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Abstract
Molecular dynamics simulations in conjunction
with effective medium theory are used to in-
vestigate dielectric effects in water-filled nan-
otubes. The resulting effective axial dielectric
constant shows a divergent increase for small
nanotube radii that depends on the nanotube
length, while the effective radial dielectric con-
stant decreases significantly for thin nanotubes.
By solving Poisson’s equation for an anisotropic
dielectric medium in cylindrical geometry, we
show that the axial ion-ion interaction depends
for small separations primarily on the radial di-
electric constant, not on the axial one. This
means that electrostatic ion-ion interactions in
thin water-filled nanotubes are on the linear
dielectric level significantly enhanced due to
water confinement effects at small separations,
while at large separations the outside medium
dominates. If the outside medium is metallic,
the ion-ion interaction decays exponentially for
large ion separation.

Introduction
Aqueous pores have key functional roles in cells,
membranes and proteins1,2, and are under in-
tense investigation, for example in ion channels
and photosynthesic complexes3,4. Additionally,
they are interesting for technical applications
such as water desalination5,6, signal multiplica-
tion7 and supercapacitors8–10 A simple model
system for all these scenarios are water-filled
carbon nanotubes (CNTs), which are studied
intensively, both experimentally and in sim-
ulations11–18. In many applications, solvated
ions are present in nanotubes and determine
most of the salient CNT properties. Conse-
quently, ionic transport19–21 and ionic conduc-
tivity20,22,23 of CNTs are at the focus of investi-
gations. To describe the static and kinetic ion
properties inside CNTs, the continuum Poisson-
Boltzmann and Helmholtz-Smoluchowski mod-
els are used24–26, but these models need as pre-
cise input predictions for the electrostatic ion-
ion interactions, which in turn depend on the
dielectric properties. The water dielectric re-
sponse close to planar interfaces has been shown
to be anisotropic and inhomogeneous27–29. In
particular, the perpendicular water dielectric
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constant between two surfaces decreases signif-
icantly as the surface separation reaches the
nanometer scale30,31. Also for water confined
inside CNTs the dielectric properties have been
shown to differ from bulk water using simula-
tions32,33 as well as experiments34,35. However,
to derive from dielectric properties the electro-
static interaction between ions requires the so-
lution of the Poisson equation in the presence
of tensorial and inhomogeneous dielectric pro-
files in cylindrical symmetry, which is far from
trivial.
From molecular dynamics simulations of wa-

ter inside single-walled armchair carbon nan-
otubes of various radii and lengths, we extract
the tensorial dielectric radial and axial pro-
files. The definition of these profiles reflects the
long range and non-locality of the dielectric re-
sponse36,37 and has been intensely discussed in
literature38,39. With decreasing CNT radius, we
find the axial dielectric response to be dramat-
ically enhanced and to become CNT length de-
pendent, which reflects the long-ranged dipolar
ordering of water. The inverse radial dielectric
response shows oscillations and multiple sign
changes. For spatially varying dielectric tenso-
rial profiles the electrostatic Green’s function,
i.e., the interaction between two point charges,
cannot be calculated in closed form. We, there-
fore, use effective medium theory to extract
effective axial and radial dielectric constants.
These dielectric constants become anisotropic
for nanotube radii R < 10 , nm, with the ax-
ial value diverging in a CNT-length dependent
fashion and the radial value approaching the
vacuum value in the single-file limit. By com-
parison with corresponding results for water in
planar confinement, we show that the confine-
ment effects in cylindrical confinement are even
more drastic than in planar confinement, which
suggests that curvature plays an important role
in confinement. We also establish the Green’s
function formalism for tensorial electrostatics
in cylindrical confinement. We find that for
CNTs the axial ion-ion interaction is governed
by the outside dielectric constant for large ion-
ion distances, we present explicit results for the
cases where the outside medium is dielectrically
equivalent to vacuum and where the outside

medium is metallic. For very small separations,
the interaction only depends on the radial di-
electric constant, not on the axial one, and thus
is dramatically enhanced compared to the ion-
ion interaction in bulk water. The axial ion-ion
interaction in water-filled CNTs thus depends
primarily on the radial dielectric water proper-
ties and exhibits complex crossovers. The most
relevant message for experiments with ions in
CNTs is the crossover due to the reduced radial
dielectric component for small separation and
the influence of the outside dielectric constant
for large separations, which will influence ionic
correlations and transport properties as well as
chemical reactions40.

