
 

 

 

Ceramic Pottery Production in the North Caucasus in the 

Bronze Age and the Iron Age 

 

 

 

 

 

 

 

 

A Dissertation 

 Submitted in Partial Fulfilment  

of the Requirements for the Degree of 

Doktor der Naturwissenschaften (Dr. rer. nat.) 

to the Department of Earth Sciences 

of Freie Universität Berlin 

 

 

 

 

 

by Ki Suk Park 

Berlin, November 2019 

 

 

 

 

 



Supervisor: PD. Dr. Ralf Milke 

Second Examiner: Prof. Dr. Patrick Degryse 

Third Examiner: Prof. Dr. Elke Kaiser 

 

 

Date of defense: February 3rd, 2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Erklärung der Eigenständigkeit 

 

 

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die 

angegebenen Quellen und Hilfsmittel benutzt habe; alle Ausführungen, die anderen Schriften wörtlich 

oder sinngemäß entnommen wurden, kenntlich gemacht sind und die Arbeit in gleicher oder ähnlicher 

Fassung noch nicht Bestandteil einer Studien- oder Prüfungsleistung war. 

 

 

 

 

Berlin, den 18.11.2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



i 

 

Table of contents 

List of tables ………………………………………………………………………………………….. iv 

List of figures ………………………………………………………………………………………….. v 

List of publications related to the thesis ……………………………………………………….......... xi 

Abstract ……………………………………………………………………………………………… xii 

Abstract (in German) ………………………………………………………………………………. xiv 

Acknowledgements ………………………………………………………………………………….. xv 

 

Chapter 1. Introduction .……………………………………………………………………………... 1 

1.1. Purpose of the study ……………………………………………………………………………….. 1  

1.2. Production technology as human practice ………………………………………………………… 2 

1.3. History of the ceramic archaeometry ……………………………………………………………… 3 

1.4. References ………………………………………………………………………………………… 5 

 

Chapter 2. Archaeological sites ………………………..……………………………………………. 11 

2.1. Research history in the North Caucasus (Bronze/Iron Age) ……………………………………... 11 

2.2. Cultural historical background of the archaeological materials ………………………………….. 12  

2.3. The main archaeological sites of this study: Ransyrt 1 and Kabardinka 2 ……………………….. 13   

2.4. The sites for the comparison: Levinsadovka and Saf’janovo …………………………………….. 14 

2.5. References ……………………………………………………………………………………….. 14 

 

Chapter 3. Materials and methods ….……………………………………………………………… 17 

3.1. Materials …………………………………………………………………………………………. 17 

3.2. Methods: General description ……………………………………………………………………. 17 

3.2.1. Polarization light microscopy (PM) …………………………………………………………… 18 

3.2.2. Scanning electron microscopy with energy/wavelength-dispersive spectroscopy (SEM/SEM-

EDS/WDS) ………………………………………………………………………………………….... 18 

3.2.3. X-ray powder diffraction (XRD) ……………………………………………………………….. 19 

3.2.4. Fourier transform infrared spectroscopy (FTIR), synchrotron radiation Fourier transform infrared 

(SR-FTIR) ……………………………………………………………………………………………. 19 

3.2.5. Raman spectroscopy …………………………………………………………………………… 20 

3.2.6. Three dimensional micro computed tomography (3D µ-CT) …………………………………... 21 

3.3. Methods in this study …………………………………………………………………………….. 21 

3.3.1. Identification of the ceramic pastes …………………………………………………………..… 21 

3.3.2. Formation of the ceramics …………………………………………………………………..….. 23 

3.3.3. Identification of the ceramic firing ……………………………………………………...……… 24 

3.3.4. Image segmentation and parameterization ……………………………………………………... 25 



ii 

 

3.4. References ……………………………………………………………………………………….. 27 

 

Chapter 4. Identification of the ceramic pastes …………………………………...……………..… 29 

4.1. Sand/silt grains in the ceramics …………………………………………………………………... 29 

4.1.1. Mineralogical composition …………………………………………………………………….. 29 

4.1.2. Shape parameters of sand grains ……………………………………………………………….. 31 

4.2. Chemical compositions of the ceramic matrix (grains < 50µm) …………………………………. 34 

4.3. Clay minerals in the ceramics …………………………………………………………………….. 35 

4.4. Discussion: preparation of the ceramic pastes of the potters ……………………………………... 37 

4.5. References ……………………………………………………………………………………….. 38 

 

Chapter 5. Formation of the ceramics (inner structure) …...…………………………...………… 41 

5.1. Ransyrt 1: Results and discussion ………………………………………………………...……… 41 

5.2. Kabardinka 2: Results and discussion ………………………………………………….………… 42 

5.3. References ……………………………………………………………………………..………… 43 

 

Chapter 6. Identification of the ceramic firing …………………………………………………….. 45 

6.1. Firing behavior of the illite based ceramics by the direct measurements of XRD, FTIR, SEM and 

Raman spectroscopy ………………………………………………………………………………….. 45 

6.2. Pore topology within the ceramics as indicator for the pyrometamorphic degree ……………….. 52 

6.3. Spatial distribution of the pyrometamorphic degree within an archaeological ceramic object …... 56 

6.4. Discussion 1: Pyrometamorphic process of the archaeological ceramics ………………………... 59 

6.5. Estimation of the firing conditions ……………………………………………………………….. 63 

6.5.1. Average firing temperature …………………………………………………………………….. 63 

6.5.2. Kinetics of the dehydroxylation in the illite based ceramics …………………………………… 64 

6.5.3. Heat transfer within the archaeological ceramic ……………………………………………….. 68 

6.5.4. Oxygen diffusion and corresponding redox states ……………………………………………… 70  

6.5.5. Discussion 2: Firing conditions ………………………………………………………………… 73 

6.6. References ……………………………………………………………………………………….. 75 

 

Chapter 7. Conclusions …………………………………………………………………….....……... 85 

 

Appendix 

Appendix 1. Field work for the soil study around Ransyrt 1 and Kabardinka 2 (01.09.2016-16.09.2016) 

………………………………………………………………………………………………………… 89 

A1.1. Map …………………………………………………………………………………………….. 89  

A1.2. List .…………………………………………………………………………………………….. 89 



iii 

 

A1.2.1. Around Ransyrt 1  ……………………………………………………………………………. 89 

A1.2.2. Around Kabardinka 2  ………………………………………………………………………... 90 

A1.2.3. Around Podkumouk  …………………………………………………………………………. 92 

A1.2.4. Around Gumbashi  …………………………...………………………………………………. 92 

A1.2.5. Etc. …………………………………………………………………………………………… 92 

A1.3. Brief descriptions at the soil survey around Ransyrt 1 and Kabardinka 2 ……………………… 93 

A1.3.1. Survey around Kabardinka 2 …………………………………………………………………. 93 

A1.3.2. Survey around Ransyrt 1 …………………………………………………………………...… 97 

A1.3.3. Survey round Gumbashi …………………………………………………………...…………. 99 

 

Appendix 2. Sample list ….………………………………………………………………………….. 101 

A2.1.  Ransyrt 1 ………………………………………………………………………………….….. 101 

A2.2. Kabardinka 2 . ………………………………………………………………………………… 108 

A2.3. Levinsadovka (Mius Peninsular) ……………………………………………………………... 116 

A2.3. Saf‘janovo (Lower Don river) ………………………………………………………………… 116 

 

Appendix 3. Analysis of Calcium Carbonates from the Context, Ransyrt_2015_No.470 …………… 117 

A3.1. Introduction …………………………………………………………….……………………... 117 

A3.2. Methods .……………………………………………………………………………………… 117 

A3.3. Results  ………………………………………………………………………………………... 118 

A3.4. Discussions and conclusions …..……………………………………………………………… 121 

A3.5. References .……………………………………………………………………………………. 123 

 

Appendix 4. Official transport of the archaeological ceramics from Russia to Germany (in German) 

……………………………………………………………………………………………………….. 125 

 

Curriculum Vitae …………………………………………………………….……………….…… 127 

 

 

 

 

 

 

 

 

 

 



iv 

 

List of tables 

 

Table 2-1. Chronology of the North Caucasus (according to Reinhold et al. [15]). 

Table 3-1. Measurement condition of the 3D µ-CT for the alignment of the pore complex and sand 

grains. 

Table 3-2. Measurement condition of the 3D µ-CT for the pore topology of three samples. 

Table 3-3. Examples of main functions used for the image analysis by Matlab in this study. 

Table 4-1. Quantitative analysis of mica-chlorite, alteration products and vitreous grains from Ransyrt 

1 and Kabardinka 2. 

Table 4-2. Chemical composition of the ceramic matrix (grains < 50 µm) normalized to 100 wt%. 

Table 6-1. Description of cross section colors, micropore morphology, XRD peaks of pyrometamorphic 

minerals and main and sub bands of FTIR (transmittance) vibrations for the representative samples (clc: 

calcite, geh: gehlenite, hem: hematite, ill: illite). 

 

Appendix 

Table A3-1. Qualitative evaluation of mineral phases existing in the aggregates (+++++: 80-10% ; 

+++:50-80% ; ++:20-50% ; +: 5-20% ; (+): under 5%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

List of figures 

 

Figure 2-1. Archaeological sites in North Caucasus and in the northern Black Sea coast: (a) Ransyrt 1; 

(b) Kabardinka 2; (c1) Levinsadovka (Mius peninsular); (c2) Saf’janovo (Lower Don) (maps: created 

by QGIS 2.18.0 with open layers from OSM/Stamen, map tiles by Stamen Design, under CC BY 3.0. 

data by OpenStreetMap, under ODbL (maps.stamen.com); photos: Reinhold et al. [16]). 

Figure 3-1. Example of a ceramic sherd with the sample name and the scheme of the multiproxy- and 

multiscale approach of this project. 

Figure 3-2. Interaction of highly energetic electrons (electron beam) with specimen (SE: secondary 

electron; BSE: back scattered electron; CL: cathodoluminescence). 

Figure 3-3. Bragg's law. 

Figure 3-4. Normal modes of vibration of a tetrahedral TO4 group. ν1 and ν3, represent the symmetric 

and asymmetric stretching modes, respectively, ν2 and ν4 the corresponding bending vibrations. 

Figure 3-5. Specular reflection and transmission [6]. The angles of incidence (i), reflection (r) and 

refraction (t) are denoted by θi, θr, θt, respectively. The corresponding electric field components are 

denoted by E. They are split into orthogonal portions. One parallel to the plane of incidence (x, z-plane) 

and the other perpendicular to this plane (parallel to y-axis). Accordingly, electric fields are referred to 

as parallel and perpendicular polarized n1, n2, κ1, κ2 denote the refractive and absorption indices in the 

two media.  

Figure 3-6. Energy-level diagram showing the states involved in Raman spectra. 

Figure 3-7. Schematic diagram of a typical lab-based micro CT setup with a conical X-ray beam which 

allows geometric magnification. 

Figure 3-8. (a) Polarized light microscopic images (plane polarized light) of the cross section; (b) 

segmented image of sand grains (white). 

Figure 3-9. Visualization of the 2D matrix according to the intensity of (a) BSE and (b) Carbon and 

segmented image of pores from the matrix (measurement area=300x300 µm2). 

Figure 3-10. (a) Original ceramic sherd and its ROI in the box of the black dashed line; (b) Isosurface 

of the sample with Isocaps of the exposed cross section; (c) Segmentation of sand/silt grains and pores; 

(d) Segmentation of sand grains and pores with the specific volume size.   

Figure 4-1. Dominant mineralogical combinations of the ceramics from (a) Ransyrt 1, (b) Kabardinka 

2, (c) Levinsadovka-Saf’janovo (Clc: calcite, Cpx: clinopyroxene, Kfsp: K-feldspar, Mica-Chl: mica-

chlorite mixed layers, Ol: olivine, Plg: plagioclase, Qtz: quartz). 

Figure 4-2. Mineralogical composition of sand grains in the ceramic paste (all scales for 100 µm): (a) 

quartz and K-feldspar matrix, biotite-chlorite and kaolinite-albite as alteration trace; (b) diopside and 

albite in altered glass matrix; (c) anorthite-bytownite, quartz and alteration product; (d) sanidine and 

kaolinite (alteration); (e) anorthite-bytownite-labradorite, quartz, olivine (alteration); (f) biotite-chlorite, 

alteration product, vitreous porous grains; (g) calcite; (h) calcite in thermal decomposition; (i) 



vi 

 

Lithoclasts composed of K-feldspar, quartz and mica; (j) aggregate composed of clay, K-feldspar and 

quartz; (k) aggregate composed of clay in sintering, quartz (Ab: albite, An: anorthite, Byt: bytownite, 

Bt: biotite, Chl: chlorite, Clc: calcite, Cpx: clinopyroxene, Di: diopside, Lab: labradorite, Ol: olivine, 

Plg: plagioclase, Qtz: quartz, Sa: sanidine). 

Figure 4-3. Mineralogical composition of dominant grain groups of the samples for the sites, (a) Ransyrt 

1, (b) Kabardinka 2, (c) Levinsadovka–Saf’janovo with the back scattered electron (BSE) images of the 

representative grains [1] is compared to the size distribution, circularity and sphericity 1 of coarse sand 

grains (>250µm, lithoclasts) present in the selected samples (Clc: calcite, Cpx: clinopyroxene, Kfsp: K-

feldspar, Sa: sanidine, Mica–Chl: mica–chlorite mixed layers, Bt: biotite, Ol: olivine, Plg: plagioclase, 

Qtz: quartz, Kln: kaolinite). Each mineralogical grain groups presented in different colors (Qtz + Kfsp 

+ Mica – Chl/Qtz + Kfsp/Qtz (+Clc): light grey, Qtz + Kfsp + Plg + Mica Chl + Alteration/Qtz + Kfsp 

+ Plg + Mica – Chl: light blue, Plg + Cpx: blue, Qtz + Kfsp + Clc: light yellow, Qtz + Complex sediments 

(+Clc): dark grey, various combinations: light green). 

Figure 4-4. (a) Grain size distribution (max. length), (b) sphericity 1 and (c) sphericity 2 derived from 

2D (blue) and 3D (orange) image analysis of the coarse sand grains (>250 µm) in the ceramic sherd 

(Ran1_514_2). Pixel size of 102 µm2 and grain numbers/A (area) = 1.501 ea/mm2 for the 2D images. 

Voxel size of 9.493 µm3 and sand grain numbers/V (volume) = 12.182 ea/mm3. 

Figure 4-5. (a) Original ceramic sherd and segmented grain like cavities, calcite ghosts in the sample 

(blue and yellow) (voxel size: 25.003 µm3). (b) A cross polarized light micrograph of the cross thin 

section shows coexisting calcite grains and closed type of voids in different sizes (Clc: calcite). 

Figure 4-6. Chemical composition of ceramic matrix (grains < 50 µm) normalized to 100 wt.%: (a) 

SiO2-Al2O3-CaO: (1) Ransyrt 1; (2) Kabardinka 2; (3) Levinsadovka-Saf’janovo; (b) at-f-alc 

(at=CaO+MgO; f= Fe2O3; alc=K2O+Na2O): (1) Ransyrt 1; (2) Kabardinka 2, (3) Levinsadovka-

Saf’janovo. 

Figure 4-7. Representative XRD and FT-IR (transmittance, samples heated at 170 °C for 60 hours) 

results of ceramic sherds excavated at Ransyrt 1 (blue) and Kabardinka 2 (orange, gray). 

Figure 4-8. Illite d spacing at the lattice plane (020)/(110). 

Figure 4-9. Comparison of SR-FIR absorption spectra and NIR diffuse reflectance spectra of the 

samples containing the lowest firing degree. (a) Ransyrt 1; (b) Kabardinka 2. Modified from Park et al. 

[1,22]. 

Figure 5-1. Photos of original ceramic sherds and segmented images of the large pore complex (blue) 

and sand grains (red and black) of the ceramics discovered at Ransyrt 1 (connectivity = 26). Region of 

interest (ROI) in the box of the white dashed line. (a) Bottom-wall fragments: 1. Separate formation of 

the bottom and wall part (wall on the bottom), oriented parallel pressure/stress from the surface (voxel 

size: 29.053 µm3); 2. Continuous formation of the bottom and wall part (voxel size: 29.633 µm3); 3. 

Separate formation of the bottom and wall part (wall next to the side of the bottom) (voxel size: 24.313 

µm3); 4. Two layers for the bottom building (voxel size: 28.213 µm3); (b) Wall fragments: 1. Mixture of 



vii 

 

regular and irregular alignment of sand grains (voxel size: 19.333 µm3); 2. Vertical orientation of the 

large pores in comparison to the alignment of the sand grains (voxel size: 9.493 µm3). 

Figure 5-2. Photos of original ceramic sherds and segmented images of the large pore complex (blue) 

of the ceramics discovered at Kabardinka 2 (connectivity = 26). ROI is in the box with the white dashed 

line. (a) Bottom-wall fragments: 1. Continuous formation of the bottom and wall part (voxel size: 20.003 

µm3); 2. Separate formation of the bottom and wall part (wall next to the side of the bottom) (voxel size: 

25.003 µm3); 3. Separate formation of the bottom and wall part, oriented parallel pressure/stress from 

the surface (voxel size: 17.313 µm3); (b) Wall fragments: 1. Alignment of the pores to the vertical 

direction (voxel size: 27.043 µm3); 2. Rough alignment of the pores to the vertical direction with the 

random direction from the front view (voxel size: 25.003 µm3). 

Figure 6-1. Example of comparison between XRD and FT-IR according to firing conditions: (a) Three 

ceramic sherds from Ransyrt 1 fired in the oxidizing atmosphere with the estimated firing temperature 

of 300-675 °C (blue), 675-750 °C (orange), 1050-1300 °C (light grey); (b) Three ceramic sherds fired 

at over 1050 °C (estimation) in Ca-rich matrix/reducing atmosphere (dark yellow), Ca-poor 

matrix/oxidizing atmosphere (dark grey); Ca-rich/oxidizing atmosphere (yellow). 

Figure 6-2. Comparison of FT-IR spectra in the transmittance mode (intensity normalized to 1) and 

reflectance mode (intensity from a 70 µm aperture size) of representative samples ordered according to 

the estimated firing degree: (a) Ransyrt 1 ceramics: Ca-poor matrix by transmittance and reflectance IR; 

Ca-rich matrix by transmittance and reflectance IR; (b) Kabardinka 2 ceramics: Ca-poor matrix by 

transmittance and reflectance IR; Ca-rich matrix by transmittance and reflectance IR; (c) Ceramics fired 

in the controlled reducing atmosphere: Ca-poor matrix by transmittance and reflectance IR. 

Figure 6-3. Comparison of SR-FIR absorption spectra, MIR specular reflectance and absorption spectra 

and NIR diffuse reflectance spectra of the representative samples for the different firing degrees 

excavated at (a) Ransyrt 1; (b) Kabardinka 2. In each IR range, the samples from both sites are ordered 

from the lower to higher firing degree. MIR data are taken from Park et al. [6]. 

Figure 6-4. NIR diffuse reflectance spectra of the selected samples representing various 

pyrometamorphic states. The order of the spectra for the graph from lower to higher firing state. (a) Ca-

poor and Ca-rich samples excavated at Ransyrt 1; (b) Ca-poor and Ca-rich samples excavated at 

Kabardinka 2; (c) Samples fired in the reducing atmosphere. 

Figure 6-5. (a) BSE image and (b) corresponding Raman spectra of the ceramic sherd excavated at 

Ransyrt 1 (Ran1_549); (c) Closed pores filled by aluminosilicate melts (1-3 in (a)) (H:hematite; 

qtz:quartz). 

Figure 6-6. Comparison of general morphological changes of representative samples according to 

estimated firing temperature, Ca presence, and atmospheric conditions: (a) BSE images (300µm x 

300µm); (b) Al distribution maps of together with Ca maps for Ca-rich matrix (300µm x 300µm); (c) 

Comparison of micromorphology (BSE) between ceramic sherd fired over 950 °C (estimated).  



viii 

 

Figure 6-7. Thermal decomposition of calcite: (a) FT-IR (transmittance) of the ceramic paste containing 

decomposed calcite grains; (b) FT-IR (reflectance) from different positions from the boundary through 

the whole calcite grain (c); (c) Ca, Mg distribution maps (700 µm x700 µm) and chemical compositional 

changes according to different positions from the boundary to the calcite core measured by SEM-WDS 

(beam size 10 µm, without CO2 composition). 

Figure 6-8. Average and standard deviation of sphericity 2 of pores and comparison between Euler 

number per unit area of the pores (A = 300x300 µm2) in average and sphericity of pores in average. 

Calculated from the pores (2D) present in cross thin sections of the samples from (a) Ransyrt 1, (b) 

Kabardinka 2. These parameters of four samples for each site (bigger maker with a boundary border) 

were compared to the reflectance Fourier-transform infrared spectroscopy (FT-IR) (aperture size: 70x70 

µm2, reference: silver mirror) [6]. 

Figure 6-9. Comparison of the pore topology between (a) 2D and (b) 3D images of three samples 

varying in the degree of pyrometamorphic degree/sintering [6]. Estimated firing temperature for A: 700–

850 °C, B: 700–850 °C and C: 950–1050 °C. The segmented pores show the difference of the firing 

degree between A and B more clearly. 

Figure 6-10. Comparison of sand size distribution calculated by (a) 2D images and (b) orientation of 

two-dimensional pores, (c) spatial distribution of the localized Euler number within a two dimensional 

unit area and (d) Euler number (average) derived from 2D images and that from 3D images (connectivity 

= 6). Samples (A, B, C) from the Figure 6-9. 

Figure 6-11. Relationship between the average of (a) sphericity 1 and sphericity 2 of closed pores and 

(b) surface area and volume relation of the closed pores and (c) the comparison of orientation degree ψ 

and the closed and open pores in average. All parameters derived from 3D scanning with the connectivity 

26. Samples (A, B, C) from the figure 6-9. 

Figure 6-12. (a) Cross section profile of the reflectance FT-IR (aperture size: 70x70 µm2, reference: 

silver mirror, dashed line in blue: quartz) [6] and corresponding BSE images for the left side (1), middle 

(2) and right (3) of the sample (Ran1_167_4); (b) Cross section profile of the Euler characteristic per 

unit area and related BSE images from the left side (a) through left middle (b) and right middle (c) to 

the right side (d) of the same sample in a same direction. Calculated from the two-dimensional area of 

300x300 µm2 on the cross thin section. 

Figure 6-13. Cross section of a slip ware: (a) FT-IR (transmittance) for the body and slip part; (b) FT-

IR (reflectance) across the cross section; (c) BSE images between the slip and body part and Fe element 

maps (c-1: 500µm x 500µm, c-2: 600µm x 600µm, c-3: 500µm x 500µm).  

Figure 6-14. (a) Comparison of the cross section with different color profiles of Ransyrt 1 ceramics: 

Ran1_KB3kc1; Ran1_dmp1. BSE images for the middle/side part as indicated by the number 1 and 2. 

(b) Comparison of the cross section with different color profiles of the samples excavated at Kabardinka 

2: Kab2_516_2; Kab2_483_3. BSE images for the middle/side part and FTIR reflectance spectra profile 

over the cross section taken along 3. The IR reflectance for the left side shows altered 



ix 

 

product/reconstructed clays.; (c) samples fired in the reducing atmosphere. The MIR graphs also show 

the spectra for quartz taken from quartz grains of the same sample for comparison. The Absorption and 

reflection spectra of of panel (c) for the reducing products are taken from Park et al. [6] (bt:biotite; 

qtz:quartz; Kfsp:K-feldspar). 

Figure 6-15. Morphological changes and new crystallization of ceramic composite materials under 

various firing conditions.  

Figure 6-16. Average temperature of representative ceramic sherds according to the color profile of the 

cross section: (a) Ransyrt 1; (b) Kabardinka 2; (c) Levinsadovka-Saf’janovo (R: controlled reducing 

firing).  

Figure 6-17. Comparison of the MIR absorbance band shifts of νas (Si-O) between 1030 and 1080 cm-1 

and δ (Si-O) between 450 and 500 cm-1. Major and minor band with bigger and smaller shape, 

respectively. Acquired from (a) the ceramics excavated at Ransyrt 1: Ca-poor; Ca-rich; (b) the ceramics 

found at Kabardinka 2: Ca-poor; Ca-rich; (c) the ceramics fired in the reducing atmosphere.  

Figure 6-18. Conversion factor, α acquired from XRD peak at (001), (110/020) and α based on the MIR 

major band shifts of νas (Si-O) and δ (Si-O) between 1030-1080 and 450-580 cm-1, accordingly. 

Comparison to the estimated average firing temperatures of the same samples [6]. Samples from (a) 

Ransyrt 1; (b) Kabardinka 2; (c) samples produced by the reduced firing.  

Figure 6-19. Reaction rate constant k according to the Avrami coefficient n=0.5 and n=1. Comparison 

between k calculated with the estimated average firing temperature for the isothermal run and k 

calculated with various constant heating rates for the selected ceramics excavated at (a) Ransyrt 1; (b) 

Kabardinka 2; (c) ceramics fired in the reducing atmospheric condition.  

Figure 6-20. Firing time (min)-temperature (K) relation in the form of ln (time)–T(K) in the isothermal 

conditions calculated by the Avrami-Errofe’ev based on XRD peak at (001), (110/020) for the selected 

samples excavated at (a) Ransyrt 1; (b) Kabardinka 2; (c) ceramics fired in the reducing atmosphere. 

Figure 6-21. Firing time-temperature relations in the non-isothermal conditions calculated by the 

Avrami-Errofe’ev based on XRD peak at (001), (110/020) for the selected samples from (a) Ransyrt 1; 

(b) Kabardinka 2; (c) ceramics fired in the reducing atmosphere.  

Figure 6-22. Temperature profile in the cross section by FDM of the heat conduction equation. Open 

porosity from [90]. Thermal diffusivity of illite=1. Heat flow from both boundaries with the constant 

heating rate=5K/min. quartz:illite=1:1.: (a) Comparison of the profile with various anisotropy factors. 

The unit length= 0.1mm for the total thickness of 10mm. Firing time of 120min.; (b) Comparison of the 

profile with various firing times and thickness. The unit length= 0.1mm. Anisotropy factor=0.5.; (c) 

Comparison of the profile with various firing times and thickness. The unit length= 0.1mm. Anisotropy 

factor=0.1. 

Figure 6-23. (a) Oxygen diffusion rate profile according to the cross section. By FDM for 1-D Fick’s 

second law for the open pores [90] and 5 mm-thickness. Comparison of the oxygen partial pressure by 

the different Thiele numbers (Φ up to 636 °C/ Φ after 838 °C) and firing times; (b) Comparison of the 



x 

 

oxygen diffusion rate of 0.01 by the Thiele number, 5 mm and 15 mm-thickness and various firing times. 

Oxygen boundary condition 0.21 atm. 

Figure 6-24. Combination of the localized oxygen concentration, temperature and porosity depending 

on the increasing firing temperature with the constant heating rate of 7K/min, anisotropy factor of 0.5. 

Boundary conditions for both sides are 0.21 atm. The total length and firing time are 10 mm and 90 min, 

accordingly. Comparison of the oxygen partial pressure by the different Thiele numbers (Φ up to 636 °C/ 

Φ after 838 °C): (a) Initial porosity for the large open pores of ca. 8% calculated from the direct 

observation with the unit size of 1.5-2µm; (b) Initial porosity for the large open pores of ca. 1% 

calculated from the direct observation with the unit size of 3.5-4µm. Pore data from Park et al. [90].    

 

Appendix 

Figure A1-1. Places of soil/rock sampling. 

Figure A3-1. Objects from the context no. 470. a) Carbonate aggregates (Ransyrt1_2015_470_x); b) 

Ceramic sherd deformed by the aggregates (Ransyrt1_2015_470_ceramic). 

Figure A3-2. Images from the polarized light microscopy between the aggregates and ceramic body 

deformed by aggregates. a) plane polarized light; b) cross polarized light. 

Figure A3-3. Secondary development of calcium carbonate between the quartz grain and clay minerals. 

Images from the polarized light microscopy in the ceramic body connected to the aggregates. a) plane 

polarized light; b) cross polarized light. 

Figure A3-4. XRD peaks of the calcium carbonate aggregates and the deformed ceramic body 

(Qtz:quartz; Clc: calcite). 

Figure A3-5. SEM images from the Ransyrt_2015_470_ceramic. a) fine granules in nm-sizes and 

lamellar formation of Ca (white parts) from the calcium carbonate aggregates; b) fine granules and their 

mixture with clays, calcite crystal development at the boundary with the ceramic body; c) calcite crystal 

(prism) in the µm-sized cracked calcite crystals, nm-sized calcite fine granules at the boundary; d) calcite 

crystals with cracks in the aggregates of µm-sized cracked crystals and nm-sized fine granules. 

Figure A3-6. SEM images rhombohedral-hexagonal shapes, small needle like shape, radiation form on 

the edges of the aggregate blocks (plants like). 

Figure A3-7. MgO-CaO-FeO composition in calcium carbonate crystals (≥10µm) (wt.%). 

Figure A3-8. Relationship between CaO and CO2 component (wt.%). 

Figure A3-9. Element distribution map: a) Ca; b) Mg; c) Si; d) BSE compression image. 

Figure A3-10. Raman spectra of calcite in various shapes. 
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Abstract 

 

The ceramic pottery production in the North Caucasus in the Bronze and Iron Age enables us to 

understand the production technology, technological development and transfer, craft system and 

mobility of the potters in the semi-sedentary and semi-mobile society. However, most prehistoric 

archaeological ceramics are heterogeneous composite materials containing various chemical and 

mineralogical compositions, firing states and alteration degrees, so that the ceramic production 

technology cannot be easily characterized and classified. Moreover, the amount of the excavated 

ceramic objects is huge, which causes additional difficulty for the analysis.  

In order to overcome these limitations, multiproxy- and multiscale-approach was employed step by step 

using polarization light microscopy (PM), scanning electron microscopy with energy/wavelength-

dispersive spectroscopy (SEM/SEM-EDS/WDS), X-ray powder diffraction (XRD), Fourier transform 

infrared spectroscopy (FTIR), synchrotron radiation Fourier transform infrared (SR-FTIR), Raman 

spectroscopy, three dimensional micro computed tomography (3D µ-CT) and image analysis. Firing 

conditions such as time, heating rate and temperature were concretized by the kinetics of the 

dehydroxylation of the clay mineral and finite different method (FDM) on the oxygen diffusion and heat 

transfer. This combined approach focused on resource gathering, firing and shaping techniques. The 

total 150 samples excavated at two archaeological sites in the North Caucasus, Ransyrt 1 (Middle/Late 

Bronze Age) and Kabardinka 2 (Late Bronze/Early Iron Age) were investigated. Samples of 21 ceramic 

sherds uncovered at Levinsadovka and Saf’janovo around the Sea of Azov, Russia (Late/Final Bronze 

Age) were compared to the mountain ceramics.  

