Three separate SP cell 
lines were generated (SP1-3), of which two were cultured for long time under SCC. Seven separate CS cell lines 
were obtained from NSA of PA cells, of which three were grown for long time under SCC, and two were 
characterized in more detail. At different passages (indicated) aliquots of the cell lines were frozen and later re-
grown (dashed line). Cell lines were named after number of freezing passage (indicated). Blue arrows indicate 
continuous culture under SCC, red arrows indicated continuous culture under ACC.  
ACC: adherent culture conditions, CS: clonally expanded spheroid cells derived from PA, NSA: „Neurosphere 
Assay“, P: passage number, PA: parental cell line, SCC: spheroid culture conditions, SP: spheroid cells derived 
from PA. 
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Figure 4.1.2: Genealogy of A-CS, A-SP, and A-SP-SC Cell Lines 

Left: A-CS cell lines were generated from CS1 or CS7 cell lines in different passages (as indicated) and cultured 
for various time under ACC. 
Right: A-SP cell lines were generated from SP1 or SP3 cell lines in different passages (as indicated) and cultured 
for various time under ACC. Some of the cells were re-grown under SCC for various periods. 
Blue arrows indicate continuous culture under SCC; red arrows indicated continuous culture under ACC. 
ACC: adherent culture conditions, A-CS: CS cells grown under ACC, A-SP: SP cells grown under ACC, A-SP-SC: 
A-SP cells re-cultured under SCC, CS: clonally expanded spheroid cells derived from PA, P: passage number, 
PA: parental cell line, SCC: spheroid culture conditions, SP: spheroid cells derived from PA. 

4.1.1 Morphology of Cells under Adherent Culture Conditions (ACC) 

The morphology of PA cell line and spheroid cell lines grown under adherent culture conditions in 

serum-containing medium (ACC) at almost confluence is shown in figure 4.1.3. No remarkable 

morphological differences were observed between PA cells and A-SP or A-CS1 cells, only A-CS7 

morphology was slightly more homogenous when compared to other cell lines. 

 

 
Figure 4.1.3: Morphology of Adherently Grown Cell Lines PA, A-SP, and A-CS 

Microscopic pictures showing representative morphologies of PA cells and spheroid cell lines SP, CS1, CS7 
grown for at least 3 passages under ACC (A-SP-P54, A-CS1-P6 and A-CS7-P7). Scale bars: 100 µm. 
ACC: adherent culture conditions, A-CS: cells grown under ACC, A-SP: SP cells grown under ACC, CS: clonally 
expanded spheroid cells derived from PA, PA: parental cell line, SP: spheroid cells derived from PA 
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4.1.2 Spheroid Morphology 

The cells and respective spheroids generated from bulk culture (SP) or from clonally expanded cells 

(CS) were found to be clearly distinctive by their different morphology. SP cells were larger and 

formed spheroids in which single cells could clearly be discriminated in enlarged view. CS cells in 

contrast were smaller and formed very compact spheroids, albeit the size and compactness of 

spheroids varied slightly between different CS cell lines. Representative microscopic pictures of 

disaggregated spheroid cells from SP, CS1 and CS7 cell lines and spheroids grown thereof within the 

passaging period of 3-5 days are shown in figure 4.1.4. 

 
Figure 4.1.4: Different Morphology of Spheroids and Cells from Spheroid SP and CS Cell Lines 

Spheroid cell lines show differences in spheroid compactness and cell size, with large cells forming loose 
spheroids seen in SP cell line, smaller cells forming more compact spheroids in CS1 cell line and very small cells 
forming highly compact spheroids in CS7 cell line. 
Microscopic pictures of SP, CS1, and CS7 cells after dissociation with AccuMaxTM (upper row) and following 
growth for 4 days under SCC (lower row). Scale bars indicated are valid for the respective rows. 
CS: clonally expanded spheroid cells derived from PA, PA: parental cell line, SP: spheroid cells derived from PA 

4.1.3 Cell Size and Viability 

The cell size for PA, SP and CS7 cell lines was determined in single cell suspensions at every 

passage over a period of 4 weeks using the “CASY®” cell counter for cell lines in different passage 

numbers, obtained by thawing cells that were cultured before freezing for different periods. Similarly, 

the mean diameter of A-SP cells derived from different passages of SP cells (P14, P36, and P54) and 

A-CS7-P66 cells, which were all grown for 12 weeks under ACC at start of measurements, was 

determined. 
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The results are shown in figure 4.1.5. Thereby a reduction of cell size with time of culture was 

observed in PA, SP and CS7 cell lines. The average cell diameter of PA cells decreased slightly from 

21.2 µm ± 0.5 µm in early passages (P24-29) over 20.8± 0.5 µm diameter (P46-56) to 19.8 ± 0.5 µm in 

high passage cells (P112-119). The mean diameter of SP cells assayed in P33-40 was determined to 

be 21.1 ± 0.2 µm, whereas in later passages (P55-62) the cell size decreased to 18.9 ± 0.2 µm and 

was further reduced (18. 6 ± 0. 2 µm) in cells in P73-80. Compared to PA and SP cell lines, CS7 cells 

were markedly smaller with a mean diameter of 15.0 ± 0.2 µm in P25-31, which further decreased to 

13.7 ± 0.3 µm in cells at P60-66. CS7-P64 cells cultured under ACC with a mean diameter of 17.1 ± 

0.7 µm were larger than their parental spheroids. The determined mean diameter of A-SP cells was 

found to be in the range of 20 µm and was only slightly reduced in cells derived from higher passage 

spheroids (mean diameters: 20.1/20.2/19.6 ± 0.5 µm for A-SP-P14/P36/P54). 

 

Cell Size of Different Cell Lines 

 
Figure 4.1.5: Variation of Cell Size in Different Cell Lines and with Time of Culture  

Cell size differs between PA, SP and CS7 cell lines and decreases with time of culture for these cell lines.  
A-SP cells show only low variations in cell size despite different time of culture as spheroids before ACC. The 
diameter of A-CS7 cells is markedly increased compared to parental spheroid cell line. 
Cell size of cells cultured for different periods under their respective conditions was determined using “CASY®” 
cell counter at every passage over a period of 4-5 weeks. Each value depicted represents the mean diameter of 
single cell suspensions determined in three measurements of one sample. 
Left diagram: Mean diameters of PA, SP, and CS7 cells after different time in culture, obtained by thawing cells 
that were frozen at different passage numbers. Right diagram: Mean diameters of A-SP-P14, -P36, -P54, and 
A-CS7-P66 cells. All cells were cultured for 12 weeks under ACC at start of measurements.  
ACC: adherent culture conditions, A-CS7: CS7 cells grown under ACC, A-SP: SP cells grown under ACC, CS7: 
clonally expanded spheroid cells derived from PA, P: passage number, PA: parental cell line, SP: spheroid cells 
derived from PA 
 

Besides the cell size also the viability of cells was assayed in the “CASY®” measurements. The viable 

cell fraction was determined to be relatively constant at 91±2% in all assayed cell lines. SP cells in 

lower passage numbers (P33-39) were the only exception, with a reduced viable cell fraction of 

85±3%. This was not surprising, since during the first passages of SP cells, a considerable number of 

dead cells was observed, which decreased continuously but slowly with further passaging. 
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4.1.4 Growth Rate and Proliferative Potential of Different Cell Lines 

For all cell lines at each passage, the total cell number obtained was determined and the growth rate 

per day was calculated (see chapter 3.17.1). In figures 4.1.6 and 4.1.7 the resulting values for all 

investigated cell lines over long-term culturing of the cells are shown. The different cell lines were 

shown to possess individual growth rates, which within one cell line were relatively stable for different 

aliquots used, but increased in PA, as well as in spheroid cell lines SP and CS with time of culture 

(age) of the cells. 

In the PA cell line a slight gradual increase of growth rates per day from 0.9 -1.3 over the first 300 

days was observed, which was followed by a massive increase to growth rates up to 2.5-3 per day 

after this period.  

In SP cell line during the first passages still many cells died and spheroid morphology was often 

irregular, but with further passages, the number of death cells was reduced and the spheroid 

morphology became more regular. This was reflected in the very low growth rates below 0.5 per day 

during the first passages of the cells. After the first 50 days of culture under SCC a constant but slow 

increase of growth rates was observed from about 0.5 per day at 100 days of culture to 0.8-1 in the 

period to 300 days in culture. After very long culturing periods a growth rate of 1.5 per day was 

reached. Compared to PA cells, the growth rates of SP cells, especially at the beginning of SCC, were 

strongly reduced and the normal growth rate range of PA cells was reached by this cell line after about 

200 days of culture. Besides the higher number of dead cells, the lower growth rates may also reflect 

lower proliferation rates of spheroid cells. 

Similar to SP cell lines, CS cell lines showed low growth rates per day at the beginning of bulk culture, 

which was started at about 30 days after start of spheroid culture, in which the cells were grown as 

spheroids in the NSA. In CS7 cell line at the beginning of the culturing period as bulk spheroids, high 

variations in growth rates were obtained, which are probably due to the variations in passaging 

periods of the cells, which were with 6-9 days longer than the those used for subsequent passaging. 

Starting at about 100 days under SCC, the cells showed relatively stable growth rates in the range of 

0.8-0.9 per day. Interestingly, after about 300 days of culture for CS7 cell line a massive increase of 

growth rates was observed reaching values of about 2 per day after 350 days of culture. In CS1 cell 

line the increase after 300 days of culture was less pronounced and the mean maximal growth rates 

observed in this cell line were about 1.1 per day.  

Of note is, that the changes in growth rates with culturing periods seemed to be inherent to the cells, 

since they were on the one hand seen in two different SP cell lines, cultured independently, but also 

from aliquots that were frozen at different time points and propagated later, showing similar growth 

rates and changes thereof as the original cell lines. Though repeatedly frozen cells seemed to 

possess slightly higher growth rates than their parental continuously grown cell line, which might 

indicate a positive selection process of more viable cells with higher proliferative capacity by the cell 

freezing procedure. Similar, CS7 cells frozen in P64 and re-seeded were shown to possess the high 

growth rate seen in the parental cell line at high passage numbers. Likewise, PA cells frozen at 

passage 112 (PA-L) proliferated with similar high growth rate as the continuously grown cells they 

were frozen of. 
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Proliferative Potential of PA, SP, and CS Cell Lines 

 

 

 
Figure 4.1.8: Proliferative Potential of PA, SP, and CS Cell Lines - Accumulated Cell Numbers 

PA, SP and CS cell lines show high proliferative potential, as shown by constant increase of cell numbers, even 
after long-term culture of the cells. 
Log10 of accumulated cell numbers of all investigated cell lines (PA upper panel, SP middle panel, and CS lower 
panel) is plotted vs. time in culture under the respective growth condition (ACC for PA cell line and SCC for SP 
and CS cell lines). Letters indicate different independently grown aliquots of PA cells. Numbers indicate the 
different SP or CS cell lines, which were independently generated from PA (SP: 1-3, CS: 1-7). Cells obtained from 
frozen aliquots of this cell lines are indicated by a dot, followed by the passage number(s) of freezing. Dash 
indicates separate culture of similar aliquots. For frozen cells, the cell numbers from passages of freezing were 
used as the starting numbers for calculation of accumulated cell numbers. ACC: adherent culture conditions, CS: 
clonally expanded spheroid cells derived from PA, PA: parental cell line, SCC: spheroid culture conditions, SP: 
spheroid cells derived from PA 
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Proliferative Potential of A-SP and A-CS Cell Lines 

 

 
Figure 4.1.9: Proliferative Potential of SP and CS Cell Lines under ACC - Accumulated Cell Numbers 

A-SP and A-CS do not loose proliferative potential when grown under ACC, as shown by constant increase of cell 
numbers, even after long-term culture of the cells. 
Log10 of accumulated cell numbers of investigated A-SP and A-CS cell lines (A-SP upper panel, A-CS lower 
panel) is plotted vs. time in culture under ACC. The passage of spheroid cell line used for generation of A-SP or 
A-CS cell lines is indicated (-P14). A-CS14 was generated independently twice (-P14-2). 
ACC: adherent culture conditions, A-CS: CS cells grown under ACC, A-SP: SP cells grown under ACC, CS: 
clonally expanded spheroid cells derived from PA, P: passage number, PA: parental cell line, SCC: spheroid 
culture conditions, SP: spheroid cells derived from PA 

From the growth rates also the theoretical cell numbers, which would result from propagation of all 

cells (accumulated cell numbers) were calculated (see chapter 3.17.2) and are depicted in figures 

4.1.8 and 4.1.9 for all cell lines assayed. From those figures the high growth potential of the cells 

becomes evident. The calculated cell numbers represent more than 350 population doublings (pds) in 

PA cells, more than 200 pds in CE1, almost 300 pds in CS7 and more than 190 pds in SP cell line. 

The high similarity of growth rates determined for SP cell lines, which were either obtained by 

separate generation or thawing of frozen aliquots, but also the slight increase of growth rates for 

multiply frozen cells are clearly visible in this diagram. But also similarities at the beginning of culture 

found for different CS cell lines (CS2, CS3, CS4), as well as the striking similar growth of different 

passages of SP and CS7 cell lines under ACC, with only one slightly slower growing cell line seen (A-

SP-P79). The deviation of curves seen for long-term cultured PA cells is due to a short period of 

slightly reduced growth of the two cell lines at about passage 40. 
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4.2 Clonal Spheroid-Forming Efficiency (CSFE) in “Neurosphere Assay” (NSA) 

The “Neurosphere Assay” (NSA) is a method, which was initially developed by Reynolds and Weis164 

for the evaluation and enrichment of neuronal stem cells from adult brain tissue and since has been 

refined and widely been used for enrichment of stem cells from other tissue sources, including tumor 

tissue. The assay principle is based on selection of cells, which are able to grow under non-adherent 

culture conditions as spheroids. Besides the lack of adequate substratum for adherence, a serum-free 

medium composition with defined growth factor content (EGF, FGF and insulin) is used for the assay. 

Since the conditions are very unfavorable for differentiated, “normal” cells, only stem cells and 

progenitor cells are able to grow, so that growth of spheroids in the assay is an indicator for the 

presence of cells with stem cell characteristics. The assay also allows a semi-quantification of stem 

cell content in a given sample by determining the clonal spheroid-forming efficiency, i.e. the 

percentage of starting cells, which are able to form spheroid colonies. By seeding cells at low density, 

aggregation of cells is omitted and spheroids can be counted. 

The NSA was performed using non-tissue culture treated 96-well plates with seeding densities of 

30-90 cells per well. PA, SP, CS, as well as A-SP and A-CS cells were seeded at different passage 

numbers for the assay and after culturing for 2-3 weeks, the resulting spheroids were counted. For 

each sample at least 15 single wells were counted and the mean value of spheroid forming efficiency 

was calculated. Although the standard deviations (depending on number of spheroids grown) ranged 

from 5-300% in single wells, the mean values reflected the obvious differences in growth potential 

quite well. The results obtained in the NSA for the different cell lines investigated are depicted in 

figures 4.2.1-4.2.4. As can be seen, the CSFE varied drastically between PA and spheroid cell lines, 

but also with different passage numbers/time of culture of cells. 

 
Figure 4.2.1: CSFE Determined for PA cells in NSA 

The CSFE of PA cells is drastically reduced or even absent after 4 weeks of culture. 
Results obtained from PA cells assayed in the NSA after different time of culture. Percentage of spheroid forming 
cells (CSFE) is plotted vs. culturing period of cells under ACC (weeks). 
ACC: adherent culture conditions, CSFE: clonal spheroid-forming efficiency, NSA: „Neurosphere Assay“, PA: 
parental cell line 
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Figure 4.2.2: CSFE Determined for SP cells in NSA 

The CSFE of SP cells increases over time in culture as spheroids. 
Results obtained from SP cells assayed in different passage numbers of spheroid culture in the NSA. Percentage 
of spheroid forming cells (CSFE) is plotted vs. passage number of cells under SCC. The passage numbers 
represent < 50 days for passages <P10, 50-100 days for P10-P30, 100-200 days for P30-P60 and >200 days for 
passages >P60 under SCC.  
SCC: spheroid culture conditions, CSFE: clonal spheroid-forming efficiency, NSA: „Neurosphere Assay“, PA: 
parental cell line, SP: spheroid cells derived from PA 

 
Figure 4.2.3: CSFE Determined for CS cells in NSA 

The CSFE of CS cells increases over time in culture as spheroids and is slightly lower in CS7 cell line compared 
to CS1 and CS4 cell lines. 
Results obtained from CS cell lines CS1, CS4 and CS7 assayed in different passage numbers of spheroid culture 
in the NSA. Percentage of spheroid forming cells (CSFE) is plotted vs. passage number of cells under SCC. The 
passage numbers represent < 200 days for passages <P20, >200 days for passage >P20 under SCC.  
CS: clonally expanded spheroid cells derived from PA, CSFE: clonal spheroid-forming efficiency, NSA: 
„Neurosphere Assay“, SCC: spheroid culture conditions, PA: parental cell line 



 

Results 

 

- 86 - 

 

 
Figure 4.2.4: Mean CSFE Values of Different Cell Lines 

Mean values of CSFE were calculated for all NSAs performed for groups with similar characteristics for all cell 
lines investigated. Groups were selected on the basis of obvious differences/similarities seen with passage of 
cells or time in culture. Cells used for the assays were either continuously grown (SP1/3, CS1, CS4) and/or 
obtained from cells frozen at different passage numbers. Error bars: standard deviation. 
ACC: adherent culture conditions, A-CS: CS cells grown under ACC, A-SP: SP cells grown under ACC, CS: 
clonally expanded spheroid cells derived from PA, CSFE: clonal spheroid-forming efficiency, NSA: „Neurosphere 
Assay“, P: passage number, PA: parental cell line, SCC: spheroid culture conditions, SP: spheroid cells derived 
from PA. 

The CSFE of PA cells was found to be in the range of 8±4% in the first 4 weeks of culture and 

dropped to below 1% after longer culturing periods, with almost no spheroid-forming ability being 

detectable (CSFE < 1%) after 10 weeks of standard culture of the cells. 

In contrast to PA cells, the CSFE in SP cells increased continuously over passages as spheroids with 

starting numbers during the first 10 passages of 5±1%, then being relatively constant up to passage 

30 at 28±3% and further increasing stepwise over 40-50% to values of 68±8% in passage numbers of 

more than 60. The CSFE in early passage number was quite similar to that of PA cells, and the 

gradual increase might indicate concomitant enrichment of cells with stem cell characteristics. But it 

cannot be excluded that the better growth of cells in later passages is due to better adaptation to the 

media conditions, which in the NSA are similar to normal growth conditions of the cells with the 

exceptions, that the seeding cell density in the assay is drastically reduced compared to bulk culturing. 
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Similar to standard culturing of the cells, also the morphology of the spheroids formed in the assay 

from later passages, was becoming more and more regular than spheroids grown from early passage 

cells. 

Likewise to SP cells, the CSFE values obtained for CS cell lines increased with passage number of 

the cells under SCC. Thereby differences were seen between different CS cell lines. While CSFE in 

CS7 cell line seemed to increase similar gradually as that of SP cells, and was with maximal values in 

the range of 38%±10% lower than the values seen for other spheroid cell lines in high passage 

numbers, the increase of CSFE after about 200 days of culture seen for CS1 and CS4 cell lines was 

much more abrupt. All CS cell lines showed low and highly variable CSFEs in the first passages, 

which with 1.8±1.4% were lowest for CS4, slightly higher in CS7 4±4% and with 7±3% highest in CS1. 

CS1 cells reached very high CSFE values of 77±7% in high passage cells. The values obtained for 

CS4 cell lines did not include cells of very high passage numbers and with 64±4% were similar to the 

values obtained in SP cell line at passages >60. The number of data available for CS cell lines, 

compared to PA and CS cell lines is quite low, in the intermediate passage range, so that statements 

on these cell lines are less assured. 

 

Figure 4.2.5: CSFE Determined for A-SP and A-CS Cells Cultured for Different Periods under ACC 

The CSFE of A-SP and A-CS was dependent on passage number of spheroid cells used for starting adherent 
culture of the cells and was less depended on time in culture under ACC. 
Results obtained from A-SP and A-CS cells assayed after different periods of ACC and derived of spheroid cell 
lines from different passages in SCC. Percentage of spheroid forming cells (CSFE) is plotted vs. time in culture 
under ACC (weeks). A-CS comprises values obtained from A-CS1 and A-CS7 respectively. Values shown for A-
SP<P15 are from A-SP-P14 (n=6), A-SP P30-50 are from A-SP-P30 (n=7)/P36 (n=3)/P41 (n=3) and values for A-
SP>P50 are from A-SP-P54 (n=3)/P63 (n=1)/P79 (n=2)/87 (n=3). Values shown for A-CS <P15 are from A-CS1-
P7 (n=4) and A-CS-P6 (n=4), A-CS>P50 are from A-CS7-P66 (n=3). 
ACC: adherent culture conditions, A-CS: CS cells grown under ACC, A-SP: SP cells grown under ACC, CS: 
clonally expanded spheroid cells derived from PA, CSFE: clonal spheroid-forming efficiency, NSA: „Neurosphere 
Assay“, P: passage number, PA: parental cell line, SCC: spheroid culture conditions, SP: spheroid cells derived 
from PA. 
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As can be seen from figure 4.2.5 and comparison of mean CSFE values depicted in figure 4.2.4, the 

CSFE of spheroid cells, which were cultured for different periods under ACC was quite similar to that 

seen in parental spheroid cell lines. High CSFEs were obtained from A-SP cells derived of high 

passage spheroids with mean values of 55±20% from A-SP-P54/63/79/87 and 59±7% from A-CS7-

P66. In contrast, low CSFE values of 6±3% were obtained from A-CS1/C7-P6/P7. The values 

calculated from A-SP-P14 cells grown for different periods under ACC with 29%±11% are very similar 

to those seen for SP cells in this passage number range. In contrast to PA cells, where CSFE dropped 

dramatically after 5 weeks of culture, the CSFE of A-SP and A-CS cells derived from intermediate to 

high passage number spheroids was with percentages of about 40% relatively high, even after ACC 

culture of more than 10 weeks. This implies that immanent changes might have occurred during 

spheroid culture, either by enrichment or selection of cells with spheroid forming ability, which were 

not readily reversed when cells were cultured under serum-containing adherent conditions. 

 
Figure 4.2.6: Mean CSFE Values for NSA Replating Experiments of PA Cells over five Passages 

The CSFE values for direct replating of spheroids grown in the NSA are reduced compared to initial CSFE but 
relatively constant over 5 passages. 
Mean values of CSFE were calculated for direct NSA replating of PA cells at passage 28-31 for 5 passages. The 
following numbers of values were used for calculations of mean: initial (n = 9), P1 (n=7), P2 (n=4), P3 (n=2), P4 
(n=3), P5 (n=1). One experiment in passage 3 was not considered because of too high a number of cells seeded. 
Error bars: standard deviations. 
CSFE: clonal spheroid-forming efficiency, NSA: „Neurosphere Assay“, P: passage number, PA:  parental cell line. 

Besides CSFEs determined for spheroids grown in bulk culture from the different cell lines, also the 

replating efficiency from spheroids grown in the NSA from PA cells was evaluated. The results of 

experiments comprising 5 passages of NSA-replating rounds are shown in figure 4.2.6. Compared to 

initial CSFEs with mean values of 8±3%, the replating efficiencies of PA cells were slightly reduced but 

relatively constant over the 5 passages investigated, resulting in a mean for all replating rounds of 

4±2%. The values were quite similar to the values seen for spheroid cell lines at early passages, 

which indicates that NSA and bulk culture conditions were not quite different regarding quantity of 

selection/enrichment of stem like cells in the first passages, although the cell numbers seeded in the 

NSA were much lower than those used for bulk culture passaging. 
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4.3 Soft Agar Assay (SAA) 

The soft agar assay (SAA) is a method to determine single cell growth under non-adherent culture 

conditions. Since the conditions of the assay allow only growth of cells with typical characteristics of 

tumor cells, namely high proliferative potential and insensitivity to improper cell-cell/cell-matrix 

contacts, the assay is frequently used as in vitro method for possible tumorigenic potential of cells. 

The standard SAA is performed in a semi-solid matrix of agarose polymer with serum-containing 

medium. By using serum-free medium with identical composition to that used for spheroid culture (SC-

Medium), a further constraint on cell growth is added, and the assay conditions are similar to those 

used for the „Neural Colony-Forming Cell Assay“ (NCFCA)244, which was proposed to be more 

suitable for calculation of stem cell content than the NSA. Thereby large colonies are assumed of 

being derived of stem cells, whereas small colonies are thought of being formed from progenitor cells. 

To determine the growth capacity in SAA, the different cell lines (PA, SP, CS1, CS7, A-SP, A-CS1, 

A-CS7) were seeded at various starting numbers (2x103-5x104) per well in 6-well cell culture plates (at 

least in duplicate, usually in triplicate) in 0.6% (w/v) agarose in either serum-containing medium or SC-

Medium and were allowed to grow for 4-5 weeks with regular medium exchange. To visualize the 

colonies, the plates were stained with crystal violet solution and magnified pictures were taken. Colony 

count was performed on defined sections of the plate using the particle count modus of the software 

ImageJ, with the size inclusion set to a colony diameter of >100 µm. From the program output the 

colony-forming efficiency (CFE) for every well and average particle sizes were calculated. 

The results obtained are summarized using mean values of all experiments performed for one 

condition with one cell line in table 4.3.1 and depicted in figure 4.3.1. Since no significant difference 

was seen between the values obtained for CS1 and CS7 cell lines they were summarized to “CS” in 

these reports.  

 
Figure 4.3.1: Comparison of CFEs and Colony Sizes of Different Cell Lines and Media in SAA 

Mean values calculated for colony forming efficiencies (CFEs, left) and colony diameters (right) from all 
experiments for cell lines PA, SP, A-SP, and CS (CS1 and CS7) in different passages. The number of assays 
performed in duplicate or triplicate used for calculations and the range of passage numbers assayed for the 
different cell lines are specified in table 4.3.1, respectively. Only colonies >100 µm diameter were counted and 
used for further calculations. Values for SP and A-SP CFEs were significantly different from those of the other cell 
lines. Mean colony sizes of SP, A-SP and CS cell lines grown in SC-Medium were found to be significantly 
different from mean colony sizes of these cell lines grown in serum-containing medium. Error bars: standard 
deviation.  
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Table 4.3.1: Mean CFEs and Colony Sizes of Different Cell Lines and Conditions in SAA 

ACC: adherent culture conditions, A-SP: SP cells grown under ACC, CFE: colony-forming efficiency, CS: clonally 
expanded spheroid cells derived from PA (CS1/CS7), P: passage number, PA: parental cell line, SAA: soft agar 
assay, SP: spheroid cells derived from PA, w: weeks 

In the assay also no correlation of results with passage number of the cells was observed. Due to the 

method’s inherent inaccuracy, the results obtained in different experiments showed relatively high 

variations, but these were within magnitudes to reliably detect differences between the investigated 

cell lines. Representative magnified sections of crystal violet stained SAA wells from different cell lines 

and culture conditions are shown in figure 4.3.2. There it can be seen clearly that the growth potential 

of different cell lines in the two media used in SAA varied considerably.  

In serum-containing medium the growth potential of PA and CS cell lines was similar in the range of 

1% of cells being able to grow and form small colonies with about 100-150 µm in diameter. In contrast, 

the SP cell line did show markedly (in the order of one magnitude) higher growth potential under these 

conditions, which was accompanied by significantly larger colony sizes seen in this cell line. 

The number of cells being able to grow in SCC was reduced by the factor 2-3 in all cell lines. Whereas 

the size of colonies grown from PA cells did not change significantly under these conditions, the 

spheroid cell lines gave rise to considerably larger colonies, with highly variable sizes under SCC 

compared to serum-containing conditions.  

Interestingly, similar to results obtained in NSA, the growth capacity of SP cells was retained even 

after long-term culture of the cells under ACC. A-SP cells derived of different passages of spheroids 

and grown for different periods (up to 38 weeks) under ACC showed almost identical growth potential 

than the parental spheroid cell line. A-CS cell lines (A-CS1 and A-CS7) were only assayed once in the 

SAA and results obtained were similar to that seen for respective CS spheroid cell lines.  
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Figure 4.3.2: Results of Different Cell Lines in Serum-Containing and SC-Medium in SAA 

Growth potential of SP cell line in soft agar assay was significantly higher than that of PA and CS cell lines and 
colonies grown from spheroid cell lines in SC-Medium were significantly larger than colonies grown in serum-
containing medium.  
Magnified sections of representative single soft agar wells stained with crystal violet. The respective numbers of 
cells seeded per well are indicated in black. Scale bar: 2.5 mm. Upper line: PA (P55), SP (P47), and CS7 (P41) 
cells grown for 4.5 weeks in soft agar with serum-containing medium. The calculated colony-forming efficiencies 
(CFE) are indicated in red. Lower line: PA (P55), SP (P50), and CS7 (P93) cells grown for 4.5 weeks in soft agar 
with SC medium. The calculated colony-forming efficiencies (CFE) are indicated in blue. Results shown are 
representative (within assay variations) for the respective cell lines PA (n = 35, P29-123), SP (n= 41, P10-109), 
and CS7 (n = 13, P6-101). Results for CS7 are representative also for CS1 cell line (n = 13, P14-100) and CS cell 
lines grown under ACC for 8 weeks: A-CS1 (P14), A-CS7 (P12). Results for SP are also representative for SP cell 
lines in different passages (P14, 30, 41, 79, 87) grown for 2-38 weeks under ACC: A-SP (n = 12, P16-109). 
ACC: adherent culture conditions, A-CS: CS cells grown under ACC, A-SP SP cells grown under ACC, CFE: 
colony-forming efficiency, CS: clonally expanded spheroid cells derived from PA, P: passage number, PA: 
parental cell line, SAA: soft agar assay, SP: spheroid cells derived from PA, w: weeks 
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4.4 In vitro Differentiation 

A hallmark feature of stem cells is their ability to generate differentiated cells with diverse functions.  

To test for this ability, the different cell lines to be tested were cultured under cell culture conditions, 

which have been shown to induce adipogenesis or osteogenesis in MSC.  

4.4.1 Osteogenic Differentiation 

To assess osteogenic differentiation potential, the different cell lines were seeded in 12-well plates in 

osteogenic induction medium (2 wells per cell line and assay) or control medium (1-2 wells per cell line 

and assay), which lacked the osteogenic inducers dexamethasone and β-glycerophosphate. The cells 

were cultured with regular medium exchange until signs of calcium phosphate depositions became 

visible. The periods varied in different experiments and between different cell lines between 3-5 

weeks. The cells were fixed and stained with Alizarin Red S to visualize the calcium phosphate 

depositions as red complexes. In two experiments also the van Kossa staining method was applied, in 

which silver deposits are indicative for calcium ions. Both methods resulted in similar staining qualities 

of the samples assayed in parallel. Representative results from different cell lines, as seen in 

microscopic inspection after Alizarin Red S staining are shown in figure 4.4.1. 

The highest osteogenic potential was observed in the SP cell line, which showed strong staining 

intensities after Alizarin Red S staining in all experiments (n= 31, P5-91). Similar results were obtained 

for SP cells cultured for different time points under ACC (n=3: A-CS-P30, P50-P94, 7-30 weeks ACC, 

and A-SP-P36, P40, 3 weeks ACC). Of note is that the observed differentiation potential was similarly 

high in low and high passage number cells assayed.  

For PA cell line the results varied between experiments. In half of the samples (n=17, P28-P125) 

calcium phosphate deposits were seen at least in some regions of the wells or filling the complete well 

similar to the pattern seen for SP cells, thereby indicating osteogenic induction, whereas in the other 

half (n=16, P28-P119) of the assays no considerable staining with Alizarin Red S was seen. In some 

experiments also one of the duplicate wells showed positive red staining parts, whereas in the other 

well no staining was seen. The reason for this is not clear, since for example no correlation of this 

behavior with passage number or with time of induction before staining was seen. 

CS7 cell line (n = 4, P52-97), in all experiments showed positive staining of calcium phosphate 

deposits in some regions of the wells, with overall staining compared to SP cell line being obviously 

reduced. A similar staining pattern was seen in two experiments performed with A-CS7-P6 cell line 

(P53/P56), which were cultured for 37/40 weeks under ACC. 

The results show that SP, PA and CS7 cell lines, albeit at various degrees, seem to possess 

osteogenic differentiation potential. In few experiments slight positive staining was seen also in control 

samples, which might indicate spontaneous differentiation of the cells toward osteogenic lineage. 

In contrast, the CS1 cell line did not show signs for osteogenic differentiation under the applied 

conditions, indicated by lack of any red staining for Alizarin Red S calcium complexes in the 

experiments performed (n=11, P5-98). Similarly, also A-CS1-P7 cell line showed no staining when 

assayed in two experiments (P53/P58, 31/40 weeks ACC). 
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Figure 4.4.1: Osteogenic Differentiation of Different Cell Lines 

SP, PA and CS7 cell lines show osteogenic differentiation potential. 
Microscopic pictures of Alizarin Red S stained PA (P121), SP (P87), CS1 (P98), and CS7 (P97) cells grown for 3 
weeks under osteogenic differentiation conditions (right panel) or control conditions (left panel). Red staining of 
calcium phosphate depositions indicates osteogenic differentiation. Scale bar: 100 µm. Results shown are 
representative for the respective spheroid cell lines SP, CS1, and CS7 as well as for these cell lines cultured 
under ACC. Results for PA cell line varied considerably and staining pattern as indicated above for CS1 or SP 
were also seen there.  
ACC: adherent culture conditions, CS: clonally expanded spheroid cells derived from PA, PA: parental cell line, 
SP: spheroid cells derived from PA 
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Figure 4.4.2: Adipogenic Differentiation of Different Cell Lines 

SP, PA and CS1 cell lines show adipogenic differentiation potential. 
Microscopic pictures of PA (P85), SP (P53), CS1 (P65), and CS7 (P65) cells grown for 3 weeks under adipogenic 
differentiation conditions (middle and right panel) or control conditions (left panel). Adipogenic differentiation is 
indicated by appearance of characteristic lipid vacuoles, which are visible in unstained cells and red staining of 
lipid droplets after staining with Oil Red O. Scale bar: 100 µm. Left panel: unstained control samples. Middle 
panel: unstained adipogenic induced samples. Right panel: adipogenic induced samples stained with Oil Red O 
and hematoxylin (CS1 and CS7). Results shown are representative for the respective cell lines.  
ACC: adherent culture conditions, CS: clonally expanded spheroid cells derived from PA, PA: parental cell line, 
SP: spheroid cells derived from PA 
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4.4.2 Adipogenic Differentiation 

Adipogenic differentiation potential was assayed by culturing the different cell lines in 6-well or 12-well 

plates in adipogenic induction medium (2 wells per cell line and assay), which contained insulin, 

dexamethasone, indomethacin and IBMX as adipogenesis inducing agents. Negative control samples 

(1-2 wells per cell line and assay) were seeded in control medium without the supplements. The cells 

were cultured with regular medium exchange until morphologic changes, namely the formation of lipid 

vacuoles, which are characteristic for adipocytes, were clearly visible. Then, the cells were fixed and 

stained with Oil Red O to visualize the lipid droplet accumulations in bright red color. The induction 

periods varied in different experiments and for different cell lines between 2 and 4 weeks. Cell lines 

and passages assayed for adipogenic differentiation potential were the same as described for 

osteogenic differentiation. A difficulty in experimental procedures was, that cells easily detached from 

the culture vessel in the staining procedure, also the lipid droplets were very sensitive for the washing 

procedures applied, so that often only a reduced number of cells was applicable for inspection and 

only small dispersed red staining drops were seen clearly only under high magnification in the 

microscope. Because of the high magnification needed, adequate acquisition of staining results with 

the equipment used was difficult due to the color and light sensitivity of the camera, especially, when 

counterstaining with hematoxylin was performed. Attempts to quantify the adipogenic process by using 

a fluorescent dye or extraction of Oil Red O after staining were shown to be very intricate and did not 

give satisfactory results without disproportional effort. In figure 4.4.2 representative microscopic views 

of different cell lines induced for adipogenic differentiation before and after oil red staining are shown.  

The observed potential for adipogenic differentiation was quite dissimilar in the investigated cell lines.  

When PA and CS1 cell lines were cultured under adipogenesis inducing conditions, formation of small 

lipid vacuoles was observed in some regions of the wells. After Oil Red O staining, lipid droplets were 

visible in some fractions of the cells. The amount of stained cells was higher in PA cell line when 

compared to CS1 cell line, but varied in different experiments.  

The morphology of cells observed in SP cell line after adipogenic induction was different from PA and 

CS1 cell lines, in that large cells with high lipid vacuole content, resembling adipocyte morphology, 

were seen at varying numbers dispersed between normal epithelial cells. Single cells with similar 

adipocyte morphology as in differentiation experiments, were also seen in control experiments, 

indicating a tendency of spontaneous differentiation of SP cells into this line. As observed in 

osteogenic differentiation experiments, SP and CS1 cells that were cultured under ACC showed 

similar behavior like their parental spheroid cell lines also in adipogenic differentiation assays. 

In CS7 cell line morphologic changes implying adipogenic differentiation and red stained lipid droplets 

were either not observed under the applied conditions or only in single cells in all experiments. Rather 

in some experiments with this cell line, signs of osteogenic differentiation were observed. Strikingly, 

when CS7 cells were cultured for long periods (31/40 weeks) under ACC, similar adipogenic potential 

to CS1 and PA cell lines was observed, implying, that lack of adipogenic differentiation in the parental 

spheroid cell line might be due to improper differentiation conditions for these cells. 

In summary, the differentiation experiments showed that SP cells seemed to posses the highest 

differentiating capacity toward both lineages, whereas, although a differentiation capacity toward both 
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lineages was observed also in PA cells, this seemed to be reduced or impaired in this cell line, 

compared to SP. In contrast, for CS cell lines only reduced differentiation capacity was seen to either 

one of the two lineages respectively, with CS1 showing adipogenic potential only and CS7 showing 

preference of osteogenic differentiation. Since the results of differentiation experiments showed high 

overall variations, the number of experiments performed with CS cell lines was not sufficient to be 

regarded as significant. Since also no further optimization and quantitation experiments were 

performed, the results obtained here can be regarded as a rough estimation of differentiation potential 

of the cells, only. 

4.4.3 Expression of Differentiation Markers 

To substantiate differentiation results observed by histologic staining methods, also expression of 

genes, which are known to be preferentially expressed in adipocytes or osteoblasts, was assayed by 

semi-quantitative RT-PCR. Adiponectin (APM/ADIPOQ), and sterol regulatory element binding 

transcription factor 1 (SREBF1/SREBP1) were selected from the list of known adipocyte expressed 

genes; osteocalcin (OC), RANK-ligand/TNFSF11 (RL) and RUNX2 were selected from the known 

genes expressed in osteoblasts. 

SP cells, which had shown to possess the highest differentiation potential toward both lineages, were 

used for this purpose. The cells were grown under adipogenic or osteogenic differentiation conditions 

for 3 weeks and RNA was extracted. Equal amounts of RNA were used for RT-PCR reactions and the 

resulting cDNA was used also at equal amounts for PCR reactions with primers specific for the 

transcripts of interest. HPRT served as housekeeping gene control. Equal amounts of the PCR 

reaction products were separated and visualized on 1.5% agarose gels, to allow a rough comparison 

of their expression. 

A comparison of resulting bands of adipogenically induced (AI) and osteogenically induced (OI) 

samples, which were processed in parallel, is depicted in figure 4.4.3. 

 
Figure 4.4.3: Evaluation of Expression of Differentiation Markers in Induced Cells by RT-PCR 

Comparison of agarose gel lanes obtained for different transcripts amplified by RT-PCR in SP cells grown under 
adipogenic (AI) or osteogenic (OI) inducing conditions.  
Column 1: gene name, column 2: length of PCR product, column 4: mode of induction, column 5: respective 
agarose gel bands. SREBF1 and RUNX2 were analyzed separately. For each separate analysis (discreted by 
thick lines) result for the housekeeping control gene (HPRT) are indicated at the rightmost columns. 
ADIPOQ: adiponectin, AI: adipogenic induction, BGLAP: bone gamma-carboxyglutamate protein/osteocalcin, bp: 
base pairs, HPRT: hypoxanthine phosphoribosyltransferase 1, OI: osteogenic induction, RUNX2: runt related 
transcription factor 2, SREBF1: sterol regulatory element binding transcription factor 1, TNFSF11: tumor necrosis 
factor superfamily member 11 Rank-ligand 

The only gene for which a clear difference in expression between both samples was observed is 

adiponectin (ADIPOQ), which was expressed, as expected, at markedly higher level in adipogenically 
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induced cells. Since expression of this molecule is relatively specific for adipocytes, this result seems 

to confirm adipogenic differentiation of the cells.  

Expression of the other assayed genes was detected in both samples at low level, with no significant 

differences being observed between AI and OI cells, rather, contrary to expectations, slightly higher 

expression of osteogenic transcription factor RUNX2 was seen in AI cells, whereas adipogenic 

transcription factor SREBF1 seemed to be expressed at slightly higher amounts in OI cells. This might 

indicate osteogenic differentiation also in AI and/or low specificity of the chosen markers. 

4 5 Alkaline Phosphatase Activity and Expression 

4.5.1 Histological Staining for Alkaline Phosphatase Activity 

High expression and activity of alkaline phosphatase is used as a marker for undifferentiated ESC. But 

activity of alkaline phosphatase is also observed in osteogenically differentiated cells and used as a 

marker for osteogenic differentiation potential. Activity of alkaline phosphatase was evaluated by 

histological staining, using Naphthol-AS-MX-phosphate as a chromogenous substrate for the enzyme.  

SP, CS and PA cell lines, were grown for 2 weeks in 12 well plates as adherent cell layers in AC-

Medium and assayed for alkaline phosphatase activity. Microscopic pictures showing results of AP 

staining are depicted in figure 4.5.1. In SP cell line on top of the monolayer spheroid like cells forming 

from the monolayer, showed high staining intensity when assayed for alkaline phosphatase activity, 

whereas in all other cell lines tested (PA, CS1, CS7) no staining was observed. 

 
Figure 4.5.1: Alkaline Phosphatase Activity in Different Cell Lines 

High alkaline phosphatase activity is detected in SP cells growing non-adherent on top of the monolayer under 
ACC, whereas no alkaline phosphatase activity is detected in PA or CS cell lines grown under the same 
conditions. 
Microscopic pictures of PA (P66), SP (P59), CS1 (P70) cells grown for 4 weeks under ACC and assayed for 
alkaline phosphatase activity. Results shown for CS1 are also representative for CS7 (P69). Scale bar: 100 µm. 
ACC: adherent culture conditions, CS: clonally expanded spheroid cells derived from PA, PA: parental cell line, 
SP: spheroid cells derived from PA 

Alkaline phosphatase activity was also assayed in SP cells, which were grown for 2 weeks under 

conditions inducing osteogenic differentiation or under control conditions. Representative microscopic 

pictures showing the staining pattern of the cells are shown in figure 4.5.2. In cells grown under control 

conditions, again red stained, non-adherent cells were observed. In osteogenically induced samples 

Alkaline Phosphatase Activity in Different Cell Lines 

SP Cells CS1 Cells PA Cells 
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red staining of single adherent cells with osteoblast-like morphology was observed, which further 

substantiates the observed osteogenic differentiation potential of the cells. 

 
Figure 4.5.2: Alkaline Phosphatase Activity in SP Cells after Osteogenic Induction 

After osteogenic induction of SP cell line, AP activity is detected in adherent cells with osteoblast-like morphology. 
Microscopic pictures of SP cells grown for 2 weeks under osteogenic differentiation conditions (right panel) or 
control conditions (left panel) assayed for alkaline phosphatase activity. Scale bar: 100 µm. 
AP: alkaline phosphatase, PA: parental cell line, SP: spheroid cells derived from PA 

4.5.2 Intracellular Expression of Tissue Nonspecific Alkaline Phosphatase (TNAP)  

Intracellular expression of the tissue nonspecific alkaline phosphatase (TNAP), which is known to be 

expressed by stem cells (ESC, BM-MSC) was assayed once by intracellular IFC measurements on 

the four cell lines PA, SP, CS1 and CS7 as well as on A-CS1 and A-CS7 cells. For intracellular 

measurements cells were fixed and permeabilized using the „FOXP3 Transcription Factor staining Kit“ 

and subsequently stained with PE-conjugated antibody for detection of TNAP. No live cell 

discrimination using 7-AAD was applied. Results obtained are depicted in figure 4.5.3. Expression of 

the enzyme was detected in PA, CS and A-CS cell lines with similar low expression level. Compared 

to all other cell lines, TNAP seemed to be expressed at higher levels and with broader distribution in 

SP cells in this measurement. 

4.5.3 Surface Expression of Tissue Nonspecific Alkaline Phosphatase (TNAP) 

Also cell surface expression of TNAP on the four cell lines PA, SP, CS1 and CS7 was evaluated by 

standard flow cytometric measurements. On PA and CS cell lines no extracellular expression was 

detected, while on SP cells a slight shift in staining compared to isotype control sample was observed 

with a small number of cells seeming to express TNAP at low level on the surface. This is consistent 

to the higher expression level seen in intracellular measurements for this cell line. But the results 

varied between single measurements. About 10% TNAP positive cells were detected in 5 of 10 SP cell 

samples, whereas the other 5 samples showed similar staining pattern to PA or CS cells. No 

statistically significant correlation could be detected for this variation with the available number of data, 

although data hint to a lower expression in cells with very high passage numbers. In figure 4.5.4 

examples of the two different staining patterns seen on SP cells from one measurement performed 
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with cells at different passage numbers are depicted, of which the negative staining pattern also 

exemplifies the staining pattern seen on PA and CS cells. 

