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Abstract: A series of diiron/tetrairon compounds containing a S- or a Se-function (2a–d, 4a–d,
5a–b, 6), and the monoiron [FeCp(CO){SeC1(NMe2)C2HC3(Me)}] (3) were prepared from the
diiron µ-vinyliminium precursors [Fe2Cp2(CO)( µ-CO){µ-η1: η3-C3(R’)C2HC1N(Me)(R)}]CF3SO3

(R = R’ = Me, 1a; R = 2,6-C6H3Me2 = Xyl, R’ = Ph, 1b; R = Xyl, R’ = CH2OH, 1c), via treatment
with S8 or gray selenium. The new compounds were characterized by elemental analysis, IR and
multinuclear NMR spectroscopy, and structural aspects were further elucidated by DFT calculations.
The unprecedented metallacyclic structure of 3 was ascertained by single crystal X-ray diffraction.
The air-stable compounds (3, 4a–d, 5a–b, 6) display fair to good stability in aqueous media, and thus
were assessed for their cytotoxic activity towards A2780, A2780cisR, and HEK-293 cell lines. Cyclic
voltammetry, ROS production and NADH oxidation studies were carried out on selected compounds
to give insights into their mode of action.

Keywords: bioorganometallic chemistry; metal-based drugs; diiron complexes; vinyliminium ligand;
sulphur; selenium

1. Introduction

The serendipitous discovery of the anticancer properties of cisplatin led to a paradigm shift in
the clinical treatment of cancer. Although cisplatin and second generation platinum-based drugs are
efficacious against many types of cancer [1–4], their use is associated with some restrictions, such
as a limited selectivity leading to adverse side-effects and intrinsic or acquired resistance [5–9].
These limitations have fueled the research for the development of anticancer agents based on
transition metals other than platinum [10–21], and in this respect mono-iron cyclopentadienyl
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compounds have been investigated, with substituted ferrocenes emerging as highly promising
candidates [22–24]. Nevertheless, studies on poly-iron organometallic complexes still remain rare [25],
and also iron-carbonyl compounds have been scarcely explored in the field so far [26–28].

Sulphur and selenium are found in a variety of organic molecules with therapeutic
properties [29,30], and organo-selenium compounds have especially aroused interest for their anticancer
potential, exerting their action alone or in combination with other drugs [31–34]. In this regard, the
synthetic conjugation of a selenium moiety with the IrCp* frame (Cp* = η5-C5Me5) was previously
found to result in a high cytotoxicity against A2780 cancer cells [35]. Being relevant to key redox
processes in living organisms, disulphide and diselenide functions, when incorporated within a drug
structure, have been demonstrated to induce antiproliferative and apoptotic effects [36–38].

Recently, we reported on the antiproliferative behavior of diiron complexes comprising a
bridging vinyliminium ligand, 1 [39], obtained via the sequential assembly of an isocyanide and
an alkyne on Fe2Cp2(CO)4 (Scheme 1, Cp = η5-C5H5) [40–42]. Type 1 compounds possess some
drug-like characteristics, i.e., they are based on a substantially nontoxic metal, they may be prepared
on a multigram scale from cost effective precursors, they are stable in water media, and their
solubility/lipophilicity can be regulated by an appropriate choice of ligand substituents. Preliminary
experiments suggest that their cytotoxicity is mainly attributable to ROS generation triggered by either
a single-electron reduction or slow compound fragmentation in aqueous media [39].

Former findings indicate that the vinyliminium ligand in type 1 compounds displays a versatile and
rich chemistry, offering much scope for derivatization [43–45]. Herein, we will describe the synthesis
and the characterization of a series of S- and Se-functionalized derivatives [42–47]. Cytotoxicity data
concerning both cancer and non-cancer cell lines and experiments aimed to clarify the mechanism of
action of the compounds are described.
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Scheme 1. Synthesis of diiron complexes containing a bridging vinyliminium ligand, 1, obtained by
isocyanide (red) / alkyne (blue) coupling.

2. Results and Discussion

2.1. Synthesis and Characterization of Compounds, and DFT Analysis

Synthesis and Characterization of Compounds

Compounds 2a and 2c [48], 4c [49] and 6 [50] were previously reported, whereas 2b, 2d, 3, 4a, 4b, 4d,
5a, 5b, and 6 are novel (Scheme 2). Once isolated, 2a–d slowly decompose in contact with air, whereas
3–6 resulted indefinitely air-stable. The sodium hydride(methoxide)-promoted dehydrogenative
chalcogenylation of 1a–c, as described previously [48], provides access to the zwitterionic complexes
2a–d, in 60%-80% yields. This formal [C2H]+/C2E substitution (E = S, Se) presumably proceeds through
the initial single-electron reduction of the cationic part of 1a–c. Consistent with this hypothesis, the
monoiron complex 3, maintaining the C2-H unit, is a side product of the reaction leading to 2a, and
may be viewed as the result of selenium incorporation along a fragmentation process initiated by
electron transfer to 1a [51]. The chalcogenido moiety in 2a–d is readily oxidized with I2 to the dimeric
iodide salts 4a–d, containing an E-E bridge (77%–93%) [48]. Electrophilic methylation of 2a–d affords
5a–b (76%-86%). Instead, 6 is directly derived from 1a (80%), trapping the [SPh] fragment along the
reaction of 1a with NaH [49].
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Scheme 2. Synthesis of functionalized mono-, di- and tetrairon complexes via reactions of diiron
vinyliminium compounds with elemental sulphur/selenium (E) and PhSSPh. 1a: R = R’ = Me; 1b:
R = Xyl, R’ = Ph; 1c: R = Xyl, R’ = CH2OH. 2a: R = R’ = Me, E = Se; 2b: R = Xyl, R’ = Ph, E = S, Y = H;
2c: R = Xyl, R’ = CH2OH, E = S; 2d: R = Xyl, R’ = Ph, E = Se, Y = OMe. 4a: R = R’ = Me, E = Se; 4b:
R = Xyl, R’ = Ph, E = S; 4c: R = Xyl, R’ = CH2OH, E = S; 4d: R = Xyl, R’ = Ph, E = Se. 5a: R = R’ = Me,
E = Se; 5b: R = Xyl, R’ = Ph, E = S. Xyl = 2,6-C6H3Me2.