According to the results, the mineralogy and shape parameters of sand grains and chemical composition 

of the ceramic matrix composed of grains smaller than 50 µm were able to distinguish the ceramic pastes 

from each site. This provides the potters’ practice of the main use of the local resource. The alignment 

of the large pore complex and grains enabled to identify the continuous or modular slab building by 

hands for the formation of the ceramic pottery body. The firing techniques were derived from the 

pyrometamorphic process under oxidizing and reducing conditions and corresponding firing behavior 

of the composite materials containing the common clay mineral, cis/trans-vacant (cv/tv) 1M illite. The 

complex combination of clay sintering, pore topology and its Euler characteristic and transformation of 

the indicator minerals such as calcite, hematite, spinel and gehlenite gave detailed clues for the firing 

temperature thresholds between under 675 and 1200 °C. In many ceramics fired in the oxidizing 

atmosphere, the reactivity between oxygen and Fe-, C- and S-bearing phases present in the ceramic 

pastes caused localization of the redox state within a sample, forming a color profile on the cross section 

of the object. In the middle of the cross section of those samples, earlier dehydroxylation of illite and 

corresponding total collapse occur due to the local reduction. The firing conditions derived from the 

dehydroxylation kinetics of illite and simulation of the oxygen diffusion and heat transfer indicate that 

the non-isothermal conditions with the high heating rate could produce the ceramic pottery with various 
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firing degrees within a few hours by the instant firing without a furnace. The firing practice at both sites 

were similar, however the firing temperatures of the Kabardinka 2 ceramics are distributed in the wider 

range than those of the Ransyrt 1 ones, which might be related to the longer history of the settlement at 

Kabardinka 2.      

According to the combination of the archaeometric results and archaeological contexts, the local ceramic 

pottery production technologies at both sites were driven by similar human practice and site-specific 

resource. Although the individual decision making in the pottery production contributed to the 

heterogeneity of the ceramics as well, the resource-driven local technological styles dominated the 

pottery production at the studied sites in the Bronze and Iron Age. This characterization will shed light 

on the understanding of the development and transfer of the production technology in the North 

Caucasus.    
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Abstract (in German) 

 

Die Keramik- und Keramikvesselproduktion im Nordkaukasus der Bronze- und Eisenzeit ermöglicht 

uns, die Produktionstechnologie, deren Entwicklung und Transfer der Technologie, Handwerk und 

Mobilität der Handwerker in einer Gesellschaft, wo eine kombinierte Form des mobilen und sesshaften 

Lebensstils existierte. Heterogene Komposite wie archäologische Keramikscherben beinhalten 

verschiedene chemische und mineralogische Zusammensetzungen, Feuerzustände und Alterationsgrade 

innerhalb einzelner Proben erschweren damit die spezifische Charakterisierung und davon abgeleitete 

Klassifikation von Keramikscherben durchgeführt werden können. Darüber hinaus wurden bei den 

meisten Ausgrabungen wurden große Mengen von Keramikobjekten gefunden, deren zahlreiche schwer 

einzuordnen und zu untersuchen sind.   

In diesem Projekt wurde Multiproxy- und Multiskalen-Herangehensweise verwendet, um diese 

Beschränkungen zu überwinden. Die integrative Probencharakterisierung wurde mit den folgenden 

Methoden durchgeführt: Polarisationsmikroskopie, Rasterelektronenmikroskopie mit wellenlängen- 

und energiedispersiver Röntgenspektroskopie, Röntgenpulverbeugung, Fourier-Transform-

Infrarotspektrskopie, Synchrotron-Fourier-Transform-Infrarotspektroskopie, Ramanspektroskopie, 3D 

Mikro-Computertomographie und Bilderkennung und -analyse. Brennbedingungen wie Dauer, 

Erwärmungsrate und Brenntemperatur wurden von der Kinetik der Dehydroxylation von Tonmineralen 

und Finite-Differenzen-Methoden für Sauerstoffdiffusion und Wärmeübertragung abgeleitet. Für die 

Charakterisierung der Produktionstechnologie, wurden Präparation von Keramikpasten, Brenntechnik 

und Formationstechnik intensiv untersucht. Die Proben von 150 Keramikscherben wurden an zwei 

archäologischen Plätzen im Nord Kaukasus (Russland) ausgegraben: Ransyrt 1 (Mitel/Spät-Bronzezeit) 

und Kabardinka 2 (Spät-Bronze- und Früh-Eisenzeit). Die Proben von 21 Keramikobjekten aus 

Levinsadovka and Saf’janovo am See von Azov, Russland (Spät/Final-Bronzezeit) wurden verglichen.  

Nach der Mineralogie und Formparameter der Sandkörner und der chemischen Zusammensetzung aller 

Körner, die kleiner als 50 µm sind, konnten die Keramikproben dem zuständigen archäologischen Platz 

zugeordnet werden. Die lokalen Töpfer hätten die Ressource in der nahen Umgebung ihrer Siedlung 

besorgt. Die Orientierung der Poren und Körner in den Keramikscherben weist darauf hin, dass die 

Struktur der Objekte durch kontinuierliche Bildung oder Montagen von funktionalen Platten mit den 

Händen gebildet wurde. Diese Formationstechnik ist bei den Scherben aus den beiden Siedlungen zu 

finden. Die Brenntechnik wurde durch den pyrometamorphischen Prozess vor allem, das Brennverhalten 

von cis/trans-vacant (cv/tv) 1M Illit, das gemeinsame Tonmineral der meisten Proben, in der Oxidation 

und Reduktion identifiziert. Die Kombination des Sinterprozesses von Illit, Porentopologie und deren 

Euler Nummer und Transformation der Indikatorminerale wie Kalzit, Hematit, Spinell und Gehlenit 

konnte Information über Brenntemperaturen von unter 675 bis 1200 °C vermitteln. Trotz der 

oxidierenden atmosphärischen Bedingung bei dem Brennvorgang, ist öfters zu sehen, dass die Reaktion 

zwischen Sauerstoff und Fe-, C- und S-Phasen in den Ressourcen die lokale Reduktion und Oxidation 
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innerhalb der Probe verursacht. Diese Lokalisierung des Zustandes der Oxidation und Reduktion 

erscheint als das Farbprofil in dem Querschnitt. Die frühe Dehydroxylation von Illit passiert in der Mitte 

des Querschnittes der Probe, wo die lokale Reduktion aktiv ist. Nach der Berechnung der 

Dehydroxylationskinetik für Illit bzw. der Simulation über die Wärmeübertragung der Keramik und 

Diffusion von Sauerstoff konnte das nicht-isothermische Temperaturbedingung mit dem hohen 

Erwärmungsrate mehrere unterschiedlich gebrannte Objekte in wenigen Stunden ermöglichen. Diese 

Technik ohne Brennofen oder ähnliche Struktur wurde an den beiden archäologischen Plätzen 

durchgeführt. Die längere Nutzung der Siedlung in Kabardinka 2 bezieht sich auf den breiteren Bereich 

für die Brenntemperaturen von den Scherben.   

Im Zusammenhang mit dem archäologischen Kontext ist die Keramikproduktionstechnologie an den 

beiden untersuchten Plätzen als ähnliche Praxis der Töpfer und lokale Ressource zu charakterisieren. 

Obwohl die individuellen Entscheidungen der Töpfer bei der Produktion zur Vielfalt der Eigenschaften 

der Keramik beitrugen, beherrschte der lokale technologische Stil, der von den lokalen Ressourcen 

angetrieben wurde die Keramikproduktion an Ransyrt 1 und Kabardinka 2. Diese Charakterisierung des 

lokalen technologischen Stiles in der Keramikproduktion wird zur Verständnis über die Entwicklung 

der Technologie und deren Transfer über Nordkaukasus weiter eine große Rolle spielen.  
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 Ceramic Pottery Production in the North Caucasus in the Bronze Age and the Iron Age  

Chapter 1. Introduction 

The archaeological ceramics are one of the most common objects found at the excavations of the 

prehistoric and historic sites and the ceramic pottery production technology is one of the most important 

topics in the archaeological and archaeological scientific studies. Based on the occurrence, frequency at 

the excavations, ubiquitous characteristics in the daily and specific use and accessibility to the users, 

production technology of pottery would have influenced the life of the prehistoric and historic people, 

their knowledge, knowledge production. Therefore, the identification of ceramic production technology 

is considered as the main issue for understanding of ancient material production techniques, technology 

transfer, formation of the regional technological styles. 

 

1.1. Purpose of the study:  

Direct measurements based multiproxy and multiscale archaeometric approach for the 

characterization of pottery production technology in the North Caucasus (Russia, Bronze/Iron 

Age) 

 

The main purpose of this doctoral study is to identify the production technology of the ceramic pottery 

in the North Caucasus during the Late Bronze- and the Early Iron Age (1400 BC. – 800/700 BC.). The 

main objects are the ceramic sherds excavated at the archaeological settlement sites at Ransyrt 1 and 

Kabardinka 2. The potters might have followed five steps of the production: preparation, shaping, drying, 

firing and post-firing. The identification of technical elements imprinted by potters’ action during each 

step will be the key to characterize employed technologies and technological styles composed of human 

practice for production. In this study, three main steps of production, preparation of the ceramic pastes, 

shaping and firing techniques will be focused intensively by a multiproxy and multiscale approach for 

the samples representing for the settlement ceramics of the archaeological site. These topics decide local 

technological styles together with the social system. In the prehistoric craft system, this firing technology 

was transferred through practice in small scale interpersonal relations [1] and characteristic ways of 

controlling fire in various conditions designated local technological styles [2-4]. The serial combination 

of various methods such as polarized light microscopy, Scanning electron microscopy with 

energy/wavelength-dispersive X-ray spectroscopy (SEM-EDS/WDS), X-ray powder diffraction (XRD) 

and Fourier-transform infrared spectroscopy (FT-IR, absorbance, reflectance)/Synchrotron (SR)-FT-IR 

(absorbance), Raman spectroscopy, 3D µ-computed tomography (3D µ-CT) coupled with image 

analysis covering various observation scales is expected to figure out the local technological styles 

derived from the human and nature induced factors in the ceramics with the proper sequence. In direct 

measurements of the original samples, the heterogeneity in the mineralogical and chemical composition 

and thermal property of most prehistoric ceramics make it difficult to identify production technologies 

and technological styles. For example, common clay minerals such as illite has polytypes with 

heterogeneous thermal decomposition procedure in different temperatures under heating [5-6]. Various 
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sized sand grains composed of different minerals in the ceramics will interrupt the precise interpretation 

of the firing state. Furthermore, most archaeological sites yield numerous ceramic sherds which carry 

different technological styles within a same site. Previous researches studying production technologies 

of archaeological ceramics have focused either on the chemical composition in a macroscale or firing 

behaviors of a few specific mineral phases or on the experimental approach, producing of the replicates 

of the original samples. However, despite of the in-depth studies focusing on the identification of the 

ceramic pastes and thermal deformation and transformation of the archaeological ceramics, the various 

kinds of the heterogeneity of many original objects are not always easy to reproduce in the laboratory 

based experiments, besides of the precise identification of the elemental and structural components. 

Moreover, these ceramic materials deliver complex information about the material production 

techniques in various observation scales, which is not easy to interconnect for the archaeological 

interpretation. 

In order to overcome these issues, samples will be measured for a macroscale and categorized into 

corresponding data groups. Regarding the high number of consisting chemical elements and mineral and 

mineral like phases, the dominant phase or component will be identified for the classification. From the 

groups at each measurement step, representative samples will be selected for the further measurement 

with a higher resolution. With this approach, the data representing various resources and firing 

conditions can be gathered efficiently from numerous samples. Moreover, average firing conditions 

estimated from macroscale observations as well as more precise pyrometamorphic state within a sample 

from a meso-/microscale can be compared to each other, so that the more precise categorization and 

interpretation are possible. Especially, firing behavior of the composite materials will be characterized 

from the level of the mobility of chemical elements up to macroscale. The possible firing conditions will 

be generally suggested from calculation of dehydroxylation kinetics of the identified clay mineral, 

oxygen diffusion and heat transfer rate within porous ceramics. The archaeologically important 

parameters such as firing time and temperature, heating rate and reduction-oxidation will be derived. 

Both 2D and 3D images and their parameterization of highly heterogeneous archaeological ceramics 

will provide visualized and numeric evidence in various scales about prehistoric ceramic production 

technologies focusing on resource gathering, firing degree by the quantitative evaluation and shaping 

techniques qualitatively.  

 

1.2. Production technology as human practice  

At the level of actual practice, technologies are always organized through techniques of the body and 

the form, use and function of a technology cannot be separated from the practices [7]. In order to figure 

out distribution of techniques and technical groups in the Late Bronze- and Early Iron Age, I choose to 

employ a theory of practice which can connect ceramic pottery manufacture to human practice. This 

theory focuses on how humans, with their diverse motives and intentions, make and transform the world 

in which they live. Imitation, repetition, imprinting, training, and sanctions make the human body the 
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crucial intermediary in the transmission, acquisition, and reproduction of social practices [8]. Habitus, 

one of the key concepts from the Bourdieu’s approach to practices, is a generative principle, allowing 

for creativity and improvisation [9] and agency is denoted for an actor choosing to act. According to 

Bourdieu, technologies that involve the human body are essentially subsets of habitus, organized forms 

of movement [7]. It has been one of the common characteristics of technologies in the industry of non-

automated systems. The practical sense of technologies carries the social history from small scale 

interpersonal relations in which technology was once embedded, and the relations in which the 

experiencing individual is embedded [7,10]. This is a useful approach of viewing the process by which 

patterns in ceramic pottery production are assimilated and reproduced, particularly in the case of 

prehistoric societies where craft learning generally takes place through observation and emulation 

without use of a formally articulated set of rules [11]. This dynamic process enables to explain how 

distribution of production technologies occurred in specific social relations and contexts. In addition, 

ethnological elements which are used for interpretation of results about the relationship between 

technological styles of archaeological potteries and potters in various regional and ethnic groups by 

ethnoarchaeologists, will be considered for my study, too. The specific regional social context is 

reconstructed using identified settlement types and regional archaeological cultures in the Late Bronze- 

and the Early Iron Age, in order to offer regional social and cultural background of development of 

technology, technological practice and technical groups. 

 

1.3. History of the ceramic archaeometry 

Many previous studies employed experimental approaches, such as firing soils or clay minerals acquired 

at sites. The firing products from such experiments were compared to the excavated ceramics using 

XRD, differential thermal analysis (DTA)/thermogravimetric analysis (TG), X-ray fluorescence (XRF), 

FT-IR, SEM or transmission electron microscopy (TEM) coupled with EDS [12-22]. Al-K edge X-ray 

absorption near edge structure (XANES) was employed to explain changes in structural order and firing 

products of kaolinite based clay [23]. The results were often compared to the micromorphological 

changes in BSE images. Sintering process of clay minerals in the ancient ceramics could be observed 

by atomic force microscopy (AFM) and piezo response-force-microscopy instrumentation [24]. Besides, 

Raman spectroscopy and Fe-K edge XANES are employed to determine oxidation states of iron [25-26] 

Additionally, Mössbauer shed light on the oxidation state of Fe ions in silicates indicating different 

degree of firing temperature and f(O2) [27]. Parameters in physical or mechanical properties such as 

bending strength, porosity and thermal conductivity are changed according to the firing temperature [28-

30]. Changes in the magnetic susceptibility which could be related with mobility of Fe ions, were used 

for the estimation of the firing temperature [31]. Spectrocolorimetric analysis showing the relationship 

between reflectance spectra and CIE L*a*b* colorimetric measurements confirmed with TEM-EDX 

provides information on iron compounds developed in various firing conditions including combined 

firing atmosphere and temperature [32]. The changes in the colors of the various parts of the ceramics 
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during firing were investigated, in terms of the formation and transformation of Fe-bearing minerals 

such as hematite and magnetite according to the temperature and oxygen partial pressure [27,33-34]. 

The black coring effect is one of the phenomena closely related to oxidation-reduction states in ceramics 

during firing [35-37]. Because most ceramic pastes gathered from sediments contain Fe- and C-bearing 

phases, their thermally induced reactivity to O together with H2O causes the complex reaction chains of 

the electronic charge transfer and gasification in the ceramic matrix composed of the ferrosiliceous 

minerals, iron oxides/hydroxides and carbonates, micro-organics, S-bearing phases [38-41]. The 

localized oxygen partial pressure from this interaction contributes to the formation of the color profile 

within the cross section such as reddish brown in the sides and dark brown in the middle of the object. 

Besides, the firing conditions or the thermal behavior of the clay based ceramics were suggested from 

the heat transfer simulations using finite element method using the material properties from experiments 

[42-43].  

In addition to the analytical instruments from the fundamental to the advanced level, there has been a 

rapidly growing demand for the application of image analysis and image processing in the past twenty 

years [44-45]. Above all, the application of high resolution X-ray CT clarified the internal structure of 

fossils, meteorite, textural differences in magmatic, metamorphic and sedimentary rocks and related 

soils as well as products of sintering procedures [46-51]. This technique is supported by the mass data 

processing accompanied by the progress in the central processing unit (CPU) and graphics processing 

unit (GPU) and the data transport system. This allowed the image visualization and segmentation as 

well as the complex calculation of the geometry of the studied objects such as curvatures of powder 

grains and interstitial pore topology. Advanced image acquisition and analysis have a huge research 

potential in archaeology and archaeological sciences. Thanks to the mobility of digital data, researchers 

can perform the analysis in relatively political and geographical boundary free conditions without the 

necessity to transport the fragile archaeological objects over long distance and time.  

In previous studies, polarized light microscopic images or scanned images of cross thin sections of 

ceramics were used for the identification of various technical aspects in pottery production, such as 

ceramic pastes, shaping techniques [52-60]. Alignments and their distributions of grains or pores with 

specific angles and layout provided clues about the shaping techniques such as coiling, molding or wheel 

shaping/throwing making use of rotational kinetic energy [59-63]. The 2D image analysis of cross thin 

sections and 3D analysis using X-ray radiography or 3D µ-CT were employed to characterize the grain 

size and pore size distribution and to prove specific temper materials in ceramics such as organic 

materials or heavy minerals [56-58,64-65]. Back scattered electron (BSE) images acquired by SEM have 

provided classical evidence about the temperature dependence of the pore morphology of various 

ceramics [66-67]. The porosity of the ceramics can be supplemented by the Brunauer–Emmett–Teller 

(BET) method or mercury intrusion porosimetry (MIP) [68-69]. 

However, the image analysis of most prehistoric ceramics is still not easy to employ for the study of 

pottery production technologies, because archaeological ceramics are composed of various 
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heterogeneous mineral phases and chemical compositions, various alteration degrees and firing states 

within a single sample [70-73]. These properties make it difficult to measure and segment, reconstruct 

and analyze the region of interest (ROI), the target area of the measurement by the microscopy and 3D 

µ-CT, from the object in 2D and 3D and this time consuming process is almost impossible to be 

employed for the whole archaeological ceramics which are found in massive amounts at each 

archaeological sites. Nevertheless, the research potential of image analysis in archaeological sciences is 

very large. Various structural elements and components and their shapes and layouts within a ceramic 

sherd can be directly measured and linked to the various physico–chemical and chemical–mineralogical 

properties reflecting production site, firing states and forming techniques. The identified techniques will 

contribute to the reconstruction of prehistoric regional crafts and their technological styles as well [74-

77]. 
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Chapter 2. Archaeological sites 

 

2.1. Research history in the North Caucasus (Bronze/Iron Age) 

Caucasus is one of the culturally and geographically most complex regions of the Eurasian continent. 

Since it locates in the communication and trade routes between the north, south, east and west [1], this 

region has been influenced by different cultural groups from the outside. The main region of this study, 

the Kislovodsk basin is also one of such strategic points which lies on a route via the 2242 m high 

Gumbaši pass across the Upper Kuban River towards the Black Sea [2].  

Since last decades archaeological excavations and surveys have been carried out intensively in this basin. 

In the numerous finds from these expeditions, pottery takes an important role playing a marker of 

identity, tradition, utility and eating habits. In the meanwhile, production technology integrated into the 

pottery production is less studied. It has the potential to give insight into various relations between 

human practice and distribution of material culture [3]. As an important parameter for this relationship, 

technical elements for the production are often termed as technological style [4-6]. Recent research 

shows that, in certain contexts, decorative style may be less indicative of human practice than are 

technological traditions [7-9]. According to ethnoarchaeologists, the relationship between diversity of 

production technology and social contexts appears more complex due to the influence of local 

communities, social boundaries, tribal entities or mobility patterns on the pottery production [10]. 

The archaeological research in the North Caucasus has concentrated traditionally on the uncovering of 

graves, not so many settlements are known in this region. [11]. However, Kislovodsk is archaeologically 

one of the specific sites where systematic landscape archaeological investigations using GIS 

(Geographic Information System) technologies have been carried out [12], with an investigation of the 

settlements and spatial structures under a diachronic perspective. Under the conduction of the Institute 

of Archaeology of the Russian Academy of Sciences, more than 400 sites have been discovered in the 

recent years in the course of surveys from 2004 to 2010 [13]. Since 2011 archaeological excavations 

were carried out in the new type of grave fields and settlement structures identified by aerial photographs. 

Geological mapping was carried for the information on the location of igneous and metamorphic rocks 

in the central Caucasian highlands and other sediment types and metal sources. Soil samples were 

studied by phosphate, magnetic, chemical and micro-bacteriological analysis, too [14]. These researches 

including archaeological expeditions were carried out the Project Kislovodsk, North Caucasus, a joint 

project of the Institute of Archaeology, Russian Academy of Sciences (D.S. Korobov), the Eurasian 

Department of the Deutsches Archäologisches Institut (DAI, S. Reinhold) and GUP Nasledie, the 

Ministry of Culture of the Stavropol Region, Russia (A.B. Belinsky). According to the chronology in 

the North Caucasus suggested by Reinhold, the Middle Bronze Age is equivalent to the North Caucasus 

Culture, the Late Bronze Age to Koban A and the Early Iron Age to Koban B/C [15]. The Late Bronze 

Age is represented by the settlement sites at Kabardinka. The excavation at Ransyrt in 2015 which is 

date back to 1700 BC by now, shows characteristics not only of the Late Bronze Age but of the Middle 
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Bronze Age, too. However, the question whether these settlements were occupied permanently or 

seasonally still remains unsolved. 

Parallel to the excavations and surveys by the Kislovodsk Project, the archaeological, morphological 

typology and decoration of the ceramic finds from the Late Bronze – and the Early Iron Age in the whole 

Caucasus were investigated as a cultural and regional marker. In general, 16 types of vessels from 

various archaeological contexts (settlements, graves and grave fields, depots, surveys) are defined with 

regard to shape and size, informing regional and interregional tradition of ceramic production in the 

Caucasus [15]. Three general types in decoration motives (band, metope, plastic relief) normally with 

20 - 30 variations occur at various contexts, too. Especially, settlements at Kabardinka 2 yield most of 

those motives. From the macroscopic observation specific evidence in working techniques is offered. 

Trace of a potter’s wheel (wheel-shaped) often appears in the southern part of the Caucasian Mountains 

like South Ossetia and Abkhazia during the Late Bronze- and the Early Iron Age, while the most vessels 

from the northern part seem to be hand-made. Further, forming of the inner surface of the ceramics with 

textiles, the general firing temperature in a lower range, polishing for the surface treatment or use of 

organic temper materials at the archaeological sites were reported.  

 

2.2. Cultural historical background of the archaeological materials 

The time span of this doctoral research lies mainly between the Late Bronze – and the Early Iron Age, 

according to the regional chronology, from Koban A to Koban C1/C2 [15-16] (Figure 2-1). In this time 

span, regional archaeological finds consisting of accessories, weapons and ceramic/metal vessels appear 

in the various contexts of the Kislovodsk basin, indicating rapid economic development.  

In the Late Bronze Age (Koban A) there was a fundamental change in groups of the whole Caucasus 

and development of archaeological unities, above all the Koban Culture in the central Mountains [17], 

because pre-existing Caucasian mobile groups became sedentary and were split into smaller regional 

units formatting of regional identities in the process [15]. This is indicated by changes in building layouts 

and construction materials for a permanent habitation [16,18]. This change also appears in the regional 

archaeological culture presented by new types of material objects, changed burial customs and 

expansion of metallurgy with tin-bronze. A clear increase in the number of settlements based on small 

villages, graves and grave fields [19] could stimulate development of social networks and -interaction 

within smaller regional groups. This change would cause to various village-based development and 

transfer of technological practice and style in pottery making. Identified building structures (line-form, 

oval/ring-form layout, symmetrical ground plan which looks like a closed ring, combination of 

symmetrical layout and curved line-form or wall arrangement) from the North Caucasus in the Late 

Bronze Age discovered by aerial photos [16] would provide more detailed indication of social relations 

inter- and intra-regional groups. The settlements at Kabardinka 2 shows various space concepts for a 

house and layout, for example, 1-3 rooms in a quadratic ground plan, a monumental entrance, a big 

room with a large central post or a symmetrical layout [2,16] providing possible patterns of social 
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contacts between inhabitants. At Ransyrt related to the Middle and Late Bronze Age, a stone architecture, 

probably an ancient sanctuary due to huge amounts of finds from the expedition in 2015, would offer 

chances for social contacts and networks in the region. The location of this site can be interpreted as an 

important trade route across the mountains, too [15].  

In the Early Iron Age (Koban B-C) the characteristics of the Koban culture from the Late Bronze Age 

appear further in the settlement pattern, social organization or complex metal handicraft [20]. The 

motives from the period of Koban B1 occur in every settlement from this period [15]. At Verchnaja-

Podkumok, a pit type settlement which was common in the Early Iron Age is identified by the 

stratigraphy, indicating different type of possible social relations of the inhabitants. In spite of these 

phases for development of permanent settlements in various regions, changes of the settlement area and 

cultural space are still observed in the Late Bronze- and the Early Iron Age [15], which influences on 

variability of production technology and material culture. 

 

Table 2-1. Chronology of the North Caucasus (according to Reinhold et al. [15]). 

 

2.3. The main archaeological sites of this study: Ransyrt 1 and Kabardinka 2   

Figure 2-1 describes the archaeological sites of this study. Ransyrt 1 is located on the plateau with the 

height of 1850 m above sea level in Karachay-Cherkess Republic of the Russian Federation 

(43°50'29.7"N, 42°18'10.3"E). Kabardinka 2 lies on the lower plateau with 1400 m a.s.l. in Stavropol 

Krai of the Russian Federation (43°49'40.9"N, 42°42'57.4"E). The objects were excavated by the joint 

project of German Archaeological Institute (S. Reinhold), the Institute of Archaeology, Russian 

Academy of Sciences (D.S. Korobov) and GUP Nasledie, heritage organization in Stavropol, Russia 

(A.B. Belinsky) between 2006-2008 and 2013-2015. According to the local chronology defined by the 

construction phases and 14C data, Ransyrt 1 is dated to 1800-1500 BC, the Middle Bronze Age (MBA) 

to the Late Bronze Age (LBA) and Kabardinka 2 to 1600-800 BC, which belong to the LBA and Early 

Iron Age (EIA) [16]. Especially Kabardinka 2 has relatively longer occupation history proved by two 

different construction phases, i.e., a linear phase between 1600-1200 BC and a symmetric phase between 

1300-800 BC. In this time period, Koban culture was known in the North Caucasus region7. Geologically, 

~------------~-------------, 
1 _ _ _ Main sites _ _ _ _ 1 _ _ _ Comparison ____ 1 

Time (Be) North Caucasus Ransyrt 1 Kabardinka 2 Levinsadovka-Saf' janovo 

- 600 
Late Koban Culture / Scythian KoD 

- 800 
Early lron Age 11.0l. 

- 1000 ----
- 1200 

Late Bronze Age 11.0A 

- 1400 - -- --- - - - --- ---- 1600 

- 1800 Middle Bronze Age 

Ko: Koban Culture (in the North Caucasus) 



14 

 

Chapter 2  Archaeological sites 

Ransyrt 1 bedrock is composed of dolomite, while the bedrock of Kabardinka 2 is mainly composed of 

calcite. Soil development of Kabardinka 2 is more progressed than Ransyrt 1. 

 

Figure 2-1. Archaeological sites in North Caucasus and in the Sea of Azov: (a) Ransyrt 1; (b) Kabardinka 2; (c1) 

Levinsadovka (Mius peninsular); (c2) Saf’janovo (Lower Don) (maps: created by QGIS 2.18.0 with open layers 

from OSM/Stamen, map tiles by Stamen Design, under CC BY 3.0. data by OpenStreetMap, under ODbL 

(maps.stamen.com); photos: Reinhold et al. [16]). 

 

2.4. The sites for the comparison: Levinsadovka and Saf’janovo  

These mountain ceramics were compared to the other archaeological ceramics from Levinsadovka 

(47°10´9.9“N, 38°30.17“E) and Saf’janovo (47°15´59.7“N, 39°26´30.1“E), located on the coast of Mius 

peninsular and on the lower area of the Don river. They were excavated by another joint project of the 

German Archaeological Institute, Don-Archaeological Society (Rostov on Don) and Institute of 

Archaeology, Russian Academy of Sciences. The site at Levinsadovka on the Mius peninsular was 

occupied by the Late Srubnaja Culture (LBA) and that at Saf’janovo by Kobjakovo Culture (Final 

Bronze Age, FBA) [21]. Corresponding to the radio carbon data, the both cultures were overlapping 

between 1600-800 BC. 
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Chapter 3. Materials and methods 

 

3.1. Materials 

The archeological survey and excavations at Ransyrt 1 in 2013 and 2015 yielded 50,000-60,000 ceramic 

sherds and 10,000 ceramics were reported from the excavations at Kabardinka 2 in 2007 and 2008. 

These sherds were classified by optical investigations according to the color, texture, size and minerals. 

Finally, 80 samples for Ransyrt 1 and 70 for Kabardinka 2 were selected respectively. They represent 

ceramics with a different texture, color, cross section profile, size and minerals exposed to the surface 

qualitatively in macroscale. In order to compare to the mountain ceramics, 21 ceramic samples from 

Levinsadovka and Saf’janovo in the coast of Sea of Azov were investigated as well. 

 

3.2. Methods: General description 

In order to clarify the resource gathering strategy, firing and shaping techniques in the ceramic pottery 

production at each site, samples were analyzed by various instruments and methods according to the 

purpose of each topic. As heterogenous composite material, archaeological ceramics contain various 

structural and compositional elements. This makes it difficult to determine and to measure the proper 

elements according to the study. Above all, most ceramics are sampled and investigated based on the 

huge amounts of the excavated sherds, in order to answer the socio-technical and socio-economic 

questions about the previous societies. From these reasons, this study employed multiproxy and 

multiscale approach combining step-by-step, scale-up procedure and analysis in various observation 

scales for the topics (Figure 3-1).  

Figure 3-1. Example of a ceramic sherd with the sample name and the scheme of the multiproxy- and multiscale 

approach of this project (photo by the author). 

 

In general, polarized light microscopy (PM), Scanning electron microscopy with wavelength-dispersive 
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spectroscopy (FTIR, absorbance and reflectance), Synchrotron (SR)-FTIR (absorbance) and image 

analysis using PM and three dimensional micro computed tomography (3D µ-CT) were employed for 

the characterization of the ceramic pastes. Shaping techniques were studied mainly by PM and 3D µ-

CT, focusing on the inner structure formation. Firing techniques were investigated by the combination 

of SEM/SEM-Maps, XRD, FTIR/SR-FTIR (absorbance and reflectance) and Raman spectroscopy, 

image analysis using PM and 3D µ-CT.  

