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We state and prove four types of Lieb-Robinson bounds valid for many-body open quantum systems with
power law decaying interactions undergoing out of equilibrium dynamics. We also provide an introductory and
self-contained discussion of the setting and tools necessary to prove these results. The results found here apply to
physical systems in which both long-ranged interactions and dissipation are present, as commonly encountered in
certain quantum simulators, such as Rydberg systems or Coulomb crystals formed by ions.

I. INTRODUCTION

For many non-relativistic lattice models, despite the absence of a finite maximum propagation speed in the strict sense, it
has been firmly established by now that physical effects are mostly restricted to a causal region in space time, with only small
“leakage” into the region outside the causal region. The mathematical tools for stating and proving such a quasilocal structure go
under the name of Lieb-Robinson bounds. These are usually stated as upper bounds on the operator norm of commutators of the
form

‖[A(t), B]‖ ≤ b(t, x), (1)

where A and B are observables, A(t) denotes the operator A time-evolved in the Heisenberg picture, and x = d(A,B) is the
spatial separation (usually with respect to the 1-norm) of the supports of A = A(0) and B on the lattice. In Lieb and Robinson’s
original work [1], which is valid for systems on regular lattices with finite local Hilbert space dimension and finite-range
interactions, a bound of the form

bLR(t, x) = c exp

(
vt− x
ξ

)
(2)

has been derived. The constants c, v, and ξ depend on general features like lattice dimension and the interaction strength, but not
on the details of the model. This bound shows that there is a region in the (t, x)-plane, outside the cone defined by vt ≥ x, where
the norm of [A(t), B] is strongly suppressed and decays exponentially with the distance x.

While the commutator on the left-hand side of (1) may not be of immediate physical interest in itself, it can be conveniently
used to derive bounds on a number of physically relevant quantities. These include the propagation in space and time of 2-point
[2, 3] and n-point correlations [4], of entanglement, and of quantum information [2]. Moreover, Lieb-Robinson bounds have been
used to prove static properties, like the exponential clustering of correlations in ground states [5], or a higher-dimensional version
of the Lieb-Schulz-Mattis theorem [6]. Known insights into the stability of quantum phases, and in particular the stability of
topological order, also derive from Lieb-Robinson bounds [7].

Following Lieb and Robinson’s original result for quantum systems on regular lattices with finite-range interactions, similar
results have been obtained in different or more general settings, including quantum systems on general graphs (instead of regular
lattices) [8], models with long-ranged interactions [5, 9–11], disordered systems [12, 13], open quantum systems [14–18], and
classical lattice models [19–21]. While the obtained bounds may differ in their functional forms, they all have in common that
they specify a certain (not necessarily cone-shaped) causal region, outside of which ‖[A(t), B]‖ is smaller than some chosen
ε > 0 and decays further away from that region (although not necessarily exponentially).

A class of systems for which Lieb-Robinson bounds have not been available so far is open quantum lattice models with
power law decaying long-ranged interactions. It is the purpose of the present work to fill this gap. Such systems have seen a
lot of interest recently, especially due to their relevance for a number of experimental platforms that make use of trapped cold
atoms, molecules, or ions. Often these platforms are employed for quantum simulation of unitary dynamics, but it turns out that
significant non-unitary effects, like dissipation and decoherence, frequently have to be accounted for as well, or may even act as
desirable resources. Examples of experimental realizations of open quantum lattice models with long-ranged interactions include
Coulomb crystals of trapped ions [22–25], lattices of Rydberg atoms [26–30], and laser-driven atomic clouds [31–33].

∗ kastner@sun.ac.za

ar
X

iv
:1

90
6.

00
79

1v
1 

 [
qu

an
t-

ph
] 

 3
 J

un
 2

01
9

mailto:kastner@sun.ac.za


2

In this work we state and prove four different Lieb-Robinson bounds. The first three of these bounds are valid for open quantum
lattice systems of Lindblad form, with finite local Hilbert space dimension at each lattice site, and for interactions whose strength
decays in some suitable way with the graph distance d(i, j) between lattice sites i and j. While the setting we use applies to very
general models on arbitrary graphs, the first two theorems are motivated by models on regular D-dimensional lattices where the
interaction strength between two sites can be upper-bounded by a power law proportional to d(i, j)α, where d(i, j) denotes the
graph distance between lattice sites i and j, and α ≥ 0 is an exponent characterizing the spatial decay. For such regular lattices,
Theorem 1 provides a Lieb-Robinson bound for interactions with α ≥ D, whereas Theorem 2 extends the applicability to α
between zero and D, at the expense of having to work in suitably rescaled time. Both these bounds have a simple functional
form, similar to that of Lieb and Robinson’s original bound (1), but with an algebraic spatial decay instead of an exponential
one. Theorem 3 is complementary in the sense that it provides a bound that is tighter than those of the first two theorems, but
less explicit, requiring the evaluation of the exponential of an N ×N -matrix, where N is the number of lattice sites (or graph
vertices). Bosonic systems, for which the local Hilbert space dimension is infinite, are not covered by any of the above mentioned
results. Our Theorem 4 fills this gap for open harmonic lattice models with long-range interactions by providing bounds on the
norm of commutators between canonical coordinates. The tools required to prove all these bounds combine super-operator norms
suitable for open quantum systems with techniques developed for Lieb-Robinson bounds for unitarily evolving quantum systems
with long-ranged interactions. We provide in Section II an introduction to the relevant setting and tools, following closely the
presentation of Refs. [15, 16], before presenting the main results, as described above, in Section III.

