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1 | Introduction

Some networks obtained from real world problems such as social networks, biological cells
or earthquake recurrence networks, may consist of many thousands of vertices and exhibit
a pronounced modular structure. To facilitate further analysis or derive a simple model of
the whole system, it is often useful to identify subunits of these networks that are nearly
disconnected from the remaining graph. These subunits are called ‘clusters’ and may
correspond to a group of people sharing similar interests, a cell compartment responsible
for a special type of metabolic reaction or an active fault along which seismic events tend
to line up.

A well-known method to find clusters in undirected networks is based on random pro-
cesses whose state space is the network’s set of vertices, moving in each time step to a ran-
domly chosen neighboring vertex. A close correspondence between network substructures
and properties of such a random walk process has been exploited in numerical algorithms,
which aim at decomposing the random walk’s state space into disjoint ‘metastable’ sets,
describing nearly stable conditions of the system which are rarely changed [8].

Identification of these metastable sets can be realized numerically with spectral methods
that rely on computing eigenvalues and eigenvectors of the transition matrix that defines
the behavior of a random walk. However, computing these eigenvectors can be arbitrarily
hard for some cases, e.g. when there are bottlenecks in the network and the transition
matrix is ill-conditioned [58]. In addition, it is not yet fully understood how to work with
complex-valued eigenvectors that arise from random walks on directed networks.

To address this issue, other methods of numerical analysis based on random walks
have been proposed, also focused on metastability, but exploiting it differently. It has
been known for a long time that metastable sets of a random walk on a given graph may
be characterized as sets which, like traps, are difficult to leave once entered [25]. To put
this in mathematically rigorous terms, it is useful to quantify how long it takes a random
walk to leave or enter a specified set. The average time a random walk takes to reach
some fixed target set may be regarded as a non-negative function on the vertex set of the
graph. The value of this function at a given vertex describes the ‘mean hitting time’ of
the target set, conditioned on the walker starting at the vertex.

This thesis presents a new network clustering approach exploiting the fact that mean
hitting times of arbitrary target sets can be computed quickly by solving a system of
linear equations [66]. This approach is built upon work by Schütte [69], Ðurđevac [23] and
Sarich [63] and it employs hitting times to extend random walk based clustering to directed
networks without resorting to any form of symmetrization. Based on this approach, we
developed and implemented a novel network clustering algorithm. To this end, we studied

1



CHAPTER 1. INTRODUCTION

in detail the choice and number of target sets, the identification of clusters from their
mean hitting times, requirements of this method regarding the network structure and its
computational aspects. In particular, we focused on the computational effort and the
accuracy of results.

The computational effort of this algorithm is dominated by solving linear systems to
compute hitting times. For ‘sparse’ networks, i.e. for networks where the number of
neighbors any vertex may have is small relative to the total number of vertices, our algo-
rithm can exploit sparsity in order to achieve O(n) runtime, provided that the associated
sparse linear systems are solved using efficient numerical solvers such as GMRES [62, 61].
Existing random walk methods dependent on eigenvector approximations require matrix
multiplications whose complexity is estimated to be O(nω) with an exponent ω between
2 and 2.376 [18].

For the purpose of assessing runtime scaling, we have generated a family of sparse,
directed, random networks spanning several orders of magnitude in vertex count. A series
of tests verified that runtime of the presented algorithm scales linearly with the number of
vertices in these network, in accordance with our expectations. Therefore, our approach is
well suited for very large networks that are sufficiently sparse and shows a computational
advantage over existing methods requiring eigenvector approximations.

After introducing definitions and concepts from graph theory and probability theory
in Chapter 2, the basics of clustering for undirected and directed graphs through spectral
and non-spectral methods will be covered in Chapters 3 and 4, respectively. A selection
of existing approaches to clustering graphs are described briefly and popular ways of mea-
suring the similarity of clusterings for the purpose of comparing and evaluating competing
approaches to each other or to ground truth data are presented. Chapter 5 introduces
and analyzes our clustering method based on mean hitting times, including computational
aspects and limitations following from the hitting time approach. The final discussion in
Chapter 6 summarizes the presented results and sketches early approaches to overcome
existing restrictions on the structure of networks, to further extend the class of eligible
networks and generalize the method to even more use cases.
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2 | Theoretical background

Graph Theory has a century-old tradition, reaching back at least to the year 1736, when
Leonhard Euler created the foundations of graph theory to tackle the problem of finding
a path around the city of Königsberg without crossing any of its bridges twice. The story
is worth telling as it exemplifies how graphs have been invented and why the model is so
universally applicable.

The city was located at the Pregel river and included two islands in addition to districts
on either side of the river. The tour he was asked to find was meant to cover sights in each
of the four parts of the city and all seven bridges connecting them exactly once. Euler
soon noted that the paths taken through each of the four parts of the city were irrelevant
to the problem.

Figure 2.1: A map of the old city core of Königsberg, showing the seven
bridges across the Pregel river. Image reprinted from http://www-history.mcs.st-
andrews.ac.uk/Miscellaneous/Konigsberg.html, visited on 1st of May 2010.

To phrase the problem with mathematical rigor, he derived a model on a high level of
abstraction, where each land mass was represented by a vertex, each bridge by an edge.
Being an ambitious researcher, Euler was not content to find just one admissible solution
or disprove its existence. He aimed at identifying conditions necessary or sufficient to solve
any such problem, for any kind of network topology. He succeeded in proving that the
existence of a solution depends on whether the network vertices have even degrees, except
for the first and final vertex of a potential path.

Given the simplicity of this model and the universality of his findings, Euler’s results
could easily be applied to any city of arbitrary size or even to systems unrelated to city
maps.
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CHAPTER 2. THEORETICAL BACKGROUND

2.1 Graph theory basics

All over the different fields of science, graphs are used to model interactions, dependencies
or proximity between the elements of a system. This model is so popular and widely
used because of its simplicity: All interior properties of the constituents are neglected,
their relation to each other is considered to differentiate network vertices. Having such
a simple and universal model allows to employ graph theoretic results and methods to
derive insights about systems as diverse as electric circuits, metabolic networks, earthquake
recurrence maps or social networks. Identifying bottlenecks, shortest paths, clusters or
hubs reveals key information about the structure of a system, independent of its origin.

We aim to present and analyze recently developed methods of network analysis and
thus start off by giving formal definitions for graphs and some basic terminology. Let us
start by introducing the notion of a graph.

Definition 1. A pair G = (V,E), consisting of vertex set V and edge set E, a set of
pairs of vertices e = {u, v} ∈ V × V , is called a (simple) graph. The elements of V are
also called nodes. We will focus on finite directed graphs, whose vertex set is finite and
edges are oriented, turning E into a set of ordered pairs of vertices. Optionally, an edge
weighting function w : E → R may be given, assigning a value, cost or length to edges,
often describing the distance, capacity or flow intensity between two vertices. If none is
provided, we consider the edges to have uniform weights w ≡ 1.

When another graph G′ = (V ′, E′) is given, contained within G in the sense that
V ′ ⊂ V and E′ = {(u, v) ∈ E : u ∈ V ′, v ∈ V ′}, G′ is called a subgraph of G, ‘induced’
by the set V ′.

The term ‘network’ will be used synonymously for directed graphs throughout this
document. The following definitions are related to graphs, so let G = (V,E) be a finite
directed graph with edge weighting w for the remainder of this section.

Definition 2. For an arbitrary vertex v, any vertex u that shares an edge with v, that is
(u, v) ∈ E or (v, u) ∈ E, is called a neighbor of v. The degree d(v) of v is defined as the
number of its neighbors.

In directed graphs, we may differentiate in-degree and out-degree of a vertex v. The
out-degree dout(v) is given by the number of out-going edges oriented away from v, the
in-degree din(v) corresponds to the number of edges oriented towards v:

dout(v) := |{u ∈ V : (v, u) ∈ E}|, din(v) := |{u ∈ V : (u, v) ∈ E}|.

For many purposes, it is convenient to encode all information characterizing a graph,
including existence, direction and weights of edges in matrix form. Linear algebra tools
may then be used to analyze networks and link certain matrix properties to the structure
of a graph, which we will exploit later.

Definition 3. A graph on vertex set V = v1, . . . , vn with n = |V | vertices may be
represented by an adjacency matrix A ∈ Rn×n whose entries A = (aij)ni,j=1 define which
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2.1. GRAPH THEORY BASICS

Figure 2.2: Representation of the Petersen graph, named after Danish mathematician Julius
Petersen (1839–1910), with exemplary orientation of edges and integer-valued edge weights.
Each vertex has exactly three neighbors, so the graph has a uniform vertex degree of three.

vertices are linked by an edge and their respective weights:

aij =
{
w((vi, vj)), (vi, vj) ∈ E
0, otherwise.

(2.1.1)

Preparing the introduction of connectivity and components of a graph, we need a notion
of which vertices u and v are indirectly connected to each other through a sequence of
edges that form a loop-less connection from u to v.

Definition 4. For any two vertices u and v, a path from u to v is a finite and non-empty
sequence of vertices u = v1, . . . , vn = v, where all vertices except u and v are disjoint and
each succeeding pair of vertices in the sequence is connected by an edge. When a path
has n elements, its length is defined as n− 1 and if u equals v, the path is called a cycle.

In directed graphs, we are interested in directed paths and directed cycles. To qualify
as directed path, the orientation of edges connecting two succeeding vertices in the
sequence must ‘follow’ the order of the sequence, that is:

(vi, vi+1) ∈ E ∀i = 1, . . . , n− 1.

When two vertices u and v are connected by a path, we say that the two vertices
‘communicate’. Communication is a transient, symmetric and reflexive relation by defini-
tion. So it defines equivalence classes on vertex set V . They are used to define a disjoint
partition of a graph into connected subgraphs.

Definition 5. For any non-empty graph G = (V,E), the vertex set V contains equivalence
classes of vertices with respect to connectivity. The subgraphs induced by these classes
are called the components of G and those graphs which consist of only one component
are called connected.

For directed graphs, there is also a stricter version of communication. We say that two
vertices u and v communicate strongly, when there is a directed path from u to v and
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CHAPTER 2. THEORETICAL BACKGROUND

a second path back from v to u. If any two vertices communicate in this sense, we call the
directed graph strongly connected. Note however, that the definition of components
does not rely on strong communication, even for directed graphs. A directed graph may
be connected, but at the same time not strongly connected.

To help analyze the structure of networks, we will later introduce a specific class of
random processes defined on the vertex set of networks, whose trajectories are directed
paths. To ensure that such random walks never get ‘trapped’ in some vertex without exit
options, we are mostly interested in the special case of graphs where such vertices do not
appear. The following definition gives a formal description.

Definition 6. In a network, any vertex with out-degree 0 is called a sink and any vertex
with in-degree 0 is called a source.

A strongly connected graph is always free of sinks and sources. A typical source for large
networks of that type are discrete stochastic models for dynamical systems. Assume that
T : S → S is a continuous map on some finite-dimensional state space S. Given a sequence
of observations of a system whose driving forces are partially unknown or too complicated
for numerical treatment, one may be interested in approximations of statistical quantities
based on a discrete approximation of the system.

An approach named after the Polish-American mathematician Stanisław Ulam has been
employed and adapted over decades for a range of related problems [77]. The method has
been extended to random interval maps, Lasota-Yorke maps with holes and non-uniformly
expanding maps for instance [32, 52, 6].

The construction proposed by Ulam is based on a finite partition of the state space
into connected sets {B1, . . . , Bk} and compute a transition matrix defined by

Pij = |Bi ∩ T
−1Bj |

|Bj |
.

Given a sufficiently long trajectory {x0, x1, . . . , xN} = {T k(x0)}Nk=0 of a mixing system for
an arbitrary starting point x0, these entries can be approximated with arbitrary precision
by counting the number of transitions from set Bi to set Bj for every pair (i, j) and then
normalizing the matrix row-wise

Pij ≈ P̃ij = #{k : xk ∈ Bi and xk+1 ∈ Bj}
#{k : xk ∈ Bi}

.

Matrix P defines a discrete stochastic process on the partition sets {B1, . . . , Bk}, which
are thoroughly introduced in 2.2.1. Alternatively, one may look at P as the weighted
adjacency matrix of a network whose vertices are the partition sets. Directed edges are
inserted between any two vertices that were successively visited by the trajectory and the
weighting corresponds to how often that transition has occurred.

P takes the role of a discrete approximation of T , acting on density vectors on the
discretized space {B1, . . . , Bk}. Its left eigenvector v = vP approximates T -invariant
measures η = η ◦ T−1 and its spectrum allows for detecting the number and location of
cyclic and metastable structures. These procedures shall be examined in the following
section.
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2.2. PROBABILITY THEORY BASICS

2.2 Probability theory basics

Markov processes are stochastic processes with a special property often dubbed ‘memo-
rylessness’, which expresses intuitively that, at any point in time, future behavior of a
process depends only on its present state, not on its entire history. To define precisely
what ‘future behavior’ and dependencies are in the context of events that may occur with
a probability as low as 0, we need a robust stochastic framework.

Typically, the first definition presented in textbooks on stochastics is that of a proba-
bility space, the basic ecosystem populated by random variables, probability distributions
and stochastic processes. This section starts slightly differently, as the notion of proba-
bility spaces requires tools, namely structured families of sets which are called σ-algebras
and measures defined thereupon.

Definition 7. A σ-algebra A on a given set Ω is a collection of subsets of Ω, which is
closed under certain set-theoretic operations. In detail, A must comply with the following
rules:

1. Ω ∈ A (Ω itself is always contained),

2. E ∈ A =⇒ (Ω \ E) ∈ A (closed under complementation) and

3. E1, E2, E3 · · · ∈ A =⇒ ⋃
i∈NEi ∈ A (closed regarding countable unions)

Let F be a σ-algebra. Then any σ-algebra G contained in F is said to be a sub-σ-algebra
of F. A pair (Ω,A) of a set Ω equipped with some σ-algebra A is called a ‘measurable
space’.

Two basic examples: {∅,Ω} is the ‘smallest’ possible σ-algebra on Ω in the sense that
it is a sub-σ-algebra of any σ-algebra on Ω. The power set of Ω is the ‘biggest’ possible
σ-algebra on Ω. Any other σ-algebra on Ω is a sub-σ-algebra of it.

Definition 8. A measure on a σ-algebra A is a function µ : A → R∪ {−∞,+∞} which
abides to the following conditions:

1. µ(A) ≥ 0 for all A ∈ A,

2. µ(∅) = 0 and

3. A1, A2, A3 · · · ∈ A are disjoint =⇒ µ (⋃i∈NAi) = ∑
i∈N µ(Ai).

When a measure on some measurable space (Ω,A) is also normalized in the sense that
µ(Ω) = 1, which implies that it takes values between 0 and 1 only, it is called a probability
measure. The three rules above then transform to what is known as ‘Kolmogorov’s
axioms’:

1. µ : A → [0, 1],

2. µ(Ω) = 1 and

3. A1, A2, A3 · · · ∈ A are disjoint =⇒ µ (⋃i∈NAi) = ∑
i∈N µ(Ai).
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CHAPTER 2. THEORETICAL BACKGROUND

Two other optional properties of measures will be of importance in the following sec-
tions. A measure µ on (Ω,A) is called a ‘finite measure’ if µ(Ω) < ∞. For example,
probability measures are always finite measures. A much weaker condition is called ‘σ-
finiteness’. σ-finiteness requires merely that a countable covering of the entire set Ω exists,
such that each set in the covering has a finite measure. For instance, the ubiquitous
Lebesgue-measure on the set of real numbers is not finite, but σ-finite, since the reals can
be covered with a countable collection of finite intervals, namely R ⊂

⋃
k∈Z [k, k + 1].

Definition 9. A measure space (Ω,A, µ) is a triplet consisting of a set Ω, a σ-algebra
A on Ω and a measure µ on A. When µ is even a probability measure, (Ω,A, µ) is called a
probability space and we refer to its basic set Ω as the observation space and elements
of A as events.

A reader unfamiliar with the above notion might wonder what probability spaces look
like and hope for a simple example at this point. In practice however, probability spaces
are not specified any further – purposefully. Instead, random experiments are modeled as
measurable functions on some probability space, characterized by their possible outcomes
and their respective likelihoods.

Definition 10. A random variable X is a measurable mapping from a probability space
(Ω,A,P) to another space Ω′ equipped with σ-algebra A′. Here, measurability means
that the pre-image of any open set in (Ω′,A′) must be an open set in (Ω,A):

E ∈ A′ =⇒ X−1(A) ∈ A.

Due to the condition that random variables must be measurable, they allow to ‘push-
forward’ the measure P to the target space, such that it becomes a probability space on
its own when complemented by the A′-measure P′ defined via

P′(A′) = P(X−1(A′)).

Measurability of X guarantees that the pre-image of any set A′ in A′ exists in A and thus
makes P′ a well-defined (probability) measure on A′. Typically, the target space is chosen
to have an easily manageable structure. In most cases, Ω′ is either a subset of N or Rn.
Random variables mapping into N or some other denumerable set are called discrete,
while real-valued ones are called continuous. The σ-algebra is usually chosen to be the
Borel σ-algebra on Ω′, defined as the ‘smallest’ σ-algebra which contains all intervals – or
Cartesian products of intervals, in higher dimensions. In the discrete case, this is simply
the power set, which contains every subset of the target space. When the σ-algebra of the
target space is not specified, it is understood that it must contain all the images of open
sets in Ω under X, in order not to violate the measurability constraint.

A real-valued random variable X has the property of being almost surely finite if
P(X(ω) < ∞) = 1. More generally, we speak of events A to be almost sure, when
P(A) = 1. Thus, when ‘x has property P ’ is an almost sure event, the property is said to
apply almost surely.

Thinking of standard six-faced dice, the crucial information required to model them is
that they may show one of their six faces, each with equal likelihood of one over six. It is
not necessary to know every element of the observation space or an explicit description of
the random variable to derive conclusions on the probability of an outcome of one or several

8



2.2. PROBABILITY THEORY BASICS

independent experiments such as ‘How likely is it to throw an odd number?’ or ‘How likely
is it to throw a six twice in a row?’. By our understanding, no deterministic algorithm
can produce a randomized outcome. Instead of defining random variables explicitly by
putting down an analytic formula, they are typically defined indirectly by their co-domain
and their induced probability measure on it.

In the case of a standard die, the range of values would be Ω′ = {1, 2, 3, 4, 5, 6}, a finite
subset of N, and a short way of describing the induced measure P′ would be P′(i) = 1

6 ∀i ∈
Ω′. It is not necessary to give values of P′ for each element of A′ in this finite case, as
the third defining property of measures, as stated in Definition 8, allows to compute the
value of P′ for every set in the σ-algebra generated by the pre-images of the elements of
Ω′. Stating the probabilities of each ‘basic outcome’ is sufficient.

Having introduced the basic notion of random variables, the first thing often looked
at to help understand them better, are statistical values describing their mean behavior
and spread of outcomes. Not all of them are required to dive into the theory of random
walkers, so we hint at textbooks on stochastics and statistics to those who wish to learn
more about these concepts [10]. One indispensable tool shall be noted here however, as
it is essential for the introduction of conditional events and lead to the notion of random
events and then random processes: the ‘expectation’.

Definition 11. When a random variable X is P-integrable (satisfying
∫

Ω |X(ω)|dP(ω) <
∞) for some probability measure P, the expected value or statistical mean E [X] is
defined as the P-weighted average of X over Ω, that is

E [X] :=
∫

Ω
X(ω)dP(ω).

When dealing with events A and B of positive probability, such events are called
‘independent’ of each other, when P(A∩B) = P(A) ·P(B). When they are not, it is often
of interest to consider the likelihood of one event, say A, under the condition that the
other event, here B, occurs. This is called the conditional probability of A, conditioned
on B, denoted by P(A|B) and is formally defined by the formula P(A|B) = P(A∩B)

P(B) . If and
only if A and B are independent events, P(A|B) coincides with P(A), as knowledge about
the outcome of B has no impact on A. Note that conditional probability is well-defined
only under the constraint that the conditioned event has strictly positive probability. In
the following, we will need a tool that generalizes the concept of conditional probability
to the general case, frequently found in continuous settings, that the conditioned events
have a probability of 0. To this end, we shall introduce measurable functions known as
conditional expectations, which act like the expectation of a random value, but averaged
over each admissible event in a given σ-algebra, such as the one generated by another
random variable Y . In fact, this property defines them uniquely, up to P-null sets.

Definition 12. Let (Ω,A,P) be a probability space. A ‘conditional expectation’ E(X|B)
of a continuous random variable X with respect to a sub-σ-algebra B of A is any B-
measurable function defined by the property∫

B
E(X|B)dP =

∫
B
XdP ∀B ∈ B.

Note that the σ-algebra B controls the granularity of information about X that we
may retrieve from E(X|B). When X itself is B-measurable, X and E(X|B) coincide. The
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existence of E(X|B) can be assured using the following result by Johann Radon and Otto
Nikodym, known as the ‘Radon–Nikodym theorem’ [54]. It is sufficient to assume that the
expected value of X exists. Proofs of widely known results are omitted here for brevity,
unless the involved methods provide particularly important insights.

Theorem 2.2.1. Let µ and ν be σ-finite measures on a measurable space (Ω,A). Now,
let ν be ‘absolutely continuous’ with respect to µ, that is µ(A) = 0⇒ ν(A) = 0 ∀A ∈ A.
Then there is a measurable function dν

dµ : Ω → [0,∞), called ‘Radon–Nikodym derivative’
of ν with respect to µ, which satisfies

ν(A) =
∫
A

dν

dµ
dµ ∀A ∈ A.

E(X|B) takes the form of a Radon–Nikodym derivative for suitably chosen measures
as follows: Define a measure µ on A induced by X through ∀A ∈ A : µ(A) =

∫
AXdP.

This measure is by construction absolutely continuous with respect to P, as integrals over
null sets always vanish. Likewise, µ|B, the restriction of µ to B, is absolutely continuous
with respect to P|B, the restriction of P to B. Both µ|B and P|B are σ-finite measures on
(Ω,B). Their σ-finiteness is inherited from P, which is even a probability measure and
therefore finite. Employing Theorem 2.2.1, we conclude the existence of a B-measurable
function µ|B

P|B , which we identify as E(X|B).

We have not specified yet, how to choose the sub-σ-algebra B that takes the role of
a ‘condition’ here. The type of event we are usually interested in is the outcome of
another random experiment, which may or may not have zero likelihood, a.k.a. events like
{ω : Y (ω) = y} or {ω : Y (ω) ∈ S}, involving some other random variable Y : (Ω,A,P)→
(Ω′,A′). The sought-after algebra is generated by the pre-image of A′ with respect to Y ,
which always lies in A due to Y being a measurable function by definition. So we set
B = Y −1(A′) to define conditional expectation of X with respect to Y as

E(X|Y ) = d(µ ◦ Y −1)
d(P ◦ Y −1) .

Both (µ◦Y −1) and (P◦Y −1) are push-forwards of measures on (Ω,A) via Y and therefore
defined on (Ω′,A′), not (Ω,A). Their Radon–Nikodym derivative thus maps from Ω′
to [0,∞), unlike E(X|Y −1(A′), which is defined on Ω. The link between them is easily
established through Y :

E(X|Y ) ◦ Y = E(X|Y −1(A′).

We retrieve a function E(X|Y ) defined on the range of Y which acts like X for any value
Y can assume in the sense that∫

Ω
E(X|Y )f(Y )dP =

∫
Ω
Xf(Y )dP for every measurable real-valued function f .

In the following, we will make use of abusive notation for the sake of brevity and readability,
such as E(X|Y = y) instead of E(X|Y )(y). Likewise, formal expressions of the type P(X ∈
A|Y ) are to be understood as conditional expectations E(1X∈A|Y ). Where conditional
probabilities are well-defined, the two coincide.

Theorem 2.2.1 guarantees existence of functions satisfying an integral formula, unique
up to null sets, but tells nothing about how to compute such functions. Fortunately, we
find that in some common cases the conditional expectation takes a familiar form that

10
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matches our intuition of what it should express. When for example both X and Y are
discrete random variables with respective ranges X and Y, we may express E(X|Y = y)
for some value y ∈ Y using standard conditional probabilities:

E(X|Y = y) =
∑
x∈X

x · P(X = x|Y = y).

When both X and Y are continuous, this reads as

E(X|Y = y) =
∫
X
x
fX,Y (x, y)
fY (y) dx,

where fX,Y (x, y) is the joint density of X and Y and fY (y) the density of Y .

