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Noncovalent van der Waals (vdW) interactions are responsible for a wide range of phenomena in matter.
Popular density-functional methods that treat vdW interactions use disparate physical models for these
intricate forces, and as a result the applicability of these methods is often restricted to a subset of relevant
molecules and materials. Aiming towards a general-purpose density functional model of vdW interactions,
here we unify two complementary approaches: nonlocal vdW functionals for polarization and interatomic
methods for many-body interactions. The developed nonlocal many-body dispersion method (MBD-NL)
increases the accuracy and efficiency of existing vdW functionals and is shown to be broadly applicable to
molecules, soft and hard materials including ionic and metallic compounds, as well as interfaces between
organic molecules and inorganic materials.
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Van der Waals (vdW) interactions originate from non-
local correlations in the quantum motion of electrons and
give rise to a wide spectrum of physical phenomena from
attraction between two atoms [1] to the macroscopic
Casimir effect [2]. As a result, vdW interactions are one
of the prime targets in material modeling, which has led to a
plethora of approaches that either treat vdW forces in the
same way as the rest of electron correlation, or model them
with effective potentials [3–5]. They include quantum
Monte Carlo (QMC) [6], coupled cluster methods [7],
random-phase approximation [8], nonlocal density func-
tionals [9,10], and coarse-grained approaches ranging from
pairwise [11–13] to many-body models [14–16].
From a theoretical perspective, this status quo is unde-

sirable, because different models offer often disparate
pictures of the nature of vdW forces, leading to incoherent
understanding of vdW interactions in molecules and
materials. From a practical perspective, the three main
characteristics of a method are its generality, accuracy, and
computational efficiency, and, so far, no single method has
satisfied all three requirements while being applicable to all
relevant types of matter. For instance, QMC and coupled
cluster are limited by computational efficiency, pairwise
approaches and two-point vdW functionals lack in accu-
racy for nanostructured and supramolecular compounds,

while atomic models have qualitative problems with ionic
and hybrid metal-organic systems.
In this Letter, we present a unified density-functional

model of vdW interactions that couples polarizability
density functionals and atomic models, inheriting broad
applicability of the former and excellent accuracy of the
latter. We integrate the polarizability functional of Vydrov
and Van Voorhis [17] (VV), normalization to exact free-
atom vdW parameters of the Tkatchenko-Scheffler (TS)
model [13], normalization to jellium via a zero-gradient
limit from the VV10 functional [18], and the Hamiltonian
for the dispersion energy of the many-body dispersion
(MBD) model [19]. Compared to the range-separated self-
consistently screened (rsSCS) variant of MBD [20], the VV
polarizability functional enables consistent treatment of
ionic compounds, normalization to the free-atom reference
achieves balanced accuracy across the periodic table, and
normalization to jellium enables effective modeling of
metals and their surfaces [21]. The new model involves
a similar level of empiricism as MBD@rsSCS—we remove
the tabulated vdW radii and short-range screening, while
introducing a mechanism to avoid double counting of
electron correlation in near-uniform density regions. We
demonstrate on several benchmark calculations that the
new model enables for the first time a consistent treatment
of vdW interactions in molecular, covalent, ionic, metallic,
and hybrid metal-organic systems.
Some of the problems of MBD@rsSCS have been

previously treated by Gould et al. [22]. Their fractionally
ionic variant of MBD@rsSCS uses iterative Hirshfeld
partitioning together with a piecewise linear dependence
of atomic polarizability on charge, and a rescaling scheme
for the diverging MBD Hamiltonian in highly polarizable

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 124, 146401 (2020)

0031-9007=20=124(14)=146401(7) 146401-1 Published by the American Physical Society

https://orcid.org/0000-0002-2779-0749
https://orcid.org/0000-0002-1012-4854
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.146401&domain=pdf&date_stamp=2020-04-07
https://doi.org/10.1103/PhysRevLett.124.146401
https://doi.org/10.1103/PhysRevLett.124.146401
https://doi.org/10.1103/PhysRevLett.124.146401
https://doi.org/10.1103/PhysRevLett.124.146401
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


systems or with dipole smearing [23]. Our approach is
instead based on a general polarizability functional.
Atomic models, such as MBD, require an atomic

response model in the form of static polarizabilities α0;i ≡
αið0Þ and C6;ii coefficients. In the new model, dubbed
MBD-NL, we parametrize the response of atoms by coarse
graining the VV polarizability density to atomic fragments
[24–26]. The VV polarizability functional is a semilocal
functional of the electron density nðrÞ, which models the
local dynamic polarizability density [17],