According to combined X-ray diffraction analysis and NMR spectroscopy studies, the previously
reported 2c and related R = Xyl containing complexes exist both in solution and in the solid state in
the Z form, i.e., displaying the bulky xylyl group far from the chalcogen atom [48]. The salient NMR
spectroscopic features of the new compounds, 2b and 2d, are in good agreement with those of 2c and
analogues, thus indicating a Z configuration. For instance, the Cp rings and the methyl groups in
the respective 1H NMR spectra are observed as follows: in 2b, at 4.59, 4.58 (Cp), 3.70 (Me) and 2.65,
2.16 ppm (Xyl); in 2d, at 4.62, 4.58 (Cp), 3.70 (Me) and 2.73, 2.16 ppm (Xyl); in [Fe2Cp2(CO)(µ-CO)
{µ-η1:η3-C(4-C6H4Me)C(S)CN(Me)(Xyl)}] [47], at 4.59, 4.55 (Cp), 3.69 (Me) and 2.65, 2.16 ppm (Xyl).
The latter complex differs from 2b in the presence of a 4-tolyl substituent in the place of Ph, and its
structure was confirmed by X-ray diffraction.

DFT calculations confirm that the Z isomers of 2b and 2d are more stable than the E form by
about 6 kcal mol−1 (Figures 1 and 2). A comparison of computed bond lengths and angles indicates
only small changes on replacing sulphur (2b) with selenium (2d). The most affected distance is
Fe(2)-C(2), being 2.143 Å in 2b and 2.119 Å in 2d (CPCM/ωB97X calculations). The similarity between
2b and 2d is confirmed by the Mulliken population analysis, providing close values of partial charge
for the µ-vinyliminium ligand in the two compounds. The higher stability of the Z isomers can be
explained on the basis of the lower electrostatic repulsion between the chalcogen atom and the xylyl
ring, as observable for instance in Figure S1 (Supporting information), where the electrostatic potential
surfaces of E-2b and Z-2b are compared.
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Figure 1. DFT-optimized structure of 2b, Z isomer (C-PCM/ωB97X/def2-SVP calculation, chloroform
as continuous medium). Hydrogen atoms are omitted for clarity. Selected computed bond lengths (Å):
Fe(1)-Fe(2) 2.534; Fe(1)-C(µCO) 1.909; Fe(2)-C(µCO) 1.902; Fe(1)-C(3) 2.033; Fe(2)-C(3) 1.977; Fe(2)-C(2)
2.143; Fe(1)-C(1) 1.878; Fe(2)-C(CO) 1.769; Fe(1)-Cp(average) 2.082; Fe(2)-Cp(average) 2.105; C(3)-C(2)
1.424; C(2)-C(1) 1.437; C(2)-S 1.732; C(1)-N 1.299. Selected computed angles (◦): Fe(1)-C(3)-C(2) 74.3;
Fe(2)-C(3)-C(2) 123.2; C(1)-C(2)-C(3) 111.9; C(3)-C(2)-S 128.5; S-C(2)-C(1) 117.2; C(2)-C(1)-N 132.0.
Selected Mulliken charges (a.u.) in parenthesis. Inset 1: Gibbs energy different between E and Z isomers
of 2b (EDF2/6-31G** calculations). Cartesian coordinates of the EDF2 geometries are collected in the SI.
Inset 2: HOMO of 2b (surface isovalue = 0.05 a.u.).
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Figure 2. DFT-optimized structure of 2d, Z isomer (C-PCM/ωB97X/def2-SVP calculation, chloroform
as continuous medium). Hydrogen atoms are omitted for clarity. Selected computed bond lengths (Å):
Fe(1)-Fe(2) 2.536; Fe(1)-C(µCO) 1.920; Fe(2)-C(µCO) 1.895; Fe(1)-C(3) 2.038; Fe(2)-C(3) 1.976; Fe(2)-C(2)
2.119; Fe(1)-C(1) 1.876; Fe(2)-C(CO) 1.770; Fe(1)-Cp(average) 2.082; Fe(2)-Cp(average) 2.104; C(3)-C(2)
1.419; C(2)-C(1) 1.430; C(2)-Se 1.896; C(1)-N 1.299. Selected computed angles (◦): Fe(1)-C(3)-C(2) 73.1;
Fe(2)-C(3)-C(2) 123.4; C(1)-C(2)-C(3) 113.0; C(3)-C(2)-Se 128.2; Se-C(2)-C(1) 116.7; C(2)-C(1)-N 133.0.
Selected Mulliken charges (a.u.) in parenthesis. Inset1: Gibbs energy different between E and Z isomers
of 2d (EDF2/6-31G** calculations). Cartesian coordinates of the EDF2 geometries are collected in the SI.
Inset2: HOMO of 2d (surface isovalue = 0.05 a.u.).

The structure of 3 was ascertained by single crystal X-ray diffraction (Figure 3, Table 1). Both
C(1)-N(1) [1.28(6) and 1.27(6) Å for the two independent molecules present within the unit cell]
and C(2)-C(3) [1.39(6) and 1.39(6) Å] distances show a significant double bond character, whereas
C(1)-C(2) [1.46(6) and 1.43(6) Å] is essentially a C(sp2)-C(sp2) single bond with limited π-character.
The Fe(1)-C(3) bond [1.96(4) and 1.92(5) Å] is elongated with respect to a pure terminal FeII-alkylidene,
revealing a vinyl character [52–55]. The Fe(1)-Se(1) distance [2.391(8) and 2.357(9) Å] is in keeping with
previously reported iron(II)-selenide bonds [56–60]. The perfectly planar five-membered ring [mean
deviation from the Fe(1)-Se(1)-C(1)-C(2)-C(3) least-squares plane 0.0094 and 0.0409 Å] can be described
as a zwitterionic ferra-selenophene-iminium, and to the best of our knowledge is unprecedented in
organometallic chemistry.
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Figure 3. Molecular structure of [FeCp(CO){SeC1(NMe2)C2HC3(Me)}], 3. Displacement ellipsoids are
at the 30% probability level.

Table 1. Selected bond lengths (Å) and angles (◦) for 3.