Methods

Theory

For a cylindrical system that is homogenous
along the axial coordinate z and the angular
coordinate ϕ, the ϕ component of the rotation
of the static electric field follows from Maxwell’s
equations as

∂Er(r)

∂z
− ∂Ez(r)

∂r
= 0. (1)

Since the electric field is independent of z, the
first term vanishes, and thus Ez(r) = const. If
no free charges are present, Gauss’s law for the
displacement field reads

1

r

∂

∂r
rDr(r) = 0 (2)

and thus rDr(r) = const. In linear response
theory, the change of the displacement field,
D(r), is related linearly to the change of the
electric field, E(r), via the non local dielectric
tensor ε̂nl(r, r

′) according to

D(r) = ε0

∫

V

ε̂nl(r, r
′)E(r′)dr′ , (3)

where V is the system volume. Using the con-
dition that Ez(r) is constant, as follows from eq
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1, the z component of eq 3 simplifies to

Dz(r) = ε0εz(r)Ez (4)

with εz(r) =
∫
V
εzznl (r, r

′)dr′. Similarly, the
electric field can be written in terms of the
change of the displacement field and the inverse
dielectric response function as

E(r) = ε−1
0

∫

V

ε̂−1
nl (r, r′)D(r′)dr′. (5)

Using the condition that rDr(r) is constant, as
follows from eq 2, the r component of eq 5 is
found to be

Er(r) = ε−1
0 ε−1

r (r)Dr(r) , (6)

where ε−1
r (r) = 2πrL

∫∞
0

[εrrnl (r, r
′)]−1 dr′. By

inserting the relation

D(r) = ε0E(r) + m(r) (7)

into eq 4, where m(r) denotes the difference of
the polarization density with and without an
applied external field, one obtains for the linear
response axial dielectric profile

εz(r) = 1 +
mz(r)

ε0Ez
≈ 1 +

1

ε0

∂mz(r)

∂Ez

∣∣∣∣
Ez=0

,

(8)

where the response to the electric field is in-
cluded to linear order by expandingmz(r). The
linear response radial dielectric profile is ob-
tained by substituting eq 7 into eq 6

ε−1
r (r) = 1− mr(r)

Dr(r)
≈ 1− r ∂mr(r)

∂(rDr(r))

∣∣∣∣
rDr(r)=0

.

(9)

To obtain an expression for the polarization
density derivative in eqs 8 and 9, we use the
canonical average

〈m(r)〉 =

∫
m(r) exp

{
−β
[
H −

∫
E(r′)m(r′)dr′

]}
dX∫

exp
{
−β
[
H −

∫
E(r′)m(r′)dr′

]}
dX

,

(10)

where β is the inverse thermal energy and H is
the system Hamiltonian in the absence of an ex-

ternal field. In this expression dX denotes the
phase space integral over all positional degrees
of freedom. Using eq 10 in eq 8, we find for the
axial dielectric profile

εz(r) = 1 +
β2πL

ε0

(〈
mz(r)

∫ ∞

0

mz(r
′)r′dr′

〉

− 〈mz(r)〉
〈∫ ∞

0

mz(r
′)r′dr′

〉)
.

(11)

Similarly, by using eq 10 in eq 9 and employing
eq 7, we obtain for the radial dielectric profile

ε−1
r (r) = 1− β2πrL

ε0

(〈
mr(r)

∫ ∞

0

mr(r
′)dr′

〉

−〈mr(r)〉
〈∫ ∞

0

mr(r
′)dr′

〉)
.

(12)

Note that no locality assumptions are used to
derive eqs 11 and 12, which agree with previ-
ous results obtained by slightly different argu-
ments33.

Computational Details

(a) (b)

Figure 1: (a) Simulation snapshot of a water-
filled CNT with radius R = 1.2 nm. (b) Rep-
resentation of the effective medium model used
for solving Poisson’s equation. The permittiv-
ity is constant and anisotropic inside the Gibbs
dividing radius RGDS and isotropic and unity
outside.