The conditional expectation inherits several useful properties from the expected value,
which we will wrap up in the following lemma:

Lemma 2.2.2. Let X and Y be random variables on some probability space (Ω,A,P),
each with finite expectation. For any sub-σ-algebra B of A and any real numbers a, b we
have

E(aX + bY |B) = aE(X|B) + bE(Y |B) (linearity).

Moreover,
X ≤ Y ⇒ E(X|B) ≤ E(Y |B) (monotonicity)

and
X ≥ 0⇒ E(X|B) ≥ 0 (positivity).

Finally, for any convex real function f , we have

f(E(X|B)) ≤ E(f(X)|B) (Jensen’s inequality).

2.2.1 Random processes

Definition 13. A random process X = (Xt)t∈T is a family of random variablesXt : Ω→
Ω′ on some fixed probability space (Ω,A,P) to a fixed state space (S,Σ). The totally
ordered index set T is typically chosen as either N0 or R+ and the random process is
accordingly called a discrete or continuous random process.

Random processes are often used to model the evolution of a system through time.
We will look at random processes on finite state spaces, such as the vertex sets of given
graphs, and omit the σ-algebra over the state space, which is simply its power set, for
brevity.

A special class of random processes we are particularly interested in are discrete pro-
cesses with a ‘short memory’, where each random variable may depend only on its direct
predecessor, but not on its former history. Formally, this reads as follows:

Definition 14. A discrete random process X on a countable state space S is said to have
the Markov property and thus is called a Markov chain, if and only if it fulfills

P(Xt+1 = xit+1 | Xt = xit) = P(Xt+1 = xit+1 | Xt = xit , . . . , X0 = xi0)

for any time t ∈ N0 and any states xi0 , . . . , xit+1 ∈ S.

11
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In a continuous setting, the formalization of the Markov property requires more so-
phisticated tools to describe the information gained from observing a random process.
The probability that a random process follows a certain trajectory in continuous space
is typically zero, as uncountably many trajectories are admissible. Therefore, probabili-
ties conditioned on such events are ill-defined, which motivated the earlier introduction of
conditional expectations.

We may ‘condition’ the expectation of a random variable on the outcome of another
by using the σ-algebra generated by the pre-images of the latter. For random processes
X = (Xt)t∈T on state space (S,Σ), which are families of random variables, this allows for
defining probabilities concerning the state which the process assumes at one point in time
t1 ∈ T , given knowledge about the process at another point in time t0 ∈ T , e.g.

P(Xt1 ∈ A|Xt0) = E(1Xt1∈A|Xt0) ∀A ∈ Σ.

In order to introduce ‘memoryless’ processes next, we will need a notion for information
acquired from observing a process up to a certain point in time, not only at that given
moment. As the uncertainty about the trajectory of a process decreases the longer we
observe it, the gain of information is described by time-indexed families of σ-algebras of
increasing granularity, which we define here as follows:

Definition 15. For any probability space (Ω,A,P) and index set T , a T -indexed family
F = (Ft)t∈T of sub-σ-algebras of A is called a filtration, if it is ascending in the following
sense: If t1 < t2, then Ft1 is a sub-σ-algebra of Ft2 .

Filtrations are used to model the time-dependent gain of knowledge about the tra-
jectory of a process. Intuition dictates that observing a realization of a random process
gradually decreases uncertainty about the outcome. Every sample ω ∈ Ω is mapped to a
trajectory (xt)t∈T (ω) about which we have only partial information at any point of time.
At t0 ∈ T , we know about the current and all former states the process has assumed, but
lack information about the future. We may answer some statements of the type ‘Does
ω lie in event E?’ with certainty, in some cases we have no certain knowledge, but the
probability of an event to occur is influenced by the information already gained until t0.
Therefore, we express the information gained by observing a random process X = (Xt)t∈T
as a filtration F = (Ft)t∈T ‘generated’ by X in the following sense:

Ft = σ(Xs; s ≤ t). (2.2.1)

The operator σ(E) defines the smallest σ-algebra which contains an event E. In this
case: the event that the process X has followed a specific trajectory until time t: E =⋂
s≤tXs−1(E′is) ∀E

′ ∈ A′. Note that E′ are events in the measurable space (Ω,A) in
which the random variables Xs, s ≤ t assume values. As random variables are measurable
functions, the pre-images of these events are guaranteed to be events of the basic prob-
ability space (Ω,A,P) on which the random process is defined. Due to the structure of
σ-algebras, the intersection of events is also an event, assuring existence of E as defined
above for any trajectory the process can take.

A filtration encodes the information available at any moment in time t, namely the
events contained Ft and by consequence all Ft-measurable random variables. A closely
related concept is called ‘adaptation’. It allows us to consider random processes X = (Xt)
that can be evaluated in real time. That is: We fix some filtration F = (Ft), which stands
for the available information, and require Xt to be Ft-measurable for every t.

12
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Definition 16. Let X = (Xt)t∈T be a T -indexed random process on a probability space
(Ω,A,P) and F = (Ft)t∈T be a filtration sharing the index set with X. X is said to be
‘adapted’ to F, if Xt is Ft-measurable for every t ∈ T .

Naturally, any process X = (Xt) with Xt : (Ω,A)→ (S,Σ) is adapted to the filtration
it generates (according to 2.2.1) and, by extension, every process Y derived from X by
composing it with a measurable function g via Yt = g(Xt) is adapted to the same filtration.

Given the notion of conditional expectations and filtrations, we are finally ready to
define the Markov property in a continuous setting and present a generalization of Markov
chains.

Definition 17. Let X = (Xt)t∈T be a (S,Σ)-valued random process on a probability space
(Ω,A,P) and F = (Ft)t∈T the filtration generated by X. X is said to possess the ‘Markov
property’, if

P(Xt2 ∈ A|Ft1) = P(Xt2 ∈ A|Xt1) (2.2.2)

for each A ∈ Σ and arbitrary t1, t2 ∈ T with t1 < t2.

Even more general, one could state the Markov property as follows:

E(f(Xt2)|Ft1) = E(f(Xt2)|Xt1) (2.2.3)

for all t1, t2 ∈ T with t1 < t2 and any measurable bounded f : S → R.

Since conditional probability is defined as a conditional expectation, satisfying P(X ∈
A|Y ) = E(1A(X)|Y ), and 1A is such a bounded measurable function, Equation 2.2.3
implies 2.2.2.

To show that equivalence holds in the other direction too, recall that conditional expec-
tation is defined by an integral property, i.e.

∫
B E(f(Xt2)|Xt1)dP =

∫
B f(Xt2)dP. Here,

f ◦ Xt2 takes the role of a real random variable and equality holds for any integration
domain B which is measurable according to the σ-algebra generated by Xt1 . As f and
Xt2 are measurable, their composition is measurable too. So its pre-images are measurable
sets in (Ω,A) and the Lebesgue integral allows for splitting set B into intersections with
these pre-images. We thus transform the coordinate ω to y = f(Xt2(ω)) and integrate
over the range of f , thereby replacing the measure with the push-forward of P via f ◦Xt2 ,
restricted to B: ∫

B
f(Xt2)dP =

∫
R
ydP(B ∩X−1

t2 (f−1(y))),

where
P(B ∩X−1

t2 (f−1(y))) =
∫
B
P(X−1

t2 (f−1(y))|Xt1)dP,

which equals
∫
B P(X−1

t2 (f−1(y))|Ft1)dP for any B in Ft1 , according to Property 2.2.2. We
may conclude that

∫
B E(f(Xt2)|Xt1)dP =

∫
B f(Xt2)dP holds not only for sets B in σ(Xt1),

but any Ft1-measurable set. Thus E(f(Xt2)|Xt1) coincides with E(f(Xt2)|Ft1).

While the presented general definition of Markov chains and Markov processes allow
for changing the dynamics over time, we want to restrict ourselves to a type of stochastic
processes that is homogeneous in time in the sense that transition probabilities depend only
on the current state of the process, not on time. This property encourages to investigate
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statistical quantities such as invariant densities, mean hitting times or metastability, which
we will introduce and exploit later to examine the structure of a given system.

Definition 18. A Markov chain X is called homogeneous, if its dynamical behavior is
not only independent of the past, but also independent of time, that is:

∀s, t ∈ T, x, y ∈ S : P(Xt+1 = y | Xt = x) = P(Xs+1 = y | Xs = x).

Being independent of time, the transition rates of homogeneous Markov chains on finite
state spaces can be written conveniently as a matrix P = (pij)i,j∈S with pij = P(Xs+1 =
j | Xs = i). For continuous state spaces, that role is taken by a stochastic kernel, denoted
by κ.

Definition 19. Let (S,Σ, µ) be a measure space. A stochastic kernel is a measurable
function κ : S × S → R, that is both

κ(x, y) ≥ 0 (non-negative)

and ∫
S
κ(x, y)µ(dx) = 1 (normalized).

For any measure space (S,Σ, µ), the function space L1, short for L1(S,Σ, µ), contains
all Lebesgue-integrable real-valued functions on S and even fulfills the requirements of a
vector space, using the L1-norm

||f ||L1 =
∫
S
|f(x)|µ(dx)

and the associated distance dL1(f, g) = ||f − g||L1 . Elements of L1 are considered equal,
if they are point-wise equal almost everywhere, as the Lebesgue-integral over an almost-
everywhere-zero function must vanish.

We may then define an integral operator P : L1 → L1 acting on integrable functions
via stochastic kernel κ according to

Pf(x) =
∫
S
κ(x, y)f(y)µ(dy) ∀f ∈ L1.

By construction, this operator inherits linearity from the integral operator and non-
negativity of the stochastic kernel. It is also norm-preserving non-negative L1-functions
f ≥ 0, as

||Pf ||L1 =
∫
S

∣∣∣∣∫
S
κ(x, y)f(y)µ(dy)

∣∣∣∣µ(dx) =
∫
S
|f(y)|µ(dy)

∫
S
κ(x, y)µ(dx) = ||f ||L1 .

We call such operators Markov operators. For finite state spaces with a counting
measure, P is a stochastic matrix and defines a homogeneous Markov chain.

2.2.2 Random walks and transfer operators

Within the function spaces defined above, we are interested in those functions describing a
distribution of matter or probabilities on this space, normalized with respect to the given

14



2.2. PROBABILITY THEORY BASICS

measure. Densities which are invariant under propagation play an important role in the
next chapters. We shall begin with a discrete setting, then look into systems continuous
in space and time.

A most important example of random processes for the purpose of analyzing networks
are ‘random walkers’. The basic idea, rigorously formulated in the early 2000’s [76, 55],
is to define a homogeneous Markov chain on the vertex set of a given network, which
in each time step moves along a randomly chosen incident edge to a neighboring node.
In the case of directed networks, only outgoing edges may be chosen by the random
walker. For undirected networks, such a process is always reversible. Intuitively, network
clusters which have few connections to the remaining network act like a trap to such a
walker, so suitable algorithms may exploit the correspondence between network clusters
and metastable sets of random walker processes, which can be calculated from a spectral
decomposition or hitting time analysis as described in the next chapter.
Definition 20. More generally, for any countable state space S, any stochastic matrix
P ∈ R|S| × R|S| and any initial probability distribution p0 on S, there is a Markov chain
(Xn)n∈N defined by these properties:

P[X0 = i] = p0(i) and P[Xk+1 = j|Xk = i] = P (i, j) ∀i, j ∈ S.

The transition probabilities are independent of time, so this Markov chain is homogeneous.
Matrix P s called the transition matrix of (Xn).

For such processes, it is simple to define and, in the finite special case, compute the
distribution of (Xn) for n ≥ 1 from P and initial distribution p0. P defines a linear
operator P acting on the space of vectors with finite absolute sums l1 = {v : S → R |∑
i∈S |v(i)| <∞} by

(Pv)(j) =
∑
i∈S

P (i, j)v(i).

The restriction to l1 guarantees that P is well-defined, yet in applications with finite state
spaces, such as random walkers on finite graphs, any vector on S lies in the range of P.
If X0 is distributed according to some probability distribution v, it follows that X1 is
distributed according to Pv since

(Pv)(j) =
∑
i∈S

P (i, j)v(i) =
∑
i∈s

P[X1 = j|X0 = i]P[X0 = i] = P[X1 = j].

Likewise, due to (Xn) being a homogeneous process, higher powers of P allow to describe
the distribution of a Markov chain initiated according to v0 after k time steps as Pkv0.
Thus, the operator P is known as propagator. It pushes probability distributions forward
in time and therefore allows to define distributions that are invariant with respect to that
propagation.
Definition 21. Let P be a propagator. Any distribution π which satisfies

Pπ = π,

in other words: which are right-hand side eigenfunctions of P, are called a stationary
distribution or invariant measure of P.

For a Markov chain on a finite state space given by transition matrix P with unique
stationary distribution π = πP , we may define an operator T on the space of vectors
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v, which are not in general probability distributions themselves, but must be probability
vectors ‘with respect to π’, which means that v is non-negative and becomes a probability
vector when weighted with π: ∑

x∈S
v(x)π(x) = 1.

T v may then be explicitly evaluated by the formula

(T v)(y) = 1
π(y)

∑
x∈S

P (x, y)v(x)π(x).

Compared to P, the operator T acts on a wider range of functions, as it propagates not
only probability distributions, but any vector whose π-weighted sum of entries is finite.

While it is well-defined on the space l1(π) = {v : S → R |
∑
x∈S |v(x)π(x)| < ∞},

we prefer to consider T as an operator on l2(π) = {v : S → R |
∑
x∈S v(x)2π(x) < ∞},

which has the added benefits of a Hilbert space when equipped with the π-weighted scalar
product

〈v, w〉π =
∑
x∈S

v(x)w(x)π(x).

In the special case of reversible Markov chains, a useful consequence is that T , as an
operator on l2(π), is self-adjoint, that is: 〈T v, w〉π = 〈v, T w〉π. It has real eigenvalues
1 = λ1 > λ2 ≥ λ3 ≥ . . . contained in [−1, 1] and corresponding eigenvectors u1, u2, u3, . . .
which form an orthonormal basis of l2(π) [63]. We shall call T : l2(π)→ l2(π) a transfer
operator.

Using this orthonormal basis, the spectral decomposition of the transfer operator can
be written as

T kv =
∞∑
i=1

λki 〈v, ui〉ui.

A notable consequence is that aperiodic and irreducible systems, which requires that
no eigenvalue of T equals -1 and exactly one eigenvalue to be equal to 1, any initial
distribution converges to the stationary distribution when propagated by T and the rate
of convergence depends on the second-largest eigenvalue. In other words, any such system
(Xn) has a steady state and the distribution ofXk converges to that stationary distribution
as k →∞, no matter the initial conditions. If (Xn) starts with that stationary distribution,
the random variables Xk are equally, but not independently, distributed.

Much of these insights translate into continuous settings, though several definitions need
to be adapted accordingly. Transition kernels take the role of transition rate matrices and
we need to distinguish between distribution functions and their densities.

Definition 22. Any non-negative and normalized L1-function f of some measure space
(S,Σ, µ), that is: any element of D(S,Σ, µ) = {f ∈ L1(S,Σ, µ) : f ≥ 0, ||f ||L1 = 1} is
called a density function.

Densities describing an equilibrium state are of special importance. Technically, they
are defined by the property of staying invariant under the action of a given Markov oper-
ator.
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Definition 23. When (S,Σ, µ) is a measure space and P is a Markov operator, a density
f is called a stationary density, if

Pf = f.

Density functions describe the relation between an associated measure and some refer-
ence measure, usually the Lebesgue measure. Some publications use both measures and
their density functions interchangeably, yet to avoid confusion, it shall be stated explicitly
that a density f and its associated measure νf are related as

νf (A) =
∫
A
f(x)dx.

One helpful tool to describe the evolution of probability distributions according to the
dynamics of a given Markov chain is a kernel function which contains transition proba-
bilities at any point in time t from any starting point x ∈ S into any subset of the state
space B ∈ Σ.

Definition 24. Let X be a homogeneous Markov chain on some state space S equipped
with σ-algebra Σ. A stochastic kernel κ : S × S → [0, 1] is called the transition kernel
of X if

1. x 7→ κ(x,B) is Σ-measurable for any set B ∈ Σ,

2. B 7→ κ(x,B) is a probability measure on (S,Σ) for every fixed state x ∈ S and

3. it describes the transition rules of the process: ∀t ∈ T, x ∈ S,B ∈ Σ : P(Xt+1 ∈
B | Xt = x) = κ(x,B).

Using transition kernels, we can formulate the propagation of densities analogously to
the discrete setting as

(Ptf)(y) =
∫
S
p(t, x, y)f(x)dx.

When µ is a unique stationary density of Pt as defined above, we may properly define
continuous-time Transfer Operator Tt on L2(µ) by

(Ttf)(y) = 1
µ(y)

∫
S
p(t, x, y)f(x)µ(x)dx

where L2(µ) = {f : S → R |
∫
S f

2(x)µ(x)dx < ∞} is again a Hilbert space with a
µ-weighted scalar product:

〈f, g〉µ =
∫
S
f(x)µ(x)g(x)dx.

Unlike the discrete case, where a single transfer operator was sufficient to describe the
evolution of the distribution of a system, we now have a semi-group of operators with
Ts+t = TsTt and T0 = Id, that depends on the distance in time between two states of the
system Xt0 and Xt0+t.
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However, when Tt is ‘strongly continuous’ in the sense that it perturbs less and less,
the smaller t is chosen, or technically written:

lim
t→0
Ttf = f,

then we may define an infinitesimal generator L of Tt as

Lf = lim
t→0

Ttf − f
t

.

For any f ∈ L2(µ) where that limit exists, it also exists at Ttf [29] and the relation between
Tt and L may be rewritten as

Ttf = exp(Lt)f.

As we see, knowledge of L is sufficient to describe the whole family of operators {Tt}t∈R+ ,
hence the name ‘generator’. The eigenvalues of L are thus exponentially related to those
of Tt and we may deduce characteristics of the system from properties of L similar to the
spectral decomposition of discrete transfer operators.

Having introduced the notion of information gained by observing a process in Defini-
tions 15 and 16 earlier, we may define random variables that track when a process meets a
pre-defined condition, based on information received from the observation. For example,
one might be interested in when a random process hits a certain subset of the state space
for the first time. As the actual point of time may depend on chance, the value could
differ for every single realization of the process, but the expected values of such functions
are statistical quantities that hold information about the averaged behavior of a process.

Definition 25. Given a random process X on index set T and the filtration F generated
by X, a stopping time τ is a T -valued random variable which satisfies {ω ∈ Ω : τ(ω) ≤
t} ∈ Ft.

In other words: For any point in time t, it is possible to decide whether the stopping
condition has been met by a realization of the process based only on information obtained
by observing it until time t. If so, its value is determined and must be lesser or equal to
t. If not, its value is unknown, but definitely greater than t. A very common example we
shall encounter again in a later section is the ‘(first) hitting time’ τA of a subset A of the
state space S of a random process (Xt)

τA(ω) = inf{t ∈ T | Xt(ω) ∈ A}.

A closely related notion shall be introduced here for the sake of completeness: The ‘(first)
exit time’ from a set A ⊂ S is the hitting time τS\A of the complement of A in S.

2.2.3 Stationarity, ergodicity, reversibility

Now, we turn to characteristics of random processes that we typically seek or presume, as
they ensure favorable properties for numerical treatment or analytical results that can be
exploited to learn about the structure of the state space and dynamics of the process.

Definition 26. A random process X = (Xt)t∈T is called (strictly) stationary if for
all natural numbers k and all time points t1, . . . , tk and any shift value τ the cumulative
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distribution function FX of the joint distribution of (Xt) at times t1 + τ, . . . , tk + τ does
not depend on τ , thus fulfilling

FX(t1 + τ, . . . , tk + τ) = FX(t1, . . . , tk).

Definition 27. A stationary process X = (Xt)t∈T is called (mean-)ergodic if the tem-
poral mean of a trajectory converges almost surely to its ensemble mean, that is:

1
T

∫ T

0
Xtdt −−−−→

T→∞
E [Xt] .

Ergodicity is a property of a process that ensures that (almost) any infinitely long
trajectory reproduces the expected value of the process weighted according to the inherent
probability measure of the space. Ergodic processes cannot have non-trivial ‘traps’ or
insurmountable barriers separating non-null sets, as (almost) any trajectory must have a
non-zero chance to visit any non-null subset of the state space again.

An even stronger property demands that the process itself is indistinguishable from a
copy of the process running backward in time. This is the continuous analogon to a finite
discrete homogeneous process with transition probabilities p(·, ·) fulfilling the detailed
balance condition with respect to a unique stationary probability vector µ:

µ(x)p(x, y) = µ(y)p(y, x) ∀x, y ∈ S.

Definition 28. A stationary random process X = (Xt)t∈T is called time-reversible if

P(Xt+τ ∈ B | Xt ∈ A) = P(Xt−τ ∈ B | Xt ∈ A)

for any time t ∈ T , any time shift 0 < τ < t and any measurable sets A,B.

In the case of random walks on graphs, these properties are directly related to the
structure of the graph. For any connected graph, the random walk is an irreducible
process. On undirected graphs, random walks are reversible, which follows directly from
the symmetry of their adjacency matrices. Random walks are also aperiodic, unless the
graph is bipartite. When these properties coincide, namely on connected, undirected,
non-bipartite graphs, the resulting random walk process is ergodic [23].

Two results of particular importance will make obvious why ergodicity is so relevant
for many methods of network analysis. The first one ensures convergence of probability
distributions of finite random walks towards a unique stationary distributions.

Theorem 2.2.3. Let transition matrix P define a discrete random walk on state space S.
There exists a unique stationary distribution µ such that

lim
k→∞

P k(x, y) = µ(y) ∀x, y ∈ S.

A proof can be found in textbooks such as [10]. The theorem guarantees convergence
to µ independent of the starting point x and thus ensures that the system approaches
a steady state no matter the initial probability distribution. Computing higher powers
of transition matrix P even allows to approximate µ computationally without solving
a possibly ill-posed linear problem, which is a feasible job when the state space is not

19



CHAPTER 2. THEORETICAL BACKGROUND

prohibitively large. The second result is based on a theorem by Oskar Perron and Georg
Frobenius [57, 31] dating back to the early 20th century. This specific application was
published in [72]. Note that it is not restricted to reversible Markov chains.

Theorem 2.2.4. Let transition matrix P define an aperiodic irreducible Markov chain
(Xn)n∈N on finite state space S, then

1. P has a unique eigenvalue λ1 = 1, corresponding left eigenvector 1 = (1, . . . , 1)T
and right eigenvector µ with strictly positive entries.

2. All other eigenvalues of P are real-valued and have strictly smaller absolute values
than λ1.

For the purpose of analyzing networks, particularly for the detection of clusters, a
suitable structure is not guaranteed. However, when a graph is not connected, each
of its components may be looked at individually as a connected subgraph. Bipartite
graphs require special treatment, as standard discrete random walks are not guaranteed
to be aperiodic. Possible workarounds include inserting artificial self-loops on each vertex
to enforce aperiodicity or resorting to continuous random walk processes. With some
restrictions, random walk based methods may be applied to nearly any undirected network
which actually has a modular structure.

Once orientations are added to edges and random walkers are taking these into account,
much of the required theory no longer holds. For instance, such random walks are not
necessarily reversible. Their transfer operators are, in general, not self-adjoint, their spec-
tra may include complex eigenvalues and the correspondence between their eigenvectors
and graph clusters is no longer assured. Even the matter of how to define a cluster in a
directed graph, is more ambiguous then in the undirected case. Several suggestions for
definitions of modules or clusters only coincide in the special case of undirected graphs.
The definition we use, based on the dynamics of a random walker process, may or may
not agree with functional subunits of a system, or categories of similar items that specific
application cases require.

In the following chapter, we shall highlight a few existing methods that exploit in-
formation encoded in the spectrum of transfer operators to identify invariant, cyclic and
metastable structures.
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3 | Clustering undirected graphs

3.1 Definition of clusters

Part of what makes the problem of clustering graphs so rich, is that even the definition
of what a cluster is, is a matter of on-going discussion. Usually, it is seen as a property
associated to edge-density. That is, a set of vertices of a graph is called a cluster, when
its members are highly connected internally and are sparsely linked to the remainder of
the graph.

Depending on the application, this description may or may not serve well in finding
results of high quality. A graph on vertices representing people in a sociological context
where edges indicate which people share friendship fits well to this definition of clusters.