αVV½n�ðr; iuÞ ¼ nðrÞ
4π
3
nðrÞ þ C j∇nðrÞj4

nðrÞ4 þ u2
; ð1Þ

where iu is imaginary frequency and C is an empirical
parameter. The atomic dynamic polarizabilities are
obtained by partitioning the polarizability density with
Hirshfeld weights wH

i ðrÞ ¼ nfreei ðrÞ=Pj n
free
j ðrÞ,

αVVi ðiuÞ ¼
Z

drwH
i ðrÞαVV½n�ðr; iuÞ: ð2Þ

The C6 coefficients are then calculated directly from αiðiuÞ
via the Casimir-Polder formula [27],

CVV
6;ii ¼

3

π

Z
∞

0

duαVVi ðiuÞ2: ð3Þ

Unlike approaches that use Hirshfeld fragments to define
atomic volumes, MBD-NL is independent of the choice of
a particular atomic partitioning, because this influences
only local redistribution of the polarizability between
atoms, conserving the total polarizability. Our approach
is also different from that of Silvestrelli [28], which coarse
grains the electron density first and evaluates a polar-
izability functional over the fragment densities.
Already this bare combination of MBD and the VV

polarizability functional substantially improves the descrip-
tion of ionic systems compared to MBD@rsSCS, because
the VV functional gives a good estimate of the ionic
polarizabilities, unlike the Hirshfeld volume scaling in
MBD@rsSCS. However, this bare combination suffers
from two fundamental shortcomings. First, the polariz-
ability functional is not evenly accurate across the periodic
table. Second, when combined with semilocal density-
functional theory (DFT), it suffers from double counting of
electron correlation in regions of slowly-varying electron
density. To solve these two challenges, we normalize the
atomic VV polarizabilities and C6 coefficients to exact
values for free atoms [13], and then normalize MBD-NL to
give zero vdWenergy for jellium by subtracting the portion
of the polarizability from slowly varying electron-density
regions.
The VV polarizability functional is approximate, which

is manifest already for free-atom polarizabilities and C6

coefficients, where accurate reference values are known
(Fig. 1). It especially underestimates the vdW parameters of
metallic elements. To mitigate this, we normalize the VV
atomic quantities with the ratio of the respective free-atom
values obtained from accurate reference calculations and
from the VV functional,

αrVV0;i ¼ αVV0;i
αref;free0;i

αVV;free0;i

; CrVV
6;ii ¼ CVV

6;ii

Cref;free
6;ii

CVV;free
6;ii

ð4Þ

Many exchange-correlation (XC) functionals are exact
for jellium by construction, even though the portion of
electron correlation from the nonlocal plasmons is long
ranged and should not be included in semilocal XC
functionals. As a result, most XC functionals describe
accurately the electron correlation within slowly varying
density regions, such as found in metals, and those cases
require no addition of vdW forces. This is different in most
general systems, in which semilocal functionals neglect
long-range vdW interactions. At the same time, these
metallic-density regions contribute dominantly to the VV
polarizability, and hence to the vdW energy in any vdW
model that would use the VV functional directly. When
combined with semilocal DFT, this would result in over-
polarization and overbinding of bulk metals and adsorbates
on metallic surfaces. To avoid this double counting, the
VV10 expression for the vdW energy subtracts the limit of
VV10 as the density gradient approaches zero [18],
EVV10
vdW ¼ EVV10½n� − ðEVV10j∇n→0Þ½n�. Such an approach

cannot be used directly in a many-body model such as
MBD, because unlike in a pairwise model the many-body
vdW energy is not linear in the polarizability.
To ensure the correct zero limit of MBD-NL for uniform

densities, we smoothly cut off the contribution of jellium-
like regions to the polarizability. These regions can be
distinguished with the combination of two local electron-
density descriptors: the local ionization potential I [29] and
the iso-orbital indicator χ [30–32],