 
Figure 4.5.3: Intracellular IFC-Staining of Alkaline Phosphatase TNAP 

PLAP is expressed in all investigated cell lines at similar intermediate level. TNAP expression is detected at low 
level in PA, CS and A-CS cell lines, whereas SP cells show higher expression of the enzyme. 
Flow cytometric immunophenotyping (IFC) of cells stained with AF660 conjugated antibody for detection of PLAP 
and PE conjugated antibody for detection of TNAP. Comparison of PA, SP, CS1, CS7 and A-CS1, A-CS7 cells. 
Histogram of % Max (events) vs. fluorescence intensity, overlay of isotype control (blue) and sample (red). 
ACC: adherent culture conditions, AF660: AlexaFluor® 660, A-CS: CS cells cultured under ACC, CS: clonally 
expanded spheroid cells derived from PA, FL2/4-H: fluorescence channel signal intensity, PA: parental cell line, 
PE: phycoerythrin, PLAP: placental alkaline phosphatase, SP: spheroid cells derived from PA, TNAP: tissue 
nonspecific alkaline phosphatase 

 
Figure 4.5.4: IFC-Staining Pattern for Cell Surface Expression of TNAP on SP Cells 

Representative results of the two different staining patterns observed in flow cytometric immunophenotyping (IFC) 
of SP cells stained with PE conjugated antibody for detection of TNAP.  
Example of negative staining pattern of SP in P77 representing also the staining pattern seen on PA and CS cells 
and different passage numbers of SP cells (P59, P70, P77, P102, P112)  
Example of positive staining pattern of SP cells in P37 seen on 5 of 10 samples from SP cells from different 
passage numbers (P37 2x, P58, P70, P72). 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity, overlay of isotype control (blue) and sample (red), legend: 
geometric mean of fluorescence intensity. 
CS: clonally expanded spheroid cells derived from PA, FL2-H: fluorescence channel signal intensity, IFC: flow 
cytometric immunophenotyping, PA: parental cell line, PE: phycoerythrin, SP: spheroid cells derived from PA, 
TNAP: tissue nonspecific alkaline phosphatase 
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4.6 Evaluation of Expression of CSC Markers by Flow Cytometric Immunophenotyping (IFC) 

Surface expression of several antigens, which are known to be TIC markers for several solid tumors, 

was evaluated by flow cytometric immunophenotyping. In table 4.6.1 an overview of expression of the 

evaluated antigens on different types of cancer, stem cells and other cell types is given. Several of the 

molecules expressed by MSC, are also expressed by and used as markers for endothelial cells. 

 

 

  
Table 4.6.1: Overview of Expression of Evaluated CSC Markers in Different Cells and Tissues 

★ Expression of markers in adult SC and adult tissues predominantly based on Kim et al 60 and other literature 
cited in this work (not supposed to be complete). 
AT: adipose tissue, BC: breast cancer, BBB: blood-brain barrier, Card: cardiac stem cells, CD: cluster of 
differentiation, CRC: colorectal carcinoma, CSC: cancer stem cells, CXCR: C-X-C chemokine receptor, EMT: 
epithelial-to-mesenchymal transition, Endo: endothelial cells, EpCAM: epithelial cellular adhesion molecule, ESC: 
embryonic stem cells, Gli: Glioma, HCC: hepatocellular carcinoma, HIF: hypoxia inducible factor, HNSCC: head 
and neck squamous cell carcinoma, HSC: hematopoietic stem cells, IESC: intestinal epithelial stem cells, LC: 
lung carcinoma, MCAM: melanoma cell adhesion molecule, MSC: mesenchymal stem cells, NCAM: neural cell 
adhesion molecule, NGFR: nerve growth factor receptor/low affinity nerve growth factor receptor, NSC: neural 
stem cells, PanC: pancreas carcinoma, PC: prostate cancer, PSC: prostate stem cells, RCC: renal cell 
carcinoma, SC: stem cell, SSEA: stage-specific embryonic antigen, TC: teratocarcinoma 
 
All measurements were performed with single cell suspensions prepared with AccuMax™ cell 

dissociation reagent and 7-AAD staining prior to measurement, to exclude dead cells in the following 

analysis. The cell lines PA, CS1, CS7, SP and A-CS1, A-CS7, A-SP at different passages, were either 

obtained by continuous culture of the cells or by thawing cells, that were frozen at different time points. 

For the cell line CE1 for some of the antigens less data were available than for the other cell lines. 

  

✚ positive
¢ negative

✚/¢ variying
(✚) low expression
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4.6.1 Marker with Low Variation in Expression on Different Cell Lines and Passages 

Some of the assayed markers showed only slight variations in expression between different cell lines 

tested as well as over time in culture of the cells. Representative results for staining of these markers 

on PA cell line, which are also representative for SP and CS7 cells, and with exception of CD44 

(hyaluronate receptor) and EpCAM (epithelial cellular adhesion molecule) for CS1 cells in high 

passage number (see chapter 4.6.5), are depicted in figure 4.6.1. Also no change in expression of 

these markers was seen in A-CS and A-SP cells. 

 
Figure 4.6.1: Representative Results for IFC-Staining of Markers Showing Low Variability 

EpCAM, CD44, CD24 and CD29 showed similar low-varying high staining intensities on all cell lines. CD49f 
staining was low on all cell lines. No staining was detected for CD90 in all cell lines. 
Flow cytometric immunophenotyping (IFC) of PA cells stained with different antibodies: EpCAM-APC (P62), 
CD29-PE (P38), CD44-FITC (P38), CD24-FITC (P38), CD29f-FITC (P38), CD90-APC (P33). Results are 
representative for all tested cell lines and passages (except CS1: CD44/EpCAM, see chapter 4.6.5). 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity, overlay of isotype control (blue) and sample (red). 
APC: allophycocyanin, CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, 
EpCAM: epithelial cellular adhesion molecule, FITC: fluorescein isothiocyanate, FL1/2/4-H: fluorescence channel, 
FSC-H: forward scatter, PA: parental cell line, PE: phycoerythrin 

EpCAM expression was measured with two different antibodies. The APC conjugated antibody 

showed very high staining intensities on all cells, whereas the signal of FITC conjugated antibody 

gave much weaker signals. EpCAM was expressed at very similar levels (dependent on antibody 

used) on all cell lines and passages investigated. An exception was the CS1 cell line, on which 

reduced and variable EpCAM staining was observed over time in culture (see figure 4.6.25). 

Similar results, also concerning expression on CS1 cell line (see figure 4.6.26), were obtained for 

CD44 staining, for which a FITC conjugated antibody with resulting high staining intensities was used. 

For staining of CD24 with a FITC conjugated antibody a similar staining profile with intermediate 

staining intensities was seen in all cell lines and passages. 

Expression of CD29 (integrin β1) was assayed with a PE conjugated antibody, which resulted in 

constantly high signal intensities in the different cell lines at various tested passages. 

In contrast, CD49f (integrin α6) was detected only at low levels on all cell lines with the used FITC 

conjugated antibody. 
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No staining was observed in any of the tested cell lines for CD90 antigen, which is a defining marker 

for MSC, although 3 different antibodies were used and in addition also staining with secondary 

antibody was performed. To exclude possible degradation of the CD90 antigen by AccuMax™ 

treatment, cells were also detached and/or dissociated using TNE-buffer. But also these experiments 

did not show any staining of the cells with the CD90 antibodies.  

4.6.2 Marker with Reduced Expression in Spheroid Cell Lines Compared to PA Cell Line 

Some of the assayed markers showed reduced expression on spheroid cell lines compared to PA cell 

line. To test whether these changes were possibly induced by different culture conditions, these 

markers were also evaluated in spheroid cell lines grown under ACC. Since spheroid culture 

conditions have been shown to enrich for TIC and SC, markers that are expressed to a lesser extent 

on these cells do not seem to be suitable markers for direct enrichment of TIC from the PA cell line. 

4.6.2.1 CD146 - Melanoma Cell Adhesion Molecule - (MCAM) 

CD146 (MCAM), which is usually expressed on mesenchymal as well as on epithelial cells and has 

been found to be a marker for adult renal progenitor cells, was expressed at low level in the PA cell 

line with a mean of 25% low positive staining cells and a very slight shift of the cell population towards 

higher fluorescence intensity compared to isotype control samples seen with the FITC conjugated 

antibody used. Compared to PA cells, SP cells showed reduced expression of the marker with a mean 

of 5% positive cells, whereas on CS cells only single cells showed slight staining for the marker. 

Representative results for CD146 staining of the cell lines PA, SP and CS (CS1 and CS7) are shown 

in figure 4.6.2. 

 
Figure 4.6.2: IFC-Staining of CD146 (MCAM) on Different Cell Lines 

CD146 staining is observed on PA and SP cell lines with low staining intensity, but not on CS cell lines. 
Flow cytometric immunophenotyping (IFC) of cells stained with FITC conjugated antibody for detection of CD146 
antigen. Representative results for PA (n=23, P28-117), SP (n=11, P18-80), and CS cell lines CS1 (n=2, P18-
P21) and CS7 (n=8, P10-P90). Passage of cells indicated in blue. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity, overlay of isotype control (blue) and sample (red). 
CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, FITC: fluorescein 
isothiocyanate, FL1-H: fluorescence channel 1, FSC-H: forward scatter, FITC: fluorescein isothiocyanate, MCAM: 
melanoma cell adhesion molecule, P: passage number, PA: parental cell line, SP: spheroid cells derived from PA 

In contrast to the very low expression on spheroid cell lines, CD146 was rapidly and clearly induced, 

when spheroids were grown under ACC, as can be seen in figure 4.6.3. Thereby the CS cell lines, 

which under ACC show almost no staining for the antigen, express the molecule after long-term 

culture under ACC at even higher level (mean of both cell lines CS1 and CS7 was 40% positive cells) 

than PA cells. The markedly higher expression of CD146 in A-SP cells readily decreased after re-
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culturing the cells under SCC in SP cells. This implies that CD146 expression is induced in spheroid 

cell lines either by serum or adherence of the cells. Another possibility of enhanced expression would 

be epithelial differentiation of the cells, when cultured under ACC. But the rapid decrease of 

expression points rather to a culture-condition dependent variation than to a differentiation process. 

Variations of CD146 Expression with Culture Conditions 

 
Figure 4.6.3: Comparison of CD146 Expression on Spheroid Cell Lines Grown under SCC or ACC 

Expression of CD146 increases in spheroid cell lines under ACC and decreases after re-culturing under SCC. 
Flow cytometric immunophenotyping (IFC) of cells stained with FITC conjugated antibody for detection of CD146 
antigen. Comparison of CS1, CS7 and SP cell lines in different passages (indicated in blue) representing parental 
spheroid cell lines at similar time point of measurement. Results are representative for A-CS7-P6/66 (n=3, P57-
83, 2-40 w ACC), A-SP-SC (n=3, 1.5 w SCC, and A-CS7-SC n=1). For CS1 no further results are available. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity, overlay of isotype control (blue) and sample (red).  
ACC: adherent culture conditions, A-CS: CS cells grown under ACC, A-SP: SP cells grown under ACC, CD: 
cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, FITC: fluorescein isothiocyanate, 
FL1-H: fluorescence channel 1, FSC-H: forward scatter, MCAM: melanoma cell adhesion molecule, P: passage 
number, PA: parental cell line, SP: spheroid cells derived from PA, w: weeks 
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4.6.2.2 CD106 (Vascular Cell Adhesion Molecule 1 - VCAM-1) 

CD106 (VCAM-1), which is similar to CD146 expressed on mesenchymal as well as on epithelial cells, 

was expressed at low level on a fraction of 10-50% of cells of the PA cell line with a mean of 22% 

positive staining cells seen with the PE conjugated antibody used. By contrast, no expression of this 

molecule was seen on the spheroid cell lines SP, CS1 and CS7. Representative results for CD106 

staining of the cell lines are depicted in figure 4.6.4. 

 
Figure 4.6.4: IFC-Staining of CD106 (VCAM-1) on Different Cell Lines 

CD106 staining is seen in a subpopulation of PA cell line, whereas no staining is observed in spheroid cell lines. 
Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of CD106 
antigen. Representative results for PA (n=16, P29-130), SP (n=21, P17-115), and CS cell lines CS1 (n=6, P8-
P96) and CS7 (n=13, P7-P95). Passage of cells indicated in blue. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity, overlay of isotype control (blue) and sample (red). 
CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, FL2-H: fluorescence channel 
2, FSC-H: forward scatter, P: passage number, PA: parental cell line, PE: phycoerythrin, SP: spheroid cells 
derived from PA, VCAM: vascular cell adhesion molecule 

Similar to CD146, CD106 expression increased when spheroids were grown under ACC. Three 

example experiments are shown in figure 4.6.5. As can be seen, the fraction of CD106 positive cells, 

as well as the time course of expression of the molecule after ACC culture varied highly between 

different assayed cell lines. Whereas the increase in low passage spheroid cells seemed to be faster 

and resulting in a higher portion of CD106 positive cells, in cells cultured at later passage under ACC, 

the increase in CD106 expression appeared at later time points and fewer cells stained positive for the 

marker. Upon re-culturing under SCC, the expression of CD106 was clearly reduced in all tested cell 

lines (n=4). Due to the high variability, the data obtained are not sufficient to gain a clear picture of 

CD106 expression on the tested cell lines. 
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Variations of CD106 Expression with Culture Conditions 

 
Figure 4.6.5: Comparison of CD106 Expression on Spheroid Cell Lines Grown under SCC or ACC 

Expression of CD106 is observed at variable degrees in spheroid cell lines cultured under ACC and decreases 
after re-culture under SCC. 
Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of CD106 
antigen. Comparison of CS7 and SP cell lines in different passages (indicated in blue) representing parental 
spheroid cell lines at similar time point of first measurement with A-CS7 and A-SP cells cultured for the indicated 
time under ACC. A-SP-SC cells were cultured for the indicated periods under ACC before re-cultivation under 
SCC for indicated periods before measurement. Results for A-SP-P54 are similar to results for A-SP-P63 and A-
CS7-P66, and results for A-SP-P14 are similar to A-SP-P36. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity, overlay of isotype control (blue) and sample (red). 
CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, FL2-H: fluorescence channel 
2, FSC-H: forward scatter, P: passage number, PA: parental cell line, PE: phycoerythrin, SP: spheroid cells 
derived from PA, VCAM: vascular cell adhesion molecule 
 

4.6.2.3 CD105 (Endoglin) 

CD105 (Endoglin) is a marker for MSC and has been found to be a suitable marker for CSC from RCC 

tumors and cell lines. Representative results for staining of the different cell lines PA, SP and CS (CS1 

and CS7 in low to intermediate passage numbers) with PE-conjugated antibody against CD105 are 

shown in figure 4.6.6. In PA cells an intermediate staining pattern, showing equal distributions with 

almost all cells being positive for CD105 expression was observed, which in contrast to spheroid cell 

lines also did not show significant variation with time of culture of the cells. In spheroid cell lines 

variations in expression of CD105 were seen over time in culture, which is illustrated in figure 4.6.7.  
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Figure 4.6.6: IFC-Staining of CD105 (Endoglin) on Different Cell Lines 

Homogenous CD105 staining is seen on all cell lines, albeit with lower staining intensities in spheroid cell lines. 
Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of CD105 
antigen. Representative results for PA (n=15, P28-130), SP (n=22, P17-P84), and CS cell lines CS1 (n=6, P18-
P96) and CS7 (n=10, P10-P95) at low to intermediate passage numbers (see also figure 4.6.7). 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, FL2-H: fluorescence channel 
2, FSC-H: forward scatter, P: passage number, PA: parental cell line, PE: phycoerythrin, SP: spheroid cells 
derived from PA 

In SP cell lines the expression level of CD105 was reduced, compared to PA cell line, although the 

staining pattern showed similar distribution as for PA cells, with a clear shift of the whole population to 

higher values compared to isotype control. Over time in culture the expression seemed to be slightly 

reduced (see figure 4.6.7) in SP cells, as indicated by reduced shifting of the population compared to 

isotype control, with some variation seen in different experiments.  

Variations of CD105 Expression with Time of Culture as Spheroids 

 
Figure 4.6.7: CD105 Variations in Expression with Time of Culture of Spheroid Cell Lines 

CD105 expression is reduced on spheroid cell lines with time of culture under SCC and in CS cell lines a CD105 
negative cell population evolves. 
Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of CD105 
antigen on CS7 and SC cell lines in different passages (indicated in blue). Results are representative for cells at 
similar passage numbers. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
CD: cluster of differentiation, CS7: clonally expanded spheroid cells derived from PA, FL2-H: fluorescence 
channel 2, FSC-H: forward scatter, P: passage number, PA: parental cell line, PE: phycoerythrin, SP: spheroid 
cells derived from PA 
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In contrast to the equal distribution of CD105 staining on PA and SP cell lines, CS cell lines, especially 

CS7, seemed to contain a CD105-high and a CD105-low/negative cell population, which were clearly 

discernible after long-term culture under SCC (see figure 4.6.8). The phenomenon was observed for 

cells grown continuously (CS7-B) as well as for cell lines frozen at different passages as shown in 

(CS7-A), where P16 and P30 were derived of cells frozen at P6 and P69 and P90 were derived from 

cells frozen at P66. For CS7 the evolvement of a CD105 negative cell population was also seen in 

cells cultured for long-term under ACC (A-CS7-P6, P57, 40 weeks ACC), although the expression of 

CD105 under this conditions seemed to be more constant than in cells cultured as spheroids. The 

seemingly more stable expression of CD105 under ACC can also be seen from results obtained for 

CS1 cells cultured under ACC (A-CS1), which are depicted in figure 4.6.8, showing that CD105 

expression remained almost constant over 40 weeks under ACC, whereas the parental spheroid cell 

line showed marked reduction in CD105 expression. In this cell line the CD105-negative fraction was 

not as clearly visible and emerged at later passage (P64/96) than in CS7 cells. 

Variations of CD105 Expression with Culture Conditions in CS Cell Lines 

 
Figure 4.6.8: Comparison of CD105 Expression on CS Cell Lines Grown under SCC or ACC 

In CS cell lines over time a CD105-negative cell fraction evolves, which is more clearly visible in CS7 cell line. 
When cultured under ACC the expression of CD105 seems to be more stable than under SCC.  
Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of CD105 
antigen on CS1 and CS7 cell lines in different passages (indicated on top right) grown continuously (CS1, CS7-B) 
or cells frozen at passage 8 (P16, P30) or 64 (P69, P90) and grown for several weeks (CS7-A). A-CS1-P7 and A-
CS7-P6 cells were grown continuously under ACC for the indicated time from passage 7 and 6 respectively. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
ACC: adherent culture conditions, A-CS: CS cells grown under ACC, CD: cluster of differentiation, CS: clonally 
expanded spheroid cells derived from PA, FL2-H: fluorescence channel 2, FSC-H: forward scatter, P: passage 
number, PA: parental cell line, PE: phycoerythrin, w: weeks 



 

Results 

 

- 108 - 

Variations of CD105 Expression with Culture Conditions in SP Cell Line 

 

 
Figure 4.6.9: Comparison of CD105 Expression on SP Cell Lines Grown under SCC or AC 

Expression of CD105 on SP cells was either reduced under ACC and re-induced under SCC or remained 
constant even after long-term culture. 
Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of CD105 
antigen on Comparison of expression on SC cell lines in different passages (indicated in blue) representing either 
parental spheroid cell lines at start of ACC culture (P17, P40) or at similar time point of measurement (P39, P80, 
P20) and A-CS cells grown for the indicated time under ACC. Two sets of experiments with different results: A-
SP-P14 also representative for A-SP-P36 and A-SP-P54 in one experiment performed on cell lines thawed at 
different passage numbers, and A-SP-P30 and A-SP-P79 experiments performed on continuously grown cells. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
ACC: adherent culture conditions, A-SP: SP cells grown under ACC, CD: cluster of differentiation, FL2-H: 
fluorescence channel 2, FSC-H: forward scatter, P: passage number, PA: parental cell line, PE: phycoerythrin, 
SP: spheroid cells derived from PA, w: weeks 



 

Results 

 

- 109 - 

For SP cell lines, data obtained varied between different experiments, not only concerning the 

reduction of CD105 expression level with time of culture of the cells but also concerning changes of 

expression under ACC (see figure 4.6.9). Whereas in one set of experiments no significant changes 

were seen regarding CD105 expression, even after long-term culture under ACC (A-SP-P79 and P30), 

which was similar to the staining profile seen in A-CS1 cell line, in another set of experiments CD105 

expression was clearly reduced upon culturing the cells under ACC (A-SP-P14, also seen in A-SP-

P54). In this set of experiments also an increase of CD105 expression was seen, after re-culturing A-

SP cells under SCC for 9 days. The reason for these variations is not clear, which makes further 

experimental data necessary to understand the regulation of CD105 expression on these cells. 

4.6.2.4 CD243 (MDR1/ABCB1) 

Since CD243 (MDR1/ABCB1) seems do be the determining transporter for Rhodamine 123 in side 

population assay (see chapter 4.10), the expression of this molecule was measured by flow cytometry 

on cell lines PA, CS1, CS7, SP and A-CS1, A-CS7, A-SP in different passage numbers.  

Clear but variable expression of CD243 was detected on PA cells, with a clear shift in staining of the 

whole cell population compared to isotype controls (mean fold change geo mean = 3±1) resulting 

8-60% positive staining cells (mean 32%±14%). In SP cells the staining pattern was different in that 

only a fraction of cells stained positive (mean 8% positive cells), whereas most of the cells did not 

show expression of the marker. CS cell lines were negative for CD243 expression, with staining seen 

only on single cells (mean 1-2% positive cells). Representative results for staining with APC 

conjugated antibody against CD243 are shown in figure 4.6.10. 

 
Figure 4.6.10: IFC-Staining of CD243 (MDR1/ABCB1) on Different Cell Lines 

CD243 expression differs in PA and spheroid cell lines, with clear expression of CD243 in PA cells and reduced 
or lack of expression on SP and CS cells, respectively. 
Flow cytometric immunophenotyping (IFC) of cells stained with APC conjugated antibody for detection of CD243 
antigen on PA (P33), SP (P50) and CS - (CS1/7 -CS7 P36) cell lines. Representative results for PA (n=19, P28-
117), SP (n=8, P26-96), and CS cell lines CS1 (n=3, P8-P37) and CS7 (n=2, P7-36). 
Figure left: histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample 
(red) for FITC conjugated antibody stained cells. Figure right: scatter plot of fluorescence intensity vs. forward 
scatter (cell size) of „live cell population“ for APC conjugated antibody stained cells. 
APC: allophycocyanin, CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, FL4-
H: fluorescence channel 4, FSC-H: forward scatter, P: passage number, PA: parental cell line, SP: spheroid cells 
derived from PA 

Expression of CD243 was also evaluated on A-CS and A-SP cells. Under these conditions, CD243 

expression was seen in a higher fraction of the A-SP cells (mean 20%) compared to SP cell line and 

the same was observed for A-CS cell lines, which showed positive staining in about 15% of the cells. 

Results obtained from an experiment comparing the expression of CD243 on parental spheroid cells 

with A-CS/SP cells after one to two weeks under ACC are shown in figure 4.6.11.   
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Variations of CD243 Expression with Culture Conditions 

 
Figure 4.6.11: Comparison of CD243 (MDR1) on Spheroid Cell Lines Grown under SSC or ACC 

Expression of CD243 is induced in spheroid cell lines under ACC. 
Flow cytometric immunophenotyping (IFC) of cells stained with APC conjugated antibody for detection of CD243 
antigen. Comparison of CS1, CS7 and SP cell lines representing parental spheroid cell lines at similar time point 
of measurement with A-CS1, A-CS7 and A-SP cell lines grown for indicated time under ACC. Results for A-SP 
are representative for A-SP (n=8, A-A-SP-P30-84, 1-38 w ACC). For CS cell lines no further results are available. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
ACC: adherent culture conditions, A-CS: CS cells grown under ACC, APC: allophycocyanin, A-SP: SP cells 
grown under ACC, CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, FL4-H: 
fluorescence channel 4, FSC-H: forward scatter, MDR1 (multi drug resistant protein 1), P: passage number, PA: 
parental cell line, SP: spheroid cells derived from PA, w: weeks 
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4.6.3 Marker Expressed with Higher Staining Intensity on Spheroid Cells 

4.6.3.1 CD73 (Ecto-5-Nucleotidase) 

The enzyme CD73 serves as a marker for MSC and has recently been identified to be a TIC marker in 

RCC210 when expressed at high level. With the APC conjugated antibody used, CD73 was stained 

with high intensity on all cell lines. Though, the staining intensity was found to be significantly higher in 

SP cells compared to PA or CS cell lines. This as can be seen from the representative results 

obtained for CD73 staining shown in figure 4.6.12 and the diagram in figure 4.6.13 showing mean 

relative staining intensities for CD73. The staining pattern for CD73 of CS cell lines showed a broader 

distribution than those seen in PA and SP cells, ranging from CD73 low expressing cells to CD73 high 

expressing cells as were seen in SP cell line. 

 
Figure 4.6.12: IFC-Staining of CD73 (Ecto-5-Nucleotidase) on Different Cell Lines 

Flow cytometric immunophenotyping (IFC) of cells stained with APC conjugated antibody for detection of CD73 
antigen. Representative results for PA (n=5, P59-129), SP (n=6, P44-84), and CS cell lines CS1 (n=2, P64, P96) 
and CS7 (n=2, P37, P53). Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live 
cell population“. Figure right: histogram of % Max (events) vs. fluorescence intensity overlay of isotype control 
(blue) and sample (red). APC: allophycocyanin, CD: cluster of differentiation, CS: clonally expanded spheroid 
cells derived from PA, FL4-H: fluorescence channel 4, FSC-H: forward scatter, P: passage number, PA: parental 
cell line, SP: spheroid cells derived from PA 

 
Figure 4.6.13: Relative IFC-Staining Intensity of CD73 (Ecto-5-Nucleotidase) in Different Cell Lines 

Mean of fold change expression levels for CD73 stained samples. Number of samples: CS1 = 2, CS7 = 2, SP = 6, 
PA = 5. Fold change was calculated relative to respective isotype control: Fold change expression = GM CD73 
stained sample/GM isotype control stained sample. Error bars: standard deviation.  
APC: allophycocyanin, CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, IFC: 
flow cytometric immunophenotyping PA: parental cell line, SP: spheroid cells derived from PA 
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4.6.3.2 CD49e (Integrin α5) 

Integrin α5 is expressed on MSC and epithelial cells and serves as MSC marker. 

For detection of CD49e a PE conjugated antibody was used. The staining revealed a higher overall 

expression of CD49e on spheroid cell lines SP and CS7 compared to PA cell line. Additionally, in all 

cell lines an increase in CD49e staining intensity was observed with prolonged culturing of the cells. 

This is shown exemplary in figure 4.6.14.  

CD49e - Integrin α5 

 
Figure 4.6.14: IFC-Staining of CD49e (Integrin α5) in Different Cell Lines 

Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of CD49 
antigen. Representative results for PA (n=8, P34-129), SP (n= 12, P20-101), and CS7 (n=6, P14-90) cell lines. 
CS7 are also representative for CS1 (n=2, P40, P66)  
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, FL4-H: fluorescence channel 
4, FSC-H: forward scatter, PA: parental cell line, PE: phycoerythrin, SP: spheroid cells derived from PA 

CD49e staining was reduced in A-CS7 and A-SP cells compared to their parental spheroid cell lines, 

which is shown in figure 4.6.15. Also an increase in CD49e staining intensity after re-culturing 

adherently cultured spheroid cell lines under SCC was observed. Although the staining intensity was 

markedly reduced in A-CS7 and A-SP cell, the level measured after two weeks under ACC seemed to 

remain relatively constant over the assayed period of 13 weeks. 
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Variation of CD49e Expression with Culture Conditions 

 
Figure 4.6.15: Comparison of CD49e Expression on Spheroid Cell Lines Grown under SCC or ACC 

Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of CD49 
antigen. Comparison of CS7 and SP cell lines in different passages (indicated in blue) representing parental 
spheroid cell lines at comparable time point of first measurement with A-CS7 and A-SP cells cultured for the 
indicated time under ACC. A-SP-SC and A-CS7-SC cells were cultured for the indicated periods under ACC 
before re-cultivation under SCC for indicated periods. Results for A-SP-P54 are representative also for A-SP-
P14/P36/P87 and results for A-SP-P54-SC are representative also for A-SP-P14/P36 -SC. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
ACC: adherent culture conditions, A-CS7: CS cells grown under ACC, A-SP: SP cells grown under ACC, A-CS7-
SC: A-CS7 cells re-cultured under SCC, A-SP-SC: A-SP cells re-cultured under SCC, CD: cluster of 
differentiation, CS7: clonally expanded spheroid cells derived from PA, FL2-H: fluorescence channel 2, FSC-H: 
forward scatter, P: passage number, PA: parental cell line, PE: phycoerythrin, SCC: spheroid culture conditions, 
SP: spheroid cells derived from PA, w: weeks 
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4.6.4 Marker with Expression on Spheroid Cell Lines and Low or No Expression on PA Cells 

Several CSC markers were identified to be expressed on spheroid cell lines, but they were very rarely 

detected on PA cells. To test whether these changes were possibly induced by different culture 

conditions, these markers were also evaluated in spheroid cell lines grown under ACC.  

Since for direct enrichment of possible CSC from the PA cell line, markers have to be identified, which 

show only weak staining or staining of distinct cell populations on PA cell line and - assuming that 

sphere culture enriches for CSC - a more pronounced staining on spheroid cells, might render these 

markers possible candidates for enriching CSC directly from PA or RCC tissues. 

4.6.4.1 CD271 (Nerve growth factor receptor - NGFR/LNGFR) 

CD271 (Nerve growth factor receptor (NGFR)/low affinity nerve growth factor receptor (LNGFR)) has 

been shown to be an MSC marker as well as a promising CSC Marker for melanoma. For detection of 

CD271 three antibodies with different fluorochrome conjugation were used. With all three antibodies a 

very faint staining was observed with lowest levels seen with the FITC conjugated antibody. The same 

was true when staining was achieved by use of a secondary antibody against the primary mouse 

antibodies, which was done to exclude the possibility that the weak staining was due to problems with 

antibody conjugation. Although staining was very weak, in all experiments a slight shift of staining 

intensity compared to isotype control was seen in spheroid cell lines, indicating 5-15 % faintly positive 

cells. In the PA cell line only single positive cells (1-2%) were seen. No significant change of the 

staining pattern for CD271 was seen, when spheroid cell lines were cultured under ACC (A-CS, A-SP) 

for 2-16 weeks. Representative results for CD271 staining are shown in figure 4.6.16.  

 
 

Figure 4.6.16: IFC-Staining of CD271 (NGFR) in Different Cell Lines 

Flow cytometric immunophenotyping (IFC) of cells stained with APC conjugated antibody for detection of CD271 
antigen. Representative results for PA (n=11, P29-127), SP (n= 25, P16-117), CS1 (n=2, P8, P57) and CS7 (n=8, 
P7-90) cell lines: PA P51, SP P39, CS1 P8, and CS7 P9. CS1/7 are also representative for A-CS1/7 cells (n=2, 
P8, 9 1-2 w ACC/n=7, P7-71, 1-10 w ACC) and SP is also representative for A-SP cells (n=19, P14-87, 2-16 w 
ACC).  
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
APC: allophycocyanin, CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, 
FL4-H: fluorescence channel 4, FSC-H: forward scatter, PA: parental cell line, SP: spheroid cells derived from PA 
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4.6.4.2 CD56 (Neural Cell Adhesion Molecule - NCAM) 

CD56 (NCAM) expression has been shown on MSC subsets and the molecule seems to be correlated 

with more aggressive phenotypes in some tumors, including ccRCC.  

For determination of CD56 expression two differently fluorochrome conjugated antibodies, recognizing 

different epitopes were used, of which the FITC conjugated antibody against HCD56 antigen showed 

very faint signals compared to PE conjugated antibody, which recognizes CMSSB antigen, while 

detection with secondary antibody against mouse IgG gave very similar results for both antibodies, 

indicating a problem with the fluorochrome conjugation of the FITC antibody and not a connection with 

the different epitope specificities of the antibodies.  

CD56 expression was detected in subpopulations of cells from the cell lines SP and CS7 after some 

time of culture under SCC (about > passage 40-50), with increasing numbers of positive staining cells 

seen with prolonged culture periods. Although the number of positive staining cells varied between 

different cell lines and passages, a clear increase of CD56+ cell fractions with age of the cells was 

visible. No staining with CD56 antibody was seen on PA and CS1 cell lines, as well as in SP cell lines 

of low passage numbers. Representative results are shown in figure 4.6.17.  

 
Figure 4.6.17: IFC-Staining of CD56 (NCAM) on Different Cell Lines 

PA cells, CS1 and low-passage number SP and CS7 cells show now staining for CD56. Positive staining 
populations evolve in SP and CS7 cell lines with increased time of culture. 
Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of CD56 
antigen. Results for PA, SP, CS1 and CS7 at different passage numbers (indicated in blue). Results are 
representative for cells at similar passage numbers of CS1 (n=11, P8-96) and CS7 (n=15, P7-95) cell lines and 
representative for PA (n=20, P28-130) and SP (n=37, P16-114) cell lines irrespective of passage number 
(indicated in blue). 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, FL2-H: fluorescence channel 
2, FSC-H: forward scatter, NCAM: neural cell adhesion molecule, P: passage number, PA: parental cell line, PE: 
phycoerythrin, SP: spheroid cells derived from PA 
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Variations of CD56 Expression with Culture Conditions 

 
 

Figure 4.6.18: Comparison of CD56 (NCAM) on Spheroid Cell Lines Grown under SCC or ACC 

Expression of CD56 decreases in spheroids cultured under ACC but is rapidly induced after re-culturing A-SP/A-
CS cells under SCC, even after long-term culture under ACC. 
Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of CD56 
antigen. Comparison of CS7 and SP cell lines in different passages (indicated in blue) representing parental 
spheroid cell lines at similar time point of first measurement with A-CS7 and A-SP cells cultured for the indicated 
time under ACC. A-SP-SC and A-CS7-SC cells were cultured for the indicated periods under ACC before re-
cultivation under SCC for indicated periods. Results for A-SP-P79 are representative also for A-SP-
P54/63/84/P87/P92 and results for A-SP-P79-SC are representative also for A-SP-P63-SC. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
ACC: adherent culture conditions, A-CS7: CS cells grown under ACC, ALCAM: Activated leukocyte cell adhesion 
molecule, A-SP: SP cells grown under ACC, A-CS7-SC: A-CS7 cells re-cultured under SCC, A-SP-SC: A-SP cells 
re-cultured under SCC, CD: cluster of differentiation, CS7: clonally expanded spheroid cells derived from PA, 
FL2-H: fluorescence channel 2, FSC-H: forward scatter, MCAM: melanoma cell adhesion molecule, P: passage 
number, PA: parental cell line, PE: phycoerythrin, SCC: spheroid culture conditions, SP: spheroid cells derived 
from PA, w: weeks 
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The CD56+ cell population in both cell lines decreased, with a slightly more rapid kinetic in SP cells 

compared to CS7 cells, when cells were cultured under ACC. This is shown in figure 4.6.18. Very 

interestingly, CD56+ cell populations quickly re-occurred when cells were re-cultured under SCC. 

4.6.4.3 CD184 (CXCR4) 

The chemokine receptor CXCR4 (CD184) which serves, together with CXCR7, as receptor for the 

proinflammatory cytokine CXCL12 has been used to isolate TIC from several tumors, including RCC.  

CD184 expression was measured with two different antibodies, of which the APC conjugated antibody 

showed slightly higher staining intensities compared to the PE conjugated antibody. On PA cell lines 

only a very small number (≈ 1%) of cells showed weak staining for the antigen. In the spheroid cell 

lines CS1 and SP a higher fraction of positive cells was observed (≈ 10%), which increased in SP cells 

with continuous culture of the cells to (30%), whereas in CS1 cell line over time in culture the fraction 

varied slightly depending on antibody used. In contrast, in CS7 cell line at low passages a clear 

CD184 positive cell population was seen, which increased over time in culture. Cells in high passage 

numbers showed high staining intensity for CD184 antigen, with the two populations still being 

discernible. Representative results for CD184 staining are shown in figure 4.6.19 and 4.6.20. 

 
Figure 4.6.19: IFC-Staining of CD184 (CXCR4) on Different Cell Lines 

Flow cytometric immunophenotyping (IFC) of cells stained with APC or PE conjugated antibody (as indicated) for 
detection of CD184 antigen. Results for different passage numbers (indicated in blue) of PA (n=24, P28-129), SP 
(n=24, P17-115), CS1 (n=5, P8-96) and CS7 (n=12, P2-95) cell lines. Results for CS1, CS7 and SP are 
representative for cells at similar passage numbers. Results for PA cells are representative irrespective of 
passage number. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
APC: allophycocyanin, CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, 
CXCR4: C-X-C chemokine receptor type 4, FL2/4-H: fluorescence channel 4, FSC-H: forward scatter, P: passage 
number, PA: parental cell line, PE: phycoerythrin, SP: spheroid cells derived from PA 
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Similar to CD56, the positive cell populations in CS7 and SP cell lines decreased when cells were 

cultured under ACC (see figure 4.6.20). In A-CS7 cell line at the time of measurement, after two 

weeks of culture the positive fraction comprised only 20% low to moderately positive cells and after 15 

weeks of culture under ACC similar to PA cell line and A-SP cell lines only single cells were stained by 

CD184 antibody. 

Variations of CD184 Expression with Culture Conditions 

 

Figure 4.6.20: Comparison of CD184 (CXCR4) on Spheroid Cell Lines Grown under SCC or ACC 

Flow cytometric immunophenotyping (IFC) of cells stained with APC or PE conjugated antibody (as indicated) for 
detection of CD184 antigen. Comparison of CS7 and SP cell lines in different passages (indicated in blue) 
representing parental spheroid cell lines at start of ACC culture with A-CS7 (P66) and A-SP (P87) cells cultured 
for the indicated time under ACC. A-CS7 cells are representative also for A-CS7-P6 and A-SP are representative 
also for A-SP-P14/36/41/54/63 evaluated after 2-16 weeks of culture under ACC. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
ACC: adherent culture conditions, A-CS7: CS cells grown under ACC, APC: allophycocyanin, A-SP: SP cells 
grown under ACC, CD: cluster of differentiation, CS7: clonally expanded spheroid cells derived from PA, CXCR4: 
C-X-C chemokine receptor type 4, FL2/4-H: fluorescence channel 2/4, FSC-H: forward scatter, P: passage 
number, PA: parental cell line, PE: phycoerythrin, SP: spheroid cells derived from PA 
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4.6.4.4 CXCR7 

The chemokine receptor CXCR7 similar to CXCR4 serves as receptor CXCL12 and has been found to 

be highly expressed on several tumors. The expression pattern of CXCR7 on CS7 cell line was very 

similar to that seen for CXCR4. Also results for CXCR7 staining of CS7 cell grown under ACC were 

comparable to that of CXCR4 (see figure 4.6.20, results not shown). In contrast, on SP cells and CS1 

cells, similar to PA cells, CXCR7 expression was rarely detected. A-SP cells were not assayed for 

CXCR7 expression. Representative results for CXCR7 staining with the PE conjugated antibody used 

are depicted in figure 4.6.21. 

CXCR7 

 
Figure 4.6.21: IFC-Staining of CXCR7 on Different Cell Lines 

No expression of CXCR7 was detected in PA and CS1 cell lines, only single positive staining cells were seen in 
SP cell line, whereas CXCR7 expression strongly increased in CS7 cell line with time of culture under SCC. 
Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of CXCR7 
antigen. Representative results for PA (n=8, P28-130), SP (n=13, P49-106), CS1 (n=4, P13-80) cell lines. Results 
for CS7 (n=15, P7-95) cell line for which an increase of expression over time in culture was observed are 
representative for cells at same passage numbers (passage numbers indicated in blue). 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
ACC: adherent culture conditions, A-CS7: CS cells grown under ACC, APC: allophycocyanin, A-SP: SP cells 
grown under ACC, CD: cluster of differentiation, CS7: clonally expanded spheroid cells derived from PA, CXCR7: 
C-X-C chemokine receptor type 4, FL2/4-H: fluorescence channel 2/4, FSC-H: forward scatter, P: passage 
number, PA: parental cell line, PE: phycoerythrin, SP: spheroid cells derived from PA 

4.6.4.5 CD133 (Prominin 1) 

CD133 (Prominin 1) has been found to be a suitable TIC marker in marker in many tumor types and 

the molecule is expressed on several progenitor cells including renal progenitors, but in RCC seems to 

be of minor relevance as TIC marker. The AC133 antibody recognizes the TIC/stem cell specific 

isoform specifically, whereas epitopes detected by other antibodies are specific also to isoforms of the 

molecule, which are expressed on several normal tissues. CD133 expression was evaluated by using 

three different antibodies: one APC and PE conjugated AC133 specific antibody respectively, and one 

PE conjugated clone TMP4. Between the staining patterns of the cells using the two different antibody 

clones, no significant differences were observed, while use of APC conjugated antibody resulted in 

slightly higher staining intensities over that seen with the PE conjugated antibody. 
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The observed expression patterns for CS cell lines were comparable to those seen for CXCR4 

staining in that a variable fraction of positive staining cells (1-30% positive cells) was seen in CS1 cell 

line, whereas the fraction of positive cells increased significantly with prolonged spheroid culture 

periods in CS7 cell line, from a mean value of 1-3% positive cells (mean 2%±1%) seen in passages 

numbers below 40 (passage number for calculation of mean values was chosen arbitrarily, according 

to obvious differences and data available) and 11-60% (mean 35%±18%) positive cells observed in 

CS7 cells with higher passage numbers. In contrast, SP cell line contained only single CD133 positive 

staining cells (2%±2%) and the number of positive staining cells in PA cell lines was even lower 

(0.5%±0.5%). Representative results for AC133 staining of the different cell lines are shown in figure 

4.6.22. In A-CS cell lines the fraction of CD133 positive cells varied in different experiments with a 

tendency to higher expressing cell numbers seen after short term culture of the cells under ACC 

(assayed after 1 or 2 weeks of culture under ACC), whereas after long-term culture as adherent cell 

monolayer (assayed after 10,15 and 40 weeks) the number decreased significantly, as can be seen 

from figure 4.6.23. One experiment was performed in which A-CS7 cell line after 13.5 weeks ACC 

culture was re-cultured under SCC for 1.5 weeks. In this experiment no significant difference in the low 

number of CD133 positive staining cells was observed. 

 
Figure 4.6.22: IFC-Staining of CD133 (Prominin 1) on Different Cell Lines 

CD133 is expressed on CS cell lines on varying fractions of cells and only on very low cell numbers of SP cell 
line. No expression of CD133 is seen on PA cell line. Flow cytometric immunophenotyping (IFC) of cells stained 
with APC conjugated antibody for detection of AC133 antigen epitope. Representative results for PA (n=16, P28-
127), SP (n=15, P20-98) and CS1 (n=10, P8-96) cell lines. Results for CS7 (n=14, P2-95) cell line are 
representative for cells at similar passage numbers (indicated in blue) Figure left: scatter plot of fluorescence 
intensity vs. forward scatter (cell size) of „live cell population“. Figure right: histogram of % Max (events) vs. 
fluorescence intensity overlay of isotype control (blue) and sample (red). 
CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, FL4-H: fluorescence channel 
4, FSC-H: forward scatter, P: passage number, PA: parental cell line, PE: phycoerythrin, SP: spheroid cells 
derived from PA 
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Variations of CD133 Expression with Culture Conditions 

 

Figure 4.6.23: Comparison of CD133 (Prominin 1) on CS Cell Lines Grown under SCC or ACC 

Expression of CD133 on CS cell lines is strongly reduced after long-term culture under ACC. 
Flow cytometric immunophenotyping (IFC) of cells stained with APC or PE conjugated antibody (as indicated) for 
detection of AC133 antigen. Comparison of CS7 and CS1 cell lines in different passages (indicated in blue) 
representing parental spheroid cell lines at start of ACC culture with A-CS7-P66 and A-CS1-P6 cells cultured for 
the indicated time under ACC. A-CS7-P66 are also representative for A-CS7-P6. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
ACC: adherent culture conditions, A-CS: CS cells grown under ACC, APC: allophycocyanin, CD: cluster of 
differentiation, CS: clonally expanded spheroid cells derived from PA, FL2/4-H: fluorescence channel 2/4, FSC-H: 
forward scatter, P: passage number, PA: parental cell line, PE: phycoerythrin 

 

4.6.4.6 CD10 (Neprilysin) 

CD10 (Neprilysin) is a membrane metallo-endopeptidase expressed in a variety of tissues, with high 

abundance in kidney and lung. CD10 serves as differential marker for ccRCC, where it was found to 

be highly expressed. 

Expression of CD10, investigated by using a FITC conjugated antibody, was exclusively found on SP 

cell line, whereas no expression of the antigen was detected on either PA or CS cell lines. The fraction 

and staining pattern seen for CD10 staining of SP cells at different passages varied considerably 

between 12 and 63 % positive staining cells with a mean of 29% and a standard deviation of 17%. No 

correlation between passage number and expression of CD10 was observed. Representative results 

for CD10 staining are shown in figure 4.6.24, also showing variation of SP cell staining in cells with 

similar passage number. Expression of CD10 was also investigated on spheroid cell lines cultured 

under ACC, thereby no significant differences were observed compared to parental cell lines, though 

variations of expression in SP cell line complicate the detection of differences that might occur under 

ACC, a slight tendency to reduced expression of CD10 in A-SP cells might be present.  
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Figure 4.6.24: IFC-Staining of CD10 (Neprilysin) on Different Cell Lines 

CD10 is expressed on varying fractions of SP cell line, but not in PA, or CS cell lines. 
Flow cytometric immunophenotyping (IFC) of cells stained with FITC conjugated antibody for detection of CD10 
antigen. Representative results for PA (n=15, P28-130), CS1 (n=6, P8-96) and CS7 (n=2, P10-95) cell lines and 
of variations seen in SP (n=29, P16-115) cell lines. Passage of cells indicated in blue. 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
CD: cluster of differentiation, CS: clonally expanded spheroid cells derived from PA, FITC: fluorescein 
isothiocyanate, FL1-H: fluorescence channel 1, FSC-H: forward scatter, FITC: fluorescein isothiocyanate, P: 
passage number, PA: parental cell line, SP: spheroid cells derived from PA 

4.6.5 Variations in EpCAM and CD44 Expression on CS1 Cell Line  

CS1 cell line in contrast to all other tested cell lines showed differences in expression of EpCAM and 

CD44 antigens. The cell line was frozen at passage 6 (6 weeks culture under SCC) and the thawed 

cells were continuously passaged for a total of 74 weeks (P107). From the latter also A-CS1 cell line 

was derived, which was continuously grown under ACC for 47 weeks, starting at P7. For both antigens 

besides the positive cell population, which was also seen in the other cell lines, several fractions with 

less staining were observed in the starting cell line (P21) and were confirmed after re-growth. Results 

obtained for EpCAM expression of the cell line are depicted in figure 4.6.25. As can be seen, EpCAM 

staining was reduced in CS1 cells and over long-term culture an EpCAM negative cell fraction, which 

finally comprised most of the cells, and an EpCAM high fraction could be discriminated. Compared to 

the spheroid cell line grown under SCC, the continuously grown cell line from passage 7 under ACC 

showed higher and constant expression of EpCAM in the same period, with only a minor fraction 

showing less staining of the antibody after 40 weeks of culture. Similar results were seen for 

expression of CD44 on this cell line as shown in figure 4.6.26, where the staining more rapidly 

decreased to most of the cells showing no expression of CD44 in passage 65. Interestingly, after 

further culturing of the cells a CD44 high cell fraction evolved, which mostly comprised smaller cells, 

as was also seen for the EpCAM positive cell fraction. 
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Figure 4.6.25: EpCAM on CS1 Cell Line - Change over Time in Culture and Comparison to A-CS1 

EpCAM expression is drastically reduced over time in culture on CS1 cell line. 
Flow cytometric immunophenotyping (IFC) of cells stained with APC (right) or FITC (left) conjugated antibody for 
detection of EpCAM antigen on CS1 cell lines in different passages (indicated in blue) and A-CS1 cells grown 
from passage 7 under ACC for indicated time (red). P21 cells from starting culture of the cell line (4 weeks), P9-
P107 (8-74 weeks) continuously grown cells from cells frozen at P6. 
Figure left: histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample 
(red) for FITC conjugated antibody stained cells. Figure right: scatter plot of fluorescence intensity vs. forward 
scatter (cell size) of „live cell population“ for APC conjugated antibody stained cells. 
ACC: adherent culture conditions, A-CS1: CS cells grown under ACC, APC: allophycocyanin, CS1: clonally 
expanded spheroid cells derived from PA, FL1-H: fluorescence channel 1, FSC-H: forward scatter, P: passage 
number, FITC: fluorescein isothiocyanate, PA: parental cell line, w: weeks 

 
Figure 4.6.26: CD44 on CS1 Cell Line - Change over Time in Culture and Comparison to A-CS1 

CD44 expression on CS1 cells varies dramatically over time in SCC culture and seems to be more stable under 
ACC. 
Flow cytometric immunophenotyping (IFC) of cells stained with FITC conjugated antibody for detection of CD44 
antigen on CS1 cell lines in different passages (indicated in blue) and A-CS1 cells grown from passage 7 under 
ACC for indicated time (red). P21 cells from starting culture of the cell line (4 weeks), P9-P107 (8-74 weeks) 
continuously grown cells from cells frozen at P6. 
Scatter plots of fluorescence intensity vs. forward scatter (cell size) of „live cell population“.  
ACC: adherent culture conditions, A-CS1: CS cells grown under ACC, CD: cluster of differentiation, CS1: clonally 
expanded spheroid cells derived from PA, FL1-H: fluorescence channel 1, FSC-H: forward scatter, P: passage 
number, FITC: fluorescein isothiocyanate, PA: parental cell line, w: weeks 
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4.6.6 Expression of MSC Negative Markers 

Besides expression of markers that are used as positive markers for MSC or TIC, also markers used 

as negative markers for MSC were evaluated on PA, SP and CS cell lines. The cell lines did not show 

any staining, when antibodies against CD19, CD45, or HLA-DR were used (results are not shown, but 

were comparable to that seen for CD90 staining as shown in figure 4.6.1). 
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4.7 Evaluation of Expression of Stem Cell Markers by Flow Cytometric Immunophenotyping 

(IFC) 

4.7.1 Expression of Stem Cell Markers SSEA-1 (CD15), SSEA-3, SSEA-4, TRA-1-81 

For evaluation of pluripotency of embryonic stem cells (ESCs), antibodies detecting the stage-specific 

embryonic antigens (SSEA)-1, -3, and -4 as well as TRA-1-81 carbohydrate epitopes are widely used. 