II. SETTING

A. The adjoint quantum master equation

We are interested in open quantum systems whose evolution can be described by a differentiable evolution family of quantum
channels [34]. Given a Hilbert space H, we denote the set of all bounded linear operators A : H → H as B(H). We are then
interested in systems for which the state of the system ρ(t) ∈ B(H), at time t ≥ s, is given by ρ(t) = T (t, s)ρ(s), where
T (t2, t1) : B(H)→ B(H) ∈ B(B(H)) is a completely positive, trace preserving map (a quantum channel) for all t1 ≤ t2 ∈ R,
and {T (t, s)} is an evolution family, i.e.

T (t+ r, s) = T (t+ r, t)T (t, s), T (s, s) = 1, (3)

for all s ≤ t ≤ t+ r. Assuming the evolution family to be differentiable, by differentiation we obtain

d

dt
T (t, s) = L̃(t)T (t, s),

d

ds
T (t, s) = −T (t, s)L̃(s), (4)

where

L̃(t) = lim
ε→0

T (t+ ε, t)− 1
ε

(5)

is the generator of the evolution family. One can verify that a solution to these equations is provided by the time-ordered
exponential of the generator,

T (t, s) =
←−
T exp

(∫ t

s

L̃(t′)dt′
)
. (6)

Using all of the above, we find that the dynamics of the system’s state ρ satisfies the quantum master equation

d

dt
ρ(t) = L̃(t)ρ(t). (7)

The right-hand side of this equation can always be cast in the diagonal time-dependent Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) form

L̃(t)ρ(t) = −i[H(t), ρ(t)] +
M∑
v=1

γv(t)
[
L̃v(t)ρ(t)L̃†v(t)−

1

2

(
L̃†v(t)L̃v(t)ρ(t) + ρ(t)L̃†v(t)L̃v(t)

)]
(8)

≡ −i[H(t), ρ(t)] +

M∑
v=1

[
Lv(t)ρ(t)L†v(t)−

1

2

(
L†v(t)Lv(t)ρ(t) + ρ(t)L†v(t)Lv(t)

)]
, (9)
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where H(t) ∈ B(H) is a time-dependent Hamiltonian, {L̃v(t) ∈ B(H)}Mv=1 with M ≤ dim(H)2 − 1 is a set of time-dependent
Lindblad operators describing dissipation processes, and γv(t) are the dissipation rates satisfying γv(t) ≥ 0 for all v and t, which
is necessary to ensure that the propagators in Eq. (6) are completely positive for all s and t [34, 35].

For the purpose of deriving a Lieb-Robinson bound we are interested in the time evolution of observables. To this end it is
convenient to derive the quantum master equation in the Heisenberg picture (also known as the adjoint quantum master equation).
Given the Hilbert-Schmidt inner product 〈A,B〉HS = Tr(A†B) on B(H), we define the adjoint of a super-operator T as the map
T † ∈ B(B(H)) which satisfies 〈T (A), B〉HS = 〈A, T †(B)〉HS for all A,B ∈ B(H). This definition implies that, if {T (t, s)} is
a differentiable evolution family, then {T †(t, s)} is a backwards differentiable evolution family, i.e.

T †(t+ r, s) = T †(t, s)T †(t+ r, t), T †(t, t) = 1, (10)

for all s ≤ t ≤ t+ r. Given an observable A ∈ B(H) and s ≤ t, it is then natural to define A(t) := A and consider the backward
time-evolved observables A(s) := T †(t, s)A such that

〈A〉s→t = Tr [ρ(t)A] = Tr [(T (t, s)ρ(s))A] = Tr
[
ρ(s)

(
T †(t, s)A

)]
:= Tr [ρ(s)A(s)] . (11)

In order to derive an equation of motion for A(s) we use Eq. (10) to differentiate T †(t, s), from which we obtain

d

dt
T †(t, s) = T †(t, s)L̃†(t), d

ds
T †(t, s) = −L̃†(s)T †(t, s), (12)

where L̃†(t), the adjoint of L̃(t), is the generator of the backwards evolution family, given by

L̃†(t) = lim
ε→0

T †(t+ ε, t)− 1
ε

. (13)

In this case one can verify that

T †(t, s) =
−→
T exp

(∫ t

s

L̃†(t′)dt′
)
, (14)

the backwards time-ordered exponential of the adjoint generator L̃†(t), provides a solution to (12) with initial condition specified
in (10). Combining all of the above, we obtain that backward time-evolved observables in the Heisenberg picture satisfy the
adjoint quantum master equation

d

ds
A(s) = −L̃†(s)A(s), (15)

where

L̃†(s)A(s) = i[H(s), A(s)] +
∑
v

[
L†v(s)A(s)Lv(s)−

1

2

(
L†v(s)Lv(s)A(s) +A(s)L†v(s)Lv(s)

)]
. (16)

As we will only be working in the Heisenberg picture, it is convenient to introduce the notation τ(s, t) := T †(t, s) and
L(s) := L̃†(s), which lets us summarize concisely as follows: Given an open quantum system described by a differentiable
evolution family of quantum channels {T (t, s)} (i.e. a system satisfying a time-dependent GKSL master equation), which is
conventionally specified in terms of the generator L̃(t), then for any observable A ∈ B(H) and any initial state ρ(s), we have that
for any s ≤ t

〈A〉s→t = Tr(ρ(t)A) = Tr(ρ(s)A(s)), (17)

where ρ(t) = T (t, s)ρ(s), A(s) = τ(s, t)A and

d

ds
A(s) = −L(s)A(s). (18)

B. Norms

Given A ∈ B(H) we define the Schatten p-norm as

‖A‖p :=
[
Tr
[
(A†A)p/2

]]1/p
. (19)
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We will utilize the Schatten 1-norm, or trace norm,

‖A‖1 := ‖A‖tr = Tr
√
A†A, (20)

as well as the∞-norm, or operator norm,

‖A‖∞ := lim
p→∞

‖A‖p := ‖A‖ = sup
x∈H

‖A(x)‖
‖x‖

. (21)

The trace norm is the physically most relevant norm for quantum states, while the operator norm is the physically relevant norm
for observables. Given the p-norms we can now define the induced p→ q super-operator norm via

‖T‖p→q := sup
A∈B(H)

‖T (A)‖p
‖A‖q

(22)

for all T ∈ B(B(H)). Again, we will be interested in both the∞→∞ norm (when working in the Heisenberg picture) as well
as the 1→ 1 norm (when working in the Schrödinger picture). The following norm properties (amongst other generic properties
of norms) are used for the proofs of Lieb-Robinson bounds.