In this chapter, general features and working principles of each analytical instrument are briefly 

presented. The details of the measurements for this project follow in the second part.    

 

3.2.1. Polarization light microscopy (PM) 

By PM on the polished thin section, mineralogy of grains and size distribution of ceramic pastes upon 

firing can be estimated. Textural changes of pastes indicate the degree of water loss, deformation, shapes 

and orientation of pores and orientation of temper materials, distribution of density of the ceramic paste. 

Optical characteristics such as interference color and pleochroism, light refraction, double refraction and 

extinction positions in birefringent crystal sections are necessary to identify and distinguish various 

phases within ceramics. This instrument is employed for every subtopic in this study to get basic 

information.  

 

3.2.2. Scanning electron microscopy with energy/wavelength-dispersive spectroscopy (SEM/SEM-

EDS/WDS)  

SEM provides information about surface topography, crystalline structure, chemical composition and 

electrical behavior. The electrons penetrate the specimen in a teardrop-shaped volume whose overall 

dimensions are determined by the energy of the electron beam, the atomic masses of elements in the 

specimen and the angle at which the electron beam hits the specimen (Figure 3-2) [1]. The penetration 

depth increases with higher electron-beam energy, 

incidence angle and lighter atomic mass. From the 

electrons produced by the interaction of the electron 

beam with the specimen, secondary electrons and 

backscattered electrons in various signals from the 

specimen are mostly collected for imaging. 

 

 

 

 

 

Figure 3-2. Interaction of highly energetic electrons 

(electron beam) with specimen (SE: secondary electron; 

BSE: back scattered electron; CL: cathodoluminescence).  
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very shallow, near-surface layer of material and the signal comes from an area about the size of the 

electron probe. Backscattered electron (BSE) are those incident electrons that approach the nucleus of 

an atom sufficiently closely to be scattered through a large angle and reemerge from the surface. In BSE, 

elements of higher atomic mass give brighter contrast indicating compositional information. 

In the ceramic research, detailed empirical knowledge on the behavior of materials of the potter and 

control of firing are acquired by the micro-mineralogy and morphology of the grains and pores in a high 

spatial resolution of BSE images. Chemical composition and its exchange between different phases in 

the samples can be measured semi-quantitatively/quantitatively for the specific points in the micrometer 

dimension by EDS/WDS. Other parameters imprinted by pyrotechnical practice are to extract from 

mineralogical reactions and morphological observations as well. 

 

3.2.3. X-ray powder diffraction (XRD) 

X-ray diffraction is the elastic scattering of x-ray photons by atoms in a periodic lattice [2]. The scattered 

monochromatic x-rays that are in phase give constructive interference. The Bragg's law allows to derive 

lattice spacings using x-rays by crystal planes [3-4], 

                                                                           nλ=2dsinθ                                                                 (3-1) 

where n is an integer explaining the order of reflection, λ is the wavelength of X-rays, d is the 

characteristic spacing between the crystal planes of a given specimen and θ is the angle between the 

incident beam and the normal to the reflecting lattice plane (Figure 3-3). Using x-ray diffraction studies, 

the structures of crystals and molecules are often being identified.  

 

 

 

 

Figure 3-3. Bragg's law. 

 

 

3.2.4. Fourier transform infrared spectroscopy (FTIR), synchrotron radiation Fourier transform 

infrared (SR-FTIR) 

IR spectroscopy is an important and popular tool for structural clarification and compound identification 

in the sample and is even a common spectroscopic technique used for quantitative determination of 

compounds in mixtures. 

In polyatomic molecules, vibrations store nearly all of the chemically available energy. The total number 

of those coordinates is 3Natom, for motion along the three Cartesian coordinates of each of the Natom atoms 

in the molecule, translations, rotations, and vibrations [5]. Three translational coordinates account for 

motion of the center of mass along x,y,z and three rotational coordinates for θ and ф to specify the 

orientation of any given bond axis and a third angle of rotation about that bond if the molecule is 

nonlinear. The other coordinates of 3Natom-6 are vibrations (Figure 3-4). Corresponding energy from the 

absorbed infrared radiation is converted into different types of motions. However, the individual 
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vibrational motion is usually accompanied by other rotational motions. These combinations lead to the 

absorption bands, not the discrete lines, commonly observed in the middle IR regions.  

 

 

Figure 3-4. Normal modes of vibration of 

a tetrahedral TO4 group. ν1 and ν3, 

represent the symmetric and asymmetric 

stretching modes, respectively, ν2 and ν4 

the corresponding bending vibrations. 

 

 

Figure 3-5 describes the principle of the specular reflection and transmission. Transmittance is the ratio 

of radiant power transmitted by the sample (I) to the radiant power incident on the sample (Io). 

Absorbance is the logarithm to the base 10 of the reciprocal of the transmittance (T), A=log(T-1) = -

log(I/Io). Transmittance ranges from 0 to 100% Z whereas absorbance ranges from infinity to zero. 

Optical reflection spectroscopy in the IR permits in situ applications, and result in quantitative and 

structural information on a molecular level. There is a wide range of different spectroscopic reflection 

techniques distinguishing internal (total) and external reflection: Attenuated total reflection/internal 

reflection spectroscopy (ATR), diffuse reflectance, specular reflection spectroscopy (SRS), reflection 

absorption spectroscopy (RAS). 

 

 

 

 

Figure 3-5. Specular reflection and transmission [6]. The 

angles of incidence (i), reflection (r) and refraction (t) are 

denoted by θi, θr, θt, respectively. The corresponding 

electric field components are denoted by E. They are split 

into orthogonal portions. One parallel to the plane of 

incidence (x, z-plane) and the other perpendicular to this 

plane (parallel to y-axis). Accordingly, electric fields are 

referred to as parallel and perpendicular polarized n1, n2, 

κ1, κ2 denote the refractive and absorption indices in the 

two media.  

 

Synchrotron-radiation (SR) enables the higher spectral, spatial resolution and higher intensity in mid-

Infrared (MIR) and far-Infrared (FIR)/THz than other sources. The IRIS beamline at Bessy II, Helmholtz 

Zentrum Berlin (HZB) uses radiation from the homogenous magnetic field of the dipole and its optical 

layout [7-8]. The energy range lies between 2 and 10,000 cm-1 and its resolution is 0.125 cm-1. The beam 

polarization is linearly horizontal/vertical and circularly left- and right-handed.  

 

3.2.5. Raman spectroscopy 

Raman spectroscopy provides information about chemical structure, phase and polymorphism, 

crystallinity and molecular interactions. Raman techniques uses a molecule scattering by incident light 

from a high intensity laser light source, which is called Raman scattering (Figure 3-6). This is different 

from Rayleigh scattering containing same wavelength. This measurement has been used for the detection 

and characterization of the vitreous phase. 

\ 

1 
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Figure 3-6. Energy-level diagram showing the 

states involved in Raman spectra. 
 

 

3.2.6. Three dimensional micro computed tomography (3D µ-CT) 

CT provides nondestructive three-dimensional visualization and characterization, creating images that 

map the variation of X-ray attenuation within objects, which relates closely to density (Figure 3-7). 

Because density transitions usually correspond to boundaries between materials or phases, these data 

are often straightforward [10-11]. The important variables in CT are the size of the focal spot, the 

spectrum of X-ray energies and the X-ray intensity. The focal spot size defines the potential spatial 

resolution by determining the number of possible source-detector paths. The energy spectrum defines 

the penetrative ability of the X-rays. The X-ray intensity directly affects the signal-to-noise ratio and 

thus image clarity. Higher intensities improve the underlying counting statistics, but often require a 

larger focal spot.  

Detectors for CT influence image quality through their size and quantity, and their efficiency in detecting 

the energy spectrum generated by the source. In the acquisition of CT data, calibrations are necessary 

to establish the characteristics of the X-ray signal as read by the detectors under scanning conditions, 

and to reduce geometrical uncertainties. Reconstruction converts sonograms from each acquisition angle 

into stacks of two-dimensional slice images. 

 

 

 

 

 

 

Figure 3-7. Schematic diagram of a typical lab-based micro 

CT setup with a conical X-ray beam which allows geometric 

magnification. 

 

3.3. Methods in this study 

3.3.1. Identification of the ceramic pastes 

The mineralogical composition of grains in various sizes within the ceramic pastes was investigated by 

various analytical methods such as polarized light microscopy, XRD, SEM-EDS/WDS. First, XRD 

patterns of the whole 158 samples were collected by the diffractometer, Empyrean by PANalytical in 
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the measuring conditions of Cu Kα radiation (λ=1.542 Å), 40 kV, 40 mA, 2θ range between 3-60 °, 

0.013 ° for the 2θ step size and 50 s/step in the rotating mode. The samples were pulverized in a Tungsten 

mill for 4 minutes after the removal of the altered surface layer and measured without pre-treatment so 

that the specific peaks from heated clay minerals during ceramic firing can be distinguished from the 

possible regenerated or newly intruded clays in ceramics. Same samples were prepared for thin cross 

section with the thickness of 30-35 µm for the polarized light microscopy, too. According to the XRD 

and petrography results, polished thin sections of 52 representative samples coated with carbon were 

further investigated by Field emission scanning electron microscope by Zeiss SUPRATM 40 VP Ultra 

(thermal field emission type) with acceleration voltage 10-15 kV and Oxford Instruments EDX-System 

to identify minerals. BSE images were taken with an aperture size of 120 µm. For the supplement, SEM-

EDS, JEOL JXA 8200 Superprobe with 15 kV acceleration voltage were employed, too.  

In order to identify the dominant clay mineral in the original ceramic pastes, FTIR transmittance 

measurements (Paragon 1000 PC by Perkin Elmer) were performed for supporting XRD data from above. 

34 samples which contain less deformed structures were selected from 158 samples. 2-4 mg powder 

from each sample was mixed with KBr, pelletized and dried at 170 °C for 60 hours, in order to reduce 

the water amount adsorbed to pastes. After the dehydration, the samples were measured with 128 scans 

and 2 cm-1 spectral resolution between 450 and 4000 cm-1. Due to the higher noise ratio in 3000-4000 

cm-1, it was necessary to apply the Savitzky-Golay filter with number of 13 points, in order to show the 

main clay phases clearly.  

FIR spectra were acquired using infrared synchrotron radiation from the IRIS beamline [8,12] at the 

third-generation electron storage ring BESSY II of the Helmholtz-Zentrum Berlin and a vacuum 

Fourier-Transform spectrometer Bruker 70/v and a liquid helium cooled Si-bolometer as detector. To 

measure the absorption spectra the powder sample material was compressed by diamond compression 

cell of an aperture size of 1 mm2. Spectra ranging between 20 and 550 cm-1 were acquired by co-adding 

again 128 scans with a spectral resolution of 4 cm-1. 

NIR reflectance spectra of powdered samples for have been obtained between 3000 and 12000 cm-1 by 

diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with a spectral resolution of 16 

cm-1 in a Bruker 80/v FTIR spectrometer utilizing a tungsten bulb as source, a CaF2 beam splitter and a 

N2-cooled InSb detector. The sample were placed in small cups and placed in a Seagull™ Variable 

Angle Reflection Accessory (Harrick Scientific). Measurements were done at a 20 ° angle of incidence 

and reflection.  Before measuring the sample surface was leveled according to the cup rim. Spectralon 

was taken as a reflectance reference. 128 spectra of three different sample areas were co-added and 

averaged.  

The chemical composition of the ceramic matrix was measured by SEM-WDS, JEOL JXA 8200 

Superprobe using 5 crystal spectrometers for the major earth elements in an oxidized form and weight % 

(Na2O, BaO, FeO/Fe2O3, MgO, CaO, MnO, Al2O3, K2O, TiO2, SiO2, P2O5). The 52 polished thin 
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sections from above were selected. Due to the porosity and (crystal-)water content in the ceramics, the 

total amount in weight % is normalized to 100.  

In order to characterize sand grains in the ceramics, two-dimensional polarized light micrographs were 

acquired with a pixel size of 3.272 and 102 µm2 for the total area of the cross thin sections. The images 

by the plane polarized light were used for the analysis and those by the cross polarized light for the 

comparison and confirmation of the components. 17 samples for Ransyrt 1 and 20 samples for 

Kabardinka 2 were measured for the identification.  

The 3D image processing of sand grains was performed for selected samples using the 3D µ-CT 

(nanotom 180NF, GE phoenixIx-ray) with tube voltage and current of 140 kV and 96 µA, respectively, 

so that the differences between the shape parameters calculated from the 2D images and those from the 

3D images can be investigated [13]. A total of 1080 images were taken at angular steps of 0.33 degree 

and with an acquisition time of 1000 msec/image. The voxel size of 9.493 µm3 was determined, in order 

to compare to the 2D image analysis using 102 µm2 per pixel. Considering the heterogeneity of 

prehistoric ceramics, the ROI was set for the whole area and volume of the sample. The selected 

magnification of the sample as well as pixel/voxel size were enough to represent the corresponding 

sample. The acquired images were reconstructed as a volume file using the phoenix datos|x 

reconstruction software with a beam hardening correction (BHC) factor 8. Each voxel stored values in 

a 16-bit integer. An edge enhancement filter was applied for the reconstruction. 

 

3.3.2. Formation of the ceramics 

The ceramic formation technique was estimated from the inner structure of 14 samples from Ransyrt 1 

and 19 samples from Kabardinka 2 scanned by 3D µ-CT (Table 3-1). The three dimensional alignment 

of sand grains and large pore complexes existing in the inner structure were taken into considerations 

for estimating their macroscale formation. Angle, layout and size of those structural elements were 

investigated in the range of mm to cm, qualitatively. Therefore, the whole ceramic sherd should be 

within the ROI and this caused a relatively larger voxel size of 9.493–30.273 µm3. The corresponding 

condition was set to tube voltages of 102–140 kV, currents of 70–103 µA, acquisition time of 500–1250 

msec/image according to the sample. The acquired images were reconstructed by the phoenix datos|x 

reconstruction software with a BHC factor 8, voxel values in a 16-bit integer and the edge enhancement 

filter. 

For the pore topology, 1080 images were taken. Four images for each angle were gathered and the first 

two images were skipped. The CT images were reconstructed as a volume using the edge enhancement 

filter and BHC factor 8. 

Sample no. Voltage (kV) Current (µA) Acquisition time (mS) Magnification Voxel size (µm3) 

Ran1_278_x 132 102 750 1.687 29.633 

Ran1_527_20 127 100 750 1.950 25.643 

Ran1_313_2 131 101 750 1.652 30.273 

Ran1_538_16 130 100 750 1.656 30.193 

Ran1_449 127 90 750 2.500 20.003 
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Ran1_619_23 137 99 750 1.897 26.353 

Ran1_601_7 140 93 1000 1.721 29.053 

Ran1_514_2 140 96 1000 5.271 9.493 

Ran1_489_46 140 99 1000 2.586 19.333 

Ran1_N18_49 132 80 1000 1.674 29.883 

Ran1_541_11 130 80 1000 1.739 28.753 

Ran1_167_4 133 70 750 4.857 10.293 

Ran1_298_3 104 80 750 3.043 16.433 

Ran1_225_4 104 70 750 2.755 18.153 

Kab2_1697_1 135 100 750 1.700 29.373 

Kab2_482_13 130 92 750 2.000 25.003 

Kab2_1260_4 122 100 750 2.349 21.293 

Kab2_482_1 110 87 750 2.500 20.003 

Kab2_1396_4 122 78 500 2.641 18.933 

Kab2_1763_1 135 103 750 1.951 25.623 

Kab2_1408_1 114 100 750 2.214 22.583 

Kab2_1235_1 131 90 750 2.000 25.003 

Kab2_1195_6 130 79 750 2.000 25.003 

Kab2_1976_1 139 90 750 1.849 27.043 

Kab2_650_10 105 80 750 3.539 14.133 

Kab2_1587_1 140 98 1250 1.977 25.293 

Kab2_853_1 140 90 1000 2.194 22.793 

Kab2_2258_5 104 80 750 2.500 20.003 

Kab2_1253_3 121 70 750 2.480 20.163 

Kab2_1603_4 125 80 750 2.267 22.063 

Kab2_416_9 130 70 750 2.000 25.003 

Kab2_516_26 102 70 750 2.889 17.313 

Kab2_294_1 131 70 750 2.000 25.003 

Table 3-1. Measurement condition of the 3D µ-CT for the alignment of the pore complex and sand grains. 

 

3.3.3. Identification of the ceramic firing 

Three main analytical methods are employed for the estimation of the firing degree: XRD focusing on 

the specific peaks of clay minerals, FTIR transmittance and reflectance measurements, 

micromorphological changes observed in BSE images from SEM. 

FTIR measurements were performed with Paragon 1000 PC by Perkin Elmer in transmission mode. For 

the sample preparation, powder from 116 ceramics selected from 158 samples were mixed with KBr 

and pelletized. The MIR curve is taken with 128 scans and a spectral resolution of 2 cm-1 for 

wavenumbers between 450 and 4000 cm-1. For this purpose, no smoothing filter was necessary. In order 

to focus more on the clay matrix within the heterogeneous mixed state of ceramic pastes, an IR-

microscope (Bruker Hyperion 2000) attached to a Vertex 80v FTIR-spectrometer and a MCT detector 

was employed to perform reflectance point analysis on the polished cross thin section of the 52 samples 

without carbon coating. Our main goal was the observation of Si-O stretching mode located between 

900 and 1200 cm-1. The IR aperture size was fixed to 70x70 µm2, as this size was found to minimize the 

IR signal of the sand and silt grains and to maximize the signal of clay minerals. We performed 1024 

scans with a spectral resolution of 2 cm-1. A silver mirror was used as reference for the IR reflectance 

experiments. Additional MIR reflectance measurements with a spectral resolution of 2 cm-1 have been 

performed on sample cross sections utilizing a purged infrared microscope Nicolet iN10 and a liquid 
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nitrogen cooled mercury cadmium telluride (MCT) detector. 128 scans have been co-added. The 

investigated area on the sample was 70 x 70 µm2. A gold surface was used as a reference. 

FIR spectra and Diffuse NIR reflectance spectra for the estimation of the thermal deformation and 

transformation degree were acquired with the same setting variables for the identification of the ceramic 

pastes described in the section 3.3.1. 

The degree of high firing ceramics containing glassy phases was estimated from the Raman spectra 

obtained by a Horiba ISA Dilor Labram micro-confocal Raman spectrometer using the internal 532.15 

nm Nd-YAG laser. The spectra were taken with a focal length of 300mm and a slit of 100 µm which 

yielded a spectral resolution of up to 3.5 cm-1. The acquisition time was 30 seconds and the spectra were 

accumulated twice.  

The pore topology of the ceramic matrix influenced by the firing process was measured by SEM, JEOL 

JXA 8200 Superprobe with an acceleration voltage of 15 kV for the 2D analysis. The area of 300×300 

µm2 was scanned with a pixel size of 12 µm2, which allowed to capture various types and sizes of pores 

in the ceramics. In a 2D matrix, BSE images are presented for each pixel of ROI. The 3D porosity was 

measured by µ-CT with different tube voltages of 103-129 kV and currents of 70-80 µA according to 

the sample. The acquisition time for 1080 images ranged from 750 to 1000 msec/image and the voxel 

size from 1.053 to 3.853 µm3 as well. For the image reconstruction, the BHC factor was set to 9-10, in 

order to minimize artifact effects. 13 samples for Ransyrt 1 and 15 samples for Kabardinka 2 were 

measured for the 2D image analysis. Three from these samples were selected for the investigation of the 

3D porosity (Table 3-2). 

For the pore topology, 1080 images were taken. Four images for each angle were gathered and the first 

two images were skipped. The CT images were reconstructed as a volume using the edge enhancement 

filter. 

Sample no. Voltage 

(kV) 

Current 

(µA) 

Acquisition time 

(mS) 

Magnification Voxel size 

(µm3) 

BHC 

Ran1_329 103 70 750 13.000 3.853 9 

Ran1_KB3kc1 129 80 1000 14.546 3.443 9 

Ran1_549_1 109 80 750 13.637 3.673 9 

120 80 1000 47.503 1.053 10 

Table 3-2. Measurement condition of the 3D µ-CT for the pore topology of three samples. 

 

3.3.4. Image segmentation and parameterization 

For the image segmentation and parameterization performed for the parts described above, 3.3.1. 

Identification of the ceramic pastes, 3.3.2. Identification of the ceramic firing and 3.3.3. Formation of 

the ceramics, the acquired 2D and 3D images were calculated with MATLAB (2018b) (Table 3-3).  

 2D analysis 3D analysis 

Image visualization imread(); dlmread(); imshow() fopen(); fread(); reshape(); imshow(), isosurface(); patch();   

Conversion of image 

data type 

rgb2gray(); im2bw(); size() Int16(); double(); imbinarize(); size(); dim(); gpuArray(); gather() 
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Image data 

modification 

imfill(); imdilate(); imerode(); imcomplement() 

including calculation and logical decision of 

arrays 

histeq(); imfill(); imdilate(); imerode(); imcomplement(); sum(); A(~B) = 0; 

imclearborder() including calculation and logical decision of arrays 

Acquisition of target 

properties 

bwconncomp(); regionprops() Bwconncomp(); regionprops3(); labelmatrix(); ismember() 

Table 3-3. Examples of main functions used for the image analysis by Matlab in this study. 

 

For the quantification of sand grain shapes in 2D, the plane polarized micrographs were converted to 

the gray scales to reduce the color variances and to raise the accuracy in segmentation of heterogeneous 

phases. Various image filters and retouching the images were used as well, in order to achieve precise 

and fast segmentation. After segmentation, numeric properties of shapes and pores in 2D were calculated 

by the CPU using eight-connectivity/neighborhood of pixels (Figure 3-8; 3-9), while the calculations of 

3D objects were performed by CPU and GPU using six- and 26-connectivity/neighborhood of voxels 

(Figure 3-10). The connectivity of pixels and voxels determines a same region by counting adjacent unit 

cells. Eight-connectivity defines the 2D area sharing same vertices. In 3D image processing, the same 

region calculated by six-connectivity shares identical faces with the adjacent cells, while that by 26-

connectivity shares edges, faces and vertices. The details of each parameter will be discussed in the 

following.  

Figure 3-8. (a) Polarized light microscopic images (plane polarized light) of the cross section; (b) segmented 

image of sand grains (white).  

 

Figure 3-9. Visualization of the 2D matrix according to the intensity of (a) BSE and (b) Carbon and segmented 

image of pores from the matrix (measurement area=300x300 µm2). 

 

■ ■ ■ ■■ ■ ■ ■• ■ ■ ■ ■■ ■•.•■■ ■■ ■■ ■ ■• 

{a) {b) 

(a) (b) (c) 
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Figure 3-10. (a) Original ceramic sherd and its ROI in the box of the black dashed line; (b) Isosurface of the 

sample with Isocaps of the exposed cross section; (c) Segmentation of sand/silt grains and pores; (d) 

Segmentation of sand grains and pores with the specific volume size.   
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Chapter 4. Identification of the ceramic pastes 

 

4.1. Sand/silt grains in the ceramics 

4.1.1. Mineralogical composition  

Most sand and silt grains in the ceramics are lithoclasts derived from volcanic, metamorphic or 

sedimentary rocks. Various mineralogical combinations in the ceramic pastes besides clay minerals were 

identified by optical petrography, XRD and SEM-EDS and it is summarized according to the 

archaeological site (Figure 4-1). The chemical composition of all the alteration products were measured 

by the point analysis using SEM-WDS (Table 4-1). According to the results, those alteration products 

in the ceramic pastes were identified as mica-chlorite mixed layers (Table 4-1: Ransyrt1_Bt_Chl_1-11; 

Kabardinka2_Bt_Chl_1). The mica-chlorite intergrowths in the Kabardinka 2 samples have more K 

contents than those from Ransyrt 1. The other phases (Table 4-1: Ransyrt1_alteration_1-6; 

Kabardinak2_alteration_1-10) are mostly dominated by SiO2, MgO, Fe2O3 and CaO. There are a few 

ceramic sherds containing diopside. In Kabardinka 2, the ceramics have vitreous and very porous Si rich 

grains (Table 4-1: Kabardinka2_X1-4). Numerous closed pores with a globular shape in a relatively big 

size could be produced by the fluid inclusions or during the melting phase.  

 

Figure 4-1. Dominant mineralogical combinations of the ceramics from (a) Ransyrt 1, (b) Kabardinka 2, (c) 

Levinsadovka-Saf’janovo (Clc: calcite, Cpx: clinopyroxene, Kfsp: K-feldspar, Mica-Chl: mica-chlorite mixed 

layers, Ol: olivine, Plg: plagioclase, Qtz: quartz). 

Sample No. SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O BaO F Cl Total 

Ransyrt1_Bt_Chl_1 37.69 2.39 18.06 19.53 0.62 10.71 0.74 0.32 6.67 0.19 2.26 0.10 98.31 

Ransyrt1_Bt_Chl_2 40.67 3.02 20.62 14.35 0.41 9.15 1.11 0.40 6.41 0.16 1.78 0.15 97.43 

Ransyrt1_Bt_Chl_3 38.70 2.01 18.86 20.42 0.21 7.31 0.92 0.34 8.12 0.15 0.77 0.02 97.50 

Ransyrt1_Bt_Chl_4 36.03 0.17 23.04 28.30 0.73 6.86 1.78 0.13 1.23 0.07 0.00 0.05 98.36 

Ransyrt1_Bt_Chl_5 38.69 0.00 22.57 21.70 0.38 10.52 2.06 0.30 1.66 0.13 0.31 0.02 98.19 

Ransyrt1_Bt_Chl_6 36.96 0.35 21.59 24.84 0.39 12.29 2.30 0.17 0.72 0.06 0.21 0.00 99.80 

Ransyrt1_Bt_Chl_7 38.78 0.00 23.44 21.72 0.40 10.65 1.90 0.10 0.68 0.11 0.19 0.05 97.93 

Ransyrt1_Bt_Chl_8 38.91 0.00 19.25 24.08 0.24 11.55 2.70 0.09 0.30 0.05 0.34 0.01 97.37 

Ransyrt1_Bt_Chl_9 38.62 0.31 19.74 24.71 0.26 12.14 2.72 0.17 0.48 0.08 0.18 0.01 99.33 

Ransyrt1_Bt_Chl_10 37.73 10.01 15.44 15.27 0.15 6.12 13.45 0.05 0.33 0.22 1.50 0.02 99.67 

Ransyrt1_Bt_Chl_11 38.59 0.00 19.13 23.61 0.14 12.88 2.58 0.17 0.52 0.10 0.06 0.01 97.77 

Ransyrt1_alteration_1 51.03 0.54 3.90 5.67 0.06 15.82 23.32 0.16 0.03 0.00 0.08 0.00 100.58 

Ransyrt1_alteration_2 50.89 0.52 3.91 5.74 0.07 16.18 23.02 0.19 0.05 0.02 0.00 0.00 100.59 

Ransyrt1_alteration_3 50.00 0.57 4.64 6.88 0.08 15.34 22.10 0.22 0.00 0.04 0.25 0.00 100.00 

Ransyrt1_alteration_4 46.12 1.60 8.50 14.88 0.32 13.92 12.32 1.44 0.76 0.00 0.61 0.00 100.20 

Ransyrt1_alteration_5 46.27 1.70 8.20 13.51 0.26 13.41 12.32 1.53 0.77 0.00 0.65 0.00 98.33 

Ransyrt1_alteration_6 48.86 0.98 5.83 9.33 0.16 14.93 18.62 0.71 0.32 0.01 0.32 0.00 99.94 

Qtz+Kfsp+Clc 
Plg+Cp\ 

Qtz+Kfsp+Plg+Mica-
Chl (+Alteration) 

Qtz+Kfsp+Mica­
Chl 

(a) 

Combinations of Qtz, Kfsp, Plg, 
Mica-Chl, Clc, 01 (alteration), 

Alteration product, Vitreous grain 

Qtz+Kfsp+Mica-Cnaui;:i,,,_ 

Qtz+Kfsp+Clc 

Qtz+Kfsp,+Plg+Mica-Chl 

Qtz+Kfsp 

(b) 

Qtz+Comple 
sedime 

Recyclin roducts Qtz (+Clc) 
( 
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Table 4-1. Quantitative analysis of mica-chlorite, alteration products and vitreous grains from Ransyrt 1 and 

Kabardinka 2. 

 

Sand grains in the ceramics from Ransyrt 1 are categorized into four groups: (1) quartz and K-feldspar, 

mica-chlorite intergrowths with traces of albite and kaolinite; (2) quartz and K-feldspar, mica-chlorite 

intergrowths and plagioclase (from anorthite to albite, anhedral) and alteration products; (3) Plagioclase 

(albite, euhedral in altered volcanic glass) and clinopyroxene (diopside, euhedral/subhedral); (4) quartz, 

K-feldspar and calcite (Figure 4-2.a-c,g). In many samples, quartz and K-feldspar build a fine mixture 

in grains (Figure 4-2.a). Ceramics excavated at Kabardinka 2 contain different combinations: (1) quartz 

and K-feldspar (anhedral) often accompanied by kaolinizing phases; (2) quartz, K-feldspar, mica-

chlorite intergrowths and plagioclase, mostly Ca-plagioclase from anorthite to labradorite in a subhedral 

or euhedral form located in the altered volcanic glass and kaolinizing phases; (3) quartz, K-feldspar, 

calcite; (4) quartz, K-feldspar, calcite and mica-chlorite intergrowth; (5) random combinations of quartz, 

K-feldspar, plagioclase (Ca-dominant, subhedral), mica-chlorite intergrowths, calcite, kaolinizing 

phases, alteration product similar to olivine or amphibole, clinopyroxene, and SiO2-rich porous and 

vitreous grains (Figure 4-2.d-f,g).  

The Samples found at Levinsadovka-Saf’janovo have simpler combinations: (1) quartz dominant; (2) 

quartz and sediments composed of quartz, K-feldspar and various alteration phases (Figure 4-2.i). In 

those sediments, there are grains containing thermally transformed clays, quartz and K-feldspar (Figure 

4-2.i-k). Several calcite grains were observed in all samples.  