These antibodies detect different glycosylated structures, which are highly expressed in 

undifferentiated, pluripotent stem cells, whereas expression is lost upon differentiation of the cells.  

The staining pattern of the four antigens was evaluated by standard flow cytometric measurements on 

PA, SP, CS1 and CS7 cell lines, as well as on A-SP and A-CS cells. 

Of the four glyco-antigens, SSEA-4 showed a staining pattern, which was very similar on all cell lines 

tested, with slightly broader staining distribution towards lower antigen expression in spheroid cell 

lines compared to PA cells. Representative results for SSEA-4 staining are shown in figure 4.7.1. The 

staining pattern for SSEA-3 antigen of PA and SP cells was very similar, showing moderate 

expression with normal distribution among cells, whereas in CS cell lines a very broad distribution of 

staining was observed, ranging from very dim to high expressing cell populations. Results, 

representative for the different cell lines for SSEA-3 staining are shown in figure 4.7.2. For both 

antigens the staining pattern of A-CS and A-SP cells was very similar to that of the CS or SP cells they 

were derived of. Also within the variations of experiments no significant differences in staining pattern 

for cells in different passage numbers was observed. 

 
Figure 4.7.1: IFC-Staining of SSEA-4 on Different Cell Lines 

All assayed cell lines show strong staining of SSEA-4, which is slightly more heterogeneous in spheroid cell lines 
(SP, CS1, CS7) compared to PA cell line. 
Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of SSEA-4 
antigen. Representative results for PA (n=13, P29-129), SP (n= 17, P20-84), CS1 (n=5, P35-96) and CS7 (n=8, 
P14-95) cell lines: PA P62, SP P54, CS1 P66, CS7 P65. CS1/7 are also representative for A-CS1/7 cells (n=2, 
20-40 w ACC/n=5, 6-40 w ACC) and SP is also representative for A-SP cells (n=7, 2-13 w ACC).  
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
ACC: adherent culture conditions, A-CS: CS cells cultured under ACC, A-SP= SP cells cultured under ACC, CS: 
clonally expanded spheroid cells derived from PA, FL1-H: fluorescence channel, FSC-H: forward scatter, PA: 
parental cell line, PE: phycoerythrin, SSEA: stage-specific embryonic antigen, SP: spheroid cells derived from PA, 
w: weeks 
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Figure 4.7.2: IFC-Staining of SSEA-3 on Different Cell Lines 

Intermediate level staining pattern for SSEA-3 is similar in PA and SP cell line, whereas in CS cell lines several 
populations ranging from high to low staining cells can be discriminated. 
Flow cytometric immunophenotyping (IFC) of cells stained with AF488 conjugated antibody for detection of 
SSEA-3 antigen. Representative results for PA (n=15, P29-130), SP (n=9, P17-101), CS1 (n=3, P40-66) and CS7 
(n=6, P10-83) cell lines: PA P62, SP P57, CS1 P66, and SC7 P69. CS1/7 are also representative for A-CS1/7 
cells (n=1, 40 w ACC/n=4, 2-40 w ACC) and SP is also representative for A-SP cells (n=8, 2-13 w ACC). Figure 
left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity, overlay of isotype control (blue) and sample (red). 
ACC: adherent culture conditions, A-CS: CS cells cultured under ACC, AF: AlexaFluor®, A-SP: SP cells cultured 
under ACC, CS: clonally expanded spheroid cells derived from PA, FL1-H: fluorescence channel, FSC-H: forward 
scatter, PA: parental cell line, SSEA: stage-specific embryonic antigen, SP: spheroid cells derived from PA, w: 
weeks 

The staining pattern for TRA-1-81 antigen with the PE conjugated antibody used, showed a broad 

distribution, ranging from low to high expressing cell fractions, in all cell lines tested. Exemplary results 

for TRA-1-81 staining at comparable passage number of the four tested cell lines are shown in figure 

4.7.3. Similar results were obtained for A-CS and A-SP cell lines.  

 
Figure 4.7.3: IFC-Staining of TRA-1-81 on Different Cell Lines 

TRA-1-81 staining pattern is relatively heterogeneous on all tested cell lines. 
Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of TRA-1-81 
antigen. Representative results for PA (n=13, P29-129), SP (n=20, P33-77), CS1 (n=4, P18-96) and CS7 (n=8, 
P14-95) cell lines: PA P33, SP P33, CS1 P43, and CS7 P43. CS1/7 are also representative for A-CS1/7 cells 
(n=2, 9-40 w ACC/n=4, 6-40 w ACC) and SP is also representative for A-SP cells (n=6, 2-13 w ACC). Figure left: 
scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: histogram 
of % Max (events) vs. fluorescence intensity, overlay of isotype control (blue) and sample (red). 
CS: clonally expanded spheroid cells derived from PA, FL2-H: fluorescence channel 2, FSC-H: forward scatter, P: 
passage number, PA: parental cell line, PE: phycoerythrin, SP: spheroid cells derived from PA 
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A striking feature of TRA-1-81 staining was the high variation of staining patterns seen for cell lines in 

different passages and experiments. This is illustrated in figure 4.7.4, where representative results for 

three different passage numbers of the cell lines are shown. In this figure also a tendency of change in 

expression over time of culture, which was observed, can be seen, showing a higher fraction of low 

staining cells at low passage numbers, with a shift towards higher TRA-1-81 expression level with 

almost exclusively positive staining cells at intermediate passage numbers, to the development of low 

to negative staining cell fractions in very high passage cells. But du to the high variation in staining, 

the number of measurements is not sufficient to draw this conclusion at a significant level. 

 
Figure 4.7.4: Variation in IFC-Staining of TRA-1-81 on Different Cell Lines at Different Passages 

TRA-1-81 staining pattern is highly variable in all tested cell lines, with different populations being discernible. 
Flow cytometric immunophenotyping (IFC) of cells stained with PE conjugated antibody for detection of TRA-1-81 
antigen. Results for PA, SP and CS7 at different passage numbers (indicated in blue). 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
CS: clonally expanded spheroid cells derived from PA, FL2-H: fluorescence channel 2, FSC-H: forward scatter, 
IFC: flow cytometric immunophenotyping, P: passage number, PA: parental cell line, PE: phycoerythrin, SP: 
spheroid cells derived from PA 

For detection of SSEA-1 two differently fluorochrome conjugated antibodies were used. The staining 

pattern seen with both antibodies were comparable, although the staining intensity was lower when 

FITC conjugated antibody was used. In contrast to SSEA3/4 and TRA-1-81, SSEA-1 was expressed 

only by a fraction of the cells, whereas most cells were not or in case of PA cells, weakly stained. 

Representative results for SSEA-1 staining are shown in figure 4.7.5. The staining pattern varied for 

PA and spheroid cell lines. For PA cells a clear tendency to increased expression of SSEA-1, which in 

high passage numbers was indicated additionally by a shift of the whole cell population towards higher 

staining intensities was observed. CS cells, in contrast, showed a relatively high expression of CD15 

on cells at low passage numbers with a mean of 30% positive cells, which was lost upon long-term 
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culture of the cells. In SP cells, SSEA-1 expression was detected on single cells only at very low 

passage numbers, whereas intermediate and high passage cells were not stained. A-CS cell line did 

not show significant differences to their parental cells lines, whereas A-SP cell lines showed slightly 

higher numbers of positive staining cells than SP cells they were derived of. 

 
Figure 4.7.5: IFC-Staining of SSEA-1 on Different Cell Lines at Different Passages 

In PA cell line SSEA-1 expression increases with time of culture, whereas expression in spheroid cell lines (SP, 
CS) decreases with time of culture and is lowest in SP cell line. 
Flow cytometric immunophenotyping (IFC) of cells stained with APC (PA, SP cells) or FITC (CS7 cells) 
conjugated antibody for detection of SSEA-1 antigen. Representative results low, intermediate and high passage 
numbers of PA (n=37, P28-129), SP (n=36, P17-1115), and CS7 (n=18, P2-95) cell lines (passage numbers 
indicated in blue) CS7 results are also representative for CS1 (n=12, P8-61) and A-CS1/7 cells (n=12, 1-40 w 
ACC/n=18, 2-40 w ACC) and SP P24 is also representative for A-SP cells (n=32, 2-38 w ACC). 
Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell population“. Figure right: 
histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red). 
ACC: adherent culture conditions, A-CS: CS cells cultured under ACC, AF: AlexaFluor®, A-SP: SP cells cultured 
under ACC, CS: clonally expanded spheroid cells derived from PA, FL1-H: fluorescence channel, FSC-H: forward 
scatter, IFC: flow cytometric immunophenotyping, PA: parental cell line, SSEA: stage-specific embryonic antigen, 
SP: spheroid cells derived from PA, w: weeks 
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4.7.2 Expression of Stem Cell Pluripotency Markers Oct4 and Sox2 

Expression of the two core stem cell specific transcription factors Oct4 and Sox2 was determined by 

intracellular flow cytometric measurements. For this purpose, cells were fixed and permeabilized using 

„FOXP3 Transcription Factor staining Kit“. Discrimination of dead cells by 7-AAD was thus not 

applicable. AF488 conjugated antibody was used for Sox2 detection and isoform-specific Oct4A 

antibody was used for detection of Oct4/POU5F1. Since Oct4A antibody was not fluorochrome 

conjugated, for detection of this antigen the use of secondary antibody was necessary. No live/dead 

cell discrimination using 7-AAD was applied. 

PA, SP cells and the two CS-cell lines CS1 and CS7 in different passage numbers (PA: P25-114, SP: 

P33-76, CS1: P19-62, CS7: P5-88) were used for experiments. To summarize results, mean of fold 

change of fluorescence geo mean values of antibody stained cells relative to isotype control stained 

cells of all analyzed samples of one cell type were calculated for the two antigens respectively. Since 

no significant differences were observed between CS1 and CS7 cells, the two cell lines were grouped 

as CS for calculation of the values. The number of samples used for calculation of mean values is 

given in the figure legend. The values are depicted in figure 4.7.6. 

 

 
Figure 4.7.6: Relative Staining Intensity of Intracellular Stem Cell Markers in Different Cell Lines 

Intracellular stem cell markers within the high variations seen, show similar low (Oct) to intermediate (Sox2) 
staining in all cell lines tested. 
Mean of fold change staining intensities for antibody stained samples of all experiments. Staining was performed 
with antibodies against Sox2 and using a secondary antibody in for detection of Oct4. Number of samples for 
Oct4A: PA = 3, SP = 4, CS = 4 (CS1 = 2 CS7 = 2). Number of samples for Sox2: PA = 5, SP = 5, CS = 4 (CS1 = 
1 CS7 = 3). Error bar: standard deviation. 
CS: clonally expanded spheroid cells derived from PA, GM: geo mean of fluorescence intensity, Oct: Octamer 
biding transcription factor, PA: parental cell line, Sox: SRY (sex determining region Y)-box transcription factor, 
SP: spheroid cells derived from PA 
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Expression of the two transcription factors Oct4A and Sox2 was detected on all cell lines at low levels 

(see figure 4.7.7). No significant differences in expression of the antigens between different cell types 

were observed, although slight differences were seen between single experiments. Compared to Oct 

staining, signals obtained with Sox2 antibody were slightly higher, but still low compared to those 

measured for Snail1 (see figure 4.8.7).  

 

 
Figure 4.7.7: IFC-Staining of Oct4A and Sox2  

Similar low staining of Oct4A and Sox2 was detected in all cell lines, with low staining intensities seen for Oct4A 
and slightly higher staining intensities seen for Sox2. 
Flow cytometric immunophenotyping (IFC) of cells stained either with AF647 conjugated goat anti-mouse 
antibody for detection of mouse antibody against Oct4A (Oct4A-Sek) or AF488 conjugated antibody for detection 
of Sox2 (indicated in green). Upper line: histogram of % Max (events) vs. fluorescence intensity stained with 
secondary antibody against Oct4A, overlay of isotype control (blue) and sample (red). PA (P114), SP (P33), CS7 
(P42). Lower line: histogram of % Max (events) vs. fluorescence intensity stained with primary antibody against 
Sox2, overlay of isotype control (red) and sample (blue). PA (40), SP (P48), CS7 (P5). 
AF: AlexaFluor®, CS7: clonally expanded spheroid cells derived from PA, FL2/4-H: fluorescence channel, Oct: 
Octamer binding transcription factor, P: passage number, PA: parental cell line, SP: spheroid cells derived from 
PA, Sox: SRY (sex determining region Y)-box transcription factor 
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4.8 Evaluation of EMT Signature by Flow Cytometric Immunophenotyping (IFC) 

4.8.1 Expression of Marker Antigens E-Cadherin (CDH1) and N-Cadherin (CDH2) 

The process of epithelial to mesenchymal transition (EMT), this means the acquisition of stem cell 

features by endothelial cells, has been proposed as a critical mechanism in TIC emergence as well as 

during cancer progression and metastasis. To define the nature of the cell lines in respect to their 

epithelial or mesenchymal characteristics, expression of the two complementary cell-adhesion protein 

markers E-Cadherin (epithelial phenotype) and N-Cadherin (mesenchymal phenotype) was analyzed 

by flow cytometric immunophenotyping. Since the antigens detected by the antibodies for both 

molecules proofed to be highly sensitive to degradation by different tested cell dissociation reagents, 

single cell suspensions for measurement had to be prepared by using TSE-Buffer and mechanical 

disaggregation. This resulted in a higher proportion of dead cells in the samples to be analyzed 

compared to standard dissociation methods. The cell lines PA, SP, CS1, and CS7 were tested for 

marker expression at different time points, i.e. at different passages of continuously grown cell lines, 

as well as by using cells at different passage numbers obtained from thawing and culturing of cells 

that were frozen at different time points. 

Representative results obtained for PA and SP cells and the two CS cell lines CS1 and CS7 are 

shown in figure 4.8.1 and figure 4.8.2 respectively. Expression of E-Cadherin as well as N-Cadherin 

expression was detected on all cells in the four cell lines, indicating an intermediate EMT-phenotype of 

these cells. At low passage numbers no significant difference in expression was observed between all 

cell lines, albeit slightly higher measured GM values for both markers in cell lines grown as spheroids 

compared to parental cell line. The signal detected for N-Cadherin staining was relatively high in all 

cell lines (probably due to the APC-staining of the antibody used). Fluorescence intensity was higher 

in SP and CS cells than in PA cells, with a slight tendency to increasing values in SP cells with age. 

Although direct comparison of fluorescence intensity values between measurements due to the limited 

accuracy of the method, especially when comparing separate measurements and instrument settings, 

which differed between SP/PA and CS cells, must be done with utmost caution, to illustrate the 

differences observed, mean of fold change of fluorescence geo mean values of N-Cadherin antibody 

stained cells relative to isotype control stained cells of all analyzed samples were calculated and 

depicted in figure 4.8.3. The passage numbers used to divide high and low expressing cell subsets for 

calculation of mean values were chosen arbitrarily, according to obvious differences and data 

available. For CS1 cell line only a limited number of data for EMT marker expression is available. The 

respective number of measurements used for calculations is indicated in the figure legends. 

Interestingly, with exception of CS7 cell line, who expressed both markers relatively consistent over 

time, a continuous decrease of E-Cadherin expression with increasing duration of culture was 

observed in the other three cell lines, up to the evolvement of E-Cadherin negative cell fractions in 

cells with high passage numbers, indicating a transition from intermediate to mesenchymal phenotype 

during long-term culture of the cells. Mean fraction of E-Cadherin negative (mesenchymal) cells was 

calculated for all measurements and values are shown in figure 4.8.4. When directly comparing cells 

with the same or very similar passage number, the characteristics observed were not equal but the 
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same tendency over time was observed in all cell lines tested, with frozen cells seeming to reach the 

more mesenchymal status at earlier time points, although results are not statistically significant.  

 

 
Figure 4.8.1: Expression of EMT Markers of E-Cadherin and N-Cadherin on PA and SP cells 

E-Cadherin is expressed on PA and SP cells at similar high levels and is reduced over time in culture. Also N-
Cadherin expression is observed at similar high levels on PA and SP cell lines and increases slightly over time in 
culture in both cell lines.  
Representative results of flow cytometric immunophenotyping (IFC) of cells stained with PE and APC conjugated 
antibodies against E-Cadherin (top) and N-Cadherin (bottom). Comparison of PA cells left and SP cells right at 
different time points (respective passage indicated in blue left). Figure left: scatter plot of fluorescence intensity 
vs. forward scatter (cell size) of „live cell population“. Figure right: histogram of % Max (events) vs. fluorescence 
intensity overlay of isotype control (blue) and sample (red). 
APC: allophycocyanin, E-Cad: E-Cadherin, EMT: epithelial to mesenchymal transition, FSC-H: forward scatter, 
FL2/4-H: fluorescence channel signal intensity, N-Cad: N-Cadherin, P: passage number, PA: parental cell line, 
PE: phycoerythrin, SP: spheroid cells derived from PA 
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Figure 4.8.2: Expression of EMT markers E-Cadherin and N-Cadherin on CS-cell lines 

E-Cadherin is expressed on CS1 and CS7 cells at similar high levels in early passage cells, which are 
comparable to that of SP and PA cell lines. Reduction of E-Cadherin expression over time in culture, similar to PA 
and SP cell lines, is only seen in CS1 cell line, whereas in CS7 cell line, high expression is remained over long-
term culture. N-Cadherin expression is observed at similar high levels in both cell lines and does not seem to 
change markedly over time in culture. 
Representative results of flow cytometric immunophenotyping (IFC) of cells stained with PE and APC conjugated 
antibodies against E-Cadherin (top) and N-Cadherin (bottom). Comparison of CS1 cells left and CS7 cells right at 
different time points (respective passage indicated in blue left). For CS1 cells no measurement in early passage 
was performed. Figure left: scatter plot of fluorescence intensity vs. forward scatter (cell size) of „live cell 
population“. Figure right: histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) 
and sample (red). 
APC: allophycocyanin, CS: clonally expanded spheroid cells derived from PA, E-Cad: E-Cadherin, EMT: epithelial 
to mesenchymal transition, FSC-H: forward scatter, FL2/4-H: fluorescence channel signal intensity, N-Cad: N-
Cadherin, P: passage number, PA: parental cell line, PE: phycoerythrin 
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Figure 4.8.3: Relative Staining Intensity of N-Cadherin in Different Cell Lines 

N-Cadherin expression level is higher in spheroid cell lines. In SP cell lines, expression level increases with 
passage. A-CS and A-SP cells show similar N-Cadherin expression levels to PA cells. 
Mean of fold change expression levels for N-Cadherin stained samples. Number of samples: A-SP = 7 (+3), 
A-CS7 = 2 (+1), CS1 = 4, CS7 = 11, SP = 26, SP<P40 = 8, SP>P40 = 18, PA = 13 (+2). Fold change was 
calculated relative to respective isotype control: Fold change expression = GM N-Cadherin stained sample/GM 
isotype control stained sample. Error bars: standard deviation. In SP cell lines significant variation of GM values 
with prolonged culturing of the cells was observed, therefore separate values for cells analyzed in low (< P40) and 
high (>P40) passage numbers were calculated. * Instrument settings for CS cell lines differed significantly from 
instrument settings for the other samples. Since this influences GM values in a non-linear fashion, direct 
comparison values to the other samples is not applicable. 
ACC: adherent culture conditions, A-SP: SP cells cultured under ACC, A-CS7: CS7 cells cultured under ACC, CS: 
clonally expanded spheroid cells derived from PA, GM: geo mean of fluorescence intensity, P: passage number, 
PA: parental cell line, SP: spheroid cells derived from PA 

 
Figure 4.8.4: E-Cadherin Negative Cell Fractions in Different Cell Lines and Passages 

E-Cadherin negative cell fraction increases significantly in CS1, SP and PA cells with time of culture. A-SP, A-CS 
and CS7 cell lines show only small numbers of E-Cadherin negative cells. 
Mean of percentage of E-Cadherin negative stained cells as determined by gating cells according to respective 
samples stained with isotype control antibody. Number of samples: A-SP = 7, A-CS7 = 2, A-CS1 = 2 (P53, 64), 
CS1: passage numbers of 1/2 measurements indicated, CS7 = 11 (P11-P91), SP<P40 = 7, SP P40-P60 = 11, 
SP>P60 = 7, PA <P60 = 9, PA >P60 = 6. Error bars: standard deviation. 
ACC: adherent culture conditions, A-SP: SP cells cultured under ACC, A-CS7: CS7 cells cultured under ACC, CS: 
clonally expanded spheroid cells derived from PA, GM: geo mean of fluorescence intensity, P: passage number, 
PA: parental cell line, SP: spheroid cells derived from PA 

Results from one experiment in which cells were stained with both antigens in parallel are shown in 

figure 4.8.5. PA and SP cells at different passage numbers (obtained from thawing cells that were 

frozen at different time points), as well as of A-SP cells, that were derived from these SP cells in 

passage 63 or 36 and cultured for 12 or 15 weeks under ACC were analyzed with the same 

instrument settings. The gradual evolvement of E-Cadherin negative cells is clearly visible. Also an 
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increase of N-Cadherin fluorescence intensity with increasing age of the cells is observed. The small 

cell fraction of N-Cadherin negative cells (≈ 1%), which was seen in all experiments, was also negative 

for E-Cadherin staining, indicating that these were not epithelial cells. 

Parallel Staining for E-Cadherin and N-Cadherin on Different Cell Lines and Passages 

 
Figure 4.8.5: Double Staining of EMT markers E-Cadherin and N-Cadherin 

Reduction of E-Cadherin positive staining cells and increase of N-Cadherin expression level is seen with time of 
culture of PA and SP cells. After culturing SP cells 12-15 weeks under ACC, expression levels of both markers 
resemble those of early passage PA cells.  
Results of flow cytometric immunophenotyping (IFC) of PA and SP cells from different passage numbers and A-
SP cells derived from these SP cells in passage 36 or 63 (respective passage indicated in green left) and cultured 
for 12 or 15 weeks under ACC. Staining was performed with PE and APC conjugated antibodies against E-
Cadherin and N-Cadherin in parallel. Passage numbers are indicated in blue. Scatter plot of fluorescence 
intensity N-Cadherin staining vs. E-Cadherin staining of „live cell population“. Gates set according to fluorescence 
intensity of isotype control antibodies of respective samples. 
ACC: adherent culture conditions, APC: allophycocyanin, A-SP: SP cells cultured under ACC, CS: clonally 
expanded spheroid cells derived from PA, E-Cad: E-Cadherin, EMT: epithelial to mesenchymal transition, 
FL2/4-H: fluorescence channel signal intensity, N-Cad: N-Cadherin, P: passage number, PA: parental cell line, 
PE: phycoerythrin, SP: Spheroid cells derived from PA, w: weeks 

In figure 4.8.5 also another important aspect that was observed regarding EMT marker expression can 

be seen: A-SP-P36 cells derived from SP cells in passage 36 after 12 weeks of cultivation under ACC 

show an expression level of the two markers, which is similar to that of PA cells in early passage, 

namely an intermediate phenotype, with expression of both markers similarly and missing the 

mesenchymal population indicated by low or lost E-Cadherin expression, that was seen in the SP cells 
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they were derived of (see also figure 4.8.6). A-SP-P63 cells, which were cultured under ACC at later 

passage also did not contain the mesenchymal population, but compared to A-SP36 showed higher N-

Cadherin expression. 

When spheroid cell lines were cultured under ACC the E-Cadherin negative cell fraction was lost and 

expression levels of N-Cadherin were reduced. This reduction of N-Cadherin expression also was 

present in the CS7 cell line, which under SCC showed stable expression of the markers over time. 

Interestingly, N-Cadherin expression although reduced, was not lost completely, even after 44 weeks 

under ACC, which is not consistent with the assumption that cells differentiate to epithelial cells under 

standard culture conditions. A-CS1 cells were analyzed only once for EMT marker expression and the 

results were similar to that obtained for A-CS7 cells. In figure 4.8.6 results for A-SP and A-CS7 cell 

lines are shown in comparison to measurements representing cells at equal passage numbers as the 

respective parental spheroid cell lines at start of ACC culture, as well as parental spheroid cell lines 

measured at the same time (after 10/44 weeks of culture). The time course of these changes is not 

very well resolved by experimental data. 

Variations of E- and N-Cadherin Expression with Culture Conditions 

  

  
Figure 4.8.6: EMT Marker Expression in A-SP and A-CS Cells Compared to SP and CS Cells 

E-Cadherin expression increases on spheroid cell lines when cultured under ACC, whereas N-Cadherin 
expression is reduced. 
Flow cytometric immunophenotyping (IFC) of cells stained with PE and APC conjugated antibodies against E-
Cadherin (left) and N-Cadherin (right). Top: SP/CS7 cells in passage similar to founding cells for A-SP/CS cell 
lines, bottom: comparison of founding SP/CS7 cells (left) to A-SP/CS7 cells (right) after indicated culture period 
(red) under ACC (respective passage indicated in blue left). Figure left: scatter plot of fluorescence intensity vs. 
forward scatter (cell size) of „live cell population“. Figure right: histogram of % Max (events) vs. fluorescence 
intensity, overlay of isotype control (blue) and sample (red), legend: geometric mean of fluorescence intensity. 
ACC: adherent culture conditions, APC: allophycocyanin, A-SP: SP cells cultured under ACC, CS: clonally 
expanded spheroid cells derived from PA, EMT: epithelial to mesenchymal transition, FL2/4-H: fluorescence 
channel signal intensity, P: passage number, PA: parental cell line, PE: phycoerythrin, SP: Spheroid cells derived 
from PA, w: weeks 
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4.8.2 Expression of Intracellular EMT-Markers Cytokeratin, Vimentin, and Snail1 

Besides expression of defining adhesion-molecule markers for EMT, E-Cadherin and N-Cadherin, also 

expression of intracellular localized intermediate filament markers cytokeratin (CK, epithelial 

phenotype) and vimentin (mesenchymal phenotype) as well as the EMT inducing core transcription 

factor Snail1 was evaluated by IFC measurements. For this purpose, cells were fixed and 

permeabilized using „FOXP3 Transcription Factor staining Kit“. Discrimination of dead cells by 7-AAD 

was thus not applicable. For detection of the two CKs, known to be usually expressed on ccRCC, CK8 

and CK19, specific monoclonal antibodies were used. Additionally, a mix of two monoclonal antibodies 

(Pan-CK), which bind to a broad spectrum of other cytokeratin, was applied to test for CK expression. 

Since some antibodies used were not fluorochrome conjugated staining was achieved by use of 

AF647 conjugated secondary antibodies.  

Representative results for the three cell lines are shown in figures 4.8.7 and 4.8.8. Expression of each 

antigen was measured at least twice (CS7/CS1) and/or in cells with different passage numbers (PA: 

P25-114, SP P36-76, CS7: P5-88, CS1: 19-62) with similar results. Results obtained for CS1 cells 

were similar to those of CS7 cells. Mesenchymal marker antigens as well as cytokeratin antigens were 

stained in all cell lines at very similar, equally narrow distributed levels and no distinct subpopulations 

were detectable, with very high measured GM values for vimentin and intermediate GM values for 

Snail1 and cytokeratin. The GM values for Snail1 and vimentin staining in CS cells were slightly higher 

than for PA and SP cells, but this might also be attributable to the different instrument settings applied. 

No variations were seen when cells in different passage numbers were assayed. 

 

Figure 4.8.7: Expression of Intracellular Mesenchymal Markers Vimentin and Snail1 

Intracellular mesenchymal markers antigens are expressed in PA, SP, and CS cell lines at similar levels. 
Flow cytometric immunophenotyping (IFC) of cells stained with AF647 conjugated goat anti-mouse antibody for 
detection of mouse antibodies against Snail1 and vimentin. Comparison of representative results for PA (P25-
114), SP (P36-76) and CS cell lines (CS7: P5-88, CS1: 19-62). 
Histogram of % Max (events) vs. fluorescence intensity overlay of isotype control (blue) and sample (red), legend: 
geometric mean of fluorescence intensity. 
AF647: AlexaFluor® 647, CS7: clonally expanded spheroid cells derived from PA, FL4-H: fluorescence channel 4 
signal intensity, P: passage number, PA: parental cell line, SP: spheroid cells derived from PA 



 

Results 

 

- 138 - 

 
Figure 4.8.8: Intracellular IFC-Staining of Cytokeratin 

Cytokeratin antigens are expressed in all cell liens and detected with slightly higher staining intensities in PA cell 
line compared to SP and CS cell lines. 
Flow cytometric immunophenotyping (IFC) of cells stained with AF647 conjugated goat anti-mouse antibody for 
detection of mouse antibodies against CK8, CK18 and Pan-CK. 
Comparison of PA, SP and CS7 cells. Histogram of % Max (events) vs. fluorescence intensity overlay of isotype 
control (blue) and sample (red), legend: geometric mean of fluorescence intensity. 
AF647: AlexaFluor® 647, CS7: clonally expanded spheroid cells derived from PA, FL4-H: fluorescence channel 4 
signal intensity, P: passage number, PA: parental cell line, SP: spheroid cells derived from PA 

Staining with Pan-CK antibody, which detects a mixture of different cytokeratin, did not yield big 

differences between the three cell lines but in contrast to mesenchymal markers, CK19, and especially 

CK8 expression seemed to be higher in PA than in SP and CS cells, with lowest expression level in 

CS cells. But since the number of data for this antigen is limited, this variation cannot be considered 

significant. For PA and SP cells, results also did not vary significantly between different passage 

numbers measured in the same experiment. Similar to E-Cadherin and N-Cadherin, intracellular 

markers for epithelial and mesenchymal cells were expressed in parallel at similar levels, further 

confirming the intermediate EMT phenotype of the cell lines. Interestingly, the observed E-Cadherin 

negative cell fraction, which was observed in late passage PA and SP cells was not reflected in the 

results for intracellular antigens. 
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4.9 ALDEFLUORTM Assay 

High expression of the enzyme ALDH has been shown to mark adult stem cell populations and TIC 

from several tumors. 304 For evaluation of the possible use of ALDH activity for discrimination of stem-

like cells in the cell lines investigated, the ALDEFLUORTM assay was performed. The principle of the 

assay is measuring the enzyme activity by accumulation of a fluorescent substrate in the cells by flow 

cytometry. The nature of enzymatic assays is their dependency on concentrations of substrate and 

enzyme and time. By keeping the incubation time and concentration of substrate constant, the variable 

assayed was the enzyme concentration by using different cell concentrations. A sample containing the 

ALDH inhibitor diethylaminobenzaldehyde (DEAB) was used as negative control for background 

staining. In a first set of experiments PA and SP cells were assayed twice at different cell 

concentrations ranging from 2x105-2x106 cells/mL and incubation times of 30-40 min. Results for the 

experiment in which 3 cell concentrations were tested are shown in figure 4.9.1. As expected, the 

staining intensity increased with reduced cell concentrations used for the assay. Both cell lines 

showed quite similar staining patterns at the respective cell concentrations. As can also be seen from 

figure 4.9.2 the cell concentration dependent variations were slightly higher for PA cells than for SP 

cells, with control samples showing only low variation between different concentrations and cell type. 

Also geo mean values were slightly higher for PA cells compared to SP cells, which might indicate a 

slightly higher ALDH activity in PA cells. But when comparing the positive cell fractions (determined by 

using a positive gate as such that less than 1 % of control cells were found in the region), the 

difference was less pronounced. At low cell concentrations, with optimal signal to background ratios, 

both cell lines showed positive staining of the whole cell population. Therefore, ALDH activity was 

excluded as a suitable marker for enrichment of cells with stem cell characteristics from the PA cell 

line and the test was put aside. 

 
Figure 4.9.1: ALDEFLUORTM Assay: Variations with Cell Concentration Used 

Staining for ALDEFLUORTM activity is dependent on cell concentration used for the assay. Values decrease with 
increasing cell concentrations and are similar for PA and SP cell lines. 
Flow cytometric measurements of cells assayed for ALDEFLUORTM activity in PA (P33) and SP (P88) cell lines at 
different cell concentrations (indicated in blue). Results of 2x105 cells/mL are representative also for 
measurements of PA P28 and SP P82. Figure left: scatter plot of fluorescence intensity vs. side scatter (SSC) of 
„live cell population“. Figure right: histogram of % Max (events) vs. fluorescence intensity, overlay of DEAB 
control (red) and sample (blue). 
DEAB: diethylaminobenzaldehyde, FL1-H: fluorescence channel 1 signal intensity, SSC-H: side scatter, 
P: passage number PA: parental cell line, SP: spheroid cells derived from PA 
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Figure 4.9.2: ALDEFLUORTM Assay: Variations with Cell Concentration Used - Quantitation (1) 

Fluorescence intensity values as well as positive staining cell numbers for ALDH activity depends on cell 
concentration used for the assay with similar results obtained for PA and SP cell lines. 
Geo mean values and number of positive staining cells for ALDEFLUORTM activity are dependent on cell 
concentration used for the assay, with decreasing values at increasing cell concentrations. Results are similarly 
high for PA and SP cell lines. Geo mean values and percent positive staining cells obtained in flow cytometric 
measurements of cells assayed for ALDEFLUORTM activity in PA (P28), SP (P88) cell lines at different cell 
concentrations as shown in figure 4.9.1.  
DEAB: diethylaminobenzaldehyde, FL1-H: fluorescence channel 1 signal intensity, P: passage number, PA: 
parental cell line, SP: spheroid cells derived from PA 

A second set of experiments was done to assure the first results and to evaluate possible differences 

in ALDH activity between the two spheroid cell lines SP and CS7. Surprisingly, results from this test 

series obtained for PA cell line varied dramatically from the results obtained in the first experiments, as 

can be seen from figure 4.9.2. and 4.9.3. The staining intensity of the cells was strongly reduced 

compared to SP cells and also the concentration dependent increase was less pronounced. The 

number of ALDH positive staining cells was reduced to half of the values obtained in the first 

experiments, with a high portion of negative staining cells. For the experiments, two separately 

cultured PA lines at passage numbers between 37-42 were used and concentrations of 2, 4 and 

8 x 105 cells/mL were tested in the assay. The results for the experiments illustrated in figure 4.9.3 are 

representative for all measurements (n=8).  

 
Figure 4.9.3: ALDEFLUORTM Assay: Variations with Cell Concentration Used - Quantitation (2) 

Results for PA cell line in second set of experiments are different from first set of experiments, in being strongly 
reduced, whereas results for SP cell line show no significant differences. CS7 cell line shows lower staining 
intensities than SP for ALDH activity and no strong correlation with cell concentrations but high numbers of 
positive staining cells. Geo mean values obtained for CS7 cell line are markedly lower, and number of positive 
staining cells is slightly lower than those obtained for SP cell line. 
Geo mean values and percent positive staining of PA (P37), SP (P50) and CS7 P80 cell lines obtained in flow 
cytometric measurements of cells assayed for ALDEFLUORTM activity in at different cell concentrations.  
CS7: clonally expanded spheroid cells derived from PA, DEAB: diethylaminobenzaldehyde, FL1-H: fluorescence 
channel 1 signal intensity, P: passage number, PA: parental cell line, SP: spheroid cells derived from PA 
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Whereas, results obtained for SP cell line, investigated at different passages numbers (P28-P72), 

were very similar to that seen in the first experiments, with the exception that overall staining 

intensities were slightly reduced (probably due to the use of frozen substrate or variations in 

instrument settings). No variations with passage number of the cells were observed in the 15 

measurements performed, comprising different cell concentrations of 2, 4 and 8 x 105 cells/mL. The 

reason for the high variation of results seen for PA cell line in the two sets of experiments is not clear. 

Since for SP cell line no remarkable differences were observed, they are less likely attributed to 

differences in experimental procedures. One explanation might be the very low passage number of 

cells used in the first assays (P28 and P33), which was in the low range of passage numbers 

determined to be able grow as spheroids. To address this possibility, a lot more experiments with cells 

in low passage numbers are needed. Another possible reason for the differences seen might be the 

higher activity of efflux pumps in the PA cell line (see chapter 4.10), which in the second set of 

experiments might not have been sufficiently inactivated. To exclude this possibility, tests with different 

concentrations of efflux inhibitors would be needed. 

 
Figure 4.9.4: ALDEFLUORTM Assay: Variations in Different Cell Lines, Passages, and Experiments 

ALDH activity varies between experiments (passage numbers) for PA cells, with low activity seen in high passage 
(exp 2) cells and high activity seen in low passage number cells (exp1). ALDH activity of SP cells is constantly 
high, independent of passage number of cells. CS7 cells show high ALDH activity with slight but not statistically 
significant decrease with passage number of cells. 
Representative results for flow cytometric measurements of 4x105 cells/mL assayed for ALDEFLUORTM activity in 
PA, SP and CS7 cell lines at different passages (indicated in blue). Results are representative for at least two 
measurements of cells incubated at the same cell concentration and similar passage numbers for CS7 (n=2 
P22/23, n=3 P80/81/84), SP (n=3 P28/30/32, n=4 P68/70/72/88), PA (n=4 P37/39/40/42). *PA P33: result from 
first experiments, comparable results were seen for PA P28. Figure left: scatter plot of fluorescence intensity vs. 
side scatter (SSC) of „live cell population“. Figure right: histogram of % Max (events) vs. fluorescence intensity, 
overlay of DEAB control (red) and sample (blue). 
CS7: clonally expanded spheroid cells derived from PA, DEAB: diethylaminobenzaldehyde, exp: experiments, 
FL1-H: fluorescence channel 1 signal intensity, SSC-H: side scatter, P: passage number, PA: parental cell line, 
SP: spheroid cells derived from PA 

CS7 cell line was assayed in high (P80-84) and low (P22-23) passage cells in parallel, which were 

obtained by thawing cells frozen at different time points. Thereby a slight difference was seen in ALDH 

staining intensity and number of positive staining cells between cells at low and high passage 

numbers, with the latter showing less intense staining. But the number of measurements for this cell 
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line is too low to regard these differences as statistically significant. The same is true for the low 

variation seen in one experiment performed with different cell concentrations on CS7 P88 (illustrated 

in figure 4.9.4). Though the substrate staining intensity of CS7 cell line was reduced compared to SP 

cells, most of the cells showed positive staining, with no distinct populations discernible, similar to that 

seen for SP cell line, indicating a uniform expression of the enzyme. The lower staining intensity as 

well as the reduced cell concentration dependency of staining might be due to the reduced size of 

cells compared to SP cells. 

To allow a rough comparison of the three cell lines, mean values of experiments, in which a 

comparable cell concentration was used, were calculated and are depicted in Figure 4.9.5. For better 

comparability of results from different cell lines and experiments the fold change of GM test 

sample/GM control sample were calculated. Since PA and CS7 cell lines showed variations with 

passage number and/or set of experiments, the same number of experiments of either condition was 

used for calculation of mean values. For CS7 this was possible only with a concentration of 4x105 

cells/mL, since only one experiment with a cell concentration of 2x105 cells/mL was performed with 

this cell line. In this experiment low variation to the sample using 4x105 cells/mL was observed (see 

figure 4.9.3). 

 
Figure 4.9.5: ALDEFLUORTM Assay: Mean Values for Different Cell Lines 

ALDH activity is high in all cell lines tested with high experimental variation seen for PA cell line and slightly lower 
staining intensities seen in CS7 cell line.  
Mean of percent positive staining cells and fold change GM test sample/GM control sample obtained in flow 
cytometric measurements of cells assayed at comparable cell concentrations (2x105 cells/mL for PA and SP and 
4x105 cells/mL for CS7) for ALDEFLUORTM activity in PA, SP and CS7 cell lines. Error bar: standard deviation of 
4 representative experiments (CS7, PA) and 5 experiments (SP), respectively. 
CS7: clonally expanded spheroid cells derived from PA, DEAB: diethylaminobenzaldehyde, FL1-H: fluorescence 
channel 1 signal intensity, GM: geo mean, P: passage number, PA: parental cell line, SP: spheroid cells derived 
from PA 
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4.10 Rhodamine 123 Side Population Assay (RSPA) 

The side population assay is a functional assay, which tests for the dye efflux capacity of cells, using 

flow cytometry. The assay has been successfully used to identify and isolate adult stem cells as well 

as TIC from several tumor entities. The molecular basis for dye efflux is the high expression of 

detoxifying ABC-transporters in stem cells and drug-resistant tumor cells. The test was originally 

introduced using the fluorescent DNA-binding dye Hoechst33342, which has to be excited by a UV-

laser. In a variant of the assay, the fluorescent mitochondrial stain Rhodamine 123 is used as an 

alternative, since it can be excited with standardly equipped flow cytometers and is not genotoxic. The 

transporter found to be mainly responsible for Rhodamine 123 efflux is MDR1/ABCB1/P-Glycoprotein. 

For the assay, cells are stained with the respective dye, and after removal of the dye and washing, the 

cells are incubated in medium for a defined period to allow for dye efflux. In a control sample, the dye 

efflux is inhibited by addition of transport inhibitors. 

The ability to efflux the mitochondrial stain Rhodamine 123 (Rho) was assayed on PA, CS1, CS7, SP 

and A-CS7, A-SP cells at different passage numbers. The cells were stained for 60 min in dye-

containing solution or control solution containing the efflux inhibitor verapamil. Dye efflux was allowed 

for 90 min. 7-ADD was added before flow cytometric measurement to be able to exclude dead cells in 

the analysis. To determine the cell fraction with dye efflux ability, the gate was set according to the 

verapamil control sample, defining cells below this region as dye pumping cells (RSP). 

As can be seen from figure 4.10.1, the dye efflux characteristics of PA cells and cells grown as 

spheroids (SP, CS1, CS7) varied considerably. After the 90 min incubation period, most PA cells had 

pumped out the dye with a mean fraction of dye pumping cells of 71%±15% (n = 7, P28-P116). 

Results were quite similar for all samples measured (P36-P116) with a slight tendency to increased 

efflux capacity in cells with higher passage numbers, when measured in parallel, though in one 

experiment, using cells at very low passage number (P28), the efflux capacity was found to be 

reduced. In contrast, only a very small number of cells were able to efflux the dye in SP cell line, with a 

mean fraction of cells pumping out dye of 2%±2% (n = 9, P30-P83). CS1 (n=1) and CS7 (n=2) were 

unable to efflux the dye. The difference seen between spheroid cell lines and PA was not caused by 

the AC-Medium used for the RSPA, since similar results were obtained with SC-Medium used as 

basis for the assay. When SP or CS7 cells were cultured under ACC, a fraction of cells pumping out 

dye was observed, even in A-CS7 cells, but which were measured only once. A-SP cells derived of 

several passages of SP cells and cultured for different periods under ACC were used for RSPA. 

Thereby only slight variations in the fractions of cells pumping out dye were seen, with two extreme 

results of 9% and 65%, resulting in a mean value of 26%±16% RSP (see figure 4.10.1 and 4.10.2 for 

three examples). No correlation with time of culture under ACC or passage number of spheroids 

seeded under ACC was detectable. Interestingly, even after 40 weeks under ACC, a huge fraction of 

cells did not efflux the dye, which might be indicative for retention of SP-like characteristics instead of 

reverting to PA-like phenotype of the cells. 