(i) ‖AB‖p ≤ ‖A‖p‖B‖p for all A,B ∈ B(H) (submultiplicativity of the p-norms [36]).

(ii) ‖UAV †‖p = ‖A‖p for all A ∈ B(H) and for all unitary U, V ∈ B(H) (unitary invariance of the p-norms [36]).

(iii) ‖TQ‖p→p ≤ ‖T‖p→p‖Q‖p→p for all T,Q ∈ B(B(H)) (submultiplicativity of the p→ p norms [36]).

(iv) ‖T (A)‖p ≤ ‖T‖p→q‖A‖q for all T ∈ B(B(H)) and for all A ∈ B(H) [36].

(v) ‖T‖1→1 = ‖T †‖∞→∞ for all T ∈ B(B(H)) (“duality” of 1→ 1 and∞→∞ norms) [16].

(vi) ‖T‖1→1 = 1 for any quantum channel T ∈ B(B(H)) [17].

Some subtleties associated with the p→ q induced super-operator norms are worth being mentioned. Firstly, the 1→ 1 norm
is not stable with respect to tensoring with the identity, i.e. there exist super-operators T ∈ B(B(H)) such that

‖T‖1→1 6= ‖T ⊗ 1B(H2)‖1→1, (23)

where 1B(H2) is the identity super-operator in B(B(H2)) for some Hilbert spaceH2 [36, 37]. This is important as we will often
be working with super-operators of the form T = T̃ ⊗ 1, and one needs to ensure that one does not assume ‖T‖1→1 = ‖T̃‖1→1.
Similarly, there exist super-operators T ∈ B(B(H)) and Hilbert spacesH2 andH3 such that

‖T ⊗ 1B(H2)‖1→1 6= ‖T ⊗ 1B(H3)‖1→1. (24)

In particular, given an arbitrary T ∈ B(B(H)) one can show [37] that, if dim(H2) ≥ dim(H), then one always has

‖T ⊗ 1B(H2)‖1→1 = ‖T ⊗ 1B(H)‖1→1. (25)

On the other hand, if dim(H2) < dim(H) and dim(H2) < dim(H3), then it may be that

‖T ⊗ 1B(H2)‖1→1 ≤ ‖T ⊗ 1B(H3)‖1→1. (26)

We will have to take these properties into account in Section II C.

C. Lattice systems and many-body Liouvillians

We consider finite lattices Λ, equipped with some metric d. A finite Hilbert space Hx is associated to each x ∈ Λ, and we
defineHX =

⊗
x∈X Hx for all subsets X ⊂ Λ, andH := HΛ. Later we will extend our considerations to harmonic systems, for

which each site is equipped with a harmonic bosonic mode, however the details of this setting are postponed till Section III C.
Given A ∈ B(H) we define the support of A, denoted supp(A), as the smallest subset X ⊂ Λ for which there exists a non-trivial
AX ∈ B(HX) such that A = AX ⊗ 1Λ/X . For any X ⊂ Λ we then define

BX(H) := {A ∈ B(H)|supp(A) ⊆ X} (27)
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as the space of all bounded linear operators on H with support contained in X . We define the support of a super-operator
L ∈ B(B(H)) as

supp(L) :=
⋂
{X ⊂ Λ | BΛ/X(H) ⊆ ker(L)}. (28)

We further define

L′X = {L ∈ B(B(H)) | supp(L) = X} (29)

as the set of super-operators whose support is X , and

LX = {L′Y | Y ⊆ X} (30)

as the set of super-operators whose support is a subset of X .
We are interested in open many-body quantum systems whose dynamics satisfies Eq. (18) for some adjoint generator L(s) that

can be written as a sum of terms,

L(s) =
∑
Z⊂Λ

LZ(s), (31)

where LZ(s) ∈ L′Z is the generator of a backwards differentiable evolution family in its own right. Typically, three categories of
interactions are distinguished.

(a) Short-range interactions [16]: L is the sum of terms with finite norm bound

l := sup
s,Z⊂Λ

‖LZ(s)‖∞→∞, (32)

finite maximum range

a := sup
Z:LZ 6=0

diam(Z), (33)

and finite maximum number of nearest neighbours

Z := max
Z:LZ 6=0

|{Z ′ ⊂ Λ|LZ′ 6= 0, Z ′ ∩ Z 6= ∅}|, (34)

where diam(Z) = maxx,y∈Z d(x, y).

(b) Exponentially-decaying interactions [5, 18]: There exist positive constants λ0 and µ such that for all x, y ∈ Λ and for all
t ∈ R, ∑

X3x,y
sup
s∈[0,t]

‖LX(s)‖∞→∞ ≤ λ0e
−(µd(x,y)). (35)

(c) Power law-decaying interactions [5, 18]: There exist positive constants λ0 and η such that for all x, y ∈ Λ and for all t ∈ R,∑
X3x,y

sup
s∈[0,t]

‖LX(s)‖∞→∞ ≤
λ0

[1 + d(x, y)]η
. (36)

Lieb-Robinson bounds for open quantum systems with adjoint generators of type (a) have been proved in Refs. [14, 16], and
similar, but more general, results for adjoint generators of type (a) and (b) have been proven in Ref. [18]. Here we are concerned
with adjoint generators of type (c). As in the proofs of Lieb-Robinson bounds for closed (unitary) quantum systems with power
law-decaying interactions, we need additional assumptions on the lattice Λ.