On the other side, if we analyze the link structure of Wikipedia articles and want to
group them based on topics, we might find that very similar articles, like those of different
subspecies of a plant for instance, often link to the same articles, such as their classification
family, their common biotope or clime, the articles ‘Sun’ and ‘Water’, but barely point to
each other. Therefore, the authors of a recent paper propose to group vertices in directed
graphs based on similarity of their neighborhoods [68]. Vertices both pointing to the same
vertices or receiving links from the same vertices are considered similar and thus more
likely to be grouped together.

As another example, let us take a citation network, where papers citing the same sources
are likely to share a topic, while they might have been published too close together in time
to cite one another. Furthermore, the homepages of enterprises settled in the same business
field are highly unlikely to link to each other, even more so, the more similar their products
or services are.

In the backgrounds selected by the authors to validate the superiority of their new
approach and to reveal the flaws of other algorithms, this way of defining a similarity
measure and identifying clusterings based on it shows to correspond better to intuition
than grouping vertices based on edge-density.

However, there is a well-founded reason for the upper definition to be predominant
from a random walk process based point of view. When networks on thousands of vertices
are too large to analyze efficiently, some researchers are interested in simplified networks
on a considerably smaller vertex set, resembling the dynamics of the original network as
good as possible. Defining random walk processes on the graphs, we can measure the loss
of information caused by the simplification of the network in a way we will discuss later
on. We will recognize that dominant timescales of the random walk process can be well
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CHAPTER 3. CLUSTERING UNDIRECTED GRAPHS

preserved by milestoning processes based on clusterings in the sense of grouping densely
connected vertices together. We shall return to random walk induced clusterings soon,
but in the following section we commence with famous non-spectral clustering algorithms
often used as reference due to their spread and frequent use.

3.2 Non-spectral approaches

3.2.1 Graclus

Graclus is a multi-level algorithm claimed to outperform pure spectral algorithms in terms
of speed and memory usage [22]. Instead of employing expensive eigenvector calculations,
it uses a kernel-based approach, exploiting a connection between vector clustering kernel
k-means and graph clustering objectives.

We shall take a closer look, both because it is a widely used reference algorithm [67,
50, 68, 4] and it reveals an insightful relation between partitioning a graph and clustering
a set of vectors in the real space. Out of many similar approaches, we will focus on one
showcase method for each problem and prove that they can be expressed as a matrix trace
maximization due to particular constraints and are therefore equivalent.

Vector clustering

First let us consider the problem to assign n vectors a1, . . . , an of dimensionm to k clusters
π1, . . . , πk minimizing the objective function

k∑
c=1

∑
ai∈πc

||ai −mc||2, where mc =
∑
ai∈πc ai

|πc|
.

So the goal is to choose clusters such that the sum of the squared distances of their
members to their mean is as small as possible. This implies that each vertex is assigned
to the cluster whose mean is closest to that vertex. Therefore, the boarder separating
any two clusters is always a hyperplane orthogonal to the straight line connecting their
means, crossing this line right in the middle. This is a restriction inherent to the standard
k-means we want to dispose of by generalizing the idea to so-called kernel k-means.

Let us assume that φ is a function mapping the vectors a1, . . . , an to a higher di-
mensional space and apply standard k-means clustering there, then project the obtained
clustering back to the original space. Depending on φ the separating hyperplanes in the
higher dimensional space may or may not become linear separators after projection onto
the original space. So we have gained a more general method which allows for non-linear
separators and the choice of φ is still open. The objective function may be formalized as

k∑
c=1

∑
ai∈πc

||φ(ai)−mc||2, where mc =
∑
ai∈πc φ(ai)
|πc|

.
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Figure 3.1: Standard k-means clustering of a set of two-dimensional vectors. Boarders
separating any two clusters are always orthogonal to the line connecting their barycenters.

Note that the squared distance required may be rewritten using inner products only

||φ(ai)−mc||2 = φ(ai) · φ(ai)−
2∑aj∈πc φ(ai) · φ(aj)

|πc|
+
∑
aj ,al∈πc φ(aj) · φ(al)

|πc|2
.

If we have a kernel matrix K providing us all required inner products Kij = φ(ai) · φ(aj),
we do not even need to know φ itself. Without a proof, we will exploit the fact that
any positive semidefinite matrix can be regarded as a kernel matrix to some function φ.
Popular choices are Polynomial Kernels Kij = (ai · aj + c)d, Gaussian Kernels
Kij = exp(−||ai − aj ||2/2α2) and Sigmoid Kernels Kij = tanh(c(ai · aj) + θ) [22].

Our next step is to generalize the objective function a bit further by introducing a
non-negative weighting w, such that the weighted k-means objective function now looks
like this

k∑
c=1

∑
ai∈πc

wi||φ(ai)−mc||2, where mc =
∑
ai∈πc wiφ(ai)∑

ai∈πc wi
.

Here, we want to quote an algorithm of complexity O(n2) which, starting from an arbitrary
initial clustering, optimizes the weighted objective function until a maximum number
of iterations tmax or convergence is reached. The algorithm is guaranteed to converge
monotonically for any positive semidefinite kernel matrix K [22].

We will show that this is in fact a matrix trace maximization problem. To this end,
let sc := ∑

ai∈πc wi and define the n× k matrix Z by

Zic :=
{

1/√sc if ai ∈ πc
0 otherwise.

As the clusters are disjoint, the columns of Z are mutually orthogonal. In addition, let
Φ be the m × n matrix whose columns are the vectors φ(ai) and W a diagonal matrix
containing the weights Wii = wi. We may then rewrite the weighted kernel k-means
objective function as

k∑
c=1

∑
ai∈πc

wi||φ(ai)−mc||2 =
n∑
i=1

wi||Φ:i − (ΦWZZT ):i||2,

23



CHAPTER 3. CLUSTERING UNDIRECTED GRAPHS

Algorithm 1 Kernel k-means Batch
Input: kernel matrix K, number of clusters k, weighting w, maximum number of itera-

tions tmax, initial clustering {π0
c}kc=1

Output: final clustering {πc}kc=1
1: t = 0
2: repeat
3: for i = 1 to n do
4: for c = 1 to k do
5: d(ai,mc) = Kii −

2
∑

aj∈πtc
wjKij∑

aj∈πtc
wj

+
∑

aj,al∈π
t
c
wjwlKjl

(
∑

aj∈πtc
wj)2

6: end for
7: end for
8: for i = 1 to n do
9: c∗(ai) = arg minc d(ai,mc)

10: end for
11: for c = 1 to k do
12: πt+1

c = {a|c∗(ai) = c}
13: end for
14: t = t+ 1
15: until t = tmax or {πtc}kc=1 = {πt−1

c }kc=1
16: return {πtc}kc=1

where A:i denotes the i-th column of a matrix A. Since W is a diagonal non-negative
matrix, the matrix exponential which we use in the following is well defined. We introduce
the orthonormal matrix Ỹ := W 1/2Z replacing Z in the objective function

n∑
i=1

wi||Φ:i − (ΦWZZT ):i||2 =
n∑
i=1

wi||Φ:i − (ΦW 1/2Ỹ Ỹ TW−1/2):i||2

=
n∑
i=1
||Φ:iw

1/2
i − (ΦW 1/2Ỹ Ỹ T ):i||2 = ||ΦW 1/2 − ΦW 1/2Ỹ Ỹ T ||2F .

This is the squared Frobenius norm of the matrix (ΦW 1/2−ΦW 1/2Ỹ Ỹ T ). Now we exploit
the relation ||A||2F = trace(ATA)

||ΦW 1/2 − ΦW 1/2Ỹ Ỹ T ||2F = trace((ΦW 1/2 − ΦW 1/2Ỹ Ỹ T )T · (ΦW 1/2 − ΦW 1/2Ỹ Ỹ T )),

process the outer transposition symbol

= trace((W 1/2ΦT − Ỹ Ỹ TW 1/2ΦT ) · (ΦW 1/2 − ΦW 1/2Ỹ Ỹ T )),

multiply the terms in brackets out

= trace(W 1/2ΦTΦW 1/2 −W 1/2ΦTΦW 1/2Ỹ Ỹ T

−Ỹ Ỹ TW 1/2ΦTΦW 1/2 + Ỹ Ỹ TW 1/2ΦTΦW 1/2Ỹ Ỹ T )

and make use of trace(A+B) = trace(A) + trace(B) and trace(AB) = trace(BA)

= trace(W 1/2ΦTΦW 1/2)− trace(Ỹ TW 1/2ΦTΦW 1/2Ỹ )
− trace(Ỹ TW 1/2ΦTΦW 1/2Ỹ ) + trace(IkỸ TW 1/2ΦTΦW 1/2Ỹ ),
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to finally simplify the whole term

= trace(W 1/2ΦTΦW 1/2)− trace(Ỹ TW 1/2ΦTΦW 1/2Ỹ )

into the constant part trace(W 1/2ΦTΦW 1/2) and a negative part which may be optimized
by choosing Ỹ appropriately. Note that (ΦTΦ)ij = φ(ai) ·φ(aj) = Kij and thus ΦTΦ = K,
so that we can reformulate the minimization of the weighted kernel k-means objective as

max
Ỹ

trace(Ỹ TW 1/2KW 1/2Ỹ ). (3.2.1)

Graph clustering

We shall now look at the problem of clustering a graph G on a finite vertex set
V = {1, . . . , n} from another point of view. Here, we consider a weighted adjacency matrix
A, whose positive entries are regarded as an edge weighting while zero-entries mean that
there is no edge connecting the correspondent vertices. In addition, there is a vertex
weighting wi. Using the notations w(S) := ∑

i∈S wi, links(S, S′) := ∑
i∈S,j∈S′ Aij and just

for simplification cut(S) := links(S, V \S) = ∑
i∈S,j 6∈S Aij , we may formulate the Weighted

Cut objective as

WCut(G) = min
C1,...,Ck

k∑
c=1

cut(Cc)
w(Cc)

.

Since Ratio Cut and Normalized Cut, two other frequently used clustering objectives,
are special cases of WCut with suitable vertex weightings, we content ourselves with
considering the Weighted Cut objective only.

A similar clustering objective, the Weighted Association, seeks to maximize the total
weight of connections within each cluster and reads as

WAssoc(G) = max
C1,...,Ck

k∑
c=1

links(Cc, Cc)
w(Cc)

.

In a short while we will realize the immediate relation to WCut, but before we deviate a
trace maximization interpretation of WAssoc using characteristic vectors of the clusters
defined by

(χc)i =
{

1 if i ∈ Cc
0 otherwise,

rescaled using the diagonal weight matrix to χ̃c = χc · (χTcWχc)−1/2, and the matrix
Y = W 1/2X̃. Via the matrix X̃, whose columns are the rescaled characteristic vectors of
the clusters, the alignment of vertices to clusters is now contained within Y . Thus, we
now gain

WAssoc(G) = max
C1,...,Ck

k∑
i=1

links(Ci, Ci)
w(Ci)

= max
χ1...,χk

k∑
c=1

χTc Aχc
χTcWχc

= max
χ̃1...,χ̃k

k∑
c=1

χ̃Tc Aχ̃c

= max
Y

trace(Y TW−1/2AW−1/2Y ).

Using the same notation as above together with the diagonal matrix D of weighted
vertex degrees, that is Dii = ∑n

j=1Aij and the Laplacian L = D − A of the graph, we
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can reformulate WCut in a similar fashion

WCut(G) = min
χ1...,χk

k∑
c=1

χTc (D −A)χc
χTcWχc

= min
χ̃1...,χ̃k

k∑
c=1

χ̃Tc Lχ̃c

= min
Y

trace(Y TW−1/2LW−1/2Y )

and recognize a problem very similar to the trace maximization problem WAssoc. More-
over, exploiting

trace(Y TW−1/2(W − L)W−1/2Y ) = k − trace(Y TW−1/2LW−1/2Y )

we realize that minimizing WCut is in fact equivalent to maximizing WAssoc on a graph
whose adjacency matrix is given by A = W − L and therefore both objectives may be
rewritten as a matrix trace maximization problem identical to the weighted kernel k-
means objective 3.2.1 since Y corresponds to Ỹ from the previous section. Given a weight
matrix W , we may map from one problem to the other by setting K = W−1AW−1 or
A = WKW .

Many graph clustering objectives, such as Normalized, Ratio or Weighted Cut, no
longer require eigenvector calculations as they can be taken as a weighted kernel k-means
optimization problem and solved efficiently using algorithms such as kernel k-means Batch
[1]. This result is key to the multi-level algorithm Graclus.

Graclus basic structure

Coarsening phase Starting from an initial graph G0 to be clustered, the goal of the
first phase is to generate a sequence of graphs G1, . . . , GN on progressively smaller vertex
sets |V0| > · · · > |VN |, such that several vertices in Vi are combined into one vertex of Vi+1
whose weight is the sum of weights of the vertices that were combined. At the same time,
the edge weighting given by the adjacency matrix A is treated as well. Let us assume,
the vertices x1, . . . , xr ∈ Vi are to be combined into vertex x∗ ∈ Vi+1 and y1, . . . , ys ∈ Vi
are selected for merger into y∗ ∈ Vi+1 and there is at least one edge connecting the sets
{x1, . . . , xr} and {y1, . . . , ys}. Then the vertex x∗ must share an edge with y∗ in Gi+1 and
its weight is the sum of the weights of all edges between {x1, . . . , xr} and {y1, . . . , ys} in
Gi. So if Ai is the weighted adjacency matrix of Gi, we may compute the weight of the
new edge as

Ai+1(x∗, y∗) =
r∑
j=1

s∑
k=1

Ai(xj , yk).

A non-deterministic way to coarsen a graph is to go through all vertices in a random
order, select an adjacent vertex fitting best for merger according to some criterion, mark
both as dispatched and ignore marked vertices until the algorithm finishes and all ver-
tices are marked. When a suitable neighbor for vertex x is to be selected, the user may
implement a similarity or distance measure of his choice. The criterion should match the
clustering objective, such that reverting the coarsening procedure preserves the quality of
a clustering to some extend. A method called max-cut coarsening procedure respects the
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edge and vertex weightings by selecting the unmarked adjacent vertex y which maximizes

A(x, y)
w(x) + A(x, y)

w(y) .

Base-clustering phase Once the original graph has been sufficiently coarsened, some
basic clustering algorithm, like Metis [37] or the random walk based method which we
present in Section 3.4, is used to obtain a clustering of the coarsest graph GN . Note
that Metis heavily tends towards building clusters of nearly equal size and the quality of
its results may depend on the randomly selected initial vertices that grow into clusters.
Though it is seen as the main advantage of Graclus not to require eigenvector calculations,
since GN is considerably smaller than the original graph G0, spectral methods may be used
without concern to generate this initial clustering.

Refinement phase The clustering constructed in the second phase is used to initialize
the refinement method for GN . The clustering obtained in this way induces a clustering on
GN−1 in a very natural way: If a certain vertex x ∈ VN has been assigned to some cluster
then all vertices in VN−1 that have been merged into x during the coarsening process shall
be assigned to the same cluster. In every subsequent step, the clustering induced by the
refined clustering of the previous step initializes the refinement algorithm for the current
step. This procedure usually finishes quickly, as each step is starting from a good initial
clustering.

The practical implementation incorporates some optimizations which improve stability
and speed. A diagonal shift guarantees positive semidefiniteness of the kernel used in
the k-means batch algorithm, thus ensuring monotonic convergence. In addition, Graclus
alternates between steps of the batch algorithm and incremental updates based on a local
search to avoid getting stuck in poor local minima. Pre-computation of weights and
constants as well as restricting the refinement on cluster boundaries considerably speed
up the computation. More details and performance tests can be found in literature [22]
and the software is available under the terms of the GNU Public License1.

3.2.2 Markov clustering

Here, we want to present a well-known clustering algorithm by van Dongen [78] and
an altered version invented by Satuluri et al. [67]. The Markov clustering (MCL)
employs simple matrix calculations only and abandons spectral properties and eigenvector
computations altogether.

The original algorithm is based on the idea of gradually emphasizing edges in well-
connected communities while fading out other edges, such that a subgraph remains, where
each component corresponds to a cluster in the original graph. D is the diagonal ma-
trix containing the degree numbers of the vertices. The operator ‘.ˆ’ means entry-wise
exponentiation and r is the inflation rate, usually set to 2.

While this approach is compelling due to its simpleness and robustness, its performance
might be insufficient when applied to large scale networks, as it tends to deliver an inflated

1http://www.cs.utexas.edu/users/dml/Software/graclus.html
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(a) (b) (c)

Figure 3.2: Simplified illustration of the phases of a multi-level clustering algorithm, numbers
denote vertex and edge weights.
Pairs of vertices are matched as candidates for mergence during the coarsening process (a).
A base-clustering of the coarsened graph (b) is sought which induces a clustering of the
original graph (c) by expanding previously merged vertices, delivering the final clustering
after refinement.

number of clusters. Therefore, Satuluri et al. have developed a modification known
as regularized Markov clustering (R-MCL) which prevents the divergence between
neighboring vertices and invented a multi-level implementation (MLR-MCL) frequently
used until present day [67].

The basic concept is to coarsen the graph progressively, run the R-MCL algorithm on
these coarsened graphs in the opposite order, beginning with the most simplified version
of the graph, where it converges considerably faster than it would on the original graph,
and then use the resulting matrix M of each step recursively to initialize the flow matrix
used to cluster the less coarsened graphs up to the final step, which returns a clustering
of the original graph.

Algorithm 2 Markov clustering - MCL
Input: adjacency matrix A
Output: cluster matrix M

1: initialize transition matrix M := (A+ Id)D−1

2: repeat
3: expand M := M ∗M
4: inflate M := M .ˆr
5: re-normalize columns of M
6: prune entries close to zero
7: until M converges
8: return M
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Algorithm 3 Regularized Markov clustering - R-MCL
Input: adjacency matrix A
Output: cluster matrix M

1: initialize transition matrix and save a copy M := MG := (A+ Id)D−1

2: repeat
3: regularize M := M ∗MG

4: inflate M := M .ˆr
5: re-normalize columns of M
6: prune entries close to zero
7: until M converges
8: return M

MLR-MCL outline

1. generate a finite sequence G = G0, G1, . . . , GN of increasingly coarse graphs on
vertex sets Vi such that |V0| > · · · > |VN |

2. apply R-MCL on GN to gain a |VN | × |VN | cluster matrix MN

3. project MN onto |VN−1| × |VN−1| by restoring the vertices merged during the coars-
ening of GN−1 to GN

4. initialize R-MCL on GN−1 using the projection of MN

5. repeat steps 3 and 4, lowering all indices by one in every iteration step until a
clustering of G is acquired

Although MLR-MCL overcomes the fragmentation problem and delivers faster and
higher-quality results, unfortunately there is no direct generalization to directed graphs.
As a remedial measure, various symmetrization methods can be applied to the adjacency
matrix of the graph to obtain an undirected graph inheriting the cluster structure of the
original graph, such that clustering algorithms like MLR-MCL can be implemented. Some
symmetrization methods will be covered in Section 4.2.2.

Performance

An extensive comparison of quality and speed of clustering algorithms is not part of this
work as others have already covered that topic in detail. See a comprehensive benchmark
of spectral algorithms by Verma et al. [79] or a comparison of several symmetrization
methods and spectral/non-spectral clustering algorithms by Satuluri et al. [68].

In general, state-of-the-art random walk inspired spectral algorithms show good quality
if clusters are expected to be densely connected subgraphs. They are inapplicable to very
large data sets however, due to the time-consuming eigenvector calculations they require.

Unless future work provides new, considerably faster ways to compute eigenvectors,
algorithms such as Multi-Level Regularized Markov Clustering (MLR-MCL), Graclus or
Metis outperform currently known spectral algorithms on large networks [68].
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3.3 Spectral clustering of symmetric matrices

Several approaches to cluster directed graphs are based on symmetrizing its adjacency
matrix and then applying methods originally invented for clustering undirected graphs.

The first ideas, borrowed from the field of bibliometrics, were to consider symmetrized
matrices like A+AT or ATA [50]. However, it turns out that in many frequent cases these
techniques can blur the cluster structure of the original matrix and deliver unreliable
results due to the loss of information incurred by the symmetrization [56].

More sophisticated approaches we will discuss later build up on this idea nonetheless
and in order to understand how they work, we must first look into spectral clustering on
symmetric matrices, such as the transition matrix of a random walk process (Xn)n∈N on
an undirected graph.

We shall assume that the reader is familiar with the theory of Markov processes and
the representation of time-discrete homogeneous Markov chains on a finite state space S
of size n via a stochastic transition matrix P = (pij)1<=i,j<=n containing the probabilities
to switch from state i into state j in a single time-step

pij = P(Xn+1 = j|Xn = i).

The required background information on stochastic processes can be found in any elaborate
textbook on the subject such as the one written by D. Stroock [75]. As we focus on random
walk processes on graphs, the state space will usually be identical to the set of vertices
S := V and the transition matrix is induced by the edge set and, if applicable, the edge
weighting.

Notation: Whenever the range of integration is omitted, it shall be set to the whole
state space

∫
:=
∫
S .

Intuitively, random walk approaches divide the graph into sections that are highly
transient each, but ‘difficult’ to leave once the walker has entered one of them. This way,
subgraphs shall be identified that consist of densely connected vertices but are weakly
connected to the remainder of the graph. The vertex set of such a subgraph is what we
call a cluster or community. Here, we are not interested in full decompositions of the graph,
but will first identify a set of vertices that do not belong to any cluster, then perform a
full clustering of the remaining graph and finally associate the unclustered vertices using
affiliation functions constructed from the partial clustering.

3.3.1 Committor functions

Committor functions are the central objects of Transition Path Theory [27] and will prove
to be valuable helpers for fuzzy clusterings. Given a random walk (Xt) on a graph on state
space S and a set of nonempty disjoint subsets C1, . . . , CK of S, the forward committor
q+
i (x) gives the probability that the random walk enters the subset Ci before entering any
other Cj , j 6= i when starting at vertex x.

It follows directly from this definition that q+
i (x) = 1 for any x ∈ Ci and q+

i (x) = 0 if
x ∈ Cj , j 6= i. Let τCi be the hitting time of Ci and τMi be the hitting time ofMi = ⋃

j 6=iCj ,
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then we may define q+
i (x) by

q+
i (x) = P[τCi(x) < τMi(x)].

In analogy, we want to define the backward committor q−i (x) that gives the prob-
ability that the random walk last visited the set Ci. This coincides with the forward
committor of the process (Xt) running backward in time. Thus, when ←−τ Ci and ←−τ Mi are
hitting times of the reversed process (X−t), the backward committor q−i (x) of (Xt) is given
by

q−i (x) = P[←−τ Ci(x) <←−τ Mi(x)].

The committor functions are uniquely given if the invariant measure is unique and
does not vanish on all the sets C1, . . . , CK . If (Xt) is even a time-reversible process, i.e.
the invariant measure µ satisfies µ(x)p(x, y) = µ(y)p(y, x), such as a random walk on an
undirected graph, forward and backward committors are the same and simply called the
committor qi(x).

Committors will be useful both as affiliation functions to assign vertices in S \⋃Ki=1Ci
to clusters when C1, . . . , CK do not form a full partition of the state space and to construct
subspaces of L2 that will be of particular interest when we consider milestoning processes
and assess the quality of a clustering.

3.3.2 Reversible transfer operators

In the following we want to examine (Tt), a semi-group of operators associated to a time-
continuous Markov process (Xt), which we define by its action on certain distribution
functions. Let µ be the unique stationary distribution. For any fixed t, Tt is a linear
operator acting on the µ-weighted Hilbert space

L2
µ :=

{
f : S → R | f is measurable, ||f ||2µ = 〈f, f〉µ <∞

}
of quadratically µ-integrable distribution functions equipped with the scalar product 〈f, g〉µ =∫
f(x)g(x)µ(x)dx. Then we may define (Ttf) as the conditional expectation

(Ttf)(x) = Ex(f(Xt)) =
∫
f(y)P[Xt = y|X0 = x]dy.

Tt fulfills another prominent role. The adjoint operator T ∗t describes the propagation of
distribution functions by the dynamics of the process within time t. That is, when the
process is initially distributed X0 ∼ π0 for some distribution function π0 ∈ L2

µ, then
Xt ∼ T ∗t π0. In the case of reversible Markov processes, which we are going to stick to for
the moment, these two operators coincide.