Molecule 1 Molecule 2

Fe(1)-Se(1) 2.391(8) 2.357(9)

Fe(1)-Cp 2.07(5)–2.17(5) 2.09(5)–2.10(5)

Fe(1)-C(4) 1.74(4) 1.83(4)

Fe(1)-C(3) 1.96(4) 1.92(5)

C(4)-O(1) 1.12(6) 1.09(5)

Se(1)-C(1) 1.90(4) 1.88(5)

C(1)-C(2) 1.46(6) 1.43(6)

C(2)-C(3) 1.39(6) 1.39(6)

C(3)-C(5) 1.50(6) 1.43(7)

C(1)-N(1) 1.28(6) 1.27(6)

N(1)-C(6) 1.53(6) 1.50(6)

N(1)-C(7) 1.52(5) 1.52(6)

Se(1)-Fe(1)-C(3) 84.9(13) 86.6(14)

Fe(1)-C(4)-O(1) 178(4) 171(4)

Fe(1)-Se(1)-C(1) 96.5(13) 98.3(14)

Se(1)-C(1)-C(2) 115(3) 108(3)

C(1)-C(2)-C(3) 118(4) 127(4)

C(2)-C(3)-Fe(1) 126(3) 119(4)

Sum at N(1) 360(6) 360(6)

Sum at C(1) 360(6) 359(6)

Sum at C(3) 360(6) 360(6)

The 1H and 13C NMR spectra of 3 (acetone-d6 solution) display two resonances for the N-bound
methyls, in accordance with the iminium description of the [C1-NMe2] moiety. Signals attributable to
the C1, C2 and C3 carbons are observed at 218.6, 137.4 and 199.3 ppm, respectively, while the selenium
centre is observed at 285.7 ppm in the 77Se NMR spectrum.
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In both 2b and 2d, the HOMO is localized on a p-type orbital of E (E = S, Se) and to a lesser extent
on C3, C2 and on the iron centers (see Figures 1 and 2): this explains why the chalcogen atom E is the
most probable site for molecular oxidation or electrophilic attack. The HOMO of 2d is located 0.21
eV higher than in 2b, so I2-oxidation of 2d to 4d is 6.5 kcal mol−1 more favorable than the analogous
reaction for 2b. Presumably, 4b and 4d containing xylyl groups, maintain the Z configuration of the
N-substituents adopted in their precursors 2b and 2d [48]. Indeed, the NMR spectra of 4a–d suggest
the presence of a single species in solution. On going from 2d to 4d, the Se center undergoes significant
deshielding in the 77Se NMR spectrum (from 282.5 to 556.4 ppm). DFT-optimized structures of 4b and
4d are shown in Figures S2 and S3.

The salient IR and NMR features of 5a–b are typical of cationic vinyliminium complexes.
In particular, the NMR spectra of 5b closely resemble those reported for Z-[Fe2Cp2(CO)(µ-CO)
{µ-η1:η3-C(4-C6H4Me)C(SH)CN(Me)(Xyl)}]CF3SO3, 5c, whose structure was confirmed by X-ray
diffraction [e.g.,: δ(1H, 5b/5c) = 5.16/4.99, 5.10/4.97 (Cp), 3.54/3.54 (NMe), 2.61/2.58, 2.07/2.04 (Xyl) ppm;
δ(13C, 5b/5c)/ppm = 227.9/227.8 (C1); 68.4/68.2 (C2); 205.6/208.5 (C3)] [39]. In the 77Se NMR spectrum of
5a (acetone-d6 solution), the selenido unit gives rise to a signal at 187.4 ppm.

2.2. Electrochemistry

Compounds 4c and 5a were selected for electrochemical characterization in acetonitrile, which
was extended to the respective precursors 1c and 2c, and also to 1a. The main results are summarized
in Table 2, and all cyclic voltammetric profiles (referred to the ferrocenium/ferrocene redox couple)
are provided in the Supporting Information (Figures S4–S14). In general, the investigated complexes
exhibit one electrochemical reduction process, which occurs reversibly for 1a and 5a on the time scale
of the experiment, respectively at −1.37 V and −1.29 V. However, the reduction observed for 1a is
complicated by either two different processes occurring at very similar potentials, or a single process
occurring in two steps (Figure S6). As a consequence, a slightly high peak-to-peak separation (∆Ep) of
108 mV was recognized. Furthermore, 1a displays an irreversible oxidation at +0.65 V, whereas in the
case of 5a several irreversible oxidation reactions were detected in the potential range from −0.44 V to
+0.66 V.

As discussed above, the chalcogenido moiety of 2c can be chemically oxidized to 4c (Scheme 2),
and the same conversion was investigated using electrochemical techniques. As expected, the cyclic
voltammogram (CV) of 2c shows an irreversible oxidation at +0.12 V, ascribable to the generation of
the cationic part of 4c. Correspondingly, the CV profile of 4c shows an irreversible reduction at −0.78
V, that could be assigned to the formation of 2c [61]. Further considerations are prevented due to
the presence of iodide as the counteranion in 4c, which is redox active and leads to the deposition of
degradation products on the surface of the working electrode.

Table 2. Overview of the main oxidation and reduction potentials (V vs. Fc+/Fc) at a scan rate of
100 mV/s determined by cyclic voltammetry in MeCN for selected iron complexes. The peak-to-peak
separation (∆Ep) is determined by the difference between two peak potentials for a given redox couple.
aEpa for an irreversible process.

Compound Oxidation [V] Reduction [V] ∆Ep (red) [mV]

1a +0.65 a
−1.37 108

1c +0.73 a
−1.35 a -

2c +0.12 a
−1.7 a -

4c - −0.78 a -

5a −0.44 a
÷ +0.66 a

−1.29 87
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2.3. Cytotoxicity Studies and Stability in Aqueous Media

The air sensitive compounds 2a–d were excluded from the biological tests. The remaining
compounds were preliminarily evaluated for their stability in aqueous media (data summarized in
Table 6). The ionic compounds 4a–d, 5a–b and 6, which are slightly soluble in water, and 3 did not
undergo significant modification in DMSO-d6/D2O solution after 72 h at ca. 37 ◦C, according to 1H NMR
spectroscopy (see Experimental for details). Approximately 50% degradation of 4b to unidentified
species was detected after a further 72 h following addition of NaCl to the solution, whereas 4a,c,d
did not change under the same conditions. IR spectroscopy was used to estimate the stability of 4a–d,
5a and 6 in contact with cell culture medium at 37 ◦C. Compounds 4b, 4d, 5a, and 6 remained intact
after 72 h, whereas 4a and 4c were recovered at the end of the experiment together with other carbonyl
species. Indeed, a significant amount of 2c was detected to be produced from 4c.