Assumption 1: The lattice Λ, equipped with metric d, satisfies∑
z∈Λ

1

[1 + d(x, z)]η
1

[1 + d(z, y)]η
≤ p0

[1 + d(x, y)]η
(37)

for some p0 > 0.
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As shown in Ref. [5], if for a given positive η we have that

sup
x∈Λ

∑
y∈Λ

1

[1 + d(x, y)]η
<∞, (38)

then Eq. (37) will hold for the same value of η. Eq. (38) therefore provides a simpler sufficient criterion for ensuring that
Assumption 1 is satisfied. For a conventional metric on a D-dimensional regular lattice, Eq. (38) is violated for η < D [10, 20],
and therefore Assumption 1 cannot be used to prove Lieb-Robinson bounds in that case. For power law-decaying interactions
with η < D, we therefore follow Refs. [10, 20] and define an alternative assumption, which holds on regular D-dimensional
lattices for all η > 0, and allows one, as shown in Section III B, to prove a Lieb-Robinson bound with a rescaled notion of time.

Assumption 2: The lattice Λ, equipped with metric d, satisfies

NΛ

∑
z∈Λ

1

[1 + d(x, z)]η
1

[1 + d(z, y)]η
≤ p1

[1 + d(x, y)]η
, (39)

for some finite p1 > 0 and for all x, y ∈ Λ, where

NΛ = 1/ sup
x∈Λ

∑
y∈Λ/{x}

1

[1 + d(x, y)]η
. (40)

Finally, note that conditions (a)–(c) have been specified in terms of the ∞ → ∞ norm for adjoint generators. However, as
discussed in Section II B, super-operator norms are not stable with respect to tensoring the identity, which can create problems if
one wishes to obtain results for dynamics defined not for a fixed finite lattice as we do here, but rather for a family of lattices—such
as if one wishes to extend these results in a consistent manner to infinite lattice systems, as per the methods in Ref. [18] for
systems with exponentially decaying interactions. In particular, as a consequence of the way that adjoint generators with restricted
support have been defined in Eqs. (28) and (29), we see that if LZ ∈ L′Z , then there exists some L̂Z ∈ B(B(HZ)) such that

LZ = L̂Z ⊗ 1B(HΛ/Z). (41)

Therefore in general ‖LZ‖∞→∞, and hence the constants appearing in conditions (a)–(c) depend on Λ. While we will not make
use of this here, it is interesting to note that this dependence can be removed by defining the stabilized diamond norm

‖T‖♦ = ‖T ⊗ 1B(H)‖ ∀T ∈ B(B(H)) (42)

and by replacing ‖LX(s)‖∞→∞ in (32), (35), and (36) with the completely bounded norm

‖LX(s)‖cb = ‖L̂X(s)⊗ 1B(HΛ/X)‖cb := ‖L̂X(s)‖♦, (43)

which no longer depends on Λ.

III. LIEB-ROBINSON BOUNDS

A. Lieb-Robinson bound for long-range interactions with η > D

Lieb-Robinson bounds for open quantum systems have first been proven for the case of short-range interactions in Refs. [14, 16],
via a natural generalization of the methods in Refs. [5, 8, 38], by making use of the adjoint quantum master equation and the
relevant super-operator norms. As noted in Ref. [16], no formal obstacle prevents one from applying the methods of Refs. [14, 16],
in conjunction with the methods of Refs. [5, 8, 38], to obtain bounds for systems with long-range interactions. Such an extension
for open quantum systems with exponentially decaying interactions has been reported in Ref. [18]. Below we provide an extension
to open quantum systems with power law-decaying interactions, using techniques developed in Ref. [5] in the context of closed
systems.

Theorem 1 (Lieb-Robinson bound): Given a finite lattice Λ equipped with a metric d, and an open quantum system described
by a differentiable evolution family of quantum channels whose adjoint generator can be written as in (31), then if there exist
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positive constants λ0 and η such that (36) is satisfied for all x, y ∈ Λ and for all t ∈ R, and if Assumption 1 is satisfied for the
same value of η, then for any KX ∈ LX , OY ∈ BY (H) with X ∩ Y = ∅, and 0 ≤ r ≤ t ∈ R, we have that

‖KXτ(r, t)OY ‖ ≤
C
(
ev(t−r) − 1

)
[1 + d(X,Y )]η

, (44)

where

C = ‖KX‖∞→∞‖OY ‖|X||Y |p−1
0 , v = λ0p0, d(X,Y ) = min

x∈X,y∈Y
d(X,Y ). (45)

Note that a more conventional form of the above bound is obtained by taking KX such that, for all A ∈ B(H),

KX(A) = [A,OX ] (46)

for some OX ∈ BX(H). In this case we can replace ‖KX‖∞→∞ with 2‖OX‖. Stated more explicitly, under the same conditions
as Theorem 1, but with KX as in eq. (46), for OX ∈ BX(H) one obtains

‖[τ(r, t)OY , OX ]‖ ≤
C
(
ev(t−r) − 1

)
[1 + d(X,Y )]η

, (47)

with

C = 2‖OX‖‖OY ‖|X||Y |p−1
0 . (48)

Proof: We define the quantity

G(r) := KXτ(r, t)OY , (49)

whose norm we would like to bound. Similar to Refs. [5, 8, 14, 16, 18, 38], the first step is to “differentiate and integrate” both
sides of Eq. (49). Following the approach used in Ref. [16] for open quantum systems with short-range interactions, we note that
G(t) = KXOY and