We simulate a periodic single-walled armchair
CNT filled with water in a rectangular simu-
lation box with periodic boundary conditions.
The carbon atoms are frozen, unpolarizable and
charge-neutral, for water we use the SPC/E
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model, see Figure 1a for a simulation snapshot.
We define the CNT radius R by the carbon
atom position as given in eq S1 in the Sup-
porting Information and shown in Figure 1b.
For the carbon-oxygen Lennard-Jones interac-
tion, we use the GROMOS53a6 force field41, as
it accurately reproduces the water contact an-
gle on carbon surfaces42. The dielectric profile
at planar surfaces has been previously shown to
depend slightly on the surface-water interaction
strength28, we expect a similar dependence also
for the present cylindrical case, which however
is not studied further. To determine the correct
water density inside the CNTs, we first attach
a reservoir to cylindrical tubes with a length
of L = 15.1 nm, from which we determine the
water density in the central CNT section. The
reservoir is pressure-coupled along the cylinder
axes using an extended Hamiltonian and the
Berendsen method, see section S2 of the Sup-
porting Information for details. For the pro-
duction runs, we use periodic CNTs without
a reservoir in the NVT ensemble and the v-
rescale thermostat43 at 300 K. Different tem-
perature control methods have no effect on our
results as shown in section S3 of the Supporting
Information. Simulations were performed us-
ing the GROMACS simulation package44 and
we provide a free Python library (located at
https://gitlab.com/netzlab/maicos) based
on the MDAnalysis library45, which implements
the analysis we used for extracting the dielectric
profiles28,30,39. See sections S1 in the Support-
ing Information for further simulation details.

Results and Discussion

MD Simulations

From the MD simulations, the radial number
density n(r) and permittivity profiles εz(r) and
ε−1
r (r) are deduced according to eqs 11 and 12
and shown in Figure 2 for different CNT radii
R. Profiles are for CNT length L = 15.1 nm.
Different lengths are shown in Figure S4 and
S5 in section S4 of the Supporting Information.
The density profiles n(r) in Figure 2a show the
typical oscillations close to the CNT wall14.

The axial permittivity profiles εz(r) in Figure
2b are similar in shape to the density profiles,
but for smaller radii R the maxima in the εz(r)
profile become increasingly pronounced. The
inverse radial dielectric profiles ε−1

r (r) in Fig-
ure 2c are very different from εz(r) and exhibit
pronounced oscillations in the CNT center. To
clarify the origin of these oscillations we extract
ε−1
r (r) from simulations of a large homogeneous
water box with periodic boundary conditions.
The result, shown as a black dashed line in Fig-
ure 2c, perfectly superimposes on the data for
R = 1.7 nm and R = 2.7 nm. This shows that
these oscillations are not caused by the pres-
ence of the CNT but rather are due to the wa-
ter discreteness. In Figure 2d–f, the profiles are
shifted by the position of the nanotube radius
R. It becomes clear that the oscillations in n(r)
and εz(r) (and to a lesser degree also in ε−1

r (r))
close to the CNT interface are rather indepen-
dent of R and agree quite nicely with the planar
limit (solid black line), obtained from simula-
tions of water between planar graphene sheets
with a large separation. Only the axial dielec-
tric profile for the narrowest CNT (R = 0.4 nm)
is length dependent, as shown in Figure S4 and
discussed below.

Effective Medium Theory

In order to calculate ion-ion electrostatic inter-
actions in CNTs analytically, the r-dependent
dielectric tensorial profiles must be modeled
by piecewise constant profiles using effective
medium theory46, as schematically indicated in
Figure 1b. This construction is subtle and re-
quires care, to make this mapping unique we
require asymptotic integral invariances that are
different for the axial and radial components.
For the axial part we demand that the lat-
erally averaged displacement field Dz in the
CNT is the same for the actual dielectric pro-
file εz(r) and the effective piece-wise constant
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Figure 2: (a) Water oxygen number density profiles n(r), (b) axial dielectric profiles εz(r), (c)
inverse radial dielectric profiles ε−1

r (r) for CNTs of several radii and fixed length L = 15.1 nm. The
horizontal broken lines depict the bulk values obtained from independent simulations. (d–e) The
same results as in a–c, but shifted by the respective CNT radius R, together with the profile at
a planar graphene interface, shown as a solid black line. The right axis in (f) applies to data for
R = 0.7 nm.

profile ε∗z(r). Using eq 4 we obtain

Dz =
1

πR2

∫ R

0

2πrDz(r)dr

=
2Ezε0

R2

∫ R

0

rεz(r)dr
!