Kabardinka2_Bt_Chl_1 39.44 4.51 13.06 19.05 0.17 13.59 2.21 0.26 4.76 0.05 0.65 0.09 97.55 

Kabardinka2_ alteration_1 45.15 1.48 8.08 18.38 0.26 12.21 12.38 1.33 0.82 0.03 0.30 0.00 100.30 

Kabardinka2_ alteration_2 44.41 1.97 9.16 17.73 0.36 10.83 12.47 1.55 0.95 0.00 0.64 0.00 99.78 

Kabardinka2_alteration_3 45.63 1.40 8.23 18.10 0.30 11.66 12.43 1.50 0.95 0.00 0.34 0.00 100.40 

Kabardinka2_alteration_4 44.53 1.97 9.36 17.74 0.30 10.93 12.21 1.57 0.81 0.06 0.34 0.00 99.67 

Kabardinka2_alteration_5 44.58 1.98 9.97 12.57 0.11 15.20 12.44 1.83 0.75 0.03 0.80 0.00 99.94 

Kabardinka2_alteration_6 45.67 1.95 9.40 12.44 0.15 15.60 12.01 1.67 0.66 0.04 1.36 0.00 100.36 

Kabardinka2_alteration_7 43.95 2.82 10.56 13.07 0.14 14.08 12.31 2.07 0.79 0.03 1.10 0.00 100.45 

Kabardinka2_alteration_8 38.25 0.14 24.07 12.73 0.19 0.08 24.35 0.00 0.12 0.00 0.08 0.04 100.00 

Kabardinka2_alteration_9 38.34 0.16 24.28 12.57 0.32 0.02 24.28 0.00 0.05 0.00 0.00 0.00 100.01 

Kabardinka2_alteration_10 38.24 0.11 24.28 12.68 0.25 0.00 23.91 0.01 0.07 0.02 0.04 0.04 99.64 

Kabardinka2_X_1 70.94 0.49 13.09 1.63 0.01 0.40 1.39 1.81 1.62 0.01 1.06 0.21 92.17 

Kabardinka2_X_2 73.00 0.16 13.68 1.69 0.03 0.43 1.54 2.16 2.84 0.05 0.16 0.00 95.65 

Kabardinka2_X_3 73.13 0.48 13.68 1.66 0.03 0.40 1.54 2.20 2.99 0.02 0.00 0.00 96.13 

Kabardinka2_X_4 74.47 0.22 13.78 1.80 0.01 0.41 1.35 2.16 3.49 0.07 0.00 0.00 97.75 
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Figure 4-2. Mineralogical composition of sand grains in the ceramic paste (all scales for 100 µm): (a) quartz and 

K-feldspar matrix, biotite-chlorite and kaolinite-albite as alteration trace; (b) diopside and albite in altered glass 

matrix; (c) anorthite-bytownite, quartz and alteration product; (d) sanidine and kaolinite (alteration); (e) 

anorthite-bytownite-labradorite, quartz, olivine (alteration); (f) biotite-chlorite, alteration product, vitreous 

porous grains; (g) calcite; (h) calcite in thermal decomposition; (i) Lithoclasts composed of K-feldspar, quartz 

and mica; (j) aggregate composed of clay, K-feldspar and quartz; (k) aggregate composed of clay in sintering, 

quartz (Ab: albite, An: anorthite, Byt: bytownite, Bt: biotite, Chl: chlorite, Clc: calcite, Cpx: clinopyroxene, Di: 

diopside, Lab: labradorite, Ol: olivine, Plg: plagioclase, Qtz: quartz, Sa: sanidine). 

 

4.1.2. Shape parameters of sand grains 

Most ceramic pastes in the ancient material production contain sand grains. Especially, coarse sand 

grains composed of lithoclasts bigger than 250 µm reflect the environment where they are originated 

well and keep their form during the firing of the ceramics by the grain size effect. Moreover, they can 

be taken easily from the cross thin sections in 2D which are prepared in many ceramic studies. According 

to the mineralogical and chemical analysis, grain forming dominant minerals are presented in Figure 4-

1 [1]. Because most sands in a ceramic object are composed of various mineralogical phases in various 

textures and the shapes of these poly-mineral grains were changed during the sedimentation process, 

shape parameters of the sand grains should be calculated for each grain and not for each single mineral 

phase. In the samples, lithoclasts and sedimentary aggregates composed of similar mineral phases exist 
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in various sizes, indicating a possibility that the resource were gathered in the sediments accumulated 

by the natural depositional process. 

In this study, we calculated the following shape parameters: maximum length, circularity, sphericity 1 

and sphericity 2 of an idealized ellipse that has the same normalized second central moments as the 

segmented object. They were defined as [2-4]: 

                                                                     Circularity: 
4𝜋𝐴

𝑃2
 ,                                                             (4-1) 

                                                         Sphericity 1 (elongation): 
𝐷𝐹, 𝑚𝑎𝑥

𝐷𝐹, 𝑚𝑖𝑛
 ,                                              (4-2) 

                                                              Sphericity 2 (elongation): 
𝑎

𝑏
 ,                                                  (4-3) 

where A and P mean area and perimeter, DF is Feret diameter, a and b are major axis minor axis of an 

idealized ellipse of the grains, accordingly.  

Figure 4-3 illustrates different size distribution, circularity, sphericity 1 of the coarse sands according to 

the archaeological sites and the dominant mineral groups in the sand grains in the ceramics. The average 

and standard deviation of the shape parameters of individual grains in each sample were calculated 

according to the site at Ransyrt 1 (Figure 4-3.a), Kabardinka 2 (Figure 4-3.b) and Levinsadovka–

Saf’janovo (Figure 4-3.c). In general, the ceramics found at Ransyrt 1 contained bigger sized grains with 

a wider size distribution and less circular shapes than the other sites. The ceramics excavated at 

Levinsadovka and Saf’janovo have more rounded and finer sands. Despite the high distribution of the 

mean sand size, there is a tendency that the size and angularity of coarse sands in the ceramic pastes 

decrease from higher mountains through middle plateau to the alluvial sea coast.  

The highest elongation degree of the grains of a sample group representing for Ransyrt 1 is bigger than 

those in the ceramics from the other sites. At the same time, the shape parameters of the sherds are 

varying within each site, where two or three groups can be classified within the ceramics from the same 

site. It is possible that the distribution of the mean value of the calculated shape parameters becomes 

smaller, if the measurement area is bigger or the several sherds originated from a single pottery are 

analyzed. Concerning the relation between the mineralogical combination of the coarse sands and their 

shape parameters, the Ransyrt 1 samples show this correlation in the circularity very slightly, while this 

is found in the size distribution and sphericity 1 for the samples from Kabardinka 2. However, those 

parameters derived from the 2D image processing would represent a relative value regarding the three 

dimensional alignment of grains in the ceramics. Figure 4-4 shows the comparison between the grain 

size distribution, sphericity 1 and sphericity 2 calculated with the 2D and 3D image analysis of an 

example. In comparison to the 2D data, the elongation degree of the coarse sands from the 3D images 

is higher and this attests to the fact that elongation vertical to the observed sample surface is detected in 

3D but not in 2D. The alignment of sands can therefore influence the results of 2D image analysis. 

Although the ceramic pastes could be prepared by the addition of various sediments and removal of 

specific components by the potters, the grain size distribution of the coarse sand grains in the ceramics 

reflect the soil development of each site concerning the sedimentation process from the mountains to 
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the alluvial zones [1,5]. The circularity and sphericity of coarse sand grains show site specific geological 

setting as well. Because Ransyrt 1 on the higher plateau has less soil than Kabardinka 2 on the lower 

plateau and the sites around the alluvial zone, the potters would have gathered resource for the 

preparation of ceramic pastes around the settlement sites.  

Figure 4-3. Mineralogical composition of dominant grain groups of the samples for the sites, (a) Ransyrt 1, (b) 

Kabardinka 2, (c) Levinsadovka–Saf’janovo with the back scattered electron (BSE) images of the representative 

grains [1] is compared to the size distribution, circularity and sphericity 1 of coarse sand grains (>250µm, 

lithoclasts) present in the selected samples (Clc: calcite, Cpx: clinopyroxene, Kfsp: K-feldspar, Sa: sanidine, 

Mica–Chl: mica–chlorite mixed layers, Bt: biotite, Ol: olivine, Plg: plagioclase, Qtz: quartz, Kln: kaolinite). 

Each mineralogical grain groups presented in different colors (Qtz + Kfsp + Mica – Chl/Qtz + Kfsp/Qtz (+Clc): 

light grey, Qtz + Kfsp + Plg + Mica Chl + Alteration/Qtz + Kfsp + Plg + Mica – Chl: light blue, Plg + Cpx: blue, 

Qtz + Kfsp + Clc: light yellow, Qtz + Complex sediments (+Clc): dark grey, various combinations: light green). 

Figure 4-4. (a) Grain size distribution (max. length), (b) sphericity 1 and (c) sphericity 2 derived from 2D (blue) 

and 3D (orange) image analysis of the coarse sand grains (>250 µm) in the ceramic sherd (Ran1_514_2). Pixel 

size of 102 µm2 and grain numbers/A (area) = 1.501 ea/mm2 for the 2D images. Voxel size of 9.493 µm3 and sand 

grain numbers/V (volume) = 12.182 ea/mm3. 

 

However, every archaeological site has various groups of samples according to each shape parameters. This means 

that the potters used different strategy in the gathering, preparation or control of ceramic pastes. Grain-like cavities 

proved in a few samples by the 3D scanning are possibly produced by the thermal decomposition of calcites during 

firing (Figure 4-5) [6]. This informs us that calcite grains were used intensively in a few ceramics. 
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Figure 4-5. (a) Original ceramic sherd and segmented grain like cavities, calcite ghosts in the sample (blue and 

yellow) (voxel size: 25.003 µm3). (b) A cross polarized light micrograph of the cross thin section shows coexisting 

calcite grains and closed type of voids in different sizes (Clc: calcite). 

 

4.2. Chemical compositions of the ceramic matrix (grains < 50µm) 

Chemical composition of the ceramic matrix provides the background for estimating the evolution of 

the ceramic matrix under heating. In order to avoid the grain size effect, only grains smaller than 50 µm 

were measured to characterize the ceramic matrix using SEM-WDS. The results were normalized to 

100% concerning porosity and (crystal-)water content of the matrix (Table 4-2).  

Ceramic No. SiO2 TiO2 Al2O3 BaO FeO MnO MgO CaO Na2O K2O P2O5 Total 

Ran1_dmp1 61.70 0.62 22.64 0.11 6.52 0.15 1.91 1.66 1.10 3.25 0.34 100 

Ran1_549 60.34 0.77 23.85 0.13 7.38 0.08 1.87 2.07 0.49 2.50 0.52 100 

Ran1_329 62.30 0.61 21.41 0.14 6.82 0.13 1.61 2.02 0.99 2.89 1.06 100 

Ran1_527_1 61.05 1.00 18.77 0.07 8.21 0.14 1.69 3.84 1.08 2.91 1.24 100 

Ran1_514_2 59.65 0.72 22.25 0.05 7.95 0.15 1.67 2.87 1.32 2.55 0.83 100 

Ran1_370_1 59.42 1.01 17.51 0.06 5.40 0.06 5.02 6.49 0.66 3.52 0.84 100 

Ran1_514_3 64.52 0.75 18.86 0.06 6.66 0.10 1.64 3.18 0.78 2.42 1.02 100 

Ran1_449 59.90 0.75 19.34 0.05 6.86 0.09 2.43 5.14 0.63 4.40 0.41 100 

Ran1_514_1 63.46 0.75 18.23 0.06 6.44 0.11 2.05 3.88 0.88 2.84 1.29 100 

Ran1_KB3kc1 63.20 0.87 20.05 0.05 7.44 0.13 1.76 2.41 1.07 2.56 0.45 100 

Ran1_437_83 49.18 0.81 16.40 0.04 6.72 0.12 3.64 18.19 0.50 1.83 2.58 100 

Ran1_167_4 62.00 0.59 20.83 0.04 8.56 0.09 1.58 2.49 1.57 2.00 0.25 100 

Ran1_17_2 64.42 1.20 18.60 0.06 7.73 0.07 1.30 2.35 0.82 2.64 0.81 100 

Ran1_6_9 76.73 0.36 11.59 0.01 4.64 0.03 2.44 3.73 0.22 0.11 0.13 100 

Ran1_225_4 57.45 0.80 25.79 0.05 7.78 0.13 1.23 3.20 0.55 2.31 0.72 100 

Ran1_261_40 60.51 0.95 22.67 0.06 6.08 0.04 2.76 1.95 0.50 4.00 0.47 100 

Ran1_357_20 63.53 0.75 19.15 0.05 7.06 0.14 2.07 2.22 1.32 2.85 0.87 100 

Ran1_278_x 58.11 0.83 20.58 0.06 8.38 0.15 2.86 4.30 0.38 2.69 1.64 100 

Ran1_217_17 62.00 1.03 22.86 0.06 5.54 0.13 0.96 2.81 0.86 2.64 1.12 100 

Ran1_244_9 62.63 0.89 18.12 0.05 6.95 0.27 2.95 4.43 1.04 2.48 0.20 100 

Ran1_326_9 61.73 0.77 19.54 0.07 6.55 0.29 2.34 4.82 0.69 2.36 0.84 100 

Ran1_306_5 59.68 0.75 15.53 0.05 6.54 0.09 5.07 8.74 0.98 2.23 0.34 100 

Ran1_111_1 60.31 0.92 22.49 0.04 8.36 0.10 1.09 2.63 1.17 2.29 0.58 100 

Ran1_224_9 64.03 0.83 19.82 0.07 7.35 0.19 1.46 1.94 0.88 2.76 0.67 100 

KAE_650_10 (body) 67.78 0.74 16.44 0.05 8.07 0.21 1.65 1.36 0.64 2.96 0.10 100 

KAE_650_10 (slip) 67.76 0.97 16.76 0.06 7.43 0.12 1.55 1.59 0.77 2.83 0.15 100 

KAE_1578_4 66.41 0.83 15.60 0.06 9.01 0.17 1.54 2.04 0.83 3.21 0.31 100 

KAE_2113_1 62.42 1.28 26.94 0.04 3.10 0.06 0.80 1.63 0.72 2.85 0.15 100 

KAE_844_1 64.07 0.84 19.78 0.04 8.72 0.03 1.10 1.29 1.07 2.67 0.38 100 

KAE_633_1 63.85 0.87 17.80 0.06 9.10 0.07 1.78 2.16 0.57 2.83 0.92 100 

KAE_2008_641_1 60.04 0.96 24.86 0.06 5.99 0.03 0.65 2.23 0.62 2.69 1.86 100 

KAE_483_3 66.58 1.03 16.25 0.06 8.42 0.18 1.46 1.73 0.78 2.87 0.65 100 

KAE_516_26 67.76 0.83 15.74 0.08 7.25 0.25 1.27 2.26 0.67 2.80 1.11 100 

KAE_516_2 66.98 0.72 15.94 0.07 7.12 0.05 1.30 2.07 1.13 3.04 1.57 100 

KAE_482_1 59.44 0.82 19.88 0.04 8.80 0.12 1.67 1.78 1.05 4.45 1.96 100 

KAE_918_1 53.80 0.95 22.60 0.05 14.63 0.26 1.83 2.05 0.43 2.70 0.71 100 

KAE_NN 67.28 0.72 15.35 0.09 7.08 0.44 1.38 2.82 0.78 2.74 1.33 100 

KAE_1697_1 70.27 1.02 15.85 0.05 6.33 0.12 0.86 2.04 0.61 2.44 0.42 100 

KAE_797_1 59.74 0.80 16.95 0.05 10.91 0.33 1.62 5.69 0.89 2.66 0.38 100 

KAE_1162_1 65.53 1.15 22.26 0.05 4.43 0.02 1.05 1.77 0.74 2.77 0.23 100 

KAE_1195_6 61.08 0.98 20.46 0.07 8.91 0.38 1.44 2.61 0.89 2.35 0.82 100 

KAE_28_2 64.07 1.04 18.48 0.06 7.48 0.05 1.52 2.88 0.74 2.91 0.77 100 

KAE_1418_1 60.33 0.76 17.18 0.05 6.59 0.10 2.62 4.99 0.97 5.12 1.30 100 

(a) (b) 
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KAE_1235_1 66.02 0.91 16.45 0.07 6.30 0.03 1.49 4.38 0.83 2.70 0.81 100 

KAE_1152_1 65.83 1.20 18.78 0.05 8.22 0.03 0.96 1.33 0.74 2.49 0.35 100 

KAE_1021_1 58.68 1.00 23.27 0.04 9.45 0.16 1.16 2.76 1.18 1.83 0.48 100 

Lev_7718 75.96 0.46 9.18 0.22 5.28 0.04 1.44 3.69 0.52 2.74 0.47 100 

Lev_8653_1 75.13 0.12 9.07 0.16 4.67 0.05 1.29 5.00 1.19 2.84 0.47 100 

Lev_8653_3 67.90 0.65 17.64 0.05 6.09 0.04 2.12 1.14 1.33 2.87 0.17 100 

Saf_501_5 58.83 0.89 24.64 0.03 7.01 0.04 1.99 3.40 0.31 2.62 0.23 100 

Saf_502_3 64.25 1.16 20.07 0.04 7.37 0.05 2.11 1.45 0.30 3.03 0.18 100 

Saf_501_4 67.70 1.04 17.31 0.06 5.29 0.04 1.56 2.25 0.47 3.54 0.73 100 

Lev_8653_5 64.41 1.03 22.16 0.04 5.88 0.02 1.62 2.24 1.10 1.32 0.19 100 

Lev_9633 65.91 0.77 16.90 0.06 6.34 0.06 2.25 3.08 1.17 3.16 0.31 100 

Table 4-2. Chemical composition of the ceramic matrix (grains < 50 µm) normalized to 100 wt%. 

The projection to the SiO2-CaO-Al2O3 system shows that samples from Levinsadovka and Saf’janovo 

have more SiO2 and those from Ransyrt 1 site the least (Figure 4-6.a). In the at-f-alc system (at= 

CaO+MgO; f= Fe2O3; alc=K2O+Na2O) [7], Ransyrt 1 ceramics tend to have higher (Ca, -Mg) contents 

in the matrix, while those of Kabardinka 2 move toward Fe2O3 (Figure 4-6.b).  

Figure 4-6. Chemical composition of ceramic matrix (grains < 50 µm) normalized to 100 wt.%: (a) SiO2-Al2O3-

CaO: (1) Ransyrt 1; (2) Kabardinka 2; (3) Levinsadovka-Saf’janovo; (b) at-f-alc (at=CaO+MgO; f= Fe2O3; 

alc=K2O+Na2O): (1) Ransyrt 1; (2) Kabardinka 2, (3) Levinsadovka-Saf’janovo. 

 

4.3. Clay minerals in the ceramics 

Identified by the specific XRD Bragg peaks representing illite 1M, such as set of 10 Å peak for (001), 

4.98 Å for (002), 4.5 Å for (020) or 4.45-4.46 Å for (110), 2.58 Å for (130) or (131̅) lattice planes, illite 

is the main clay mineral of the studied ceramics (Figure 4-7). Their higher FWHM distinguished illite 

from mica [8]. Samples without illite phase are either highly deformed by firing or they do not include 

any clay minerals. Illite could be confirmed by the transmittance IR vibrations at 3623-3630 and 3690 

cm-1, too. The band occurring at 3623-3630 cm-1 is assigned to the stretching mode of the bond between 

Al and hydroxyl group which lies close to the SiO4 tetrahedral structure, ν(Al-OH) [9-11]. Some samples 

show a band at 3653 cm-1 related with ν(Al-OH) neighboring with AlO4 substitution of muscovite [12].  
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Figure 4-7. Representative XRD and FTIR (transmittance, samples heated at 170 °C for 60 hours) results of 

ceramic sherds excavated at Ransyrt 1 (blue) and Kabardinka 2 (orange, gray). 
 

Although the peaks of quartz and feldspar present in all the ceramic samples overlap with those at (1̅11) 

as well as (1̅12)/(112̅) and (112) lattice plane of illite, (020)/(110) peaks according to the polytype lie 

between 4.5 and 4.45 Å regardless of the thermal transformation (Figure 4-8) [13-15]. Because cv-/tv-

1M polytypes have different dehydroxylation temperatures and most illite phases in the nature occur in 

a mixed form, the illite phases in the ceramic pastes would be mixed layers [16]. 

 

Figure 4-8. Illite d spacing at the lattice plane (020)/(110). 

 

SR-FIR and DRIFT-NIR spectra of the representative samples in different pyrometamorphic states in 

this study confirmed that they are composed of mainly illitic clays without mixed layers (Figure 4-9). 

Moreover, these samples do not show the traces of other common clay minerals in Earth such as kaolinite 

or smectite series do not appear in the samples. The IR bands ranging between 100 and 90 cm-1 are 

assigned to the vibrations between K in the interlayer and OH-1 in octahedra confirm the main clay 

mineral of the samples is illite [17-22]. Simultaneously, the spectral features around 11000 cm-1 

responsible for the transition between the 6-coordinated Fe2+ and Fe3+ in the clay mineral and the 

combinational vibration of Al/Mg/Fe-OH bonds at 4530, 4280 and 4500 cm-1 (2.2, 2.3, 2.5 µm, 

accordingly) with the small and rounded intensity and shapes support illite as the dominant clay in the 

measured samples as well [22-28]. These characteristics enable to distinguish illite from muscovite 

[27,29]. H2O and OH reflectance of this clay mineral appear at 5230 and 7000 cm-1 (1.9 and 1.4 µm, 

accordingly) as well.  
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Figure 4-9. Comparison of SR-FIR absorption spectra and NIR diffuse reflectance spectra of the samples 

containing the lowest firing degree. (a) Ransyrt 1; (b) Kabardinka 2. Modified from Park et al. [1,22]. 

 

There were no distinguishable reflectance features related to the other Fe-bearing mineral phases such 

as goethite or ferrihydrite, similar to the XRD results of the same samples that no samples with less 

thermal deformation prove massive amounts of goethite, lepidocrocite or ferrihydrite in the ceramic 

paste [1]. 

 

4.4. Discussion: preparation of the ceramic pastes of the potters 

The serial analysis of various analytical measurements provided information about the preparation of 

the ceramic pastes, too. The mineralogical composition of the sand and silt grains and their grain size 

distribution reflect the local geological setting of the site. This result indicates that the ceramic pastes 

were taken mostly from the naturally developed soil deposit. The potters at all the studied sites would 

prepare ceramic pastes using a sedimentary resource acquired from the local sites. Additionally, the 

ceramics from Ransyrt 1 contain less clay than Kabardinka 2 ceramics, which is probably influenced by 

the fact that Ransyrt 1 has fewer soils and clays than Kabardinka 2. Circularity and sphericity of the 

coarse sand grains reflect the geological setting of each sites, too. Ca-carbonates were more abundant in 

the samples found at Ransyrt 1 and Levinsadovka-Saf’janovo. However, some Ransyrt 1 ceramics 

contain clearly distinctive amounts of Ca in comparison to other samples from the same site and the 

Azov sea environment. It is possible that these Ca rich ceramics were made intentionally of very calcined 

clays by the potters at Ransyrt 1, while the other ceramics contain calcite grains that were originated 

from the natural soil deposit and these grains were not added by the potters. Besides, Levinsadovka 

yielded a sherd containing possible fragments of old pottery, because a few sediments in the samples 

contain thermally transformed clays, quartz and K-feldspar indicating possible older ceramic fragments. 

However, sharp edges proving breaking actions of the potters as possible intentional activity for 

producing temper materials, were difficult to find in this specific sherd. The local potters could recycle 

such possible old pottery fragments as weathered state as temper materials. The chemical composition 

of the ceramic matrix varies between the different sites as well as within a site. It indicates that the 
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potters prepared the ceramic pastes in various ways. The different grain groups in the ceramics from the 

same site support the possible existence of various recipes.  

In the meanwhile, illite is detected as the dominant clay in almost all samples. It would be related to the 

potter’s strategy to collect flexible soils in the close local environment. Because illite is formed normally 

in the highly altered place in the soil development process, illite rich clays would be the most common 

forming material. For the potters who lived in the semi-sedentary society, this type of clays could be 

one of the easiest options. 
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Chapter 5. Formation of the ceramics (inner structure) 

 

5.1. Ransyrt 1: Results and discussion  

Despite of various reasons and factors generated by the potters during the production or natural resources, 

use of the ceramics or weathering process, 3D alignments of macro-pores and coarse sand grains in the 

samples can provide a possibility to assume the formations of the inner structure of ceramic bottom and wall 

respectively. Normally, the identification and categorization of such formations can be easily misled by the 

optical surface observation due to the weathering process and can be limited in size and scale by the 

investigation using destructive 2D cross sections of ceramics. Therefore, this case study focused on the 

images of structural elements acquired by the 3D µ-CT in a range from mm to cm. 

Figure 5-1 shows a classification of the inner formation of the bottom and wall part representative for 

Ransyrt 1. In the bottom-wall fragments, four types of alignments were identified: (1) most pores existing 

in the bottom plate are not connected to those in the wall. Only one long pore complex continues from the 

bottom to the wall. In the bottom plate, the pores are aligned parallel in the horizontal direction (Figure 5-

1.a.1); (2) The pores from the bottom link to the wall. The pores in the bottom are lying parallel to each 

other (Figure 5-1.a.2); (3) The pores in the bottom and wall do not connect to each other. The pores of the 

wall are vertically aligned starting from the side of the bottom part (Figure 6-1.a.3); (4) The bottom plate 

consists of two layers (Figure 5-1.a.4).  

The wall fragments can be categorized into two groups in general: (1) irregular alignment of pores and sand 

grains, some grains showing specific orientation (Figure 5-1.b.1); (2) Most grains and large pores are 

oriented to the vertical direction (Figure 5-1.b.2). In general, the alignment of the pores and grains indicates 

the direction of the uniaxial compression and bending force applied by the potter in the walls during the 

modelling phase, where irregular directions of the pores and grains can be created easily by the hand 

shaping. Most inner structures of the selected samples were formed by these internal forces would be created 

by the pressing by potters with various intensities.  

According to the combination of these identified alignments of pore complex and sand grains, representative 

shaping techniques for the bottom and wall fragments can be supposed accordingly: (1) The wall and bottom 

were formed into a separate part and the wall is added on the bottom later. Basically, both parts were shaped 

by pressing, to the horizontal direction for the bottom part; (2) The wall and bottom part were built together. 

The bottom was flattened by pressing from inward out; (3) The wall was pulled out or pinched slightly to 

the vertical direction and was added to the side of the bottom plate; (4) The wall and bottom were built 

separately and bound together later; (5) The bottom plate of the ceramic pottery was formed by two layers 

for the bottom plate. It is probable that the potters shaped the walls usually by hand. At the end, they pressed 

the wall, probably with the fingers or palms, for the compactness and finishing and bent. Regarding the ratio 

of coarse sand grains in the paste identified in the chapter 4 of this project, tensile stress created by pulling 
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would not be employed for the shaping of a pottery, because the paste would not be so flexible. The 

combination of several parts composed of coarse grains with similar orientation could be interpreted that 

the potters added the wall fragments side by side or stacked them from the bottom to the upside part such 

as coiling (Figure 5-1.b.1).  

Figure 5-1. Photos of original ceramic sherds and segmented images of the large pore complex (blue) and sand grains 

(red and black) of the ceramics discovered at Ransyrt 1 (connectivity = 26). Region of interest (ROI) in the box of the 

white dashed line. (a) Bottom-wall fragments: 1. Separate formation of the bottom and wall part (wall on the bottom), 

oriented parallel pressure/stress from the surface (voxel size: 29.053 µm3); 2. Continuous formation of the bottom and 

wall part (voxel size: 29.633 µm3); 3. Separate formation of the bottom and wall part (wall next to the side of the bottom) 

(voxel size: 24.313 µm3); 4. Two layers for the bottom building (voxel size: 28.213 µm3); (b) Wall fragments: 1. Mixture of 

regular and irregular alignment of sand grains (voxel size: 19.333 µm3); 2. Vertical orientation of the large pores in 

comparison to the alignment of the sand grains (voxel size: 9.493 µm3). 

 

5.2. Kabardinka 2: Results and discussion 

In the similar way described above, the ceramics found at Kabardinka 2 can be categorized into a few groups 

of formation as well (Figure 5-2). Three types were identified for the main layout of the bottom—wall part: 

(1) the large pores connect both parts (Figure 5-2.a.1); (2) The pores from the bottom and wall part are not 

connected. The pores in the bottom show a rounded form, while the pores in the wall are elongated in the 

vertical direction (Figure 5-2.a.2); (3) The pores in the bottom part are not linked to the wall part. The 

bottom part contains pores aligned in parallel. Some of them on the surface are very sharp cuts (Figure 5-

2.a.3). 

The wall fragments excavated at this site contain clearer traces of their making than those found at Ransyrt 

1 due to the finer grain size distribution of the ceramic pastes: (1) The pores are aligned in the vertical 
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direction (Figure 5-2.b.1); (2) The pores are aligned in the vertical direction from the side view, while from 

the front they are oriented in irregular direction (Figure 5-2.b.2).  

The similar alignment of grains and pores indicate that the potters at Kabardinka 2 shaped the bottom and 

wall part of the ceramics using the same compression and bending force in similar ways: (1) Both parts were 

built separately and pressed together. The bottom was flattened leaving round traces and the wall was formed 

to a vertical direction. Some of the bottom plate was done by a tool with a sharp edge; (2) The wall part was 

drawn, pinched or bent from the bottom part; (3) Both parts were formed separately and the bottom was 

flattened by pressing into the horizontal direction.  

There are no ceramic sherds containing any sign for the rotational kinetic energy which would let the grains 

in the pastes aligned in the second direction with 5–60° and which would prove the application of the wheel-

throwing/shaping [1-4]. Thus, the ceramics from both sites were basically made by hand and shaped by the 

formation of the whole objects or by the modular slab building. 

Figure 5-2. Photos of original ceramic sherds and segmented images of the large pore complex (blue) of the ceramics 

discovered at Kabardinka 2 (connectivity = 26). ROI is in the box with the white dashed line. (a) Bottom-wall fragments: 

1. Continuous formation of the bottom and wall part (voxel size: 20.003 µm3); 2. Separate formation of the bottom and 

wall part (wall next to the side of the bottom) (voxel size: 25.003 µm3); 3. Separate formation of the bottom and wall part, 

oriented parallel pressure/stress from the surface (voxel size: 17.313 µm3); (b) Wall fragments: 1. Alignment of the pores 

to the vertical direction (voxel size: 27.043 µm3); 2. Rough alignment of the pores to the vertical direction with the random 

direction from the front view (voxel size: 25.003 µm3). 
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Chapter 6. Identification of the ceramic firing 

 

6.1. Firing behavior of the illite based ceramics by the direct measurements of XRD, FTIR, SEM 

and Raman spectroscopy 

The samples could be qualitatively ordered with respect to the decreasing illite XRD intensity that is 

taken as measure of increased thermal degradation (Figure 6-1). While illite peaks are decreasing in 

intensity, new minerals are crystallizing in the ceramics. Once the peak at 2.58 Å of illite is dispersed, 

a new peak of hematite (110) lattice plane starts to grow. The main peak of natural hematite at (104) 

occurs later as a sub peak, as the illite peak decrease and the hematite peak for (110) gains more intensity. 

In highly modified ceramics by firing, the intensities of the both peaks for hematite become equal. 

Reddish color caused by hematite formation indicates oxidizing firing during ceramic production. 

Higher firing degree is confirmed by spinel peaks of (113) and (004). Dark gray or blackish-brown 

samples show decrease of illite peaks without hematite crystallization, so that it is assumed that they 

were fired in the reducing atmosphere. If the samples contain calcite, gehlenite is detected corresponding 

to the decreasing illite peaks. In some samples containing hematite or spinel, the XRD background is 

smoothly increased between 15 and 35° for 2θ° indicating a vitreous phase. Other minerals such as K-

feldspar, anorthite or clinopyroxene were not counted as the indicator of the thermal transformation in 

ceramics, because of they already existed in the ceramic pastes in various sizes.  