Besides the differences seen in transport activity, also the overall staining intensity was observed to 

be different between PA and spheroid cell lines. Though this feature was not addressed directly, the 

fold change of geo mean values of Ver control samples/unstained samples were markedly lower 
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(factor 5-10) in PA cells compared to SP and CS cell lines. Though comparison of different staining 

experiments due to intrinsic experimental variations and variations in instrument setting are not  

Rhodamine 123 Side Population on Different Cell Lines 

 
Figure 4.10.1: Representative Results of RSPA from Different Cell Lines 

Dye efflux capacity of cells varies between spheroid and adherently grown cell lines. PA cell line shows high 
efflux capacity, which is slightly reduced in low passage number cells. CS and SP cell lines do not efflux the dye 
and show higher staining intensity for Rho 123. In A-SP and A-CS cell lines populations pumping out dye are 
present. 
Flow cytometric measurements of cells assayed in RSPA. Comparison of results for different cells lines. With 
exception of PA P28, results are representative for other measurements PA P36 for PA (n = 6, P36-P116), SP 
P62 for SP (n = 9, P30-P83), CS7 P82 for CS1 (n=1, P51) and CS7 (n=2, P51), A-SP-P36 for A-SP (n=10, A-SP-
P14-P94, P29-P97, 2w-41 w ACC) cell lines. For A-CS7 no further results are available. 
Overlays of unstained cells (light blue), Rho-stained cells measured directly after staining (dark blue), Rho-stained 
cells after 90 min incubation in medium (red) and Rho-stained cells after 90 min incubation in the presence of 
verapamil (green). Passage number of cells is indicated in black. Figure left: scatter plot of fluorescence intensity 
vs. forward scatter (cell size) of „live cell population“. Figure right: histogram of % Max (events) vs. fluorescence 
intensity.  
ACC: adherent culture conditions, A-CS7: CS cells grown under ACC, A-SP: SP cells grown under ACC, CS7: 
clonally expanded spheroid cells derived from PA, FL1-H: fluorescence channel 1 signal intensity, FSC-H: 
forward scatter, P: passage number, PA: parental cell line, Rho: Rhodamine 123, RSPA: Rhodamine 123 side 
population assay SP: spheroid cells derived from PA, w: weeks 

generally applicable, the overall picture reflected the results seen also in single experiments 

performed with the cell lines in parallel. To exclude the possibility that ineffective transport inhibition in 

PA cells might be responsible for this observation, Rho-stained samples were measured directly after 



 

Results 

 

- 145 - 

the staining procedure (dark blue lines in figure 4.10.1). The staining pattern of these samples was 

almost identical to that seen in Verapamil containing control samples, which indicates effective 

inhibition of dye efflux by Verapamil. 

The dye efflux capacity of different cell lines was quite similar to the immune flow cytometrically 

observed surface expression of CD243 (MDR1). To test whether MDR1 expression is responsible for 

the RSP phenotype, resulting cells from RSPA were additionally stained with APC conjugated CD243 

antibody. Exemplary results of these experiments are shown in figure 4.10.2. Experiments revealed a 

clear correlation of RSP phenotype and MDR1 expression, indicated by CD243-staining of dye 

pumping cells. 

Parallel Staining for CD243 and Rhodamine 123 Side Population 

 
Figure 4.10.2: RSPA with Parallel IFC-Staining of CD243 (MDR1/ABCB1) on Different Cell Lines 

Dye efflux capacity of cells correlates with expression of CD243 in all cell lines. 
Flow cytometric immunophenotyping (IFC) of cells stained with APC conjugated antibody for detection of CD243 
antigen on cells assayed in RHSPA. Comparison of Rho aliquots stained with APC conjugated isotype control 
antibody (figure left) with CD243 specific antibody stained aliquots (figure right). 
Scatter plot of fluorescence intensity of FL4 (CD243/Isotype-APC) vs. fluorescence intensity of FL1 (Rho) of „live 
cell population“ for APC conjugated antibody stained cells.  
ACC: adherent culture conditions, A-CS7: CS cells grown under ACC, APC: allophycocyanin, A-SP: SP cells 
grown under ACC, CS7: clonally expanded spheroid cells derived from PA, CD: cluster of differentiation, CS: 
clonally expanded spheroid cells derived from PA, FL1/4-H: fluorescence channel 1/4 signal intensities, IFC: flow 
cytometric immunophenotyping, MDR1 (multi drug resistant protein 1), P: passage number, PA: parental cell line, 
Rho: Rhodamine 123, SP: spheroid cells derived from PA, w: weeks 
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4.11 Tumor Formation Assay - Xenotransplantation 

The central stem cell features, i.e. self-renewal ability and the capability to regenerate the tumor of 

origin, can only reliably proven in vivo. For this purpose, different amounts of PA and SP cells were 

injected in MatrigelTM into the flanks of strongly immuno-compromised NSG mice kept by “EPO GmbH, 

Berlin”. The mice were monitored regularly for tumor growth over a period of 70 days. During this 

period no tumor growth was observed and all mice were healthy. Necropsies were performed by “EPO 

GmbH”, after the observation time passed and mice did not show any signs of tumor growth at the 

injection sites. The results of the xenotransplantation assay are summarized in Table 4.11.1. 

 

 
Table 4.11.1: Results of Tumor Formation Assay 

PA: parental cell line, SP: spheroid cells derived from PA 
 

 

  

Injected Cells 1x104 1x105 1x106

PA cells at passage 37 0/5 0/4 0/3

SP cells at passage 80 0/5 0/4 0/3

Tumor bearing mice / Mice injected
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4.12 Whole Transcriptome Shotgun Sequencing of mRNA (RNA-Seq) 

To obtain a more comprehensive view into gene expression differences between spheroid cells (SP) 

and parental cell line (PA), but also into changes or similarities of spheroids grown under ACC (AS) 

with SP and PA cell lines, mRNA of three biological replicates of PA cell line (P37), SP cell line (P39 

and 43), as well as from A-SP cell line (derived of SP cells in passages P36 and P54) after 14 weeks 

of culture under ACC were analyzed using the next generation sequencing (NGS) technique. The raw 

data were processed and aligned to the human genome version GRCH38_v90 using HISAT2 

alignment software. The overall alignment rate for all samples was 97% of processed reads. Analysis 

of aligned data was performed using the SeqMonk application. 

Results obtained after hierarchical cluster analysis of the 9 datasets are shown in figure 4.12.1. 

Separate clustering of PA cells and SP and A-SP cells, respectively, reveals a clear difference 

between PA and spheroid-derived cells. This indicates, that differences in spheroid cell lines are 

partially retained, even after culturing under ACC.  

 
Figure 4.12.1: Hierarchical Clustering of Different Cell Lines 

mRNA expression of spheroid derived cells (SP and A-SP) clusters separately from that of PA cells. 
SeqMonk result for hierarchical cluster analysis of mRNA-Sequencing data from all analyzed samples. 
ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 14 weeks, PA: parental cell line, SP: 
spheroid cells derived from PA 

4.12.1 Differential Gene Expression 
For analysis of differential gene expression, the data were filtered for genes with significant expression 

levels (represented by a raw read number of more than 10 reads per gene). Also the gene list was 

confined to annotated genes. This refinement resulted in a number of 13955 expressed, annotated 

genes (Expressed-C), which were used for further analyses. 

In figure 4.12.2 the overlap of genes with expression levels log2 TPM > 0, representing in the order of 

about 500-1000 raw reads per gene (depending on gene length), are depicted. Most genes above this 

value were expressed in all samples. A low percentage of genes were expressed differentially at lower 

levels in the different samples. Thereby the percentage of overlap between spheroid-derived cell lines 

(SP and A-SP) was in the same range as that for the samples grown in serum-containing medium (PA 

and A-SP), whereas the percentage of overlap between SP and PA cells was slightly lower. Also, the 

percentage of genes expressed in one of the cell lines only below this cut-off value was in the same 

range. 
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Figure 4.12.2: Genes Expressed at log2 TPM Values >0 in Different Cell Lines  

Genes with detected expression levels of log2 TPM > 0 of each cell line dataset (PA, SP, A-SP) were compared 
logically to show the relation of different gene sets to each other. 
ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 14 weeks, PA: parental cell line, SP: 
spheroid cells derived from PA 

Differentially expressed genes (DEG) between PA, SP and A-SP cell lines in pairwise comparisons 

(PA vs. SP, PA vs. A-SP and SP vs. A-SP) were filtered using the DESeq algorithm. Further narrowing 

of the results was performed using a filter based on expression differences between 2 and 20 log2 

TPM (Man) or the „Intensity Difference“ filter implemented in SeqMonk (ID). In figures 4.12.3-5 the 

respective expression levels of genes for the three comparisons made are depicted and the 

respectively filtered datasets are indicated. The resulting numbers of DGE for the pairwise 

comparisons, which were up-regulated in respective cell line, are indicated in table 4.12.1. This table 

also contains the number of genes which were obtained by logical combinations of the lists, resulting 

in genes with up-regulated expression in one of the respective cell lines only or in genes, that were up-

regulated in both spheroid-derived datasets (SP and A-SP) or in both datasets obtained form cells 

grown under ACC (PA and A-SP). The number of DGEs was highest in comparison of PA with SP 

cells, slightly lower in comparison of PA with A-SP cells, and lowest in comparison of SP with A-SP 

cells. In figures 4.12.6-9 exemplary results for differentially expressed genes, that were found to be 

up-regulated in the different samples (PA, SP and A-SP) in the pairwise comparisons (PA vs. SP, PA 

vs. A-SP, and SP vs. A-SP), as well as results obtained for logical filtering of genes, that were found to 

be up-regulated in spheroid cell lines (SP and A-SP) compared to PA cell line, and in cell lines grown 

under ACC (PA, A-SP) compared to non-adherently, serum-free cultured spheroids (SP) are shown. 

The genes for these figures were chosen from the list of DEGs according to high differences in 

expression level. 
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Figure 4.12.3: mRNA Expression Levels and Filters Applied for PA and SP Cells 

Expression levels of SP vs. PA cells. Differentially expressed genes detected by different filtering strategies are 
color-coded. 
PA: parental cell line, SP: spheroid cells derived from PA, Filters applied: DESeq (blue), DESeq and expression 
difference of 2-20 log2 TPM = DESeq+Man (red/green), DESeq and „Intensity Difference“ = ID (orange/violet), 
non-differentially expressed genes (grey). 
 

 
Figure 4.12.4: mRNA Expression Levels and Filters Applied for PA and A-SP Cells 

Expression levels of PA vs. A-SP cells. Differentially expressed genes detected by different filtering strategies are 
color-coded. 
ACC: adherent culture conditions, AS: adherently grown spheroids, A-SP: SP cells grown under ACC for 14 
weeks, PA: parental cell line, SP: spheroid cells derived from PA, Filters applied: DESeq (blue), DESeq and 
expression difference of 2-20 log2 TPM = DESeq+Man (red/green), DESeq and „Intensity Difference“ = ID 
(orange/violet), non-differentially expressed genes (grey). 
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Figure 4.12.5: mRNA Expression Levels and Filters Applied for SP and A-SP Cells 

Expression levels of SP vs. A-SP cells. Differentially expressed genes detected by different filtering strategies are 
color-coded. 
ACC: adherent culture conditions, AS: adherently grown spheroids, A-SP: SP cells grown under ACC for 14 
weeks, PA: parental cell line, SP: spheroid cells derived from PA, Filters applied: DESeq (blue), DESeq and 
expression difference of 2-20 log2 TPM = DESeq+Man (red/green), DESeq and „Intensity Difference“ = ID 
(orange/violet), non-differentially expressed genes (grey). 
 

 

 

 
Table 4.12.1: Number of DEG Obtained for Different Comparisons and Filtering 

Upper table: Results of differentially expressed genes in pairwise comparison of data using the DESeq algorithm 
(column 1). Numbers of up-regulated gens in respective cell line datasets after extraction using manual 
expression difference filtering (Man) or statistical intensity difference (ID) filtering of the data as well as number of 
genes submitted for GSEA (indicated in brackets, respectively). Column 2: genes up-regulated in PA. Column 3: 
genes up-regulated in SP. Column 4: genes up-regulated in SP. Line 5: number of cell line specific genes 
obtained by combining the lists using the logical combination AND (PA+PA, SP+SP, AS+AS).  
Lower table: number of up-regulated genes in serum or spheroid-derived cells obtained by combination of lists for 
respective cell lines (column 1) and subtraction of cell line specific genes using the logical combination BUTNOT 
(column 3). 
ACC: adherent culture conditions, AS: adherently grown spheroids, A-SP: SP cells grown under ACC for 14 
weeks, DEG: differentially expressed genes, GSEA: gene set enrichment analysis, PA: parental cell line, SP: 
spheroid cells derived from PA, Cell line specific gene lists: for PA = PA+PA, for SP = SP+SP, for AS = AS+AS 
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Figure 4.12.6: Heat Maps of Up-regulated Genes in Comparison of SP Cells to PA Cells 

Figure top: Differentially expressed genes found to be up-regulated in SP cell line datasets. 
Figure bottom: Differentially expressed genes found to be up-regulated in PA cell line datasets. 
Examples of up-regulated genes after SP vs. PA comparison with highest differences in expression level between 
SP and PA datasets. Expression level is color-coded (see open scale on the right). Data are depicted for all 
datasets (indicated on top). Official gene symbols are indicated on the right. 
PA: parental cell line, SP: spheroid cells derived from PA, TPM: transcripts per million 
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Figure 4.12.7: Heat Maps of Up- regulated Genes in Comparison of A-SP Cells to PA Cells 

Figure top: Differentially expressed genes found to be up-regulated in A-SP cell line datasets. 
Figure bottom: Differentially expressed genes found to be up-regulated in PA cell line datasets. 
Examples of up-regulated genes after A-SP vs. PA comparison with highest differences in expression level 
between A-SP and PA datasets. Expression level is color-coded (see open scale on the right). Data are depicted 
for all datasets (indicated on top). Official gene symbols are indicated on the right.  
ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 14 weeks, PA: parental cell line, SP: 
spheroid cells derived from PA, TPM: transcripts per million 
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Figure 4.12.8: Heat Maps of Up-regulated Genes in Comparison of SP Cells to A-SP Cells 

Figure top: Differentially expressed genes found to be up-regulated in SP cell line datasets. 
Figure bottom: Differentially expressed genes found to be up-regulated in A-SP cell line datasets. 
Examples of up-regulated genes after SP vs. A-SP comparison with highest differences in expression level 
between SP and A-SP datasets. Expression level is color-coded (see open scale on the right). Data are depicted 
for all datasets (indicated on top). Official gene symbols are indicated on the right. 
ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 14 weeks, PA: parental cell line, SP: 
spheroid cells derived from PA, TPM: transcripts per million 
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Figure 4.12.9: Heat Maps of Up-regulated Genes in Spheroid and ACC-Cultured Cell Lines 

Figure top: Differentially expressed genes found to be up-regulated in spheroid cell line datasets (SP, A-SP). 
Figure bottom: Differentially expressed genes found to be up-regulated in ACC-cultured cell line datasets (PA, A-
SP). Examples of up-regulated genes with highest differences in expression level between spheroid and serum 
datasets (see table 4.12.1). Expression level is color-coded (see open scale on the right). Data are depicted for all 
datasets (indicated on top). Official gene symbols are indicated on the right. 
ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 14 weeks, PA: parental cell line, SP: 
spheroid cells derived from PA, TPM: transcripts per million 
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As can be seen from figures 4.12.6.-4.12.9, some variation in expression levels for several of the 

genes could be observed between replicate sets, especially the A-SP-B sample, which was derived 

from spheroids seeded at higher passage number (P54) into ACC, showed variations when compared 

to both other samples descending form spheroids at earlier passage (P36). It can also be seen, that 

some of the genes were either similarly up-regulated in A-SP and SP cells (spheroid-derived cell lines) 

compared to PA cells or in A-SP and PA cells (cells grown under ACC) compared to SP cells, 

whereas some genes were differentially expressed in only one of the cell lines. For example high 

expression of ACE2 is found in PA cells only, FOS/FOSB and EGR3 are up-regulated in A-SP cells 

and SLC14A1 and NMRK2 are up-regulated in SP cells specifically, when compared to both other cell 

lines. Also genes with relatively high expression levels in all cell lines were differentially expressed e.g. 

MMP7 and TNFSF10. 

4.12.2 Gene Set Enrichment Analysis (GSEA) 

The differentially expressed genes (DEGs) obtained from the analyses were submitted for gene set 

enrichment analysis (GSEA) to the GeneAnalyticsTM application to identify significantly up-regulated 

signatures in the different cell lines. Genes with high expression differences were chosen for this 

analysis. Since the methods applied for GSEA are statistics-based the manually filtered data were 

chosen for this purpose. In cases, where the number was too high (more than 400), those genes with 

highest difference in expression values were selected. 

In general a high number of brain- or neuron-associated terms were among the top listed entities for 

all datasets. The top-ranked disease terms were various cancerous diseases, especially different 

histological subtypes of RCC. Comparison of spheroid-derived cell line up-regulated datasets in 

comparison to PA cell line datasets with gene expression data from in vitro cell lines revealed the 

“Human embryonic stem cells (family)“ among the top ranked results for, with 44 and 46 gene 

matches (e.g. CXCR4, LRP2, RARRES2, STC1, METTL7A, EMX1, SHISA9, DCLK1, ALPL) 

representing a score value of 5. 

An overview of pathways found to be enriched in the investigated datasets is given in tables 4.12.2.-

14.12.6. Thereby in spheroid-derived cell line datasets Akt / Erk signaling, CREB pathway, HIF-1α 

transcription factor network, Wnt/Hedgehog/Notch signaling, EGFR (ErbB) signaling, and p21-

activated kinases (PAK) pathway, but also differentiation-related pathways were found to up-regulated 

compared to PA cell line dataset. Whereas, genes up-regulated in cell lines grown in serum-containing 

medium (PA and A-SP) derived datasets were predominantly involved in immune-regulatory 

pathways, but also in adhesion and angiogenesis, as well as sphingosine-1-phosphate (S1P) 

stimulated signaling, and NF-κB signaling. 

Comparison of SP cell line dataset with A-SP and PA cell line datasets showed up-regulation of 

metabolic pathways, especially in lipid metabolism, but also a tendency to neuronal differentiation. 

When compared to both other cell lines for A-SP cell line dataset a high number of pathways was 

detected to be changed, among which were e.g. adipogenesis, TNF and TGF-β pathway, and ATF-2 

transcription factor network. Pathways detected specifically up-regulated in PA cell line dataset 

compared to other cell line datasets were integrin signaling and phagocytic activity. The up-regulated 
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DGEs in this dataset also contained several genes associated to aryl hydrocarbon receptor (AHR) 

pathway involved in xenobiotic-metabolism. 

In tables 4.12.7-4.12.10 biological processes, identified to be enriched in the up-regulated DEG 

datasets from different cell lines are shown. Enriched processes in spheroid-derived cell line datasets 

were glucose metabolism, response to oxidative stress and cellular (osteogenic) differentiation. The 

datasets obtained from cell lines grown under ACC were enriched in inflammatory response, 

adhesion, and ECM related functions. In PA cell line a high number of protocadherin genes (PCDHA) 

was found to be up-regulated compared to spheroid-derived cell lines. In A-SP cell line dataset an up-

regulation of chemokine-mediated signaling pathways and pathways involved in muscle cell 

differentiation was detected. 

 

 
Table 4.12.2 Pathways Up-regulated in SP Cell Line Dataset Comparisons 

Upper part: relevant pathways detected for datasets from DEG up-regulated in SP cell line dataset compared to 
PA cell line dataset. Lower part: relevant pathways detected for datasets from DEG up-regulated in SP cell line 
dataset compared to A-SP cell line dataset. Score in Column 1 represents (-log2) transformed p-values. 
ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 2 weeks, DEG: differentially expressed 
genes, PA: parental cell line, SP: spheroid cells derived from PA 
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Table 4.12.3: Pathways Up-regulated in PA Cell Line Dataset Comparisons 

Upper part: relevant pathways detected for datasets from DEG up-regulated in PA cell line dataset compared to 
SP cell line dataset. Lower part: relevant pathways detected for datasets from DEG up-regulated in PA cell line 
dataset compared to A-SP cell line dataset. Score in Column 1 represents (-log2) transformed p-values. 
ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 2 weeks, DEG: differentially expressed 
genes, PA: parental cell line, SP: spheroid cells derived from PA 
 

 
Table 4.12.4: Pathways Up-regulated in A-SP Cell Line Dataset Comparisons 

Relevant pathways detected for datasets from DEG up-regulated in A-SP cell line dataset compared to PA cell 
line dataset. Score in Column 1 represents (-log2) transformed p-values. 
ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 2 weeks, DEG: differentially expressed 
genes, PA: parental cell line, SP: spheroid cells derived from PA 
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Table 4.12.5: Pathways Up-regulated in A-SP Cell Line Dataset Comparisons 

Relevant pathways detected for datasets from DEG up-regulated in A-SP cell line dataset compared to SP cell 
line dataset. Score in Column 1 represents (-log2) transformed p-values. 
ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 2 weeks, DEG: differentially expressed 
genes, PA: parental cell line, SP: spheroid cells derived from PA 
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Table 4.12.6: Pathways Up-regulated in Spheroid-Derived and ACC-Cultured Cell Line Datasets 

Upper part: relevant pathways detected for datasets from DEG up-regulated in PA and A-SP cell line datasets 
compared to SP cell line dataset. Lower part: Relevant pathways detected for datasets from DEG up-regulated in 
SP and A-SP cell line datasets compared to PA cell line dataset. Score in Column 1 represents (-log2) 
transformed p-values. ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 2 weeks, DEG: 
differentially expressed genes, PA: parental cell line, SP: spheroid cells derived from PA 
 

 
Table 4.12.7: Enriched Biological Processes in SP Cell Line Dataset Comparisons 

Upper part: relevant biological processes detected for datasets from DEG up-regulated in SP cell line dataset 
compared to PA cell line dataset. Lower part: Relevant biological processes detected for datasets from DEG up-
regulated in SP cell line dataset compared to A-SP cell line dataset. Score in Column 1 represents (-log2) 
transformed p-values. ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 2 weeks, DEG: 
differentially expressed genes, PA: parental cell line, SP: spheroid cells derived from PA 
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Table 4.12.8: Enriched Biological Processes in PA Cell Line Dataset Comparisons 

Upper part: relevant biological processes detected for datasets from DEG up-regulated in PA cell line dataset 
compared to SP cell line dataset. Lower part: Relevant biological processes detected for datasets from DEG up-
regulated in PA cell line dataset compared to A-SP cell line dataset. Score in Column 1 represents (-log2) 
transformed p-values. ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 2 weeks, DEG: 
differentially expressed genes, PA: parental cell line, SP: spheroid cells derived from PA 
 

 
Table 4.12.9: Enriched Biological Processes in Sphere-Derived and ACC-Cultured Cell Line Datasets 

Upper part: relevant biological processes detected for datasets from DEG up-regulated in PA and A-SP cell line 
datasets compared to SP cell line dataset. Lower part: Relevant biological processes detected for datasets from 
DEG up-regulated in SP and A-SP cell line datasets compared to PA cell line dataset. Score in Column 1 
represents (-log2) transformed p-values. ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 
2 weeks, DEG: differentially expressed genes, PA: parental cell line, SP: spheroid cells derived from PA 
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Table 4.12.10: Enriched Biological Processes in A-SP Cell Line Dataset Comparisons 

Upper part: relevant biological processes detected for datasets from DEG up-regulated in A-SP cell line dataset 
compared to PA cell line dataset. Lower part: Relevant biological processes detected for datasets from DEG up-
regulated in A-SP cell line dataset compared to SP cell line dataset. Score in Column 1 represents (-log2) 
transformed p-values. ACC: adherent culture conditions, A-SP: SP cells grown under ACC for 2 weeks, DEG: 
differentially expressed genes, PA: parental cell line, SP: spheroid cells derived from PA 
 

4.12.3 mRNA Expression Levels of Markers Investigated by IFC 

The data obtained by mRNA sequencing allow a comparison of mRNA expression levels of PA, SP 

and A-SP cell lines with the results obtained in IFC measurements. Additionally, results allow 

identification of differences in mRNA expression levels of other relevant markers between the 

investigated cell lines. When comparing those results, it is important to keep in mind that mRNA 

expression levels represent the mean of the different cell populations seen in IFC. 

4.12.3.1 mRNA Expression Levels of TIC Markers Investigated by IFC 

Results for mRNA expression levels of the TIC marker genes investigated by IFC are depicted in 

figure 4.12.10. The mRNA expression levels in different cell lines were generally in good correlation 

with the data obtained in IFC measurements for the respective antigens (see table 5.6.1), including the 

relative high variations in expression of ABCB1 and TNAP expression seen in SP cell line. TNAP 

mRNA expression in A-SP cell line was similar to that seen in SP cell line. TNAP expression was not 
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investigated by other methods in this cell line. For CD90 (THY1) in contrast to results obtained in IFC, 

where no staining for CD90 was detected, low mRNA expression was seen in all cell lines. Also, 

CXCR7 mRNA was expressed at similar levels to CXCR4 mRNA in spheroid-derived cell lines (SP 

and A-SP), whereas in IFC CXCR7 was detected at lower level than CXCR4 on SP cells. Neither for 

CXCR4 nor for CXCR7 a difference in mRNA expression level was seen between spheroids and 

spheroids cultured under ACC, which contrasts results obtained by IFC. The high variation seen for 

CD271 expression in A-SP cells was due to higher expression level of the gene seen in the A-SP-P54 

(P75) sample, which might indicate an increase in expression over time in culture as spheroids, as 

was seen for other markers. 

 
Figure 4.12.10: Relative mRNA Expression Levels of CSC Markers 

Mean values of relative mRNA expression levels for different TIC markers obtained by RNA-Sequencing from 
three replicate samples of PA (P37), SP (P39/43) and A-SP (A-SP-P36/P54, P56, 57, 75) cell lines. Log2 
transformed TPM values, which were multiplied by 103 to omit negative values, are indicated. Error bar: standard 
deviation. Expression level of the housekeeping gene HPRT1 is indicated for comparison. 
ACC: adherent culture conditions, AS: adherently grown spheroids = A-SP: SP cells grown under ACC for 14 
weeks, HPRT1: hypoxanthine phosphoribosyltransferase 1, P: passage number, PA: parental cell line, SP: 
spheroid cells derived from PA, TPM: transcripts per million 
 

4.12.3.2 mRNA Expression Levels of EMT Markers 

Results for mRNA expression levels of the mesenchyme specific EMC marker genes CDH2 (N-

Cadherin), SNAI1, VIM, but also of the transcription factors TWIST1, SNAI2 (Slug), ZEB1 and ZEB2 

for PA, SP and A-SP cell lines, as well as mRNA expression levels for epithelial marker antigens 

CDH1 and cytokeratin 8 and 19 (KRT8, KRT19) are shown in figure 4.12.11. Confirming the results 

obtained by IFC, similar high expression levels were seen for CDH1 and CDH2 and VIM in all cell 

lines investigated, as well as slightly lower expression levels of cytokeratin in SP and A-SP cell lines 

compared to PA cell line. mRNA expression levels for VIM, CDH1 and CDH2, ZEB1 and SNAI1 were 

slightly higher in A-SP cell line compared to PA and SP cell line, but also showed higher variations 

between replicate samples. Genes for transcription factors were expressed at lower levels than genes 
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coding for surface-expressed and intermediate filament proteins. Thereby the transcription factors 

TWIST1, ZEB2 and SNAI2 were expressed markedly lower levels than SNAI1 and ZEB1. Expression 

levels for ZEB1 were similar in PA and SP cell line. SNAI1, TWIST1 and ZEB2 mRNA expression was 

reduced in SP cell line compared to the cell lines grown under ACC, whereas SNAI2 expression levels 

were higher in PA cell line compared to spheroid-derived cell lines. TWIST1 expression, similar to 

CD271 expression, was markedly higher in the A-SP-P54 (P75) sample compared to the samples 

derived from spheroids in passage 36, which showed almost identical expression values of the gene. 

 
Figure 4.12.11: Relative mRNA Expression Levels of EMT Markers 

Mean values of relative mRNA expression levels for different EMT markers obtained by RNA-Sequencing from 
three replicate samples of PA (P37), SP (P39/43) and A-SP (A-SP-P36/P54, P56, 57, 75) cell lines. Log2 
transformed TPM values, which were multiplied by 103 to omit negative values, are indicated. Error bar: standard 
deviation. 
ACC: adherent culture conditions, AS: adherently grown spheroids = A-SP: SP cells grown under ACC for 14 
weeks, P: passage number, PA: parental cell line, SP: spheroid cells derived from PA, TPM: transcripts per 
million 

4.12.3.3 mRNA Expression Levels of Pluripotency Markers Investigated by IFC 

The expression levels of the transcription factors POU5F1/Oct4, SOX2, NANOG, KLF4 and MYC, 

which are involved in maintenance of pluripotency of stem cells, for the three cell lines used for RNA-

Sequencing experiments are shown in figure 4.12.12. In contrast to results obtained by IFC, mRNA 

expression levels of Oct4 were found to be higher than SOX2 expression levels in all cell lines 

investigated. A slightly higher expression of Oct4 was observed in SP and A-SP cell lines compared to 

PA cell line, whereas expression levels of SOX2 were slightly higher in the latter and significantly 

reduced in A-SP cell line samples. In all cell lines NANOG was expressed at markedly lower level, 

whereas high expression of MYC was observed. The expression of KLF4 varied highly between the 

three investigated cell lines, with highest expression found in A-SP and lowest expression seen in PA 

cell line. 
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Figure 4.12.12: Relative mRNA Expression Levels of Pluripotency Associated Transcription Factors 

Mean values of relative mRNA expression levels transcription factors involved in maintenance of pluripotency 
obtained by RNA-Sequencing from three replicate samples of PA (P37), SP (P39/43) and A-SP (A-SP-P36/P54, 
P56, 57, 75) cell lines. Log2 transformed TPM values, which were multiplied by 103 to omit negative values, are 
indicated. Error bar: standard deviation. 
ACC: adherent culture conditions, AS: adherently grown spheroids = A-SP: SP cells grown under ACC for 14 
weeks, P: passage number, PA: parental cell line, SP: spheroid cells derived from PA, TPM: transcripts per 
million 
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5 Discussion 

5.1 Growth Characteristics 

5.1.1 Growth Potential of Different Cell Lines 

A fundamental feature of stem cells is their unrestricted replicative potential, whereas differentiated 

cells enter a senescent state or die after a defined number of cell divisions.  

The replicative potential of cell lines investigated in this work was tested by long-term in vitro culture of 

the cells. All cell lines were shown to possess high replicative potentials, reaching from 190 population 

doubling in SP cell lines, 200 and 300 population doublings in CS1 and CS7 cell line to 350 population 

doublings in PA cell line during the observed periods. Also no reduction of growth rate over the 

investigated period of more than 60 weeks of continuous culture was observed, rather an increase of 

growth rate over time in culture was seen in all cell lines investigated, which might be a strong hint for 

enrichment of stem-like cells in the cell lines over long-term culture.  

5.1.2 Cell Size as Indicator of Senescence or Stem Cell State 

Long-term culture of a cell line always raises the question for enrichment of senescent cells with time 

of culture. This would on the one hand be indicated by a reduction of proliferation rate, and on the 

other hand by and increase in cell size, since irreversible growth arrest and an increase of cell size 

have been described as characteristics of senescent cells. 305 306 For both factors, the opposite has 

been observed for the cell lines investigated: the growth rate increased and the cell size decreased 

with time of culture, for both, PA cells and spheroid cell lines. Also a marked reduction of cell size has 

been observed in the CS cell lines compared to PA but also to SP cells. Taken both of these facts 

together makes a scenario of accumulation of senescent cell over time in culture, though not directly 

analyzed, less likely. 

The idea that small cell size might be linked to a quiescent stem cell phenotype is apparent, since the 

metabolic needs of quiescent cells are fundamentally different to those of proliferating progenitors or 

differentiated cells. Thus adult stem cells isolated from different tissues have been shown to be 

characterized by their small cell size. Also in keratinocytes cell size was shown to positively correlate 

with the expression of the differentiation markers. In contrast, an opposite correlation was reported for 

mouse mammary stem cells, implying tissue dependent variations. A causal link between cell size and 

CSC characteristics has not been addressed in quite detail. Few publications found that cells with 

CSC characteristics showed reduced size, when compared to their non-CSC counterparts. For 

example, sorting of the highly tumorigenic PC3 prostate cancer cell line according to size led to 

enrichment of CSC in the small cell size fraction. Also spheres generated from the A431 epidermoid 

carcinoma cell line were enriched in a small cell population with CSC features. In contrast CSC that 

were enriched by side population sorting of medulloblastoma cell line DAOY differed from the non-

Side Population counterparts by increased cell size. The picture might be complicated by the fact that 

PI3K/AKT/mTOR signaling pathways, which are major regulators of cell growth, are frequently 

compromised in cancer cells. For example overexpression of Myc, which often found in cancer cells, 

has been shown to increase cell size. Also YAP, a component of the Hippo pathway, which is mainly 
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involved in cell size regulation, is frequently overexpressed in cancers. 307 For this reason a deduction 

of stem cell characteristic enrichment in the obviously smaller CS cell line would be misleading. 

5.1.3 Spheroid Culture Method 
Enrichment of CSC by spheroid culture has been shown for many tumor types. In most studies only a 

small fraction of the primary tumor cells or cell lines was able to grow under these conditions. And the 

surviving cells showed higher expression of stem cell markers and higher tumor formation efficiency 

when compared to cells grown under conventional monolayer growth conditions. Also it has been 

shown, that cells grown as spheroids better retain the characteristics of the original tumor than cells 

grown under conventional monolayer conditions. This might in part be due to the fact, that the 3-

dimensional growth of cells may better resemble the natural tumor environment with regions of low 

oxygen and nutrient supply. Spheroid-formation assay therefore has become a standard method to 

assay stem cell characteristics, especially but not only in breast “mammospheres” and colon cancer 

“colonospheres”. 145 147 168 308 309 310 311 312 

The methods employed for spheroid-formation assays in the literature are highly variable, ranging 

from seeding of high cell numbers to clonal determination of spheroid growth. In this work spheroid-

forming efficiency was determined at a single cell, albeit not clonal level, which was shown to be 

sufficient to avoid aggregation of the cells. Spheroid cell lines were generated in this work by to 

different methods. In the “bulk” culture method cells were seeded at normal densities under spheroid-

promoting growth conditions, yielding the SC cell lines. There, aggregation as well as other 

interactions of the cells were present during cell growth and spheroid formation. Clonally amplified cell 

lines (CS) in contrast, were generated by plating and growth of cells at single cell level. There, no 

cellular interactions or paracrine signaling was present during the first period of spheroid growth and 

selection. 

Both culture methods resulted in distinct cell types, which were shown to differ in some of the 

investigated characteristics in this work. 

5.1.3.1 Spheroids from Kidney-Derived Cells and RCC 

Buzhor et al 313 compared gene expression profiles of spheroids and adherently grown kidney 

epithelial cells derived of human nephrectomy tissue samples using microarray as well as flow 

cytometric immunophenotyping (IFC). In their study de-differentiation of the cells in serum containing 

medium was observed after a few passages, whereas cell propagation as spheroids in serum-free 

medium showed up-regulation of stemness markers compared to adherently grown cells. The 

spheroid phenotype was characterized as being EpCAM+/CD24+/CD133+/CD44+. The cells grown as 

spheroids were also able to reconstitute tubular epithelia when cultured on chorioallantoic membrane 

of chick embryos. 

Zhong et al 211 investigated the sphere culture method for enrichment of CSC from SK-RC-42 RCC 

cell line. They found spheroid cells enriched in Hoechst side population (HSP) cells (10% vs. 2% in 

adherent counterparts) and being able to induce tumor growth in BALB/c nude mice at injected cell 

numbers of 2 x 105 compared to 3 x 106 adherent cells needed to form tumors. The spheroids showed 

also higher mRNA expression levels of stemness genes Oct3/4, BMI1, Nanog and β-Catenin in semi-

quantitative RT-PCR compared to adherent cells. No difference was observed in expression of CD24 
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and CD44, which both were expressed on adherent and spheroid cell lines, whereas no expression 

was seen for CD133 on both cell lines. CD105 was also expressed on both cell lines, but with lower 

intensity on spheroid cell lines, compared to adherently grown cells. Assays for radiation and drug 

sensitivity to mitomycin C and 5-fluorouracil showed higher resistance of spheroid cells, compared to 

adherent counterparts. Differences in expression were seen for some immune-relevant molecules, 

which were expressed by spheroid cells in a manner resulting in a more immune-evading phenotype 

compared to adherently grown cells. 

Micucci et al 213 investigated sphere-forming abilities of 786-O, Caki-1 and 786-P and Caki-2 RCC cell 

lines and found only the former two to be able to form spheroids in a magnitude of 0.3% in non-

adherent culture conditions using DMEM/F12 growth factor supplemented medium, whereas the 

sphere forming ability of Caki-2 and 786-P cell line was reduced by a factor of >10. Only the spheroid 

derived cells of 786-O and Caki-1 cell lines, but not the adherently grown counterparts were able to 

differentiate into adipocytes. The spheroid-derived cells of both cell lines were also shown to possess 

higher tumorigenic potential in NOD/SCID mice (5x104 cells led to tumor formation in all mice tested) 

than the adherently propagated counterparts (3x106 cells led to tumor formation in all mice tested). No 

tumor formation was observed from spheroids obtained from Caki-2 cell line. The higher tumor-

forming ability of the 786-O spheroid cells was shown to be related to the observed higher expression 

of HIF-2α. By means of shRNA dependent silencing of expression, reduced tumor-forming ability and 

size in adherent and spheroid-derived cells as well as sphere-forming ability in these cell lines were 

seen. Another factor, which was reported to be influencing spheroid growth, was the functionality of 

the chemokine receptor CXCR4, which when inhibited led to strongly reduced sphere-forming 

efficiency in this work. Reduced mRNA expression of CXCR4 was detected upon HIF-2α knockdown. 

Similar to the results obtained in my work, the spheroid-forming efficiency of 786-O cell line increased 

with spheroid passage number. The sphere culture conditions used by Micucci et al 213 were a mix of 

the two methods used in my work, in that the cells were seeded at a relatively high density of 2x105 

cells/mL, similar to SP cells, but were passaged at long intervals, which was comparable to CS cells. 

Gassenmaier et al 204 investigated sphere-forming ability in two RCC cell lines RCC-26, RCC-53 

which, were derived from primary tumors of stage I and IV patients, respectively. They found sphere-

forming abilities of 10% in RCC-53 cells and 2% in RCC-26 cell lines. Spheroid cells derived of RCC-

53 were found to possess higher resistance to kinase inhibitors sorafenib, sunitinib, and pazopanib 

than adherent counterparts and showed increased expression of stemness markers Oct4, Nanog and 

Sox2 compared to adherent cells. Spheroids were also characterized by higher expression of CXCR4. 

CXCR4+ sorted cells had a higher sphere-forming ability than CXCR4− cells. The authors, in 

accordance with results of Micucci et al213, also showed that the receptor seemed to be functional for 

sphere-formation, since siRNA knockdown or inhibition lead to reduced spheroid-formation ability of 

the cells. 

Spheroid formation was also investigated by Lichner et al 212 in ACHN and Caki-1 RCC cell lines. They 

found 4% of cells from both cell lines being able to grow as spheroids, and an increased sphere-

forming ability of 12% in both cell lines for spheroid-derived cells. Spheroids derived from Caki-1 cell 

line were found to possess increased tumor-forming ability in NOD/SCID mice at injected cell numbers 
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of 104 and 106, with higher tumor masses compared to adherently grown cells of this cell line. 

Compared to adherently grown cells spheroids of both cell lines also showed increased expression of 

stem cell markers (Nanog, LIN28, KLF4), EMT markers (ZEB, Twist, Vimentin, N-Cadherin). Also 

CD24 expression was up-regulated in spheroids compared to adherent counterparts of the cell lines. 

The authors also investigated expression of miRNAs in spheroids and adherent cells and found 

several miRNAs differentially expressed, which were associated to TGF-β and BMP signaling 

components thereby favoring TGF-β TGFBR2-SMAD2/3-mediated branch of the TGF-β pathway over 

the BMPR-SMAD1/5/8-mediated branch of TGF-β pathway. Targeting of miR-17, which targets 

ACVR1 receptor and was found to be up-regulated in spheroids, by anti-miR-17 lead to increased 

sphere-forming ability, tumor growth. Treatment with TGF-β1 increased sphere-forming ability in 

ACHN cell line and induced higher expression of EMT transcription factors Twist, Snail and Zeb1. 

CSFE of Caki-1 and ACHN cell lines was also determined by Xiao et al 203 and they report relative 

high values of 15-18% spheroid-forming cells in those cell lines, whereas CD133+/CD24+ sorted cells 

showed increased CSFE values of 40% in cells from ACHN and 60% in in cells from Caki-1 cell lines 

respectively. In contrast to Xioa et al 203, Hu et al 200 determined the sphere-formation efficiency for 

ACHN cell line to be in the range of 4% of the cells. The sphere-formation efficiency of CD105+ sorted 

cells was found to be only slightly higher. 

Song et al 210 used spheroid growth to enrich for CSC from primary RCC tissues and the 786-O RCC 

cell line. The found spheroid-derived cells showed higher tumorigenicity with 500 injected cells being 

able to form tumors compared to 1.5x104 injected adherent cells needed for tumor growth in in 

NOD/SCID mice. Spheroids also expressed CD73, which was shown to be a marker for CSC in this 

work, at higher level, and were less sensitive to radiation and mitomycin C treatment than adherent 

counterparts. The spheroids could be propagated for more than 60 passages, demonstrating the self-

renewal ability of the cells in vitro. Similar to results obtained with cells investigated in this work, the 

authors report, that spheroids were able to grow under adherent conditions as monolayer and retained 

their spheroid-forming ability under adherent culture conditions. 

Debeb et al 214 investigated sphere-formation of human embryonic kidney cell line HEK293 and found 

primary sphere-forming ability of 2%, which increased to 8% in secondary spheroids. Compared to 

adherent cell line, spheroids showed higher expression of stemness markers Oct4, Sox2, Klf4, Nanog, 

survivin, β-Catenin and Rex1 as well as EMT markers N-Cadherin, Vimentin, Zeb1, Snail1 and Snail2, 

additionally microRNAs, known to target EMT-components were found to be down regulated. Also 

spheroids were found to be enriched in ALDHhigh cells (40%) compared to cells grown under adherent 

culture conditions (6%) and showed higher resistance to radiation and retinoic acid treatment. 

Expression of CD24, which was detected by IFC at high levels in HEK293 adherent cells, was reduced 

in fractions of spheroid cells.  

Spheroid-formation of 786-O cell line was determined by Peng et al 314 and found to be in the range of 

2% and similar values of 3% were reported by Yun et al 315for this cell line.  

For A498 and SK-RC-39 cell lines Zhang et al 201 reported sphere-forming ability being restricted to 

CD105+ sorted cells, whereas CD105− cells were unable to form spheroids in serum-free medium. For 

unsorted A498 RCC cell line Li et al 316 report CSFE of 3%. 
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In Wilms’ tumor (a pediatric tumor of the kidney with possible stem cell origin) derived primary cell 

cultures Pode-Shakked et al 317 investigated whether spheroid growth might enrich for stemness 

markers and found two of the tumors showed higher expression of markers in spheres while cells from 

one tumor overexpressed the stemness genes in the adherent culture and one cell line showed mostly 

comparable expression levels, indicating no correlation of stemness signature and sphere culturing 

method. Of note is that, in those experiments the medium composition for spheroid growth only slightly 

varied from the medium used for adherent culture: both media contained serum, EGF, FGF and stem 

cell factor, with the spheroid growth medium even containing a higher amount of serum (20% FBS) 

than the medium used for adherent culture (10% FBS), and sphere growth was thus induced solely by 

lack of attach ability of the cells to the ultra-low attachment plates used. 

The clonal spheroid-forming efficiency observed in this work for PA cell line with 8±4% resembled 

those reported for other RCC cell lines. Direct assay for repeated sphere-formation form the cell line, 

revealed a slight decrease of CSFE to 4±2% over 5 passages. The repeated growth of spheroids over 

several passages is an indicator for the self-renewal ability of the cells. This ability was further 

substantiated by experiments performed with spheroid cell lines (SP and CS). The results obtained for 

these cell lines show a profound increase in spheroid-forming efficiency over long-time spheroid 

culture, which in high passage numbers of cells was found to reach values of 60-80%. This indicates, 

that over long-term spheroid culture, such cells could be enriched, albeit it is not clear whether this 

enrichment was achieved by selection of cells or reprogramming processes. Similar to observation by 

Song et al 210 the spheroid-forming efficiency of the SP and CS cell lines was retained under adherent 

culture conditions. The results obtained in my work show, that even after relative long culturing periods 

under ACC (up to 15 weeks), spheroid-forming efficiency of the cells was retained in similar ranges, as 

were seen for founding spheroid cells. This is an indicator for immanent changes of phenotype in 

spheroid culture (either by enrichment or reprograming of the cells). An interesting and important 

result of this work is that, in contrast to spheroid cell lines, the spheroid-forming efficiency of PA cell 

line is rapidly (within 5 weeks) lost upon ACC culture of the cells.  

5.1.4 Soft Agar Assay: in vitro Tumorigenicity 

Soft agar assay may be used as an in vivo test for possible tumorigenicity and drug sensitivity. 247 248 

For example Galleggiante et al 202 assayed CD133+/CD24+ putative CSC, healthy adult renal 

progenitors isolated from RCC patients and Caki-2 cell line in soft agar assay for their in vitro 

tumorigenic potential and found only tumor cells and Caki-2 cells to form small colonies after 21 days, 

whereas healthy progenitor cells did not grow in the assay. Another example are the growth potentials 

of CD133+/CD24+ sorted putative CSC from ACHN and Caki-1 cell line, which were assayed by Xiao 

et al 203 in soft agar assay, sphere-forming assay and in vivo compared to parental unsorted cells. 

Thereby results obtained in soft agar assay reflected the variance seen in growth potential of the 

tested cells in vivo.  

But also several reports have shown that the growth potential in soft agar assay may not necessarily 

reflect in vivo growth characteristics nor may indicate a more mesenchymal state of cells. For 

example, two fractions of the sarcomatoid cell line RCC52, which were sorted by Hsieh et al 318 

according to CD24 expression level, were shown to possess different growth potentials. The 
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epithelioid CD24Low fraction showed faster in vitro growth kinetics and higher growth potential in soft 

agar assay, whereas the fibroblastoid CD24Hi fraction showed increased tumor forming ability, 

indicated by higher tumor volume, in NOD/SCID mice. Also, Khan et al 319 tested the growth potential 

of the metastatic RCC cell line ACHN in soft agar assay and report a plating efficiency of 5% for 

unsorted cells, and a 5 fold reduction for sorted (CD105+/CD105−) cells, of which the CD105+ sorted 

cells were shown to possess higher tumorigenicity in vivo. They also investigated colony-formation in 

soft agar assay for various other RCC cell lines (SMKR-R2/3, Caki-1/2, 786-O/P, RCC6, ACHN) and 

observed CFE values between 3 and 12%.  

The colony-forming ability of cell lines investigated in this work was assayed by conventional soft agar 

assay using serum-containing medium. The obtained CFEs observed for PA and CS cell lines with 1% 

were in the lower range of reported colony-forming efficiencies in the assay for other RCC cell lines. In 

contrast, the colony forming efficiency observed in SP cell line with 14% was markedly higher and in 

the upper range of reported CFE values for RCC cell lines. This enhanced growth potential in soft agar 

assay of SP cell line was, with mean values of 12% CFE, was retained, when cells were cultured for 

up to 38 weeks under ACC, which is a further hint for permanent changes occurring during spheroid 

culture of the cell line. 

5.1.5 Evaluation of CSC Content  

The sphere-formation efficiency from primary material is usually low (1-10%) and since in the NSA 

also progenitor cells are able to survive, the sphere-formation efficiency cannot be used as a direct 

readout of stem cell content. Instead, the repeated formation of sub-spheres is used as a proof for the 

self-renewal ability of stem-like cells. In the literature some authors describe a reduced sub-sphere-

forming efficiency of their tested cells, whereas others observed an increase of sphere-forming 

efficiency with passage of spheres. 311 The latter is an indicator for enrichment of stem like cells, but 

might also indicate the enrichment of progenitor cells. Soft agar assay, when used in conjunction with 

SC-Medium is very similar to the NCFCA proposed by Louis et al 244 for enumeration of stem cell 

content. 