=
2Ezε0

R2

∫ R

0

rε∗z(r)dr ,

(13)

where the integral ranges up to the CNT radius
R. The effective profile ε∗z(r) is chosen to be a
box profile with an effective dielectric constant
of εeff

z ,

ε∗z(r) =

{
εeff
z if r ≤ RGDS

1 if r > RGDS
. (14)

Substituting this into eq 13, yields εeff
z as

εeff
z − 1 =

2
∫ R

0
r (εz(r)− 1) dr

(RGDS)2 . (15)

The Gibbs dividing radius is RGDS =√
(Nvw)/(πL), where N is the number of wa-

ter molecules and vw = 0.0307 nm3 is the bulk
molecular water volume. The result for εeff

z is

rather independent of our choice for the radius
of the effective dielectric profile, as we show in
section S5 in the Supporting Information.
For the radial component, we demand the po-

tential difference between inside and outside the
CNT to be the same when using the actual di-
electric profile εr(r) and the effective box profile
ε∗r(r). From the relation between the electro-
static potential Φ(r) and the electric field E(r),
∂Φ(r)/∂r = −Er(r), using eq 6 and the fact
that rDr(r) is constant, we obtain

Φ(R)− Φ(R0) = ε−1
0 rDr(r)

∫ R

R0

1

r′εr(r′)
dr′

!
= ε−1

0 rDr(r)

∫ R

R0

1

r′ε∗r(r
′)

dr′ .

(16)

As for the axial component, ε∗r(r) is a box pro-
file

1

ε∗r(r)
=

{
1/εeff

r if r ≤ RGDS

1 if r > RGDS
, (17)

where εeff
r is the effective radial dielectric con-
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stant. Substituting eq 17 into eq 16, εeff
r is de-

termined as

1

εeffr
=

∫ R
R0

(εr(r)r)
−1 dr − ln (R/R0)

ln (RGDS/R0)
. (18)

The lower integration boundary R0 in eq 18
corresponds to the radius at which the potential
inside the CNT is determined. It is chosen such
that εeff

r for the largest radius R = 10.17 nm
matches the SPC/E bulk permittivity of ε = 70.
There are several choices for R0 that comply
with this condition, we pick R0 = 0.38 nm for
which εeff

r grows monotonically with R (details
are given in section S6 in the Supporting Infor-
mation).
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Figure 3: Effective radial (circles) and axial
(triangles) dielectric water constants εeff

r and
εeff
z for several CNT lengths and radii. The hori-
zontal dotted line shows the bulk dielectric con-
stant of SPC/E water ε = 70. Open black cir-
cles and triangles show the effective perpendic-
ular and parallel dielectric constants between
planar graphene sheets at separation of L = 2R.

Figure 3 shows the effective dielectric con-
stants εeff

z and εeff
r calculated according to eqs

15 and 18. The radial part decreases whereas
the axial part diverges as R→ 0. This behavior
reflects the dipolar ordering of water molecules
along the CNT axis, which becomes stronger
with decreasing CNT radius, as will be ex-
plained by a simple Langevin model further be-
low. For the smallest CNT radius, R = 0.4 nm,
εeff
z in fact increases dramatically with increas-
ing CNT length. This is caused by the increas-
ing correlation length of the dipolar water or-

dering and agrees nicely with analytical models
for single-file water chains47, as we show in Fig-
ure S6 in the Supporting Information.
This anisotropic behavior of the dielectric be-

havior is somewhat similar to results for planar
confinement30, where the dielectric component
perpendicular to the surface was found to de-
crease and the parallel component was found
to increase slightly with decreasing surface sep-
aration. To compare dielectric confinement ef-
fects in cylindrical to planar systems we calcu-
late effective dielectric constants of water be-
tween two planar graphene sheets at a separa-
tion L = 2R using the scheme introduced in
Ref. 30. From the data shown in Figure 3, we
conclude that the dielectric behavior of water
in CNTs is rather different compared to wa-
ter between planar graphene sheets and that
confinement effects in cylinders are more pro-
nounced than between planar sheets. This sug-
gests that curvature effects play an important
role in confinement. In fact, similar curvature
effects were previously found also for the water
friction coefficient in CNTs17. It is well known
that the dielectric constant in bulk decreases
significantly with rising temperature48, an ef-
fect that is well reproduced in simulations49.
In section S7 of the Supporting Information we
show that the axial component of the effective
dielectric constant decreases with temperature
whereas the radial effective dielectric constant
increases with temperature. Thus, the tem-
perature dependence in cylindrical confinement
differs from the bulk behavior, which is an in-
teresting finding.