 

Figure 6-1. Example of comparison between XRD and FTIR according to firing conditions: (a) Three ceramic 

sherds from Ransyrt 1 fired in the oxidizing atmosphere with the estimated firing temperature of 300-675 °C 

(blue), 675-750 °C (orange), 1050-1300 °C (light grey); (b) Three ceramic sherds fired at over 1050 °C (estimation) 

in Ca-rich matrix/reducing atmosphere (dark yellow), Ca-poor matrix/oxidizing atmosphere (dark grey); Ca-

rich/oxidizing atmosphere (yellow). 
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The main IR band in the transmission mode for the matrix ranges between 900 and 1080 cm-1, mainly 

affected by the asymmetric stretching mode of Si-O bonds in clays, νas(Si-O). As proven by heating 

experiments [1-4], samples with strong XRD peaks for illite have the main IR band between 1027-1030 

cm-1, which is similar to the unfired illite, while samples with weaker illite peaks have this band shifted 

to the higher wavenumbers. Samples including hematite or spinel have often the main band at 1080 cm-

1 assigned for quartz and sub band between 1050 and 1080. In some partly molten samples, only the 

main band at 1080 cm-1 appears without sub bands between 900 and 1100 cm-1, thereby indicating the 

total collapse of the illite structure. The changes of wavenumbers and spectral shapes of the main band 

visible between 1027/1030 and 1080 cm-1 coincide with the changes in wavenumbers assigned to the 

bending mode of Si-O-Si and O-Si-O bonds, δ(Si-O-Si) and δ(O-Si-O) from the higher to lower 

wavenumbers within 460-480 cm-1. This indicates that upon firing asymmetric deformation occurs in 

length and angle of Si-O bonds in the tetrahedral sheet. In Ca-rich ceramics containing gehlenite, the 

main FTIR band shifts to the lower wavenumbers close to 920-930 cm-1 that is related to Ca-

aluminosilicates [5]. The clay dominant area could be focused by reflectance IR using a 70 µm aperture 

size. It was performed on polished cross sections of the same samples and yields similar spectra to the 

transmittance IR in all cases (Figure 6-2).  

 

Figure 6-2. Comparison of FTIR spectra in the transmittance mode (intensity normalized to 1) and reflectance 

mode (intensity from a 70 µm aperture size) of representative samples ordered according to the estimated firing 

degree: (a) Ransyrt 1 ceramics: Ca-poor matrix by transmittance and reflectance IR; Ca-rich matrix by 

transmittance and reflectance IR; (b) Kabardinka 2 ceramics: Ca-poor matrix by transmittance and reflectance 
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IR; Ca-rich matrix by transmittance and reflectance IR; (c) Ceramics fired in the controlled reducing 

atmosphere: Ca-poor matrix by transmittance and reflectance IR. 

 

SR-FIR and DRIFT-NIR spectra of the representative samples in different pyrometamorphic states in 

this study showed corresponding changes in illite specific vibrations for the far/mid/near IR range 

between 60 and 12000 cm-1 (Figure 6-3). In case of the samples from Ransyrt 1, the unsharp reflectance 

band shapes characteristic for illite, in comparison to muscovite, appear more clearly in the low fired 

ceramics and they lose their intensity in the high firing state, characteristic for its dehydroxylation 

process. However, illite specific FIR absorptions for the ceramics excavated at Kabardinka 2 show 

irregular changes which might be due to the impurities in quartz, mica or calcite. The significant IR 

bands for ν (H2O) between 3000-3400 cm-1 and νas (Al/Mg/Fe-OH) at 3623 cm-1 in diffuse reflectance 

and their decrease according to the degree of the dehydroxylation were observed in the MIR absorbance 

spectra [6]. 

 

Figure 6-3. Comparison of SR-FIR absorption spectra, MIR specular reflectance and absorption spectra and 

NIR diffuse reflectance spectra of the representative samples for the different firing degrees excavated at (a) 

Ransyrt 1; (b) Kabardinka 2. In each IR range, the samples from both sites are ordered from the lower to higher 

firing degree. MIR data are taken from Park et al. [6]. 

 

Figure 6-4 shows the NIR diffuse reflectance spectra as a function of wavelength. The spectra in the 

wavelength scale show more clearly the changes due to the firing history. Especially in the Ca-poor 

samples, the reflection bands representing for the transition between Fe2+ and Fe3+ which became weaker 

according to the degree of firing, appears again in the samples fired at the high temperature (Figure 6-

4.a-b) [7]. However, its spectral shape is much smaller and isolated in comparison to that of the 

structured Fe such as that in the octahedral layer and it indicates independent growth of the 6 coordinated 

ferric ion bearing mineral, hematite in the ceramics [8-10]. Moreover, this tendency of the shape change 

looks different, according to the absence and presence of Oxygen during firing. While the shape of the 

reflection band until the wavelength of 1 µm changes from a linear, then concave and then to flat after 

ν (H2O) in the oxidizing atmospheric conditions (Figure 6-4.a,b), the band shape of the samples fired in 

the reducing condition showed the change from concave to linear increase (Figure 6-4.c). Regarding the 

pyrometamorphic degree, the vibrations for the combination mode of Al/Mg/Fe-OH bonds of the Ca-
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poor samples loose in reflectance intensity as well, except of the samples containing newly crystallized 

hematite. Between the Ca-poor samples, the Ransyrt 1 ceramics show broader changes from lower to 

higher pyrometamorphic degree (Figure 6-4.a: Ca-poor) than those for Kabardinka 2 (Figure 6-4.b: Ca-

poor), indicating that the thermal deformation and transformation of the Kabardinka 2 ceramics in the 

oxidizing atmosphere were not huge in comparison to the similar firing products at Ransyrt 1. 

Additionally, there were no distinguishable reflectance features related to the other Fe-bearing mineral 

phases such as goethite or ferrihydrite, in agreement with the XRD results of the same samples [6]. 

However, the reflectance spectra of the Ca-rich ceramics from both archaeological sites present an 

irregular pattern regarding the thermal conversion state by the firing (Figure 6-4.a,b: Ca-rich). The 

reflectance band from 1.38 nm to 0.88 nm which appear in these ceramics developed in the broader and 

more smooth form than the bands around 1 µm in Ca-poor samples under oxidizing firing. This broad 

reflection is more similar to that of the relatively Ca-rich ceramic object fired under reducing atmosphere 

(Figure 6-4c: Kab2_918_1) [6]. Another reduced firing object in the state of the liquid sintering shows 

almost flat and linear reflectance (Figure 6-4c: Lev_8653_3). The weakest trace of these IR bands was 

observed in this sample excavated at Levinsadovka in the Minus Peninsula. However, the highest firing 

temperature estimated by the Raman spectra would be given by the firing product in the oxidizing 

condition (Figure 6-4.a: Ran1_549; Figure 6-5). The appearance of the peak around 755 cm-1 indicates 

the early stage of the transformation of the clay ceramics into silica rich glass, which occurs between 

1150 and 1250 °C in the experimental illite firing [11]. The fragile, thin and micrometer sized partial 

melts are composed mainly of aluminosilicates, measured by SEM-EDS, despite the possible 

consumption of Al at the octahedral site for the formation of spinel during the break-down of the clay 

mineral [11].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4. NIR diffuse reflectance spectra of the selected samples representing various pyrometamorphic states. 

The order of the spectra for the graph from lower to higher firing state. (a) Ca-poor and Ca-rich samples 

excavated at Ransyrt 1; (b) Ca-poor and Ca-rich samples excavated at Kabardinka 2; (c) Samples fired in the 

reducing atmosphere. 
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Figure 6-5. (a) BSE image 

and (b) corresponding 

Raman spectra of the 

ceramic sherd excavated at 

Ransyrt 1 (Ran1_549); (c) 

Closed pores filled by 

aluminosilicate melts (1-3 in 

(a)) (H:hematite; 

Qtz:quartz). 

 

 

Micromorphology of the ceramic matrix as visualized by BSE images and chemical element maps 

supports this relation between thermal transformation and crystallization observed by the XRD and 

FTIR. This is summarized in figure 6-6, based on the parallelization of all three lines of evidence. If 

samples have strong illite XRD peaks and the main IR band close to 1027-1030 cm-1, their ceramic 

matrix features open pores with elongated shapes. If the samples have weak illite peaks and their main 

IR band occurs at higher wavenumbers, the fabric is characterized by globular and closed pores, often 

filled with aluminosilicate melts containing Mg, Fe and Ca as minor components, as SEM-EDS proved. 

The compositional ratio of (Fe+Mg+Ca)/Al or Si is ≤ 0.3 wt. %. In element distribution maps of Ca-

poor samples containing hematite, Al is enriched in closed pores indicating the formation of Al-rich 

melt. In samples devoid of hematite but with their main IR band occurring at similar wavenumbers to 

that of hematite containing samples, the fabric shows already less pores between quartz or feldspar 

sand/silt grains and clay matrix, although the clay structures still exist in the samples. In the element 

distribution maps of these samples, there are less gaps between sand grains and clay matrix, in spite of 

still existing huge open pores. Samples containing spinel without hematite and illite show a matrix with 

closed pores, too. In Ca-rich ceramics, Ca-carbonate combines with aluminosilicate clays and gehlenite 

is formed in a globular or tabular shape at the surface of calcite grains. Spinel appears in all kinds of 

ceramics with highly progressed partial melting. Slight variations in d-spacings indicate various spinel 

solid composition. In this project, most calcite grains are partly decomposed forming a reaction rim at 

the grain boundary and interdiffusion of Ca2+ ions from original calcite grain into the porous ceramic 

matrix24 and Mg2+ ions from the clays into calcite occurs [12] (Figure 6-7). In case of calcite grains 

during firing over 650-700 °C in the ceramic paste, similar vibrational changes were observed (Figure 

6-7.a). In the reaction rim, reflectance IR intensity of Ca-carbonate vibrations decreases, while the 

possible νas(Si-O) gains the intensity (Figure 6-7.b). Similar phenomena were reported for the ceramic 

pottery measured with FTIR (transmittance) and found the reason in Mg incorporation from clays into 

calcite. Ca and Mg distribution maps show the interdiffusion between these two elements through the 
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reaction rim (Figure 6-7.c) [12]. The chemical composition of calcite grains and grain boundaries was 

measured by SEM-WDS with a beam size 10 µm, in comparison to the total weight % of each point 

without contribution of CO2. As a consequence, IR vibrations of (CO3)2- groups, especially between 

1430-1450 cm-1, move to slightly higher wavenumbers forming a broader band shape [13-14]. 

 

Figure 6-6. Comparison of general morphological changes of representative samples according to estimated 

firing temperature, Ca presence, and atmospheric conditions: (a) BSE images (300µm x 300µm); (b) Al 

distribution maps of together with Ca maps for Ca-rich matrix (300µm x 300µm); (c) comparison of 

micromorphology (BSE) between ceramic sherd fired over 950 °C (estimated).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-7. Thermal decomposition of calcite: (a) FTIR (transmittance) of the ceramic paste containing 

decomposed calcite grains; (b) FTIR (reflectance) from different positions from the boundary through the whole 

calcite grain (c); (c) Ca, Mg distribution maps (700 µm x700 µm) and chemical compositional changes according 
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to different positions from the boundary to the calcite core measured by SEM-WDS (beam size 10 µm, without 

CO2 composition). 

 

Table 6-1 summarizes the results from the micropore morphology analysis and XRD describing the 

presence and absence of indicator minerals, FTIR (transmittance) of bulk ceramic powder mixed with 

KBr, in relation to the macroscopic colors of ceramics cross sections for representative samples. 

Sample No. Ceramic color (cross section) Micropore morphology XRD (indicator minerals, 

peaks) 

FTIR (transmittance, Si-O 

stretching, cm-1) 

Ran1_437_83 red brown (surface), dark 

brown 

elongated open ill(020)/(110), clc, geh trace 1024 (main), 1052&1080 (sub) 

Ran1_225_4 dark brown, brown elongated open, closed ill (020)/(110) (130)/(131̅) , hem 

(104) (110), clc 

1054 (main), 1078 (sub) 

Ran1_261_40 light brown elongated open ill (001) (002) (020)/(110) 

(130)/(131̅) 

1035 (main) 

Ran1_357_20 light/red brown elongated open, closed 

globular 

clc, geh, spl, hem (104) (110) 1079 (main), 1063 (sub) 

Ran1_6_9 orange red closed globular ill (020)/(110), clc, hem (104) 

(110) 

1034 (main) 

Ran1_278_x dark brown elongated open ill (001) (002) (020)/(110) 

(130)/(131̅)  

1031 (main) 

Ran1_554_4 brown (surface), dark brown elongated open ill (001) (002) (020)/(110) 

(130)/(131̅), hem (110) trace, clc 

1028 (main) 

Ran1_217_17 brown elongated open ill (001) (020)/(110) (130)/(131̅) 

hem (110) trace  

1035 (main), 1080 (sub) 

Ran1_244_9 red brown, dark brown closed globular hem (104) (110), clc 1035 (broad main between 

1010 and 1050) 

Ran1_326_9 light brown, gray brown elongated open ill (020)/(110) (130)/(131̅)  1034 (main), 1055 (sub) 

Ran1_167_4 brown, gray brown, dark 

brown 

elongated open, closed 

globular 

ill (020)/(110) (130)/(131̅), hem 

(110) trace  

1040 (main), 1050 (sub) 

Ran1_509_9 gray brown closed irregular ill (020)/(110) (130)/(131̅), hem 

(110) trace  

1034 (broad main between 

1013 and 1053) 

Ran1_17_2 light brown (surface), dark 

brown 

elongated open ill (001) (002) (020)/(110) 

(130)/(131̅),  hem (110) trace  

1034 (main) 

Ran1_306_5 brown gray closed globular clc, geh, spl, hem (110) 1054 (main), 1076 (sub) 

Ran1_549 orange red closed globular hem (104) (110) 1087 (main), 1062 (sub) 

Ran1_470_ceramic pink red closed irregular clc, hem (104) (110) 1080 (main), 1055 (sub) 

Ran1_370_1 dark brown gray elongated open, closed hem (104) (110), clc, geh trace 1041 (broad main between 

1030 and 1053) 

Ran1_449 red brown, brown elongated open ill (001), (020)/(110), 

(130)/(131̅), hem (104) (110)  

1041 (main), 1080 (sub) 

Ran1_KB3kc1 red brown (surface), dark 

brown 

elongated open ill (020)/(110) (130)/(131̅), hem 

(110) trace  

1039 (main), 1083 (sub) 

Ran1_514_3 dark brown, brown elongated open ill (001) (020)/(110) (130)/(131̅), 

hem (110)  

1039 (main), 1083 (sub) 

Ran1_514_1 dark brown elongated open ill (020)/(110) (130)/(131̅), hem 

(110) trace  

1035 (main), 1078 (sub) 

Ran1_527_1 dark brown, brown elongated open ill (001) (020)/(110) (130)/(131̅), 

hem (110) trace  

1034 (main), 1080 (sub) 

Ran1_329 dark brown elongated open ill (001) (020)/(110) (130)/(131̅), 

hem (110) trace  

1035 (main), 1074 (sub) 

Ran1_514_2 dark brown elongated open none 1090 (main), 1040&1060 (sub) 

Ran1_dmp1 red brown, dark brown elongated open, closed 

globular 

ill (001) (020)/(110) (130)/(131̅), 

hem (104) (110)  

1053 (main), 1080 (sub) 

KAE2007_2113_1 dark brown elongated open ill (001) (002) (020)/(110) 

(130)/(131̅), hem (110) trace  

1085 (main), 1054 (sub) 
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KAE2008_844_1 light brown elongated open ill (001) (002) (020)/(110) 

(130)/(131̅), hem (110) trace  

1084 (main), 1023 (broad sub 

1005 and 1043) 

KAE2008_633_1 black elongated open ill (020)/(110) (130)/(131̅), hem 

(110)  

1039 (main) 

KAE2007_1697_1 red brown (surface), dark 

brown 

elongated open ill (020)/(110) (130)/(131̅) trace 1084 (main), 1054 (sub) 

KAE2007_1235_1 gray brown elongated open ill (001) (002) (020)/(110) 

(130)/(131̅) trace, clc 

1039 (main) 

KAE2007_1418_1 brown (surface), dark brown elongated open, closed ill (020)/(110) trace (130)/(131̅), 

hem (104) trace (110) 

1049 (main) 

KAE2007_NN brown elongated open ill (001) (002) (020)/(110) 

(130)/(131̅) 

1040 (main) 

KAE2007_28/2 dark brown (surface), light 

brown 

elongated open ill (001) (002) (020)/(110) 

(130)/(131̅) 

1038 (main) 

KAE2007_797_1 red brown (surface), dark 

brown 

elongated open ill (020)/(110) (130)/(131̅) trace, 

clc 

1041 (main), 1080 (sub) 

KAE2007_918_1 dark gray closed globular spl 1084 (main), 1066 (sub) 

KAE2007_482_1 dark red (surface), red elongated open, closed 

globular 

ill (130)/(131)̅, hem (104) (110)  1053 (main) 

KAE2008_1195_6 red brown (surface), dark 

brown 

elongated open ill (001) (002) (020)/(110) 

(130)/(131̅),  hem (110) trace  

1031 (main) 

KAE2008_1162_1 black (surface), light brown elongated open ill (001) (002) (020)/(110) 

(130)/(131̅) 

1030 (main) 

KAE2008_516_2 red brown (surface), dark 

brown 

elongated open ill (001) (002) (020)/(110) 

(130)/(131̅),  hem (104) (110)  

1039 (main) 

KAE2008_1021_1 light brown, gray brown elongated open, closed ill (020)/(110) trace 1084 (main), 1038 (broad sub 

between 1005 and 1055) 

KAE2008_1152_1 light brown elongated open ill (001) (020)/(110) (130)/(131̅) 

trace 

1020 (broad main between 

1047-990), 1080 (sub) 

KAE2008_516_26 light brown elongated open ill (001) (020)/(110) (130)/(131̅),  

hem (110)  

1043 (main) 

KAE2008_483_3 pink red (surface), dark gray elongated open ill (020)/(110) (130)/(131̅) trace 1080 (main), 1055 (sub) 

KAE2008_641_1 light brown elongated open ill (020)/(110) (130)/(131̅),  hem 

(104) trace (110)  

1045 (main) 

Lev_9633 Black, dark brown elongated open ill (001) (002) (020)/(110) 

(130)/(131̅) 

1039 (main) 

Lev_7718 light brown (surface), dark 

brown 

elongated open ill (001) (020)/(110) (130)/(131̅) 1042 (main) 

Lev_8653_1 light brown, black elongated open ill (001) (020)/(110) (130)/(131̅), 

clc 

1031 (main) 

Lev_8653_3 black, dark gray elongated open ill (020)/(110) (130)/(131̅) trace, 

clc 

1084 (main), 1054 (sub) 

Lev_8653_4 light brown (surface), dark 

brown 

elongated open ill (020)/(110) 1084 (main), 1058 (sub) 

Saf_501_5 orange red closed globular clc, geh, hem (104) (110), spl 1085 (main), 1078 (sub) 

Saf_502_3 red brown (surface), dark 

brown 

elongated open, closed ill (020)/(110) trace (130)/(131̅) 

trace, hem (104) trace (110) trace, 

clc 

1085 (main), 1060 (sub) 

Table 6-1. Description of cross section colors, micropore morphology, XRD peaks of pyrometamorphic minerals 

and main and sub bands of FTIR (transmittance) vibrations for the representative samples (clc: calcite, geh: 

gehlenite, hem: hematite, ill: illite). 

 

6.2. Pore topology within the ceramics as indicator for the pyrometamorphic degree 

Pyrometamorphism of archaeological ceramics indicating firing degree and conditions has been 

estimated by chemical and mineralogical changes and clay sintering by various analytical instruments 

such as XRD, SEM and FTIR [15-16]. Pore topology is one of the key variables related to the 
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pyrometamorphic degree of the ceramics, because firing temperatures and atmospheres change pore 

shapes and orientations caused by thermal expansion and sintering of clay minerals [17-19]. If particles 

with identical shape and composition are sintered, the interstitial topology changes in three steps: (i) the 

contact between neighboring particles; (ii) the interconnected channels with cylindrical pores; (iii) the 

formation of closed pores [17,18]. Clay sintering has a similar process as well [19]. The initial stage is 

the formation of sharply concave necks between the individual particles, while the intermediate stage 

forms a 3D interpenetrating network of solid particles and continuous-, channel-like pores with high 

curvatures. The final stage of sintered clay shows a huge decrease in porosity with isolated and closed 

forms. Because the prehistoric ceramics contain various scales and anisotropic shapes, the densification 

process and the coarsening process in the sintering will occur as a mixed process [19]. Despite of the 

difficulties in the morphological description of this heterogeneous system, the morphological changes 

in the clay matrix were described by several simplified steps during ceramic firing in the same study 

[20]: (i) drying and shrinking of the clay paste; (ii) dehydration in the low temperature firing interval 

between 100 and 200°C, creating interstitial pores; (iii) continuous increase in porosity by chemical 

reactions such as dehydroxylation of clay minerals between 400 and 800°C; (iv) liquid phase sintering 

forming interconnected pores of irregular shape and partial melts; (v) micro-fabric formation ranging 

from non-vitrified to completely vitrified final state. The selected ceramic samples were ordered 

according to the different micro-morphology and mineralogical changes, which range from low firing 

through thermal expansion and dehydroxylation to the early melting stage [6]. In general, the fabrics of 

the samples could be classified into four types in terms of micro-pores and colors of ceramic matrix as 

well: (1) elongated open pores with the matrix in dark brown/brown/gray/black; (2) closed end-

elongated pores with the matrix in light brown/reddish brown/dark red; (3) open pores/closed end-

elongated/closed globular pores with the matrix in light gray/light red; (4) closed globular pores in 

orange/dark gray. 

The morphological changes led by clay sintering can be described by the shape parameters such as pore 

size/area/volume distribution, sphericity 1 and sphericity 2. Additionally, the complex pore geometry 

can be expressed by the pore topology function of the archaeological ceramics such as Minkowski 

functionals [21-22]. Especially, the Euler characteristic (χ) provides an unbiased estimation of pore 

topology, applied to a 3D cutout of arbitrary shape and volume [22]. It was calculated from 2D and 3D 

images using the following formula: 

                                                 χ2D = n(objects) – n(pores),                                                    (6-1) 

                                            χ3D = n(objects) – n(tunnels) + n(cavities),                                      (6-2) 

where χ2D and χ3D represent the Euler characteristic in 2D and 3D and n(objects), n(tunnels) and 

n(cavities) are the total numbers of objects, tunnels and cavities, respectively. However, due to the 

complex structure of ceramics, these elements for the Euler characteristic in 2D and 3D are difficult to 

count directly. For the application of this characteristic in the heterogeneous ceramic structure, the 
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Equation (5) is replaced by the Euler–Poincaré formula based on a cubic form of the voxel which can 

be acquired directly from the reconstructed images [23-24]: 

                                         χ3D = n(vertices) – n(edges) + n(surfaces) – n(volumes),                           (6-3) 

where n(vertices), n(edges) and n(surfaces), n(volumes) mean the total number of vertices, edges, 

surfaces and volumes of the measured ceramic objects. Due to the very heterogeneous shapes existing 

in the samples, this calculation used the six-connectivity of voxels defining the areas of pores and 

ceramic matrix. The orientation of the pores which were mainly decided by the forming and shaping 

actions of the potters can provide additional evidence regarding the sintering stage. In 2D image 

analysis, the angle between the x-axis, the cross profile of the ceramic thin section, and the major axis 

of the ellipse that has the same second-moments as the pore region, referred as θ, was used. It ranges 

from –90 degrees to +90 degrees. In 3D data processing, Euler angles were taken for the x- (ϕ), y- (θ) 

and z-axis (ψ) based on the right-hand rule [25-26]. In order to normalize porosity acquired from the 

different areas and volumes of ROI, Euler characteristic is divided by the corresponding area of the 

object for 2D and volume for 3D. In 2D images for the area of 300x300 µm2, average and standard 

deviation of sphericity 2 of individual pores become smaller due to clay sintering, while Euler 

characteristic suddenly decreases just before the beginning of the liquid sintering and after that it 

increases again (Figure 6-8). Due to the different grain size distribution, the numeric thresholds 

suggested by this Euler characteristic are formed differently according to the archeological sites.  

Figure 6-8. Average and standard deviation of sphericity 2 of pores and comparison between Euler number per 

unit area of the pores (A = 300x300 µm2) in average and sphericity of pores in average. Calculated from the 

pores (2D) present in cross thin sections of the samples from (a) Ransyrt 1, (b) Kabardinka 2. These parameters 

of four samples for each site (bigger maker with a boundary border) were compared to the reflectance Fourier-

transform infrared spectroscopy (FTIR) (aperture size: 70x70 µm2, reference: silver mirror) [6]. 

 

In figure 6-9, the 2D images and 3D segmented pores of the same samples are compared to each other. 

According to the increase in the degree of sintering, the pore volumes decrease in size. These samples 

contain a relatively similar percentage of sand size distribution (Figure 6-10). The degree in orientation 

of the closed pores, θ decreases as well. The sample with the highest pyrometamorphic state (Ran1_549) 

shows the highest variations of the localized Euler characteristics. Interestingly, the Euler characteristic 

calculated from the 2D and 3D images does not show a linear relation and rather is related to the higher 
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interconnectivity of the pores and grains in the 3D images. This reflects the faster disappearance of pore 

connectivity in the x–y-plane of the wall fragment than in z-direction. These changes of the pore shapes 

to an ellipsoidal form is controlled by vacancies diffusion ruling pore morphology during sintering, 

because the large pores created with different curvatures favor this shape according to the increasing 

sintering degree [27]. Figure 6-11 shows a tendency of the closed pore networks in 3D volume to become 

more elongated in accordance with metamorphic degree, while their surface area and volumes decreases. 

The orientation degree, ψ, of the individual open and closed pores in the ceramics decreases according 

to the increasing pyrometamorphic degree. This means a rotation around the z-axis in the clockwise 

direction according to the increasing firing temperature. 

Figure 6-9. Comparison of the pore topology between (a) 2D and (b) 3D images of three samples varying in the 

degree of pyrometamorphic degree/sintering [6]. Estimated firing temperature for A: 700–850 °C, B: 700–850 

°C and C: 950–1050 °C. The segmented pores show the difference of the firing degree between A and B more 

clearly. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-10. Comparison of sand size distribution calculated by (a) 2D images and (b) orientation of two-

dimensional pores, (c) spatial distribution of the localized Euler number within a two-dimensional unit area and 

(d) Euler number (average) derived from 2D images and that from 3D images (connectivity = 6). Samples (A, B, 

C) from the Figure 6-9. 
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Figure 6-11. Relationship between the average of (a) sphericity 1 and sphericity 2 of closed pores and (b) surface 

area and volume relation of the closed pores and (c) the comparison of orientation degree ψ and the closed and 

open pores in average. All parameters derived from 3D scanning with the connectivity 26. Samples (A, B, C) 

from the figure 6-9. 

 

These results show that the segmented pores in 2D and 3D and their parametrization according to the 

sintering stages are useful as an additional indicator supporting the estimation of the degree of 

pyrometamorphism of the archaeological ceramics. Although the parameter values from the 2D and 3D 

image analysis provide results slightly different from each other, which is probably caused by the 

different unit cell size and counting of the objects, they can both be employed for the classification of 

the archaeological ceramics according to the firing degree. The Euler characteristic provides the numeric 

thresholds of the sintering stages of each sample. Especially, the transition into the liquid sintering of 

the ceramic matrix can be distinguished by the huge decrease in this property, which is important for 

identifying high firing ceramics at the site. Despite the complex pore structure caused by the 

heterogeneous composition in the ceramic paste, ceramics with similar degree of heterogeneity can be 

analyzed by this parameter describing the pore topology and related sintering. 

In comparison to the Ca-poor ceramics, the samples containing considerable amounts of Ca-carbonates 

contain additional pore type caused by the thermal dissociation carbonate grains [6]. This type of 

porosity is mainly controlled by a combination of the firing degree and the size of carbonate grains. 

Thus, the shape parameters of the Ca-carbonate rich ceramics cannot be compared to each other as well 

as the Ca-poor samples. 

 

6.3. Spatial distribution of the pyrometamorphic degree within an archaeological ceramic object 

Figure 6-12 shows the reflectance IR profile across a single sherd with a 70x70 µm2 aperture size. Spatial 

distribution of different IR bands in terms of intensity, wavenumbers and shape was identified within a 

single sherd. The main band attributed to νas(Si-O) varies from the left to the right side on the cross 
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to quartz increases. BSE images from areas along this profile depict a parallel switch from open to closed 

pores in the matrix.  
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parametric change [6]. However, this property has a dependency on the grain size and shape, thus 

ceramics found at Ransyrt 1 and Kabardinka 2 show a different distribution of Euler characteristic before 

the sintering. Moreover, the firing state within a single sample is heterogeneous, so that the average 

temperature of the whole ceramic sherd does not always coincide with the local firing state [6]. Despite 

of this high degree in the heterogeneity, these parameters provide thresholds of the sintering degree of 

the ceramic pastes, especially the beginning of the liquid sintering phase. The Euler characteristic 

calculated from each area within a same sample provides access to a spatial distribution that indicates 

the localization of the pyrometamorphic degree. 

Figure 6-12. (a) Cross section profile of the reflectance FTIR (aperture size: 70x70 µm2, reference: silver mirror, 

dashed ine in blue: quartz) [6] and corresponding BSE images for the left side (1), middle (2) and right (3) of the 

sample (Ran1_167_4); (b) Cross section profile of the Euler characteristic per unit area and related BSE images 

from the left side (a) through left middle (b) and right middle (c) to the right side (d) of the same sample in a 

same direction. Calculated from the two-dimensional area of 300x300 µm2 on the cross thin section. 

 

This method could distinguish the different ceramic part fired in the different atmospheric conditions. 

For example, a slip ware composed of a red-pink slip and grey body and excavated at Kabardinka 2 had 

very similar mineralogical and chemical composition both for the body as well as the slip part (Table 4-

1). Only the mechanical separation and the differences in the pattern of Fe distribution indicated a 

separate process for the preparation of the both parts (Figure 6-13.a,c.1-3). Moreover, IR vibrations of 

νas(Si-O) could prove that the body part was fired in the reducing atmosphere and the slip part in the 

oxidizing (Figure 6-13.b). 