Compounds 3–6 were assessed for their cytotoxicity against cisplatin sensitive (A2780) and
cisplatin resistant (A2780cisR) human ovarian carcinoma cells, and the non-tumoral human
embryonic kidney (HEK-293) cell line (see Table 3 and Experimental for details). Cisplatin
and [(η6-p-cymene)RuCl2(κP-pta)] (RAPTA-C)[62] were evaluated as positive and negative
controls, respectively.

Three tetrairon complexes, i.e., 4b–4d, containing a S–S or a Se–Se bridge, and the diiron
vinyliminium complexes 5b and 6, bearing a thioether function, possess potent cytotoxicity against the
cancer cell lines, with IC50 values in the low micromolar/nanomolar range. In particular, the activity
of 4b, 4d, and 5d is superior than that of cisplatin and appears to overcome resistance issues, since
comparable IC50 values were determined on the A2780 and A2780cisR cell lines. However, selectivity
is not observed compared to the HEK-293 cell line, apart from a moderate selectivity shown by 5a. The
introduction of a Se–Se bridge on 1a leads to a dramatic decrease in activity, the diselenide derivative 4a
being inactive towards all the investigated cell lines. In general, the strongest cytotoxic effect promoted
by 4b,d, compared to 4a,c, reflects the higher stability in aqueous media of the former respect to the
letter (see above).

Table 3. IC50 values (µM) determined for compounds 3, 4a–d (and their vinyliminium precursors
1a–c), 5a–b, 6, cisplatin and RAPTA-C on human ovarian carcinoma (A2780), human ovarian carcinoma
cisplatin resistant (A2780CisR) and human embryonic kidney (HEK-293) cell lines after 72 h exposure.
Values are given as the mean ± SD. a See reference [39].

Compnd. A2780 A2780cisR HEK-293

1a a 35 ± 3 86 ± 7 >200
1b a 0.50 ± 0.06 1.2 ± 0.2 2.4 ± 0.2
1c a 11.6 ± 0.6 21.2 ± 1.6 13.4 ± 1.0

3 16.1 ± 1.3 20 ± 2 19 ± 2
4a >200 >200 >200
4b 0.6 ± 0.1 1.2 ± 0.6 0.72 ± 0.04
4c 5.7 ± 0.8 12.8 ± 0.7 9.1 ± 0.7
4d 1.4 ± 0.2 2.8 ± 0.3 2.2 ± 0.6
5a 15.6 ± 0.8 28 ± 2 26 ± 3
5b 0.5 ± 0.2 1.4 ± 0.2 0.7 ± 0.1
6 3.7 ± 0.4 14 ± 2 6.7 ± 0.6

cisplatin 2.7 ± 0.1 26 ± 3 10.0 ± 0.7
RAPTA-C >200 >200 >200

2.4. ROS Production and NADH Oxidation

We previously hypothesized that the cytotoxicity of diiron vinyliminium compounds, 1, is mainly
ascribable to redox mechanisms (see Introduction). As suggested by the DFT outcomes, electrochemical
investigations and stability data (see above), the tetrairon-bis-cationic complexes 4a–d are susceptible
to relatively facile reduction due to feasible disulphide(diselenide) to sulphide(selenide) conversion.
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Even the reduction of the selenido-vinyliminium 5a appears slightly more favorable with respect to
analogous non-functionalized vinyliminium complexes (Table 2) [63]. Therefore, the cytotoxicity of
the S- and Se-derivatives, and especially 4b–d, is expected to involve interference of cellular redox
processes. In order to investigate this aspect, we assessed the production of intracellular ROS levels
induced by a selection of complexes (fluorescence measurements, using the peroxide-sensitive probe
DCFH-DA). Thus, A2780 cells were continuously exposed to 4a, 4b, 4c, 5a, cisplatin (as a reference
compound) and H2O2 (as a positive control). Treatment with 4b and 4c showed a significant increase
in the level of ROS after ca. 20 h of treatment with respect to the positive control (Figure 4). Instead, 4a
and 5a stimulated a ROS production close to that recorded for the basal levels; moreover, 4a did not
show a significant effect even at higher concentration (100 µM). The marked difference in behavior
between 4a (non cytotoxic) and 4b–d indicates that the stimulation of ROS production could be indeed
a privileged way of antiproliferative action for 4b–d.
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Figure 4. Fluorescence kinetics measurements of intracellular reactive oxygen species (ROS). A2780
cells incubated for 24 h with 10 µM of iron compounds at 37 ◦C.

In order to further evaluate the ability of compounds to interfere with physiological redox
processes, we determined the catalytic activity of 4a, 4c, 4d, 5a, and 6 in the aerobic oxidation of
NADH, using a previously documented UV-Vis method (Table 4) [64]. Indeed, nicotinamide adenine
dinucleotide (NAD+) and its reduced form (NADH) are important cofactors contributing to the
maintenance of redox balance in cells [65], and the alteration of the NADH/NAD+ ratio has been
implicated in the anticancer activity of various late transition metal complexes [64,66]. Cationic diiron
vinyliminium compounds without chalcogen-functions, i.e., 1a and 1c, were also included in this
study for comparison, together with FeSO4 as a reference compound. All tetrairon compounds 4a,
4c, 4d displayed a moderate catalytic activity on NADH oxidation, comparable (or slightly superior)
to that of their diiron precursors (1a, 1c). Surprisingly, the diiron compounds 5a and 6, featuring
selenoether/thioether moieties, were able to retard the oxidation of NADH with respect to the blank
experiment. Notably, TONs at 25 h were significantly lower for 5a and 6 than for FeSO4, the latter
exhibiting no catalytic activity.
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Table 4. Turnover numbers (TON) of iron compounds (10 µM) in the aerobic oxidation of NADH
(220 µM) in a 5% DMSO phosphate buffered solution at 37 ◦C after 25 h. FeSO4 used as a
reference compound.

Compound TON

4a 3.8
4c 4.1
4d 3.7
5a 1.8
6 1.6

1a 3.7
1c 3.5

FeSO4
[a] 2.3

[a] NADH oxidation over time not significantly different from the blank experiment.