Theorem 3.3.1. For any reversible Markov process (Xt) the operators (Tt) are self-adjoint
on L2

µ.
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Proof. This follows directly from the fact that a time-continuous reversible process satisfies
the detailed balance condition 3.4.4, which we will explain in the following section.

〈Ttf, g〉µ =
∫

(Ttf)(x)g(x)µ(x)dx =
∫ ∫

f(y)pt(x, y)g(x)µ(x)dydx

=
∫ ∫

f(y)pt(y, x)g(x)µ(y)dydx =
∫
f(y)(Ttg)(y)µ(y)dy = 〈f, Ttg〉µ

Now, we take a closer look at T := Tτ for a fixed lag time τ , examine its properties
and what we can learn from them about the structure of the underlying system. In the
following we assume the transfer operator T to meet the following key property.

Assumption 1. T has K + 1 real eigenvalues satisfying

λ0 = 1 > λ1 ≥ λ2 ≥ · · · ≥ λK ,

with associated orthonormal eigenvectors u1, . . . , uK and the remaining spectrum of T lies
within a ball of radius R < λK .

Note, that λ0 = 1 > . . . implies the uniqueness of the left eigenvector µT = µ and the
right eigenvector T1 = 1 = u0 associated to λ0 = 1. It follows that the corresponding
process has no invariant or cyclic classes and its dominant dynamics can be approximated
well by a coarse-grained milestoning process. In practice, we hope for the spectral gap
∆ between λK and the smallest possible radius of a ball containing the remainder of the
spectrum to be as large as possible, as this would indicate the existence of a K-clustering
into sets of ‘high’ metastability in the sense we will specify in the next section. It is a
frequent problem in real life applications, that the spectral gap is not clearly visible and we
do not know in advance how many metastable sets a given random walk process has. So-
called soft decompositions, which we will present in Section 3.4.4, circumvent this problem
by restricting the random walk process to the non-transient part of the state space, often
resulting in a more clearly arranged spectrum of the transfer operator.

3.4 Markov state models

When we look at an arbitrary trajectory of some reversible Markov process, such as a
random walk process on a graph, for a very long time, we usually observe the following
behavior: There are areas which, once entered by the process, take very long time to leave
while others are quite transient in comparison. The first are called metastable sets of the
state space and can be seen as a generalization of invariant subsets, which is also a hint at
how we can identify them, exploiting their relation to eigenvalues of the transfer operator.

When starting in a metastable region, on a short time-scale, it is likely that the process
would not leave it. Starting in a transient state, it quickly enters a metastable set and
probably stays there. On a large time-scale, the process mainly jumps between metastable
sets. This is our motivation to approximate the original process by a time-discrete process
on a finite state space, a so-called Markov state model, losing as few information as
possible in the sense of Section 4.3.
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Employing spectral methods, we identify metastable sets of the original process. Each
of these sets shall be represented by one vertex of the simplified state space, such that the
coarse-grained process describes movement between metastable sets only. The discretiza-
tion of time is realized by taking snapshots of the process in uniform time steps. The lag
time chosen determines the predominant time-scale we focus on.

First, we will present an MSM approach from Sarich et al. [65] to find metastable sets
of a reversible Markov process based on eigenvectors associated to the largest eigenvalues
of the transition matrix. Then, we will discuss the advantages of certain time-continuous
random walks over discrete ones and briefly introduce the idea of fuzzy MSM clustering,
following [23].

3.4.1 Identification of metastable sets

Let (Xt) be a time-continuous Markov process on state space S and (Tt) the associ-
ated semi-group of transfer operators which describe the propagation of distribution
functions. We assume that the process is sufficiently ergodic, implying that there are
no invariant or cyclic subclasses and a unique stationary measure µ exists, such that
Ttµ = µ ∀t.

For some fixed lag time τ > 0 and a full partition S = ⋃K
i=1Ci of the state space,

the continuous process (Xt) is coarse-grained space- and time-wise by the discrete process
(X̂k) defined on Ŝ = {1, . . . ,K} by X̂k = i ⇐⇒ Xkτ ∈ Ci. Since this process is not
Markovian in general, we define the MSM process (X̃k) as an approximation of this
snapshot process by choosing its transition matrix P̃ as

P̃ij = Pµ[X̂1 = j|X̂0 = i] = Pµ[Xτ ∈ Cj |X0 ∈ Ci].

In Section 4.3.4, after introducing an appropriate distance measure for transfer oper-
ators, we will discuss that this process approximates the original process well concerning
long-term dynamical behavior, if and only if the partition C1, . . . , CK corresponds to sets
of high metastability.

We have stated already that we may specify a time-scale to focus on by choosing the
lag time appropriately, but we did not yet clarify how to identify the full partition we
need for the Markov state model from the spectrum of the transfer operator T := Tτ .
Let us remind our assumption 1 from the previous section, postulating the existence of
K + 1 ‘dominant’ near-one eigenvalues λ1 ≥ · · · ≥ λK , and an associated system of
orthonormal eigenvectors u1, . . . , uK . We claim that these vectors, suitably normalized,
are almost piecewise constant (PC) with respect to a partition of the state space into
K metastable sets.

Definition 29. A vector v = [v1, . . . , vk]T is called piecewise constant (PC) with respect
to sets C1, . . . , Cm if

vi = vj ∀i, j ∈ Cr ∀r ∈ 1, . . . ,m.

We substantiate our claim by the following observation: Given some process X on some
state space S with exactly r minimal invariant subclasses I1, . . . , Ir ⊂ S, the spectrum of
the transfer operator contains the eigenvalue 1 exactly r-fold. Since none of the invariant
subclasses can be left once entered by the process, there are r stationary distributions
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(a) (b)

Figure 3.3: The main principle of Markov state modeling.
The original process, e.g. the random walk process on a graph (a), is approximated by a
reduced version of itself, where metastable sets of the process, corresponding to clusters of
the graph, are merged into single states each (b). The loss of information with respect to the
original process measures the quality of the clustering.

µ1, . . . , µr, satisfying support(µi) = Ii. They are eigenvectors to the eigenvalue one and
orthogonal due to their disjoint supports, therefore spanning a r-dimensional eigenspace
associated to one. Thus the eigenvalue one occurs r times in the spectrum of the transfer
operator.

Assuming that we already knew these stationary distributions, we could easily identify
the communication classes of the process as their support sets and the transient region D,
since

D := {x ∈ S| µ1(x) = · · · = µr(x) = 0}.

From a computational point of view, we might find that an eigenvalue solver yields
eigenvectors η1, . . . , ηr which do not have disjoint supports in general and are possibly not
even non-negative. In this case, we must first construct an maximal stationary distribution
of the process, identify and separate the transient region of the state space and normalize
the computed eigenvectors in order to obtain piecewise constant vectors which reveal the
invariant classes of the process. To this end, we decompose each ηk into its positive and
negative parts

η+
k (x) =

{
ηk(x) , ηk(x) > 0
0 , else

, η−k (x) =
{
−ηk(x) , ηk(x) < 0
0 , else

,

which are eigenvectors associated to one as well and satisfy ηk = η+
k − η

−
k .

This enables us to avoid cancellation of entries when we calculate a maximal stationary
distribution π by

π = 1
Z

r∑
i=1

(η+ + η−),

where Z := ∑
x

∑r
i=1(η+(x) + η−(x)) is just a normalization factor. Using π, we may now
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compute the transient region by

D = {x ∈ S|π(x) = 0}.

In the following, we restrict ourselves to the non-transient part of the state space, assuming
D = ∅, which grants us π > 0 everywhere.

Since µ1, . . . , µr form a basis of the eigenspace to one, the stationary distribution µ
of the process may be written as a linear combination π = ∑r

i=1 aiµi. Similarly, any of
the eigenvectors η1, . . . , ηr can be represented as ηj = ∑r

i=1 a
j
iµi uniquely determined by

the weights aj1, . . . , ajr. In order to construct piecewise constant vectors, we may simply
normalize the eigenvectors, dividing them entry-wise by π, since for any invariant set Ii
we have

uj(x) := ηj(x)
π(x) = ajiµi

aiµi
= aji
ai

=: cji .

Given these vectors u1, . . . , ur, piecewise constant on each invariant subset, we observe
that the function f : x 7→ (u1(x), . . . , ur(x)) assumes exactly r different values γ1, . . . , γr
and that we may now identify invariant subsets simply by calculating

Ii = {x ∈ S|f(x) = γi}.

Metastable sets are to be regarded as a generalization of invariant subclasses, being
not impossible but very difficult to leave by the process. The associated transfer operator,
which in the case of reversible processes is self-adjoint and therefore also describes the
propagation of density functions according to Section 3.3.2, almost does not permit the
flow of density out of a metastable set. Very similar to how an invariant subclass of a
reducible process corresponds to an eigenvalue equal to one, a metastable set of a reversible
process corresponds to a near-one eigenvalue of the transfer operator.

The normalized eigenvectors associated to those near-one eigenvalues are not piece-wise
constant in general, but we can expect them to be nearly constant on metastable sets,
permitting an identification of these sets similar to the identification process of invariant
sets described above. The more pronounced the metastable behavior of the process is, the
closer are the normalized eigenvectors to being piecewise constant and the more precisely
can the metastable sets be detected [21].

3.4.2 Standard random walk

We have seen already how to construct an MSM process from a given reversible Markov
process and now we will apply the procedure to find a clustering on an arbitrary simple
and connected graph G = (V,E) on a finite vertex set |V | = n.

The main idea is the perception of a ‘random walker’ traveling the vertices of the graph,
choosing randomly at each step which edge to follow. For any undirected graph, this turns
out to be a reversible Markov chain as the adjacency matrix of the graph is symmetric.
Metastable sets of this process, corresponding to subgraphs where the random walker
spends much time in statistically, are then identified as clusters of G. As we assume
graphs to be connected and are interested in properties of infinite trajectories, it does
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not matter in the long run which vertex the process starts from. The opening of such a
trajectory is illustrated in Figure 3.4.

Therefore, let us define the n by n transition matrix P = (p(x, y))x,y∈V of the
standard random walk process (Xk) by

p(x, y) =
{

1/d(x), ∀(x, y) ∈ E
0, otherwise,

(3.4.1)

where d(x) is the degree of vertex x. By construction, the random walk process given by
this stochastic matrix is a time-discrete homogeneous Markov chain. We even know the
unique stationary distribution µ, which is given by

µ(x) = d(x)∑
y∈V d(y) .

In case a positive real-valued edge weighting w : E 7→ R+ is given, the transition
probabilities can be adapted to respect the weighting by favoring high-valued edges over
others. Here, the weights can be taken as measure of attractiveness of an edge. To this
end, we choose

p(x, y) =
{
w(x, y)/∑z∈δ(x)w(x, z), ∀(x, y) ∈ E
0, otherwise,

(3.4.2)

where δ(x) denotes the neighborhood of the vertex x, the set of vertices adjacent to x.
When we set w uniformly to one, we gain the same transition matrix as in the unweighted
case, since 3.4.1 and 3.4.2 coincide. Hence the name ‘standard’ random walk.

Figure 3.4: Section of the trajectory of a random walk process. Starting from an arbitrary
vertex the random walker decides in each step, based on a given edge weighting or chosen
uniformly at random, which adjacent vertex to visit next.

Because of the symmetry of the adjacency matrix, the random walk process is
reversible in time

P[Xk = x,Xk+1 = y] = P[Xk = y,Xk+1 = x],
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which implies that the discrete detailed balance condition holds

µ(x)p(x, y) = µ(y)p(y, x). (3.4.3)

In the more general case of a time-continuous reversible process, this property reads as

µ(x)pt(x, y) = µ(y)pt(y, x), (3.4.4)

where (pt(x, y))x,y∈S contains the probabilities to travel from vertex x to vertex y within
time t

pt(x, y) = P[Xt = y|X0 = x].

We may then apply the construction of the MSM process as described in the section
above where we can skip the choice of a lag time since the process is already discrete in
time.

3.4.3 Markov jump processes

Time-continuous Markov jump processes were introduced to overcome the problem of e.g.
long bridges in a graph being identified as highly metastable sets of standard random walks
and therefore as clusters of the graph, despite their simple structure. To reduce the time
a random walker would spend in such parts of a graph, the idea was developed to adapt
the speed of the random walk process according to the number of adjacent vertices. The
less neighbors a vertex has, the quicker the process would leave it, whereas it consumes
more time to make a choice when many adjacent vertices are available. A time-continuous
variant of the random walk approach was necessary to allow for such fluid changes of
speed.

We define a family of random walk processes by its infinitesimal generator

Lp(x, y) =


− 1
d(x)p , x = y
k(x,y)

k(x)d(x)p , x 6= y, (x, y) ∈ E
0, otherwise,

(3.4.5)

where p is a real-valued parameter, k(x, y) are non-negative edge weights and k(x) is short
for ∑y k(x, y), the sum of weights of all edges incident to x. It is called a generator,
because the whole family Pt of transition matrices containing the possibilities to switch
from one state to another within a certain time t ≥ 0 can be generated by

Pt = exp(tLp).

Since the waiting time of a vertex x, the average time it takes a random walk process
defined by Lp to leave x when starting from there, is proportional to d(x)p, the choice
of p allows us to control the significance of vertex degrees on the speed of the process.
The higher p is set, the quicker does a random walker leave loosely connected sets such as
bridges and the more emphasis is put on highly connected metastable regions.
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The invariant measure of a Markov jump process (Xt) defined in such a way is

µ(x) = 1
Z
d(x)pk(x),

where Z = ∑
x∈S d(x)pk(x) is just a normalization constant to guarantee that the non-

negative entries of µ sum up to one, such that µ is a unique probability measure. We
can now easily prove that the detailed balance condition 3.4.4 holds for the jump process
defined by the generator Lp since

µ(x)Lp(x, y) = µ(y)Lp(y, x), x = y

µ(x)Lp(x, y) = 0 = µ(y)Lp(y, x), x 6= y ∧ (x, y) 6∈ E

µ(x)Lp(x, y) = 1
Z
d(x)pk(x) k(x, y)

k(x)d(x)p = k(x, y)
Z

= k(y, x)
Z

= 1
Z
d(y)pk(y) k(y, x)

k(y)d(y)p = µ(y)Lp(y, x), x 6= y ∧ (x, y) ∈ E.

We can conclude that the Markov jump process (Xt) is reversible and that its generator
Lp is a self-adjoint operator on the space L2

µ and therefore has real-valued eigenvalues
featuring orthonormal eigenvectors. Moreover, for any connected, non-bipartite graph,
the largest eigenvalue is zero and has multiplicity one, such that the spectrum looks like

0 = Λ0 > Λ1 ≥ · · · ≥ Λm. (3.4.6)

There is an immediate connection to the properties of an embedded snapshot processes.
For any fixed time τ > 0 the discrete process (Xnτ ), n ∈ N is a reversible Markov chain
and has the transition matrix P = exp(τLp) with eigenvalues λi = exp(τΛi) which can be
ordered in the same fashion

1 = λ0 > λ1 ≥ · · · ≥ λm.

We want to highlight two possible choices for p and k which let us gain valuable
insight into the connection between these Markov jump processes to standard random
walk processes and their advantages over the discrete version. When we choose p as one
and k(x, y) = a(x, y), where a(x, y) are the entries of the adjacency matrix A such that
k(x) = d(x), the generator simplifies to

L(x, y) =


− 1
d(x) , x = y
1

d(x)2 , x 6= y, (x, y) ∈ E
0, otherwise.

Then, the waiting time for each vertex is equal to its degree and the invariant measure is
given as µ(x) = 1

Z d(x). Since all edges are weighted uniformly, the adjacent vertex the
process goes next is chosen uniformly at random. Therefore, the embedded Markov chain
for τ = 1 is the standard random walk process from Section 3.4.2.

We noted already, that we can run into problems with our standard random walk
approach such that the spectral gap is sometimes hard to spot and near-one eigenvalues
lead to the identification of loosely connected subgraphs as clusters. With the time-
continuous random walk approach we can overcome these downsides. Let us anticipate
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an idea we will analyze in detail when we look at symmetrization methods in the next
chapter, bibliometric similarity. This is, we consider two vertices x and y as closely
related the more links to other vertices they have in common, expressed by the scalar
product 〈ax, ay〉 of the x-th and y-th rows of the adjacency matrix. To realize this, let
p = 1 and k(x, y) = a(x, y) · (1 + 〈ax, ay〉).

The probability to jump from vertex x to vertex y is no longer identical for any neighbor
of x, but depends on the similarity of the neighborhoods of x and y. This increases the
likelihood that two vertices which are elements of the same highly connected subset of S
are grouped together by clustering algorithms employing this time-continuous approach.
One such method, presented in [23], is highlighted in the next section.

3.4.4 Soft clusterings

In general, the clusters do not form a full partition of the whole state space. There might
be vertices which clearly belong to a cluster, while others are part of intersections, bridges
or operate as hub vertices between several clusters. The normalized eigenvectors often
feature nearly constant sections, which can be clearly related to a metastable set and
rather fluctuating parts, where an assignment is difficult.

To address these obstacles, a technique was developed which does not construct a full
decomposition of the state space directly, but identifies clear ‘core’ clusters first, which
shall be called modules and includes soft assignment functions on the remaining vertices,
allowing for a more detailed description of a graph’s cluster structure. The idea of a ‘soft
clustering’ or ‘fuzzy decomposition’ was already mentioned in the early eighties [3], the
concept presented here was recently introduced in [23].

Figure 3.5: Soft clustering of an undirected graph. Single-colored red, green or blue vertices
were identified as full members of modules, mixed-colored vertices show affiliation to more
than one module.

Again, we want modules to be subsets of the state space which are quickly entered
but difficult to leave by a random walker, but this time they do not need to form a
full partition of the state space. That is, we first need to separate the modules, which
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correspond to metastable sets of the transfer operator associated to the random walk
process. Second, we reduce the process to the part of the state space containing the
modules using a special milestoning process. Third, a full decomposition of the reduced
process by standard Markov state modeling grants us modules of the original process.
Then we apply committor functions as introduced in Section 3.3.1 as soft assignment
functions interpreted as probability for a given vertex to belong to a certain module.

Identifying the module ensemble

Assume, we could control the metastable behavior of a process by some free parameter to
design a slightly more metastable version of the original process. Then we calculate the
stationary distribution of this altered process and propagate it a small time step using the
transfer operator of the original process. We could then identify the ‘attractive’ part of the
state space by comparing the calculated density function to the stationary distribution.

Using the recently developed approach outlined in Section 3.4.3, we can implement this
heuristic by taking the invariant measure µ∗ of a time-continuous random walk process
generated by the generator L0 defined according to 3.4.5, such that waiting times are
uniform and the process no longer adapts its speed depending on vertex degrees. This
function now serves as the initial distribution of a process generated by L1, whose transition
matrix for a fixed lag time τ > 0 is given as Pτ = exp(τL1). We hereby increase the
attractiveness of metastable sets of the random walk process and watch the impact on the
stationary distribution. The vertices which accumulate more density upon the incitement
of metastable behavior form the module ensemble

M τ = {x ∈ S|(P Tτ µ∗)(x) > µ∗(x)}.

This way, we may now exploit the relation between the lag time and the timescales at
which the process enters the modules. By shifting τ , we can control how metastable a
set of vertices has to be in order to be part of M τ . When the spectrum of the generator,
ordered as in 3.4.6, shows a clear spectral gap after eigenvalue Λm, we can ensure that
the metastable sets corresponding to the dominant eigenvalues are taken into account by
setting the gap time according to 1/|Λm| > τ > 1/|Λm+1|.

Decomposing the module ensemble

Our next step is to reduce the process to the set M τ , using a special kind of committor
functions with respect to a total clustering of M τ , where every vertex y of M τ is regarded
as a cluster on its own. Then we create a full decomposition using standard Markov state
modeling and identify the obtained clusters as core clusters of the original process. As
we have chosen τ such that M τ contains the metastable sets corresponding to certain
dominant eigenvalues, we know the number of desired clusters in advance, facilitating the
decomposition.

In accordance with Section 3.3.1, we consider committor functions qy(z) containing the
probabilities for each vertex y inM τ and each vertex z of the whole state space V , that the
random walk process, when starting in z, hits y on its first entrance into M τ . These can
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be calculated by solving sparse linear systems, which can be done efficiently in the sense,
that the computational effort is usually dominated by the subsequent full decomposition
of the reduced process [23].

With these special committors at hands, the reduced process can be defined by setting
the entries of its transition matrix for any x, y ∈M τ to

P̂τ (x, y) =
∑
x∈V

P (x, z)qy(z).

In simple words, the reduced process skips any movement outside the module ensemble
and immediately jumps back to a vertex in M τ according to the probabilities to go there
via an ordinary path in the original graph.

As long as the random walker does not leave the set M τ it behaves exactly the same as
under the dynamics of the original process, since the committor functions qy(z) are equal
to δyz whenever z is inside the module ensemble and thus P̂τ (x, y) = P (x, y) ∀x, y ∈M τ .
Due to this, it seems reasonable to assume, that a full decomposition C1, . . . , Cm of the
subgraph induced by M τ under the dynamics of the reduced process, corresponds to core
clusters of the original graph.

Now, as our goal was to construct a soft clustering, we would like to answer the question,
how high the affiliation of the vertices outside the module ensemble is to each of the
identified modules. More precisely, we want to state the probability of each vertex to
belong to one of the clusters, such that these numbers add up to one. Here, we employ
committor functions again, yet this time with respect to the clustering C1, . . . , Cm. These
affiliation functions q1(x), . . . , qm(x) necessarily satisfy the constraints qi(x) = 1 ∀x ∈ Ci
and qi(x) = 0 ∀x ∈M τ \ Ci by construction.

Unlike a full decomposition, the fuzzy decomposition yields core clusters only, corre-
sponding to the most metastable sets of the time-continuous random walk process. This
can be an advantage, when a graph has a large transient region where vertices are easily
mis-assigned The affiliation functions contain much more information about the remaining
vertices than a binary assignment to one of the clusters. If the desired application requires
a minimization of unassigned vertices, the clusters can be enlarged with little effort by
selecting a threshold value 0 < ε < 0, 5 and accepting additional vertices into a cluster
when their affiliation towards it is high enough. Depending on the tolerance ε, we receive
a new clustering Cε = {C̃1, . . . , C̃m} by selecting the new sets according to

C̃i := {x ∈ V |qi(x) > 1− ε}.

This method can even be generalized to obtain a full decomposition again by choosing

C̄i := {x ∈ V |qi(x) ≥ qj(x) ∀j = 1, . . . ,m},

yet uniqueness can only be assured when every vertex is most affiliated to exactly one
cluster, such that ties are excluded.

Unfortunately, this procedure can not be generalized to directed graphs in a straight-
forward manner, for the transfer operators associated to random walks on directed graphs
are not reversible in general and even the existence of real eigenvalues can not be guaran-
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teed. Therefore, we will take a closer look at clustering methods specifically designed for
directed graphs and ways of symmetrizing directed graphs in the next chapter.
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4 | Clustering directed graphs

4.1 Non-reversible transfer operators

One open question about analyzing directed graphs is how to define modules and hubs
in the sense of directed networks. There are several known techniques based on the idea
of tracing back to the identification of modules in undirected graphs by simply ignoring
the directions of the edges or by constructing a self-adjoint transfer operator from the
two non-self-adjoint transfer operators associated to the forward and backward running
random walker processes. Such approaches shall be further described in the upcoming
sections.

However, whether or not these sets are indeed representing functional units or impor-
tant sections of the underlying system depends on the desired application.

What keeps us from using the known MSM approaches on directed graphs is the non-
reversibility of a random walk process, which implies non-self-adjointness of the associated
transfer operator and thus non-real eigenvalues in the spectrum of the transition matrix.

Figure 4.1: An example of a directed graph with self-loops, depicting the cell cycle network
in budding yeast [43].
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4.2 Non-spectral approaches

4.2.1 Cuts for directed graphs

Many clustering criteria can be formulated as some kind of weighted cut minimization,
some of which seek to minimize the combined normalized cut of all clusters. We define
the normalized cut of a subset S ⊂ V by

NCut(S) =
∑
i∈S,j 6∈S A(i, j)∑
i∈S deg(i) +

∑
i∈S,j 6∈S A(i, j)∑
j 6∈S deg(j) , (4.2.1)

where A is the symmetric adjacency matrix of an undirected graph. If (Xn)n∈N is a
standard random walk process on the graph in the spirit of Section 3.4.2, this coincides
with the probability to leave the set S ⊂ V or enter it from the complementary SC = V \S
within one time-step when starting in the stationary distribution [68]

NCut(S) = P(Xn+1 6∈ S|Xn ∈ S)
P(Xn ∈ S) + P(Xn+1 ∈ S|Xn 6∈ S)

P(Xn 6∈ S) .