In many cases, cross sections of the ceramic sherds excavated at both archaeological sites display the 

two or three optically distinguishable layers with brown/reddish/orange and black/dark gray/gray color 

(Figure 6-14). Some of them displaying layers of light gray and light reddish/orange color and show 

different degrees of thermal transformation and collapse depending on the layer, seen in BSE images or 

MIR reflectance for νas (Si-O) between 1030 and 1080 cm-1 (Figure 6-14.a.1-2: Ran1_dmp1; Figure 6-

14.b.3: Kab2_483_3). Either the ceramic morphology has partly vitreous state or the intensity of νas (Si-
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combination of the darker brown/black and reddish-brown colors, no changes in the morphology or MIR 

were observed (Figure 6-14.a: Ran1_KB3kc1; Figure 6-14.b: Kab2_516_2). This color distribution in 

the cross section is related to the black coring in the clay ceramics, caused by the oxidation of carbon at 

the expense of the valence charge of Fe structured in clay and preexisting Fe-bearing minerals such as 

goethite in the absence of oxygen [28-29]. Furthermore, the uneven distribution of the oxygen partial 

pressure and the reduction of ferrous minerals as a consequence lead to similar shapes of the reflection 

band assigned to νas (Si-O) of the ceramics fired in a reducing atmosphere (Figure 6-14.c). While the 

dark black ceramic sample was not highly transformed by firing (Figure 6-14.c: Kab2_633_1), the 

sample with light gray color in cross section shows highly a vitreous state with closed pores partially 

filled by melts characterized by the νas (Si-O) band shifts (Figure 6-14.c: Kab2_918_1). In addition to 

the thermal transformation and crystallization in the ceramics, BSE images and reflectance IR of many 

samples detected an alteration layer at the surface of the samples, developed during the deposition after 

use. Almost all of those layers are under 100 µm thick from the surface of the ceramics.   

 

Figure 6-13. Cross section of a slip ware: (a) FTIR (transmittance) for the body and slip part; (b) FTIR 

(reflectance) across the cross section; (c) BSE images between the slip and body part and Fe element maps (c-1: 

500µm x 500µm, c-2: 600µm x 600µm, c-3: 500µm x 500µm).  
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Figure 6-14. (a) Comparison of the cross section with different color profiles of Ransyrt 1 ceramics: 

Ran1_KB3kc1; Ran1_dmp1. BSE images for the middle/side part as indicated by the number 1 and 2. (b) 

Comparison of the cross section with different color profiles of the samples excavated at Kabardinka 2: 

Kab2_516_2; Kab2_483_3. BSE images for the middle/side part and FTIR reflectance spectra profile over the 

cross section taken along 3. The IR reflectance for the left side shows altered product/reconstructed clays.; (c) 

samples fired in the reducing atmosphere. The MIR graphs also show the spectra for quartz taken from quartz 

grains of the same sample for comparison. The Absorption and reflection spectra of of panel (c) for the reducing 

products are taken from Park et al. [6] (bt:biotite; qtz:quartz; Kfsp:K-feldspar). 

 

6.4. Discussion 1: Pyrometamorphic process of the archaeological ceramics 

Based on the serial employment of XRD, FTIR (transmittance and reflectance) and SEM-EDS/WDS 

measurements of the illite based ceramics, firing conditions of number of heterogeneous archaeological 

samples could be reconstructed from the macro- to microscale. First, decreasing intensity and dispersed 

shape of XRD peak at 2.58 Å related with octahedral cations of all the polytypes give qualitative 

knowledge about the dehydroxylation in the samples during ceramic firing. Peaks at (001), (002), 

(020)/(110) seem to lose the intensity qualitatively corresponding to the thermal transformation, 

although these specific structures could still remain until the total collapse of the whole structure at 

950 °C. In the samples, it was difficult to find out traces of illite 2M1 polytype related with the 

geothermal environment over 300 °C. The reason would lie in the fast firing process of the ceramics. 

Clay layers could not have enough time to stack with a regular rotating like the 2M1 type, due to the 

rapid changes during firing. This thermal transformation during ceramic firing process influences on IR 

vibrations corresponding to νas(Si-O), δ(Si-O-Si) and δ(O-Si-O) in tetrahedral structure. This vibrational 

change becomes more visible after the beginning of illite dehydroxylation in the ceramic pastes. Water 

molecules derived from the reaction of two hydroxyl groups in the octahedral structure would cause 

clear deformation as they move out through the tetrahedral sheet and interlayer space or changes in from 

six to five Al-coordination in the octahedral structure influence of the structural deformation of the 

tetrahedral layer, too.  

Before the total collapse of illite structure, the hematite peak at the (110) lattice plane appears in the 

decreasing illite XRD peaks as the result of oxidizing firing. Fe ions originated from illite would form 

hematite, because Mg and Fe substitute Al in octahedral sites or Fe replaces Si in tetrahedral sheet of 
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illite [30-31]. According to the crystallization environment, the XRD Bragg peaks of hematite look 

different from those of hematite formed in the nature which has its strong main peak at (104) reflected 

by Fe [32]. During ceramic firing, the peak at (110) related with oxygen atoms of the crystal appears 

earlier at the lower temperature than the main peak at (104). It could indicate a deficiency of iron atoms 

in the earlier stage of crystallization, while oxygen atoms already occupied the hematite structure, 

similar to the phase transformation from goethite to hematite [33-34]. It can be also assumed that the 

crystal shapes of hematite in the earlier synthetic stage were nanorod characterized by the strong 

intensity at (110) [35] which synthetic hematite shows as well [36-37]. This shape seems more likely to 

grow in the illite lath during illite dehydroxylation and solid state sintering stage. However, the lack of 

peak for (104) still indicates the Fe deficiency in the crystal and the lack of free ferric iron in the ceramic 

matrix. Maghemite peak at (311) which can also form through the dehydration and transformation of 

iron oxide/hydroxide, cannot be responsible for this peak, because no samples with less thermal 

deformation prove massive amounts of goethite, lepidocrocite or ferrihydrite in the ceramic paste, for 

which the dehydration of occurs earlier than the illite dehydroxylation. Those iron bearing minerals were 

observed only as individual aggregates often combined with anatase. The increasing degree of this peak 

doesn’t fit to the other peaks of anorthite, either. The peak for (104) lattice plane appears first after illite 

peaks are considerably low and the peak at the hematite (110) lattice plane is clearly visible. This peak 

grows further during the collapse and melting of the illite structure. This tendency can indicate the filling 

of Fe(III) position and crystal growth. In the melts, Fe does not remain as tetrahedrally-coordinated. 

Rather it fills octahedrally coordinated hematite, so that it can precipitate. Morphologically, the open 

elongated pores in the matrix gradually decrease and illite begins solid state sintering forming the clay 

lath. The closed pores become gradually surrounded and filled with the melts, after illite begins the 

liquid phase sintering between 900 and 950 °C in general [38]. These new pores have a globular shape 

due to interfacial tension effects [39]. Spinel would be crystallized before the total collapse of illite 

under 950 °C, as Mcconvill and Lee (2005) proved with their topotactical crystallization in the clay lath 

with TEM [40]. However, this mineral grows massively in the melt during the liquid phase sintering, as 

the XRD peaks at (113) and (004) proved. These peaks appear in the slightly different 2θ ° according to 

the samples indicating different unit cell parameters of this mineral in each ceramic sample. This 

thermally induced crystallization could occur similarly in the biotite-chlorite intergrowth as well [16]. 

In the Al-Si-Fe-Mg system of the melt, the chemistry for the nano-sized spinel crystals would be Si-Al 

spinel (2Al2O3·3SiO2), Mg-Al spinel (MgAl2O4) or Mg-Fe-Al spinel ((Mg,Fe)Al2O4). In comparison to 

the spinel crystallization, mullite, one of the common high firing mineral was not detected in any 

samples containing the liquid phase sintering, although this mineral can start to crystallize in the melt at 

1100-1150 °C [41]. The absence of this mineral means that the peak firing temperature of the ceramics 

was under 1100-1150 °C, because the massive development of mullite occurs at 1300 °C. Alternatively, 

the firing time might be too short for enough Al released for the mullite formation. The very porous 

structure in a micrometer scale of the most samples in this study is related with that non-densifying 
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mechanisms such as surface diffusion, lattice diffusion from the surface or vapor transport were stronger 

in this scale [42]. However, it is still unknown whether a densifying mechanism dominates the formation 

of illite laths in a nanometer scale, because shrinkage in the lath structure could cause porous fabrics for 

a micrometer scale. 

In the Ca-rich ceramic paste, the pyrometamorphic process exhibits similarities to that of the Ca-poor 

matrix. At all the studied sites, Ca2+ ions were supplied from calcite, except of only one sample from 

Ransyrt 1 containing relatively high Mg contents which remind us of dolomite as the main bedrock 

building mineral of this site. According to the increasing firing temperature, hematite crystals grow and 

gehlenite is formed at the grain boundary of decomposing calcites. Because hematite can be developed 

in the high Fe2O3tot/CaO ratio, such as 0.7, the crystallization of hematite can prove the oxidizing firing 

of the Ca-rich ceramics [16]. In many cases, calcite and gehlenite, hematite and spinel (Mg-Al or Al-Si) 

coexist over 1050 °C, due to the heterogeneous mixed state of the ceramic pastes and huge grain size of 

calcite in the most ceramic pastes. If the local matrix in the paste has less Al and more Ca and Si, 

wollastonite is developed in a needle-like crystal shape, instead of gehlenite. 

In the reducing atmosphere, lower f(O2), 1/T (absolute temperature) and Al/(Al+Si) stimulate the 

transformation of Fe into Fe(III) [43]. However, it is not crystallized as ferrous iron bearing minerals, 

but contributes to the earlier vitreous phases of the ceramic matrix cutting Si-O bonds like network-

modifier in glass forming process [43-46]. Preexisting accessory phase composed of Fe/Ti oxides and 

hydroxides in the ceramic pastes, such as goethite would be transformed into magnetite, ilmenite or 

hercynite [47], although these minor phases were not visible by XRD or FTIR measuring the ceramic 

mixed powder. 

Concerning on the whole observations in the ceramic sherds, the pyrometamorphic process in the illite 

based ceramics between 300 and 1200/1300 °C is summarized in figure 6-15. Following reactions are 

describing representative phases during the firing process in the oxidizing atmosphere: 

1) Ca-poor matrix in oxidizing atmosphere  

(K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)]         Fe2O3 + (Mg,Fe)Al2O4 or 2Al2O3·3SiO2 + SiO2 + α         (6-4) 

                           illite                                             hematite                     spinel                             amorphous  

2) Ca-rich matrix in oxidizing atmosphere  

(K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] + CaCO3         

                           illite                                            calcite       

                                                           Ca2Al(AlSi)O7 + Fe2O3 + (Mg,Fe)Al2O4 or 2Al2O3·3SiO2 + SiO2 + α     (6-5) 

                                                              gehlenite     hematite                      spinel                          amorphous 

As minor phase, mullite in Ca-poor matrix and wollastonite in Ca-rich matrix could be present. In the 

reducing atmosphere, only spinel and amorphous silica were confirmed as main phase in the melts.  

t 

t 
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Figure 6-15. Morphological changes and new crystallization of ceramic materials under various firing conditions.  

 

The defects in the dioctahedral layer of the 2:1 phyllosilicate occur, if the octahedral ions delivering the 

plus valence charge of 2 such as Mg2+ or Fe2+ replace the trivalent ions such as Al3+ or Fe3+ [48-50]. The 

ratio between the ferric and ferrous ions in the ceramic paste composed of such clay minerals changes 

according to the degree of oxygen partial pressure during firing. As consequence, the layer charge 

deficiency or surplus by the change of the valence charge of Fe will cause the distortion of the octahedral 

layer and dehydroxylation, which leads to the earlier total collapse of the clay structure [51-52]. If the 

conversion of preexisting Fe3+ to Fe2+ in the octahedral layer is dominant, it will lower the energy barrier 

for the dehydroxylation [52-53]. Furthermore, the free Fe2+ cuts the Si-O like network-modifier in glass 

forming process and contributes to the early vitreous phase as well, while Fe3+ migrated from 

dehydroxylated illite recrystallizes as hematite and aluminosilicates fill pores forming partial melts [54-

56]. Based on the observations in the cross section of the highly fired ceramics with gray middle part 

influenced by the lower oxygen partial pressure and reddish part at both sides due to the presence of the 

higher oxygen amount, the localized redox state can contribute to the distribution of the different 

dehydroxylation degree of illite within a ceramic object. According to the simulation results, this 

difference is caused mainly by the volume ablation regime of the oxygen diffusion determined by the 

reaction rates between oxygen and reactants in the diffusing media [51]. In archaeological ceramics, the 

oxygen diffusion will be influenced by carbon-oxygen-iron reactions with the possible participation of 

water. The chemical and mineralogical composition of the samples excavated at both archaeological 

sites confirm that C- and Fe- bearing phases were rich in the ceramic pastes [6]. The grain size 

distribution of the ceramics indicated that the resource was gathered from the sediments containing 

considerable amounts of such reactants as well [57]. Therefore, the oxygen diffusion occurred as a rate 
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limiting step and left optically distinguishable different color profiles in the cross section. The ceramics 

found at Kabardinka 2 are more Fe rich and show more reddish colors in both sides, while the samples 

excavated at Ransyrt 1 have sometimes light brown or reddish brown sides because of the relative higher 

amounts of Ca-carbonates in the ceramics. If the degree of the volume ablation regime is not significant 

in the oxygen diffusion, other parameters such as open porosity, increasing rate of the firing temperature 

and sample thickness in the relatively short firing time will decide the general pattern of the diffusion. 

The ceramics from Ransyrt 1 with the bigger open porosity will have more homogeneous oxygen partial 

pressures than those from Kabardinka 2 containing less open pores due to the smaller grain size 

distribution [58]. In case of the Ca rich samples, it is possible that the diffusion pattern is difficult to 

estimate because of the grain size effect of calcite and the interdiffusion between Ca in calcite and Fe 

and Mg in the ceramic matrix during the dissociation of the carbonates. The heat transfer rate in the 

ceramics with the thickness between 0.5 and 1.5 mm is so fast, that the firing temperature and anisotropy 

factor by the orientation of the various porous components decide the temperature profile across the 

ceramic wall. If the sand grains are aligned randomly, ceramic matrix becomes highly connected 

according to the decreasing porosity, the thermal conductivity of porous ceramics will be relatively 

homogeneous with a small difference of temperatures within the sample and this will play a minor role 

in the local ferric and ferrous ion ratio distribution pattern.     

 

6.5. Estimation of the firing conditions  

6.5.1. Average firing temperature 

The dehydroxylation temperature for illite polytypes are 600 °C for tv-1M [59], 750 °C for cv-1M [59] 

and 525 °C for 2M1 Illite [60]. Other mineralogical transformations and crystallizations in the ceramics 

often accompany this thermal transformation of illite, too: transformation of goethite into hematite at 

250-300 °C; thermal decomposition of Ca-carbonate at 650-700 °C; massive growth of hematite and 

spinel at 750 °C and 950-1050 °C; mullite crystallization at 1125 °C and its massive development at 

1300 °C [61-63]. Additionally, morphological changes in a micrometer scale are clearly visible after the 

solid and liquid phase sintering of illite over 950 °C [30]. After solid state sintering, all grains are in 

contact to other grains and build a three-dimensional network with interconnected pores of irregular 

shape in the matrix. At 1300 °C, it is degraded to a totally vitreous phase [64]. The changes in νas(Si-O) 

and δ (Si-O) by FTIR provided supplement data for the classification of the firing degrees. Figure 6-16 

describes the distribution of average firing temperature depicted for each sample. The thicker red error 

bar for several samples indicates the spread of temperature detected within a cross section. In this 

estimation, ceramics from Kabardinka 2 were fired in more various temperatures in comparison to the 

other archaeological sites. Well controlled reducing firing could be detected at Kabardinka 2 and 

Levinsadovka. In the meanwhile, presence of calcite and its transformation to Ca-aluminosilicates as 

consequence in Ransyrt 1 ceramics, it is often difficult to confirm whether the potters pursued controlled 
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reducing atmosphere. The ceramics from 

all the sites were not fully vitrified 

indicating the firing temperature below 

1200-1300 °C.  

 

 

 

 

Figure 6-16. Average temperature of 

representative ceramic sherds according to 

the color profile of the cross section: (a) 

Ransyrt 1; (b) Kabardinka 2; (c) 

Levinsadovka-Saf’janovo (R: controlled 

reducing firing).  

 

 

 

6.5.2. Kinetics of the dehydroxylation in the illite based ceramics 

Dehydroxylation kinetics of clay minerals such as illite, one of the most abundant clay in the sediments 

were studied by heating experiments combined with XRD measurements [65]. A conversion factor, α 

accounting for the degree of the dehydroxylation was taken from the integrated area of the specific peaks, 

(001) and (020) was normalized by the peak area of the initial state, 

                                                                   α = (Ameasurement - A0)/A0 ,                                                   (6-6) 

where Ameasurement and A0 are the integrated area of the measured sample, after and before the beginning 

of the dehydroxylation, accordingly. In this study, the integrated area below the XRD peaks of the 

samples was normalized by that of the sample with the least dehydroxylation, 

                                                              α = (Ameasurement - Amin)/Amin ,                                                   (6-7) 

where Amin is an integrated area of the sample with the least firing degree. This conversion ratio by XRD 

measurements was compared to that by the band shifts in the FTIR measurements (absorbance/MIR).  

                               α = (νas, measurement (Si-O)- νas, clay  (Si-O))/( νquartz (Si-O) - νas, clay (Si-O)) ,            (6-8) 

                                   α = (δmeasurement (Si-O)- δclay (Si-O))/( δquartz (Si-O) - δclay (Si-O)) ,                    (6-9) 

where νas, clay (Si-O) and ν quartz (Si-O) are asymmetric vibration of Si-O bonding in the clay mineral and 

quartz, respectively.  

For the isothermal environment, Arrhenius law is efficient to derive the reaction rate constant k,   

                                                                       k = Aexp[
 −𝐸𝑎  

𝑅𝑇
] ,                                                           (6-10) 

where the Arrhenius parameters Ea and A are apparent activation energy and the frequency factor, 

accordingly.  The calculated conversion factor, α and the reaction constant are combined with one of the 

kinetic equations, the Avrami-Erofe’ev equation, g(α) which is effective in heterogeneous solid 

solutions [66] and the firing time can be derived,  

                                                         g(α) = k(ttotal-tmin) = [-ln(1-α)]1/n ,                                                (6-11) 

                                               (ttotal-tmin) = [-ln(1-α)]1/n] / [Aexp[
 −𝐸𝑎  

𝑅𝑇
]] ,                                            (6-12) 
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where ttotal accounts for the total firing time, tmin for the time needed to reach the lowest dehydroxylation 

degree of the measured samples including the induction time, R is the gas constant (R = 8.314 J/mol·K) 

and T the firing temperature (K) after tmin and Tmin, respectively. The Avrami coefficient, n is estimated 

between 0.5 and 1 according to the rate limiting steps in the dehydroxylation of clays which vary 

according to the temperature.  

During heating with the constant rate, the reaction rate constant can be taken as the integral form 

according to the time or temperature [67]. 

                                           g(α) = [-ln(1-α)]1/n = ∫ 𝑘𝑡
𝑡

0
𝑑𝑡 =  ∫ 𝐴exp [

 −𝐸𝑎  

𝑅𝑇
] d𝑇

𝑇

0
 ,                             (6-13)                                           

where n is the Avrami coefficient. 

Concerning the relatively clear and reproducible changes according to the firing degree, the 

dehydroxylation degree of illite was calculated using the conversion factor acquired from XRD results 

of this project [6]. The shifts of the MIR band assigned to νas (Si-O) between 1030 and 1080 cm-1 and δ 

(Si-O) between 450 and 500 cm-1 presented in this project are comparable to the XRD results as well 

(Figure 6-17). The integrated area of XRD peaks at (001) and (110/020) of the samples was normalized 

to that of the sample with the least degree of dehydroxylation, because the changes in (001) peak area 

represent the collapse of the interlayer basal spacing of illite and those of (110/020) are related to the 

octahedral structure of the clay mineral (Figure 6-18). For modeling the conversion based on the band 

shifts of νas (Si-O), νas, illite (Si-O) was set as 1030 cm-1 and ν quartz (Si-O) as 1080 cm-1 as reference. The 

increasing tendency of the conversion from 

the low to the high firing products appear in 

both XRD and FTIR based conversions. Each 

conversion factor indicates slightly different 

increasing degrees, because anisotropic 

vibrational changes in Si-O bonds in the 

tetrahedral layer occur in the different order 

and degree, in comparison to the rate of 

destructuralization of K in the interlayer. 

 

 

Figure 6-17. Comparison of the MIR absorbance 

band shifts of νas (Si-O) between 1030 and 1080 

cm-1 and δ (Si-O) between 450 and 500 cm-1. 

Major and minor band with bigger and smaller 

shape, respectively. Acquired from (a) the 

ceramics excavated at Ransyrt 1: Ca-poor; Ca-

rich; (b) the ceramics found at Kabardinka 2: 

Ca-poor; Ca-rich; (c) the ceramics fired in the 

reducing atmosphere.  

 

For the general approximation of the firing time and temperature both for the isothermal and non-

isothermal firing processes, the conversion factor taken from the integrated area of XRD peak at (001) 

and (110/020) was used, because the diffraction changes in the interlayer and at (110/020) take place 

gradually like thermal decomposition of illite which occurs layer by layer without the formation of 
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intermediate phase [60,68-69]. Under isothermal conditions, the estimated firing temperatures of the 

samples from the combination of XRD, FTIR (MIR) and SEM were applied to the Arrhenius equation 

[6] and firing time was taken from the Avrami-Erofe’ev formula. For the non-isothermal ceramic firing, 

firing time and temperature were derived based on the conversion factor. The Avrami coefficient, n, 0.5 

and 1 were employed separately for the calculation, in order to estimate the general ranges of the firing 

time and temperature of the heterogeneous composite materials. The reaction rate constant, k calculated 

by the Arrhenius equation was clearly different for both conditions (Figure 6-19). In general, the value 

of the rate constant in both firing conditions increased according to the increasing temperature. The 

increase of k in the isothermal run is much bigger and faster than that in the non-isothermal run.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-18. Conversion factor, α acquired from XRD peak at (001), (110/020) and α based on the MIR major 

band shifts of νas (Si-O) and δ (Si-O) between 1030-1080 and 450-580 cm-1, accordingly. Comparison to the 

estimated average firing temperatures of the same samples [6]. Samples from (a) Ransyrt 1; (b) Kabardinka 2; 

(c) samples produced by the reduced firing.  
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Figure 6-19. Reaction rate constant k according to the Avrami coefficient n=0.5 and n=1. Comparison between 

k calculated with the estimated average firing temperature for the isothermal run and k calculated with various 

constant heating rates for the selected ceramics excavated at (a) Ransyrt 1; (b) Kabardinka 2; (c) ceramics fired 

in the reducing atmospheric condition.  

 

This tendency influenced the results of the required firing time and temperature for the conversion in 

the fired ceramics. During isothermal conditions, the firing time and its range was mainly determined 

by the conversion factor of each sample (Figure 6-20). The low and middle firing products require 

mostly long firing time of more than 10 hours to a few days, while the time range for the ceramics with 

the higher conversion ratio is drastically reduced to less than one hour.  

Figure 6-20. Firing time (min)-temperature (K) relation in the form of ln (time)–T(K) in the isothermal 

conditions calculated by the Avrami-Errofe’ev based on XRD peak at (001), (110/020) for the selected samples 

excavated at (a) Ransyrt 1; (b) Kabardinka 2; (c) ceramics fired in the reducing atmosphere.  

 

In the non-isothermal runs with the constant increasing heating rate, the gap between the firing time of 

various temperatures is relatively smaller than that in the isothermal conditions for both Avrami 

coefficients (Figure 6-21). If the Avrami coefficient and the heating rate were 1 and 1K/min as slow 

process, 8-9 hours were required for the lowest firing degree and 16-17 hours for the highest firing 

degree at both archaeological sites. If the heating rate was 5K/min with the Avrami coefficient of 1, the 

firing step for all the products with the different firing degrees could be finished within 4-5 hours. In 

comparison to the objects from Ransyrt 1, the conversion factor, α of some ceramics excavated at 

Kabardinka 2 could not be calculated from the XRD measurements, due to the higher interruption of 

mica (Figure 6-21.b) [6]. In such case, it is expected that band shifts in MIR can provide alternative 

conversion factor for the kinetic calculation. The lower Avrami coefficient such as 0.5 in this study 

caused the bigger range of the firing time and temperature between the ceramics with different 

conversion ratios.  
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Figure 6-21. Firing time-temperature relations in the non-isothermal conditions calculated by the Avrami-

Errofe’ev based on XRD peak at (001), (110/020) for the selected samples from (a) Ransyrt 1; (b) Kabardinka 

2; (c) ceramics fired in the reducing atmosphere.  

 

6.5.3. Heat transfer within the archaeological ceramic 

The one-dimensional unsteady state conduction is described by Fourier’s second law of heat conduction, 

                                                                             
𝜕𝑇

𝜕𝑡
 = α 

𝜕2𝑇

𝜕𝑥2 ,                                                            (6-14)                                              

where T and t, x and α are firing temperature and time, 1-D distance and thermal diffusivity, respectively. 

The thermal diffusivity is given as the ratio,   
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                                                                                       α = 
𝜆

𝜌𝑐𝑝
 ,                                                        (6-15) 

thereby λ represent thermal conductivity, ρ density and cp is specific heat capacity. The thermal 

conductivity of porous ceramics is calculated by the following model [70-72],  

                                                                 λeff = λs(1-Π)3/2 + λΠΠ
1/4 ,                                                    (6-16) 

where λs and λΠ are thermal conductivity contributions of solid phase and pore phase, accordingly and 

Π stand for the porosity. This model is valid for the whole range of porosity. The heat-barrier resistances 

M, is introduced to this model, 

                                                                  λeff=λsM(1-Π)3/2 + λΠΠ
1/4 ,                                                  (6-17)       

                                                                          M=MmacrMmicr ,                                                           (6-18) 

where Mmacr is the influence of macroscracks in the structures between 103-104 µm and Mmicr accounts 

for the microcracks covering 10-102 µm. In this study, the one-dimensional (1-D) partial differential 

equation is solved by MATLAB (2018b) simulation using implicit finite difference methods (FDM) in 

1-D.   

The heat transfer was simulated by implicit FDM solving the partial differential equation for the heat 

conduction of porous ceramics in a 1-D transect over the sample. In order to calculate the thermal 

diffusivity of porous ceramics, thermal diffusivity of pores was taken from the thermal conductivity of 

air [73]. The solid phase is composed of the two representative mineral phases of the samples, illite and 

quartz. Thus, thermal diffusivity of quartz depending on the temperature [74] was combined with that 

of illite [75] or derived from the combination of the thermal conductivity [76-79], specific heat capacity 

[80-81] and density [82-87]. These physical properties vary according to temperature, approximated by 

the least square regression. The thermal conductivity of illite as raw clay mineral was set between 0.3 

and 1.5 (W/m·K) as the constant variable, because it is different from each other depending on the 

geological context and the range of its change according to the temperature is relatively very small [81]. 

Another important variable, porosity of the ceramics was taken from the literature data [88-90]. Based 

on the negative linear relationship between the porosity and temperature, the changing porosity was 

approximated continuously to the temperature increase [89]. The heat contact resistance or heat barrier 

resistance of the thermal conductivity was changed mainly by the influence of the microcracks ranging 

from 10 to 100 µm, determined by the effective contact area in this study [91-92].  Boundary conditions 

describing the input temperature were set as same with the firing temperature which influence from both 

sides of the cross section. All these parameters were dependent on the local temperature for the 

simulation unit in the cross section, except of the anisotropy caused by the local geometries such as the 

direction of the grains or pores. In the homogeneous ceramic pastes, this anisotropy of the structural 

elements which influence the direction of the heat transfer can be defined as temperature dependent as 

well, because highly networked pore complex turns into the parallel to the pottery wall with elongated 

shapes losing the pore volumes and becomes globular closed pores gradually filled by melts in the 

sintering stage [88,93-96]. However, the huge grain size distribution in the most samples and the 

presence of water in the ceramic pastes, the direction of the sand grains composed of poly-mineral phases 

--
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and corresponding porosity were not easily estimated as the simple relation between the temperature, 

formation and anisotropy factor [90,97]. Depending on the orientation to the direction of the heat transfer 

to any structural elements in the composite materials, this factor closes to 1 [48,98-99]. In this study, it 

is randomly set between 0.001 and 1.  

Regarding the simulation results, the heat transfer profile was very even over the cross section. In the 

time range of the minute, the temperatures in the middle and at both surfaces reach to the same level 

very fast, despite the various input values for the mineralogical composition of the grains or ratios 

between sand grains and clay minerals, thermal diffusivity of each phase or porosity. The changes in the 

thermal diffusivity of illite do not influence the distribution of temperature within a sample over the 

heating temperature range. Instead, the uneven boundary conditions with the different heating rate from 

the both sides, thickness of the samples and the randomly set anisotropy factor caused distinguishable 

changes within the calculated area (Figure 6-22). Especially, if the anisotropy factor decreases, the heat 

transfer rate becomes lower (Figure 6-22.a). In the thicker cross section with the longer firing time, the 

temperature difference was ca. 20-60 K depending on the anisotropic factor. 

Figure 6-22. Temperature profile in the cross section by FDM of the heat conduction equation. Open porosity 

from [90]. Thermal diffusivity of illite=1. Heat flow from both boundaries with the constant heating rate=5K/min. 

quartz:illite=1:1.: (a) Comparison of the profile with various anisotropy factors. The unit length= 0.1mm for the 

total thickness of 10mm. Firing time of 120min.; (b) Comparison of the profile with various firing times and 

thickness. The unit length= 0.1mm. Anisotropy factor=0.5.; (c) Comparison of the profile with various firing 

times and thickness. The unit length= 0.1mm. Anisotropy factor=0.1. 

 

6.5.4. Oxygen diffusion and corresponding redox states  

Fick’s second law describes the unsteady state molecular diffusion as the dominant diffusion regime in 

the µm scale [100].  

                                                                           
𝜕𝑐𝐴

𝜕𝑡
 = DAB 

𝜕2𝑐𝐴

𝜕𝑧2  ,                                                        (6-19)                                              

where z and cA are distance, concentration of A, respectively. DAB is a gas diffusion coefficient of A into 

B (cm2/s) depending on the pressure under which the diffusion coefficients were measured. A pressure 

independent diffusion coefficient for gas is suggested by Fuller et al. [101-102],  
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                                                                    DA,B = 
1.0868×𝑇1.75

√𝑚𝐴𝐵( √𝑉𝐴
3 + √𝑉𝐵

3 )2
 ,                                                (6-20)                     

where DAB is the diffusion coefficient of A in B (Torr cm2/s) at the Temperature (K). mAB is given by  

                                                                          mAB = 
2

(
1

𝑚𝐴
+

1

𝑚𝐵
)
 ,                                                         (6-21) 

where mA and mB are the molecular weights (g/mol) of A and B, VA and VB are the dimensionless diffusion 

volumes of A and B, respectively. The diffusion volume of air is 19.7 and that of O2 is 16.3 [103]. In 

porous media, the diffusion coefficient is influenced by the porosity and corresponding tortuosity as 

well [104-106]. The effective diffusion coefficient in this case is given as [81],  

                                                                               Deff = 
𝜀

𝜂
 DAB ,                                                         (6-22) 

where ε is porosity, η is tortuosity. Tortuosity can be taken from the porosity-tortuosity relation which 

describes a system of non monosized spheres, ε -1/2 [91-92]. The reactivity of oxygen in the ceramic 

materials determines the surface ablation or volume ablation as the dominant regime of the diffusion. 