3. Experimental

3.1. Synthetic Procedures and Compound Characterization

General details. The preparation, purification and isolation of compounds were carried out under a
N2 atmosphere using standard Schlenk techniques; once obtained, 3–6 were stored in air and 2a–d
were stored under N2. Solvents were purchased from Merck and distilled before use under N2 from
appropriate drying agents. Organic reactants (TCI Europe or Merck) were commercial products of
the highest purity available. Compounds 1a-e [39,42], 2a,c [48], 4c [49], and 6 [50] were prepared
according to published procedures. Chromatography separations were carried out on columns of
deactivated alumina (Merck, 4% w/w water). Infrared spectra of solutions were recorded on a Perkin
Elmer Spectrum 100 FT-IR spectrometer with a CaF2 liquid transmission cell (2300–1500 cm−1 range);
IR spectra were processed with Spectragryph software [67]. NMR spectra were recorded at 298 K on
a Bruker Avance II DRX400 instrument equipped with a BBFO broadband probe. Chemical shifts
(expressed in parts per million) are referenced to the residual solvent peaks (1H, 13C) [68], or to
external standard (77Se, SeMe2). 1H and 13C NMR spectra were assigned with the assistance of 1H-13C
(gs-HSQC and gs-HMBC) correlation experiments [69]. Elemental analyses were performed on a Vario
MICRO cube instrument (Elementar).

Synthesis of [Fe2Cp2(CO)(µ-CO){µ-η1:η3-C3(Ph)C2(E)C1N(Me)(Xyl)}] (E = S, 2b; E = Se, 2d).

Compound 2b was prepared using the procedure reported in the literature for 2a and 2c [48], and
a slight modification of the procedure was employed for 2d.

[Fe2Cp2(CO)(µ-CO){µ-η1:η3-C3(Ph)C2(S)C1N(Me)(Xyl)}], 2b (Chart 1).
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Chart 1. Structure of 2b.

From 1b (0.70 mmol), S8 (ca. 10 eq.) and NaH (4 eq.), see ref. [48]. Dark-green solid, yield 60%.
Eluent for chromatography: CH2Cl2. Anal. calcd. for C30H27Fe2NO2S: C, 62.41; H, 4.71; N, 2.43; S,
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5.56. Found: C, 63.06; H, 4.80; N, 2.40; S, 5.40. IR (CH2Cl2): ῦ/cm−1 = 1964vs (CO), 1791s (µ-CO), 1600m
(C1N), 1581w (arom C-C). 1H NMR (CDCl3): δ/ppm = 7.68–7.28 (m, 8 H, C6H5 + C6H3Me2); 4.59, 4.58
(s, 10 H, Cp); 3.70 (s, 3 H, NMe); 2.65, 2.16 (s, 6 H, C6H3Me2). 13C{1H} NMR (CDCl3): δ/ppm = 264.2
(µ-CO); 235.4 (C1); 212.8 (CO); 195.7 (C3); 156.8 (ipso-C6H5); 142.3 (ipso-C6H3Me2); 135.7, 134.9, 129.3,
129.0, 127.8, 126.4 (C6H5 + C6H3Me2); 113.0 (C2); 90.6, 89.4 (Cp); 45.9 (NMe); 18.5, 18.0 (C6H3Me2). C2

observed via g-HSQC experiment.

[Fe2Cp2(CO)(µ-CO){µ-η1:η3-C3(Ph)C2(Se)C1N(Me)(Xyl)}], 2d (Chart 2).
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Chart 2. Structure of 2d.

A solution of 1b (180 mg, 0.259 mmol) in THF (15 mL) was treated with gray Se (200 mg, 2.53 mmol)
followed by NaOMe (35 mg, 0.648 mmol). The mixture was allowed to stir at room temperature for
1 h, then it was filtered through a short alumina pad, using neat THF as eluent, under protection from
air. The filtrate was dried under vacuum. The resulting residue was dissolved in CH2Cl2 and the
solution was charged on alumina. Elution with CH2Cl2 removed the impurities and a green band was
collected using THF as eluent. The title compound was isolated as a brown solid upon removal of
the solvent under vacuum. Yield 129 mg, 80%. Anal. calcd. for C30H27Fe2NO2Se: C, 57.73; H, 4.36;
N, 2.24. Found: C, 57.61; H, 4.44; N, 2.18. IR (CH2Cl2): ῦ/cm−1 = 1967vs (CO), 1794s (µ-CO), 1604w
(C1N), 1583w (arom C-C). 1H NMR (CDCl3): δ/ppm = 7.69–7.25 (m, 8 H, Ph + C6H3Me2); 4.62, 4.58
(s, 10 H, Cp); 3.70 (s, 3 H, NMe); 2.73, 2.16 (s, 6 H, C6H3Me2). 13C{1H} NMR (CDCl3): δ/ppm = 262.8
(µ-CO); 229.7 (C1); 212.4 (CO); 198.6 (C3); 157.7 (ipso-Ph); 141.9 (ipso-C6H3); 136.1, 135.0, 129.6, 129.1,
129.0, 128.8, 128.2, 128.0, 125.9, 125.3 (Ph + C6H3Me2); 90.7, 90.4 (Cp); 89.6 (C2); 47.0 (NMe); 18.6, 18.3
(C6H3Me2). 77Se NMR (CDCl3): δ/ppm = 282.5.

Synthesis of [FeCp(CO){SeC1(NMe2)C2HC3(Me)}], 3 (Chart 3).
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The reaction mixture for the synthesis of 2a was obtained as described in the literature, from 1a,
gray selenium and NaH [48]. This mixture was filtered through a short alumina pad using THF as
eluent, then the volatiles were removed under vacuum. Subsequent alumina chromatography of the
residue led to isolate a red fraction using neat diethyl ether as eluent, corresponding to 3. Compound 3
was isolated as an air stable, red solid upon removal of the solvent under vacuum. Yield 16%. Anal.
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calcd. for C12H15FeNOSe: C, 44.48; H, 4.67; N, 4.32. Found: C, 44.12; H, 4.51; N, 4.39. IR (CH2Cl2):
ῦ/cm−1 = 1921vs (CO), 1530m (C3=C2). 1H NMR (acetone-d6): δ/ppm = 7.36 (s, 1 H, C2-H); 4.59 (s, 5 H,
Cp); 3.45, 3.28 (s, 6 H, NMe2); 2.77 (s, 3 H, C3-Me). 13C{1H} NMR (acetone-d6): δ/ppm = 252.3 (CO);
218.6 (C1); 199.3 (C3); 137.4 (C2); 82.3 (Cp); 44.8, 42.5 (NMe2); 40.1 (C3Me). 77Se NMR (acetone-d6):
δ/ppm = 285.7. Crystals suitable for X-ray analysis were obtained from a diethyl ether solution layered
with pentane and stored at −30 ◦C.