I½n� ¼ τW½n�
n

; χ½n� ¼ τKS½n� − τW½n�
τunif ½n� ; ð5Þ

FIG. 1. Relative errors in C6 coefficients of free atoms
calculated with the VV polarizability functional for the first 54
elements. The reference values are from the TS method [13]. The
present model is exact by construction [Eq. (4)].
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where τKS½n� ¼ P
i j∇ϕij2=2 is the positive kinetic energy

density of occupied orbitals ϕi, which for single-orbital
densities reduces to the von Weizsäcker kinetic energy
density, τW½n� ¼ j∇nj2=8n, and for jellium to τunif ½n� ¼
3ð3π2Þ2=3n5=3=10. The local ionization potential is a form
of a reduced gradient with the units of energy, which
attempts to model the electronic gap locally. The density
gradient alone is insufficient to characterize metallic
densities. In particular, both I ∼ 0 and χ ∼ 1 must be true
for density to be metallic, whereas I ∼ 0 and χ ∼ 0
corresponds to centers of covalent bonds, and I ∼ 0 and
χ ≫ 1 signifies overlap of electron-density tails between
noncovalently bound systems. Since the normalization of
VV10 to jellium uses only the density gradient, it partially
omits contributions from covalent bonds. By using also the
iso-orbital indicator, we make MBD-NL more precise in
this regard. In practice, the evaluation of the kinetic energy
density is the computationally most demanding part of
MBD-NL, but this means that its cost is only a fraction
of a single self-consistent cycle of a regular meta-GGA
KS-DFT calculation.
Figure 2(a) presents polarizability density distributions

of I and χ in three benzene compounds and in a set of
simple solids [33]. In an organic molecule such as benzene
[Fig. 2(a)], the vast majority of the polarizability comes
from electron density with I > 5 eV, with a small part from
low-gradient regions with χ < 1. The intermolecular inter-
actions in the benzene dimer and crystal add a significant
amount of polarizability in regions with χ ≫ 1, despite the
electron density being low there. A richer spectrum of
patterns is found in simple solids [Fig. 2(b)]. Most similar
to the benzene compounds are semiconductors. In contrast,
the polarizability in main-group metals is dominated by
jelliumlike regions near ðI; χÞ ¼ ð0; 1Þ. In transition metals,
the polarizability is distributed in a wider range of the local
gap along the 1 < χ < 2 strip, with a larger part still in the
low-gradient regions. In simple ionic solids, most of the
polarizability comes from single-orbital regions ( χ < 1).
To avoid the double counting of vdW interactions of low-

gradient densities, we smoothly cut off their contribution to
the polarizability functional,

αVV
0 ½n�ðrÞ ¼ gðI; χÞαVV½n�: ð6Þ

We impose two simple requirements on this cutoff. First,
the density regions with a local gap lower than the work
function of conductors should not contribute to the calcu-
lated vdWenergy, because those are assumed to be covered
by a semilocal XC functional. We chose the cutoff value of
5 eV, which is around the peak of the work function of
elemental metals. Second, the VV polarizability of simple
covalent compounds (exemplified by a benzene molecule)
should not be influenced by the cutoff. The following
function g satisfies these two requirements:

gðI; χÞ ¼ 1 −
1 − fð χ − 3

ffiffiffiffiffiffiffiffiffiffi
I=Eh

p Þ
1þ exp½4ðI − 5 eVÞ=1 eV� ;

fðxÞ ¼ exp½−θðxÞcx=ð1 − xÞ�θð1 − xÞ: ð7Þ

Function g consists of a logistic function centered at 5 eV
and of function f taken from the SCAN functional [34],
where it also interpolates between χ ¼ 0 and χ ¼ 1 [see the
Supplemental Material [35] for a plot of gðI; χÞ]. We find
that c ¼ 1=10 ensures that the effect of the cutoff on the VV
polarizability of a benzene molecule is negligible (<2%).
The performance of the resulting model depends only
weakly on the precise values of the parameters, as long as
the local gap cutoff sufficiently covers the work function of
a given conductor. Nevertheless, a more rigorous formu-
lation of the model in this direction would be desirable.
Apart from avoiding the double counting of long-range

electron correlation, the cutoff function removes another
deficiency of the VV polarizability functional. When

(a)

(b)