∂

∂r
G(r) = −KXL(r)τ(r, t)OY ,= −LΛ/X(r)G(r)−KXLX̄(r)τ(r, t), (50)

where we have utilized (10) and (12). In a slight abuse of notation we have denotedLΛ/X :=
∑
Z⊆Λ/X LZ andLX̄ :=

∑
Z∈X̄ LZ

with X̄ := {Z ∈ Λ | Z ∩ X 6= ∅}, which implies that [KX ,LΛ/X ] = 0 for all KX ∈ LX . A solution for G(r) under these
conditions is then given by

G(r) = τΛ/X(r, t)G(t) +

∫ t

r

ds τΛ/X(r, s)KXLX̄(s)τ(s, t)OY . (51)

Taking the norm of G(r) and utilizing the norm properties detailed in Section II B allows us to obtain

‖G(r)‖ ≤ ‖G(t)‖+ ‖KX‖
∑
Z∈X̄

∫ t

r

ds‖LZ(s)τ(s, t)OY ‖, (52)

where we are using the short-hand notation ‖•‖ to denote ‖•‖∞→∞ for all norms of super-operators. From here we proceed by
defining the related quantity

CX(r) := sup
K∈LX

‖Kτ(r, t)OY ‖
‖K‖

, (53)

which we will be able to bound. Dividing Eq. (52) by ‖KX‖ and taking the supremum gives us

CX(r) ≤ CX(t) +
∑
Z∈X̄

sup
s∈[r,t]

‖LZ(s)‖
∫ t

r

dsCZ(s). (54)



8

Utilizing properties of the norm, we note that

CX(t) ≤ δ(X,Y )‖OY ‖, (55)

where δ(X,Y ) := 0 if X ∩ Y = ∅ or 1 otherwise. Assuming X ∩ Y = ∅ and substituting (54) into itself and iterating yields the
expression

CX(r) ≤ ‖OY ‖
∞∑
n=1

(t− r)n

n!
cn, (56)

where

cn :=
∑
Z1∈Z̄0

∑
Z2∈Z̄1

. . .
∑

Zn∈Z̄n−1

δ(Zn, Y )

n∏
i=1

sup
s∈[r,t]

‖LZi(s)‖ (57)

with Z0 := X . To further bound the right-hand side of (56), we derive upper bounds on the terms cn. To achieve this, we adapt a
method that was introduced in Ref. [5] for proving Lieb-Robinson bounds for closed quantum systems with power law-decaying
interactions. Similarly to Ref. [5], we note that

c1 =
∑
Z1∈Z̄0

δ(Z1, Y ) sup
s∈[r,t]

‖LZ1(s)‖ (58a)

≤
∑
x∈X

∑
y∈Y

∑
Z3x,y

sup
s∈[0,t]

‖LZ1
(s)‖ (58b)

≤
∑
x∈X

∑
y∈Y

λ0

[1 + dist(x, y)]η
(58c)

≤ λ0|X||Y |
[1 + dist(X,Y )]η

, (58d)

where we have used the power-law assumption (36). By additionally using Assumption 1, c2 can be bounded in a similar fashion,

c2 =
∑
Z1∈Z̄0

∑
Z2∈Z̄10

δ(Z2, Y ) sup
s∈[r,t]

‖LZ1(s)‖ sup
s∈[r,t]

‖LZ2(s)‖ (59a)

≤
∑
Z1∈Z̄0

∑
Z2∈Ȳ0

sup
s∈[r,t]

‖LZ1(s)‖ sup
s∈[r,t]

‖LZ2(s)‖ (59b)

≤
∑
x∈X

∑
y∈Y

∑
z1,2∈Λ

∑
Z13z1,2,x

∑
Z23z1,2,y

sup
s∈[0,t]

‖LZ1
(s)‖ sup

s∈[0,t]

‖LZ2
(s)‖ (59c)

≤
∑
x∈X

∑
y∈Y

∑
z1,2∈Λ

λ0

[1 + dist(x, z1,2)]η
λ0

[1 + dist(z1,2, y)]η
(59d)

≤
∑
x∈X

∑
y∈Y

λ2
0p0

[1 + dist(x, y)]η
(59e)

≤ p0λ
2
0|X||Y |

[1 + dist(X,Y )]η
. (59f)

Proceeding in this manner, we find that

cn ≤
pn−1

0 λn0 |X||Y |
[1 + dist(X,Y )]η

(60)

for all n. Substituting (60) into (56) gives

CX(r) ≤ ‖OY ‖|X||Y |
p0[1 + dist(X,Y )]η

(
ep0λ0(t−r) − 1

)
, (61)

from which the theorem follows via the definition of CX(r). �



9

B. Lieb-Robinson bounds for arbitrarily long-ranged interactions

In the proof of Theorem 1, Assumption 1 has been crucial for bounding the coefficients cn. However, for long-ranged
interactions with η < D and conventional metrics on the lattice, Assumption 1 no longer holds, as discussed in Section II C.
Despite this, as shown in Ref. [10] for closed quantum systems, a Lieb-Robinson bound in rescaled time can be obtained by
utilizing Assumption 2 instead of 1. Below we provide a similar result for open quantum systems.