Collective Versus Self Polarization

In order to understand the cause of the pro-
nounced difference between axial and radial di-
electric effects, we investigate self and collective
polarization fluctuations. For this we define the
self and collective polarization variances as

Cself
α =

∑

i

〈p2
i,α〉 − 〈pi,α〉2 (19)

Ccoll
α =

∑

i

∑

j 6=i
〈pi,αpj,α〉 − 〈pi,α〉〈pj,α〉 , (20)
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shows the bulk dielectric constant of SPC/E
water ε− 1 = 69. (b) Kirkwood factors gz and
gr obtained from axial and radial polarization
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the bulk water Kirkwood factor g = 2.6850.

where pi,α is the dipole component α of
molecule i and α = x, y, z. We define
the average radial components as Cself

r =
(Cself

x + Cself
y )/2 and Ccoll

r = (Ccoll
x + Ccoll

y )/2.
The total polarization variance Cα is given by
Cα = Cself

α + Ccoll
α , and in bulk the relation

between Cα and the dielectric constant reads37

εα = 1 +
Cα

ε0V kBT
. (21)

We note that there is a subtle difference be-
tween Cr and the effective radial dielectric con-
stant εeff

r , as an inspection of the defining eq
12 for the radial dielectric profile shows. Fig-
ure 4a shows the polarization variances rescaled
by ε0π

(
RGDS

)2
LkBT , so that the data can be

compared to the dielectric constants calculated
earlier. For the axial part, collective contri-
butions are positive and much larger than the
self part. As shown in Figure 4b, the axial
Kirkwood gz factor, defined as gz = Cz/C

self
z ,

reaches for large CNT radii a value of gz ≈
3, close to what is found in bulk water50,
but for smaller radii drastically increases. For
larger CNT radii therefore roughly three wa-
ter molecules are axially correlated, while this
number rapidly increases as the radius goes
down. For the radial contribution, the behav-
ior is completely different. Here, the collective
contribution is negative, which means that the
radial component of the orientation of adjacent
waters is anti-correlated. We note that for very
large radii the radial and axial collective contri-
butions must become equal, but this crossover
is very slow. In accordance with this, the radial
Kirkwood factor gr = Cr/C

self
r in Figure 4b is

very small and approaches the bulk value very
slowly.

Anisotropic Langevin Model

Here we generalize the Langevin model for
the response of a single dipole to an applied
electric field to account for anisotropic align-
ment effects. The Hamiltonian for the standard
Langevin model reads H = −p ·E. We extend
this by an biaxial alignment field with strength
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c according to

H = −p [Ez cos(ϑ) + Ex sin(ϑ) cos(ϕ)] + c cos(ϑ) ,
(22)

which mimics the axial orientation of the wa-
ter dipole along z in narrow CNTs for c < 0.
We assume an external electric field in the
x − z plane and describe the dipole orienta-
tion by spherical coordinates with polar and az-
imuthal angles ϑ and ϕ. The permittivities are
obtained from second derivatives of the parti-
tion function Z, the integral over phase space
Z =

∫
dX exp(−βH), with respect to the ap-

plied field E

εα = 1 +
n

βε0

[
∂

∂Eα

(
1

Z

∂Z

∂Eα

)]

Eα=0

, (23)

where α = z, x. For the two components of
the permittivity, as shown in section S8 of the
Supporting Information, we find

εz = 1 +
np2

2cε0

(
1− 2

√
βce−βc√

πerf(
√
βc)

)
, (24)

εx = 1 +
np2

4cε0

(
1− 2βc− 2

√
βce−βc√

πerf(
√
βc)

)
,

(25)

where n is the number density and erf(x) the
error function. In the limit of c = 0 one recovers
the standard Langevin model result εz = εx =
1 + (βnp2)/(3ε0), which gives εz = εx = 19.71
for a dipole moment p = 0.049 e nm and n =
33.4nm−3 for the SPC/E water model. Predic-
tions for εz − 1 (from eq 24) and εx − 1 (from
eq 25) are included in Figure 4a as solid and
broken lines and describe the self-polarization
very well, where the radius-dependent align-
ment field strength c(R) = c0 + bR−n was fitted
to the simulation data as shown in Figure S13
in the Supporting Information. The best fit is
obtained for c0 = −0.2 kBT, b = 0.28 kBT nmn

and n = 2.8. This shows that the symmetry-
breaking between the axial and radial dielectric
self responses can be described by an extended
Langevin model that accounts for a radius-
dependent axial water alignment.