To estimate the content of stem cells from the NSA in “bulk” culture Deleyrolle 320 presented and 

tested a simple mathematical model of the assay. According to this model the slope of the growth 

curve of spheres cultured as bulk culture under steady state growth conditions is a representation of 

the stem cell population’s symmetric division rate and thus of stem cell content of the culture. They 

used the model to compare relative variation in stem cell frequencies for different neural stem cell 

cultures and conditions and the predicted values were in good correlation with results obtained from 

NCFCA.  

A refined mathematical model developed for the growth kinetics of cancer stem cells by Liu et al 321 

predicts a contrary outcome. According to this model, in which feedback regulations on stem cell 

symmetric division rate are considered, a decrease of stem cells in sphere culture after several 

passages is predicted. The reason for this is the disturbance of equilibrium between stem cell and non 

stem cell compartments during passaging. As a result of this model bulk culture of spheres should be 

enriched for committed progenitors instead of stem cells.  
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For the spheroid cell lines investigated here, a strong increase of sphere-forming efficiency was seen 

with prolonged culturing period as spheroids to values where almost 60-80% of spheroid cells were 

able re-from spheroids after plating. Also the growth rate of the cells increased over time in culture, 

which according to the model proposed by Deleyrolle 320 would be an indicator for enrichment of stem 

cells over long-term culture. 

But when using NCFCA conditions (SCC) in soft agar assay, the growth potential was markedly 

reduced in all cell lines tested compared to serum-containing medium conditions and also to spheroid-

formation efficiency seen in the NSA. But spheroid cell lines formed considerably larger colonies under 

these conditions, when compared to serum-containing conditions. The observation that the growth 

potential of all cell lines, including spheroid cell lines, was reduced in soft agar assays under SCC 

conditions, and only spheroid cell lines gave rise to considerably larger colonies, might be a hint, that 

these conditions indeed support the growth of cells with stem cell characteristics only and that such 

cells are present at low numbers in the cell lines cultured as spheroids. Compared to SP cell line, the 

frequency of such cells was much lower in CS cell lines and the fraction of cells being able to grow 

under SCC was still low in both cell lines (SP: ≈ 4%, CS: ≈ 0.6%). Also no correlation of the results 

with time of culture of the cells as spheroids was observed in the SAA experiments, which would be 

expected in either case: enrichment of stem cells over long-term culture or adaptation of cells to 

culture conditions. But since a relatively high variability was seen in assay results, and the too low 

number of assays at different time points of spheroid culture of the cells, probable differences might 

have been missed under the used experimental settings. 

Interestingly, the growth potential and the size of colonies in of A-SP cells, which were grown for up to 

38 weeks under ACC, was similar to that seen in SP cell line, which shows that this feature was 

conserved even after adherent monolayer growth of the cells.  

In contrast to results obtained in soft agar assay under SCC, the growth rates of CS cell line in “bulk” 

culture was found to be higher after long-term spheroid culture than those seen for SP cell lines and 

also the colonies formed from CS cell lines under SCC in SAA were slightly bigger than those of SP 

cell lines. The higher growth rate of CS cells and their lower colony forming efficiency in SAA 

compared to SP cell lines, might be an indicator for a higher content of progenitor-like cells in this cell 

line. The reduced growth of cells in the SAA compared to NSA might also be a hint for cell interaction 

and/or autocrine stimulation dependency of the spheroid cell lines for optimal growth. 

5.2 Differentiation Potential 

One of the hallmarks of stem cells is their ability to give rise to several differentiated cell types. In this 

work adipogenic and osteogenic differentiation potential were assayed, since cells with progenitor or 

CSC characteristics isolated from primary tissues or RCC cell lines were described in the literature to 

show these potentials. 

Differentiation potential into adipogenic and osteogenic lineages was shown for CD133+/CD24+ adult 

renal progenitors by Sagrinati et al 73. Similar to normal renal progenitors, CD133+/CD24+ putative 

CSC isolated by Galleggiante et al 202 from RCC tumors, were shown to posses adipogenic and 

osteogenic differentiation potential at a clonal level, which was shown by alizarin red staining of 

calcium deposits and oil red staining of lipid droplets, respectively, and there results were comparable 
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to that seen from PA cell line in this work. Differentiation potential into mesenchymal lineages was also 

observed in CD105+ sorted renal progenitors isolated by Bussolati et al 322, which are marked by lack 

of CD133 expression. 

By comparative gene expression profiling of normal patient-matched renal tissue with ccRCC tumor 

tissue, Tun et al 323 found an adipogenic gene expression signature enriched in ccRCC, which 

indicates adipogenesis as an inherent process found in this tumor type. This is also in line with the 

typical lipid-laden morphology of these tumors. In differentiation experiments, the authors found similar 

differentiation potential as was seen for SP cell line, in A498 RCC cell line and two primary tumor cell 

lines, whereas no differentiation potential was observed in the patient-matched normal renal cells or 

MDCK cells. Micucci et al 213 investigated adipogenic differentiation potential of 786-O and Caki-1 

RCC cell lines and found only the sphere-derived cells being able give rise to cells with the typical 

adipocyte morphology, when cultured under respective conditions.  

Similar to the cell lines investigated in this work, differentiation potential into osteogenic and or 

adipogenic lineages was also observed in ALDHbr fractions of Caki-2 and ACHN cells by use of BMP-

2 treatment 207, and sorted HSP cells from embryonic and mouse kidney324, which were shown to be 

able to differentiate into adipogenic and osteogenic lineages.  

The differentiation potential of the investigated cell lines was assayed by culturing the cells under 

conditions that had been shown to induce adipogenesis or osteogenesis in MSC and subsequent 

staining of structures, which are specific for both lineages. Although some variation within the 

experimental results occurred, these histologic analyses revealed, that all cell lines seemed to be able 

to give rise to at least one of the investigated cell types. 

Thereby SP cell line seemed to possess the highest differentiation capacity among the investigated 

cell lines into both assayed cell types. Adipogenic differentiation potential of this cell line was further 

supported by their expression of the adipocyte marker adiponectin, as assayed by RT-PCR, which 

was seen at marginal level in osteogenically induced cells of the same cell line. The osteogenic 

differentiation potential of SP cell line, could be further substantiated by staining for alkaline 

phosphatase activity in osteogenic induced cells, which revealed fractions of positive staining cell with 

morphologic similarities to osteoblasts.  

Differentiation potential toward both lineages was also observed for PA cells, although the observed 

adipocyte morphology was less pronounced than that seen for SP cells and osteogenic differentiation 

potential was not observed in all experiments performed. Surprisingly, the differentiation potential of 

CS cell lines was further reduced, compared to SP cell line in that both cell lines showed differentiation 

potential mainly into one of the two assayed lineages. This might be a hint for different pathways 

active in these cell lines, for example Wnt/β-catenin signaling pathway is known to suppress 

adipogenesis in mesenchymal stem cells 325, whereas retinoic acid signaling via Smad3 is required for 

osteoblast differentiation of MSC, and inhibits adipogenic differentiation. 326 Taking into account the 

complex nature of the differentiation process and the relatively small number of experiments 

performed with these cell lines, the variations seen might therefore also simply be related to 

suboptimal differentiation conditions used for these cell lines. 
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It was also obvious from the experiments that differentiation occurred only in a fraction of cells seeded, 

since also cells with normal morphology were present in the induced samples. This, on the one hand 

might be a hint for the heterogeneous nature of the investigated cell lines, or on the other hand this 

may also simply reflect the sub-optimal differentiation conditions used.  

Results obtained by RT-PCR analysis of genes typically expressed in adipocytes and osteoblasts, 

besides adiponectin expression in adipogenic induced cells, were not suited to proof differentiation of 

the cells, since markers were expressed at similar low levels in cells induced into either lineage. These 

results might further indicate sub-optimal differentiation conditions, lacking strong enough inhibition of 

the respective other lineage. For example the role of dexamethasone in osteogenic differentiation is 

the induction of RUNX2, the same might be true when dexamethasone is used in the adipocyte 

differentiation cocktail. Also it has been shown that for osteogenic induction of human BMSC cultures 

ECM proteins Col1 and vitronectin are sufficient. 254 

On the other hand, the results obtained are in line with a study performed by Köllner et al 256 who 

observed that frequently used markers for osteogenic differentiation are expressed also in adipogenic 

induced hMSCs and in control samples. For example, comparable to the results obtained here, 

BGLAP/Osteocalcin, but also OPN/Osteopontin and alkaline phosphatase expression, were seen at 

similar or even higher levels in basal and the adipogenic induction group than in the osteogenic 

induction group. Expression levels of these genes also varied highly between different time points of 

assessment. In contrast to osteogenic markers, the investigated adipogenic markers were shown to 

be clearly expressed at higher levels in the adipogenic induction group compared to basal or 

osteogenic group after 28 days of induction. But this also was strongly dependent on the time of 

assessment: for adiponectin for example no difference in expression was seen between groups 

assayed at day 14. SREBF1 has been shown to be a key regulator at early time points of 

adipogenesis327, and also stimulates the expression of many of the genes necessary for lipogenesis 

including lipoprotein lipase, fatty acid synthase, and glycerol phosphate acyltransferase.328 The fact 

that no difference in expression between osteogenic and adipogenic induction groups was found by 

RT-PCR, might be due on the one hand by the wrong time point of assessment and also may be 

caused by the basal adipogenic signature found in ccRCC. 

An interesting fact observed in this work is, that the differentiation potential did not seem to be reduced 

over long-term culture of the cells, neither as spheroids nor under adherent culture conditions, since 

Gharibi and Hughes 329 observed a loss of osteogenic and adipogenic differentiation potential in MSC 

after long-term culture with bFGF supplemented medium and MSC differentiation potential has been 

shown to be reduced with increasing age of donors. 

5.3 Side Population Assay for Enrichment of CSC 

The expression of ABC-transporters confers cells with detoxifying abilities, which are of great 

importance for stem cell integrity as well as for tumor cell chemo-resistance. The so termed “side 

population" assay is a functional test using the ability of cells to pump out the DNA-binding dye 

Hoechst33342, which is mainly attributed to expression of ABCG2 (BCRP) and ABCB1 (MDR1). The 

assay has successfully been used to enrich for stem/progenitor cell fractions from several tissues and 

CSC from tumors of different origin. 158 161 276 Results reported in the literature for the two established 
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variants of the assay (Hoechst and Rhodamine side population) for kidney normal and tumor tissue 

are discussed below in more detail. 

5.3.1 Hoechst Side Population (HSP) 

Challen et al 324 used the Hoechst side population sorting strategy to enrich for stem cells residing in 

embryonic and adult mouse kidneys, which comprised 0.1% of the cells. The sorted cells (HSP) 

showed differentiation ability into osteocytes and adipocytes in vitro, which was not seen in the main 

cell population, they also showed enriched capacity for integration into developing metanephric ducts 

in vivo. Comparative gene expression analysis by microarray revealed relatively few differences 

between embryonic and adult HSP cells, indicating that this fraction might represent a renal resident 

stem cell population in adult kidney. By comparing differences between HSP and non-SP cells, the 

HSP was found to be enriched in genes expressed in proximal tubule segments indicating a possible 

spatial localization of the cells. Of note is, that the major membrane transporter ABCG2 (BCRP), 

which is known in other organs to convey the HSP-phenotype, by using riboprobes for mRNA 

detection, has been found to be expressed predominantly in collecting ducts but not in tubular cells 

and was not found to be expressed with significant difference between SP and non-SP in this study, 

which may suggest, that in the kidney other transporters may be responsible for dye efflux. 

In contrast to this, protein and mRNA expression of ABCG2 has been demonstrated at the brush 

border membranes of proximal tubules at the apical membrane of proximal tubular cells in healthy 

human as well as in mouse and rat kidneys by Huls et al 160 using immunofluorescence microscopy. 

By using western blot analysis and RT-PCR, expression of ABCG2 (BCRP) was detected in the cortex 

and proximal tubule cell monolayers as well as in mixed cell fractions, but not in collecting ducts. It 

was also noted that ABCG2 in human tissue is expressed at relatively lower level than in rat and 

especially in mouse tissue. The reason for the controversial findings regarding ABCG2 expression 

compared to the report of Challen et al 324 is not clear and might be attributed to different 

methodologies used. By also using the Hoechst33324-SP assay in human primary proximal tubular 

cells and either the ABCG2 specific inhibitor fumitremorgin C (FTC) or nelfinavir, which is an inhibitor 

of ABCG2 and ABCB1, Huls et al 160 show that both transporters seem to contribute to the efflux of 

Hoechst at similar level in these cells. 

Hoechst side population (HSP) and non-side population (NSP) fractions from tissues obtained from 

normal human kidney and RCC were characterized by Addla et al 330. They found 4-6% of the cells in 

both entities were able to pump out the dye (HSP), and these had greater proliferative potential and 

colony- as well as sphere-forming ability compared to NSP cells, indicating that the HSP in both, the 

kidney and RCC, enriches for cells with stem-like features.  

Zhong et al 211 investigated HSP characteristics of spheroids and adherent counterparts of SK-RC-42 

RCC cell line. Thereby found 10% of spheroid cells being able to efflux the dye (HSP), whereas HSP 

of adherently grown cells was only 2%.  

Ueda et al 205 also used the Hoechst side population sorting strategy to isolate HSP fractions from 

ACHN and KRC/Y RCC cell lines, which comprised 1.4% and 1.7%, respectively. The SP from ACHN 

cell line was shown to possess a higher sphere-forming ability (HSP: 0.8%, NSP: 0.4%), higher ALDH 

activity (HSP: 33%, NSP: 15%) as well as higher tumor forming ability compared to the NSP. No 
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significant differences between SP and NSP in regarding these characteristics were seen in the 

KRC/Y cell line. Both cell lines did not show significant differences in expression of several 

investigated genes related to EMT, apoptosis, hypoxia and self-renewal, with the exception of 

ALDH1A and ABCG2 expression, which was slightly higher in HSP of ACHN, whereas ABCB1 

expression was slightly higher and ABCG2 expression slightly reduced in HSP of KRC/Y cell line. Li et 

al 316 used HSP assay to study the influence of honokiol on this characteristic in A-498 cell line and 

found a reduction of HSP cells from 3% to 1% after honokiol treatment. 

Huang et al 331 isolated and characterized HSP and NSP cells isolated from the RCC cell line 786P 

and found 5% of the cells were able to efflux the dye (HSP). HSP cells possessed higher clone-

forming ability and resistance to radiation and mithoxantrone and 5-fluorouracil treatment (but not to 

sutinib treatment) and were able to form tumors in NOD/SICD mice at lower injected cell-doses than 

NSP cells. Expression of ABC-transporters was assayed by RT-PCR and western-blot analyses, 

thereby the expression of ABCB1 but not ABCG2 or ABCC1 in HSP and only low level expression of 

the transporter in the NSP was detected, implying that ABCB1 in this cell line is the main responsible 

transporter for HSP-phenotype. 

5.3.2 Rhodamine 123 Side Population (RSP) 

Due to the special requirements for instrumentation and the toxicity of the Hoechst33342 dye, Liu et al 
275 proposed the use of Rhodamine 123 as an alternative dye. By using the MHCC97 liver cancer cell 

line for sorting of cells pumping out Rhodamine 123 dye (RSP) in parallel with cells pumping out the 

Hoechste33342 dye (HSP), they obtained similar results for cell growth and tumor forming ability of 

HSP/RSP or H-NSP/R-NSP in vitro and in vivo. RSP was also used to enrich putative CD34+ HSC 

from different sources 273 274. Though, the HSP and RSP might not necessarily mark the same 

population of cells, since it has been shown in mice, that different ABC-transporters have different 

affinities for the dyes. There, ABCG2 had higher affinity for Hoechst33342 stain and ABCB1 seemed 

to be involved in efflux of Rhodamine 123. Also the contribution of both transporters to the SP 

phenotype varies in different cell types and species 276. Since Rhodamine 123 dye accumulates in 

mitochondria its retention may also reflect mitochondria number and activity 274. 

RSP was assayed by Lu et al 209 in the 786-O RCC cell line. In contrast to results seen with HSP, 

where cells pumping out dye comprise the putative stem cell population, the authors found that 

instead cells with high staining intensity for the dye (Rhohigh), which comprised a minor fraction of the 

cells, were enriched for stem cell characteristics such as tumor-forming ability in NOD/SCID mice, 

growth potential in soft agar assay, and higher resistance to radiation. Rhohigh were also able to give 

rise to Rholow cells, whereas Rholow cells did not show a change of their phenotype in culture. 

Similar results were obtained by Song et al 210 who used RSP to identify possible CSC in primary 

tumor cells derived from RCC tissues as well as in 786-O RCC cell line. The dye retaining cell fraction 

(Rhohigh), which comprised 19±7% of primary cells, was found to be enriched for CSC characteristics 

such as higher tumor-forming ability in NOD/SCID mice and expression of CD73. Differential 

expression of several proteins between Rhohigh cell and Rholow cell fraction was analyzed and 

revealed, besides higher expression of CD73, also higher expression of ITGB5 and EGFR in Rhohigh 
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cells. The Rhohigh cells were, similar to results obtained in my work, characterized by reduced 

expression of CD243 (MDR1). 

For my work, the Rhodamine 123 side population assay in combination with ABCB1-inhibior verapamil 

was chosen to characterize individual dye efflux abilities of the different cell lines. In some 

experiments expression of ABCB1 (MDR1, CD243) was assayed in parallel by immunostaining of the 

cells to address the role of this transporter for the observed dye efflux. Thereby, profound differences 

were seen between PA and spheroid cell lines (SP and CS). While PA cells were able to pump out the 

dye rapidly, the dye was almost completely retained in spheroid cell lines during the same period. 

Parallel staining with ABCB1 (CD243) antibody revealed, that the transporter appeared to be 

responsible for the dye-pumping capability of the cells. This was also confirmed by experiments 

performed with A-SP and A-CS cell lines, which in contrast to their parental spheroid cell lines 

expressed the transporter in sub-fractions of cells, and those were, similar to PA cells, able to pump 

out the dye. Additionally to dye retention of spheroid cells, they also showed higher staining intensities 

for the dye compared to PA cells, an indicator for differences in mitochondrial number and/or function 

in these cells, which might an interesting point for further evaluations. 

Thus, spheroid cells resembled the Rhohigh cell fractions, reported by Lu 209 and Song 210 to be 

enriched in CSC characteristics. Interestingly, in an experiment performed with low passage PA cells, 

these seemed to contain a similar Rhohigh cell fraction, which was absent in later passage cells. 

Though this was seen in a single experiment only, sorting for Rhohigh cells in early passage PA cells 

could be a means to enrich for a fraction of spheroid-forming cells that is drastically reduced in later 

passages of the PA cell line. 

The results obtained in this work as well as the results obtained by Lu 209 and Song 210 using RSP 

assay contradict results obtained for other cell lines, as well as those seen for HSP 205 211 330 in RCC 

cell lines. Since the test is based on the general assumption that high expression of ABCB1 or ABCG2 

and concomitant dye efflux are associated with a stem cell phenotype and confer resistance to 

chemotherapeutic agents, it would be interesting to test for chemo-sensitivity of Rhohigh cells, to see 

whether probable other mechanisms are used by these cells to confer therapy resistance, or whether 

the observations made in the RSP assay are dye-specific. 

5.4 ALDH Activity - ALDEFLUORTM Assay for Enrichment of CSC 

Aldehyde dehydrogenases (ALDH) are a huge family of iso-enzymes involved in the detoxification of a 

wide variety of aldehydes to their corresponding weak carboxylic acids, including xenobiotic 

aldehydes. They are also being involved in maintenance of low ROS levels and retinoic acid (RA) 

metabolism and signaling. According to their functions, expression of ALDH isoforms is found in a 

variety of tissues, especially in kidney, liver, heart and muscle. High expression, of the isoform 

ALDH1A1, which, together with ALDH1A2-3 and ALDH8A1, is involved in RA metabolism, has been 

found in stem cells and has been used to isolate adult stem cells (HSC, NSC, mammary, prostate, 

intestinal, myogenic) and CSC from several tumor entities, where ALDHs seem to be involved in the 

maintenance of stem cell phenotype. For this purpose the ALDEFLUORTM assay is widely used, since 

it is a non-toxic enzymatic assay, which can easily performed and detects activity of the enzyme in a 

non-isoform specific manner. The assay was first used by Kastan et al 149 to isolate hematopoietic 
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progenitor cells, thereby starting a high number of reports on the use of this assay, with varying and 

partially conflicting results concerning suitability of the assay for different cell and tumor types. 150 151 

One possible reason for discrepancies of reports on ALDH expression was investigated by Opendaker 

et al 332 in different cell lines, who observed a decreased ALDH activity in most cell lines grown at high 

cell densities, which comprised more than 50% of the obtained values, whereas sphere-formation 

were not affected. Another obvious reason for variation of results may be attributed to the nature of the 

assay. Results highly depend on cell concentration and/or incubation time, which varies for different 

cell types. This was clearly seen from the experiments done here, using different cell concentrations. 

ALDH activity has been assayed in several cancer cell lines and has been found to vary among them. 

For example Suzuki et al 333 investigated ALDH activity in several cells lines of colorectal carcinoma 

(CRC) and report high fraction of ALDH expressing cells only in HCT116, whereas Caco2 and SW480 

cell lines only contained a small number of ALDH positive staining cells. Charafe-Jauffret 334 

investigated ALDH activity in 33 breast cancer cell lines and found 23 of them to contain ALDH+ 

staining cell fractions, ranging from 0.2% to 100% in SK-BR-3 and HCC38 cell lines. ALDH+ fractions 

were found in all basal/mesenchymal breast cancer cell lines, whereas 7/12 luminal breast cancer cell 

lines did not express the enzyme. ALDH+ sorted cells displayed a higher sphere-forming ability as well 

as tumorigenicity compared to ALDH− fractions. The same authors 335 had previously shown that 

ALDH+ sorting of normal breast and breast tumor tissue, enriches for normal beast progenitor cells 

and, in combination with CD44+/CD24− sorting, for CSC, respectively. The ALDH−/CD44+/CD24− cell 

fraction did not show tumorigenicity in xenotransplantation assay. 

Lindgren et al 74 used ALDH assay to isolate renal progenitors from cortical tissue deprived of 

glomeruli. Cells with high ALDH expression, which comprised about 7% of viable cells isolated from 

human cortical tissues, were able to form hollow epithelial spheres in MatrigelTM and compact 

spheroids in NSA, whereas ALDHlow cells did not grow in the respective assays. Comparison of gene 

expression profiles of both fractions showed CD133 and CD24, both of which had previously been 

shown to mark renal progenitor cells in the Bowman’s capsule, among the most up-regulated genes in 

ALDHhigh fractions compared to ALDHlow cells. Also CK7, CK19 and vimentin were found to be up-

regulated in ALDHhigh cells. Using IHC analysis with these markers, which are not normally expressed 

by proximal tubular cells, the authors found scattered cells, often localized to the apices of creases 

formed by the convolution of the proximal tubules, which stained positive for CK7, CK19, CD133 and 

vimentin. Similar staining was seen in pRCC TMA samples, suggesting a role of the identified cells as 

potential origin of this tumor type. By comparison with gene signature databases, ALDHhigh cells have 

also been found to be enriched in a meta-signature for stem cells, hypoxic response signatures, and 

several signatures associated with cellular stress. Although enrichment of progenitor cells from adult 

kidney seemed to be possible using the ALDEFLUORTM assay, the same group (Axelson et al 69) 

reports, that their efforts to isolate CSC from ccRCC were not successful due to the lack of distinct 

aldefluor positive populations.  

ALDH1 expression in ccRCC was investigated by Wang et al 336 using IHC. The authors report high 

expression of the enzyme in 60% of cases, which was associated with tumor size and stage, 

recurrence rate, and vascular invasion, being an independent prognostic factor for ccRCC patients. 
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Similar results were obtained by Ozbek et al 337 also showing higher staining of ALDH1 in cancer 

tissue compared to normal renal tissue and a correlation with tumor stage. In contrast, a large TMA 

study performed by Abourbih et al 304 on primary and metastatic RCC tumor samples found no 

correlation of ALDH1 expression with tumor stage or grade. 

Abdulrahman et al 338 investigated differential expression of genes in cell lines with different pVHL 

mutation status’ by microarray analysis, RT-PCR and western blot. For this purpose the VHL negative 

cell line RCC4 was transfected with several vectors containing either the wild type variant or different 

mutations of the gene. Caki-1 pVHL-wt and pVHL-null SKRC18 cell line with low ALDH expression 

were used as control. ALDH1A1 and ALDH7 were among the down-regulated genes in cells bearing 

RCC-associated mutations. Expression of ALDH1A1, but not ALDH7, was shown to be repressed 

under hypoxic conditions. Involvement of HIF-1α but not HIF-2α was further verified by transfection 

with siRNA constructs targeting the two isoforms. No effect of restoration of ALDH activity on colony-

formation efficiency in soft agar assay, which was assayed by transfection of SKRC18 cell line with 

respective vectors, was observed.  

This is contrasted by results obtained for 786-O and A498 RCC pVHL-mutant cell lines, where ALDH1 

protein expression was evaluated by Wang et al 336 and found to be higher in the latter. Knocking 

down of ALDH1 in A498 cell line by shRNA lead to reduced colony formation and migratory ability as 

well as higher chemo sensitivity in vitro compared to mock treated cells, indicating a possible 

involvement of this enzyme in these processes. An explanation for the discrepancy between the two 

reports might be that reports on genotype of A498 cell line are controversial on pVHL-mut status 193. A 

pVHL-wt status of the cell line would be in line with higher expression of ALDH1 compared to 786-O 

cell line. 

Despite the problems, that were reported by Axelson et al 69 regarding the use of ALDEFLOURTM 

assay for isolation of CSC from RCC, three reports have been published, in which this method was 

applied, of which two report successful enrichment of TIC from RCC cell lines by this method. 

ALDEFLOURTM assay was used by Ueda et al 205 to isolate ALDH+ cells from ACHN and KRC/Y cell 

lines, which comprised 15% and 6%, respectively. Compared to ALDH− cell fractions the ALDH+ 

expressing cells showed higher sphere-forming and tumor-forming abilities, which was absent in 

ALDH− cell fractions, when 1x105 cells were applied. Self-renewal ability was assayed by serial 

spheroid-formation assay in sorted ACHN cells, thereby sphere-forming ability was lost upon passage 

in ALDH− cell fractions whereas ALDH+  cells were able to generated tertiary spheres, albeit reduction 

of sphere-forming ability was observed over passages. Gene expression analysis revealed higher 

expression of Twist, c-Myc, BMI-1, HIF-1α, and ABC-transporters ABCB1 and ABCG2 besides 

ALDH1A1 in ALDH+  cell fractions of ACHN cells. No change in expression level of Snail transcription 

factor was observed.  

Chen et al 206 determined the influence of CBFA2T2 expression on the fraction of ALDHbr cells in 786-

O and A498 cell lines using the ALDEFLUORTM assay. siRNA treatment against CBFA2T2 reduced 

the fraction of ALDHbr cell from 11 to 2% and 34 to 10% in 786-O and A498 cell line, respectively. The 

authors also investigated the association of ALDH1A3 expression and clinical outcome in RCC 
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patients in a database search and found higher levels of ALDH1A3 expression were associated with 

shorter survival of patients 

Wang and Park et al 207 used ALDH expression (ALDEFLUORTM assay) to isolate CSC from Caki-2 

and ACHN cell lines and primary RCC tumor xenografts. The fraction of ALDHbr cells ranged from 1% 

to 13% and was higher in ACHN compared to Caki-2 xenografts. The fraction of ALDHbr was observed 

to be relatively constant over serial transplantation of the cells. For ALDHbr and ALDHlow fractions 

tumorigenic potential, growth potential in cell culture and soft agar assay, as well as expression of 

stemness markers Oct3/4, Nanog and Pax2 were determined and found to be higher in the ALDHbr 

cell fraction of the xenografts. The authors also tested a differentiation therapy approach using BMP-2 

to induce osteogenic differentiation of ALDHbr fractions and found reduction of expression of stemness 

markers and up-regulation of osteogenic differentiation markers Runx2 and collagen type I upon BMP-

2 treatment. In xenograft experiments they observed highly reduced tumor volume accompanied by 

bone formation in BMP-2 treated tumors. Showing that differentiation therapy using BMP-2 might be a 

promising new approach for RCC treatment. 

The cell lines investigated in my work showed overall high activity of ALDH, comparable to that seen 

in the SK-BR-3 breast cancer cell line, which is used as a positive control for the assay. Also 

expression levels determined by mRNA-Sequencing of PA, SP and A-SP cells revealed similar high 

expression of the enzyme in all three cell lines. According to the high activity of the enzyme, a 

relatively low cell number was needed to achieve substrate saturation in the assay. The observed 

staining intensities in PA cells from first set of experiments and spheroid cell lines SP and CS7 were 

also high, when compared to ALDH activities reported for other RCC cell lines, being in the range of 

ALDHbr cells of these reports. The differences seen between spheroid cell lines SP and CS7 were only 

marginal and probably mainly attributed to different cell sizes. The results obtained for PA cells 

showed high variations between experiments. Though higher observed activity of the enzyme in the 

first set of experiments might be attributed to the low passage number of cells, which would imply 

suitability of the assay to enrich for CSC from low passage number of PA cell line, due to the low 

number of experiments performed with cells at different passage numbers, this cannot be convincingly 

concluded from the results and further experiments are needed to confirm this hypothesis. Another 

fact, that has not been addressed in the experiments is dye efflux, which was seen for Rhodamine 123 

in PA cells, and might be responsible for differences in results seen in PA cell lines, due to insufficient 

inhibition of transporters. Thus, further experiments would be needed to address those questions and 

come to a convincing conclusion regarding the suitability of the assay. From the results obtained so 

far, and taking also the similar high expression of ALDH1, which was observed in mRNA-Sequencing 

experiments into account, the assay does not seem to be a very promising method to enrich for CSC 

from the cell lines investigated. 

5.5 AP-Staining and TNAP Expression as Marker for Stem Cells or Differentiated Cells 

Alkaline phosphatase (AP) is used as a marker for several cell types. Among the four tissue-specific 

isoforms of the enzyme, namely intestinal (IAP), germ cell (GCAP), placental (PLAP), and tissue 

nonspecific alkaline phosphatase (TNAP), the latter is expressed at high levels in liver, bone, and 

kidney. PLAP and GCAP are expressed in embryonic stem cells. But especially TNAP serves as a 
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marker for the undifferentiated state of ES cells, and its expression is quickly up-regulated during the 

process of iPSC generation by transfection with Oct4, Sox2 and Klf4 transcription factors, with 

expression seeming directly regulated by Oct4/Sox2 transcription factor network. 53 4 46  

Additionally, TNAP serves as an osteoblast marker, where it plays an important role in the 

mineralization process by degrading pyrophosphate to phosphate, of which the first is an inhibitor and 

the latter an inductor of bone mineralization. 262 263 Expression during adipogenesis of mesenchymal 

stem cells, associated with a role in induction of cytoplasmic lipid storage has also been observed, 

together with characteristic expression of TNAP in lipid storing cell types. 264 265 

TNAP has been identified to be identical to the MSC marker MSCA-1 339. Its expression is restricted to 

the CD271high population of BM-derived MSC and sorting for this marker in combination with CD56 

enriches for multipotent cells. Within the MSCA-1-positive cells the CD56 positive subpopulation had 

no adipogenic differentiation potential, whereas chondrogenic differentiation potential was only seen in 

this subpopulation, suggesting that MSCA-1 is no suitable marker for immature highly self-renewing 

multipotent MSC, rather it seems to be expressed on subpopulations with more restricted 

differentiation potential. 340 A different group sorted cells from the same cell type for TNAP expression 

only. TNAP-positive cells exhibited low proliferation rates and differentiated predominantly into the 

osteogenic and adipogenic lineage, whereas TNAP-negative cells possessed 3-lineage differentiating 

potential, as well as higher expression of pluripotency genes. They found that TNAP expression is 

correlated with cell size, as well as with culture density and age, being higher in larger cells, at higher 

cell density and age, accompanied by higher expression of osteogenic markers. They also found no 

expression of TNAP in UCB-derived MSC, which posses multilineage and high proliferative potential. 

Also they could not observe a correlation of the varying TNAP expression levels in different donors 

with donor age or expression of other surface markers of MSC. These results suggest, that TNAP in 

BM-MSC, in contrast to ESC, is no suitable marker for immature cells, it rather indicates a more 

heterogeneous restricted progenitor cell type, or even osteogenic committed progenitors. 341 

Expression of TNAP is also observed in tumor cells. For example in prostate carcinoma TNAP 

expression is higher in mesenchymal than in epithelial cells, and high AP expression is associated 

with metastatic disease and decreased disease-free survival of patients. The authors found a 

correlation of AP expression and EMT marker expression (Snail1, E-Cadherin). Additionally, inhibition 

of AP in prostate cancer cell lines led to induction of MET as well as reduced viability and proliferative 

potential of the cells. 342  

In the kidney TNAP is expressed mainly in the proximal convoluted tubule (the S1 and S2 segments) 

but also in the S3 segment 343 and considered a marker for proximal tubular epithelial cell 

differentiation 73. Taking into account the proposed origin of RCC from these structures 172, expression 

of the enzyme might be intrinsic to those cells. 

Khan et al 319 tested several RCC cell lines for AP activity and found single AP-positive cells in all 

tested cell lines, but in CD105-positive sorted cells a higher AP staining pattern was seen, which might 

be an indicator of TNAP expression being not intrinsic to RCC but rather confined to stem like cells. 

Intracellular and extracellular expression of TNAP was assayed by IFC on PA, CS1, CS7 and A-CS 

cell lines. Thereby low level intracellular, but no extracellular staining was detected on PA cell line and 
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CS cell lines and adherent counterparts. In contrast, SP cell line showed higher staining intensities for 

the enzyme in fractions of cells intracellular as well as on the surface, albeit with highly variable 

results. Histological staining for enzyme activity in adherently grown cells derived of PA, SP and CS 

cell lines revealed high staining intensities on non-adherent cells growing on top of the monolayer of 

SP cells, whereas no staining was observed in any of the other tested cell lines. So, alkaline 

phosphatase was found to be expressed exclusively on fractions of SP cell line. The results obtained 

by histological staining and IFC were also confirmed in mRNA-Sequencing experiments, where a 

higher but variable expression level of the enzyme in SP cell line compared to PA cell line was also 

seen. In these experiments also a higher and variable expression of the enzyme was seen for A-SP 

cell lines tested. Due to the described expression of alkaline phosphatase not only in ESC, where it 

serves as a marker for pluripotent state, but also on tubular epithelial cells in the kidney and 

osteogenic precursor cells it is not clear whether of this scenarios lays behind this observation. On the 

one hand it might indicate a stem-like phenotype of the cells or the contrary, indicating differentiation 

of the cells either to tubular or osteogenic lineages. 

5.6 Evaluation of Surface Marker Expression 

Surface expression of several antigens that are characteristically expressed on MSC, ESC or used as 

CSC markers was evaluated by flow cytometry on PA cells and three different spheroid cell lines 

derived thereof (SP, CS1, CS7). Thereby expression of many of the investigated markers was 

detected on all cell lines tested.  

Some markers were only expressed on spheroid cells, whereas other markers showed reduced 

expression on spheroid cell lines compared to PA. For some of the antigens also changes in 

expression over long-term culture could be observed. The results are summarized in table 5.6.1 (see 

also table 4.6.1). 

To test whether differences in expression were induced by the different culture conditions, spheroid 

cell lines were also cultured adherently (A-SP, A-CS) in serum-containing medium and marker 

expression was evaluated at different time points of adherent culture. For some markers, also 

changes upon re-culturing of A-SP or A-CS7 cells as spheroids was investigated, showing that many 

of the observed changes seen in A-SP/CS cells compared to their parental spheroid cells were 

reversible, when the cells were grown as spheroids again. An overview of these markers and their 

expression pattern seen in different culture conditions is given in table 5.6.2. 

For direct enrichment of possible TIC from the PA cell line, markers have to be identified, which show 

only weak staining or staining of distinct cell populations on PA cell line and - assuming that spheroid 

culture enriches for CSC - a more pronounced staining on spheroid cells. As can be seen from table 

5.6.1, this prerequisite was met satisfactorily by none of the investigated markers, since markers with 

higher expression on spheroid cell lines, namely CD10, CD56, CD133, CD184/CXCR7, and CD271, 

showed incoherent staining patterns on the three spheroid cell lines tested on the one hand, and very 

low or no expression on PA cells on the other hand.  
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Table 5.6.1: Overview of Expression Levels of All Investigated Extracellular Antigens 

Summary of results obtained for IFC staining of different cell lines for expression of various surface expressed 
antigens. Expression level was graded according to criteria listed in the legend using mean values of all 
performed measurements. 
CS: clonally expanded spheroid cells derived from PA (CS1 and CS7), IFC: flow cytometric immunophenotyping, 
MW: mean value, PA: parental cell line, Rel GM: relative fluorescence intensity = geo mean value sample/geo 
mean value isotype control, SP: spheroid cells derived from PA 
 

  
Table 5.6.2: Overview of Markers Showing Variations in Cells Cultured under ACC or SCC 

Summary of results obtained for IFC staining of different cell lines for expression of surface markers, for which 
differences in staining pattern were seen in cells cultured under ACC or SCC conditions. Expression level was 
graded according to criteria listed in the legend using mean values of all performed measurements. 
ACC: adherent culture conditions, CS: clonally expanded spheroid cells derived from PA (CS1 and CS7), IFC: 
flow cytometric immunophenotyping, PA: parental cell line, SCC: spheroid culture conditions, SP: spheroid cells 
derived from PA 
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The surface markers evaluated in this work are discussed in detail in the following sections. 

5.6.1 Epithelial Cell Adhesion Molecule (EpCAM) 

EpCAM (epithelial cell adhesion molecule) is a single span trans membrane glycoprotein, with no 

structural relationship to the four typical CAM-families and besides functioning as adhesion molecule it 

also functions in cell signaling, proliferation and migration. In most carcinomas of various origins (e.g. 

mesodermal, ectodermal, neurogenic, melanoma) EpCAM expression correlates with tumor 

aggressiveness and reduced survival, whereas in RCC and thyroid cancer EpCAM expression is 

correlated with increased life expectancy. EpCAM expression in the healthy adult is restricted to 

simple epithelial cells, whereas high expression of this molecule on rapidly proliferating tumors of 

epithelial origin has lead to its wide use as cancer marker. 

During embryonic development EpCAM is expressed in embryonic stem cells and EpCAM expression 

is also induced during kidney development. EpCAM expression is reduced with further differentiation 

of the epithelia to their functional state, with epithelial progenitor cells in the intestine, liver or skin 

expressing EpCAM while differentiated cells such as hepatocytes or keratinocytes are EpCAM 

negative. EpCAM is typically present in tissues with a high number of proliferating cells, whereas 

EpCAM expression is low in differentiated cells, and absent in lymphoid or bone-marrow derived, as 

well as mesenchymal, muscular, and neuroendocrine tissues. Expression of EpCAM has been shown 

to be up-regulated during inflammatory response and contrary has been shown to be down regulated 

by TNF-α signaling via NF-κB mediated regulation of EpCAM promoter. Also p53 has been described 

as EpCAM repressor, whereas β-catenin activation via binding of TCF/Lef induces expression of 

EpCAM. EpCAM is involved in homophilic adhesion, but compared to E-Cadherin homophilic EpCAM 

adhesion is weaker. By disturbing the E-Cadherin cytoskeletal interactions, EpCAM when co-

expressed with E-Cadherin also weakens intracellular adhesions. EpCAM signaling involves 

intracellular proteolytic cleavage of EpICD by TACE/γ-Secretase, and following association with β-

catenin and FHL2 followed by LEF1-binding leading to transcriptional activation of target genes, 

resembling canonical wnt signaling pathway. The cell proliferation inducing genes c-Myc and cyclin D1 

are known target genes of EpCAM. 344 345 346 

EpCAM expression has been found to be as suitable marker for CSC in colorectal carcinoma (CRC), 

hepatocellular carcinoma (HCC), pancreatic cancer (PanC) and gallbladder carcinoma (GBC). 147  

In normal breast tissue, EpCAM staining discriminates the stem cell (EpCAM−) and luminal progenitor-

like fractions (EpCAM+) in CD49f+ sorted progenitor-like cells. 347 348 In a study performed by Keller et 

al 349 EpCAM+ as a marker for the luminal cell fraction was confirmed, and the basal EpCAMLow cell 

fraction was shown to be marked by CD10 expression, which was not expressed on the luminal 

EpCAM+ fraction. In this study EpCAM+ cells showed higher sphere-forming ability than EpCAM− cells, 

which were observed to have a higher tendency to grow adherently and form lesser but more compact 

spheres. In contrast, in the study performed by Bachelard-Cascales et al 350 EpCAM+ cells showed 

reduced sphere-forming efficiency compared to the CD10+/EpCAM− subpopulation of CD49f+ normal 

mammary cells.  

Metsuyanim et al 351 evaluated expression of EpCAM in fetal and adult kidney and found EpCAM 

expression is absent from the metanephric mesenchyme (MM) and increases with nephron 
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differentiation, with 80% of the cells showing positive staining for EpCAM in IFC analysis in the adult 

kidney, therefore EpCAMlow/dim cells may represent putative renal progenitor cells. 

Expression of EpCAM in normal kidney and RCC using TMA was investigated by Seligson et al 352. 

They report consistent EpCAM expression in the distal nephron on normal renal epithelium and a 

difference between ccRCC, which showed only minimal and infrequent EpCAM staining, with only 

10% of ccRCC showed staining of EpCAM in >50% of the cells. In contrast, chromophobe and 

collecting duct RCC showed intense and frequent EpCAM staining patterns. In this study EpCAM 

expression has been found to be an independent predictor associated with improved patient survival. 

The results were confirmed by a more recent study performed by Zimpfer et al 353, who found ≈ 80% 

positive staining cases for papillary and chromophobe RCC, and ≈40% positive staining cases in 

ccRCC, oncocytomas and unclassified tumors. Additionally, they found EpCAM overexpression as 

independent marker for longer progression-free survival in all RCC entities. IHC analysis preformed by 

Liu et al 354, comparing expression of EpCAM on different RCC subtypes, also found high staining 

intensities in all cases of chromophobe RCC, whereas in oncocytomas a different staining pattern as 

well as lower overall staining was observed. In RCC 33% showed positive staining for EpCAM, which 

was almost equally distributed among low, moderate and high staining intensities. 

In a comparison of mRNA expression of matched normal and RCC samples by NGS performed by 

Landolt et al 355, EpCAM mRNA was found to be expressed at lower levels in tumor tissue compared 

to normal tissues. In a study performed by Hasmin et al 356 xenograft propagation of primary tumor 

cells was used to evaluate stem cell characteristics by sorting xenograft tumors generated from a 

primary RCC cell line according to different criteria. Thereby EpCAM expression seemed to evolve 

over serial transplantation of tumors and was seen in CD133+ sorted xenograft cells at significantly 

higher level than in the CD133− fraction, which showed growth advantage over CD133+ cells and 

higher tumor forming ability. EpCAM expression for RCC cell lines ACHN and KRC/Y has been shown 

by Ueda et al 205 by IFC, with both cell lines showing high uniform staining for EpCAM. 

Expression of EpCAM was evaluated on all cell lines in my work by IFC and was found to be 

constantly and uniformly high in PA, SP, CS7 cell lines and adherent counterparts of these cell lines. 

The high expression of EpCAM in the investigated cell lines might be on the one hand an indicator for 

a less aggressive tumor variant of origin of the cell line, since in RCC EpCAM seems to be correlated 

with better patients prognosis in RCC. But on the other hand, due to the various factors influencing 

expression and function of EpCAM, and for example similar expression as seen on the cell lines 

investigated here also on the highly tumorigenic ACHN RCC cell line, might also indicate a more 

aggressive phenotype of the cells. 

CS1 cell line differed from all other cell lines investigated here in EpCAM expression characteristic. 

The cell line showed a broader distribution of staining intensities and reduction of EpCAM positive 

staining cells over time in culture under SCC, whereas no changes in EpCAM expression were seen 

over long-term culture under ACC. It might be interesting to further investigate the mechanism 

responsible for this behavior, and whether the EpCAM− cell fraction possesses different stem cell 

characteristics. 
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5.6.2 CD24 

CD24 is a glycosylated single chain protein, which is bound by GPI anchor to the extracellular 

membrane. CD24 was primarily detected on B-Cells and used as a B-Cell marker, later expression 

was also found on keratinocytes and renal tubules and seems to be a P-selectin ligand expressed on 

activated endothelia, thus may be involved in transmigration of the cells and metastasis. In several 

cancers CD24 expression has been associated with a more aggressive behavior. 357 

CD24 is used as a positive marker for CSC from gastric cancer and colon cancer, whereas low or 

negative staining marks CSC from breast and prostate in combination with CD44 positive staining. 358 
359 Although, in breast cancer cell lines CD24 expression is used to distinguish mesenchymal 

(CD44Hi/CD24Lo) and the metastable hybrid EMT phenotypes (CD44Hi/CD24Hi) within different cell 

lines and it has been shown that the latter possesses higher CSC potential and drug tolerance. 360 

Similar results were obtained by Hsieh et al 318 from a CD44Hi/CD24 sorted sarcomatoid RCC cell line 

RCC52, where CD24Dim and CD24Hi cells showed different morphology, expression and growth 

characteristics. CD24Dim cells were of epithelioid morphology and expressed E-Cadherin. Compared to 

CD24Hi cells they showed faster in vitro growth kinetics and higher growth potential in soft agar assay. 

CD24Hi  cells in contrast, were of fibroblastoid morphology and no expression of E-Cadherin was 

observed in this cell fraction. Additionally, the CD24Hi cell population showed increased expression of 

Notch1 and Oct4 as well as increased migration and invasion and tumor-forming ability, indicated by 

higher tumor volume, compared to unsorted and CD24Dim cells.  

In the ovarian cancer cell line Caov-3 after induction of EMT via TGF-β treatment or hypoxic 

conditions, besides reduced expression of E-Cadherin and induction of Snail, also induction of CD24 

expression was seen. Overexpression of CD24 in this cell lines resulted in similar changes as were 

seen after EMT-induction by TGF-β or hypoxia, further supporting the role of this molecule in EMT. 