Theorem 2 (Lieb-Robinson bound for arbitrarily long-ranged interactions): Given a finite lattice Λ equipped with a metric
d, and an open quantum system described by a differentiable evolution family of quantum channels whose adjoint generator can
be written as in (31), then, if there exist positive constants λ0 and η such that (36) is satisfied for all t ∈ R and if Assumption 2 is
satisfied for η, then for any KX ∈ LX , OY ∈ BY (H) with X ∩ Y = ∅ and 0 ≤ r ≤ t ∈ R we have that

‖KXτ(r, t)OY ‖ ≤
C1

(
e[v1(t−r)/NΛ ]− 1

)
[1 + d(X,Y )]α

, (62)

where

C1 = ‖KX‖∞→∞‖OY ‖|X||Y |NΛp
−1
1 , v1 = λ0p1. (63)

Proof: Up until Eq. (56), the proof of Theorem 2 proceeds exactly as the proof of Theorem 1. At this point, as per [10], by
comparing expressions (37) and (39) in Assumptions 1 and 2 respectively, we note that the rest of the proof proceeds identically,
provided one replaces p0 with p1/NΛ, which allows for the use of Assumption 2 in place of Assumption 1. �

It is interesting to note that the bound on the right hand side of Eq. (62) depends implicitly on the system size through the inclusion
of the rescaling factor NΛ. However, from the definition of NΛ in Eq. (40) one can see that NΛ ≤ 2η, and it decreases with
increasing system size. If desired it is therefore possible to remove this system-size dependence by replacing NΛ with 2η .

Another type of Lieb-Robinson bound, which has the form of a matrix exponential, was also put forward in Ref. [10] in the
context of closed quantum systems. It has the advantage of being tighter than other bounds, at the expense of having to calculate a
certain matrix exponential. In the following theorem we generalize this matrix exponential bound to open quantum systems.

Theorem 3 (Matrix exponential bound for pair interactions): Consider a finite lattice Λ and an open quantum system
described by a differentiable evolution family of quantum channels, whose adjoint generator can be written as the sum of
symmetric pairwise terms, i.e.

L(s) =
1

2

∑
k 6=l

Lk,l(s) =
∑
k<l

Lk,l(s), (64)

where supp(Lk,l(s)) = {k, l}. Then for X = {i} and Y = {j} with i 6= j we have that for any single-site operators KX ∈ LX ,
OY ∈ BY (H) and any 0 ≤ r ≤ t ∈ R,

‖KXτ(r, t)OY ‖ ≤ ‖KX‖∞→∞‖OY ‖ [exp(κJ(t− r))]i,j , (65)

where

Jk,l :=

{
sups∈[r,t]‖Lk,l(s)‖∞→∞ if k 6= l,

1 if k = l,
(66)

and

κ = sup
n∈Λ

∑
k 6=n

Jn,k. (67)

Proof: Up until Eq. (56) the proof of Theorem 3 proceeds as per the proof of Theorem 1. Then, as in Refs. [10, 39], for a pairwise
adjoint generator in the form of Eq. (64) and for X = {i} and Y = {j} with i 6= j, one can show that the coefficients cn are
upper bounded as

cn ≤ κn[Jn]i,j . (68)

For n = 1 the bound in Eq. (68) follows straightforwardly, and so in order to prove these bounds we start by looking at the case of
n = 2. In particular, as illustrated in the left-hand panel of Fig. 1 and shown in Eq. (69), for this case Eq. (57) can naturally be
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FIG. 1. (1a)–(1c) Under the conditions of Theorem 3, the sum over intersecting subsets in the first line of (69) can be rewritten as the sum over
three distinct subsets of all directed two-edge graphs admitting a path connecting sites i and j, but in which no loops are present and in which
the first edge is constrained to originate from site i and the second edge is constrained to end on site j. (2a)–(2c) For each subset of graphs
which contains “free” edges—i.e. edges which are not part of the path connecting sites i and j—we can bound the sum over this subset of
graphs by a single graph containing a loop with weight κ on the common site on which the free edges begin or end.

written as the sum of three distinct contributions, each of which describes the sum over a subset of all the directed two-edge graphs
admitting a path connecting sites i and j, in which no loops are allowed (reflecting the fact that there are no on-site interaction
terms in the adjoint generator) and in which the first edge is constrained to originate from site i and the second edge is constrained
to end on site j. Specifically, the first contribution describes the sum over the subset of graphs in which the second edge begins on
the endpoint of the first edge, while the second and third contributions describes the sum over the subsets in which the second and
first edges, respectively, connect sites i and j directly,

c2 =
∑

Z1∈ ¯{i}

∑
Z2∈Z̄1

δ(Z2, {j}) sup
s∈[r,t]

‖LZ1(s)‖ sup
s∈[r,t]

‖LZ2(s)‖ =
∑
k 6=i,j

Ji,kJk,j +
∑
k 6=i

Ji,kJi,j +
∑
k 6=j

Ji,jJk,j . (69)

At this stage, as illustrated in the right-hand panel of Fig. 1 and shown explicitly below, for any subset of graphs defined by a
common path connecting sites i and j, but with edges beginning (or ending) on a particular site which are not part of this path, we
can bound the sum over all such graphs by collecting the contribution over all edges originating from or ending on this site into a
loop on this site with weight κ. As shown below in Eq. (70), this procedure allows us to bound (69) as the sum over all directed
two-edge graphs admitting a path connecting sites i and j, in which loops with weight κ are now allowed, but in which the second
edge is constrained to originate on the end of the first edge. Using that we have defined Jk,k := 1, we see that

c2 ≤
∑
k 6=i,j

Ji,kJk,j + (κJi,i)Ji,j + Ji,j(κJj,j) ≤ κ2
∑
k

Ji,kJk,j = κ2[J2]i,j , (70)

which is the case n = 2 of the bound (68) we want to show. For n = 3 we can proceed in an analogous manner. We begin
by rewriting the sum over intersecting subsets given by (57) as a sum over all the directed three-edge graphs admitting a path
connecting sites i and j, in which no loops are allowed and in which the first edge is constrained to originate from site i and the
third edge is constrained to end on site j, and then continue by using the same trick as for the case of n = 2 to bound this sum by
the sum over all directed three-edge graphs admitting a path connecting sites i and j, in which loops with weight κ are allowed,
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but in which edge m+ 1 is constrained to begin at the endpoint of edge m for m ∈ {2, 3}. Explicitly, we find

c3 =
∑

Z1∈ ¯{i}

∑
Z2∈Z̄1

∑
Z3∈Z̄2

δ(Z3, {j})
3∏
k=1

sup
s∈[r,t]