Synthesis of [Fe2Cp2(CO)(µ-CO){µ-η1:η3-C3(R’)C2(E)C1N(Me)(R)}]2[I]2 (R = R’ =Me, E = Se, 4a; R = Xyl,
R’ = Ph, E = S, 4b; R = Xyl, R’ = Ph, E = Se, 4d).

The title products were prepared using the procedure reported in the literature for 4c [49].

[Fe2Cp2(CO)(µ-CO){µ-η1:η3-C3(Me)C2(Se)C1NMe2}]2[I]2, 4a (Chart 4).
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From 2b and I2, see ref. [49]. Dark-red solid, yield 77%. Anal. calcd. for C60H54Fe4I2N2O4S2:
C, 51.17; H, 3.86; N, 1.99; S, 4.55. Found: C, 51.02; H, 3.94; N, 2.06; 4.69. IR (CH2Cl2): ῦ/cm−1 =

1994vs (CO), 1830s (µ-CO), 1611m (C2C1N), 1586w (arom C-C). 1H NMR (CD2Cl2): δ/ppm = 7.81–7.29
(m, 8 H, C6H5 + C6H3Me2); 5.10, 5.08 (s, 10 H, Cp); 3.21 (s, 3 H, NMe); 2.66, 2.10 (s, 6 H, C6H3Me2).
13C{1H} NMR (CD2Cl2): δ/ppm = 249.9 (µ-CO); 227.3 (C1); 210.1, 209.2 (CO + C3); 152.7 (ipso-C6H5);
140.1 (ipso-C6H3Me2); 134.3-126.7 (C6H5 + C6H3Me2); 90.6, 89.4 (Cp); 65.8 (C2); 45.9 (NMe); 18.8, 18.1
(C6H3Me2). NMe overlapped with solvent signal.

[Fe2Cp2(CO)(µ-CO){µ-η1:η3-C3(Ph)C2(Se)C1N(Me)(Xyl)}]2[I]2, 4d (Chart 6).
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From 2b and I2, see ref. [49]. Brown solid, yield 93%. Anal. calcd. for C60H54Fe4I2N2O4Se2: C,
47.97; H, 3.62; N, 1.86. Found: C, 47.85; H, 3.68; N, 1.93. IR (CH2Cl2): ῦ/cm−1 = 1994vs (CO), 1825s
(µ-CO), 1616m (C2C1N), 1586w (arom C-C). 1H NMR (CD3CN): δ/ppm = 7.85–7.45, 7.36, 7.01 (m, 8 H,
C6H5 + C6H3Me2); 5.04, 4.98 (s, 10 H, Cp); 3.49 (s, 3 H, NMe); 2.52, 2.14 (s, 6 H, C6H3Me2). 77Se NMR
(DMSO-d6): δ/ppm = 556.4.

Synthesis of [Fe2Cp2(CO)(µ-CO){µ-η1:η3-C3(R’)C2(EMe)C1N(Me)(R)}]I (R = R’ =Me, E = Se, 5a; R = Xyl,
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(1.5 equivalents) was added to the solution. The resulting mixture was stirred at room temperature for
2 h, and then charged on an alumina column. Elution with CH2Cl2 allowed to separate impurities,
then the fraction corresponding to the product was collected using MeCN/MeOH (95/5 v/v) as eluent.

[Fe2Cp2(CO)(µ-CO){µ-η1:η3-C3(Me)C2(SeMe)C1NMe2)}]I, 5a (Chart 7).
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From 2a and MeI. Brown solid, yield 86%. Eluent for chromatography: MeOH. Anal. calcd. for
C27H31Fe2INO2Se: C, 45.10; H, 4.35; N, 1.95. Found: C, 44.90; H, 4.27; N, 1.98. IR (CH2Cl2): ῦ/cm−1 =

1992vs (CO), 1813s (µ-CO), 1667m (C2C1N). 1H NMR (acetone-d6): δ/ppm = 5.59, 5.24 (s, 10 H, Cp);
4.13 (s, 3 H, C3Me); 4.03, 3.32 (s, 6 H, NMe2); 2.35 (s, 3 H, SeMe). 13C{1H} NMR (acetone-d6): δ/ppm =

255.4 (µ-CO); 220.3 (C1); 210.3 (CO); 205.0 (C3); 91.3, 88.9 (Cp); 65.1 (C2); 47.6, 44.9 (NMe); 39.1 (C3Me);
6.7 (SeMe). 77Se NMR (DMSO-d6): δ/ppm = 187.4.

[Fe2Cp2(CO)(µ-CO){µ-η1:η3-C3(Ph)C2(SMe)C1N(Me)(Xyl)}]I, 5b (Chart 8).
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 3 

Formula C12H15FeNOSe 

FW 324.06 

T, K 100(2) 

  Å  0.71073 

Crystal system Monoclinic 

Space group Pc 

a, Å  13.454(3) 

b, Å  7.675(2) 

c, Å  12.285(2) 

 99.07(3) 

Cell Volume, Å 3 1252.5(5) 

Z 4 

Dc, g∙cm−3 1.719 

 mm− 4.088 

Chart 8. Structure of the cation of 5b.

From 2b and MeI. Dark-brown solid, yield 76%. Eluent for chromatography: THF. Anal. calcd.
for C31H30Fe2INO2S: C, 51.77; H, 4.20; N, 1.95; S, 4.46. Found: C, 51.65; H, 4.26; N, 2.03; S, 4.40. IR
(CH2Cl2): ῦ/cm−1 = 1993vs (CO), 1829s (µ-CO), 1611m (C2C1N), 1587w (arom C-C). 1H NMR (CDCl3):
δ/ppm = 7.91, 7.75, 7.54–7.41, 6.98 (m, 8 H, C6H5 + C6H3Me2); 5.16, 5.10 (s, 10 H, Cp); 3.54 (s, 3 H,
NMe); 2.61, 2.07 (s, 6 H, C6H3Me2); 2.12 (s, 3 H, SMe). 13C{1H} NMR (CDCl3): δ/ppm = 250.7 (µ-CO);
227.9 (C1); 210.7 (CO); 205.6 (C3); 152.5 (ipso-C6H5); 140.5 (ipso-C6H3Me2); 135.8, 134.2, 134.1, 130.2,
130.0, 129.2, 128.1, 127.4, 127.3, 127.1, 125.5 (C6H5 + C6H3Me2); 93.3, 88.8 (Cp); 68.4 (C2); 51.5 (NMe);
19.6 (SMe); 18.2, 18.0 (C6H3Me2).