The authors also report increased chemo-resistance and growth potential in normal culture, soft agar 

and tumor-formation assay of CD24 overexpressing cells. 358  

Grasz et al 361 investigated the role of CD24/CD44 expression on intestinal epithelial stem cells (IESC) 

based on EpCAM+ sorting and found that CD24+/CD44+ and CD24−/CD44+ in contrast to 

CD24−/CD44− and CD24+/CD44− represent the stem cell fraction, albeit CD24+/CD44+ cells showed 

growth restrictions under normal culture conditions, but could be propagated in co-culture with 

myofibroblast, albeit at lower rates. Both populations possessed multipotent differentiating potential to 

enteroendocrine, goblet and Paneth cells as well as absorptive enterocytes. Although the CD24+ stem 

cell fraction according to this report seemed to have reduced potential compared to CD24− cells, 

CD24+ cells from CRC have been shown to possess CSC characteristics, when isolated in 

combination CD29 as CD24+/CD29+ co-expressing cell fraction. 147 Similar to results for ovarian 

cancer, also in CRC cell lines, a connection between CD24 expression and EMT has been shown by 

Okano et al 362. Sorted N-Cadherin+/CD24+ EMT induced cells showed higher expression of Notch1 

and other stemness markers and higher tumor-forming ability compared to CD24− cell fractions. Also 

CD24+ cells were more prone than their negative counterparts to further TGF-β stimulation. In contrast 

in esophageal cancer, the CSC population seemed to be CD44+/CD24− 147 
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In the study performed by Metsuyanim et al 351 CD24+ and CD133+ as well as CD24+/CD133+ cells 

comprise more than 50% of human fetal kidney cells, which also show to be EpCAMbright, indicating 

that these molecules do not mark progenitor cell-like phenotypes in the kidney but rather are markers 

of differentiation. In contrast to that finding, Challen et al 363 by investigating differential gene 

expression in metanephric mesenchyme and intermediate mesoderm using microarray analysis, found 

CD24 strongly and specifically expressed in the uninduced metanephric mesenchyme, implying that 

CD24 may be a useful marker for renal progenitor cell population. 

In the Bowman’s capsule different subsets of adult regenerating cells could be discriminated by their 

expression of CD133 and CD24, with C133+/CD24+ localized to the urinary pole are able to 

differentiate to tubular cells and podocytes, whereas cell with additional expression of the podocyte 

marker PDX, localized to between urinary and vascular pole are able of podocyte generation only. 

Differentiation potential is restricted to C133+/CD24+ subsets, whereas C133−/CD24− cells display 

phenotypic features of podocytes. 77 Also renal progenitors isolated according to their characteristic 

expression of CD133 from tubular parts of the cortex and papillae showed positive staining for CD24. 
351 73 75 74 76 But also CD133− mesenchymal like renal progenitor cells, which were isolated from the 

Bowman’s capsule by Bussolati et al 322 were shown to express CD24, whereas BM-MSC did not 

show expression of the marker. Together with expression of the renal stem cell marker Pax2 this 

indicated a different origin of the renal progenitors, and implies that CD24 might be a more robust 

marker than CD133 for renal adult stem cells. 

CD24 expression assayed by IHC showed positive staining in 786-O, SMKT-R2 and to a lesser extent 

in ACHN cell lines, whereas no staining was observed in 786-P, Caki-1 and -2 cell lines and CD105+ 

sorted cells from ACHN and Caki-2. 319 In contrast to this in Caki-2 cell line Jaggupilli 357 found CD24 

positive staining on 55% of cells using flow cytometry. Expression of CD24 by IFC was also evaluated 

by Xiao et al 203 in ACHN and Caki-1 cell lines, where they report high expression of the molecule on 

12% and 6% of the cells, respectively. Sorting for CD133+/CD24+ cells from these cell lines enriched 

for cells with CSC characteristics, such as enhanced sphere-forming and tumor-inducing ability, 

chemo-resistance and increased expression of mRNA for stem cell markers Oct4 and Klf4 as well as 

ABCB1/MDR1 when compared to CD133−/CD24− negative cell fractions.  

IFC staining of six different cell lines representing histological RCC subtypes performed by Hsieh et al 
318 showed moderate to high CD24 staining in clear cell RCC, chromophobe and papillary RCC, 

whereas only a small subset of cells stained positive in the sarcomatoid RCC52 cell line investigated. 

Zhong et al 211 similar to experiments performed in my work did not detect any difference in CD24 

expression between spheroids and adherent counterparts of SK-RC-42 RCC cell line. 

CD24 expression was investigated using IFC also by Lichner et al 212 on ACHN and Caki-1 RCC cell 

lines grown either adherently or as spheroids. Thereby only low fractions of ACHN (2%) and Caki-1 

(0.5%) adherently grown cells expressed the molecule at low level, whereas spheroids derived of this 

cell lines showed expression of the molecule in similar fractions of 10% of the cells. 

The cell lines investigated in my work in contrast to most reports for other RCC cell lines, but in 

accordance with reports for the RCC cell lines from different origins investigated by Hsieh et al 318 

showed similar high staining for CD24 in IFC experiments, thus resembling progenitor cells isolated 
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from adult human kidneys. Also no difference was observed in expression levels between adherently 

grown cells or spheroid cell lines. Although, a slight difference was seen in RNA-Sequencing 

experiments where SP cell line showed slightly reduced mRNA expression values compared to 

adherently grown cells (PA and A-SP), which might imply additional regulatory mechanisms involved 

at the post-transcriptional level for the surface expression of the molecule. 

5.6.3 Hyaluronate Receptor (CD44) 

CD44 (Hyaluronate Receptor) is a trans membrane glycoprotein of which several isoforms exist. 

Generally it acts as specific receptor of hyaluronic acid. By binding ECM components such as 

collagen, fibronectin, laminin and chondroitin sulfate, it functions in cell-matrix interactions. But it has 

also functional roles in cell-cell interactions and participates in lymphocyte activation, recirculation and 

homing. CD44 also binds osteopontin, which serves as cytokine inducing up-regulation of IFN-γ and 

IL-12 as well as in attachment of osteoclasts to mineralized bone matrix as well as in cancer cell 

migration. By interaction with neighboring receptors it is involved in various signaling cascades and 

also signaling via cleavage of ICD and transcriptional activation of genes that are involved in cell 

survival during stress, inflammation, oxidative glycolysis, tumor invasion (Notch1, MMP9, RANKL) has 

been described for CD44. CD44 in its different isoforms is expressed in almost all normal and on most 

cancer cells. 357 364 

CD44 expression is a characteristic feature of many CSC from various tissue origins including breast, 

pancreas, gastric, prostate, head and neck, ovarian, and colon. 359 

In breast cancer, CD44 in combination with CD24 has been found a suitable marker for CSC. CD44 is 

expressed on mesenchymal and epithelial subsets respectively, which are distinguished by their 

expression of CD24. 360 

On intestinal epithelial stem cells (IESC) isolated based on EpCAM+ sorting, Grasz et al 361 identified 

CD24+/CD44+ and CD24−/CD44+ in contrast to CD24−/CD44− and CD24+/CD44− as the fractions with 

stem cell characteristic, indicating CD44 as marker for progenitor cells in the gut.  

In accordance with these findings, EpCAM and CD44 have been found to be the most robust markers 

for CSC in CRC. Similarly expression of CD44 in combination with other markers has been found to 

enrich CSC from gastric cancer (CD44+/CD54+), HCC (CD90+/CD44+) and esophageal cancer 

(CD44+/CD24−). 147 

A meta-analysis performed by Cheng et al 365 found CD44 over expression correlated with worse 

patient prognosis in RCC. The study by Hsieh et al 318 using IFC staining of six cell lines representing 

different histological RCC subtypes showed positive CD44 staining in all tested cell lines. And similar 

results were obtained by Khan et al 319 in CD105+ sorted ACHN and Caki-2 cell lines. Also Zhong et al 
211 found similar staining for CD44 in spheroids and adherent counterparts of SK-RC-42 RCC cell line. 

Expression of CD44 on ACHN and Caki-1 RCC was also investigated by Lichner et al 212 using IFC 

and was found to be expressed in both cell lines at similar high levels, also no difference in expression 

was observed when both cell lines were grown as spheroids. 

In contrast to this, some studies call the use of CD44 as a suitable marker for pluripotent stem cells 

into question and imply that CD44 expression is correlated with a more mature progenitor like 

phenotype. For example during generation of iPSC from fibroblast cells, CD44 expression is gradually 



 

Discussion 

 

- 188 - 

lost resulting in CD44 absence in fully reprogrammed cells. CD44 expression in contrast to other 

pluripotency markers such as alkaline phosphatase or SSEA-3/4, TRA-1-60/-1-81 may serve as a 

differentiation marker between fully reprogrammed and partially reprogrammed cells. 366 

In a study on several cancer cell lines, CD44 was not co-expressed with the pluripotency marker 

SSEA-4 but enrichment of CD44 was seen in the SSEA-4− cell fraction. In sorted xenograft tumor cells 

of DU145 prostate cancer cell line, the highest tumorigenicity was seen in SSEA-4+/CD44− cell fraction 

whereas SSEA-4−/CD44+ fraction showed lowest tumorigenic potential 367, further supporting the idea 

that CD44 is a negative marker for pluripotent stem cells. 

CD44 expression is described for most cultured MSC. But Qian et al 368 found that CD44 was induced 

during in vitro culture of the cells, whereas primary multipotent high proliferative MSC from bone 

marrow reside in the CD44− cell population. 

The cell lines investigated in my work similar to reports for other RCC cell lines, showed high staining 

in IFC experiments, and no differences were seen in expression levels between adherently grown 

cells and spheroid cell lines SP and CS7. Although, slight differences were seen in mRNA-Sequencing 

experiments, where SP and A-SP cells showed slightly reduced expression levels of CD44 mRNA 

compared to PA cell line, but these differences were within experimental errors. In contrast, the CS1 

cell line showed variations of CD44 expression over long-term culture of the cell line under SCC, 

which were not observed when the cells were cultured for long-term under ACC. This is especially 

interesting in the light of reports by Quintanilla et al 366, who found reduction of CD44 expression 

during the reprogramming process of fibroblasts to fully reprogrammed iPSC and might indicate 

similar processes taking place in the CS1 cell line over long-term culture under SCC. Though, similar 

changes in this cell line were only observed for EpCAM expression but neither in expression of other 

pluripotency markers such as SSEA-3/4 or TRA-1-81. But since these markers showed a broad 

staining distribution in CS1 cell line, a sorting strategy for SSEA-4+/CD44− as used by 

Sivasubramaniyan et al. 367 might be a possible and interesting approach for this cell line for 

enrichment of cells of a more immature phenotype. 

5.6.4 Ecto-5’-Nucleotidase (CD73) 

CD73 (Ecto-5’-Nucleotidase) serves as one of the defining markers for MSC. 25 The ecto-enzyme 

activity produces extracellular adenosine, which serves as ligand for adenosine receptor signaling. 

Besides its enzymatic functions, CD73 participates in invasive properties of cancer cells due to its 

adhesive quality, by which it regulates cell interactions with extracellular matrix components, such as 

laminin and fibronectin. Overexpression of CD73 has been reported for several tumor entities, 

accompanied by functional involvement of the molecule in angiogenesis, drug-resistance, and cell 

proliferation and survival. 369 Also CD73 enzyme activity was found to limit antitumor T cell immunity. 
370 CD73 expression on tumor cells has been shown to be regulated by a variety of signals of which 

thyroid hormone signaling, hypoxic conditions and IFN-α and IFN-β have been shown to up-regulate 

CD73 expression, whereas estrogen receptor signaling, IFN-γ, and glutamate were found to down 

regulate CD73 expression 369. 

CD73 expression has also been reported on renal progenitor cells, which were obtained from different 

portions of the human kidney by using CD133+ and CD133+/CD24+ sorting strategy, respectively. 76 72 
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Also, expression of CD73, but not of the mesenchymal markers CD90 and CD105, was observed by 

Galleggiante et al 202 in cells with progenitor characteristics and differentiation potential toward 

adipogenic, osteogenic and epithelial lineage, enriched by a CD133+/CD24+ sorting strategy from 

healthy and tumorous tissue of resected kidneys from RCC patients.  

In a study performed by Song et al 210 with CSC from primary RCC tissues and the 786-O RCC cell 

line, high expression of CD73 was found to be a marker for CSC. In this study higher expression of 

CD73 was observed on spheroids compared to their adherently grown counterparts. Sorting for CD73 

expression resulted in enrichment of cells with sphere-forming ability, higher expression of Oct3/4, and 

higher resistance to radiation and mitomycin treatment. Tumor forming ability in NOD/SICD mice was 

restricted to cells with high expression levels of CD73 (tumor formation in 5 of 5 mice at injected doses 

of 5x102 cells). The functional involvement of CD73 in this process was shown by shRNA knockdown 

of 73, which drastically reduced tumor formation of the cells, compared to control shRNA treated cells. 

The authors also found a correlation of CD73 expression with ccRCC progression using TMA staining 

of RCC and normal renal tissues. 

Expression of CD73 was investigated by IFC on PA, SP and CS cell lines (CS1 and CS7). High 

uniform staining for CD73 was observed on all cell lines tested. Thereby a higher staining intensity 

was seen in SP cell line compared to all other assayed cell lines, with CS cell lines showing a broader 

distribution of staining compared to PA and SP cell lines, indicating a more heterogeneous nature of 

these cell lines with respect to CD73 expression, containing high and low staining fractions. The 

results for SP cell line are in the light of results obtained by Song et al 210 imply a higher CSC status of 

this cell line compared CS cell lines and especially to PA cell line. 

5.6.5 Endoglin (CD105) 

Endoglin (CD105) is a cell membrane glycoprotein, that is predominantly expressed on endothelial 

cells with elevated expression in activated endothelial cells 371. Its expression in endothelial cells is up-

regulated at low O2 concentrations by HIF-1 in cooperation with TGF-β1 372. Endoglin is a co-receptor 

of TGF-β-Receptor I/II complexes, where it modulates TGF-β signaling. 373 

In addition, CD105 serves as one of the defining positive markers for MSC 25. MSC are uniformly 

strongly positive for CD105 staining, regardless of passage number 374. Gharibi et al 329 observed that 

CD105 expression was significantly reduced following osteogenic and adipogenic differentiation of the 

cells. They also investigated the influence of medium supplementation with several growth factors and 

found a slight reduction of CD105 expression upon addition bFGF. Qian et al 368 found higher 

expression of CD105 in in vitro cultured BM-MSC compared to freshly isolated cells. 

Expression of CD105 was also found on progenitor cells isolated from human kidney by use of 

CD133+ sorting strategy in the parietal epithelial layer of the Bowman’s capsule 73. But also CD133− 

mesenchymal like renal progenitor cells, which were isolated from the Bowman’s capsule by Bussolati 

et al 322 were shown to express CD105. 

In contrast, CD133+ renal progenitor cells from the normal portion of human renal cortex lacked 

expression of CD105, but rather expression was induced under endothelial or epithelial differentiation 

conditions 72. Also cells isolated from papillary region of renal pyramid by the same group 71 were 

reported to express CD105 at low level only on a subset of the cells. 
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Despite its varying expression on renal progenitor cells, Bussolati et al 78 identified CD105 as possible 

marker for isolation of CSC from primary RCC tumors (see chapter 1.6). Primary CD105+ CSC were 

used to evaluate IL-15 differentiation therapy by Azzi et al 119, thereby confirming the results of 

Bussolati concerning CSC features of this subpopulation. Additionally, the authors investigated further 

functional stem cell characteristics, namely side population as well as ALDH expression. The sorted 

cells displayed uniform ALDH expression, and a side population was visible. Both features were lost 

after differentiation of the cells. No change in expression of stem cell markers was observed for more 

than 50 passages when cells were cultured in multipotent adult progenitor cell medium consisting of 

DMEM-LG containing 5% FCS medium supplemented with ITS, 109 M dexamethasone, and 10 ng/mL 

EGF. Transferring the cells to RPMI medium with higher glucose content and 10% FCS instead of the 

other supplements, induced epithelial differentiation, as marked by Pan-CK expression and expression 

of E-Cadherin, which were not detected in undifferentiated cells. Differentiation of the cells could also 

be induced by addition of IL-15 to the medium. This resulted in gradual loss of expression of CD105 

and stem cell markers POU5F1/Oct4, Nestin and Nanog within 4 weeks. Sphere-forming efficiency of 

the sorted cells was reported to be 40% as observed already by Bussolati et al 78 and was reduced 

after differentiation of the cells.  

Hu et al 200 observed similar changes in CD105+ sorted xenograft tumors generated from ACHN 

CD105+ sorted cells. When the cells were cultured in standard RMPI-1640 medium instead of the 

expansion medium used by Bussolati 78, positive immunohistochemical staining for CK7 was seen, 

which was week/absent in parental and CD105+ sorted cells. In contrast, staining for the EMT marker 

vimentin was observed in CD105+ sorted cells only but not in the parental cells. The expression of 

vimentin was lost upon standard culture of the cells. Similar results were obtained for Oct4, and Sox2, 

also CXCR4 and Nanog mRNA levels were down regulated under standard conditions.  

The expression of CD105 in several RCC cell lines was investigated by Khan et al 319. CD105 

expression was detected by IHC and weak staining was observed in 786-O/P, ACHN, Caki-1 and 

SMKT-R2 cell lines, whereas Caki-2 cell line showed strong staining pattern for CD105. They sorted 

CD105-positive cells from ACHN (4% of total cells) and Caki-2 (3% of total cells) cell lines and 

investigated CSC characteristics as well as gene expression profiles of the cells. Of note is that they 

report a loss of CD105 expression in more than 50% of sorted cells upon standard culture conditions, 

being in accordance with a balance between stem cell self-renewal and differentiation. CD24 

expression was not detected on CD105+ sorted cells, but almost all cells expressed MSC markers 

CD90 and CD73. CD146 and CD44 were expressed only by subpopulations of the cells. CD105 

expression on KRC/Y RCC cell line has been investigated by Ueda et al 205 using flow cytometry. The 

cells showed low expression of CD105 in 5% of non-side population cells, whereas the fraction of 

positive staining cells was found to be higher (25%) in cells sorted for the side population 

characteristic. 

A study performed by Matak et al 199 on the expression of CD105 on different renal cancer cell lines 

confirmed high expression of CD105 on Caki-2 cell line, which was comparable to the expression 

seen on PA cells. Similar expression was seen on the cell line SMKT-R2. Other tested cell lines were 

either negative (769-P, RCC6) or showed only weak expression of CD105 (ACHN, 786-O). The 
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normal renal embryonic cell line ASE displayed a median expression level of CD105. Sphere-forming 

ability was tested and was only seen in Caki-2 and ACHN cell lines. The same was true for expression 

of Oct4 and Sox2 stem cell markers, which was higher in Caki-2 cells compared to ACHN cells. 

Thereby Sox2 expression of Caki-2 cell was comparable to that of ASE cell line, whereas Oct4 

expression was about 40% of that seen in the embryonic cell line. In ACHN, the expression of stem 

cell markers as well as of CD105 could be induced under hypoxic conditions. In this study CD105 

expression as well as Oct4 and Sox2 expression at mRNA level were shown to be up-regulated by 

hypoxic conditions in the ACHN cell line. Hsieh et al 318 investigated CD105 expression on the 

sarcomatoid cell line RCC52 in parental, CD44Hi/CD24Dim and CD44Hi/CD24Hi  sorted cells, of which 

the latter showed increased tumorigenicity as well as a more mesenchymal phenotype compared to 

parental and CD24Dim cell fraction and found similar expression levels of CD105 in all three cell 

fractions comprising 3-5% positive staining cells. 

Zhang et al 201 reported a frequency of 8.3 ± 1.3% CD105+ cells in the A498 RCC cell line, and of 4.9 ± 

1.7% in the SK-RC-39 cell line. They observed sphere-formation ability only in the CD105+ cells while 

CD105− cells did not survive in the serum free medium. According to the proposed stem cell 

characteristics of CD105+ cells, they formed tumors in BALB/c nude mice at lower cell concentrations 

compared to CD105- cells. Additionally, significantly higher expression of the established stem cell 

markers Sox2, Nanog, c-Myc, and Klf4 was observed in CD105+ cells of both cell lines compared to 

CD105- cells using IHC staining.  

In the ACHN cell line Hu et al 200 recently reported reduced sphere-formation ability, expression of 

stemness markers (Oct4, Sox2, Nanog, Klf4), CSC-marker CXCR4, accelerated senescence in vitro 

as well as reduced tumorigenicity of the cells upon knockdown of CD105. This is further supporting the 

evidence of CD105 being an important molecule and marker of CSC in RCC. 

Another cell line which seems to express relatively high levels of CD105 was the SK-RC-42 cell line, 

which was analyzed by Addla et al 330 for sphere-forming ability and side population characteristics. 

Interestingly CD105 expression detected by IFC was lower in spheroids compared to adherently 

cultured cells, which has also been observed for SP and CS cells derived from PA in my experiments. 

Similar results were obtained by Zhong et al 211 on spheroids and adherent counterparts of SK-RC-42 

RCC cell line and by Gassenmaier et al 204 with SK-RC-17 cell line, which both showed similar high 

expression of CD105 as PA cell line, and also similar reduction of CD105 expression in spheroid 

derivatives. The line RCC-26 investigated by this group 204 expressed CD105 in a minor fraction of 

cells and reduction of CD105 expression was also seen after spheroid culture. In both cell lines, 

CD105 expression was regained after adherent culture of the spheroids. In contrast, the RCC-56 cell 

line, also investigated by Gassenmaier et al 204, did not show expression of CD105. Since RCC-56 cell 

line compared to RCC-26 cell line seemed to contain a higher fraction of CSC, CD105 was not 

correlated with the stem cell characteristics of these cell lines. 

In contrast to the conclusion that might be drawn from several of the above studies highlighting CD105 

as an important molecule and marker of CSC in RCC, in a TMA screen of 210 patients performed by 

Sandlund et al 375 no up-regulation of CD105 in higher tumor stage or grade could be observed. In 

contrary, patients with high CD105 expression were found to have a more favorable prognosis than 
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patients with low CD105 expression. Although, in a more recent TMA-study performed by Zanjani et al 
376 a correlation of tumor grade and stage as well as overall survival with higher tumor cytoplasmic and 

vascular CD105 expression was observed for clear cell type of RCC.  

As can be seen from the above mentioned studies, although CD105 might mark CSC in some cell 

lines, it does not necessarily indicated CSC characteristics in others. 

The PA cell line used for my experiments uniformly expressed CD105 on all cells resembling Caki-2 

SK-RC-17 and SK-RC-42 cell lines in this respect. Therefore a similar sorting strategy for enrichment 

of possible CSC with this marker as was used in the cited studies from this cell line was not 

applicable. Remarkably, in contrast to reports from Azzi et al 119 and Hu et al 200, who found reduction 

or loss of CD105 expression upon culture of cells in standard serum containing medium instead of 

growth factor containing expansion medium, here a reduction of CD105 expression in spheroid cells 

grown in serum-free growth factor containing medium compared to cells cultured under standard ACC 

was seen, which was also observed by Addla et al 330 and Zhong et al 211 for SK-RC-42 cell line and 

Gassenmaier et al 204 for SK-RC-17 cell line. A reduced expression of CD105 mRNA on SP cells and 

also on A-SP cells compared to PA cell line was also detected by RNA-Sequencing. Interestingly, CS 

cell lines seemed both to contain cell populations with low or no expression of CD105, which under 

spheroid culture conditions increased over long-term culture. Since both cell lines showed evolvement 

of this populations repeatedly, this seems to be a functional characteristic of the cell lines, which might 

be interesting for further investigations of the mechanisms underlying this changes. Also the basis for 

variations seen in expression of CD105 on SP cell line under ACC or SCC culture conditions might be 

interesting for further understanding of the role of CD105 in RCC. 

In their study Zhang et al 201 used CD105+ sorted and unsorted cells to test a possible 

immunotherapeutic strategy against CSC by priming dendritic cells (DC) in vitro with cell lysates. 

When using CD105+ cell lysates for priming of DC, activated specific T cells, as well as antibodies 

against CD105+ CSC were observed. In cell lysis assays a specific lysis of CD105+ cells was observed 

by cytotoxic T cells (CTL) that were activated by incubation with CD105+-primed DC. For in vivo 

assay, differently activated CTL together with unsorted tumor cells were injected into nude mice. 

When using CD105+ cell lysates for priming of CTL, a considerable reduction of tumor volume as well 

as a reduction of CD105+ cell content of formed tumors compared to CTLs stimulated by DCs that 

were primed with unsorted or CD105- cell lysates, was observed for both cell lines. The study shows 

that targeting CSC directly in immunotherapeutic approaches is even more effective than using 

unsorted tumor cells, although the fraction of CD105+ CSC in the formed tumors comprises only about 

10% of the cells. Thus the expression pattern of CD105 on the cell line investigated might be an 

indicator of stem cell phenotype and may render the cell line especially useful for therapeutic 

vaccination as in the vaccine MGN1601. 182 

5.6.6 Multi Drug Resistance Protein 1 (MDR1/CD243/ABCB1/P-Glycoprotein) 

The multi drug resistance protein 1 (MDR1), which is also named P-Glycoprotein, ABCB1 and CD243, 

is a member of the large and diverse ABC-family of ATP-driven membrane pumps. The endogenous 

substrates of the transporter are steroids, lipids, bilirubin, bile acids, and platelet activating factor, but it 

has also been found to be fundamentally involved in chemo resistance of cancer cells by its 
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detoxifying transport activity for several exogenous substances used for chemotherapy of cancer. 

MDR1 is normally expressed in small intestine, liver, kidney, placenta, and blood brain barrier but high 

expression is also found in stem cells of diverse origin. The detoxifying activity of MDR1 is one of the 

major components responsible for the side population assay (see chapter 5.3), which has been used 

to enrich for adult stem cells and CSC, respectively. Several pathways involved in stem cell and 

cancer signaling, including Hedgehog, PI3K/Akt, and NF-κB, as well as p53 and ERBB2 have been 

shown also to regulate expression of ABCB1 in different cancer cell lines. HIF-driven or pVHL-

dependent up-regulation of ABCB1 expression has also been observed. 162 163 

In kidney CSC PKCε was shown to directly regulate ABCB1 expression. 331 In rat proximal tubular 

epithelial cells ABCB1 expression has been shown to be up-regulated by exposure to TNF-α via TLR4 

activation and NF-κB nuclear translocation 377. 

Boysen et al 378 by investigating expression of glycoproteins using SILAC, identified ABCB1, among 

others, as important discriminator between pRCC and ccRCC, with ABCB1 expression marking 

ccRCC. Using ABCB1 expression for hierarchical clustering gave similar accurate results for 

identification of ccRCC to CD10.  

As described in chapter 5.3 ABCB1 in human kidney cells and RCC cell lines seems to be 

fundamentally involved in conveying the HSP phenotype. 330 331 205 

In accordance with the described expression of MDR1 on ccRCC, expression of CD243 (MDR1) was 

detected in the PA cell line by flow cytometric immunophenotyping, though at low to moderate and 

varying level. The transporter was also found to be involved in the dye efflux, which was seen in this 

cell line in RSPA. Surprisingly, expression of CD243 assayed by flow cytometric immunophenotyping 

of spheroid cells was found only on a small subset of cells (SP) or was even absent (CS). Those cells 

did not show relevant functionality of the transporter in RSPA. After re-culturing spheroid cell lines in 

serum-containing medium, re-expression and functionality of the transporter were observed in 

fractions of the cells. It would be interesting to further evaluate the mechanisms responsible for this 

behavior. On the one hand, expression of MDR1 might have been induced by some of the undefined 

components of serum, on the other hand also metabolic variations or yet more basic changes might 

be responsible for the observed variations. 

5.6.7 Melanoma Cell Adhesion Molecule (MCAM, CD146) 

CD146 is an Ig member membrane glycoprotein which functions as a Ca2+ -independent cell adhesion 

molecule involved in heterophilic cell–cell interactions. Due to its expression and functional role in 

melanomas, the molecule is also termed Melanoma cell adhesion molecule (MCAM).379 

CD146 is expressed on endothelial cells and is used as a marker for this cell type. Similarly, CD146 

also serves as marker for MSC. Also, CD146 may be used to discriminate MSC from fibroblasts, since 

it was shown by Halfon et al 380 that only 5% of fibroblasts were CD146 positive compared with MSCs, 

where CD146 expression was markedly higher, but slightly decreased with time of culture from 92% in 

passage 2 to 80% in passage 6 cells. For CD146 expression on MSC besides passage dependent 

decrease, additional appearance of a second population has been described 26. Also, CD146 

expression has been shown to be markedly reduced, when MSC were cultured in the presence of 

bFGF, but returned to control level after one week cultivation in the absence of growth factor. In 
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contrast, no change in CD146 expression was seen when cells were induced to osteogenic or 

adipogenic differentiation. 329  

In the kidney, CD146 was found to be a marker for renal progenitor cells, which were isolated from 

adult human glomeruli. These cells expressed further MSC markers and the renal stem cell markers 

CD24 and Pax2 and, besides MSC specific differentiation capabilities into adipogenic, osteogenic, and 

chondrogenic lineages, they were also able to differentiate into endothelial, epithelial and mesangial 

cells. Expression of CD146 was unchanged upon endothelial and mesangial differentiation of the cells. 

In contrast to most progenitor cells isolated from human adult kidneys, the CD146+ progenitors were 

characterized by lack of CD133 expression 78. But also on CD133+ sorted human adult kidney 

progenitors expression of CD146 has been observed. 71 

Expression of CD146 was investigated by Khan et al 319 on CD105+ sorted CSC from Caki-2 and 

ACHN cell lines by IFC and weak staining for CD146, indicated by a shift in the whole cell population 

compared to isotype control, similar to that seen for PA cells in my experiments, was seen. The 

expression level of CD146 on SP cell line was reduced and even absent in CS cell lines. For the 

molecule a clear growth condition-dependent induction was seen in spheroid cell lines. The relatively 

fast reduction of expression after re-culturing A-SP cells under SCC in combination with other cellular 

charcteristics of adherently grown spheroids makes a possible szenario of epithelial differentiation of 

the cells under ACC less likely. The expression pattern of CD146 was quite similar as that described 

by Gharibi et al 329 for MSC cultured in bFGF containing or serum-containing conditions. According to 

this variable expression pattern, CD146 does not seem to be suited for sorting of probable CSC from 

RCC. 

5.6.8 Vascular Cell Adhesion Molecule 1 (VCAM-1, CD106) 
CD106 (Vascular Cell Adhesion Molecule 1) is a member of the Ig superfamily and is involved in 

leukocyte-endothelial cell adhesion and signal transduction during inflammation. It has been shown to 

be suitable marker for MSC, since CD106 is expressed on MSC and an up-regulation of CD106 

expression by TNF-α was observed in this cell type, whereas expression of the molecule on 

fibroblasts is about 10-fold reduced with no changes seen upon TNF-α stimulation of the cells. 29 380 It 

has been shown that CD106 expression is reduced during in vitro culture of BM-MSC. 368 

Expression of CD106 has been reported on CD133+/CD24+ renal progenitor cells with multilineage 

differentiating potential isolated from the Bowman’s capsule. 73 CD106 has also been found to mark a 

population with higher proliferative and differentiation potential compared to the CD106− cell fraction of 

renal progenitors derived from glomerular or tubular structures of the cortex. 75 The results obtained in 

my work, where in IFC staining variable fractions of CD106+ staining cells were seen in PA cell line, 

whereas no expression was observed in spheroid cell lines and highly variable expression patterns 

were observed after ACC culture of spheroid cell lines, do not support expression of CD106 being a 

suitable CSC marker in RCC. Albeit, the mechanisms underlying the observed changes of CD106 

expression observed in this work, might be interesting for further research on the role of this molecule. 
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5.6.9 CD90 (Thy-1) 

CD90 is a GPI-anchored glycoprotein of the IgG-superfamily involved in cell-cell and cell-matrix 

interactions, which is mainly expressed in leukocytes. Expression has also been reported in neurons, 

activated endothelial cells, and mesangial cells. High levels of the protein are also expressed in 

subsets fibroblasts and MSC, where it serves as one of the defining markers.  

In ovarian and nasopharyngeal cancer as well as in neuroblastoma CD90 has been found to act as 

tumor suppressor, whereas CD90 in hepatocellular carcinoma (HCC), gastric cancer, esophageal 

squamous cell carcinoma (ESCC) and brain cancer was found to mark CSC populations. 381 382 383 147 
60 

CD90 expression in human fetal kidney was evaluated by Metsuyanim et al 351 using immunostaining. 

The authors found CD90 positive staining predominantly in renal tubular cells but not in the 

nephrogenic zone. The expression level of about 25% positive staining cells was also seen in IFC 

analysis of adult kidney. On renal progenitor cells derived from the renal cortex and medulla isolated 

by Bussolati et al 72 71 and from healthy renal tissue of RCC patients by Galleggiante et al 202 also no 

staining of the cells for CD90 in IFC analysis was observed. These results indicate that CD90 in the 

kidney might be differently regulated and is no indicator of progenitor-like cells in contrast to MSC, 

where it is highly expressed and serves as one of the defining markers.  

Primary tumors of the kidney as well as RCC cell lines have been shown to express CD90. 319 78 119 205 

In primary CD105+ CSC investigated by Azzi et al 119 CD90 expression was lost upon differentiation of 

the cells. High expression of CD90 was also observed in in primary Wilms’ tumor cell lines 317. In 

contrast, RCC-26 and RCC-53 cell lines investigated by Gassenmaier et al 204 did not show 

expression of CD90.  

The cell lines investigated here also did not show expression of CD90. Although, low level expression 

of CD90 mRNA was detected in RNA-Sequencing experiment. This indicates, that lack of CD90 

expression is not due to probable deletion of the locus in the investigated cell lines. 

5.6.10 Nerve Growth Factor Receptor (NGFR, CD271) 

CD271 (Nerve growth factor receptor (NGFR)/low affinity nerve growth factor receptor 

(LNGFR)/p75NTR/TNFRSF16) is a member of the TNF receptor superfamily and is expressed in 

embryonic stem cells and in adult stem cells of diverse origin including neuronal, epidermal and 

mesenchymal derived stem cells and seems to be involved in maintenance of the undifferentiated 

state of these cells. 384 The receptor has low affinity to several mature neurotrophins and high affinity 

for pro-neurotrophins. 385 Signal transduction of the receptor depends strongly on co-receptors and is 

diverse, depending on cell type types and context. CD271 has been shown to be a MSC marker 386 340 

as well as a promising CSC marker for melanoma, 387 388 389 and has also been found to mark CSC in 

neuroblastoma, squamous cell carcinoma (esophageal, oral). 147 390 CD271 has been found to be a 

suitable marker for isolation of mutlipotent MSC form BM, but it’s expression is rapidly down regulated 

upon culture of the cells. 59 

Expression of CD271 and its ligand pro-BDNF has been investigated by Cruz-Morcillo et al 385 in 

ccRCC. Both were found to be overexpressed in ccRCC tumor samples investigated by IHC. High 

expression of CD271 was also associated with higher Fuhrman grade of the tumors. Expression of 
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CD271 and pro-BDNF was also investigated in 786-O and ACHN RCC cell lines on mRNA and protein 

level. Thereby differences in expression between both cell lines were observed, with ACHN cell lines 

showing higher expression of pro-BDNF. The authors also investigated expression of the molecules in 

serum-containing and serum-free culture conditions and found CD271 protein expression up-regulated 

under serum-starving conditions in both cell lines and up-regulation of pro-BDNF under these 

conditions in ACHN cell line. In contrast to its pro-apoptotic function reported for neuronal cells, pro-

BDNF was found to have a pro-survival role in both cell lines and activation of both, AKT and ERK1/2 

pathways was detected after pro-BDNF addition to culture media of 786-O cell line. CD271 and pro-

BDNF were also shown to be involved in cell migration of both cell lines using the wound-healing 

assay. siRNA silencing of CD271 led to reduced migratory ability as well as viability of the cells, 

highlighting that activation of p75NTR by pro-BDNF plays a major role in cell survival and migration of 

RCC cell lines.  

Low-level expression of CD271 was detected on a small subset of spheroid cell lines SP and CS, 

whereas only single cells showed positive staining for CD271 in PA cell line in IFC experiments. Very 

low expression of CD271 mRNA was also observed in mRNA-Sequencing experiments, where also 

high variability was observed between single samples, which is in accordance with a small number of 

cells expressing the molecule. No variation of expression level was seen between different passages 

of spheroids or in spheroids grown under ACC. Though cells expressing the molecule are very rare in 

PA cell line, enrichment of CD271 expressing cells, might be a means to enrich for a probable CSC-

containing cell sub-population from the cell line, especially in the light of results obtained by Cruz-

Morcillo et al 385 in 786-O cell lines. 

5.6.11 Chemokines and Receptors (CXCR4, CXCR7, CXCL12) 
Chemokines, especially CXCL12 (SDF-1) and its receptors CXCR4 and CXCR7, have been found to 

be involved in cancer progression and metastasis. Chemokines have profound roles in the immune 

system, where they act as chemoattractants for several cell types with expression of the respective 

receptors and are involved in developmental processes. CXCR4 and CXCR7 have been found to be 

receptors for CXCL12, which upon binding of the ligand induce Gαi signal transduction pathways 

resulting in reduced cAMP production and intracellular calcium mobilization, and activation of multiple 

downstream targets and pathways, including ERK1/2, MAPK, JNK, and AKT. CXCR7 in contrast 

seems to act via different pathways than CXCR4, probably acting as a scavenger-receptor for the 

ligand but also through heterodimerization with CXCR4, thereby modulating signal transduction, but 

also by recruiting β-arrestin-2. In tumor cells, where up-regulation of CXCR4/CXCR7/CXCL12 by 

VEGF via HIF-1 signaling has been observed on various tumor entities, the chemokine-chemokine-

receptor axis promotes tumor growth by promoting survival and dissemination of tumor cells, but also 

by acting on tumor microenvironment. Therefore these molecules seem to be suitable targets for 

therapeutic strategies. 391 392 393 

Comparison of gene expression profiles of normal kidney to RCC samples performed by Chen et al 394 

found high expression of CXCR4 to serve as independent prognostic marker for poor survival of 

patients. Similarly, in a meta-analysis Cheng et al 365 found that high expression of CXCR4 correlated 

with worse prognosis for RCC patients. Similarly, CXCR4 was found among the significantly up-
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regulated genes in comparative gene expression profiling of normal patient-matched renal tissue with 

ccRCC tumor tissue performed by Tun et al 323.  

Struckmann et al 395 showed that CXCR4 as well as CXCL12 show increased expression in RCC, 

suggesting autocrine signaling route of this chemokine in RCC. Using the 786-O cell line (VHL-null) it 

was shown that expression of both molecules seems to be HIF-dependent, since expression of the 

molecules on mRNA and protein level detected by CIFM was strongly reduced in cells transfected 

either with pVHL19 or pVHL30. 

Gassenmaier et al 204 investigated two RCC cell lines for sphere-forming ability and observed up-

regulation of CXCR4 in the more tumorigenic RCC-53 cell line from 2% CXCR4+ staining cells to a 

shift of the whole cell population in IFC staining, resulting in 38% CXCR4+ cells after spheroid growth 

of the cell line. Whereas the less tumorigenic cell line RCC-26 did not show expression of CXCR4 in 

the parental cell line and only a small fraction of CXCR4 expressing cells (2%) in the spheroids 

derived thereof. Sorting for CXCR4 in the RCC-53 cell line increased sphere-forming as well as tumor-

inducing ability. The functional involvement of CXCR4 in these processes was shown by siRNA 

mediated down regulation and pharmacological inhibition of CXCR4, which reduced sphere-formation, 

cell viability and chemo-sensitivity of the cells. Expression of CXCR4 on spheroid cells from both lines 

was reduced upon adherent standard culture of the cells. 

In line with results of Struckmann et al 395 and Gassenmaier et al 204 Micucci et al 213 found CXCR4 

and its ligand SDF-1 as highly up-regulated in spheroid cells derived from 786-O and Caki-1 RCC cell 

lines, when compared to their adherent counterparts. Also inhibition of CXCR4 led to reduction of 

sphere-forming efficiency in both cell lines and the connection of CXCR4 expression to HIF-2α was 

shown by reduced expression of CXCR4 mRNA in shRNA-HIF2α transfected cells. 

Hu et al 200 observed down regulation of CXCR4 expression in CD105+ sorted xenograft tumors 

generated from ACHN CD105+ sorted cells after culturing the cells in standard medium conditions. 

In line with the results obtained by other authors, expression of CXCR4 was seen in spheroid cell 

lines, whereas in PA cell line only very small numbers of cells stained positive for the receptor in IFC 

experiments. In SP and especially CS7 cell line an increase of CXCR4 expressing cell fraction over 

time in culture as spheroids was observed, whereas in CS1 cell line, the fractions of positive staining 

cells for the receptor were comparably lower and showed high variations in different experiments. The 

reduction of CXCR4 expression upon standard culture of spheroid cell lines, which was observed in 

my work also parallels the reports of Gassenmaier et al 204 Hu et al 200.  

In contrast, Micucci et al 213, who found upregulation of CXCR4 in both investigated cell lines (786-O 

and Caki-1) at similiar level, the spheroid cell lines investigated in my work were found to express the 

molecule at different levels. The expression level on the investigated parental cell line PA thereby was 

similar to results obtained by Gassenmaier et al 204 for the less tumorigenic RCC-26 cell line and SK-

RC-17 cell line, whereas expression pattern after long-term spheroid growth of CS7 cell line 

resembled the more tumorigenic RCC-53 cell line, and expression pattern of SP cell line in my work 

was similar to that reported for SK-RC-17 cell line. 

In addition to surface expression of CXCR4 also CXCR7 expression on PA and spheroid cell lines 

derived thereof was investigated by IFC and the results were quite similar to that obtained for CXCR4 
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expression. But for this receptor the observed difference between spheroid cell lines was much more 

pronounced, with CS7 cell line showing similar expression pattern of the receptor as was seen for 

CXCR4, whereas on SP and CS1 cell lines the expression of CXCR7 compared to CXCR4 was 

markedly reduced. mRNA expression levels for CXCR7 determined for SP cell line, as well as for A-

SP cell line were markedly enhanced compared to PA cell line, which is a further incidator for 

induction of expression of this molecule on spheroid cell lines. But also similar high expression of 

CXCR4 mRNA was seen in SP and A-SP cell lines, which contrasts the observed lower surface 

staining of the molecule on the latter by IFC. This might indicate that further mechanisms are involved 

in surface expression of the molecule. 

5.6.12 Neural Cell Adhesion Molecule (NCAM, CD56) 

Neural cell adhesion molecule (NCAM/CD56) of the immunoglobulin super family is a cell adhesion 

molecule, which is a marker for neural lineage cells and is expressed as well as on several blood 

lineage cells (NK-cells, γδT-cells, activated CD8+ T-cells and dendritic cells). 396 397 Besides mediating 

cell-cell contact by homophilic and heterophilic binding, it is also involved in FGF receptor signaling. 
398 CD56 epitopes NCAM16.2 and E-39D5, of which the latter is not expressed on peripheral blood 

natural killer cells, are expressed on a small subpopulation of BM-derived MSC. Sorting for CD56 in 

combination with CD271 or MSCA-1 enriches for cells with high clonogenic, proliferative and 

differentiation potential, albeit lacking adipogenic differentiation potential. 340  

In hepatocellular carcinoma (HCC) NCAM expression, evaluated by IHC of tumor specimen, although 

present on a small number of tumors (3%) only, was found to be associated with worse prognosis of 

patients 399. CD56 also expressed on a variety of other tumors. For example expression of CD56 

ovarian carcinomas was correlated with high grade and advanced stage 400, also CD56 may serve as 

a differential marker for small cell lung carcinoma (SCLC). 401 Additionally in ovarian carcinomas, it 

has been shown that NCAM seems to be involved in tumor dissemination, which is based on 

NCAM/FGFR interaction as has been shown by use of antibodies that block this interaction in NCAM 

transfected cell lines and thereby reduce migratory ability of the cells. 402 

Metsuyanim et al 351 evaluated expression of NCAM in fetal and adult kidney and found expression of 

NCAM exclusively in the metanephric mesenchyme (MM) and its nephron progenitors as well as in 

stromal cells. They found elevated expression of renal progenitor genes SIX2, WT1, CITED1 and 

SALL1 in NCAM+/EpCAM− sorted cell fractions, which seem to represent the putative MM stem cell 

fraction, whereas the NCAM+/EpCAM+ cell fractions seems to represent MM-derived progenitors, 

showing reduced expression of stem cell genes compared to the former. In adult kidney expression of 

NCAM was evaluated by IFC, thereby about 10% of the cells were NCAM+. In human fetal kidneys 

NCAM expressing cell fraction evaluated by IFC was slightly higher than in adult kidneys 351 and 

NCAM staining in IHC has been observed in the nephrogenic mesenchyme .317  

Buzhor et al 403 identified NCAM to mark a cell population in the range of 15±9% within cultured 

proliferative adult human kidney epithelial cells from adult human kidney specimen, which might 

represent a putative adult renal progenitor population (uniformly positive for CD24/CD133). Of note is 

that the molecule is not expressed in situ in renal epithelia. Comparison of NCAM+ to NCAM− cell 

fractions revealed that early nephron progenitor markers PAX2, SALL1, SIX2, WT1 were over-
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expressed and reduced expression of kidney differentiation markers as well as of CDH1 and vimentin 

indicated an EMT of the NCAM+ cell fraction. The NCAM+ cells also were shown to possess 

differentiating potential not only into tubular epithelial but also into osteogenic and adipogenic 

lineages. Similarly, in renal progenitors derived from the papillary region of human adult kidney by 

CD133+ sorting strategy applied by Bussolati et al 71, CD56 was expressed on the main fraction of the 

cells, whereas also a CD56 negative cell fraction was seen. 

In Wilms’ Tumor, a pediatric tumor of the kidney with possible stem cell origin, NCAM, according to its 

expression pattern, which also correlated with expression of stemness genes and poor prognosis of 

patients, was proposed to be a suitable marker for enrichment of CSC 317. 

In RCC, NCAM expression, investigated by immunohistochemical staining of 338 tumor samples, was 

detected in 15% of the tumors and expression was correlated with aggressiveness of the tumors, as 

indicated by tumor size, Fuhrman grading and patient survival rate. Also a strong correlation of NCAM 

expression with the occurrence of CNS metastases was observed 404. Therefore NCAM expression 

might be a marker for more aggressive CSC like tumor cells. 

In CRC cell lines NCAM expression has been shown to be up-regulated after treatment with TGF-β, 

which has been shown to induce EMT in these cell lines in a study performed by Okano et al 362. 

Buzhor et al 403 detected NCAM expression of proliferating renal epithelial cells (putative adult renal 

stem cells) after culturing the cells but not in situ, and found NCAM+ cells being enriched in stem cell 

characteristics. 

In IFC experiments performed in my work NCAM expressing cells were only detected on spheroid cell 

lines SP and CS7, but not on PA cell line or CS1 cell line. Also it has been shown, that NCAM 

expression on the investigated cell lines is dependent on culture conditions. NCAM expression 

increased with extended culturing periods as spheres, but rapidly decreased after adherent standard 

culture of the cells. The lack of expression of the molecule on parental cell line is in agreement with 

the findings of Khan et al 319, that in different RCC cell lines, cultured as conventional monolayers, no 

expression of the NCAM gene has been detected.  