‖LZk
(s)‖ (71a)

=
∑
k 6=i

∑
l 6=k,j

Ji,kJk,lJl,j +
∑
k 6=i

∑
l 6=i

Ji,kJi,lJi,j +
∑
k 6=i

∑
l 6=j

Ji,kJi,jJl,j +
∑
k 6=j

∑
l 6=j

Ji,jJk,jJl,j

+
∑
k 6=i

∑
l 6=i,j

Ji,kJi,lJl,j +
∑
k 6=i,j

∑
l 6=k

Ji,kJl,kJk,j +
∑
k 6=i,j

∑
l 6=k

Ji,kJk,jJl,j (71b)

≤
∑
k 6=i

∑
l 6=k,j

Ji,kJk,lJl,j + κ2
(
Ji,iJi,iJi,j + Ji,iJi,jJj,j + Ji,jJj,jJj,j

)
+ κ
( ∑
k 6=i,j

Ji,iJi,kJk,j +
∑
k 6=i,j

Ji,kJk,kJk,j +
∑
k 6=i,j

Ji,kJk,jJj,j

)
(71c)

≤ κ3
∑
k,l

Ji,kJk,lJl,j = κ3[J3]i,j . (71d)

An analogous treatment for larger n yields the bound (68). From this bound, together with Eqs. (53) and (56), Theorem 3 then
follows. �

While the bounds here are stated in terms of spin systems, by virtue of the arguments of Ref. [5], they equally apply, for
observables that respect the superselection rule of the parity of fermion number, to fermionic lattice systems in which each site is
associated not with a spin but with a fermionic degree of freedom. This is not entirely obvious, since a naive mapping of fermions
to spins by means of a Jordan-Wigner transformation leads to non-local spin operators.

C. Locality bounds for harmonic open quantum systems

In this section, we show that bounds similar to those of the previous two sections hold true also for harmonic lattice models,
described by master equations in the GKSL form (9) with Hamiltonians and Lindblad operators that are bilinear and linear
respectively in bosonic creation and annihilation operators. These bounds generalize the results of Ref. [40], which are valid for
unitarily evolving systems, to the class of open harmonic quantum many-body systems. Since the local Hilbert space dimension
of bosonic degrees of freedom is not finite, the theorems of Secs. III A and III B do not apply. However, locality bounds similar in
mindset can still be derived. We again consider finite lattices Λ, equipped with a metric d, where now to each lattice site x ∈ Λ
a Hilbert space L2(R) is assigned, corresponding to a single harmonic mode with canonical coordinates {Qx} and {Px} that
satisfy the canonical commutation relations. The canonical coordinates in the lattice system can be collected in the vector

R = (Q1, . . . , Qn, Px1, . . . , Pn) (72)

with n := |Λ|. For clarity and ease of presentation, we formulate the locality bounds for commutators of canonical coordinates at
different lattice sites, and for time-independent Liouvillians, as analogs of the results of Section III A. The results and techniques
can however be extended to more general local observables, and also to time-dependent Liouvillians.

We consider the Gaussian setting in which the Lindblad operators Lν associated with each site v ∈ Λ are linear in the canonical
coordinates,

Lv =

2n∑
j=1

Mv,jRj . (73)

We consider only a single Lindblad operator per site, although once again this assumption is not necessary and could be lifted.
The Hamiltonian is assumed to be a quadratic expression of the form

H =
1

2

∑
x,y∈Λ

(QxAx,yQy + PxBx,yPy) =
1

2

∑
x,y∈Λ

(Rxhx,yRy) (74)

with h = A⊕B. In analogy with the discussion for spin systems in Section II C, the Hamiltonian is said to be long-ranged if the
condition

|Ax,y|, |Bx,y| ≤
c0

[1 + d(x, y)]η
(75)
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is satisfied for positive constants c0, η. As in Section III A, we will require Assumption 1 from Section II, and are therefore
restricted to η > D. The Lindblad operators are required to obey the same spatial decay,

|Mx,y|, |Mx,y+n| ≤
c0

[1 + d(x, y)]η
(76)

for all x, y ∈ Λ. For this class of problems, the following Lieb-Robinson bound can be formulated:

Theorem 4 (Harmonic Lieb-Robinson bound): Given a finite lattice Λ, equipped with a metric d, and a harmonic open
quantum system described by a Liouvillian in the form of (73) and (74), with the property that there exist positive constants c0
and η such that (75) and (76) are satisfied for all x, y ∈ Λ, and if Assumption 1 is satisfied for the same value of η, then for all
x, y ∈ Λ, with x 6= y, and for all 0 ≤ s ≤ t, one has

‖[Qx(s), Qy]‖, ‖[Px(s), Py]‖, ‖[Px(s), Qy]‖, ‖[Qx(s), Py]‖ ≤ 1

2p0

e2p0(c0+p0c
2
0)(t−s)

[1 + d(x, y)]η
. (77)

While Theorem 4 is stated for commutators of canonical coordinates and for time-independent Liouvillians, it should be
clear from the proof below, in conjunction with the previously utilized proof techniques, how these assumptions can be lifted.
Additionally, as in Theorem 2, the constraint of η > D could be removed via a suitable rescaling of time facilitated by replacing
Assumption 1 with Assumption 2.