This can be extended to directed graphs using the concept of random walks via the
transition matrix P and its associated stationary distribution π. When the process is
distributed according to π, the drain of density from vertex i to vertex j via the directed
edge −→ij is given by π(i)P (i, j), so we may write

NCutdir(S) =
∑
i∈S,j 6∈S π(i)P (i, j)∑

i∈S π(i) +
∑
i∈S,j 6∈S π(j)P (j, i)∑

j 6∈S π(j) . (4.2.2)

We wish to further generalize that concept by introducing an arbitrarily weighted
directed cut measure such that we can later identify certain clustering objectives as special
cases of cut minimization problems, which can be solved by standardized algorithms both
with or without spectral methods.

This weighted class of cut measures is due to Meila et al. [50]

WCut(S) =
∑
i∈S,j 6∈S T

′(i)Ã(i, j)∑
i∈S T (i) +

∑
i∈S,j 6∈S T

′(j)Ã(j, i)∑
j 6∈S T (j) .

The introduction of three parameters, namely the vectors T , T ′ and the matrix Ã, offers a
lot of flexibility. Both NCut and NCutdir can be recovered from WCut by choosing these
parameters appropriately. To restore formula 4.2.1, choose T ′ = 1, (T (x)) = (deg(x)) and
Ã = A or set T ′ = T = π and Ã = P to restore formula 4.2.2.

4.2.2 Symmetrizations

In the following, we discuss an approach from Satuluri et al. [68] to cluster a directed
graph, based on symmetrizing its adjacency matrix and then using an arbitrary clustering
procedure designed for undirected graphs, such as those presented in Chapter 3. To this
end, let A be the adjacency matrix of a given directed graph, unsymmetrical in general,
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whose non-zero entries are perceived as a weighting on the corresponding edges. The
goal is to construct a symmetric matrix U of the same size, the adjacency matrix of an
undirected graph, inheriting the cluster structure of the original graph.

One of the simplest attempts, U = A+AT , adds up the weights of the arcs −→uv and −→vu,
merging them into one undirected edge uv. If we ignore weightings altogether and simply
focus on existence or non-existence of an edge, this approach simplifies to abandoning the
orientation of the arcs. While this idea might seem quite plain, we will find later that some
other, more sophisticated symmetrization techniques lead to the same non-zero-structure,
but with different weights.

One symmetrization technique of particular interest to us, preserves the NCut of any
vertex set S, in the sense that NCutdir(S) in the original directed graph is equal to NCut(S)
in the undirected graph given by adjacency matrix

U = ΠP + P TΠ
2 .

Here, P is the transition matrix of the forward random walk according to 4.4.11 and
Π is the diagonal matrix, where the main diagonal entries, regarded as a vector, are
the stationary distribution of P . This way we can trace back the problem of finding
a NCutdir-minimizing clustering of a directed graph to the already familiar problem of
finding a NCut-minimizing clustering of an undirected graph. Note however, that since
P is obtained by normalizing the rows of A and Π is a diagonal matrix, the undirected
matrix U computed this way has the same non-zero structure as A+AT and will therefore
be subject to the same drawbacks, depending on what kind of result we expect from our
clustering method [35].

The authors of a recent paper claim, that the usual concept of clusters as densely
connected vertex sets in a graph is not appropriate to cover categories of ‘similar’ vertices
in many real-life applications of directed graphs [68]. As highlighted in Section 3.1 common
linking behavior of two vertices might tell more about their similarity in certain contexts
than an edge or a short directed path connecting them. This thought led to the bibliometric
symmetrization U = AAT +ATA, a compromise respecting both the bibliometric coupling
B = AAT introduced by Kessler [38] and the co-citation C = ATA due to Small [74]. While
B(u, v) gives the number of vertices both u and v point to, C(u, v) counts the number of
vertices which point to both u and v.

The practical implementation revealed a flaw in the bibliometric symmetrization caused
by the fact that vertex degrees are not accounted for. Hub vertices with exceedingly high
degree tend to share many links with other vertices simply because of the sheer number of
incident edges. Therefore, many vertices can show similarity to these hubs leading to their
relative overvaluation and a dense similarity structure. In order to counter computational
overhead, low non-zero entries of U are usually truncated in practice, yet we face the
dilemma that, due to the high value assigned to hub vertices, a low threshold would not
affect sufficiently many entries while a high threshold might delete similarities which are
considered important, whereas rows representing a hub keep a lot of entries. Satuluri et al.
[68] opposed this inherent flaw by designing a degree-discounted version of the bibliometric
symmetrization

U = D
−1/2
out AD

−1/2
in ATD

−1/2
out +D

−1/2
in ATD

−1/2
out AD

−1/2
in ,
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Figure 4.2: Clustering based on common linkage behavior.
The two vertices in the second line are pointing at the same vertices and both have an incoming
arc from the vertex above. The bibliometric symmetrization identifies them as highly similar,
even though they are not directly connected.

where Din and Dout are diagonal matrices containing the in- and out-degrees of all vertices
on their main diagonals. The more incident edges a vertex has, the less value is assigned
to a common link with another vertex. This degrades big hubs, such that a wisely chosen
threshold yields a sparse matrix, holding computational effort at bay, while vertices sharing
a considerable ratio of their links are identified as highly similar.

Beside offering the possibility to choose a similarity measure more appropriate to ci-
tation networks and other such data sets, the symmetrization phase is independent from
the algorithm used to identify clusters in the symmetrized matrix and thus allows the user
to combine it with his clustering algorithm of choice. Some applicable methods to cluster
undirected graphs were presented in the preceding chapter.

(a) (b) (c)

Figure 4.3: An example motivating degree-discounted bibliometric symmetrization.
a: A directed graph featuring a dedicated hub vertex – vertex 16
b: Undirected graph obtained by bibliometric symmetrization after truncation
c: Properly truncated graph resulting from degree-discounted symmetrization
Due to the lower value assigned to hub connections, truncation eliminates insignificant edges
to the hub vertex in the graph obtained from degree-discounted symmetrization, whereas a
higher threshold would cause the extinction of all edges in the undiscounted case.
Note: Edge weightings were omitted in favor of clearness. Weights were chosen constantly
equal to 1 in the original directed graph and are almost uniform in the symmetrized graphs
after truncation.
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Figure 4.4: Two drawings, each depicting three eigenvectors corresponding to the dominant
eigenvalues of the transfer operators of random walks on graphs 4.3b and 4.3c respectively.
Though barely visible in the process induced by standard bibliometric symmetrization (a), the
piece-wise constant eigenvectors obtained after degree-discounted symmetrization illustrate
the cluster structure of the original graph notably clearer (b).

4.3 Evaluating clusterings

As we discussed before, it is highly debatable, context-sensitive and user dependent, what
kind of result is desired of a clustering algorithm. So in order to evaluate the quality of
clustering methods in an impartial manner, an objective clustering based on some natural
categorization or an arbitrary handmade assignment is needed.

We want to present three methods of evaluating clusterings of finite networks based on
their deviation from the objective clustering, namely the clustering error [79], the variation
in information [49] and the F-measure [68].

4.3.1 Clustering error

The clustering error counts the number of ‘misclassified’ vertices. The matrix
Confusion(k, k′) = |Ck∩C ′k′ | contains the number of points that are assigned to cluster k in
the objective clustering C = C1, . . . , Cm and to cluster k′ of the clustering C′ = C ′1, . . . , C

′
m

to be evaluated. Necessarily, the number of clusters must be the same for both clusterings.
We may then define

CE(C, C′) = 1
|V |

∑
k

∑
k′ 6=k

Confusion(k, k′)

 .
Note that two clusterings which are identical up to a permutation of their indices would
receive a very bad rating just because a cluster would not be recognized if its index is not
the same for both clusterings. Therefore, the minimum over all possible relabellings is
usually taken as the actual clustering error. As the number of clusters is usually much
smaller than the total number of vertices, the necessary count of iterations does not have
a significant impact on the computational effort.
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4.3.2 Variation of information

To define this measure derived from information theory, we must explain two key notions
that were first introduced by Claude E. Shannon in 1948 [73]. C = C1, . . . , Cm and
C′ = C ′1, . . . , C

′
m′ are clusterings, nk gives the size of Ck and we introduce P (k) := nk/|V |,

the formal probability to select a vertex in cluster Ck when choosing a vertex uniformly
at random. We define n′k := |C ′k|, P ′(k) := n′k/|V | in analogy and finally the formal
probability that a uniformly chosen vertex is a member of cluster Ck and cluster C ′k at
the same time

P (k, k′) := |Ck ∩ C
′
k′ |

|V |
.

These abstract probabilities allow us to express two important things. First, we can
assess the amount of information contained in one clustering in the sense of how many
possibilities there are to distribute vertices among the clusters. A trivial clustering con-
sisting of only one cluster equal to the whole vertex set contains no information at all, for
we know in advance that all vertices are members of the same cluster and therefore no
information is encoded in the cluster-membership of vertices. The more clusters a clus-
tering consists of and the more balanced their sizes are, the more possibilities there are
to distribute vertices among the clusters and thus, the amount of information encoded in
such a clustering is higher.

Second and more importantly, we are now able to define how much information two
given clusterings share, i.e. the amount of information contained in both clusterings. The
similarity of two clusterings can be expressed by the ratio of information they share and
conversely the distance between two clusterings can be defined via the amount of unknown
information they still contain, when we know nothing but the information they share. This
is what the following definitions express formally.

Definition 30. The entropy of a clustering C = C1, . . . , Cm is defined as

H(C) = −
m∑
k=1

P (k) logP (k)

and measures the information contained in the partition given by C. The mutual infor-
mation

I(C, C′) =
m∑
k=1

m′∑
k′=1

P (k, k′) log P (k, k′)
P (k)P ′(k′)

assesses the amount of shared information contained in both clusterings C and C′. Given
these, we may regard the variation of information as the amount of information con-
tained in either, but not mutually contained in both clusterings

VI(C, C′) = H(C) +H(C′)− 2I(C, C′).

When it comes to evaluating the output of a clustering algorithm or compare the
results of two similar methods, usually ground truth data is available, providing a native
clustering of a given network which should ideally be recreated by a clustering algorithm.
It would stand to reason to measure the quality of a clustering by its clustering error or
its variation of information with respect to the native clustering. As an example, Meila
and Pentney [50] have employed both methods to analyze the results of their BestWCut
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algorithm to reason its superiority in comparison to other approaches.

4.3.3 F-measure

Satuluri et al. present another evaluation method called F-measure based on the notion
of precision and recall [68]. Let C = C1, . . . , Cm be some clustering to be evaluated with
respect to the ground truth clustering C′ = C ′1, . . . , C

′
m. First, we define the precision

and recall of a cluster Ci against a ground truth cluster C ′j by

Prec(Ci, C ′j) :=
|Ci ∩ C ′j |
|Ci|

and Rec(Ci, C ′j) :=
|Ci ∩ C ′j |
|C ′j |

.

Second, we define F (Ci, C ′j) as the harmonic mean of precision and recall. That is

F (Ci, C ′j) :=
2 ∗ Prec(Ci, C ′j) ∗ Rec(Ci, C ′j)

Prec(Ci, C ′j) + Rec(Ci, C ′j)
.

Third, we set the F-measure of a cluster Ci as F (Ci) := maxj F (Ci, C ′j), since we do not
know in advance which cluster in the objective clustering is best represented by cluster Ci
and we want the measure to be independent of index permutations. Finally, the F-measure
of the clustering C is chosen as a size-weighted average of the F-measures of its clusters

F (C) :=
∑
i |Ci| ∗ F (Ci)∑

i |Ci|
.

This measure features several desirable treats due to its subtle definition. A perfect
rating of 1 can only be assumed by the objective clustering itself. Additionally, a naive
clustering where each vertex is identified as a cluster would yield highest possible precision,
but very low recall values, unless the objective clustering is highly fragmented, and a naive
clustering consisting of just one cluster containing the whole state space would yield perfect
recall but, in general, low precision values. Both would end up with a modest F-rating,
as the harmonic mean of a ‘very high’ and a ‘very low’ number is close to the ‘very low’
number. Even if the objective clustering has some lone vertices that form clusters on
their own, which are perfectly matched by a naive clustering, these would not have a large
impact on the overall rating due to the size-based weighting of clusters. Thus, in order
to receive a good F-rating, a clustering must resemble the level of fragmentation of the
objective clustering.

4.3.4 Milestoning process

Another way to assess the quality of a clustering uses a random walk based approach
presented in a recent publication [23]. The basic idea is to check how well the original
process can be approximated by a coarse-grained version of itself, where every cluster is
represented by a single vertex and the transient part of the state space is omitted.

Given a reversible Markov process (Xt), the unique invariant measure µ and a clustering
C = C1, . . . , Cm of the state space, we use the stopping time σ(t) = sup

s≤t
{Xs ∈

⋃m
k=1Ck}
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to define the milestoning process (X̂t) by X̂t = i ⇐⇒ Xσ(t) ∈ Ci.

Let T : L2
µ → L2

µ be the transfer operator associated to (Xt) with

(Tf)(y)µ(y) =
∑
x

p(x, y)f(x)µ(x)

and q−i , i = 1, . . . ,m be the backward committors related to T as defined in Section 3.3.1.
Then, the invariant measure µ̂ of the milestoning process may be given in terms of com-
mittors of the original process by

µ̂(i) = Pµ(X̂n = i) =
∑
x∈S

Pµ(X̂n = i,Xn = x) =
∑
x∈S

q−i (x)µ(x).

In order to evaluate the quality of our clustering, we compare how probability densities
are propagated by the random walk and the milestoning process. Let P be the L2-
representation of T given by P = J−1TJ , where J : L2 → L2

µ is the linear transformation

(Jf̃)(x) = f̃(x)√
µ(x)

= f(x).

We may then define L2-representations q̃+
i = J−1q+

i and q̃−i = J−1q−i of the forward
and backward committors related to T and orthogonal projections Q1 and Q2 onto the
subspaces D1 = span{q̃+

1 , . . . , q̃
+
m} and D2 = span{q̃−1 , . . . , q̃−m} by

Q1v =
m∑

i,j=1
S−1
ij (v, q̃+

j )q̃+
i and Q2v =

m∑
i,j=1

R−1
ij (v, q̃−j )q̃−i ,

with matrices Sij = (q̃+
i , q̃

+
j ) and Rij = (q̃−i , q̃−j ).

Now we can give a formula for the maximal possible error after k time-steps between
the original and the coarse-grained process under the assumption that both were initially
equally distributed by

E(k) = ||Q1P
kQ2 − (Q1PQ2)k||.

In the case of a sufficiently ergodic time-continuous process approximated by a Markov
state model (MSM) process based on a hard clustering of the state space, Satuluri et al.
were able to give an upper bound for E(k) [65].

Remember that reversible Markov processes feature some very desirable properties.
The associated semi-group of transfer operators (Tt) is self-adjoint in L2

µ and due to the
reversibility of the process, forward and backward committors as defined in Section 3.3.1
coincide qi(x) := q+

i (x) = q−i (x). In this case, as the clustering is a full partition of the
state space, the committor functions are merely characteristic functions of the clusters
qi(x) = χCi(x). Therefore, the orthogonal projections Q1 and Q2 in the sense of mile-
stoning processes are identical, projecting onto the m-dimensional space spanned by step
functions Dm = span{χC1(x), . . . , χCm(x)}.

We find that the projected transfer operator QTτQ : Dm → Dm is a linear operator
on a finite-dimensional space and its matrix representation with respect to the basis (ψi)
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given by
ψi = χCi

µ(Ci)
is a familiar sight:

QTτQψi = QTτψi =
m∑
j=1

〈Tψi, χCj 〉
µ(Cj)

χCj =
m∑
j=1

〈TχCi , χCj 〉
µ(Ci)

ψj

=
m∑
j=1

(∫
Ci

P[Xτ ∈ Cj |X0 = x]dµ(x)
)
ψj =

m∑
j=1

Pµ[Xτ ∈ Cj |X0 ∈ Ci]ψj .

So we conclude that a matrix representation of the projected transfer operator is given
by the transition matrix P̃ of the MSM process as defined in Section 3.4 and therefore we
may now give a simpler formula for the approximation error by

E(k) = ||QT kτ Q− (QTτQ)k|| = ||QT kτ Q− P̃ k||.

While we do not wish to go into full detail on the error estimation, which has been
covered by Sarich et al. [65], we content ourselves with the key result, that the maximal
possible error decays exponentially and that the leading constant, though also depending
on the spectral gap, can be made smaller than any tolerance by selecting C1, . . . , Cm and
the lag time τ appropriately. While these results can be generalized to some non-reversible
processes which are sufficiently ergodic and have a dominant part of T that is nearly self-
adjoint [23], an error estimation applicable to all non-reversible processes is still open.

4.4 Random walk clustering

The generalization of the random walk approach from the previous chapter to directed
graphs does not work in a straightforward manner, because a standard random walk
process respecting the direction of arcs cannot be reversible except for trivial cases. Non-
reversible processes do not possess self-adjoint transfer operators in general, which do not
have a real-valued spectrum in consequence. When we learn how eigenvectors correspond-
ing to complex eigenvalues are related to metastable sets of the random walk process, new
clustering methods might be developed exploiting these relations. Up to now, we have
no proof that there is any such relation and therefore recent attempts of random walk
based clustering algorithms for directed graphs focus on assembling a self-adjoint transfer
operator applicable for Markov state modeling from the transfer operators associated to
forward and backward running random walk processes. Here, an approach developed by
Nataša Ðurđevac shall be presented [23].

Let us start by considering two Markov processes (Xt) and (Yt) on a continuous state
space S, that do not necessarily represent forward and backward running random walkers.
Unless otherwise stated, the index parameter i shall be an element of {1, 2}. Let
pi : V ×V → [0, 1] be the associated transition functions of the above mentioned processes
and let two positive measures µi satisfy

µ2(y) =
∫
p1(x, y)µ1(x)dx and µ1(y) =

∫
p2(x, y)µ2(x)dx.
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Then, let us define two scalar products

〈f, g〉i =
∫
f(x)g(x)µi(x)dx

in Hilbert spaces determined by these scalar products Hi = L2
µi and finally two transfer

operators

(T12f)(y)µ2(y) =
∫
p1(x, y)f(x)µ1(x)dx and (T21f)(y)µ1(y) =

∫
p2(x, y)f(x)µ2(x)dx.

We would like to find representations of these operators in L2. For simplicity, we
introduce two linear transformations

Ji : L2 → Hi, gi = Jig, (Jig)(x) = g(x)√
µi(x)

.

These transformations preserve the respective norms of Hi:

||g||2 = (g, g) = (J−1
i gi, J

−1
i gi) =

∫
gi(x)2µi(x)dx = 〈gi, gi〉i = ||gi||2i .

Here and onwards, (·, ·) shall denote the standard scalar product of L2.

Both operators are compatible with the unit measure of their respective spaces
T211 = 1, T121 = 1. Additionally, they possess representations in L2, such as

(P21f)(y)
√
µ1(y) =

∫
p2(x, y)f(x)

√
µ2(x)dx,

satisfying the equations

〈g1, T21f2〉1 =
∫ ∫

g(y)p2(x, y)√
µ1(y)

f(x)
√
µ2(x)dxdy = (g, P21f) (4.4.1)

and
〈T12g1, f2〉2 = (P12g, f) (4.4.2)

respectively. We may give these representations in the kernel form

(P21f)(y) =
∫
π21(x, y)f(x)dx,

where π21 is the kernel given by

π21(x, y) =
√
µ2(x)
µ1(x)p2(x, y).

In terms of the linear transformations introduced above, we may express the represen-
tation P21 of T21 as

(g, P21f) = 〈g1, T21f2〉1 = (J−1
1 g1, J

−1
1 T21f2) = (g, J−1

1 T21J2f)

and thus
P21 = J−1

1 T21J2. (4.4.3)
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In analogy we get 〈T12g1, f2〉2 = (P12g, f) and

P12 = J−1
2 T12J1 (4.4.4)

for P12, the L2-representation of T12.

4.4.1 Extended detailed balance condition

Now we have the means to prove an extension of the detailed balance condition for time-
reversible Markov processes. Later we will see that it coincides with the original formula-
tion when the considered transfer operators are equal, i.e. when they are associated to a
time-reversible process running forward or backward in time.

Theorem 4.4.1. Operators P12 and P21 are adjoint in L2 with standard scalar product if
and only if

µ1(x)p1(x, y) = µ2(y)p2(y, x)

is satisfied.

Proof. Consider P21 and P12 in their kernel forms. Then (P12f, g) = (f, P21g) is equivalent
to π12(x, y) = π21(y, x) and thus equivalent to the condition above.

For time-reversible processes, the formula occurring in the theorem reduces to the
standard detailed balance condition 3.4.3, stating that the associated transfer operator
is self-adjoint. There are examples of non-reversible processes which fulfill the extended
detailed balance condition none the less.

Let us now assume that the extended detailed balance condition is satisfied. Due to
(4.4.1), (4.4.2) and the adjointness of P21 and P12 it is evident that

〈T12f1, g2〉2 = 〈f1, T21g2〉1 (4.4.5)

and
〈T21f2, g1〉1 = 〈f2, T12g1〉2. (4.4.6)

Using these operators we construct an operator suitable for our MSM approach.

Theorem 4.4.2. The operator T = T21T12 : H1 → H1 is self-adjoint on H1.

Proof. For any f, g ∈ L2 with f1 = J1f ∈ H1 and g1 = J1g ∈ H1 we also have T12f1 ∈ H2
and T12g1 ∈ H2. Using (4.4.5) and (4.4.6) we have

〈f1, T g1〉1 = 〈f1, T21T12g1〉1 = 〈T12f1, T12g1〉2 = 〈T21T12f1, g1〉1 = 〈T f1, g1〉1.

In analogy B = T12T21 : H2 → H2 is self-adjoint as an operator on H2.
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4.4.2 Singular value decomposition

We will now restrict ourselves to discrete state spaces for simplicity. Then the self-adjoint
operator T can be written as

T = T21T12 =
∑
k

λ2
k〈·, φk〉1φk,

where {φk} are orthonormal eigenvectors of T with respect to 〈·, ·〉1 corresponding to
eigenvalues λ2

k, so
T φk = T21T12φk = λ2

kφk.

Now we introduce ψk = λ−1
k T12φk, such that

〈ψk, ψl〉2 = λ−1
k λ−1

l 〈T12φk, T12φl〉2 = λ−1
k λ−1

l 〈φk, T21T12φl〉1 = λ−1
k λl〈φk, φl〉1 = δkl.

So {ψk} are orthonormal with respect to 〈·, ·〉2. But furthermore, they are eigenvectors of
B = T12T21 corresponding to eigenvalues λ2

k, as we may easily check

Bψk = T12T21ψk = λ−1
k T12T21T12φk = λ−1

k λ2
kT12φk = λkT12φk = λ2

kψk

Now we can write the so called dispersion relations for transfer operators T12 and T21

T12φk = λkψk, T21ψk = λkφk. (4.4.7)

Without a proof we will also use these singular value decomposition of the two transfer
operators given by

T12 =
∑
k

λk〈·, φk〉1ψk and T21 =
∑
k

λk〈·, ψk〉2φk. (4.4.8)

We will use our newly gained knowledge to find a matrix representation of our transfer
operators in L2. To do so, the linear transformations introduced in the last section will
come in handy. Let us define the vectors {φ̂k} and {ψ̂k} by

φ̂k = J−1
1 φk and ψ̂k = J−1

2 ψk.

Now using (4.4.4) and the dispersion relation for T12 (4.4.7) we get

T12φk = J2P12J
−1
1 J1φ̂k = J2P12φ̂k = λkJ2ψ̂k.

That is P12φ̂k = λkψ̂k and in analogy P21ψ̂k = λkφ̂k. Therefore, we may formulate
dispersion relations for P12 and P21 very similar to those above

P12φ̂k = λkψ̂k and P21ψ̂k = λkφ̂k. (4.4.9)

As J1 and J2 are linear transformations preserving their respective norms, {φ̂k} and {ψ̂k}
are sets of orthonormal vectors in L2.