For the above mentioned reasons, although differentially expressed in spheroid and PA cells and 

marking cells of more aggressive or CSC-like nature in other tumors, NCAM had to be excluded as 

possible enrichment marker for CSC from the investigated PA cell line. It might be interesting to further 

evaluate the mechanisms that underlie the observed variations in NCAM expression. One possibility is 

that a connection with the use of bFGF in the spheroid growth medium exists. The gradual evolvement 

of an NCAM positive cell fraction over time in culture, which was quickly lost upon serum culture of the 

cells but re-emerged after short-term re-culturing the cells as spheroids again, might be rather an 

indicator of reversible reprogramming of the cells. 
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5.6.13 Neprilysin (CD10) 

CD10 (Neprilysin), also known as enkephalinase or common acute lymphoblastic leukemia antigen 

(CALLA), is a type II trans membrane glycoprotein with zinc-dependent neutral endopeptidase activity, 

which inactivates a number of signaling peptides (neural peptides: enkephalin, opioid peptide, 

substance P; immunogenic peptides: bradykinin, tachykinins, interleukins; growth factors: FGF-2). 

Independently of enzymatic function, by intracellular association with Lyn/p85 CD10 prevents 

activation of FAK indirectly by blocking PI3K activation by competitive binding and by association with 

PTEN and concomitant reduction of PIP3 leads to reduced activation of Akt pathway. Both signaling 

mechanisms lead to reduction of tumorigenic and metastatic potential, whereas expression of CD10 

and the peptidase activity of the enzyme have been found to promote tumor progression and 

metastasis in some settings or reduce tumor progression in other setting. CD10 is expressed on 

several tissues including kidney, nervous system, lung, intestine, prostate and immune cells (B-cells 

and neutrophils) and it has been found to be a surface marker of stem cells in several tissues (bone 

marrow and adipose tissue (MSC), breast and lung). CD10 has first been identified as a marker for 

ALL (CALLA), and following its increased expression has been found on a variety of other tumor 

entities (carcinomas of various origins, neuroblastoma and melanoma). 405  

CD10 is also highly expressed on fibroblasts and due to its markedly lower expression on BM-MSCs 

may be used for discrimination of the two entities. 29 In MSC, clear expression of CD10 on primary and 

cultured MSC has been found on CD271+ CD56± cell fractions. 340 But for CD10 expression in MSC 

also considerable donor-dependent variations in expressions have been observed. 26 CD10 

expression has been shown to be up-regulated upon osteogenic differentiation of MSC. 406 

In normal breast tissue CD10 expression marks the basal progenitor cell fraction (EpCAMlow/CD49f+). 

Bachelard-Cascales et al 350 found that sorting of CD49f+/CD10+ cells enriches for sphere-forming 

cells with high expression of CD29 and ALDH. EpCAM expression and CD10 expression on this cell 

subsets were shown to be mutually exclusive, with EpCAM+ cells showing markedly reduced spheroid-

forming efficiency, suggesting, that the CD10+ subpopulation contains the stem like or early progenitor 

cell fraction in breast stem cell hierarchy and probably also in breast cancer. The authors found CD10 

a suitable marker also for enrichment of spheroid-forming cells from adult brain, skin, adipose and 

mammary tissues as well as from MSC. In this work also dependency of stem cell phenotype on 

protease activity of CD10 in concert with CD29 interaction has been shown. This was confirmed by the 

study of Keller et al 349, who identified the CD10+/EpCAMlow cell fraction as basal like progenitor cell 

fraction, which in contrast to the luminal EpCAM+ cell fraction, when transduced to form tumors, these 

were found to show a less differentiated gene signature, which is associated with the claudin-low 

breast tumor type. In this study a contradictory behavior to the study performed by Bachelard-

Cascales 350 was seen regarding spheroid growth of CD10+ and EpCAM+ cells, in that the latter 

seemed to grow more readily as spheroids and the CD10+ cell fraction had a higher tendency to grow 

adherently, showing less, but more compact spheroids, when assayed under non-adherent conditions. 

In contrast to the above findings, indicating CD10 as a marker for stem cell enrichment in breast tissue 

and cancer, CD44+/CD24−/low/ESA+ CSC in human breast tumors initially identified by Al-Hajj et al 97 

were characterized by lack of CD10 expression, which might be explained by the results obtained by 
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Keller et al 349, who found that probably most breast tumors (ER+/-) might be derived from 

EpCAM+/CD10− luminal progenitor like cells, whereas CD10+ basal-like progenitors might give rise to 

rare undifferentiated claudin-low tumors. 

Expression of CD10 in melanoma has been shown to be correlated with tumor progression and worse 

patient prognosis. Oba et al 407 investigated the role of CD10 in this tumor entity by overexpressing the 

molecule in a melanoma cell line. They observed alterations in gene expression profile of transformed 

cells, which comprised up-regulation of NCAM, CD133 (Prominin 1), FGFBP1, Neuropilin1, IGFBP3 

among others in the microarray analysis, as well as higher tumorigenicity and drug resistance, but 

lower migratory abilities compared to mock transfected control cells. 

In B cell lymphomas CD10 is expressed in germinal center subtypes, whereas CD10 expression is low 

or absent in the more aggressive activated B-Cell subtype. In esophageal squamous cell carcinoma 

(ESCC) cell lines and one gastric cancer cell line, CD10 has been shown to be transcriptionally up-

regulated by lentivirally introduced EMT-promoting transcription factor Twist1. 408 

In the kidney CD10 expression, investigated by TMA, has been found in proximal tubules, glomerular 

epithelium and Bowman’s capsule. 354 Immunohistochemical analysis of different RCC tumor samples 

revealed positive staining of CD10 on 85% of clear cell RCC and 23% of papillary RCC, in this study 

also 88% of ccRCC and 18% of pRCC showed positive staining for the renal embryonic marker Pax2. 
409 Similar results were obtained by Liu et al 354, where CD10 staining was observed in 91% of ccRCC, 

45% of chromophobe RCC and 29% of oncocytomas. Thus CD10 may be used for differential 

diagnosis of clear cell RCC but expression is also detected in many other primary or metastatic 

carcinomas. 410 Similarly, Boysen et al 378 in a screen for surface glycoproteins found CD10 as one of 

the discriminating surface molecules between pRCC and cRCC. By using the pVHL-negative cell line 

786-O and a corresponding transfectant stably re-expressing pVHL, they could show a direct link 

between CD10 expression and pVHL dependent transcriptional regulation. Also they found CD10 to 

be a putative serum marker for ccRCC. In prostate cancer cell lines, CD10 expression has been 

shown to be negatively regulated by hypoxia on the transcriptional level by binding of HIF-1α to HRE 

in the CD10 promoter 411 and a correlation of CD10 expression with a more aggressive and metastatic 

potential of this tumor entity has been shown. 412  

In contrast to the high expression observed in ccRCC tumor samples, in the cell lines investigated in 

this work, expression of CD10 was found only on varying fractions of SP cells by IFC and the 

expression pattern of the molecule was retained after adherent culture of the cells. Neither PA nor CS 

cell lines showed positive staining for CD10. Results obtained in mRNA-Sequencing experiments 

confirmed the results seen in IFC, with similar high expression levels seen in SP and A-SP cell lines, 

whereas mRNA levels detected in PA cell line were very low. This implies that the molecule might be a 

marker for defined subsets of spheroid cells or CSC in RCC and SP cell line might be a suitable tool 

for further investigations of the basis for CD10 expression in ccRCC.  
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5.6.14 Prominin 1 (CD133) 

The tetraspanin prominin 1 (CD133) is expressed by almost all cell types, especially on epithelial cells 

at apical membrane protrusions and it seems to be involved in plasma membrane remodeling and 

signaling. The expression of one differently glycosylated isoform which is detected by the AC133 

(CD133/1) antibody has been shown to be more restricted to progenitor cells and this antibody has 

been used as marker for progenitor cells and CSC in a wide variety of tumors, especially of brain 

origin but also on other cancers e.g. CRC, HCC, lung cancer, ovarian cancer, and melanoma. 413  

In the kidney CD133 is expressed during embryonic development and in the adult kidney CD133 

positive staining was observed in proximal tubule epithelial cells and the parietal layer of Bowman’s 

capsule. 413  

A study performed by Metsuyanim et al 351 found that in the human fetal kidney CD24+ and CD133+ as 

well as CD24+/CD133+ cells were found to comprise more than 50% of the cells, which also show to 

be EpCAMbright, indicating that these molecules do not mark progenitor cell like phenotypes but rather 

are markers of differentiation in the kidney. In human fetal kidneys CD133 expression evaluated by 

IHC showed positive staining in tubular epithelial cells, whereas in Wilms’ tumor, CD133 

predominantly stained the tumor vasculature. 317 Bussolati et al 71 evaluated AC133 staining in several 

regions of adult human kidneys using CIFM and found positive staining cells in the Bowman’s capsule 

and some tubular cells in the cortex. In the outer medullary region CD133 staining was restricted to 

some small tubules, which also showed co-staining for CD24. In the inner medullary region CD133 

positive staining cells were observed in some tubules and the Henle’s loop, but not in the Bellini ducts. 

The CD133 positive staining cells did not show co-staining with several tested nephron specific 

markers, except for megalin in cortical tubuli. 

CD133 was used to isolate renal progenitor cells from the normal portion of human renal cortex by 

Bussolati et al 72. The CD133+ cells, comprising ≈ 1% of the tissue, were shown to be able to 

differentiate into endothelial and epithelial cells in vitro and in vivo, but lacked adipogenic 

differentiation potential. Their renal lineage origin was confirmed by expression of renal embryonic 

marker Pax2 and the cells were positive for mesenchymal markers CD73, CD44 and CD29 and 

vimentin but lacked expression of CD90 and CD105. Expression of CD133 was lost upon 

differentiation of the cells, whereas CD44 expression as well as expression of Pax2 remained 

unchanged. Expression of CD105 and cytokeratin was seen in endothelial or epithelial differentiated 

cells respectively. The lifespan of the cells in vitro has been evaluated to comprise 20-25 doublings. 

Sagrinati et al 73 identified a CD133+/CD24+ cell subpopulation with stem cell characteristics in the 

parietal epithelial layer of the Bowman’s capsule, which comprised 0.5-4% of total cortical renal tissue. 

The cells showed high cloning efficiency and self-renewal potential and were able to differentiate in 

vitro into functional renal tubule cells, adipocytes, osteoblasts, and also into neuronal cells. The cells 

were shown to express additional surface markers CD105, CD106 and CD44, as well as vimentin and 

cytokeratin and stemness markers Oct4 and Bmi1, whereas no expression of either the podocyte 

markers synaptopodin and WT1, or endothelial markers CD31 and CD34 was detected. In vitro 

application of the cells into mice with acute renal failure resulted in reduction of kidney damage by 

regeneration of tubular structures. During further characterization of the cells by Ronconi et al 77 
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different subsets of adult regenerating cells could be discriminated in the parietal layer of the 

Bowman’s capsule by their expression of additional markers. C133+/CD24+ localized to the urinary 

pole are able to differentiate into tubular cells and podocytes, whereas cell with additional expression 

of the podocyte marker PDX, localized between urinary and vascular pole, are able of podocyte 

generation only. Differentiation potential is restricted to C133+/CD24+ subsets, whereas C133−/CD24− 

cells display phenotypic features of podocytes.  

From the cortical, glomeruli deprived region of adult human kidneys Lindgren et al 74 isolated a stem 

cell population according to high ALDH activity. By comparative gene expression analysis this 

population showed higher expression of CD133 and CD24 as well as CK7, CK19 and vimentin. By use 

of immunohistochemical analysis with these identified markers CD133+/CD24+ cells were identified, 

which were scattered mostly at the convolution of the proximal tubules, and stained also positive for 

CK7, CK19, CD133 and vimentin, resembling cells that were identified Challen et al 324 from mouse 

kidney by using Hoechst side population enrichment and were probably identical to the cells isolated 

by Angelotti et al 75 from the tubular fraction of human kidneys by use of CD133+/CD24+ sorting 

strategy. These cells were further characterized by the lack of expression of CD106 (VCAM), which 

was identified to be expressed on almost all cells isolated from human glomerular tissue portions 

using the same strategy. Both cell fractions, though being equally positive for CD133 and CD24 

markers showed different characteristics, with CD106+ glomerular derived cells showing higher 

proliferative potential and potential to differentiate into podocytes as well as into tubular cells, whereas 

the tubular region derived CD106− cells were able to differentiate toward tubular lineage only, 

suggesting that these cells represent more committed tubular progenitors. 

CD133 also marked progenitor cell fraction, which was isolated by Ward et al 76 from renal papillary 
tissue. These cells also showed expression for stem cell markers Nestin, SSEA-4 and TRA-1-81 as 

well as increased expression of Sox2 and Nanog compared to unsorted cells and were able to 

integrate into developing mouse tubular structures. The same integrative capacity was seen in 

CD133+ sorted cells from cortical tissue, whereas unsorted cells from both tissue types were seen 

primary in the interstitium. Similarly, Bussolati et al 71 isolated CD133+ cells, which were found to 

comprise ≈ 6 % of the tissue, from the papillary region of renal pyramid. The CD133+ isolated cells 

were investigated for expression of several other markers by flow cytometry and positive staining of 

the whole cell population for CD24, CD44, CD73, CD49f (integrins α6), CD29 (integrin β1) and SSEA-

4 antigens was observed. In contrast, the renal TIC marker CD105 was expressed at low level only on 

a subset of the cells and CD56 was expressed by most of the cells, but also a negative cell fraction 

was detected. Expression of vimentin, cytokeratin (Pan-CK), Nestin, Pax2, Six1/2, Oct4, Klf4 and c-

Myc, which were evaluated by CIFM or RT-PCR, was also demonstrated in the CD133+ sorted cells. 

The authors report that clonogenic potential of the CD133+ cell fraction was markedly higher than that 

of unsorted or CD133− cell fraction. Also the cells possessed epithelial differentiation potential in vitro 

and in vivo, which was shown by the gain of expression of several tubular markers upon culturing cells 

under differentiation conditions and by tubular structure formation of cells subcutaneously injected in 

MatrigelTM into SCID mice. CD133 expression was lost and Oct4 expression was reduced in 

differentiated cells. Since the papillary region of the kidney is known to possess a relatively low 
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oxygen pressure, the influence of hypoxia was also investigated. The authors found constitutive 

expression of HIF2α in the CD133+ sorted cells, which did not change under hypoxic conditions. In 

contrast, HIF1α, CD133 and Oct4a expression were quickly and clearly up-regulated under hypoxic 

conditions, and cell proliferation as well as clonogenic potential was increased.  

In contrast, the MSC-like CD146+ renal progenitor cells isolated from glomeruli deprived of the 

Bowman’s capsule by Bussolati et al 322, contained two subpopulations regarding CD133 expression, 

of which the CD133− fraction exhibited stem cell features such as self-renewal ability and 

multipotency, whereas the CD133+ fraction was CD24− and co-expressed endothelial markers CD31 

and von Willebrand factor (vWF). 

In contrast to other tumor entities, and the use as marker of adult renal progenitor cells, a study 

performed by Bruno et al 414 revealed that in RCC CD133 did not seem to bee a CSC marker, rather 

CD133+ sorted cells seemed to represent a fraction of tumor cells, possibly representing normal renal 

progenitors, which support tumor vascularization and promoted tumor growth, when applied in 

combination with neoplastic cells. 

But, using a double sorting strategy for CD133+/CD24+ to isolate progenitor cells from kidney 

specimen of RCC patients from tumor tissue and corresponding healthy tissue, Galleggiante et al 202 

yielded an enrichment of CSC and renal progenitors in both tissues, respectively. Expression of other 

surface markers revealed, that both cell fractions were positive for CD73 expression, but lacked 

expression of CD105 and CD90 mesenchymal markers. Gene-expression analysis, as expected, 

revealed differences in expression of cancer associated gene signatures in tumor-derived and normal-

tissue derived cell fractions, but these were more marked in comparison of tumor-derived cells to 

normal tubular epithelial cells. Differences were also observed in growth potential in soft agar assay, 

which was absent in the normal-derived cells, whereas both fractions showed similar differentiation 

potential toward adipogenic, osteogenic and epithelial lineages. The results imply that the 

CD133+/CD24+ may represent a cancer cell sub-population, which might co-exist and cooperate with 

the CD105+/CD133− CSC population identified by Bussolati et al 78. 

Xiao et al 203 used a sorting strategy for CD133+/CD24+ cells from ACHN and Caki-1 cell lines, and 

found sorted cells, which comprised a fraction of 12% in ACHN and 6% in Caki-1 cell line, showing 

enhanced sphere-forming and tumor-inducing ability, chemo-resistance and increased expression of 

mRNA for stem cell markers Oct4 and Klf4 as well as ABCB1/MDR1 when compared to 

CD133−/CD24− negative cell fractions. They also found components of the Notch signaling pathway to 

be up-regulated in these cell fractions. 

CD133 was evaluated in primary Wilms’ tumor cell lines by Pode-Shakked et al 317 as marker for 

stemness signature of the cells, thereby no difference in cloning ability between CD133+ and CD133− 

cell fractions was observed, also the stemness signature comprising components of the Wnt pathway 

(FZD7, β-catenin), polycomb group (BMI-1, EZH2) and nephric-progenitor (SIX2, WT1) genes as well 

as pluripotency marker Oct4, did not show significant differences between the two cell fractions, rather 

expression of most of the evaluated genes was slightly higher in the CD133− cell fractions with 

exception of β-catenin and BMI-1. 



 

Discussion 

 

- 205 - 

In a study performed by Hasmin et al 356 stem cell characteristics were evaluated by sorting and re-

grafting xenograft tumors generated from a primary RCC cell line. They found significantly lower tumor 

forming ability in CD133+ cells compared to the CD133− fraction. The latter also showed growth 

advantage over CD133+ cells and markedly higher expression of ERBB4, whereas lower expression of 

several tumor suppressor genes was detected in this population compared to the CD133+ fraction. 

Also the ability to form tumors serially was reduced in the CD133+ fraction and time to tumor formation 

increased during serial transplantation for both fractions compared to unsorted cells. This further 

supports the view, that CD133 in ccRCC is expressed by a less aggressive subset of CSC.	

In a meta-analysis done by Cheng et al 365 evaluating the relevance of several CSC markers for 

patient prognosis, the authors found CD133 an independent favorable factor for prognosis of RCC. 

Chen et al 206 investigated the association of CD133 with patient prognosis in a database search and 

found no significant correlation to survival rate of the RCC patients. 

In a recent study performed by Zanjani et al 415 in ccRCC, but not in other RCC subtypes, CD133 

cytoplasmic expression, but not membranous expression was found to be correlated with tumor 

aggressiveness and disease state.  

Zhong et al 211 did not detect expression of CD133 on spheroids and adherent counterparts of SK-RC-

42 RCC cell line, although spheroid cells possessed several CSC features. 

Expression of CD133 on Caki-2 and ACHN RCC cell lines and the normal embryonic kidney cell line 

ASE by flow cytometry and RT-PCR was evaluated in the study performed by Matak et al 199. They 

found weak expression of CD133 in Caki-2 and ACHN cell line and high expression on ASE cell line in 

IFC measurements, whereas mRNA expression level in Caki-2 seemed to be higher than in ASE cells. 

In contrast to this, Khan et al 319 did not detect staining of Caki-2 and ACHN cell lines with AC133 in 

flow cytometry, similarly 786-O, 786-P and Caki-1 cell lines did not show positive staining in the 

experiments, though week staining for CD133 was seen in 786-O and ACHN cell lines in IHC 

experiments, which might be an indicator for intracellular localization of the protein in this cell lines. In 

contrast, the cell lines SMKT-R2/3 and RCC-6 were shown to express CD133 at low level in a small 

subset of the cells. Though, results for IFC measurements in this report do not seem to have been 

measured with optimal instrument setting. 

Expression of CD133 protein has been shown to be induced by hypoxia via down regulation of mTOR 

pathway as well as by TGF-β signaling and also seems to be up-regulated by NF-κB. 416  

An up-regulation of CD133 mRNA expression has been shown in spheroids derived from 786-O and 

Caki-1 cell lines by Micucci et al 213, which was accompanied by higher protein content of HIF-2α in 

the spheroid cell lines.  

Expression of CD133 was observed predominantly in CS cell lines, whereas only small numbers of SP 

cells were found to stain positive for AC133 antigen in IFC experiments, and PA cell line did not seem 

to express the marker. Differential expression of CD133 mRNA at very low levels was also seen in 

mRNA-Sequencing experiments, with higher expression values observed on SP cell line compared to 

PA cell line, which is in accordance with expression of the molecule on small subsets of cells. 

Compared to PA cell line, expression level of CD133 mRNA was also elevated in A-SP samples. 
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From the two investigated CS cell lines CS7 cell line showed the highest number of CD133 expressing 

cells, which increased over time in culture as spheroids, whereas expression level in CS1 cell line was 

detected at varying and lower cell numbers. In both cell lines, CD133 expression was detected in 

variable fraction of cells after short-term culture under ACC but was lost after long-term culture under 

these conditions. Considering the growth characteristics of CS and SP cell lines, with high growth 

rates observed in CS7 cell line in high passage cells, CD133 seems to mark a cell population with high 

proliferative potential. Due to its expression characteristics of the marker, CS7 cell line seems to be a 

suitable tool for further studies of CD133 expression and function in ccRCC. 

5.6.15 Integrins - CD29 (Integrin β1), CD49e (Integrin α5), CD49f (Integrin α6) 

Integrins are single-pass type I trans membrane proteins, which form heterodimers composed of α 

and β subunits and serve as receptors for components of extracellular matrix (ECM) but also, 

especially in cells of the immune system, to receptors expressed on other cells. Integrins, depending 

on their α/β subunit-composition, are involved in various cellular processes including cell anchorage, 

angiogenesis, cell-cycle regulation, differentiation, chemotaxis, proliferation and survival. Via different 

adapter molecules, which interact with their short intracellular domain, integrins are linked to 

components of the cytoskeleton and thereby serve in anchoring of the cells but also serve as signaling 

scaffolds, by binding Src-kinases, focal adhesion kinase (FAK) or integrin-linked kinase (ILK) or 

growth factor receptors. 417 418 419 

Integrin α6 is a laminin receptor and combines with β1 or β4 subunits. α6β1 is the essential receptor 

for vascular laminins and is involved in platelet activation and thrombosis. α6β4 serves as laminin 

receptor of epithelial cells. α5 integrin belongs to the RGD-binding subunits of integrins, which 

recognize Arg-Gly-Asp (RGD) motif within their ligands, and bind to fibronectin (FN), fibrinogen, 

vitronectin, von Willebrand factor and many other large glycoproteins. The α5 subunit combines with 

the β1 subunit and α5β1 has been found to be involved in angiogenesis. 419 

In cultured MSC expression of various integrin subunits including α6 (CD49f) has been described 420 

and integrins α4 (CD49d), α5 (CD49e), and β1 (CD29) serve as MSC positive markers. CD49e 

(ITGA5, Integrin α5) has been shown to be up-regulated upon osteogenic differentiation of MSC 406. 

Also several integrins (CD49a, CD49c, CD49d, CD49f) have been shown to be up-regulated in in vitro 

culture compared to freshly isolated BM-MSC. 368 

In normal breast tissue, sorting of CD49f+ (ITGA6, integrin α6) cells enriches for cell populations 

(EpCAM+/−) with stem cell (EpCAM−) and luminal progenitor like phenotype (EpCAM+), whereas 

CD49f− cells comprise epithelial cells (EpCAM+) and stromal cells (EpCAM−). 350 347 348 CD49f+ sorting 

in combination with CD24 or CD29 also lead to enrichment of CSC subpopulations in breast cancer 

cells in a mouse model system. 152 Under hypoxic conditions CD49e (ITGA5) and CD29 (ITGB1) are 

up-regulated in breast cancer. HIF-1 and HIF-2 have been found to be directly required for CD49e 

(ITGA5) induction in breast cancer cell lines, which leads to enhanced migration and invasion of single 

cells within a multicellular 3D tumor spheroid but did not affect migration in a 2D microenvironment, 

whereas CD29 (ITGB1) expression is dependent on HIF-1α only. The same study revealed that in 
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breast cancer biopsies CD49e (ITGA5) expression has been shown to be associated with an 

increased risk of mortality and seems to be required for metastases to lymph nodes and lungs. 421 

In prostate cancer, cells with high expression of CD49b (ITGA2) and CD29 (ITGB1) subunits have 

been shown to possess cancer stem cell properties. In CRC co-expression of CD29 (ITGB1) on 

CD24+ cell fraction has to be used to mark the cell fraction for successful isolation of CSC 147. In CRC, 

also CD49f (ITGA6) has been found to be a marker for CSC enrichment in combination with other 

markers. 422 

Integrin expression on four RCC cell lines (A498, ACHN, Caki-1, Caki-2) and respective mouse 

xenograft tumors was evaluated by Korhonen et al 423. All cell lines expressed Integrin α1 (CD49a), α3 

(CD49c), α7, β1 (CD29), β3 (CD61), β5. Integrin α6 (CD49f) chain was expressed on all cell lines 

except Caki-1. Caki cell lines also expressed α5 Integrin (ITGA5, CD49e), which is up-regulated 

during EMT. The same has been observed for ITGA1 (CD49a) 355, which was expressed on all cell 

lines. The α5 (CD49e) isoform was also seen in the xenograft tumors formed from A498, ACHN and 

Caki-1 cell line but not in tumors from Caki-2 cell line. Integrin α1 and β5 were not expressed on 

tumors formed from the cell lines. Strong laminin expression was detected surrounding cysts of Caki-2 

and A498 tumors, which showed well to moderate differentiated morphology of clear cell RCC 

grade1/2 respectively, while staining pattern was diffuse or punctate in poorly differentiated tumors 

grown from ACHN and Caki-1 cell lines. 

In this work, expression of ITGB1 (CD29), ITGA5 (CD49e) and ITAG6 (CD49f) on the different cell 

lines was investigated by IFC. Thereby, similarly high and constant expression of CD29 was observed 

in PA and spheroid cell lines, whereas only low staining was observed for CD49f in all cell lines. 

CD49e was found to be expressed at higher levels in spheroid cell lines, and staining intensity 

increased with long-term culture in all cell lines investigated. CD49e expression was also found to vary 

with culture conditions on spheroid cell lines. Since CD49e has been shown to be induced during 

EMT, the observed expression pattern might be a hint for a slow shift of EMT status of the cells over 

long-term culture.  

Similar expression of CD49f mRNA was detected in SP and PA cell lines, but values were higher than 

those seen for CD49e mRNA, which might indicate a problem with the antibody used for CD49f 

staining. The higher expression of CD49e in SP cell line was confirmed by mRNA-Sequencing results. 

mRNA-Sequencing experiments also revealed lower expression levels of ITGA1, ITGB2 and ITGB6 in 

SP cell line compared to adherently grown PA and A-SP cells. 

Though differential expression of CD49e on spheroid and PA cell line was observed, the expression 

pattern of the molecule excludes it as a suitable marker for CSC enrichment from PA cells.  

5.6.16 Stem Cell Markers SSEA-1/3/4, TRA-1-81 

Expression of stage-specific antigens SSEA-3 and -4 as well as TRA-1-81 are used as markers for 

undifferentiated state of mouse and human ESC. The TRA-1-81 antibody detects the high molecular 

weight isoform of podocalyxin, which was initially described as trans membrane glycoprotein on 

glomerular podocytes and is expressed on ESC and HSC, but has also been identified to be a marker 

for several cancers including Wilms' tumor of the kidney, breast cancer, hepatocellular carcinoma and 

ALL. 54 55.SSEA-3 and SSEA-4 have also been found to be markers for multipotent MSC from BM and 
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some other sources 28, whereas TRA-1-81 may be used as a marker for placental derived MSC. 59 

SSEA-3 has been shown to select an adipocyte precursor cell fraction when used as marker to sort 

CD271+ BM-derived MSC. Interestingly expression of SSEA-3 on primary cells is lost during culture of 

the cells. 59 In contrast SSEA-4 expression seems to gradually increase in BM culture over time. 

SSEA-3 expression has also been shown to mark a rare MSC subset termed MUSE (multilineage-

differentiating stress enduring) cells, which also co-express other pluripotency markers such as Oct4, 

Sox2 and Nanog. 28 

IFC-staining of CD133+ sorted renal progenitor cells isolated from human papillae performed by Ward 

et al 76, showed high staining intensities for SSEA-4 and TRA-1-81 in sorted papillary cells, whereas in 

immortalized normal renal cortical tubular epithelial cells no staining for these antigens was observed. 

SSEA-4 expression was also reported on similar cells (CD133+ sorted cells from human papillary 

region of the kidney) obtained by Bussolati et al 71, which were also shown to express renal stem cell 

marker Pax2 and pluripotency marker Oct4A. 

In colorectal cancer (CRC) cell lines SSEA-3 was markedly expressed in the HCT116 cell line and 

SSEA-3 expression was correlated with increased tumorigenicity and higher proliferative ability but 

reduced sphere-forming ability of the cells. The authors conclude that SSEA-3 may mark a subset of 

transit amplifying CSC. 333 In human cancer cell lines DU145 (prostate cancer) and HCT116 (CRC) 

and MCF-7 (breast cancer) investigated by Sivasubramaniyan et al 367 SSEA-4+ sorted cells were also 

enriched for expression of TRA-1-60/81 and N-Cadherin. In contrast, E-Cadherin and CD44 were not 

co-expressed with SSEA-4, but enrichment of these markers was seen in SSEA-4− cell fractions. Also 

higher tumorigenicity of SSEA-4+ DU145 cells was observed compared to the SSEA-4− cell fraction. 

Expression of these antigens has also been reported on teratocarcinomas and CSC from breast and 

prostate cancers. 60 

Expression of SSEA-1 (CD15) on human ESC is up-regulated during differentiation of the cells and 

the antigen, in contrast to mouse ESC is not expressed on pluripotent ESC 56. CD15 is known to be 

expressed on several subtypes of RCC as shown by TMA staining of tumor samples and may be used 

for differential diagnosis of RCCs, with high expression being found on ccRCC, pRCC, and 

Oncocytoma, and low staining on chromophobe RCCs. 424 

Expression of SSEA-3, SSEA-4 as well as of TRA-1-81 and SSEA1 was investigated by IFC staining 

of parental cell lines and spheroid cell lines SP and CS. Thereby expression of the pluripotency 

markers SSEA-3, SSEA-4 and TRA-1-81 was observed on all cell lines at relatively high levels. 

Whereas SSEA-4 showed relatively similar staining pattern in all cell lines investigated, with a slightly 

broader distribution of staining on spheroid cell lines, SSEA-3 was found to be expressed at similar 

high levels in PA and SP cells, whereas CS cell lines showed higher heterogeneity in expression of 

the epitope, indicated by several differently stained fractions being discernible. TRA-1-81 expression 

was found to be highly heterogeneous and variable in all investigated cell lines. Thus further 

investigations and cell sorting using these markers might be suitable for discrimination of various cell 

fractions probably being enriched in cells with stem cell characteristics contained in the cell lines. The 

expression of these markers is a strong indicator for stem cell characteristics of the investigated cell 

lines. 
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In contrast to pluripotency markers, the expression pattern observed for SSEA-1, which in humans 

marks more differentiated subsets of ESC, was found to differ profoundly between PA and spheroid 

cell lines, as well as between SP and CS cell lines. Whereas expression of SSEA-1 was detected on 

PA cell line and increased with time of culture, indicating enrichment of a more mature phenotype over 

long-term culture of the cells, the expression of SSEA-1 was lost upon long-term culture of spheroid 

cell lines under SCC, which might indicate a loss of more mature cells during this mode of cultivation. 

Compared to expression on CS cell lines, SP cell line showed very reduced staining for the marker 

even at low passage of spheroid cells, which might be an indicator that bulk culture is superior over 

single cell culture in enrichment of progenitor cells. 

5.7 Evaluation of Expression of Intracellular Markers  

Besides surface expression, also the expression of antigens, which are located intracellular and are 

connected to stem cell features or used to evaluate EMT, was evaluated by intracellular staining and 

subsequent IFC measurement on PA cells and three different spheroid cell lines derived thereof (SP, 

CS1, CS7). The number of experiments performed for intracellular staining of antigens was limited 

compared to those for evaluation of surface expression. Also the results in those experiments showed 

higher variations, caused by the intracellular staining method, which resulted in relatively high 

unspecific staining, as was seen from the strong signals obtained with isotype control antibodies. Also, 

the cellular status regarding intracellular expression of the evaluated antigens was determined in less 

detail with respect to possible changes over time in culture or medium-dependent variation. An 

overview of the results is summarized in table 5.7.1. Since no significant differences between the two 

cell lines CS1 and CS7 were detected, results for both cell lines were summarized in this overview. 

The results are discussed below in detail with a focus on their normal expression pattern and function, 

as well as cancer and stem cell related aspects and especially their expression pattern reported in 

kidney and RCC (see also chapter 5.5 for TNAP). 

 

 
Table 5.7.1: Overview of Expression Levels of All Investigated Intracellular Antigens 

Summary of results obtained for intracellular staining of different cell lines for expression of various intracellular 
expressed antigens. Expression level was graded according to criteria listed in the legend by visual inspection of 
the histograms of all experiments, since number of experiments and variations between single experiments were 
not suited for statistical analysis. 
CK: cytokeratin, CS: clonally expanded spheroid cells derived from PA (CS1 and CS7), PA: parental cell line, 
Pan-CK: antibody detecting various isoforms of cytokeratin, SP: spheroid cells derived from PA, TNAP: tissue 
non-specific alkaline phosphatase 

✚
✚✚
✚✚✚ high (strong population shift)

low (slight population shift)
intermediate (clear population shift)
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5.7.1 Cytoskeletal Components 

5.7.1.1 Cytokeratins 

Cytokeratins (CK) are intermediate filament proteins of which 20 isoforms (CK1-20) have been 

categorized according to their molecular weight and isoelectric point. Two CK isoforms (one acidic/low 

molecular weight/type I/CK9-20 and one basic/high molecular weight/type II/CK1-8) combine to form 

different heteropolymeric intermediate filaments. Their primary function is maintaining the mechanical 

stability of individual cells and epithelial tissues. CK isoform expression varies for different epithelial 

tissues, and with exception of CK8 and CK18, which are expressed in transformed fibroblasts and 

certain smooth muscle cells as well as on UCB-MSC 425, their expression is restricted to epithelial 

cells, and no expression on cells of mesenchymal origin (with exception of vascular epithelial cells) is 

normally detected. Cytokeratin 8 (CK8) is expressed in most simple epithelia and also in most 

carcinomas, therefore this molecule is also used for tumor classification in IHC. 426 427 The cytokeratin 

19 (CK19), which is expressed by simple epithelial cells and is an established tumor marker, has been 

shown to be associated with a progenitor like phenotype in hepatocellular carcinoma (HCC) and is 

associated with higher metastatic potential and poorer overall survival of patients. 399 TMA studies on 

expression of CK19 and EMT markers on HCC tumor specimen revealed increased expression of 

EMT markers (Snail1, Snail2, and Twist) in CK19 positive tumors. 428 Takano et al 429 also show that 

CK19 expression is linked to EMT: knocking down CK19 resulted in increased E-Cadherin expression, 

accompanied by raised invasion ability of HepG2 cells. Additionally, CK19 expression in HCC has 

been shown to be associated with worse patient prognosis. 399 In pancreatic endocrine tumors CK19 

expression has also be linked to worse prognosis. 430 

In the kidney CK7 and CK19, which are normally not stained in renal tubules, have been found to 

mark progenitor cells, which were identified by Lindgren et al 74 in this region. Staining for CK7 and 

CK19 was also observed the parietal epithelial cells of the Bowman’s capsule in combination with 

CD133 and vimentin positive staining, which marks progenitor cells in this region. Staining for CK7 

and CK19 is also seen in hepatic stem cells. 69 In CD133+ renal progenitors, isolated from the papillary 

region of adult kidney and assayed by CIFM, fibrils positive staining for cytokeratins using Pan-CK 

antibody, which recognize a set of cytokeratins (CK1, 2, 3, 4, 5, 6, 7, 10, 14, 15, 16 and 19) was 

observed. 71 

Most RCC stain positive for CK19. CK expression is used for differential diagnosis of renal 

carcinomas. Clear cell (conventional) RCCs show weak to moderate staining for CK8, CK18, CK19 as 

well as minor CK7 staining, which is strongly expressed in tubular epithelial cells. Staining with Pan-

CK antibody also shows weak positive staining. In contrast, papillary RCC typically show strong 

positive staining for CK7, CK8, CK18, CK19 and Pan-CK antibody. Both tumor types show strong 

staining for vimentin, which is not seen in oncocytoma and chromophobe RCC. 431 432 410 

CK19 was not found to be expressed on putative CD133+/CD24+ CSC isolated by Galleggiante et al 
202 from RCC tumors, which show expression of CK19 only after epithelial differentiation of the cells 

and besides this differentiating potential also have been shown to differentiate into adipogenic and 

osteogenic lineages. Similarly Hu et al 200 observed positive immunohistochemical staining for CK7 in 

CD105+ sorted ACHN tumor xenografts, only after culturing cells in standard medium conditions, 
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whereas no staining was seen, when cells were cultured in expansion medium with low serum content 

and growth factor supplementation. This might imply that expression of cytokeratins is induced by the 

standard culture conditions used for propagation of cell lines. 

As expected for RCC cell lines, the investigated cell lines in this work showed moderate positive 

staining for CK19 and weak to moderate staining for CK8 as well as higher staining intensities for 

staining with Pan-CK antibodies in IFC experiments. The higher staining intensity seen for of Pan-CK 

compared to those seen for CK19, implies that also some of the other cytokeratins detected by the 

antibodies might be present in the investigated cell lines. For all cytokeratins higher staining intensities 

were seen in PA cells compared to spheroid cell lines, which might indicate a shift toward 

mesenchymal phenotype of the latter. The results seen from IFC experiments of PA, SP and A-SP cell 

lines were confirmed by mRNA expression levels detected in RNA-Sequencing experiments. 

Expression of CK20 is not typic for RCC, usually the expression is restricted to some tissue origins: 

especially over 90% of cases of colon carcinoma and 86% of Merkel cell tumor of the skin as well as 

about 50% of transitional cell carcinoma of the bladder, gastric carcinoma and pancreatic 

adenocarcinoma stain positive for CK20. Although, CK20 positive tumors have been reported for small 

numbers of other tumor entities including RCC. 426 The cell line investigated seems to be one of the 

rare cases, as expression of CK20 was detected on mRNA level repeatedly by K. Heinrich 433. CK20 

mRNA expression level in RNA-Sequencing experiments of this work was also found to be higher in 

spheroid derived cell lines (SP and A-SP) than that of PA cells. 

5.7.1.2 Vimentin 

Vimentin is a class-III intermediate filament, which is expressed in mesenchymal cells and is known to 

maintain cellular integrity and provide stress resistance. Vimentin expression has been described in 

fibroblasts, in vascular endothelial cells, macrophages, neutrophils and several precursor cells 

including MSC. In the kidney mesangial cells and renal stromal cells have been shown to express 

vimentin. Vimentin is a marker for EMT and over-expression, which has been found in several 

epithelial tumor types including breast, gastrointestinal, lung and prostate cancer as well as in 

melanoma is correlated with accelerated tumor growth, invasion and poor prognosis. 434 

Vimentin staining is used for differential diagnosis of RCC, since ccRCC and pRCC typically show 

strong positive staining for vimentin, which is not seen in oncocytoma and chromophobe RCC. 431 432 
410 In the adult kidney vimentin expression is found in podocytes residing in the Bowman’s capsule 74, 

as well as in the parietal layer, showing co-localization with CD133 staining, which is a marker for 

renal progenitor cells in this region. Renal progenitors isolated from adult glomeruli, show strong 

staining for vimentin, which is lost upon differentiation of the cells into MSC- and kidney-specific 

lineages. 78 Vimentin expression is also found in the renal progenitor cell population, which is located 

in a scattered distribution in renal tubules, whereas the bulk of tubular epithelial cells do not express 

vimentin. CD133+ renal progenitors isolated from the papillary region of adult kidney were also shown 

to stain positive for vimentin. 71 Comparison of gene expression profiles of normal kidney to RCC 

samples performed by Chen et al 394 yielded a set of EMT genes enriched in RCC compared to normal 

tissue. A better outcome of patients with low-level expression of CXCR4, vimentin, fibronectin and 
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Twist1 was observed. High expression of CXCR4 and VIM could serve as independent prognostic 

markers for poor survival of patients. 

The cell lines investigated in my work, showed similar high expression of vimentin in IFC experiments. 

No significant differences were seen between spheroid cell lines and parental cell line, nor with time of 

culture or spheroids re-grown under adherent conditions. Since expression of the intermediate 

filament is seen frequently up-regulated in ccRCC, this result is not unexpected and the use of 

vimentin expression for detection of variations of EMT-state might not seem to be a suitable marker for 

this tumor entity. Although, several reports found differences in vimentin expression upon EMT 

induction in RCC cell lines, thus the high and relatively constant expression of vimentin might also be 

a characteristic of the cell lines investigated in this work. 

5.7.2 Stem Cell Pluripotency Transcription Factor Markers Oct4 and Sox2 

Oct4 (POU5F1) is a transcription factor expressed by embryonic stem cells (ESC) and together with 

Sox2 and Nanog regulates self-renewal and differentiation of the cells. A delicate balance among 

these factors is needed to retain the balance between pluripotency and differentiation ability. 

Expression level of the three factors influences pluripotency and differentiation. Very high or low 

expression of Oct4 and Sox2 induces differentiation of the cells, self-renewal is maintained at low to 

moderate expression levels of Oct4, moderate expression of Sox2 and high expression of Nanog 

transcription factors. 45 Induction of these factors has been correlated with hypoxic condition in several 

cancer cell lines including 786-O and RCC4. 435 198 

Several isoforms of the Oct4 (POU5F1) gene exist, of which only the long Oct4A isoform is 

responsible for the pluripotency properties of ES cells, whereas the short Oct4B seems to be 

expressed upon cell stress and does not sustain self-renewal of ESC. 436 Antibodies that specifically 

bind to Oct4A isoform should be raised against the N-terminus of the protein. Using Oct4A specific 

antibodies in parallel with RT-PCR, Mueller et al 437 were unable to detect Oct4 expression neither in 

MSC nor in several tested cell lines including A549 (lung carcinoma), MCF7 (breast carcinoma), PC3 

(prostate carcinoma), HEK293T (embryonic kidney), rather expression was confined to embryonic cell 

lines. Therefore reports on Oct4 expression may vary, according to antibody or primer specificity used 

for detection. 

Another transcription factor, which has been shown to be involved in and to be able to induce an ESC-

like program, when up-regulated in normal and cancer cells, is c-Myc transcription factor, which has 

been shown to be up-regulated in several tumors. 95 

Ward et al 76 investigated differential mRNA expression of Oct4, Sox2 and Nanog in CD133+ sorted 

renal progenitor cells isolated from adult human papillary and unsorted cells as well as papillary cells 

compared to cortical cells. They found significantly increased expression of Sox2 and Nanog in the 

CD133+ sorted cells compared to unsorted papillary cells as well as higher expression of the two 

transcription factors in papillary cells compared to cortical cells, whereas expression level of Oct4 did 

not show any differences between the tested entities. 

Bussolati et al 71 also observed differences in expression of Oct4 isoforms in CD133+ sorted progenitor 

cells isolated either from the papillary or the cortical region of the kidney, with tubular cells showing 

low Oct4A levels in respect to papillary cells, whereas the Oct4B isoform, known to be associated with 
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stress response, was increased at protein level in tubular cells. CD133+ renal progenitors, isolated 

from the papillary region of adult kidney showed expression of Oct4A and Oct4B isoforms at similar 

level, which was reduced upon differentiation of the cells to 1/3 to 1/5 of the level seen in 

undifferentiated cells and found to be up-regulated under hypoxic conditions 2-3 fold after 24 h. In this 

study Oct4 expression was assayed by RT-PCR, at protein level as well as by transfection of cells with 

a reporter construct for Oct4-specific expression of GFP. In contrast, Sox2 expression was found 

inconsistent among the different cell lines in this study, being either completely absent or highly 

variable. Renal progenitors from adult glomeruli, which had previously been isolated by the same 

group and were found to reside in the CD133− fraction of this cells, did not show expression of Oct4, 

albeit expressing stem cell markers Nestin and Musashi.78 

Expression of Oct4 and Sox2 was also investigated by Galleggiante et al 202 on CD133+/CD24+ sorted 

normal renal progenitors as well as on tumor derived cells with the same characteristics from the 

same donors. Thereby expression of Oct3/4 was similar in both cell types, but was higher than in 

normal renal proximal tubular epithelial cells (RPTEC) and CD133− sorted tumor cells. In contrast, 

Sox2 was expressed at the highest level in cells isolated from the tumor tissue, whereas low 

expression was seen in normal renal progenitors and CD133− sorted tumor cells and the expression 

level in RPTC was between the two extremes. By applying differentiating culture conditions to CD105+ 

sorted TIC from primary tissue Azzi et al 119 observed a gradual loss of expression not only of CD105 

but also of stem cell markers POU5F1/Oct4, Nestin and Nanog within 4 weeks. Also in CD133+ renal 

progenitor cells, expression of Oct4 isoforms was detected, which was significantly reduced after 

epithelial differentiation of the cells. 71 

Chen et al 206 investigated the association of Oct4, Sox2 and Nanog expression with clinical outcome 

in RCC in a database search and found higher levels of Oct4 and Nanog expression were associated 

with worse survival of patients, whereas the expression levels of Sox2 and CD133 showed no 

significant correlation to survival rate of the RCC patients. 

Expression of pluripotency transcription factors (Oct4, Sox2, Nanog, Musashi), evaluated by RT-PCR 

or immune histology, was observed in CD105+ sorted CSC, isolated from RCC cell lines Caki-2 198 199, 

ACHN 199 200, A498, SK-RC-39 201, as well as from primary tumors 371 119, whereas no or strongly 

reduced expression was observed in the CD105−, non-CSC cell population in these studies. 

Expression level of Oct4 and NANOG in RCC cell lines ACHN, Caki-1/2, 786-O and SMKT-R2 was 

evaluated by RT-PCR in the study performed by Khan et al 319. Relative mRNA expression levels for 

Oct4 normalized to the reference gene were low in Caki-1 and SMKT-R2 (below 10-2), higher in Caki-2 

and 786-O (2x10-2) and highest in ACHN (1.2x10-1). The same applied to NANOG expression levels, 

which were lower compared to Oct4. This suggests different stem cell properties of the evaluated cell 

lines, but interestingly, expression of stem cell transcription factors in this study did not correlate with 

CD105 marker expression of the cell lines, which was highest in Caki-1. 