FIG. 2. Polarizability distributions of local ionization potential
I and iso-orbital indicator χ. The plotted distributions are
αVVðs0; χ0Þ ¼ R

drδ½sðrÞ − s0�δ½ χðrÞ − χ0�αVVðrÞ, such that the
total polarizability is ∬ dsdχαVVðs; χÞ. Eh is one hartree. (a) Ben-
zene monomer, dimer, and crystal. Each distribution is normal-
ized to one benzene molecule. (b) 64 simple solids divided to five
groups [33]. Each distribution is normalized to 62 (a.u.), the VV
polarizability of a benzene monomer, for a single color scale
with (a).
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molecules form vdW-bound compounds, the introduction
of density-tail overlaps significantly increases the VV
polarizability compared to the monomers [Fig. 2(a)].
This effect is an artifact of the VV functional that causes
overbinding of increasingly large vdW-bound systems, and
cutting off the polarizability of low-gradient regions with
χ > 1 eliminates this issue without affecting the polar-
izabilities of isolated monomers (Fig. 3).
Finally, the static polarizabilities and C6 coefficients

calculated as described above are directly used in the MBD
Hamiltonian to obtain the vdW energy. This Hamiltonian
describes a system of charges in harmonic potentials—
Drude oscillators—characterized by their static polarizabil-
ities α0;i and resonance frequencies ωi ¼ 4C6;ii=3α20;i, and
interacting via a long-range dipole potential TlrðRÞ≡
flrðRÞTðRÞ [14,43],

HMBDðfα0;i;ωigÞ ¼
X
i

−
1

2
∇2

ξi
þ
X
i

1

2
ω2
i ξ

2
i

þ 1

2

X
ij

ωiωj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0;iα0;j

p
ξi · Tlr

ijξj; ð8Þ

where ξi ≡ ffiffiffiffiffiffi
mi

p
xi are displacements of the charges

weighted with masses mi (having no effect on the energy).
The interaction energy of this model system—the vdW
energy—is obtained by direct diagonalization yielding a set
of coupled oscillation frequencies ω̃k,

EMBD ¼
X3N
k

ω̃k

2
−
XN
i

3ωi

2
: ð9Þ

In MBD-NL, we use the same long-range coupling Tlr as
in MBD@rsSCS [20],

flrðRijÞ ¼ 1=ð1þ e−6½Rij=βðRvdW
i þRvdW

j Þ−1�Þ; ð10Þ
but with a simplified definition of the vdW radii. Rather
than tabulated vdW radii, we use the quantum-mechanical

formula for vdW radii of free atoms from Fedorov et al. [44],
and scale them similarly to the vdW parameters as in (4),

RvdW
i ¼ 5

2
ðαref;free0;i Þ17

�
αrVV

0
i

αrVV
0; free

i

�1
3

: ð11Þ

We optimize the damping parameter β of flrðRÞ on the S66
data set [42], as was done for MBD@rsSCS, and find the
optimal values of 0.81 and 0.83 for the XC functionals PBE
[45] and PBE0 [46], respectively, only slightly smaller than
the values of 0.83 and 0.85 for MBD@rsSCS.
Next, we briefly describe several benchmark tests of

MBD-NL (see the Supplemental Material [35] for a more
detailed description of the calculations and for additional
results). On a set of small organic dimers (S66, [42]), MBD-
NL performs nearly identically to MBD@rsSCS [Fig. 4(a)],
which is already excellent for a DFT+vdW approach. In
contrast, the errors in lattice energies of 64 hard solids [33]
are reduced drastically when MBD@rsSCS is replaced with
MBD-NL [Fig. 4(b)]. This improvement comesmainly from
the errors for metals and ionic solids, which MBD@rsSCS
overbinds substantially, whereas plain PBE performs

FIG. 3. Distributions of relative changes in atomic static
polarizabilities and C6 coefficients from monomers to dimers.
The distributions are calculated over all atoms from all complexes
in the S66 data set [42].