We are now close to finding a matrix representation of P12. We use (4.4.4) and (4.4.8)
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to provide a bi-orthogonal decomposition of P12 in L2 by

P12f = J−1
2 T12J1f =

∑
k

λk〈J1f, φk〉1J−1
2 ψk =

∑
k

λk(f, J−1
1 φk)ψ̂k =

∑
k

λk(f, φ̂k)ψ̂k,

and in analogy
P21f =

∑
k

λk(f, ψ̂k)φ̂k.

Using P12 = P T21, the dispersion relation for P12 (4.4.9) and the insight that {ψ̂k} are
normed, we find that P T21φ̂k = λkψ̂k and thus φ̂Tk P T21φ̂k = λk.

Let us define φ̂ = [φ̂1 . . . φ̂n] as the matrix which has φ̂i as its i-th column and similarly
ψ̂ = [ψ̂1 . . . ψ̂n], then we get

ψ̂TP12φ̂ = D,

where D = diag(λi) is the diagonal matrix (Dij) given by Dii = λi.

Using the invertibility of φ̂ and ψ̂ due to the orthogonality of their columns and that
(ψ̂k, ψ̂l) = δkl = (φ̂k, φ̂l) we finally receive matrix representation of P12

P12 = (ψ̂T )−1Dφ̂−1.

In analogy we get P21 = (φ̂T )−1Dψ̂−1.

4.4.3 Coarse graining

Let us now focus on one of the two non-reversible processes we have discussed above, for
example (Xt) and assume that this process has an unique invariant measure µ. Then, we
introduce the transfer operator T : L2

µ → L2
µ, with

(Tf)(y)µ(y) =
∑
x

p(x, y)f(x)µ(x).

For a linear transformation

J : L2 → L2
µ, (Jf̃)(x) = f̃(x)√

µ(x)
= f(x)

arbitrary f̃ , g̃ ∈ L2 and f = Jf̃ , g = Jg̃ ∈ L2
µ, it follows that

〈f, Tg〉µ =
∑
y

f(y)(Tg)(y)µ(y) =
∑
x,y

√
µ(x)√
µ(y)

f̃(y)p(x, y)g̃(x) = (f̃ , P g̃),

where P is the representation of T in L2

(Pf)(y)
√
µ(y) =

∑
x

p(x, y)f(x)
√
µ(x),

which can be written in the typical kernel form

(Pf)(y) =
∑
x

π(x, y)f(x) with π(x, y) =
√
µ(x)√
µ(y)

p(x, y).
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CHAPTER 4. CLUSTERING DIRECTED GRAPHS

Furthermore, from
〈f, Tg〉µ = (J−1f, J−1Tg) = (f̃ , J−1TJg̃), (4.4.10)

we see that
P = J−1TJ.

We will now follow an approach based on MSM and use it in order to find dominant
metastable sets of the observed process (Xt). Let us assume that the state space S contains
m disjoint sets C1, . . . , Cm ⊂ S that do not form a full partition of S in general. Then,
for the process (Xt) with the transfer operator T , we can define the milestoning process
(X̂t) in the following way

(X̂t) = i ⇐⇒ Xσ(t) ∈ Ci, with σ(t) = sup
s≤t

{
Xs ∈

m⋃
k=1

Ck

}
.

Let q+
i and q−i denote forward and backward committors related to T . For backward

committors q−i , let us introduce q̃−i ∈ L2 with q̃−i = J−1q−i , such that for x 6∈ ⋃mj=1Cj

(Tq−i )(x) = (JPJ−1q−i )(x) = (JP q̃−i )(x) = q−i (x) = (Jq̃−i )(x),

where we used that (Tq−i )(x) = q−i (x), for all x 6∈ ⋃mj=1Cj . Therefore, functions q̃−i are
representations of q−i in L2

(P q̃−i )(x) = q̃−i (x), ∀x 6∈
m⋃
j=1

Cj .

Similarly, we define the set of q̃+
i ∈ L2 with q̃+

i = J−1q+
i that are representations of q+

i

in L2.

Theorem 4.4.3. For a time-discrete process (Xn), the entries of the discrete generator
L̃d of the milestoning process (X̃n) are given by

l̃d(i, j) = 1
µ̃(i)(q̃+

j , Ldq̃
−
i ),

where µ̃(i) = ∑
x q̃
−
i (x)

√
µ(x), Ld = P − Id and P is the representation of T in L2.

Proof. The entries l̃d(i, j) are

l̃d(i, j) = 1
µ̃(i)〈q

+
j ,Ldq

−
i 〉µ,

where using (4.4.10) it follows that

〈q+
j ,Ldq

−
i 〉µ = 〈q+

j , (T − Id)q−i 〉µ = (q̃+
j , P q̃

−
i )− (q̃+

j , q̃
−
i ) = (q̃+

j , (P − Id)q̃−i ).

The invariant measure of the milestoning process µ̃ is

µ̃(i) = Pµ(X̂n = i) =
∑
x

Pµ(X̂n = i,Xn = x) =
∑
x

q−i (x)µ(x) =
∑
x

q̃−i (x)
√
µ(x).
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4.4. RANDOM WALK CLUSTERING

4.4.4 Random walk on directed graphs

We will now show how the results of the proceeding sections lead to the construction
of self-adjoint transfer operators eligible for Markov state modeling. In simple terms, we
define forward and backward transfer operators, which describe the propagation of density
functions on the graph under the dynamics of a random walk process running forward or
backward in time. By composing these operators, we gain an operator associated to a
reversible process which emerges from the original process when the directions of the
edges switch persistently.

To this end, define the time-forward random walk, a discrete process on the directed
graph G = (V,E) which chooses uniformly in each step which outgoing arc to follow. Let
dout(x) be the out-degree of a vertex x, the number of directed edges pointing from x to
some other vertices. Then we set the entries of the transition matrix P+ = (p+(x, y))x,y∈V
to

p+(x, y) =
{

1/dout(x), (x, y) ∈ E
0, (x, y) 6∈ E.

(4.4.11)

Assuming that the network has no sources or sinks, P+ is a well-defined stochastic
matrix. In analogy we define the time-backward random walk process by the transition
matrix P− = (p−(x, y))x,y∈V with entries

p−(x, y) =
{

1/din(x), (y, x) ∈ E
0, (y, x) 6∈ E,

where din(x) is the in-degree of vertex x. If we perceive an undirected edge as both an in-
and an out-going arc, the forward and backward random walks on an undirected graph
coincide. We can therefore see this as a true generalization of the random walk approach
on undirected graphs.

Let us define the two following probability measures

µ+(x) = dout(x)
vol(G) and µ−(x) = din(x)

vol(G) , (4.4.12)

where vol(G) := ∑
y∈V dout(y) = ∑

y∈V din(y). The extended detailed balance condition
as given in Section 4.4.1 is satisfied as the following conversion shows:

µ+(x)p+(x, y) = dout(x)
vol(G)

1
dout(x) = 1

vol(G) = din(x)
vol(G)

1
din(x) = µ−(x)p−(x, y).

Note however, that µ+ and µ− are in general not stationary distributions with respect to
P+ or P−, but they satisfy

(µ+TP+)(y) =
∑
x∈V

dout(x)
vol(G)

1
dout(x)χE(x, y) = 1

vol(G)din(y) = µ−(y)

and in analogy µ−TP− = µ+.
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With these measures we can define two transfer operators

(T12f)(y)µ−(y) =
∑
x∈V

µ+(x)f(x)p+(x, y) (4.4.13)

and
(T21f)(y)µ+(y) =

∑
x∈V

µ−(x)f(x)p−(x, y) (4.4.14)

and notice that they are adjoint in the sense of Equation 4.4.5

〈T12f, g〉µ− = 〈f, T21g〉µ+ .

Consequently, the composed operator T = T21T12 is self-adjoint and therefore eligible
for Markov state modeling in order to identify core clusters of the directed graph as
metastable sets of the random walk process and assign the remaining vertices in a fuzzy
clustering on the lines of the undirected case. In the next section we will take a closer look
at ways to play out this concept and open questions concerning its direct implementation.

4.5 Module identification in directed graphs

The attempt to generalize the random walk approach to directed graphs presented in the
previous section provided us a self-adjoint transfer operators T . One might be tempted to
use it to construct a clustering of the directed graph by fuzzy MSM in the same way we
would use the unique self-adjoint random walk transfer operator of an undirected graph.
At second glance this is not as straightforward as it appears. Instead of T = T21T12 we
could choose B = T12T21, which is self-adjoint as well, to find a clustering. Why should
we favor one over the other? Can we incorporate both into a unique clustering and would
any of these help us identify modules which correspond to what we expect intuitively?
We want to discuss these matters in this section and conclude with a proposal on how to
cluster directed graphs using a symmetrization step.

We have been looking at clustering methods in the previous sections already and this
might appear to be a late time to question the definition of clusters, but we have seen
several clustering approaches which were designed on different ideas of what clusters are
and hence, how to identify them. In the undirected case the perception of clusters being
highly connected subsets of the vertex set has rarely been in dispute. The colloquial
meaning of the word ‘cluster’, suggests an accumulation of vertices where two connected
vertices are considered to be ‘close-by’. In that sense, the usual definition fits well to
intuition.

In the case of directed graphs however, the generalization of this idea is not as obvious.
We could ignore the direction of arcs altogether and use the same clustering algorithms
as in the undirected case. From a random walk perspective, this causes contradictions to
common expectations. A highly connected subgraph might be directed in a way which
forces a random walker to leave it quickly, but would be identified as a metastable set of a
standard random walk process if we ignore directions, such as in the situation illustrated
by Figure 4.5.

The previous section led us to an operator which takes the direction of edges into
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4.5. MODULE IDENTIFICATION IN DIRECTED GRAPHS

Figure 4.5: A K5 subgraph. Due to the orientation of arcs a random walker would leave it
within a few steps, although it is densely connected.

consideration, yet it might yield odd results as it allows densities to dissipate backwards
through a network. As it seemingly dismisses edge directions, one might question whether
it is appropriate for the construction of clusterings with respect to the special nature
of directed graphs. We substantiate this claim by a simple graph example shown in
Figure 4.6a. The associated random walk transition matrices are

P+ = P− =


0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0

 .
In the spirit of formulas 4.4.12 we introduce the measures

µ+ = µ− = (1/4, 1/4, 1/4, 1/4)T ,

allowing us to calculate T12 and T21. Eventually, we end up with a matrix representation
of T , such that we can write

(T f)(x) =


1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 1/2

 f(x).

From the block structure of the transformation matrix we recognize that T denies any
interaction between the vertex sets {1, 3} and {2, 4}. So, composing a forward step and
a backward step of a random walk in such a way does not only permit traveling arcs in
the wrong direction, but may even consume existing edges and create new ones, leading
to a completely different process as illustrated in Figure 4.6b and conceivably deliver
clusterings which do not resemble the original graph structure at all.

Assuming a strongly connected directed graph, that is any two vertices are connected
in both directions by a directed path, the measures µ+ and µ− are nowhere-zero and
therefore we may rewrite formulas 4.4.13 and 4.4.14 in vector/matrix notation as

T12f = ((µ−)T Id(µ+)−1)(P+)T f and T21f = ((µ+)T Id(µ−)−1)(P−)T f,

where (µ+)−1 and (µ+)−1 denote entry-wise inversion of the two vectors. Then the matrix
representation of T can be simplified to (P+P−)T , as the pre-factors cancel out. Note
that, as T is a self-adjoint operator by construction, its real-valued matrix representation
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(a) Small example of a directed
graph.

(b) Visualization of the dynamics de-
scribed by operator T .

Figure 4.6: An illustration of how the operator T = T21T12 can distort the dynamics of a
random walk process.

is symmetric (P+P−)T = P+P−. This equation can be derived directly from the extended
detailed balance condition as well. This result substantiates the remark above, that the
propagation of density functions by the operator T can be grasped as alternating forward
and backward time-steps of a random walk process.

Consequently, when two vertices x and y are connected by a bi-directional arc, such
as in the example shown in Figure 4.6a, there must be a loop at vertex x in the graph
representation of T since

T (x, x) =
∑
z∈V

p+(x, z)p−(z, x) ≥ p+(x, y)p−(y, x) > 0.

The same applies to y which also gains a loop in the process. In the same spirit we observe
that two vertices x1 and x2 which both have outgoing edges pointing at another vertex
x3, will be directly connected in the graph representing the dynamics of T .

Another thing we learn from this consideration is that this random walk approach
to clustering directed graphs may as well be regarded as a special case of the graph
symmetrizations explained in Section 4.2.2, where the symmetric adjacency matrix B of
an undirected graph is constructed from the adjacency matrix A of the original graph by
B = AAT , which is known as the bibliometric coupling. The matrix representation of T
has the very same non-zero structure as B, since P+ and P− are simply derived from A
and AT by normalizing their columns. Therefore the symmetrized graph obtained is the
same up to different edge weights.

Next, we want to go further and look at clustering methods that do not require any
symmetrization which possibly sacrifices information about cyclic structures and one-way
connections in directed networks that an undirected network can not preserve. The next
chapter details a method based on analyzing hitting times instead of eigenvectors, which
allows to work with non-reversible Markov chains like random walks on directed networks.
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In recent years, techniques for finding metastable or almost invariant sets in dynamical
systems have attracted a lot of attention, for deterministic systems [15] and set-oriented
numerics [14, 16] as well as stochastic systems [70] with applications in molecular dy-
namics [71, 9]. These techniques allow to identify metastability by discretization of the
transfer operator or Frobenius–Perron operator of the underlying dynamics which results
in a stochastic matrix and an associated Markov chain. Metastable or almost invariant
sets are then identified via spectral approaches: the dominant eigenvectors of the matrix
contain essential information about the invariant measure of the system and about the
decomposition of the system into metastable sets.

There is a long list of articles on finding metastable decompositions of Markov chains,
via spectral approaches [20, 36, 21, 30, 17, 41, 71] and Markov chain aggregation techniques
[12, 48] as well as via exit time approaches [7, 8, 71]. However, by far most results are only
available for reversible Markov chains, or do not result in robust algorithms for finding
metastable decompositions with more than two sets.

In addition to the discussion about metastability in dynamical systems, Markov chain
decompositions are key to finding good partitions of networks into modules: When wanting
to find the strongly connected modules of a network, one can do this via the metastable
sets of an appropriately defined random walk on the network, see [44, 64]. The Markov
chain associated with the random walk is reversible as long as the network is undirected;
directed network, in general, lead to non-reversible chains. Therefore many of the powerful
algorithms for identifying metastability cannot be used for finding modules in directed
networks.

Different recent approaches have led to working algorithms for community detection in
graphs – such as the method introduced by Newman and Girvan [53] exploiting ‘between-
ness’ scores of edges, a multi-level algorithm based on optimizing modularity [5] developed
by a group of researchers then seated in Louvain [13], or the Infomap method based on the
map equation [60]. Some are restricted to reversible dynamics, while others are not appli-
cable to very big problems due to computational cost rising too quickly with network size.
Most methods yield full decompositions of the state space, sometimes even a hierarchical
cluster structure, but do not allow for overlapping clusters or separating truly metastable
sets from the transient part of the state space.

The algorithmic approach we present herein is not based on completely new concepts,
see for example results from Donsker and Varadhan [25] examining the relation between
principal eigenvalues of infinitesimal generators and hitting times as well as the work
of Betz and Le Roux [2], who build metastable representations of irreducibly perturbed
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Markov chains exploiting committor functions, hitting and return times. The latter group
has also presented an algorithm to compute the asymptotic stationary distribution of
systems with multi-scale dynamics. To our knowledge, no one has exploited hitting times
for the detection of metastable sets in a more general setting yet.

This situation calls for a generalization of the theory for decomposing metastable
Markov chains to non-reversible chains, which is presented in this chapter. We show that
the well-known statement about optimal metastable decompositions of reversible chains
can be reformulated for non-reversible chains if one switches from a spectral approach
to an exit time approach: We can get a lower bound to the metastability index of a
decomposition by considering the exit time functions from metastable subsets such that
decompositions with strong metastability can be found by lower bound maximization.
Furthermore, we will see that the expected hitting times of test sets are almost constant
on any metastable set with sharp jumps between sets; consequently we can use this prop-
erty for identifying metastable sets. After establishing the underlying theory we will show
how to use the results algorithmically and demonstrate the performance of the resulting
algorithms in some numerical examples.

Remark: This chapter is based on collaborative work with Marco Sarich and Christof
Schütte. The key ideas of the method presented herein are the foundation of an article to
be published by the Journal of Computational Dynamics. A pre-print can be found in the
database of Zuse Institute Berlin [66]. The author of this thesis developed the algorithm
from a blueprint that existed before, implemented it in Matlab, contributed the analysis
of computational properties, adapted a random network generator for that purpose and
added several example cases on real world data.

Figures included in this chapter were used before in [66] and a follow-up paper accepted
by the Journal of Computational Dynamics, pending publication at the time of writing.

5.1 Basics

In this section, we consider an irreducible aperiodic homogeneous Markov chain (Xj) on
a finite state space X = {1, . . . , n} with transition matrix P and transition probability
p(x, y) for each pair of states x, y ∈ X. We label the invariant measure of the chain as
µ, a left-hand side eigenvector of P . This invariant measure defines the µ-weighted scalar
product 〈u, v〉µ = ∑

x∈X u(x)v(x)µ(x) and an associated weighted 2-norm ‖ · ‖µ. For any
given set A ⊂ X we define the probability to stay in A during one step by

P (A) = Pµ [X1 ∈ A|X0 ∈ A] ,

where P is a probability measure given by the probability space on which (Xj) is defined
(see Definition 9 in Section 2.2). The index µ indicates that X0, the initial distribution
of (Xj) is distributed according to µ. Using the weighted scalar product 〈u, v〉µ, the
probability to stay in A can be written as

P (A) = 〈1A, P1A〉µ
µ(A)
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where µ(A) = ∑
x∈A µ(x) = 〈1A,1A〉µ is the invariant measure of some set A ∈ X and 1A

denotes the indicator function of set A.

Metastability Intuitively, any metastable set are such sets A with P (A) ≈ 1. The closer
P (A) is to 1, the more metastable is A. Thus, we speak of a metastable decomposition
D = {A1, . . . , Am} of the space X into m disjoint sets {A1, . . . , Am} with ∪iAi = X if the
metastability indexM(D) of the decomposition, defined as

M(D) = 1
m

(P (A1) + . . .+ P (Am)) ,

is close to one. An alternative definition of metastability is based on the notion of exit
times, a special case of stopping times, as introduced in Definition 25, Section 2.2.2. If
a set is metastable, we intuitively expect that the exit time of the chain from the set is
large in comparison to other sets. Recall that the hitting time of a set B ⊂ X is defined
as τ(B) = min{k : Xk ∈ B}. τ(B) is a random variable whose outcome may differ for
every single realization of the Markov chain. As we are interested in a statistical average
independent of chance, we turn to its expectation value Ex(τ(B)) = E(τ(B)|X0 = x) when
starting from x 6∈ B, propagating forward w.r.t. the law of (Xj). Then, the expected exit
time from A is given by the hitting time τ(Ac) of the complement Ac = X \ A, starting
somewhere in A, and takes the form

Ex(τ(Ac)) = E(τ(Ac)|X0 = x), x ∈ A.

Networks Consider a strongly connected finite graph/network G = (V,E), where V
is the set of n vertices and E the set of directed edges of the graph. We denote the
adjacency matrix of the network by (a(x, y))x,y∈V and the out-degree of a vertex x by
d(x) = ∑

y∈V a(x, y), in agreement with Definitions 2 and 3 in Section 2.1. If the network
has weighted edges, then a(x, y) denotes the weight of edge (x, y) ∈ E and a(x, y) = 0
if (x, y) 6∈ E. When edges are unweighted, we simply set a(x, y) = 1 for any (x, y) ∈
E. Whenever a network is undirected, its adjacency matrix is symmetric. In network
clustering based on random walks, we focus on the standard random walk defined on
the network, i.e., the Markov chain with one-step transition matrix directly given by the
adjacency structure / weights,

p(x, y) = a(x, y)
d(x) . (5.1.1)

Note that P may be computed very directly from A by normalizing its row sums. This
construction guarantees that P is a stochastic matrix, but requires row sums of A to be
non-zero. In graph theory terminology, the network may not contain any sinks – thus the
restriction to strongly connected graphs.

As discussed in Section 2.2.3, the associated Markov chain is irreducible and aperiodic,
and if reversible, it has invariant measure µ(x) = d(x)/∑x d(x). That is, vertices with
relatively high out-degree are visited often, i.e., subnetworks with strong internal connect-
edness are metastable sets of the associated chain. However, other random walks have been
considered also, where p(x, y) is defined in terms of a(·, ·) in a different way [64]. Another
approach worth mentioning in this context are Markov jump processes with waiting times
depending on each vertex’ weight or out-degree to emphasize highly populated subgraphs
over long bridges or circles in community detection [23].
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5.2 Metastable decomposition of reversible Markov chains

Whenever a Markov chain is reversible, its metastability can be analyzed based on the
leading eigenvalues of its transition matrix P . The chain (Xj) is said to be reversible, if the
discrete detailed balance condition µ(x)p(x, y) = µ(y)p(y, x), introduced in Section 3.4.2,
holds. Then, P is symmetric with respect to 〈·, ·〉µ and thus all its eigenvalues are real-
valued, as follows from Theorem 2.2.4. The standard random walk for any undirected
network is reversible.

For reversible Markov chains, several mathematical statements relating dominant eigen-
values, corresponding eigenfunctions and a decomposition of their state space into metastable
subsets are available [20, 36, 21, 41, 8, 71]. In this section, we consider the statement based
on the metastability indexM(D) of some decomposition D = {A1, . . . , Am} of state space
X, see [36], and for a more general version [71]:

Theorem 5.2.1. Let P denote a reversible n×n transition matrix with lowest eigenvalue
a = min σ(P ) > −1. Let λm ≤ . . . ≤ λ2 < λ1 = 1 be its eigenvalues, possibly counted ac-
cording to multiplicity. Denote by vm, . . . , v1 the corresponding eigenfunctions, normalized
to ‖vk‖2 = 1. Let Q be the orthogonal projection of Rn onto span{1A1 , . . . ,1Am}. The
metastability of an arbitrary decomposition D = {A1, . . . , Am} of the state space X can be
bounded from above by

P (A1) + . . .+ P (Am) ≤ 1 + λ2 + . . .+ λm,

while it is bounded from below according to

1 + κ2λ2 + . . .+ κmλm + c ≤ P (A1) + . . .+ P (Am)

where
κj = ‖Qvj‖2µ =

m∑
k=1

1
µ(Ak)

〈vj ,1Ak〉
2
µ.

and c = a (1− κ2) . . . (1− κn).

Theorem 5.2.1 states that the metastability of an arbitrary decomposition D cannot
be larger than 1 + λ2 + . . .+ λm, while it is at least 1 + κ2λ2 + . . .+ κmλm + c, which is
close to the upper bound whenever κj ≈ 1 for all j = 2, . . . , n. While the upper bound is
dependent only on eigenvalues of P , the lower bound includes weights κj , which quantify
how well eigenfunctions of P may be approximated by step functions that are constant on
each element of the decomposition D.

Thus the metastability indexM of a decomposition D = {A1, . . . , Am} will be high if

• the eigenvalues λ2 ≥ . . . ≥ λm of P are all close to 1 and

• the corresponding dominant eigenfunctions v2, . . . , vm are almost constant on the
metastable subsets A1, . . . , Am, implying κj ≈ 1.

The product c can be interpreted as a small correction term whenever a ≈ 0 or κj ≈ 1 ∀j.
In [36] it is demonstrated that the bounds given above are sharp and asymptotically exact.
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Theorem 5.2.1 also highlights the strong relation between state space decompositions
into metastable subsets and dominant eigenvalues. The closer the leading eigenvalues are
to 1, the higher a decomposition’s metastability index can be. To approach that upper
bound, the decomposition must match as closely as possible the state space subsets where
eigenvectors are nearly constant. Studies on the relation between nearly uncoupled Markov
chains and dominant eigenvalues yield similar statements, cf. [48, 20, 8, 51].

In view of this theorem, the question arises, whether there is an optimal decomposition
with highest possible metastability index. Several algorithms have been proposed to solve
the associated optimization problem. However, even if there exists a unique optimal
decomposition, the problem of finding it might be ill-conditioned [71]. The reason for
this is that there may be extended transition regions between the metastable core sets
for which a distinct assignment to one of the metastable core sets does not make sense.
This problem can be resolved by relaxing the optimization to finding the core sets after
identification and extraction of the transition region [71]. In Section 3.4.4, it was outlined
how to identify the non-transient core sets using Markov jump processes.