Electrostatic Interactions in an
Anisotropic Cylindrical Dielectric
Medium

According to the effective medium model we de-
rived from our simulation data, inside a cylin-
der of radius RGDS the dielectric constants are
anisotropic and given by εeff

z and εeff
r , while out-

side the cylinder the dielectric constants are dif-
ferent and reflect the dielectric properties of the
embedding medium, see Figure 1b. The elec-
trostatic potential Φ(r) for an arbitrary charge
distribution ρ(r) follows from Poisson’s equa-
tion

ε0 {∇ · [ε̂(r) · ∇Φ(r)]} = −ρ(r) , (26)

where ε̂(r) is the anisotropic permittivity ten-
sor. The derivation of Φ(r) for a point charge
distribution ρ(r) = qδ(r − r′) is explicitly
shown in section S9 in the Supporting Infor-
mation.
We consider the interaction energy U(z) =

q′Φ(z) between two point charges that are lo-
cated at the CNT axis at separation z. From
the exact expression for U(z), eq S50 in the
Supporting Information, we find for small dis-
tances z the asymptotic behavior

lim
z→0

U(z) =
qq′

4πε0εeff
r

[
1

z
+
α− 1

α + 1

γR

(z/2)2 + (γR)2

]
,

(27)

where α =
√
εeff
z ε

eff
r and γ =

√
εeff
z /ε

eff
r . For

small z the first term in eq 27 dominates and
the interaction energy only depends on the ef-
fective radial dielectric constant εeff

r but not on
the axial one. As we show in section S9.1 in
the Supporting Information, this at first sight
surprising behavior follows quite generally for
anisotropic homogeneous dielectric media and
is not specific to the cylindrical geometry. In
the limit z →∞ we find

lim
z→∞

U(z) =
qq′

4πε0εout

1

z
. (28)

As expected, for large z the interaction energy
only depends on the outer dielectric constant
εout. For convenient use in coarse-grained sim-
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ulations we provide a simple heuristic crossover
formula for U(z) that exhibits the correct
asymptotic behaviors in section S9.5 in the Sup-
porting Information.
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Figure 5: Electrostatic interaction energy U(z)
between two charges as a function of the dis-
tance z along the axial direction inside a cylin-
der that is filled with an anisotropic dielectric
medium, the outside medium in (a) is an insu-
lator and modeled as vacuum and in (b) is a
conductor and modeled as a metal. (a) Colored
lines show U(z) according to the exact solution
of the Poisson equation, eq S50 in the Support-
ing Information. For the solid colored lines,
we use the effective anisotropic dielectric con-
stants as shown in Figure 3. For the dashed col-
ored lines we use isotropic dielectric constants
of εeff

r = εeff
z = 70. The dotted black line shows

the ion-ion interaction in isotropic bulk water
with ε = 70, the solid black line shows the ion-
ion interaction in vacuum with ε = 1. (b) Solid
lines show the exact solution inside a metallic
medium according to eq S71 in the Supporting
Information. The dashed dotted lines are the
limiting result for large z according to eq. 29.

In Figure 5a we show results according to
the exact expression for U(z) given in eq S50
for the case where the outside medium is vac-
uum and thus εout = 0; here we use the effec-
tive anisotropic dielectric constants inside the
cylinder presented in Figure 3 for three differ-

ent CNT radii as solid colored lines. For the
dashed colored lines in Figure 5a we also use
eq S50 but rather take isotropic dielectric con-
stants that correspond to SPC/E bulk water
εeff
r = εeff

z = 70 inside the CNTs. The dif-
ference between these two predictions indicates
that the interaction is in CNTs considerably en-
hanced below separations z < 2 nm due to the
decrease of εeff