3.2. X-Ray Crystallography

Crystal data and collection details for 3 are reported in Table 5. Data were recorded on a Bruker
APEX II diffractometer equipped with a PHOTON100 detector using Mo–Kα radiation. The crystal
appeared to be non-merohedrally twinned. The program CELL_NOW (G. M. Sheldrick, CELL_NOW,
Version 2008/4, 2008) was used in order to determine the two twin domains and their orientation
matrices. After integration, data were corrected for Lorentz polarization and absorption effects
(empirical absorption correction TWINABS) [70]. The structure was solved by direct methods and
refined by full-matrix least-squares based on all data using F2 [71]. Hydrogen atoms were fixed at
calculated positions and refined using a riding model. All non-hydrogen atoms were refined with
anisotropic displacement parameters. Refinement was performed using the instruction HKLF 5 in
SHELXL and one BASF parameter, which refined as 0.276(7). Because of the twinning, several restraints
were applied during refinement. All the atoms were restrained to have similar thermal parameters
(SIMU line in SHLEXL, s.u. 0.01). All C, O, and N atoms were restrained to isotropic like behavior
(ISOR line in SHELXL, s.u. 0.01).
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Table 5. Crystal data and measurement details for 3.

3

Formula C12H15FeNOSe
FW 324.06
T, K 100(2)
λ, Å 0.71073

Crystal system Monoclinic
Space group Pc

a, Å 13.454(3)
b, Å 7.675(2)
c, Å 12.285(2)
β,◦ 99.07(3)

Cell Volume, Å3 1252.5(5)
Z 4

Dc, g·cm−3 1.719
µ, mm−1 4.088

F(000) 648
Crystal size, mm 0.21 × 0.19 × 0.15

θ limits,◦ 1.533–24.999
Reflections collected 11149

Independent reflections 2119 [Rint = 0.0687]
Data/restraints/parameters 2119/350/290

Goodness on fit on F2 1.116
R1 (I > 2σ(I)) 0.1175
wR2 (all data) 0.2914

Largest diff. peak and hole, e Å−3 1.622/–1.857

3.3. Computational Studies

The electronic structures of the compounds were optimized using the range-separatedωB97X DFT
functional [72–74] in combination with Ahlrichs’ split-valence-polarized basis set [75]. The C-PCM
implicit solvation model was added toωB97X calculations, considering chloroform as a continuous
medium [76,77].

Preliminary optimizations were carried out using the hybrid-GGA EDF2 functional [78] in
combination with the 6-31G(d,p) basis set [79]. The stationary points were characterized by IR
simulations (harmonic approximation), from which zero-point vibrational energies and thermal
corrections (T = 25 ◦C) were obtained. Simulated IR spectra were used to assign the experimentally
observed signals [80]. The software used were Gaussian 09 (Gaussian, Inc: Wallingford, CT, USA) [81]
and Spartan ‘16 [82]. Cartesian coordinates of the DFT-optimized structures are collected in a separated
.xyz file.

3.4. Stability in Aqueous Solutions

Each compound (ca. 10 mg; 3, 4a–d, 5a–b, 6) was dissolved in DMSO-d6 (0.4 mL), then the
solution was diluted with variable volumes of D2O. The resulting solution was kept at 37 ◦C for 72 h.
Subsequent 1H NMR spectra revealed the presence of the respective starting materials together with
minor decomposition products (<10%). NaCl was added in ca. 0.05 M concentration to the solutions
containing 4a–d, and the obtained mixtures were kept at 37 ◦C for 72 h before 1H NMR spectra were
recorded (Table 6). In order to perform tests in contact with a cell culture medium, compounds 4c–d,
5a and 6 (ca. 4 mg) were dissolved in DMSO (ca. 1 mL) in a glass tube, then RPMI-1640 medium
with sodium bicarbonate, without l-glutamine and phenol red (ca. 3 mL, Merck), was added. The
resulting mixture was maintained at 37 ◦C for 72 h, then it was allowed to cool to room temperature.
Dichloromethane (ca. 4 mL) was added, and the mixture was vigorously shaken. An aliquot of the
organic phase was analyzed by IR spectroscopy (Table 6).
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Table 6. Overview of stability of compounds in aqueous media.

Comp. Stability in DMSO-d6/D2O (v/v) + NaCl (0.05 M) a Stability in DMSO/RPMI-1640 (v/v) b

4a <15% degradation (3:2) 4a + other species c (1:3)

4b ca. 50% degradation (1:1) 4b (1:3)

4c <15% degradation (2:1) 2c + 4c (1:4)

4d <15% degradation (1:1) 4d (1:2)

5a 5a (1:1)

6 6 (1:1)
a After 24 h at 37 ◦C (1H NMR), [NaCl] ≈ 0.05 M. b Compounds detected (IR) in CH2Cl2 phase after 72 h at 37 ◦C.
c Bands at 2097m, 1990m-s (4a), 1954m-sh, 1895w, 1814m (4a), 1670w-sh (4a), 1631s cm−1.

3.5. Electrochemistry

Cyclic voltammograms were measured under an atmosphere of argon using standard Schlenk
techniques with a Palmsens4 potentiostat by working with anhydrous and degassed solutions of
acetonitrile (MeCN). MeCN was dried and distilled under Ar from the appropriate drying agent (CaH2),
and thoroughly deoxygenated with Ar prior to use. The samples were measured at a concentration of
0.1 M and using 0.1 M NBu4PF6 (Merck) as conductive salt. A glassy carbon electrode was used as
working electrode, a coiled platinum wire as counter electrode, and a silver wire as a pseudo-reference
electrode. Ferrocene (or decamethylferrocene) was added as an internal standard and all spectra were
referenced to the ferrocenium/ferrocene couple (Fc+/Fc).