5.3 Metastable decomposition of general Markov chains

Unlike undirected networks, the random walks associated to directed networks are, in
general, not reversible. For non-reversible random walks, the eigenvalues and eigenvectors
of the transition matrix may be complex-valued and the theorem presented in the last
subsection is not applicable. We aim at a reformulation in terms of exit times, a special
type of stopping times introduced in Definition 25, instead of spectral elements, in order
to generalize the results above to directed networks.

5.3.1 Exit times from metastable sets

First, we aim at a result that connects the probability to stay in a set A to the mean exit
time from it. Recall that the (first) exit time from a set A ⊂ X is the hitting time τX\A of
the complement of A in X.

Lemma 5.3.1. For every set A ⊂ X, we have that

EA[τ(Ac)]− 1
max
x∈A

Ex[τ(Ac)] ≤ P (A),

where
EA[τ(Ac)] = 1

µ(A)
∑
x∈A

µ(x)Ex[τ(Ac)].

denotes the exit time from A, weighted by the invariant measure µ.

Proof. Define the mean exit time from set A, conditioned on starting in vertex x ∈ X by
m(x) = Ex[τ(Ac)]. Then for any x ∈ A it follows from the definition that the exit time of
x depends on the exit times of its neighboring vertices via

m(x) = 1 +
∑
y∈A

p(x, y)m(y).
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Inserting this into the definition of EA[τ(Ac)] we have

EA[τ(Ac)] = 1 + 1
µ(A)

∑
x,y∈A

µ(x)p(x, y)m(y).

Dividing by M := max
x∈A

Ex[τ(Ac)] yields

EA[τ(Ac)]− 1
M

= 1
µ(A)

∑
x,y∈A

µ(x)p(x, y) m(y)
M︸ ︷︷ ︸
≤1

≤ 1
µ(A)

∑
x,y∈A

µ(x)p(x, y) = P (A).

Lemma 5.3.1 exhibits that P (A) will be close to 1 if

• the mean exit time EA[τ(Ac)] from A is large and

• Ex[τ(Ac)] is almost constant for all x ∈ A, such that max
x∈A

Ex[τ(Ac)] ≈ EA[τ(Ac)].

As a direct consequence of this lemma, we get the following lower bound to the metasta-
bility index of an arbitrary decomposition:

Theorem 5.3.2. Let A1, ..., Am be a decomposition of X. Then,

λ̂1κ̂1 + · · ·+ λ̂nκ̂n ≤
m∑
i=1

P (Ai)

where
λ̂i = 1− 1

EAi [τ(Aci )]
, κ̂i = EAi [τ(Aci )]

max
x∈Ai

Ex[τ(Aci )]
.

and EAi [τ(Aci )] is the µ-averaged exit time from Ai, as defined in Lemma 5.3.1.

Proof. Define mi(x) = Ex[τ(Aci )] and Mi := max
x∈Ai

Ex[τ(Aci )] and it follows immediately
that

EAi [τ(Aci )]− 1
Mi

= λ̂iκ̂i.

Using Lemma 5.3.1 for every set Ai and summing up the products λ̂iκ̂i over i = 1, ...,m
completes the proof.

According to this result, a decomposition A1, ..., Am has a high metastability index if

• all λ̂i are close to 1 – that is, if the expected exit times of the sets Ai are large on
average with respect to the invariant measure µ and

• all κ̂i are close to 1 – that is, if the µ-averaged expected exit time of each set is close
to the largest possible exit time from single points within the respective set.

66



5.3. METASTABLE DECOMPOSITION OF GENERAL MARKOV CHAINS

0 0.05 0.1 0.15 0.2

δ

1.7

1.75

1.8

1.85

1.9

1.95

2

m
e
ta

s
ta

b
ili

ty
 b

o
u
n
d
s

Figure 5.1: Metastable decomposition of the reversible Markov chain discussed in the exam-
ple. Solid line: P (A1) + P (A2) as a function of δ. Dashed line: Spectral bound 1 + λ2κ2 as a
function of δ. Dashed-dotted line: Hitting time bound λ̂2κ̂1 + λ̂2κ̂2 as a function of δ.
The figure is reprinted from [66].

The latter condition is certainly fulfilled if each hitting time function mi(x) = Ex[τ(Aci )]
is almost constant on the respective set Ai, since

κ̂i = 1
max
x∈Ai

mi(x)
1

µ(Ai)
∑
x∈Ai

mi(x)µ(x).

Note that κ̂i only measures the deviation of the µ-average of expected exit time on the
set Ai to its maximal value, but there is no explicit relation to the minimal value. That
is, the existence of states with rather small exit time from set Ai does not affect the value
of κ̂i much, as long as they are insignificant to the average exit time, in the sense that the
invariant measure on these states is low enough.

Summarizing, it is apparent that λ̂i and κ̂i take the roles of λi and κi in Theorem 5.2.1.

Example: For reversible chains, the lower bounds given in Theorems 5.2.1 and 5.3.2 can
be compared directly. To this end, we consider the reversible 4-state Markov chain with
transition matrix

P =


0.4 0.6 0 0
0.5 0.5− δ δ 0
0 δ 0.4− δ 0.6
0 0 0.3 0.7

 ,
where 0 ≤ δ < 0.4 acts as a free parameter. For small δ the sets A1 = {1, 2} and
A2 = {3, 4} form a metastable decomposition. Figure 5.1 shows the dependence of the
metastability index on δ in comparison to the two lower bounds of Theorems 5.2.1 and
5.3.2.

5.3.2 Hitting times of test sets

Next, we will present conditions that ensure κ̂i, as introduced in Theorem 5.3.2, is close to
1, i.e., the function mi(x) = Ex[τ(Aci )] of exit times is almost constant on the respective
set Ai.
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Theorem 5.3.3. Consider a Markov chain on some finite state space X, two states x, y ∈
X and a test set D ⊂ X. Then, the following two inequalities hold:

(i)
Ex[τ(D)] ≤ Ex[τ(y)] + Ey[τ(D)]

(ii)
|Ex[τ(D)]− Ey[τ(D)]|

max {Ex[τ(D)],Ey[τ(D)]} ≤ max
{

Ex[τ(y)]
Ex[τ(D)] ,

Ey[τ(x)]
Ey[τ(D)]

}
.

Proof. To prove the first part, we follow the idea of Lemma 3.2 from a paper by Betz and
Le Roux, which states a comparable result for return times [2].

We expand Ex[τ(D)] as

Ex[τ(D)] = Ex[τ(D)]P[τ(D) ≤ τ(y)] + Ex[τ(D)]P[τ(D) > τ(y)],

then exploit linearity of expectation values

Ex[τ(D)] = Ex[τ(D)]P[τ(D) ≤ τ(y)] + Ex[τ(y)]P[τ(D) > τ(y)]
+ Ex[τ(D)− τ(y)]P[τ(D) > τ(y)].

The first two addends may be contracted to Ex[min(τ(D), τ(y))], while the last part
describes the expected time which the process, starting in x, takes to hit D after hit-
ting y. This value must not depend on where the process came from before hitting y
according to the strong Markov property (see Definition 17) and therefore is equal to
Ey[τ(D)]Px[τ(D) > τ(y)]. This implies the first assertion, as

Ex[τ(D)] = Ex[min(τ(D), τ(y))] + Ey[τ(D)]Px[τ(D) > τ(y)]
≤ Ex[τ(y)] + Ey[τ(D)].

Hence,
Ex[τ(D)]− Ey[τ(D)] ≤ Ex[τ(y)].

By switching x and y, the same calculation also yields

Ey[τ(D)]− Ex[τ(D)] ≤ Ey[τ(x)].

Now we consider two cases.

1. Assume Ex[τ(D)] > Ey[τ(D)]. Then,

|Ex[τ(D)]− Ey[τ(D)]|
max {Ex[τ(D)],Ey[τ(D)]} = Ex[τ(D)]− Ey[τ(D)]

Ex[τ(D)] ≤ Ex[τ(y)]
Ex[τ(D)] .

2. Is Ex[τ(D)] < Ey[τ(D)], we have

|Ex[τ(D)]− Ey[τ(D)]|
max {Ex[τ(D)],Ey[τ(D)]} = Ey[τ(D)]− Ex[τ(D)]

Ey[τ(D)] ≤ Ey[τ(x)]
Ey[τ(D)] .

68



5.3. METASTABLE DECOMPOSITION OF GENERAL MARKOV CHAINS

Putting both cases together proves the second assertion.

Note that Theorem 5.3.3 (i) gives the triangle inequality for the distance d(x, y) = Ex[τ(y)],
if we consider test set D to consist of a single element. So d(x, y) describes an asymmetric
distance measure and the symmetrization m(x, y) = 1/2(d(x, y) + d(y, x)) is a metric.
Theorem 5.3.3 (ii) has an interesting consequence in the case that x, y ∈ M are elements
of a metastable set M and D is an arbitrary test set with D ∩M = ∅. In this case, both
ratios

Ex[τ(y)]
Ex[τ(D)] and Ey[τ(x)]

Ey[τ(D)]
should be very small, since the expected time to travel between elements within a metastable
set M should be much smaller than the expected time to leave the metastable set and
travel to another set D. Then, Theorem 5.3.3 implies that the hitting time function

mD(x) = Ex[τ(D)]

should be almost constant on metastable sets, and this property should be robust against
the choice of test set D.

5.3.3 Lower bounds using core sets

Next, we are interested in a quantitative estimate to our more qualitative argument re-
garding the constancy of exit times on metastable sets presented above. To this end, we
study the exit time function from a metastable set A,

f(x) = Ex[τ(Ac)].

There may be states in A that belong to a transition region between the remaining graph
and the most densely connected and isolated part of A, i.e., for which f(x) is not really
large. Perhaps, function f is not even nearly constant in the neighborhood of these states.
However, assume that there is a core set C ⊂ A with the property that C contains most
of the µ-weight of A, and communication of states in C is much quicker on average than
the exit from A, i.e.,

(A1) there is a small ε > 0, such that µ(C)
µ(A) = 1− ε and

(A2) there are constants δ > 0 and M > 1 with δ/M � 1, such that

(a) Ex[τ(y)] ≤ δ for x, y ∈ C and
(b) f(x) ≥M for all x ∈ C.

We then derive the following statement regarding the value of the quantity

κ̂(A) = 1
fmax

1
µ(A)

∑
x∈A

f(x)µ(x), fmax = max
x∈A

f(x).

associated with set A, as introduced in Theorem 5.3.2:

Theorem 5.3.4. Assume that set A satisfies the conditions (A1) and (A2) given above
for a specific subset C ⊂ A. Furthermore, assume that there is a constant value K > 0,
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such that for all x ∈ A \ C we have

max
x∈A\C

{Ex[τ(y)]
f(x) ,

Ey[τ(x)]
f(y)

}
≤ K,

for any y ∈ A with f(y) = fmax, and K = 0 if A = C. Then

1− κ̂(A) ≤ δ

M
(1− ε) +Kε,

such that 1− κ̂(A)� 1, as long as Kε� 1. Moreover we get the estimate

1− λ̂(A) ≤ 1
M(1− ε)

for
λ̂(A) = 1− 1

EA[τ(Ac)] .

Proof. From Theorem 5.3.3 we get with D = Ac for all x ∈ A that

fmax − f(x)
fmax

≤ max
{Ex[τ(y)]

f(x) ,
Ey[τ(x)]
fmax

}
.

which implies that

1− κ̂(A) = 1
fmax

[
1

µ(A)
∑
x∈A

(fmax − f(x))µ(x)
]

≤ 1
µ(A)

∑
x∈A

max
{Ex[τ(y)]

f(x) ,
Ey[τ(x)]
fmax

}
µ(x).

For x ∈ C condition (A2) yields

max
x∈C

{Ex[τ(y)]
f(x) ,

Ey[τ(x)]
fmax

}
≤ δ

M
,

while for x ∈ A \ C we have

max
x∈A\C

{Ex[τ(y)]
f(x) ,

Ey[τ(x)]
fmax

}
≤ K.

With these estimates we get with condition (A1) that

1− κ̂(A) ≤ 1
µ(A)

(
µ(C) δ

M
+Kµ(A \ C)

)
= δ

M
(1− ε) +Kε.

Using condition (A2) again, we find for EA[τ(Ac)] = (∑x∈A f(x)µ(x))/µ(A) that

EA[τ(Ac)] ≥ 1
µ(A)(Mµ(C) + µ(A \ C) · 1) = M(1− ε) + ε ≥M(1− ε),

which implies the second assertion since 1− λ̂(A) = 1/EA[τ(Ac)].

For a decomposition D = {A1, . . . , Am} in which every set Ai contains a core set Ci
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such that µ(Ci) ≈ µ(Ai), and mixing within C is fast compared to exit times from Ai
starting from inside Ci, this theorem asserts that D is a metastable partition in the sense
that metastability indexM(D) is very close to 1.

Example: Consider the 7-state Markov chain with the following transition matrix:

P =



0 1 0 0 0 0 0
0 0 1 0 0 0 0

0.99 0 0 0.01 0 0 0
0 0 0.5 0 0.5 0 0
0 0 0 0.02 0 0.98 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0


.

The chain is non-reversible and has an invariant measure

µᵀ = (0.2210, 0.2210, 0.2232, 0.0045, 0.1116, 0.1094, 0.1094).

There are two metastable sets with state 4 being a transition state, more strongly attached
to states 5 to 7 than 1 to 3. We therefore choose A1 = {1, 2, 3} and A2 = {4, 5, 6, 7}. This
choice leads to metastability index

M({A1, A2}) = 0.995.

Furthermore, direct computation of the quantities defined in Theorem 5.3.2 yields λ̂1 =
0.997, κ̂1 = 0.997, λ̂2 = 0.997 and κ̂2 = 0.990, so that the lower bound to the metastability
index according to Theorem 5.3.2 is

1
2
[
λ̂1κ̂1 + λ̂2κ̂2

]
= 0.990.

In order to compute the lower bound resulting from Theorem 5.3.4, we choose the core
sets C1 = {1, 2, 3} and C2 = {5, 6, 7}, such that δ(A1) = 3.53,M(A1) = 298, δ(A2) = 8.14,
M(A2) = 298, ε(A2) = 0.013 and K(A2) = 2.05, which results in the estimate

1
2
[
λ̂1κ̂1 + λ̂2κ̂2

]
≥ 0.982.

We conclude that for those cases where some vertices can not be clearly assigned to any
one metastable set, the existence of core sets which dominate the state space with respect
to their µ-weight is sufficient to ensure the existence of a metastable decomposition.

Moreover, it indicates a path to find such a decomposition, starting with the identi-
fication of core sets based on exit times. In a second step, the remaining vertices may
be assigned to their nearest core set, together forming metastable sets. This is, if a full
decomposition of the state space is required.

Some Markov chains exhibit a modular structure, but also contain a high number
of states that are difficult to assign to any single metastable set. In such cases, it can
be favorable to detect core sets and leave the remaining states unassigned, yielding a
decomposition into a number of highly metastable core sets and a transient region of low
weight.
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5.3.4 Algorithmic considerations

The spectral result stated in Theorem 5.2.1 can be exploited to algorithmically identify
a metastable partition of a reversible Markov chain. First, we need to calculate the
dominant spectrum that contains eigenvalues 1 = λ1 > λ2 ≥ ... ≥ λd that are close to 1
and corresponding eigenvectors u1, ..., ud. Then, we want to find a partition of state space
into sets, such that the dominant eigenvectors are as constant as possible on these sets.

This problem can be ill-conditioned due to the existence of states in a transition region
that cannot be clearly assigned to any metastable set. The transition region should be a
set of low µ-weight, that the process typically leaves quickly for one of the core sets [71]. In
[64] it was discussed how – for reversible chains – we can first identify the transition region,
such that we can next restrict the problem to partitioning the core sets only: we assume
that we are provided with a reference measure µr that allows us to find the transition
region via

T = {x ∈ X | (P ᵀ)αµr(x) < µr(x)},

where α ∈ N is the approximate average timescale on which the transition region is left.

Such a measure exists, e.g., when a Markov chain depends on a parameter that controls
the metastability of the process. Say, we have the original Markov chain with transition
matrix P and another Markov chain with reduced metastability, transition matrix Pr, and
unique stationary distributions µ and µr, see, e.g., [64] for random walks on networks, or
[71] for molecular dynamics with temperature embedding.

If a Markov chain is non-reversible, we assume that the transition region is left quickly
either forward or backward in time. That is, if ∀x ∈ X : µ(x) > 0, we can define the
transition matrix Pb of the time-reversed Markov chain with entries

pb(x, y) = µ(y)
µ(x)p(y, x)

and the transition region as

T = {x ∈ X | (P ᵀ)αµr(x) < µr(x) or (P ᵀ
b )αµr(x) < µr(x)}. (5.3.1)

This notion implies that core sets are attractive sets in forward and backward time. If we
do not have a parameter for controlling the metastability of the process, we simply choose
µr to be a uniform distribution on the state space.

Having restricted the clustering problem to C = X \ T , the state space without tran-
sition region, there are optimization-based algorithmic strategies for finding partitions on
which the dominant eigenvectors are almost constant [20, 36, 21]. We propose to associate
with every state x ∈ C the vector u(x) = (u1(x), ..., ud(x)) ∈ Rd and apply the k-means
algorithm to the points (u(x))x∈C in Rd.

In the general case of a non-reversible Markov chain, the eigenvalues and eigenvectors
might not be real-valued and it is not clear how to use spectral information for clustering
in this case. In the next section, we further discuss this issue using a simple network
example. Our mathematical results motivate to replace the d leading eigenvectors by d
hitting time functions with respect to suitably chosen test sets. Here, ‘suitable’ means
that the test sets should not lead to redundant information in terms of hitting times, i.e.,
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the sets should not be too close to each other.

In short, the proposed approach is to compute for d test sets D1, ..., Dd hitting time
functions mi := mDi and use the algorithmic strategies from [20, 36, 21] on the functions
mi instead of the eigenvectors ui. Later, we discuss the clustering of the points (m(x))x∈C
in Rd with m(x) = (m1(x), ...,md(x)) using k-means and some alternatives.

If the transition matrix P of the Markov chain is known, a hitting time function mi

can be computed as the solution of the following linear system

(P − Id)mi = −1 on X \Di,

mi = 0 on Di.
(5.3.2)

Summarizing, we have the following algorithmic blueprint:

1. Choose a number d of test sets and a metastability parameter α ∈ N.

2. Given P, Pb and µr, compute transition region T according to Equation 5.3.1.

3. Consider a test set D1 = {x1} consisting of a randomly chosen single state x1 ∈ C =
X \ T and compute hitting time function m1.

4. For i = 2, . . . , d, choose the test set xi = arg max
x∈C

min
j=1,..,i−1

mj(x) and compute hitting

time function mi with respect to Di = {xi}.

5. Normalize the functions mi and partition C by clustering the points
m(x) = (m1(x), ...,md(x)) ∈ Rd with x ∈ C, using k-means for example.

When d is unknown or not specified beforehand, the number of clusters present may be
estimated on-the-fly by tracking the values of the objective function used for selecting test
sets in step 4. Once the state space is sufficiently covered with test sets, any candidate
test vertex will have a short hitting time to at least one existing test set. Therefore, the
values achieved by further test vertices typically drop sharply when the number of test
sets exceeds the number of clusters. For undirected networks, we consider this to be a
hitting time analogon to the spectral gap.

When a reference measure µr is not available, the metastability parameter α is un-
known and there is no obvious way to identify the transition region a priori, one can run
this procedure for T = ∅ and separate cores from the transition region by applying fuzzy
C-means on the generated point set {m(x)}x∈X instead of k-means. Fuzzy C-means yields
d-dimensional affiliation vectors ux(i) for each vertex x, which are non-negative and nor-
malized as ∑d

i=1 ux(i) = 1 ∀x. Using these, vertices can be mapped to a core Ci∗ , if their
affiliation vectors take values close to one at index i∗, that is

Ci∗ = {x | ux(i∗) > 1− ε}

for some small threshold 1� ε > 0. Then, cores can be expanded to metastable sets based
on a more generous threshold 1 > δ > ε. For any δ < 0.5, such assignments to metastable
sets are unambiguous, due to the normalization of assignment vectors. Larger threshold
values may lead to overlapping modules.
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A full decomposition D = {A1, . . . , Ad} can be derived by assigning each vertex to the
set, to which it has the highest affiliation. The maxima might not be unique for transition
vertices, so the decomposition is in general not unambiguous. Alternatively, one can apply
k-means instead of fuzzy C-means clustering on the hitting time vectors to create a full
decomposition.

Generalized network clustering algorithm

Given those amendments, one can modify the aforementioned blueprint for the general
case where the transition region can not be determined in advance. This version does
not require prior knowledge of a reference measure or metastable timescales, so it may be
applied to directed networks from any source.

The benefit of being more generally applicable comes at a cost, however. As the
transition region is not detected beforehand, there is no guarantee that each test set sits
in a cluster core, making it harder to guess the number of clusters from the values of the
objective function as explained above.

For undirected networks, this would translate to steadily declining eigenvalues showing
no clear spectral gap, giving no hint on the number of clusters to identify. Under suitable
conditions, when communication between clusters is slow, while mixing within each cluster
is much faster, the generalized algorithm has proven to be robust towards the choice of d
and the randomized selection of the first test set. Thus, we refer to an implementation of
this blueprint during the runtime and accuracy evaluation following in the next section.

1. Choose d, the desired number of modules.

2. Consider a test set D1 = {x1} consisting of a randomly chosen single state x1 ∈ X
and compute hitting time function m1.

3. For i = 2, . . . , d, choose test set xi = arg max
x∈X

min
j=1,..,i−1

mj(x) and compute hitting

time function mi with respect to Di = {xi}.

4. Normalize the functions mi and decompose X by clustering the points
m(x) = (m1(x), . . . ,md(x)) ∈ Rd, using fuzzy C-means.

5.4 Numerical examples

In this section, we will employ the algorithmic strategy proposed above to identify metastable
sets of random walks on networks, see Section 5.1. First, let us illustrate the relation be-
tween spectral and hitting time based approach, using an undirected network that is shown
in Figure 5.2, where the induced random walk is a reversible Markov chain.

5.4.1 Reversible chain

The first step of the algorithm identifies the transition region as depicted in Figure 5.2.
In Figure 5.3, the values of the three dominant eigenvectors of the random walk on the
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Figure 5.2: Artificially created undirected network with 8 strongly connected modules and
a loosely connected transition region. Cluster cores indicated by shaded areas. [66]

core sets C = X \ T are shown in comparison to three hitting time functions with respect
to test sets generated by the algorithm. We restrict these functions to the non-transient
region C = X \ T that we want to partition.

As expected from Theorem 5.2.1 and Theorem 5.3.3, eigenvectors and hitting time
functions are almost constant on the metastable sets. In both cases, the k-means method
described in the previous section delivers the clustering that is visualized in Figure 5.4.

5.4.2 Non-reversible chain

The second example should underline the difficulty of extending spectral methods to non-
reversible cases, where loops and cyclic structures are present. Consider the directed
network that is illustrated in Figure 5.5.

The network consists of three cycles of length 5 that are connected via one transition
vertex. Additionally, the two upper cycles in Figure 5.5 share one undirected edge. Apply-
ing the proposed method based on hitting time functions for finding metastable clusters
on the network, we get the result for two and three sets illustrated in Figure 5.6.

Calculating the values
λ̂i = 1− 1

EAi [τ(Aci )]
from Theorem 5.3.2 for the three cycles that had been identified as clusters as shown in
Figure 5.6, we obtain

i λ̂i color line shape
1 0.7529 red dashed
2 0.7529 green dotted
3 0.8696 blue straight
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Figure 5.3: Upper panel: The 3 dominant non-trivial eigenvectors, shown in the reduced
state space C = X \ T . Lower panel: 3 hitting time functions in C as generated by the
algorithm. [66]

On the other hand, eigenvalues of the random walk on the network are complex and
eigenvalues with the largest real part are given by

i λi
1 1
2 0.7156 + 0.0053i
3 0.7156 - 0.0053i
4 0.3593 + 0.8579i
5 0.3593 - 0.8579i
6 0.3260 + 0.6374i
7 0.3260 - 0.6374i
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Figure 5.4: Modules of an undirected network identified by applying k-means on an em-
bedding of either 3 eigenvectors or 3 hitting time functions into R3. Both results coincide.
[66]

Figure 5.5: Directed network with 3 cycles that are metastable for the standard random walk.
This is a toy example designed to highlight the detection of cyclic structures via eigenvectors
and hitting time functions. [66]

That is, we have one complex conjugate pair of eigenvalues that has a dominating real
part not far from 1; this agrees with the metastability of the three cycles. The following
table shows the values of the real part of the dominant eigenvector on the cluster and the
transition region found by the hitting time approach.