(a)

(b)

FIG. 4. Distributions of relative errors in binding and lattice
energies. The boxes show quartiles of the distributions, the
whiskers extend up to 1.5-fold the interquartile range, and the
individual points denote outliers. (a) S66 × 8 set of organic
dimers. The color scale encodes the distance between the centers
of mass of the monomers, divided by the equilibrium distance.
(b) Set of 64 hard solids [33]. The color encodes the class of a
solid: transition metals (TM), main-group metals (MM), semi-
conductors (SC), transition-metal carbides and nitrides (TMCN),
and ionic crystals (IC). The left-right order of the systems in the
plot corresponds to the top-bottom order in the legend.
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reasonably well, and MBD-NL retains this good perfor-
mance. MBD-NL still somewhat overbinds the metals
compared to PBE, as could be expected, because bare
PBE does not underbind the metals despite the missing
(nonjellium) long-range vdW interactions. Ionic solids are
underboundby4%withPBE,which is reduced nearly to zero
when themissing nonlocal correlation is addedbyMBD-NL,
whereas MBD@rsSCS overbinds some of them substan-
tially. The performance of MBD-NL on semiconductors is
similar to MBD@rsSCS. On a set of organic molecular
crystals (X23, [47]),MBD-NL performs nearly identically to
MBD@rsSCS, with a similar tendency to underbind (2%) as
MBD@rsSCS has to overbind (3%). On a set of supramo-
lecular complexes (S12L, [48]), the accuracy of MBD-NL is
reduced compared toMBD@rsSCS, from 5% to 9% in terms
of themean absolute relative error (MARE), but the accuracy
of the two methods is equal with the PBE0 functional, with
MBD-NL having a smaller mean relative error compared to
MBD@rsSCS.
Compounds with small or zero electronic gap pose the

hardest problem for DFT+vdW approaches, because such
systems require in principle long-range coupling of delo-
calized electronic fluctuations. Despite that, MBD-NL
reaches the accuracy of established effective models for
hybrid interfaces of metallic surfaces and organic mole-
cules, such as the MBD@rsSCS[surf] method [49], with a
difference in the binding energy between the two methods
below 10% for a benzene molecule on a silver (111)
surface. This is only possible because the long-wavelength
electronic fluctuations in the metal have no correlation
counterpart in the adsorbed molecule, so a fully delocalized
treatment of the fluctuations is not necessary in this case.
In contrast, the delocalized fluctuations cannot be

effectively neglected in layered vdW materials with small
band gaps, such as the transition-metal dichalcogenides
(TMDCs), which comprise 23 of the benchmark set of 26
layered materials (here dubbed “26,” [50]). MBD@rsSCS
and VV10 overbind the “26” set by 10 and 52%, respec-
tively, indicating that both models overpolarize these small-
gap layered compounds. In contrast, the nonlocal part of the
polarizability from low-gradient density regions is removed
in MBD-NL, resulting in its underbinding of the “26” set
by 21% (the accuracy of the reference calculations is 10–
20%). Of the three methods, the three non-TMDC layered
materials in the “26” set (graphite, BN, PbO) are described
most accurately by MBD-NL (MARE of 7%, compared to
27% for MBD@rsSCS and 53% for VV10).
Before concluding, we discuss some open questions

regarding MBD-NL. First, the VV polarizability functional
is semiempirical and it can be improved by including
nonlocal density information, for example by developing a
meta-GGA polarizability functional. Such an extension
could improve the overall accuracy significantly, but
requires nontrivial advances in the general theory of
polarizability functionals. Another possibility would be

to normalize the vdW parameters not only to free atoms, but
also to ions [22], which is comparably more straightfor-
ward. Second, although MBD-NL can effectively treat
hybrid interfaces between organic and metallic compounds,
it does not capture the truly nonlocal electronic fluctuations
that can be found in conductors [51]. Incorporating such a
mechanism would not only enable MBD-NL to treat long-
range interactions between fully metallic bodies, but also
increase its accuracy for interacting systems of small-gap
compounds, such as TMDCs. How to do this in practice is
at the moment unclear, and we see this as the largest
remaining theoretical gap in the general understanding of
vdW interactions in materials. Third, MBD-NL uses an
empirical range-separating function parametrized for a
given XC functional. XC functionals differ substantially
in their mid-range behavior (unlike the PBE and PBE0
functionals used here), and developing seamless range-
separation approaches that couple semilocal XC func-
tionals and vdW methods in a universal and transferable
way remains an open challenge [52].
In conclusion, we have developed a vdW model that

unifies atomic many-body methods and nonlocal vdW
functionals. By normalizing to free atoms and jellium,
we have retained the accuracy of best DFT+vdW
approaches while extending applicability to ionic and
metallic compounds, and hybrid metal-organic interfaces.
Our approach enables efficient, accurate, and consistent
modeling of many-body vdW interactions in a substantially
broader range of systems than previously possible.
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