3.6. Cell Culture and Cytotoxicity Studies

Human ovarian carcinoma (A2780 and A2780cisR) cell lines were obtained from the European
Collection of Cell Cultures. The human embryonic kidney (HEK-293) cell line was obtained from
ATCC (Merck, Buchs, Switzerland). Penicillin streptomycin, RPMI 1640 GlutaMAX (where RPMI =

Roswell Park Memorial Institute), and DMEM GlutaMAX media (where DMEM = Dulbecco’s modified
Eagle medium) were obtained from Life Technologies, and fetal bovine serum (FBS) was obtained
from Merck. The cells were cultured in RPMI 1640 GlutaMAX (A2780 and A2780cisR) and DMEM
GlutaMAX (HEK-293) media containing 10% heat-inactivated FBS and 1% penicillin streptomycin
at 37 ◦C and CO2 (5%). The A2780cisR cell line was routinely treated with cisplatin (2 µM) in the
media to maintain cisplatin resistance. The cytotoxicity was determined using the 3-(4,5-dimethyl
2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay [83]. Cells were seeded in flat-bottomed
96-well plates as a suspension in a prepared medium (100µL aliquots and approximately 4300 cells/well)
and preincubated for 24 h. Stock solutions of compounds were prepared in DMSO and were diluted in
medium. The solutions were sequentially diluted to give a final DMSO concentration of 0.5% and a
final compound concentration range (0–200 µM). Cisplatin and RAPTA-C [62] were tested in aqueous
solution as a positive (0–100 µM) and negative (200 µM) controls, respectively. The compounds were
added to the preincubated 96-well plates in 100 µL aliquots, and the plates were incubated for a
further 72 h. MTT (20 µL, 5 mg/mL in Dulbecco’s phosphate buffered saline) was added to the cells,
and the plates were incubated for a further 4 h. The culture medium was aspirated and the purple
formazan crystals, formed by the mitochondrial dehydrogenase activity of vital cells, were dissolved
in DMSO (100 µL/well). The absorbance of the resulting solutions, directly proportional to the number
of surviving cells, was quantified at 590 nm using a SpectroMax M5e multimode microplate reader
(using SoftMax Pro software, version 6.2.2). The percentage of surviving cells was calculated from the
absorbance of wells corresponding to the untreated control cells. The reported IC50 values are based
on the means from two independent experiments, each comprising four tests per concentration level.
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3.7. ROS Production Assessment

The intracellular increase of reactive oxygen species (ROS) upon treatment with the analyzed
complexes was measured by using the DCFH-DA (2′,7′-dichlorodihydrofluorescein diacetate,
Merck) assay, based on cellular uptake of the non-fluorescent diacetate following deacetylation by
esterases (2′,7′-dichlorodihydrofluorescein, DCFH) and oxidation to the fluorescent dichlorofluorescein
(2′,7′-dichloro-fluorescein, DCF) [84]. A2780 cells were seeded at concentration of 4300 cells/well/90 µL
of complete growth medium into 96-well plates and allowed to proliferate for 24 h. Then cells were
treated following the manufacturer’s protocol. Briefly, the culture medium was supplemented with
100 µL of the fluorogenic probe solution and cells were incubated under standard tissue culture
conditions of 5% CO2 at 37 ◦C. After 1 h, the cells were exposed with a final concentration of 10 µM
of the tested compounds and maintained at 5% CO2 at 37 ◦C; H2O2 100 µM was used as a positive
control. Stock solutions of compounds were prepared as described above. Cells incubated with
DMSO at a concentration of 0.1% in supplemented RPMI were used as control. The fluorescence
was measured over 24 h with an excitation wavelength of 485 nm and with a 535 nm emission
filter by Multilabel Counter (PerkinElmer, Waltham, USA). Analysis was conducted in triplicate and
experimental data were reported as mean ± SD. Statistical differences were analyzed using one-way
analysis of variance (ANOVA) and a Tukey test was used for post hoc analysis. A p-value <0.05 was
considered as statistically significant.

3.8. Catalytic NADH Oxidation

NADH was stored at –20 ◦C under N2; a stock NADH solution (2.3 × 10−4 mol L−1) was prepared
in phosphate buffered aqueous solution (Na2HPO4/NaH2PO4; 5.5 × 10−3 mol·L−1, pH = 7.2) and stored
at 4 ◦C. Stock solutions of iron compounds (1a, 4a,c,d, 5a, 6; 2.0 × 10−4 mol·L−1) were prepared in
DMSO immediately before use. FeSO4 was used as a reference compounds (stock solution prepared
in H2O). Solutions of each iron compound (0.35 mL) and NADH (6.6 mL) were mixed, resulting in a
5% DMSO aqueous solution containing 2.2 × 10−4 M NADH and 1.0·× 10−5 M iron compound (4.5%
mol). The solution was stirred at 37 ◦C for 25 h and periodically analyzed by UV-Vis spectroscopy
(260–460 nm) using PMMA cuvettes (1.0 cm path-length). Turnover numbers were calculated as TON
= c(0)/cFe·[A(0) − A(t)]/A(0) where A is the absorbance at λmax = 339 nm; c(0) and cFe are the initial
molar concentrations of NADH and the selected Fe compound, respectively (Table 4).

4. Conclusions

The bridging vinyliminium ligand in cationic diiron complexes can be modified by introducing
sulphur- or selenium-functions according to well defined regio- and stereoselective reaction pathways.
Some of the resulting, air stable diiron and tetrairon compounds display a strong antiproliferative
activity against human ovarian carcinoma cell lines, the activity of some compounds on the A2780 cell
line being superior than that of cisplatin and substantially maintained on the A2780cisR resistant cell
line. Experiments suggest that the chalcogen function (especially the presence of an E–E bridge) is
associated with good stability in aqueous media, enhancing interference of compounds with cellular
redox processes.

Supplementary Materials: The following are available online: DFT structures, cyclic voltammograms, NMR
spectra of products (signals around 0 ppm due to some silicon grease). CCDC reference number 1983327 (3) contains
the supplementary crystallographic data for the X-ray studies reported in this paper. These data can be obtained
free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre,
12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44-1223/336-033; e-mail: deposit@ccdc.cam.ac.uk).
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