Real part of first non-trivial eigenvector on blue cluster
x 1 2 3 4 5

Re(u2(x)) -0.0534 -0.0196 0.0035 0.0185 -0.1011

Real part of first non-trivial eigenvector on red cluster
x 6 7 8 9 10

Re(u2(x)) 0.3340 0.2626 0.2039 0.1561 0.1177
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Figure 5.6: Two possible clusterings computed using hitting time functions.
Left: Clustering into two sets. Right: Clustering into three sets. [66]

Real part of first non-trivial eigenvector on green cluster
x 11 12 13 14 15

Re(u2(x)) -0.1596 -0.1362 -0.2329 -0.2092 -0.1843

Real part of first non-trivial eigenvector on transition region
x 16 17 18

Re(u2(x)) -0.2357 -0.2357 -0.2357

We can see that the sign structure of the real part of the eigenvector does not coincide
with the clustering [20, 36]. In particular, the eigenvector changes its sign on the most
metastable set (blue in Figure 5.6) and assumes its minimal value min(Re(u2(x))) =
−0.2357 in the transition region, whereas values close to 0 are expected for reversible
Markov chains.

This example emphasizes the difficulty of spectral clustering for non-reversible Markov
chains that show a strongly cyclic behavior within and between metastable sets. On the
other hand, as motivated by the theoretical results and demonstrated by this example,
the approach based on hitting time analysis is well applicable in such cases.

5.4.3 Dynamical system example

We turn toward an application example that stems from simulated trajectories of a well-
documented dynamical system: the Arnold–Beltrami–Childress flow [1]. It describes an
incompressible fluid flow in three dimensions that may exhibit chaotic trajectories, with
parameters chosen as follows:

ẋ =
√

3 sin(2πz) + cos(2πy)
ẏ =
√

2 sin(2πx) +
√

3 cos(2πz)
ż = sin(2πy) +

√
2 cos(2πx)
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In order to employ numerical analysis, the state space, a three-dimensional torus, was
divided into 50-by-50-by-50 uniform boxes and transitions from one box to another were
counted during the observation period according to Ulam’s method [77]. This yields a
125000-by-125000 transition matrix with a highly sparse structure – less than 4 million of
its 15.625 billion entries are non-zero.

The directed network that describes such an observation of a dynamical system can
not have more than one sink and one source by construction. When there is a non-trivial
metastable structure in the system and observations are sufficiently long to catch large-
timescale transitions between metastable sets, the system is highly likely to eventually
return to a state it has visited before. Cutting off the beginning of a given trajectory until
the first recurrent state, one can even guarantee, for sufficiently long observations, that
the resulting recurrence network is entirely free of sinks and sources.

With the given set of parameters, the flow has non-trivial metastable sets [24]. Froyland
and co-workers identified these sets numerically as plateaus of the eigenvector correspond-
ing to the second-largest eigenvalue of the approximated generator of the continuous flow
[33]. As Figure 5.7 shows, we were able to reproduce those results with the hitting time
approach.

Figure 5.7: Arnold–Beltrami–Childress flow on the 3-D torus – Cores of two metastable sets
Left: identified via 2nd eigenfunction of the generator
Right: identified via hitting time functions

The massive size and sparse structure of transition matrices arising from high-resolution
state space discretization call for methods that exploit sparsity and scale well with large
networks, where spectral decompositions require prohibitive computational effort. The
example shows that recurrence networks of dynamical systems can be a suitable area of
application for hitting time based cluster analysis.

5.5 Analysis of computational properties

The algorithm as detailed in Section 5.3.4 was tested on both artificial and real data to
measure its runtime for very large sparse networks and evaluate the accuracy of its results.
Note that few other methods are applicable to directed networks and that test networks
need to be free of sinks and sources to apply the hitting time approach without further
adaptations. These restrictions severely limited the available options, both for the choice
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of example networks as well as reference methods for an impartial comparison.

5.5.1 Building directed test networks

In order to check the predicted scaling behavior of the runtime of the presented algorithm,
a number of directed networks of similar structure spanning orders of magnitudes in size
were needed. These networks should exhibit a clear cluster structure, preferably one that
is known beforehand to serve as reference in the evaluation of accuracy of results.

A. Lancichinetti and S. Fortunato have proposed benchmark algorithms for community
detection algorithms that are weighted, directed and highly modular by construction [42].
We observed that networks generated by their method typically exhibit sinks and sources,
rendering them unsuitable to test the proposed algorithm, as the hitting time calculation
does not converge if there are no directed paths from every potential starting vertex to
the target set. As the algorithm relies on mean hitting times of a random walker process
to identify the module structure of a network, the iterative solvers approximating those
hitting times must converge to finite values. Thus, strong connectivity of the adjacency
matrix is a required condition to allow for a free choice of test sets. That is: any two
vertices must be connected by directed paths in both directions.

The Network Analysis Toolbox provided by the Strategic Engineering Research Group,
MIT1, contains a function that generates random modular graphs. Given a desired number
of vertices, number of clusters, overall probability of attachment and a module bias value,
the function divides the set of vertices into equally sized clusters – up to integer rounding,
then inserts edges randomly, biased towards pairs of vertices within the same module.
M.E.J. Newman and M. Girvan have used such networks to benchmark their community
identification method [53]. We adapted the function to insert directed edges instead. The
function also saves full information about the module structure, allowing us to evaluate
the quality of calculated clusterings by comparing output of our algorithm to the actual
set of modules. Figure 5.8 shows a directed network generated with this method and the
network’s adjacency matrix, which highlights a pronounced block structure, each block
corresponding to one of the three clusters.

We have generated networks spanning from 50 to 25600 vertices with an average degree
of 10 and module bias 0.9, which ensures that, on average, 90% of all edges are placed
within modules. Since edges are placed randomly, it is not assured that networks gener-
ated by this method are strongly connected. To ensure compatibility of test networks to
Algorithm 5.3.4, we checked every candidate network for connectivity and replaced those
which did not meet the condition. The closer the module bias is to the maximum of 100%,
the more likely generated networks are unconnected. However, the lower this value is
chosen, the less pronounced the module structure is. We found empirically that a module
bias of 0.9, paired with an average degree of 10, rarely yields unconnected networks for
the size range mentioned above.

These test networks are not meant to be considered true-to-life models of real-world
networks. For instance, they do not exhibit power-law distributed vertex degrees, have
no transition regions and show no variation in cluster size. They are designed only for
the purpose of testing the runtime of algorithms on similarly built networks over a broad

1strategic.mit.edu
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range of vertex counts and to check their precision in a best-case setting with strongly
pronounced, non-overlapping modules. To evaluate the accuracy of our algorithm on more
realistic problems, we turn to real-world benchmarks in the next section.
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Figure 5.8: Left: Exemplary random network on 50 vertices with three clusters, an average
vertex degree of 10 and module bias of 0.9. Right: Visualization of the non-zero structure of
the associated adjacency matrix.

5.5.2 Accuracy evaluation

To evaluate results of the presented method on a given network, we use a reference clas-
sification and a measure of similarity. In the case of randomly generated test networks as
explained in Section 5.5.1, the actual clustering is known by construction.

For some popular test networks, such as V. Krebs’ graph of political books often co-
purchased at the online retailer Amazon according to its own statistics, a subjective classi-
fication is given by manual assignment – here based on M. E. J. Newman’s analysis of book
descriptions and costumer reviews [40]. Since political alignment of the books can not be
perfectly expressed by just a binary mapping, Newman assigned some of the books to a
‘neutral’ category. Figure 5.9 shows the fuzzy clustering computed with Algorithm 5.3.4
in comparison to the manual classification by Newman.

We selected Normalized Mutual Information (NMI) as a measure of similarity between
ground truth and a clustering found by the algorithm to evaluate its accuracy. NMI
quantifies congruence of information in the sense of Shannon’s information theory and
the normalization penalizes the generation of too many clusters [73]. Note that there are
competing definitions of NMI, depending on how mutual information is ‘normalized’ [47].
We adhere to the version presented in the textbook of C. D. Manning et al., which divides
mutual entropy of two clusterings by the average entropy of the individual clusterings
[46]. Another option we explored was the Rand index [59]. We did not observe striking
discrepancies between the two ratings during our test runs and chose to stick with NMI,
as it has been proposed and used before to benchmark accuracy of community detection
algorithms [39, 45].

A series of test runs of Algorithm 5.3.4 has been performed on randomly generated
networks (see Section 5.5.1 for construction details). All test networks share an expected
average degree of 10, a module bias value of 0.9 and consist of three clusters of equal size
(up to integer rounding) like the example network in Figure 5.8. The smallest network
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Figure 5.9: Undirected graph of books about US politics co-purchased on Amazon.com,
compiled by V. Krebs [40].
Left: Reference clustering – conservative (red), neutral (blue), liberal (violet). Right: Com-
puted fuzzy decomposition into 2 clusters in shades from red to blue.

has 50 vertices, the bigger ones grow successively by a factor of 2, such that the largest
network holds 25600 vertices. The affiliation vectors generated by the algorithm were
then exploited to assign vertices to clusters, as described in Section 5.3.4, yielding a hard
clustering of the state space which was finally compared to the actual cluster structure,
determined by construction.

The upper plot in Figure 5.10 shows the accuracy of results from these test runs. For
the nine smaller test networks on up to 12800 vertices, both the NMI value and Rand index
remain above 80%. For even larger networks of this type, accuracy of results apparently
derails. A possible cause for this behavior is the fixed average degree leading to ever sparser
clusters, the more total vertices the network (and thus each cluster) has. This leads to
increasingly smaller relative differences between average hitting times for vertices in- and
outside the cluster where the target set is situated. Fluctuations of hitting time vectors
within clusters at some point overshadow the differences between clusters, rendering the
identification of clusters based on hitting time vector plateaus impossible. It remains to
be investigated if that behavior shows also for large networks from real world examples.

5.5.3 Total runtime

We assume given networks to be sparse in the sense that the average vertex degree is inde-
pendent of the number of vertices and therefore the expected number of non-zero-entries
of adjacency matrices is a fixed multiple of the total number of vertices. Furthermore,
let the number of clusters and the maximum number of iteration steps for approximating
solutions to linear systems be fixed independent of total vertex count.

Runtime of the algorithm presented in Section 5.3.4 is dominated by the calculation
of hitting time vectors, which loops over the desired number of clusters, selects test sets
depending on previously computed hitting times and requires the iterative solution of a
sparse linear system to approximate mean hitting times. Assuming that the linear solver
chosen to solve system 5.3.2 converges to the vector of expected hitting times w.r.t. any
chosen test set using at most a fixed number of iteration steps and the computational
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Figure 5.10: Results of test runs showing Algorithm 5.3.4 with fuzzy C-means clustering
applied to test networks of varying size, randomly generated according to Section 5.5.1.
Upper panel: Accuracy of computed clusterings.
Lower panel: Total runtime of the algorithm on a single workstation.

effort of each iteration step is scaling linearly with the network size, time complexity of
hitting time calculations also grows linearly with the number of vertices.

The final step, which derives affiliation vectors from the hitting time vectors, depends
on which method is chosen for geometric clustering. In numerical experiments on randomly
generated networks as described in the previous section, we have considered four options:

• fuzzy C-means [26, 3],

• a self-made implementation of k-means,

• an accelerated implementation of k-means presented by C. Elkan [28] and

• a naive clustering procedure
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The latter method simply assigns each vertex v to the cluster holding the test set of
shortest average hitting time, starting from v, that is: The state space is fully partitioned
into supposedly metastable sets A1, . . . , Ad defined as

Ai = {x ∈ X | mi(x) = min
j=1,...,d

mj(x)}.

If the hitting times do not show a unique minimum, one of the minimizing indices is chosen
arbitrarily. Our implementation selects the first among these indices.

The time complexity of k-means and fuzzy C-means are known to scale linearly with
the number of points and their dimension, see [34] for a comparative analysis of both
algorithms. In our case, the number of points to be clustered is given by the number of
vertices of the network and their dimension is determined by the number of selected test
sets. Elkan’s implementation of k-means performs even faster, making use of the triangle
inequality to speed up the calculation of distances, which dominates the runtime. The
lower plot in Figure 5.10 shows the total runtime of Algorithm 5.3.4, including geometric
clustering using fuzzy C-means, which we found to be the slowest of the above mentioned
options. We observe a linear relation between the number of vertices in the network and
total calculation time. Note that the test networks are highly sparse by construction,
which is exploited by our implementation of the algorithm. Non-sparse networks of the
same size demand more computational effort.

5.6 Summary

In this chapter, we discussed the relation of metastable sets of a Markov chain to spectral
properties of its transition matrix on the one hand and to exit times from these sets on the
other. Both characterizations lead to numerical approaches of identifying metastable sets
which coincide when both are well-defined. While the spectral approach is restricted to
reversible Markov chains, the newly proposed hitting time approach may also be applied
to non-reversible chains.

This generalization is highly useful for the use case of detecting clusters in networks, as
the associated random walk of a directed network is, in general, not reversible. Further-
more, if a Markov chain is reversible and both approaches are applicable, we highlighted
computational advantages of the hitting time approach.

As a network decomposition tool, the hitting time approach is restricted to strongly
connected networks. This limitation is a consequence of the necessity for the random
walker process to be ergodic, such that ensemble averages may be derived from long
trajectories. Future work should expand the method to a more general setting, for example
by making use of a modified random walker process actively avoiding sinks or performing
random teleportation steps to ensure mixing behavior.

We illustrated the theoretical results and algorithmic ideas on several network exam-
ples. The first example was an undirected network where results from both approaches
coincided, underlining the close relation between the two different characterizations of
metastable sets in the reversible case.

The second example was a directed network with loops and strongly cyclic structures
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where the spectral decomposition does not allow for identifying clusters in the usual way
due to complex-valued eigenvectors without visible plateaus, whereas clusters can be de-
tected from appropriate hitting time functions as demonstrated.

Third, a network based on simulated trajectories of a chaotic flow with metastable sets
shows that directed networks with strong connectivity may arise from dynamical system
use cases, when observations are sufficiently long and proper mixing is taking place.

Next, an example from book sales data showed how a fuzzy clustering derived from
hitting time functions allows to capture information about overlapping modules and tran-
sition regions, where binary assignments are not suitable to account for soft transitions.

Finally, a series of test runs on random directed networks verified that the compu-
tational cost of the presented cluster identification algorithm using hitting times grows
linearly with the size of sparse networks. While random walk based module identification
algorithms have been proposed and examined before, the author is not aware of existing
methods exploiting hitting times to identify modules of directed networks with such low
computational effort.
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6 | Conclusion

The detection of metastable subsets of a system’s state space has been a recurring task
in different fields such as bio-informatics, computational chemistry or social sciences, as
these sets may correspond to functional subunits, stable states or homogeneous groups of
people inside the investigated system. Modeling such systems as graphs allows to identify
metastable sets in the original system as clusters of the model graph, enabling the usage
of graph theoretical tools and methods.

When relations or interactions within the modeled system are not symmetrical or when
a recurrence network is built from chronologically ordered observation data, the obtained
graph may contain directed edges. Moreover, state space discretization of increasingly
high resolution – which can be necessary for the analysis of continuous dynamical systems
– potentially lead to very sparse, yet giant networks. These use cases require clustering
methods adapted to large and sparse networks, suitable for directed and undirected graphs
alike.

Following the idea to identify network clusters based on a dynamical system point-of-
view, we have focused on a selection of approaches based on random walks. We examined
existing methods suitable for undirected networks and presented a novel approach for
clustering directed networks. Three key features of our approach are:

1. Edge directions and weights are taken into account.

2. It does not resort to a symmetrization step which reduces the problem to clustering
an undirected network.

3. When a sparse network is given, that sparsity is exploited to reduce computational
effort substantially.

The proposed method is based on hitting times with respect to specific target sets. The
hitting time of a set is the expected number of steps a random walk would take before
entering that set and obviously depends on where the random walk starts. The hitting
time of a set can thus be seen as a function on the vertex set, assigning a non-negative
number to each vertex that describes a notion of distance to the target set, induced by
the dynamics of a standard random walk.

These hitting time functions can be computed easily by solving a linear system which is
sparse whenever the network under consideration has a sparse structure. Metastable sets
of the random walk are then identified as plateaus of the hitting time functions, that is:
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groups of vertices with similar values. By applying k-means or fuzzy-C-means algorithms
to these hitting time functions, hard or fuzzy clusterings of the network can be derived.

We investigated how to select target sets of hitting time computations in order to ex-
plore the whole network structure efficiently, gaining as much new information as possible
from each additional hitting time function and estimating the number of clusters on-the-
fly. Also, we evaluated the runtime of the proposed clustering algorithm, using a family
of randomly generated sparse networks. These tests verified that computational effort of
the algorithm scales linearly with the size of sparse networks, keeping the average vertex
degree and the number of clusters fixed.

For undirected networks, where spectral decompositions as well as hitting time based
clustering are applicable, both approaches aim at identifying metastable regions of stan-
dard random walks that correspond to network clusters and both deliver comparable
results. Clustering via hitting times also works on strongly connected directed networks
and takes into consideration that the orientation of edges has an impact on how quickly
a state space subset may be entered or left and should not be neglected in the context of
metastable sets.

The hitting time approach can thus be seen as an extension of random walk based
network clustering to directed networks with strong connectivity. Information contained in
hitting time vectors can be re-used to identify transient areas of a network, to generate hard
or fuzzy decompositions and to quantify distances between clusters or between individual
vertices, directly induced by the dynamics of a random walk. Therefore, analyzing hitting
times provides new possibilities to reveal key structures in large modular networks.

Outlook

Some aspects remain open for investigation, regarding theory and implementation of ran-
dom walk approaches. The prime question is how to deal with directed networks containing
sinks and sources, which is the general case. The fundamental issue with random walks
on such networks is, that without further adaptation, they never return to sources and get
stuck in sinks eventually. With every trajectory ending in some sink, there are no more
transitions between metastable sets in the long run – ergodicity is violated. The basic
assumption that network clusters correspond to metastable sets of a random walk can not
be ensured and the computation of hitting times does not converge for some target set.

The limitation to strongly connected networks is a necessary consequence of the require-
ment that random walks need to be aperiodic and ergodic to ensure that long trajectories
show transitions between metastable sets. For directed graphs without strong connectiv-
ity, it is necessary to either adapt the random walk or regularize the graph such that the
required conditions are met. In contrast, random walks on connected undirected graph are
guaranteed to be ergodic and reversible, so this important subclass is eligible for random
walk methods using hitting times.

Inspired by Google’s PageRank algorithm [11], one way to ensure ergodicity of a random
walk process, is to implement, in each step, a small chance of jumping to any other vertex
in the network. In practice, this could be achieved by adding an ε slightly greater than 0 to
every entry of the network’s adjacency matrix, then normalizing it row-wise to obtain the
random walk’s transition matrix. This perturbed random walk, running on the original
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network, acts the same way as a standard random walk on a perturbed network with
additional, artificial edges. The graph theoretic interpretation is that edges were added
to the original network between any two vertices, each new edge weighted by ε.

Such a regularization of the network – or adaptation of the random walk from another
point-of-view – would allow to apply random walk based methods to any graph. Limiting
the impact of this perturbation by setting ε small enough, clusters of the original network
remain clusters after perturbation. Sinks of the original network are no longer dead ends,
but allow the random walk to re-enter at a random point. Still, several difficulties need
to be resolved: Even with newly-introduced edges carrying extremely low weights, each
perturbation might have an undesired impact on the modular structure of a network. It
needs to be verified if metastability of a decomposition is preserved under perturbation
for sufficiently small ε. Additionally, a perturbation as described above fills every entry
of the transition matrix with non-zeros, sacrificing the computational benefits of a sparse
network structure.

To achieve a similar effect without losing sparsity altogether, a similar regularization
could be considered, where one artificial vertex is added to the network, which is connected
through bi-directional ε-weighted edges to all other vertices. This special vertex would
not be considered a part of the network, but rather a ‘resting state’, from where a random
walker can re-enter the network at a random point. Apart from one additional intermediate
step, this has the same effect as adding a small chance to move directly to any other
vertex as described before. However, instead of filling the transition matrix with near-zero
entries, the matrix only needs to be extended by one additional column and row of non-
zero entries. Sparse networks remain sparse with this modification, as each vertex gains
only one additional neighbor.

These adaptations are currently in the early stages of research and our experimental
implementation, improvised to test the clustering algorithm on networks without strong
connectivity, needs further refinement. It is not yet fully understood what impact such a
modification has on hitting time vectors in the limit of ε going to zero. Future research in
this direction might lead to the development of hitting time based methods applicable to
any directed graph.
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Zusammenfassung

Ein häufig wiederkehrendes Problem bei der Arbeit mit großen Systemen unterschiedlicher
Natur, etwa zellularen, elektrischen oder sozialen Netzwerken, ist die Erkennung funk-
tionaler Untereinheiten, die eine hohe Eigenständigkeit vom Rest des Systems auszeichnet.

Dazu bietet es sich an, das zu untersuchende System als Graphen zu modellieren und
diesen mittels Clusteranalyse in Teile zu zerlegen, die zueinander wenige Verbindungen
aufweisen, relativ zur Kantendichte innerhalb der Cluster. Ein bekannter Ansatz dazu
basiert auf erinnerungslosen Zufallsprozessen, die sich mit jedem Zeitschritt von einer
Ecke entlang einer anliegenden Kante zu einer zufällig gewählten benachbarten Ecke fort-
bewegen. Die Motivation hinter diesem Ansatz ist die Vorstellung, dass eine Zerlegung der
Eckenmenge des Graphen in disjunkte, „metastabile“ Mengen existiert, die nahezu stabile
Zustände des Prozesses beschreiben, also nur sehr selten gewechselt werden.

In dieser Dissertation wird die Theorie von Graphen und Zufallsprozessen eingeführt,
einige bekannte Methoden der Clusteranalyse zusammen gefasst und schließlich eine neue
Methode vorgeschlagen und analysiert, die ebenfalls auf Zufallsprozessen basiert, aber
ohne die aufwändige Berechnung von Eigenvektoren auskommt. Stattdessen werden
„Stoppzeiten“ genutzt, die beschreiben, wie lange ein Zufallsprozess, der auf dem Netzwerk
wandert, im Durchschnitt benötigt, um eine fest gewählte Zielmenge zu erreichen.

Es wird aufgezeigt, dass diese neue Methode einen klaren Vorteil in der Skalierung des
Rechenaufwandes zeigt, da die nötigen Rechenschritte zur Berechnung der Stoppzeiten
im ungünstigsten Fall quadratisch mit der Zahl der Ecken ansteigt. Für dünn besetzte
Graphen, in denen jede Ecke eine feste Zahl an Nachbarn nicht übersteigen darf, zeigen hier
präsentierte numerische Experimente an großen Zufallsgraphen, dass die nötige Rechen-
zeit sogar näherungsweise linear mit der Eckenzahl der Graphen ansteigt. Im Gegensatz
dazu skalieren klassische Zerlegungsalgorithmen, die eine Berechnung von Eigenvektoren
erfordern, deutlich höher, nämlich mehr als quadratisch, mit der Eckenzahl.

Die präsentierte neue Methode unterliegt jedoch einer Einschränkung: Die eingesetzten
Stoppzeiten haben nur dann garantiert endliche Werte, wenn die gewählte Zielmenge sich
von jeder Ecke des Graphen tatsächlich erreichen lässt und der Prozess in endlicher Zeit
fast sicher jede Ecke wieder besucht. Das setzt voraus, dass der Graph stark zusammen-
hängend, insbesondere frei von Quellen und Senken sein muss. Dies schließt viele gerichtete
Graphen aus, stellt aber immer noch eine echte Erweiterung gegenüber der Klasse der un-
gerichteten Graphen dar. Ansätze zur Überwindung dieser Einschränkung werden in der
Auswertung skizziert.
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