r compared to bulk water. We
also see that for distances z > 2 nm the interac-
tions deviate from a pure power law U(z) ∼ 1/z
and thus are influenced by the outside medium.
For large distances z > 10 nm the interactions
only depend on the permittivity of the outside
medium and approach eq 28, which is shown as
a solid black line. The dotted black line shows
the interaction in bulk water. We see that the
interactions inside the CNTs are for an inter-
mediate distance range 10 nm< z < 100 nm
even larger than in vacuum, which is caused
by image charge effects. We conclude that the
interactions between charges in CNTs are en-
hanced compared to bulk water because of the
presence of a low-dielectric medium outside the
CNT and because the radial effective dielectric
constant is significantly reduced in small CNTs
compared to bulk water.
The case where the outside medium is metal-

lic is of considerable interest since carbon nan-
otubes can be conducting51. In Figure 5b we
present results for the limiting case where the
outer dielectric constant diverges, εout =∞, by
solid lines. Due to the strong image charge ef-
fects, the interaction between charges becomes
exponentially screened for large z and decays as

lim
z→∞

U(z) =
qq′

πε0αR

J2(ξ1)

J2(ξ1)
e−

ξ1z
γR , (29)

where Jn(z) is the n-th order Bessel function of
first kind and ξ1 ≈ 2.4048 is the first zero of
J0. The exact solution of the metallic limit and
the derivation of the limiting law is provided in
section S9.6 of the Supporting Information.
The horizontal gray lines in Figures 5 a and b

denote the Bjerrum length lB, which is the dis-
tance at which the electrostatic interaction be-
tween two unit charges equals kBT . The Bjer-
rum length inside CNTs with diameters of the
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order of a few nanometers embedded in vacuum
is seen to be about 100 nm and thus two orders
of magnitude larger than in bulk water, where
we have lB ≈ 0.7 nm. For metallic CNTs the
Bjerrum length is about one order of magni-
tude larger compared to bulk water. This gives
the electrostatic interaction in CNTs an enor-
mous range that will dramatically enhance cor-
relation effects.

Conclusions
We analyze the dielectric properties of water-
filled CNTs using MD simulations combined
with effective medium theory. We find that
the axial dielectric profile oscillates close to the
CNT wall with an amplitude that depends on
the CNT radius. This is due to water layering
and matches well with the oscillations in the
water density profiles. The behavior of the ra-
dial dielectric profiles is markedly different and
does not reflect the water density profile. Effec-
tive medium theory is used to extract effective
dielectric constants from these dielectric pro-
files. This, on the one hand, helps the interpre-
tation of the dielectric effects and, on the other
hand, enables us to calculate electrostatic inter-
actions inside CNTs. We find that the effective
axial dielectric constant dramatically increases
with decreasing CNT radius, which by compar-
ison with a simple extended Langevin model we
trace back to axial water ordering in thin CNTs.
The effective radial dielectric constant, in con-
trast, decreases with decreasing CNT radius.
By the exact solution of the anisotropic

Poisson equation in cylindrical geometry, we
demonstrate that the axial interaction between
two ions inside a CNT depends for small separa-
tion primarily on the radial dielectric constant,
not on the axial one. Thus, the ion-ion inter-
action is significantly enhanced for small sepa-
ration due to the decrease of the radial dielec-
tric constant for small CNT radii, compared to
the hypothetical scenario where the dielectric
constant would be isotropic and given by the
bulk water value. If the outside medium has
a low dielectric constant, the ion-ion interac-
tions are determined by the outside medium for

large separations and thus are enhanced com-
pared to interactions in bulk water. If the out-
side medium is metallic the ion-ion interactions
become exponentially screened for large separa-
tions.
Clearly, for ions of finite size, we expect devia-

tions from the present calculation for point-like
ions. In fact, extended charge distributions can
be treated by Green’s function methods that
were used earlier by us for planar systems52.
The effective anisotropic dielectric model for
water inside CNTs developed in this paper will
also be useful for future coarse-grained model-
ing of confined aqueous systems53,54. In partic-
ular, the long-range nature of electrostatic ion-
ion interactions in water-filled cylinders will be
important to take into account in future mod-
eling of ionic distributions, ionic conductivities
and electrokinetic effects inside CNTs.
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files for different CNT lengths, comparison of
the axial effective dielectric constant for single-
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and temperature effects on the dielectric con-
stant, the effective dielectric constant for dif-
ferent effective radial and axial radii, results for
different choices of the inner radius R0, deriva-
tion of the extended Langevin model, derivation
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