Lichner et al 212 evaluated mRNA expression of Oct4, NANOG, LIN28 and KLF4 in ACHN and Caki-1 

RCC cell lines grown either adherently or as spheroids. They observed similar low expression of all 

factors in adherent cell lines. With exception of Oct4, which showed increased expression compared 
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to adherently grown cells only in ACHN cell line, they found increased expression of the factors in both 

cell lines when grown as spheroids. 

The results obtained in this work by IFC staining for Oct4A and Sox2 showed low to moderate and 

relatively uniform staining for both markers in all cell lines investigated. Thereby no significant changes 

were seen in spheroid cells compared to parental cell line. Determination of mRNA expression by 

mRNA-Sequencing experiments also did not show significant differences in expression of Oct4 and 

Sox2 mRNA in PA and SP cell lines, although expression of POU5F1 mRNA levels were slightly 

higher in spheroid derived cells compared to PA cell line. Whereas only low-level expression of 

NANOG mRNA was detected in all cell lines. Sox2 mRNA expression, in contrast to results obtained 

by IFC, was found to be lower than that of Oct4 mRNA and was markedly reduced in A-SP cell line 

compared to both other cell lines. The differences in results obtained by the two methods, are 

probably attributed to the different staining-characteristics of the antibodies used. In contrast to results 

obtained by other groups, here no significant up-regulation of Oct4 or Sox2 expression at either 

protein or mRNA level was detected in spheroid cell lines. 

A marked difference in expression at mRNA level was seen for the transcription factor Klf4 between 

PA, SP and A-SP cell lines, with lowest levels of expression seen in PA cell line and highest 

expression seen in A-SP cell line. Since Klf4 on the one hand is involved in regulation of Nanog 

expression, which was found to be low in the investigated cell lines, and on the other hand 

overexpression of Klf4 in the absence of Nanog has been found to induce ESC differentiation and Klf4 

has also been shown to be involved in adipogenesis, the increased expression in SP and A-SP cell 

lines might be associated rather in adipogenic differentiation processes than in maintenance of self-

renewal of the cells. 438 439 

At mRNA level c-Myc was also found to be expressed in the investigated cell lines (PA, SP and A-SP) 

at similar high levels, which might be an indicator, that c-Myc is predominantly involved in conferring 

stem cell features in the investigated cell lines. 

5.8 EMT Marker Expression and Status of the Cell Lines 

The trans-differentiation process from polarized epithelial cells to a mesenchymal stem cell like state, 

termed EMT has been found to be an important process involved in tumor metastasis, but probably 

also may play a role in the formation of CSC. Current knowledge of signal transduction pathways 

involved in EMT induction as well the role of EMT in tumor formation and metastasis, especially in 

RCC are discussed in more detail below to rank the data obtained in this work in the context of 

information based on the literature. 

5.8.1 EMT Signaling 

EMT can be induced by various external signals. Thereby the transcription factor Snail1 is central for 

promotion of EMT. It increases directly the transcription of vimentin, fibronectin and N-Cadherin, as 

well as other EMT inducing factors Twist and Zeb, and by binding to E-Cadherin promoter directly 

represses its expression. 440 

In figure 5.9.1 for better orientation an overview of several signaling pathways and molecules involved 

in EMT is given. 
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EGF, FGF, HGF and VEGF growth factor signaling as well as IGF1 signaling have been shown to 

induce EMT in cell culture of epithelial cells, via activation of PI3K/AKT and MAPK/ERK pathways, 

which induce expression of Snail and/or Twist transcription factors as well as vimentin (via activation 

of FOXA1/2, FOXO3A, SOX9 transcription factors) and Zeb on the one hand, and/or stabilize Snail1 

and its nuclear localization by inactivating GSK3β as well as Twist by MAPK phosphorylation. 

 
Figure 5.8.1: Overview of Signal Transduction Pathways Involved in EMT  

Several signal transduction routes, leading to expression of the core EMT transcription factors Snail1/2, Zeb1/2 
and Twist1 are depicted. The components are named according to their gene symbols. The figure was drawn 
according the information given in an overview article by Lamouille et al.137 

The most prominent signaling pathway known to induce EMT in embryonic development and cancer is 

TGF-β signaling through SMAD2/3/4 (TGF-β) or SMAD1/5/4 (BMP) as well as non-SMAD pathways 

(PI3K/AKT, SHCA-GRB-SOS-RAS-RAF-MEK1/2-ERK1/2, TRAF6-TAK1-MKK3/6-p38 or MAPK4/7-

JNK) induced by binding of different ligands (TGF-β1,2,3, BMP2/4/7). 137 

Also signaling by integrins via ILK-PI3K-AKT-GSK3β is involved in promoting EMT. 137 

Interleukin signaling, another microenvironmental signal, has also been shown to promote EMT, 

which, dependent on context and cell type might activate JAK/STAT pathway, via different adapters 

the SOS-RAS-RAF-MEK1/2-ERK1/2 pathway or PI3K-AKT pathway. 137 The dual role of interleukin 15 

(IL-15) signaling for EMT has been shown for renal epithelial tubular cells and RCC. In normal renal 

epithelial cells autocrine IL-15 stimulation acts as homeostatic survival signal, which is mainly 

executed by JAK3/STAT5 signaling pathway and maintains E-Cadherin expression. In contrast, in the 

absence of JAK3/STAT5 activation due to the lack of CD132 (IL-15 receptor gamma chain) in RCC, 
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down-regulation of E-Cadherin and the commitment of the cells into the EMT process were observed. 

By ectopic expression of JAK and CD132 in these cells E-Cadherin expression could be rescued. 195  

Besides these pathways EMT has also shown to be induced by hypoxia via HIF1α, which induces 

expression of Twist1. But also signaling induced by WNT via inactivation of GSK3β, Hedgehog via 

Gli1 mediated expression of Snail1, as well as Notch signaling via direct activation of expression of 

Snail2 may attenuate or promote EMT characteristics. 137 

5.8.2 Role of EMT in Kidney 

In the kidney EMT contributes to establishment of fibrosis in chronic progressive kidney disease. The 

process has shown to be induced by hypoxia, reactive oxygen species (ROS) or inflammatory 

cytokines. Renal fibrosis is characterized by trans differentiation of proximal tubular epithelial cells 

(PTECs) into myofibroblasts, whereby expression of vimentin (VIM), α-smooth muscle actin (α-SMA), 

fibronectin (FN1) and matrix-metalloproteinase 9 (MMP-9) is up-regulated. It has been shown that the 

growth factor FGF-2 (bFGF) is capable of inducing EMT in PTECs. From the three signaling pathways 

primed by FGF-2 (PLCγ, MAPK(ERK1/2), PI3K/AKT) during induction of EMT the PI3K/AKT pathway 

has been observed to be rapidly and persistently activated. 441 

5.8.3 Role of EMT in RCC 

Several studies investigated the role of EMT in RCC and revealed that this tumor type possess a high 

EMT status compared to normal tissue as well as to other tumor entities. Also correlation of EMT 

related gene expression with patient prognosis and survival were reported. 

In a comprehensive study on gene expression in different cancer cell lines, 6/7 renal carcinoma cell 

lines highly expressed genes assigned to the mesenchymal gene cluster, containing the EMT markers 

N-Cadherin (CDH2) and fibronectin (FN1) as well as FGF-2/bFGF and the corresponding receptor 

BFGFR. 442 Also the EMT marker vimentin (VIM) is long been used to discriminate RCC subtypes (see 

chapter 5.7.1.2) 431, suggesting a principal role of EMT in RCC in general, which is different from 

carcinomas of other organ’s origin. 443 This is in line also with results obtained by Tan et al 444 when 

comparing an EMT gene signature comprised of 314/218 weighted epithelial and mesenchymal 

specific genes to gene expression data from primary RCC and RCC cell lines. The signature revealed 

a predominant mesenchymal phenotype of this tumor type and a similar mesenchymal score was 

observed for germ cell tumors. From the analyzed tumor entities only melanoma, osteosarcoma and 

glioblastoma showed higher mesenchymal scores than RCC. Surprisingly, in their study the 

mesenchymal phenotype in RCC was correlated with higher disease free survival rate. 

Comparison of gene expression profiles of normal kidney to RCC samples performed by Chen et al 394 

yielded a set of EMT genes enriched in RCC compared to normal tissue. A better outcome of patients 

with low-level expression of CXCR4, vimentin, fibronectin and TWIST1 was observed. High 

expression of CXCR4 and VIM could serve as independent prognostic markers for poor survival of 

patients. 

A comparison of gene expression by NGS in 26 patient matched normal and tumor samples was also 

done by Landolt et al 355 revealing an increased EMT score in ccRCC compared to normal tissue. 

They found MMP14, AXL, CAV1, ITGA5, VIM, IGFBP3, and ITGA1 among the top genes differentially 
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up-regulated in tumors compared to normal samples, whereas E-Cadherin (CDH1) and EpCAM, as 

well as growth factors EGF and FGF1 expression were down regulated in tumors. Of the identified 

genes MMP14 and AXL were correlated with worse patient prognosis. Comparison of tumor EMT 

expression pattern to classifiers of fibrosis revealed a tight link between EMT and fibrosis, since 

fibrosis markers could serve to discriminate tumors from normal samples. 

Weygant et al 198 performed a comparison of „TCGA KIRC“ RNA-Seq datasets and revealed that the 

mesenchymal markers vimentin (VIM) and N-Cadherin (CDH2) were overexpressed in RCC tumors 

compared to matched normal adjacent tissue, while E-Cadherin (CDH1) mRNA was significantly down 

regulated. Higher VIM expression was correlated with tumor stage and patients’ median survival. 

Reduced CDH1 expression was also correlated with overall and median survival of the patients in the 

study. Similarly, the study of Boysen et al 378 found CDH2 among the top ranked pVHL-driven genes 

specific for ccRCC. 

The connection between EMT marker expression in IHC staining of tumor samples and patient 

prognosis was investigated by Harada et al 445. They also observed a correlation with strong vimentin 

and high Twist1, as well as low E-Cadherin expression as significant hazard markers for RCC. 

N-Cadherin and Snail1 expression did not show significance for prognosis. 70% of patient samples 

showed weak E-Cadherin staining. A high staining pattern for vimentin and N-Cadherin was observed 

in 50% of the samples, whereas 40% and 30% of the analyzed tissues showed strong expression of 

Twist and Snail respectively. 

5.8.4 Induction of EMT by TNF-α  in RCC cell lines 

For ACHN and 786-O RCC-cell lines Zhang et al 446 were able to induce EMT by treatment with TNF-α 

for 7-14 days. They observed increased expression of VIM, SLUG (SNAI2), and ZEB1 at mRNA and 

protein level as well as decreased expression of E-Cadherin (CDH1) after TNF-α treatment. Changes 

in expression of mRNA for stem cell markers POU5F1/Oct4, NANOG and BMI1 were also reported. 

Additionally, they observed a 3- to 4-fold higher sphere-forming ability in both cell lines after EMT 

induction. For 786-O and A498 as well as for Caki-1 cell line, Ho et al 447 tested TNF-α induction of 

EMT and observed higher expression of vimentin and MMP9/2 in induced cells compared to 

uninduced cells, as well as a reduction in E-Cadherin expression. Sun et al 448 obtained similar results 

again with 786-O and A498 cell lines showing elevated expression of vimentin, Slug (Snail2) and Zeb1 

as well as of chemokine receptors (CXCRs) and reduced expression of E-Cadherin (A498 cell seemed 

not to express E-Cadherin in this report) upon stimulation with TNF-α.  

5.8.5 Investigation on EMT Induction by TGF-β  in Tumor Cell Lines including RCC  

In CRC cell lines TGF-β treatment induced EMT, indicated by increase of expression of N-Cadherin 

and vimentin and reduced expression of E-Cadherin. Besides these classical EMT markers also an 

increase in expression of NCAM and CD24 was observed after TGF-β treatment of the cells in the 

study performed by Okano et al 362. Also in the ovarian cancer cell line Caov-3 EMT was induced by 

TGF-β, marked by reduced expression of E-Cadherin and induction of Snail1, as well as increased 

CD24 expression. In this study the same results were seen under hypoxic conditions. 358 
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TGF-β stimulation of RCC cell lines A498 and 786-O enhanced their migratory ability in MatrigelTM via 

Smad/PAI-1 pathway, which has been shown to be significantly associated with tumor progression, 

metastasis, and survival in ccRCC. 449 

Bostrom et al 450 investigated the connection between EMT and sarcomatoid ccRCC, which account 

for approximately 8% ccRCC cases and are characterized by regions of radically different 

mesenchymal appearance, thereby histologically resembling sarcomas. Sarcomatoid ccRCC are 

associated with considerably worse prognosis due to higher metastatic potential. In 6 sarcomatoid 

RCC samples the authors found a higher portion of EMT markers in the sarcomatoid regions as well 

as high TGF-β expression. Evaluation of changes induced by exposure of RCC cell lines to TGF-β 

revealed changes in cell morphology similar to sarcomatoid ccRCC, accompanied by changes in RNA 

levels for key EMT markers. The results indicate a possible conversion of ccRCC by EMT to the more 

aggressive sarcomatoid subtype. 

Expression of EMT markers was also evaluated by Hsieh et al 318 in the sarcomatoid RCC cell line 

RCC-52. Sorting of this cell line for CD24Hi and CD24Low cell populations, resulted in two clearly 

distinctive cell fractions, with epithelioid (CD24Low) and fibroblastoid (CD24Hi) phenotype respectively. 

Both cell fractions showed similar portions of N-Cadherin and vimentin positive staining cells, albeit 

the GM values measured for the fibroblastoid cell line were slightly higher. A clear difference was 

observed in E-Cadherin expression, which was seen in the epithelioid cell fraction only. 

This might be an indicator, that N-Cadherin and vimentin are no suitable markers for EMT in cancer 

cell lines, since their variation upon mesenchymal transition seems to be only marginal. 

The expression pattern of N-Cadherin and vimentin seen in the report of Hsieh et al 318 parallels the 

results obtained in my work. But regarding E-Cadherin and CD24 expression no difference was seen 

between the PA and spheroid cell lines, which when grown under ACC, similar to PA cell line showed 

epithelial morphology, though in contrast to the cell line investigated by Hsie et al 318 the expression of 

CD24 was constantly high in all investigated samples. 

5.8.6 Expression of EMT Markers in Renal Progenitors and RCC Cell Lines 

Expression of Snail1 and E-Cadherin was also investigated by Galleggiante et al 202 using protein 

array analysis on CD133+/CD24+ sorted adult normal renal progenitors (ARP) as well as of tumor 

derived cells with the same characteristics isolated from the same donors. The authors compared 

expression levels additionally to the CD133− tumor cell fraction as well as to normal renal proximal 

tubular epithelial cells (RPTEC). Thereby no significant changes in expression of E-Cadherin was 

found between all tested cells, with adult tubular progenitor cells showing slightly lower expression of 

E-Cadherin compared to tumor cells. Snail1 expression, albeit similar among ARPs and tumor derived 

cells, was markedly lower in the CD133− tumor cell fraction, but only slightly reduced in RPTECs 

compared to tumor cells, implying a connection between CD133 expression and Snail1 expression.  

Lichner et al 212 evaluated mRNA expression of EMT markers ZEB1/2, Twist, N-Cadherin and vimentin 

in ACHN and Caki-1 RCC cell lines grown either adherently or as spheroids. They found up-regulated 

expression of the markers in spheroids compared to adherent cells, which was especially pronounced 

in ACHN cell line. Only ZEB1 was down regulated in spheroids from Caki-1 cell line, compared to 

adherent Caki-1 cells. 
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5.8.7 Results Obtained by Flow Cytometric Immunophenotyping (IFC) 

For the investigated cell lines a hybrid EMT phenotype was observed, characterized by parallel 

expression of epithelial and mesenchymal markers. Although Snail1, which is known to suppress E-

Cadherin expression, was clearly detected in the cell lines, E-Cadherin expression was relatively high. 

A possible explanation for this contradictory behavior seen in ccRCC was given by Sampson et al 451, 

who investigated WT1 influence on Snail1 and E-Cadherin expression in RCC cell lines ACHN and 

SN12C as well as in HEK293T and MDCK cells. WT1 is known to be up-regulated in RCC 355, while it 

is not expressed in adult kidneys (with exception of podocytes). The protein has been shown to 

regulate EMT and MET in different tissues. In their study the authors show that WT1 expression is up-

regulated by VHL knockdown, a frequent mutation in RCC, in a HIF-dependent manner. In VHL 

knockdown cells, WT1 has been shown to induce expression of Snail1 on the one hand by binding to 

the WT1 binding sequence in the Snail1 promoter, as well as E-Cadherin expression on the other 

hand, which was shown by siRNA knockdown of WT1 in these cells. Experiments show that WT1 

expression, which is induced by increased HIF activity in RCC may compete with Snail1 for 

E-Cadherin promoter binding and thus may relieve repressive effects of Snail1 on E-Cadherin 

expression. This results in epithelial morphology of the cells despite the hybrid EMT state. 

Interestingly, VHL knockdown cell lines expressed α-SMA, which was not seen in the more 

mesenchymal parental cell lines. Also epithelial marker ZO-1 (up-regulated) and NaK-β1 (down-

regulated) were contrarily expressed upon VHL knockdown in the investigated cell lines. N-Cadherin 

was still expressed upon VHL knockdown, albeit at slightly lower level. 

Co-expression of the mesenchymal marker vimentin with the epithelial cell marker Pan-CK, which was 

seen in my experiments, was also observed in renal progenitors isolated by CD133 positive sorting 

from human renal papillary tissue and from Bowman’s capsule. 71 73 Expression of CD24 in the 

investigated cell lines also is a strong indicator for the hybrid-EMT nature of the cell lines and implies a 

possible role of Notch signaling in the maintenance of this state. 360 

Surprisingly, no profound difference was seen in EMT status between the parental cell line and the 

spheroid cell lines in IFC analyses. Taking into account that two factors shown to induce EMT - growth 

factor signaling by bFGF and EGF as well as hypoxic conditions - applied to the latter, it was logical to 

assume that spheroid cells might show higher expression of mesenchymal markers compared to the 

parental cell line. This was true to some extent, when taking immunocytometric measured geo mean 

values for N-Cadherin staining into account, which were higher in spheres compared to PA cells. But 

for neither of the other measured EMT marker signals (E-Cadherin, vimentin, Snail1) significant 

differences were observed. Only a slightly higher expression of cytokeratins in PA cells compared to 

SP or CS cells could be detected. 

Of note is that primary CD105+ sorted, putative CSC from RCC were reported not to express 

E-Cadherin until they were differentiated by using standard media conditions. 119 Similarly, in the study 

by Hu et al 200 using xenograft tumors generated from CD105+ sorted ACHN cells, staining for CK7 

was absent in CD105+ sorted xenograft tumors but was observed when the cells were cultured in 

standard RMPI-1640 medium instead of the expansion medium used by Bussolati 78. In contrast, 

staining for the EMT marker vimentin was observed in CD105+ sorted cells only but not in the parental 
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unsorted cells and the expression of vimentin was lost upon standard RMPI-1640 culture of the cells. 

These results imply, that CD105+ CSC in RCC are of mesenchymal phenotype and acquire 

expression of epithelial markers only after differentiation under standard conditions. 

This is interesting in two regards, on the one hand expression of CDH1 on PA cells, which are positive 

for CD105, may also have been induced by culturing the tumor cells under standard conditions. On 

the other hand an opposite effect concerning CDH1 expression in PA cell line was observed, namely a 

reduction of CDH1 expression and gradual evolvement of E-Cadherin negative cell fractions during 

prolonged culturing of the cells. This might have been due to selection of long-living stem-like cells 

over time in culture, as the same effect was observed for cells cultured as spheroids. 

Interestingly, when re-growing spheroid cells containing E-Cadherin-negative cell fractions under 

ACC, E-Cadherin was again expressed on all cells in the culture. More detailed studies on the time 

course of this change, together with expression patterns of other markers in the cells lines used in this 

work might shed light on the nature of this process.  

5.8.8 Results Obtained by mRNA Expression Analysis 
Results obtained for mRNA expression of several EMT markers from RNA-Sequencing experiments of 

PA, SP and A-SP cells confirmed similar high expression of CDH1, CDH2 and vimentin in all cell lines. 

Similar to results obtained by IFC, PA cell line was found to show higher expression of keratins, 

compared to spheroid-derived cell lines. Surprisingly, SNAI1, TWIST1 and ZEB2 mRNA levels 

seemed to be reduced in SP cells compared to adherently grown cells, which might be attributed to 

different EMT inducing signals such as TGF-β and TNF-α signaling being present under the serum-

containing culture conditions. In contrast to other EMT inducing transcription factors, expression levels 

of ZEB1 mRNA were found to be similar in the three investigated cell lines. An interesting result is the 

markedly higher expression of SNAI2 mRNA in PA cell line compared to spheroid derived cell lines. 

The mRNA expression pattern for EMT markers observed for the cell lines investigated in my work, 

thus differs in various aspects from reports for other RCC cell lines and further substantiates the 

complex nature of this multifactorial process that involves several pathways. 214 212 447 440 

Although the process of EMT was not investigated in very detail in this work, the results obtained 

concerning expression of EMT markers might be used as a basis for further detailed investigations of 

this complex process in RCC and also for further investigations of implications of transcription factors 

being associated not only with EMT but also with other functions in survival and promotion of tumor 

formation. 452 For example the transcription factor FOXQ1, which has been shown to be involved in 

EMT promotion of breast cancer cells 453, was among the top up-regulated genes in spheroid cells 

compared to PA cell line. Since pathways leading to activation of this transcription factor are not well 

known, the cell line might be a suitable tool for further investigation of the role of this factor in tumor 

formation and metastasis. It would also be interesting to investigate the influences of EMT inducing 

agents such as TNF-α or TGF-β on the cell lines established in this work. 
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5.9 Differential Gene Expression in PA, SP and A-SP Cell Lines 

RNA-Sequencing analysis for differentially expressed genes between PA, SP and A-SP cell lines 

further substantiated expected enrichment of CSC characteristics in SP cell line compared to PA cell 

line, which were partially retained in adherently cultured cells. Among differentially expressed genes 

between spheroid-derived cells and PA cells were such involved in kidney development (PAX2, WT1, 

HNF1A, HNF4A, POU3F3, BMP2/4, SALL1), metabolism (MLXIPL, HMGCS, MAOA/B), oxygen 

status/HIF transcription factor network (EGLN3, NDRG1, EGR1), but also in several signal 

transduction pathways known to be active in tumor and stem cells and differentiation (RARRES2, 

PRKAA2, SHC3, EZH2, LRP2, SPOCK1, BMP2, BMP4) and signaling components of WNT, SHH, and 

MAPK pathways. Compared to spheroid cell lines, genes up-regulated under serum-containing 

medium conditions in contrast showed up-regulation of pathways predominantly involved in immune-

regulation. 

The high number of brain- or neuron-associated terms, which were found among the top listed entities 

for all datasets is in accordance with results obtained by Ross et al 442, who investigated gene 

signatures of cancer cell lines from different organs’ origins by microarray analysis and identified a 

mesenchymal gene cluster to be up-regulated in RCC cell lines, which was also seen in CNS tumors 

and to a lesser extent in ovarian carcinomas. Also in two-dimensional hierarchical cluster analysis of 

expression data from the investigated cell lines RCC tumor cell lines grouped next to tumor cell lines 

derived from CNS. 

Among top-ranked terms found for differentially expressed genes were various cancerous diseases, 

especially different histological subtypes of RCC. Also several genes that have been shown to be 

involved in RCC tumor formation or CSC from RCC for example KISS1R, MMP14, NDRG1, PRODH2, 

SELENBP1 and HOTAIR, IGFBP3, DNMT1, HDAC4, CAMK1 192 454 were found to be up-regulated in 

spheroid-derived cell lines. In contrast, no significant difference in mRNA expression levels of 

CBFA2T2, SIRT2, HIF1A, VHL, SETD2, DNAJB8, and c-MYC have been observed. 

5.10 Tumor Formation Assay - Xenotransplantation 

It was very disappointing to see, that no cell growth, even at a relative high cell numbers of 106 applied 

cells, was observed in the tumor formation assay. Taking into account the in vitro characteristics of the 

cells, which in many aspects (expression of CSC markers CD105, CD73, sphere-forming ability, high 

expression of ALDH, Rho123high side-population, colony growth in soft agar) resembled those of CSC 

from other RCC (primary and cell lines) and the applied cell numbers of 104-106 cells were relatively 

high, the results are very unexpected. The high cell numbers were actually chosen to gain xenograft 

material for further analysis, since in the NSG strain usually lower cell numbers have to be injected to 

see differences in tumor growth. For example a difference in tumorigenicity between different cell 

populations of DU145 prostate cancer cell line was seen only at small cell numbers of 3x103 injected 

cells, whereas with 5x104 injected cells tumors grew from all fractions. 455  

Compared to other tumor entities RCC are known to have reduced growth potential. But at similar cell 

numbers as were used in my experiment unsorted RCC cell lines ACHN (106 cells 456), 2x106 cells 457), 

A498 (2x106 457), or HEK293T (2x106 cells 458) were used to test for tumor growth inhibition or tumor 
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characterization studies in different mouse strains from “nude” or “SCID” background, which are less 

permissive for tumor growth than NSG mice. Another study reports that Caki-1 or ACHN cell lines 

were able to form tumors in 6/6 mice of the NOD/SCID type at a number of 1x105 injected cells 203, 

and Song et al 210 report that 5x103 adherently grown 768-O cells were able to induce tumor growth in 

3/4 NOD/SCID mice whereas 106 injected cells formed tumors in 5/5 tested animals. In the NSG 

mouse strain Caki-1 cell line formed tumors in 4/4 mice with 1x106 injected cells and 3/4 mice with 104 

injected cells. 212 On the other hand subcutaneous application of the cells was heterotopic with respect 

to the tumor of origin and for some cell lines orthotopic transplantation is needed for cells to grow in 

xenografts. There are several RCC cell lines for which no tumor growth in mouse models was 

observed (see table 1.5.1). 193 This might be due for example to the different growth factor milieu in 

the recipient animals as some murine growth factors (e.g. TNF) are not cross-species reactive. 

A general problem with cell preparations can be excluded, since growth assays performed with 

aliquots of the respective cell suspensions after injection did not show any irregularities. The SP cell 

line in high passage was chosen because of increased growth potential and CSC marker expression 

in higher spheroid passage numbers. In addition to growth characteristics, the cell line used for the 

assay showed also the expected expression pattern of these markers according to passage number. 

One suspect reason for the lacking cell growth is the use of MatrigelTM as growth matrix for injection. 

In most published reports on RCC cell xenotransplantation cells are applied in PBS. Experiments 

performed to evaluate optimal transport conditions revealed, that the cells show sensitivity to low 

temperatures. Although no difference between different samples (medium, DPBS/ 4°C, RT) could be 

seen in IFC measurements using a viability stain (which is comparable to the trypanblue detection 

method of dead cells used for determination of implanted live cell content), in growth assays 

performed in parallel, a strongly reduced growth rate was observed, when cells were kept for the test 

period of 4 h at 4°C. Since MatrigelTM is liquid only at low temperatures and forms a gel at room 

temperature, the suspension of cells has to be done on ice. Although in cell culture experiments, when 

the chilling time was held short, the cells were able to grow in the matrix. 

Finally, all speculations cannot substitute experimental results. A repetition of the experiment is 

needed to get clarity.  
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5.11 Summary of Results 

A summarizing overview of results obtained for stem cell features investigated in this work for different 

cell lines is given in table 5.12.1. The comparison with expression patterns observed for investigated 

marker antigens, which is shown in table 5.6.1, reveals that no investigated marker was found to be 

well correlated with the observed spheroid growth characteristics or growth in soft agar assay 

experiments. 

 

 

 
Table 5.11.1: Overview Results Obtained for Stem Cell Features Investigated on Different Cell Lines 

Features were graded according to criteria listed in the legend using mean values of all performed 
measurements, when applicable. Variations seen over time of culture are indicated in the “Time” column as 
symbols. For CSFE minimal and maximal values are indicated. Change of EMT status to more mesenchymal 
phenotype is indicated as increase, whereas more epithelial state is indicated as decrease. 
Markers expressed predominantly on one of the cell lines are indicated as “Specific Marker”; thereby brackets 
mark specific expression patterns in a cell line. Markers expressed predominantly on spheroid cell lines are 
indicated. For soft agar assay results, CFE values as well as mean diameter of colonies are indicated. NCSFC 
indicates growth in soft agar assay under SCC. 
ALDH expression as evaluated by ALDEFLUORTM assay, high indicates more than 60%, moderate indicates 
more than 40% positive staining cells, thereby high variation of results was seen for PA cell line. 
Capacity of pumping out dye in the Rhodamine 123 side population assay, which was shown to be correlated with 
CD243/MDR1 expression is indicated as follows: Rhohigh/low: high/low dye retention of Rhodamine 123. 
Tumor formation is indicted as number of tumors grown from 106 injected cells/number of mice injected.  
ACC: adherent culture conditions, A-SP: SP cells cultured under ACC, CFE: colony-forming efficiency, CS: 
clonally expanded spheroid cells derived from PA (CS1 and CS7), CSFE: clonal spheroid-forming efficiency, PA: 
parental cell line, NCFCA: neural colony-forming cell assay, Rho: Rhodamine 123, SCC: spheroid culture 
conditions, SP: spheroid cells derived from PA 
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5.11.1 Differences between Spheroid Cell Lines and Parental Cell Line 

PA cell line differed form spheroid cell lines in expression of several marker antigens as well as in 

spheroid and soft agar growth characteristics, both of which were reduced in PA cells compared to SP 

and CS cell lines. The spheroid-forming efficiency of PA cell line was rapidly reduced with prolonged 

culturing of the cells. A marked difference was also seen in Rhodamine 123 side population assay, 

where the dye was effectively pumped out in the PA cell line only, resulting in a relatively high Rholow 

cell populations, which according to results obtained by Lu et al 209 and Song et al 210, seem to mark 

the non-CSC population of RCC in this assay.  

5.11.2 Differences between Spheroid Cell Lines 

The two different methods applied to generate spheroids yielded two clearly phenotypically 

distinguishable cell line entities. The clonally amplified CS cell lines were smaller in size and showed 

higher growth rates in long-term culture. In contrast, the ability to grow in serum-containing soft agar 

assay in both colony number, as well as colony size was reduced compared to spheroid cell lines that 

were grown as bulk culture. In contrast in soft agar assay using SCC, only the CFE, but not the colony 

size was reduced in CS cell lines compared to bulk cultured spheroids, indicating that both spheroid 

cell lines contained cells with stem cell characteristic growth potential, albeit at varying numbers.  

Although CS cells morphologically appeared more homogenous than PA and SC cells, they showed 

higher heterogeneity in expression of investigated antigens. Detailed comparison of two CS cell lines 

(CS1 and CS7) revealed several differences between them (see table 5.6.1), whereas SP cell lines 

showed relatively constant characteristics in the three independently generated cell lines, of which two 

were characterized in more detail.  

CS cell lines in contrast to SP and PA cells expressed CD133 at significant cell numbers, which has 

been shown to be a marker for high proliferative cells, and is used for isolation of renal progenitor cells 

but seems not to be a marker for CSC in RCC, when used not in combination with CD24 expression. 

The IFC profile for SSEA-4 expression compared to PA and SP cells showed a broader distribution in 

CS cell lines, indicating several populations with different grade of expression of the stem cell marker. 

In contrast to SP cells, expression of SSEA-1, at the beginning of spheroid culture was similar to that 

of PA cells, indicating a more mature phenotype of the cells, which was reduced upon long-term 

culture as spheroids. A common feature seen in the two CS cell lines was the fraction of CD105 

negative cells, which evolved over time under SCC. 

Also the differentiation abilities of CS cells were reduced compared to PA and especially to SP cells, 

since they were not able to differentiate into both cell types tested, rather CS1 showed only adipogenic 

and CS7 only osteogenic potential.  

The cell line CS7 in contrast to all other tested cell lines did not change EMT status over time in 

culture, seeming to be locked in intermediate mesenchymal state. This cell line also showed markedly 

higher expression of the markers found to be predominantly expressed on spheroid cells, namely 

CD56, CXCR4 (CD184), CXCR7 and CD133, which were also found to increase with time culture 

under SCC. Variations in expression of EpCAM and CD44 with time of spheroid culture were observed 

in CS1 cell line exclusively and expression of spheroid-specific markers was less pronounced or 
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variable compared to CS7 cell line. In contrast to SP and CS7 cell lines, no expression of CD56 was 

observed.  

CD10 positive staining as well as TNAP positive staining cell populations were found only in SP cell 

lines. This cell line also showed higher expression levels of CD73 compared to all other cell lines and 

was found to possess the highest differentiating potential. 

Taken all this together the clonal sphere generation method seems to enrich for more mature 

progenitor cells as proposed in the model of Liu et al 321, probably due to the disturbance of 

equilibrium between stem cell and non stem cell compartment at the beginning of the culture. 

Whereas in “bulk” culture these disturbances are less pronounced and therefore no such enrichment 

occurs. 

5.11.3 Spheroid Cell Lines Re-grown under Adherent Serum-Containing Culture Conditions 

An important result of this work is the observation, that spheroids grown for longer periods under 

serum-containing adherent growth conditions retained the growth potential of their parental spheroid 

cell lines in NSA and SAA. This is in strong contrast to several reports, describing differentiation of 

spheroid-derived cells under these growth conditions, which was accompanied by loss of stem-cell 

characteristics. 459 119 Similar results were reported by Song et al 210 for spheroids from primary RCC 

tissues and the 786-O RCC cell line. This growth potential was not reflected by expression of several 

markers, which were shown to enrich for CSC (CD56, CD184, CXCR7, CD133), since a reduction of 

expression of these markers on A-SP or A-CS cell lines was observed. Adherently grown spheroid cell 

lines also retained a substantial fraction of the Rhohigh cell population, shown to mark cells with CSC in 

RCC. Also no differences in differentiation potential was observed in these cells, compared to parental 

spheroid cell lines. mRNA-Sequencing results also revealed up-regulated expression genes 

expressed at higher level in spheroid cell lines compared to PA cell line.  

5.11.4 Plasticity and Heterogeneity 

In accordance with the literature, the results obtained in this work did not fit a simple straightforward 

model. Instead, a high degree of heterogeneity and plasticity of the investigated cell line was 

observed, which became obvious by using different culture conditions, which in case of SP and CS 

cells varied only slightly. Some aspects were very similar among the spheroid cell lines, whereas 

others, which were described in the literature as probable markers for CSC, showed high variations. 

These were even more pronounced in the CS cell lines, which had passed a narrower bottleneck of 

selection. Similar results were seen for example also for clonally expanded MSCA-1+/CD56+ and 

MSCA-1+/CD56– sorted MSC, which independently of CD56 expression, were shown to possess 

different phenotypes, proliferation rates, and differentiation capacity. 340 Surprisingly, spheroid cells 

cultured as “bulk” cells (SP) seemed to be less heterogeneous than the CS cell lines, possibly 

reflecting cell interactions needed to sustain a balance between stem and non-stem cell 

compartments. 

Thus, the in vitro studies done here with an RCC cell line were also reflecting the results obtained in 

vivo in a study of Hasmin et al 356, who used xenograft propagation of primary ccRCC tumor cells. This 

study revealed that heterogeneous tumors arise from a single cell line, when transplanted in 

NOD/SICD mice. The xenografts differed from the parental tumor in reduced expression of CD133 and 
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a loss of CD105 expressing cells. The sorted cell populations from primary xenografts, resulted in 

secondary xenografts with further variations in cellular composition, indicated by increased expression 

of EpCAM in CD132+ and CD133+ sorted cells, and varying expression of CD133. This implies that 

several CSC subsets in the primary tumor may exist, which in the foreign environment further evolve. 

Comparing the observed stem cell features in the cell lines investigated in this work to other RCC cell 

lines shows, that only single aspects were found to be similar to a given cell line, whereas other 

aspects observed were found to be stamped quite differently. This observation further highlights the 

existence of several CSC sub-populations in RCC, which employ different possible pathways, 

resulting in specific signatures. These results weaken the hope for possible identification of single 

markers for targeting CSC for cancer therapy. Rather approaches targeting the plasticity of the cells 

directly, such as differentiation therapies using IL-15 195 119 for or BMP2 207, which have been proposed 

for RCC might be promising directions in this field. Though, differentiation potential of CSC, especially 

to other than epithelial lineages, was investigated only in few reports. Here I show, that, besides other 

characteristics, also differentiation potential varied between the different spheroid-cell lines although 

all cell lines showed differentiation potential to adipogenic and/or osteogenic lineages, similar to the 

situation reported for sub-populations of MSC. 
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6 Conclusion 

In my thesis, a clear cell renal cell carcinoma (ccRCC) cell line, of which a fourfold gene-modified 

derivative was already used in oncological clinical trials, served as the parent cell line (PA) for the 

generation of cell lines with cancer stem cell (CSC) characters. Isolation and enrichment of such CSC 

through cultivation of spheroids was evaluated. 

Spheroids were generated using two cell culture methods. Spheroid yielding cell lines termed SP were 

cultured as bulk cultures directly from PA with regular disaggregation. Spheroids that lead to cell lines 

termed CS (for clonally derived spheroids) were cultivated at clonal densities, with longer cultivation 

periods under spheroid growth conditions and without disaggregation. The two methods resulted in 

clearly distinctive spheroid subtypes, differing in morphology, growth characteristics, marker 

expression, and differentiation potential. 

Their long-term proliferative potential, a defining feature of stem cells, was assayed by long-term 

cultures of SP and CS. All cell lines derived by the two spheroid culture conditions were found to 

possess similar unrestricted proliferative potential without signs of senescence or reduction of growth 

rates in long-term cultures. Rather growth rates increased and cell sized decreased in SP and CS with 

time of culture. 

The self-renewal abilities of SP and CS were assayed using the „Neurosphere Assay“ (NSA) in long-

term passaging up to 60 weeks and 200 cell generations. Profound increases in spheroid-forming 

efficiency (CSFE) with time of culture were observed for SP and CS, as highly significant indicators for 

the enrichment of cells with stem cell characteristics. In contrast, CSFE of the PA parent cell line 

dropped dramatically to almost zero after about five weeks of culture, indicating loss of stem cell 

characteristics during long-term adherent culture. 

In vitro tumorigenicity was assayed using the soft agar assay (SAA). Quantitative and qualitative 

differences between assayed cell lines were observed. The highest growth potential in soft agar was 

found for SP with a colony-forming capacity of 12% and larger colonies formed compared to CS and 

parent cell line PA. No significant differences in colony-forming capacity between PA and CS were 

observed. Both cell lines have colony-forming capacities in the range of 1% and display similar colony 

sizes. If assayed in soft agar under the same serum-free medium composition as used for spheroid 

culture, CFE dropped two- to threefold in all cell lines, but also led to an increase of colony sizes in SP 

and CS. Since larger colonies correlate with enhanced “stemness”, the respective stem cell character 

is highest in SP, lower in CS, and lowest in PA.  

Most important for the subjects of my thesis, the growth potentials of spheroid cells observed in NSA 

and SAA was retained even after long culturing periods under conditions of adherent growth in cell 

monolayers (these derivatives of SP and CS were termed A-SP and A-CS). This is a strong indicator 

for enrichment of stem cells under spheroid culture conditions, either by selection or through 

epigenetic programing. 
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Another hallmark of stem cells, namely the generation of differentiated progeny, was assayed by in 

vitro differentiation of the cells towards adipogenic or osteogenic mesenchymal linages. Here, the 

highest differentiation potential towards both lineages was observed for SP. PA is also able to 

differentiate into both lineages, albeit at a much reduced level of efficacy. The two CS cell lines 

investigated (CS1 and CS7) differentiate into one of the lineages only (either adipogenic, or 

osteogenic) at similar efficacy levels to PA. This may indicate the generation of CSC already 

committed to differentiation by the initial CS spheroid culture conditions. All cell lines, PA, SP, and CS, 

maintained their differentiation potential even at high passage numbers, and SP and CS also after 

longer periods in adherent growth in monolayer culture. 

As functional assays for CSC and stem cell characteristics the activities of ALDH and the ABC-

transporter MDR1/CD243 were analyzed, using the ALDEFLUORTM assay and the Side Population 

assay, respectively.  

ALDH activity is high in PA, SP, and CS, but highly variable results were obtained, which with the low 

number of repeated experiments did not allow for statistically significant conclusions. Thus, in our 

hands ALDH activity was of no use in analyzing CSC enrichment in SP and CS compared to PA. 

However, the Side Population assay using Rhodamine 123 was found suitable to quantify CSC 

enrichment. A clear difference was seen between the spheroid cell lines, SP and CS, and the parent 

cell line PA. Differences correlate well with the different expression patterns of MDR1/CD243 in the 

respective cell lines. PA cells are able to pump out the dye almost completely (Rholow), whereas the 

dye is retained by SP and CS (Rhohigh), which show reduced or lack of expression of the transporter. 

Importantly, other than published for CSC from different tumor sources, in RCC the dye-retaining cells 

(Rhohigh) are those with stem cell characteristics, i.e. SP and CS, whereas the cells pumping out the 

dye (Rholow) were found in PA. 209 210 These results further support enrichment of CSC in the spheroid-

derived cell lines. Again and of great importance, the dye-retaining property was maintained also in 

spheroid cell lines A-SP cultured as adherent monolayers. Of note, PA cells display a Rhohigh fraction 

only at low passage numbers. This correlates nicely with their spheroid-forming ability, which is 

correspondingly found at low passage numbers of PA, only. 

Expression of a plethora of markers, known to be expressed by CSC or adult progenitor cells, was 

evaluated by flow cytometric immunophenotyping. The expression of CD105, CD24, CD73, CD44, 

CD29, SSEA3/4 and EpCAM expression is relatively high and homogenously distributed in PA, SP, 

and CS, CD49f is expressed at similar low levels in all cell lines and expression of CD90 was not 

detected. CD106, MDR/CD243, and CD146 are expressed on PA at higher levels or exclusively. None 

of the investigated markers reflects the observed growth characteristics of the cell lines. Therefore, all 

these markers are not applicable for enrichment or characterization of CSC. 

In contrast, CD133, CD56, CXCR4/CD184, CD10, and CD271 are expressed on SP and CS, only.  

Expression of CD133, CD56, CXCR4/CD184, CD106, CD243 and CD146 depends on culture 

condition of SP and CS. For example, CD133, CD56, CXCR4/CD184 increase with time of culture, but 

decrease when SP and CS are cultured under adherent growth conditions. Also, differences in CD 

expression patterns between CS subtypes, like CS1 and CS7, were observed.  
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Besides cell surface markers, also intracellular correlates of “stemness” or pluripotency, like 

transcription factors of the iPSC-programing set found my Takahashi and Yamanaka, were measured. 

Oct4 and Sox2, are found uniformly expressed at low levels in PA, SP, and CS, in flow cytometric 

immunophenotyping experiments. When analyzed by RNA-Seq c-Myc was found at high levels in PA, 

SP, and A-SP. Marked differences were seen for Klf4 with lowest amounts in PA and highest in A-SP. 

The process of epithelial-to-mesenchymal-transition (EMT), which is a hallmark of cells when 

acquiring stem cell properties, was analyzed through expression of EMT markers E-Cadherin, 

N-Cadherin, Snail1, vimentin, and cytokeratin, again by flow cytometric immunophenotyping. No 

significant differences were found between PA, SP, and CS. However, similarly high levels of 

mesenchymal and epithelial markers indicate an intermediate EMT phenotype of the cell lines. This is 

a lead characteristic of RCC-derived cells. In long-term culture fractions with reduced E-Cadherin 

expression were seen, indicating a gradual reprogramming towards a more mesenchymal phenotype. 

This phenotype is maintained in PA, SP, and CS at high passage numbers, but lost upon adherent 

growth culture of spheroid cells. 

While so many lines of evidence strongly support the CSC character of SP and CS as well as the 

presence of low amounts of CSC already in PA, one crucial experiment failed. Xenotransplantation of 

PA and SP into severely immunocompromised (NSG) mice did not induce tumors, even at high 

numbers of cells injected. Most certainly, failure was due to technical problems, but so far the single 

experiment could neither be repeated nor optimized for reasons not related to science.  

In bioinformatic terms, the variety of assays described above are based on a trained set of tools, i.e. 

leading to pre-filtering in experimental design and results obtained by established knowledge. For a 

more neutral view, whole transcriptome shotgun sequencing of mRNA (RNA-Seq) from PA, SP, and 

A-SP was performed. Differentially expressed genes (DEG) were identified in PA, SP, and A-SP. 

The most prominent mRNA in PA is coding for angiotensin-converting enzyme (ACE2); no ACE2 

mRNA was found in SP and A-SP. In SP, mRNA for the urea transporter SLC14A1 and the 

nicotinamide riboside kinase NMRK2 are on top of the list of differentially expressed genes. In A-SP, it 

is the mRNA for one of the early response transcription factor, FOS. The differentially expressed 

genes were subjected to gene set enrichment analysis (GSEA). Results of GSEA revealed strong 

support for the CSC characteristics found in PA, SP, and A-SP. GSEA results nicely match the results 

found by the variety of assays above. 

In the spheroid-derived cell lines (SP, A-SP) their cancer stem cell properties are elicited through up-

regulated signaling by ERK and AKT, CREB, HIF-1α, Wnt/Hedgehog/Notch, EGFR (ERBB, HER1), 

and PAK. In the adherently growing parental cell line (PA) cell adhesion and angiogenic pathways as 

well as S1P and NF-kB signaling prevail. If SP cells are kept under non CSC-selecting conditions for 

adherent growth in monolayer cultures (A-SP), they retain their up-regulated CSC signaling, but re-

activate cell adhesion pathways comparable to PA. In more general terms, SP is optimized for survival 

and proliferation under metabolic conditions of low oxygen, and when nutrition supply (sugars and 

amino acids) is low – the typical situation in a tumor microenvironment (TME). In A-SP these 

properties essential for CSC are kept, but those for cell adhesion and immune signatures to establish 

cell localization and cell identity are regained.  
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The results obtained in this work do not fit a simple straightforward model, and it will take complex 

algorithms to reach deeper into the understanding of the complex phenomena involved. Nonetheless, 

the heterogeneity and plasticity observed in SP, CS, and A-SP, fits the current view on CSC. 84 126 460 

The combination of the two conflicting models of tumor development, as outlined in Figure 1.3.1 of the 

Introduction, already predicts the quality of characteristics, now demonstrated in my thesis. The clonal 

evolution model can be seen a guardian of stability, whereas the cancer stem cell model is the source 

of heterogeneity and plasticity. 

Due to their reflection of different aspects of CSC, such as expression of surface markers, EMT status, 

differentiation potential, and growth characteristics, the cell lines obtained and characterized in my 

thesis may serve as valuable sources to unravel the basic mechanisms in RCC tumors. The stability, 

especially of SP, against differentiation makes the SP cancer stem cell line an ideal candidate for the 

development of novel cell-based therapies and their clinical applications. 
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