The Thiele number, Φ indicates the dominant diffusion regime which is proportional to the following 

[81], 

                                                                             Φ ∝  
𝑘𝐶𝑂,𝐶𝑂2

𝐷𝐴𝐵
 ,                                                          (6-23) 

where 𝑘𝐶𝑂,𝐶𝑂2
 is reaction constant for CO and CO2. In this study, the partial differential equation 

describing oxygen diffusion process in the firing composite materials is solved by MATLAB (2018b) 

using implicit 1-D FDM, in order to find out how this phenomenon contributes to the dehydroxylation 

process of the clay mineral and corresponding features of the archaeological ceramics. 

The oxygen diffusion rate through the ceramic cross section was performed for the non-isothermal 

environment with the constant heating rate following the general estimation of the kinetics of illite 

dehydroxylation. It was simulated by the implicit FDM solving the partial differential equation of the 

Fick’s second law, because the average diameter of the observed open porosity in the ceramic samples, 

was bigger than 1-2 µm [90], is employed as dominant regime [109]. Besides of the measured open 

porosity of the ceramics, literature data were taken into consideration for the calculation [89-90]. The 

porosity and corresponding tortuosity were set as changing parameter, according to the increasing 

temperature. The boundary conditions were constant as 0.21 atm in the air for both sides of the cross 

section. The samples identified as the pottery wall are relatively thin ranging between 0.5 and 1.5 cm 

for Ransyrt 1 and between 0.4-1.0 cm for Kabardinka 2. Thus, the 1-D distance for the simulation was 

0.5, 1, 1.5 cm for each calculation. Because of the complex changes of the reactivity of oxygen to C-, 

Fe and possibly S-bearing phases and H2O in the heterogeneous ceramic pastes during firing, the Thiele 

number is very sensitive to the firing conditions, so that this number cannot be easily set for the real 

ceramic firing [108-111]. For the general overview in this study, it was determined as various values 

between 0.0001-1, with regard to the kinetic reaction constant k for the carbon-oxygen reaction which 

has two velocity constants, ka, adsorption coefficient with the value 0.14 g/cm2 s and kd, desorption 

coefficient with 2617 g/cm2s [112]. Between 636 and 838 °C, a mean value of these coefficients was 
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employed. In this simulation, the final diffusion coefficients were obtained by the multiplication of the 

effective diffusion coefficient and the Thiele number, in order to observe the influence of the reactivity 

between oxygen and the ceramic pastes during firing directly. 

The simulation results indicate that the oxygen concentration gradient which influences the color profile 

of the ceramic thin sections, was determined mainly by the Thiele number representing the reactivity of 

the oxygen by diffusion to the reactant in the ceramic pastes and firing time as an additional factor for 

the thickness of 5 mm cross section (Figure 6-23). If the ceramic thickness is 15 mm, the distribution of 

the oxygen partial pressure becomes more uneven and very little oxygen is diffused into the open pores 

in the 1/3 of the whole ceramic body in the middle part. The pore shapes and their changes according to 

the increasing firing temperature did not play a crucial role after 30-60 minutes of firing, regardless of 

the initial porosity and ratio of the composite materials.    

 

Figure 6-23. (a) Oxygen diffusion rate profile according to the cross section. By FDM for 1-D Fick’s second law 

for the open pores [90] and 5 mm-thickness. Comparison of the oxygen partial pressure by the different Thiele 

numbers (Φ up to 636 °C/ Φ after 838 °C) and firing times. (b) Comparison of the oxygen diffusion rate of 0.01 

by the Thiele number, 5 mm and 15 mm-thickness and various firing times. Oxygen boundary condition 0.21 

atm. 

 

The combined simulation of the oxygen and heat transfer depending on the firing temperature with the 

constant increasing heating rate indicates that the thermally influenced local oxygen concentration and 

temperature distribution are contributed by the local porosity determined by the local thermal conditions 

(Figure 6-24). The total length of the system was designed as 10 mm. The firing temperature increased 

with the constant heating rate of 7K/min for the total firing time of 90 min. The anisotropy factor related 

to heat transfer barrier was set as 0.5. The boundary conditions of both sides were synchronized with 

the increasing temperature for the heat transfer and set constant with the oxygen pressure of 0.21 atm 

for oxygen diffusion. The heat and mass transfer within the system was controlled by the mass balance. 

As the results, the open pores close to the heat source supplied from both sides lose more volume, in 

comparison to those in the middle part of the object, while the oxygen distribution and fast heat transfer 

by the open pores are lower in the middle and higher in both sides. Similar to the oxygen diffusion rate 

based on the direct influence of the input temperature, the reactivity of the oxygen gas and the reactants 

in the ceramic pastes this oxygen distribution contributes to the formation of the different concentration 

profile by as well. 
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Figure 6-24. Combination of the localized oxygen concentration, temperature and porosity depending on the 

increasing firing temperature with the constant heating rate of 7K/min, anisotropy factor of 0.5. Boundary 

conditions for both sides are 0.21 atm. The total length and firing time are 10 mm and 90 min, accordingly. 

Comparison of the oxygen partial pressure by the different Thiele numbers (Φ up to 636 °C/ Φ after 838 °C): 

(a) Initial porosity for the large open pores of ca. 8% calculated from the direct observation with the unit size 

of 1.5-2µm; (b) Initial porosity for the large open pores of ca. 1% calculated from the direct observation with 

the unit size of 3.5-4µm. Pore data from Park et al. [90].    
 

6.5.5. Discussion 2: Firing conditions 

All the studied sites contained ceramic sherds with a highly vitreous state over 950 °C resulted from 

oxidizing and reducing firing, except for the Levinsadovka ceramics. The local potters practiced firing 

techniques for the daily ware ceramics using the both oxidizing and reducing firing atmosphere. 

However, in the case of Ransyrt 1 ceramics, it is often difficult to confirm, whether the potters used 

controlled reducing atmosphere, because calcite and calcined clays are often included in the ceramic 

pastes and their thermal transformation to Ca-aluminosilicates during the reducing firing is still not clear 

how they behave together with Fe(II). Interestingly, the ceramics found at Levinsadovka or Saf’janovo 

often contain calcite grains, however they show a clearer distinction between the products fired in the 

oxidizing and reducing atmosphere. This may be related to the degree of clay calcination. As discussed 

above, the ceramic matrix of several Ransyrt 1 samples contains clearly high Ca amounts. 

Only the potters at Levinsadovka used reducing atmosphere, in order to achieve the vitreous phase. 

Ceramics from Kabardinka 2 were fired at more varied temperatures than at the other sites. The lowest 

and the highest firing temperature were estimated for the samples from this plateau. The wide range of 

the temperatures might be related with the relatively longer occupation history of the settlement or the 

transition from the Bronze Age to the Iron Age in the region. However, there is no daily-use ware 

showing the completely vitrified state. It could be possible that the potters did not reach the peak 

temperature above 1300 °C or they were not able to keep the long firing time for the thermal 

transformation of the whole area of the pottery. Although intensive firing using a blower make it possible 

to reach such high temperature in the open air in the high mountains, the very windy and rapidly 
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changing local weather conditions in the Northern Caucasus would not be easy to overcome, in order to 

achieve the stable firing conditions.  

Almost every sample would be fired in the one-step firing process with different firing degrees within a 

single sherd due to the following reasons: 1) heat transfer within the sample; 2) short firing time; 3) 

heterogeneity in chemical, mineralogical composition; 4) unstable or uneven firing atmosphere and 

temperature; 5) alteration during use or after deposition. If the potters did not build the ceramic furnace 

for the stable firing conditions and used a simple firing installation made of stone or fired in a pit, short 

firing time and unstable or uneven firing atmosphere and temperature would play a crucial role for the 

pyrotechnology in the daily ware ceramics.  

According to the kinetics of illite dehydroxylation, the non-isothermal firing with the constant heating 

rate of 5 min/K covers the ceramics with various degrees of dehydroxylation within 3-4 hours from the 

minimum pyrometamorphic degree of the ceramics at each site. However, in the real environment of 

firing without furnace, the heating rate and temperature difference during firing was dependent on the 

combustion energy by the heating source. Depending on the combustion kinetics such as kinds, size and 

amounts of the firing source and use of firing enhancing tools, changes in the firing temperature would 

show different pattern including peak temperature and duration [113-114]. The temperature would 

increase very rapidly at the beginning of the firing and the decreasing temperature after reaching the 

peak temperature would influence the further pyrometamorphic process in the composite materials. The 

studied sites are very windy, covered by small and short plants and the daily weather changes very often 

and fast, which will restrict the firing procedure in the open air. 

Regarding the theoretical estimation and archaeological contexts, the possible firing practice in the 

ceramic production could be performed at the site generally in three ways. First, the potters put the 

objects in the firing source, so that the produced heat could be transferred to the objects without loss. 

The uneven distribution of the firing source might cause different firing time for each object. The second 

possible way is that the ceramic pottery was placed around the firing source in several lines. With this 

alignment, relatively many ceramics could be produced at the same time, saving organic fuels for the 

firing. The different distances between the object and firing source for the same firing time would have 

the same effect with the same distance to the firing source for the different firing time for each object, 

so that the first and second method could produce many objects with the different firing degrees. 

Additionally, the black coring effect and uneven distribution of the pyrometamorphic degrees within a 

same object observed in many ceramics of this project indicate short firing time [115]. The rapid increase 

of the firing temperature by the start of firing enabled to shorten the average firing time. The mass 

production of the ceramics at once would be more preferred, because the fire making and keeping could 

be still difficult for every household in this time period. The potters would perform the firing practice 

within a stone structure as the alternative way due to the very windy and changing daily weather at the 

site. The closed structure could contribute to more even distribution of the temperature around the firing 

place and this intermediate condition between the isothermal and non-isothermal environment would 
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form more symmetrical distribution pattern of the redox-thermal behavior on the ceramic cross section 

as consequence.  

Despite the relatively simple firing practice suggested in this study, the local weather condition, 

vegetation and other technical issues related to the fire, the firing practice at the studied site would be a 

labor-intensive work during these prolonged time periods. 
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Chapter 7. Conclusions 

 

The multiproxy and multiscale approach using PM, XRD and SEM/SEM-EDS/WDS, FTIR/SR-FTIR 

and Raman spectroscopy, 3D µ-CT and image analysis, covering from micro- to meso-scale in cm, 

enabled us to characterize the technical part of the pottery production at Ransyrt 1 and Kabardinka 2 in 

the North Caucasus in the LBA/EIA. Each measurement with the selected range of the spatial resolution 

was performed step-by-step, categorizing the objects and selecting the representative samples for the 

next measurement in the higher resolution, so that all the ceramics could be assigned to corresponding 

groups according to the detailed technological characteristics in the pottery production, despite the high 

heterogeneity of the archaeological ceramics excavated at these sites. This project focused on three 

subtopics which have considered as the important production steps of the ceramic pottery in ceramic 

archaeometry: preparation of the ceramic pastes, formation of the pottery and firing techniques. The 

results contributed to the characterization of the local technological styles in this ceramic production, 

described as follows. 

First, the ceramic pastes were prepared with the soils around the site. The geoarchaeological survey 

around the archaeological sites revealed that the soils at Ransyrt 1 were less developed than that of 

Kabardinka 2 located on the lower mountain plateau. The soils around Kabardinka 2 show more reddish 

color, probably due to the influence of Fe-rich phases. These geological environments of the 

archaeological sites were reflected in the ceramic pastes. The coarse sand grains in the ceramics 

excavated at Ransyrt 1 had the bigger grain size and the lower circularity than those in the Kabardinka 

2 ceramics. The chemical composition of all the grains smaller than 50 µm present in the samples was 

distinguished, according to the site. The ceramics from Ransyrt 1 contained more objects rich in Ca and 

Mg, while those from Kabardinka 2 were relatively Fe-rich, reflecting the geological environment. This 

site-specific characteristic of the pastes was proved at the other sites located in the alluvial zones around 

the Sea of Azov, Levinsadovka and Saf’janovo which were occupied by the LBA/FBA. Interestingly, 

most ceramics of the studied sites contained the mixture of cv- and tv-1M illite as the common dominant 

clay mineral. This indicates that the potters at the site gathered sediments in the alteration process, 

although illite is one of the most common clay minerals. 

The build-up process of the inner structure of the ceramics was similar for both sites. The potters 

constructed the different parts of the ceramics continuously by pinching, pulling or pressing, or formed 

modular slabs and attached to each other. The relatively irregular alignment of the grains indicates that 

the objects were formed principally by hands. The considerable amounts of pores especially around the 

coarse grains in the Ransyrt 1 ceramics seem to be caused by higher grain size distribution and irrelevant 

to the formation techniques. This might have influenced the thickness of the ceramics, because the wall 

and bottom fragments from Ransyrt 1 is thicker than those from Kabardinka 2.  

The firing technique practiced at each site was reconstructed based on the complex pyrometamorphic 

process of the illite-based composite materials. Direct measurements of the original samples in various 
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observation scales enabled to detect the degree of illite dehydroxylation and dissociation of the Ca-

carbonates, crystallization of hematite, spinel and gehlenite, providing thresholds of firing temperatures: 

675 °C <; 675-700 °C; 700-750 °C; 750-950 °C; 950-1050 °C; 1050-1100 °C.  Together with the results 

of the chemical and mineralogical composition of the ceramic pastes, the changes in the mineralogy and 

morphology of the ceramic matrix could be classified into these groups. The firing temperature ranges 

were similar for both sites, although the range of the firing temperatures is slightly wider for Kabardinka 

2 ceramics than Ransyrt 1 ones, possibly influenced by the longer occupation history of the Kabardinka 

2 or by the relatively finer grain size distribution of the ceramic pastes and finer structure at the low 

firing temperature. Moreover, the potters performed similar firing practice in the non-isothermal 

condition with the increasing temperatures. The atmosphere of the firing place was controlled for the 

reduction or oxidization, although the redox state in most ceramics under oxidizing firing was localized 

within a sample, because of the Fe/C/S-bearing phases originated from the soils. In the meanwhile, the 

temperature distribution in the porous ceramic structure was not huge, above all due to the thickness of 

the fragments ranging from 0.5 and 1.5 cm. According to the kinetics of illite dehydroxylation in the 

ideal conditions with the heating rate of 5K/min, the maximum firing degrees could be achieved within 

three hours after the minimum firing degree for ceramic pottery at each site. This means that the firing 

step must not need the furnace structure for the intensive and isothermal firing conditions, because the 

average firing degrees could be acquired by the instant firing for 2-3 hours. In the real practice, 

temperature changes by the combustion energy are bigger. The ceramics with various firing degrees 

could be produced at the same time by this type of firing. The objects might be aligned around the firing 

source with various distances, put in the firing source or the intensity of the fire would not be same for 

every firing practice. However, due to the weather conditions at the mountain sites which change quickly 

with the strong winds and rains, the potters would need a structure which can protect the fire and objects 

from the weather or should dig a space. Moreover, they would prepare organic materials which can 

produce enough energy by the combustion. Regarding the rare vegetation and absence of the trees at 

Ransyrt 1 and Kabardinka 2, the supply of enough firing source for a few hours of firing would be one 

of the crucial issues at each site. 

In general, the reconstructed techniques for the preparation of the ceramic pastes, formation of the 

ceramic body and its firing in the pottery production at both archaeological sites contain similar 

characteristics caused by the human induced factor. The potters at the site of the MBA/LBA had similar 

practice in the material production with the people at the site occupied by the LBA/EIA. Additionally, 

the relatively high deviation of the measurement data is interpreted as the result from the individual 

decision making in the production process. In the meanwhile, nature induced factors, above all, the 

resources for the ceramic paste caused the site-specific properties of the ceramics during the production. 

The selection and preparation of the resource from the local environment caused different textures and 

micro-morphology, thickness and colours due to the shape parameters and mineralogical and chemical 

composition of the local sediments. During the firing step, this local resource-based heterogeneity 
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became bigger, because the mineralogical transformation, dehydroxylation of illite, porosity and pore 

evolution, amounts of the Fe-, C- and S-bearing phases and water, heat transfer and oxygen diffusion 

work together and form complex features and properties in the final product. 

These general characteristics in the pottery production contributed to the formation of the resource-

driven local technological styles at the studied sites and probably in the neighbour settlements with the 

similar lifestyle in the North Caucasus in the same time period. The local societies in this region had a 

combined form of the semi-sedentary and semi-mobile lifestyle on the mountain plateaus with the less 

soil development and vegetation. In this society type, the use of the local resource and the relatively 

instant firing would be preferred to produce pottery for the regular supply in considerable amounts for 

each household and institution. The potters transferred their knowledge and practice for the ceramic 

production, based on the individual decision making over the region and generations. This would lead 

to distribute the resource-driven local technological styles in the North Caucasus in the Bronze and Iron 

Age.  
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Appendix 1. Field work for the soil study around Ransyrt 1 and Kabardinka 2  

(01.09.2016-16.09.2016) 

 

A1.1. Map  

 

Figure A1-1. Places of soil/rock sampling marked as a colored dot (maps: created by QGIS 2.18.0 with open 

layers from OSM/Stamen, map tiles by Stamen Design, under CC BY 3.0. data by OpenStreetMap, under 

ODbL (maps.stamen.com). 

 

A1.2. List 

A1.2.1. Around Ransyrt 1 

Sediments                                                                                

Site no. Sample no. 1 (site) Sample no. 2  

1-10 130916-Ran6env-2 sample 5 

 1-11 130916-Ran6env-1 sample 1 

1-12 130916-Ran6env-2 sample 6 

N 

N 

1:1,379,005 

Black Sea 

North Caucasus 

Ransyrt 
Kabardinka 

t 
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1-15 130916-Ran7-1 sample 1 

1-16 130916-Ran6env-2 sample 4 

1-19 130916-Ran6env-1 sample 3 

1-20 130916-Ran7-1 sample 2 

1-21 130916-Ran7-2 sample 3 

1-23 120916-Ran1-7 sample 10 

1-24 120916-Ran1-5 sample 6 

1-25 120916-Ran1-1 sample 1 

1-26 120916-Ran1-6 sample 7 

1-27 120916-Ran1-2 sample 3 

1-28 120916-Ran1-7 sample 9 

1-29 120916-Ran1-6 sample ? 

1-31 120916-Ran1-1 sample 2 

1-32 120916-Ran1-5 sample 4 

2-1 120916-Ran1-5 sample 5 

2-2 130916-Ran6env-1 sample 2 

 

Stones 

Site no. Sample no. 1 (site) Sample no. 2  

1 130916-RAN-1 stone 2-1 

2 130916-RAN-1 stone 2-(1) 

3 060916-KAB2-4 stone 1-(1) 

4 130916-Ran6emv-3 stone 2 

6 120916-Ran1-3 stone 3 

8 130916-RAN-2 stone 3-(1) 

9 120916-Ran1-2 stone 2-(1) 

10 130916-RAN-2 stone 2 

16 130916-RAN-1 stone 2-2 

17 120916-RAN-1 stone 1 

23 130916-RAN-1 stone 1-2 

24 120916-Ran1-5 stone 5 

25 120916-Ran1-7 stone 6 

27 130916-Ran7-2 stone 1 

 120916_Ran1-1 stone 1 

 120916-Ran1-2 stone 2-(2) 

 130916-RAN-1 stone 2 

 

A1.2.2. Around Kabardinka 2 

Sediments                                                                                

Site no. Sample no. 1 (site) Sample no. 2  

2-3 060916-KAB2-4 sample 6 

2-4 050916-KAB2-3 sample 3 

2-5 050916-KAB2-1 sample 1 
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2-6 050916-KAB2-sample 2   

2-7 050916-KAB2-4 sample 4 

2-8 060916-KAB2-5 sample 7 

2-9 060916-KAB2-2 sample 2 

2-10 060916-KAB2-7 sample 12 

2-11 050916-KAB2-5 sample 5 

2-12 060916-KAB2-7 sample 1 

2-13 060916-KAB2-6 sample 10 

2-14 070916-KAB3-6 sample 11 

2-15 060916-KAB2-1 sample 1 

2-16 060916-KAB2-3 sample 5 

2-17 060916-KAB2-2 sample 4 

2-18 060916-KAB2-5 sample 8 

2-19 060916-KAB2-9 sample 13 

2-20 060916-KAB2-6 sample 9 

2-21 070916-KAB3-7 sample 13 

2-22 070916-KAB3-2 sample 2 

2-23 070916-KAB3-1 sample 1 

2-24 070916-KAB3-5 sample 7 

2-25 060916-KAB2-9 sample 14 

2-26 060916-KAB2-9 sample 14-2 

2-27 070916-KAB2-5 sample 8 

2-28 070916-KAB3-4 sample 5 

2-29 070916-KAB3-7 sample 12 

2-30 070916-KAB3-2 sample 3 

2-31 060916-KAB2-10 sample 15 

2-32 070916-KAB3-5 sample 9 

2-33 070916-KAB3-4 sample 6 

2-34 070916-KAB3-3 sample 4 

2-35 070916-KAB3-5 sample 10 

2-36 070916-KAB3-3 sample 4 

 

Stones 

Site no. Sample no. 1 (site) Sample no. 2  

3 060916-KAB2-4 stone 1-(1) 

11 060916-KAB2-8 stone 3-(1) 

13 070916-KAB3-6 stone 5 

14 130916-Kab6env-3 stone 3 

15 070916-KAB3-2 stone 1 

18 060916-KAB2-5 stone 2 

19 060916-KAB2-9 stone 4-(2) 

20 050916-KAB2-6 stone 1 

21 070916-KAB3-4 stone 2-(1) 
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26 070916-KAB3-5 stone 3 

 160916-KAB2-4 stone 1-(2) 

   A1.2.3. Around Podkumouk 

Sediments                                                                

Site no. Sample no. 1 (site) Sample no. 2  

1 150916-Pod-4 sample 6 

2 150916-Pod-3 sample 4 

3 150916-Pod-1 sample 1 

4 150916-Pod-2 sample 3 

5 150916-Pod-3 sample 5 

6 150916-Pod-2 sample 2 

7 150916-Pod-4 sample 7 

 

Stones 

Site no. Sample no. 1 (site) Sample no. 2  

5 150916-Pod-1 stone 1-(1) 

 150916-Pod-1 stone 1-(2) 

 

A1.2.4. Gumbashi 

Sediments                                                                  

Site no. Sample no. 1 (site) Sample no. 2  

8 140916-Gum3-1 sample 1 

13 140916-Gum2-7 sample 1 

17 140916-Gum2-1 sample 2 

22 140916-Gum3-1 sample 2 

 

Stones 

Site no. Sample no. 1 (site) Sample no. 2  

12 140916-Gum2-1 stone 1-(1) 

22 140916-Gum3-1 stone 1 

 140916-Gum2-1 stone 1-(2) 

   A1.2.5. Etc. 

Soils  

Site no. Sample no. 1 (site) Sample no. 2  

9 140916-M-1 sample 1 

14 140916-M-2 sample 2 

18 140916-M-2 sample 3 

30 120916-RAN-1 sample 1 

 

Stones 

1 1 1 1 

1 
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Site no. Sample no. 1 (site) Sample no. 2  

7 140916-M-2 stone 1 

 

A1.3. Brief descriptions at the soil survey around Ransyrt 1 and Kabardinka 2 

Soil survey according to the soil survey manual, United States Department of Agriculture. Color index 

by Munsell color chart. 

 

A1.3.1. Survey around Kabardinka 2 

No vegetation of trees.  

 

- 050916-KAB2-1re(GPS): Start sample 1 

The highest part of the plateau of Kabardinka 2. Plants cover the plateau but cut for the harvest etc. 

More than 5 cm depth due to vegetation. HUE 10 YR 4/2&3/2, dry not sticky, humid soils. Less than 

2.5cm thick ribbon, very soft dark brown soils, probably influenced by organics. Silt loam? 

 

- 050916-KAB2-2: Sample 2 

Dry partly humid dark brown solid. HUE 10YR 4/1&3/1. Silty clay and silty clay loam. 

 

- 050916-KAB2-3: Sample 3 

Dark brown (organics) sandy. Fine dry sand. HUE 5Y 2/2 &3/2. Thick ribbon, 2.5-5cm. Very silty, 

silty clay loam. 

 

- 050916-KAB2-4: Sample 4 

Mixed layers of sedimentary rocks and vegetation soils? Variously sized grains. Dry+little bit humid. 

HUE 25 YR 4/6. Ribbon (thick) 2.5-5cm. Soft gritty. Mixture of sandy clay loam and silty clay loam. 

 

- 050916-KAB2-5: Sample 5 

Dry organic soil, sands are included. HUE 5Y 5/4. 2-5cm thick ribbon. Not soft and not gritty, clay 

loam. 

- 050916-KAB2-7: Sample 6 

Dark humid clayey soils. 

 

- 060916-KAB2-1RE: Sample 1 

5cm depth. Organic dark soils after 5-6 cm. Soft humid soils. HUE 10YR 2/3-5/6. Silt clay, silt loam. 

060916-KAB2-1RE: Sample 2 

30cm depth from the same spot. Sands from the southern sides. Yellowish but still organics. HUE 5Y 

5/6-6/6. Gritty and 2-5cm ribbon thin-middle. 
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- 060916-KAB2-2: Sample 3 (no sampling) 

Very dark-dark brown soils cover the area. Archaeological site. 

060916-KAB2-3: Sample 4 

HUE 5Y 4/3. 

060916-KAB2-3: Sample 5 

35cm depth from the sample 4 site. 

HUE 5Y 6/4&4/3 

Light yellowish brown soils under darker organic developed soils. Less than 2.5cm ribbon. Gritty 

sands. 

 

- 060916-KAB2-4: Sample 6 

HUE 10 4/6. Sands near the rocks (20-25cm) under 10cm top soils. Dry soils. 

 

- 060916-KAB2-5: Sample 7 

Around 20cm under the top soils. Dark yellowish brown top soils. Sand stones with quartz, etc. Iron 

concentrations. Dry. Not sticky. HUE 10YR 6/8. 

060916-KAB2-5: Sample 8 

After the thin layer of stones/sands, there are more light yellowish soils. Dry. Probably iron rich? 

Gritty. Around 2.5cm ribbon. HUE 10YR 8/8 or light yellowish. 60cm depth.  

 

- 060916-KAB2-6: Sample 9 

On the middle of the slope from the plateau. After 3cm depth. Small, red orange, light yellowish 

stones. Gritty but together with soft soils. 2.5cm ribbon. 

060916-KAB2-6: Sample 10 

Light yellowish sand. HUE 10YR 5/10. 

 

- 060916-KAB2-7: Sample 11 

Middle slope under the small mounds. Under the top soils (grey dark). Stone fragments after 21cm and 

light yellowish sticky soft soil separates (clay?). Orange yellowish sand stones. Sticky soils. HUE 

25YR 7/8. Mostly gritty clay. 

060916-KAB2-7: Sample 12 

37cm depth from the same site. Light orange yellow. Sandy clay including aggregates with same grain 

composition. Sticky sand, Gritty. Mixtures of grey beige colors. At the 40cm depth: beige grey soils 

(sample 12). Heavier. Gradation layer of 15cm from yellow to grey beige. 50 cm depth arrived. 8 cm 

is for the grey soils. HUE 5Y 7/2. 

 

- 060916-KAB2-9: Sample 13 
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Stone like soft aggregates. Iron rich sediments but grey beige inside. Dry. HUE YR 25 7/1, 6/6. 

060916-KAB2-9: Sample 14 

1 m distant from sample 13. Sticky clay. Grey-beige. Like sample 13. 

060916-KAB2-9: Sample14-2 

Hard state of the sample 14. More iron concentrations. 

 

- 060916-KAB2-10: Sample 15 

Dark organic brown sands. Gritty. 20 cm depth. Grey to brown grey. HUE10 4/2-4/3. 

 

- 070916-KAB3-1: Sample 1 

18cm under the top organic soils. HUE 5Y 7/4. 2-5cm ribbon. Siltky+gritty. Platy stones under this 

layer, bedrock? 

 

070916-KAB3-2: Sample 2 

Under the 15cm thick top soil. Blocky hard little humid soils. Very dark brown. HUE 10YR 3/2. Less 

2cm ribbon. Gritty and silky. This structure is located in front of the fortress wall in the old water 

conservation system. 

070916-KAB3-2: Sample 3 

At the 53cm depth. Clay layer (yellow-brown) begins. At the 60 cm depth still clay with sand (approx. 

20%). Soft+gritty. Sand stone (light yellow) included in this layer. Iron rich phase (aggregates). HUE 

10Y 5/8. At the depth of 68cm: the same clay layer. Clay layer developed well. 

  

- 070916-KAB3-3: Sample 4 

Under the slope of KAB3, valley which creates temporary water flow or reservoir. Mortar like soils 

separates at the 7cm depth. Soils gathered at the 25cm from top soils. Aggregates. HUE 25Y 3/2 and 

7/8. 

070916-KAB3-3: Sample 4-2 (sample 5) 

74cm depth from the same site of sample 3. Dark brown little gritty sands. 84 cm depth: same soils. 

Not gritty and not soft. Less than 2cm ribbon. HUE 5Y 2/2-3/2. Soils from the hills? 

 

- 070916-KAB3-4: Sample 5 

2m distant from the sample 4 next to the broken cliff in the valley. Yellowish sands occurred in the 

brown organic soils. Gathered at the 42cm depth. Yellow wet sands start at the depth of 32cm. Mixture 

with grey (mud?) soils. 

070916-KAB3-4: Sample 6 

65 cm depth, Same sands gradation from the orange red to grey color. Soils gathered from the grey 

parts. Yellow: HUE25Y 7/6 with the grey: HUE 5Y 7/1, 7/2 
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- 070916-KAB3-5: Sample 7 

24-25 cm grey sands with the stones. Gritty. Light grey and yellow. Dominant in the gritty sands HUE 

N 8/0. HUE 10 GY 6/1. Hard aggregates. In the smaller river along the slope at the side. Wet, dark 

black/brown soils are exposed to the air. This water source would be permanent of half 

permanent/temporary.  

070916-KAB3-5: Sample 8 

32cm. Light grey gritty dominant. Wet. HUE N 8/0 mixed with HUE N 6/0 or HUE 2.5GY 5/1. 

070916-KAB3-5: Sample 9 

48cm depth. Dark black flexible. Light grey gritty sands and iron rich red aggregates/concentrations in 

the soils.  

070916-KAB3-5: Sample 10 

60 cm depth. Light yellow still gritty wet soils. 2-5 cm ribbon. Sand and gritty. Light brown dominant 

but grey soils with iron rich concentrations. Yellowish grey dominant. HUE25 8/8. But still light grey 

(carbonates?) and dark grey included.  

 

- 070916-KAB3-6: Sample 11  

Grey rocks included. Gritty sands. White carbonates. Somehow flexible and not dry. The start of the 

layer at the 12 cm depth after brown top soil. Rocks/lithics total more than 30% included. At the side 

of the river valley. 58cm depth. Still same stone and sand layer. HUE25YR 7/8. This river valley has 

two exposed stone bottom.  