Proof: We start from the Heisenberg equations of motion (15) for the canonical coordinates,

d

ds
Rk(s) = −L̃†(s)Rk(s) (78)

for k = 1, . . . , 2n, with L̃† acting as specified in Eq. (16). By making use of the canonical commutation relations and the explicit
form of L̃† specified through (73) and (74), one finds

d

ds
Qx(s) = −

∑
y

Bx,yPy(s)− i

2

∑
v∈Λ

2n∑
j,l=1

(
M̄v,jMv,xRj(s)− M̄v,xMv,lRl(s)

)
, (79a)

d

ds
Px(s) =

∑
y

Ax,yQy(s) +
i

2

∑
v∈Λ

2n∑
j,l=1

(
M̄v,jMv,xRj(s)− M̄v,xMv,lRl(s)

)
. (79b)

Defining the matrices

Dx,y = − i
2

n∑
v=1

M̄v,yMv,x, (80a)

Ex,y = − i
2

n∑
v=1

M̄v,y+nMv,x, (80b)

Fx,y =
i

2

n∑
v=1

M̄v,yMv,x, (80c)

Gx,y =
i

2

n∑
v=1

M̄v,xMv,y+n, (80d)

one can concisely write the equations of motion as

d

ds
Rk(s) =

2n∑
l=1

Sk,lRl(s) (81)

with the kernel matrix

S =

[
0 −B
A 0

]
+

[
D E
−D −E

]
+

[
F G
−F −G

]
=:

[
S1 S2

S3 S4

]
. (82)
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The solutions to the equations of motion (81) are given by the matrix exponential

Rk(s) =

2n∑
l=1

[
eS(t−s)]

k,l
Rl. (83)

Note that the Hamiltonian part of this equation of motion is compatible with the findings of Ref. [40]. Following the strategy of
Ref. [40], the Lieb-Robinson bounds of Theorem 4 then follow from an analysis of the matrix exponential. To this end we upper
bound the entries of the sub-matrices S1, . . . , S4 of S defined in (82), for which from the long-range conditions (75) and (76) it
follows that

|(Sa)x,y| ≤
c0

[1 + d(x, y)]η

∑
v∈Λ\{x,y}

c20
[1 + d(x, v)]η[1 + d(y, v)]η

(84)

for all x, y ∈ Λ and a = 1, . . . , 4. Making use of Assumption 1, we obtain the upper bound

|(Sa)x,y| ≤
c0 + p0c

2
0

[1 + d(x, y)]η
. (85)

In order to bound the matrix exponential, we need to bound the entries of powers of Sa. Invoking Assumption 1, we find

((Sa)2)x,y ≤ p0(c0 + p0c
2
0)2 1

[1 + d(x, y)]η
. (86)

Iterating and generalizing this argument, one can show that

(Si1 · · ·Sik)x,y ≤ pk−1
0 (c0 + p0c

2
0)k

1

[1 + d(x, y)]η
(87)

for any i1, . . . , ik ∈ {1, . . . , 4}. As a result, we find that for x, y ∈ Λ (i.e. for the upper left block of S)

(Sk)x,y ≤ 2k−1pk−1
0 (c0 + p0c

2
0)k

1

[1 + d(x, y)]η
, (88)

and the same inequality holds for the other three n×n blocks of Sk. This allows us to bound the entries of the matrix exponential,

[
eS(t−s)]

x,y
≤

(
δx,y +

∞∑
k=1

2k−1

k!
pk−1

0 (c0 + p0c
2
0)k(t− s)k

)
1

[1 + d(x, y)]η

=

(
δx,y +

1

2p0

∞∑
k=1

2k

k!
pk0(c0 + p0c

2
0)k(t− s)k

)
1

[1 + d(x, y)]η

≤
(
δx,y +

1

2p0
e2p0(c0+p0c

2
0)(t−s)

)
1

[1 + d(x, y)]η
. (89)

Theorem 4 then follows from application of the canonical commutation relations. �

IV. SUMMARY

In this work, we have presented a number of Lieb-Robinson bounds that capture the locality of dynamics in long-ranged open
quantum systems. Such systems are currently a focus of interest, due to the fact that several platforms for quantum simulators
can be described well by open systems of this type [22–33]. It is the hope that this works stimulates further research into
the static and dynamical properties of such quantum systems, e.g., by showing stability statements [41, 42] that follow from
Lieb-Robinson bounds of the type we have presented here, or to relate the findings established here to experimental observations
of open long-ranged interacting systems out of equilibrium.
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(2016).

[22] M. Foss-Feig, K. R. A. Hazzard, J. J. Bollinger, A. M. Rey, and C. W. Clark, “Dynamical quantum correlations of Ising models on an
arbitrary lattice and their resilience to decoherence,” New J. Phys. 15, 113008 (2013).

[23] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M. Rey, M. Foss-Feig, and J. J. Bollinger, “Quantum spin dynamics and
entanglement generation with hundreds of trapped ions,” Science 352, 1297–1301 (2016).

[24] A. Shankar, J. Cooper, J. G. Bohnet, J. J. Bollinger, and M. Holland, “Steady-state spin synchronization through the collective motion of
trapped ions,” Phys. Rev. A 95, 033423 (2017).

[25] N. Trautmann and P. Hauke, “Trapped-ion quantum simulation of excitation transport: Disordered, noisy, and long-range connected
quantum networks,” Phys. Rev. A 97, 023606 (2018).

[26] N. Malossi, M. M. Valado, S. Scotto, P. Huillery, P. Pillet, D. Ciampini, E. Arimondo, and O. Morsch, “Full counting statistics and phase
diagram of a dissipative Rydberg gas,” Phys. Rev. Lett. 113, 023006 (2014).
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