 

- 070916-KAB3-7: Sampe12 

Little gritty. Wet. More than 5 cm ribbon. Red brown thin soils. Under the mounds where some water 

stays. After top soils, HUE10 7/8 & 8/8. River/water could help the sedimentation. 

070916-KAB3-7: Sampe13 

More carbonates are included. Grey white. Same color like sample 12. 

 

- Conclusion: General survey around Kabardinka 2, 3 and environments 

In the deep valley with the bigger sized grains or in the river valley with few clay deposits. 

1. Deep valley: more organic dark soils are deposited, probably delivered from the upper side. Also it 

is possible that clay deposits or sedimentation for clay development occurred in such features. But 

because of the rapid change of the angle of the slope and scale, deposit of the organic soils could more 

easily take place.  

2. River valley under the hills. 
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In this spot, it is also hard to find clay deposits. Probably, due to the flow speed of the river in/between 

the mountains, instead of the sedimentation process, transfer of the soils to the downside would be 

more preferred like 1. Even the bedrock is exposed to the air in this river. 

3. On the slope of the hills where water stays for certain time shoed more possible clay deposits. Such 

sedimentation and weathering of the rocks into the soils process in/on the hills takes place in such 

water stay. It is questionable whether the ancient potters used this process. 

 

A1.3.2. Survey around Ransyrt 1 

No vegetation of the trees. 

 

- 120916-Ran1-1: Sample 1 

Due to the cultural layers around Ransyrt 1. Under the small mounds and lower place. HUE 10YR 4/3, 

5/3. Some cm sized stones, stone fragments containing qtz and sediments. Dark brown soil influence. 

From organic top soil? After 15cm top soil, humid and sticky. Not soft and not gritty. 5cm ribbon 

(tough). 

 

- 120916-Ran1-1: Sample 2 

It gets more humid and sticky at 38 cm-53 cm depth. Still some rock fragments in cm size. HUE 10YR 

3/3, 3/4. 

 

- 120916-Ran1-2: Sample 3  

On the top around Ran1 sites. Little bit under the other geological features. Under the 10 cm, dark 

brown organic top soil (dry) rock appears already. Bedrocks are embedded in the organic soils, 30-40 

cm. Organic soils (dark, brown, dry) mixed with stones are gathered. Not soft and not gritty. HUE 

25YR 5/2, 6/2. 

 

- 120916-Ran1-5: Sample 4 

On the way to the downhill, first spot. Small temporary? water flow with the hard (stones?) ground. 

Variously sized, coarse sands to the rocks (30-40 cm) in the water. 

120916-Ran1-5: Sample 5 

Next to the shallow water. Dark brown soils, sticky fine, soft containing stone fragments and sands. 

120916-Ran1-5: Sample 6 

Dark brown in the bottom left from sample 5. Middle sized (15cm) stones are embedded. But very 

sticky and soft. 3-10 cm depth. Similar to sample 5. Due to the rocks, cannot reach the lower layers, 

but more water exists. HUE 5Y 4/1, 3/1. Little bit grey? Soft. 

 

- 120916-Ran1-6: Sample 7 
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In the temporary water reservoir. Below the mound, nearly the second down plateau. Began at the 20 

cm depth. Sticky, soft, 5 cm ribbon, dark red brown. Some stone fragments (5-10cm) included. HUE 

7.5 YR 5/4, 4/4. 

120916-Ran1-6-2: Sample 8 

From the site of sample 7. More reddish. Red brown soil. Sticky. Humid. HUE 5YR 5/8. Still mixture 

of the sample 6. Gritty and soft. Stone blocks at the next level of 35 cm (5cm thick layer with the 

stones). 

 

- 120916-Ran1-7: Sample 9 

The lowest part of the second step lower plateau. Lower parts which could have water. Blocks of soils. 

After 5 cm of top soils containing stone fragments. Dry (little humid?). Water vaporization in the 

sediment zone? HUE 2.5YR 6/1. 

120916-Ran1-7: Sample 10 

Less blocky. Stone fragments are embedded. Brown/red brown soils. Not soft and not gritty at the 20 

cm depth. HUE 2.5R 5/3. 

 

- 120916-RAN-1: Sample 1 

After the top soil (sands) 3cm depth, after the organic soil (2nd black sands) till 15-20 cm depth. Sticky 

clayey soil in brown-grey. 2-5 cm ribbon but still gritty/not soft and not gritty. In the exposed broken 

(probably natural process) site. HUE 25 YR 6/3, 6/4. Small stone fragments (cm size) are embedded. 

 

- 130916-Ran7-1: Sample 1 

The site around Ransyrt 7. Probably water and soils are accumulated in this spot. After 10 cm depth of 

dark black top soils, brown grey soils appear. Little sticky and humid. But still dry and little bit gritty. 

At 30 cm depth, still same characteristics of the soils –gathered. HUE 10YR 4/6, 3/4. 2-5 cm ribbon. 

Not soft not gritty. Organics. 

130916-Ran7-1: Sample 2 

More grey and soft, sticky. 45-63cm depth. 5 cm ribbon. Soft. Little bit gritty and some stone 

fragments are embedded. HUE 10GY 5/1 & 5GY 2/1. 

 

- 130916-Ran7-2: Sample 3 

Blow the top mound. After the top soil (5-10cm). Brown little humid but dry soils. But stilly organic 

soils. HUE 10YR 4/3, 4/4. Till 40 cm. Stone fragments are embedded. 

 

- 130916-Ran6env-1: Sample 1 
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After 15cm of the top soil (organic brown). Blocky, soft layer. This environment is on the very light 

slope, lower point. Soft but little gritty. Little sticky but hard blocks to the 24 cm depth. HUE 10YR 

5/2. 

130916-Ran6env-1: Sample 2 

Stone fragments (4-5cm) containing qtz, sediments. More grey often to be seen as grey fragments (1-

2mm). More humid & sticky at the 40 cm depth soil gathered. HUE 10GY 4/1, 5/1. 

130916-Ran6env-1: Sample 3 

Blocky soils (greyish brown). Again at the 44 cm depth. More sticky and humid. 5cm ribbon. Soft at 

the 55 cm depth still same layer. HUE 7.5 GY 5/1. 

 

- 130916-Ran6env-2: Sample 4 

Sticky red brown soil. Probably influenced by organics, but soft and humid. After 4 cm depth, this 

layer starts. HUE 7.5YR 6/3. It gets more humid and sticky and grey.  

130916-Ran6env-2: Sample 5 

After the 30 cm depth. Very sticky, clay, soft, 5 cm ribbon. Grey+red brown+light brown. Some sands 

(visible, 1-2 mm) are embedded. HUE 10 YR 6/2, 7/2 gathered at 43 cm. 

130916-Ran6env-2: Sample 6 

At the 45 cm depth. Red inclusions (probably iron rich) in the light grey brown clay. Sticky and humid. 

More flexible and water at the 48 cm-50 cm depth gathered. HUE 7.5 YR 7/3. Similar at the 57 cm 

depth. 

 

A1.3.3. Survey around Gumbashi  

No vegetation of trees. Broken cliff and pile up of the rocks. Relatively more sedimentation process in 

comparison to Ransyrt 

 

- 140916-Gum3-1: Sample 1 

Under the hill, the second step low plateau. In front of the beginning of the small trees in the water 

plants with shallow water. A flat small plateau next to the small valley. After 21 cm depth of the top 

soil (soft and little bit humid). Humid sticky soils appear. Still some organics. Brown. HUE 25YR 6/3, 

6/2. 

140916-Gum3-1: Sample 2 

Slightly over the layer (3-5 cm) of the stone layer (bed rocks), there is a thin layer composed of more 

dark, grey brown soils. Humid, soft, sticky. Soils are gathered at the 35-37 cm. Because of the bed 

rock (easily broken) stone fragments are included. Some light brown weathered inclusions probably 

from the bed rock sediments. HUE 25 YR 3/1. 

 

- 140916-Gum2-1: Sample 1 
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After the 22 cm, thick top soils (little humid, organic, soft). Humid sticky soils appear. HUE 7.5YR 

6/1.  

140916-Gum2-1: Sample 2 

At the 30 cm, the soils become more brown and sticky, humid. Still much organics. At the 31 cm stone 

layer –Bedrock. 20-30 cm the red brown grey soil layer mixed with the stones. HUE 7.5YR 6/4, 5/3. 
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Appendix 2. Sample list 

Samples were named after 1) the name of the site; 2) the context/quadrat number; 3) additional 

number according to the amount of the ceramic sherds. The photos were taken by the author. 

 

A2.1.  Ransyrt 1 (North Caucasus) 

80 samples for the analysis 

Ran1=Ransyrt 1 

 

Ran1_514_1                                                               Ran1_514_2 

Micro-photo                                                               Micro-photo 

 

Ran1_514_3                                                                      Ran1_527_1 

Micro-photo                                                                Micro-photo 

 

Ran1_5 (product rests? chunks?) No image 

Ran1_5_2 (Erdproben) No image 

 

 

Ran1_dmp1  (Ran1_dmp)                                           Ran1_dmp2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

 

 

 

 

 

 

Ran1_KB3kc1                                                             Ran1_329 

 

 

 

 

 

Ran1_449                                                                    Ran1_452 
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Ran1_488                                                                    Ran1_549 

 

 

 

 

 

 

Ran1_470_x: deformed ceramic                                 Ran1_470_ceramic: carbonate aggregates 

                                                 

                                                                                     

 

 

 

 

Ran1_370_1: fired clay chunks? 

 

 

 

 

 

 

 

 

Ran1_192_51                                                              Ran1_210_13 

 

 

 

 

 

 

Ran1_272_17                                                              Ran1_362_8 

No image 
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Ran1_449_44                                                              Ran1_527A_6 

 

 

 

 

 

Ran1_198_4                                                                Ran1_211_4 

 

 

 

 

 

Ran1_260_49                                                              Ran1_357_20 

 

 

 

 

 

 

 

Ran1_541_11                                                               Ran1_N1_1-55 

 

 

 

 

 

                                                                                     Ran1_217_17 
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Ran1_224_6                                                                 Ran1_244_4 

 

 

 

 

 

Ran1_298_3                                                                 Ran1_527_20 

 

 

 

 

 

 Ran1_630_20                                                              Ran1_192_10 

 

 

 

 

 

Ran1_326_9                                                                 Ran1_529_4 

 

 

 

 

 

Ran1_554_4                                                                 Ran1_214_10 

 

 

 

 

 

Ran1_261_40                                                               Ran1_437_83 
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Ran1_515_5                                                                 Ran1_619_31 

 

 

 

 

 

Ran1_17_2                                                                   Ran1_225_4 

 

 

 

 

 

Ran1_332_31                                                               Ran1_538_16 

 

 

 

 

 

 

 

 

 

 

 

Ran1_619_23                                                               Ran1_N18_49 

 

 

 

 

 

Ran1_6_2                                                                     Ran1_6_11 
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Ran1_223_11                                                               Ran1_276_26 

 

 

 

 

 

Ran1_313_2                                                                 Ran1_N18_38  

 

 

 

 

 

 

Ran1_133_1                                                                 Ran1_278_x 

 

 

 

 

 

 

Ran1_309_10                                                               Ran1_543_12 

 

 

 

 

 

Ran1_601_7                                                                                       Ran1_N18_6 
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Ran1_167_4                                                                 Ran1_244_9 

 

 

 

 

 

Ran1_279_13                                                               Ran1_306_5 

 

 

 

 

 

 

Ran1_N1_1-1                                                               Ran1_462_14  

 

 

 

 

 

 

Ran1_509_9                                                                 Ran1_129_5 

 

 

 

 

Ran1_239_4                                                                 Ran1_571_6 

 

 

 

 

 

Ran1_6_9                                                                     Ran1_440_35 
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Ran1_N1-1-1                                                                Ran1_489_46 

 

 

 

 

 

 

Ran1_279_1                                                                 Ran1_441_31 

                                                                                       

 

 

 

                                                                                         

 

 

 

Ran1_224_9                                                                 Ran1_111_1  

 

 

 

 

 

 

A2.2. Kabardinka 2 (North Caucasus) 

70 samples for the analysis 

KAE=Kabardinka Archaeological Expedition, Kab2=Kabardinka 2 

KAE2007, KAE2008 = Kab2 

 

 

KAE2007-797_1                                                          KAE2007-1123_1 

 

 

 

 

 

 

 

white 
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KAE2007-636_1                                                          KAE2007-1697_1 

 

 

 

 

 

 

KAE2007-2055_1                                                        KAE2007-482_1 

 

 

 

 

 

KAE2007-1160_1                                                        KAE2007-1976_1 

 

 

 

 

 

 

KAE2007-1142_3                                                        KAE2007-1763_1 

 

 

 

 

 

KAE2007-2258_5                                                        KAE2007-1235_1 
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KAE2007-1599_1                                                        KAE2007-824_1 

 

 

 

 

 

 

 

KAE2007-1603_4                                                                    KAE2007-1253_3 

 

 

 

 

 

KAE2007-1408_1                                                        KAE2007-1587_1 

 

 

 

 

 

 

 

 

KAE2007-1579_2                                                        KAE2007-no number 
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KAE2007-28_2                                                            KAE2007-2257_5 

 

 

 

 

 

KAE2007-918_1                                                          KAE2007-1418_1 

 

 

 

 

 

 

KAE2007-2067_3                                                       KAE2007-1962_1 

No image 

 

 

 

 

KAE2007-558_1                                                                        KAE2007-760_1 
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KAE2007-1848_9                                                        KAE2008-482_14 

 

 

 

 

 

 

 

KAE2008-483_3                                                          KAE2008-516_2 

 

 

 

 

 

 

 

KAE2008-853_1                                                                   KAE2008-565_1 

 

 

 

 

 

KAE2008-1070_2                                                        KAE2008-1006_1 

No image 
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KAE2008-1195_6                                                                                   KAE2008-1260_4 

 

 

 

 

 

 

KAE2008-483_4                                                          KAE2008-647_14 

 

 

 

 

 

 

KAE2008-1220_3                                                        KAE2008-516_26 

 

 

 

 

 

 

KAE2008-641_1                                                          KAE2008-410_1 

 

 

 

 

 

KAE2008-659_6                                                          KAE2008-1396_4 

 

 

 

 

 

 



114 

 

Appendix 2  Sample list 

 

 

 

KAE2008-383_8                                                          KAE2008-1152_1 

 

 

 

 

 

 

KAE2008-294_1                                                          KAE2008-743_1 

No image 

 

 

 

 

KAE2008-1398_1                                                        KAE2008-482_13 

 

 

 

 

 

 

KAE2008-693_1                                                          KAE2008-1244_1 

 

 

 

 

 

 

KAE2008-483_x1                                                        KAE2008-1021_1 
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KAE2008-1162_1                                                        KAE2008-657_3 

 

 

 

 

 

KAE2008-663_11                                                        KAE2008-516_20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KAE2008_294_1                                                         KAE2007_416_9 

 

  

 

 

 

KAE2007_2062_3                                                          
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KAE2007_650_10                                                       KAE2007_1578_4 

 

 

 

KAE2007_944_1                                                         KAE2007_2123_1 

 

 

 

KAE2008_844_1                                                         KAE2008_633_1 

 

 

 

 

 

A2.3. Levinsadovka (Mius Peninsular)  

7 samples for the analysis (small rests from the Taganrog project) 

Lev=Levinsadovka  

 

Lev_7467                                                                     Lev_7687 

Lev_7718                                                                     Lev_8653 

Lev_8653_1                                                                 Lev_8653_2 

Lev_9633 

 

A2.3. Saf‘janovo (Lower Don river) 

14 samples for the analysis (small rests from the Taganrog project) 

Saf= Saf‘janovo 

 

Saf_501_1                                                                    Saf_501_2 

Saf_501_3                                                                    Saf_501_4 

Saf_501_5                                                                    Saf_501_6 

Saf_501_etc                                                                  Saf_502_1 

Saf_502_2                                                                    Saf_502_3 

Saf_502_etc (including flint)                                       Saf_x_1  

Saf_x_2                                                                        Saf_x_etc 

white 
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Appendix 3. Analysis of Calcium Carbonates from the Context, Ransyrt_2015_No.470 

 

A3.1. Introduction  

In an excavated context at Ransyrt 1, no. 470, a huge mixture of carbonate aggregates and ceramics 

were found. The ceramic sherds were highly deformed and carbonates fill the cracks in the sherds. 

This type of carbonate aggregates was only found in this context from the excavation in Ransyrt 1 in 

2015. They are connected to several fragments of the ceramic body causing cracks and precipitation of 

calcite in the ceramic. This intense influence took place also only in these fragments. The genesis of 

this composite mixture can be assumed in three different ways: 1) the development of the aggregates 

through the precipitation is not related with the ceramic sherd. The both objects were buried together; 

2) the aggregates are developed from the burnt lime and the re-precipitation process (transformation of 

the lime into calcite) took place next to the ceramic body; 3) the aggregates are developed from the 

lime after the firing together with the ceramic body in the low temperature and re-precipitation process 

occurred to the both objects. 

In order to clarify the development process of the carbonate aggregates and the relation to the 

deformation of the ceramic pottery in the aggregates, two objects found at this context, carbonate 

aggregates (Figure A3-1: Ransyrt1_2015_470_x) and a sherd mixed with carbonates (Figure A3-1: 

Ransyrt1_2015_470_ceramic) were selected and analyzed by multiple analytical instruments.  

 

 

 

 

 

Figure A3-1. Objects from the context no. 470. a) Carbonate aggregates (Ransyrt1_2015_470_x); b) Ceramic 

sherd deformed by the aggregates (Ransyrt1_2015_470_ceramic). Photos taken by the author. 

 

A3.2. Methods 

The objects were investigated by the polarized light microscopy, XRD, SEM-EDS/WDS, SEM-Maps, 

Raman spectroscopy, due to the high degree of heterogeneity in the chemical and mineralogical 

composition. Using XRD, Doppel – Pulverdiffraktometer PDF-2 by the Fa. EFG GmbH Berlin, 

mineral phases in the powder form of aggregates and the deformed ceramic body were identified. The 

measurement condition was 40 kV/30 mA (1200 W) using Cu-anode (CuKα). SEM revealed more 

detailed image and chemical and mineralogical composition of the deformed ceramic and carbonates. 

It was performed on the thin section of the samples by JEOL JXA 8200 Superprobe at the 

mineralogy/petrology laboratory equipped with EDS/WDS. For the conductivity, they were coated by 

Carbon. The quantitative analysis of carbonates was done by the beam size of 10 µm. For the 

investigation of various shapes and morphology of carbonates in higher spatial resolution, ZEISS 

SUPRATM 40 VP Ultra with thermal field emission cathode and Oxford instruments EDX-System 

with INCA-software. The sample was coated with Tungsten. Raman spectroscopy provided useful 

b a 11111111111111 111111111 - ~ 
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evidence for the mineral phase according to the crystal shapes of carbonates. It is performed by Horiba 

ISA Dilor Labram, micro-confocal Raman spectrometer with a diameter of 1 µm, a focal length of 

300mm and a spectral resolution of up to 3.5 cm-1. Depending on the analysed material and the applied 

method, the user can choose between the internal 632 nm He-Ne and an external 532 nm Nd-YAG 

laser.  

 

A3.3. Results 

The fabric of carbonates shows fine grained structure which is further categorized into two kinds of 

subtypes:  1) nodular or tuberose, milky, opaque, porous; 2) massive or compact, milky, opaque, 

porous. Macroscopically, the aggregates seem to be a deposit of roughly spherical form with irregular 

protuberances.  

 

 

 

 

 

 

 

 

 

Figure A3-2. Images from the polarized light microscopy between the aggregates and ceramic body deformed 

by aggregates. a) plane polarized light; b) cross polarized light. 

 

The polarized light microscopic images revealed similar appearance and structure, translucent and 

porous in round shapes but without twinning (Figure A3-2). The aggregates contain opaque and darker 

parts as well. The high birefringence color and fine granules indicating microcrystalline is dominant in 

the aggregates and deformed ceramic sherd (Figure A3-3).  

 

 

 

 

 

 

 

 

 

 

Figure A3-3. Secondary development of calcium carbonate between the quartz grain and clay minerals. 

Images from the polarized light microscopy in the ceramic body connected to the aggregates. a) plane 

polarized light; b) cross polarized light. 

 

b 

Aggregates of 

carbonate Ceramic 

body 
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(recrystallization)  
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a 
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These carbonates are all identified as calcite by XRD (Figure A3-4). The main peaks from the both 

instruments come from calcite indicating calcite as a dominant phase and other minerals like 

magnesite, portlandite, quartz, brucite, siderite and goethite as a minor phase (Table A3-1, Figure A3-

4). Ca-hydroxide (portlandite) is present but in a very small quantity. 

Table A3-1. Qualitative evaluation of mineral phases existing in the aggregates (+++++: 80-10%; +++:50-80%; 

++:20-50%; +: 5-20%; (+): under 5%). 

 

 

 

 

 

 

 

Figure A3-4. XRD peaks of the 

calcium carbonate aggregates 

and the deformed ceramic body 

(Qtz:quartz; Clc: calcite). 

 

 

 

The SEM shows these various morphological features composed of the carbonate grains in various 

sizes (Figure A3-5). Mostly, submicron sized fine grains are forming a lamellar structure (Figure A3-

5a). Ca detected in the aggregates by EDS indicates Ca-carbonates. Mixed phases with clay minerals 

were observed in the boundary between the ceramic body and aggregates (Figure A3-5b). They do not 

appear from the surface to the middle of the aggregates. The intrusion of clay minerals took place in 

the separated blocks caused by cracks and large pores.  
 

 

 

 

 

 

 

 

 

 

Figure A3-5. SEM images from the Ransyrt_2015_470_ceramic. a) fine 

granules in nm-sizes and lamellar formation of Ca (white parts) from the 

calcium carbonate aggregates; b) fine granules and their mixture with 

clays, calcite crystal development at the boundary with the ceramic body; 

c) calcite crystal (prism) in the µm-sized cracked calcite crystals, nm-sized 

calcite fine granules at the boundary; d) calcite crystals with cracks in the 

aggregates of µm-sized cracked crystals and nm-sized fine granules. 

 Calcite Magnesite  Portlandite  Quartz  Brucite  Siderite  Goethite  

Ransyrt1_2015_470_x  +++++  +  (+)  (+)  (+)  (+)  (+)  

c 

d 

a b 
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In the images by the FESEM, the three dimensional stack of the aggregate shows more various 

structures and shapes of Ca-Carbonate (Figure A3-6) [1-2]. High porosity and pseudo-lamellar form of 

crystal assembly, rhombohedral-hexagonal shapes, small needle like shape, radiation form on the 

edges of the aggregate blocks (plants like), or some assembly has a mixed form of hexagonal and 

scalenohedral crystal shapes and fusing Ca-carbonate.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3-6. SEM images rhombohedral-hexagonal shapes, small needle like shape, radiation form on the 

edges of the aggregate blocks (plants like). 

 

The chemical composition of the carbonates was measured for the individual carbonate grains bigger 

than 10 µm (Figure A3-7). In general, the grains contain relatively low ratio of Mg (<1.7 wt.%) and Fe 

(<0.25 wt.%) in comparison to the Ca is present. The ratio between CaO and CO2 shows the typical 

linear tendency which fits to the calcium carbonate (approx.. CaO: CO2 = 6:4 (wt.%)) (Figure A3-8). 

Figure A3-7. MgO-CaO-FeO composition in calcium carbonate crystals (≥10µm) (wt.%). 

 

 

 

 

 

Figure A3-8. Relationship between CaO and CO2 

component (wt.%). 
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Raman_Ca-Carbonate

The contents of Mg in the carbonate grains were originated from the original ceramic pastes such as 

clay minerals, supported by the chemical elemental maps (Figure A3-9). The dominant area of Ca and 

Mg is clearly separated in the maps and the distribution of Mg coincides more with that of Si 

representing the ceramic paste. In the calcite aggregates, not so much content of Carbon is detected in 

the aggregates, probably because of the measurement crystal of the SEM.  

However, despite of various shapes/morphology and Mg/Fe contents in the carbonates, these Ca-

carbonates were identified only as calcite by the Raman spectroscopy as the XRD of the powder 

samples indicated and no other polymorphs were detected (Figure A3-10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3-9. Element distribution map: a) Ca; b) Mg; c) Si; d) BSE compression image.  
 

 

 

 

 

 

 

Figure A3-10. Raman spectra of calcite in 

various shapes. 

 

 

A3.4. Discussions and conclusions 

The pseudo-lamellar, globular form of the micro-fabric in the carbonates indicates the slow 

precipitation process, often related to CO2-rich water. A mixed phase in darker or opaque color is the 

result of the influence of the ceramic paste in the ceramic sherd or clay minerals from the ground to 

the carbonate precipitates. In the ceramic sherd, microcrystalline calcite, micrite is dominant, which is 

very common in other ceramic sherds which show the secondary development of calcite from the 
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deposited earth [3]. It supports this product as the results of the precipitation or re-precipitation of 

calcium carbonate in the ceramic body. The precipitation process can produce the new crystallization 

pressure of calcite in confined spaces and caused cracks and deformation [3]. The prismatic or 

rhombohedral faces with cracks and pores of calcite crystals indicate the recrystallization process, 

observed in the precipitation process as well [4]. In the meanwhile, in the boundary of the whole 

aggregate, different faces of fine granules caused by the wreathing process or mechanical stress appear, 

indicating possible heterogeneous origin during the development of this aggregate. The relatively low 

ratio of Mg (<1.7 wt.%) in comparison to the Ca indicates low temperatures during this development 

of aggregates. This mineral could be formed from the Ca2+-, CO2 -rich water through the following 

reaction [3,5]. 

                                               Ca2+ + 2HCO3
-          CaCO3 + CO2 + H2O                                        (A3-1) 

If the aggregates are burnt lime fired together with ceramics, the firing temperature should reach at 

least the decarbonation temperature (600-800 °C) which seems to be acquired from an intensive firing 

process [3,5-6].  

                                            CaCO3 (Calcite)         CaO (Lime) + CO2                                             (A3-2) 

                                                                       Heat 

However, between the aggregates and the ceramic body or in the ceramic body no Ca-Al-Silicates or 

Ca-Silicates expected from the firing reaction (higher than 900-1000 °C) were detected by the Energy-

dispersive-spectrometry [3,6-8]. Just small amounts of Ca were found in the reaction rims or the 

melted phase through this method. Anorthite from this ceramic body detected by XRD and SEM 

would be the original component of the resource. According to the results, whether the aggregates 

would be fired together with the ceramic body or separately is still to be investigated.  

If the Ca-carbonate aggregates are developed from rests of the burnt lime, it will be combined with the 

water and forms portlandite [6],   

                                             CaO + H2O        Ca(OH)2 (Portlandite)                                                (A3-3) 

This new mineral is also transformed into calcite easily in the air through the carbonation reaction 

occurs from the surface into the pore system [4],  

                                              Ca(OH)2 + CO2         CaCO3 + H2O                                                    (A3-4) 

Another possibility of the development of the aggregates from dolomite is also hardly probable 

because of the lack of dolomite and brucite in the ceramic body or the aggregates from the following 

reaction [5],  

                                             CaMg(CO3)2          CaCO3 + MgO + CO2                                            (A3-5) 

                                              MgO + H2O            Mg(OH) 2 (Brucite)                                              (A3-6) 

Although the morphology of Ca-carbonate crystals includes various forms, faces and sizes, they can 

appear in all three hypotheses mentioned at the beginning. The results can shed light on the detailed 

use of Ca-aggregates by the inhabitant. 
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Appendix 3  Analysis of calcium carbonates 
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Appendix 4. Official transport of the archaeological ceramics from Russia to Germany (in 

German) 

 

Official contract for the transport of the samples from German Embassy in Moscow, Russia to 

Deutsches Archäologisches Institut in Berlin, Germany  

2 Copies  



Anlage 9 zu RES 21-23 - S!and: 14.07.2010 

Biuc dlc au.s:i.ufilllendcn Stellen mit Fl l anspringcn (nur bei MS-Word möglich J 

Auftraggeber: (Behörde/Referat) 

Gz.: (Gescl,äftszeiclten) 

An das Auswärtige Amt 

Ort, Datum 
Berlin, 27.07.17 

E-l'vlail : poststellc@ dainst. de 
Tel.: 030 / 1877 1 l / 122 

D Referat 1 l4-50@diplo.de (Bonn -Luftfracht / Laodfracht) 

[:gJ Referat l J 5-5(q}diplo.de (Berlin - Luftbeutel) 

Betr.: Versandverfügung für die Kurierstelle (auch vorab als Avis) 

Bezug: Richtlinien für die Beförderung von Kuriersendungen, EGO 16-5 Ziffer 4. 1 

Anlag.: 2 Pakete 

(Z'.I Haftungsausschluss- und Kostenübemah.rneerklärung (umseitig) 

D Begründung des amtlichen Interesses dttrch AV/AA (umseitig) 

Die angelieferte Sendung enthält keine Ve.rschlußsache.n, kein Gefahrgut und keine 

zollpflichtigen Gegenstände. Sie so.ll unbegleitet übex den amtlichen Kurierweg versandt 

werden: 

A.bsenderiAnl ieferer: DB - Moskau 

Adressat/Endempfänger: DAI - Zentrale Berlin, Euras ien Abt / Fr. Reinhold 

Zweck/Veranlassung: 

inhalt: Wiss. Proben 

Wert: ca. EURO, Gewicht: 6,- kg 

Maße (bei Luftbeutel): x x cm / Packhö.he (bei Fracht): cm 

Ankunft am Zielort bis spätestens (Datum): schnellstmöglich 

Besonderheiten: DAI/ 090 - 008 / 28.07.17 

Kostenträger: [:gJAufüaggeber 

O Globalbudgei der A V 

0 siehe RUckseite 

O Adressat/Endempfänger 

ODiNEÖA-Zweckmittel der A V 

□------

\ 



. 2 . 

Haftungsausschluss- uod Kostenübernahmeerklärung 

Unter Bezugnahme auf die mir bekannten Richtlinien für die Beförderung von 

Kuriersendungen erkläre ich mich hiermit d~il einverstanden, dass das Auswärtige Arrit' 
im FaJJe von Verlust, Beschädigung oder verzögerter Zustellung der umseitig 
beschriebenen Sendung keine Haftung übernimmt. 

Die Transportkosten für diese Sendung sollen mir unter folgender Adresse in Rechnung 
gestellt werden: 

Begründung des amtlichen Interesses; 

D Botschaft/Generalkonsulat in (Dienstort) ~=="'-----------□ AA-Referat _ ______ _ 

D Es handelt sich nur um Bundeseigentum (Haftungsausschuß-Erldärung entfällt), 
as inventarisiert wird bei: - - - ----- - - - ---- ----
□ Der Versand muss als Diplomatie Mail erfolgen, weil ... 
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Appendix 4  Official letters for the transport of the archaeological ceramics 
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Curriculum Vitae 

 

Because of the personal data privacy, Curriculum Vitae is not provided in the electronic version of the 

thesis. 
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